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ABSTRACT

Quasicrystals are aperiodic crystals known to exhibit properties unexpected for their composition.
These materials have potential applications as solar absorbers, Teflon alternatives, and mechani-
cal reinforcement. Unfortunately, the presence of defects, dislocations, and grain boundaries in
synthesized quasicrystals impede the study and commercialization of these materials. Conven-
tional methods to detect defects and grains assume periodicity, are limited to simple crystals, or
are developed for a specific crystal structure. Although theories of defects and dislocations in qua-
sicrystals exist, they can be difficult to implement on large systems due to their complexity and
computational cost. This dissertation aims to bridge this gap by deepening our understanding of
quasicrystal growth mechanisms, offering a versatile tool for defect and dislocation detection, and
ultimately enhancing the quasicrystal manufacturing processes.

Due to the difficulties associated with defect detection in quasicrystals, research on the growth
interactions of these materials remains limited. To address this gap in the literature, I use molecular
dynamics simulation to model two novel growth behaviors discovered by our experimental collab-
orators. First, I elucidate how phasons, the configurational degrees of freedom imparted by aperi-
odicity, enables the formation of single, defect free quasicrystals upon collision of two grains with
small misorientation. I show how phasons enable quasicrystals to redistribute direct space strain
(i.e. phonon strain) upon collision and rotation of misoriented grains. Second, I detail the role of
multiple length scales in phason-mediated coalesence mechanisms upon quasicrystal collison and
engulfment of shrinkage pores. This phason-mediated mechanism results in a low-energy region
at the site of growth front collision, and is agnostic to pore collision conditions. These works high-
light the role phasons play in redistributing strain upon collision of growth fronts. Understanding
how the presence of phasons affects quasicrystal growth behavior will give experimentalists the
tools they need to develop better manufacturing processes for commercially viable quasicrystal
coatings.

Although Fourier filtering is traditionally used to detect strain and dislocations in experimental
crystals imaged at atomistic resolution, this technique has seen limited usage for the analysis of
phason and classical strain in quasicrystals. Additionally, Fourier filtering relies on manual in-
spection of structural data and often requires specialized knowledge of proprietary software. For
systematic studies over large parameter spaces, manual inspection becomes infeasible. Conse-
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quently, Fourier filtering for defect detection has seen limited usage in simulated systems. To
process the large volumes of data required for our systematic study of obstacles and temperature
on quasicrystal synthesis, I develop a structure agnostic algorithm to automate defect and strain
detection.

The algorithm is robust to noise and artifacts originating from disordered regions or misaligned
grains, effective at segmenting misoriented grains in polycrystalline samples, and effective at iden-
tifying defects and dislocations. I leverage this algorithm to analyze phason trail relaxation in
simulated quasicrystals and demonstrated the algorithm’s generalizability across a diverse array
of simulated and experimental crystals, including images of non-spherical particles, three dimen-
sional experimental data, and three dimensional simulation data.

This dissertation aims to advance our understanding of quasicrystals by exploring their growth
behaviors, offering a robust defect detection tool, and providing valuable insight for material scien-
tists, crystallographers, and other researchers specializing in quasicrystals. Through the integration
of molecular dynamics simulations and innovative algorithms, this research promises to facilitate
significant advancements in the comprehension and commercialization of these remarkable mate-
rials.
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CHAPTER 1

Introduction

Quasicrystals (QCs) are solids that possess long-range orientational order but lack transitional pe-
riodicity. These materials are known exhibit mechanical and transport properties that are highly
unexpected for their composition [65]. This is due, in part, to their unique geometries [65, 99, 147].
For example, metallic QC are shown to exhibit exceptional hardness [77, 142], high thermal [65]
and high electrical resistivity [117, 118], low friction [99], and exceptional corrosion resistance
[65]. They are extremely brittle at room temperature and superplastic at high temperatures [65].
The conductivity of QCs, though low at room temperature, becomes much higher at elevated tem-
peratures, making them attractive materials for heat sensing applications [65]. Researchers have
also investigated QC applications in solar light absorbers [37], as an alternative to Teflon [37, 65],
as mechanical reinforcement of tools as a coating or nanoparticles [37], and insulation [37, 65].

Axial QCs, in particular, can exhibit strong anisotropy in properties such as electrical resistivity
[117, 118] or elasticity [27] between the periodic axes and the aperiodic plane. The anisotropy
present in axial QCs could open up exotic applications for these materials, while differences
in properties along the periodic axis and within the aperiodic plane mean that axial QCs, like
decagonal quasicrystals (dec-QCs), are also great tools to help researchers understand how highly
ordered materials behave in the presence and absence of periodicity.

Despite the the interest surrounding QCs, they have seen only seen commercial success as
mechanical reinforcement in blades with extremely demanding applications (e.g. surgical tools)
[37]. This is, due, in part, to the challenges surrounding the synthesis of single crystal QC that are
larger than a few centimeters in dimension, and the challenges associated with analyzing QCs.

1.1 Motivation

In this work, we focus on the growth mechanisms of QCs, with the ultimate aim to understand how
researchers can harness phasons, or the additional degree of freedom unique to aperiodic crystals
like QCs, to grow large, high quality QCs for research and commerical applications.
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Unfortunately, phasons are both a source of fascination surrounding QCs, and a major challenge
associated with studying these materials. Phasons complicate conventional wisdom surrounding
the effects of defects and dislocations on QC growth and properties, and the conventional wisdom
surrounding how defects and dislocations are formed or relaxed under various growth conditions.
In fact, work by Schmiedeberg et al. [76] suggests that phasons give QCs an additional mechanism
to redistribute strain in physical space, allowing them to avoid the formation of grain boundaries
(GBs) under conditions where periodic crystals would normally form GBs. Unfortunately, the lack
of translational periodicity in QCs means that conventional measures of defects and dislocations
either fail, or only allow us to measure physical space strain, defects, and dislocations. Yet, phasons
give QCs access to strain relaxation mechanisms unavailable to periodic crystals. Tracking phason
strain (i.e. perpendicular space strain), then, can help researchers understand the conditions and
situations where phasons enable QCs to avoid the formation of large defects and dislocations.

From semiconductors [8, 111, 149] to DNA nanoparticle superlattices [91], defects and dis-
locations are ubiquitous in self-assembled crystals. The types and quantities of defects greatly
impact the quality and properties of a given material, regardless of the crystal’s scale or compo-
sition [63, 144, 149]. In some cases the introduction of defects and dislocations can diminish
desired properties (e.g. suppression of phonon propagation in periodic, thermoelectric materials
[149]). In other cases, the introduction of defects such as GBs can be desirable (e.g. work hard-
ening to improve mechanical properties of metals [75] with periodic lattices or semi-crystalline
polymers [112]). This has lead to widespread usage of defect engineering in the fabrication of
semiconductors [111, 149] and photocatalysts [8], and in the fabrication of organic materials such
as metal-organic frameworks [144] and pure carbon nanostructures [86]. Despite the advances
made in defect engineering and characterization in hard solids, however, our ability to measure,
analyze, and control defect formation in QCs remains limited.

1.2 Summary

In this work, we study defect formation and the relaxation of QCs under experimentally relevant
and inspired growth conditions. We elucidate the growth mechanisms of dec-QCs upon collision
with other, misoriented dec-QC grains, and with shrinkage pores – a common solidification de-
fect – via systematic, large scale simulations studies. As we conducted our simulations studies
of QC growth behavior, we found a marked need for reliable, efficient methods to detect strain
and dislocations in, not just QCs, but also periodic crystals with complex or unknown structures.
Ultimately, this led us to develop a pure-Python tool, peakyFinders and novel methodology to an-
alyze order in crystals. Taken together, this dissertation aims to elucidate the contributions
of phasons of QC growth phenomena discovered by our collaborators in the Shahani group

2



at the University of Michigan, and to proved a highly generalizable tool for the analysis of
crystals.

1.3 Outline of Thesis

The remainder of the thesis is structured as follows: Ch. 2 reviews the basic QC concepts in
the context of quasiperiodic functions and higher dimensional crystallography, and the challenges
associated with analyzing these complex structures. In Ch. 3, we detail our first simulation – ex-
perimental collaboration in the Shahani group, wherein we elucidate the mechanisms driving grain
coalesence and GB formation upon collision of two misoriented dec-QC grains. Our molecular
dynamics (MD) simulations helped overcome the spatial and temporal limitations present in ex-
periment, enabling us to observe grain rotation toward 0◦ misorientation upon collision of grains
with small initial misorientation. Our results suggest that this process occurs through a dislocation-
mediated mechanism that allows the dec-QCs to redistribute phonon strain (i.e. strain in physical
space) due to lattice mismatch as phason strain (i.e. deviations from quasiperiodicity).

Ch. 4 details our second simulation – experimental collaboration with the Shahani group, where
we elucidate the mechanisms driving coalesence upon QC collision and engulfment of shrinkage
pores. In this work, we build on this idea of “phason-mediate grain coalesence” through our
MD simulations of QC-pore collision. Specifically, our findings highlight the importance of more
than one length scale in “phason-mediated grain coalesence” mechanisms. Over time, we see the
orientational order and positional order increase, and the potential energy decrease along the region
of coalescence. Remarkably, we note that the potential energy changes at a significantly faster rate
than orientational order or positional order, ultimately leading to a lower energy region along the
region of coalescence, than the surrounding crystal. We attribute this to the fact that the ratio of
short-to-long length scales remains low along the region of coalescence when compared to the rest
of the crystal. This suggests that any real-space strain introduced upon collision is able to relax
because of the presence of phason fluctuations introduced upon collision, and offers further insight
on the mechanisms driving “phason-mediated grain coalesence.”

Then, in Ch. 5, we present peakyFinders and our novel, highly generalizable methodology for
grain segmentation and dislocation analysis in crystals. The methodology presented in Ch. 5 is
built from the intuition we gained while analysing QCs previous chapters. In Ch. 3, we used the
technique presented in [43] to measure phason and phonon strain in our dec-QCs. In Ch. 4, we
present some of the limitations of [43], and develop a more robust methodology. Then, finally, in
Ch. 5, we extend the methodology developed in Ch. 4 to 2D and 3D periodic crystals sourced from
simulation and experiment. We show how our Python package, peakyFinders, enables reliable,
streamlined Bragg peak detection and Bragg peak filtering for a variety of 2D and 3D inputs,
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and show that our existing protocol is easily extensible to a variety of 2D systems and simple,
3D crystals. Then, we show how our workflow can be extended to more complex structures and
particle shapes with a few additional steps in our workflow. Ultimately, Ch. 5 highlights a new
framework with which we can approach the analysis of order in complex crystals and develop fast,
robust, and transparent models for structural analysis.

We conclude the thesis with an outlook in Ch. 6.
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CHAPTER 2

Introduction to Quasicrystals

Here we give a brief overview of quasiperiodicity and higher dimensional crystallography in the
context of quasicrystals (QCs). Next, we discuss some of the challenges associated with QC anal-
ysis. Then, we give an overview of how reciprocal space can be used to analyze order in QCs.

Before we begin our discussion on QCs and the general concept of quasiperiodicity, however,
it helps to revisit the suprisingly philisophical question of what is a crystal?

2.1 What is a Crystal?

The International Union of Crystallography (IUCr) offers two, alternative but equivalent definitions
for the word crystal. One definition focuses on direct space (what we see with our eyes), while the
second focuses on reciprocal space (i.e. Fourier space).

2.1.1 The Direct Space Definition

We’ll begin with the definition of crystal in direct space from the IUCr’s Online Dictionary of
Crystallography [98]:

A solid is a crystal if its atoms, ions and/or molecules form, on average, a long-range
ordered arrangement.

If we look at, say, the structures shown in Fig 2.1 (b, c) (top row), this may seem like a clear
and intuitive definition. The order in these examples is clear due to the presence of translational
periodicity. Meaning, we can easily describe the order in any region of the crystal using a simple
set of local rules. In Fig. 2.1 (b), the basic building blocks (i.e. the unit cell) is a square. While, in
Fig. 2.1 (c), the basic building blocks (i.e. the unit cell) is a hexagon. In these systems, the concept
of ‘long-range order’ is rather straight forward.

5



Figure 2.1: Crystals constructed from a sum of cosines. Real space (top) and reciprocal space
(bottom) images generated from the sum of cosines with basis vectors (circled in yellow) (a) b⃗0 =
[cosπ/4, sinπ/4]; (b) b⃗k = [cos 2 ∗ k ∗ π/3, sin 2 ∗ k ∗ π/3] for k = 0, 1, 2; (c) b⃗0 = [1, 0] and
b⃗1 = [0, 1]; and (d) b⃗k = [cos 2 ∗ k ∗ π/5, sin 2 ∗ k ∗ π/5] for k = 0, 1, 2, 3, 4. For reciprocal space
images, plots show the power spectrum (the magnitude of the Fourier Transform (FT)).

Examining the structure in Fig. 2.1 (d) (top row), however, highlights a major shortcoming of
the direct space definition. The structure shown in Fig. 2.1 (d) (top row) is clearly ordered, and
yet, it is non-trivial to describe the long-range order of the system in direct space.

2.1.2 The Reciprocal Space Definition

Now, let’s look at the definition of crystal in reciprocal space from the IUCr’s Online Dictionary
of Crystallography [98]:

A material is a crystal if it has essentially a sharp diffraction pattern.

Meaning, the diffraction pattern, or, the reciprocal space image of that material consists of sharp
Bragg peaks, where each peak, H∗(q⃗), can be indexed using some linear combination of basis
vectors b⃗k in reciprocal space,

H∗(q⃗) =
N∑
k

nkb⃗k

where, N is the minimum number of reciprocal basis vectors b⃗k, required to index each point in
the diffraction or reciprocal space image of the crystal.
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We can see the reciprocal space image of each crystal in the bottom row of Fig. 2.1.
For a single plane wave (Fig. 2.1 (a)), we see one pairs of Bragg peaks. For the periodic pattern

with fourfold symmetry, we see two pairs of Bragg peaks, arranged in the shape of a square (Fig.
2.1 (b)), and for the periodic pattern with sixfold symmetry (Fig. 2.1 (c)), we see three pairs of
Bragg peaks, arranged in the shape of a hexagon. Then, finally, when we look at the Fourier space
image of that complex, yet ordered pattern in Fig. 2.1 (d), we see a much simpler description of that
pattern. What we see, is five pairs of Bragg peaks, arranged neatly around a ring. This last structure
is something like a quasicrystal (QC) – it has long-range orientational order and long-range order,
despite the lack of translational periodicity.

2.1.3 The Cosine Crystal

The reciprocal space (i.e. Fourier space) image of a crystal tells us about the dominant frequencies
associated with a given structure. It is, essentially, a summary of how every point in a structure
interacts with every other point in a structure.

Then, to understand why this reciprocal space image of crystals is so effective, it helps to think
crystals defined by a sum of plane waves (Fig. 2.1, top row), rather than a discrete set of points,

H(r⃗) =
1

N

N∑
k

cos(2πr⃗ · b⃗k) (2.1)

where, bk is the set of N basis vectors and r⃗ is a point in real (direct) space.
If we take the FT of Eqn. 2.1, we get a point-like Fourier spectrum, where the points can be

indexed by the basis vectors b⃗k associated with Eqn. 2.1 (Fig. 2.1; bottom row, yellow circles
correspond to basis vectors used to generate each cosine crystal),

F (x⃗) =
1

2N

N∑
k

δ(x⃗− b⃗k) + δ(x⃗+ b⃗k) (2.2)

where δ(x⃗) is the Dirac delta function.
If we filter a single Bragg peak in the Fourier spectrum, meaning, we take the inverse Fourier

Transform (iFT) of just a single Bragg peak, F (x⃗) = δ(x⃗− b⃗k), we get the following:

ξk(r⃗) = e2πir⃗·⃗bk (2.3)

Contrast this with the positional order parameter [5], which is measured with respect to some
reciprocal basis vector, b⃗k,

χ(r⃗) = eir⃗·⃗bk (2.4)
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we see how each Bragg peak is fundamentally related to positional order.
Meanwhile, taking the iFT of a pair of filtered Bragg peaks, then, yields:

ξk(r⃗) + ξ−k(r⃗) = e2πir⃗·⃗bk + e−2πir⃗·⃗bk (2.5)

Using Euler’s formula, it’s possible to reformulate Eqn. 2.5 as: ξk(r⃗) + ξ−k(r⃗) = cos(2πir⃗ · b⃗k),
giving us a more concrete, real space connection between the concepts of frequency and reciprocal
space, positional order, and direct space.

From Eqns. 2.3, 2.4 and 2.5, we see that the iFT of a filtered Bragg peak or pair of Bragg peaks
is fundamentally related to positional order in a given crystal.

2.2 A Brief History

Before 1991, the definition of crystal, and of long-range order in matter, was a much more rigorous
and direct than the modern definition of crystal. Before 1991, crystals were defined by the presence
of 3D periodicity [97, 113]. As a result, crystals were believed to be restricted to two-, three-,
four-, and six-fold symmetry rotational symmetry. Other symmetries, such as five-fold or ten-fold
rotational symmetry, were thought to be forbidden because they were incompatible with longe-
range order.

Then, in 1982, Shechtman et al. [116] discovered quasicrystals (QCs) in rapidly cooled alu-
minum alloys. His discovery challenged the existing paradigm of crystallography and ultimately
led to a revision in how we defined crystals [97]. This discovery, however, was initially met with
immense skepticism.

It was known that aperiodic states of crystallinity existed before the discovery of QCs [35].
However, these aperiodic structures exhibited crystallographic symmetry (i.e. symmetries belong-
ing to a crystallographic point group) [138]. Incommensurately modulated crystals were the first
class of aperiodic crystals discovered by modern researchers [35, 64, 66]. These structures could
be interpreted as periodic lattices with modulations [64, 66, 138], where the probability of finding
a molecule at a certain position or some molecules in a certain orientation varies periodically. That
is, incommensurately modulated crystals could be interpreted as a periodic-average lattice where
the displacements of positions from ideal lattice sites is highly correlated such that they follow a
wave. If follows, then, that incommensurately modulated crystals did not violate the premise that
crystals must have symmetry that is compatible with periodicty, despite appearing aperiodic.

Shortly following the discovery of incommensurately modulated crystals, came the discovery of
incommensurate composite crystals [34, 66]. Incommensurate composite crystals consist of two
or more subsystems with mutually incommensurate interactions [34, 138]. Think, for example,
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of a system composed of two types of periodic lattices, stacked in alternating layers along an
axis where the periodicity of each lattice is incommensurate with the other. This means that,
like QCs and incommensurately modulated phases, incommensurate composites lack translational
periodicity, yet they still possess some basic, periodic structure in physical space [138]. This means
that incommensurate composite crystals, too, possess crystallographic symmetries [138].

QCs, in contrast, cannot be described as periodic or periodic-average in physical space. In
fact, they exhibited symmetries once believed to be impossible in three dimensional matter with
long-range order. As a result, Shechtman’s findings were dismissed [121]. Shechtman was in luck,
however. A mere 150 miles away, Paul Steinhardt and his student, Dov Levine, had been indepen-
dently worked towards a theory to describe order in the “non-periodic” Penrose tiling [121]. What
they had determined was that the Penrose tiling exhibited quasiperiodic order, and that there may
a whole, new class of ordered material, which they named quasicrystals [84, 121].

Then, in 1984, two years after Shechtman’s initial discovery, the two teams published their
findings within two month of each other in Physical Review Letters [84, 116]. Though contention
remained in the early days of this discovery, with two-time Nobel prize winner, Linus Pauling
being the first and most notable [121]. Still, as time went on, QCs gained acceptance into the
scientific mainstream [121], and Shechtman was ultimately awarded the Nobel Prize Chemistry in
2011 for his discovery [1].

2.3 Quasiperiodicity

Here, we return view of crystals as a sum of plane waves, rather than points presented in Sec.
2.1.3. This view particularly helpful in capturing the long-range positional order associated with
quasicrystals (QCs) because it allows us to reduce the complex, local structures and rules associ-
ated with QCs to a simple set of equations (Fig. 2.1 (d), Sec. 2.1.3).

Mathematically-ideal QCs are solids that possess long-range orientational order and long-range
translational order [85], but lack transitional periodicity [85]. Rather, the order in these structures
are defined by the presence of quasiperiodicity.

When we say a function is quasiperiodic, we mean that a function is aperiodic – or, the function
lacks a period, but has sharp peaks in Fourier space [14, 66]. This means that, unlike a periodic
function, f(x⃗), where there exits some translation, b⃗, associated with the period of the function,

f(x⃗) = f(x⃗+ b⃗) (2.6)

quasiperiodic functions are almost periodic [14, 17, 66], a concept first introduced by mathemati-
cian Herald Bohr [17].

9



An almost periodic function is defined as a function, f(x⃗), where there exists a ‘dense’ set of
translations, b⃗, such that,

||f(x⃗)− f(x⃗+ b⃗)|| < ϵ (2.7)

where, ϵ > 0 [66] and ϵ is very small, ϵ << 1 [14]. Here, || · || is the norm of a vector, ||⃗a|| =√
a⃗ · a⃗∗ and a⃗∗ is the complex conjugate of some vector, a⃗, and ‘dense’ means that for any set of b⃗

and value of ϵ, there exists at least one value of x⃗ where Eqn. 2.7 holds true.
This almost periodic property of quasiperiodic functions tells us that quasiperoidic functions

exhibit some form of self-similarity in direct space. As a consequence, it should be possible to
measure deviations from quasiperiodicity, both locally, and globally, in a meaningful way.

Arising from this loss of translational periodicity, and the presence of quasiperiodic order, is an
additional degree of freedom, termed, phasons.

Phasons are present in all aperiodic crystals [66], though, in most incommensurate crystals,
a class of aperiodic crystals which exhibit crystallographic symmetries, phason excitations and
relaxations are continuous [66]. In these cases, phasons may be interpreted as a displacement from
the periodic lattice [66]. Meanwhile, in QCs, which exhibit non-crystallographic symmetries in
direct space, this model of dislocations does not apply [83].

In QCs, phasons are characterized by discrete, local changes in particle position, or phason flips

that result in a change in tiling configuration [41], where tiles are the basic structural units of a
QC. They can be thought of like a unit cell, though unlike a periodic crystal, these motifs are not
arranged periodically [85], and there are typically more than one tiles associated with a given QC.

The discrete nature of phasons and phasons flips in QCs make them unique, even among ape-
riodic crystals. These changes in tiling configurations are representative of phason excitations and
relaxations, and do not introduce real space defects into the crystal [119]. Instead, these phason
excitations and relaxations are associated with changes phason strain, a measure of deviation from
ideal quasiperiodicity [128].

This concept of phason flips and phason strain play a key role in understanding how and why
QCs exhibit the unexpected behavior discussed in later chapters.

2.4 Tilings

While periodic crystals lattices may be constructed from a single repeating unit cell, quasicrystals
(QCs) lattices may be described as tilings of two or more repeating motifs. These repeating motifs,
or tiles, are assembled without overlaps or gaps to form aperiodic patterns. Decoration of tile
vertices with particles yields the atomic structure of QCs. In 1D, the tiles are interpreted as line
segments of varying lengths, while in 2D and 3D, tiles are polygons or polyhedra.
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Figure 2.2: Atom decorated Tübingen tiling. An ideal Tübingen tiling constructed from 5
prototiles: decagon (D), u-tile (U), nonagon (N), hexagon (H), and pentagon (P). In molecular
dynamics (MD) simulations of decagonal quasicrystals (dec-QCs), atoms decorate the verticies of
the tiles (blue dots).

In Fig. 2.2, we show an ideal Tübingen tiling constructed from 5 prototiles: decagon (D), u-tile
(U), n-gon (N), hexagon (H), and pentagon (P), and blue dots correspond to where we would expect
to see atoms in an molecular dynamics (MD) simulation of a decagonal quasicrystal (dec-QC).

Here, an ideal tiling refers to a mathematically perfect structure with hierarchical long-range
order. In contrast, a random tiling refers a space filling collection of prototiles associated with
some ideal tiling. Different random tilings can have different levels of phason strain, where some
structures are completely devoid of any quasiperiodicity (high phason strain structures), while
others have near-zero phason strain (low phason strain structures).

Typically, self-assembled QCs, such as the ones that will be discussed in Ch. 3 and 5, are
random tilings.

11



Figure 2.3: Quasicrystals and their random-tiling counterparts. The first column depicts
(a) ideal Ammann-Beenker Tiling (AB) tiling (b) a nearly AB ideal tiling with a line of phasons
introduced along a diagonal (red box), and (c) a random AB tiling, AB vertices are decorated with
atoms decorations (blue dots). The second column shows the corresponding power spectrums,
while the third column shows zoomed in insets of the power spectrum.
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In Fig. 2.3, we see examples of ideal (Fig. 2.3 (a)), a nearly ideal AB tiling with a line of
phasons engineered across the diagonal (Fig. 2.3 (b)), and a random tiling (Fig. 2.3 (c)). From the
the direct (i.e. physical) space image of the tilings, it can be difficult to tell the difference between
an ideal QC tiling and a random tiling. Examining the power spectrums1 (Fig. 2.3, second and
third columns), however, tells a different story.

2.4.1 Random Tilings and Reciprocal Space

In the power spectrum and the zoomed in inset of the ideal AB tiling (Fig. 2.3 (a), second and third
columns), we can see ideal quasiperiodicity reflected in the arrangement of Bragg peaks.

When we examine the power spectrum for the AB tiling with a line of phasons, we can see faint
diagonal streaks where we expect to see lower intensity peaks (Fig. 2.3 (b), third column). Yet,
when we examine brighter peaks, and the overall appearance of the power spectrum remains nearly
identical to that of the AB tiling (Fig. 2.3 (a)). Remember, that in this example, we engineered
phason flips along a diagonal of the otherwise ideal AB tiling (red box in first column; Fig. 2.3
(b)). These phason flips were simple, local tiling flips, which only disrupted quasiperiodicity
along the smallest length scale. That is why we see this change reflect on the lowest intensity
Bragg peaks, but not on brighter intensity Bragg peaks.

Meanwhile, in the power spectrum for the random, AB-like tiling, the low intensity peaks are
no longer visible, but the high intensity peaks remain, and power spectrum still appears similar to
the ideal AB tiling when viewed from afar (Fig. 2.3 (c), second and third column). This is because,
at the smallest length scale (i.e. the length scale of the individual tile), we no longer have the well-
defined quasiperiodic order. We know, however, that some long-range quasiperiodic order still
exists in this random tiling (i.e. quasiperiodiciy still exists at the global level), due to the presence
of sharp Bragg peaks.

To get a better understanding of how quasiperiodicty relates global and local order it helps to
examine QC order using the hyperspace approach.

2.5 Higher Dimensional Crystallography

The hyperspace approach was derived from diffraction data [96, 126], and acts a direct extension
of 3D crystallography to aperiodic structures like quasicrystals (QCs).

1Here, power spectrum refers to the amplitude obtained from the 2D Fourier Transform (FT) of the crystal posi-
tions. The power spectrum is the square root of the structure factor, and the square root of what diffraction typically
returns. We plot the power spectrum, rather than the structure factor/FT intensity because it is easier to see lower
intensity peaks, and thus, the effects of phason flips and phason excitations in reciprocal space.
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Figure 2.4: 2D embedding of 1D Fibonacci sequence and 1D periodic sequences. The top line,
labeled LS, and the bottom line, labeled L2S, show 2D embeddings of periodic sequences, where
LS corresponds to projection along a cut with slope = 1, andL2S corresponds to a projection along
a cut with slope = 2. The middle line, labeled LτS, shows the 2D embedding of the Fibonacci
Sequence (FS). The bounds of the FS projection are shown in light green lines. Red corresponds
to L segments in the sequence, while blue corresponds to S segments in the sequence. Source:
Walter Steuer [125], licensed under CC BY-NC 4.0.
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Iteration [i] Sequence Ratio [NL,i/NS,i]

0 L –
1 LS 1
2 LSL 2/1 = 0.5
3 LSLLS 3/2 = 1.5
4 LSLLSLSL 5/3 = 1.666 . . .
5 LSLLSLSLLSLLS 8/5 = 1.6
6 LSLLSLSLLSLLSLSLLSLSL 13/8 = 1.625
. . . . . . . . .
∞ LSLLSLSLLSLLS. . . ≈ τ = 1.618 . . .

