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Abstract 

Laboratory-based biomarkers can indicate that normal biologic functions, pathogenic 

processes, or immunologic responses have occurred. Diagnostic biomarkers are used diagnose 

patients with a specific disease or condition, while prognostic biomarkers provide information on 

disease progression, recurrence, or adverse outcome. Host inflammatory proteins, such as 

cytokines, can be employed as diagnostic and prognostic biomarkers; however, due to the 

complex nature of an inflammatory response, multi-biomarker signatures increase clinical utility. 

The need to identify and validate protein signatures for specific diseases is driving a need for 

analytical techniques amenable to multiplexed protein detection. 

This thesis applies silicon photonic microring resonators as a biomolecular sensing 

platform. The instrument and assay method are amenable for multiplexed detection of sixteen 

analytes in two samples simultaneously, using automated reagent handling and featuring a time-

to-result of 45 minutes. Herein, I describe the development and application of multiplexed 

protein biomarker assays to diagnose and identify biomarker signatures for various infections. To 

improve rapid diagnostic approaches in the field of filoviral infection, we developed a two-plex 

biomarker assay for diagnosis of Zaire ebolavirus and Sudan ebolavirus infections using the 

pathogen-specific soluble glycoprotein (sGP). The sGP is a potential early diagnostic and 

prognostic biomarker of infection and, when coupled with the microring resonator assay, provide 

a fast, sensitive method for early Ebola infection diagnosis. The assay achieved limits of 
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detection in the ng/mL range, exhibited no cross-reactivity, and successfully detected sGP in 

clinically relevant specimens (Chapter 2 and 3).  

Exploration of host inflammatory biomarker signatures was applied to expand the 

diagnostic and prognostic toolbox of neonatal conditions (Chapter 4) and tuberculosis infections 

(Chapters 5 and 6). We employed a seven-plex panel to temporally measure cytokine profiles in 

over sixty preterm neonates and identified altered cytokine trends in neonates exposed to 

inflammation in utero. Our work highlights the potential of longitudinal profiling studies to 

identify prognostic or monitoring biomarkers associated with infection status. Extending this 

multiplexed profiling approach to an infectious disease, we applied a fourteen-plex cytokine 

panel to profile over 500 QuantiFERON stimulated plasma samples from patients with latent 

tuberculosis infection (LTBI) with the goal of generating multi-biomarker signatures for LTBI 

diagnosis and disease reactivation prognosis. In comparing two independent patient cohorts, we 

showed a high overlap in important biomarkers, mainly IP-10, IL-2, and CCL8, towards 

classifying LTBI and high-risk of reactivation status. After merging cohorts to increase sample 

size, we uncovered a set of biomarkers capable of classifying LTBI status with 87% accuracy. 

Importantly, we identified a panel of biomarkers that can be used to stratify low versus high risk 

of reactivation and conclude that a group of eight host inflammatory protein biomarkers should 

be considered for future LTBI diagnostic platform development. Further analysis of multiplexed 

assay calibrations yielded insight into expected analyte- and sensor batch-related variability 

(Chapter 7). Targets IL-6, CCL3, and CCL8 were the most robust assays and should be used as 

comparisons for newly generated calibration curves.  

Taken together, the work presented in this thesis applies analytical techniques to 

clinically relevant challenges through rapidly detecting an early biomarker of Ebola virus 
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infection, monitoring immunological changes in preterm neonates, and identifying host immune 

biomarkers correlated to disease phase and reactivation risk in LTBI. The assays and biomarker 

signatures presented here have the potential to impact diagnosis, prognosis, and clinical 

management of infections and infectious diseases. 
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Chapter 1 An Introduction to Inflammatory Protein Biomarkers and Multiplexed 

Detection Methods 

1.1 Author Contributions and Acknowledgements 

The content of this chapter was conceived, and all figures were designed by the thesis 

author, Krista Meserve. Section 1.9 is adapted from a subsection of the published review: Yu, D.; 

Humar, M.; Meserve, K.; Bailey, R. C.; Chormaic, S. N.; Vollmer, F. Whispering-Gallery-Mode 

Sensors for Biological and Physical Sensing. Nat Rev Methods Primers 2021, 1 (1), 83. I would 

like to thank Dr. Deshui Yu, Dr. Matjaž Humar, Dr. Síle Nic Chormaic, and Dr. Frank Vollmer 

for including our microring resonator sensing subsections in the review, and Dr. Ryan Bailey for 

his feedback and edits on that section prior to publication. I would additionally like to thank Dr. 

Claire Cook and Dr. Gloria Diaz for their feedback on this chapter. 

1.2 Why are we studying biomarkers? The economic and industrial impacts of biomarkers. 

Biomarker research is a rapidly growing area of profit and investment. The term initially 

gained traction in 2005 and has increasingly garnered interest.1 In 2022, the global biomarker 

market was valued at 66.97 billion dollars and is expected to continue to grow at a compounded 

annual growth rate of 13.3% over the next seven years to over 180 billion dollars in 2030.2 The 

increase in biomarker discovery research has been linked to the growing interest in personalized 

medicine, the increased prevalence of cancer and cardiovascular diseases — which both require 

biomarkers for early detection, prognosis, and treatment efficacy — and a rise in safety 

biomarkers for more effective clinical trials.  

https://doi.org/10.1038/s43586-021-00079-2
https://doi.org/10.1038/s43586-021-00079-2
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The key players aiming to increase their biomarker industry share include Abbott, Roche, 

Thermo Fisher Scientific, Qiagen, and Bio-Rad. Abbott’s biomarker discovery work in traumatic 

brain injury (TBI) blood tests has led to FDA clearance of the first commercially available 

blood-based TBI test which is compatible with their Alinity i instrument found in many hospital 

laboratories.3 The semi-quantitative test measures two proteins with chemiluminescent 

microparticle immunoassays and provides information on TBI severity with 96.7% sensitivity in 

18 minutes.4,5 Abbott’s TBI assay possesses the potential to rapidly triage patients, reduce 

reliance on subjective clinical assessments, and eliminate unnecessary CT scans. Combined, 

these implications can cut healthcare costs and time spent in the emergency department.  

In late 2022, Qiagen announced FDA approval of their therascreen KRAS kit for 

identifying non-small cell lung cancer (NSCLC) patients eligible for treatment with KRAZATI.6 

Mutations in the KRAS oncogene are predictive biomarkers of a patient’s responsiveness to the 

treatment. Qiagen has repurposed their existing assay technology to be a leader in rapidly 

developing predictive and diagnostic biomarker assays across multiple cancer therapy studies. 

Quanterix, developers of the ultrasensitive single molecule array (Simoa) bead-based 

immunoassay technology, have been granted a Breakthrough Device designation from the FDA 

for a semiquantitative Simoa immunoassay for P-Tau 181 to aid in diagnostic evaluation of 

Alzheimer’s Disease.7 The assay detects the biomarker in blood samples using their 

commercialized HD-X instrument. Furthermore, Quanterix has developed multiplexed assays, 

such as the three-plex assay of total tau, amyloid β 1-42 and amyloid β 1-40, currently being 

used in development of blood-based Alzheimer’s diagnostics.8–10  

These few examples highlight the important role biomarkers have in improving 

diagnostics and patient care, expanding business plans, and impacting the overall economy. 
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Considering the far-reaching impact of biomarkers in clinical settings, it is important to 

understand how biomarkers are defined, classified, and detected within clinically relevant 

contexts. 

1.3 What are biomarkers? A summary of application-based classifications. 

The FDA-NIH Biomarker Working Group officially defines a biomarker as “a defined 

characteristic that is measured as an indicator of normal biological processes, pathogenic 

processes, or biological responses to an exposure or intervention.”11 With this definition, there is 

a wide range of interpretations of what constitutes a biomarker. Biomarkers can include 

molecular, histologic, radiographic, or physiologic characteristics. They can be classified by the 

type of measurement: extrinsic markers, such as cigarette or drug use, intrinsic markers, such as 

physical evaluation (signs and symptoms), psychological evaluation (Likert scales or lifestyle 

questionnaires), or laboratory evaluation.1 We classically associate molecular clinical diagnostics 

with biomarkers categorized under laboratory evaluation. These types of biomarkers include 

biochemical, hematological, immunological, microbiological, histological, radiographic, and 

genetic.1  

 Biomarkers can additionally be defined and categorized into subtypes based on their 

specific use or application.12 Many of the subtypes are mentioned through this thesis within the 

context of a specific purpose. It is important to note that the same biomarkers can serve cross 

functional purposes, as a single biomarker can meet criteria for different uses. The application-

based biomarker subtypes are diagnostic, monitoring, response, predictive, prognostic, safety, 

and susceptibility/risk.11,12 Here, we will define and provide examples of each of these biomarker 

classifications. The work presented throughout this dissertation provides applications of almost 
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all subclasses: diagnostic (chapters 3, 5 and 6), monitoring (chapter 4), response (chapter 4), 

prognostic (chapters 3, 5, and 6), and susceptibility (chapters 5 and 6). 

1.3.1 Diagnostic biomarkers 

A diagnostic biomarker is used to confirm disease, subtype of disease, or a specific 

condition.12 Diagnostic biomarkers must be specific to the disease of interest and should provide 

clinical utility. Establishing cut-off values of these biomarkers is a critical step in developing 

diagnostic tests and is highly dependent on the disease or condition. A test with a high false 

positive rate might be allowable for diseases with easy or non-invasive follow up tests or for 

extremely infectious disease, as a low false negative rate should be minimized. Conversely, a 

low false positive rate is more critical for rare disease, as they should not be over diagnosed in 

the general population, or for diseases with physically or mentally intense repercussions, as 

diagnosis or treatment after a false positive can be life altering. Receiver-operator characteristic 

(ROC) curves are used to quantify the ability of a biomarker to classify subjects in disease 

categories.13 ROC curves plot the sensitivity and specificity at various cut-off values of the 

biomarker(s) and the area under the ROC curve (AUC) is representative of the diagnostic 

marker’s overall accuracy to distinguish disease positive from disease negative populations. 

Examples of diagnostic biomarkers specific to an infection or condition include the spike 

and nucleocapsid proteins of SARS-CoV-2 infection,14,15 cardiac troponin T and cardiac troponin 

1 for myocardial infarction,16 and the soluble glycoprotein of filoviruses for filoviral infection.17 

Detection of these biomarkers is specific to the associated disease. Similarly, a combination of 

microRNAs miR-141-3p, miR-375-3p, and let-7a can differentiate prostate cancer patients who 

are in remission, those with advanced localized disease, and those with advanced metastatic 

cancer.18 These are classified as diagnostic biomarkers due to their association with a specific 
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phase of disease. Figure 1.1A depicts a diagnostic biomarker that confirms disease, as the 

concentration of analyte is statistically different between a non-disease population compared to a 

population with the disease. The analyte additionally separates disease populations by stage or 

phase of disease, adding further utility to the diagnostic biomarker. 

1.3.2 Monitoring biomarkers 

Monitoring biomarkers measure the effects of disease, treatment, or exposure over 

time.11,12 Gaining clinically relevant information for patient status through serial measurements 

of the marker qualifies biomarkers to the monitoring designation. Repeated measurements give 

clinicians information about the rate or magnitude of biomarker change in addition to absolute 

concentration. Patients are commonly monitored for a change in status of their condition during a 

clinical treatment course, effects of treatments on overall organ function, and overall health. 

Figure 1.1B depicts a monitoring biomarker that decreased in concentration at disease onset but 

increased with treatment. This example biomarker could be used to follow disease progression, 

as well as a patient’s response to treatment. 

Glucose is a monitoring biomarker for patients with diabetes. Detection technology has 

been employed in wearable devices with user-friendly, mobile device readouts.19 Continuous 

glucose monitoring alerts patients to changes in blood sugar levels to make decisions in day-to-

day activities and the compiled data can be shared with a medical doctor to monitor and prevent 

diabetes-associated complications. Other examples of monitoring biomarkers include evaluating 

protein changes in mice following a TBI to understand pathological rebuilding processes and 

long-term effects,20 or measuring microRNA-371a-3p in patients with testicular germ cell tumors 

over the course of chemotherapy.21 

1.3.3 Response biomarkers 
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Response biomarkers can be used to confirm a biological response has occurred 

following a specific exposure.11,12 Exposures of interest may be a new medical device, 

environmental antigen, or treatment course. Two further subclasses fall within the response 

category: pharmacodynamic biomarkers and surrogate endpoint biomarkers. In 

pharmacodynamic studies, response biomarkers indicate that there is biologic activity after 

exposure, but the biomarker does not provide information towards clinical utility of the 

exposure. Figure 1.1C depicts a pharmacodynamic response biomarker. The biomarker 

concentration in the treatment group significantly changed from before and after treatment, while 

that in the placebo group remained constant. The biomarker change does not mean the treatment 

or exposure is clinically relevant but indicates there is some biologic response. As an example, 

the response to warfarin therapy is measured via the prothrombin test time and concentration of 

coagulation biomarkers.22,23 

The other classification of response biomarkers, surrogate endpoint biomarkers, are short-

term biomarkers associated with long-term clinical outcomes based on previous scientific 

evidence and are imperative to conducting clinical trials for therapeutics. An example is a study 

by Meyvisch et al. that compared sputum culture conversion at weeks 8 and 24 in a drug trial for 

multidrug resistant- tuberculosis.24 The true endpoint was the patient outcome after the 120-week 

drug administration, but they concluded the culture conversion results at week 24 was a 

sufficient surrogate endpoint to evaluate the drug treatment in a patient. This would allow for 

treatment adjustment before the full 120-week course is completed to increase treatment 

efficacy. Response biomarkers can additionally be used as biomarkers of potential harm, which 

are short-term biomarkers that can measure the early effects of exposures and potential health 

risks in the absence of long-term, epidemiologic-based, definitive endpoints.25 A prominent 
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example is in tobacco use research. The true endpoints in this research population are severe 

(lung cancer, cardiovascular disease, chronic obstructive pulmonary disease), but surrogate 

endpoints related to the severe disease states can be measured when evaluating new tobacco 

products for the market.26  

1.3.4 Predictive biomarkers 

Predictive biomarkers are those whose presence, or change in, indicate whether patients 

will respond (favorably or unfavorably) to an exposure or treatment.11,12 These biomarkers can 

be used to guide treatment decisions, select patient populations to enroll in clinical trials, or 

identify groups most likely to benefit from lifestyle interventions. Predictive biomarkers are 

commonly validated through randomized trials of those with and without the biomarker to 

compare effects of an experimental treatment in both groups. If one group has a more favorable 

response to the therapy, then that group would be targeted for clinical trials.  

In addition to identifying patients who will respond to a treatment, predictive biomarkers 

can also be used to understand how they will respond. In patients with advanced melanoma, 

sCD163 levels in serum was associated with adverse events in patients receiving nivolumab and 

baseline IL-6 serum concentrations greater than 2.5 ng/L was associated with greater toxicity 

during ipilimumab treatment.27,28 Figure 1.1D highlights how the presence of these biomarkers 

in a disease population can tailor treatment dosage or options to individual patients, leading to 

better personalization of medicine.29 To note, predictive biomarkers are markers whose presence 

can be used to identify factors associated with efficacy or treatment responses in patients already 

classified as having a disease (opposed to susceptibility biomarkers) and are not predictive of 

disease progression or outcome (opposed to prognostic biomarkers).  

1.3.5 Prognostic biomarkers 
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Prognostic biomarkers provide information on disease progression or recurrence, the 

likelihood of a clinical event occurring, and disease outcome.11,12 Prostate specific antigen (PSA) 

kinetics are used in prognosis, relapse prediction, and as a mortality indicator in men with 

prostate cancer. A short doubling time indicates a relapse and faster rates have been associated 

with lower five-year survival rates.30 In some cases, such as in Ebola virus disease, prognostic 

biomarkers at a specific concentration can be used to stratify patients by mortality risk, allowing 

for more efficient resource allocation. 

In treated patients, prognostic biomarkers can be indicative of recurrence risk. Lower 

expression of miRNA biomarkers miR-135a and miR-409-3p have been associated with a higher 

risk of recurrence in an acute myeloid leukemia patient population.31 Combinations of other 

miRNAs provided value to prognosis of overall survival, relapse-free survival, or complete 

recovery.32 Validation of prognostic biomarkers requires association of the biomarker level at a 

certain threshold with the outcome of interest. Figure 1.1E demonstrates this type of study to 

associate a biomarker above and below a certain threshold with the percent of patients that did 

not have disease progression. The patients with the higher biomarker concentration did not 

progress to disease as readily as those with lower biomarker concentrations, indicating this 

specific biomarker should be studied in a larger cohort for its efficacy as a prognostic biomarker. 

1.3.6 Safety biomarkers 

Safety biomarkers are measured before or after an exposure and provide information 

regarding toxicity of the exposure. Similar to surrogate endpoint response biomarkers, the safety 

biomarker is unlikely to provide information on clinical efficacy of the treatment or exposure. 

Common safety biomarkers include those specific to liver or kidney function to determine 

hepatotoxicity or nephrotoxicity of the therapy over the course of a clinical trial.33,34 From a 
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regulation standpoint, safety biomarkers can be used to evaluate the risk-benefit ratios of drugs 

or therapies. A therapy that treats an aggressive disease but leads to slight cardiovascular toxicity 

might be approved as long as the safety biomarker is monitored over the course of treatment. 

However, a therapy that treats a common cold but induces kidney failure would not be approved.  

The example safety biomarker in Figure 1.1F is measured before, during, and after drug 

removal. There are no significant differences at any time point between the test groups; however, 

the slight decrease in the treatment group during drug administration should be investigated for 

potential adverse events that may persist even after the concentration rebounds post-treatment. In 

addition to drug toxicity and risk-benefit analysis, safety biomarkers can be used like a predictive 

biomarker to identify which patients are at greater risk of toxic adverse events or who will be 

most affected by an environmental exposure so appropriate mitigation and intervention strategies 

can be employed. 

1.3.7 Susceptibility biomarkers 

A susceptibility biomarker is one that provides information on the potential of a healthy, 

non-diseased population to develop a condition or illness. These biomarkers are crucial for 

starting preventative therapies or treatments, changing lifestyle factors, or increasing disease 

surveillance tests. Many susceptibility, or risk, biomarkers are commonly known. The breast 

cancer genes 1 and 2 (BRCA1/2) mutations increase the risk of developing breast cancer. 

Clinical treatments, such as a mastectomy, or frequent surveillance testing, such as 

mammograms, can be offered to reduce risk or improve early detection. High LDL cholesterol 

levels are known to increase risk of coronary artery disease, and patients with high levels can be 

advised to make lifestyle and nutrition changes or qualified for certain treatments. While not a 

laboratory biomarker, familial history of certain types of cancer, such as colorectal cancers, can 
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be susceptibility biomarkers that warrant more aggressive surveillance through colonoscopies. 

The example susceptibility biomarker in Figure 1.1G would be one whose presence indicates the 

patient is at high risk of disease onset but does not yet have the disease. 

Quantification of a patient’s risk of disease was discussed as a function of prognostic 

biomarkers. The difference between prognostic and susceptibility biomarkers is the target 

population: those with disease for prognostic and those without disease for susceptibility. Of 

these two populations, the population who can benefit from susceptibility biomarkers (the 

general healthy, non-disease population) is much larger than the population of those with a 

specific disease and may be why the susceptibility biomarker examples are more familiar to a 

general audience. Identification of general susceptibility or risk biomarkers can lead to public 

health campaigns in hopes of people being able to prospectively act on their health, rather than 

retrospectively after progressing to disease. 

1.4 Overlapping applications of biomarkers 

The seven use-based classifications are not independent of each other, and the same 

biomarker can be classified under many subtypes. If a biomarker is to be used for multiple 

purposes, it is imperative that evidence is collected, and validation is completed for each 

individual use. A biomarker can be both diagnostic and prognostic if it is specific to the disease 

state and the concentration or rate of change is correlated to outcome or disease progression. A 

monitoring biomarker within a disease population whose temporal change is indicative of how a 

patient will respond to a potential treatment would also be a predictive biomarker. Similarly, if 

the temporal change of a monitoring biomarker can be used as a measure of biologic response to 

a treatment, that biomarker would also be classified as a response biomarker. 
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Examples of multi-application biomarkers include the BRCA1/2 mutation, PSA, and P-

tau181. As described above, the BRCA1/2 mutation is a susceptibility biomarker among a non-

disease population as a factor of increased risk of developing breast cancer. BRCA1/2 can also 

be a prognostic biomarker, with overexpression related to lower survival rates,35,36 and a 

predictive biomarker for effectiveness of chemotherapy additives36 and treatment37,38 options. 

PSA was discussed above as a prognostic biomarker of prostate cancer relapse and survival, but 

it is also commonly used as a diagnostic biomarker and is used to monitor patients post-

treatment.39,40 Alzheimer’s disease biomarker discovery research has demonstrated serum levels 

of P-tau181 can be a diagnostic biomarker to distinguish those with cognitive impairment from 

cognitive unimpaired populations, as well as a monitoring biomarker for clinical trials and a 

prognostic biomarker for cognitive decline from cognitive impairment to Alzheimer’s 

disease.41,42 

A biomarker validated for one classification can be used to identify biomarkers in other 

classifications. For example, evaluating various monitoring biomarkers over the course of a 

treatment administration could lead to identification of biomarkers that correlate to treatment 

efficacy (predictive biomarkers) or indicate a biological response occurred during treatment 

(response biomarkers). Quantitation of known diagnostic biomarkers correlated to disease 

outcome could result in prognostic status. Additionally, biomarkers from distinct classifications 

are used in tandem. Prognostic biomarkers could be used to identify patients with poor 

prognosis, and a separate predictive biomarker could qualify them as a candidate for an 

exploratory treatment specifically for those with aggressive diseases. Similarly, a prognostic 

biomarker could classify a patient at high risk of disease progression, and a diagnostic biomarker 

could then be analyzed at frequent time points to monitor changes that could indicate disease 
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onset, with subsequent treatment to follow. Clinical trials use many biomarkers in tandem, such 

as measuring response biomarkers to ensure a biologic response, safety biomarkers to ensure low 

toxicity in the drug, and monitoring biomarkers associated with the drug or disease to measure 

drug efficacy.  

1.5 Non-specific biomarker signatures 

A handful of biomarker examples presented in the previous section were directly 

associated with the condition or infection, such as the spike protein of SARS-CoV-2, soluble 

glycoprotein in filoviral infection, and BRCA 1/2 mutations of breast cancer. Most biomarkers 

that have been mentioned were non-specific to the disease state. Instead, they were biologic 

changes in non-specific patient, or host, biomarkers that can be associated with a condition or 

infection through large cohort studies. While singular biomarkers can be useful for some 

applications, specifically in diagnostic and prognostic functions, combinations of specific and 

non-specific biomarkers can lead to greater diagnostic accuracy and provide actionable items 

over the course of the disease to improve patient outcomes.43 Combinations of non-specific 

biomarkers, referred to herein as biomarker signatures, are commonly found across all biomarker 

use-based classifications. To develop, validate, and employ laboratory tests using biomarker 

signatures, collaborations between academia, industry, health care providers, funding sources, 

and insurance agencies are needed. Identifying clinically useful biomarker signatures that can 

detect disease faster or more accurately monitor treatment efficacy will be beneficial for all 

stakeholders. 

Research into identifying biomarker signatures can include investigation of proteins, 

nucleic acids, and multi-omic analyses. Signatures may be measured as single time points, 

changes over time, or comparisons before and after an exposure or disease onset. Tanaka et al. 
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followed a large cohort of patients over eighteen years and profiled their proteomes to identify 

193 protein biomarkers associated with all-cause mortality after covariate adjustment.44 Onset of 

co-morbidities was associated with enrichment of non-specific inflammatory proteins that could 

be used to develop prognostic models for aging related conditions. They reported a group of 76 

proteins that can estimate the rate of aging to compare how quickly a patient is aging with 

respect to their chronologic age. In a separate study, a 39-marker signature including cellular, 

microbiome, and genetic biomarkers comprised a prognostic biomarker signature with a 94% 

accuracy in predicting overall survival in breast cancer patients and 77% accuracy in predicting a 

progression free survival.45 Transcriptomic data has provided multi-biomarker signatures for 

differential diagnosis of diabetes, demonstrating a diagnostic approach for various disease 

phases.46 Various biomarkers, many overlapping, successfully differentiated diabetes mellitus 

from non-diabetic patients, those with diabetes mellitus who are at a high risk of diabetic kidney 

disease, and those without diabetes but are at a high risk of chronic kidney disease.  

Furthermore, researchers studying disease states that currently apply single biomarkers 

for analysis or rely on pathology-based biomarkers have been replacing these methods with 

multi-biomarker signatures. The single biomarker sepsis diagnostic kits are limited in clinical 

utility, but diagnostic or prognostic signatures complicate data interpretation, as cutoffs are 

needed for each biomarker in the signature.47 Ware et al. compared 11 plasma biomarkers in 

sepsis patients with and without acute respiratory distress syndrome (ARDS) and determined a 

group of five biomarkers that could potentially prognose severe ARDS in sepsis patients with 

82% accuracy.48 When evaluated individually, each of the five biomarkers resulted in accuracies 

of 63%-72%. The work showed an increase in positive and negative predictive values and 

prognostic accuracies with the biomarker signature. Similarly, preeclampsia is classically 
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diagnosed through clinical signs and symptoms, which lacks sensitivity and specificity, leading 

to poor diagnosis and prognosis. To replace clinical symptom markers, a group of 11 serum 

protein biomarkers was identified using a multi-omic workflow. Through a longitudinal profiling 

study over the course of pregnancy, the biomarkers showed different trends in patients who 

developed preeclampsia versus those who did not. These findings indicate that the biomarker 

panel has potential to prognose disease onset, but a large cohort study is needed for validation.49  

The presented examples have focused on prognostic and diagnostic biomarker discovery, 

but biomarker signatures can be found in all biomarker classifications. Examples include 

continuous monitoring biomarkers in patients treated with chimeric antigen receptor T-cell 

therapy after cytokine release syndrome,50 monitoring of predictive biomarkers for cancer 

treatment efficacy,51 and using combinations of non-molecular markers (blood pressure, heart 

rate, internal temperature, etc.) as response or safety biomarkers. Employing non-specific 

biomarker signatures — rather than a single specific biomarker— can improve diagnosis and 

prognosis of many conditions, leading to improved patient care, decreased costs, increased value 

of molecular testing, and updated precision medicine techniques. 

1.6 Inflammatory protein signatures as diagnostic biomarkers 

As mentioned previously, diagnostic biomarkers are specific to the disease or condition 

of interest. However, in the discussion of biomarker signatures, many serve a diagnostic purpose 

but are developed with non-specific biomarkers. Inflammatory proteins, specifically cytokines 

and chemokines, are a specific subclass of protein biomarkers used in diagnostic development 

research. They are ideal biomarker candidates for many reasons, including that they are found in 

detectable concentrations in many bodily fluids that are non-invasive to collect, such as serum, 

plasma, saliva, and tears. Additionally, they are more stable than nucleic acids, do not require 
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RNA free environments, and can provide information regarding complex pathology in various 

cellular networks.52 

1.6.1 Cytokines and chemokines 

Cytokines are small, signaling proteins that communicate within the immune system and 

play central roles in any inflammatory response.52,53 The upregulation or downregulation of 

cytokines alerts the immune system to mount a response, which triggers the release of other 

cytokines that recruit more cells and activates downstream cascades and processes. The cascade 

continues until the damage is repaired and can be clinically presented as fever, pain, or redness. 

However, if the cascade becomes unregulated it can lead to a cytokine storm and adverse health 

outcomes, such as sepsis, organ failure, and death.  

Various cells secrete cytokines in response to a stimulus, and the specific subclass of 

cytokine depends on their origin.54 Cytokines secreted, or produced and released into the 

bloodstream, by lymphocytes are called lymphokines. Those secreted by monocytes are 

monokines, and those made by leukocytes and signal other leukocytes are called interleukins 

(IL); however, ILs have been found to be produced by many other cells. Cytokines are not 

uniquely made or associated with a single cell type and the same cytokine can be secreted by 

multiple cell types simultaneously. Many are pleiotropic, meaning the same cytokine can elicit 

multiple different responses from various cell types, and cytokine activities can be synergistic or 

agonistic with other cytokines. The interplay of some cells and cytokines is depicted in Figure 

1.2. Importantly, the messenger RNA for ILs is unstable, resulting in transient synthesis, rapid 

secretion once synthesized, and temporal variation in concentrations.55 While mechanisms and 

inherent characteristics of cytokines control the secretion of the signaling proteins, dysregulation 

in one cytokine can affect the whole cascade. 



 16 

An example cytokine to highlight the complexity and multi-functional roles of cytokines 

in the inflammatory response is IL-6. IL-6 is a prominent cytokine that increases during an acute 

phase inflammatory response and is produced by activated T-helper 2 cells, antigen-presenting 

cells (macrophages, dendritic cells, B cells), and other somatic cells. When cells of the innate 

immune system (neutrophiles, monocytes, macrophages) encounter foreign microorganisms, the 

Toll-like receptors are stimulated, and IL-6 is secreted to activate the immune system.56 General 

secretion of IL-6 promotes secretion of other acute-phase inflammatory proteins from somatic 

cells during viral, bacterial, and parasitic infections. IL-6 secretion induced by the interleukin IL-

12 leads to proliferation of T-helper 1 cells; IL-6 secretion induced by IL-4 leads to proliferation 

of T-helper 2 cells, and local IL-6 secretion induced by IL-1 in the brain endothelial cells results 

in a fever.57 Simply speaking, IL-6 is one of the main warning signals that indicates an 

emergency in the body has occurred (foreign microorganism in a cut, tissue damage, burn, 

trauma, or other stimuli) and begins to promote inflammation and healing by inducing several, 

interwoven, downstream functions.58 IL-6 is a great first line of defense to activate the immune 

system, but IL-6 dysregulation can become fatal. There are several other cytokines with 

important functions that work synergistically and antagonistically to cultivate an appropriate and 

balanced immune response.  

Chemokines are a subclass of cytokines that exhibit chemotactic activity.53,54 Chemotaxis 

is when cells or other organisms move due to a chemical concentration gradient or stimulus. The 

most studied role of chemokines is to stimulate and migrate leukocytes to local sites of infection; 

however, they can also induce cellular proliferation, survival, and differentiation and stimulate 

secretion of other cytokines.59 Various structural differences in chemokines determine which cell 

types they recruit. The migration and recruitment of immune cells, specifically leukocytes, is of 
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great importance to a successful immunological response in various disease states, but 

dysregulation or unchecked secretion of chemokines can contribute to a cytokine storm and 

adverse health events.  

A cytokine storm refers to the abnormal production of cytokines and inflammatory 

proteins.60,61 Moderate cytokine storms are typical in patients with chronic neurodegeneration, 

leading to unresolved inflammation in the brain and changes in mood and executive function.62 

A major, unchecked inflammatory reaction can lead to systemic inflammation, multi-organ 

failure, septic shock, and a life-threatening health emergency. Detrimental cytokine storms were 

of interest during the COVID-19 pandemic, as a handful of infected individuals were severely 

affected by the host inflammatory response. Concentrations of key cytokines and chemokines, 

such as IL-6, TNF-α, IFN-γ, IP-10, CCL2, and IL-10, were severely altered and the 

dysregulation, especially in immunocompromised, elderly, and predisposed patients, led to 

pneumonia, ARDS, and multi-organ damage.63 Cytokines were associated with disease 

severity,64 allowing their profiles to be used in diagnostic, prognostic, response, and monitoring 

applications. Additionally, cytokines were targets for therapeutics with their concentrations 

evaluated for treatment efficacy.65 A cytokine storm is not specific to coronavirus infection and 

can occur due to excessive immune responses brought on by infectious diseases, autoimmune 

diseases, immunotherapies, or organ transplants.66,67 Sepsis results from the dysregulated host 

response of a cytokine storm and is a severe clinical syndrome.68 The detection of cytokine 

responses to various diseases and conditions is of increasing importance for disease diagnosis, 

prognosis, and management.  

1.6.2 Cytokines in this dissertation by function 
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Pro-inflammatory cytokines are involved in the upregulation of an inflammatory response 

and are mainly secreted by macrophages but can be produced by several cell types.54 Pro-

inflammatory cytokines employed in this thesis include interleukins IL-1β, IL-6, and IL-17, 

tumor necrosis factor TNF-α, and chemokines CCL2, CCL3, CCL4, CCL8, IL-8, and IP-10. 

Anti-inflammatory cytokines are immunoregulatory molecules that inhibit cytokine production 

and other functions aimed at avoiding adverse events associated with the extreme or sustained 

pro-inflammatory response.69 Anti-inflammatory cytokines employed in this thesis include 

interleukins IL-6 and IL-10 and tumor necrosis factor TNF-α. Not all cytokines are classified as 

pro- or anti-inflammatory and have other functions, such as antiviral activity, signaling, or 

inducing cellular maturation. In this thesis, these cytokines include interleukins IL-2 and IL-15 

and interferon IFN-γ. A short, global description of the main functions for each cytokine follows. 

1.6.2.1 Pro-inflammatory cytokines 

Interleukin IL-1β is a fundamental, initial upregulator of the acute phase response. It 

stimulates T cell activation through induction of cytokines, chemokines, and their receptors, 

plays a role in B cell proliferation, increases natural killer cell cytotoxicity, and induces fever.53 

Interleukin IL-17, specifically IL-17A, is expressed only by activated T cells. Its functional role 

is to increase the expression of other cytokines, such as IL-6 and IL-8, and it has been linked to 

airway inflammation in allergic responses.53,70 The chemokines in our studies are inflammatory 

chemokines which guide cells to sites of active infection, rather than homeostatic chemokines 

which deploy cells to their correct locations in the body. CCL2, CCL3, CCL4, and CCL8 attract 

T cells, natural killer cells, dendritic cells, and monocytes. CCL2, CCL3, and CCL8 additionally 

attract basophils. IL-8 attracts neutrophils and naïve T cells, and IP-10 attracts T cells, natural 

killer cells, and monocytes.53  
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1.6.2.2 Anti-inflammatory cytokines 

The only stand-alone anti-inflammatory cytokine in our studies is IL-10. IL-10 is secreted 

by several cell types with a primary role of inhibiting the inflammatory response. It is known to 

inhibit cytokine production, including IL-2, IFN-γ, TNF-α, IL-6, IL-8, and CCL2, and suppress 

macrophage functions.53,69 Concentrations of IL-10 inhibit T-cell proliferation and disrupt cell 

surface expression. IL-10 is the most important anti-inflammatory cytokine, and, similar to IL-6 

and TNF-α, dysregulation can lead to an unbalanced immune response and the onset of adverse 

events.  

1.6.2.3 Pro- and anti-inflammatory cytokines 

Two of the most important cytokines in the acute phase response are IL-6 and TNF-α, as 

they initiate a pro-inflammatory response and regulate that response through anti-inflammatory 

functions. The role of IL-6 is integral to the pro-inflammatory acute phase response and cellular 

differentiation, as discussed above, but it also has anti-inflammatory functions through 

downregulation of TNF and inhibition of proinflammatory cytokines GM-CSF, MIP-2, and IFN-

γ. TNF-α is secreted by several cell types, and along with IL-1β and IL-6, plays a central role in 

acute phase pro-inflammatory response through induction of cytokine secretion and activation of 

macrophages for phagocytosis; it also has antiviral, tumor cytotoxic, and chemotactic 

functions.53 TNF-α aids in regulation of the cytokines and other proteins during the acute phase 

response, giving it anti-inflammatory functions. 

1.6.2.4 Uncategorized cytokines 

IFN-γ is secreted by T-cells and natural killer cells. It increases the efficiency of the pro-

inflammatory response through activation of macrophages and plays a critical role in viral 

clearance through inhibition of viral replication.71 IFN-γ is the primary cytokine for 
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differentiation of type 1 T helper cells through a positive feedback loop, while suppressing type 2 

T helper cells.53 Interleukin IL-2 is secreted by type 1 T helper cells and plays a partner role to 

increase the efficiency of cellular function. It is a fundamental upregulator of the adaptive 

immune system, increases proliferation of both T- and B-cells, amplifies natural killer cell 

toxicity, and enhances anti-tumor and antimicrobial responses by monocytes and macrophages.53 

Interleukin IL-15 is secreted by several cell types and acts similar to IL-2 by mainly inducing 

proliferation of B and T-cells and cytokine production.53 It enhances cytotoxic functions of 

natural killer cells, localizes T-cells, and stimulates growth of the intestinal epithelium. 

1.7 Cytokines as non-specific biomarkers in infectious diseases 

Infectious diseases are illnesses caused by pathogens outside of the body; they can be 

viral, bacterial, fungal, or parasitic.72 Viral infectious disease examples include COVID-19, 

influenza, the common cold, norovirus, and viral hemorrhagic fevers, such as Ebola virus and 

Marburg virus. Examples of bacterial infectious diseases include strep throat, tuberculosis, 

urinary tract infections, pneumonia, and Clostridioides difficile. Fungal infections diseases 

include ringworm, vaginal yeast infections, thrush, and candidiasis, and parasitic infectious 

diseases include hookworms, giardiasis, Chagas disease, and malaria. Infectious diseases can be 

spread through bodily fluids, surfaces, food, water, or animal bites, among other modes of 

transmission. Symptoms of these infections vary, and treatment can range from rest and over-

the-counter anti-inflammatory drugs to hospitalization and multi-month antibiotic treatment 

regimes. Vaccinations targeting infectious disease reduce the recipient’s risk of getting severely 

ill by priming the immune system. 

As described in the previous section, cytokines and chemokines possess critical roles in 

the inflammatory responses to infections, tissue damage, and other events; therefore, they have 



 21 

been studied as biomarkers in many infectious and non-infectious disease states. Many 

challenges block the development and implementation of cytokine measurement assays. One of 

the more difficult aspects harkens back to their identity as host inflammatory proteins. They are 

inherently nonspecific to an individual infection and vary from person to person based on the 

functionality of their baseline immune system. Validating cytokines as biomarkers requires large 

populations of diverse patients to confidently state that the concentrations, rates of change, or 

signatures are specific to the disease state and not due to other inflammatory-based confounders. 

The transient nature of cytokine concentrations can be advantageous for capturing an 

inflammatory event at a specific timepoint but unfavorable in that those concentrations can be 

specific to the individual’s immune response or change drastically before sample can be 

collected.73 The generally low concentration (picogram/milliliter, pg/mL) of cytokines in plasma 

and serum requires sensitive analytical techniques to detect a difference between baseline and 

elevated levels. Additionally, cytokine detection assays have a lack of standardization across 

different platforms and often provide relative quantification instead of the absolute values; this 

makes cross-platform comparisons difficult.73 The cytokine network is complex, and multiple 

cytokines need to be measured simultaneously to afford a broad picture of a patient’s immune 

system for personalized management of infections. Therefore, development and deployment of 

multiplexed cytokine detection assays for infectious disease management is an ongoing area of 

research and development. 

1.8 Multiplexed assays for cytokine detection 

The conventional enzyme-linked immunosorbent assay (ELISA) has been used for 

protein biomarker detection and quantitation for decades.74,75 In a common, sandwich-style 

ELISA, capture antibodies specific to the target of interest are covalently bound to the surface of 
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individual wells in a 96-well plate (Figure 1.3A). The plates are incubated overnight and 

blocked to prevent non-specific binding. The sample of interest is incubated in the well for 90 

minutes, and the wells are manually washed to remove unbound material. The wash is followed 

by introduction of a detection antibody specific to the analyte of interest, which is incubated for 

two hours and then manually washed away. The next step includes a secondary antibody 

conjugated to an enzyme that binds the detection antibody while incubating for one to two hours. 

Another manual wash is followed by detection substrate, and the absorbance of the well is 

correlated to analyte concentration using on-plate standards (Figure 1.3B).  

While a useful technique for quantitation of protein analytes, an ELISA method takes 

over 18 hours to complete, relies on many manual pipetting steps, and requires on-plate 

standards for each analyte. Plate-based ELISAs are an endpoint only technique, meaning usable 

information is produced only after 18 hours pass. Additionally, they are inherently single-plex, as 

there would be no way to determine how much absorbance signal resulted from each target if 

multiple captures were linked in one well. For analysis of multiple analytes in one sample, 

multiple wells will need to be used, which increases the required sample volume, increases the 

number of wells needed for on-plate standards, and decreases sample throughput. The detection 

principles of sandwich ELISAs have been heavily utilized in assays with multiplexing 

capabilities. 

1.8.1 Ella Simple Plex automated ELISA platform 

Bio-Techne has developed Ella, an automated “Simple Plex” ELISA platform, that uses 

microfluidic circuits patterned into cartridges to create multiplexed cartridges (Figure 1.4A).76 

The samples need to be manually loaded on the cartridge, but after insertion into the benchtop 

instrument (Figure 1.4B), the remaining steps are fully automated. The sample flows through 
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glass nanoreactor segments that are coated with the capture antibody of interest. Buffer rinses 

remove unbound material, and a labeled detection antibody is flowed through, followed by a 

conjugated fluorescent molecule that elicits a signal for each sandwich complex. The nanoreactor 

is imaged at three different spots for technical replicates. Parallel channels are patterned into the 

device to analyze up to eight biomarkers in one cartridge, and calibration standards are pre-

loaded into each cartridge. Current panels include two 8-plex cytokine and chemokine panels and 

a 4-plex cytokine storm specific panel. The Ella platform requires a sample volume of 25 

microliters (μL), takes 75 minutes from sample introduction to readout, requires minimal manual 

work, accommodates multiple cartridges at one time, and offers customization. This system 

mitigates many of the plate-based ELISA problems, but it is still an endpoint only technique, and 

the spatial multiplexing layout limits high-plexity possibilities.  

1.8.2 Luminex bead-based barcoding platform 

A widely used, commercialized multiplexed cytokine assay is the Luminex bead-based 

assay.77 Magnetic microparticle beads are fabricated with various ratios of red dye and infrared 

dye in up to 50 unique combinations that each fall in a unique area on the fluorescent spectrum. 

Each different bead is coated with unique antibodies for a specific analyte and multiplexed with 

all targets in a panel for a multiplexed assay (Figure 1.5A). The antibody-coated bead mixture is 

incubated for three hours with just 50 μL of the sample in a 96-well plate. The wells are 

manually washed, and a cocktail of biotinylated detection antibodies is incubated in the wells for 

an hour to form a sandwich complex with the antibody-coated bead and analyte (Figure 1.5B). 

After another manual wash step, the wells are incubated with phycoerythrin conjugated 

streptavidin for 30 minutes. A final wash step is performed, the beads are resuspended, and the 

well plate is placed into the Luminex instrument.  
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The beads from each well are analyzed using a dual-laser flow-based detection scheme 

where the beads are flowed past two lasers (Figure 1.5B).78 One laser uses the unique dye 

combination to identify which target is associated with that specific bead, while the second laser 

measures signal from the phycoerythrin, which correlates through the standard curve to the 

analyte concentration. The Luminex technology is highly multiplexable, as the current cytokine 

panel measures 46 targets with limits of detection in the pg/mL range. The Luminex 

instrumentation is compatible with any bead-based detection kit. Thus, many companies produce 

multiplexed detection kits for use on the Luminex platform with analytes ranging from cytokines 

and growth factors to cancer specific biomarkers and kidney function markers with the option to 

build custom panels. Each sample and standard are suggested to be analyzed in duplicate, 

allowing for 30-40 unique samples at one dilution or 15-20 samples at two dilutions to be 

assessed per plate. 

While there are many advantages for using the Luminex platform for multiplexed 

cytokine detection, there are drawbacks of this plate-based technique. The assay steps all the way 

until readout are still prone to the drawbacks of a traditional ELISA, including sample loss from 

manual wash steps, over five hours of incubation and hands-on time, weak off-target interactions 

produced during stagnant incubations, requirement of on-plate standards for every plate and 

instrument run, and it is an endpoint only technique with no information gleaned until after at 

least five hours. 

1.8.3 Quanterix array- and bead-based assays  

Quanterix digital ELISA platform uses single molecule array (Simoa) bead-based assays 

to achieve ultra-sensitive detection in the femtogram range and multiplexing capabilities of up to 

four targets simultaneously in the commercialized kits.79 Magnetic beads coated with antibodies 
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specific to the target of interest are incubated for 30 minutes with the sample and biotinylated 

detection antibodies to form the sandwich motif in solution (Figure 1.6A). At low 

concentrations, a ratio of one protein per bead is a possibility, with some beads containing no 

bound protein. At high concentrations, multiple sandwich motifs are formed per bead and most 

beads will have one or more proteins bound. Beta-galactosidase conjugated streptavidin is 

incubated in solution for five minutes to enzymatically tag each sandwich motif. The sample is 

loaded into a disc-shaped array containing over 200,000 microwells. Each microwell has a 

capacity of around one femtoliter, which is just large enough for a single magnetic bead. A 

fluorescent substrate is added to catalyze an enzymatic reaction at each tagged sandwich motif. 

The spatial separation and fluorescent readout allow for ultra-sensitive detection of one protein 

per bead in a high-throughput manor. 

The current menus of commercialized tests from Quanterix are primarily single-plex and 

include cytokines, HIV-specific proteins, SARS-CoV-2 specific targets, and neurological based 

target panels. The fully automated instrumentation increases consistency between samples and 

allows for a laboratory technician to simply add the samples into the sample holder, input reagent 

kits, select the method, and return when the full assay is completed. Approximately 55 μL of 

sample are required per replicate, with at least duplicate measurements suggested. Multiple 

replicates of the same sample can be taken from the same well, given approximately 55 μL is 

present per desired replicate, which still allows for up to 88 samples to be analyzed at one 

dilution, or 44 samples to be analyzed at two dilutions, per 96-well plate. Quantitation through 

fluorescence signal can be completed for some commercialized kits, as 8-point calibration 

standards are suggested to be run with each sample analyses. Some kits are non-quantitative, and 

results are only focused on the presence of the biomarker.  



 26 

Similar to Luminex, the beads can be dyed to encode bead identity to a specific target and 

then decoded during multiplexed analysis. The extremely low limit of detection is the mainstay 

of this technique, but the ultra-sensitivity leads to high chances of signal cross-over when 

multiplexing different beads. Thus, a maximum of four target multiplexed panels are currently 

commercialized, and none of them include cytokines. Another drawback of the Quanterix 

technology is that it is still an endpoint only technique, so information from individual steps 

cannot be used and errors in the reagents or protocols may not be known until analysis is 

complete. 