Table 2.1: The Fibonacci sequence and its approximates, where NL,i is the number of L seg-
ments at iteration i, and NS,i is the number of S segments at iteration i.

Under the lens of higher dimensional crystallography, QC becomes periodic in hyperspace. In
theory, this enables us to extend the established models developed for periodic, 3D crystals to QCs.
In practice, however, this interpretation of QC structure is limited in its ability to analyze highly
disordered structures (i.e. grain boundaries) and random tilings in self-assembled, quasicrystalline
strucures. Still, it provides valuable tools to understand the unique symmetries of QCs.

The hyperspace space of crystal, V , can be separated into two orthogonal subspaces, V∥ and
V⊥, where V∥ is the parallel or physical space and corresponds to atomic positions in “real” or di-
rect space. V⊥ corresponds to the perpendicular or internal space and contains information about
the atomic surface, where the atomic surface is a type of probability density function. Informa-
tion about the atom, such as the probability an atom will appear at any given intersection of the
perpendicular space and the parallel space.

A trivial example of the hyperspace image can be constructed for a 1D periodic sequence. In
Fig. 2.4, we can see two examples of 1D periodic sequences in hyperspace. The top line (LS in
Fig. 2.4) represents a projection of the 2D square hyperlattice onto a line with cut angle tan(1).
Meanwhile, the bottom line (L2S in Fig. 2.4) represents the projection of a 2D square hyperlattice
onto a line with cut angle tan(2/1).

If we try to project all of the points from this hyperlattice down to LS or L2S, we get a discrete,
periodic sequence out. This is because we take a rational cut of hyperspace. By definition, when
we take a rational cut of hyperspace, we get a line that intersects points at a regular interval defined
by the slope.
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2.5.1 The Fibonacci Sequence

Now, let’s say we take a cut with an angle tan(τ). Since τ is irrational, we know that this line
will never intersect another point. As a consequence, if we try to project every point onto this line,
we get an infinitely dense projection. Instead, we need to take a “cut window”, (light green lines
above and below the line labeled LτS, Fig. 2.4), meaning, we only project points that are within
some distance or boundary of our line. Given proper selection of a cut window, we get back out
the Fibonacci Sequence (FS).

The 1D FS is a well-known and well-studied example of a quasiperiodic tiling. Because it is
aperiodic in 1D and periodic in 2D, it is commonly used to visualize the relationships between V⊥,
V∥, and V .

The FS consists of long segments, L, and short segments S, which are related by an irrational
scaling factor, L = τS, where τ = 1+

√
5

2
is the golden ratio. The FS can be constructed via the

following subsition rules: L → LS, S → L. In, Table 2.1 shows the generation of the FS via
substitution, or, alternatively, inflation. As the FS grows, the ratio, NL

NS
→ τ . The sequence here,

never repeats, and yet, it can be described using a simple set of rules. These substitution rules are
an example of self similarity present in QCs.

2.5.2 Scaling Symmetry and Self-Similarity

Some mathematically ideal QCs possess self-similarity and non-trivial scaling symmetry [126],
where self-similarity in QCs tilings can be understood in terms of inflation and deflation. In the
process of inflation, every tile has a way to map onto itself – meaning, any tile in a QC can be
constructed by a combination of smaller versions of the same set of tiles associated with the given
QC (think back to the substitution rules of the FS). If we perform inflation, on say, an ideal
FS, what we get back out is another, mathematically ideal FS composed of smaller tiles. In this
inflated FS, however, the tiles (the L and S segments of the QC) are still related by the scaling
factor L = τS.

Deflation is the opposite of inflation, meaning, it is possible to shrink an ideal QC down to a
smaller subset of tiles without destroying quasiperiodic order. In the case of the QC, we can think
of it as reversing the substitution rules: LS → L and L → S. Any FS we shrink using these rules
will yield a smaller version of the original FS.

While the prototiles shown in Figs. 2.2 and 2.3 do not correspond to self-similar variants of the
Tübingen tiling and AB tilings, respectively, self-similar variants do exist for both.
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Figure 2.5: Quasicrystals and their approximate counterparts. The first column depicts
(a) ideal Ammann-Beenker Tiling (AB) tiling (b) an AB approximate with a large unit cell, and
(c) an AB approximate with a small unit cell. AB vertices are decorated with atoms decorations
(blue dots). The second column shows the corresponding power spectrums, while the third column
shows zoomed in insets of the power spectrum.
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2.5.3 Approximates

In Table 2.1, we see another important property of QCs and quasycrystal like structures. If we look
at the ratio Ri = NL,i/NS,i, where NL,i is the number of L segments at iteration i, and NS,i is the
number of S segments at iteration i, another interesting trend emerges – during early iterations, the
Ri is a poor approximation of τ . Then, as i→ ∞ increases, Ri→∞ → τ .

In Fig. 2.4, these approximate are marked by black arrows along LτS. We see that, at these
ratios, the cut plane becomes very close to, though never quite intersects these points. This means
that when angle of the cut window is varied, even slightly, we can end up get a rational approxi-

mate, rather than a true QC. In these cases, the sequence (or crystal) is no longer aperiodic, and a
single unit cell can be drawn for the structure.

Previously, we defined phason strain as a measure of deviation from aperiodicity. It follows
then, that approximates have higher, global phason strain than a truly aperiodic QC.

In Fig. 2.5, we can see examples of the AB tiling and its approximates. When the unit cell of
the approximate is large relative to the system size (Fig. 2.5 (b)), it is not straight forward to tell,
by eye, if the crystal is true QC or an approximate. Much like in the case of the random tiling, the
deviation from aperiodicity becomes clear in the power spectrum.

2.5.4 Phason Flips and Phason Strain

Phason flips are of particular interest because they enable changes in tiling configurations without
introducing defects or dislocations in physical space [119]. These changes in tiling configurations
are representative of phason excitation and relaxations [119], and are known to help relax phason
strain in QCs over diffusive time scales [66]. This means QCs posses an additional mechanism, by
which they can relax, not just phason strain, but, potentially phonon strain as well.

Fig. 2.6 shows an example of how phason flips can enable FS to avoid the formation of disloca-
tion or defects due to incommensurate length scales. This phason flip shown here can be thought
of as either a collective shift in the particles either before or after the L segment we replaced, or
as a slight compression of the ideal sequence FS. By substituting an L segment for an S segment,
we make the entire FS sequence shorter, and we introduce a slight shift in the slope of the cut,
effectively introducing phason strain in place of phonon strain or a dislocation.

Meanwhile, Fig. 2.7 shows an example of how phasons flips can violate quasiperiodic order
and scaling symmetry locally, without disrupting long-range quasiperiodic order. The presence of
two, adjacent S tiles in the FS is not possible if we follow the substitution rules, or if we only
project points from hyperspace within our cut window. In fact, if we look at the location of the
new coordinate in hyperspace, we see that this new point is further from the cut line than the ideal
hyperspace coordinate (Fig. 2.7 (c), red arrow). This type of deviation from quasiperiodicity is
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distinct from the type of phason strain introduced by the previous example, shown in Fig. 2.7, and
is more representative of the type of disorder we saw in the random tiling example seen in Fig. 2.3.

Schmiedeberg et al.’s [110] work, provided early evidence that phasons and phason flips may
help QCs avoid the formation of small angle grain boundaries (GBs). In particular, his work
showed how grain coalescence occurs more readily in dodecagonal QCs than in periodic crystals,
and that phasons play a significant role in distributing stress [110] around the non-fitting structures,
where the resulting phason strain can be relaxed via phason flips [41].

Our own work in Ch. 3 and 4 provide further evidence that QCs may be able to avoid the
formation of phonons, defects, or dislocations via phason excitations, and highlighted the role of
multiple length scales in enabling this mechanism.

2.5.5 Lifting from Physical Space to Higher Dimensional Space

The lifting and cut-and-project procedure enables researchers to map their self-assembled simula-
tions and experiments to hyperspace, V , for analysis. This procedure has been used extensively
to compute phason strain (i.e. global deviations from quasiperiodicity) in self-assembled systems
[38, 40, 52, 67, 95].

The first step in this protocol is lifting. In this step, physical space positions are indexed using
basis vectors projected from hyperspace.

A simple example of this can be constructed from the FS. Revisiting the FS, the cut plane (or
line in this case), has a slope of tan(τ). This means that the equation for our line can be expressed
as: [τ, 1]. Projecting our square lattice in hyperspace, b⃗1 = [1, 0] and b⃗2 = [0, 1], yields lower
dimensional basis “vectors” (or, in this case, line segments L = τS) of b∥1 = τ and b∥2 = 1.

Next, we iterate through the FS and assign each point in the sequence a coordinate in higher
dimension space. When we find segments with length τ will can add the associated basis vector
b⃗1 = [1, 0] to to the previous coordinate. Meanwhile, when we find segments with length 1, we
can add basis vector b⃗2 = [0, 1] to the previous coordinate. (Fig. 2.7 (a), yellow and brown arrows
correspond to higher dimensional lattice vectors).

Once all of the V∥ point have been assigned higher dimensional coordinates, we can compute
phason strain – or, the systems deviation from aperiodicity, as the higher dimensional coordinate’s
deviation from the expected slope.

The same algorithm can be extended to 2D and 3D QC, where points are indexed in higher
dimensions based on their alignment with a the associated, projected basis vector.
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Figure 2.6: How phason flips can introduce phason strain. (a) Shows a segment of an ideal 1D
FS in hyperspace, where the dark blue arrow is the parallel subspace, V∥. Brown arrows (darker
color) correspond to the lattice vector in hyperspace (V ) for segment L, while yellow arrows
(lighter color) correspond to the lattice vector in hyperspace (V ) for segment S. (b) We subsi-
tute a L segment with a S segment (red arrows). (c) The phason flip causes a shift in the slope of
the cut plane and a shift in the overall length of the FS sequence. The shadows show the location
of the cut plane lattice vectors for an ideal FS.

20



Figure 2.7: How phason flips can disrupt quasiperiodicity locally, without introducing phason
strain globally. (a) Shows a segment of an ideal 1D FS in hyperspace, where the dark blue
arrow is the parallel subspace, V∥. Brown arrows (darker color) correspond to the lattice vector in
hyperspace (V ) for segment L, while yellow arrows (lighter color) correspond to the lattice vector
in hyperspace (V ) for segment S. (b) We swap a L segment with a S segment (red arrows). (c)
The phason flip does not cause a shift in the slope of the cut plane, despite introducing a phason
defect in perpendicular space. The shadows and red arrow show the location of ideal hyperspace
coordinate.
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2.6 Challenges Associated with Quasicrystal Analysis

Standard theoretical treatment of physical properties in quasicrystals (QCs) is difficult due to their
aperiodic nature. To date, the higher-dimensional approach to QCs has been the most successful
and ubiquitous approach to both conceptualize and analyze order in QCs [38, 40, 66, 67, 95, 119].
The hyperspace approach enables us to describe QCs as periodic structures in higher dimensions.
This means the hyperspace approach is undeniably powerful, as it enables theoretical extension of
3D crystallography to QCs.

2.6.1 Structural Analysis in Higher-Dimensional Space

The hyperspace approach, however, is not without its limitations. The main challenge comes from
applying higher-dimensional theories of phonon strain, dislocation, defects, and phason strain

to experimental and self-assembled systems. Here, phonon strain refers to continuous, physical
(i.e. “real” or parallel) space deformations to the lattice, while phason strain refers, broadly, to a
measure of QCs deviations from quasiperiodicity.

Namely, these higher-dimension theories require some sort of lifting procedure, where we trans-
form our physical space lattices (e.g. 2D or 3D lattices) to higher-dimensional lattices (e.g. 4D
or 6D lattices), followed by projection of our high-dimensional lattice back down to a parallel

subspace (V∥; analogous to physical space) and perpendicular space (V⊥; an orthogonal subspace
arising from the hyperspace interpretation of quasiperiodic order) 2.

2.6.1.1 Lifting Protocols

Although the lifting and cut-and-project procedure have been used extensively to compute phason
strain (i.e. global deviations from quasiperiodicity) in self-assembled systems [38, 40, 52, 67, 95],
we find that these algorithms scale poorly to larger systems.

Lifting can be thought of as a shortest-path problem, where we compute a path between some
reference point in a given QC, and all other connected atoms/molecules in that QC. Even ignoring
the complexities and nuances associated with creating, finding and defining neighbors in a given
system of particles or atoms, we see that even the most efficient shortest path algorithms has a
computational complexity of O(NM) [69], where N is the number of vertices (particles in the QC
lattice) and M is the number of edges (bonds).

2Although this section focuses on the drawbacks and limitations of the hyperspace approach and conventional
methodologies for phason strain calculation, the hyperspace approach is still fundamental to the description of order
and symmetries present in QCs. As such, it remains a staple in all texts and discussions regarding QCs. More detailed
theoretical discussion regarding phason strain and hyperspace can be found in this work (Ch. 2 and Sec. 4.4.1) and in
various academic texts. Some good sources include: [38, 66, 119, 126].
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While the lifting protocol alone is slow and expensive, it is not necessarily prohibitive for large
systems. It is, however, complicated by the presence of phonon strain and dislocations. The
presence of continuous distortions to the lattice, which can arise even in the absence of some
external source of strain, can cause artifacts in the subspace projections (e.g. false dislocations and
grains) that can affect phason strain measurements. In simulation, we can circumvent these issues
by, say, quenching each frame to remove the effects of thermal fluctuation, but this additional step
only adds additional cost and complexity to the analysis pipeline.

2.6.1.2 Phason Strain Measurments

The computation of phason strain from the lifted and projected molecules/atoms is perhaps the
most computationally demanding portion of the analysis. This step involves computing a Euclidean
distance matrix between all parallel space positions and perpendicular space positions, followed by
linear regression of r∥ vs r⊥, where r∥ is the pairwise distance betwen all points with respect to all
other points in V∥ and r⊥ is the pairwise distance of all points with respect to all other points in V⊥.
The distance matrix computation alone is an expensive task, with a computational complexity of
O(N2), where N is the number of points in the QC lattice. This step is the most computationally
demanding and prohibitively expensive for the large scale simulation growth studies performed in
Ch. 3 and 4, where we have simulations with up to 1 million particles and > 200 frames each.

We note that the size of these systems is necessary, since the lack of periodicity and the long-
range order inherit to quasiperiodic functions and QCs means that we want to measure phason
strain over as large of an area as possible. Otherwise, system size effects will affect our measure-
ments. Additionally, our aim here is to model the growth behavior discovered by our experimental
collaborators in the Shahani group at an atomistic level. The methods used by our collaborators
enable them to track QC growth behavior at a macroscopic scale, but lack the spatial and tempo-
ral resolution required to perform the particle-based phason measurments discussed in this section.
Molecular dynamics (MD) simulations enable us to examine QC growth at atomistic length-scales,
and thus track phason strain. It follow then, that our simulations need to be sufficiently large to
model the relevant phenoma, and that the analysis we use to analyze our simulations must be
efficient enough to handle these large-scale simulation studies.

2.6.2 Local Particle Descriptors

The lack of translational periodicity in physical space limits the application of conventional mea-
sures of bond order [123] to QCs. Common measures of local bond order include general de-
scriptors of bond symmetry (e.g. bond orientation order parameters [5, 16, 123]; translational
order parameters [5]; Minkowski structure metrics [92]), or algorithms like common neighbor
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analysis (CNA) [60], dislocation extraction algorithm (DXA) [131, 132], and polyhedral template
matching (PTM) [79], which automatically match crystal structures, dislocations, and grain bound-
aries in simple condensed phases by comparison to a library of lattices.

Template-based methods like CNA [60], DXA [131, 132], and PTM [79] are not applicable to
QC because of their explicit reliance on the concept of a single unit cell.

General descriptors of local bond order like bond angle order analysis [2], the Steinhardt order
parameter [123] and Minkoski structure metrics [92], however, do not require a library of lattices
to identify grains or disorder in condensed phases, but still require careful selection of particle
neighbors or local symmetry to return meaningful results. In the context of QC, which have het-
erogenous local environments arising from the loss of translational periodicity (see Fig. 2.2 for
an example), researchers must take particular care in how they define bonds, neighbors, and sym-
metries in their systems. Given proper selection of neighbors and parameters, local measures of
order can, and have, been adapted to differentiate liquid from QCs [52, 81] and to identify local
motifs in QCs [67, 81]. These measures of order, however, are often developed with specific motifs
and QC structures in mind, and are not generalizable to other QC structures. They are also, still
inherently measures of local order and cannot be used to measure deviation from long-range order
(e.g. phason strain) on their own.

2.6.3 Machine Learning

In recent years, numerous machine learning (ML) models have been developed to classify local
particle environments [11, 45, 82, 104, 120]. Though powerful, deep, supervised ML models
require well-labeled data from a variety of crystal structures to return a generalizable model. How-
ever, obtaining per-particle labels of local environments in a crystal structure remains challenging
and labor intensive, even in periodic crystals. This means supervised ML models tend to rely on
established order parameters to label local environments in training data, and that training data is
restricted to structures that researchers can already characterize, making supervised ML unsuitable
for QC analysis.

Unsupervised ML attempts to circumvent issues with obtaining a variety of labeled, high quality
structures that supervised models face. These typically use some combination of clustering and
dimensionality reduction to classify particle environments based on particle positions and some
set of general descriptors [12, 13, 26, 50, 104, 120]. These methods have been used to effectively
classify structures in complex phase diagrams [120], to segment grains in polycrystalline samples
[13], to separate growing grains from fluid [104], and, more recently, to identify defects in crystals
[12, 26, 50].

Though effective at classification of large domains in a crystal structure, the application of
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these types of models to the detection of point defects, line dislocations, and the like remains
limited, even in periodic crystals. Existing models are either restricted to 2D inputs [26], rely on
3D, system specific parameters to return meaningful results [12], or they have low precision [50].
None of these models have ever been tested on QCs.

2.7 Bragg Peak Filtering

Revisiting the International Union of Crystallography (IUCr) definition of crystal, however, yields
a promising hint on how we may approach quasicrystal (QC) analysis. By definition, all crystals
(including QCs) have essentially sharp Bragg peaks in their diffraction patterns [48].

In periodic crystals, it has been shown that the point group symmetries present in direct (i.e.
physical) space are present in the Fourier Transform (FT) of that crystal structure [19]. In the
diffraction pattern of a QC, too, the rotational symmetries and scaling symmetries are preserved.
In fact, it well known and documented that both phasons and phonons can cause changes to Bragg
peak intensity and shape [43, 66, 88, 119] (see Figs. 2.5 and 2.3).

2.7.1 Geometric Phase Analysis

Electron microscopists have long used a type of reciprocal space analysis called geometric phase
analysis (GPA) [62, 105] to analyze defects and dislocations in electron microscope and scanning
transmission electron microscopy (STEM) images. This technique is powerful and precise, and
can even be used to measure displacements in atomic lattices at the picometer scale (< 10pm)
[109], though it can be prone to noise and artifacts 3.

GPA takes advantage of the relationships between reciprocal space and direct space, where
defects and dislocations can be represent as distortions to a displacement field ∆b⃗k in direct space
[62, 105]:

H(r⃗) =
1

N

N∑
k

cos(2πr⃗ · b⃗k − 2πr⃗ ·∆b⃗k) (2.8)

These displacement fields, in turn, can cause distortions in the peaks seen in reciprocal space. For
a crystal with thermal noise, point defects, and dislocations, we no longer have a perfect, point-like
Fourier spectrum. This means that the discrete Fourier Transform (DFT) of a crystal behaves like
a histogram, where the amplitude of each peak in ||F (x⃗)|| (i.e. power spectrum) tells us how many
points contribute to a given b⃗k. Meanwhile, broadening of these peaks tells us how many particles
are strained with respect to a given b⃗k. In some ways, we can think about the peak as a sort of 2D
or 3D density functions.

3See Sec. 5.2.4.
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Figure 2.8: Dislocation detection from Bragg peak filtering using peakyFinders. For a 2D
simulation of a dislocation pair in a square lattice: (a) Dislocation detected from a single, filtered
Bragg peak. The magnitude of the inverse Fourier Transform (iFT) was normalized to 1, then
mapped onto a sigmoid centered at 0.3 and scaled to 128. Dark blue (darker color) corresponds
to regions aligned with the lattice vector. Yellow (lighter color) corresponds regions with poor
alignment to the lattice vector. Values were mapped from 2D iFT images to 2D simulation points.
(b) Modified phase of the iFT. We can see changes and distortions in the phase due to the presence
of a dislocation. (c) Moiré interference pattern due to the dislocation shown in (a) and (b). For
clarity, phase of the iFT ((b)) was mapped to Eqn. 5.8. In (b), blue indicates a value of 0, and
yellow indicates a value of 1.
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2.7.2 Bragg Peak Filtering in a Periodic Example

When we filter these Bragg peaks, we select a pair of Bragg peaks in the FT of the crystal, then
zero out all values outside of the selected pair of Bragg peak. Then, we perform an iFT on the
isolated Bragg peaks. The resulting FT and iFT output, ξk, for a pair of filtered Bragg peaks in a
perfect crystal will looks something like Fig. 2.1 (a). Meanwhile, taking the inverse FT of a crystal
with defects or dislocations yields disortions and interference patterns (Fig. 2.8 (b, c)), where Fig.
2.8 (b) shows a result analogous to the phase Eqn. 2.8,

ξk(r⃗) = hk(r⃗)cos(2πr⃗ · b⃗k − 2πr⃗ ·∆b⃗k) (2.9)

where ξk denotes the iFT of the Bragg peak filtered FT and hk(r⃗) denotes the direct space intensity
of a point, r⃗, in the filtered iFT.

In GPA, we take the phase, ϕ. Where phase typically refers to the angular component in cos(ϕ)
or e2πiϕ. In the case of Eqn. 2.9 ϕ = 2πr⃗ · b⃗k − 2πr⃗ · ∆b⃗k. From these results, it is possible to
isolate the displacement field associated with a given, ∆b⃗k.

2.7.3 Bragg Peak Filtering and Quasicrystals

More recently, Freedman et. al. [43] showed how Bragg peak filtering could be used to measure
both phonon strain and localized phason strain in photonic QCs. In the following chapters, we will
extend and build on the methodology presented in [43]. We show the strengths and limitations of
this technique in QCs, then develop a novel, more generalized methodology inspired by the work
presented in [43].

Here, we give an overview of Bragg peak filtering and how reciprocal space relates to phasons
and higher dimensional crystallography.

While it’s possible to measure phason strain from real space systems using the concepts of
hyperspace, lifting, and cut-and-project discussed in the previous sections, and the algorithmis
outlined in Sec. 2.6.1.1 make this analysis prohibitively expensive.

Instead, we choose to approach the analysis of QC using Bragg peak filtering and the reciprocal
space image of QC. Bragg peak filtering analysis is convenient for two major reasons: (1) Fast
Fourier Transform (FFT) algorithm [28] is efficient, reliable, and well established, and (2) it is
fundamentally related the order in crystals and higher dimensional crystallography.

To understand how Bragg peak filtering gives us an alternative lens to measure both phononic
and phasonic disorder in a QC, it helps to re-examine periodic crystals in the context of plane
waves (Sec. 2.1.3) and to revisit the concept of quasiperiodic functions (Sec. 2.3).

This view of crystals as a sum of plane waves, rather than points, is helpful in capturing the
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Figure 2.9: Bragg peak filtering on a QC with engineered phason strain. We compare the
positional order parameter ξ for an (a) ideal Ammann-Beenker Tiling (AB) QC, and an (b) AB QC
with an line of phasons (orange boxed region; orange points are positions from the ideal tiling).
We compute the positional order ξ for the ideal AB by filtering (c) a pair of Bragg peaks associated
with some basis vector b⃗k and (d) two pairs of Bragg peaks. We in ξ along the x-axis and compute
the mean of each bin for the ideal QC (tiling shown in a; yellow lines in c, d), and the QC with a
line of phasons (tiling shown in (b); blue lines in (c, d) ). Here, one set of peaks is associated with
b⃗k, and the other pair is related to c⃗bk, where, c = 1+

√
2 is the silver ratio, or the incommensurate

ratio between length scales associated with AB. This is conceptually analogous to scaling b⃗k by
the golden ratio, τ = 1+

√
5

2
and filtering by both pairs of Bragg peaks.

long-range order associated with QCs because it allows us to reduce the complex, local structures
and rules associated with QC to a simple set of equations. In such cases, global deviations from
aperiodicity are measured as shifts in frequency, rather than, say, violations of matching rules or
distances from higher dimensional cut planes. Meanwhile, local deviations from global order, such
as aperiodicity (phason strain) and real space dislocations and real-space strain (phonon strain),
can be captured as displacements in phase space [43, 105] and changes in the magnitude of the
Bragg peak filtered iFT, ||ξ||, (see Fig. 2.9 and Sec. 2.1.3) where || · || is the norm of a vector
||⃗a|| =

√
a⃗ · a⃗∗ and a⃗∗ is the complex conjugate of a⃗.

2.7.4 Revisiting Periodic and Quasiperiodic Functions

A simple example of can be constructed from the sum of two cosines, f(x) = cos(2πx) +

cos(a2πx). When a is rational, we can define a single length scale (or, the period of f(x)), b,
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with which we can index identical environments in f(x) (a.k.a. translational periodicity). When a
is irrational (a /∈ Q), however, f(x) becomes a quasiperiodic function, and we are no longer able
to define a single period for our function f(x). Yet, f(x) still has sharp peaks in Fourier space
at 1 and a /∈ Q, where Q denotes rational numbers. In this case, we are still able to describe the
relation between local maxima in f(x) using two incommensurate lengths, which we can compute
from the frequencies associated with f(x). For example, if we take a = τ , where τ = 1+

√
5

2
is

the golden ratio, we find that f(x) is closely related to the 1-D Fibonacci Sequence (FS), where
the frequencies associated with f(x) give us the two length scales of the associated sequence. For
the given f(x), this means the distance between the local maxima of f(x) corresponds to the two
length scales of the sequence, and the spacings between local maxima map directly to the 1-D FS
(Fig. 2.10, (c-e)). Unlike the periodic case, however, the values at local maxima are not equivalent.

Here, another important difference between quasiperiodic functions and periodic functions be-
comes apparent – periodic functions can be indexed with D = d basis vectors, while quasiperiodic
functions are described by D > d [22], where d is the dimension of the function f(x) and D is the
number of basis vectors associated with f(x).

In the periodic case, the number of independent basis vectors does not exceed d. As a con-
sequence, it is not possible to reach any point outside the crystal lattice using a linear combi-
nation of the crystal’s basis vectors,

∑
k

∑
i ni⃗bk where ni ∈ R. That is, the linear combina-

tion of d basis vectors in d dimensions yields a unique lattice, and the d basis vectors alone are
sufficient to describe both the short- and long-range the order of the crystal. In the case where
f(x⃗) =

∑
k

∑
i ni⃗bk, the output of f(x⃗) is discrete. In the case where f(x⃗) is a continuous peri-

odic function (e.g. f(x⃗) = cos(2πx) + cos(a2πx), a ∈ Q), this means that f(x⃗) = f(x⃗+
∑
ni⃗b).

As a consequence of this translational periodicity, any deviations from a crystal’s ideal structure
can be measured based on local deviations from a set of b⃗k.

In such cases, global deviations from aperiodicity are measured as shifts in frequency, rather
than, say, violations of matching rules or distances from higher dimensional cut planes. Mean-
while, local deviations from global order, such as aperiodicity (phason strain) and real space dis-
locations and real-space strain (phonon strain), can be captured as displacements in phase space
[43, 105] and changes in ||ξ|| Fig. 2.9, where || · || is the norm of a vector ||⃗a|| =

√
a⃗ · a⃗∗ and a⃗∗ is

the complex conjugate of a⃗.

2.7.5 Relation to Higher-Dimensional Crystallography

In contrast, quasiperiodic functions are described by D > d basis vectors [22]. In the case of a
function, f(x⃗) =

∑
k

∑
i ni⃗bk where ni ∈ Z, the output of f(x⃗) is no longer discrete. If follows

then, that in the function’s space (d-dimensional space, or what we call direct space), there is no
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Figure 2.10: Relationship between plane wave image of quasiperiodicity and higher dimen-
sional crystallography. (a) Two, orthogonal plane waves summed together to make a square-like
cosine crystal. Here, we choose to express our basis set as b⃗1 = [τ, 1] and b⃗2 = [1,−τ ]. (b) The
FS, reconstructed from the local maximum with values greater than 0.4 (dotted red line) in (c). (c)
Amplitudes from a slice of the hyperlattice (yellow line). The orange arrow shows an example of
a phason flip. We note that, as a result of the Fourier projection-slice theorem, taking a 1D slice of
the cosine crystal shown in (a) is equivalent to computing f(x) = cos(x+ c)+ cos(τx+ c) in 1D,
where c is some global shift associated with where the 2D function was sliced. (d) shows the FS
reconstruction and (e) the aperiodic signal over a longer interval.
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one, unique lattice that can be constructed from a linear combination of D > d basis vectors.
Instead, it’s possible to construct any lattice using

∑
k

∑
i ni⃗bk. This means we can construct

periodic simple cubic (SC) lattices or infinitely dense lattices or lattices that may look like QCs
locally, but are either periodic (approximates) or lack the quasi long-range translational order (e.g.
some random tilings) associated with mathematically ideal QCs (i.e. phason-strain free QCs) [128]
using

∑
k

∑
i ni⃗bk.

Similarly, in a continuous, quasiperiodic function (e.g. f(x) = cos(2πx) + cos(a2πx), a /∈ Q),
the function f(x⃗ +

∑
k

∑
i ni⃗bk) ̸= f(x⃗), despite the fact that b⃗k is described by the frequencies

associated with f(x⃗). Yet, if we examine a simple quasiperiodic function like f(x) = cos(2πx) +

cos(a2πx), we see that the associated basis vectors give us a convenient way to describe how the
local maxima relate to each other (Fig. 2.10).

The relation discussed above shows how the set of D > d basis vectors alone is insufficient in
describing the structure of the QC, and that measures of local order (e.g. strain, potential energy,
||ψk||) are unable to measure deviations from the complex, quasi-long range order associated with
true QCs. Instead, additional restrictions and rules are necessary to describe and measure local
order in a QC or QC-like structure (e.g. matching rules [47], coverings [21], cut-and-project
[38, 95]).

We note, however, that it is not straightforward to decouple phason strain from phonon strain
using this method. Fig. 2.9 shows how phason defects can introduce sharp dips to the iFT magni-
tude, ||ξ||, when filtering one or two pairs of Bragg peaks. Dislocations and defects can also cause
decreases in iFT magnitude in periodic crystals (see Chapter 5 for a more detailed discussion on
Bragg peak filtering in periodic crystals). Previous studies have suggested that filtering two pairs
of Bragg peaks, b⃗k and τ b⃗k, allows us to measure both phason and phonon strain, whereas filtering
one pair of Bragg peaks measures phonon strain in a system [43]. Our results suggest that phason
strain can still be detected when filtering a single pair of Bragg peaks – though change in ||ξ|| is
much weaker and harder to detect in these cases.

2.8 Summary

Here, we introduce the mathematical concepts needed for the research presented in this disserta-
tion. We provide a brief introduction to quasiperiodicity, reciprocal space, and self-similarity in
the context of QCs and phasons, and we discuss the strengths and limitations of existing methods
for periodic crystal and QC analysis.
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CHAPTER 3

Formation of a Single Quasicrystal Upon Collision of
Multiple Grains

This chapter is a modified version of our published work:

Insung Han.*, Kelly L. Wang*, Andrew T. Cadotte, Zhucong Xi, Hadi Parsamehr,
Xianghui Xiao, Sharon C. Glotzer, and Ashwin J. Shahani. ”Formation of a single
quasicrystal upon collision of multiple grains.” Nature Communications 12, no. 1
(2021): 5790. * These authors contributed equally.

This paper was a joint simulation-experimental collaboration with the Shahani group, who we
refer to as our collaborators in the text. All data and measurements were conducted by the Shahani
group. All simulations and grain orientation analysis were conducted by me.

When grown as single crystals, quasicrystals (QCs) possess distinctive and unusual properties
owing to the absence of grain boundaries. Unfortunately, conventional methods such as bulk crys-
tal growth or thin film deposition only allow us to synthesize either polycrystalline QCs or QCs
that are at most a few centimeters in size. Here, our collaborators in the Shahani group reveal
through real-time and 3D imaging the formation of a single decagonal quasicrystals (dec-QCs)
arising from a hard collision between multiple growing QC in an Al-Co-Ni liquid. Through corre-
sponding molecular dynamics simulations, we examine the underlying kinetics of QC coalescence
and investigate the effects of initial misorientation between the growing quasicrystalline grains on
the formation of grain boundaries. At small misorientation, coalescence occurs following rigid
rotation that is facilitated by phasons. Our joint experimental-computational discovery paves the
way toward fabrication of single, large-scale QCs for novel applications.
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3.1 Introduction

The growth mechanism of QCs has attracted great interest [68, 71] due to their unique crystal
structure that cannot be explained by the presence of a unit cell [116]. Instead, QC lattices may
be described by two or more space-filling motifs [40, 122], or tiles. The presence of multiple
tiles is due to an additional degree of freedom present in QCs phason [119], which encompasses
associated modes of phason strain and its relaxation (e.g. phason flips) [41, 43, 119]. Phason
strain describes the deviation from ideal quasiperiodicity [128] and phason flips are characterized
by discrete particle motions [41] that result in a change in tiling configuration. These changes
in tiling configurations are representative of phason excitations and relaxations, and do not intro-
duce defects into the crystal [119]. Previous studies suggest that entropic contributions can have a
significant influence on QC stability [68, 71, 129]. This suggests there is degeneracy in tile con-
figurations that preserves quasiperiodicity and that QCs can grow into low or zero phason strain
structures without the need for complex phason flip sequences [129].

Although past studies on QC growth mechanisms extend our understanding of phason contri-
butions to stability in a bulk QC [68, 71, 129], studies on phason contributions to the formation
and motion of grain boundaries (GBs) remain limited [110]. Yet the latter is critically important
from a practical standpoint since the formation of polycrystals is unavoidable due to finite nucle-
ation rates below the melting point. That is, two solid nuclei may impinge on one another, retaining
their structure and forming a long-lasting GB. The GBs can, in turn, deteriorate material properties.
For instance, defects in quasicrystalline films render the substrate underneath more vulnerable to
corrosion by providing a channel for electrolytic attack [10]. In addition, the anisotropic thermal,
electrical, and frictional properties of dec-QCs can be maximized for future applications [89, 99],
provided the QCs are devoid of GBs between mismatched solid crystal nuclei.

Recently, Schmiedeberg et al. [110] conducted phase field crystal simulations to determine
whether and when a GB may form between two QCs. In general, they observe that grain coales-
cence occurs more readily in dodecagonal QCs than in periodic crystals. This finding is remarkable
given that two QCs are always incommensurate. They also reported that phasons play a significant
role in distributing stress [110] around the non-fitting structures, where the resulting phason strain
can be relaxed via phason flips [41]. Despite the insights obtained by Schmiedeberg et al. [110],
the fundamental question remains: Can coalescence take place in experimental systems? If so,
how can simulations support experimental observations?

Here, our experimental collaborators in the Shahani group investigate the growth dynamics
of multiple thermodynamically-stable dec-QC grains [141] upon solidification of an Al79Co6Ni15
alloy. They used synchrotron-based, four-dimensional (i.e., 3D space plus time-resolved), x-ray to-
mography (XRT) to resolve grain coalescence, or the time-dependent formation of a single dec-QC
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from multiple grains. This experimental technique has opened a paradigm shift in solidification
science, allowing them to capture transient microstructural dynamics in optically opaque materials
[4, 7, 115]. To the best of our knowledge, our in situ experiments provide the first-ever demonstra-
tion of QC coalescence. On the basis of their experimental results, we performed molecular dynam-
ics (MD) simulations to identify the mechanism of grain coalescence (or conversely, GB formation)
at the atomic scale. We examine relevant crystal rotation mechanisms [23, 57, 93, 135, 140] and
discuss the role of phasons in facilitating grain coalescence as well as their density as a function of
misorientation between grains. Our combined efforts provide the direct evidence of single crystal
formation between incommensurate structures, such as QCs.

3.2 Methods

3.2.1 Decagonal Quasicrystal Simulation

MD simulation was performed with HOOMD-blue [6] in the isobaric-isothermal (NPT) ensemble.
Simulations used reduced units of energy (ϵ), length (d = 1.02) in arbitrary units, mass (m), and
time (τ =

√
md2

ϵ
). Particles interacted through an oscillatory, double-well potential [32] (Fig. 3.1),

previously shown to form dec-QCs,

V (r) = VPMF(r)− ε exp

(
−(r − d)2

2σ2

)
− V (rcut) (3.1)

where VPMF (r) is the tabulated potential of mean force (PMF) constructed from the radial distri-
bution of a diamond-forming system [30], ε = −1.8, d = 1.02 is the location of the first minimum,
σ is the width of the Gaussian applied to the first well, and rcut = 2.9d is the cutoff. The pair
potential was smoothed and shifted to 0 at rcut.

Each simulation was performed with 500,000 particles and with periodic boundary conditions
in 3 dimensions. Simulations were carried out in quasi-2D boxes with final average dimensions of
360× 360× 8 to reduce the influence of layer mismatches and rearrangements along the periodic
axis and to maximize the amount of atomic rearrangements in the quasicrystalline plane. Systems
were linearly cooled from a liquid-like configuration (T ∗

init = 1.5) to a temperature near, but below
the melting point (T ∗

end = 0.4) over 100,000 timesteps. The temperature was expressed in a reduced
unit of T ∗ = kbT

ϵ
, where kb is the Boltzmann constant. Each system was then held at T ∗

end for
20 million simulation timesteps at a pressure of 3.9. Simulations consisted of two fixed seeds
with a distance of 40 between the seed centers and misorientation between 0◦ and 18◦. For each
misorientation, 3-5 simulations were run to ensure consistency of the results. The computational
workflow and general data management in particular for this publication was primarily supported
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Figure 3.1: Tabulated pair potential and radial distribution function for QC simulations.
[52] The single-component, isotropic pair potential (dark blue) used for all dec-QC simulations is
derived from the potential mean of force of a diamond-forming system [30]. The radial distribution
function is shown in yellow, g(r), for a single seeded dec-QC simulation after 19.7×106 timesteps.

by the signac data management framework [3].

3.2.2 Orientational Order Parameter Analysis

We used the bond-orientational order parameter for k-atic rotational symmetry[127] to identify the
local orientational symmetry of each particle m:

ψk(m) =
1

n

n∑
j

ekiθmj (3.2)

where n is the number of neighboring particles and θ represents the angle between local bond
orientations and a fixed basis with k-atic rotational symmetry, or, the local grain orientaions (LGO).
For a decagonal quasicrystal, we use the value of k = 10, so that ψ10(m) refers to the decatic order
parameter. For face-centered cubic (FCC) simulations, we computed ψ4(m), or the quadratic
order parameter, on the 2D projection of the crystal down the 2-fold rotational axis. We note that
the projected structure resembles a simple square lattice, resulting in 4-fold, rather than 2-fold
rotational symmetry in the 2D lattice. We determine neighbors for particle m as the k nearest
neighbors to ensure that measurements reflect the local atomic environment of each particle. Data
analysis for this publication utilized the freud library[102].
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3.2.3 Face-Centered Cubic Crystal Simulations

We carried out additional MD simulations of an FCC forming system via the 6-12 Lennard-Jones
(LJ) pair potential,

VLJ = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(3.3)

that is truncated at rcut = 2.5 ∗ σ, where σ = 1.0, ϵ = 1.0, and r is the distance from the center
of a particle, expressed in units of σ. Temperature was fixed at kT = 0.6, and pressure was fixed
at P = 1.0 in reduced units. All periodic simulations contained ≈ 500, 000 atoms and contained
either one or two fixed seeds, with 499 atoms each, and the potential was shifted and smoothed so
that both the potential and its derivative are zero at the cutoff.

3.2.4 Orientational Order Paramater Mapping

For qualitative comparison of grain rotation between two seeds with different misorientation, we
normalize LGOs of individual particles based on their deviation from seed LGOs. To begin, we
constructed expected histograms for two seeded simulations as bimodal distributions from his-
tograms of single seeded reference simulations (yellow line, Fig. 3.2), where peaks correspond to
the reference seed misorientation (θ = 0◦) and the rotated seed misorientation (0◦ ≤ θ ≤ 18◦,
6◦ in Fig. 3.2). We remap the LGO of individual particles to the bimodal cumulative histogram,
cf(θ). This highlights small changes in misorientation and makes it possible to compare grain
interactions at various misorientations without manual rescaling.

This is because the cumulative distribution cf(θ) always equals 0.5 when θ equals mean of a
unimodal distribution corresponds. If we construct our bimodal distribution as a mixture of two
Gaussian-like distributions with identical variance, but different means, if follows that the means
in the bimodal distribution correspond cf(θ0.25) ≈ 0.25 and cf(θ0.75) ≈ 0.75, where θ0.25 = 0◦

and θ0.75 corresponds to the LGO of the rotated seed (in Fig. 3.2, θ0.75 = 6◦). Particles with LGOs
different from either seed have cf(θ) of 1 or 0, and seeds with intermediate orientations have cf(θ)
between 0.25 and 0.75, where LGOs with cf(θ)s of 1 or 0 have the same meaning. This is because,
for the 10-fold rotational symmetry found in dec-QCs, the basis vectors are invariant for rotations
36◦, meaning, LGOs of −10◦ and 26◦ are equivalent. Here, we define intermediate orientations
as angles that lie along the shortest rotation between two seeds (black region in Fig. 3.2) and
unlike orientations as angles that lie along the longest rotation between two seeds (white region
in Fig. 3.2). The inclusion of the extreme cases, where orientations are highly unlike either seeds,
is useful in identifying liquid regions in the dec-QC during growth, such as in Fig. 3.10. It is
important to note that as misorientation approaches 18◦, the difference between “intermediate”
orientations and “unlike” orientations diminishes.
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Figure 3.2: Orientantaional order mapping for QC simulations with 6◦ misorientation. [52]
Mapping LGOs onto the cumulative histogram (cf(θ), blue line) of LGOs for 6◦ misorientation
between seeds. Black dashed lines indicate the LGO when cf(θ0.25) = 0.25. Black dotted lines
indicate the LGO when cf(θ0.75) = 0.75. These regions correspond to the peaks (means) in
the expected bimodal histogram (yellow line, f(θ)) of LGOs. Using values from the cumulative
histogram, we create a colormap where alignment with the reference seed (θ0.25 = 0◦, dashed lines)
corresponds to yellow-orange and alignment with the rotate seed (θ0.75 = 6◦ in this example, dotted
lines) corresponds to blue. Black corresponds to LGOs between 0◦ and the LGO associated with
the rotated seed (6◦ in this example), while white corresponds to −10◦ < θ < 0◦ or 16◦ < θ < 28◦.
Due to the 10-fold rotational symmetry of the dec-QC, the angle between each basis vector is 36◦.
We keep all LGOs values between −10◦ < θ ≤ 26◦, where a value of 27◦ would be equivalent to
−9◦. This means that the white region could also be defined as an interval between 0◦ < θ < θ0.75,
but the arc it represents is longer than the arc for the black region for all seed misorientations below
18◦.

3.3 Results

3.3.1 Grain Coalescence Observed in X-Ray Tomography Experiments

The contents of this section were performed by and contributed by the Shahani Group.

Fig. 3.3 depicts the time-evolution of multiple dec-QCs before and after collisions in an al-
loy of composition Al79Co6Ni15, upon slow cooling (1 ◦C/min) from above the liquidus (∼1026
◦C) to below. The growth sequences of the as-grown dec-QCs were recorded via XRT every 10
mins with 20 s scan time, starting from 1020 ◦C (at which point the sample was in a fully liquid
state). The key advantage of using XRT is that our collaborators can unambiguously visualize the
morphologies, misorientations, and growth dynamics of the QCs in real-time and in 3D, without
needing to repeatedly quench their specimen. Quenching is known to distort the shapes and orien-
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Figure 3.3: Tracking grain impingements in real-time. [52] (a) Side view (ẑ − x̂ in the speci-
men frame) of two dec-QCs with parallel ⟨00001⟩ long axes, observed after 50 min of cooling (1
◦C/min) from 1030 ◦C. (b) Birds-eye view (x̂− ŷ) of quasiperiodic plane corresponding to boxed
region shown in (a). (c) Stereographic projection of interface (facet) normal vectors of the outer-
most isochrone (910 ◦C) in (b). Zone axis is ẑ. Facets are evenly projected (∼36◦ apart) as peaks
along the circumference (or primitive circle) of the projection plane, which implies the formation
of a single, decaprismatic QC along ẑ. The missing tenth peak can be attributed to the less devel-
oped facet in (b). (d) Side view of dec-QCs with non-parallel ⟨00001⟩ long axes, observed at the
same timestep as in (a). (e) Birds-eye view of the boxed region shown in (d). (f) Stereographic
projection of interface normal vectors of the outermost isochrone (910 ◦C) in (e). Zone axis is
again ẑ. Quasiperiodic facets of two QCs are inclined to the projection plane, and thus the corre-
sponding peaks do not lie on the primitive circle. Peaks are not always separated by 36◦ either,
suggesting a superposition of two single crystal patterns and hence a bi-quasicrystalline structure.
Isochrones of the solid-liquid interface in (b) and (e) are colored to illustrate the passage of time,
with early times in red and late times in blue. Times and temperatures in (b) and (d) are as follows:
10 min (1010 ◦C), 20 min (1000 ◦C), 30 min (990 ◦C), 40 min (980 ◦C), 50 min (970 ◦C), 60 min
(960 ◦C), 70 min (950 ◦C), 80 min (940 ◦C), 90 min (930 ◦C), 100 min (920 ◦C) and 110 min (910
◦C). Thick black arrows in (b) and (e) point to the evolution of the grain boundary groove in time.
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tations of the solid-liquid interfaces [25]. They confirmed the existence of dec-QCs in they sample
through X-ray diffraction (XRD, see Fig. 3.4(a)) together with a thermodynamic assessment of the
Al-Co-Ni system [141]. On the basis of our XRD results on a water-quenched specimen, they plot
in Fig. 3.4(b) the physical scattering vector, G|| (defined as 4π sin θ/λ, where λ is X-ray wave-
length), against the full width at half maximum (FWHM) of the peaks belonging to the dec-QC
in Fig. 3.4(a). The linear relationship between the two quantities indicates that the contribution of
phonon strain in the lattice dominates that of phason strain [51]. Therefore, we can expect that pha-
son strain is relaxed if we consider the relatively longer time-scales of the slow cooling experiment
showcased in Fig. 3.3.

Figure 3.4: X-ray diffraction analysis. [52] (a) X-ray diffraction pattern of water-quenched
Al79Co6Ni15 alloy from an initial temperature of 1030 ◦C. Rapid quenching prevents peritectic
transformation of dec-QCs from proceeding to completion. The diffraction peaks are indexed to
confirm the presence of dec-QCs at 970 ◦C. The peaks indexed with black and red correspond to
the Al3Ni and aluminum oxide, respectively. (b) A linear fit with Pearson correlation coefficient
of 0.93 is shown between G∥ and FWHM along with 95% confidence interval bounds, see text for
details.

The dec-QCs in Fig. 3.3 show a decaprismatic morphology [53] with a ‘long axis’ parallel to
⟨00001⟩, representing the fast-growing periodic direction. Perpendicular to this direction is the
aperiodic plane {00001}. Similar to our collaborators’ past experiments [53, 54], the dec-QCs are
‘anchored’ to the oxide skin of the sample (not pictured), which acts as a fixed, heterogeneous
nucleant for the dec-QCs, preventing their displacement. Grain displacement would manifest it-
self as negative solid-liquid interfacial velocities on one side of the grain and positive interfacial
velocities on the other. They do not observe this feature here nor in our prior experiments [53]. As
the dec-QCs grow, they interact with each other through soft impingements (overlapping diffusion
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fields) and hard impingements (collisions)[33].
Here, we selectively focus on two different cases of hard collisions between dec-QCs with (i)

parallel long axes (Figs. 3.3 (a-c)) and (ii) non-parallel long axes (Figs. 3.3 (d-f)). Figs. 3.3
(a,d) shows these two cases after 50 min of continuous cooling from a viewpoint perpendicular to
the long axes of the dec-QCs. Figs. 3.3 (b, e) displays a bird’s eye (or cross-sectional) view of
the growth sequences from the quasiperiodic planes. When the long axes of dec-QCs are parallel
(Fig. 3.3 (b)), we observed multiple coalescence events, the first between 20-30 min and the second
between 50-60 min, the culmination of which is the formation of a single dec-QC.

3.3.1.1 Grain Boundary Groove and Young’s Law

The formation of a single dec-QC is further evidenced by the absence of a GB groove (where
the GB intersects the solid-liquid interfaces) [9, 94] as well as the presence of ten facets on the
coalesced structure at the final time-steps; this end-state is depicted in the outermost isochrone
in Fig. 3.3 (b) and the near-perfect symmetry of its facets is quantified via interface normal
distribution [53, 70] in Fig. 3.3 (c). That is, GBs may be detected in solidification experi-
ments [18, 46, 106, 114] owing to the fact that they create macroscopic depressions (grooves) of the
solid-liquid interface around the point at which they emerge into the liquid. According to Young’s
law [61], the groove angle, ϕ, is related to the grain boundary energy, γgb, as γgb = 2γslcos(ϕ/2),
where γsl is the solid-liquid interfacial free energy. If the GB groove persists during solidifica-
tion, it can be inferred that the GB is stable and fixed to the groove. However, the morphological
transition from a V-shaped groove to a faceted interface (ϕ → 0◦, see thick arrow in Fig. 3.3 (b))
suggests otherwise, i.e., the annihilation of the GB during grain coalescence. Interestingly, the
facet orientations of the dec-QCs prior to impingement were nearly the same as those dec-QCs
following coalescence. This observation is in line with the findings of Schmiedeberg et al. [110],
who testify to the coalescence between two colloidal QCs with small initial misorientation in the
aperiodic plane regardless of the initial distance between them. Our quantitative analysis of facet
orientations as a function of time (Fig. 3.5) provides further support of this behavior. The groove
itself does not move laterally along the solid-liquid interfaces on the intermediate time-scales (see
arrow in Fig. 3.3 (b)), which would indicate that GB translation on its own is not the mechanism
of coalescence.

The irregular shape of the dec-QC on the left-hand-side in Fig. 3.3 (b) between 40-50 min of
cooling (i.e., prior to collision) can be attributed to a mutual interference of diffusion fields between
the two grains.

On the other hand, in the case where the two long axes are non-parallel to each other, we
observed the persistence of a V-shaped GB groove (Figs. 3.3 (d,e)), signifying the formation of a
stable GB between the two grains. In comparison to the above scenario where the long axes are
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Figure 3.5: Distribution of facet orientations. [52] Detailed view of stereographic projections
of interface (facet) orientations of dec-QC seeds on the (a) left-hand-side, (b) right-hand-side in
Fig. 1(b) after 50 min of cooling and (c) the coalesced dec-QC after 110 min of cooling. Zone axis
of projections is the specimen ẑ direction, which corresponds to ⟨00001⟩ in all cases. It follows
that the QCs in (a,b) possess parallel long axes and small (> 1◦) misorientation in the aperiodic
plane. P (n) represents the probability (weighted by area fraction) of finding an interfacial normal,
n, along a particular direction. Peaks in the distribution indicate a highly anisotropic or faceted
structure. In principle, a facet should have a single (discrete) orientation. Yet the peaks have finite
width, likely a result of mesh smoothing. (d) Radial distribution of facet orientations obtained
from 40 min to 110 min. The red, blue, and purple colors represent the dec-QC seeds on left- and
right-hand-side (before impingement) and the coalesced dec-QC, respectively. Angular measure-
ments start at the 12 o’clock position of the stereographic projection and increase clockwise. Two
facets (peaks) are separated by an angle of nearly 36◦, which is consistent with a decaprismatic
morphology of the dec-QC phase.

parallel, here the quasiperiodic lattice in one dec-QC merged with the periodic lattice of the other d-
QC. Naturally, the appreciable mismatch between the two lattices resulted in the formation of a GB,
and hence a V-shaped groove in Fig. 3.3 (e). Quantitative support comes from the stereographic
projection of interface orientations shown in Fig. 3.3 (f), which represents here the superposition
of two single QC patterns (cf. Fig. 3.3 (c)). Since contrast in XRT stems from differences in
photoabsorption between the phases, we can only capture the external solid-liquid interfaces and
not the GBs and atomic configurations within the solid phases. Furthermore, it is nearly impossible
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to preserve the QC interfaces at room temperature for high-resolution imaging, since the decagonal
phase undergoes a peritectic decomposition below 910◦ C [141].

3.3.2 Simulation Results

To overcome such experimental constraints, we systematically examine the effects of misori-
entation on grain behavior in dec-QCs using seeded MD simulations with an isotropic, single-
component pair potential [32]. We focus on misorientations within the aperiodic plane {00001},
since the XRT experiments provide evidence for coalescence when the long axes are parallel (Figs.
3.3 (a-c)). Thus, we carry out MD simulations in quasi-2D boxes to maximize surface area along
the quasiperiodic plane. We fix the initial position of dec-QC seeds in our simulations to match
experimental conditions, where grains were ‘anchored’ to the sample surfaces. Seed positions are
fixed for the entire simulation. We use the decatic order parameter, ψ10, to determine the alignment
of the local bond configurations about each particle. We will call this quantity the LGOs (LGO)
and particles with local bond configurations that align with the reference basis will have a LGO of
θ = 0◦. A detailed description of simulation setup and analysis is provided in the Methods section.

To elucidate the mechanism behind grain coalescence in dec-QCs, we begin with characteriza-
tion of GB formation as a function of misorientation. Here, we define misorientation as the rotation
angle about the {00001} axis between two seeds. We define grain as a region where the arrange-
ment of particles may be described by a continuous lattice in physical space and seed as a set of
particles belonging to the d-QC lattice with fixed LGOs. We will refer to simulations based on
the misorientations between seeds, rather than the misorientations between grains, since grains can
change LGOs over time but the misorientations between seeds are fixed and represent the initial
conditions of d-QC grains.

Fig. 3.6 compares small (3◦), intermediate (9◦ and 10◦), and large (15◦) seed misorientations
between two dec-QC seeds with a fixed distance of L = 40d, where d = 1.02 is defined as the
distance between r = 0 and the 1st neighbor shell in the isotropic pair potential [32] and each seed
contains 144 atoms. Each seed accounts for ∼ 0.03 % of the particles in the entire simulation.