Quanterix has more recently developed a planar array technology that is more 

reminiscent of a multiplexed plate-based ELISA, but it is amenable to multiplexing up to twelve 

analytes.79 Nano deposition technology precisely places capture antibodies in twelve discrete 

spots on the surface of a single well (Figure 1.6B). Fifty microliters of sample are added to each 

well, and the plate is shaken for two hours. The plate movement creates a vortex to increase the 

interactions of target analytes and the surface deposited capture antibodies as opposed to 

stagnant techniques. After a manual wash, biotinylated detection antibodies are added and 

incubated with shaking for 30 minutes. The plate is again manually washed, followed by addition 

of horse-radish peroxidase conjugated streptavidin and incubation with shaking for 30 minutes. 

After a final manual wash, a signal substrate is added to generate a chemiluminescent signal, and 

the wells are imaged through the bottom of the plate within 10 minutes. The imaging process on 

the Quanterix instrument takes approximately 2 minutes and is guided by machine learning and 

artificial intelligence. It includes analysis of multiple exposures to ensure a broad dynamic range 

and low limits of detection across all analytes in the multiplexed system. 
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The current commercialized kits include a 10-plex cytokine panel and 4-plex chemokine 

panel. The use of different exposures is a great way to ensure appropriate dynamic ranges are 

achieved for each of the multiplexed cytokines, and the shaking protocol increases desired 

interactions and minimizes weak, non-specific interactions. However, the method requires 

manual wash and sample administration steps, the multiplexed plate kits and imager are specific 

to Quanterix, and it is an endpoint only technique. With on-plate standards required for every 

plate and duplicates using double the number of wells, 30-40 unique samples at one dilution or 

15-20 samples at two dilutions can be assessed per plate. 

ALPCO has also been developing these multiplexed, plate-based ELISA platform with 

patterned spots of different capture antibodies within a single well.80 The ALPCO multiplexed 

biomarker kits are designed to be used with the DYNEX fully automated ELISA instrument. 

This takes advantage of the multiplexed capabilities of the Quanterix method with a similar 

throughput while eliminating the disadvantages associated with manual plate and reagent 

handling. Currently, ALPCO produces a 5-plex assay with gastrointestinal biomarkers but has no 

cytokine-based kits.  

1.8.4 Comparing Ella Simple Plex automated ELISA, Luminex bead-based assays, and 

Quanterix Simoa and planar array assays 

Each of these three commercialized assay platforms aims to improve the conventional 

plate based ELISAs in regard to speed, reagent handling, plexity and/or sample volume. All four 

decrease the time to result (two to five hours), decrease sample volume (all less than 100 μL), 

and increase the multiplexing capabilities. The Luminex instrument comes out on top in 

multiplexing capabilities, with current commercialized assays of 46 cytokines dramatically 

higher than 8-plex in Ella, single-plex Quanterix Simoa assays, and 10-plex in Quanterix planar 
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array assays. However, the two highest plexity assays, Luminex and Quanterix planar assays, 

still require manual handling for washing the well plate and introducing new reagents. The Ella 

platform and Quanterix Simoa assays are nearly fully automated, outside of sample preparation. 

Each method has calibration standards engineered into the workflow, but the plate-based 

techniques require on-plate standards in duplicate wells. All methods are still endpoint only 

techniques, leading to unnoticed intra assay errors and ignorance regarding assay successes until 

method completion.  

A drawback of all multiplexed or non-ELISA assays in cytokine profiling is that the 

quantitation of absolute biomarker concentrations can be substantially different from the ‘gold 

standard’ ELISA, but they can still demonstrate good correlation or relative concentrations from 

analyte to analyte.81 The differences in absolute concentrations can be attributed to variations in 

liquid handling leading to different interaction efficiencies, variations in what antibodies or other 

reagents are used, or variation in sample dilution schemas for analysis. Therefore, comparing 

absolute cytokine concentrations across platforms can be difficult. This can be mitigated by 

using a single technique and platform across studies. Furthermore, focusing on trends and 

comparisons rather than absolute values and establishing systemic bias when comparing cross-

vendor assay results can help lessen the expected variation. 

1.9 Silicon photonic microring resonators as a sensing platform 

The microring resonator sensing platform employed in this thesis was developed by 

Genalyte, Inc., a biotechnology company co-founded by Professor Ryan Bailey that uses optical 

whispering-gallery-mode (WGM) microcavity technology in a biomarker sensing platform. 

WGM microcavities confine light within precision fabricated microstructures. Near-total internal 

reflection of the light occurs between the microcavity structure and the surroundings and, in 
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tandem with an appropriate optical coupler, an evanescent field extends from the excited 

microcavity into the surrounding area. Disturbance or perturbations to the evanescent field 

results in a change in how the light interacts with the microstructure. Different WGM geometries 

include microrings, microbubbles, microspheres, and microtoroids.  

1.9.1 Evanescent field sensing in microring resonators 

Chip-integrated, silicon photonic microring resonators have emerged as the most 

promising WGM sensing format for biosensing applications due to advantages in scalability, 

multiplexing potential, and standardized fabrication.83 This technology has been commercialized 

by Genalyte, Inc. using a 4x6 mm silicon-on-insulator substrate with 128, 30 µm diameter 

sensors per chip (Figure 1.7A).84–86 An additional advantage of silicon photonic microrings is 

the ability to easily optically interrogate sensors using chip-integrated grating couplers 

positioned in a critical coupling condition to access waveguides adjacent to the microrings.  

Light from a tunable, external cavity laser propagates through linear waveguides under 

total internal reflection (TIR) and wavelengths that satisfy the resonance condition couple into 

the microring. The TIR creates an evanescent field that extends from the sensor surface into the 

adjacent sensing region, with an intensity that decays exponentially from the sensor surface.87,88 

The resulting evanescent field is sensitive to local changes in the refractive index of the exposed 

cavity in which it propagates, causing the resonant wavelength to shift in response to 

biomolecular binding-induced changes in refractive index (Figure 1.7B), according to the 

following equation: 

𝜆 =
2𝜋𝑟
𝑚 𝑛!"" 

where r is the microring radius, m is an integer, and 𝑛!"" is the effective refractive index.89,90 

The commercial system enables the resonance wavelength of each ring on the chip to be read out 
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quickly by rastering the laser across different input grating couplers.85,86 One key element of 

these chips is that thermal control rings, which are covered by an inert cladding material and 

unexposed to the sensing solution, allow for correction of resonance drifts due to temperature 

fluctuations.91 

1.9.2 Biomarker detection on microring resonators using sandwich ELISA-style methods 

Refractive index sensors have the attribute that they are “universal” and can detect any 

change in local refractive index irrespective of molecular structure. The downside to universality 

is that the sensors inherently lack specificity. Therefore, in order to detect specific biomarkers of 

interest, resonators must be modified with analyte-specific capture agents, such as antibodies,92,93 

antibody fragments,94 or complementary nucleic acids through straightforward silane and 

bioconjugate linking chemistries.95,96 Our lab has used microring resonators for label-free 

detection of targets, including nucleic acids,97,98 viruses,99 proteins,92,100 nanodiscs,101 and 

telomerase activity.102 While label-free detection has upsides of simplicity and rapidity, there is a 

lack of specificity due to non-specific adsorption of molecules from complex matrices and bulk 

refractive index changes from biologic samples. Label-free detection is also limited by the 

binding affinity of the capture agent, which can sometimes result in limits of detection above 

what is required to be of analytical utility. 

As an alternative to label-free detection, additional assay reagents may be incorporated to 

increase the per-analyte refractive index change, providing increased analyte selectivity and 

improved limits of detection and sensitivity. Such reagents include secondary (tracer) 

antibodies,100,103,104 and (sub-)micron-scale beads.93,105 Furthermore, secondary reagents can 

include enzymatic tags that can create extremely large per-analyte resonance shifts, allowing 

sub-pg/mL limits of detection for proteins.100,106  
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The assays employed in this thesis use sandwich ELISA sensing principles for protein 

quantitation (Figure 1.7C). Microring fabricated sensor chips functionalized with analyte-

specific capture antibodies localize the target molecule in a sample or standard mixture to the 

microring surface. A biotinylated tracer, or detection, antibody is then introduced to form the 

sandwich complex. Importantly, this second antibody provides high specificity for the targeted 

analyte because two high affinity interactions are now localized near the microring surface. A 

tertiary recognition molecule of horse-radish peroxidase conjugated streptavidin binds to the 

biotin. Finally, 4-chloro-1-napthol is used as an amplification reagent, as its reaction with the 

localized horse-radish peroxidase results in biocatalytic precipitation. The insoluble precipitate 

that is deposited at the microring surface leads to extremely large resonance wavelength shifts 

that are proportional to the amount of target in the sample.75,107 The instrument used in this thesis 

uses fully automated microfluidic handling of the reagents across the chips surface and an 

automated buffer washing step is programmed between each reagent to ensure removal of weak, 

non-specific interactions to decrease background noise and off-target responses. 

1.9.3 Multiplexed analyte detection and calibration 

For multiplexed analyses, each capture agent-analyte-biotinylated antibody sandwich 

complex must be optimized individually for the described assay. The concentration of analyte 

and tracer reagent that results in a saturating signal must be determined and then titrated down to 

levels below the limit of detection to ensure a calibration can be constructed. The target must 

then be validated in the complex biologic matrix (serum, plasma, whole blood, urine, etc.) to 

ensure a similar response as in buffer. Once each target in a proposed panel is individually 

optimized, cross-reactivity experiments are imperative to ensure no false positive results. Cross-

reactivity experiments are conducted by analyzing each individual analyte-biotinylated antibody 
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pair across all capture antibodies in the panel to ensure only the capture antibodies specific to the 

analyte-biotinylated antibody pair result in a significant response.  

Once targets are individually calibrated and there is deemed to be no cross-reactivity in 

the panel, a cocktail of proteins and a cocktail of biotinylated tracers for all targets in the panel 

can be used to generate a simultaneous multiplexed calibration. Since antibody affinities and 

susceptibility to non-specific responses can be antibody- and target-specific, calibrations for each 

specific analyte must be used to quantify that analyte. Additionally, for our work, calibrations 

must be conducted for each batch of spotted sensor decks to account for any minute variability in 

the spotting procedure or reagent lots. 

1.9.4 Quantitation of microring resonator responses 

For the sandwich-style method with biocatalytic amplification described above, the net 

shift in resonance wavelength is typically recorded before and after the signal enhancement step 

to provide quantitation. An eight-point series of analyte standards are analyzed to characterize 

the concentration-versus-response relationship within each sensor chip batch. Data is then fit 

using a four parametric curve, akin to a traditional ELISA: 

𝑦 = #!$#"

%&' ##$
(
% + 𝐴) 

where y (pm) is the response at concentration x (pM), A1 is the initial value (Δpm), A2 is the final 

value (Δpm), x0 is the inflection point of the curve (pM), and p is the power parameter affecting 

the slope fit of the linear portion of the curve.95 The resulting fit values for A1, A2, x0, and p can 

be used in conjunction with the net shift in an unknown sample to calculate the concentration of 

analyte present, as well as statistically establishing limits of detection and quantification.  

1.9.5 Limitations of microring resonators as a sensing platform 
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There are three major sources of measurement noise when dealing with WGM sensors.108 

The first is noise associated with non-optimized optical coupling from the interrogation 

waveguide into the resonator, though this can be solved through engineering controls, which 

includes physically anchoring the linear waveguide onto the resonator-containing chip. Another 

significant potential source of noise is thermal fluctuations. The materials systems of the 

resonator and surrounding environment have different thermooptical coefficients, so their 

refractive indices do not move in unison when the temperature across the chip varies even by 

very small amounts. Genalyte, Inc.’s silicon chips integrate thermal control sensors that are 

irresponsive to biochemical binding events yet are exposed to the same temperature fluctuations. 

Finally, the most challenging source of noise for biosensing is biological. When flowing 

solutions containing biomolecular targets of interest, other biochemicals are present and produce 

an inherent background of resonance wavelength fluctuation due to either bulk refractive index 

changes or non-specifically bound molecules. The levels of these non-specific responses can 

vary widely among samples—particularly patient-derived samples. Therefore, in many practical 

applications, the ability to determine resonance wavelength shifts is limited by thermal and 

biological noise considerations compared to optical performance, which means that higher Q-

factors, while theoretically providing better sensitivity, often do not yield enhanced performance 

for biological assays.   

Non-specific adsorption refers to the adhesion of non-targeted proteins to the surface of 

the sensor, regardless of surface functionalization. This can cause resonance shifts and lead to a 

false positive result. To mitigate these issues, the surface should be blocked prior to sensing with 

buffer containing an agent such as bovine serum albumin to reach an equilibrium on the surface 

of the sensor and prevent the non-specific interactions from exogenous proteins. Additives to the 
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buffer, such as the detergent Tween, can further aid in preparing the surface. Furthermore, the 

sensor itself can be functionalized with antifouling elements, such as polymeric scaffolds.109 It 

has been reported that surface modification with zwitterionic polymer conjugates110 can reduce 

the bulk shift caused by the complex matrices, allowing for label-free assays in human samples; 

however, it is unclear if even the best surface modification can minimize non-specific binding to 

the point that its contribution to signal can be ignored relative to the targeted biomolecule.111 

An additional consideration for performing sensing with evanescent wave-based 

technologies is to understand the nature of the chemical and biological moieties necessary to 

bind analytes to the sensor surface. For example, the 1/e decay length for silicon photonic 

sensors is 63 nm,87 which means that the biochemical binding events must be confined within 

this most sensitive region of the device. 

1.9.6 Genalyte, Inc. microring resonator technology provides real time results of up to 16 

biomarkers in 45 minutes. 

The cytokine detection assays employed through this thesis have not been 

commercialized and have been developed and used to achieve pg/mL range detection limits 

within the Bailey Lab. The current commercialized assay panels are focused on multiplexed 

general clinical chemistry, lipid, metabolic, and serology panels.84 The assay method described 

above was employed in many chapters of this thesis and is detailed for the respective assay 

within the chapters. The assay time on the Genalyte Matchbox instrument was 45 minutes per 

sample, which included five minutes of a pre-assay buffer rinse to equilibrate the chip surface 

and 40 minutes of the assay steps with buffer washes between each.  

In comparison to the Ella Simple Plex automated ELISA, Luminex bead-based assays, 

and Quanterix Simoa and planar array assays, the microring resonator technology minimizes 
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many of the downfalls. The assay is fully automated for all sample steps including buffer 

washes, unlike the Luminex and Quanterix planar array assays. The possibility of 16-plex 

cytokine assays, each with four technical replicates, outcompetes the Ella automated ELISA and 

both Quanterix cytokine assays. The throughput in the Luminex and Quanterix platforms is 

greater than the microring Matchbox platform. Multiple patient samples (range of 20-80) can be 

analyzed per plate (range 3-5 hours) in those platforms compared to two samples, or one sample 

at two dilutions, every 45 minutes using our platform. This would equate to approximately 5-6 

patients at two dilutions in the 3-5 hours. Newer instrumentation models from Genalyte, Inc. 

incorporate more sensing and optical elements to simultaneously measure multiple chips at once, 

increasing the throughput.  

Unique to the microring resonator platform is that it is the only method of these 

commercialized instruments that is not an endpoint only technique. The resonant wavelength is 

tracked over the course of the assay in near real time, allowing a constant monitoring of the 

refractive index change. It is advantageous to monitor the expected profiles of each assay step to 

ensure the reagents are of proper quality and identify unexpected errors in the assay that may not 

be identified with the endpoint result. For example, a clogged microfluidic line in one channel 

can reduce the amount of sample or reagent that reaches the capture antibodies on the 

microrings. However, if the clog dislodges mid-sample run, the remaining reagents can still flow 

across the chip and a signal will result. Without knowing that a clog was present during a part of 

the assay, the signal would be taken as the unobstructed result even though the signal is likely 

artificially low. Additionally, the profiles of the individual assay steps have been used to identify 

which reagent (standards, tracer antibodies, streptavidin conjugate, amplification reagent) had 
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gone bad when the expected profiles in a standard curve did not match prior data. Endpoint only 

techniques cannot provide this level of insight into the individual assay steps and reagent quality.  

1.10 Dissertation Summary 

The themes presented in this introduction include biomarker subclasses, cytokines and 

chemokines, and multiplexed protein assays. These topics that span across the multiple projects 

and disease states explored through this thesis. Chapter two is an in-depth protocol of how to 

optimize, validate, and employ multiplexed biomarker assays on the Genalyte, Inc. Matchbox 

platform. The protocol describes the procedures for functionalizing the sensor chips with 

multiple capture antibodies, the sample and calibration preparation process, and how to run the 

Matchbox instrument. Additionally, the chapter covers step-by-step instructions on analyzing 

data, the reasoning behind each step in the data work-up process, and common pitfalls and 

associated solutions. While this chapter was written within the context of building an Ebola virus 

diagnostic assay that was employed in the following chapter, the processes and procedures were 

followed for development and employment of the cytokine assays used in later chapters. Chapter 

three focuses on the successful development of a two-plex assay using diagnostic and prognostic 

biomarkers of the infectious diseases caused by Ebola and Sudan viruses. The two-plex 

sandwich-style protein detection assay was optimized and validated for cross-reactivity and 

detection in serum matrices. The assay was then applied in non-human primate serum specimen, 

in which the ebolavirus biomarker was successfully detected in a clinically relevant population.  

Chapter four forays into identifying potential monitoring and response biomarkers for 

preterm neonates exposed to a maternal inflammation. A seven-plex cytokine and chemokine 

protein biomarker assay was employed in nearly 400 samples collected from 61 preterm 

neonates over their stay in the neonatal intensive care unit. The data presented provides insight 
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into the variation in the innate immune systems of preterm neonates in general and identifies 

differences in trends between an exposed group and an unexposed group, leading to potential 

response biomarkers. The chapter includes examples of longitudinal biomarker profiles that 

show the promise of cytokines and chemokines as monitoring biomarkers, and even potentially 

prognostic biomarkers.  

Chapters five and six switch focus to development and validation of a multiplexed 

cytokine and chemokine biomarker panel to diagnose a bacterial infectious disease, latent 

tuberculosis infection, and classify a patient’s risk of reactivation from latent to active disease. A 

13-plex cytokine and chemokine biomarker assay was employed in over 550 patient samples. 

The measured concentrations were coupled with random forest machine learning algorithms to 

build diagnostic biomarker signatures to classify latency status and prognostic biomarker 

signatures to classify risk of reactivation. Chapter five specifically explores similarities and 

differences between two patient cohorts that were analyzed by different teams under the same 

procedures. We report that the two cohorts produce similar diagnostic accuracies for 

classification of latently infected patients and high overlap between the most important 

biomarkers for classification. Additionally, we discuss the statistically similar cytokine and 

chemokine concentrations across two tuberculosis-specific antigen stimulations in the 

QuantiFERON diagnostic test kit. Chapter six focuses on results from a large cohort of over 550 

plasma samples, which includes merged data from the two cohorts discussed in chapter five. We 

have achieved an accuracy of 87% to classify latently infected individuals from non-infected 

individuals and identified IP-10, IL-2, and CCL8 as important cytokines for this differentiation. 

Within the latently infected population, we aimed to classify the patients as high risk or low risk 

of reactivation from latent to active disease phase and achieved accuracies of 81% for both 
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classification models. Important biomarkers for risk discrimination included IL-10 and IL-2. 

Results from these projects demonstrate successful incorporation of the microring resonator 

platform into a clinically relevant tuberculosis detection workflow. This work aims to improve 

latent tuberculosis diagnostics, treatment of patients at a high risk of reactivation, and 

multiplexed biomarker discovery methods. 

Chapter seven summarizes the analytical considerations that have been noted over the 

course of using several multiplexed cytokine and chemokine sensor chip batches. Calibration 

parameter variation across and within multiple sensor chip batches is analyzed and discussed, as 

well as important considerations surrounding sample dilutions. Data from an ongoing sensor chip 

deck stability study is presented, and conclusions highlight that calibration variation and stability 

is more associated with biologic variation than sensor chip deficiencies. Finally, alternate assay 

methods on the microring resonator platform are explored to tailor the dynamic range of a 

specific chemokine, IL-8, towards developing methods that can measure cytokines and 

chemokines in clinically relevant ranges. Chapter eight concludes this thesis with a summary of 

three, short-term side projects and a discussion into proposed future work for all projects 

discussed in previous chapters. Future research directions that this thesis builds a strong 

foundation for including cytokine and chemokine biomarker profiling to identify host diagnostic, 

prognostic, or predictive biomarkers for viral hemorrhagic fevers and an expanded clinical study 

or incorporation of social determinants of health in latent tuberculosis diagnostic projects. 

Taken together, the work presented in the chapters of this thesis have potential impacts in 

diagnosis, prognosis, and clinical management of infectious diseases and in improving 

reproducibility and robustness of our assays. The quantitation of assay and target-specific 

variability will be important to the long-term clinical projects within our lab and have the 
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potential to impact decisions regarding target selection and sensor chip batch qualification to 

ensure robust sample processing. The Ebola virus project has shown the ability to detect an early 

biomarker of infection in clinically relevant matrices that could be used in an outbreak setting to 

both diagnose and prognose infection. Clinicians can use the levels of the biomarker to 

quarantine positive patients and allocate resources based on disease prognosis, armed with the 

information from this one assay. The results from the LTBI project have been justified across 

two individual cohorts and, when combined, have led to a method with high accuracy in LTBI 

diagnosis and stratification of risk of disease reactivation. Specifically, the risk assessment at 

time of initial evaluation can impact monitoring and treatment of LTBI positive individuals. 

Those at a high-risk can be monitored closely for symptoms and reactivation events can be 

captured sooner, effectively reducing the spread of TB through reactivation events. Those at a 

low-risk can be treated effectively, with a potential to reduce unnecessary antibiotic regimens 

and reduce prevalence of drug-resistant TB strains. The public health impacts from these 

diagnostic development projects are clear, and achieving the future directions presented in this 

thesis will bring these projects closer to implementation in relevant clinical settings.  
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1.11 Figures 

 

Figure 1.1 Summary of biomarker classifications by application. Diagnostic biomarkers (A) indicate specific 
diseases or distinguish disease states. Monitoring biomarkers (B) temporally measure the effects of disease, 
treatment, or exposure through repeated measurements to monitor status changes. Response biomarkers (C) measure 
a biologic response after an exposure or treatment. Predictive biomarkers (D) are indicative of an individual 
patient’s response to specific treatment or exposure. Prognostic biomarkers (E) provide information about the 
likelihood of an event or disease progression. Safety biomarkers (F) are a measurement of adverse effects before and 
after an exposure. Susceptibility biomarkers (G) indicate a healthy patient’s potential to progress to a disease.
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Figure 1.2 Diagram of cytokine cascade involving interferons, tumor necrosis factors, and interferon cytokine 
biomarkers. This diagram highlights the multi-functional aspects of many cytokines and how they can act upon the 
cells they are secreted from, as well as others. The bolded cytokines are ones used in this dissertation. This figure is 
adapted from Zhang and Ann and other cytokine cascade images, with cell color schemes based on Nature style.54   



 42 

 

Figure 1.3 Conventional sandwich style ELISA. Each well of a 96-well plate is coated with an antibody specific to 
the target of interest (A). Reagents for each individual assay step are added into the wells, with buffer washes 
between each step (B). The resulting absorbance signal after substrate addition is converted to concentration using 
on-plate standards. Only one analyte can be surveyed per well. Figure not drawn to scale. 



 43 

 

Figure 1.4 Simple-Plex Ella Platform. This commercialized sandwich ELISA platform uses microfluidic cartridges 
pre-loaded with assay reagents and standard reagents to complete an ELISA assay on up to eight targets in one 
cartridge. The sample is distributed into different channels for each unique target analyte, captured in the antibody-
coated glass nanoreactor, and detected with fluorescent signal (A). Black arrows indicate flow direction. The 
cartridge is loaded into a benchtop instrument, with multiple cartridges able to be analyzed in one run (B). Figure 
not drawn to scale. Figure reproduced and adapted from Bio-Techne website and instrument documents.76  
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Figure 1.5 Luminex multiplexed bead-based assay workflow. Wells of a 96-well plate are filled with a mixture of 
dyed magnetic beads each with a different antibody coated on the surface (A). Sandwich-style ELISA assay reagents 
are added consecutively and manually, with washes in between each step, similar to the conventional ELISA (B). 
The sandwich complexes are formed on the beads, which are then interrogated with two lasers, one for bead 
identification and one for signal magnitude, in the instrument. On-plate standards are used to convert signal to 
concentration for each of the up to 50 analytes. Figure not drawn to scale. Figure adapted from Luminex assay 
principles website through R&D.78  
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Figure 1.6 Quanterix Simoa bead and planar array technologies. In the fully automated Simoa assay, a cocktail of 
antibody coated beads, sample, and biotinylated detection antibodies are incubated in solution (A). After a buffer 
wash, a detection reagent is added, and the solution is deposited onto a microarray disc containing over 200,000 fL 
volume reaction wells. A single bead fits into a well and after substrate addition, fluorescence signal is detected. In 
the planar arrays, up to twelve capture antibodies are spatially deposited onto the surface of a single well (B). 
Sandwich-style ELISA assay reagents are added consecutively and manually, with washes in between each step, 
similar to the conventional ELISA. Chemiluminescent signal is detected in each individual antibody spot through 
the bottom of the well plate and converted to analyte concentration through on-plate standards. Figure not drawn to 
scale. Figure adapted from the Simoa technology webpage through Quanterix.79 
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Figure 1.7 Microring resonator multiplexed assay. The 128 individually addressable microring resonator sensors are 
arrayed over two microfluidic channels on a silicon chip (A). The rings are arraigned in clusters of four, allowing 
measurement of up to sixteen different targets with four technical replicates each, per channel. The resonant shift is 
reported in near real-time, allowing for inter-step data to be assessed (B). The fully automated reagent handling uses 
microfluidics to sequentially flow sandwich-style ELISA reagents, with buffer rinses between each step, over the 
microrings (C). The final step (4) is an amplification reaction that drastically shifts the resonant wavelength. Figure 
not drawn to scale. Figure adapted from original files submitted for Yu, D. et al.82  
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2.2 Abstract 

This protocol describes the use of silicon photonic microring resonator sensors for 

detection of Ebola virus (EBOV) and Sudan virus (SUDV) soluble glycoprotein (sGP). This 

protocol encompasses biosensor functionalization of silicon microring resonator chips, detection 

of protein biomarkers in sera, preparing calibration standards for analytical validation, and 

quantification of the results from these experiments. This protocol is readily adaptable toward 

other analytes, including cytokines, chemokines, nucleic acids, and viruses. For complete details 

on the use and execution of this protocol, please refer to Qavi and Meserve, et al. (2022).1 

2.3 Before You Begin 

 The protocol below describes the specific steps for detection of EBOV sGP and SUDV sGP 

using the microring resonator sensing platform. However, we have used this protocol for 

detection of varying cytokines,2 chemokines,3 nucleic acids,4 and viruses.5 Additionally, we have 

used this protocol for detection of cytokines and chemokines in clinical samples for precision 

medicine applications.6,7 

2.3.1 Institutional Permissions.  

All animal studies were performed under approval of the local IACUC committees. All work 

was performed in compliance with the Animal Welfare Act and other federal statutes and 

regulations relating to animals. The USARMIID is accredited by the Association for Assessment 

and Accreditation of Laboratory Animal Care, International (AAALAC) and adhere to principles 

stated in the Guide for the Care and Use of Laboratory Animals, National Research Council. 

2.3.2 Non-Human Primate Samples.  
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The collection of serum samples must be approved through appropriate Institutional Review 

Boards prior to any studies and be collected in accordance with local laws and regulations.  

2.3.3 Critical Point.  

Patient plasma samples carry risk of pathogens, not limited to hepatitis B (HBV), hepatitis C 

(HCV), and human immunodeficiency virus (HIV). Therefore, proper PPE must be utilized when 

handling any samples.8 

2.3.4 Antibody Desalting and Dilution 

Timing: 30 mins 

1. Desalt the stock capture antibody solutions to remove azide from the formulation. The 

Buffer Exchange Procedure in the package insert from Thermo Scientific was followed. 

a. Remove columns’ bottom closure and loosen cap. 

b. Place column in 1.5 mL collection tube and centrifuge at 1500 g for 1 min. 

Discard filtrate. 

c. Mark side of column where resin is slanted upward, place column in same 

orientation for each following spin. 

d. Add 300 µL of 1X PBS on top of resin bed, place back into 1.5 mL collection 

tube and centrifuge at 1500 g for 1 min. Discard filtrate. Repeat for a total of 3 

resin washes. 

e. Place column in new collection tube, pipette 50-100 µL of antibody on top of 

resin bed. 

f. Centrifuge at 1500 g for 2 mins and collect filtrate. 

https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0011522_Zeba_Spin_Desalt_Colomn_7K_MWCO_UG.pdf
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2. Measure the absorbance of the resulting filtrate from Step 1 at 280 nm using the 

Nanodrop1000 Spectrophotometer (Thermo Fisher Scientific) or equivalent. 

a. In the software panel, select Protein A280. 

b. Initialize the instrument by pipetting 1 µL of ultrapure water onto the 

measurement pedestal and initialize the software. 

c. Clean the pedestal with DI water and blank by pipetting 1 µL of 1X PBS onto the 

measurement pedestal. Click ‘Blank’ on the software. 

d. Clean the pedestal with DI water and pipette 1 µL of antibody sample onto the 

pedestal. Click ‘Measure Sample’ on the software. 

e. Record the mg/mL output. Repeat step 2d twice more and then calculate the 

average mg/mL. 

f. Dilute the filtered antibody solution to 0.5 mg/mL using 1X PBS, aliquot into 5 

μL aliquots and store at – 80 oC until use. 

2.3.5 Key Resources Table 

Please see the key resources table (Table 2.1) for a complete list of the materials, 

reagents, and equipment used in this protocol. Any version of Rstudio or other data processing 

software, such as excel, will work for this purpose. Any nanodrop or spectrophotometer that 

measures samples at 280 nm will work for this purpose. 

2.3.6 Materials and Equipment 

2.3.6.1 1X PBS 

To make 1000 mL of a 137 mM NaCl and 10 mM phosphate solution, 9.6 grams of solid 

phosphate buffered saline was dissolved in 1000 mL of ultrapure water. The solution was filtered 
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through a 0.2 μm filter and stored at room temperature, 18°C to 22°C, for no longer than 12 

months. Alternatively, solid sodium chloride and sodium phosphate can be substituted for 

phosphate buffered saline with final concentrations matched to above. 

2.3.6.2 1X PBS-BSA 

To make 1000 mL of a 137 mM NaCl, 10 mM phosphate, and 0.5% bovine serum 

albumin solution, 9.6 grams of solid phosphate buffered saline and 5 grams of solid bovine 

serum albumin were dissolved in 1000 mL of ultrapure water. The solution was filtered through 

a 0.2 μm filter and stored at 4°C for up to 6 months. Alternatively, solid sodium chloride and 

sodium phosphate can be substituted for phosphate buffered saline with final concentrations 

matched to above. 

2.3.6.3 50% glycerol 

To make 1 mL of a 50% glycerol solution, 500 uL of glycerol stock was added to 500 uL 

of ultrapure water. The solution was stored at room temperature, 18°C to 22°C, for up to 12 

months. 

2.4 Step-By-Step Method Details 

2.4.1 Functionalization of Sensor Chip 

Timing: 3-4 hours 

This section describes the method to functionalize the silicon photonic microring sensor chips 

through silanization of the chip surface and use of a homo-bifunctional linker molecule to 

covalently attach the antibodies to the microring sensors. This step requires about 1-2 hours of 

active work and two 1-hour incubations. 

1. Capture Antibody Preparation 
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This should be completed prior to the following steps to mitigate time restraints later in 

the protocol. 

a. In a 0.6 mL microcentrifuge tube, add 4 µL of 1X PBS, 1 µL of 50% glycerol and 

5 µL of anti-EBOV antibody at 0.5 mg/mL. 

b. In a second 0.6 mL microcentrifuge tube, add 4 µL of 1X PBS, 1 µL of 50% 

glycerol and 5 µL of anti-SUDV stored at 0.5 mg/mL. 

c. In a third 0.6 mL microcentrifuge tube, add 25.7 µL of 1X PBS, 3 µL of 50% 

glycerol and 1.3 µL of Ms IgG control antibody stored at 5 mg/mL. 

i. The final concentration of capture antibodies is 0.25 mg/mL in 5% 

glycerol. 

d. Store the diluted antibodies at 4o C until use. It is best to make fresh the day of 

spotting. 

2.  Silanization of Sensor Chip 

a. Collect five 20-mL scintillation vials and label them 1-5 (Figure 2.1). 

b. Fill with the following: 

i. Vials #1, #2, and #4: 2 mL acetone 

ii. Vial #3: 1.9 mL acetone. 

iii. Vial #5: 2 mL isopropanol. 

c. Using clean tweezers, immerse up to six silicon photonic chips in scintillation vial 

#1. Secure vial onto orbital shaker and gently agitate for 2 mins. 

d. Using tweezers, transfer the chips to Vial #2. Secure vial onto orbital shaker and 

gently agitate for 2 mins. 

e. While chips are in Vial #2, prepare 5% APTES solution.  
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i. Remove APTES from desiccated storage area.  

ii. Use a syringe fitted with a needle tip to remove 100 µL of APTES from 

the bottle. 

iii. Dispense APTES into scintillation vial #3 and recap vial.  

iv. Return APTES to desiccated storage. 

f. Transfer the chips to scintillation Vial #3. Secure vial onto orbital shaker and 

gently agitate for 4 mins.  

g. Transfer the chips to scintillation Vial #4. Secure vial onto orbital shaker and 

gently agitate for 2 mins. 

h. Transfer the chips to scintillation Vial #5. Secure vial onto orbital shaker and 

gently agitate for 2 mins. 

i. While chips are in Vial #5, fill the top row (A) of 6 wells in the 24-well plate with 

deionized water (Figure 2.2). 

j.  Transfer the chips to the water filled wells, with one chip per well. 

k.  Remove chips from water and place onto a DURX 670 cleanroom wipe. 

l. Dry surface with N2 gas line while holding the chip securely with tweezers. Place 

the dried chips in the second row (B) of wells in the 24 well plate. 

m. Prepare the BS3 reagent to 5 mM by adding 700 µL acetic acid to a 2 mg no 

weigh format vial of BS3. Vortex to fully dissolve solid. 

i. The BS3 solution should be prepared fresh and added to the chip shortly 

after, as once prepared it is a limited active time (1 hr.) before hydrolysis 

of the NHS-ester moieties occur. 
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n.  Immediately pipette 20 µL of dissolved BS3 onto the sensor surface. Be sure to 

fully cover the microring sensor portion of the chip.  

o. Incubate for 3 mins. Briefly dip chips into the water in the first row (A) of the 24 

well plate to rinse off BS3 and dry with N2 gas. Place dried chips into third row 

(C) of 24-well plate. 

p. Cut a strip of a DURX 670 cleanroom wipe that is the length and width of the last 

row (D) of the 24 well plate. Dampen the strip with water and press onto the lid of 

the 24-well plate over the bottom row. This will create a humidity chamber to 

house the spotted chips. 

3. Antibody Spotting 

a. Prepare chip spotting station at microscope by collecting the prepared chips, the 

0.25 mg/mL antibodies, tweezers, 2.5 µL pipette set from 0.2-0.4 µL, pipette tips, 

and sensor layout map to annotate (Figure 2.3a). 

b. Place the first chip under the microscope, adjust the settings to 25X magnification 

and adjust focus on the sensor chip. 

c. Deposit 0.2-0.4 µL of the first antibody over 2-5 ring clusters in each of the two 

channels of rings. The exact volume can vary, lower volumes will cover fewer 

clusters and higher volumes will cover more clusters. 

d. Repeat with the remaining antibodies moving across the chip.  

i. Take care to avoid any merging of drops of different antibodies, as this 

will result in cross reactivity (Problem 1: Spill-over of capture agents 

while spotting). 
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ii. Using this hand spotting method, it is reasonable to deposit 2-4 antibodies 

in each channel, with each antibody spanning 2-4 clusters of microrings. 

For higher plexity, this spotting process would need to be completed 

through microspotting procedures. However, for this protocol, only three 

antibodies (anti-EBOV sGP, anti-SUDV sGP and anti-Ms IgG control) 

were needed in each channel. 

For this work, the spotting generally looked like Figure 2.3b-d. 

e. Once all antibodies have been spotted, note down which clusters of rings are 

covered by each antibody (Problem 2: Uneven spotting of ring clusters). Label 

this as chip #1.  

f. Carefully transfer the completed chip to the final row (D) of the 24-well plate in 

the first position. Cover with well plate lid to create humidity chamber.  

g. Repeat steps 2-6 with remaining chips. It is important to know which spotting 

map layout corresponds to which chip. 

h. Leave chips at room temperature in the humidity chamber for 1 hour. 

i. Pipette 1 mL of starting block into each of the wells. Incubate chips in the starting 

block at room temperature under the humidity chamber for 1 hour. 

j. Remove chips from the 24-well plate and place on the DURX 670 cleanroom 

wipe. Take care to keep them in the same order. Dry with N2 gas.  

k. Pipette 20 µL of dry coat solution over the surface of each chip. Gently tap the 

sides of the chip with the tweezers to wick off excess dry coat onto the DURX 

670 cleanroom wipe. There should remain a thin layer of dry coat over the chip to 

stabilize the antibodies. 
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l. Place the chips into a gel pack. Place gel pack in a desiccator in a 4 oC 

refrigerator.  

CRITICAL: Hold chips by the shorter sides to avoid damaging important chip features. Be 

gentle with the chips, do not drag the tweezers over the surface. Any chips or scratches can 

damage optical waveguides on the chip. If this occurs, discard of the chip as it is no longer 

reliable to use. 

 

Pause point: Once the dry coat has been placed on the chip and they are stored, the chips will be 

stable for 1-6 months depending on antibody stability.  

 

Note: BS3 solution should be made as close to use as possible to avoid hydrolysis. In this 

procedure, it is recommended that there are no stopping points once silanization begins to avoid 

loss of chip functionality. 

 

Note: Before moving to calibration and analysis of the target in samples, it is important to 

validate that the antibody sandwich works on the assay platform. This includes optimizing the 

concentration of standard protein that elicits a saturated response and optimization of the 

biotinylated tracer antibody to ensure high response with minimal off-target binding. 

Additionally, the control rings should demonstrate minimal wavelength shift from addition of 

target antigen in comparison to a blank with no target present. 

 

Optional: This protocol has been optimized for the intended use with our specific 

instrumentation and experimental needs. However, there are varying options that could be 
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explored for other applications, such as choice of silane, linker molecule, and concentration of 

capture reagent. Additionally, other biorecognition molecules, such as DNA, can be used in 

place of antibodies. 

2.4.2 Preparing Calibration Standards and Samples 

Timing: 30-60 min 

This section sets up the reagents for the immunoassay, including how to construct calibration 

standards, how to prepare biological samples, and how to prepare the amplification assay 

reagents. 

4. Serial Dilutions for Calibration Standards  

a.  Prepare 3,600 µL of stock pooled healthy human serum at concentration of 

interest by adding PBS-BSA buffer and pooled healthy serum to a labeled 5 mL 

Eppendorf tube. 

i. 1% serum: 36 µL serum + 3,594 µL PBS-BSA 

ii. 10% serum: 360 µL serum + 3,240 µL PBS-BSA 

b. Invert the Eppendorf tube five times to mix. 

c. Prepare eight 1.5 mL microcentrifuge tubes labeled 1-8. 

d. In tube 2, add 300 µL of diluted serum made in step 4a. In tubes 3-8, add 480 µL 

of diluted serum. 

e. In tube 1, add 16.8 µL each of thawed EBOV sGP standard and SUDV sGP 

standard (both standards stored at 100 µg/mL in -80oC), pooled healthy serum and 

PBS-BSA buffer. The amount of serum and buffer varies for each calibration, as 

follows, for a total of 700 µL with each protein at 2.4 µg/mL. 

i. 1% serum: 7 µL healthy serum + 659.4 µL PBS-BSA 
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ii. 10% serum: 70 µL healthy serum + 596.4 µL PBS-BSA 

f. Close tube 1 and invert five times to mix. Remove 300 µL from tube 1 by 

pipetting up and down three times in tube 1 and then dispense by pipetting up and 

down three times into tube 2. Change pipette tip. 

g. Close tube 2 and invert five times to mix. Remove 120 µL from tube 2 by 

pipetting up and down three times in tube 2 and then dispense by pipetting up and 

down three times into tube 3. Change pipette tip. 

h. Repeat step 4g with the next chronological tube until tube 7 is reached. Do not 

add protein standard into tube 8, as this will serve as the matrix blank. Steps 4c-h 

are summarized in Table 2.2. 

5. Sample Preparation 

a. Thaw the frozen sample to room temperature (18°C to 22°C).  

b. In a microcentrifuge tube, add PBS-BSA and thawed sample depending on which 

dilution is being prepared. In the corresponding study (Qavi, et al.), each sample 

was prepared at 10× and 100× in a total volume of 350 µL. A minimum of 330 

µL is required on the Maverick Matchbox instrument. 

i. 100× dilution: 3.5 µL sample + 346.5 µL PBS-BSA buffer 

ii. 10× dilution: 35 µL sample + 315 µL PBS-BSA buffer 

6. Prepare Detection Reagents 

a. In a 5 mL Eppendorf tube, make a tracer antibody solution at 2 µg/mL by adding 

2889.2 µL of PBS-BSA and 10.8 µL of the pan-EBOV/SUDV biotinylated tracer 

stored at 0.5 mg/mL. This is enough tracer for two channels on four chips, which 

is one full 8-point calibration, or four samples analyzed at two dilutions. 
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b. Close the tube and invert five times to mix. 

c. In a 5 mL Eppendorf tube, make SAHRP solution at 3 µg /mL by adding 2891.3 

µL and 8.7 µL of SAHRP stored at 1 mg/mL. This is enough SAHRP for two 

channels on four chips, which is one full 8-point calibration, or four samples 

analyzed at two dilutions. 

d. Close the tube and invert five times to mix. 

 

Note: Store all prepared reagents at 4oC until ready for use. Reagents (calibration standards, 

SAHRP, tracer) should be prepared the day of the experiment. The samples should be diluted 

and analyzed within eight hours of thawing. It is best to prepare smaller batches (enough for 2-4 

chips at a time) to avoid any potential degradation or wasting of reagents. 

 

Optional: The concentration of standard protein to reach the saturating condition and the 

concentration of the biotinylated tracer antibody were previously optimized for our experimental 

parameters. When optimizing new targets, a range of 300-500 ng/mL for the protein standard and 

2 µg/mL for the tracer are appropriate starting points. Adjustments can be made based on initial 

optimization experiments. 

2.4.3 Running Calibration Standards and Samples on Microring Instrument 

Timing: 10 mins prep work, 40 mins of assay run time per sample 

This section explains how to plate the reagents prepared above for loading into the Genalyte 

Maverick Matchbox, as well as how to run the instrument interface. 

 

7. Preparation of Reagents in 96-Well Plate 
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a. Collect all reagents: PBS-BSA, calibration standards or diluted samples, diluted 

tracer antibody, diluted SAHRP, and 4-chloro-1-napthol (4CN). 

b. Fill a 96-well plate according to the diagram in Table 2.3.This diagram 

corresponds to the reagent positions in the instrument method in Table 2.4. With 

this configuration, the pumps draw liquid for channel 1 in the left well (columns 1 

or 3) as it draws liquid for channel 2 in the right well (columns 2 or 4). It then 

moves from row A to row B and so forth. 

c. Calibrations were analyzed as follows: 

i. Experiment #1- channel 1: calibration tube 1, channel 2: calibration tube 8 

ii. Experiment #2- channel 1: calibration tube 7, channel 2: calibration tube 2 

iii. Experiment #3- channel 1: calibration tube 3, channel 2: calibration tube 6 

iv. Experiment #4- channel 1: calibration tube 5, channel 2: calibration tube 4 

d. Samples were analyzed as follows: 

i. Day #1 of experiments- channel 1: 10× dilution, channel 2: 100× dilution 

ii. Day #2 of experiments- channel 1: 100× dilution, channel 2: 10× dilution 

e. Return reagents to 4 oC until next assay set up. 

f. Bring filled 96 well plate to instrument and slide into well-plate holder. 

8. Preparation of Microring Chip 

a. Remove one of the spotted chips from the storage gel pack.  

b. Rinse chip with deionized water and dry with compressed air. 

c. Insert the chip into the cartridge holder using the chip holder tool. 

d. Use tweezers to push the chip into cartridge to ensure snug fit. Blow compressed 

air into the channels to free any remaining debris or liquid. 
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e. Put cartridge/chip into instrument with the tubes towards the front of the holder. 

9. Preparation of Instrument 

a. Open the instrument software interface. 

b. In ‘Register & Batch Run’ tab, select recipe file (see Table 2.4 for example 

recipe). The recipe file needs to be in .csv format. 

c. Select data path (where data is to be stored after the experiment ends). 

d. Enter chip name/identifier. 

e. Click execute, close the door of the instrument as the chip registers.  

f. After registration, the pumps will engage, which starts the fluid flow across the 

chip. Once this happens, it is helpful to reopen the instrument and observe the 

liquid flowing through the cartridge across both channels. Close the door before 

the scan starts and avoid opening it until the end of the experiment (Problem 3: 

Clogging of microfluidic lines during experiment). 

g. Clean up area and prepare for next experiment. 

i. Remove next sample from the freezer and put with the other reagents in 

the 4 oC to thaw slowly. 

ii. The microring chip, cartridge holder, and any other disposable materials 

that touched the serum should be discarded as biohazardous waste. 

10. Repeat steps 7-9 for all calibration standards and samples. 

2.5 Expected Outcomes 

For an immunoassay with both standards, an example trace post work-up of data is seen 

in Figure 2.4a. This is an example of tube 2 (1,200 ng/mL) for both EBOV sGP and SUDV sGP 

in 10% serum. Both sets of spotted rings respond to their corresponding antigen standard, and the 
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control rings have very low response. The bulk shift seen between 2 and 9 minutes corresponds 

to the analyte in the complex matrix flowing across the sensors. Once the extraneous component 

of the complex matrix is washed away in the buffer step, the response returns to baseline. The 

bulk shift between 30 and 37 minutes is due to the 4CN amplification reagent flowing across the 

surface. This solution has a different refractive index in comparison to the previous 

immunoassay steps, which are mainly composed of PBS-BSA. This causes a shift in resonant 

wavelength in all the rings. However, once the surface is rinsed with buffer, a new baseline is 

reached, and binding is identified in the rings spotted with the anti-EBOV sGP and anti-SUDV 

sGP antibodies.  

An example 8-point calibration curve for EBOV sGP and SUDV sGP in a 10% serum 

matrix is seen in Figure 2.4b. The antigen concentration tested should span from a saturating 

range to a concentration at or below the limit of detection. Additionally, it is important to have 

points within the curve region and close to the center of the curve, as that region is where the 

assay is the most sensitive.  

An example immunoassay of a sample containing EBOV sGP analyzed at a 10× dilution 

is seen in Figure 2.4c. While similar in profile to the standards example curve, only the rings 

spotted with anti-EBOV sGP respond. The anti-SUDV sGP rings result in bulk shifts and a final 

shift indistinguishable from the control spotted rings. 

2.6 Quantification and Statistical Analysis 

Timing: 5 mins per sample, 20-30 mins for final conversation to analyte concentration 

This section starts with description of data output and then the data analysis for this specific 

project. The data was analyzed using R code modified from in-house developed code that is in a 



 72 

GitHub repository. The general usage of the code can be found in BaileyLabUM/biosensor on 

GitHub. 

1. Data Output and Work-up for Individual Experiments 

a. The data output from the instrument is .csv files for each individual sensor ring. 

They contain the resonant wavelength (nm) at a specific time point, along with the 

time stamp. 

b. To work up this data, the information in BaileyLabUM/biosensor GitHub 

repository is followed. First, create a ‘groupnames_allclusters’ file (found in 

BaileyLabUM/MRR repository) that correlates ring numbers with capture 

antibody spotted on them. Name each ring using the annotated spotting map from 

Figure 2.3a (from step 3e). For partially spotted clusters or for empty rings, they 

can be named “Ignore” in the file names and the code skips them. 

c. For calibration data, input the concentration of target standard run in each channel 

in the ‘Concentration’ column in this file. Leave this value as ‘1’ for unknown 

concentrations.  

d. Analyze each individual experiment using “analyzebiosensor” code (found in 

BaileyLabUM/biosensor repository). 

i.  This code first aggregates all the individual .csv files from an experiment, 

names each ring based on the manually annotated 

‘groupnames_allclusters’ file, subtracts the thermal control sensor ring 

response from all rings, and then calculates the net shifts (Problem 4: 

Malfunctioning microring sensors).  
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ii. The net shifts are calculated by subtracting the resonant wavelength prior 

to the amplification step from the resonant wavelength after the post-

amplification buffer rinse. Using the recipe in Table 2.4, the net shift is 

calculated as the difference in resonant wavelength between minute 28 and 

minute 41. 

iii. The average and standard deviation of net shifts across the identically 

named rings is then calculated. The code outputs this set of net shift data 

for each channel in .csv files. Additionally, the code outputs multiple plots 

for data visualization, such as a trace plotting the resonant wavelength 

over time of assay (Figure 2.4 a, c) and bar graphs of the net shift for each 

individual ring (Problem 5: High control ring response). 

2. Calibration Data Work-up 

a. Once each individual experiment is analyzed following step 1 and all 8 points of 

the calibration curve are done, complete the following to construct the calibration 

curve and calculate limits of detection and quantitation. 

b. Modify the ‘calibrationstation’ code (from BaileyLabUM/biosensor) for each 

specific target. Here, we specified EBOV sGP and SUDV sGP were the targets 

for calibration. 

i. The code aggregates the net shifts and manually entered concentrations for 

all the calibration standards. 

ii. The net shifts and concentration data for each target are fit to the 

following logistic function as previously described.9 
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𝑦 = #!$#"
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(
% + 𝐴), where y is the net shift (𝛥pm) of the sample of 

concentration x (pM), A1 is the minimum net shift (𝛥pm), A2 is the maximum 

net shift (𝛥pm), x0 is the center value (pM), and p is the power parameter 

affecting the slope around the inflection point.  

iii. After fitting the data to this function, the code outputs the fit parameters 

(A1, A2, x0 and p) in a .csv file and plots the fit, along with each data point 

in the calibration curve on a log scale (Figure 2.4b). 

iv. A four parametric logistic fit is chosen for direct comparison to traditional 

plate-based ELISA assays. Bioassays dependent on protein-protein 

interaction equilibriums result in non-linear responses upon analyte/ligand 

binding.10 The lower asymptote results from concentrations below the 

method’s limit of detection in which no net shift response is seen over a 

range of concentrations. The upper horizontal asymptote results from 

concentrations above the saturating point of the capture antibodies where 

any additional antigen will not affect the response and may even decrease 

the response due to the hook effect. The ideal working range is the linear 

dynamic range of the curve, with mid-point of the curve providing the area 

of highest sensitivity. 

c. Calculate the limit of detection (LOD) and limit of quantitation (LOQ) from the 

fit parameters, the average net shifts, and standard deviations from the matrix 

blank (tube 8 in the calibration). 

i. For LOD calculations, add the net shift from the matrix blank to 3 times 

the standard deviation. Using this calculated net shift as ‘y’, the fit 
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parameters, and the equation in step 2b, the concentration ‘x’ can be 

calculated. This concentration is the LOD. 

ii. Similarly, for LOQ, take the same steps, but multiply the standard 

deviation of the blank by 10. Continue through to calculate the 

concentration ‘x’ based on this higher net shift ‘y’. This concentration is 

the LOQ. 

d. Repeat this calculation for each target in each calibration. 

3. Conversion of Net Shift to Target Concentration 

a. Once all samples have been analyzed and worked up as described in step 1, use 

the ‘aggdata’ code in BaileyLabUM/biosensor repository to complete the 

following tasks. This analysis could also be done manually using basic excel 

functions. 

b. Aggregation of data for each sample: the average net shifts files that were 

created in step 1d are extracted for both channels per experiment. A new file is 

created that binds this aggregated net shift data with sample information including 

experiment number, subject ID, and dilution ID (10× or 100×) based on the name 

of the data file.  

c. Aggregation of all sample data: this new file that was created for every 

experiment in 3b is then extracted and aggregated with the files from all samples.  

d. Conversion to concentration: the fit parameters from step 2b iii need to be 

manually input into the ‘aggdata’ code for each target in both serum matrices. The 

four parametric logistic fit is used to convert each net shift to concentration 

(ng/mL).  
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e. Selection of dilution: the data is sorted by experiment and by target. If two 

dilutions are present, the net shift closest to the inflection point of the calibration 

curve (where the assay is most sensitive) is kept, while the other dilution is 

removed from the data file.  

f. Consider dilution factor: depending on which dilution was chosen, the 

concentration is multiplied by the dilution factor (10× or 100×). At this point, 

each target in each sample has one final concentration associated with it.  

g. Analysis: Further analysis can be conducted on these final concentrations 

depending on what is necessary for the study. 

2.7 Limitations 

There are several limitations for this protocol. Assay response will vary based on the 

antibodies used and their respective affinities. This protocol also uses BS3 as a linker to 

covalently attach antibodies to the silanized sensor surface. As BS3 reacts with primary amines, 

this results in attachment of antibodies to the sensor surface in random orientations. This 

protocol also is designed for a two-step sandwich assay - primary detection of analytes in 

complex media may prove difficult given that the Maverick Matchbox platform is sensitive to 

changes in refractive index. While this assay has the potential to be used within a BSL3 or BSL4 

facility, this protocol has currently only been performed in a BSL2 facility which necessitates 

irradiation of the samples, as well as significant precautions for user safety. 

2.8 Troubleshooting 

2.8.1 Problem 1: Spill-over of capture agents while spotting 
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This occurs when the drop of antibody capture agent of one antigen merges with that of a second 

antigen (step 3d). This can cause cross-reactivity and cannot be used reliably. This merging of 

spots is visualized in Figure 2.3e, channel 1. 

Potential solution  

If this occurs, do not use that chip, as it is not reliable. Practice spotting using water/glycerol 

solutions before using valuable reagents to understand the mechanics and pipette tip placement. 

If this continues to occur, additional steps would be to decrease the volume of reagent being 

spotted (ie down to 0.2 µL) or increasing the glycerol content from 5% to 10% in the spotting 

solution. 

2.8.2 Problem 2: Uneven spotting of ring clusters 

This occurs when the drop of antibody capture agent does not encapsulate entire ring clusters or 

rings themselves (step 3e). Even spotting looks like Figure 2.3b-d, while uneven spotting looks 

like Figure 2.3e, channel 2. 

Potential solution 

In the groupnames_allclusters file, type “Ignore” as the ring name for any clusters that are known 

to be partially spotted. This removes these rings from any data work up so if there is signal drop-

off due to the variation in antibody coverage, it will not affect the results. Continue to use the 

chip, providing each capture antibody still spans at least 2-3 ring clusters.  

2.8.3 Problem 3: Clogging of microfluidic lines during experiment 

This occurs when a particle larger than the inner diameter of the instrument tubing gets stuck, 

causing a stoppage of flow of reagents across the chip and loss of data for that channel (step 9f). 

Potential solution  
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Avoid using samples with particulates. If samples are particularly dirty, try briefly centrifuging 

them and only using the resulting supernatant. If clogging occurs, be sure to purge the lines of 

the instrument with water before starting the next sample. This would dislodge the blockage. It is 

good practice to purge the microfluidic lines with bleach and water after each day of running 

serum samples. 

2.8.4 Problem 4: Malfunctioning microring sensors 

Individual or clusters of microring sensors will sporadically malfunction. This could be due to a 

fabrication error with the specific sensor, a small alignment error, or other reasons (step 1d in 

Quantification and Statistical Analysis).  

Potential solution  

Continue letting the experiment run. During data work up, analyze all rings, then using one of 

the resulting csv files, identify which ring or ring cluster resulted in an abnormal trace or shift. In 

the groupnames_allclusters file, type “Ignore” for the ring(s) and reanalyze the data. This will 

remove the rogue ring(s) and results will not be affected. 

2.8.5 Problem 5: High control ring response 

If the control spotted rings are higher than they typically are (~500 pm net shift), the antibodies 

on the chip might have gone bad or there could have been capture reagent merging during 

spotting ((step 1d in Quantification and Statistical Analysis). 

Potential solution 

The data from this experiment should not be used, as the validity of the chip will be in question. 

If sample remains, rerun it on a different chip. If problem persists, re-spot and use fresher chips. 
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If this occurs during target validation, there could be some non-specific binding of target 

antigens or tracer antibodies and new reagent sets should be explored. 
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2.9 Figures 

 

Figure 2.1 Sensor chip silanization diagram. The sensor chips should be moved through each vial after incubating on 
the orbital shaker for the specified amount of time (step 2). Created with BioRender.com.  
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Figure 2.2 24-well plate set up during sensor chip functionalization. Row A contains DI water and houses the sensor 
chip after silanization (step 2j). The sensor chip moves to row B for BS3 applications (step 2l) and to row C after 
removing the excess BS3 (step 2o). Finally, the sensor chip is housed in the humidity chamber created in row D 
after the capture antibody has been applied (step 3f). Created with BioRender.com. 
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Figure 2.3 Diagram of sensor array on microring chips. Blank template (a) highlighting the 128 individual sensors in 
clusters of four and the two-channel arrangement. Examples of appropriate spotting maps (b-d), with each of the 
capture antibodies in the tr-plex assay encompassing at least two full chip clusters and none have merged. Example 
of errors in chip spotting (e). In channel 1, the SUDV sGP antibody has merged with the control antibody. IN 
channel 2, uneven spotting of clusters has occurred, with some clusters only have two of the four rings covered. This 
channel is still usable, as the unevenly spotted clusters can be ignored in the final data work-up while keeping the 
fully spotted clusters for analysis. 



 83 

 

Figure 2.4 Example data post-work up. a) Trace of wavelength shifts over the course of an immunoassay experiment 
detecting 1,200 ng/mL of EBOV sGP and SUDV sGP. Each line represents the resonant wavelength of one sensor at 
the specific time of experiment. b) Calibration curve of the EBOV sGP and SUDV sGP spanning from 0 ng/mL to 
2400 ng/mL in 10% serum. Error bars result from triplicate measurements. c) Trace of wavelength shift over the 
course of a sample containing EBOV sGP. 
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2.10 Tables 

Table 2.1 Key resources table with materials and equipment used in this protocol. 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-EBOV capture Ab, desalted, stored at 0.5 
mg/mL 

Integrated BioTherapeutics Cat#: 0365-001 

Anti-SUDV capture Ab, stored at 0.5 mg/mL Integrated BioTherapeutics Cat#: 0302-030 
Biotinylated Anti-EBOV/SUDV pan Ab Integrated BioTherapeutics NA 
Ms IgG control Ab, 5 mg/mL Thermo Fisher Scientific Cat #: 0031903 
Biological samples   
NHP serum N/A N/A 
Pooled healthy serum Innovative Research, Novi, 

MI 
Cat #: ISER50ML 

Chemicals, peptides, and recombinant proteins 

Recombinant EBOV Soluble GP (sGP) Integrated BioTherapeutics Cat#: 0565-001 
Recombinant SUDV Soluble GP (sGP) Integrated BioTherapeutics Cat#: 0570-001 
Acetone (7.9 mL) Fisher Chemical Cat#: A184 
Isopropanol (2 mL) Fisher Chemical Cat#: A4154 
3-aminopropyltriethoxysilane (APTES, 100 µL) Sigma Aldrich Cat#: 440140 
Bis(sulfosuccinimidyl)suberate (BS3, 2 mg) Thermo Fisher Scientific Cat#: A39266 
Acetic acid (2 mM) Fisher Chemical Cat#: A38-212 
Glycerol (50% solution) Sigma Aldrich Cat#: G5516 
DryCoat Assay Stabilizer Virusys Corporation Cat#: AG066-1 
Starting Block Buffer Thermo Fisher Scientific Cat#: 37578 
Streptavidin horse radish peroxidase Thermo Fisher Scientific Cat#: 21130 
4-chloro-1-napthol Thermo Fisher Scientific Cat#: 34012 

Software and algorithms 

Genaltye Matchbox User Interface Genalyte, Inc. MavII Host 8.2 
Rstudio: Integrated Development Environment for 
R 

Rstudio, Inc. Version 1.2.5001 

Nanodrop1000 User Interface Thermo Scientific Version 3.8.1 
Other   
Matchbox Instrument, Maverick Detection System Genalyte Inc. NA 
Unstripped Silicon Photonic Chips  Genalyte, Inc. NA 
Chip Carriers with Back Door Adhesive Genalyte Inc. NA 
Zeba Sip Desalting Columns, 7K MWCO Thermo scientific Cat#: 89882 
Vortexer Fisher Scientific Cat#: 12-812 
Microscope Leica Cat#: EZ4W 
The Belly Dancer Orbital Shaker IBI Scientific Model#: 

BDRAA115S 
Microcentrifuge tubes (0.6 mL) Fisher Scientific Cat#: 02-682-000 
Microcentrifuge tubes (1.5 mL) Fisher Scientific Cat#: 02-682-002 
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Microcentrifuge tubes (5 mL) Fisher Scientific Cat#: 14-282-300 
DURX 670 cleanroom wipe Berkshire Cat#: 

DR670.0909.20 
24 well plate with lid Thermo Scientific Cat#: 142485 
96 well V-bottom plate Corning Cat#: 3357 
20 mL Glass Screw-Thread Scintillation Vials Fisher Scientific Cat#: 03-340-4L 
Monoject 1 mL Tuberculin Syringe (Regular Tip) Fisher Scientific Cat#: 22-257-135 
BD PrecisionGlide Needle, 26G x ½ Fisher Scientific Cat#: 14-826-15 
Nanodrop1000 Spectrophotometer Thermo Scientific  Cat#:  

ND-
1000(US\CAN) 

 



 86 

 

Table 2.2 Calibration standard preparation for EBOV sGP and SUDV sGP in a serum matrix. 

Tube # Final 
Concentration 

Buffer Dilution Standard Protein 

1 2,400 ng/mL 

7 µL serum 
659.4 µL PBS-BSA 

OR 
70 µL serum 

596.4 µL PBS-BSA 

16.8 µL recombinant 
SUDV sGP (100 µg/mL) 

16.8 µL recombinant 
EBOV sGP (100 µg/mL)  

2 1200 ng/ml 300 µL of diluted serum at 
corresponding dilution 

300 µl previous 
concentration 

3 240 ng/mL 480 µL of diluted serum at 
corresponding dilution 

120 µl previous 
concentration 

4 48 ng/mL 480 µL of diluted serum at 
corresponding dilution 

120 µl previous 
concentration 

5 9.6 ng/mL 
480 µL of diluted serum at 

corresponding dilution 
120 µl previous 
concentration 

6 1.92 ng/mL 480 µL of diluted serum at 
corresponding dilution 

120 µl previous 
concentration 

7 0.384 ng/mL 480 µL of diluted serum at 
corresponding dilution 

120 µl previous 
concentration 

8 Blank 330 µL Diluted serum at 
corresponding dilution 0 
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Table 2.3 96-well plate set up for immunoassay on Matchbox instrument. 

 1 2 3 4 5…12 

A PBS-
BSA 

PBS-
BSA 4CN 4CN  

B PBS-
BSA 

PBS-
BSA 

PBS-
BSA 

PBS-
BSA 

 

C Sample 
#1 

Sample 
#2 

   

D PBS-
BSA 

PBS-
BSA 

   

E bt-Ab bt-Ab    

F PBS-
BSA 

PBS-
BSA 

   

G SAHRP SAHRP    

H PBS-
BSA 

PBS-
BSA 
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Table 2.4 Example recipe for immunoassay on Matchbox instrument. 

96-well 
plate row 

96-well plate 
column 

Flow rate 
(µL/min) 

Duration 
(min) 

Back 
forth comment 

1 1 30 5 0 Pre-buffer rinse 
Start_scan 

2 1 30 2 0 PBS-BSA 
3 1 30 7 0 Analyte 
4 1 30 2 0 PBS-BSA 

5 1 30 7 0 Biotinylated 
Tracer Ab 

6 1 30 2 0 PBS-BSA 
7 1 30 7 0 SA-HRP 
8 1 30 2 0 PBS-BSA 
1 3 30 7 0 4CN 
2 3 30 2 0 PBS-BSA 

Stop_scan 
end_recipe 
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Chapter 3 Rapid Detection of an Ebola Biomarker with Optical Microring Resonators 
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Research Institute of Infectious Diseases, and Dr. Jeffrey W. Froude from the United States 

Army Nuclear and Countering Weapons of Mass Destruction Agency for providing the non-

human primate samples; Dr. Daisy Leung and Dr. Lan Yang from WashU for manuscript 

editing; and Dr. Ryan Bailey for project guidance. Additionally, I would like to thank Genalyte, 

Inc. for providing the raw chips I spotted for this project.  

3.2 Abstract 

Ebola virus (EBOV) is a highly infectious pathogen, with a case mortality rate as high as 

89%. Rapid therapeutic treatments and supportive measures can drastically improve patient 

outcome; however, the symptoms of EBOV disease (EVD) lack specificity from other endemic 

diseases. Given the high mortality and significant symptom overlap, there is a critical need for 

sensitive, rapid diagnostics for EVD. Facile diagnosis of EVD remains a challenge. Here, we 

describe a rapid and sensitive diagnostic for EVD through microring resonator sensors in 

conjunction with a unique biomarker of EBOV infection, soluble glycoprotein (sGP). Microring 

resonator sensors detected sGP in under 40 minutes with a limit-of-detection (LOD) as low as 

1.00 ng/mL in serum. Furthermore, we validated our assay with the detection of sGP in serum 

from EBOV infected non-human primates. Our results demonstrate the utility of a highly 

sensitivity diagnostic platform for detection of sGP for diagnosis of EVD.  

3.3 Introduction 

RNA viruses are an area of critical concern and a major threat to global health; between 

25% to 44% of all emerging infectious diseases are caused by RNA viruses.1–4 This is in part 

attributed to their ability to mutate rapidly, a consequence of low fidelity RNA-dependent RNA 

polymerases, 5–9 as well as increased contact between both humans and zoonotic vectors.10 
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Filoviruses are among the most lethal human single-stranded, negative-sense RNA viruses, with 

high case fatality rates up to 89% during outbreaks.11 Ebola virus (EBOV) is the causative agent 

of EBOV Disease (EVD), characterized by pathognomonic symptoms of internal and external 

bleeding, in addition to a constellation of non-specific symptoms including fever, fatigue, 

nausea, vomiting, diarrhea, and headache.12  

Previous outbreaks of EBOV highlight the need for rapid diagnostics to accurately and 

rapidly detect disease. Access to diagnostic information is critical for disease management by 

enabling healthcare systems to initiate isolation protocols and begin supportive measures that 

drastically improve patient outcomes.13–15 In resource limited settings, accurate diagnosis also 

enables healthcare providers to utilize limited resources more efficiently to limit the outbreak 

spread. Current diagnostics for EBOV mainly rely on PCR-based techniques, ELISAs, or lateral 

flow assays with varying degrees of success.16–19 Each of these methods require additional 

electronics for sample processing and trained technicians to perform studies. Moreover, these 

techniques have several disadvantages, including low multiplexing capabilities, limited 

quantitative information, lengthy assay times, and/or the requirement of centralized laboratories 

or cold chain custody. Specific to EVD, these assays rely on either the glycoprotein (GP) of 

EBOV or nucleic acid-based testing, both of which are subject to a diagnostic window period 

during which infected patients will test negative. Therefore, new technologies that bypass 

traditional analytical limitations and technical requirements as well as informative actional 

biomarkers of EVD are needed to enable effective triaging and treatment of infected individuals 

are needed. 

The EBOV genome, consisting of 7 genes, is highlighted in Figure 3.1a EBOV GP, is 

expressed as two distinct transcriptional products. These two proteins are expressed through site-
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specific transcriptional editing of the GP gene. The primary product of the GP gene is the soluble 

glycoprotein (sGP), a nonstructural secreted glycoprotein, which is expressed from the unedited 

RNA transcript. sGP is dimerized by two cysteine bridges and released from EBOV infected 

cells.20,21 The full-length GP, which coats the surface of mature viral particles, is expressed only 

following transcriptional editing of the GP gene, where an additional uridine residue is added to 

the genomic RNA. This editing adds an additional adenosine residue in the transcript, which 

results in an extended open reading frame. The majority of transcripts are non-edited and 

therefore sGP is the first and predominant product of GP gene transcription and translation.21,22 

sGP shares the first 295 residues with GP but contains a unique C-terminal tail. 

There are several roles sGP appears to play in EBOV pathogenesis. It has been proposed 

that the expression and secretion of sGP allows EBOV to evade the host immune response via 

immune decoy leading to increased virulence.23,24 Additionally, sGP has been shown to have 

immune modulatory functions. It inhibits pro-inflammatory cytokine production by 

macrophages, limits macrophage migration, and reduces CD16b receptors on human 

neutrophils.25,26 sGP has been reported to have a protective function in the context of endothelial 

layer integrity as well, which may support viral replication.27 sGP also activates the MAP kinase 

signaling pathway, which is thought to increase the uptake and internalization of EBOV 

virions.17 Despite sGP’s numerous functions, its role as a biomarker is only now being 

appreciated. 

In this study, we address critical diagnostic gaps for EVD by adapting a silicon photon 

microring resonator platform to detect EBOV sGP. Microring resonators are a class of 

whispering gallery mode (WGM) devices in which light circulating within the microring 

interacts with biomolecules deposited on the ring surface, resulting in a shift in the ring’s 
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resonant wavelength that is proportional to the amount of the surface-adsorbed material. WGM 

devices have been leveraged for sensing applications over the past decade due to their 

amenability to multiplexing, high analytical sensitivity, quick time-to-result, and ease of 

integration with microfluidics. This has enabled their use in a wide variety of applications, 

including the detection of nucleic acids,28–30 proteins,31–33 and viruses.34 Recent work has 

integrated this sensing platform into clinical workflows to use varying biomarkers to profile 

disease states for diagnostic use.35–38 We demonstrate that microring resonators are an effective 

sensing platform for the rapid, multiplexed detection of filoviral infection using sGP. We also 

establish sGP as a sentinel biomarker and potential prognostic biomarker of EVD outcome with 

anticipated benefits in outbreak management. 

3.4 Methods 

Capture agents and Antigens. Antibodies and antigens used in this study were obtained from 

Integrated Biotherapeutics (Rockville, MD), except for Mouse IgG (ThermoFisher Scientific, 

Rockford, Illinois), which served as a binding control.  

Photonic Microring Resonators. Measurements were performed with a Maverick Matchbox 

optical scanning instrument and silicon sensor chips fabricated by Genalyte, Inc. (San Diego, 

CA). Experiments were performed on 4 x 6 mm sensor chips containing 128 microring sensors, 

each 30 µm in diameter, arranged in clusters of four. The clusters are split between two 

microfluidic channels, with four additional unfunctionalized temperature control rings on each 

chip.  

Chemical functionalization and immobilization of capture antibodies on sensor chips. 

Antibodies were covalently attached to the microring sensor surfaces as previously described.39 

Briefly, the chips were silanized with 1% (3-Aminopropyl)triethoxysilane (APTES, Sigma) to 



 95 

add primary amines to the sensor surfaces. The sensors were incubated with 5 mM 

bis(sulfosuccinimidyl)suberate (BS3, Thermofisher Scientific), an amine-reactive, 

homobifunctional crosslinker, for 3 minutes. The sensor chips were dipped in H2O to remove 

unreacted BS3 and dried with N2. Approximately 0.2 μL of each primary capture antibody 

diluted to 0.25 mg/mL was spotted onto two to five ring clusters in each of the two channels and 

incubated for 1 hour. Primary capture antibodies were desalted on Zeba Spin Desalting Columns 

(7K MWCO, ThermoFisher Scientific) prior to covalent attachment to the ring surfaces to 

remove any residual amines that would cross-react with BS3. The sensor chips were blocked 

using starting block buffer (ThermoFisher Scientific) for 1 hour, dried with N2 and coated with 

DryCoat Assay Stabilizer (Virusys Corporation) for storage in a 4oC humidity chamber until use.  

Assay set-up. Functionalized chips were housed in a disposable, injection molded, two-channel 

microfluidic cartridge and inset into the instrument. All fluidic handling was controlled at a flow 

rate of 30 μL/min via a series of pumps. Due to the two-channel microfluidic design, two assays 

were simultaneously completed on one chip. For immunoassay analysis, running buffer (1X 

phosphate buffered saline, PBS, Sigma) with 0.5% bovine serum albumin (BSA, Sigma) was 

first flowed across the channel surface for at least 5 minutes to equilibrate the system prior to 

analysis. Assay steps for each experiment were as follows: running buffer (2 min), sample (7 

min), running buffer (2 min), biotinylated tracer antibody (2 µg/mL, 7 min), running buffer (2 

min), streptavidin- horse radish peroxidase (3 µg/mL, SAHRP, ThermoFisher Scientific) (7 min), 

running buffer (2 min), 4-chloro-1-napthol (4-CN, Thermofisher scientific) (7 min), running 

buffer (2 min). 

Calibrations and Sample Analysis. Immunoassays for EBOV sGP and Sudan ebolavirus 

(SUDV) sGP were simultaneously calibrated in parallel. Serial dilutions of antigen from a 
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saturating concentration to an undetectable concentration resulted in an eight-point calibration 

curve for each target. Calibrations were constructed in 1%, 10%, and 50% serum matrices. 

Samples were diluted and analyzed at 10× or 100×, allowing the concentrations to remain in the 

quantitative regime of the calibration curves.  

NHP Sera Samples. The kinetics of sGP production in vivo was tested in rhesus macaques 

challenged with 1,000 PFU of EBOV and treated post exposure with either a cocktail of three 

monoclonal antibodies (MB-03)40 or vehicle control. Longitudinal serum samples on days 0-15, 

21, and 28 from survivors and days 0 through the day of death for fatal cases were prepared and 

tested by our quantitative sGP ELISA content and by PCR for EBOV genome content. 

ELISAs. A quantitative ELISA to detect sGP resulting from virus infection was developed in-

house at Integrated Biotherapeutics. Critical reagents were generated to support the development 

of the ELISA. Specifically, a recombinant sGP was developed in-house at Integrated 

Biotherapeutics in order to standardize the quantitation of sGP levels in serum samples. A 

capture antibody was generated that specifically recognizes EBOV sGP and not the full-length 

GP. A number of secondary antibodies were evaluated, and one monoclonal antibody was 

selected for use in this assay. Using these reagents, an ELISA method was developed and 

optimized for reproducibility and robustness. sGP as early as day 3 post challenge was detected 

in NHPs. Also, the level of sGP in the serum appears to correlate with survival, similar to what is 

observed in the viremia results as determined by RT-PCR. 

PCR. Blood samples were processed for qRT-PCR. USAMRIID standard procedure were used 

to process the serum samples and determine serum viremia levels.41 

Microring Resonator Data analysis. Analysis of data was performed using an in-house 

developed R-script as previously described,39 but could be completed using standard excel 
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software functions. Briefly, resonance shifts from each individual sensor were tracked over the 

course of the experiment and the net shift of resonant wavelength of each sensor ring before and 

after the 4-CN amplification step were analyzed. The net shift of all rings spotted with a specific 

antibody was averaged across each channel for each experiment. The average net shift was used 

to calculate the target concentration in each sample based on the appropriate calibration curve fit 

(e.g., 1% serum calibration for 100× dilution and 10% serum calibration for 10× dilutions). If 

two dilutions of the same sample were performed, the dilution that resulted in a net shift closest 

to the inflection point of the respective calibration curve was selected for use.  

3.5 Results 

The EBOV genome consists of seven genes, with sGP resulting from an unedited 

transcription of the glycoprotein (GP) gene (Figure 3.1a). This secreted protein was detected 

using an ELISA assay developed by Integrated Biotherapeutics and compared to RT-PCR in 

NHP infected with EBOV in Figure 3.1b and Figure 3.1c. Samples were obtained following 

infection with EBOV in both treated and untreated NHPs. In all cases, sGP levels increased 

earlier or at the same time as RT-PCR values. Furthermore, NHPs with EBOV levels greater 

than 1,000 ng/mL succumbed to disease regardless of treatment status. These results reinforce 

sGP as both a diagnostic and prognostic marker of EBOV infection. 

We utilized a silicon photonic microring resonator platform for the detection of sGP. Microring 

resonators operate on the principle of whispering gallery mode sensing and continue to be a 

promising layout for biosensing applications due to ease of fabrication, chip integration, and high 

multiplexing potential (Figure 3.2).42,43 Light at a specific resonant wavelength is confined in 

small microring cavities. As changes in the local refractive index in the sensing region occur, the 

resonant wavelength within the microcavity shifts, which can be tracked in near real-time. As 
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each biomolecular binding event occurs over the course of the sandwich-style immunoassay, the 

resonant wavelength shifts relative to the initial wavelength. The extent of the final net shift is 

proportional to the amount of analyte bound on the microring resonator. 

Initial assay methods were aimed at developing a label-free method to detect primary 

binding of the protein standard to the capture antibodies, eliminating the requirement of a 

secondary tracer antibody and other amplification reagents. Multiple concentrations of EBOV 

sGP were tested, in buffer, on the EBOV-sGP capture antibodies (Figure 3.3a). However, 

distinct responses were only identified at concentrations over 1 μg/mL, relative shifts ranged 

from 0-10 pm, and a calibration curve was unable to be constructed (Figure 3.3b). Additionally, 

the detectable concentrations were tested in a dilute serum matrix which consequently obscured 

the low relative shifts due to bulk effects from the higher viscosity serum matrix.  

We moved towards employing a sandwich immunoassay, with expectations that a 

secondary tracer antibody and amplification reagents would result in lower limits of detection, 

higher relative shifts, and added specificity. Multiple concentrations of EBOV sGP were tested, 

in a serum matrix, on the EBOV-sGP capture antibodies with the additional assay reagents 

(described below) (Figure 3.3c-d). Results demonstrated an increase in relative shift with an 

increase in EBOV sGP concentration and a calibration curve was constructed, with relative shifts 

ranging from 0-6500 pm. This assay method was selected to be optimized for a two-plex panel to 

detect EBOV sGP and Sudan virus (SUDV) sGP. 

We next sought to optimize and validate the sandwich immunoassay and assess antibody 

specificity. The steps of the finalized immunoassay, based on the above results, consist of sample 

introduction followed by secondary recognition and amplification steps, highlighted in Figure 

3.4a. Antibodies for EBOV sGP and SUDV sGP were functionalized in a multiplex fashion on 
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the surface of the microrings, with each capture agent spanning 8-12 microrings to provide 

technical replicates. The sample of interest was introduced to the sensor surface through 

microfluidic fittings and automated with pumps as previously described (Figure 3.4a, step 

1).36,39,44–47 As the antigen is flowed across the surface of the sensor, the primary binding 

occurred as EBOV sGP was captured by the anti-EBOV sGP antibodies on the sensor surface. 

After addition of sample, a buffer rinse washed away unbound material prior to introduction of 

the recognition molecule, a pan-EBOV-SUDV biotinylated tracer antibody produced by 

Integrated Biotherapeutics, (Figure 3.4a, step 2) to form a sandwich motif. This secondary 

tracer antibody recognizes multiple filovirus strains via conserved binding epitopes on the 

filoviral GP. These binding epitopes are different than those used with the primary antibody. 

Using a second antibody for this purpose increases the specificity of the assay, as any agent non-

specifically adhered to the capture antibodies would not be recognized. After a buffer rinse, SA-

HRP was flowed across the sensor surface, (Figure 3.4a, step 3). In the final amplification step, 

4CN reacts with the HRP to form an insoluble product (Figure 3.4a, step 4). The precipitate is 

localized on the sensor surface, leading to a drastic change in refractive index proportional to 

EBOV-sGP concentration. Unbound reagent is washed away with a final buffer rinse and the net 

shift of resonant wavelength from the start of the 4CN amplification step to the end of the final 

buffer rinse is used for analysis. Incorporating these amplification steps leads to resonant 

wavelength shifts of ~6,000 pm for the highest concentrations, resulting in a larger dynamic 

range and lower limits of detection in comparison to using the primary antigen binding steps. An 

example trace of wavelength shift during the assay for detection of EBOV sGP with controls is 

highlighted in Figure 3.4b.  
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To address antibody specificity, cross-reactivity experiments were performed between 

EBOV and SUDV sGP. SUDV and EBOV are related species within the Ebolavirus genus, and 

SUDV also secretes sGP. The EBOV and SUDV sGPs were individually introduced to a sensor 

chip covalently functionalized with anti-EBOV sGP, anti-SUDV sGP, and Mouse IgG 

antibodies. Mouse IgG antibodies were used as negative controls to monitor non-specific 

adsorption interactions and resonant wavelength shifts due to bulk refractive index change. Only 

the sensor rings functionalized with the respective antibody responded to introduction of EBOV 

or SUDV sGPs (Figure 3.5a-b). When exposed to EBOV sGP, the anti-EBOV sGP 

functionalized rings (black) increase over the final amplification step, leading to a measurable 

net shift, while the anti-SUDV sGP functionalized rings (red) and control functionalized rings 

(blue) have low net shifts (<1,000 pm). The same trend is observed with a SUDV sGP target, 

where the anti-SUDV sGP functionalized rings result in a large net-shift, while the anti-EBOV 

sGP and control functionalized rings have comparable shifts. There was no evidence of cross-

reactivity in these assays, which is attributed to the specificity of the primary capture antibodies.  

Calibration of EBOV and SUDV sGP occurred simultaneously over a range of 

concentrations spanning from undetectable levels to saturation of the signal (Figure 3.5c-e). The 

net shifts for all concentrations were fit to a logistic function for calculation of unknown 

concentrations based on net shift, 

 

𝑦 = #!$#"

%&' ##$
(
% + 𝐴)      Eq. 1 
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Where y is the net shift of the sample, A1 is the maximum net shift (𝛥pm), A2 is the minimum net 

shift (𝛥pm), x is the sample analyte concentration (pM), x0 is the center value (pM), and p is the 

power parameter affecting the slope around the inflection point (Table 3.1).37,39 The calibration 

curves shown in Figure 3.5c-e were constructed in the biologic matrices of 1%, 10% and 50% 

serum. The limit-of-detection (LOD) for EBOV sGP and SUDV sGP were determined to be 1.72 

ng/mL and 1.00 ng/mL in 1% sera, respectively, and 4.20 ng/mL and 1.54 ng/mL in 10% sera, 

respectively, and 2.33 ng/mL and 7.76 ng/mL in 50% sera, respectively (Table 3.2). We 

calculated the LOD as the concentration correlating to the sensor response three standard 

deviations from the blank signal. Our calibration curves of spiked sGP into pooled human sera 

demonstrated a decreased LOD with increased percent of serum. However, given that the LOD 

from 1% serum to 50% serum decreased by ~2.5-fold for EBOV and ~5-fold for SUDV, we 

anticipated no difficulties in detecting sGP from the NHP samples.  

Analysis of NHP samples were done at 10× or 100× dilutions due to limited sample 

volume (Figure 3.6). Each sample was analyzed using the same experimental and data extraction 

methods as the calibrations, with each sample taking just under 40 minutes to complete. The 

researchers were blinded to the subject number and outcome of subject but did know a relative 

range of concentrations of EBOV sGP in each sample to make appropriate dilutions for this 

preliminary work. For the samples analyzed at two dilutions, the dilution that resulted in the net 

shift closest to the calibration curve inflection point was used for concentration determination. 

The 10× dilution was the most generalizable, ultimately being used for 24 of the 30 samples. 

The remaining six samples were those of highest sGP concentrations, resulting in the 10× 

dilution falling in the saturating range of the calibrations. However, the 100× dilution resulted in 

quantifiable results for these remaining. Additionally, only one of the 30 samples contained sGP 
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below the LOD. Comparison of the microring resonators and ELISA assay are highlighted in 

Figure 3.7 and Table 3.3. The microring platform had a positive correlation with the ELISAs 

(R2 = 0.94), but error rates of the microring platform relative to ELISA varied between 2.5% and 

88.7%.  

3.6 Discussion 

The ongoing COVID-19 pandemic highlights the need for sensitive diagnostic platforms 

and novel biomarkers. EBOV sGP represents a unique and powerful biomarker for the detection 

of EBOV infection and EVD prognosis for several reasons. The presence of sGP in the blood 

prior to, or simultaneously with, PCR based assays improves the diagnostic window. As 

previously noted, survival outcomes from EBOV infection depend critically on the initiation of 

supportive measures, which heavily rely on accurate diagnoses in resource limited settings. 

Rapid diagnosis facilitates faster treatment initiation, thereby improving patient outcomes.13,48,49 

Quarantine of affected individuals has profound implications in infection and outbreak 

management and prevention. Alternatively, a confirmation of a negative test allows for 

healthcare providers to efficiently leverage their resources in treating patients. Because sGP is a 

protein biomarker, there is flexibility in the assay designs that can be used with the biomarker 

(e.g., lateral flow assays). The NHP study suggests that levels higher than 1,000 ng/mL of sGP 

may be a potential prognostic marker of EVD. Further studies are necessary to fully characterize 

the prognostic value of sGP.  

The role of sGP as a diagnostic marker for infection has been previously explored by 

several groups. In one instance, researchers leveraged a modified D4 assay in combination with 

scFv-Fc antibodies generated from phage-display libraries for the highly sensitive detection of 

EBOV sGP.50 Similar to our study, Fontes et al., confirmed the presence of sGP in EBOV 
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infected NHP with both a D4 assay and by RT-PCR. A critical difference is the use of 

fluorescence-based measurements, which requires a hand-held fluorescence reader. The D4 assay 

platform provides highly sensitive, multiplexed measurements, however, scalability of 

manufacturing may be challenging. In contrast, Chen and colleagues demonstrated the use of 

nanoparticles functionalized with nanobodies against EBOV sGP with a turn-around-time (TAT) 

of as little as 5 minutes.51 Through aggregation of nanoparticles and optimization of nanobody 

pairs, the researchers were able to detect both EBOV sGP and the receptor binding domain 

(RBD) of glycoprotein using a low-cost LED reader. The authors of this study only went up to 

5% pooled sera and whole blood, due to the significant decrease in LOD seen due to matrix 

effects. 

Initial development of the EBOV sGP assay using the microring resonators focused on 

the direct, label-free binding of sGP to the capture antibodies. Label-free detection of analytes 

has been demonstrated in the past with microring resonators; however, the LOD has typically 

remained in the low ng/mL level for proteins in neat, buffered solutions.28,30,33 Our results were 

consistent with these findings, as no reliable calibration curve could be constructed based on 

primary binding data in a neat-running buffer at low ng/mL concentrations. Even more 

challenging is the elimination of primary binding profiles due to bulk RI shift upon the addition 

of a complex matrix (e.g., serum). Given that the prognostic value of sGP rests around 1,000 

ng/mL, and that direct detection of antigens in sera is significantly more difficult due to matrix 

effects, label-free detection was insufficient for our purposes. We subsequently employed a two- 

step sandwich assay with an amplification step.31 While the tracer antibody binding and 

amplification steps result in additional assay time, it provides drastically increased sensitivity 

and working dynamic range. Furthermore, because signal amplification is performed in neat, 
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buffered solutions in a separate step from sample introduction, there are no interfering matrix-

effects that would be seen with direct binding in sera or plasma.52 An added benefit of the assay 

format is the use of a pan-Ebola mAb as a tracer antibody – that is, a single tracer antibody can 

be employed despite multiple primary capture antibodies and targets, simplifying the workflow 

of the assay. 

An advantage of our sensor platform is the multiplexed capabilities, with 128 active 

sensors per chip. While our study highlights 3 targets on a single chip, the microring resonator 

platform has demonstrated up to 13-plex measurements on a single chip.37 The total multiplexing 

of targets is limited in part by the spotting of the capture antibodies on chip, as well as the 

number of desired technical replicates per run. Nonetheless, the current assay design can be 

adapted towards a broad range of pathogens. Given the non-specific symptoms seen with EVD 

that overlap significantly with other endemic tropical diseases (e.g., malaria), there is potential to 

further improve the capabilities of this assay by including additional targets.53 Another advantage 

is addition of unfunctionalized thermal control microrings, which negates any environmental 

fluxes that may influence measurements. Additionally, our covalent linkage chemistry utilizes 

BS3, a homobifunctional crosslinker that reacts agnostically with primary amines. This ability to 

use unmodified antibodies or other capture agents and swap components within the assay 

represents a significant benefit in flexibility of assay design. 

One concern with the microring assay is the percent error from ELISAs. Despite higher 

analytical sensitivity as compared to the ELISAs, our results suggested variable error in sGP 

concentration from the ELISA samples (Figure 3.7). At higher concentrations, the error appears 

to approach ~60%. It is unclear whether this is due to degradation of the sample over time, as the 

NHP samples were originally obtained in 2013, or a fundamental limitation of mass diffusion of 
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the antigens. The microring platform leverages active fluidics in comparison to ELISAs relying 

on incubation steps. Further studies are necessary to resolve this discrepancy. Nonetheless, our 

platform was able to successfully detect EBOV sGP in 29 out of the 30 NHP samples. With the 

limited NHP samples available, we had to dilute samples to reach the minimum volume of ~300 

µL to run the assay. Given the assays ability to calibrate in 50% serum with limited decrease in 

the LOD, we anticipate no significant problems in the direct analysis of serum.  

Another concern of the microring resonator platform is the expense of the instrument for an in-

field assay. While the single-use disposable chips and cartridges are cost effective, the optical 

readout system itself can be cost-prohibitive, especially in resource-limited settings. There have 

been pushes to reduce the cost of these systems, either through Distributed Bragg Reflect (DRB) 

lasers54 or alternate tuning mechanisms.55 Additionally, this instrument is not portable but is well 

suited for a field hospital or lab. 

An additional concern with the assay is biocontainment. While the need for 

biocontainment is a consideration for any assay running human samples, this is especially 

relevant in the context of BSL-4 work. One potential solution is pre-treatment of samples for 

EBOV inactivation. Current methods include the use of irradiation,56,57 alkylating agents,58 acetic 

acid with heat,59 or Triton X-100 with heat.60 An alternative to inactivation would be a self-

contained sensor unit. In the context of WGM sensors, optofluidic devices such as liquid core 

optical ring resonators (LCORR)61,62 or microbubble resonators63 integrate the optical sensor 

component with fluidic handling. 

While our study highlights a potential biomarker for EVD and a new utility of the sensor 

platform, there are some areas for future development. Our technique requires the use of an 

instrument capable of interrogating optical resonators, which requires a tunable laser source 
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within an optical readout instrument. While there have been pushes to miniaturize these 

instruments,54 current devices are laboratory-based and one of the most expensive components of 

the assay. De novo detection of these antigens is not possible with our assay format. Further 

work is also required to fully characterize the diagnostic and prognostic value of sGP in EVD.  