This means that the contribution of the fixed seed to the phason dynamics around the seed
could be negligible. We verify this assumption with analysis of particle flips in both fixed and
unfixed seed simulations (Fig. 3.7). No significant suppression of phason dynamics was observed
around the seeds in both cases. In unfixed seed simulations, we do not see grain displacement
upon collision (Fig. 3.8), which suggests our use of fixed seeds do not artificially hinder grain
motion and should not introduce any significant artifacts into our results. Therefore, our choice
to incorporate fixed-seed simulations can be justified by the purpose of replicating solidification
experiments. Temperature was fixed at kT = 0.5 reduced units and pressure was fixed at P = 3.9
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Figure 3.6: Simulation orientation analysis. [52] MD simulations showing changes in LGOs
(θ) towards near-equilibrium configurations (∼25 million simulation timesteps). Left column:
Histograms of simulated (black line) and expected seed LGO distributions (grey peaks). Red lines
indicate the expected LGOs of particles in each seed. Histogram bin frequencies (arbitrary units)
for simulation lattice orientations were averaged after θ reached a constant value. The thickness of
the black line represents the standard deviation of frequency for each bin. Grey peaks are expected
probability density function (PDF) for the reference grain (θ = 0◦) and rotated grain. PDFs are
calculated from single-seeded simulations. Peaks for the reference seed are centered at θ = 0◦

and peaks for the rotated seed are centered at θ = (a) 3◦, (b) 9◦, (c) 10◦, and (d) 15◦, respectively.
Middle column: Spatially-binned simulation frames at 25 million timesteps for each set of seeds.
Here, coarse-grained images are shown, rather than images with atomic level resolution, because
they show grain rotation and GB characteristics more clearly. One pixel or cell represents 20
particles on average. All images show the aperiodic {00001} plane of our dec-QC simulations.
Colorbars for θ are below each histogram (left) and correspond to the orientation in the histogram
axes, where yellow-orange corresponds to particles that align with the reference seed (θ = 0◦).
Bright blue corresponds to particles that align with the rotated seed. Dark regions on the colorbar
correspond to angles along the shortest arc between 0◦ and the rotated seed and white regions on
the colorbar indicate angles along the longest arc between 0◦ and the rotated seed. White regions
typically correspond to liquid regions, which are not visible in fully crystallized simulations frames
(middle column), but are visible during growth, when liquid is still present in simulation. Right
column: Calculated diffraction patterns based on the atomic level resolution simulations used in
the middle column. Note the diffraction patterns of (a) and (b) are indicative of a single dec-QC.
On the other hand, the diffraction patterns of (c) and (d) suggest the presence of two dec-QCs with
different orientations.
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reduced units. Further description of reduced units are provided in the Methods section.

3.3.3 Effects of Initial Grain Misorientation Grain Boundary Formation

When seed misorientations are 3◦ and 9◦ (Figs. 3.6 (a, b)), we observe unimodal histograms of θ
in the bulk QC at equilibrium (left column) and a ten-fold pattern in the diffraction (right column).
These results suggest that the misoriented grains rotated and the misorientation was minimized. On
the other hand, when seed misorientations are 10◦ and 15◦ (Fig. 3.6 (c, d)), we observe bimodal
histograms of θ (left column) in the bulk QC at equilibrium and overlapped, ten-fold patterns in
the diffraction image (right column).

These results indicate the formation of a GB between misoriented grains. In the case of Fig. 3.6
(a), one grain (yellow-orange) adopts the LGOs of the other grain (blue), see middle column. For
intermediate seed misorientations (Figs. 3.6 (b, c)), grains rotate toward intermediate orientations
(dark colored regions, middle column). In some cases, a GB is observed because misorientation is
reduced, but not eliminated (Fig. 3.6 (c)). This is visible in the diffraction pattern (right column),
where the misorientation between the two ten-fold patterns is approximately 6◦ after rotation. At
large seed misorientation, i.e. 15◦, the GB is clearly defined and orientations of both seeds strongly

Figure 3.7: Particle trajectory analysis. [52] Trajectories of a single particle in a solid, dec-QC.
The viewpoint is parallel to the periodic ⟨00001⟩ direction. Gaussian mixture model [100] and
clustering algorithm [102] are used to classify the types of particle motion in 2D, e.g., (a) vibration,
(b) oscillating phason flip, (c) multiple particle flips, and (d) cyclical motion on the pentagon
vertices. Individual particle flips and coordinated particle flips [41] are involved in (b-d), i.e., they
may be identified if more than one cluster is detected (note each cluster is depicted in a single,
unique color). The number of particles that re-order by particle flips is counted in each pixellated
region of the simulations with (e) fixed seeds and (f) non-fixed seeds, in order to map the number
density of particles showing phason flips. The red pixels in (e,f) represent the two QC seeds (the
initial misorientation between them is zero). The number density of particles that flip is relatively
uniform over the simulation domain in both cases.
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resemble the initial seed orientations (Fig. 3.6 (d)). The diffraction pattern in Fig. 3.6 (d) shows
a misorientation of ∼15◦, which corresponds to the initial misorientation between the seeds (i.e.,
no grain rotation). Note the diffraction patterns shown here are closely related to the stereographic
projections of facet orientations from experiment (Figs. 3.3 (c, f)). This is because the external
morphology of a crystal reflects its point group isogonal with its space group [20].

In light of these trends, we can identify a critical seed misorientation, ∆θcrit ≈ 9.5◦, for the
given simulation conditions (L = 40d and kT = 0.4), below which grains can rotate. The angle
of critical value provided here is not meant to represent all cases of grain coalescence in dec-QCs,
as ∆θcrit is likely a function of various thermophysical parameters (i.e., temperature, grain size,
fluid viscosity, and external stress [23, 135]). Instead, we treat it as a reference point for how the
behavior of dec-QCs change at ∆θcrit. After grain rotation towards 0◦ misorientation from the
small initial misorientation (3◦), only a few dislocations in the GB region were detected (Figs.
3.9 (a, c)) in the single density mode [76], which suggests grain coalescence. In contrast, we
observed an array of dislocations in the single density mode [76] from the simulations with 15◦

initial misorientation (> ∆θcrit), indicating the formation of a GB (Figs. 3.9 (b, c)). That is, grain
coalescence occurs only for relatively small seed misorientation angles, see Fig. 3.9 (c).

We begin our analysis of coalescence by mapping the LGOs of grains grown from two seeds
with misorientation 6◦, well below ∆θcrit, as depicted in Fig. 3.10.

Figure 3.8: Solid-liquid interface in simulation. [52] Solid-liquid interfaces over 4 × 105 sim-
ulation time steps for the case of (a) fixed seeds (θ = 9◦, L = 40d) and (b) unfixed seeds. To
simulate, two seeds with θ = 9◦ and L = 40d were placed in the fluid. For the (a) fixed seed case,
seeds positions were fixed for the entire simulation. Particles in the (b) unfixed seed simulation
were allowed to move freely following nucleation. Interfaces are colored according to time step.
Differences in collision time between the two systems is likely stochastic.
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Figure 3.9: Number of dislocations along the grain boundary. [52] Real-space images of a sin-
gle density mode [76], in the region where QCs collide, taken from the last frame in MD simulation
(∼ 2.5 × 107 simulation timesteps) with (a) 3◦ and (b) 15◦ initial misorientations. Dislocations
are highlighted with red circles. (a) and (b) are cropped to provide a magnified view from the
images that represent full volume. (c) Relationship between the initial misorientation and number
of dislocations along the grain boundary in the coalesced structure. We find that there are few dis-
locations (if any) at low (θ ≲ 9.5◦) initial misorientation, since two QCs can rotate toward θ = 0◦

(cf. (a)). Conversely, there are many dislocations when two QCs cannot minimize the misorien-
tation between them. The error bars were calculated from multiple dislocation analyses to retain
consistency of our approach. Contribution by the Shahani Group.

3.3.4 Evolution of Local Grain Orientation Upon Collision of Two Misori-
ented Grains

Fig. 3.10 (a-e) shows the time evolution of coarse-grained LGOs for seeds with 6◦ misorientation.
At early timesteps (Fig. 3.10 (a-b)), we observe two grains (labelled A and B) with good alignment
to seed orientation (yellow-orange and blue regions, seeds A and B, respectively). Immediately
after collision, grain A remains well aligned with seed A and a GB is clearly visible (Fig. 3.10
(b)). Both grains continue to rotate and reduce misorientation (darkening of both grains, Fig. 3.10
(b-e)) over the next ∼ 4.33× 106 timesteps. The GB grooves (Fig. 3.10 (b-c), arrows) gradually
flatten during rotation. This confirms the formation of a single grain, mimicking the experimental
results (Fig. 3.3 (b)).

For comparison to our dec-QC system in Figs. 3.6 and 3.10, we show results from a FCC
simulation with seeds at a fixed distance of 15.5a, where a = 4 d√

2
is the lattice constant, d = 1.1

is average bond length in the FCC grain, and 3◦ misorientation between seeds. The results are
shown in Fig. 3.11, where the image is colored using the same method used in Figs. 3.6 and 3.10,
where alignment with seeds A and B (labeled in Fig. 3.11 (a)) are indicated by a yellow-orange and
blue color, respectively, and fluid-like regions are represented by white. In contrast to our dec-QC
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Figure 3.10: Growth of a single dec-QC from two seeds. [52] Seeds are labeled A and B in
(a) with 6◦ misorientation. Here, coarse-grained images of the aperiodic {00001} plane show the
LGOs of dec-QC grains (a) during early stages of grain growth; (b) immediately after collision;
(c) after collision, grain rotation to minimize grain misorientation; (d) early stages of grain co-
alescence; (e) after grain coalescence. All heatmaps are cropped according to (e) from the total
volume. Subplots (a-e) are colored on the basis of an expected particle seed distribution, as shown
in the middle column of Fig. 3.6. Contiguous regions of white in subplots (a-e) correspond to
liquid regions. Arrows in (b) and (c) point to the GB grooves at the QC-liquid interfaces. Arrows
in (d) and (e) point to regions where the GB groove has flattened.

results, simulations of FCC grains (Fig. 3.11) show clear GB grooves at all stages of growth and
more localized changes in misorientation (Fig. 3.11 (b-e)). We note that, even after coalescence,
small regions remain well aligned with the initial d-QC seeds (Figs. 3.6 (a, b) and Fig. 3.10 (e)),
despite rotation through the bulk of the crystal. This is due to our decision to fix the seed position
throughout the entire simulation, preventing rotation of the nucleation sites of each grain.
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3.4 Discussion

3.4.1 Grain Coalescence in Periodic Crystals

The phenomenon of grain coalescence is well documented in polycrystalline materials[23, 55,
93, 135]. Mechanisms for grain coalescence are driven by reduction of GB free energy and are
categorized broadly by GB migration and grain rotation, as alluded to earlier. In embedded grains,

Figure 3.11: Growth of two FCC grains with 3◦ misorientation. [52] Growth at (a) 2.50× 105,
(b) 2.70×105, (c) 3.00×105, (d) 4.00×105 timesteps. (a-c) Frames from early stages of growth are
cropped to show more detail. The area cropped is shown by the white outline in (d). (e) shows the
colorbar for this figure, where alignment with seed A corresponds to yellow-orange and alignment
with seed B corresponds to blue color. Here, the grey peaks represent the expected probability
density functions (PDFs) for reference grain (θ = 0◦) and the misoriented grain (θ = 3◦). The
colorbar is cropped from the maximize range of orientation (-10◦ to ∼ 80◦) for clarity. Black
area indicates angles along the shortest arc between 0◦ and the misoriented seed, and white areas
correspond to angles along the longest arc between 0◦ and the misoriented seed. GB grooves
are present during all stages of growth for both orientations, despite rotation of both grains to 0◦

misorientation (see arrows in (b-d)). Although we observe global rotation of misoriented grains
toward 0◦ misorientation, a persistent grain boundary groove suggests unresolved phonon strain
along the grain boundary due to incommensurate distances between FCC lattices.
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GB migration is typically coupled with rigid sliding [23, 55, 135, 137] (termed coupling), which
is identified by a translation of the GB and a concomitant, continuous change in misorientation
(i.e., lattice rotation) near the GB [23]. In contrast, uncoupled GB sliding manifests as a uniform,
global change in grain orientation, as we observed in Figs. 3.10- and 3.11. Measurements of grain
rotation rates as a function of initial grain misorientation (Fig. 3.12) show strong and qualitative
agreement with classical equations for the dependence of GB free energy (γgb) on misorientation
(θ)[103] and driving pressure of sliding, P∥ ≈ −dγgb

dθ
1
R , where R denotes grain radius [23]. The

presence of sliding and the gradual disappearance of the GB groove in Fig. 3.10 suggests dec-QCs
are able to eliminate GBs with pure rotation. This is unexpected – due to the aperiodic, long-range
translational order present in QC lattices, translational mismatch between lattices grown from two
seeds is likely, even when misorientation between grains is 0◦. It should not be possible to eliminate
translational mismatches with rotation alone. This is consistent with our simulations of FCC grains
(Fig. 3.11), wherein the GB groove remains stationary and prominent, despite rotation towards 0◦

misorientation between grains. This finding also means that, although GBs are not observed in the
physical space of our dec-QCs, evidence of translational mismatches may be found in the phason
space of the crystal.

We note a few caveats to consider when applying this theoretical framework to experiment.
First of all, since the sliding velocity is directly proportional to the driving pressure, P∥, and P∥ is
itself inversely proportional to the radius, R, of the grain [23], a smaller ∆θcrit and slower rotation
rate are expected in the XRT experiment, compared with the simulation. Second, in experiment,
grains are anchored onto a substrate. Even so, grains may rotate if the applied torque is sufficient to
overcome any interaction between grains or with an external substrate [29, 49, 58]. This suggests
that the presence of external constraints may impact the kinetics of rotation; nevertheless, grain
rotation is still possible. A case in point is Figs. 3.3 (a-b) from our own work, showing grain
rotation on experimental time-scales in the limit of small initial misorientation.

3.4.2 Grain Coalescence in Quasicrystals

Due to the unique symmetries of QCs, all dislocations in dec-QCs contain phasonic components
[41]. These phasonic components represent excitations in QC lattice; they contribute to an increase
in the system’s phason strain, which may be relaxed over diffusive timescales. In contrast, dislo-
cations in periodic crystals are purely phononic. Previous work shows that motion of dislocations
through dec-QCs results in a wall of phasons along the slip plane [136]. This suggests that the
dislocation reactions which enable sliding to occur (vide supra) redistribute the phonon strain from
lattice mismatches as phason strain through a combination of dislocation annihilation mechanisms
and phason flips. Due to the complexity and variety of dislocations in dec-QCs, however, we re-
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Figure 3.12: Rotation rates of dec-QCs. [52] Misorientations between dec-QC grains during
growth in simulation. Here, (a) shows the change in misorientation between grains over 1 mil-
lion timesteps, where timesteps are expressed as dimensionless time, τ , and t = 0 indicates the
start of the simulation. We may estimate each timestep, τ , to be in the order of magnitude of
10−13 to 10−12 seconds. Lines are colored according to seed misorientation, where yellow (light
grey) indicates large misorientation and grey indicates small misorientation. Grain rotation begins
when grain collision occurs around ∼ 3 × 105 timesteps, then continues with a linear trend until
∼ 6 × 105 timesteps. This region of linear grain rotation is indicated between dark blue lines on
(a) and expanded in (b). In (b), yellow and grey lines correspond to the same seed misorienta-
tions as in (a). We use linear regression to model rotation in each simulation (black lines), and
determine rotation rates from the slope of each line. In (c), we plot rotation rate as a function
of average grain misorientaion before collision. We use average grain misorientation before colli-
sion, rather than seed misorientation because there are small fluctuations in grain orientation during
growth. These fluctuations are observed even in growth of single grains and can drastically affect
the rotation rates when misorientation is near ∆θcrit. Rotation rates are colored according to the
linear correlation coefficient, R2, where R2 = 1 is yellow (light grey) and R2 = 0 is purple (dark
grey). Here, we observe faster rotation as initial misorientation increases from ∼ 2.5◦ to ∼ 6◦.
Then, as misorientation approaches ∆θcrit ≈ 9◦, we observe a rapid decrease in the magnitude

of the rotation rate. These results are consistent with a driving force of γ′gb =
dγgb
d∆θ

, where γgb is
grain boundary energy and ∆θ is grain misorientation. Typically, γgb increases with ∆θ until it
reaches some critical point (∆θcrit), above which λ is a much weaker function of ∆θ. This means
we should expect the driving force, γ′gb to show a decline around ∆θcrit, which is reflected in the
drastic decrease in rotation rates around ∆θ ≈ 9◦.
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Figure 3.13: Phason density of coalesced structure. [52] Phason density modes obtained by
filtering two pairs of Bragg peaks [43] from the merged quasicrystals with (a) 0◦, (b) 3◦, and (c) 9◦
of initial misorientations at timestep 4.0×105 from MD simulations. The red dots indicate the seed
positions and the region highlighted with yellow rectangles is binarized for quantitative analysis
of phason strain. (d), (e) and (f) correspond to (a), (b) and (c), respectively. (g) Phason densities
calculated as a function of initial misorientation between seeds, using the method introduced by
Freedman et al. [43]. The phason density was determined from the binarized images based on the
areas inside of the yellow rectangles for misorientations of multiple 0◦, 0.5◦, 1◦, 1.5◦, 2◦, 2.5◦, 3◦,
6◦, and 9◦ cases. For consistency of our results, we repeated analyses on different MD simulation
datasets, which explains the origin of the error bars. Contribution by the Shahani Group.
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serve quantitative analysis of phasonic motion and dislocation kinetics for future work. Instead,
we examine simulations where grain coalescence occurs for residual phason strain as a potential
signature of dislocation motion during grain coalescence (Fig. 3.13).

The density modes (Figs. 3.13 (a-c)) are obtained by filtering two pairs of Bragg peaks from the
diffraction image of the merged QC. They represent the two different length scales (e.g., golden
ratio) in QCs. The region boxed in Figs. 3.13 (a-c) with yellow rectangles is further processed for
the phason strain analysis with an appropriate threshold (Figs. 3.13 (d-f)). According to Freedman
et al. [43], the ‘jags’ in the stripes pattern are the signature of the phason strain in the quasiperiodic
lattice. We quantified the fraction of ‘jags’, which are longer than zero and shorter than the longer
edge of the yellow rectangles in Figs. 3.13 (a-c), along the direction of the stripes. Fig. 3.13 (g)
shows that a higher phason strain is accumulated within the grain boundary region as the initial
misorientation increases in the simulation timescale, which supports the hypothesis that phonon
strain is redistributed as phason strain during coalescence. This is in good agreement with the
coalescence mechanisms shown in [110], where coalescing grains were shown to transform from
structures with phonon and phason strain, to a structure with phason strain, which is later relaxed.

We expect phason strain relaxation occurs over diffusive time scales [43]. This means that,
although we expect dec-QCs to gradually relax to a low or no phason strain state over time, phason
strain introduced during grain coalescence should be observable. Thus, we expect phason strain
relaxation to occur over experimental timescales near regions where the hard collision occurred
(Fig. 3.13). Indeed, there is ample evidence of phason strain relaxation, obtained from recent in situ
experiments. For example, Nagao et al.[95] observed grain boundary migration in QCs through
an ‘error-and-repair’ process, wherein phason strain at the grain boundary region is relaxed to
generate an ideal quasicrsytalline lattice. In addition, we confirm the relaxation of phason strain in
our slow-cooling experiments, evidenced by the linear relationship between G|| and FWHM of the
peaks in the diffraction pattern (Fig. 3.4).

3.5 Conclusion

We elucidated the growth interaction between two dec-QCs with fixed-seed positions via 4D XRT
and MD simulation. To the best of our knowledge, this is the first experimental study to investigate
the structural continuity between two quasicrystalline crystals after a hard collision. With our joint
analyses, we were able to provide a cohesive picture for the conditions that give rise to grain co-
alescence: (i) parallel periodic axes and (ii) small misorientation between quasiperiodic crystals.
In this operating regime, we observed grain rotation toward 0◦ misorientation in order to minimize
grain-boundary energy. This process occurs through a dislocation-mediated mechanism that al-
lows the dec-QCs to redistribute phonon strain due to lattice mismatch as phason strain, by local
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rearrangement of dislocations into valid tilings. Taken all together, our integrated approach high-
lights the exciting opportunity for microstructure optimization via control of the grain boundaries –
that is, defect engineering. It provides the knowledge base for fabrication of defect-free QCs (e.g.,
through a controlled sintering process), thereby widening their potential uses and applications.
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CHAPTER 4

Quasicrystal-Pore Growth Interactions

This contents of chapter will be submitted for publication in a peer-reviewed journal.

Quasicrystals (QCs) are solids that possess long-range orientational order but lack transitional
periodicity. They exhibit mechanical and transport properties that are highly unexpected for their
composition [65], which arise due the unique geometries of these materials [65, 99, 133, 147].
These properties made QCs attractive candidates for solar light absorbers [37], as an alternative
to Teflon [37, 65], as mechanical reinforcement of tools as a coating or nanoparticles [37], and
insulation [37, 65]. Yet, despite the practical and intellectual interests surrounding these materials,
little is known about the mechanisms governing QC growth.

Here, our collaborators, Dr. Insung Han and Professor Ashwin J. Shahani, through real-time
and 3D imaging, the formation of a single decagonal quasicrystals (dec-QCs) arising upon collision
with pores in an Al-Co-Ni melt. Through corresponding molecular dynamics (MD) simulations,
we examine the underlying kinetics of QC coalescence and investigate the effects of pore-QC
collision conditions on phason and phonon strain. In this work, we highlight the importance of
multiple length scales (l1, lτ ) in phason-mediated coalescence upon QC collision of growth fronts.
At early stages, we see the formation of highly-strained structures, and a sharp increase in the
relative frequency of the longer length scale, lτ . Over time, we seed the rapid relation of real
space strain and positional disorder, and, remarkably, a drop in potential energy along the region
of coalesence. We observe this trend across all 958 of our simulations, and find that the amount
of order introduced and the amount of time required to relax disorder introduced upon collision is
nearly independant of pore shape or size. Our joint experimental-computational discovery paves
the way toward fabrication of single, large-scale QCs for novel applications.
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4.1 Introduction

The growth mechanisms of QCs have attracted great interest [68, 71] due to their distinctive, com-
plex structures. QCs possess long range orientational [116] and positional order [124], yet they lack
translational periodicity [116]. Arising from this lack of translational periodicity and the presence
of long-range quasiperiodicity are phasons [119], an additional degree of freedom unique to ape-
riodic crystals like QCs, where phason strain measures deviation from quasiperiodicity [43, 128]
and phason flips are characterized by discrete particle motions [41] that result in a change in tiling
configuration. These changes in tiling configurations are representative of phason excitations and
relaxations, and do not introduce real space defects into the crystal [119].

Although past studies of QC growth mechanisms extend our understanding of phason contribu-
tions to stability in a bulk QC [68, 71, 129], studies on phason contributions to the formation and
relaxation of localized strain remain limited [52, 110]. Researchers have shown how the additional
degree of freedom arising from aperiodicity, or phasons, enable QCs to form defect free QCs upon
collision of two grains with small misorientation [52, 110]. In [52], specifically, we found that
dec-QC were able to redistribute phonon strain due to lattice mismatches via local rearrangements
of dislocations into valid tilings. These local rearrangements resulted in a region of concentrated
phason strain along the region of coalesence. Here, we continue to investigate the phason-mediated
grain coalesence in the context of QC collisions with shrinkage pores formed during casting.

Porosity is a major solidification defect with potentially detrimental effects on the mechanical
properties of castings [15, 24, 56, 101, 108]. Due to the negative impacts porosity may have on
a casting’s properties, there exists a rich body of literature that discuss the mechanisms of pore
formation and the mechanical effects of pores on castings. Yet, to the best of our knowledge,
research investigating the effects of porosity on QC growth remains absent. It is critical, then, to
understand how the presence of shrinkage pores affects QC growth.

Here, our experimental collaborators in the Shahani group investigate the growth dynamics
of a thermodynamically-stable dec-QC grain [141] upon solidification of an Al79Co6Ni15 alloy.
They used synchrotron-based, four-dimensional (i.e., 3D space plus time-resolved), x-ray tomog-
raphy (XRT) to resolve dec-QC crystal growth interactions upon collision with a shrinkage pore.
This experimental technique has opened a paradigm shift in solidification science, allowing our col-
laborators to capture transient microstructural dynamics in optically opaque materials [4, 7, 115].
To the best of our knowledge, their in situ experiments provide the first-ever demonstration of QC-
pore collision. On the basis of their experimental results, we performed MD simulations to identify
the mechanism of grain growth around the pore at the atomic scale. We examine evolution of order
along the region of coalesence, or the site of growth front collision upon engulfment of a pore, and
discuss the role of phasons in facilitating the formation of defect-free dec-QCs upon engulment of
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Figure 4.1: Tabulated pair potential and radial distribution function for QC simulations.
[52] The single-component, isotropic pair potential (dark blue) used for all dec-QC simulations is
derived from the potential mean of force of a diamond-forming system [30]. The radial distribution
function is shown in yellow, g(r), for a single seeded dec-QC simulation after 19.7×106 timesteps.

pores and obstacles in the melt. Our combined efforts provide the first direct evidence of single
crystal formation between incommensurate structures, such as QCs.

4.2 Methods

4.2.1 Decagonal Quasicrystal Simulations

We performed MD simulation with HOOMD-blue[6] in the canonical (NVT) ensemble. Simula-
tions used reduced units of energy (ϵ), length (d = 1.02) in arbitrary units, mass (m), and time(
τ =

√
md2

ϵ

)
. Particles interacted through an oscillatory, double-well potential [32] (Fig. 4.1),

previously shown to form dec-QCs (Eqn. 3.1).
Each simulation was performed with 1 × 106 particles and with periodic boundary conditions

in 3 dimensions. Pores and cylindrical walls were constructed from particles frozen in a fluid-
like configuration. Cylindrical walls were introduced to reduce the influence of periodic boundary
conditions on dec-QC growth along the quasiperiodic plane (Fig. 4.2 (a), yellow [lighter color]
regions). Simulations were also carried out in quasi-2D boxes (slabs) with target dimensions of
(456× 456× 10). The use of quasi-2D boxes allowed us to maximize the size of the quasiperiodic
plane for analysis while minimizing computational overhead.

4.2.1.1 Simulation Setup

Systems were initialized in a low density simple cubic (SC) lattice (ρ = 2, where ρ = N/V is
the number density), then randomized at T ∗

init = 2.5 for 5 × 104 simulation time steps, where
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Figure 4.2: Slab-like simulation for pore-crystal growth simulations. (a) Snapshot of a 1×106

particle seeded simulation with fluid-like walls (yellow, lighter color) and pore. The pore shown
here has an axis ratio of 1 and radius of 15, and the distance between the center of the pore and the
center of the dec-QC seed is 100. (b) Schematic depicting pore parameters varied througho

temperature was expressed in a reduced unit of T ∗ = kbT
ϵ

and kb is the Boltzmann constant.
Next, simulations were compressed from cubic boxes (126 × 126 × 126) to slab-like boxes

(456 × 456 × 10; ρ = 0.98) over 5 × 104 simulation time steps at a constant temperature of
T ∗ = 2.5, then held for 2 × 105 simulation time steps. Once the boxes were compressed to the
appropriate density and dimensions, we introduce cylindrical walls along the quasiperiodic plane
and pores. To construct cylindrical walls, we freeze particles in a fluid-like configuration along
the edge of the simulation box. We set the radius of the cylinder as 255. This value was chosen
to reduce the effects of periodic boundary conditions on our simulation. The minimum thickness
of the wall is approximately 2 · rcut, where rcut = 2.9. Meanwhile, we fix the center of the pore
at the center of the simulation box and vary the axes ratio, pore orientation, and pore minor axis
(Fig. 4.2 (b)). Here, we define axes ratio as the ratio of the pore’s minor axis to the pore’s major
axis, R = Rminor/Rmajor and we define pore orientation with respect to the major axis.

After walls and pores were introduced, simulations were held at T ∗
init = 2.5 for 5× 104 simula-

tion time steps, then linearly cooled from a liquid-like configuration (T ∗
init = 2.5) to a temperature

near but below the melting point (T ∗
end = 0.4) over 5× 104 time steps.

Once cooling was complete, the dec-QC was introduced to the simulation and the system was
held at T ∗

end = 0.4 for 20 million simulation time steps.

4.2.1.2 Simulation Parameters

Our simulations consisted of one fixed seed where distance between pore and seeds ranged from
64−100, minor axis ranged from 10−55, axis ratio ranged from 1−4, and pore orientation ranged
from 0 − π

2
radians. We ran 5 − 7 trials of each pore parameter for statistics, resulting in a total

of 958 simulations, each containing 1 million particles. The computational workflow and general
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data management in particular was primarily supported by the signac data management framework
[3].

4.2.2 Body-Centered Cubic Crystal Simulations

For comparison, we carried out additional MD simulations of an body-centered cubic (BCC) form-
ing system via the Lennard-Jones (LJ)-Gauss pair potential [36],

VLJGauss = ϵ

[(
d

r

)12

− 2

(
d

r

)6
]
− ε exp

[
−(r − r0)

2

2σ2

]
(4.1)

that is truncated at rcut = 2.5d. Here, σ =
√
0.02d, ε = 3.0ϵ, r0 = 1.8d, and r is the distance from

the center of a particle, expressed in units of d. Temperature was fixed at kT = 6. All periodic
simulations contained 1 × 106 particles. Each seed contained 256 particles. The potential was
shifted and smoothed so that both the potential and its derivative are zero at the cutoff.

4.2.3 Orientational Order Parameter

We used the bond-orientational order parameter for k-atic rotational symmetry[127] to identify the
local orientational symmetry of each particle m:

ψk(m) =
1

n

n∑
j

ekiθmj (4.2)

where n is the number of neighboring particles and θ represents the angle between local bond
orientations and a fixed basis with k-atic rotational symmetry. For a dec-QC, we use the value of
k = 10, so that ψ10(m) refers to the decatic order parameter. For BCC simulations, we computed
ψ4(m), or the quadratic order parameter, on the 2D projection of the crystal down the 2-fold
rotational axis. We note that the projected structure resembles a simple square lattice, resulting
in 4-fold, rather than 2-fold rotational symmetry in the 2D lattice. We determine neighbors for
particle m as the k nearest neighbors in 3D to ensure that measurements reflect the local atomic
environment of each particle. Data analysis for this order parameter utilized the freud library[102].

4.2.3.1 Solid-Liquid Separation

Due to the local heterogeneity inherit to dec-QCs, we found that ψk alone is insufficient to separate
crystalline regions from liquid regions during growth. To address this, we introduce three addi-
tional steps to account for local thermal fluctuations in crystal structures. First, for each particle
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Figure 4.3: Extracting solid-liquid growth interface and features from simulation. (a) Solid-
liquid interface of a dec-QC simulation at 9.1 × 106 time steps. Here, the distance between the
pore and seed is 100, the minor axis is 22.7, the axes ratio is 1.50, and the relative orientation is
0.0 radians. (b) In frames where the crystal completes growth around the pore, we remove the
pore from the interface. Then, (c) we map the interface to polar coordinates and (d) we detect
the apex (black dots) and groove (red dot) from the smoothed and normalized signal in polar
coordinates. Then, finally, (e) we transform the detected apex (black dots) and groove positions
back to Cartesian coordinates.

in the simulation, we average ψk over its 10 nearest neighbors. Next, we take the averaged ψk for
each particle, then average it again over its 20 nearest neighbors. Finally, we assign each particle
the maximum, double-averaged ψk value from its 20 nearest neighbors.

For dec-QCs, we labeled any particle with ||ψ10|| > 0.3 as solid. For BCC systems, we labeled
any particle with ||ψ4|| > 0.4 as solid. Here, we define ||⃗a|| =

√∑
a2i .

4.2.4 Groove and Apex Detection

Using the procedure outlined in Fig. 4.3, we tracked the formation and persistence of grooves
during crystal growth around a pore. Here, we also track the apex, or, the regions where the
growth front remains unaffected by the pore or groove. The apex serves as a reference point for
the solid-interface’s growth front in the absence of the pore.

To begin, we extract the solid-liquid interface using the binary labels computed using the proce-
dure outlined in Section 4.2.3.1 and freud’s [102] Interface module. Here, we define interface
points as any liquid particle with at least one solid particle neighbor with rmax > 1.1d, where rmax

is the maximum distance to find neighbors (Fig. 4.3 (a)).
Next, we remove the pore from interface calculations in frames where the crystal has completed

growth around the pore. This is necessary to prevent the introduction of noise and artifacts during
apex and groove detection. To do this, we first projected interface points to 2D and mapped them
onto a 2D histogram with dimensionsDi = 64·

⌊√
2 ·max(|x⃗i|)

⌉
, where |·| denotes absolute value,

⌊·⌉ denotes rounding to the nearest integer, x⃗i is an N × 1 vector of N particle coordinates along
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dimension i, and i = 0, 1 for a 2D system. Setting grid size based on maximum grain dimensions
ensured that we could maintain appropriate resolution of interface features during early stages of
growth without the need for extensive computational speed and memory consumption during later
stages of growth. Next, we apply a Gaussian filter with σ = 0.8, where σ is the standard deviation
of the Gaussian kernel to fill in any potential gaps in discretized interface. Then, we binarize the
image and fill any remaining holes in the image and recover the interface using a Laplace filter
(Fig. 4.3 (b)). Occasionally, we may detect false interfaces using this procedure. Since these false
positives were rare and small compared to the crystal, we identified and removed them by counting
the number of connected elements in each unique feature of our image, and removing all but the
largest cluster.

Then, we converted the interface positions to evenly spaced polar coordinates (θ, r), where
the center of the coordinate system is aligned with the center of mass. This representation was
convenient because it allowed us to treat the interface as a 1D signal rather than a 2D image.
However, minor fluctuations along the interface and uneven growth fronts due to the presence of
cylindrical walls meant that we were unable to reliably detect the proper reference points for the
growth front. For example, in Fig. 4.3 (c), we can see that is not straight forward to identify where
active growth front is from raw polar coordinates. If we take the maximum radius, we get a point
along the interface that has already hit the wall (yellow region, Fig. 4.3 (a)).

We reduce noise and enhance desired features in the 1D signal as follows:

1. We normalize and map the radial component to a shifted cosine,

r̃i = 0.5 ·

∣∣∣∣∣ ri
max r⃗

cos(θ) + 1

∣∣∣∣∣
where r⃗ is the N × 1 array containing all radial coordinates for the N interface points, and
| · | denotes absolute value. Mapping r to a cosine helps accentuate the strength apex points’
signals when compared to the raw, polar interface positions.

2. Before we can apply any filters to reduce noise in our system, we must determine the appro-
priate window size for our filters. Since the size of our images varies based on the size of
the grain, we need to compute the window size for each frame of the simulation. To do this,
we compute the cross-correlation of r̃ with the shifted and normalized cosine (Fig. 4.3 (d),
dotted blue line), g(θ) = 0.5(cos(θi)+ 1), and we determine the first point where g(θ∗) = 0.
Taking a window of θ∗ would be too large (for example, taking a median filter with window
size θ∗ would yield something that strongly resembled a cosine wave, effectively smoothing
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out all of the desired features in the signal). Instead, we take the window as:

window = 2
⌊
0.5

√
θ∗
⌉
+ 1

to ensure that the window is sufficiently small and odd.

3. Once we determine the appropriate window size, we apply a minimum filter f̂min(r̃) and
maximum filter f̂max(r̃) to r̃ and compute the element-wise product of that signal f(r, θ) =
f̂maxf̂min (Fig. 4.3 (d), yellow line). We find that the product of the maximum and minimum
filtered signals was the most effective way to preserve the sharpness of the groove while and
remove noise due to thermal fluctuations in the signal. From Fig. 4.3 (d), we can see that the
peaks detected in f(r̃) correspond to points where the growth front in the simulation begins
to resemble an ideal, isotropic growth front.

4.2.5 Bragg Peak Filtering and Positional Order Parameter

We remove liquid from our simulations using the protocol outlined in Method 4.2.3.1. Next, we
projected our points down the z axis, and expanded the box size from the original simulation
box size (456 × 456 for dec-QCs simulations and 246 × 246 for BCC simulations) to 512 × 512.
Then, we converted the projected simulation to a 2048 image by computing a 2D histogram of
our simulation. We computed the Fourier Transform (FT) using the Fast Fourier Transform (FFT)
algorithm [28].

We detect the five brightest peak pairs from a reference pore-free simulation, then scale those
five peak pairs by τ = 1+

√
5

2
, the scaling ratio associated with our dec-QC.

We recenter our reference peaks by searching for the brightest point on the power spectrum (i.e.
the absolute value of the FT) for each simulation frame. Recentering searches were performed
within a 32 sized region, centered at the reference peak coordinate. Once peaks were recentered
onto the power spectrum of a given simulation frame, we filtered all 20 peaks (10 peak pairs) in
the FT using the Hamming window, and positional order was computed as the inverse Fourier
Transform (iFT) of the filtered FT.

4.3 Experimental Results

The contents of this section were performed by and contributed by the Shahani Group.

For comparison with our simulation study, we present the experimental results obtained by our
experimental collaborators, Dr. Insung Han and Professor Ashwin J. Shahani.
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Figure 4.4: Dislocation free growth of a dec-QC around a shrinkage pore. Birds-eye view
(x̂ − ŷ) of a dec-QC (lighter region) growth around a shrinkage pore (black region, red circle),
recorded via XRT. Results were recorded every 10 minutes via XRT with 20s scan time over
50 min of cooling (1 ◦C/min) from 1030 ◦C. This image is contributed by Dr. Insung Han and
Professor Ashwin J. Shahani.

Fig. 4.4 depicts the time-evolution of a single dec-QC upon collision with a shrinkage pore in
an alloy of Al79Co6Ni15 upon slow cooling (1◦ C / min) from above the liquidus (≈ 1026◦C) to
below. The growth sequences of the as-grown dec-QCs were recorded via XRT every 10 mins with
20 s scan time, starting from 1020 ◦C (at which point the sample was in a fully liquid state). The
key advantage of using XRT is that our collaborators can unambiguously visualize the morpholo-
gies, misorientations, and growth dynamics of the QCs in real-time and in 3D, without needing to
repeatedly quench their specimen. Quenching is known to distort the shapes and orientations of
the solid-liquid interfaces [25].

In Fig. 4.4, we selectively focus on collisions between dec-QCs with a shrinkage pore, where
Fig. 4.4 displays a bird’s eye (or cross-sectional) view of the growth sequences from the quasiperi-
odic planes. In aluminum-based alloys, porosity arises due two major factors: gas solubility and
thermal shrinkage, and is associated with dentritric growth in pure metals and alloys with periodic
structures [15, 24, 56, 101, 108]. Fig. 4.4 collision and defect-free engulfment of a shrinkage pore
in the absence of dendritic structures or grain boundaries (GBs).

4.4 Simulation Results

We use MD simulations to overcome spatial and temporal limitations of XRT and to isolate the
effects of QC structure and pore geometry on dislocation formation. In an effort to understand
how aperiodicity suppresses GB and defect formation in the presence of pores, we use quasi-2D
boxes to maximize the surface area along the aperiodic plane, {00001}. We introduce cylindrical
walls of particles frozen in a fluid like configuration to minimize the effects of periodic boundary
conditions on our growth simulations. Pores are similarly constructed from particles frozen in
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fluid-like configurations. We fix the positions of dec-QC seeds throughout our simulations to
match experimental conditions, where grains were ‘anchored’ to the sample surfaces. A detailed
description of the simulation setup and analysis is provided in Section 4.2.

Fig. 4.5 shows the evolution of the solid-liquid interface in a simulated dec-QC, where the
distance between the pore and seed centers is 99.8, the minor axis is 29.0, the axis ratio is 2.43,
and the orientation is 0 radians. Immediately after the dec-QC grows around the pore (Fig. 4.5
(b-c), red line around 7.5 × 106 simulation time steps), we see the formation of a deep, V-shaped
groove along the region of coalescence (Fig. 4.5 (a), red dots). Over the next ≈ 5× 106 time steps,
the groove rapidly diminishes in depth and eventually disappears (Fig. 4.5 (c)).

We observe the formation and gradual disappearance of these deep, V-shaped grooves in all
of our simulations, where the depth of the groove is largely dependant on the size of the pore
(Fig. 4.6 (a - d)). the pore is large or the distance between the pore and the seed are large. In these
cases, we see the formation of a deep, V-shaped groove upon collision of growth fronts around the
pore. These V-shape grooves rapidly diminish in depth, and eventually disappear. Corresponding
correlation matrices for Fig. 4.6 can be found in Appendix A.

The appearance of the groove is surprising, since our collaborator’s XRT experiments (Fig. 4.4),
show that the dec-QC was able to grow around the shrinkage pore with little to no distortions to
the decaprismatic morphology of the solid-liquid interface [53]. In solidification experiments, GBs
have been shown to create macroscopic depressions (grooves) in the solid-liquid interface of the
crystal [18, 46, 106, 114]. According to Young’s law [61], the groove angle, ϕ, is related to the
GB energy, γgb, as γgb = 2γslcos(ϕ/2), where γsl is the solid-liquid interfacial free energy. If the
GB groove persists during growth, it can be inferred that the GB is stable and fixed to the groove,
while the disappearance of the V-shaped groove (ϕ → 0◦) suggests the annihilation of the GB
during growth. This suggests the that formation of the deep, V-shaped grooves in our simulations
may correspond to the formation and eventual annihilation of a high energy GB.

To understand why we see the formation of V-shaped grooves in simulation, we first measure
potential energy (Fig. 4.7 (a-e)), bond orientational order (ψk, where k = 10 for dec-QCs; Fig. 4.7
(f)), and long-range positional order (||ξ||; Fig. 4.7 (g)) with respect to the pore center. Potential
energy is computed based on the pair potential (Fig. 4.9 (a); dark, solid red line), while the k-
atic order parameter, ||ψk||, is computed based on the k = 10 nearest neighbors (Methods 4.2.3),
and positional order, ||ξ||, is computed from the iFT of a Bragg peak filtered FT of the simulated
dec-QC (filtered peaks circled in red Fig. 4.7 (a), inset; Methods 4.2.5). Here, || · || denotes the
norm of some vector a⃗:

√
a⃗ · a⃗∗, where a⃗∗ is the complex conjugate of a⃗. Full details of each

calculation may be found in corresponding subsections of Methods.
Here, we use the per-particle potential energy as a proxy for strain, while ||ψ10|| is a measure of

local orientational order. per-particle potential energy and ||ψk|| are strictly measures of local order,
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Figure 4.5: Solid-liquid interface of simulated dec-QC growth around an obstacle. (a) Solid-
liquid interface over 20 × 106 simulation time steps. Light green (lighter color) indicates earlier
time steps. Black (darker color) indicates later time steps. Black dots correspond to apex locations,
or the region where the growth front remains unaffected by the presence of the groove. Red dots
correspond to regions where the groove is deepest. (b) Tracks the distance of the groove and
apex with respect to the seed center (nucleation site) throughout the simulation. Here, yellow
(lighter color line) corresponds to growth along the apex (black dots), while blue (darker color
line) corresponds to growth along the groove (red dots). The vertical red line denotes the time
step right before coalesence occurs, and the dotted black line corresponds to the location of the
simulation wall, with respect to the growth front. (c) Shows the evolution of the groove depth
throughout the simulation. Here, we plot groove depth with respect The vertical red line denotes
the time step right before coalesence occurs.
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Figure 4.6: Effects of QC-pore collision conditions on groove depth and characteristics. We
compute the (a-d) groove depth and the (e-h) size of the region of coalesence upon collision of
growth fronts as a function of the pore’s (a, e) minor axis, (b, f) axis ratio, (c, g) major axis, and
(d, h) distance between the pore center and the seed center (nucleation site). Size of the coalesence
region up collision was measured relative to the distance between the furthest edge of the pore and
the wall. Corresponding correlation matrices can be found in Appendix A.1.

where regions of high phonon strain or per-particle potential energy are typically associated with
defects, dislocations, and other classical defects traditionally associated with GBs and disorder in
periodic crystals. Meanwhile, ||ξ|| captures both phononic and phasonic strain (short and long
range order).

4.4.1 Bragg Peak Filtering and Quasiperiodic Functions

We say that ||ξ|| is a measure of long range positional order because of its relationship to Fourier
space. The FT of the crystal allows us to capture the global, spatial symmetries of an entire
system in the frequency domain. When we filter a set of frequencies associated with the global
symmetries of the system (e.g. Bragg peak filtering), we zero all frequencies in the FT outside of
the frequencies associated with a given basis vector, b⃗k, or a set of basis vectors. Then, when we
map them back to real space via the iFT, ||ξ||, we essentially transform our representation of the
crystal from one of discrete particles to a sum of plane wave with frequencies described by b⃗k (see
Secs. 2.3 and 2.7 for more details).

Among the possible options to measure quasi-long range order associated with QCs and QC-
like structures, the Fourier space description was most attractive for several reasons: (1) We can
extend the procedure for analysis of periodic crystals to QCs with little to no modification to
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our workflow. (2) We can map phason strain, or deviations from quasi-long range order, to real
space (Fig. 4.7 (a-e)), and (3) the FFT algorithm [28] allows us to quickly and efficient process
large batches of simulation data. Similar procedures have been used previously to measure phason
strain in photonic quasicrystals [43] and in our previous work (Chapter 3, [52]), where phason
strain measurements were obtained by binarizing the iFT magnitude, after filtering two pairs of
Bragg peaks, where the two pairs of Bragg peaks were select such that they represented the two
length scales associated with the QC.

We adopt this protocol with a few modifications: First, rather than filtering two pairs of Bragg
peaks in the FT, we filter all Bragg peaks pairs associated with the two length scales of the dec-QC
(10 pairs of peaks in total, where 5 pairs are associated with the 5 basis vectors of the dec-QC and
5 pairs associated with the 5 basis vectors, scaled by τ ; red circles in inset of Fig. 4.7, (a)). We
do this because filtering all Bragg peaks associated with a length scale of the dec-QC, rather than
a pair of Bragg peaks, measure deviations from quasi-long range order in the QC along all of the
relevant b⃗k. Meanwhile, filtering a pair of Bragg peaks measures deviations from the single basis
vector b⃗k. In some cases, dislocations introduce strain along some, but not all basis vector (e.g.
a screw dislocation), or dislocations may introduce strong distortions along one or two b⃗k, and
very weak distortions along another b⃗k. This means that we may miss certain types of defects and
dislocations when we filter by a single pair of Bragg peaks associated with a b⃗k, or by filtering two
pairs of Bragg peaks that represent the two length scales of our dec-QC (τ = 1+

√
5

2
, b⃗k and τ b⃗k).

Second, we do not binarize the output of the filtered FT, ||ξ||, since it was more straight forward
for us to automate strain detection from the raw ||ξ||.

We note, however, that it is not straightforward to decouple phason strain from phonon strain
using this method (for more details Fig. 2.9 in Sec. 2.7.3). This effect is similar to how traditional
dislocations and defects can also cause decreases in iFT magnitude (see Sec. 2.7 and Chapter 5
for a more detailed discussion on Bragg peak filtering in periodic crystals). Previous studies have
suggested that filtering two pairs of Bragg peaks, b⃗k and τ b⃗k, allows us to measure both phason
and phonon strain, whereas filtering one pair of Bragg peaks measures phonon strain in a system
[43]. Our results suggest that phason strain can still be detected when filtering only a single pair
of Bragg peaks – though a change in ||ξ|| is much weaker and harder to detect in these cases.

In light of these results, we compare ||ξ|| (Fig. 4.7 (a-e)) to measures of local order (potential
energy and ||ψ10|| in Fig. 4.7 (f-g)) to help decouple the effects of phonon strain and phason strain
on our system.
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Figure 4.7: Evolution of potential energy, orientational order, and positional order of a QC
upon collision with a pore. Positional order of a dec-QC simulation upon collision with a pore at
(a) 7.6× 106, (b) 9.1× 106, (c) 13× 106, and (d) 20× 106. Here high ||ξ|| (black) corresponds to
strong positional order, while low ||ξ|| (white) corresponds to poor positional order (e.g. liquid),
and ||ξ|| is the iFT magnitude of the 10 brightest pairs of peaks (red circles in the power spectrum
shown in (a), inset). To examine the effects of coalescence (red boxed regions, (a-e)) on positional
order, ||ξ||, potential energy and orientational order ||ψ10||, we converted our particle positions
from Cartesian to polar coordinates. Then, we binned our positions based on the azimuth (4◦ per
bin), and compute the means of (e) ||ξ||, (f) potential energy, and (g) ||ψ10|| for each bin. We see
a sharp decrease in ||ξ|| along the region of coalescence persists throughout the simulation (boxed
region, (e)). When growth fronts first meet at (a) (light blue-green lines in (e-g)), we see a sharp
increase in potential energy (red arrow, (f)) and a sharp decrease ||ψ10|| (red arrow, (g)), which are
consistent with a strong decrease in local positional order in the dec-QC upon collision of growth
fronts.
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4.4.2 Phason Strain and Phonon Strain Measurements in a Simulated Qua-
sicrystal

Upon the collision of two growth fronts, we see a sharp decrease in ||ξ|| along the region of coales-

cence (Fig. 4.7 (a-e), red boxed regions). This sharp decrease in ||ξ|| slowly fades through the early
stages of coalescence around the pore (Fig. 4.7 (a-c)), until it becomes virtually indistinguishable
from normal fluctuations (Fig. 4.7, (d) and black line in (e)). This suggests that a region of high
phason and/or phonon strain forms along the region of coalescence upon collision of growth fronts,
then relaxes to insignificant levels during growth.

To determine if this sharp decrease in ||ξ|| is due to phasons or to a combination of phason and
phonon contributions, we examine mean particle potential energy and particle orientational order
||ψ10|| as proxies for phonon strain. If the sharp decrease in ||ξ|| is primarily due to phonon strain,
we expect to see similar, sharp increases in potential energy along the region of coalescence, and
sharp declines in orientational order along the region of coalescence, that fade slowly over time.

At very early stages of collision (Fig. 4.7 (f, g); light blue-green lines, red arrows), we see
a sharp spike in the average per-particle potential energy, and sharp dips in ||ψ10|| along the re-
gion of coalescence. These results are consistent with a strong decrease in local positional order
seen in Fig. 4.7 (e), and suggest that the interface formed upon collision of growth fronts is more
disordered than the rest of the QC. As the QC continues to grow, however, the potential energy
along the region of coalescence becomes virtually indistinguishable from the surrounding crystal
(≈ 5 × 105 time steps; Fig. 4.7 (f), blue-green line associated with (b) 7 × 106 time steps), yet
positional disorder (Fig. 4.7 (a-e)) and orientational order remain (Fig. 4.7 (f), red arrow).

Interestingly, during later stages of the simulation, we see a significant decrease in the relative
average potential energy along the region of coalescence during later stages of growth (Fig. 4.7 (f)),
despite the presence of residual orientational order, ||ψ10|| (Fig. 4.7 (g)). Meanwhile, positional
disorder, ||ξ||, appears to relax to nearly indistinguishable levels (Fig. 4.7 (d), boxed region, and
(e), black line).

In Fig. 4.9 (a), we plot the histogram of bond lengths for the five nearest neighbors of each
particle in a pore-free QC simulation (dotted blue line) against the pair potential used to self-
assemble the crystal (solid dark red line). Since these simulations are held at finite temperature,
thermal fluctuations and entropy can result in particle distances that do not align perfectly with
the local minima in our pair potential (Fig. 4.9 (a); solid dark red line). Rather, we a bimodal
distribution of bond lengths in our simulation, with means centered near the local minima of our
pair potential (Fig. 4.9 (a), where the dotted blue line is the histogram of bond lengths of the five
nearest neighbors of each solid particle in a pore-free simulation). This means that, on average,
the distribution of bond lengths in our self-assembled QC align well with the local minima in the
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pair potential (Fig. 4.9 (a); black arrows). This also means that mean per-particle potential energy
may act as a proxy to measure bond order and strain, where we may expect higher mean per-
particle potential energy in the presence of significant direct space strain or GBs and lower mean
per-particle potential energy in regions with low direct space strain and minimal dislocations.

Similarly, we expect bond orientational order to decrease in the presence of real space strain or
dislocations. It follows then, that decreases in ||ξ|| due to real space strain or a GB (an array of real
space dislocations) should result in an increase mean per-particle energy and a decrease mean ori-
entational order, ||ψ10||. In the absence of real space strain or GBs, we expect uniform distributions
of potential energy and ||ψ10|| when averaged over angular coordinates. Instead, we see divergent
trends between potential energy and ||ψ10|| after ≈ 10 × 106 time steps. Along the site of colli-
sion, the orientational order along the site of collision remains lower than the surrounding crystal
(Fig. 4.7 (f); black arrow), and yet mean per-particle potential energy along the site of collision
remains lower than the surrounding crystal. If mean per-particle potential energy was a perfect
analogue for direct space strain (i.e. significant deviations from one of the two length scales of our
QC, as defined by the pair potential), then, this dip in mean per-particle potential energy along the
site of collision would suggest that we see lower strain, and potentially, higher structural order in
the QC where coalescence occurred. To understand why we see lower mean per-particle potential
energy along the region of coalesence when compared to the rest of the crystal, and to understand
why we see divergent trends in orientational order and mean per-particle potential energy, then, we
must investigate our assumptions surrounding per-particle potential energy’s relationship to order
in our simulations.

4.4.3 Bond Length Distributions in Quasicrystal-Pore Simulations

The differences between well depth and shape in our double-well pair potential (Fig. 4.9 (a); solid,
dark red line), may be the source of the conflicting measurements between mean per-particle poten-
tial energy and ||ψ10||, where the well associated with the first length scale is narrower and higher
in energy than the well associated with the second length scale. This suggests that the decrease
in potential energy along the region of coalesence may be due changes in the QC’s configuration.
Specifically, if the decrease in mean pre-particle potential energy is due to a change in ratio of
length scales we see in the system, we should expect to see more open structures along the region
of coalesence, such as decagons and nonagons, rather than pentagons or hexagons, since these
favor the longer length scales associated with the dec-QC (Fig. 4.8).

Here, it’s interesting to note that, as a consequence of self-similarity in mathematically ideal
QCs, the incommensurate frequencies associated with a zero phason strain QC are also reflected
in the relative frequency of different tiles types [38], and, by extension, the ratio of length scales in
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Figure 4.8: Snapshot of a Tübingen tiling-like dec-QC simulation. The Tübingen tiling is
constructed from 5 prototiles: decagon (D), u-tile (U), nonagon (N), hexagon (H), and pentagon
(P).

a given system. A simple example of this phenomenon is observed in the 1D Fibonacci sequence.
The Fibonacci sequence consists of long and short segments which appear with a specific ratio:
R1,τ = N1/Nτ → 1

τ
, where R1,τ is the ratio between length the two length scales associated with

the Fibonacci sequence, N1 is the number of short segments in a given sequence, and Nτ is the
number of long segments in a given sequence. Meanwhile, in an approximate Fibonacci sequence,
the ratio between length scales reflects the Fibonacci ratio associated with that approximate: Rτ,1 =

1, 1
2
, 2
3
, 3
5
, · · · . (for more details see Sec. 2.5.1; Nagao et al. [95] also provides a helpful schematic

illustrating this phenomenon). While the relationship between R1,τ and τ is less straightforward in
our self-assembled, quasi-2D dec-QC than those seen in a mathematically ideal, 1D quasi-crystal
analogue, we can still borrow some important intuition from this example. Specifically, we see
that the ratio of length scales, R1,τ , in a given system is fundamentally related to the presence of
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Figure 4.9: Evolution of Gaussian mapped bond lengths upon QC collision with a pore.
(a) We histogram bond lengths for the 5 nearest neighbors of each particle from a pore-free simu-
lation (dotted, dark blue line), and compute the mean and standard deviations associated with each
length scale. Then, we sum together two, evenly weighted Gaussians based (solid yellow line),
and map bond lengths to (b) both length scales, and we compute the (c) the ratios between the
Gaussian weighted sum of both length scales over 7.6×106, 9.1×106, 13×106, and 20×106 time
steps with respect to the average density mapped bond lengths (red line in (b)), and the weighted
ratio between length scales (red line in (c)).

phasons and phason strain.
In fact, in pore-free simulations, we see higher R1,τ during early stages of growth, and lower

values ofR1,τ during later stages of growth. Similarly, we see global increases in |ξ| as the QC con-
tinues to grow (Fig. 4.7 (e)), a phenomenon not seen in simulations in periodic systems (Fig. 4.11
(e)). It is well known that QC grow with phason defects that are subsequently relaxed to a nearly
zero-phason strain structure over time [67, 95]. This decrease in R1,τ in pore-free simulations sug-
gests that R1,τ is a proxy for the phason strain of a system when paired with other measures of
order. For comparison to our QC-pore simulations, we plot the mean value of R1,τ from pore-free
simulations after 20× 106 simulation time steps in Fig. 4.9 (c) (straight red line at 1.19),

To determine if the unexpected trends observed in Fig. 4.7 originates from a change in the
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ratio of length scales in a given region, we compute a histogram of bond lengths for the five
nearest neighbors of each particle in 7 pore-free simulations. We find that the bond lengths follow
a bimodal, Gaussian-like distribution with means centered near the minima of the pair potential
wells (Fig. 4.9 (a), solid red line). Despite the width of the well associated with the second length
scale, we find that the Gaussians associated with each well have nearly equal standard deviations,
σ1 ≈ στ , where σ1 is the standard deviation associated with the first length scale, and στ is the
standard deviation associated with the second length scale.