3.7 Conclusion 

Together, our results indicate that microring resonators that detect sGP are an appealing 

diagnostic platform for the detection of EBOV infection. We demonstrate that sGP is a 

diagnostic and prognostic marker for EBOV infection, and when leveraged in conjunction with a 

sensitive diagnostic assay, can provide actionable clinical information. Our work provides proof-

of-concept and a framework for further optimization and assay development. Multiplexed 

measurements enabled by our platform will allow for a broader range of pathogens to be 

assessed, as well as the potential to incorporate other biomarkers relevant towards infection. 
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3.8 Figures 

 

Figure 3.1 Ebola virus genome, generation of sGP, and comparison of EBOV RT-PCR versus sGP values during 
infection. (a) The Ebola genome contains 7 genes, including one encoding for glycoprotein (GP). A transcriptional 
stutter leads to the addition of 7 additional adenosines, that are edited to result in the full length, transmembrane 
glycoprotein. In contrast, without editing, a soluble glycoprotein (sGP) is formed, which is secreted from the 
infected cell. (b) Comparison of RT-PCR values (blue bars) and an ELISA for sGP (orange lines) in non-human 
primates infected with EBOV who survived and (c) were deceased. Treatment either with mAb or control (no 
treatment) is reflected under the plots. 
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Figure 3.2 Microring resonator diagram. (a) (Left) A single 4 mm x 6 mm chip embedded into a two-channel, 
microfluidic cartridge. (Center) Optical micrograph of a single chip used with the Maverick M1 instrument, with 16 
clusters of 4 sensors in both channels. (Right) Schematic of the cluster of four microring sensors. Microring sensors 
are fabricated in clusters of 4 sensors with a linear waveguide near the microring waveguide for coupling of light 
into the microcavity. 
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Figure 3.3 Sensor traces and calibration curves for EBOV sGP for both primary binding of sGP and enzymatic 
amplification. (a) Primary binding of sGP to the microring sensors with concentrations ranging from 3.8 ng/mL to 
4,800 ng/mL in neat buffer. (b) Calibration curve for the primary binding responses. (c) Full sandwich immunoassay 
and amplification response for EBOV sGP concentrations ranging from 0.4 ng/mL to 2,400 ng/mL in a 1% serum 
matrix. (d) Calibration curve for the amplification responses. Error is from technical replicates of 8-12 microrings 
per concentration. Each solid line represents the average response from between 8-12 sensors, and the halo is the 
spread of signal. 
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Figure 3.4 Schematic of sGP detection assay. (a) General workflow of sGP detection from infection to sample 
analysis. During infection, sGP is secreted from infected cells into the patient’s circulation and is isolated in patient 
serum. The immunoassay begins by binding of the secreted sGP in serum (1) onto the functionalized microring 
surface using specific antibodies (black), while off-target antibodies serve as negative controls (blue). As a 
secondary recognition element, biotinylated pan-filoviral antibodies (2) detect the captured sGP. This sandwich 
complex is recognized by streptavidin horse radish peroxidase (3), which allows for enzymatic processing of 
solution-phase 4-chloro-1-napthol (4). This final step leads to a large shift in resonant wavelength that is 
proportional to the amount of sGP bound by the capture antibodies. (b) Corresponding microring traces for each of 
the steps in part (a). The solid line reflects the average response of 8-12 technical replicates, while the surrounding 
halo reflects the spread of individual rings. Inset reflects the steps 1-3.  
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Figure 3.5 Cross reactivity of microring resonators and calibration curves. Chips functionalized with anti-EBOV 
sGP antibodies (black) and anti-SUDV sGP antibodies (red) show no cross reactivity, as only those rings 
functionalized with the specific antibody elicit a response in the presence of the respective protein standard, 600 
ng/mL of EBOV sGP (a) or 600 ng/mL of SUDV sGP (b). Mouse IgG antibodies (blue) were functionalized on 
every chip as negative controls. Error bars represent n=8-12 technical replicates. (c-e) Calibration curves over a 
range of analyte concentrations in (c) 1%, (d) 10%, and (e) 50% serum. Each point represents 3 separate runs, with 
each run containing 8-12 technical replicates. Error bars reflect ±1 standard deviation.
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Figure 3.6 Detection of sGP from EBOV infected non-human primate (NHP) samples. Average net shift and 
standard deviation of microring resonators towards EBOV infected NHP samples. Error bars reflect ± 1 standard 
deviation. Samples designated with L refer to a sGP concentration range (confirmed via ELISA) between 100 – 
1,000 ng/mL, M corresponding to 1,000 – 10,000 ng/mL, and H corresponding to 10,000 –60,000 ng/mL. A total of 
8 to 12 technical replicates were performed for each sample. 
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Figure 3.7 Comparison of ELISA and microring resonator platform performance. (a) Full range of concentrations for 
the NHP samples (n = 30). (b) Error (%) for the microring sensors relative to the ELISA standard. 
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3.9 Tables 

Table 3.1 Fitting parameters used in generating calibration curves in Figure 3.5 for EBOV and SUDV sGP with a 
logistic function, Eq.1. 

 1% Serum 10% Serum 50% Serum 

 EBOV SUDV EBOV SUDV EBOV SUDV 

A1 123.6 144.6 134.4 80.4 102.4 112.6 

A2 6,307.8 6,356.8 8,642.9 8,409.3 5,404.9 6,210.9 

x0 141.0 79.6 933.7 484.0 182.4 119.1 

P 0.97 1.08 0.81 0.73 1.34 1.28 
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Table 3.2 Matrix blank parameters from the calibration curves in Figure 3.5 for EBOV and SUDV sGP to determine 
the limit-of-detection (LOD). 

Target Matrix  
(% Serum) 

Blank Net shift 
(Δpm) 

Blank Std. Dev. 
(Δpm) LOD (ng/mL) 

EBOV 
1 

119.13 29.48 1.72 

SUDV 102.32 31.89 1.00 

EBOV 
10 

152.16 29.33 4.20 

SUDV 113.72 29.69 1.54 

EBOV 
50 

100.41 5.80 2.33 

SUDV 146.60 47.69 7.76 
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Table 3.3 EBOV sGP concentrations in NHP samples shown in Figure 3.6, percent error in comparison to ELISA 
data, and days post infection at time of sample collection. 

Sample 
Code 

sGP 
Concentration 

by ELISA 
(ng/mL) 

sGP 
Concentration 
by Microrings 

(ng/mL) 

Error (%) Days Post 
Infection 

Low sGP Level Samples (100-1,000 ng/mL) 

L1 91 19 79.1 5 

L2 258 176 31.8 7 

L3 300 74 75.3 9 

L4 431 68 84.2 9 

L5 559 287 48.7 7 

L6 590 214 63.7 7 

L7 627 1,183 88.7 9 

L8 777 975 25.5 7 

L9 875 1,045 19.4 11 

L10 935 1,574 68.3 6 

Mid sGP Level Samples (1,000-10,000 ng/mL) 

M1 1,341 1,488 11.0 8 

M2 1,984 1,148 42.1 8 

M3 2,792 4,030 44.3 9 

M4 3,343 2,017 39.7 8 

M5 3,699 2,661 28.1 9 

M6 4,749 4,870 2.5 10 
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M7 5,003 1,510 69.8 9 

M8 7,001 2,946 57.9 8 

M9 7,914 5,324 32.7 11 

M10 9,246 4,807 48.0 10 

High sGP Level Samples (10,000-60,000 ng/mL) 

H1 14,538 6,649 54.3 9 

H2 18,446 3,137 83.0 10 

H3 23,307 8,658 62.9 11 

H4 24,861 10,845 56.4 11 

H5 37,898 14,955 60.5 10 

H6 38,311 10,997 71.3 11 

H7 42,688 18,007 57.8 6 

H8 46,016 17,947 61.0 7 

H9 51,546 22,930 55.5 8 

H10 55,356 17,411 68.5 9 
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4.2 Abstract 

Objective: Determine if baseline serum cytokine and chemokine levels in preterm neonates differ 

by chronologic age and chorioamnionitis exposure. 

Study Design: A 7-plex immunoassay measured levels of serum IL-1b, IL-6, IL-8, IL-10, TNF-

a, CCL2 and CCL3 longitudinally from chorioamnionitis-exposed and unexposed preterm 

neonates under 33 weeks’ gestation.  

Results: Chorioamnionitis-exposed and unexposed preterm neonates demonstrated differences in 

the trends of IL-1b, IL-6, IL-8, IL-10, TNF-a, and CCL2 over the first month of life. The 

unexposed neonates demonstrated elevated levels of these inflammatory markers in the first two 

weeks of life with a decrease to baseline levels by the third week of life, while the 

chorioamnionitis-exposed neonates demonstrated differences over time without a predictable 

pattern. Chorioamnionitis-exposed and unexposed neonates demonstrated altered IL-10 and 

TNF-a, trajectories over the first twelve weeks of life. 

Conclusion: Chorioamnionitis induces a state of immune dysregulation that persists for at least 

twelve weeks following delivery in preterm neonates. 

4.3 Introduction 

Preterm birth, defined as delivery that occurs prior to 37 weeks’ gestation, complicates 

approximately 11% of births globally.1 Preterm neonates are at risk for numerous morbidities 

during their initial hospitalization, including an increased risk for sepsis.2 This infection risk is 

often attributed to immaturity of the preterm immune system, particularly the innate immune 
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system. Several studies have demonstrated differences in innate immune cytokine levels between 

term and preterm infants.3,4 These altered cytokine responses are thought to contribute to a 

preterm neonate’s heightened susceptibility to infection as appropriate cytokine responses are 

necessary to guide the clearance of microorganisms.5 However, the natural evolution of innate 

immune responses in premature neonates is incompletely understood. 

Preterm delivery is often complicated and may even be stimulated by intrauterine 

inflammation and/or infection, termed chorioamnionitis.1 Chorioamnionitis is present in up to 

70% of very preterm deliveries and leads to an initial fetal pro-inflammatory response, including 

increased expression of the pro-inflammatory cytokines IL-1b, IL-6, IL-8 and TNF-a.6,7 This 

fetal inflammatory response alters the developing immune system, resulting in decreased pro-

inflammatory cytokine expression when umbilical cord blood monocytes from chorioamnionitis-

exposed neonates undergo a secondary challenge with either LPS or Staphylococcus 

epidermidis.8,9 Chorioamnionitis exposure is known to increase the risk of developing both early 

and late onset neonatal sepsis, which may be at least partially due to these dampened monocyte 

responses.10,11 It is currently unclear how long this chorioamnionitis-induced immune hypo-

responsiveness persists, which could impact a preterm infant’s already heightened susceptibility 

to infection beyond the immediate neonatal period.  

The primary objective of this study was to determine if baseline serum cytokine and 

chemokine concentrations in preterm neonates differed based on chronologic age and/or 

chorioamnionitis-exposure. A secondary objective was to compare serum cytokine and 

chemokine levels between preterm infants with bacterial sepsis, necrotizing enterocolitis and 

healthy controls. To achieve these objectives, we performed longitudinal cytokine and 

chemokine profiling using a 7-plex cytokine and chemokine assay to measure concentrations of 
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CCL2, CCL3, IL-1β, IL-6, IL-8, IL-10, and TNF-α in neonatal serum samples. These cytokines 

span pro- and anti- inflammatory classes and represent various functions of the innate immune 

system, including recruitment of cells to infection sites, signaling, and clearance of 

microorganisms (Table 4.1). Using less than 200 μL of residual serum from clinically indicated 

routine blood tests, we compared cytokine and chemokine levels throughout a subject’s entire 

NICU stay. 

4.4 Methods 

Patient Recruitment and Blood Collection. This study was approved by the University of 

Michigan IRB. This study was performed in accordance with the Declaration of Helsinki. This 

was a single-center study. The University of Michigan C.S. Mott Children’s Hospital is a 348-

bed tertiary care hospital. The Brandon NICU is a 52-bed level IV NICU and the Von 

Voigtlander Women’s Hospital has 3,600 births yearly. After informed written parental consent 

was obtained, residual serum was collected prospectively from clinically indicated lab draws of 

neonates born at less than 33 weeks’ gestational age. Serum samples were collected from 61 

patients from birth through 42 weeks’ postmenstrual age, death, or discharge, whichever 

occurred first. A power calculation was performed using our previously published data 

demonstrating decreased IL-8 protein expression in neonatal chorioamnionitis-exposed 

monocytes following stimulation with lipopolysaccharide compared to unexposed monocytes 

(1023±507.5 pg/mL vs 384.6±156.1 pg/mL).9 Using an alpha value of 0.05 and a power of 90%, 

a sample size of 13 subjects per exposure group was estimated to detect a statistically significant 

difference between groups. Our subject cohort included 27 chorioamnionitis-exposed and 34 

unexposed preterm infants, exceeding this target sample size. The average number of blood 
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draws for enrolled subjects was 14 (range 2-37). Sample collection occurred from April 2019 

through April 2021.  

Histopathologic examination of the placenta was performed by qualified pathologists and the 

Amsterdam Placental Staging Criteria was used to diagnose chorioamnionitis.9,12,13 Ten of the 

chorioamnionitis-exposed subjects also had evidence of funisitis on placental histopathology. 

Subjects with placental pathology significant for acute chorioamnionitis ± funisitis were included 

in the chorioamnionitis group as we found no differences in serum cytokines or chemokines 

between chorioamnionitis only and chorioamnionitis with funisitis exposed preterm neonates, as 

evidenced in Figure 4.1. Subjects without inflammation on placental pathology, even if there 

was clinical suspicion for chorioamnionitis, were included in the unexposed group. The blood 

volume collected with each sample varied, as the serum available for testing was what remained 

after all clinically ordered testing was performed. As 200 µL was required for performance of the 

cytokine assay, samples were pooled if collected within three days of one another and the subject 

had no significant change in clinical status. A total of 397 residual serum samples were collected. 

Samples were frozen and stored in a -80° C freezer prior to use. As the main objective of this 

study was to evaluate if baseline serum cytokine values differed based on chronologic age and/or 

chorioamnionitis exposure and several previous studies demonstrated elevated levels of IL-6, IL-

10, IL-8 and/or TNF- α around the time of sepsis or necrotizing enterocolitis diagnosis, we 

excluded samples from longitudinal data evaluation if the subject had a suspected or confirmed 

infection and was being treated with antibiotics at the time of sample collection to eliminate 

samples that may falsely elevate baseline cytokine and chemokine levels.14–17 This included 

treatment for sepsis, urinary tract infection, pneumonia, necrotizing enterocolitis, or spontaneous 

intestinal perforation, excluding 100 samples from analysis. Samples were excluded from 13 



 128 

chorioamnionitis-exposed and 16 unexposed preterm neonates. A total of 297 serum samples 

were included in the final longitudinal analysis. Samples were again included from these subjects 

once the antibiotic treatment course had ended. Six subjects had culture-positive bacterial sepsis 

and seven subjects had Bell’s stage 2 or greater necrotizing enterocolitis. Using previously 

published data, a power calculation using an alpha level of 0.05 and a power of 90% 

demonstrated that a sample size of six subjects per group was needed to detect a difference in 

cytokine levels between bacteremic and control infants (IL-6 in bacteremic infants 3.7±1.8 

ng/mL vs 0.4±0.2 ng/mL in control infants) with four subjects per group needed to detect a 

difference in cytokine levels between infants with necrotizing enterocolitis and control infants 

(IL-6 in infants with necrotizing enterocolitis 2.1 ±0.7 ng/mL vs 0.4±0.2 ng/mL in control 

infants).16 We matched subjects with culture-positive bacterial sepsis or Bell’s stage 2 or greater 

necrotizing enterocolitis with a healthy control infant based on sex, gestational age at birth (±1 

week) and chorioamnionitis-exposure. We then compared cytokine and chemokine values 

between these matched groups at the time of sepsis or necrotizing enterocolitis diagnosis and at a 

similar day of life in the healthy controls (±5 days).  

Reagents and Buffers. Dulbecco’s phosphate buffered saline (PBS, catalog # D5573), bovine 

serum albumin (BSA, catalog # A2153), and (3-Aminopropyl) triethoxysilane (catalog # 

440140) were purchased from Millipore Sigma (St. Louis, MO USA). Glycerol (catalog # 

BP229), bis(sulfosuccinimidyl)suberate (catalog # A39266), starting block blocking buffer 

(catalog # 37538), Pierce high sensitivity streptavidin-HRP (SA-HRP, catalog # 21130), and 4-

chloronaphthol (4-CN, catalog # 34012) were purchased from Thermo Fisher Scientific 

(Waltham, MA USA). Drycoat assay stabilizer (catalog # AG066) was obtained from Virusys 

Corporation (Taneytown, MD USA). Vendors and catalog numbers for antibodies for all 
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multiplexed assay components are summarized in Table 4.2. Running buffer for all assays was 

0.5% BSA in 1X PBS, pH 7.4. 

Multiplexed Immunoassays. Microring resonator immunoassays were validated and performed 

on the Maverick M1 and Matchbox systems (San Diego, CA USA), respectively, as previously 

described.18–20 The Maverick instruments use microfluidic systems for automated reagent 

handling. The M1 uses reusable cartridge devices and the Matchbox uses disposable, injection-

molded, plug-and-play devices.20 Microring chips were functionalized with capture antibodies 

using an amine-reactive, homobifunctional crosslinker to create a 7-plex cytokine and chemokine 

capture array. Each capture antibody spanned two clusters of four microring sensors in each of 

the two microfluidic channels, giving n=8 technical replicates of each target cytokine or 

chemokine per channel. After introducing the sample to the chip surface, a mixture of all tracer 

antibodies was flowed across the chip, followed by streptavidin-tagged enzymes and a signal 

amplification reagent. Assays were performed at a 30 µl/min flow rate for all steps. There was an 

initial rinse of 5 minutes with the running buffer to ensure equilibration of the chip prior to 

sample analysis. The assay included steps as follows: 1) running buffer (2 min); 2) sample (7 

min); 3) running buffer rinse (2 min); 4) biotinylated tracer antibodies (7 min); 5) running buffer 

rinse (2 min); 6) SA-HRP (7 min); 7) running buffer rinse (2 min); 8) 4-CN (7 min); 9) running 

buffer rinse (2 min). The total assay time was 38 minutes (Figure 4.2A).  

Immunoassay Calibrations. The 7-plex immunoassay was simultaneously calibrated for all 

analytes in a multiplexed format, as described previously.18 Serial dilutions from a mixed 

saturating analyte sample of all multiplexed targets were used to construct eight-point calibration 

curves correlating net sensor shifts to target concentrations. To quantify, the signal before the 

amplification step (t=29 min) was subtracted from the signal after the final assay rinse step (t=38 
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min). These net resonance wavelength shifts (∆pm) were plotted as a function of standard 

concentration and fit to a four-parametric logistic function (Figure 4.2B). Limits of detection 

(LOD) and quantification (LOQ) were defined as the blank signal plus 3 times and 10 times the 

standard deviation of the blank, respectively (Table 4.3). Each calibration was performed at least 

in triplicate for each sample dilution as measured with 8 sensors per technical replicate. 

Sample Evaluation. All samples contained at least 200 µL of residual serum. Neonatal residual 

serum samples were analyzed at two dilutions (2X and 10X) in running buffer using the same 

steps highlighted in Figure 4.2A. To quantify, the net shift surrounding the amplification step for 

each target was correlated to concentration using the corresponding standard calibration curve, 

50% serum or 10% serum, matching the serum content of the residual serum dilution. The most 

appropriate dilution to use for statistical analysis was selected by choosing the dilution that 

resulted in the relative shift closer to the inflection point of the respective calibration curve. 

Statistical Analysis. Basic statistical analysis was performed in GraphPad Prism 8. Data 

normality was evaluated using the Shapiro-Wilk test. Study group characteristics were compared 

using the student’s t-test for quantitative parametric data, the Mann-Whitney test for 

nonparametric data and the Chi-square test for categorical variables. p-values of <0.05 were 

considered significant. Cytokine and chemokine levels were compared between the first and 

second weeks of life in the same subject using the Wilcoxon matched pairs signed rank test. If 

there was more than one data point within these time frames, the data points were averaged to 

create a single mean level for each week. p-values < 0.05 was considered significant for this 

analysis method.  

General Estimating Equations were used in SPSS 28.0.1.0 to evaluate for changes in 

cytokine trends over the first four weeks of life in the chorioamnionitis-exposed and unexposed 



 131 

groups as the data was longitudinal, paired, and non-parametric with missing data points for 

some subjects. The General Estimating Equations used a robust covariance matrix, an 

unstructured working correlation matrix and a Tweedie with log link model. If there was more 

than one data point within each time frame, the data points were averaged to create a single mean 

level for each week. p-values < 0.05 was considered significant for the comparison of overall 

trends within each exposure group. However, when individual timepoints were compared within 

exposure groups, p-values <0.01 were considered significant to correct for multiple comparisons.  

Cytokine and chemokine levels from each subject were then compared over time by week-of-life 

(chronologic age) through 12 weeks. When there was more than one data point in a week, all 

points within that week were averaged to create a single mean cytokine level. Univariate 

statistics showed that the cytokines were not normally distributed and were largely right skewed, 

with many zeros, representing cytokine levels below the limit of detection. To transform the data 

to approximate a normal distribution more appropriate for modeling, the natural log of (cytokine 

level + x, where x is a positive value that varies based on the cytokine in question) was used. 

SAS Proc Mixed was used to perform repeated measures regression to look at the effect of 

chorioamnionitis status on the trajectory of cytokines over time while controlling for gestational 

age, ethnicity, and birth via C-section, all of which were found to be statistically different 

between exposure groups. Analyses were restricted to the first twelve weeks of life as the 

chorioamnionitis-exposed group had no data points beyond the first twelve weeks of life. 

Autoregressive covariance structure was selected based upon a) a conceptual understanding of 

the data (measurements close in time would be expected to more strongly correlated than 

measurements which are farther away from one another) and b) lower Akaike information 

criteria (AIC) in comparison to other covariance structures. The interaction term between week 
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of life and chorioamnionitis status indicated whether or not the cytokine trajectories differed. 

Least square mean values from SAS Proc Mixed were graphed to allow for a clearer 

understanding of trajectory differences. p-values of < 0.05 were considered significant. 

Comparisons between subjects with either culture-positive bacterial sepsis or necrotizing 

enterocolitis and healthy control subjects were made using the Friedman test with multiple 

comparisons correction. p-values of < 0.05 were considered significant. 

4.5 Results 

Characteristics of Study Subjects. A total of 61 preterm neonates were enrolled in this study, 

including 27 exposed to chorioamnionitis and 34 unexposed. Subjects ranged from 22 to 32 

weeks’ gestational age at birth and were followed to 42 weeks’ postmenstrual age, discharge, or 

death, whichever came first. Table 4.4 describes characteristics of the two study groups. 

Chorioamnionitis-exposed preterm neonates were younger, more likely to be African American 

and more likely to be born by vaginal delivery than unexposed preterm neonates. 

Cytokine and Chemokine Measurements During Initial Two Weeks of Life. Levels of 7 

cytokines and chemokines known to be important in innate immunity were measured in residual 

neonatal serum (Table 4.1). We first sought to investigate the change in cytokine and chemokine 

levels from the first week of life to the second in all of the preterm neonates and separated 

subjects based on chorioamnionitis exposure. We directly compared all cytokine and chemokine 

levels from each infant averaged over the first week of life to its average levels in the second 

week of life using a matched comparison, with each infant compared to itself at two different 

points in time. Levels from the first week of life were significantly higher than those in week two 

for IL-6 and CCL2 in both chorioamnionitis-exposed and unexposed subjects but IL-8 only 

demonstrated this trend in unexposed subjects (Figure 4.3).  
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Cytokine and Chemokine Trends Over the First Month of Life. We then compared the levels 

of serum cytokines and chemokines in chorioamnionitis-exposed and unexposed subjects by time 

post birth. The following epochs were compared between the same subject: week 1 (day of life 

1-7), week 2 (day of life 8-14), week 3 (day of life 15-21), week 4 (day of life 22-28) and beyond 

4 weeks (29+ days of life). Unexposed and chorioamnionitis-exposed preterm neonates both 

demonstrated significant changes in IL-1b, IL-6, IL-8, IL-10, TNF-a and CCL2 during the first 

month of life (Figure 4.4A-F). Chorioamnionitis-exposed preterm neonates demonstrated 

changes in CCL3 over the first month of life, but unexposed preterm neonates did not (Figure 

4.4G). In general, unexposed preterm neonates demonstrated elevated levels of IL-1b, IL-6, IL-

8, IL-10, TNF-a and CCL2 in the first one to two weeks of life with a decrease to what appears 

to be baseline levels by the third week of life (Figure 4.4, black circles). This contrasts with 

chorioamnionitis-exposed preterm neonates, who demonstrated differences in cytokine levels 

over the first month of life but without a predictable pattern (Figure 4.4, white circles). Direct 

comparisons between the different time points are detailed in Table 4.5. 

Cytokine and Chemokine Trajectories Between Chorioamnionitis-exposed and unexposed 

preterm neonates. Repeated measures of regression were then performed to look at the effect of 

chorioamnionitis status on the trajectory of cytokines over the 12 weeks following birth. This 

analysis controlled for gestational age, race/ethnicity, and mode of delivery, as all of these 

variables were found to differ between exposure groups on univariate analysis. The trajectories 

of IL-10 and TNF-a differed between chorioamnionitis-exposed and unexposed neonates, while 

there were no differences in the trajectories of IL-1b, IL-6, IL-8, CCL2 or CCL3 between groups 

(Figure 4.5).  
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Cytokine and Chemokine Levels at the Time of Bacterial Sepsis or Necrotizing 

Enterocolitis Diagnosis. For prior analysis, blood draws that correlated with clinically indicated 

adverse events or treatment courses were excluded. Here, we used those data points to compare 

cytokine and chemokine levels between healthy matched control preterm infants and infants with 

culture-positive bacterial sepsis (Figure 4.6A) or Bell’s stage 2 or greater necrotizing 

enterocolitis (Figure 4.6B) at the time of diagnosis. Preterm neonates with bacterial sepsis or 

necrotizing enterocolitis had increased serum IL-6 at the time of diagnosis compared to healthy 

controls. 

Longitudinal Multi-biomarker Profiling Towards Clinical Monitoring. Cytokine and 

chemokine levels were plotted for each subject that had two or more time points. All collected 

data points were included in longitudinal profiling plots for each individual subject and 

timepoints associated with clinically indicated adverse events were identified for observational 

investigation towards future monitoring or rapid diagnostic applications. In subjects with 

necrotizing enterocolitis diagnosis and treatment (Figure 4.7 A-E), there were consistent spikes 

observed in CCL2 during treatment. In those with both necrotizing enterocolitis and bacteremia 

ongoing treatment (Figure 4.7 E-G), there were consistent spikes observed in CCL2 and IL-8. 

Interestingly, the two chorioamnionitis exposed subjects with necrotizing enterocolitis (Figure 

4.7 A, E) have very similar increases in CCL2, CCL3, TNF-a and IL-1b across both subjects 

and within the same subject. In subjects with clinically indicated early onset sepsis diagnosis and 

treatment, there was little observed similarity in profiles (Figure 4.8 A-D). In those with late 

onset sepsis, there was an observed consistent increase in both CCL2 and IL-6, regardless of 

exposure group (Figure 4.8 E-G). There is, additionally, no observed pattern in gram-negative 

(Figure 4.8 A, B, C, E) or gram-positive (Figure 4.8 C, D, F, G) associated infections. The final 
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adverse event most common in this cohort was urinary tract infections. Among these subjects, 

there are consistently multiple biomarkers, CCL2, IL-1b, TNF-a, IL-6 and CCL3, observed as 

peaking during the diagnosis and treatment time frame, regardless of exposure group or specific 

bacteria causing the infection (Figure 4.9). A similarity among these longitudinal plots with 

adverse events highlighted is that a large portion of subjects show an observable decrease in the 

cytokine concentrations at the end of the noted treatment period, or at the timepoint following 

treatment. 

4.6 Discussion 

Neonatal infections are a cause of significant morbidity and mortality in preterm neonates 

during their hospitalization in the NICU.2 It is known that preterm neonates exposed to 

chorioamnionitis have an increased risk of developing early-onset sepsis (blood stream infection 

that occurs within the first 72 hours of life).8,11,21 It is unclear if this infection risk is due to a 

common pathogen causing both conditions or alterations in the neonatal immune response 

following chorioamnionitis exposure, or both. Multiple studies have shown that exposure to 

chorioamnionitis impacts the neonatal immune system by altering gene transcription and innate 

immune responses.7–9 These altered immune responses include dampened pro-inflammatory 

cytokine expression when a second pathogen is encountered.8,9 Appropriate pro-inflammatory 

cytokine expression is necessary for the clearance of microorganisms, so these chorioamnionitis-

induced changes to neonatal immune responses are thought to be at least partially responsible for 

this increased risk of infection. However, it is unclear how long chorioamnionitis-induced 

dampened cytokine expression persists, as studies are conflicting about whether chorioamnionitis 

exposure protects against or increases the risk for developing late onset sepsis (blood stream 

infection that presents after 72 hours of life).11,22–24 
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 To assess the persistence of chorioamnionitis-induced dampened pro-inflammatory 

cytokine expression in preterm neonates, we performed longitudinal cytokine and chemokine 

profiling in very preterm neonates from birth to NICU discharge. We chose a panel of cytokines 

and chemokines known to be significant contributors to neonatal immune responses. Neonates 

primarily rely upon the innate immune system early in life to protect against infections due to 

limited antigen exposure in utero and major deficiencies in adaptive immune responses.25,26 

Innate immune cells, including monocytes, macrophages and neutrophils, require signaling from 

cellular messengers such as cytokines and chemokines in order to mount a coordinated response 

to an infectious pathogen.27 CCL2 and CCL3 are chemokines that recruits monocytes, 

macrophages and neutrophils to local sites of infection and are necessary for prominent signaling 

pathways in the neonatal immune system.28 IL-8 shows similar chemotactic affinity for 

neutrophils and stimulates bacterial phagocytosis.29 IL-6, IL-1b and TNF-a are pro-

inflammatory cytokines important to the acute phase response necessary to assist in the clearance 

of microorganisms.30,31 IL-10 is an immunoregulatory cytokine important for immune 

homeostasis that also suppresses autoinflammation.32 We believe this panel of cytokines and 

chemokines provides a broad overview of neonatal innate immune reactivity.  

 In this study, we used a novel method of cytokine and chemokine evaluation, using each 

preterm neonate as its own matched control to compare levels at different chronologic ages. 

While this method has previously been used to demonstrate a significant decline in IL-1b, IL-6 

and TNF-a from DOL 1 to DOL 40 in term neonates, we are the first to use it to evaluate 

changes in cytokine and chemokine levels over time in preterm neonates.33,34 We found that in 

our population of preterm neonates, levels of IL-6 and CCL2 decreased between the first and 

second weeks of life in both chorioamnionitis-exposed and unexposed groups while IL-8 only 
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decreased in the unexposed group. Non-chorioamnionitis exposed preterm neonates had a 

consistent decrease in levels of IL-1b, IL-6, IL-8, IL-10, TNF-a and CCL2 over the first month 

of life, reaching what appeared to be baseline levels around three weeks after birth. This is in 

contrast to chorioamnionitis-exposed preterm neonates, whose cytokine and chemokine levels 

demonstrated differences over the first month of life without a consistent pattern based on 

chronologic age. We additionally found that the trajectory of IL-10 and TNF-a serum levels 

differed between chorioamnionitis-exposed and unexposed preterm neonates. These findings are 

important as most of these cytokines and chemokines have been proposed as biomarkers to 

diagnose or predict prematurity-based complications, including sepsis, necrotizing enterocolitis, 

and bronchopulmonary dysplasia.14,15,35–38 Our findings suggest that chronologic age and 

chorioamnionitis-exposure should be taken into consideration when using cytokines and 

chemokines as biomarkers in premature neonates. 

The altered cytokine and chemokine responses seen in the chorioamnionitis-exposed 

preterm neonates is in line with previous reports demonstrating altered cytokine responses from 

chorioamnionitis-exposed umbilical cord blood monocytes following stimulation with either LPS 

or Staphylococcus epidermidis.8,9 The cytokines and chemokines measured in this study are 

primarily expressed by innate immune cells, which are not typically self-renewing immune 

populations. How then, can chorioamnionitis-exposure around the time of birth influence 

cytokine and chemokine expression up to 12 weeks of life when the originally exposed innate 

immune cells are no longer around? The answer likely involves the concept of trained immunity, 

which describes long-term functional reprogramming of innate immune cells through 

epigenetics. We previously showed that chorioamnionitis exposure alters the histone tail 

modification landscape and subsequent gene expression profile of neonatal monocytes, resulting 
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in a trained immunity phenotype.9 This phenotype resulted in dampened pro-inflammatory 

cytokine expression when chorioamnionitis-exposed monocytes encountered a secondary 

pathogenic stimulus.9 Based on these findings, it is possible that chorioamnionitis-induced 

histone modification changes in innate immune cells results in long-lasting “epigenetic memory” 

and altered immune responses well beyond the immediate neonatal period. It is also possible that 

chorioamnionitis exposure results in a trained immunity phenotype in bone marrow progenitor 

cells, which would repopulate the circulating innate immune cells with this altered "epigenetic 

memory”. Alterations in innate immune “epigenetic memory” may provide insight into immune-

related complications experienced by chorioamnionitis-exposed neonates, including late onset 

sepsis, persistent wheezing and asthma.24,39  

 Our 7-plex cytokine microring resonator assay was robustly validated for all targets 

simultaneously to ensure reproducible results across all samples analyzed. Each assay was 38 

minutes to result, creating a quick method for analyzing important clinical samples. Using this 

multiplexed immunoassay, we were able to collect large amounts of immunological data quickly 

and with little starting sample volume. Early sepsis detection and prompt initiation of antibiotic 

therapy significantly improves outcomes in neonatal sepsis.40 In practice, early sepsis detection is 

difficult as signs of infection in the neonatal population are often non-specific. The gold standard 

test to diagnose a blood stream infection is a blood culture that demonstrates growth of a 

pathogenic organism; however this often takes at least 24 hours to result.41 Several biomarkers 

are commonly used to support or refute the presence of infection, including C-reactive protein, 

procalcitonin and the presence of many immature forms of neutrophils.42 These biomarkers are 

non-specific and are often more useful to rule infection out rather than diagnose it. Several 

cytokines have been proposed as useful biomarkers to diagnose neonatal sepsis or necrotizing 
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enterocolitis, including IL-1b, IL-6, IL-8, IL-10 and TNF-a.14,15,17,35,36 Our results support this, 

as we demonstrated that preterm neonates had elevated serum IL-6 at the time of bacterial sepsis 

or necrotizing enterocolitis diagnosis when compared to healthy preterm neonates. While 

cytokines hold great promise as biomarkers to diagnose neonatal sepsis, they often take days to 

result, so are unable to be used to promptly diagnose infection. Our microring resonator assay 

has the potential to provide cytokine values quickly for the most vulnerable patients, which could 

allow for the use of cytokine values in real time to accurately predict the risk of sepsis and 

impact bedside patient care. 

 Furthermore, with the large amounts of immunological data emanating from the same 

subjects over the course of their stay in the NICU, we demonstrated a rapid method for 

immunoprofiling neonates. Monitoring patients in near real time can decrease time to 

intervention and potentially trigger treatments prior to increased severity of disease, which has 

the potential to decrease time in the NICU and cost of treatments. The monitoring method can be 

further used in therapeutic approaches if increases or decreases of certain biomarkers can be 

correlated with treatment efficacy, giving clinicians a rapid method to identify if the treatment is 

working, if the treatment can be ended, or if the treatment needs to be continued longer. We 

retrospectively tracked increases in cytokine and chemokine concentrations before and during 

the diagnosis and treatment time points across three noted adverse events that occurred in 

multiple subjects over the course of this study: necrotizing enterocolitis, sepsis, and urinary tract 

infections. The concentrations then decreased in most cases at the final time point of treatment or 

after treatment has ended. These observed profiles show potential for this method to be used as a 

monitoring tool for evaluating treatment efficacy.  
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 The relatively low occurrence of these adverse events inhibits our ability to make 

conclusions about statistically significant biomarkers towards infection diagnosis stratified by 

exposure groups. Instead, as discussed above, we looked at the infections as a whole to compare 

age, sex, and gestational age matched healthy vs adverse event affected subjects. We can also use 

the profiles to discuss trends that should be studied further, in larger cohorts of preterm neonates, 

for use in disease diagnosis or treatment efficacy. In the three disease states explored here 

(necrotizing enterocolitis, sepsis, and urinary tract infections), there was an observed increase in 

CCL2 before and during clinically designated time points of infection. CCL2 is a pro 

inflammatory cytokine that recruits monocytes, macrophages, and neutrophils to local sites of 

infection and play an important role in signaling pathways in the neonatal immune system.28 Our 

results demonstrate the preterm neonate populations immune systems reliance on CCL2 for 

infection response, regardless of chorioamnionitis exposure status, gestational age, or infection.  

 Subjects with necrotizing enterocolitis diagnosis and treatment had observed increases in 

CCL2, CCL3, TNF-a, and IL-1b during infection time points, with higher responses in those 

with the chorioamnionitis exposure (n=2 subjects with 3 events). When necrotizing enterocolitis 

treatment coincided with bacteremia treatments (n=3) there was an increase in only CCL2 and 

IL-6 concentrations. Our results indicate there was a difference in observed cytokine and 

chemokine response in subjects undergoing necrotizing enterocolitis alone versus those with 

combined necrotizing enterocolitis and bacteremia treatments.  

Subjects with clinically indicated early onset sepsis or late onset sepsis did not have 

observable patterns in cytokine or chemokine responses, outside of increased CCL2. There was 

no observable pattern in regard to chorioamnionitis exposure or gram stain of the bacterial strain 

identified as cause of infection. Some subjects (n=3) had an increase of IL-6, while others (n=3) 
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had an increase of CCL3 and TNF-a. Our results demonstrate the difficult nature of sepsis 

prediction, as various inflammatory markers were present with no observable patterns within our 

data set.  

Finally, in subjects with urinary tract infections, we observed a consistent trend of multi-

biomarkers increasing during the treatment time points, including CCL2, IL-1b, TNF-a, IL-6 

and CCL3. The cytokines and chemokines that increased were similar across the subjects even 

though there were various bacterial causes of the urinary tract infection and none of the subjects 

in this study had the same strains of bacteria reported as a cause. Compared to the other adverse 

events, this infection resulted in the greatest number of observed targets increasing during 

infection and treatment time points. Our results show the importance of studying multi-

biomarker panels for monitoring specific infections or treatments. Overall, our longitudinal 

profiling analysis allowed us to observe the importance of CCL2 in a neonatal immune system, 

that cytokines tend to decrease after clinically indicated adverse events and treatment time 

points, and that these infections induce a multi-cytokine response during infection and treatment. 

Further work to move from small sample observations towards statistical significance will 

require a larger cohort of subjects with targeted approaches to collect samples from subjects with 

specific adverse effects, rather than from a general population of preterm neonates. 

 This study has several limitations. All samples were collected from clinically indicated 

laboratory tests, so the timing of sample collection varied between patients and was not 

standardized. There were differences between the exposure groups, and chorioamnionitis-

exposed subjects were more likely to be born earlier, African American and by vaginal delivery 

than unexposed subjects. It is unclear if these differences impacted cytokine and chemokine 

expression. Degree of prematurity and mode of delivery have been shown to impact immune 
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responses in prior studies, so these factors were accounted for in out statistical evaluation.43–45 

Samples were excluded from subjects who had a suspected or confirmed infection and were 

receiving antibiotics at the time of sample collection. We excluded these samples as several 

previous studies have demonstrated elevated levels of IL-6, IL-10, IL-8 and/or TNF-a around the 

time of sepsis or necrotizing enterocolitis diagnosis, and we were concerned that these and 

similar conditions could falsely elevate baseline cytokine measurements and confound the study 

results.14–17 However, this should be taken into account when interpreting and attempting to 

generalize our results. We did include samples from these patients later during their NICU 

course once the infection was treated, however, as infectious/inflammatory conditions are 

common in preterm neonates and this population is likely to make up a large proportion of 

infants upon which normative values are based. Additionally, it is unclear if suspected or 

confirmed infections influence future cytokine and chemokine expression, but this would be an 

interesting and informative comparison to make in future studies. Furthermore, corrections were 

not made for clinical differences such as mode of respiratory support, presence of BPD, steroid 

administration, or PDA treatment. The numbers in this study are not large enough to directly 

address these potential confounding factors, but future studies containing more subjects would be 

of benefit. 

4.7 Conclusion 

This study demonstrated that healthy preterm neonates had a consistent decrease in levels 

of IL-1b, IL-6, IL-8, IL-10, TNF-a and CCL2 over the first month of life, reaching what 

appeared to be baseline levels around three weeks after birth. This same pattern of changes was 

not present in chorioamnionitis-exposed preterm neonates, which may reflect immune system 

dysregulation beyond the immediate neonatal period. We demonstrated use for a multiplexed 
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biomarker panel to study preterm neonates’ immune systems, with future applications in clinical 

monitoring and diagnostics. 
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4.8 Figures 

 

Figure 4.1 Comparison of cytokine and chemokine levels by chronologic age in chorioamnionitis only (black 
circles) and chorioamnionitis plus funisitis (white circles) exposed preterm neonates. Serum protein levels were 
measured during the first week of life (week 1), weeks 2-4 of life (week 2-4) and beyond 4 weeks of life (week 4+). 
If more than one serum level was obtained during each timeframe, then the average level was used for comparison. 
Serum protein levels were analyzed for A) IL-1b, B) IL-6, C) IL-8, D) IL-10, E) TNF-a, F) CCL2, and G) CCL3. 
Chorioamnionitis only n=17, chorioamnionitis with funisitis n=10. Bars represent group mean. Differences between 
groups were evaluated using the Kruskal-Wallis test with correction for multiple comparisons. No statistically 
significant values were noted (p < 0.05). 

Chorioamnionitis only 

Chorioamnionitis + funisitis 
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Figure 4.2 Overview of multiplexed immunoassay method and calibration. A) Example microring trace of a 
multiplexed immunoassay for neonatal residual serum. All liquid flow is automated and sequential with running 
buffer rinses between each reagent. Net shifts are calculated by subtracting the relative shift before the amplification 
step (t=29) from that after the final rinse step (t=38). The shading around the lines represent variation between the 
n=8 microrings for each target. B) Multiplexed serum calibrations in a 50% serum matrix. Error bars represent 
standard deviation from n=4 calibrations with n=8 ring replicates per target. 
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Figure 4.3 Comparison of cytokines and chemokines obtained in the first and second weeks of life in preterm 
neonates. Serum protein levels were measured and compared between the same subject during the first and second 
weeks of life. If more than one serum level was obtained during each week, then the average level was used for 
comparison. Serum protein levels are demonstrated for IL-1b in unexposed (A) and chorioamnionitis-exposed (B) 
neonates, IL-6 in unexposed (C) and chorioamnionitis-exposed (D) neonates, IL-8 in unexposed (E) and 
chorioamnionitis-exposed (F) neonates, IL-10 in unexposed (G) and chorioamnionitis-exposed (H) neonates, TNF-a 
in unexposed (I) and chorioamnionitis-exposed (J) neonates, CCL2 in unexposed (K) and chorioamnionitis-exposed 
(L) neonates and CCL3 in unexposed (M) and chorioamnionitis-exposed (N) neonates. First week unexposed n=22, 
second week unexposed n=22, first week chorioamnionitis-exposed n=15, second week chorioamnionitis-exposed 
n=15. Wilcoxon test used to determine statistical significance. *p<0.05, **p<0.01, ****p<0.0001. Mean ± standard 
error of the mean for each protein level shown below each x-axis label. 
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Figure 4.4 Longitudinal cytokine and chemokine trends over time in chorioamnionitis-exposed and unexposed 
preterm neonates. Serum protein levels were measured and compared between the same subject during day of life 
(DOL) 1-7, 8-14, 15-21, 22-28 and 29 and beyond. If more than one serum level was obtained during each 
timeframe, then the average level was used for comparison. Serum protein levels are demonstrated in 
chorioamnionitis-exposed (white circles) and unexposed (black circles) preterm neonates for A) IL-1b, B) IL-6, C) 
IL-8, D) IL-10, E) TNF-a, F) CCL2 and G) CCL3. Unexposed n=28, chorioamnionitis-exposed n=17. General 
Estimating Equations were used to determine statistical significance. Circles represent mean levels and error bars 
represent standard error of the mean. p-values for differences in trends over time are shown. 
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Figure 4.5 Longitudinal cytokine and chemokine trajectories over time in chorioamnionitis-exposed and unexposed 
preterm neonates. If more than one serum level was obtained for a patient during each timeframe, then the average 
level was used for comparison. The lsmean of serum protein levels are demonstrated in chorioamnionitis-exposed 
(white circles) and unexposed (black circles) preterm neonates for A) IL-1b, B) IL-6, C) IL-8, D) IL-10, E) TNF-a, 
F) CCL2 and G) CCL3. Unexposed n=34, chorioamnionitis-exposed n=27. SAS Proc Mixed was used to perform 
repeated measures of regression to look at the effect of chorioamnionitis status on the trajectory of cytokines over 
time, while controlling for gestational age, ethnicity, and mode of delivery.  
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Figure 4.6 Comparison of serum cytokine and chemokine levels at the time of diagnosis of bacterial sepsis or 
necrotizing enterocolitis in preterm neonates. A) Subjects with blood culture-positive bacterial sepsis (white circles, 
n=6) were matched with healthy control subjects (black circles, n=6) based on sex, gestational age (±1 week) and 
chorioamnionitis-exposure. Cytokine and chemokine levels were compared at the time of diagnosis in the septic 
infants and at a similar chronologic age (±5 days) in the controls. B) Subjects with Bell’s stage 2 or greater 
necrotizing enterocolitis (white circles, n=7) were matched with healthy control subjects (black circles, n=7) based 
on sex, gestational age (±1 week) and chorioamnionitis-exposure. Cytokine and chemokine levels were compared at 
the time of diagnosis in the infants with necrotizing enterocolitis and at a similar chronologic age (±5 days) in the 
controls. Bars demonstrate the mean. The Friedman test with correction for multiple comparisons was used to 
evaluate for differences between groups. *p<0.05. 
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Figure 4.7 Longitudinal profiles of cytokine and chemokine levels for subjects with necrotizing enterocolitis 
diagnosis and treatment. The grey shaded boxes (A-E) indicate the timepoints designated as necrotizing enterocolitis 
treatment. The orange shaded boxes (E-G) indicate timepoints designated as both necrotizing enterocolitis treatment 
and bacteremia treatment. Each panel A-G represents a separate subject, with A and E having exposure to 
chorioamnionitis and B-D and F-G having no exposure. Error bars represent variation between the n=8 microrings 
for each target.  
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Figure 4.8 Longitudinal profiles of cytokine and chemokine levels for subjects with sepsis diagnosis and treatment. 
The grey shaded boxes (A-D) indicate the timepoints designated as early onset sepsis treatment. The orange shaded 
box (D) indicates a timepoint designated as both early onset sepsis treatment and spontaneous intestinal perforation. 
The green shaded boxes (E-F) indicate timepoints designated as late onset sepsis treatment. Each panel A-G 
represents a separate subject, with A-E all having exposure to chorioamnionitis and F-G having no exposure. Panels 
A, B and E represent infections with gram negative bacteria (E-coli, Klebsiella Pneumoniae/Morganella Morganii, 
and Enterobacter, respectively), D, F, and G represent infections with gram positive bacteria (Enterococcus 
Faecium, Streptococcus Mitis, and Staphylococcus Capitis, respectively) and C represents a dual infection with both 
gram negative (E-coli) and gram positive (Enterococcus Faecium) bacteria. The error bars represent variation 
between the n=8 microrings for each target.
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Figure 4.9 Longitudinal profiles of cytokine and chemokine levels for subjects with urinary tract infection diagnosis 
and treatment. The grey shaded boxes indicate the timepoints designated as urinary tract infection treatment. Each 
panel A-F represents a separate subject, with A-B having exposure to chorioamnionitis and C-F having no exposure. 
The error bars represent variation between the n=8 microrings for each target. 
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4.9 Tables 

Table 4.1 Functions of the selected cytokine panel markers.  