Based on distributions measured from pore-free simulations, we parameterize density-based
weighting functions, wi(r⃗), for each length scale:

w1(x⃗j) =
5∑
k

exp(−0.5(r⃗j,k − µ1)
2/σ2

1),

wτ (x⃗j) =
5∑
k

exp(−0.5(r⃗j,k − µτ )
2/σ2

τ ),

and w1,τ = w1 + wτ (Fig. 4.9 (a); yellow line), where µ1 is the bond length associated with the
first length scale, µτ is the bond length associated with the second length scale, x⃗j is the position
particle j, and r⃗j,k is distance between the particle j and particle k, and k = 1, . . . , 5 denotes the
five nearest neighbors of the particle j.

The density-based weighting functions, w1 and wτ , are proportional to the probability density
functions associated with each length scale. By weighting these density-based functions evenly in
w1,τ , we are able to construct an unbiased metric with which we can determine the relative numbers
and quality of bonds QC.

When the distance between two particles is equal to the first length scale, µ1 = r⃗j,k, then
w1 = 1 and w1,τ = 1. When the distance between two particles is equal to the second
length scale, µτ = r⃗j,k, then wτ = 1 and w1,τ = 1. Meanwhile, r⃗j,k that deviate from
wi =

∑5
k exp(−0.5( ⃗rj,k − µi

2
)/σ2

τ ) will approach 0. Here, we treat wi as a proxy for strain,
where wi → 1 corresponds to a lattice with ideal bond lengths, and wi → 0 corresponds to a lattice
with non-ideal bond lengths.

If we look at the density-based weights for both length scales, w1,τ , (Fig. 4.9 (b)), we see
an initial, sharp drop in w1,τ (red arrow, Fig. 4.9 (b)). This result is consistent with those seen in
Fig. 4.7, where we see a spike in potential energy and a sharp decline in positional and orientational
order upon collision of growth front. When we look at w1,τ at later time steps (Fig. 4.9 (b),
darker lines), however, we see that the disorder along the region of coalescence quickly relaxes to
values nearly indistinguishable from the rest of the QC. Additionally, we find that w1,τ approach
values consistent to those observed in pore-free simulations (Fig. 4.9 (a), horizontal red line). This
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suggests that any deviations from real-space order, as measured by w1,τ , are fully relaxed to levels
comparable to pore-free simulations during later stages of growth.

Next, we examine the weighted ratio between length scales (R1,τ , Fig. 4.9 (c)). Initially, we
do not see any strong, spatial dependence in R1,τ – meaning, we do see any significant difference
between the ratio of length scales at the region of coalesence and more mature regions of the
QC upon collision. During later stages of growth (≥ 136 time steps; darker lines), however, we
see a spatial dependence in R1,τ . Specifically, we see significantly lower R1,τ along the region
of coalescence than the surrounding regions. This initial sharp decrease in R1,τ upon collision
means that there is an increase in wτ , which corresponds to an increase in the the number of
bonds associated with the longer length scale, during coalescence, and a decrease in w1, which
corresponds to a decrease in the number of bonds associated with the shorter length scale. This
suggests that open structures associated with the longer length-scale of the QC can help mediate
grain coalesence upon collision (see Fig. 4.8; D, U, and N prototiles).

Since w1,τ and ||ξ|| remain high and relatively uniform in those regions where we see a de-
crease in R1,τ . These results show that the decrease in mean per-particle potential energy near
the region of coalesence (Fig. 4.7 (f)) is due to a change in R1,τ . They also suggest that the open
structures formed along the region of coalesence have relatively high positional order (as measured
by ||ξ||) and low strain (as measured by w1,τ and potential energy), despite the persistent decrease
in orientational order along the region of coalesence.

Taken together, these results show how the presence of two, incommensurate length scales in the
QC enable help QCs mitigate translational mismatches in the lattice upon collision of two growth
fronts. Revisiting Fig. 2.6 (Ch. 2), we see an example of how phasons may enable a 1D QC to
compress in direct space without introducing and defects or strain to the sequence. In Fig. 2.6, we
also see the relationship between the phason strain introduced during this “compression” of the 1D
quasiperiodic sequence, and length scale ratios. We can take this relative decrease in R1,τ along
the region of coalescence as evidence of the same phenomenon illustrated in Fig. 2.6. That is, the
additional, configurational degree of freedom conferred by the loss of translational periodicity (i.e.
phasons and the presence of multiple, space-filling configurations of QC prototiles) plays a key
role in preventing the formation of GBs or high strain structures in situations where we may expect
the formation of GBs or high strained regions in periodic crystals

4.4.4 Influence of Growth Conditions and Interface Characteristics on Qua-
sicrystal Order

Finally, we examine the evolution of relative positional order (||ξ||; Fig. 4.10 (a)), orientational
order (||ψ10||, Fig. 4.10 (b)), mean potential energy (Fig. 4.10 (c)), and distribution-mapped bond
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Lower Limit Upper Limit Correlation Level

0 <0.20 very weak
0.20 <0.40 weak
0.40 <0.60 moderate
0.60 <0.80 strong
0.80 1.00 very strong

Table 4.1: Correlation strength with respect to correlation coefficient magnitude. Categories were
based on recommendations from [42].

lengths (w1,τ ; Fig. 4.10 (d)). We fixed the position of the groove as the angular coordinate corre-
sponding to the global minimum in angularly-binned ||ξ|| upon coalesence, and we fix the reference
position as the angular coordinate corresponding to the global maximum in angularly-binned ||ξ||
upon coalesence. We use fixed coordinates to compute our ratio to avoid biasing Ri during later
stages of growth, and we do not use groove locations computed from the interface, since we find
that the location of the V-shaped groove can move throughout growth, and does not always align
well with the region of coalesence.

We compute Pearson’s correlation and Spearman’s rank correlation for each order parameter
(see Appendix A). For a given correlation coefficient, r, where −1 <= r <= 1, we will describe
the strength of each correlations according to the limits in Table 4.1. We found weak correlations
between our measures of order and pore parameters (minor axis, axis ratio, and distance between
pore and seed), and between order and interface characteristics upon collision (length of coalesence
region and groove depth). Positional order, in particular, had very weak to no correlation with any
of our pore parameters and groove depth. Immediately after collision, we do see some weak
correlation (rpearsons = 0.23) between ||ξ|| and the length of the coalesence region upon coalesence,
however, this correlation drops quickly within the next 100, 000 time steps (Appendix A.2).

Meanwhile, mean per-particle potential energy and weighted bond lengths (w1,τ ) showed very
weak to no correlation with most pore parameters and interface characteristics. We observed some
weak correlation between mean per-particle potential energy with respect to the major axis length
(rspearman = −0.29 to 0.23 between 500, 000 and 2×106 time steps after coalesence; Appendix A.5),
length of the coalesence region (rspearman = 0.21 at 1 × 106 time steps after coalesence; Appendix
A.5), and groove depth (rpearsons = −0.24 at 1×106 time steps after coalesence; A.4) at intermediate
stages of growth. We observed similar trends between w1,τ and our various measures of growth
conditions, though the correlations seen are lower than those seen in per-particle potential energy.

Of the order parameters measured, orientational order, ||ψ10||, showed the strongest correla-
tions with growth conditions – though it’s important to note that even the strongest correlations
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observed were rather weak (|r| < 0.4). Specifically, we see weak Spearman’s correlations and
Pearson’s correlations between ||ψ10|| and major axis length, coalesence region length, and groove
depth immediately upon collision. These correlations quickly drop to very weak levels as the QC
continues to grow, after which Pearson’s correlation coefficients remain very weak, but Spear-
man’s rank correlation coefficients increase to weak levels for minor axis, major axis, distance,
coalesence region length, and groove depth (Appendix A.7) around ×106 time steps. This dispar-
ity between Spearman’s rank corrrelation and Pearson’s correlation suggests that the relationship
between |ψ10| and growth conditions must be monotonic, but highly non-linear.

These calculations show that positional disorder, changes in mean per-particle potential energy,
andw1,τ are relatively independent of the growth conditions and measured interface characteristics.
Meanwhile, ||ψ10|| exhibits some weak, non-linear dependence on growth conditions. Overall,
however the even the highest correlations observed are relatively weak, max |r| < 0.4. This
suggests that the mechanism behind QC coalesence around a pore is largely dependent on the
structure and symmetries of the QC itself, rather than any characteristic of the pore, and that
findings in simulation should reproduce experiments.

4.4.5 Evolution of Decagonal Quasicrystal Order Upon Collision with a
Pore

Since dec-QC order appears to be relatively uncorrelated with growth conditions, we find that we
can aggregate our measures of positional order (||ξ||; Fig. 4.10 (a)), orientational order (||ψ10||;
Fig. 4.10 (b)), per-particle potential energy (Fig. 4.10 (c)), and density-weighted bond lengths
(w1,τ ; Fig. 4.10 (d)) across all of our simulations, and get an approximate trend regarding the evo-
lution of dec-QC order after collision with a pore of arbitrary size and shape. Here, we follow
the same protocol used in previous plots, where we transform our particle positions from Carte-
sian coordinates to polar coordinates, then bin everything by their angular coordinate. We track
each respective order parameter along the initial site of collision (solid blue line; circular points),
and along the region of highest positional order at the time of collision (dotted red line; triangular
points). We fix the positions based on minimum and maximum ||ξ||, rather than interface charac-
teristics, because we find that the interface groove can move during growth, and does not always
align with the regions most associated with coalescence (see Fig. 4.6).

During early stages of collision and growth, we see that ||ξ|| and ||ψ10|| exhibits logarithmic-like
growth along the region of coalescence (Fig. 4.10 (a,b)). These results are consistent with those
observed in Fig. 4.7 (a-e, g), where we see an initial, disordered region that relaxes slowly over
time. Meanwhile, positional and orientational order remain relatively stable and independent of
the order present at the site of coalesence (dashed yellow lines). Here, it’s important to note, again,
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Figure 4.10: Aggregated measures of QC order over simulated time steps after collision with
pore. Evolution of (a) positional order ||ξ||, (b) orientational order ||ψ10||, (c) potential energy,
and (d) density-weighted bond lengths, w1,τ after grain coalesence across all of our dec-QC-pore
collision simulations, where 0×106 corresponds to the point at which growth fronts collide. Points
correspond to the median value of each order parameter at a given time step, while bars correspond
to the 95% confidence interval. Blue lines with circular points correspond to the order parameter
near the initial site of collision. Red lines with triangular points correspond to the order parameter
at the most ordered region at the initial time of collision. We measure the evolution of each order
parameter over time with respect to these fixed locations. Dotted yellow lines in (a, c-d) correspond
to the mean value of the corresponding order parameter in a pore-free simulation after 20 × 106

time steps. Dotted yellow lines in (b) correspond to the maximum value and mean values of ||ψ10||
in a pore-free simulation after 206 time steps.

that we fixed the center of our polar coordinate system at the center of the pore. This means that
the region we chose as a reference point (dotted red lines, labeled “Ordered Region” in Fig. 4.10),
may be biased towards higher-than-average values when compared to our pore-free simulations.

Potential energy and w1,τ , two fundamentally related measures of order, also show the same,
unexpected trends seen in Fig. 4.7 (f) and Fig. 4.9. We see higher per-particle potential energy and
lower w1,τ immediately upon collision. This suggests, once more, that we see the formation of
strained structures along the growth front. Within a few 1 × 105 time steps, however, we see that
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the strain in the ordered region decrease rapidly, until the region along the region of coalesence
becomes lower in energy than the surrounding crystal and w1,τ rapidly becomes higher than the
surrounding crystal. Based on our results from Fig. 4.9, we can infer that this decrease in potential
energy, then, is due to an increase in the number of open structures along the region of coalesence
(or a decrease in R1,τ ).

4.4.6 Body-Centered Cubic Crystal Growth Around a Pore

In the absence of phasons and associated configurational degrees of freedom we should expect
a strong relationship between strain (as measured by our pair potential) and orientational order.
We verify our intuitions regarding positional order, potential energy, and orientational order in the
absence of phasons via a simulated BCC collision with a pore (Fig. 4.11). We track the evolu-
tion of positional order (||ξ||; Fig. 4.11 (a-d)), mean per-particle potential energy (Fig. 4.11), and
orientational order (||ψ4||; Fig. 4.11 (g)) after collision and coalesence around a pore. In these sim-
ulations, we see the formation of a dislocation upon collision of growth fronts, which introduces
a strong, sharp signal in ||ξ|| (white dot, Fig. 4.11 (a-d); red arrow, Fig. 4.11 (e)). We see that
the potential energy and bond orientational order, ||ψk||, show strong, inverse relations in Fig. 4.11
(f, g). This confirms our intuition that, in the absence of phasons and associated configurational
degrees of freedom we should expect a strong relationship between strain (as measured by our pair
potential) and orientational order.

It’s important to note, again, that we centered our polar coordinates at the center of the pore.
This means that measurements along the angular coordinate are not completely independent of
time. Some measures of order, such as potential energy and ||ψ4||, will change as the growth
fronts mature in a periodic crystal. This, in part, accounts for the triangular shape of the mean per-
particle potential energy and ||ψ10||. Over long time scales, we would expect the mean per-particle
potential energy and ||ψ10|| curves to flatten out, despite the presence of a dislocation.

Even single dislocations, however, introduce topological defects. In Section 4.4.1, we discussed
how ||ξ|| can be thought of as a sum of plane wave, mapped onto real space. This means that ||ξ||
is essentially a field measuring contributions of each point in the crystal to long range positional
order. As a result, the discontinuities introduced by dislocations cause a much stronger decrease
in ||ξ|| than continuous deformations (e.g. phonon strain) formed during coalescence (white dot,
Fig. 4.11 (a-d)). This drop in ||ξ|| is so strong that even a single real-space dislocation cannot
be averaged out over large bins (Fig. 4.11 (e)). Mean per-particle potential energy and ||ψ10||,
however, give us bulk measurements of local order. The effects of a single dislocation would not
be significant enough to offset bulk measurements. If we had a GB, which we define as a line of
dislocations in direct space, then we would expect a sharp increase in mean per-particle potential
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energy and and sharp decrease in orientational order, ||ψ10|| at the site of the GB.

4.4.6.1 Comparison to Quasicrystal Growth Around a Pore

There are a few notable differences between the results for the BCC simulatoins and those seen
in our QC system, which can be attributed to the presence of phasons. First, we note that the
global increase in ||ξ|| observed in our dec-QC simulations (Fig. 4.7 (e)) is absent in our BCC
simulations (Fig. 4.11 (e)). This gradual, global shift in positional order is likely attributed to the
error-and-repair growth mechanism unique to QCs, where QCs grow with phason defects that are
subsequently relaxed to a nearly zero-phason strain structures over time [67, 95]. Second, we note
that the disparity between potential energy and ||ψ10|| observed in our dec-QCs simulations (Figs.
4.7 (f, g) and 4.10 (b, c)) is absent in our periodic simulations (Fig. 4.11 (f, g)). Our calculations
of length scale ratios R1,τ in Fig. 4.9, suggests that this disparity between potential energy and
orientational order likely originates from the presence of phasons in QC. As a consequence of
translational periodicity (i.e. the presence of a single unit cell that can describe the entire structure),
it is impossible to change the ratio in length scales in a periodic crystal without the introduction of
defects.

4.5 Discussion

The potentially detrimental effects of porosity on the mechanical properties of castings is well
known and well documented in alloys known to form periodic crystals [15, 24, 56, 101, 108]. Typ-
ically, shrinkage pores are discussed in the context of dendritic microstructures in the mushy zone,
or the region of a phase diagram where solidification occurs. In the mushy zone, we typically see
the formation of dendritic microstructures. As these dendrites grow and collide, they have complex
interactions with the remaining liquid in the mushy zone and pores that form as a result of, e.g., gas
dissolution or solid contraction [101]. In the results found by our collaborators, however, we see
columnar prismatic morphologies throughout the solidification process (Fig. 4.4), rendering these
dendrite-centric discussions moot. Instead, we focus our work on the behavior of crystal grains
upon collision and engulfment of pores. Here, we note that there is limited literature regarding
the behavior of periodic crystals upon collision and engulfment of pores or obstacles at the atomic
level, and so, we conduct simulations of BCC growth around a pore.
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Figure 4.11: Evolution of potential energy, orientational order, and positional order of a BCC
cryastal upon collision with a pore. Positional order of a BCC simulation upon collision with a
pore at (a) 2.16 × 105, (b) 2.21 × 105, (c) 2.31 × 105, and (d) 3.01 × 105. Here high ||ξ|| (black)
corresponds to strong positional order, while low ||ξ|| (white) corresponds to poor positional order
(e.g. liquid, dislocations), and ||ξ|| is the iFT magnitude of the 2 brightest pairs of peaks (red
circles in the power spectrum shown in (a), inset). To examine the effects of coalescence (red
arrows) on positional order, ||ξ||, potential energy and orientational order ||ψ4||, we converted our
particle positions from Cartesian to polar coordinates. Then, we binned our positions based on the
azimuth (4◦ per bin), and compute the means of (e) ||ξ||, (f) potential energy, and (g) ||ψ4|| for each
bin.

4.6 Conclusion

We elucidated the growth interaction between dec-QCs grains upon collision with shrinkage pores
via 4D XRT and MD simulation. To the best of our knowledge, this is the first simulation-
experimental study to investigate QC growth upon collision with shrinkage pores. From our joint
analyses, we were able to provide a comprehensive picture of how phasons mediate coalescence
upon engulfment of pores or obstacles in the liquid. Upon collision of growth fronts, we see
the formation of highly-strained structures and a sharp increase in the relative frequency of long
length scales along the side of collision. This suggests that there is an increase in the number of
open structures (e.g. decagonal tiles) along the region of coalescence.

Over time, we see the orientational order and positional order increase, and the potential energy
decrease, along the region of coalescence. Remarkably, we note that per-particle potential energy
changes at a significantly faster rate than orientation along the region of coalescence, ultimately
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leading to a lower energy along the side of collision, We attribute the phenomenon to the fact
that the ratio of short-to-long length scales remains low along the region of coalescence, when
compared to the rest of the crystal. This suggests that the open structures formed upon collision are
stable, and that any real-space strain introduced upon collision is absorbed via a phason-mediated
mechanism.

Our work shows how phason-mediated coalescence is a powerful mechanism whereby QCs
are able to avoid the formation of defects and dislocations in the presence of common solidifica-
tion defects. Taken all together, our integrated approach highlights the exciting opportunity for
microstructure optimization via control of the grain boundaries – that is, defect engineering. It
provides the knowledge base for fabrication of defect-free QCs, thereby widening their potential
uses and applications.

80



CHAPTER 5

Mapping Reciprocal Space to Real Space: A
Semi-Automated Tool for Advanced Defect Analysis

in 3D

This contents of chapter will be submitted for publication in a peer-reviewed journal.

Recent advances in self-assembly and microscopy allow for 3D imaging of complex nanostruc-
tures arising in both soft and hard condensed matter systems. At the same time, advances in com-
puting allow for sophisticated simulation models that aid in the understanding and exploration of
these systems. However, both experimental and computational analysis of complex crystals at the
atomic, molecular and colloidal scales face a common challenge: the lack of generalizable tools
for structure, strain, and dislocation analysis. Generalizable methods such as Fourier filtering often
rely on manual inspection of structural data, making them impractical for systematic, large-scale
studies. Although domain specific tools for automated analysis of 2D electron diffraction patterns
exist, these tools are not generalizable to arbitrary 2D and 3D datasets. Here, we present a structure
agnostic software tool for analysis of 2D and 3D particle data. Our algorithm is robust to noise
originating from liquid, polycrystalline or otherwise disordered regions, and can be used to analyze
physical space strain in atomic, molecular and colloidal crystals of varying complexity and from
disparate data collection sources. This tool holds promise for advancing structural studies across a
variety of domains by providing researchers with a powerful, generalizable tool for understanding
and exploring complex crystal structures.

5.1 Motivation

From semiconductors [8, 111, 149] to DNA nanoparticle superlattices [91], defects and disloca-
tions are ubiquitous in self-assembled crystals. The types and quantities of defects greatly impact
the quality and properties of a given material, regardless of the crystal’s scale or composition
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[63, 144, 149]. In some cases the introduction of defects and dislocations can diminish desired
properties (e.g. suppression of phonon propagation in thermoelectric materials [149]). In other
cases, the introduction of defects such as grain boundaries can be desirable (e.g. work hardening
to improve mechanical properties of metals [75] or semi-crystalline polymers [112]).

Recent advances in experimental and simulation techniques give researchers the ability to study
growth, dynamics, and phase transitions in ordered matter with extraordinary spatial and temporal
resolution. For example, it is now possible to image a variety of soft [90, 91] and hard matter
[72, 146] systems with 3D, particle-level resolution. Meanwhile, in simulation, it is now possi-
ble to model a variety of complex interactions in experimental systems [143, 145, 150], and to
conduct large-scale, exploratory studies [31, 45, 78]. Yet, despite the growing volume of high
quality structural data, both experimental and computational analysis of complex crystals at the
atomic, molecular and colloidal scales face a common challenge: the lack of generalizable tools
for structure, strain and dislocation analysis.

5.2 Background

The characterization and analysis of local particle environments are typically carried out in direct
space alone or through Fourier filtering. Among simulationists and experimentalists with access
to particle positions in their systems, direct space solutions remain the most popular. Meanwhile,
microscopists tend to favor techniques based on reciprocal space filtering for 2D high resolution
transmission electron microscopy (HRTEM) images.

Here, we give a brief overview of existing methods for the characterization and analysis of
local particle environments using direct space alone, followed by a brief summary of geometric
phase analysis (GPA), a Fourier filtered-based method for grain, defect, and dislocation analysis.
Finally, we demonstrate the utility of Fourier filtering-based analysis to identify grains, defects, and
dislocations in 2D and 3D datasets collected from various sources, and we present a Python-based
tool, PeakyFinders, to aid in the analysis of crystal structures in Fourier space.

5.2.1 Structural Analysis in Direct Space

5.2.1.1 Local Particle Descriptors

Common measures of local bond order include general descriptors of bond symmetry (e.g. bond
orientation order parameters [5, 16, 123]; translational order parameters [5]; Minkowski structure
metrics [92]) or algorithms like common neighbor analysis (CNA) [60], dislocation extraction al-
gorithm (DXA) [131, 132], and polyhedral template matching (PTM) [79], which automatically
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match crystal structures, dislocations, and grain boundaries in simple condensed phases Mean-
while, general descriptors of local bond order like bond angle order analysis [2] and the Steinhardt
order parameter [123], do not require a library of lattices to identify grains or disorder in condensed
phases, but still require careful selection of particle neighbors or local symmetry to return meaning-
ful results. Order parameters such as Voronoi-based methods like the Minkowski structure metric
[92] and density-based methods [107, 120] attempt to circumvent these issues. However, both the
calculation of Voronoi diagrams and density in direct space are computationally expensive. This
makes these methods unsuitable for exploratory studies where researchers may get mixed phases
of complex, unknown crystals in a single simulation or experiment, or for larger scale studies.

5.2.1.2 Machine Learning

In recent years, numerous machine learning (ML) models have been developed to classify local
particle environments [11, 45, 82, 104, 120]. Though powerful, deep, supervised ML models
require well labeled data from a variety of crystal structures to return a generalizable model. How-
ever, obtaining per-particle labels of local environments in a crystal structure remains challenging
and labor intensive. This means supervised ML tend to rely on established order parameters like
CNA or Steinhardt to label local environments in training data, and that training data is restricted
to structures that researchers can already identify. This limits the variety of structures available to
these models and, thus, the model’s generalizability to more exotic, complex structures.

Unsupervised ML attempts to circumvent issues with obtaining a variety of labeled, high quality
structures that supervised models face. These typically use some combination of clustering and
dimensionality reduction to classify particle environments based on particle positions and some
set of general descriptors [12, 13, 26, 50, 104, 120]. These methods have been used to effectively
classify structures in complex phase diagrams [120], to segment grains in polycrystalline samples
[13], to separate growing grains from fluid [104], and, more recently, to identify defects in crystals
[12, 26, 50].

Though effective at classification of large domains in a crystal structure, these application of
these types of models to the detection of point defects, line dislocations, and the like, remains lim-
ited. Existing models are either restricted to 2D inputs [26], rely on 3D, system specific parameters
to return meaningful results [12], or they have low precision [50].

5.2.2 Crystals in Fourier Space

Thermal fluctuations, dislocations, and grain boundaries make it challenging to determine long-
range order from local environment descriptors. Without a generalized method to determine the
type, or types, of long-range order present in a system, it’s difficult to measure where grains,
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defects, and dislocations do occur.
One potential solution to this problem is to look at the crystal from reciprocal (Fourier) space

first. By definition, crystals have essentially sharp Bragg peaks in their diffraction patterns [48],
where it position of any Bragg peak in the diffraction pattern, b⃗, can be expressed as a linear
combination of a crystal’s basis vectors in reciprocal space, b⃗ =

∑N
k=1 nkb⃗k, where nk ∈ Z, b⃗k is a

reciprocal basis lattice vector, and N ≥ d for an d-dimensional crystal.

5.2.2.1 Fourier Transform of a Cosine Crystal

Because reciprocal space is a measure of spatial frequency, it can help to think of these reciprocal
lattice vectors, b⃗, in terms of plane waves, rather than than discrete points. This relationship can
be seen most clearly when we construct a crystal from a sum of cosines, rather than discrete points
(Fig. 5.1, top row):

H(r⃗) =
1

N

N∑
k

cos(2πr⃗ · b⃗k) (5.1)

Where, bk is the set of N basis vectors and r⃗ is a point in real (direct) space.
If we take the FT of Equation 5.1, we get a point-like Fourier spectrum, where the points can

Figure 5.1: Crystals constructed from a sum of cosines. Real space (top) and reciprocal space
(bottom) images generated from the sum of cosines with basis vectors (circled in yellow) (a) b⃗0 =
[cosπ/4, sinπ/4]; (b) b⃗k = [cos 2 ∗ k ∗ π/3, sin 2 ∗ k ∗ π/3] for k = 0, 1, 2; (c) b⃗0 = [1, 0] and
b⃗1 = [0, 1]; and (d) b⃗k = [cos 2 ∗ k ∗ π/5, sin 2 ∗ k ∗ π/5] for k = 0, 1, 2, 3, 4. For reciprocal space
images, plots show the power spectrum (the magnitude of the Fourier Transform (FT)).
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be indexed by the basis vectors b⃗k (Fig. 5.1; bottom row, yellow circles correspond to basis vectors
used to generate each cosine crystal):

F (x⃗) =
1

2N

N∑
k

δ(x⃗− b⃗k) + δ(x⃗+ b⃗k) (5.2)

When we filter a pair of Bragg peaks in the Fourier spectrum, we zero all peaks that are not
aligned with some basis vector, bk. This yields a power spectrum similar to the one seen in Fig. 5.1
(a) (bottom) and an inverse Fourier Transform (iFT) similar to the one seen in Fig. 5.1 (a) (top).
Here, power spectrum refers to the magnitude of the Fourier spectrum, ||F (x⃗)||, where ||·|| denotes
the norm of a vector:

√
a⃗ · a⃗∗, and a⃗∗ denotes the complex conjugate of some vector a⃗. Typically,

diffraction patterns measure ||F (x⃗)||2, or the intensity, rather than the power.
To understand why the FT of a pair of Bragg peaks results in a plane wave, it helps to begin

with an understanding of what happens when we filter a single Bragg peak in the Fourier spectrum,
F (x⃗) = δ(x⃗− b⃗k). Taking the inverse FT of that spectrum, we get the following:

ξk(r⃗) = e2πir⃗·⃗bk (5.3)

If we contrast this with the positional order parameter[5], which is measured with respect to some
b⃗k:

χ(r⃗) = eir⃗·⃗bk (5.4)

we see that the iFT of a filtered Bragg peak is fundamentally related to the positional order param-
eter, and the iFT of a pair of filtered Bragg peaks is fundamentally related to the cosine represen-
tation of a crystal.

Now, if we take the iFT of a pair of Bragg peaks (Eqn. 5.2), we get:

ξk(r⃗) =
1

2

(
e2πir⃗·⃗bk + e−2πir⃗·⃗bk

)
(5.5)

Applying Euler’s formula to Eqn. 5.5, we get:

ξk(r⃗) =
1

2
cos(2πr⃗ · b⃗k) (5.6)

When we filter a pair of Bragg peaks for a cosine crystal like those shown in Fig. 5.1, we get one
of the individual plane waves used to construct the crystals back out. Filtering a pair of Bragg
peaks, or a single Bragg peak for crystals with discrete or point-like particles, however, enables us
to transform our representation of a crystal as a set of discrete particles or points, to a finite sum of
plane waves.
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5.2.3 Application of the Inverse Fourier Transform to Dislocation Analysis

Figure 5.2: Dislocation detection from Bragg peak filtering using peakyFinders. For a 2D
simulation of a dislocation pair in a square lattice: (a) Dislocation detected from a single, filtered
Bragg peak. The magnitude of the iFT was normalized to 1, then mapped onto a sigmoid centered
at 0.3 and scaled to 128. Dark blue (darker color) corresponds to regions aligned with the lattice
vector. Yellow (lighter color) corresponds to regions with poor alignment to the lattice vector.
Values were mapped from 2D iFT images to 2D simulation points. (b) Modified phase of the iFT.
We can see changes and distortions in the phase due to the presence of a dislocation. (c) Moiré
interference pattern due to the dislocation shown in (a) and (b). For clarity, phase of the iFT ((b))
was mapped to Eqn. 5.8. In (b), blue indicates a value of 0, and yellow indicates a value of 1.
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Figure 5.3: Checkerboard artifacts in the phase due to pixel-level offsets from the peak center.
(a) Cropped image of 10µm glass beads in water. Source: “Colloid Crystal 40x Bright Field Glass
In Water” [148] by Zephyris, licensed under CC BY-SA 3.0 / Cropped in (a). (b) Raw phase, ϕ
from the brightest filtered Bragg peak of the image shown in (a). (c) Phase modified according to
Eqn. 5.8 to remove checkerboard artifact due to pixel-level offsets from the Bragg peak center.

In this plane wave view of crystals, in real (direct) space [62, 105]:

H(r⃗) =
1

N

N∑
k

cos(2πr⃗ · b⃗k − 2πr⃗ ·∆b⃗k) (5.7)

These displacement fields, in turn, can cause distortions in the peaks seen in reciprocal space. For
a crystal with thermal noise, point defects, and dislocations, we no longer have a perfect, point-like
Fourier spectrum. This means that the discrete FT of a crystal behaves like a histogram, where the
amplitude of each peak in ||F (x⃗)|| (i.e. power spectrum) tells us how many points contribute to
a given b⃗k. Meanwhile, broadening of these peaks tells us how many particles are strained (i.e.
misaligned from the lattice) with respect to a given b⃗k. In some ways, we can think about the peak
as a sort of 2D or 3D density function, where the density refers to the number of particles displaced
by ∆b⃗k pixels (in the case of a discrete FT).

5.2.3.1 The Magnitude of the Inverse Fourier Transform of a Filtered Bragg Peak

When we filter a single Bragg peak with defects, dislocations, or strain (i.e. displacements or
misalignment from the ideal lattice), we can get one of two measurements from ξ. We can think
of the magnitude, ||ξ||, as a way to map the density functions associated with the filtered b⃗k back
to real space. That is, ||ξ|| maps the contributions of each point in the crystal to the positional
order, as measured by b⃗k (i.e. how well aligned a given point with b⃗k is with respect to some
distribution represented by the filtered Bragg peak). Meanwhile, filtering Bragg peaks associated
with multiple b⃗ks gives us a measure of how a point r⃗ in the crystal aligns with, or deviates from,
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all of the filtered Bragg peaks. This means that ||ξ|| can tell us how much a single point aligns with
the globally averaged structure, or how much a single point aligns with a globally averaged b⃗k. In
cases where we may not know the crystal or types of crystals that will form in a given system, or
in cases where the unit cell of a crystal is complex and the symmetries are difficult to determine,
Bragg peak filtering gives us a highly generalizable way to analyze crystal structures.

We note that this view is particularly useful in analyzing complex structures, such as
quasicrystals (QCs), where a set of b⃗k alone is insufficient in describing the global structure and
order in the system. Due to the complexity of QCs structures, however, we will refrain from further
discussion here. More details are provided in Chapter 2 and Section 4.4.1.

5.2.3.2 The Phase of the Inverse Fourier Transform of a Filtered Bragg Peak

Alternatively, one can measure the phase, ϕ. The phase, ϕ, is the angle associated with a complex
exponential function, eϕi, or, alternatively, the angle associated with a plane wave, cos(ϕ). In the
context of crystals and Bragg peak filtering, phase gives us a direct measurement of displacement
field ∆b⃗k. Electron microscopists have long used a type of phase analysis called geometric phase
analysis (GPA) [62, 105] to analyze defects and dislocations in electron microscopy and scanning
transmission electron microscopy (STEM) images. This technique is powerful and precise, and
can even measure displacements in atomic lattices at the picometer scale (< 10pm) [109].

5.2.3.3 Analysis of a Dislocation using Bragg Peak Filtering

In Fig. 5.2, we see examples of ||ξ|| computed by filtering the brightest Bragg peak. Here, we
normalized and mapped ||ξ|| onto a simple square lattice with a dislocation pair (Fig. 5.2 (a)),
where dark blue (darker color) corresponds to regions aligned with the associated lattice vector
and yellow (lighter color) corresponds to regions with poor alignment to the lattice vector. We
see here that there is a notable difference in the value of ||ξ|| at the site of the dislocation when
compared of the rest of the crystal.

Figs. 5.2 (b) and 5.3 (b) show the raw phase, ψ, obtained from a model simple cubic lattice
with a dislocation pair and bright field microscope image of 10µm glass beads in water (Source:
“Colloid Crystal 40x Bright Field Glass In Water” [148] by Zephyris, licensed under CC BY-SA
3.0), respectively. Meanwhile, in Fig. 5.2 (c) and 5.3 (c), we plot a modified version of the phase,
φ, for clarity. From Fig. 5.2 (c) (zoomed in inset) and 5.3 (c), we can see how topological defects
like dislocations introduce jags and discontinuities φ. Meanwhile, continuous deformations to the
lattice can be seen as gradual bends and general “waviness” in the grating lines associated with φ
(and, by extension ϕ).

Typically, in GPA, the basis vector, b⃗k, associated with the filtered Bragg peak is subtracted

88

https://en.m.wikipedia.org/wiki/File:ColloidCrystal_40xBrightField_GlassInWater.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en


from the raw phase to obtain the displacement field: ϕ− b⃗k = ∆b⃗k (see Eqn. 5.7). In this work, we
focus on the advantages of using ||ξ|| on various systems, rather than generalizing implementations
of GPA to 3D systems. Although GPA can achieve picometer level precision [109] it is not without
its disadvantages.

5.2.4 Artifacts in Phase Analysis

Achieving this level of precision, however, requires, pixel perfect measurements of peak centers.
Slight offsets can create artifacts in the phase, or even produce dubious results. For example,
filtering a peak with even a half pixel offset from the peak center can result in a checkerboard-like
pattern in the phase (Figs. 5.2 (b) and 5.2 (b)). This appears to be a cosmetic issue, however, as
we found that checkerboard artifacts can be fixed by modifying the phase with:

φ = |cos(ϕ)| (5.8)

where | · | represents absolute value.
In other instances, however, phase analysis can return false or misleading measurements (e.g.

identifying regions of order where they do not exist or identifying dislocations in regions where
there is no crystal). In Fig. 5.4, we see that from phase analysis alone, we are unable to detect
polycrystallinity. Instead, we see strain lines, regularly spaced lines (i.e. gratings) on misoriented
regions (blue regions, Fig. 5.4 (a)). These straight lines suggest that these regions are unstrained
and aligned with the filtered Bragg peak, yet we know from analysis in Sec. 5.4.1 that these regions
are misaligned with the filtered Bragg peak.

Additionally, we see several of what look like dislocations (jags, breaks, and other distortions
and discontinuities to the straight lines) in these regions unaligned with the grain (blue regions in
Fig. 5.4 (a)). An example of one of these defects can be seen in the white, circled regions in (a)
and (c). Examining the original photo suggests that defects do not exist in the circled region.

Overall, the examples shown in Figs. 5.2, 5.3, and 5.4 show how phase analysis is vulnerable
to several types of artifacts when used incorrectly, or when Bragg peaks are miscentered by pixel-
level offsets.

5.2.5 Backround Summary

Although crystallographers have long used Fourier-base analysis to identify structures and measure
deformations in 2D electron microscopy images of crystals, applications of these techniques have
seen limited usage among simulationists and in other fields of microscopy. Tools such as crysTbox
[73, 74] have been developed specifically for the automated analysis of 2D electron diffraction

89



Figure 5.4: Phase artifacts in polycrystals. (a) Bright field microscopy image of 10µm glass
beads in water with all aligned crystal grains highlighted, where the grain mask, ς , corresponds to
red regions. (b) Modified phase computed from the masked image. (c) Modified phase computed
from the raw image. Blue (darker color) corresponds to | cosϕ| = 0 and yellow (lighter color)
corresponds to | cosϕ| = 1. Bends in the yellow lines should correspond to strain, while breaks,
jags, and swirls (see white circles) correspond to disclinations and dislocations. Spectra computed
from: “Colloid Crystal 40x Bright Field Glass In Water” by Zephyris [148], licensed under CC
BY-SA 3.0.

patterns and electron microscopy images. These tools are not designed for use on 3D data, nor
are they designed for use on arbitrary 2D image inputs. Additionally, phase-based methods like
GPA require pixel-level precision to return meaningful results. Adapting these tools to higher
dimensions, and automating analysis for large batches of data with variable structures, particle
types, and levels of noise would be particularly challenging.

Recently, researchers have used ||ξ|| obtained via Bragg peak filtering as a way to segment
out particle positions in 3D reconstruction of a colloidal crystal self-assembled from DNA grafted
gold nanoparticle self-assembly [91]. Unfortunately, this workflow relied on manual inspection of
structural data, making it impractical for systematic, large-scale studies. Instead, we propose the
use of the iFT magnitude, ||ξ||, rather than phase, as a way to segment grains, detect dislocations,
and measure order in a variety of 2D and 3D systems, and we develop a Python-based tool to assist
in peak detection and Bragg peak filtering for 2D and 3D inputs. In this work, we show that using
||ξ|| to develop masks and mapping to real space data is a highly robust and reliable measure of
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positional order.

5.3 Algorithm Development

5.3.1 Fourier Spectrum Preprocessing

Figure 5.5: Comparison between filtered and power spectra. 2D spectra (a) unfiltered power
spectrum and (d) power spectrum with Gaussian filter (σ = 1), of 10µm glass beads in water.
Spectra computed from: “Colloid Crystal 40x Bright Field Glass In Water” by Zephyris [148],
licensed under CC BY-SA 3.0.

Fourier Transforms (FTs) are generated from input image arrays using a Fast Fourier Transform
(FFT) algorithm. For low noise FTs, we detect peaks directly from the amplitude spectrum Fig. 5.5
(a). For high noise FTs, we give users the option to apply a user defined function, such as an N -D
Gaussian filter Fig. 5.5 (b), to the FT.

5.3.2 Bragg Peak Finding

We perform peak detection on the filtered or unfiltered power spectrum, ||F (x⃗)||, as follows:

1. We use scipy[139] to perform 1D peak detection along each dimension of ||F (x⃗)||, where
peaks are defined as any sample whose value is greater than its two neighboring values, and
whose prominence is greater than a percentile-based threshold Fig. 5.6 (a - b). Percentile
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Figure 5.6: Peak detection algorithm. Peak detection from filtered power spectrum of polycrys-
talline 10µm glass beads in water. (a) Power spectrum computed from Gaussian filtered amplitude
spectrum (σ = 1). (b) Peaks detected along x with prominence greater than 99.9 percent. (c)
Peaks detected along y with prominence greater than 99.9 percent. (d) Peaks detected along x
and y within 1 pixel of each other. (e) Peaks remaining after network-based clustering (distance
threshold of 2 pixels).

thresholds range from 99.9 percent (most experimental systems) to 99.99 percent (most sim-
ulated systems) of all values in ||F (x⃗)||. This method is sensitive to noise and produces
many false positives.

2. To reduce the number of false positives, we perform a distance-based neighbor search be-
tween points detected along each dimension, where points detected within 1 pixel of each
other along all dimensions of the image are kept as valid peaks Fig. 5.6 (d).

3. We perform network-based clustering [102] with a user-defined distance threshold to elimi-
nate any remaining duplicate peaks Fig. 5.6 (e).

Although the prominence threshold greatly reduces the number of false positive detections, it
can result in a loss of low intensity peaks. Due to the presence of noise and artifacts in tested
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Figure 5.7: PeakyFinders peak detection algorithm compared to CrysTBox. Peak detec-
tion from filtered power spectrum of polycrystalline 10µm glass beads in water (a-c) and
Tuebingen Triangle Tilings (TTTs) (c-f). (a) Peaks detected with CrysTBox[73, 74], Hessian
response[87]. (b) Peaks detected with CrysTBox[73, 74], difference of Gaussians[87]. (c) Peaks
detected with Method 5.3.2 (99.9 percentile). (d) Peaks detected with CrysTBox[73, 74], Hessian
response[87]. (e) Peaks detected with peakyFinders (99.99 percentile). (f) Peaks detected with
Method peakyFinders (99.9 percentile). Difference between spectra in (d) and (e - f) are due to
down sampling by CrysTBox. Spectra computed from: “Colloid Crystal 40x Bright Field Glass In
Water” by Zephyris [148], licensed under CC BY-SA 3.0.

spectra, we found it best to favor specificity over sensitivity and provide additional methods to
recover higher order peaks (see Methods 5.3.4).

We note that for 2D datasets, our peak detection algorithm produces comparable results to
more sophisticated algorithms used for electron diffraction analysis [73, 74] and image matching
[87] (Fig. 5.7). Although our methods requires more user intervention than these state-of-the-art
diffraction analysis tools [73, 74], our code generalizes to 3D with little overhead or modifications.

5.3.3 Bragg Peak Filtering

Bragg peaks are filtered with a window function. By default, we apply a Hamming window with a
width equal to 8 times a Bragg peak’s estimated full width at half maximum (FWHM) along one
dimension. The window is centered on each peak’s maximum and applied to the unfiltered FT. For

93

https://en.m.wikipedia.org/wiki/File:ColloidCrystal_40xBrightField_GlassInWater.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en


Figure 5.8: Scaling detected peaks using peakyFinders. (a) Ring of peaks detected in the power
spectrum of polycrystalline 10µm glass beads in water and (b) peaks scaled by twice the peak
coordinates detected in a. Scaled peaks are re-centered at the local maxima within a 20 pixel
window of the scaled peaks. In b, we show the log of the power spectrum to highlight low intensity
peaks in the spectrum. spectra computed from: “Colloid Crystal 40x Bright Field Glass In Water”
by Zephyris [148], licensed under CC BY-SA 3.0.

flexibility, our code includes implementations for the Hamming window or a user defined window
function.

5.3.4 Recovery of Higher Order Bragg Peaks

Users have the option to recover higher order peaks by scaling existing peaks, b⃗k, and searching
for a local maximum within some user defined grid (see example in Fig. 5.8).

5.3.5 Bragg Peak Width Estimates

Peak widths are estimated using scipy’s [139] peak width method.

5.3.6 PeakyFinders Workflow

PeakyFinders accepts raw Fourier spectra, 2D grayscale image arrays, 3D grayscale image arrays,
or particle positions as inputs (Fig. 5.9 (a)). If the Fourier spectrum is not provided, but a grayscale
image array is provided, peakyFinders computes the FT directly from the image using the FFT [28]
algorithm. If particle positions are provided, the inputs are first discretized into a d-dimensional
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Figure 5.9: Peak detection and filtering with peakyFinders PeakyFinders accepts either (a) 2D
or 3D simulations (top), 2D experimental images (bottom left), or 3D image stacks (bottom right)
as input. From these inputs, (b) we compute the FT of the input. We plot the power spectrum
computed from the FT (left) and bright field microscope image of 10µm glass beads in water
(right). We perform Bragg peaks detection on the computed spectrum (red circles). To segment
out a grain, (c) we filter the brighted peak detected in (b). Source (image of glass beads in (a, b)):
“Colloid Crystal 40x Bright Field Glass In Water” by Zephyris [148], licensed under CC BY-SA
3.0.

histogram, where d is the dimension of the particle point cloud. Then, the Fourier spectrum is
computed from the histogram array using the FFT algorithm. The resolution of the histogram is
set to 5 pixels per distance unit by default, but may be modified by the user.

Next, peaks are detected in the power spectrum of the computed or input Fourier spectrum
(Fig. 5.9 (b), red circles) and transformed back to real space using the inverse FFT algorithm. For
cases where the Bragg peaks may be less prominent due to noise or polycrystallinity, users have
the option to apply a Gaussian filter or any arbitrary, user specified function to improve the signal-
to-noise ratio. Once peaks are detected, users can filter a single peak or pairs of peaks (Fig. 5.9
(c)). Using this output, it’s possible to either segment grains in a polycrystalline system (Fig. 5.10
(a-d)), or to find defects and dislocations in a single crystal (Fig. 5.10 (e-h)).
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Figure 5.10: Bragg peak filtering workflow for grain and dislocation detection. (a) We filter the
selected Bragg peaks (power spectrum of the filtered FT, top), and we compute the inverse Fourier
Transform (iFT), ξ, of the filtered Bragg peaks (bottom). Next, to segment out grains associated
with a peak or set of peaks, (b) we create a mask by normalizing and mapping ξ onto a scaled and
shifted sigmoid, ς . We apply the (c) mask and the (d) inverse mask to the input image (bottom) and
recompute the FT (power spectra of the respective FTs, top). (e) Power spectrum and filtered peak
from the masked input image shown in (d). Zoomed in region of the input image showing: the (f)
grain (red) identified in (d-f). (g) iFT of the Bragg peak filtered in (h). Yellow and green (lighter
color) indicate regions of high translational order, while purple (darker color) indicates regions of
low translational order, with respect to the filtered Bragg peak. (h) Raw phase information for the
given domain. Source (image of 10µm glass beads): “Colloid Crystal 40x Bright Field Glass In
Water” [148] by Zephyris, licensed under CC BY-SA 3.0 / Original, first on top row. Adapted in
(b, c, f, g). Masked in (c, d)
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5.4 Validation in 2D Systems

Here, we present a structure agnostic tool for semi-automated analysis of 2D and 3D particle data
called peakyFinders.

First, we test our code’s ability to identify grains and dislocations on 2D, polycrystalline im-
ages (Fig. 5.9 and 5.10). Next, we test our code’s robustness to peak shape arising from non-
circular/spherical particle shapes (Fig. 5.12), and we verify our code’s generalizability to model
3D systems (Fig. 5.13 and 5.14). Then, we test our code on simulated 3D systems (Fig. 5.17).
Finally, we demonstrate our code’s utility in on 3D tomography data (Fig. 5.15 and 5.16).

We find that although our peak detection algorithm is relatively simple, it is robust to noise
originating from liquid or polycrystallinity, and distortions in peaks due to particle shape. We also
find that the Bragg peak filtering methodology extends easily to 3D systems of varying complexity.

5.4.1 Analysis of a 2D Image of Polycrystalline Glass Beads

We test our peak finding algorithm’s ability to detect peaks in polycrysatlline samples on brightfield
microscope image of 10µm glass beads in water (Fig 5.9 (a-g), Source: “Colloid Crystal 40x Bright
Field Glass In Water” [148] by Zephyris, licensed under CC BY-SA 3.0), and we find that our peak
detection algorithm is robust to noise arising from the presence of multiple, misoriented crystal
grains (Fig. 5.9 (b), red circles).

5.4.1.1 Grain Segmentation

Next, we isolate all grains aligned with the brightest detected peak (Fig. 5.9 (c), red circle; Fig. 5.9
(d), top). To do this, we first map the filtered Bragg peak to real space (Fig. 5.9 (d), bottom) using
the inverse Fast Fourier Transform (FFT) (ξ). From the magnitude of the filtered inverse Fourier
Transform (iFT), ||ξ||, we can identify two grains (Fig. 5.9 (d), light yellow) that are well aligned
with the associated reciprocal vector.

In order to identify a domain with well defined edges, we map |ξ(r⃗)| onto a sigmoid using the
following procedure: First, we normalize the iFT, |ξ̂(r⃗)|, so that the minimum value is 0 and the
maximum value is 1. Next, we map ξ̂(r⃗) to a sigmoid:

ς(r⃗) =
1

1 + e−(||ξ̂(r⃗)||−c1)c2
(5.9)

where ||ξ̂(r⃗)|| is the iFT of the filtered Bragg peak (Equation 5.3), c1 defines the point where
ς(r⃗) = 0.5 and c2 is a shape parameter that controls the slope of ς(r⃗). In practice, c1 determines
the threshold of the domain mask and c2 determines the visual sharpness of the domain mask.
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Setting c1 = 0.5 and c2 = 1 returns nearly identical results to the normalized iFT. Increasing c1
increases the threshold of the domain mask, while increasing c2 sharpens the domain mask. For
most cases we tested, we found that the best parameters for creating domain masks are c1 = 0.3

and c2 = 128 (Fig. 5.10 (f); bottom, red is the aligned grain and blue is regions not aligned with
the associated reciprocal vector).

5.4.1.2 Dislocation Detection

The procedure for dislocation detection follows a similar protocol to grain detection, with a few
additional caveats:

• Dislocation detection must be performed on the Fourier Transforms (FTs) of single crystal
grains, otherwise, distortions to the phase from other grains may introduce artifacts to the
analysis.

• In order to capture distortions from dislocations, Bragg peak filtering must be done over
a larger radius (typically 6 - 8 times the estimated peak width) than for grain detection
(typically 1 times the estimated peak width).

• The inverse Fourier Transforms (iFTs)’s phase (Fig. 5.10 h) and magnitude (Fig. 5.10 (g))
are both effective means to measure strain along a given basis vector. Each method has a
specific set of advantages and disadvantages:

– Phase (ϕ): Phase analysis has long been used for measurements of lattice displacement
(∆bk in Eqn. 5.7) in electron microscopy images [62, 105, 109] and in studies of
melting transitions in hard disks [5, 39]. However, geometric phase analysis (GPA)
requires exact measurement of the basis vector b⃗k to return meaningful results. Even
pixel-level or half pixel-level deviation in b⃗k can return artifacts in phase analysis.

– Magnitude (||ξ||): In Fig. 5.10 (g), we plot the magnitude of ||ξ(r⃗)||, rather than the
phase. The purple (dark) correspond to dislocations or high displacement with respect
to b⃗k of the filtered peak (low positional order), while yellow (light) correspond to low
displacement with respect to b⃗k (high positional order). We see a close relationship be-
tween the displacement field, ∆b⃗k and ||ξ(r⃗)||. This suggests that the ||ξ(r⃗)|| can also
be used to measure ∆b⃗k. Unlike GPA, however, we are able to obtain this measurement
without the need to center ||ξ(r⃗)|| with respect to a precise measurement of b⃗k. How-
ever, further theoretical development is necessary to obtain more precise measurements
of ∆b⃗k from this analysis.
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5.4.2 Analysis of a 2D Photograph of Self-Assembled Cubes

Next, we tested peakyFinders on 2D photographs of self-assembled 3
8

inch acrylonitrile butadiene
styrene (ABS) cubes. This is an important test because particle shape can cause changes to the
Bragg peak’s shape. Conceptually, this is similar to how the atomic form factor causes changes in
the Bragg reflections in the X-ray scattering of a crystal.

Using our experimental system of hard cubes, we show our peak detection algorithm’s gener-
alizability to Fourier spectra with non-point like peaks (Fig. 5.11 (a), red circles), and show that
the methodology used in Section 5.4.1 can be easily extended to systems with non-spherical or
point-like particles, with some caveats and modifications.

5.4.2.1 Peak Detection

We found that, despite the changes in peak shape in the power spectrum (Fig. 5.12 (a-c), top),
we could use nearly identical settings as those used in Section 5.4.1 to detect peaks in the power
spectrum. The only setting we needed to change in the peak finding procedure was the distance
threshold for network-based clustering (see Methods 5.3.2, step 3), where a distance threshold of
4 pixels was used for the image of glass beads, while a distance threshold of 7 pixels was used for
the image of ABS cubes.

5.4.2.2 Grain Segmentation and Disclinations

Due to the presence of disclinations (white arrows in Fig. 5.11; white and yellow arrows in Fig.
5.12) and changes in peak shape, we required higher order peaks and larger windows for peak
filtering (large window shown in Fig. 5.11 b, small window shown in Fig. 5.11 (f)). When filtering
by lower order peaks (Fig. 5.12 (b-i)) or smaller windows (Fig. 5.11 (f)), we find that the disorder
introduced by disclinations are nearly indistinguishable from misaligned grains in the iFT magni-
tude (Fig. 5.11 (g, h), white arrows; Fig. 5.12 (b, e, h); black indicates low translational order and
yellow/purple indicates translational order).

We filter higher order peaks by taking the coordinates of the brightest peak, scaling the coor-
dinates by a factor of 3 (Methods 5.3.4; Fig. 5.11 (a, b) larger blue circle). and filtering multiple,
higher order peaks along a given b⃗k (Fig. 5.11 (b)). This helps us better capture these regions of
disorder in the grain (Fig. 5.11 (d), white arrows).

We note that, when filtering more than one peak, ξ no longer returns a single, continuous domain
(Fig. 5.11 (d)). Instead, we get a grating-like pattern, similar to the one seen in Fig. 5.1 (a). To
understand why this is the case, it’s important to remember that the process of Bragg peak filtering
helps us transform our discrete representation of particles to the frequency domain. If we return
to our discussion of crystals in Fourier space (Sec. 5.2.2), we see that the output of ||ξ|| from a
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Figure 5.11: The effect of peak width on Bragg peak filtering in a photograph of self-
assembled ABS cubes. (a) Power spectrum and (c) photograph of 3D printed, 3

8
inch ABS cubes

on a metal tray self-assembled via mechanical agitation. (a-b) Peaks detected with peakyFinders
are circled in red. The vector associated with the brightest peak was selected, then scaled by a fac-
tor of 3 (larger, blue circle), while the peak with was scaled by a factor of 5. The resulting, filtered
power spectrum is shown in (b). (d) inverse Fourier Transform (iFT) of the filtered FT, ||ξ||, where
black indicates low translational order (with respect vectors associated with the filtered region),
and yellow/purple indicates translational order (with respect vectors associated with the filtered
region). (e) Domain mask computed by normalizing and mapping ||ξ|| onto a scaled and shifted
sigmoid, ς . Blue corresponds to the grain associated with the filtered region, while red corresponds
to regions not associated with the filtered region. (f, g) Shows a filtered power spectrum where the
vector associated with the brightest peak was selected, then scaled by a factor of 3 (larger, blue
circle), but the peak with was scaled by a factor of 1, rather than 5. The resulting ||ξ|| is unable
to capture the full grain in these cases, due to the presence of disclinations (white arrows), values
mapped to the photograph shown in (h)).
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Figure 5.12: Defect detection in a photograph of self-assembled ABS cubes. We examine the
effects of disclinations and strain (white and yellow arrows) on (a, e, h) positional order, ||ξ||,
masked with the grain domain (red region in (a)) and (c, f, i) modified phase, | cosϕ|, masked
with the grain domaian (red region in (a)). We see that, for non-circular or spherical particles,
(b, e, h) ||ξ|| is more sensitive to disorder than (c, f, i) phase. In (b, e, h), black indicates low
translational order (with respect vectors associated with the filtered region), and yellow/purple
indicates translational order (with respect vectors associated with the filtered region). In (c, f, i),
blue (darker color) corresponds to | cosϕ| = 0 and yellow (lighter color) corresponds to | cosϕ| =
1. Bends in the yellow lines correspond to strain, while breaks, jags, and swirls (see arrows)
correspond to disclinations and dislocations.