Cytokine/ 
Chemokine Produced By Pro- or Anti-

Inflammatory Function 

IL-1β 

Macrophages, 
fibroblasts, 

epithelial cells, 
endothelial cells 

Pro 

Involved in cell proliferation and 
differentiation; important to the 

acute phase response to assist in the 
clearance of microorganisms30 

IL-6 

Macrophages, T 
cells, B cells, 
fibroblasts, 

epithelial cells, 
endothelial cells 

Both 

Secreted by macrophages; important 
to the acute phase response to assist 

in the clearance of 
microorganisms30,31 

IL-10 T regulatory cells, 
CD4 Th2 cells Anti 

A CD4+ regulatory cytokine; 
important for immune homeostasis, 

suppresses autoinflammation32 

IL-8 

Macrophages, 
endothelial cells, 

epithelial cells and 
airways smooth 

muscle cells 

Pro 

Induces chemotaxis in granulocytes, 
causing them to migrate toward the 
site of infection; stimulates bacterial 

phagocytosis29 

TNF-α Macrophages, Th1 
cells, Th2 cells Both 

Involved in signaling via TNFR1 
and TNFR2; has both pro- and anti-
inflammatory effects; important to 

the acute phase response to assist in 
the clearance of microorganisms30 

CCL2 
Monocytes, 

dendritic cells, 
endothelial cells 

Pro 

Recruits monocytes macrophages 
and neutrophils to local sites of 
infection and are necessary for 

prominent signaling pathways in the 
neonatal immune system28 

CCL3 Macrophages, 
osteoblasts Pro 

Recruits monocytes macrophages 
and neutrophils to local sites of 
infection and are necessary for 

prominent signaling pathways in the 
neonatal immune system28 
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Table 4.2 Reagents used in the multiplexed assay.  

Target Role Source Catalog Number 

Saturating 
antigen 

(ng/mL)/Tracer 
Concentrations 

(µg/mL) 

CCL2 
Capture Ab 

Antigen 
Bt-Tracer Ab 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7099 
14-8398 
13-7096 

150/2 

CCL3 
Capture Ab 

Antigen 
Bt-Tracer Ab 

R&D Systems 
R&D Systems 
R&D Systems 

MAB670-100 
270-LD-010 

MAB270-100 
100/1 

IL-1β 
Capture Ab 

Antigen 
Bt-Tracer Ab 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

14-7018-85 
RIL-1ΒI 

13-7016-85 
300/2 

IL-6 
Capture Ab 

Antigen 
Bt-Tracer Ab 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7069 
14-8069 
13-7068 

100/2 

IL-8 
Capture Ab 

Antigen 
Bt-Tracer Ab 

BD Biosciences 
BD Biosciences 
BD Biosciences 

554716 
554609 
554718 

50/2 

IL-10 
Capture Ab 

Antigen 
Bt-Tracer Ab 

Thermo Fisher 
Thermo Fisher 
Thermo Fisher 

16-7108 
14-8109-80 

13-7109 
300/2 

TNF-α 
Capture Ab 

Antigen 
Bt-Tracer Ab 

Biolegend 
Biolegend 
Biolegend 

502802 
570102 
502904 

150/2 

All capture antibodies are spotted at 0.25 mg/mL. The saturating antigen concentration is the highest 
concentration of standard used to construct the calibration curve, with serial dilutions emanating from this 
highest point. Ab= antibody, Bt = biotinylated. 
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Table 4.3 Limits of detection (LODs) of the 7-plex panel calculated as the concentration corresponding to the signal 
from the blank sample plus three times the standard deviation of the blank, using data from the two respective 
matrix calibrations. 

Target 50% Serum LODs 10% Serum LODs 

CCL2 211.4 pg/mL 223.1 pg/mL 

CCL3 64.5 pg/mL 41.8 pg/mL 

IL-1β 124.0 pg/mL 185.4 pg/mL 

IL-6 83.2 pg/mL 37.1 pg/mL 

IL-8 10.4 pg/mL 8.5 pg/mL 

IL-10 4.0 pg/mL 6.8 pg/mL 

TNF-α 86.2 pg/mL 73.7 pg/mL 
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Table 4.4 Subject characteristics. 

 Chorioamnionitis-exposed 
Preterm Neonates (n=27) 

Unexposed Preterm 
Neonates (n=34) p-value 

Birth gestational age in 
weeks (mean ± SD) 27.03 ± 2.7 28.69 ± 2.99 0.028* 

Birth weight in grams 
(mean ± SD) 1051 ± 363 1181 ± 544 0.44 

Male sex 10 (37%) 20 (59%) 0.09 
Ethnicity 

- Caucasian 
- African American 
- Other 

 
16 (59%) 
7 (26%) 
4 (15%)  

 
27 (79%) 
1 (3%) 
6 (18%) 

 
0.09 

0.008* 
0.77 

C-section 19 (70%) 32 (94%) 0.01* 
IUGR/SGA 2 (7%) 6 (18%) 0.24 

Pregnancy-induced 
hypertension 1 (4%) 6 (26%) 0.09 

Gestational diabetes 2 (7%) 6 (26%) 0.24 

Prolonged rupture of 
membranes (>18 hours) 5 (19%) 3 (9%) 0.27 

Antenatal steroids at 
least 12 hours prior to 

delivery 
23 (85%) 23 (68%) 0.11 

Multiple gestation 16 (59%) 20 (59%) 0.97 

Early onset sepsis (blood 
culture positive within 

72 hours of birth) 
4 (15%) 1 (3%) 0.09 

Late onset sepsis (blood 
culture positive after 72 

hours of life) 
4 (15%) 5 (15%) 0.99 

Ventilator associated 
pneumonia 3 (11%) 4 (12%) 0.94 

Urinary tract infection 2 (7%) 7 (21%) 0.15 

Necrotizing enterocolitis 
(Bell’s stage II or 

greater) 
2 (7%) 5 (15%) 0.37 
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Spontaneous intestinal 
perforation 3 (11%) 2 (6%) 0.46 

Supplemental oxygen at 
28 days 12 (44%) 17 (50%) 0.67 

Supplemental oxygen at 
36 weeks’ gestation 9 (33%) 13 (38%) 0.69 

Death before discharge 4 (15%) 1 (3%) 0.09 
*p<0.05. IUGR=intrauterine growth restriction, SGA=small for gestational age. Quantitative variables were 
compared using the student’s t-test for parametric data, the Mann-Whitney test for nonparametric data and 
categorical variables were compared using the Chi-square test. 
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Table 4.5 Comparison of chorioamnionitis-exposed and unexposed preterm neonatal cytokine and chemokine levels 
over the first month of life using Generalized Estimating Equations. 

Cytokine Time Point 1 Time Point 2 B-value p-value 
IL-1b Unexposed DOL 1-7 DOL 8-14 -0.316 0.093 
 DOL 1-7 DOL 15-21 -4.381 <0.001* 
 DOL 1-7 DOL 22-28 -2.194 <0.001* 
 DOL 1-7 DOL 29+ -4.237 0.024 
 DOL 8-14 DOL 15-21 -4.066 <0.001* 
 DOL 8-14 DOL 22-28 -1.879 0.008* 
 DOL 8-14 DOL 29+ -3.922 0.027 
 DOL 15-21 DOL 22-28 2.187 0.003* 
 DOL 15-21 DOL 29+ 0.144 0.922 
 DOL 22-28 DOL 29+ -2.043 0.214 
IL-1b Chorioamnionitis-exposed DOL 1-7 DOL 8-14 -0.714 0.046 
 DOL 1-7 DOL 15-21 0.214 0.623 
 DOL 1-7 DOL 22-28 -2.179 0.002* 
 DOL 1-7 DOL 29+ -1.306 0.124 
 DOL 8-14 DOL 15-21 0.928 0.17 
 DOL 8-14 DOL 22-28 -1.465 0.011 
 DOL 8-14 DOL 29+ -0.592 0.328 
 DOL 15-21 DOL 22-28 -2.818 0.009* 
 DOL 15-21 DOL 29+ -1.544 0.043 
 DOL 22-28 DOL 29+ 1.273 0.017 
IL-6 Unexposed DOL 1-7 DOL 8-14 -2.332 0.015 
 DOL 1-7 DOL 15-21 -5.192 <0.001* 
 DOL 1-7 DOL 22-28 -6.508 <0.001* 
 DOL 1-7 DOL 29+ -5.195 <0.001* 
 DOL 8-14 DOL 15-21 -2.860 <0.001* 
 DOL 8-14 DOL 22-28 -4.177 <0.001* 
 DOL 8-14 DOL 29+ -2.863 <0.001* 
 DOL 15-21 DOL 22-28 -1.316 0.087 
 DOL 15-21 DOL 29+ -0.003 0.997 
 DOL 22-28 DOL 29+ 1.313 0.083 
IL-6 Chorioamnionitis-exposed DOL 1-7 DOL 8-14 -1.303 <0.001* 
 DOL 1-7 DOL 15-21 0.233 0.158 
 DOL 1-7 DOL 22-28 -3.102 <0.001* 
 DOL 1-7 DOL 29+ -2.321 <0.001* 
 DOL 8-14 DOL 15-21 1.536 <0.001* 
 DOL 8-14 DOL 22-28 -1.800 <0.001* 
 DOL 8-14 DOL 29+ -1.019 <0.001* 
 DOL 15-21 DOL 22-28 -3.335 <0.001* 
 DOL 15-21 DOL 29+ -2.554 <0.001* 
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 DOL 22-28 DOL 29+ 0.781 0.146 
IL-8 Unexposed DOL 1-7 DOL 8-14 -0.743 0.038 
 DOL 1-7 DOL 15-21 -0.038 0.926 
 DOL 1-7 DOL 22-28 -1.963 <0.001* 
 DOL 1-7 DOL 29+ -2.785 <0.001* 
 DOL 8-14 DOL 15-21 0.705 0.339 
 DOL 8-14 DOL 22-28 -1.220 0.004* 
 DOL 8-14 DOL 29+ -2.042 <0.001* 
 DOL 15-21 DOL 22-28 -1.925 0.005* 
 DOL 15-21 DOL 29+ -2.747 <0.001* 
 DOL 22-28 DOL 29+ -0.822 0.043 
IL-8 Chorioamnionitis-exposed DOL 1-7 DOL 8-14 -1.222 0.028 
 DOL 1-7 DOL 15-21 -0.377 0.728 
 DOL 1-7 DOL 22-28 -3.406 0.109 
 DOL 1-7 DOL 29+ -1.934 0.006* 
 DOL 8-14 DOL 15-21 0.845 0.313 
 DOL 8-14 DOL 22-28 -2.184 0.238 
 DOL 8-14 DOL 29+ -0.712 0.045 
 DOL 15-21 DOL 22-28 -3.026 0.076 
 DOL 15-21 DOL 29+ -1.546 0.035 
 DOL 22-28 DOL 29+ 1.479 0.347 
IL-10 Unexposed DOL 1-7 DOL 8-14 0.012 0.975 
 DOL 1-7 DOL 15-21 0.191 0.809 
 DOL 1-7 DOL 22-28 -1.198 0.004* 
 DOL 1-7 DOL 29+ -0.863 0.006* 
 DOL 8-14 DOL 15-21 0.179 0.688 
 DOL 8-14 DOL 22-28 -1.210 0.022 
 DOL 8-14 DOL 29+ -0.875 0.045 
 DOL 15-21 DOL 22-28 -1.389 0.101 
 DOL 15-21 DOL 29+ -1.054 0.167 
 DOL 22-28 DOL 29+ 0.335 0.403 
IL-10 Chorioamnionitis-exposed DOL 1-7 DOL 8-14 -0.435 0.182 
 DOL 1-7 DOL 15-21 0.384 0.347 
 DOL 1-7 DOL 22-28 -0.662 0.532 
 DOL 1-7 DOL 29+ -0.736 0.222 
 DOL 8-14 DOL 15-21 0.819 0.056 
 DOL 8-14 DOL 22-28 -0.227 0.822 
 DOL 8-14 DOL 29+ -0.301 0.520 
 DOL 15-21 DOL 22-28 -2.189 0.158 
 DOL 15-21 DOL 29+ -1.208 0.069 
 DOL 22-28 DOL 29+ 0.981 0.310 
TNF-a Unexposed DOL 1-7 DOL 8-14 0.780 0.146 
 DOL 1-7 DOL 15-21 -0.877 0.140 
 DOL 1-7 DOL 22-28 -0.360 0.381 
 DOL 1-7 DOL 29+ -0.902 0.046 
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 DOL 8-14 DOL 15-21 -1.657 <0.001* 
 DOL 8-14 DOL 22-28 -1.140 0.002* 
 DOL 8-14 DOL 29+ -1.682 0.003* 
 DOL 15-21 DOL 22-28 0.517 0.179 
 DOL 15-21 DOL 29+ -0.025 0.965 
 DOL 22-28 DOL 29+ -0.542 0.117 
TNF-a Chorioamnionitis-exposed DOL 1-7 DOL 8-14 0.020 0.951 
 DOL 1-7 DOL 15-21 0.096 0.830 
 DOL 1-7 DOL 22-28 -2.976 <0.001* 
 DOL 1-7 DOL 29+ -1.172 0.003* 
 DOL 8-14 DOL 15-21 0.076 0.906 
 DOL 8-14 DOL 22-28 -2.995 <0.001* 
 DOL 8-14 DOL 29+ -1.192 <0.001* 
 DOL 15-21 DOL 22-28 -3.072 <0.001* 
 DOL 15-21 DOL 29+ -1.268 0.057 
 DOL 22-28 DOL 29+ 1.803 <0.001* 
CCL2 Unexposed DOL 1-7 DOL 8-14 -0.668 0.024 
 DOL 1-7 DOL 15-21 -1.862 <0.001* 
 DOL 1-7 DOL 22-28 -2.413 <0.001* 
 DOL 1-7 DOL 29+ -2.207 <0.001* 
 DOL 8-14 DOL 15-21 -1.194 0.037* 
 DOL 8-14 DOL 22-28 -1.745 <0.001* 
 DOL 8-14 DOL 29+ -1.539 <0.001* 
 DOL 15-21 DOL 22-28 -0.727 0.297 
 DOL 15-21 DOL 29+ 0.170 0.890 
 DOL 22-28 DOL 29+ 0.898 0.515 
CCL2 Chorioamnionitis-exposed DOL 1-7 DOL 8-14 -0.686 <0.001* 
 DOL 1-7 DOL 15-21 -1.028 0.167 
 DOL 1-7 DOL 22-28 -1.937 0.077 
 DOL 1-7 DOL 29+ -0.296 0.437 
 DOL 8-14 DOL 15-21 -0.342 0.587 
 DOL 8-14 DOL 22-28 -1.251 0.280 
 DOL 8-14 DOL 29+ 0.390 0.164 
 DOL 15-21 DOL 22-28 -2.239 <0.001* 
 DOL 15-21 DOL 29+ -2.276 0.003* 
 DOL 22-28 DOL 29+ -0.038 0.938 
CCL3 Unexposed DOL 1-7 DOL 8-14 -0.321 0.341 
 DOL 1-7 DOL 15-21 -2.106 0.098 
 DOL 1-7 DOL 22-28 -1.875 0.190 
 DOL 1-7 DOL 29+ -0.577 0.462 
 DOL 8-14 DOL 15-21 -1.786 0.173 
 DOL 8-14 DOL 22-28 -1.555 0.300 
 DOL 8-14 DOL 29+ -0.257 0.744 
 DOL 15-21 DOL 22-28 0.231 0.890 
 DOL 15-21 DOL 29+ 1.529 0.262 
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 DOL 22-28 DOL 29+ 1.298 0.481 
CCL3 Chorioamnionitis-exposed DOL 1-7 DOL 8-14 0.111 0.542 
 DOL 1-7 DOL 15-21 0.457 0.283 
 DOL 1-7 DOL 22-28 -1.466 0.297 
 DOL 1-7 DOL 29+ -1.719 0.073 
 DOL 8-14 DOL 15-21 0.346 0.514 
 DOL 8-14 DOL 22-28 -1.577 0.273 
 DOL 8-14 DOL 29+ -1.830 0.102 
 DOL 15-21 DOL 22-28 -1.842 0.241 
 DOL 15-21 DOL 29+ -1.956 0.020 
 DOL 22-28 DOL 29+ -0.113 0.929 
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Chapter 5 Comparison of Two Subject Cohorts Towards Development of a Multi-

Biomarker Approach to Latent Tuberculosis Infection and Risk Assessment 
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5.2 Abstract 

Tuberculosis (TB) infection is caused by Mycobacterium tuberculosis (Mtb) bacteria and 

affects around a quarter of the world’s population. TB is characterized as a dynamic and 

immunological equilibrium between multiple phases of infection, leading to difficulty in 

diagnosing and treating infected individuals. Patients with the clinically silent, asymptomatic, 

latent phase of the infection, or LTBI, can reactivate to the active phase of infection following 

perturbation of the dynamic equilibrium and can contribute to the spread of the bacteria. 

Identifying individuals who are LTBI positive and those who are at a high risk of reactivation in 

one assay would be advantageous for improving treatment and monitoring of patients. We 

developed a microring resonator based multi-biomarker immunoprotein assay to profile thirteen 

cytokine biomarkers in two separate clinical cohorts. The analytical method was followed by 

precision normalization and random forest machine learning modeling to classify patients’ LTBI 

and high-risk statuses. Across both cohorts, a predictive accuracy of almost 90% was achieved 

for LTBI positive versus LTBI negative patients and an accuracy of 91% to discriminate high-

risk from not high-risk of reactivation was achieved in the second cohort. The random forest 

machine learning model identified similar biomarkers (IP-10, IL-2, CCL8, and CCL4) as 

important towards prediction of both LTBI and high-risk classifications across both clinical 

cohorts, indicating potential for development of a lower-plexity assay. Additionally, the effect of 
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including a secondary TB-specific stimulation, TB2, to the workflow was assessed and results 

indicated the TB2 stimulation associated data did not provide any improvements or new 

information relative to the classification model with only the TB1 stimulation associated data. 

Herein, we report on the application of our developed workflow to identify patients’ LTBI and 

high-risk statuses in two clinical cohorts, followed by the comparison of results between cohorts. 

Using analytical tools and techniques combined with leftover QFT plasma samples and machine 

learning algorithms, we present a method easily integrated into the current TB diagnostic 

workflow that produced comparable results across two different clinical cohorts of subjects. 

5.3 Introduction 

Pulmonary tuberculosis (TB) is a complex condition resulting from infection with 

Mycobacterium tuberculosis (Mtb) bacteria. It is estimated that around 25% of the world’s 

population has been infected with Mtb, resulting in 10.6 million new infections and 1.6 million 

deaths worldwide in 2021.1,2 Initiatives to reduce global TB mortality have been largely 

unsuccessful, as the 5.9% decrease in TB deaths from 2015-2020 failed to achieve the target goal 

of 35% reduction set by the World Health Organization’s (WHO) End TB Strategy.3 Reductions 

in TB disease burden achieved during the late 2010s were reversed during the coronavirus 

disease 2019 (COVID-19) pandemic.4 Pandemic-induced impacts included reductions in 

spending on TB preventative services, an increase of infections through household contacts, and 

lower bacilli Calmette-Guérin (BCG) vaccination rates among children.4–6 Furthermore, 

diagnostic availability was impaired, leading to decreases in notification of TB infections. These 

adverse outcomes have only underlined the longstanding need for improved TB diagnostic 

platforms.  
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TB disease is currently regarded as a continuum or spectrum with various disease phases, 

from non-infectious TB to potentially infectious subclinical presentation and infectious TB 

disease.6–8 Each phase requires different methods of diagnosis and treatment regimes, adding to 

the complexity of TB disease. Mtb is concentrated in the lungs of actively infected individuals 

and transmitted to susceptible recipients through aerosolized respiratory droplets. The Mtb 

encountered upon inhalation of infectious droplets or aerosols can be cleared by the early innate 

immune system. However, if elimination is not achieved, pro-inflammatory cytokines continue 

to initiate a cellular response to the site of infection.9,10 Although delayed, initiation of the 

adaptive immune response recruits immune cells like lymphocytes and monocytes to the 

infection site and granulomas begin to form and calcify around the Mtb bacteria.11 Granuloma 

development aids Mtb persistence by isolating the bacteria from the host’s immune response, but 

also protects the host from continued bacterial growth and replication. The dynamic bacterial and 

immunological equilibrium induced by the granuloma environment results in latent TB infection 

(LTBI).9,11  

Patients diagnosed with LTBI can be treated with short-or long- course antibiotic 

regimens to prevent progression to active disease.12,13 Approximately 90% of LTBI patients who 

are immunocompetent will stay asymptomatic and non-contagious.7 However, in 5-10% of LTBI 

patients, factors such as inherent immune system characteristics, a co-infection, tumor necrosis 

factor (TNF) monoclonal antibody treatment, or other immunosuppressive factors will disrupt 

the dynamic equilibrium and result in granuloma rupture, deemed a reactivation event.9 The TB 

bacteria, no longer held in a quiescent state, will begin to replicate within the lungs of the host 

and be spread in respiratory droplets, facilitating further transmission of TB disease. Many 
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reactivation events occur within 24 months of initial infection, highlighting the importance of 

diagnosing the latent phase of infection.7 

The current field of LTBI diagnostics lacks a gold standard and relies on detection of TB 

infection through the tuberculosis skin test (TST) and interferon- γ release assay (IGRA).8,14,15 

TSTs are conducted by injecting purified protein derivatives from Mtb intradermally and 

measuring the resulting reactionary swelling. TSTs require a follow up visit within a very 

specific and regulated time frame to record the size of reaction and can result in false positives in 

individuals with a history of BCG vaccination or infection with nontuberculous 

mycobacterium.11 IGRAs incorporate blood-based diagnostics into the TB testing field. The 

current standard IGRA is the commercialized QuantiFERON test (QFT).16 The QFT identifies 

those who have been infected by Mtb by measuring the interferon- γ (IFN- γ) response in blood 

samples stimulated with TB-specific and control antigens.15 The QFT controls consist of a 

negative (NIL) control, in which blood samples are stimulated with media, and a positive control 

(MIT) that stimulates blood samples with the bioactive protein mitogen. The TB-specific 

stimulation (termed AG) targets CD4+ T-cell responses via a peptide cocktail of culture filtrate 

protein 10 and early secretory antigenic target protein 6 (CFP-10/ESAT-6). An updated QFT kit, 

QFT-Plus, changed the name of the AG condition to TB1 and introduced a secondary TB-

specific stimulation, TB2, that stimulates samples with a mixture of CFP-10/ESAT-6/additional 

proprietary peptides that are intended to simultaneously extract specific signals from CD4+ and 

CD8+ T-cells.  

While the QFT-Plus test incorporates two controls, two sets of TB-specific peptide 

stimulations, and requires a single visit, the output response is reliant on only one biomarker, 

IFN- γ, and the assay to measure IFN- γ requires experienced lab technicians and can take many 
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hours. Thus, abnormal results and inconclusive tests can occur in IFN- γ dysregulated patients. 

The TST and IGRAs are suitable for identifying individuals with prior exposure to Mtb, but they 

are unable to accurately differentiate between LTBI and active disease and have less than 3% 

predictive value in determining risk of reactivation from latent to active TB.8,17,18 There is a 

current need to develop phase-specific TB diagnostics, particularly for LTBI, as well as identify 

patients at an increased risk of reactivation, since preventative antibiotic therapy would be most 

beneficial for these individuals. The ideal diagnostic would detect both LTBI status and 

reactivation risk simultaneously. 

To facilitate the WHO’s goal of decreasing TB incidence by 80% before 2030, our 

research team aims to expand the TB diagnostic toolbox with a multiplexed immunoassay tool 

that addresses both LTBI status and risk of reactivation. Multiplexed protein biomarker assays 

will identify host biomarkers, aside from IFN- γ, that could be potential indicators of disease or 

reactivation risk, effectively reducing false negatives from IFN- γ dysregulated patients.19  

Multi-biomarker approaches have been studied to selectively distinguish active TB 

patients from healthy controls or those with other respiratory diseases.20–26 A systemic review of 

active TB biomarkers reported that many cytokines have been examined as standalone diagnostic 

markers, but that multi marker signatures would be more specific to disease state and provide 

greater diagnostic accuracy.20 The authors suggested that multi biomarker TB signatures should 

be derived for clinically distinct populations within the TB space, such as populations with a 

high risk of reactivation, rather than focusing mainly on the active TB phase.  

Efforts to uncover multiplexed protein signatures in active TB patients have been 

reported by Chegou and coworkers in the Stellenbosch University TB diagnostic biomarker 

research lab. In an analysis of untreated serum, this group identified a seven-biomarker signature 
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that resulted in a predictive accuracy of 90% for active TB infection, an improvement over the 

79-86% accuracy obtained when assessing the biomarkers individually.21 Two follow up studies 

employed multiplexed biomarker analysis in the QFT stimulated plasma. Chegou et al quantified 

biomarker concentrations in the NIL and AG stimulated QFT plasma and concluded that no 

single, stand-alone marker was sufficient to discriminate active TB patients from other 

individuals, but a panel of four markers could complete this task with accuracy of 81% in 251 

patients in Africa.22 Manngo et al further explored biomarkers in QFT stimulated plasma (NIL, 

TB1 and TB2 tubes), which resulted in accuracies of 56-77% using individual markers, but 91% 

using a six-signature combination, all under the NIL condition.23  

Additionally, studies have used multi-biomarker assays to classify patients as LTBI, 

active TB, or healthy controls.27–31 Wang et al used the QFT stimulated plasma to identify a six-

biomarker signature that could differentiate active TB (n=27), LTBI (n=32), and healthy controls 

(n=20) in a clinical validation cohort with 88.7% accuracy.28 The cytokines included IFN- γ, IP-

10, and IL-1Ra under TB1 stimulation and IP-10, VEGF, and IL-12 under NIL stimulation. Won 

et al used the QFT stimulated plasma to differentiate LTBI (n=15), healthy controls (n=13), 

active TB-QFT negative (n=12), and active TB-QFT positive (n=36) patient populations.29 They 

identified the biomarkers IL-2, IL-1Ra, IFN- γ, IP-10, GM-CSF, and IL-3 as important for 

discriminating TB infected and healthy controls, biomarkers IL-15, IL-10, VEGF, IL-2/IFN- γ, 

and TNF-⍺ as important for identifying active and latent TB, and VEGF, IP-10, IL-8, IL-2, and 

IL-13 as important for discerning between active TB and non-active (LTBI + healthy controls) 

TB. These studies demonstrate promise for using cytokine biomarkers to differentiate various 

phases of TB infection. However, they fail to account for immunological variation between 
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patients and do not include multi-biomarker signatures to identify individuals with the highest 

risk of reactivating from latent to active TB.  

Most of the current research into quantifying reactivation risk is focused on RNA 

signatures.32–35 Previous work in our group has begun to explore using protein biomarkers for 

risk assessment signatures. Protein biomarkers are generally more stable than RNA, do not 

require RNase-free facilities, and would facilitate a more streamlined integration into and 

comparison to current protein-based TB diagnostics.36 In two reports led by Bailey Lab alumni 

Dr. Heather Robison, peripheral blood mononuclear cells were stimulated with six antigens and 

the resulting supernatants were analyzed with our 13-plex cytokine and chemokine 

immunoassay.37,38 Initial work (n=15 LTBI subjects, n=35 controls, with n=5 high risk subjects) 

using machine learning feature selection identified IP-10, IL-2, and IFN- γ under normalized 

stimulation conditions as important for LTBI designation and IP-10 as most important for high-

risk designation.37 In a follow-up study (n=32 LTBI subjects, n=43 controls, with n=24 high risk 

subjects), they used random forest algorithms that selected various normalized conditions of IP-

10, CCL8, IFN- γ, CCL2, and IL-2 in the stimulated cell supernatants to designate LTBI status 

with an accuracy of 87.4% and IP-10, IL-2, IFN- γ, TNF-⍺, and IL-15 to designate high-risk 

status with an accuracy of 85.5%.38 This work demonstrated application of our 13-plex cytokine 

assay for designating both LTBI and high-risk status using precision normalized values. 

However, the process of incubating peripheral blood mononuclear cells with six stimulation 

antigens for 48 hours and collecting the resulting supernatant was a technically challenging and 

laborious process. Using more easily generated samples or patient samples collected as part of 

the current TB diagnostic workflow would increase the applicability of our 13-plex assay in 

developing a TB diagnostic panel.  
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Herein, we explore the use of QFT stimulated plasma as the sample source for analysis 

with our 13-plex microring resonator assay and random forest algorithms to differentiate LTBI 

positive from LTBI negative patients, as well as selectively identify patients at a high risk of 

reactivation. We report the results from two cohorts of subjects, collected at two different times 

and analyzed by two different teams. Both cohorts achieved predictive accuracies of ~90% for 

LTBI designation using a subset of measured, precision normalized, biomarkers. The second 

cohort achieved an accuracy of 91% for high-risk versus not high-risk designation. There was 

high overlap in the important biomarkers between the two cohorts and between the two 

designations, validating the findings within each cohort and indicating potential for a lower 

plexity, point-of-care focused assay. Furthermore, we tested the effect of adding the TB2 QFT-

Plus stimulation to the workflow in the second cohort of subjects, ultimately determining no 

diagnostic advantage of this additional sample. The results presented in this chapter aim to 

compare the outcomes generated by two separate clinical cohorts, provide grounds for pooling 

the two cohorts together for greater sample size, and explain reasoning for excluding the TB2 

QFT stimulation from future work.  

5.4 Methods 

5.4.1 Subject Enrollment and clinical designations 

 These two studies were approved by the Mayo Clinic Institutional Review Board and 

Olmsted County Public Health Services. All study participants signed an informed written 

consent. Cohort 1 subjects were enrolled in Rochester, MN between August 2017 and June 2018 

and cohort demographics are tabulated in Table 5.1. Cohort 2 subjects were enrolled in 

Rochester, MN between November 2020 and February 2022 and cohort demographics are 

tabulated in Table 5.2. Risk factors for TB infection, TB progression, and/or TB reactivation 
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were obtained through a questionnaire and review of medical records as previously described.39–

41 LTBI diagnoses were made based on the Center for Disease Control and Prevention (CDC) 

current guidelines criteria, TB risk factors, and prior TST and QuantiFERON®-TB Gold In-Tube 

or Gold In-Tube Plus results (Qiagen, Germantown, MD).41 LTBI-negative classified study 

subjects included unexposed individuals and subjects with non-tuberculosis mycobacterium 

infection. This study included subjects with varying risk for developing active TB infection, 

including untreated LTBI patients and patients who had LTBI therapy and, therefore, were at low 

risk of reactivation. A modified multifactorial predictive modeling platform (Online TST/IGRA 

interpreter), adjusted by LTBI treatment effect, was applied to estimate the cumulative risk of TB 

reactivation in all subjects.42,43 

The two clinical designations used in this study, LTBI and high-risk status, are both of 

interest to the TB diagnostic community and would, together, provide information relevant to 

treatment possibilities and infectious disease control. As described above, CDC guidelines for 

diagnosis of LTBI were used to classify subjects as LTBI positive or negative. Subjects were 

deemed high-risk of reactivation patients if they could be classified as either (1) having untreated 

LTBI with both TST+ and prior IGRA+ results, (2) having untreated LTBI with TST+ 

conversion, prior IGRA- results, and prior TB exposures, or (3) being immunosuppressed with 

prior TB exposure and prior IGRA+ results. 

5.4.2 Sample collection and QuantiFERON testing 

 Three milliliters of blood were collected from each subject and sent for same-day QFT 

testing at the Mayo Clinic’s clinical laboratories. Cohort 1 was overwhelmingly (39/45 samples) 

analyzed using the QuantiFERON®-TB Gold In-Tube IGRA kit (QFT, Qiagen). The QFT assay 

was performed as recommended by the manufacturer.42,44 The standard protocol includes three 
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in-tube stimulation conditions: a negative control (NIL), positive control (MIT), and the CFP-

10/ESAT-6 peptide mixture for CD4+ cell stimulation (AG). The remaining six samples from 

cohort 1 and all samples collected for cohort 2 were analyzed using an updated IGRA assay, the 

QuantiFERON®-TB Gold Plus (QFT-Plus, Qiagen) kit, which includes four in-tube stimulation 

conditions.45 The QFT-Plus kit contained the same stimulations: NIL, MIT, and CFP-10/ESAT-6 

peptide mixture, now termed TB1 and shown to be akin to the AG stimulation in the original 

QFT assay.46 The updated QFT-plus kit included an additional TB-specific stimulation, TB2. 

The TB2 stimulation included the same CFP-10/ESAT-6 peptide mixture as TB1, with additional 

proprietary peptides to illicit CD8+ T-cell responses. This TB2 tube was disregarded in the last 

six samples of cohort 1, but was analyzed for all samples in cohort 2, as is discussed in this 

chapter. 

After patient blood was stimulated in-tube following protocol, the plasma was separated 

from the red blood cells and analyzed for IFN- γ concentration by an enzyme-linked 

immunosorbent assay (ELISA). In the original QFT assay, a positive QFT result was declared if 

measured levels of IFN-γ included NIL ≤ 8.0 IU/mL, the IFN- γ concentration difference 

between TB1 and NIL tubes (TB1-NIL) ≥0.35 IU/mL, and TB1-NIL ≥ 25% of the NIL IFN- γ 

value. In the updated QFT-Plus assay, a positive QFT result was declared if IFN- γ 

concentrations in NIL ≤ 8.0 IU/mL, TB1-NIL or TB2-NIL≥0.35 IU/mL, and TB1-NIL or TB2-

NIL ≥ 25% of the NIL IFN- γ value. Leftover plasma samples from each QFT or QFT-Plus tube 

were frozen after ELISA testing, stored at -80°C, and thawed immediately before multiplexed 

cytokine analyses. 

5.4.3 Silicon Photonic Microring Resonator Assays 
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5.4.3.1 Technology  

Silicon photonic microring resonators are a type of whispering-gallery mode sensor in 

which light continually circulates within a microring waveguide microstructure, resulting in an 

evanescent field extending above the microring structure.47–50 Light from a laser travels down a 

linear waveguide and couples into the microring waveguide at a wavelength dependent on the 

effective refractive index (RI) in the evanescent field, according to the equation: 

𝜆 = 	
2𝜋𝑟
𝑚 𝑛!"" 

where lambda (λ) is the wavelength, m is an integer, r is the radius of the circular waveguide, and 

𝑛!"" is the effective RI of the optical mode. The wavelength of light continues to resonate until 

the RI is altered. With the aid of standard recognition molecules (e.g., capture antibodies, nucleic 

acid aptamers) covalently linked to the microring sensor surface, biomolecules are deposited in 

the microring sensor evanescent field, which alters the effective RI.51–53 The change in RI shifts 

the wavelength of light resonating within the microstructure, with the overall shift from start to 

end of an assay correlating to amount of material bound to the surface.50,54 The microring WGM 

structure is easily fabricated, results in low coefficient of variation, and is amenable to 

multiplexing microring sensors on one silicon chip. 

5.4.3.2 Instrumentation  

Our analysis was completed using the Genalyte Matchbox instrument (Genalyte, Inc., 

San Diego, CA) and silicon sensor chips (Genalyte, Inc. San Diego, CA).55 The silicon sensor 

chips were 4X6 mm in size and fabricated with 128 individual microrings, including thermal 

control rings. The rings were arraigned in clusters of four and were spatially separated into two 

channels of sixteen ring clusters each, allowing for sixteen analytes in two separate samples to be 

analyzed simultaneously. For experiments, the sensor chips were housed in injection molded 
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cartridges (Genalyte, Inc., San Diego, CA) to create two sealed microfluidic channels along the 

top of the microring channels. When inserted into the instrument, a fully automated microfluidic 

path is created that pulls all reagent liquid from a 96-well plate across the surface of the sensor 

chip at 30 μL/min and then discarded into waste. The sensor chip and cartridge unit were 

discarded after each sample to eliminate potential carryover between samples.  

5.4.3.3 Immunoassay  

The assay deployed in this study is akin to a sandwich-style ELISA. This same method 

was employed for both cohorts, enabling comparison of biomarker concentrations between 

cohorts. Capture antibodies for each biomarker were spatially arrayed onto 13-plex sensor chips 

by Genalyte, Inc. using precision spotting techniques. As previously described in Chapter 2, the 

antibodies were covalently linked to clusters of four microring sensors through silanization 

chemistry and a homobifunctional linker.54 The chips were dry coated and stored in a desiccator 

at 4°C until use. The antibody-functionalized chip was fitted into the cartridge and loaded into 

the instrument. The recipe programed into the instrument was as follows: 1X phosphate buffered 

saline with 0.5% bovine serum albumin (PBS-BSA, buffer) buffer rinse to equilibrate the chip 

surface (5 mins), sample or standard solution (7 mins), buffer rinse (2 mins), mixture of all 

biotinylated tracer antibodies in the panel (7 mins), buffer rinse (2 mins), streptavidin horse 

radish peroxidase (SA-HRP, 7 mins, 4 ug/mL), buffer rinse (2 mins), and 4-chloro-1-napthol (4-

CN, 7 mins, stock concentration) with a final buffer rinse (3 mins). The frequent buffer rinses 

remove any unbound material before the next reagent is introduced. The final reagent, 4-CN, is 

the method’s amplification reagent that reacts with the localized HRP to form an insoluble 

precipitate in the sensing region.56 This crucial step increases the relative wavelength shift, 

thereby decreasing the limits of detection and expanding the dynamic sensing range. In total, the 
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13-plex assay is completed in under 45 minutes, uses less than 300 μL of patient plasma, and 

analyzes two samples simultaneously. The immunoassays conducted in cohort 1 were completed 

by Dr. Cole Chapman and those in cohort 2 were completed by the author. 

5.4.3.4 Assay Panel Optimization  

The 13 plex cytokine and chemokine panel included IL-1β, IL-2, IL-6, IL-10, IL-15, IL-

17, CCL2, CCL3, CCL4, CCL8, IFN- γ, IP-10, and TNF-⍺. Each biomarker was individually 

optimized to determine optimal tracer antibody concentration and appropriate standard 

concentrations that allowed for construction of an eight-point, four-parametric calibration curve. 

Prior to multiplexing the biomarkers, each pair of capture antibody and standard/tracer antibody 

was tested for cross-reactivity. Using a checkerboard method, each individual standard/tracer 

antibody pair was flowed across each capture antibody to ensure that capture antibodies produce 

a response only to their respective standard/tracer antibody pair. Additionally, optimized 

sandwich assays were tested in the biologic matrix of interest to ensure minimal change in 

performance. New reagent lots introduced during the study were tested before use in sample 

analysis. 

5.4.3.5 Assay Calibrations.  

Multiplexed calibrations were completed by combining all protein standards at previously 

optimized saturating conditions into an Eppendorf tube and performing six five-fold serial 

dilutions into the matrix concentration of interest, as described previously (Chapter 2).54,57 Each 

standard solution and a matrix-only blank solution were analyzed following the assay method 

described above. The net shift at the end of each experiment was plotted against the standard 

concentration and a four parametric sigmoidal curve was fit to the data. New calibrations were 

constructed for each batch of sensor chips. At least three calibrations were completed and 
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averaged over the usage lifetime of each chip batch to account for temporal variation in the assay 

signal. Each calibration was constructed in a 10% and 50% plasma matrix, as patient plasma 

samples were analyzed at 10× and 2× dilutions. 

5.4.3.6 Sample Analysis.  

Each plasma sample (~300 μL) was removed from the -80°C and thawed at 4°C. The 

plasma was spun in a mini centrifuge for three seconds to aggregate any solid materials that may 

clog the microfluidic lines. The plasma was diluted two- and ten- fold in 1X PBS-BSA to a total 

volume of 350 μL. Standard biohazard safety level two precautions were exercised while 

handling the plasma samples. To make reagents for one chip (two assays), all biotinylated tracer 

antibodies were diluted together in 1X PBS-BSA to their running concentration at a total volume 

of 800 μL, SA-HRP was diluted in 1X PBS-BSA to 4 μg/mL at a total volume of 800 μL, and 4-

CN was used at stock concentration. Two series of reagents were plated sequentially across a 96-

well plate, with one series of reagents for each channel on the chip. The filled plate was inserted 

into the well-plate holder in the instrument. The sensor chip was secured into the disposable 

cartridge and inserted into the chip holder in the instrument. The instrument immunoassay recipe 

described above was selected in the Genalyte, Inc. software and executed using all automated 

microfluidic handling. This workflow has been previously used and described (Chapter 2).54,57 

5.4.3.7 Immunoassay Data Analysis.  

The relative shift in resonant wavelength is monitored in near-real time from start to end 

of the experiment. The resulting data is a csv file for each individual microring sensor and data 

workup has been previously described in Chapter 2. Briefly, using in-house R programming 

code, the csv files were aggregated, thermal controls were subtracted, and ring clusters were 

named by capture antibody to determine which corresponding proteins were present in the 
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sample. The data was plotted as relative shift over time for each individual ring and then 

transformed to net shift by subtracting the relative shift immediately before the 4CN 

amplification step from the relative shift at the end of the final buffer rinse (t=29 to t= 41). Using 

the calibration curve, the net shift for both analyzed dilutions (10× and 2×) was converted to 

analyte concentration using the corresponding calibration (10% plasma and 50% plasma, 

respectively). The technical replicates (n=4) were averaged within each dilution. For each target, 

the dilution that resulted in a concentration closest to the mid-point of the calibration curve was 

selected and used for the bioinformatic analysis. Data points that exceed the saturating point of 

the target were removed. Data points below the limit of detection were converted to zero. 

5.4.4 Precision Normalization 

Baseline immune responses exhibit significant variation across individuals and 

populations. Therefore, normalizing the biomarker levels measured in stimulated QFT samples 

from each individual can potentially account for patient-to-patient variation in baseline immunity 

and can result in development of more generalizable biomarker signatures. The QFT stimulations 

include a negative media control (NIL) to measure baseline response, a TB specific antigen 

cocktail stimulating CD4+ T-cells (TB1), a TB specific antigen cocktail simulating CD4+ and 

CD8+ T-cell responses (TB2, only in QFT-Plus), and a positive antigen stimulation (mitogen, 

MIT) to provide insight into the individual’s overall immune response. The normalization 

conditions for each biomarker target include a negative control subtraction to remove baseline 

immune response (TB1-NIL and TB2-NIL), a positive control subtraction to measure TB 

specific response against overall positive response (TB1-MIT and TB2-MIT), a TB specific 

subtraction to determine if there are differences between TB stimulations (TB1-TB2), and a 
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positive minus negative subtraction to account for the overall immune response of the subject 

(MIT-NIL) for each of the 13 targets measured per patient.  

To compare both cohorts, we used the NIL, MIT and TB1 stimulation results from cohort 

1 and cohort 2, which translated to normalized conditions of TB1-NIL, TB1-MIT, and MIT-NIL. 

Taken together, the three normalized conditions calculated for each of the 13 measured 

biomarker concentrations led to 39 features per patient for machine learning analysis. In cohort 

2, we additionally analyzed the data with the TB2 tube added in, which translated to normalized 

conditions of TB1-NIL, TB2-NIL, TB1-MIT, TB2-MIT, TB1-TB2, and MIT-NIL. Taken 

together, the six normalized conditions calculated for each of the 13 biomarkers led to 78 

features per patient for machine learning analysis.  

5.4.5 Statistical tests for grouped comparisons 

To compare the concentration of biomarkers across cohorts when stratified by stimulation 

condition and clinical status (inter-cohort comparison), two-sample Wilcoxon rank-sum tests, 

also known as Mann-Whitney U tests or Wilcoxon-Mann-Whitney (WMW) tests, were used. A 

WMW test is a non-parametric statistical hypothesis test that quantifies differences in the 

distribution of data between two populations.58 This contrasts with a two-sample t-test, in that t-

tests are measures of sample means between two populations. Compared to t-tests, WMW tests 

are more appropriate for data where intervals cannot be assumed constant, if outliers may be 

present, if the data is skewed, and/or if there are relatively low sample sizes (n≤30).59 WMW 

tests were chosen for comparing the biomarkers between cohorts because the samples between 

groups meet the independent, ordinal, and continuous test assumptions, intervals may not be 

constant, outliers are present, and some classification bins contain just 20 samples. The null 

hypothesis is that the distribution of the groups being compared are identical, with the alternative 
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hypothesis being that the distribution of the groups is not identical. If distributions have the same 

shape, as is the common case in this chapter, significant results can be interpreted as a difference 

in medians between the groups. 

To compare the concentration of biomarkers between the TB1 and TB2 tubes when stratified by 

stimulation condition and clinical status, paired Wilcoxon signed-rank tests were completed. The 

Wilcoxon signed-rank test is a non-parametric test used to compare the locations of matched pair 

populations.60 This is similar to a paired t-test in that it is a paired difference test, or the 

difference between two paired samples is calculated, but differs from a paired t-test in that t-tests 

focus on population means rather than population distribution. The null hypothesis is that the 

difference between the pairs is symmetric around zero, while the alternative is that the difference 

symmetric around a value other than zero. The Wilcoxon signed rank test was selected for 

measuring differences in biomarker concentrations in the TB1 and TB2 tubes because the 

differences are independent from each other, both variables are measured on the same interval 

scale, and the distribution of differences are symmetrical, which are the test assumptions. A 

paired test was conducted because the samples being compared are obtained from the same 

patient and are, therefore, dependent. 

5.4.6 Random Forest Machine Learning 

Random forest is an ensemble learning method that constructs and aggregates a multitude 

of decision trees to determine a classification outcome.61,62 Single decision trees are prone to 

overfitting, leading to inaccuracy and low flexibility towards new observations.63 Aggregating 

many trees n. However, random forest algorithms are unable to be easily interpreted in ways a 

single decision tree can be. The general machine learning method was previously described38 and 

all work was completed using R programming.64–67 
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In the random forest supervised machine learning method, the rows of data corresponding 

to individual patients are the observations and the columns of the data containing normalized 

cytokine concentrations act as the input variables to the decision trees. This work applied 

bootstrap aggregating, or bagging, techniques, which reduces model variance due to the 

aggregation of multiple trees, and a leave-one-out cross validation, in which the trees are trained 

using a bootstrapped set of the data and the model is tested with the observation left out of the 

bootstrapped data set.62 Random forests do not require manually splitting the data into distinct 

testing and training sets, as the algorithm fundamentally uses a portion of the data to create a 

model and the remaining data to get an unbiased estimate of test error. 