101



single, filtered Bragg peak is loosely analogous to positional order (Eqn. 5.4). When filtering a
pair of peaks (Eqn. 5.2), however, it’s better to adopt the viewpoint of ξ as a sum of plane waves.
This grating-like pattern (Fig. 5.11 (d)) can be thought of as the pattern that results from the sum
of two plane waves with different frequencies.

Because we filtered multiple peaks associated with b⃗k at different scales, we can think of these
plane waves as a way to refine where and how we see order along a given b⃗k. Conceptually, then,
we can think of these brighter regions as corresponding to “particle positions”, as recognized by
the FT. This means that in simulations we can easily normalize and map the raw output of the
iFT magnitude to particle positions. For images, however, we want to identify a large, continuous
domain for a given grain. In these cases, we apply a Gaussian filter to the iFT magnitude, normalize
the output, then map to a sigmoid (Fig. 5.11 (e)). We found that, following this procedure, we were
able to use the same parameters as those used in Section 5.4.1 (Eqn. 5.9) to create the domain mask.

5.4.3 Conclusion of 2D Cubes Example

We find that peakyFinders’ peak detection algorithm generalizes well to a variety of 2D systems.
We first test our code on a simulated model system of a dislocation, then, we show that the al-
gorithm and workflow generalize well to 2D experimental systems of variable particle types and
shapes.

5.5 Validation in 3D Systems

5.5.1 Validation of a Model 3D Systems

To begin, we tested peakyFinder’s generalizability to 3D simulations in 3 model systems, con-
structed using atomsk [59]: a body-centered cubic (BCC) crystal with a glide loop dislocation
(Fig. 5.13 (a)), a BCC crystal with a screw dislocation (Fig. 5.13 (c)), and a polycrystalline
hexagonal diamond crystal (Fig. 5.14 (a)), and we verify our results against volumetric strain and
dislocation extraction algorithm (DXA) calculations.

5.5.1.1 Peak Detection

We found that we could use nearly identical settings as those used in 2D systems to detect peaks
on the power spectrum. The only setting we needed to change in the peak finding procedure was
the distance threshold for network-based clustering (see Methods 5.3.2, step 3), where a distance
threshold of 8 pixels for all of our model systems.
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Figure 5.13: Dislocation detection in model 3D systems of body-centered cubic (BCC) crys-
tals with a dislocation loop and screw dislocation. We compare the sigmoid-mapped inverse
Fourier Transform (iFT) magnitude, ς(x⃗), computed using peakyFinders ([right column, (a, c)]
to volumetric strain measurements and dislocation extraction algorithm (DXA) calculations in 3D
systems [left column, (b, d)] with a (a, b) BCC crystal with a dislocation loop and (c, d) BCC
crystal screw dislocation. Particle opacity is inversely related to ς , where opaque particles have
low ς (black in (a, c)), and transparent particles have high ς (pale yellow in (a, c)), where low ς
corresponds to particles with low positional order, and high ς corresponds to particles with high
positional order, and positional order was computed from the iFT magnitude after filtering all de-
tected Bragg peaks with a peak width scale of 1. Plots (b, d) are colored according to volumetric
strain, where high strain corresponds to yellow (lighter color) and low strain corresponds to purple
(dark color). Dislocation lines ((b) blue loop and (d) red lines. and dislocation meshes ((d)) using
DXA. These results show that peakyFinders and the defect and dislocation protocol presented in
2D systems generalizes well to model 3D systems.
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Figure 5.14: Grain segmentation in model 3D systems of polycrysatlline hexagonal diamond.
We compare the sigmoid-mapped inverse Fourier Transform (iFT) magnitude, ς(x⃗), computed
using peakyFinders ([right column, (a)] polycrystalline hexagonal diamond, Here, particle opacity
is proportional to ς . where opaque particles have high ς and high positional order (black in (a)),
and transparent particles have low ς and low positional ordder (pale yellow in (a)). Positional order
was computed from the iFT magnitude after filtering all detected Bragg peaks with a peak width
scale of 1. For comparison, we compute (b) volumetric strain, where high strain corresponds to
yellow (lighter color) and low strain corresponds to purple (dark color). These results show that
peakyFinders and the grain segmentation procedure presented in 2D systems generalizes well to
model 3D systems.

5.5.1.2 Dislocation Detection

For single crystal systems, we computed the sigmoid-mapped inverse Fourier Transform (iFT)
magnitude, ς(x⃗), after filtering all detected peaks in the Fourier Transform (FT) using a peak width
scaled by a factor of 16, c1 = 0.5, and c2 = 128. This means that the ς values shown in Fig. 5.13
(a, c) measure displacements from all basis vectors b⃗k associated with the given crystal, rather than
displacement from a single basis vector.

For glide loop dislocation shown in Fig. 5.13 (a - b), we saw strong agreement between ς

(Fig. 5.13 (a - b) high particle opacity corresponds to low ς and (a) dark regions correspond to
low ς) and the dislocation circuit computed using DXA (Fig. 5.13 (b), blue line). Here, we were
unable to reliably detect the glide loop dislocation using volumetric strain (Fig. 5.13 (b); yellow
corresponds to low strain, purple corresponds to high strain), but we were able to reliably detect
the glide loop dislocation using Bragg peak filtering.

For screw dislocations shown in Fig. 5.13 (d - e), we also saw strong agreement between ς
(Fig. 5.13 (c - d) high particle opacity corresponds to low ς and (c) dark regions correspond to low
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ς), the dislocation circuit computed using DXA (Fig. 5.13 (d), red line mesh), and volumetric strain
calculations (Fig. 5.13 (d); yellow corresponds to low strain, purple corresponds to high strain).

5.5.1.3 Grain Segmentation

For polycrystalline hexagonal diamond, we computed the sigmoid-mapped iFT magnitude, ς(x⃗),
after filtering the brightest Bragg peak in the FT. We scaled the estimated peak width by a factor
of 7 and used ς parameters of c1 = 0.3, and c2 = 128. The segmented grain (Fig. 5.14) shows
a single, well defined domain. Volumetric strain calculations and structure factor verify that the
segmented regions were associated with a single hexagonal diamond grain.

5.5.2 Analysis of 3D Reconstruction of DNA Grafted Gold Nanoparticles

After we verified out algorithm’s generalizability to 3D systems and defects, we test peakyFinders’
robustness to noise and applicability to experimental systems by testing our workflow on a 3D
reconstruction of 20 nm DNA grafted gold nanoparticles [91]. We find that our peak finding
algorithm extends well to FTs of 3D images, and we find that our workflow for grain segmentation
and dislocation detection extends well to experimental 3D systems.

5.5.2.1 Peak Detection

We found that we could use nearly identical settings as those used in 2D systems and model 3D
systems to detect peaks in the power spectrum of the experimental 3D colloidal crystal (Fig. 5.15
(a)). The only setting we needed to change in the peak finding procedure was the distance threshold
for network-based clustering (see Methods 5.3.2, step 3). Here, we used a distance threshold of 3
pixels.

5.5.2.2 Grain Segmentation

From visual inspection of a slice of the 3D reconstruction (Fig. 5.15 (d)), we can see that the
assembled structure contains a mixture of disordered phases and two, misoriented crystal grains.
To isolate a single grain from the 3D image, we follow the same protocol outlined in previous
sections. We computed the sigmoid-mapped iFT magnitude, ς(x⃗), after filtering the brightest
Bragg peak in the FT. We scaled the estimated peak width by a factor of 19 and used ς parameters
of c1 = 0.2, and c2 = 128. Here, the choice of c1 = 0.2 for ς is lower than the typical value of
c1 = 0.3 used for grain segmentation in 2D experimental systems and model 3D systems. The peak
width scale factor of 19 is also significantly higher than the scale factors used in previous sections.

105



Figure 5.15: Grain identified via Bragg peak filtering in a 3D reconstruction of a system of 20
nm DNA grafted gold nanoparticles [91]. The power spectrum of (a) the raw, 3D reconstruc-
tion obtained from [91], (b) a grain, obtained by masking ς over the 3D reconstruction, and (c) the
inverse of the grain mask, 1− ς , times the normalized intensities of the 3D reconstruction. Power
spectra were computed as the magnitude of the FT of the 3D reconstruction. For plots (a-c), the
3D spectra were projected down the viewing axis. (d) shows slice of the raw, 3D reconstruction
obtained from [91], while (e) shows the grain mask applied to the 3D reconstruction and (f) shows
the inverse of the grain mask applied to the 3D reconstruction. In (e, f), red corresponds to the
domain used to compute corresponding power spectra (b) and (c), respectively, while blue corre-
sponds to regions excluded from the respective power spectrum calculations.
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We note here that although the peak width detection generalizes relatively well to highly non-
spherical shapes seen in Fig. 5.12 (a) and to model 3D systems, the peak width estimates struggle
in the presence of noise inherent to the self-assembled structures. Using c1 = 0.3 returns a similar,
single, well-defined domain, with the exception that we lost the edge of the crystal (Fig. 5.15 (d),
highlighted region). This is likely due to a combination of limited image resolution and variations
in image brightness and contrast towards the edge of the imaged structure.

Overall, however, we were able to obtain a single, well defined domain with which we could
segment a single crystal grain (Fig. 5.15 (e), red region), with little modification to our workflow.

5.5.2.3 Dislocation Detection

Once we isolated a single crystal grain, we re-ran peak detection on the FT computed from the
isolated domain (Fig. 5.15 (b)), using the same peak detection parameters outlined in Sec. 5.5.2.1.
Here, we note that peakyFinders is able to return reasonable peak width estimates. This is likely
due to the fact that the spectrum computed from the isolated grain (Fig. 5.15 (b)) has significantly
less noise than the spectrum computed from the raw, 3D reconstruction (Fig. 5.15 (a)).

Next, we filtered the brightest Bragg peak in the FT with a width scale of 4. In Fig. 5.16, we
can see the results of ||ξ|| mapped onto a slice of the 3D reconstruction (Fig. 5.16 (b)), and the raw
||ξ|| (Fig. 5.16 (d), where purple (darker color) corresponds to disordered regions or dislocations,
and yellow (lighter color) corresponds to highly ordered regions. Meanwhile, in Fig. 5.16 (c),
blue (darker color) corresponds to |cos(ϕ)| · ς = 0, while yellow (lighter color) corresponds to
|cos(ϕ)| · ς = 1. From Fig. 5.16 (b, d) (circled region), we can clearly see the presence of a grain
boundary (GB). Meanwhile, discontinuities in Fig. 5.16 (c) (white arrow), allow us to identify
dislocations with particle-level resolution (Fig. 5.16 (a), red arrow).

5.5.3 Analysis of a 3D Simulation with Hexagonal/Cubic Diamond Stacking
Faults

Finally, we test the utility of peakyFinders in differentiating structures that are traditionally chal-
lenging to analyze. Here, we chose a system of 50,000 hard truncated tetrahedrons with edge
truncation of 1.20, vertex truncation of 2.16, and particle volume fraction of 0.58, self-assembled
via Monte Carlo simulations (obtained from [80]). This system contains a mixture of liquid and
hexagonal diamond/cubic diamond stacking faults.
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Figure 5.16: Dislocations detected via Bragg peak filtering in a 3D reconstruction of a system
of 20 nm DNA grafted gold nanoparticles. (a) Contrast-enhanced slice of raw, 3D reconstruc-
tion obtained from [91]. (b) ||ξ|| of a single, filtered Bragg peak, mapped onto (a). (c) Modified
phase of ξ and (d) ||ξ|| of the slice shown in (a), where purple (dark regions) correspond to dis-
locations or high displacement with respect to b⃗k of the filtered peak (low positional order), while
yellow (light regions) correspond to low displacement with respect to b⃗k (high positional order).
For clarity, the phase of the iFT, ξ, ((c)) was mapped to | cos(θ)|. Here, blue indicates a value of
0, and yellow indicates a value of 1. Analyses of the phase and magnitude of ξ show a series of
dislocations along the outline regions in (a-d).
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Figure 5.17: Bragg Peak filtering in a simulation with hexagonal/cubic diamond stacking
faults. Hexagonal/cubic diamond stacking faults self assembled from Monte Carlo simulations of
50,000 hard truncated tetrahedrons with edge truncation of 1.20, vertex truncation of 2.16, and par-
ticle volume fraction of 0.58 obtained from [80]. Hexagonal diamond phases are labeled in yellow
(lighter color) and cubic diamond phases are labeled in blue (darker color) using (a) polyhedral
template matching (PTM) and (b) Bragg peak filtering. Bragg peak filtering was carried out in
two steps: First, we separate solid from liquid by computing the positional order parameter, ||ξ1||
based on all detected Bragg peaks, then mapping to a sigmoid, ς1. Then, we mask regions of the
simulation with ς1 > 0.5, and computed ||ξ2|| from the second brightest Bragg peak of the masked
simulation. We note that, although the results for PTM show sharper, more well defined bound-
aries, PTM identifies local structures by comparison with a library of known lattices. Meanwhile,
Bragg peak filtering methods are more general, and can be used to analyze the structure of any
unknown crystal(s).
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5.5.3.1 Peak Detection

We found that we could use nearly identical settings as those used for peak detection in previous
sections of this chapter. Once more, the only setting we needed to adjust in the peak finding
procedure was the distance threshold to 8 pixels for network-based clustering (see Methods 5.3.2,
step 3).

5.5.3.2 Solid-Liquid Separation

Here, we found that the presence of both fluid and stacking faults made it difficult to separate
hexagonal diamond domains from cubic diamond domains. We also note that, just as in our previ-
ous case study with DNA- coated nanoparticle assemblies, the presence of liquid negatively affects
out peak width estimates. Instead, we first separate crystalline regions from disordered regions. To
separate crystal from disordered regions, we filter all detected peaks using a width scale of 5. Be-
cause we must filter multiple Bragg peaks to seperate all solid regions from disordered regions, we
adopt a similar protocol to that used to segment grains in a 2D image of self-assembled acrylonitrile
butadiene styrene (ABS) cubes (Sec. 5.4.2.2).

Because we filter more than one peak in this protocol, we get a patchy, patterned domain rather
than a smooth, continuous one (see discussion in Sec. 5.4.2.2 for more details regarding why this
is the case). To obtain a smooth domain, we follow a similar protocol to Sec. 5.4.2.2, where we
apply a Gaussian filter with σ = 1 to the ||ξ|| (after filtering all detected peaks). This enabled us to
obtain a smooth, continuous domain associated with the crystalline region of the simulation. Next,
we computed the sigmoid-mapped iFT magnitude, ς(x⃗), from the Gaussian filtered ||ξ||. Using this
protocol and ς parameter setting of c1 = 0.5 and c2 = 128, we were able to effectively segment the
crystal from the liquid.

5.5.4 Differentiating Hexagonal and Cubic Diamond

Next, we separate hexagonal diamond layers from cubic diamond layers using Bragg peak filtering
and peakyFinders. To begin, we performed peak detection on the isolated, crystallized region of
the simulation. As with the 3D DNA-grafted gold nanoparticle system, we found that peak width
detection worked reasonably well in absence of noise due to fluid.

In order to obtain a relatively clear separation between stacking fault layers, we found it neces-
sary to iterate through a few combinations of lower intensity peaks. We note that here, that we did
not do an extensive search of all peak combinations.

Ultimately, we were able to find a combination of two peaks that allowed us to obtain a de-
cent separation between hexagonal and cubic diamond layers, shown in Fig. 5.17 (b), where blue
(darker color) is cubic diamond and yellow (lighter color) is hexagonal diamond. For both filtered
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peaks, we used a width scale of 9 and ς setting of c1 = 0.3 and c2 = 128, then mapped ς back onto
our simulation points.

For comparison, we show cubic and hexagonal diamond domains identified via the PTM imple-
mentation in Ovito [130] (Fig. 5.17). We see good agreement between PTM outputs and our Bragg
peak filtering results, though the boundaries of our Bragg peak filtering results are less well de-
fined than PTM. It’s important to note here, however, that PTM is a template matching protocol –
meaning PTM performs an exhaustive comparison of each point and its neighbors with a library of
crystal structures. This means that the structures of interest must be present in the existing library
of structures for a given PTM implementation, or the user must know a priori what structure(s) are
present in their system, then add it into the library of structures available to PTM.

In contrast, Bragg peak filtering does not require prior knowledge of the structure or types
of structures present in the system. The fundamental relationship between Bragg reflections and
crystal symmetry, too, means that this method should be applicable to any crystal that can be
represented in a 2D or 3D image.

5.5.5 Conclusion of 3D Examples

These results show that the Bragg peak filtering procedure and peakyFinders generalize to 3D, and
that peakyFinders can be used to segment grains and detect defects and dislocations with particle-
level precision.

5.6 Conclusion

In this chapter, we showed the how the Bragg peak filtered inverse Fourier Transform (iFT), mag-
nitude, ||ξ||, can be applied to the segment grains, detect dislocations, and measure order in a
variety of 2D and 3D systems, and we develop an Python-based tool (peakyFinders) to assist in
peak detection and Bragg peak filtering for 2D and 3D inputs. We find that the peak detection
and sigmoid masking in peakyFinders are robust to noise and distortions arising from highly non-
spherical particle shapes (e.g. hard cubes) and noise arising from liquid or disorder in 2D and 3D
and we find that our existing protocol is easily extensible to a variety of 2D systems and simple,
3D crystals, and that our workflow can be extended to more complex structures and particle shapes
with the few additional steps in our workflow. In fact, we were able to use nearly identical settings
for peak detection and simulation masking for nearly all of our test cases. We compared our dis-
location and grain segmentation results to volumetric strain calculations and dislocation extraction
algorithm (DXA) for model dislocation cases and polyhedral template matching (PTM) for our
stacking fault case. We found that our Bragg peak filtering protocol can reliably reproduce outputs
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from each of these methods, and we developed a Python based tool, peakyFinders, which will be
available as an open source package in 2024.

This last point is particularly notable – Bragg peak filtering allowed us to reproduce results
from a variety of different measures of order using the same, or nearly the same, protocol and
setting and no prior knowledge of the structures present in the system. Taken all together, this
work highlights a new framework with which we can approach the analysis of order in complex
crystals and develop fast, reliable, and transparent models for structural analysis.
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CHAPTER 6

Concluding Remarks

Quasicrystals (QCs) have long attracted interest, due to their unique properties and their fascinat-
ing structures. Unfortunately, the commercial application of QCs remains limited due to chal-
lenges surrounding the synthesis of large, high quality samples. Meanwhile, research detailing
experimentally relevant growth mechanisms remain limit and analysis of these systems remains
challenging.

In this thesis, we addressed some of these gaps in literature, and methodology. Namely, we
elucidated the role phasons play in defect-free QC growth and we developed a robust framework
to measure order in crystalline systems. Our main contributions include:

1. Providing large scale, systematic analysis of experimentally relevant QC growth interactions.

2. Establishing the role of phasons in redistributing strain upon collision of growth fronts.

3. Detailing the role of multiple length scales in phason-mediated grain coalesence.

4. Developing peakyFinders, a Python-based tool for Bragg peak detection and filtering.

5. Developing a masking-based methodology for Bragg peak filtering. This method avoids
some of the common artifacts traditional Fourier filtering analysis faces and requires less
precise measurements of Bragg reflection centers.

In Ch. 3, we worked alongside the Shahani group to provide a cohesive picture for the conditions
that give rise to grain coalescence in QCs upon collision of two misoriented decagonal quasicrys-
tals (dec-QCs) grains. Using molecular dynamics (MD) simulations we observed grain rotation
toward 0◦ misorientation upon collision of grains with small (< 9◦) misorientation. We observed
a dislocation-mediated mechanism, wherein the dec-QCs redistribute phonon strain due to lattice
mismatch as phason strain via phason flips.

We continued our collaboration with the Shahani group, and built on these findings in Ch. 4.
Using large scale simulation studies, we investigated the mechanisms driving coalesence upon QC
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collision and engulfment of shrinkage pores. Our work highlighted the role of multiple length
scales in phason-mediated coalesence. Specifically, our results showed that, after collision, the
mean per-particle potential energy of particles along the region of coalescence rapidly decreases,
until they form a low energy region along the site of collision. We found that this low energy
region originates from a low ratio of short-to-long length scales along the region of coalescence
when compared to the rest of the crystal. This is a phenomon that is unique to QCs – in periodic
crystals, it impossible for the ratio of length scales without the introduction of grain boundaries.
This highlights how phasons can help prevent the formation of grain boundaries or dislocations
upon collision of growth fronts.

Taken together, our results highlight how the unique symmetries of QCs enable defect-free
growth in situations where periodic crystals might form defects, grain boundaries, and dislocations.

Throughout this work, we were able to build a stronger understanding of order in both QCs
and periodic crystals. In Ch. 5, we built on this insight and developed peakyFinders, a robust
Python-based tool for Bragg peak detection and filtering. We demonstrated how inverse Fourier
Transform (iFT) magnitude of Bragg peak filtered spectrums are more robust to noise and artifacts
when compared to traditional, phase-based analysis, while still maintaining particle-level defect
and grain detection. We show how this methodology can be applied to the segment grains, detect
dislocations, and measure order with particle level precision in a wide variety of 2D and 3D sys-
tems. Then, finally, we show how our workflow can be extended to more complex structures and
particle shapes. Ultimately, Ch. 5 highlights a new framework with which we can approach the
analysis of order in complex crystals

Taken all together, our work with QCs highlights an exciting opportunity for defect engineer-
ing in QCs and deepens the knowledge base for fabrication of defect-free QCs. Through insight
gleaned in our QC work, we develop a new, highly generalizable approach to grain, defect, and
dislocation detection in crystalline systems.

6.1 Future Directions

This dissertation deepens our understanding of phason contributions to QC growth, and, more
generally, highlights how Fourier-based analysis can be harnessed to analyze complex crystals.

6.1.1 Phason Contributions to Quasicrystal Defect Formation

A natural progression of the work presented in this thesis is the systematic investigation of order
upon collision of growth fronts at various temperatures. System temperature is important for two
reasons: (1) Phason strain relaxation occurs via particle motion. As system temperature changes,
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then, we may also expect changes in the frequency and types of phason flips that occur in a system.
It follows, then, that phason-mediated mechanisms and phason strain relaxation are affected by
system temperature. (2) Annealing is a fundamental step in material processing and manufacturing.
Understanding the effects of temperature on phason relaxation will give experimentalists the tools
they need to develop better manufacturing processes for commercially viable quasicrystal coatings.

Another interesting study that could be carried out in tandem with annealing and temperature-
based studies, is a study of particle motion and phasonic motion; that is, tracking the motion
of particles near the site of collision over long periods of time. Specifically, it would be to see if
certain structures are more or less stable than others, or if some regions are more prone to correlated
phason flips than others. Here, work by Engel et al. [41] would serve as a good model for this type
of study.

Extension of this work to other types of QCs is another promising avenue. The pair potential
used in our dec-QC may have played a role in the types of structures formed after growth front
collision. Comparing the results of Ch. 4 to entropically assembled QCs, or with pair potentials
where the difference between well shapes and depths are minor can offer some additional insight
on the nature of phason-mediated grain coalesence.

6.1.2 PeakyFinders

There are two promising directions for peakyFinders development.
A first direction is the addition of machine learning (ML) and further automation to the

peakyFinders pipeline. A major drawback for peakyFinders when dealing with complex struc-
tures, is the need to iterate over multiple peaks. Future development should focus on developing
a pipeline to automate this process, and to use ML to assist in reducing the number of parameters
in the analysis workflow. Here, it’s not necessary to use any neural networks or multi-layer per-
ceptions, rather, the focus should be on unsupervised models to tune parameters, and to determine
which peaks are, or are not, relevant for analysis of specific domains. Additionally, care should
be taken with regards to computational cost of these algorithms. peakyFinders is intended to be a
package which users can do quick, exploratory analysis. While some overhead may be expected
for more sophisticated implementations, we should always favor the simpler, more transparent
algorithms to achieve the desired outcome.

A second direction is the development of either a guided user interface or interactive tutorials.
While we expect peakyFinders users to possess some working level of Python proficiency, these
types of tools will make peakyFinders and the Bragg peak filtering workflow easier to work with.
There is an inherently visual component to these types of analyses Giving new users the ability to
experiment and explore can help them build intuition on the relationship between reciprocal space,
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Bragg peak filtering, and order in their systems.
In addition to these two major directions, there are several parameters and algorithms in

peakyFinders that could benefit from further iteration. These include:

• Improvements to the Bragg peak width estimation method.
• Replacing the duplicate Bragg peak window parameter with a metric that is relative to image

size.
• Better support to account for highly irregular form factors.
• General improvements to Bragg peak categorization.
• Support for rotating, scaling, and matching a set of reference Bragg peaks to a given Fourier

Transform (FT) or power spectrum.

6.1.3 Quasicrystals, Reciprocal Space, and Bragg Peak Filtering

The field of QC research would benefit greatly from a more rigorous, but accessible treatment of
Bragg peak filtering outputs. There are a number of papers that discuss the crystallography of
QC in the context of diffraction [66, 88, 126]. While these are useful resources to build intuition,
diffraction patterns cannot be used to map long-range structural order back to real space positions.
Most of these papers talk about the effects of phason strain and phonon strain on the shape and
intensity of the Bragg peak, as well as shifts in the spectrum. While these are undoubtedly useful
topics to review, they should be reviewed alongside literature regarding geometric phase analysis
(GPA), modulated phases, and, perhaps, an introduction to topological defects [44].

6.2 Final Comments

As we deepen our understanding of how phasons contribute to the unexpected growth behavior
of QCs seen in experiment, we also deepened our understanding of order in periodic systems.
Studying QCs and reciprocal space-based methods for crystal analysis has potential to broaden our
understanding of not just QCs but other unconventional or complex crystals. We hope that this
thesis will help enable the development of new and better theories of QC growth, and to aid in the
development of analysis techniques for challenging and complex structures.
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APPENDIX A

Correlations Martrices for Quasicrystal-Pore
Simulations

A.1 Interface Characteristic Dependence on Pore Parameters

Figure A.1: (a) Pearson’s correlation and (b) Spearman rank correlation between interface charac-
teristics (groove depth and coalescence region length).
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A.2 Positional Order Dependence on Pore Parameters and In-
terface Characteristics

Figure A.2: Pearson’s correlation between positional order and pore parameters at various
timesteps after coalescence.

118



Figure A.3: Spearman correlation between positional order and pore parameters at various
timesteps after coalescence.
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A.3 Mean Per Particle Potential Energy Dependence on Pore
Parameters and Interface Characteristics

Figure A.4: Pearson’s correlation between mean per particle potential energy and pore parameters
at various timesteps after coalescence.
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Figure A.5: Spearman correlation between mean per particle potential energy and pore parameters
at various timesteps after coalescence.
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A.4 Orientational Order Dependence on Pore Parameters and
Interface Characteristics

Figure A.6: Pearson’s correlation between orientational order and pore parameters at various
timesteps after coalescence.
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Figure A.7: Spearman correlation between mean orientational order and pore parameters at various
timesteps after coalescence.
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A.5 Gaussian-Weighted Bond Lengths Dependence on Pore
Parameters and Interface Characteristics

Figure A.8: Pearson’s correlation between density-mapped bond lengths and pore parameters at
various timesteps after coalescence.
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Figure A.9: Spearman correlation between density-mapped bond lengths and pore parameters at
various timesteps after coalescence.
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