To create the random forest, a random sample of all but one of the observations were 

selected, or bootstrapped, to develop a model of many trees using random subsets of input 

variables at each node, or split point. The outcome classification using the observation not 

selected for forest development is determined for each individual tree and is then averaged across 

all the trees in the forest to determine the final designation of an observation, which is then 

compared to the known designation for accuracy. This is iterated through all observations, with 

model accuracy accumulated for each observation. Initially, all possible variables are options for 

the random forest to use to make the designations and is called the ‘full’ model. After model 

development, certain variables, or features, can be identified as not contributing to the predictive 

outcome. These unimportant variables are removed from the data set and new models are 

developed, which is called the ‘reduced’ model. 

 A unique bagging method was employed for the cohort 2 analysis. Cohort 2 included a 

high number (n=13 of 85) of repeat patient samples, meaning multiple samples were provided by 

an individual patient as part of the ongoing longitudinal profiling aspect of the project. This 
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raised the possibility that temporally distinct observations from the same patient could be used to 

both develop and then subsequently test a tree, introducing bias correlation bias into the 

classification model. To avoid this, our team developed a homogenous bagging method to ensure 

only one timepoint from a patient was included in the bootstrapped observations. 

The visual representation of random forest outputs are receiver operator characteristic 

(ROC) curves. The ROC curve plots the sensitivity and specificity of the model at all possible 

classification thresholds.68 ROC curves are compared using the area under the curve (AUC), a 

metric of sensitivity and specificity of the model that ranges from zero to one. An AUC of one 

indicates 100% accuracy and 100% specificity across all thresholds, or a perfect model, while an 

AUC of 0.5 is equivalent to a 50/50 guess. The AUC corresponds to overall predictive accuracy 

of the set of variables to predict a disease state. 

Each node of a decision tree is an input variable (biomarker_normalized condition) that 

can potentially split the observations into the respective outcome bins, LTBI positive or negative 

and high-risk or not high-risk for our work. The ability of a variable to split data efficiently can 

be quantified using an impurity measurement. In cohort 1, purity was determined by the ROC 

curve generated by the variable at that specific node. The variable that resulted in the greatest 

AUC would be selected for that node. In cohort 2, purity was assessed using the Gini Impurity 

score, a quantitative value representing the probability of two binary classes at that node.69 A 

score of 0 indicates a perfect classification (i.e., all LTBI positive classified as positive and none 

as negative) and a score of 1 indicates maximum impurity (i.e., all LTBI positive classified as 

negative). The different methods were due to differences in the number of samples in clinical 

bins, with Gini score being the more commonly used method.  
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Unlike single decision trees, random forests are unable to output specific thresholds of 

each variable used to make a decision, as a forest is the ensemble of multiple trees that use 

various thresholds of the variables. However, random forests can calculate the importance each 

specific variable has towards developing the most accurate data splits.70 Each time a variable is 

used at a node, the impurity reduction is calculated and summed across every tree in the forest. 

The sum divided by the number of trees in the forest is the importance score for that variable.71 

A greater reduction, or higher score, is desired. Across multiple forests, an average importance 

score is calculated, and all variables can be compared to each other to identify which variables 

are most important in making the classifications. 

5.5 Results and Discussion 

In this work, we implemented a 13-plex protein immunoassay to analyze cytokine and 

chemokine levels in two cohorts of patients at the Mayo Clinic and employed machine learning 

to build diagnostic models and identify biomarkers of interest in LTBI diagnostics. TB is a 

challenging disease to study due to the multiple, fluid phases and complex immune equilibrium. 

The clinical classification of LTBI was conducted according to QFT manufacturer protocols and 

high-risk classification was designated using current suggestions and clinical knowledge. We 

recognize that the lack of a gold standard for clinical classification can potentially hinder the 

accuracy of this method, as well as any other LTBI or risk related classification tool. However, 

all subjects across both studies were clinically assessed by a team of clinicians at the Mayo 

Clinic and final designations were thoroughly checked by the same doctor across both cohorts, 

aiming to reduce variation cohort to cohort and increase the compatibility. In this report, we will 

present and discuss the models created with each cohort of patients separately, we will compare 
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the biomarker concentrations and model results between cohorts, and finally we will compare 

cohort 2 models with and without the QFT-Plus addition of the TB2 tube. 

5.5.1 Cohort 1 model reveals similar cytokines between the LTBI and high-risk designations 

The first cohort of patients was enrolled at the Mayo Clinic between July 2017 and 

December 2018 and microring immunoassay work was completed by Dr. Cole Chapman using 

one chip batch.72 The concentration of each biomarker was normalized within each patient, 

resulting in a precision normalized method towards personalized medicine and diagnostics. 

Using the TB1-NIL, TB1-MIT, and MIT-NIL normalized conditions for the 13 biomarkers, 39 

input variables per subject were used for the bioinformatics analysis. The random forest model 

resulted in ROC AUCs of 0.86 and 0.90 for the full and reduced data sets, respectively, with 

LTBI as the clinical outcome (Figure 5.1A) and of 0.76 and 0.83 for the full and reduced data 

sets, respectively, with high-risk as the clinical outcome (Figure 5.1B). The high-risk clinical 

outcome having a lower predictive accuracy is likely due to the low number of high-risk 

categorized subjects (13/42). As with most bioinformatics tools, a higher number of samples 

provide more power to the test and a data set with 13 observations in one bin may be 

underpowered. However, the LTBI designation had just 18 subjects and performed better. The 

relatively high performance for both of these models could be related to the alternate impurity 

measures required for the small sample set and could be lower if Gini impurity scores were able 

to be used.  

 The AUCs from full to reduced increased, as expected, by 4% for LTBI classification and 

6% for high-risk classification. The reduced feature set consisted of 9 of the 39 variables, or 

about 25% of the input variables, for LTBI (Figure 5.1C) and 8 of the variables for high-risk 

(Figure 5.1D). Reducing the data set removes variables that create noise in the model, allowing 
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for the most important variables to account for more predictive weight, improving the accuracy 

of the overall model and decreasing complexity and speed. The input variables used for the 

reduced data set were selected by identifying the variables with ranges fully above zero in the 

variable importance metric. Reducing the data begins to identify which biomarkers and 

conditions are the highest predictors for the clinical designations and eliminates unnecessary 

input variables. 

 The most important variables between the two clinical designations of LTBI and high-

risk have great overlap in biomarkers. Among the thirteen biomarkers in the panel, only five 

were used to distinguish the LTBI and high-risk classifications with the relatively high 

accuracies. The targets of CCL8, IP-10, IL-2, CCL4, and IL-17 were the only biomarkers among 

the reduced feature sets. 

These targets have important implications in TB pathology and diagnostics.19 CCL8 is a 

proinflammatory chemokine induced by IFN- γ pathways and attracts immune cells, such as 

granulocytes and T-cells, to infection cites. CCL8 has been recently identified as an individual 

biomarker with the ability to discriminate LTBI and active TB with 89% accuracy and is 

produced at over ten-fold higher levels than IFN- γ.73,74 IP-10 is a cytokine associated with 

inflammation and is secreted from numerous immune cells in response to IFN- γ, among other 

cytokines.75 In the past fifteen years, IP-10 has been extensively studied as an alternate TB 

biomarker to IFN- γ, with promise in both differentiating active TB and LTBI from healthy 

controls.19,27,31,76,77 IL-2 is an interleukin produced by T-cells, natural killer cells and dendritic 

cells through adaptive immune response. Similar to IP-10, IL-2 has been a recurring biomarker 

in TB studies, demonstrating comparable sensitivity as IFN- γ and IP10 for differentiating active 

TB, LTBI patients, and controls in small sample cohorts.78,79 CCL4 is a chemokine activated by 
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various immune cells, induced by TNF-⍺, IFN- γ, and IL-1, and was previously identified as an 

important marker for distinguishing TB cases and household contacts.80 Interestingly, the study 

indicated that CCL4 was unable to discriminate between active and latent TB. IL-17 is an 

interleukin that has been linked to controlling bacterial growth and host defense in Mtb 

infection.81 In combination with TNF-⍺ and IL-12(p40), IL-17 was able to differentiate TB from 

LTBI and healthy controls with 79% accuracy.82 All of the cytokines identified as important for 

differentiating LTBI and high-risk subjects in cohort 1 have been previously identified in some 

capacity as relevant in other small cohort diagnostic research, reinforcing the utility of our 13-

plex immunoassay and machine learning workflow employed here. 

 The results from this pilot cohort of 45 samples demonstrated the ability to use the 

leftover QFT plasma samples and a 13-plex biomarker panel to distinguish LTBI negative and 

positive and high-risk and not high-risk patients with accuracies of 90% and 83%, respectively. 

We determined that only a set of five biomarkers under eight (LTBI) or nine (high-risk) 

conditions are needed to distinguish the clinical designations of interest. After these promising 

results, we employed the same method in a larger secondary cohort.  

5.5.2 Cohort 2 model results in high AUCs and fewer important biomarkers 

The second cohort of patients was enrolled at the Mayo Clinic and microring 

immunoassay work was completed using three chip decks between May 2021 and September 

2022. Using the TB1-NIL, TB1-MIT, and MIT-NIL normalized conditions for the 13 

biomarkers, 39 input variables per subject were used for the bioinformatics analysis, matching 

that of cohort 1. The random forest model with LTBI as the clinical outcome resulted in ROC 

AUCs of 0.85 and 0.88 for the full and reduced data sets, respectively (Figure 5.2A) and with 

high-risk as the clinical outcome resulted in ROC AUCs of 0.90 and 0.91 for the full and reduced 
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data sets, respectively (Figure 5.2B). As expected, the AUCs increased with the feature 

reduction, although by only 3% for the LTBI and 1% for the high-risk designations. The model 

developed with the full set of input variables generated relatively high AUCs for random forest 

models, so minimal increases were generally available. Particularly, the accuracy of 91% for 

high-risk designation is very promising for this diagnostic panel’s ability to identify those at 

greatest risk of reactivation. 

The variable importance metrics revealed that biomarker IP-10 was the main predictor for 

both LTBI (Figure 5.2C) and high-risk (Figure 5.2D) classifications. The IP-10 (TB1-NIL) 

condition is the only predictor in this data set that has the full variable importance metric range 

above zero, for both classifications. Therefore, the important variables presented in this figure 

are those with a mean variable importance metric 95% confidence interval that does not include 

zero. The overwhelming importance value for IP-10 (TB1-NIL) may also explain the low 

increase between the full and reduced data sets, as most other variables in the data set have no 

impact on the model, and hence, removing them has very little effect on the accuracy. The other 

biomarkers of importance in cohort 2 include IL-2, CCL8, CCL4, and TNF-⍺. Apart from TNF-

⍺, the relevance of these biomarkers in TB infection and diagnostics was discussed within the 

context of cohort 1. TNF-⍺ is a pro-inflammatory cytokine involved in several signaling events 

and, while it has not been deployed as a stand along biomarker for TB infection, it has been used 

successfully in conjunction with other targets to distinguish active from latent TB.8,26,82,83  

The results from this second cohort of 87 samples further demonstrated the ability of our 

workflow to accurately identify both LTBI positive and high-risk patients. These two separate 

cohorts analyzed in the same method by two study teams can now be compared to validate their 

results and trends. 
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5.5.3 Comparing the results across the two cohorts reveals similarities and differences 

5.5.3.1 Random forest models vary in sensitivity and specificity  

The random forest classification models performed exceptionally well, with the reduced 

models for both cohorts exhibiting approximately 90% accuracy while distinguishing LTBI 

positive individuals from the controls (Figure 5.3A). The most specific threshold (left vertical 

segment of the curve) reaches a higher sensitivity in cohort 1. The most sensitive threshold (top 

horizontal segment of the curve) model reaches a higher specificity in cohort 2, although the 

differences between the cohorts is marginal with many overlapping thresholds. Sensitivity and 

specificity are statistical trade-offs. Sensitivity is a measure of the true positive rate, is calculated 

as: 

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 = 	

𝑇𝑒𝑠𝑡	𝑖𝑠	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝐴𝑙𝑙	𝑤ℎ𝑜	𝑎𝑟𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

and is interpreted in a diagnostic context as the percentage of chance that the test will correctly 

identify those who actually have the disease.84 Specificity is a measure of the true negative rate, 

is calculated as: 

𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 = 	

𝑇𝑒𝑠𝑡	𝑖𝑠	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝐴𝑙𝑙	𝑤ℎ𝑜	𝑎𝑟𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

and is interpreted in a diagnostic context as the percentage chance that the test will correctly 

determine who does not have the disease.84 Conventionally, the true negative rate is converted 

and reported as a false positive rate by subtracting the calculated true negative proportion from 1. 

This new matric is interpreted as the chance that a test will incorrectly conclude an observation is 

positive when it should be categorized as a negative.  

It is important to maximize the sensitivity and specificity (or minimize 1-specificity) of a 

diagnostic test. However, the inversely proportional relationship between these metrics results in 
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the prioritization of one in most cases. From a precautionary perspective, it is more acceptable to 

have false positives than false negatives in an LTBI diagnostic test. False positives will lead to 

additional screening (chest CT, cultures) that would likely rule out disease, whereas false 

negatives would leave LTBI patients untreated. The high-risk designation follows the same 

prioritization, in that false positives would lead to more frequent monitoring and urgent 

treatment, while false negatives would leave those most susceptible to reactivation with less 

frequent monitoring and less aggressive treatment. Therefore, if we are inclined towards 

prioritizing sensitivity at the expense of specificity and are more tolerant of a greater false 

positive rate than a false negative rate, the model with highest sensitivity at more thresholds is 

the cohort 2 model. However, the high sensitivity of >95% occurs at specificities of 50-60%. The 

best threshold that maximizes both sensitivity and specificity occur in cohort 1, at approximately 

85% sensitivity and 84% specificity, which would be a favorable trade-off. 

The cohort 2 model outperformed the cohort 1 model for high-risk classification by 8% in 

the reduced data sets (Figure 5.3B). This model improvement could have been a result of a 

higher sample size of those in the high-risk bin, which provided the model with more subjects in 

the bootstrapped data set to better optimize the outcome. Unlike the LTBI model, cohort 2 

demonstrated both higher specificity at the most sensitive cutoffs (top horizontal segment of the 

curve) and higher sensitivity at the most specific cutoffs (left vertical segment of the curve). At 

all but one threshold, cohort 2 generated a better model, and would, therefore, be preferred for 

the high-risk classification. 

A difference in the model classification does need to be noted, as we are comparing the 

two models as equivalents. In cohort 1, due to the limited sample numbers, each decision tree 

was assessed for purity using the AUC of the ROC curve generated by the data split at the end of 
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the tree. This is in opposition to conventional methods used in cohort 2 that assess decision trees 

based on the Gini impurity score, a measure of how groups of features split the data into the 

clinical bins, with zero indicating perfect splits and one indicating maximum impurity. The 

alternate method was required for completing the random forest analysis on the first cohort and 

this difference may be a reason for the variation in AUCs. However, we have thus far concluded 

that the model generated from cohort 2 using the conventional Gini impurity score for tree 

assessment performed better in high-risk designation and the sensitivities of both cohort models 

was comparable at moderately high specificity thresholds in the LTBI designation. 

5.5.3.2 Comparing variable importance results identified important biomarkers for 

making both clinical designations 

Notably, the most important variables for both LTBI and high-risk designation are highly 

similar between cohorts, especially when focusing specifically on the biomarkers (Figure 5.3C-

D). For LTBI designation, the biomarkers of CCL8, IP-10, and IL-2 appeared in the top 

biomarkers for both cohorts. IL-17 and CCL4 were only in the list for cohort 1 and TNF-⍺ for 

cohort 2. For high-risk designation, the overlap is more significant, with CCL8, IP-10, IL-2 and 

CCL4 appearing in the top biomarkers in both cohorts, TNF-⍺ only in cohort 2 and no additional 

markers in cohort 1. Furthermore, the overlap between LTBI and high-risk biomarkers is 

extremely high, which may be due to the majority of LTBI subjects also being designated as 

high-risk. Future work will aim to include more not high-risk LTBI subjects. 

These cohorts were led by different study teams, the samples were collected and analyzed 

by various clinical teams, cytokine concentrations were measured by separate graduate students 

and sensor chip decks. As discussed above, the method for measuring decision tree impurity, and 

therefore which biomarkers make a better split, also differed. However, it is clear that the same 
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biomarkers were important for the chosen clinical designations. This is a significant finding that 

showcases multiple cohorts yielded highly similar results. We measured concentrations of 

thirteen biomarkers, yet only six were important for making both clinical decisions in two 

cohorts of subjects. This reduction in targets would be highly beneficial for the development of a 

lower plexity assay for use in this workflow, which potentially decreases both the cost of 

reagents per sample and the inherent complexity of managing a 13-plex assay. 

 Two difference to note in the variable importance between cohort 1 (Figure 5.1C-D) and 

cohort 2 (Figure 5.2C-D) are the order of importance of the variables and a fewer number of 

important variables in cohort 2. These differences can be attributed to the increased number of 

patients in cohort 2. More patients result in an increased number of observations in the 

bootstrapped data sets for machine learning and the model can become more refined by 

identifying which biomarkers and conditions split the data efficiently using more observations. 

Furthermore, moving back to the classical machine learning method of using Gini impurity for 

tree classification assessment in cohort 2 could have resulted in better identification of the 

biomarkers and conditions that truly split the data. In cohort 1, important conditions were 

selected based on those that had the full range (min to max) above zero. In cohort 2, across both 

LTBI and high-risk designations, only one condition, IP-10 (TB1-NIL), had the full range above 

zero. Therefore, those with confidence intervals of the mean variable importance that do not 

contain zero were presented. This difference can again be attributed to higher sample count 

resulting in a convergence on the important conditions, as well as the alternate impurity 

classification method used in cohort 1.  

 The final comparison of variable importance results between cohorts also emphasizes the 

relative importance of each normalized stimulation condition. In general, the top markers are 
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associated with a normalized condition containing TB1, the TB-specific tube that stimulated 

patients’ blood with the CFP-10/ESAT-6 peptides to elicit a CD4+ T-cell response. There is mix 

of TB1-NIL and TB1-MIT normalized conditions in cohort 1 and more of a reliance on TB1-NIL 

in the cohort 2. The association of the TB1 condition with the most important markers confirms 

that TB1 stimulated markers are the most significant contributors to the decisions regarding 

LTBI and high-risk outcomes. Interestingly, the variables deemed as important, but lower on the 

list, are generally under MIT-NIL normalized conditions across both cohorts and designations. 

This implies a reliance on a subject’s overall, non-TB-specific, immune response to decide the 

outcome. In the cohort 1 high-risk designation, the important MIT-NIL biomarkers CCL8, 

CCL4, and IL-2, are all also identified as important biomarkers under other normalized 

simulation conditions prior in the list. This indicates that the overall model displays a greater 

reliance on these biomarkers. For the cohort 1 LTBI designation, two-thirds of the important 

biomarkers with the MIT-NIL condition, CCL8 and CCL4, are designated as more important on 

the list under other normalized conditions. However, IL-17 does not appear other than the MIT-

NIL normalized condition. Similarly, in both of cohort 2’s clinical designations, the MIT-NIL 

associated biomarker, TNF-⍺, does not appear under any other condition. These results imply 

that IL-17 and TNF-⍺ play a role in the TB-related clinical designation outcomes solely based on 

the subject’s overall immune response. This could mean that measuring dysregulation or 

variations in these cytokines between patients could contribute to the development of new 

diagnostic methods without TB-specific antigen stimulations.  

 While the order, weight, and number of conditions varies across cohorts, the general 

trend of important biomarkers and stimulations hold across them. The data presented here was 

collected from two temporally distinct cohorts and analyzed by different analysis teams. 
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Consequently, the strongly overlapping set of important predictive biomarkers between both 

clinical designations and cohorts highlights the robustness of the random forest models and 

multiplexed microring resonator immunoassay. These biomarkers should be noted as showing 

significant promise for developing future LTBI and high-risk diagnostic panels. 

5.5.3.3 Cross validation between cohorts implies cohort 1 model is more robust 

To understand how the models perform on samples that were not used to generate the 

model, each cohort of data acted as a clinical validation set for the opposing cohort (Figure 

5.3E). The data from the opposing cohort was input into the random forest classification models 

and patients were classified and compared to their ‘true’ label for accuracy. Similar to the other 

models, the sensitivity and specificity at each threshold is plotted in a ROC curve and AUC is 

determined. The cohort 1 model cross-classifying cohort 2 patients had a higher AUC than the 

cohort 2 model cross-classifying the cohort 1 patients using the reduced data set, indicating the 

cohort 1 models are more robust to outside data in comparison to cohort 2 models.  

Both of the LTBI cross-classifications models using the full data set achieved similar 

AUCs (0.85 for cohort 1 model and 0.83 for cohort 2 model). However, with the reduced set of 

variables, the AUCs dropped to 0.84 and 0.77, respectively, suggesting the variables removed 

between the full and reduced models contributed greatly to the classification of subjects. The 

greater drop for cohort 1 patients being analyzed by cohort 2’s developed model is likely due to 

the fewer important variables and varying sample sizes, indicating some of the variables 

removed while developing the reduced model were important for classifying the smaller bins of 

cohort 1 patients.  

Moving into the high-risk model, the full and reduced cohort 1 models were both 

consistently more accurate than the cohort 2 models at classifying their counterpart data sets. 
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Cohort 1 models classified cohort 2 patients with AUCs of 0.83 and 0.89 for full and reduced 

models, respectively, while the cohort 2 models to classify cohort 2 patients resulted in AUCs of 

0.77 and 0.78 for the full and reduced models, respectively. Unlike the LTBI cross-classification, 

the high-risk cross-classification AUC increased from the full to reduced data sets, suggesting 

the variables important for the opposite group’s classification were not removed in the reduced 

model. However, cohort 1’s model still significantly outperforms cohort 2’s model overall. 

Using each cohort as a clinical validation group in the opposite cohort’s model demonstrates that 

classification in both models is partially reliant on the specific conditions used to develop the 

model, rather than solely on general biomarkers. However, it is reassuring to achieve AUCs 

>78% for all cross-tested models, indicating that neither cohort’s model exhibits excessive 

overfitting of the training data.  

Taken together, the results and discussion in this subsection highlight the similarities in 

biomarkers and conditions that contribute to the random forest models across both cohorts, with 

six of the thirteen measured cytokines being the most important and TB1 specific normalized 

stimulations contributing most frequently. It was hypothesized that the increased sample 

numbers in cohort 2 allowed the model to focus in on the most important biomarkers, leading to 

fewer targets with variable importance metrics confidence intervals above zero. However, this 

decrease in important biomarkers has potentially lowered the model’s capability to correctly 

classify the infection status of new subjects. Future model development should aim to identify 

fewer important conditions than the cohort 1 model but retain the elevated sensitivity and 

specificity for high-risk classification displayed by the cohort 2 model.  
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5.5.3.4 Some raw and normalized biomarker concentrations are different between 

cohorts when stratified by LBTI designation. 

Wilcoxon-Mann-Whitney (WMW) analysis was completed to quantify the differences in 

distributions of the resulting biomarker concentrations between cohorts when stratified by LTBI 

status. Identifying differences in populations could reveal variation in assays or in sample 

populations between cohorts that could provide insight in the model differences highlighted 

above.  

Initial analysis was completed on the log-transformed raw biomarker concentrations, 

stratified by cohort and LTBI status and binned by QFT stimulation, NIL (Figure 5.4), TB1 

(Figure 5.5), and MIT (Figure 5.6). Two types of comparisons are displayed in the figures, 

intra-cohort comparisons to evaluate the biomarker concentrations between LTBI groupings 

within each cohort and inter-cohort comparisons to evaluate the biomarker concentrations 

between cohorts within LTBI groupings. As this chapter is focused on comparing data between 

cohorts, we will mainly focus on the inter-cohort comparisons. Therefore, there are a total of 26 

comparisons per condition to evaluate (13 biomarkers under two clinical bins).  

In the NIL condition, nine of these comparisons are statistically different, including 

CCL3 in LTBI positive (p≤0.001) and negative (p≤0.0001), IP10 in LTBI positive (p ≤0.05), 

IFN- γ in LTBI positive (p ≤0.05), IL-10 in LTBI positive and negative (p≤0.0001), IL-15 in 

LTBI positive and negative (p≤0.0001), and IL-17 in LTBI negative (p≤0.0001). The NIL 

condition represents the concentration of the biomarkers upon media stimulation, which would 

indicate the overall similarity in baseline immune response of the patients in each cohort. Of 

these listed biomarkers, IL-15 is the only biomarker quantified using different companies for the 

antibodies (both capture and tracer) between the two cohorts. All other antibodies across cohorts 
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were sourced from different production lots (both captures and tracers) from the same company, 

which could potentially contribute marginally towards the differences.  

Notably, among the biomarkers with statistically significant differences in inter-cohort 

comparisons, the relationship of the biomarkers between clinical designations within each 

cohort, or the intra-cohort comparisons, is the same. For example, IL-10 is one of the three 

biomarkers with differences between cohorts for both LTBI positive and negative populations. 

However, within each cohort there is no significant difference in IL-10 concentrations between 

LTBI positive and negative groups, indicating that the typical biomarker levels are shifted 

between cohorts, but the overall relationship between the biomarker and LTBI status is cohort 

independent. This trend holds across all the biomarkers with significant differences in the inter-

cohort comparisons. None of the intra-cohort comparisons achieve statistical significance, 

illustrating that the unstimulated patient samples are likely insufficient to identify LTBI 

signatures alone. These NIL population results suggest that we could potentially pool the results 

from the cohorts into one dataset, as the differences between cohorts are results from overall 

concentration shifts, rather than from differences in relationships of biomarker to disease state. It 

is promising for this cross-cohort study that the majority of baseline NIL stimulation levels are 

from statistically similar populations, meaning that variation in other stimulations could be 

attributed to patient differences. 

Both the TB1 and MIT stimulation conditions contain more inter-cohort significant 

differences, 17 and 18, respectively. Similar to the NIL stimulation, many of the biomarkers with 

the inter-cohort significant differences have the same significance in intra-cohort comparisons. 

To show this point in TB1, we can look at two examples: TNF-⍺ and IP-10, both biomarkers that 

were designated as important in LTBI-associated machine learning models. For TNF-⍺, there are 
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differences between cohorts within both clinical bins, but no significance between clinical bins 

within each cohort. Similarly, for IP-10 there are inter-cohort differences and there is the same 

level of significance (p≤0.0001) in the intra-cohort comparison. This trend persists in the MIT 

stimulation.  

There are a few instances in which this trend does not hold, namely CCL2 in TB1 and 

CCL8, IFN- γ, TNF-⍺ and IL-2 in MIT. These targets are some of the most important predictors 

in the previously presented models for both cohorts. Since these biomarkers, and therefore 

assays, were determined to be similar across cohorts using the baseline NIL stimulation, these 

variations are hypothesized to be true differences in the T-cell responses to stimulations across 

cohorts. The two cohorts differ in some demographics of patients within status bins (Table 5.1 

and Table 5.2). While the average age of patients is similar between cohorts, cohort 1 has a 

greater proportion of females in the LTBI positive classification than cohort 2 and the 

proportions of self-reported ethnicities vary between cohorts. These basic demographic 

differences could be a reason for the variation in stimulation responses, however, more data 

points within specific demographic groupings are needed to test this hypothesis.  

While it was important to assess the variation in raw biomarker concentrations between 

cohorts to identify potential assay and population-specific effects, the random forest models 

described above do not use the raw concentrations in the models, rather they use the normalized 

conditions. Biomarker concentrations in the three normalization conditions were plotted and 

analyzed using the same method as the raw biomarkers, except that the absolute values after 

normalization were used for plotting as opposed to log transformed values, due to the presence of 

negative values generated by the normalization subtraction. The data tested were from the TB1-

NIL (Figure 5.7), TB1-MIT (Figure 5.8), and MIT-NIL (Figure 5.9) conditions.  
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The TB1-NIL condition has 9 significant differences among the 26 inter-cohort 

combinations, while TB1-MIT has 19 differences, and MIT-NIL has 15 differences. However, 

the trend of differing inter-cohort levels paired with equivalent intra-cohort differences holds for 

the majority of these statistically significant differences, again indicating a shift among the 

normalized biomarkers overall between cohorts, not specific to clinical status. The exceptions 

include CCL2 in TB1-NIL, CCL8, TNF-⍺, and IFN- γ in TB1-MIT, and CCL8, TNF-⍺, IFN- γ, 

and IL-2 in MIT-NIL. These exceptions to the trends are also evident in the raw MIT 

concentrations mentioned above, and likely originate from the MIT stimulation.  

The overall comparison of the raw and normalized biomarker levels between cohorts 

aims to provide helpful insight for pooling the two cohorts together. In further work (Chapter 6), 

the two cohorts of data will be pooled into one group, as the combined sample numbers will 

increase the power and implications for the random forest model relative to two smaller cohorts 

of subjects. A classification model derived from the pooled cohort is hypothesized to be more 

robust than models derived from individual cohorts due to the increased number of samples in 

clinical classification bins. However, the pooled data is subjected to inherent biological 

differences between cohorts. Literature surrounding pooling data when biomarkers are measured 

at multiple test sites or by different assays advises to use calibration parameters and interaction 

models to ensure homogeneity within the full sample set.85,86 In this study, two cohorts were 

recruited during two different windows of time and the samples were analyzed by different 

individuals. However, recruitment and clinical classifications were completed according to 

standardized procedures and samples were analyzed with the same assay and instrumentation. 

Additionally, the differences caused by changing analysis teams between the cohorts was 

minimized by thorough training on the assay and method. The baseline NIL biomarker 
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concentrations are similar across cohorts and the overall trend of the biomarkers with significant 

inter-cohort differences having the same intra-cohort significance is consistent across raw and 

normalized concentrations. Taken together, these findings do not present any evidence that a 

classification model derived from a pooled cohort would be biased by cohort-specific artifacts. 

5.5.4 Inclusion of a secondary TB specific tube does not improve the model 

The work described up until this section focused on three stimulation conditions, NIL, 

TB1, and MIT, from the QFT test that was used exclusively for cohort 1. Cohort 2 was analyzed 

with the QFT-Plus assay, which included a secondary TB specific stimulation condition, TB2. 

Until now, we have not included the data from this tube in analysis. However, the disregarded 

data represents 25% of the samples that were analyzed from cohort 2. To explore the effects of 

adding this stimulation condition to the method, we repeated the analysis of cohort 2 subjects 

with the biomarker concentrations resulting from the TB2 stimulation tube. The addition of this 

tube led to three new normalized conditions (TB2-NIL, TB2-MIT, and TB1-TB2) in addition to 

the original three. The six normalized conditions for the thirteen biomarkers resulted in 78 

variables per subject for subsequent random forest model development. 

5.5.4.1 Paired statistical analysis suggests very little difference in biomarker 

concentrations between TB1 and TB2 

To first compare the impacts of each TB-specific stimulation tube on the biomarker 

concentrations, paired Wilcoxon signed-rank tests were completed for biomarker concentration 

between TB1 and TB2, stratified by LTBI (Figure 5.10) and high-risk (Figure 5.11) status. A 

paired test was selected because each patient provided both a TB1 and TB2 stimulation sample, 

so these observations in the data set are not independent. The 26 comparisons of interest 
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correspond to the concentration differences of 13 biomarkers between TB1 and TB2 conditions 

for both LTBI positive and LTBI negative individuals.  

For LTBI status, there is one single statistical difference between TB1 and TB2 induced 

biomarker concentrations: CCL8 within LTBI negative subjects (p ≤0.05). Similarly, when 

stratified by high-risk status, there are three statistical differences within the 26 possible tests: 

CCL8 within high-risk (p ≤0.05), and TNF-⍺ and IL-8 within not high-risk (p ≤0.05) groups. 

Interestingly, all these statistical differences in biomarker concentrations are at the lowest level 

of significance. The very few significant conditions and no highly significant differences indicate 

there is very little difference in the biomarker profiles of the two different QFT stimulation 

conditions of TB1 and TB2. 

5.5.4.2 Random forest model with TB2 tube does not increase predictive accuracy or 

identify different biomarkers compared to model without TB2 tube 

The random forest model was constructed with the same method used on cohort 2 above, 

albeit now with double the number of input variables available to the model. The model with 

LTBI as the clinical outcome resulted in ROC AUCs of 0.85 and 0.87 for the full and reduced 

data sets, respectively (Figure 5.12A). With high-risk as the clinical outcome, ROC AUCs of 

0.89 and 0.92 for the full and reduced data sets, respectively, were achieved (Figure 5.12B). 

These AUCs are heavily reminiscent of those produced from the cohort 2 model without the TB2 

stimulation (0.88 and 0.91 for LTBI and high-risk reduced models, respectively). The addition of 

an additional TB stimulation tube, leading to three new normalized conditions, only changed the 

AUCs by 1%, which is within the noise threshold of the model. AUCs of such similarity to the 

first model without TB2 suggests the TB2 tube is of no greater importance than the TB1 tube 

results in either LTBI or high-risk classification using our method. 
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The variable importance metrics for the random forest model upon inclusion of the TB2 

stimulation were constructed for LTBI classification (Figure 5.12C) and high-risk classification 

(Figure 5.12D). These results were compared to the results from the model without TB2 

stimulation data for LTBI classification (Figure 5.12E) and high-risk classification (Figure 

5.12F). No additional biomarkers were selected as important when TB2 was added into the 

model. In most cases across both clinical designations, important TB2-associated biomarkers 

were present as important TB1-associated biomarkers. For example, IP-10 (TB1-NIL) is the 

heavily favored top predictor for both LTBI and high-risk status in the initially reported cohort 2 

models. When TB2 data was added, IP-10 (TB2-NIL) was selected as the second most important 

variable. This same TB2 redundancy occurs with IP-10 (TB1 and TB2 -MIT) in the reduced 

LTBI model and CCL8 and IL-2 (TB1 and TB2-MIT) in the reduced high-risk model. In the 

random forest algorithm, this translates to similar contributions towards the model by both TB1 

and TB2 conditions. However, the results presented in Figure 5.12 reaffirm that the TB2 

condition is not necessarily needed when the TB1 condition is included.  

A difference in the variable importance results presented here must be noted. In cohort 2, 

we presented and focused on the important variables that have 95% confidence intervals for the 

variable importance mean above zero. The same convention is applied for the high-risk 

classification presented here. However, for the LTBI classification, only two features (IP-10 TB1 

and TB2- NIL) display confidence intervals greater than zero. To expand the important variables 

to allow for more thorough comparisons to the model lacking TB2, we included variables with a 

mean importance metric greater than 0.3% and have indicated these with lighter fill color in the 

figure. This threshold was selected since it correlated to a ten-fold reduction in the average 

importance of the top ranked variable. 
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In summary, the addition of the TB2 QFT-Plus stimulation condition does not 

significantly change the AUCs of either clinical designation. Additionally, TB2 fails to provide 

additional information into important biomarkers for clinical status prediction, and instead 

increased the predictive weight of a smaller set of biomarkers that were already associated with 

TB1 stimulation conditions. The TB2 QFT-Plus stimulation is a peptide concoction designed to 

elicit a CD4+ T-cell (same peptides as TB1 stimulation) and a CD8+ T-cell response. Previous 

work, albeit with small sample sizes, has reported that LTBI patients routinely exhibit a CD4+ T-

cell response upon QFT-Plus antigen stimulation, but very few illicit a CD8+ T-cell response 

relative to active TB patients.87 Furthermore, CD8+ T-cells have not been found to play a role in 

the host immune system during the latent TB phase.88 The minimal differences between TB1 and 

TB2 stimulated biomarkers among LTBI patients observed here supports these findings. While 

TB2 may not be a useful addition to this current workflow, it may be important if the patients 

demonstrate low CD4+ T-cell responses, have active TB infection, or are 

immunocompromised.89 Future work should consider the additional costs (personnel and assay 

reagents) and time associated with analyzing the TB2 stimulated samples and identify if the 

expected results are worth these additional costs. 

5.6 Study Limitations 

There are several limitations involved in these studies. One limitation not unique to our 

work is the lack of gold standards for LTBI and high-risk designations. We rely on current TB 

guidelines and clinical collaborator knowledge to make the clinical indications we use as the 

‘true’ LTBI or risk-related status for the patients in our cohorts. This approach is particularly 

notable in the high-risk designation, since an online risk assessment tool is used that incorporates 

diagnostic test result, country of origin, recent travel, and occupation to classify reactivation risk 
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potential. Incorrectly categorized clinical designations may introduce inaccuracies and biases 

into the final model, minimizing optimal model performance. A second limitation is the cohort 

sizes, specifically for cohort 1. Relatively small numbers of samples within clinical bins can lead 

to suboptimal power to differentiate true differences between groups. However, the first cohort 

served as an initial proof of concept study to be followed with a larger secondary cohort, and 

many other studies mentioned through this chapter had similar sized patient cohorts. The third 

limitation is the use of non-specific, general inflammatory biomarkers for diagnosis. Many of 

these markers will change in response to any infection, including sepsis, pneumonia, or COVID-

19. This could lead to low specificity in our diagnostic tool and future work will need to compare 

the ability of the models to differentiate LTBI from other respiratory infection groups. A fourth 

limitation is that our work does not include differentiation between multiple phases of TB 

infection, but rather focuses solely on the presence or absence of latent infection. More 

diagnostic value would be gained from parsing out unique signatures that could differentiate 

LTBI, subclinical TB, active TB, incipient TB, and patients who have cleared Mtb infection from 

each other and from healthy controls. Additionally, we can also consider the high-risk 

designation, in that our bins were those at a high reactivation risk vs all others, with high-risk 

subjects including LTBI positive and negative individuals with clinical indication of high risk 

based on previous exposures. Ideally, we could study a cohort of only LTBI positive patients to 

differentiate which individuals are at a high-risk, a low-risk, or indeterminant risk of reinfection. 

Deriving signatures that account for all these mentioned clinical groups would require access to a 

much larger cohort of subjects than our current study population. Future work will aim to address 

this limitation by introducing varying risk levels, TB case contacts, active TB disease, non-

tuberculosis mycobacterium controls, and pneumonia controls. The work presented in this 



 207 

chapter is focused on comparing results derived from two cohorts specifically focused on LTBI 

and high-risk designation, which does not require information about the additional phases of TB 

infection.  

5.7 Conclusion 

TB infection is characterized by multiple phases in a dynamic equilibrium that can result 

in a reactivation to active TB upon perturbation. Identifying individuals who are LTBI positive 

and those who are at a high risk of reactivation would be advantageous for improving treatment 

and monitoring of patients. We used a multi-biomarker immunoprotein assay to profile thirteen 

biomarkers in two separate cohorts of patient samples. Across both cohorts, a predictive 

accuracy of almost 90% was achieved for LTBI positive versus LTBI negative patients. The first 

cohort achieved 83% accuracy as discriminating individuals at a high risk of reactivation from 

non-high-risk individuals, while the second cohort improved the accuracy to 91%. There was 

high overlap in the important biomarker conditions for making the predictions between cohorts, 

which can facilitate the development of lower-plexity assays. When comparing the biomarker 

levels between the cohorts when stratified by stimulation condition and LTBI status, we found 

that while there were significant inter-cohort differences, the intra-cohort significance of these 

biomarkers was equivalent. These trends, in combination with the samples being analyzed using 

the same assay and the same instrument, indicate it would be appropriate to combine the two 

cohorts to derive an improved machine learning model. Finally, the effect of the TB2 tube from 

the QFT-Plus assay was assessed and did not provide any improvements or new information 

relative to the classification model without TB2. Consequently, the cost and time associated with 

running an additional sample for each patient may not warrant the continued analysis of the TB2 

stimulated samples in this workflow. In conclusion, we developed a classification regime to 
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stratify patients by LTBI and high-risk status using analytical tools and techniques combined 

with machine learning algorithms and leftover QFT plasma samples that produced comparable 

results across two cohorts of subjects. 
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5.8 Figures 

 

Figure 5.1 Random forest model results for Cohort 1: 42 patients with 45 subject sets. ROC curve for differentiating 
(A) LTBI positive and negative subjects and (B) high-risk vs not high-risk using normalized conditions. The full 
model uses all available features for prediction and the reduced model uses the top nine (LTBI) or eight (risk) 
features. Variable importance for (C) LBTI status and (D) high-risk status for the reduced data set identifies the 
features with full range above zero. 
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Figure 5.2 Random forest model results for Cohort 2: 72 patients with 87 subject sets. ROC curve for differentiating 
(A) LTBI positive and negative subjects and (B) high-risk vs not high-risk using normalized conditions. The full 
model uses all available features for prediction and the reduced model uses the top features. Variable importance for 
(C) LBTI status and (D) high-risk status for the reduced data set identifies the features with 95% confidence 
intervals above zero. 
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Figure 5.3 Comparison of models across the two subject cohorts. The reduced ROC curves for cohorts 1 and 2 are 
presented for both (A) LTBI and (B) high-risk designations, for visual comparison. Venn diagrams are presented to 
highlight the biomarkers present in the top predictive features for (C) LTBI and (D) high-risk designations across 
both cohorts. Cross validation of the models was completed by inputting the data from one cohort into the model 
constructed from the opposite cohort. The ROC AUCs (D) are a measure of how well the opposing model classified 
patients across all classification thresholds. 
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Figure 5.4 Comparison of biomarkers across cohorts, stratified by LTBI status, for the NIL condition. The plots 
show the statistical test results for comparing the concentrations of biomarkers between cohort 1 and 2 LTBI 
negative patients, between cohort 1 and 2 LTBI positive patients, and within cohort LTBI positive and negative 
using Wilcoxon-Mann-Whitney. The cohort 1 LTBI negative and positive bins contain 25 and 20 points, 
respectively, and the cohort 2 LTBI negative and positive bins contain 55 and 32 points, respectively. The data has 
been log transformed for visualization. (ns= p>0.05, *= p ≤0.05, **= p≤0.01, ***= p≤0.001, ****= p≤0.0001) 
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Figure 5.5 Comparison of biomarkers across cohorts, stratified by LTBI status, for the TB1 condition. The plots 
show the statistical test results for comparing the concentrations of biomarkers between cohort 1 and 2 LTBI 
negative patients, between cohort 1 and 2 LTBI positive patients, and within cohort LTBI positive and negative 
using Wilcoxon-Mann-Whitney. The cohort 1 LTBI negative and positive bins contain 25 and 20 points, 
respectively, and the cohort 2 LTBI negative and positive bins contain 55 and 32 points, respectively. The data has 
been log transformed for visualization. (ns= p>0.05, *= p ≤0.05, **= p≤0.01, ***= p≤0.001, ****= p≤0.0001) 
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Figure 5.6 Comparison of biomarkers across cohorts, stratified by LTBI status, for the MIT condition. The plots 
show the statistical test results for comparing the concentrations of biomarkers between cohort 1 and 2 LTBI 
negative patients, between cohort 1 and 2 LTBI positive patients, and within cohort LTBI positive and negative 
using Wilcoxon-Mann-Whitney. The cohort 1 LTBI negative and positive bins contain 25 and 20 points, 
respectively, and the cohort 2 LTBI negative and positive bins contain 55 and 32 points, respectively. The data has 
been log transformed for visualization. (ns= p>0.05, *= p ≤0.05, **= p≤0.01, ***= p≤0.001, ****= p≤0.0001) 
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Figure 5.7 Comparison of biomarkers across cohorts, stratified by LTBI status, for the TB1-NIL normalized 
condition. The plots show the statistical test results for comparing the concentrations of biomarkers between cohort 
1 and 2 LTBI negative patients, between cohort 1 and 2 LTBI positive patients, and within cohort LTBI positive and 
negative using Wilcoxon-Mann-Whitney. The cohort 1 LTBI negative and positive bins contain 25 and 20 points, 
respectively, and the cohort 2 LTBI negative and positive bins contain 55 and 32 points, respectively. (ns= p>0.05, 
*= p ≤0.05, **= p≤0.01, ***= p≤0.001, ****= p≤0.0001) 
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Figure 5.8 Comparison of biomarkers across cohorts, stratified by LTBI status, for the TB1-MIT normalized 
condition. The plots show the statistical test results for comparing the concentrations of biomarkers between cohort 
1 and 2 LTBI negative patients, between cohort 1 and 2 LTBI positive patients, and within cohort LTBI positive and 
negative using Wilcoxon-Mann-Whitney. The cohort 1 LTBI negative and positive bins contain 25 and 20 points, 
respectively, and the cohort 2 LTBI negative and positive bins contain 55 and 32 points, respectively. (ns= p>0.05, 
*= p ≤0.05, **= p≤0.01, ***= p≤0.001, ****= p≤0.0001) 
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Figure 5.9 Comparison of biomarkers across cohorts, stratified by LTBI status, for the MIT-NIL normalized 
condition. The plots show the statistical test results for comparing the concentrations of biomarkers between cohort 
1 and 2 LTBI negative patients, between cohort 1 and 2 LTBI positive patients, and within cohort LTBI positive and 
negative using Wilcoxon-Mann-Whitney. The cohort 1 LTBI negative and positive bins contain 25 and 20 points, 
respectively, and the cohort 2 LTBI negative and positive bins contain 55 and 32 points, respectively. (ns= p>0.05, 
*= p ≤0.05, **= p≤0.01, ***= p≤0.001, ****= p≤0.0001) 
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Figure 5.10 Paired comparisons of cytokine values within TB1 and TB2 stimulations, stratified by LTBI status. The 
TB1 and TB2 conditions are compared within LTBI negative subjects and within LTBI positive using the non-
parametric paired Wilcoxon signed-rank test. The two LTBI negative bins contain 55 subject data points. The two 
LTBI positive bins contain 32 subject data points. (ns= p>0.05, *= p ≤0.05, **= p≤0.01, ***= p≤0.001, ****= 
p≤0.0001) 
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Figure 5.11 Paired comparisons of cytokine values within TB1 and TB2 stimulations, stratified by high-risk status. 
The TB1 and TB2 conditions are compared within high-risk (HR) designated subjects and within not high-risk 
(NotHR) designated subjects using the non-parametric paired Wilcox Test. The two High-Risk bins contain 55 
subject data points. The two not high-risk bins contain 32 subject data points. (ns= p>0.05, *= p ≤0.05, **= p≤0.01, 
***= p≤0.001, ****= p≤0.0001) 
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Figure 5.12 Random forest model results for secondary cohort including the QFT TB2 stimulation. ROC curve for 
differentiating (A) LTBI positive and negative subjects and (B) high-risk vs not high-risk subjects using all four 
QFT stimulation tubes. The full model uses all available features for prediction and the reduced model uses the top 
features. Variable importance from random forest algorithm for (C) LBTI status and (D) high-risk status for the 
reduced data set identifies the features with 95% confidence intervals above zero (dark purple). In C, only two 
features have 95% confidence intervals above zero. The light purple features indicate features with greater than 
0.3% average importance. This cutoff corresponds to 10% of the average importance for the top variable. Venn 
diagram highlighting the biomarkers present in the top predictive features for (E) LTBI and (F) high-risk 
designations in models with and without the additional TB specific tube (TB2). 
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5.9 Tables 

Table 5.1 Patient demographics by pertinent clinical categories for cohort 1. 

 Subjects, no. (%)a 

 All 
(n=42) 

LTBI- 
(n= 24) 

LTBI+ 
(n= 18) 

High Risk+ 
(n=13) 

P 
value b 

Sex (female) 28 (66.7) 17 (70.8) 11 (61.1) 6 (46.2) 0.529 
Age, years      

Mean ± SD 53.3±17.6 59.4.±14.7 45.4±18.3 46.3±20.1 0.016 
Range 22-84 26-84 22-81 22-81  

Ethnicity      
Caucasian 32 (76.1) 22 (91.7) 10 (55.6) 6 (46.1) <0.001 
African American 2 (4.8) 0 (0) 2 (11.1) 2 (15.4)  
Asian Pacific 2 (4.8) 2 (8.3) 0 (0) 0 (0)  
Hispanic 1 (2.4) 0 (0) 1 (5.6) 0 (0)  
Others 5 (11.9) 0 (0) 5 (27.7) 5 (38.5)  

Place of Birth c      
US Born 30 (71.4) 20 (83.3) 10 (55.6) 6 (46.1) 0.033 
Foreign Born (High TB) 1 (2.4) 3 (12.5) 8 (44.4) 7 (53.9)  
Foreign Born (Low TB) 11 (26.2) 1 (4.2) 0 (0) 0 (0)  

History of BCG vaccination      
Yes 7 (16.7) 3 (12.5) 4 (22.2) 3 (23.1) 0.583 
No 30 (71.4) 19 (79.2) 11 (61.1) 7 (53.8)  
Unknown 5 (11.9) 2 (8.3) 3 (16.7) 3 (23.1)  

Occupation      
Health care worker, direct 
patient care 13 (30.9) 7 (29.2) 6 (33.3) 4 (30.7) 0.453 
Health care worker, no 
direct patient care 18 (42.9) 9 (37.5) 9 (50.0) 6 (46.2)  
Other 11 (26.2) 8 (33.3) 3 (16.7) 3 (23.1)  

Adjusted predicted 
cumulative TB risk (%) d      

Mean ± SD 3.09±9.43 0.60±1.08 6.41±13.87 8.49±15.99 <0.001 
Range 0 – 61.25 0 – 3.81 0.1 – 61.25 0.1 – 61.25  

History of 
immunosuppression e (yes) 6 (14.3) 5 (20.8) 1 (5.6) 1 (7.7) 0.371 
Tuberculin skin test      

TST (+) 23 (54.8%) 10 (41.7) 13 (72.2) 9 (69.2) 0.103 
TST mm induration 
(median; range) 14.5 (0-24) 0 (0-18) 17 (0-24) 20 (0-24) 0.006 

IGRA test      
QFT (+) 16 (39.0) 0 (0) 16 (88.9) 11 (84.6) <0.001 

QFT results (Mean ± SD; 
IU/mL) f 1.89±3.46 0 (0) 4.31±4.15 5.64±4.18 <0.001 

Abbreviations: IGRA = Interferon-gamma release assay; SD = Standard deviation; High TB = High incidence of 
TB; Low TB = Low incidence of TB; QFT = QuantiFERON TB Gold In-Tube™ or QuantiFERON TB Gold Plus™; 
TST = Tuberculin skin test. HIV = Human immunodeficiency virus. HCW = healthcare worker. 

a Study included 42 subjects. The total sample set analyzed were 45 samples, encompassing 42 unique subjects 
and 3 additional time points separated by 5-7 months in testing, representing unique samples. 
b P value for comparison between subjects with LTBI diagnosis vs. no LTBI diagnosis by current diagnostic 
guidelines (Two-tailed Fisher’s Exact test or r x c Exact contingency table, Wilcoxon rank sums when 
appropriate). 

c High incidence of TB was defined as a country with ≥20 cases per 100,000 population per year. 2020 WHO 
Global tuberculosis report (http://www.who.int/tb/publications/global_report/en/). 
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d Adjusted estimates for the individual cumulative risk of TB reactivation are based on “The Online TST/IGRA 
interpreter” prediction modeling that includes TST and IGRA results, risk factors for LTBI and risk factors for 
progression to active TB (http://www.tstin3d.com/en/calc.html) as previously described. 23,24 

e Study subjects included 5 patients with non-HIV immunosuppressed conditions (a patient on methotrexate for 
rheumatoid arthritis, one on sirolumus for lymphangioleiomyomatosis, one with history of chemotherapy and 
stem-cell transplantation for angioimmunoblastic lymphoma, one on 50 mg daily of prednisone for bullous 
pemphigoid, and one on hydroxychloroquine and low-dose prednisone for lichenoid mucositis). 

f QFT results include Interferon-gamma levels (IU/mL) of antigen tube minus nil from QuantiFERON TB Gold In-
Tube™ and TB1 tube from QuantiFERON TB Gold Plus™. 
 

 

http://www.tstin3d.com/en/calc.html
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Table 5.2 Patient demographics by pertinent clinical categories for cohort 2. 

 Subjects, no. (%)a 

 All 
(n=74) 

LTBI- 
(n= 47) 

LTBI+ 
(n= 27) 

High Risk+ 
(n=26) 

P 
value b 

Sex (female) 48 (64.8) 35 (74.5) 13 (48.1) 13 (50) 0.02 
Age, years      

Mean ± SD 54.2±17.8 58.0±17.5 47.5±16.6 47.8±16.0 0.02 
Range 19-83 25-83 19-79 19-79  

Ethnicity     <0.001 
Caucasian 54 (73.0) 43 (91.4) 11 (40.7) 12 (46.1)  
African American 6 (8.1) 2 (4.3) 4 (14.8) 4 (15.4)  
Asian Pacific 8 (10.8) 2 (4.3) 6 (22.2) 6 (23.0)  
Hispanic 4 (5.4) 0 4 (14.8) 3 (11.5)  
Others 2 (2.7) 0 2 (7.4) 1 (3.8)  

Place of Birth c     <0.001 
US Born 55 (74.3) 42 (89.4) 13 (48.1) 13 (50)  
Foreign Born (High TB) 18 (24.3) 4 (8.5) 14 (51.9) 13 (50)  
Foreign Born (Low TB) 1 (1.4) 1 (2.1) 0   

History of BCG vaccination     0.0013 
Yes 11 (14.9) 2 (4.3) 9 (33.3) 8 (30.8)  
No 52 (70.3) 39 (83) 13 (48.1) 13 (50)  
Unknown 11 (14.9) 6 (12.7) 5 (18.5) 5 (19.2)  

Occupation     0.48 
Health care worker, direct 
patient care 12 (16.2) 6 (12.7) 6 (22.2) 4 (15.4)  

Health care worker, no 
direct patient care 7 (9.5) 4 (8.5) 3 (11.1) 4 (15.4)  
Other 55 (74.3) 37 (78.7) 18 (66.6) 18 (69.2)  

Adjusted predicted 
cumulative TB risk (%) d     <0.001 

Mean ± SD 4.7±15.1 0.48±1.8 12.2±23.4 8.7±15.8  
Range 0-100 0-9 0-100 0-60  

History of 
immunosuppression e (yes) 19 (25.7) 9 (19.1) 10 (37.0) 8 (30.7) 0.10 

Tuberculin skin test      
TST (+) 18 (24.3) 6 (12.7) 12 (44.4) 10 (38.5) <0.001 
TST mm induration 
(median; range) 17; 11-20 15; 15-15 17.5; 11-20 18; 11-20  

IGRA test      
QFT (+) 23 (31.1) 1 (2.1) 22 (81.5) 21 (80.7) <0.001 
QFT results, TB1 (Mean 
± SD; IU/mL) f 3.15±2.8 2.86 3.17±2.8 3.4±2.7  

QFT results, TB2 (Mean 
± SD; IU/mL) f 3.39±3.19 9.98 3.1±2.9 3.6±3.2  

Abbreviations: IGRA = Interferon-gamma release assay; SD = Standard deviation; High TB = High incidence of 
TB; Low TB = Low incidence of TB; QFT = QuantiFERON TB Gold In-Tube™ or QuantiFERON TB Gold Plus™; 
TST = Tuberculin skin test. HIV = Human immunodeficiency virus. HCW = healthcare worker. 

a Study included 42 subjects. The total sample set analyzed were 45 samples, encompassing 42 unique subjects 
and 3 additional time points separated by 5-7 months in testing, representing unique samples. 
b P value for comparison between subjects with LTBI diagnosis vs. no LTBI diagnosis by current diagnostic 
guidelines (Two-tailed Fisher’s Exact test or r x c Exact contingency table, Wilcoxon rank sums when 
appropriate). 

c High incidence of TB was defined as a country with ≥20 cases per 100,000 population per year. 2020 WHO 
Global tuberculosis report (http://www.who.int/tb/publications/global_report/en/). 

d Adjusted estimates for the individual cumulative risk of TB reactivation are based on “The Online TST/IGRA 
interpreter” prediction modeling that includes TST and IGRA results, risk factors for LTBI and risk factors for 
progression to active TB (http://www.tstin3d.com/en/calc.html) as previously described. 23,24 

e Study subjects included 5 patients with non-HIV immunosuppressed conditions (a patient on methotrexate for 
rheumatoid arthritis, one on sirolumus for lymphangioleiomyomatosis, one with history of chemotherapy and 

http://www.tstin3d.com/en/calc.html
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stem-cell transplantation for angioimmunoblastic lymphoma, one on 50 mg daily of prednisone for bullous 
pemphigoid, and one on hydroxychloroquine and low-dose prednisone for lichenoid mucositis). 

f QFT results include Interferon-gamma levels (IU/mL) of antigen tube minus nil from QuantiFERON TB Gold In-
Tube™ and TB1 tube from QuantiFERON TB Gold Plus™. 
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Chapter 6 Multiplexed Protein Detection Platform for Diagnosing Latent Tuberculosis and 

Stratifying Risk of Reactivation 

6.1 Author Contributions and Acknowledgements 
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figures 6.1, 6.3, and 6.5 and the machine learning methods section were developed and written 

by our bioinformatics collaborators, Dr. Ruoqing Zhu, Haowen Zhou, and Mingrui Xu. Dr. Cole 

Chapman and Dr. Heather Robison developed the 13-plex assay employed here and analyzed the 

first 135 patient QFT samples, while the thesis author analyzed the remaining 360 patient QFT 

samples, completed final cytokine comparison analysis, and managed the multi-site 

collaboration. Our clinical collaborators, led by Dr. Patricio Escalante, generated table 6.1. The 
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and direction. I would like to thank Dr. Patricio Escalante from the Mayo Clinic for his 

leadership through this project. I acknowledge Heather Hilgart for storing and sending the many 

LTBI samples collected over the years; Pedro Sanchez, Tom Cox, Kale Daniel, Mounika 

Vadiyala, Maleeha Shah, Snigdha Karnakoti, Dr. Paige Marty, Dr. Balaji Pathakumari, Courtney 
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6.2 Introduction 

Pulmonary tuberculosis (TB) is a complex condition resulting from infection with 

Mycobacterium tuberculosis (Mtb) bacteria. TB is estimated to be present in around 25% of the 

world’s population and continues to be a fatal disease, with an attributed 1.6 million deaths 

worldwide in 2021.1,2 TB disease is currently regarded as a continuum of various disease phases 

and each phase requires different methods of diagnosis and treatment regimes, adding to the 

complex task of TB eradication.3–5 Upon infection, the host immune response will attempt to 

contain and clear the Mtb, but under many circumstances only succeeds in sequestering the 

bacteria in calcified granulomas found primarily in the lungs and lymph nodes.6–8 Granuloma 

development aids Mtb persistence by isolating the bacteria from the host’s immune response, but 

also protects the host from continued bacterial growth and replication. The dynamic bacterial and 
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immunological equilibrium induced by the granuloma environment results in a phase of TB 

infection called latent TB infection (LTBI).8 It is estimated that from all Mtb-infected individuals 

worldwide, 20% manifest clinically as TB disease and 80% persist as LTBI, totaling an 

estimated 1 billion people. 6,9 

Approximately 90% of LTBI patients who are immunocompetent will stay asymptomatic 

and non-contagious.4,6 The remaining patients will eventually reactivate from LTBI to active TB 

through a disruption in the dynamic equilibrium resulting in rupture of the protective granuloma. 

The Mtb is no longer held in a quiescent state and will begin to replicate within the lungs of the 

host. This reactivation event facilitates further transmission of TB disease. Many reactivation 

events occur within 24 months of initial infection, highlighting the importance of diagnosing the 

latent phase.4 Therefore, a key to eradicating TB involves the identification of individuals with 

LTBI, as well as to stratify patients by risk of reactivation from LTBI to active TB, since 

preventative antibiotic therapy would be most beneficial for high-risk individuals. 

To reach this ambitious goal, high performance diagnostics for accurate LTBI diagnosis 

and risk stratification are desperately needed. There is currently a lack of gold standard for stand-

alone LTBI diagnostics and diagnosis relies on TB-specific blood-based interferon-gamma 

release assays (IGRAs) and additional testing. The current standard IGRA is the commercialized 

QuantiFERON test (QFT). The QFT assay stimulates monocytes in whole blood samples with 

Mtb-specific antigens and controls followed by detection of interferon-gamma (IFN- γ) using an 

enzyme-linked immunosorbent assay (ELISA) to identify those who have been infected by 

Mtb.10,11 While IGRAs are accurate in detecting prior exposure to Mtb, inconclusive tests can 

occur in IFN- γ dysregulated patients, IGRAs are unable to accurately differentiate between 

LTBI and active disease, and they have less than 3% predictive value in determining risk of 
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reactivation.5,12–14 Most of the current research into quantifying reactivation risk is focused on 

RNA signatures, which are generally less stable than protein biomarkers and require RNase-free 

facilities.15–19 To facilitate a more streamlined integration into current TB diagnostics, protein-

based biomarker signatures for risk stratification need to be explored.  

Our research aims to work towards the WHO’s goal of decreasing TB incidence by 80% 

before 2030 by expanding the TB diagnostic toolbox with a multiplexed immunoassay tool that 

addresses both LTBI status and risk of reactivation using a sample input of stimulated QFT 

plasma. Multiplexed assays are an area of intense interest in clinical diagnostics, as the complex 

biological processes of the immune system are more informatively understood using multi-

biomarker profiles, rather than single biomarkers.20–25 In a TB context, multiplexed assays can 

identify host biomarkers other than IFN- γ as potential indicators of disease or reactivation risk, 

effectively reducing false negatives from IFN- γ dysregulated or IFN- γ independent patients.24,26 

There has been a heavy focus on developing multi-biomarker signatures for determining active 

TB status27–33 and some studies have incorporated multi-biomarker signatures for other phases of 

TB infection, such as LTBI.34–38 These studies demonstrate promise for using cytokine 

biomarkers to differentiate various phases of TB infection. However, many fail to account for 

immunological variation between patients and none provide a tandem approach to both LTBI 

and reactivation risk stratification.  

This work applies a whispering gallery mode, silicon photonic microring resonator 

biosensor platform capable of multiplexing up to sixteen different biomarkers. The protein 

quantification in patient samples is followed by machine learning algorithms to classify patients 

into relevant clinical bins. The 40-minute assay with automated fluidic handling is faster and 

requires less manual manipulation than a traditional ELISA assay and, when coupled to machine 
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learning, provides a method to identify important diagnostic biomarkers for LTBI and risk 

classification. We have previously applied this multiplexed microring platform in various clinical 

capacities, including LTBI-relevant diagnostics.39–45 However, these earlier LTBI studies utilized 

peripheral blood mononuclear cells (PBMCs) that were cultured and stimulated with six different 

antigens or controls, which is technically laborious and time consuming. Notably, though, this 

work demonstrated the applicability of the platform coupled to machine learning methods to 

generate biomarker profiles that were not only biologically driven, but also led to predictive 

accuracies for LTBI and high-risk status that indicated the potential for clinical diagnostics. 

Employing this assay method with stimulated QFT plasma as the specimen would increase the 

applicability of our immunoassay platform and create a more rapid profiling approach that is 

directly amenable to the current clinical workflow for TB diagnostics.  

Herein, we report a thirteen-plex immunoassay tool for LTBI diagnostics and risk 

assessment that uses QFT stimulated plasma as the sample input coupled with random forest 

machine learning to identify LTBI patients and classify their associated risk of reactivation. We 

report predictive accuracies for classifying LTBI positive (LTBI+) status from the population of 

patients who received QFT testing at the Mayo clinic using both absolute and precision 

normalized biomarker concentrations. We further divide the LTBI+ patient group into high or 

low risk of reactivation and report predictive accuracies for classifying both risk designations. 

Further, we report the top important variables for all the models and highlight a dependence on 

specific biomarkers in the panel for each classification. Through this implementation, we 

demonstrate how our microring resonator platform is applicable to the current TB-diagnostic 

pipeline and can increase clinical information gleaned from a single test to better inform further 

testing, treatment, and monitoring plans for individual patients. 
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6.3 Methods 

6.3.1 Subject enrollment and clinical designations 

This study approved by the Mayo Clinic Institutional Review Board and Olmsted County 

Public Health Services. All study participants signed an informed written consent. Subjects were 

enrolled in Rochester, Minnesota between August 2017 and December 2023. Risk factors for TB 

infection, TB progression, and/or TB reactivation were obtained through a questionnaire and 

review of medical records as previously described.46–48 LTBI diagnoses were made based on the 

Center for Disease Control and Prevention (CDC) current guidelines criteria, TB risk factors, and 

prior TST and QuantiFERON®-TB Gold In-Tube or Gold In-Tube Plus results (Qiagen, 

Germantown, MD).48 The study subjects included TB unexposed individuals with negative 

IGRA testing results (LTBI negative-cases), and subjects with LTBI at varying risk for 

developing active TB infection, including untreated LTBI patients and patients who had LTBI 

therapy. A modified multifactorial predictive modeling platform (Online TST/IGRA interpreter), 

adjusted by LTBI treatment effect, was applied to estimate the cumulative risk of TB reactivation 

in all subjects.49,50  

Three clinical designations were used in this study: LTBI+, increased- or high-risk LTBI 

status, and low-risk LTBI status. Together, these designations will provide information relevant 

to TB risk assessment and, thus, individual treatment recommendations relevant for clinicians 

and public health providers who screen, diagnose, and manage subjects at risk of reactivation to 

active TB. As described above, CDC guidelines for diagnosis of LTBI were used to classify 

subjects as LTBI positive or negative. Subjects with a LTBI+ diagnosis were deemed high-risk 

of TB reactivation patients if they could be classified as either (1) having untreated LTBI with 

both TST+ and prior IGRA+ results, (2) having untreated LTBI with TST+ conversion, prior 
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IGRA- results, and prior TB exposures, (3) having prior close TB exposure and subsequent 

IGRA+ results, or (4) being immunosuppressed with untreated LTBI diagnosis as per current 

guidelines. Subjects with a LTBI+ diagnosis were classified as low-risk of TB reactivation if 

they had LTBI+ diagnosis and completed guidelines-based preventative treatment for LTBI and 

had low likelihood for subsequent TB exposures at the time of study enrollment, such as those 

living in Minnesota or other low TB endemic areas. 

6.3.2 Sample Collection and QuantiFERON testing 

Three milliliters of blood were collected from each subject and sent for same-day QFT 

testing at the Mayo Clinic’s clinical laboratories. Initial study participants (39/165 patients) were 

analyzed using the QuantiFERON®-TB Gold In-Tube (QFT, Qiagen) IGRA kit. The QFT assay 

was performed as recommended by the manufacturer and the standard protocol included three in-

tube stimulation conditions: a negative control (NIL), positive control (MIT), and the Mtb-

specific peptide mixture for CD4+ cell stimulation (AG).49,51 During the study, the Mayo Clinic 

laboratory transitioned to the QuantiFERON®-TB Gold Plus (QFT-Plus, Qiagen) IGRA kit.52 

The QFT-Plus kit contained the same stimulations of NIL, MIT, and Mtb-specific peptide 

mixture, now termed TB1 and shown to be akin to the AG stimulation in the original QFT assay. 

QFT-Plus included an additional Mtb-specific stimulation, TB2, that contained the same peptide 

cocktail as TB1 along with proprietary peptides to elicit both CD4+ and CD8+ T-cell 

responses.53 For the algorithms developed in this work, data from the TB2 tube was excluded so 

that all data emanated from NIL, MIT, and AG/TB1 stimulations only.  

After patient blood was stimulated in-tube, the plasma was separated from the red blood 

cells and analyzed for IFN- γ concentration by an enzyme-linked immunosorbent assay (ELISA). 

In the QFT assay, a positive result was declared if measured levels of IFN-γ included NIL ≤ 8.0 
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IU/mL, the IFN- γ concentration difference between TB1 and NIL tubes (TB1-NIL) ≥0.35 

IU/mL, and TB1-NIL ≥ 25% of the NIL IFN-γ value. In the QFT-Plus assay, a positive result 

was declared if IFN-γ concentrations in NIL ≤ 8.0 IU/mL, TB1-NIL or TB2-NIL≥0.35 IU/mL, 

and TB1-NIL or TB2-NIL ≥ 25% of the NIL IFN-γ value. Leftover plasma from each QFT or 

QFT-Plus tube were frozen after ELISA testing, stored at -80°C, and thawed immediately before 

multiplexed cytokine analyses. 

6.3.3 Silicon photonic microring resonator technology and instrumentation 

Silicon photonic microring resonators are a type of whispering-gallery mode sensor in 

which light continually circulates within a microring waveguide microstructure, resulting in an 

evanescent field extending above the microring surface.54 Light couples into the microring 

waveguide at a wavelength dependent on the effective refractive index (RI) in the evanescent 

field, according to the following equation:  

𝜆 = 	
2𝜋𝑟
𝑚 𝑛!"" 

where lambda (λ) is wavelength, m is an integer, r is radius of circular waveguide and 𝑛!"" is the 

effective RI of the optical mode.55,56 Capture probes (e.g., antibodies, nucleic acid aptamers) 

covalently attached to the microring resonator attract specific target biomolecules to the sensor 

surface, which alters the RI within the sensing region. The altered RI gives rise to a change the 

resonant wavelength and results in a measurable shift in non-transmitted wavelength. Using 

calibration curves, the overall wavelength shift over the course of an assay is correlated to 

amount of target biomolecule in a sample.57,58 The microring structure is easily fabricated, results 

in low coefficient of variation, and is amenable to multiplexing many microring sensors on one 

silicon chip. 
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The cytokine biomarker data in this report was collected using the Genalyte Matchbox 

instrument (Genalyte, Inc., San Diego, CA) and silicon sensor chips (Genalyte, Inc. San Diego, 

CA). The silicon sensor chips were 4X6 mm in size and fabricated with 128 individual 

microrings arraigned in clusters of four rings spatially fabricated across two channels of sixteen 

ring clusters each. This sensor chip layout grants simultaneous analysis of up to sixteen different 

analytes, each with four technical replicates, in two samples. The multiplexed sensor chips were 

housed in injection molded cartridges (Genalyte, Inc., San Diego, CA) to create two sealed 

microfluidic channels along the top of the microring channels. When inserted into the 

instrument, a fully automated microfluidic path is created that pulls all reagent liquid from a 96-

well plate across the surface of the sensor chip at 30 μL/min and then discarded into waste. The 

sensor chip and cartridge unit were discarded after each sample to eliminate potential carryover 

between samples. 

6.3.4 Multiplexed biomarker panel and assay design 

The 13-plex cytokine and chemokine panel deployed in this study consisted of IL-1β, IL-2, 

IL-6, IL-10, IL-15, IL-17, CCL2, CCL3, CCL4, CCL8, IFN- γ, IP-10, and TNF-⍺. As previously 

described, capture antibodies for each biomarker were covalently linked to clusters of four 

microring sensors through silanization with (3-aminopropyl)triethoxysilane (APTES), followed 

by introduction of a homo-bifunctional linker, bis(sulfosuccinimidyl)suberate (BS3), and the 

antibody of interest using precision spotting techniques by Genalyte, Inc.57–59 The sensor chips 

were blocked with bovine serum albumin (BSA) containing buffer, dry coated for antibody 

stability, and stored in a desiccator at 4°C until use.   

The sensing scheme resembled a sandwich-style ELISA, with the immobilized capture 

antibody, protein, and biotinylated tracer antibody forming a highly specific sandwich complex 
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that is tagged with a streptavidin-linked recognition reagent through strong biotin-streptavidin 

interactions.60–62 A functionalized chip was inserted into the instrument and running buffer, 1X 

phosphate buffered saline with 0.5% BSA (PBS-BSA), was flowed across the chip to equilibrate 

the surface for five minutes. The data collection then began with running buffer flowing 

consistently for two minutes to collect baseline signal. The following assay reagents were then 

flowed across sequentially: sample of interest (7 mins), buffer rinse (2 mins), mixture of 

biotinylated tracer antibodies(1-2 μg/mL, 7 mins), a buffer rinse (2 mins), streptavidin horse-

radish peroxidase (SA-HRP, 4 μg/mL, 7 min), a buffer rinse (2 mins), 4-chloro-1-napthol (4CN, 

stock concentration, 7 mins), and a final buffer rinse (3 mins), for a total assay time of 39 

minutes. The frequent buffer rinses remove any unbound material before the next reagent is 

introduced. The final reagent, 4CN, reacts with the localized HRP to form an insoluble 

precipitate within the evanescent field, amplifying the resonant wavelength and resulting in 

lower detection limits and broader sensing regions. To quantify relative shifts in each sample, the 

signal immediately before the 4CN step (t=29 min) was subtracted from the signal at the end of 

the final buffer rinse (t=39 min) to obtain the net shift (Δpm) for each individual target. 

6.3.5 Assay panel optimization and multiplexed calibrations 

Each biomarker was individually optimized to determine optimal tracer antibody 

concentration and appropriate standard concentration that allowed for construction of an eight-

point, four-parametric calibration curve that ranges from a saturating signal to baseline signal. 

Prior to multiplexing the biomarkers, each pair of capture antibody and standard/tracer antibody 

was tested for cross-reactivity. Using a checkerboard method, each individual standard/tracer 

antibody pair was flowed across each capture antibody to ensure that capture antibodies produce 

a response only to their respective standard/tracer antibody pair. Additionally, optimized 
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sandwich assays were tested in human plasma to ensure detection efficacy in the biologic matrix 

of interest. New reagent lots introduced during the study were tested before use in sample 

analysis. 

Calibration of the 13-plex immunoassay was completed in a multiplexed format in two 

relevant background matrices (50% plasma and 10% plasma). Seven serial dilutions from a 

saturating analyte concentration and a matrix blank were analyzed in the assay format described 

above and yielded an eight-point calibration curve relating standard concentrations to relative 

resonance wavelength shift. Net resonance wavelengths (∆pm) were plotted as a function of 

standard concentration and fit to a four parametric logistic function, as described previously.58 

Limits of detection (LOD) and quantification (LOQ) were defined as the blank signal plus three 

times and ten times the standard deviation of the blank, respectively. New calibrations were 

constructed for each batch of sensor chips. At least three calibrations were completed per matrix 

and averaged over the usage lifetime of each chip batch to account for temporal variation in the 

assay signal. The averaged calibrations were used to construct a final four parametric calibration 

curve fit for each target that was subsequently used for converting net resonance wavelengths to 

analyte concentration in the patient samples. 

6.3.6 Patient Sample Analysis 

Each sample was analyzed at two dilutions, in parallel, in under forty minutes using a 

total of 210 μL of stimulated plasma leftover after QFT analysis. Sample dilutions of 10X and 

2X were chosen to reduce sample volume requirements, while spanning necessary dynamic 

ranges for all cytokines in the multiplexed panel. Each plasma sample (~300 μL) was removed 

from the -80°C, thawed at 4°C, and diluted two- and ten- fold in 1X PBS-BSA to a total volume 

of 350 μL. Standard biohazard safety level two precautions were exercised while handling the 
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plasma samples. The sample was analyzed with the method and reagents described above, with 

both dilutions of one sample being analyzed on a single sensor chip.  

The resulting data for each immunoassay experiment is a csv file for each individual 

microring sensor. Using in-house R programming code, the csv files were aggregated, thermal 

controls were subtracted, and ring clusters were associated with their specific capture antibody. 

The data was plotted as relative shift over time for each individual ring and then transformed to 

net shift by subtracting the relative shift immediately before the 4CN amplification step from the 

relative shift at the end of the final buffer rinse. Using the calibration curves, the net shift for 

both analyzed dilutions (10X and 2X) was converted to analyte concentration using the 

corresponding calibration (10% plasma and 50% plasma, respectively). The technical replicates 

(n=4) were averaged within each dilution. The dilution that resulted in a concentration closest to 

the inflection point of the specific target’s calibration curve was selected, corrected for dilution 

factor, and used for bioinformatic analysis, with the data from the other dilution being discarded. 

The inflection point is the midpoint of the calibration, and it is where the curve is most sensitive. 

Data points that exceed the saturating point of the target’s specific calibration were removed and 

data points below the specific target’s limit of detection were converted to zero. 

6.3.7 Precision Normalization 

Baseline immune responses exhibit significant variation across individuals and 

populations. Therefore, normalizing the biomarker levels measured in stimulated QFT samples 

from each individual can potentially account for patient-to-patient variation in baseline immunity 

and can result in development of more generalizable biomarker signatures. The normalization 

conditions for each biomarker target used in this report included a negative control subtraction to 

remove baseline immune response (TB1-NIL), a positive control subtraction to measure TB 
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specific response against overall positive response (TB1-MIT), and a positive minus negative 

subtraction to account for the overall immune response of the subject (MIT-NIL). Taken 

together, the three normalized conditions calculated for each of the 13 measured biomarker 

concentrations led to 39 features per patient for machine learning analysis.  

6.3.8 Statistical testing 

Comparing the cytokine concentrations between clinical designations, a two-sample 

Wilcoxon rank-sum tests, also known as Mann-Whitney U tests or Wilcoxon-Mann-Whitney 

(WMW) tests, was used. A WMW test is a non-parametric statistical hypothesis test that 

quantifies differences in the distribution of data between two populations.63,64 WMW tests were 

chosen for comparing the biomarkers between designations because the samples between groups 

meet the independent, ordinal, and continuous test assumptions, intervals may not be constant, 

outliers are present, and this test is suited for our sample sizes. The null hypothesis is that the 

distribution of the groups being compared are identical, with the alternative hypothesis being that 

the distribution of the groups is not identical. 

6.3.9 Random forest machine learning 

Random forest is an ensemble learning method that constructs and aggregates a multitude 

of decision trees to determine a classification outcome and can detect nonlinear effects of 

covariate features.65 The aggregation of many trees increases the flexibility and improves 

accuracy when compared to using a single decision tree, while feature selection ranks a feature’s 

effect on classification of a clinical designation, identifying the most important variables for 

classification.66 
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In our random forest supervised machine learning method, the rows of data 

corresponding to individual patients are the observations and the columns of the data containing 

raw or normalized cytokine concentrations act as the input variables to the decision trees. The 

classification pipeline included biomarker feature importance evaluation and variable selection 

and model construction. Random forests can calculate the importance each specific variable has 

towards developing the most accurate data splits.66 Each time a variable is used at a node, the 

impurity reduction is calculated and summed across every tree in the forest. The sum divided by 

the number of trees in the forest is the importance score for that variable.67 A greater reduction, 

or higher variable importance score, is desired. Across multiple forests, an average importance 

score is calculated, and all variables can be compared to each other to identify which variables 

are most important in making the classifications. Variables with high importance rankings are 

used for training a refined, or variable reduced, model. Model performance evaluation was done 

using out-of-bag samples and leave-one-out cross validation. Random forests do not require 

manually splitting the data into distinct testing and training sets, as the algorithm fundamentally 

uses a portion of the data to create a model and the remaining data to get an unbiased estimate of 

test error.  

A unique bagging method was developed specifically for this study due to a high number 

(n=21 of 165) of repeat patient samples, meaning multiple samples were provided by an 

individual patient as part of the ongoing longitudinal profiling aspect of the project. This raised 

the possibility that temporally distinct observations from the same patient could be used to both 

develop (in-bag) and then subsequently test (out-bag) a tree, introducing correlation bias into the 

classification model. To avoid this, our team developed a homogenous bagging method to ensure 

only one timepoint from a patient was included in the bootstrapped observations. 
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The visual representation of random forest outputs are receiver operator characteristic 

(ROC) curves. The ROC curve plots the sensitivity and specificity of the model at all possible 

classification thresholds. ROC curves are compared using the area under the curve (AUC), a 

metric of accuracy of the model to predict the disease state that ranges from zero to one. An 

AUC of one indicates 100% accuracy and 100% specificity across all thresholds, or a perfect 

model, while an AUC of 0.5 is equivalent to random chance. All informatics and data plotting 

were performed using R coding language. 

6.4 Results 

6.4.1 Patient Demographics 

This study enrolled 144 individual patients who provided a blood draw for QFT testing at 

an initial timepoint (Table 6.1). Seventeen of the patients provided a later second time point and 

four provided a third time point as part of an ongoing longitudinal profiling project, leading to a 

total of 165 sample sets included in our analysis. Each set of QFT samples was analyzed 

independently and the machine learning algorithm accounted for repeat measurements to 

minimize correlation bias. Of the 165 samples, 78 came from LTBI+ patients. LTBI+ patients 

were younger, more likely to be male, more likely to be non-Caucasian, and more likely to be 

born outside of the US than the 84 LTBI– patients. Within the LTBI+ population, 50 were 

designated to be at a high-risk of reactivation and 25 were designated as being at a low risk of 

reactivation, with the remaining three being indeterminant risk. The high-risk patients were more 

likely to be male, but no other demographic data was significantly different between the 

populations. 

6.4.2 Classification of LTBI positive subjects using absolute cytokine concentrations 
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Using the 165 sample sets in our study, we aimed to differentiate LTBI positive and 

negative subjects using random forest machine learning. Leave-one-out cross validation was 

completed to determine the ability of the cytokine profiles to diagnose LTBI from the study 

population. The absolute cytokine values of the QFT stimulated (TB1, NIL, MIT) plasma 

samples resulted in an accuracy of 84.1% using the full data set of 39 variables (Figure 6.1A). 

Variable reduction to remove variables contributing to model noise resulted in a reduced data set 

of twelve variables, but did not improve the accuracy, with a value of 84.8%. The variable 

importance metrics of the top ten most important variables demonstrates that IP-10 concentration 

from the TB1 stimulated plasma is the major predictor of LTBI status within the population 

(Figure 6.1B). Four of the top five variables are from the TB1 stimulated plasma, indicating 

reliance on TB-specific peptide stimulations for designation. Cytokines from the NIL and MIT 

stimulated plasmas are present later in the top ten list, indicating some contribution from a 

subject’s functional immune response to classifying LTBI status. A key result to highlight in the 

top ten list is the dependence on a select few cytokines in the multiplexed profiling panel. The 

top ten variables are composed of six of the thirteen proteins, indicating a high reliance on few 

variables.  

The comparison of cytokine distributions between LTBI positive and LTBI negative 

subjects in our population corroborates these selected important variables, with all the top six 

variables having statistically different cytokine distributions between LTBI positive and negative 

populations (Figure 6.2, Table 6.2). The greatest significance falls in the TB1 stimulated 

plasma, with IP-10, CCL8, and IL-2 showing greatest significance. IL-10 is the only target with 

significantly different distributions under all three QFT stimulated conditions. 

6.4.3 Classification of LTBI positive subjects using normalized cytokine concentrations 
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Precision normalized biomarker concentrations (TB1-NIL, TB1-MIT, MIT-NIL) 

replaced the absolute cytokine concentrations as variables for the machine learning algorithm to 

determine if using intra-patient normalized values improves the accuracy of LTBI status 

designation. Using the normalized cytokine values resulted in an accuracy of 85.8% using the 

full data set of 39 variables (Figure 6.3A). Variable reduction to a data set of fourteen variables, 

improved the accuracy to 87.8%. The variable importance plot of the top ten most important 

variables demonstrates that IP-10 concentration from the TB1-NIL normalized condition is the 

major predictor of LTBI status within the population (Figure 6.3B). Eight of the top ten 

variables are under TB1-related normalized conditions, indicating heavy reliance on TB-specific 

peptide stimulation for designation. Cytokines from the MIT-NIL normalized condition are 

present later in the top ten list, indicating some contribution from a subjects overall immune 

response to classifying LTBI status. Similar to the absolute cytokine designation, a key result is 

the dependence on a select few cytokines in the multiplexed profiling panel. The top ten 

normalized condition variables are composed of five of the thirteen proteins, indicating a high 

reliance on few variables, specifically IP-10, CCL8, IL-2, and IL-10. 

The comparison of cytokine distributions between LTBI positive and LTBI negative 

subjects in our population corroborates these selected important variables, with all the top five 

variables having statistically different cytokine distributions between LTBI positive and negative 

populations (Figure 6.4, Table 6.2). The greatest significance falls in the TB1-related 

normalized cytokine values, with IP-10, CCL8, and IL-2 showing greatest significance under 

TB1-NIL normalized conditions. IP-10 has the most distinction in population distributions 

between LTBI positive and negative for two normalized conditions, TB1-NIL and TB1-MIT. To 

note, IL-10 does not have significant differences in distributions, but all three normalized 
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conditions are important for the model to designate LTBI status, while CCL2 and IL-1β are 

distinct between designations but are not in the top ten best variables for prediction. 

6.4.4 Risk classification among LTBI positive subjects 

Using the risk classification based on clinical variables at time of QFT sample collection, 

we aimed to differentiate high-risk and low-risk subjects within all LTBI positive patients. All 

variables, including absolute and normalized cytokine concentrations, were used as input 

variables for the model, meaning the full data set consisted of 78 input variables. The model 

resulted initially in 74.7% accuracy for differentiating high-risk from not-high risk individuals 

(Figure 6.5A). After data reduction to the most important variables, the accuracy increased to 

81.3%. The variable importance metrics for high-risk classification revealed a heavy reliance on 

IL-10 for making the prediction, with five of the top ten variables being IL-10 concentration 

dependent (Figure 6.5B). Interestingly, half of the important variables are unrelated to the TB1 

stimulation, meaning the high-risk classification is more dependent on the overall immune 

function of the LTBI positive patients. For this classification, the model mainly relied on six 

absolute concentrations and four normalized conditions from only four unique proteins, IL-10, 

IL-2, IL-6, and CCL3. Further work is currently being conducted to generate the model with just 

the absolute variables and just the normalized variables, as was described for the LTBI 

designation models. Early results suggest the model derived from absolute values only will be 

the best predictor for high-risk classification (full= 73.8%, reduced with six variables = 83%). 

The full data set model resulted in 71.0% accuracy for differentiating low-risk from not 

low-risk subjects within the LTBI positive population (Figure 6.5C). Reducing the data set to 

the most important variables improved the accuracy greatly to 81.5%. The top ten important 

variables based on variable importance metrics reveals high reliance on IL-10, with five of the 
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ten variables being IL-10 concentration dependent (Figure 6.5D). Out of the ten variables, only 

three are from normalized cytokine concentrations and six are related to the TB1 variables, 

indicating a reliance on the absolute cytokine concentrations from TB-specific responses. Four of 

the thirteen profiled immune proteins comprise these top ten variables, including IL-10, IL-2, 

TNF-α, and CCL8. Further work is currently being conducted to generate the model with just the 

absolute variables and just the normalized variables, as was described for the LTBI designation 

models. Early results suggest the model derived from absolute values only will be the best 

predictor for low-risk classification (full= 70.1%, reduced with eight variables = 80.6%). 

The cytokine distributions between high risk and not high-risk subjects are in Figure 6.6 

with MWM statistical test results. The highest number of targets with significant differences in 

cytokine distribution is from the NIL QFT stimulation, or the negative control; however, there 

are no significant differences under the TB1-NIL normalized condition. Across all stimulations 

and normalized conditions, IL-10 has the most significantly different distribution between 

groups, with the median concentration for the high-risk population being higher than the not 

high-risk population for TB1, NIL, MIT, and MIT-NIL. Eight of the ten important variables for 

high-risk classification are significantly different between populations. Interestingly, IFN-γ has a 

significantly lower median value in the high-risk group compared to the not-high risk group and 

is the only comparison that has this classically TB-related target as different between groups.  

The cytokine distributions between low-risk and not low-risk subjects are in Figure 6.7. 

There are more significant differences in cytokine concentration distributions in the absolute 

concentrations in comparison to the normalized conditions, again indicating a classification 

reliance on the absolute cytokine concentrations. The highest number of targets with significant 

differences in cytokine distribution are from TB1-related stimulations, with variables across all 
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absolute and normalized conditions represented. The target with greatest significance is IL-10 

and, opposite of high-risk, the median IL-10 concentration is lower for low-risk population in 

TB1, NIL, MIT, and MIT-NIL conditions compared to not low-risk populations. All variables in 

the top ten important variables for random forest classification of low-risk patients are 

significantly different in cytokine concentration distribution between low-risk and not low-risk 

populations.  

Statistical testing was also completed within only LTBI+ patients classified as high or 

low risk, essentially removing the patients classified as indeterminant risk (n=3). Removing these 

subjects eliminates the need for “high versus not-high” and “low versus not-low” because all 

patients are either high- or low-risk classified. Early results confirm the dependence on IL-10 

and IL-2 (Figure 6.8, Table 6.3). All ten absolute variables with significant differences have 

greater median concentrations in high-risk compared to low-risk LTBI+ patients. IL-10 is 

significantly different across all three QFT stimulations and IL-2 is significantly different in TB1 

and MIT stimulated plasma samples. Only four normalized conditions resulted in significant 

differences between populations, with two associated with IL-10 and two with IL-2 (Table 6.3). 

This further supports the heavy reliance on these two cytokines for risk stratification and 

highlights why the absolute value-derived model is initially outperforming the normalized value-

derived model for risk designation. 

6.5 Discussion 

The aim of this study was to employ microring resonators as a cytokine biomarker 

sensing platform, integrate the assay into the current TB diagnostic workflow through using QFT 

plasma as the specimen, and identify biomarker signatures for LTBI and TB reactivation risk-

based classifications through machine learning. The 45-minute microring resonator multiplexed 
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biomarker assay required just 210 μL of plasma to simultaneously analyze 13 cytokines at two 

sample dilutions. The multiplexed assay had been previously tested using cell stimulation 

supernatant samples, which are collected through technically laborious processes.44,45 Using 

QFT-stimulated plasma as the sample input places our method directly in the current TB 

diagnostic workflow and decreases the potential time between sample collection and analysis 

allowing for a faster turnaround time. Transitioning from the supernatant sample to the plasma 

sample matrix required re-optimization of each target biomarker to ensure appropriate responses 

in plasma and construction of multiplexed calibration curves in plasma for quantitation. We 

successfully transitioned the established assay into this new sample matrix and analyzed 495 

QFT plasma samples.  

The enrolled patient population consisted of 165 sample sets, which included 78 LTBI 

positive patients, of which 50 were classified as a high risk of reactivation and 25 were classified 

as low risk of reactivation patients. The patient population, which affects the target population of 

the study, are patients at the Mayo Clinic who underwent QFT testing to determine TB infection 

status. Each patient sample set consisted of three QFT stimulated plasma samples analyzed with 

our 13-plex cytokine panel assay, leading to 39 absolute cytokine concentration variables per 

patient. Precision normalized values led to an additional 39 normalized cytokine concentration 

variables per patient. 

 All data points in the study were used to construct random forest models to differentiate 

between LTBI positive and negative designated patients and reached an accuracy of 87.8% under 

normalized conditions. The normalized variables resulted in a better predictive accuracy and 

greater separation between clinical populations of LTBI positive and negative patients in 

comparison to the absolute variables. The cytokine concentration distributions under normalized 
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conditions had lower levels of significance for the same cytokines under absolute concentrations, 

indicating a better distinction between clinical groups. The normalization accounts for patient-to-

patient variability by subtracting the cytokine concentrations resulting from negative and positive 

stimulations within each patient. Using normalized conditions can improve generalizability of 

the model and potentially reduce misclassification based on inherent variability in the basal 

immune response.  

The important variables for making this classification are highly similar between the 

absolute cytokine concentration derived model and normalized condition derived model. The 

models both show TB-specific peptide stimulations are needed to distinguish LTBI positive 

patients because the top variables are derived from TB1-related stimulations. The main 

classification biomarker is IP-10 across both methods, with CCL8, IL-2, and IL-10 rounding out 

the top five in both models. IP-10 is a chemokine with high correlation to TB infection in 

previous studies. In the cytokine distributions, IP-10 repeatedly has the lowest significance levels 

between LTBI positive and negative populations which is correlating to the random forest results 

as the variable that has the greatest effect on differentiating populations. CCL8, IL-2, and IL-10 

have also been associated with TB infection previously. The literature precedence of the 

important variables identified with our microring sensing workflow coupled to the random forest 

algorithm suggests our method is comparable to existing workflows. Our approach uses fully 

automated microfluidic reagent handling, has multiplexing capabilities of up to 16 targets, and 

has a time to result of 45-minutes for two simultaneous samples. These are improvements to 

current plate-based immunoassay methods that require manual washing, which can induce 

variability in each sample run. 
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Interestingly, IL-10 is a top important variable under all three normalized conditions but 

does not result in significant differences in cytokine distribution in any normalized condition. It 

is possible that the split value used for differentiating LTBI positive and negative populations is 

subtle and, therefore, does not result in a significant difference in cytokine distributions. Overall, 

the variable importance results across models derived from absolute and normalized cytokine 

concentrations reveal great importance for IP-10, CCL8, IL-2, and IL-10 under TB-specific 

peptide stimulations to identify LTBI positive subjects from the selected patient population. 

 The protein-based risk classification is an important aspect of this study, as most risk 

classifications are based on RNA signatures. Here, we integrate risk classification into the same 

workflow as QFT testing and LTBI classification using the multiplexed microring resonator 

sensing platform. The risk classification was completed within the LTBI positive population 

(n=78) with the goal of using the same data set to identify LTBI positive patients and then 

stratify them by high or low risk of reactivation. Compared to the LTBI classification model, the 

risk classification models are less accurate (~81% for both high and low risk classifications). 

This is likely due to both fewer patients in the population and a greater variability in patients 

who are clinically classified as a certain risk level. The classification of risk, especially low-risk 

criteria, has no current gold standard and relies on analysis of many lifestyle and medical factors 

by an experienced clinician. The LTBI status does not have a defined ‘gold standard’ diagnostic 

but can be more objectively defined based on QFT results and additional testing. The less 

defined clinical classification results in a higher variability of patients within a clinical bin, 

which contributes to lower predictive accuracies. Current work into developing separate absolute 

and normalized variable-derived models reveal a greater accuracy, similar to that of the 

combined model, when using just the absolute variables. This is opposed to the results from the 
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LTBI designation platform and suggests a reliance on the overall cytokine response to make the 

prediction in our population. 

 The high and low risk classifications are inversely related but unique in terms of the goal 

population of the respective classification. The high-risk classification aims to identify the 

biomarkers signature that makes the high-risk population stand out from all others (low risk and 

indeterminant) in the LTBI positive cohort. Conversely, the low-risk classification aims to 

identify biomarkers that can specifically select out the low-risk population from all others. 

Initially, we were interested to see if distinct variables or biomarkers would classify the different 

populations. The variable importance results revealed that very similar variables are important 

for both classifications. The high overlap in important variables implies the reactivation risk can 

be thought of as a linear spectrum, with concentrations of specific biomarker conditions 

responsible for separating out both high and low risk individuals, as opposed to different protein 

biomarkers altogether separating the risk populations.  

Specifically, variables associated with absolute and normalized concentrations of IL-10 

and IL-2 are responsible for the greatest variation reduction in the model. These variables 

account for seven of the ten top variables for high-risk and eight of the ten top variables for low-

risk classifications. All the IL-10 and IL-2 associated important variables show significant 

differences in cytokine concentration distributions between respective clinical populations, 

further solidifying these variables can differentiate our LTBI positive subject population based 

on clinically designated reactivation risk. IL-10 is an anti-inflammatory cytokine whose primary 

function is inhibit cytokine production and the inflammatory response. IL-2 plays a role in 

increasing the efficiency of cellular function and upregulates the adaptive immune system. Since 

the concentrations of these cytokines are generally higher in high-risk patients, it may be a signal 
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that the patient’s immune response is shifted from the dynamic equilibrium characteristic in 

LTBI infection. The IL-10 is working to reduce a possibly unbalanced inflammatory response 

and IL-2 is attempting to turn on the adaptive response to mitigate damage upon reactivation. 

However, further studies will be needed to confirm these hypotheses. 

 A highlight of the risk classification variable importance is the higher reliance on basal 

immune response (NIL and MIT associated variables) in comparison to the LTBI classification 

model. The top variable for both risk designations is the level of IL-10 in the negative control 

QFT stimulation. These results reveal that the general immune responses are more important 

than TB-specific stimulation responses in risk classification and should be investigated further as 

biomarkers of reactivation.  

 In comparing the identified important biomarkers across the normalized condition LTBI 

classification and both risk designations, a group of eight proteins comprise the top ten important 

variables: IP-10, CCL8, IL-2, IL-6, IL-10, CCL3, CCL4, and TNF-α. This biomarker reduction 

has implications in future work for reducing panel size towards developing smaller biomarker 

panels amenable across multiple cytokine detection platforms. All three QFT stimulations were 

in each of the top variable lists, so no sample reduction is amenable at this time.  

 A limitation of our study is our focus on distinguishing LTBI positive populations from 

an LTBI and active TB negative population. Developing diagnostics that can distinguish these 

groups is important, as those groups traditionally have similar results in molecular testing. 

However, by not including active TB populations as a cohort in our study we cannot conclude 

that the biomarker results are specific to LTBI rather than to general TB infections. Studies that 

neglect LTBI populations similarly cannot conclude whether the biomarkers are specific to 

active TB or to TB infection in general. Thus, future work should aim to include an active TB 
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population and models differentiating LTBI positive versus LTBI negative, LTBI positive versus 

active TB positive, or other combinations should be developed. Furthermore, based on our study 

population of individuals receiving QFT testing at the Mayo Clinic, very few were positive for 

active TB. This implies there is a greater need for our method in this population, as 

distinguishing LTBI positive patients from other QFT tested patients is more useful in this 

setting than distinguishing LTBI and active TB cases. A second limitation of this study is that 

there are currently no gold standards to define any of the clinical designations. The LTBI status 

is more objectively defined, but the risk classifications are still subjective. This can impart high 

variability in patient classification and lead to low predictive accuracies, but this limitation is 

true across all LTBI diagnostic and reactivation risk prediction work. 

 A goal of our study was to use QFT samples collected at an initial screen to classify a risk 

of reactivation from LTBI to active TB. Patients at a high risk have a greater potential to 

progress to active TB, while those at a low risk have lower potential to reactivate. Treatment and 

monitoring for the two populations can look different. Prognostic biomarkers of reactivation or 

disease progression have been identified through longitudinal studies that monitor biomarker 

profiles in patients before and after they progress to disease. These biomarkers are useful, but the 

act of reactivating to active TB over the course of the study can be related to lifestyle factors that 

are not captured with the biomarker profiles. Additionally, if treatments are provided to those 

identified as LTBI positive early in the study, the prognostic biomarkers are limited to a 

population of treated patients, rather than to all LTBI positive individuals. Furthermore, most 

work is focused on progression biomarkers and do not aim to find non-progression biomarkers. 

Our work was not focused on using progression to active TB as an endpoint, rather, we aimed to 

use biomarkers to classify patients by reactivation risk upon initial QFT sample collection. The 
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implications of identifying these biomarkers are that they can be generalized to all LTBI positive 

patients through larger, multi-center studies and they can be used to adjust patient monitoring 

schedules. Those identified as a high reactivation risk upon initial sample collection can receive 

specific treatment and increased monitoring schedules. Those identified as a low reactivation risk 

can receive specific treatment with less frequent monitoring, which can save time, resources, and 

money. Future work in this ongoing study includes increasing patient cohort size, increasing 

clinical bins to include more phases of TB infection, and applying the method to a patient 

population with a high-TB burden.  

6.6 Conclusion 

This work applied a microring resonator multiplexed sensing platform within a clinically 

relevant workflow to the TB diagnostic space. Our goals were to use the concentrations of 

thirteen cytokines in QFT stimulated plasma to identify biomarker signatures that could select 

LTBI positive subjects and classify their risk of reactivation to active TB. Within one 13-plex 

cytokine biomarker panel, we demonstrated an accuracy of 87.8% to differentiate LTBI positive 

patients and accuracies of 81% for stratifying those patients as high or low risk of reactivation. 

Variable importance metrics highlighted a significant reliance on various normalized conditions 

of IP-10, CCL8, and IL-2 for making the LTBI classification, while concentrations from various 

stimulation and normalized conditions of IL-10 and IL-2 were extremely important for both risk 

classifications. Our work employed a high-plexity, rapid technique to profile clinically relevant 

samples and identify biomarkers of importance consistent with literature. The inclusion of a low-

risk designation in conjunction with high-risk designation provides a unique way to stratify LTBI 

positive patients with implications in monitoring and treatment. 
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6.7 Figures 

 

Figure 6.1 LTBI classification using absolute cytokine levels. Random forest classification (A) and the top ten 
important variables for classification (B) of LTBI positive patients from all others in the sample population. 
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Figure 6.2 Absolute cytokine concentration distribution between LTBI positive and negative populations. The 
statistically significant differences between groups for the three QFT stimulations, TB1 (A), NIL (B), and MIT (C) 
are shown. All other cytokines did not show statistical differences between the LTBI positive and negative 
populations. Data presented on a log scale for visualization. Two-sample Mann-Whitney-Wilcox tests were used for 
comparing the cytokine distributions between clinical designations. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p 
≤ 0.0001 
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Figure 6.3 LTBI classification using normalized cytokine levels. Random forest classification (A) and the top ten 
important variables for classification (B) of LTBI positive patients from all others in the sample population. 
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Figure 6.4 Normalized cytokine concentration distribution between LTBI positive and negative populations. The 
statistically significant differences between groups for the three normalized QFT stimulations, TB1-NIL (A), TB1-
MIT (B), and MIT-NIL (C) are shown. All other cytokines did not show statistical differences between the LTBI 
positive and negative populations. Two-sample Mann-Whitney-Wilcox tests were used for comparing the cytokine 
distributions between clinical designations. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 
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Figure 6.5 High and low reactivation risk stratification. Within the cohort of LTBI positive subjects, the random 
forest results for high-risk (A) and low-risk (C) designations. The top ten important variables for making the high 
risk (B) and low risk (D) designations. The variables used for the model was a mix of both absolute and normalized 
cytokine concentrations. 
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Figure 6.6 Cytokine concentration distribution between high risk and not high-risk populations within LTBI positive 
subjects. The statistically significant differences between groups for the three QFT stimulations, TB1 (A), NIL (B), 
and MIT (C), and two normalized conditions, TB1-MIT (D) and MIT-NIL (E) are shown. All other cytokines and all 
under TB1-NIL normalized condition did not show statistical differences between the high risk and not-high risk 
populations. Two-sample Mann-Whitney-Wilcox tests were used for comparing the cytokine distributions between 
clinical designations. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001  
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Figure 6.7 Cytokine concentration distribution between low risk and not low-risk populations within LTBI positive 
subjects. The statistically significant differences between groups for the three QFT stimulations, TB1 (A), NIL (B), 
and MIT (C), and the three normalized conditions, TB1-NIL (D), TB1-MIT (E), and MIT-NIL (F) are shown. All 
other cytokines and all under TB1-NIL normalized condition did not show statistical differences between the low 
risk and not-low risk populations. Two-sample Mann-Whitney-Wilcox tests were used for comparing the cytokine 
distributions between clinical designations. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 
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Figure 6.8 Significantly different absolute concentration distributions between high-risk and low-risk LTBI positive 
patients. Targets under stimulation conditions of TB1 (A), NIL (B), and MIT (C) that were significantly different 
between clinical populations of high and low risk LTBI+ patients are shown. Median value of clinical population 
represented as a black line. Data visualized on log scale. Wilcox-Mann-Whitney tests were completed to test 
significant differences in normalized target concentrations between clinical population distributions. * p≤ 0.05, ** p 
≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 
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6.8 Tables 

Table 6.1 Demographic data of the patients enrolled in the LTBI study. 

                              Subjects, no. (%) 
 Alla 

(n=165) 
LTBI- 
(n= 84) 

LTBI+ 
(n= 78) 

P 
value b 

High Risk+ 
(n=50) 

Low Risk+ 
(n=25) 

P 
value c 

Sex (female) 101 (61.2) 59 (70.2) 42 (53.8) 0.031 22 (29.9) 16 (66.7) 0.050 
Age, years        

Mean ± SD 52.32±17.8 57.2±17.4 47.3±16.8 <0.001 46.5±16.7 50.8±17.1 0.331 
Range 19 – 84 19 - 84 22 - 81  22 – 81 25 - 78  

Ethnicity        
Caucasian 117 (70.9) 73 (86.9) 43 (55.1) <0.001 25 (50) 17 (68) 0.379 
African American 11 (6.7) 2 (2.4) 8 (10.3)  6 (12) 1 (4)  
Asian Pacific 18 (10.9) 8 (9.5) 10 (12.8)  8 (16) 1 (4)  
Hispanic 7 (4.2) 1 (1.2) 5 (6.4)  3 (6) 3 (6)  
Others 12 (7.3) 0 (0) 12 (15.4)  8 (16) 4 (16)  

Place of Birth d        
US Born 111 (67.3) 70 (83.3) 40 (51.3) <0.001 24 (48) 15 (60) 0.489 
Foreign Born (High TB) 5 (3) 3 (3.6) 2 (2.6)  1 (2) 1 (4)  
Foreign Born (Low TB) 49 (29.7) 11 (13.1) 36 (46.2)  50 (25) 9 (36)  

History of BCG vaccination        
Yes 89 (53.9) 50 (59.5) 37 (47.4) 0.063 17 (34.7) 15 (62.5) 0.120 
No 25 (15.2) 11 (13.1) 14 (17.9)  12 (24.5) 2 (8)  
Unknown 29 (17.6) 9 (10.7) 19 (24.4)  14 (28.6) 5 (20)  
Probably no 22 (13.3) 14 (16.7) 8 (10.3)  6 (12.2) 2 (8)  

Occupation        
Health care worker,  
direct patient care 36 (21.8) 16 (19) 20 (25.6) 0.1361 13 (26) 7 (28) 0.975 

Health care worker,  
no direct patient care 34 (20.6) 14 (16.7) 20 (25.6)  13 (26) 6 (24)  

Other 95 (57.6) 54 (64.3) 38 (48.8)  24 (48) 12 (48)  
Predicted cumulative 
TB risk (%) e        

Mean ± SD 4.23±12.15 0.57±1.75 8.24±16.73 <0.001 8.88±15.71 7.17±19.78 0.045 
Range 0 – 100 0 – 8.97 0 - 100  0 – 61.25 0 - 100  

Adjusted predicted 
cumulative TB risk (%) f        

Mean ± SD 2.93±8.6 0.25±0.73 5.8±11.82 <0.001 7.87±13.99 2.21±5.05 <0.001 
Range 0 – 61.25 0 – 3.81 0 – 61.25  0 – 61.25 0 - 25  

Adjusted predicted  
annual TB risk (%) f        

Mean ± SD 0.09±0.27 0.01±0.03 0.19±0.36 <0.001 0.24±0.41 0.11±0.28 <0.001 
Range 0 – 1.99 0 - 0.12 0 – 1.99  0 – 1.99 0 – 1.34  

History of  
immunosuppression (+) g 21 (12) 10 (11.9) 11 (14.1) 0.230 5 (10) 5 (20)  

Tuberculin skin test        
TST (+) 53 (32.1) 18 (21.4) 35 (44.9) <0.001 24 (48) 11 (44) 0.285 
TST mm induration  
Mean ± SD; range 

6.21±8.22 
0 – 20 

3±6.21 
0 - 15 

9.64±8.91 
0 - 20 0.041 12.88±8.39 

0 - 20 
6.4±8.79 
0 - 17 0.127 

IGRA test        
QFT (+) 62 (37.6) 0 (0) 50 (76.9) <0.001 41 (82) 16 (64) 0.064 

QFT results (IU/mL) 
Mean ± SD; range h 

1.59±2.82 
-0.07 - 10 

0.02±0.06 
-0.07 – 0.23 

3.29±3.31 
-0.01 - 10 <0.001 4.33±3.41 

0 – 10 
1.25±1.92 
-0.1 – 8.03 <0.001 

 Abbreviations: IGRA = Interferon-gamma release assay; SD = Standard deviation; High TB = High incidence of TB; Low 
TB = Low incidence of TB; QFT = QuantiFERON TB Gold In-Tube™ or QuantiFERON TB Gold Plus™; TST = Tuberculin 
skin test. HIV = Human immunodeficiency virus. HCW = healthcare worker. 
a The total sample set analyzed were 165 samples, encompassing 144 unique subjects, including 3 active TB patients, 13 

subjects providing 2 separated samples, and 4 subjects providing 3 samples, separated by 5-7 months in testing, 
representing unique samples. 

b P value for comparison between subjects with LTBI- vs. LTBI+ group designations (Mann–Whitney U test or r x c Exact 
contingency table). 

c P value for comparison between subjects with High Risk+ group designation (including 3 patients with active TB) vs. Low 
Risk+ group designation (excluding 3 LTBI subjects with indeterminate Low risk designations). (Mann–Whitney U test or r 
x c Exact contingency table). 
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d High incidence of TB was defined as a country with ≥20 cases per 100,000 population per year. 2023 WHO Global 
tuberculosis report (http://www.who.int/tb/publications/global_report/en/). 

e Estimates for the individual cumulative risk of TB reactivation are based on “The Online TST/IGRA interpreter” prediction 
modeling that includes TST and IGRA results, risk factors for LTBI and risk factors for progression to active TB 
((http://www.tstin3d.com/en/calc.html). 49, 50  

f Adjusted estimates for the individual and cumulative risk of TB reactivation are based on “The Online TST/IGRA 
interpreter” prediction modeling that includes TST and IGRA results, risk factors for LTBI and risk factors for progression 
to active TB (http://www.tstin3d.com/en/calc.html) as previously described.49, 50 

g Study subjects included 21 patients with non-HIV immunosuppressed conditions. 
h QFT results include Interferon-gamma levels (IU/mL) of antigen tube minus nil from QuantiFERON TB Gold In-Tube™ 

and TB1 tube from QuantiFERON TB Gold Plus.™. 
 

http://www.tstin3d.com/en/calc.html
http://www.tstin3d.com/en/calc.html
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Table 6.2 Median values of absolute and normalized cytokine levels between LTBI negative and LTBI positive 
patients.  

Target Condition LTBI– Median 
(pg/mL) 

LTBI+ Median 
(pg/mL) p-value Significancea 

CCL2 TB1 7024.0 8386.6 0.14 ns 
CCL3 TB1 933.6 1133.6 0.6 ns 
CCL4 TB1 2975.0 4294.6 0.36 ns 
CCL8 TB1 91.4 341.0 6.10E-06 **** 
IFN-γ TB1 37.6 55.8 0.62 ns 
IL-10 TB1 769.6 84.6 0.0016 ** 
IL-15 TB1 103.6 26.6 0.064 ns 
IL-17 TB1 0.0 0.0 0.64 ns 
IL-1β TB1 702.8 703.2 0.79 ns 
IL-2 TB1 33.9 96.0 0.00059 *** 
IL-6 TB1 1469.0 1729.1 0.25 ns 
IP-10 TB1 217.5 917.6 9.70E-13 **** 

TNF-α TB1 136.0 124.8 0.68 ns 
CCL2 NIL 4730.2 3287.5 0.33 ns 
CCL3 NIL 1111.2 1357.0 0.45 ns 
CCL4 NIL 3421.1 3302.3 0.54 ns 
CCL8 NIL 61.2 9.5 0.16 ns 
IFN-γ NIL 26.3 10.8 0.9 ns 
IL-10 NIL 715.8 125.6 0.003 ** 
IL-15 NIL 90.8 33.8 0.065 ns 
IL-17 NIL 0.0 0.0 0.37 ns 
IL-1β NIL 446.7 252.4 0.038 * 
IL-2 NIL 29.8 19.7 0.096 ns 
IL-6 NIL 1886.0 2027.7 0.35 ns 
IP-10 NIL 151.0 174.8 0.41 ns 

TNF-α NIL 134.2 82.8 0.099 ns 
CCL2 MIT 10584.4 9352.0 0.29 ns 
CCL3 MIT 9038.4 10037.2 0.97 ns 
CCL4 MIT 57831.1 43868.5 0.063 ns 
CCL8 MIT 700.5 594.2 0.7 ns 
IFN-γ MIT 403.0 742.0 0.06 ns 
IL-10 MIT 5029.5 3168.3 0.023 * 
IL-15 MIT 150.7 35.6 0.021 * 
IL-17 MIT 18.1 0.0 0.37 ns 
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IL-1β MIT 3516.0 4194.8 0.75 ns 
IL-2 MIT 498.8 524.6 0.44 ns 
IL-6 MIT 17640.9 16603.8 0.96 ns 
IP-10 MIT 1504.6 1476.7 0.88 ns 

TNF-α MIT 472.4 514.4 0.83 ns 
CCL2 TB1_NIL 2869.5 4167.5 0.047 * 
CCL3 TB1_NIL 23.1 -217.6 0.18 ns 
CCL4 TB1_NIL 0.0 201.0 0.0098 ** 
CCL8 TB1_NIL 20.9 253.6 1.10E-06 **** 
IFN-γ TB1_NIL 4.4 5.0 0.64 ns 
IL-10 TB1_NIL 0.0 0.0 0.81 ns 
IL-15 TB1_NIL 0.0 0.0 0.43 ns 
IL-17 TB1_NIL 0.0 0.0 0.23 ns 
IL-1β TB1_NIL 4.6 169.7 0.028 * 
IL-2 TB1_NIL 0.5 54.1 5.70E-07 **** 
IL-6 TB1_NIL -55.7 -74.5 0.8 ns 
IP-10 TB1_NIL 9.0 603.8 4.70E-13 **** 

TNF-α TB1_NIL 0.0 0.0 0.28 ns 
CCL2 TB1_MIT -1725.6 1867.6 0.022 * 
CCL3 TB1_MIT -7775.5 -6327.9 0.45 ns 
CCL4 TB1_MIT -58179.0 -36266.0 0.0071 ** 
CCL8 TB1_MIT -462.4 -196.4 0.03 * 
IFN-γ TB1_MIT -272.3 -557.6 0.071 ns 
IL-10 TB1_MIT -2511.1 -2033.3 0.072 ns 
IL-15 TB1_MIT -34.6 -7.6 0.15 ns 
IL-17 TB1_MIT 0.0 0.0 0.14 ns 
IL-1β TB1_MIT -2656.4 -3795.6 0.91 ns 
IL-2 TB1_MIT -390.6 -243.5 0.47 ns 
IL-6 TB1_MIT -15099.4 -12629.1 0.4 ns 
IP-10 TB1_MIT -976.1 -338.4 9.00E-05 **** 

TNF-α TB1_MIT -268.7 -277.4 0.95 ns 
CCL2 MIT_NIL 3655.8 2910.1 0.24 ns 
CCL3 MIT_NIL 7807.7 6209.2 0.38 ns 
CCL4 MIT_NIL 57095.7 38987.0 0.026 * 
CCL8 MIT_NIL 586.6 530.9 0.85 ns 
IFN-γ MIT_NIL 331.5 413.1 0.071 ns 
IL-10 MIT_NIL 2650.6 2072.2 0.09 ns 
IL-15 MIT_NIL 34.0 0.0 0.057 ns 
IL-17 MIT_NIL 0.0 0.0 0.46 ns 
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IL-1β MIT_NIL 2741.9 3453.8 0.53 ns 
IL-2 MIT_NIL 378.6 354.0 0.33 ns 
IL-6 MIT_NIL 14196.5 11895.0 0.54 ns 
IP-10 MIT_NIL 1053.9 1158.6 0.82 ns 

TNF-α MIT_NIL 256.3 310.0 0.47 ns 
aWilcox-Mann-Whitney tests were completed to test significant differences between clinical population 
distributions. * p≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 
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Table 6.3 Median values of absolute and normalized cytokine levels between low-risk and high-risk designated 
patients within the LTBI+ patient population.  

Target Condition 
Low-risk 
median 
(pg/mL) 

High-risk 
median 
(pg/mL) 

p-value Significancea 

CCL2 TB1 7276.10 8313.55 0.42 ns 
CCL3 TB1 1107.28 1090.06 0.81 ns 
CCL4 TB1 3999.68 4730.60 0.5 ns 
CCL8 TB1 151.72 409.66 0.016 * 
IFN-γ TB1 60.29 49.18 0.49 ns 
IL-10 TB1 0.00 289.40 0.00094 *** 
IL-15 TB1 19.77 80.82 0.11 ns 
IL-17 TB1 0.00 0.00 0.49 ns 
IL-1β TB1 366.90 747.32 0.12 ns 
IL-2 TB1 33.63 131.78 0.0022 ** 
IL-6 TB1 1367.45 1951.91 0.21 ns 
IP-10 TB1 658.80 1003.72 0.054 ns 

TNF-α TB1 25.01 173.31 0.0094 ** 
CCL2 NIL 2636.56 3887.26 0.26 ns 
CCL3 NIL 1512.09 1173.34 0.74 ns 
CCL4 NIL 2672.44 3533.23 0.45 ns 
CCL8 NIL 0.00 36.73 0.036 * 
IFN-g NIL 26.32 5.18 0.11 ns 
IL-10 NIL 0.00 210.23 0.00013 *** 
IL-15 NIL 20.45 50.77 0.13 ns 
IL-17 NIL 0.00 0.00 0.85 ns 
IL-1β NIL 104.47 331.01 0.045 * 
IL-2 NIL 11.90 26.20 0.076 ns 
IL-6 NIL 1182.50 2413.54 0.084 ns 
IP-10 NIL 174.83 189.41 0.54 ns 

TNF-α NIL 36.94 99.76 0.03 * 
CCL2 MIT 7988.93 9768.88 0.69 ns 
CCL3 MIT 13112.16 8325.17 0.066 ns 
CCL4 MIT 46578.76 43588.25 0.88 ns 
CCL8 MIT 535.46 863.81 0.97 ns 
IFN-γ MIT 648.63 698.92 0.64 ns 
IL-10 MIT 1189.63 5712.88 0.00063 *** 
IL-15 MIT 37.27 48.09 0.27 ns 
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IL-17 MIT 0.00 8.74 0.24 ns 
IL-1β MIT 2455.86 4361.65 0.25 ns 
IL-2 MIT 238.33 598.45 0.02 * 
IL-6 MIT 15372.02 16649.60 0.95 ns 
IP-10 MIT 1066.00 1560.32 0.37 ns 

TNF-α MIT 417.80 659.54 0.21 ns 
CCL2 TB1_NIL 4750.0 3478.4 0.86 ns 
CCL3 TB1_NIL -290.3 -77.9 0.42 ns 
CCL4 TB1_NIL 360.3 0.0 0.94 ns 
CCL8 TB1_NIL 111.2 339.5 0.14 ns 
IFN-γ TB1_NIL 8.6 2.8 0.83 ns 
IL-10 TB1_NIL 0.0 -5.2 0.39 ns 
IL-15 TB1_NIL 0.0 0.0 0.75 ns 
IL-17 TB1_NIL 0.0 0.0 0.6 ns 
IL-1β TB1_NIL 161.1 73.7 0.65 ns 
IL-2 TB1_NIL 29.3 62.1 0.019 * 
IL-6 TB1_NIL 5.8 -104.9 0.68 ns 
IP-10 TB1_NIL 503.4 603.8 0.18 ns 

TNF-α TB1_NIL 0.0 20.7 0.47 ns 
CCL2 TB1_MIT 1594.7 2026.7 0.48 ns 
CCL3 TB1_MIT -8811.1 -5893.6 0.07 ns 
CCL4 TB1_MIT -35933.7 -36428.4 0.81 ns 
CCL8 TB1_MIT -371.6 -209.8 0.51 ns 
IFN-γ TB1_MIT -304.2 -605.6 0.083 ns 
IL-10 TB1_MIT -843.1 -3157.7 0.0037 ** 
IL-15 TB1_MIT -3.7 -10.6 0.16 ns 
IL-17 TB1_MIT 0.0 0.0 0.3 ns 
IL-1β TB1_MIT -1621.5 -3839.7 0.15 ns 
IL-2 TB1_MIT -94.9 -267.8 0.097 ns 
IL-6 TB1_MIT -12629.1 -12054.7 0.55 ns 
IP-10 TB1_MIT -407.7 -441.3 0.76 ns 

TNF-α TB1_MIT -154.2 -324.6 0.19 ns 
CCL2 MIT_NIL 2051.6 3073.4 0.67 ns 
CCL3 MIT_NIL 8942.1 5826.4 0.13 ns 
CCL4 MIT_NIL 40636.9 37150.2 0.83 ns 
CCL8 MIT_NIL 530.9 572.5 0.95 ns 
IFN-γ MIT_NIL 300.1 459.1 0.11 ns 
IL-10 MIT_NIL 925.2 3805.1 0.0025 ** 
IL-15 MIT_NIL 0.0 0.0 0.31 ns 
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IL-17 MIT_NIL 0.0 0.0 0.3 ns 
IL-1β MIT_NIL 2418.9 3659.7 0.33 ns 
IL-2 MIT_NIL 166.4 532.3 0.007 ** 
IL-6 MIT_NIL 10889.2 12285.3 0.6 ns 
IP-10 MIT_NIL 846.8 1129.1 0.69 ns 

TNF-α MIT_NIL 192.9 458.4 0.15 ns 
aPatients without either high or low risk designations were excluded from analysis. Wilcox-Mann-Whitney tests 
were completed to test significant differences between clinical population distributions. * p≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001, **** p ≤ 0.0001 
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Chapter 7 Analytical Considerations for Future Development of Longitudinal, Multi-

Biomarker Assays: Dilution Effects, Combination Assays, and Stability Studies 

7.1 Author Contributions and Acknowledgements 

This chapter contains unpublished work. The content of this chapter was conceived and 

written, all analysis was completed, and all figures were designed by the thesis author, Krista 

Meserve. Data used in figures 7.9 and 7.10 was collected by Bailey Lab member Manik Reddy 

and data used in figure 7.11 was collected by Bailey Lab member Hanyu Zheng.  

This chapter contains a grouping of projects I initiated in various assay development and 

validation spaces. These projects provided me the opportunity to train and mentor three graduate 

rotation students who later joined the Bailey Lab. Thank you to Manik Reddy for his initial work 

in assay designs for shifting the IL-8 calibration and Hanyu Zheng for his work on developing 

the SA-bead-based assay. I’d like to thank Anusha Vajrala for her ongoing work in the stability 

study and calibration variation that has continued beyond what I present in this chapter. Thank 

you to Ryan Bailey for his project guidance and to Hanyu and Hayley Herderschee for their time 

and efforts in editing this chapter. 

7.2 Introduction 

Bioanalytical assays are critical techniques to quantitatively measure metabolites in 

biologically relevant matrices, such as blood, plasma, or serum.1 Bioanalytical methods are 

developed for many purposes ranging from drug and biomarker discovery, pharmacokinetic 

studies, and clinical research to forensic science and sports drug testing. In drug discovery and 
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pharmaceutical research, the analyte of interest is commonly a small molecule, and the standard 

detection method is mass spectrometry. High-performance liquid chromatography coupled with 

tandem mass spectrometry and triple quadrupole mass spectrometry using selected reaction 

monitoring are regarded as the best for quantitation of the biomolecules.1 When the analyte of 

interest is a macromolecule, a ligand binding assay (LBA), such as an enzyme-linked 

immunosorbent assay (ELISA), is the leading detection method for quantitation of the specific 

target.2 

7.2.1 ELISA methods 

ELISA methods are widely used in biochemical, pharmaceutical, and clinical laboratories 

to detect proteins, antibodies (Abs), or other ligands. The assays involve an antigen or antigen 

recognition element bound to a solid surface, such as a microwell plate, that encounters a series 

of blockers, detection reagents, and buffer washes and ends with an enzymatic reaction to 

produce a signal proportional to the analyte concentration.3 The ELISA version selected is 

dependent on the detection goal. Direct ELISAs coat the plate with a sample containing the 

antigen of interest and detect using an enzyme-conjugated primary detection Ab and substrate.4 

Direct ELISAs are faster than other ELISAs, but have low sensitivity, non-specific binding, and 

are prone to false positives. Indirect ELISAs also coat the plate with a sample containing the 

antigen of interest followed by a detection Ab but employ a secondary enzyme-conjugated Ab 

that recognizes the detection Ab and turns over the substrate.5 Indirect ELISAs increase the 

sensitivity but are still prone to low specificity due to other proteins in the sample binding to the 

plate surface and cross-reactivity between the secondary detection Abs. These methods can also 

be used for Ab detection. In this case, antigen standards are adhered to the plate, followed by a 
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blood sample containing an Ab of interest. An enzyme-conjugated secondary detection Ab is 

employed to detect the presence and concentration of bound Ab.  

Competitive ELISAs use a biotin (Bt) tagged antigen structurally similar to the antigen of 

interest to compete with the principal antigen in the sample for binding sites on the plate-bound 

Abs.5 Signal generation takes advantage of the Bt tag and an enzyme-linked streptavidin (SA) 

substrate. The signal is inversely proportional to the sample analyte concentration, with a high 

signal indicating no competition occurred and only the Bt-antigen mimic is present. Low signal 

indicates that the principal antigen in the sample outcompeted the Bt-antigen mimic for binding 

sites. This method can be flipped for Ab analysis, with antigen coating the surface and a Bt-Ab 

present to compete with the Ab of interest.3 This assay style can measure an extensive range of 

small antigens and has low variability, however, it still suffers from low specificity and has high 

limits of detection.  

The final widely used version, and that which is relevant to the data collected in this 

chapter, is the sandwich ELISA. Sandwich ELISAs coat the plates with an antigen-specific Ab 

and the sample containing the antigen of interest is added, followed by the antigen-specific 

detection Ab, a secondary enzyme-conjugated Ab, and substrate. Although this method increases 

the number of steps and time (18 hours just in incubation time)6 and requires a matched pair of 

two antigen-specific Abs, the sandwich ELISA has the highest sensitivity and accuracy among 

versions, reduces background signal, drastically improves the specificity, and does not require a 

‘clean’ antigen containing sample.5 These improvements are extremely important in qualifying 

and validating assays for patient diagnostics, drug discovery, and other applications. An inherent 

drawback of ELISAs is the single-plex nature of the assay. Each well can be optimized to detect 

just one target, so if multiple analytes need to be detected, sample volume needs to be increased 
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because more wells will need to be filled. Additionally, calibrations for each target assessed and 

quality controls must be conducted on each plate to get the most accurate results. The need for 

on-plate standard calibrations reduces the number of targets that can be analyzed on one plate.  

Optimization can occur at any step in the assay to improve the detection of analytes of 

interest. Altering the concentration or identity of the target-specific Abs, enzyme-conjugated 

recognition element, and substrate can all change the assay outcomes. Rigorous assay 

optimization and validation are critical before assays are used for drug efficacy or 

commercialized for home use. The development of new biosensors commonly takes advantage 

of the sensing principles of ELISAs, specifically sandwich ELISAs, and aims to increase the 

speed and throughput of the assay. 

7.2.2 Assay validation parameters for assay implementation 

For use in the pharmaceutical industry, small molecule assays must meet specific 

validation parameter requirements related to selectivity, specificity, stability, calibration, limit of 

quantification, reproducibility, and robustness.1 Biomarker assays should aim to address these 

same parameters during development. However, the Food and Drug Administration (FDA) 

recognizes that other considerations may need to be addressed and some may not apply.7 Much 

of the work presented in this chapter aims to connect these requirements to the multiplexed 

sandwich-style protein biomarker assays we conduct on our microring resonator sensor platform 

and begins to establish internal guidelines for assay qualification. The requirements and 

optimization parameters discussed in this chapter include calibrations, dilutions, robustness, and 

long-term assay assessment. 
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7.2.2.1 Calibration  

Calibrating or standardizing an assay allows for users to correlate the assay signal to the 

relevant concentration of analyte in an unknown sample. Calibrations must be completed for 

each analyte of interest and each new method used. According to the US FDA guidelines for 

bioanalytical method validation, the calibration curve should consist of a blank sample and six to 

eight non-zero samples that cover the expected range of detection, be continuous, be 

reproducible, and be completed in the same biological matrix as the intended samples. For LBAs 

specifically, the curve should include anchor points outside of the quantifiable range to help with 

the fitting of the curve.7 

The accepted fits for concentration-response relationships of LBAs are most often four- 

or five-parameter logistic fits. LBAs depend on protein-protein (antigen-Ab) interaction 

equilibriums, which result in non-linear responses, necessitating the logistic fits.8 The standard 

curve for an LBA is typically plotted on a semi-log scale to transform the curve into an ‘S-

shaped’ profile. It is deemed inappropriate to apply a linear fit to a sigmoidal curve or to force 

the inherent non-linear relationship into a linear one using a log-log transformation.8,9 Additional 

good practices7,8,10 vary by regulatory body but include even spacing of calibration points along a 

logarithmic scale, identification of a maximum ratio of upper to lower limit of quantitation to 

ensure robustness, and a minimum of two replicates averaged for a final calibration curve.  

A four-parametric logistic fit curve is utilized in the work presented in this thesis; 

therefore, the anatomy of this curve is relevant. The y-axis is the net shift calculated as the 

difference in the relative shift from immediately before the signal amplification step in our assay 

to the end of the final buffer rinse. The x-axis is the standard concentration of analyte, plotted on 

a log scale. The eight-point calibration curve includes a matrix blank and seven additional points 
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ranging from the concentration previously determined to elicit the maximum signal down to 

below the limit of quantitation.  

The S-shaped curve consists of four main regions: the upper and lower asymptotes, the 

midpoint, and the dynamic range. The upper horizontal asymptote is the saturating region, 

referring to all the capture Ab receptors being partnered to the antigen. Concentrations in this 

range will not illicit a higher signal proportional to higher concentration. Net shifts of unknown 

samples that fall in this non-sensitive region should not be used quantitatively. Including 

calibration standards or analyzing samples with the analyte well above the saturating point can 

lead to the prozone, or hook, effect.11 The prozone effect is when an overabundance of antigen 

present in solution leads to oversaturation of the capture Abs or protein aggregation. Steric 

effects can lead to fewer strongly bound antigen-Ab pairs, and the subsequent buffer rinses 

remove the protein analytes that are not strongly bound, resulting in a final signal lower than 

expected. Including these high concentration points in a calibration curve results in the saturating 

region plateau having more of a ‘hooked’ profile than a flat asymptotic profile. In samples, the 

reduced signal could lead to lower analyte quantitation and result in a false negative outcome. 

False negative outcomes occurred in many rapid Ab tests of patients infected with syphilis and 

led to increased awareness of testing undiluted sera in this patient population.12,13 The hook 

effect is mitigated by introducing the analyte and recognition Ab in subsequent steps instead of 

simultaneously and by analyzing samples at multiple dilutions. 

The baseline signal is the lower horizontal asymptote in the ‘S-shaped’ LBA calibration 

curve. This region denotes the signal expected from the assay method when no analyte, or 

analyte at concentrations below the detection limit, is present. The baseline signal will not be 

zero for most assays, as background noise is present from the other reagent steps in the assay. 
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Concentrations that fall within this non-sensitive range should not be calculated and should be 

denoted as being below the limit of detection. Most work, including ours, will artificially convert 

this data point to zero even though the analyte may just be undetectable by the chosen method. 

The midpoint of the calibration curve, also known as the inflection point or center point, is the 

point at which the curve transitions from concave up to concave down and is the area of greatest 

change, so the highest sensitivity. Assays should aim to have the unknown target fall as close to 

the midpoint of the calibration curve as possible for the most sensitive results. Finally, the 

dynamic range is the region surrounding the midpoint, above the limit of detection and below the 

saturating region. When not plotted on a log scale, this region may appear linear and is the region 

for which the assay is optimized for. The ideal sample would always fall within the dynamic 

range of the assay. As advancements in bioanalytical technologies have continued to improve the 

limits of detection, more analytes high in concentration will produce signals in saturating 

regions, leading to a greater need to dilute high-concentration analytes. 

7.2.2.2 Dilutions 

Dilution of a sample in a running buffer compatible with the analyte and sample matrix, 

such as phosphate-buffered saline (PBS), is common. There are many reasons for using diluted 

samples, such as optimizing the expected concentration range to fall within the calibration’s 

dynamic range, minimizing clogging or other assay impairment in 100% matrix, lowering 

required sample volume, or identifying if the prozone effect is present.8 For LBAs, the FDA 

guidelines for bioanalytical method validation recommend completing quality controls and 

calibrations for each dilution used and demonstrating that the prozone effect is not present.7  

Diluting samples is particularly relevant to multiplexed assays, or assays in which 

multiple analytes are detected in one sample. As mentioned above, ELISAs can only detect one 
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target per well, and each target is commonly analyzed at multiple dilutions in duplicate or 

triplicate. In multiplexed assays, the concentrations at which analytes are present can span over 

ten orders of magnitude, necessitating either lengthy optimization of tuning the calibration 

ranges or multiple dilutions that aim to place all analytes into the dynamic range of their 

respective calibrations.14,15 

A drawback of dilution is the non-linearity of analyte concentrations in complex 

matrices.15,16 The non-linear phenomenon can occur in protein biomarkers when samples are 

diluted into complex matrices and the resulting concentration is not proportional to signal output, 

with higher dilutions tending to have greater non-linear trends.17,18 There are multiple methods to 

test for non-linearity and ways to account for this phenomenon.19 Dilution linearity testing can be 

completed by spiking a high concentration of analyte into the matrix and diluting it into the 

working range to create dose-response curves to determine percent recovery and accuracy of the 

diluted measurement.20,21 Alternatively, results can be reported as relative intensity or signal, 

rather than concentration to mitigate the effects of dilutions on the absolute value of calculated 

analyte concentration.16 Dilution is an effective way to adjust analyte concentration within the 

dynamic range, especially in multiplexed assays, but monitoring the effects of dilution across 

targets and patients is important for ensuring robust measurements and results. 

7.2.2.3 Target robustness 

The robustness, or ruggedness, of an assay is a measure of the ability of the method to 

remain unaffected by minor variations in the operating procedure or parameters.20 Parameters 

can include timing, temperature, reagent lots, or operating personnel or labs. Testing the 

robustness of an assay is a long-term assessment and is not characterized by one lone test. 

Changing each parameter one at a time (prospectively or retrospectively) and evaluating the 
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assay outcome can give a sense of the robustness of the assay. In pharmaceutical assay 

development, intentional changes are made, such as adding three minutes to each assay step until 

the outcome is affected.22 The ranges of acceptable times or other tested parameters are then 

included in the assay report as a measure of assay robustness. Small changes in assay procedures 

should not significantly change the outcome of a robust assay, and continually monitoring an 

assay’s robustness over time is extremely important for any bioanalytical assay application.23 

7.2.2.4 Reproducibility and variability 

Reproducibility and variability are central parts of analytical chemistry, and an assay 

cannot be robust if it is not reproducible with low variability. Accuracy and precision testing is 

the umbrella component of these metrics in the US FDA guidelines for bioanalytical method 

validation and the idea of reproducibility and variability is additionally housed within all other 

validation components. Each validation component (calibration curves, quality controls, 

selectivity, accuracy, etc.) listed in the FDA guidelines has acceptance criteria that quantify 

accepted metrics based on reproducibility or variability in the test results. One example is in the 

calibration curve criteria.7 For LBAs, non-zero calibration standards should be within 20% of the 

theoretical concentration but up to 25% closer to the saturating or baseline regions. These are the 

same acceptance levels as the accuracy and precision tests that must include at least six 

independent runs of five analyte concentrations spanning the calibration range, with three 

replicates each. For LBAs, intra-batch (within run) variability is generally lower than inter-batch 

(between run) variability.24 In summary, bioanalytical assays must demonstrate high robustness 

and reproducibility with low variability through numerous points of analysis, such as calibration 

curves, parameter alteration, longitudinal testing, and accuracy measurements. 

7.2.3 Connections to this chapter 
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This chapter discusses four topics spanning the various assay validation measures 

discussed above. The results and discussion section opens with an analysis of inter- and intra-

batch variation in the multiplexed calibrations for our latent tuberculosis infection (LTBI) assay 

panel and a comparison of the two biologic matrices of sample analysis (10% and 50% plasma). 

The intra-batch variability is lower than the inter-batch variability and inter-batch variability is 

heavily target dependent. Some targets, such as CCL3 and IL-6, are identified as having the 

lowest variability in calibration parameters (midpoint value, saturating and baseline signals) and 

could be used as benchmark targets for qualifying new chip batches. On the other hand, targets 

such as IL-1β and IFN-γ have demonstrated high variability between chip batch calibrations and 

should not be used to qualify chip batches. There is greater variation in the 50% plasma matrix, 

but over half of the targets exhibit very low variation between the matrix calibrations. The 

second results and discussion section regards the sample dilution. In the LTBI project, each 

sample is analyzed at two dilutions, and the absolute dilution is selected using proximity to the 

midpoint of the calibration curve. Analysis of the selected dilution revealed that all stimulation 

conditions and targets use the 2× and 10× dilutions, but the 2× dilution is slightly favored and 

would be the chosen dilution to analyze if the clinical sample volume is low. The third section 

focuses on a long-term, intra-batch stability study of the sensor chips that, to date, provides 

information on the three-month stability of the antibodies on the sensor chip. The net shifts are 

more consistent within a time point than within a chip deck, but the variation between chip decks 

and time does not show trends of stability loss. Finally, we explore a new assay method that 

would optimize the calibration curve of a specific target to quantify analytes at higher 

concentrations. Ultimately, no assay was identified for use, but important optimization data was 

gained. 
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This chapter aims to aggregate various observations and analyses that set the foundation 

for more formal multiplexed assay validation measurements and documentation. The results 

might not be pertinent to a larger audience but will serve as legacy documentation for future 

Bailey Lab members working on the longitudinal LTBI project and on other clinical biomarker-

based projects. The ability to replicate the inter-batch calibration curves was hindered by the low 

number of sensor chip batches acquired from Genalyte, Inc. during my Ph.D., but the data and 

trends can serve as a starting point for more formal studies to determine acceptance ranges of our 

specific assay targets. The IL-8 assay optimization project can also be used to train new graduate 

student rotators in the relevant techniques and principles needed to grasp long-term clinical 

projects.  

7.3 Methods 

7.3.1 Microring resonator technology 

All data in this chapter was collected using silicon photonic microring resonator 

instrumentation. This whispering-gallery-mode technology tracks binding events through the 

refractive index (RI) changes within the evanescent field emanating from each microring 

waveguide.25–29 Briefly, light traveling down an on-chip linear waveguide couples into and 

resonates within the circular waveguide at a wavelength specific to the effective RI within the 

sensing region, according to the following equation:  

𝜆 = 	
2𝜋𝑟
𝑚 𝑛!"" 

where lambda (λ) is the wavelength, m is an integer, r is the radius of the circular waveguide, and 

𝑛!"" is the effective RI of the optical mode. Capture probes covalently attached to the microring 

resonator attract specific target molecules to the sensor surface, altering the sensing region’s RI. 
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The altered RI gives rise to a change in the resonant wavelength and results in a measurable shift 

in non-transmitted wavelength. Resonance shift is tracked throughout an entire binding 

experiment and, using calibration curves, can be converted to concentration of an unknown 

target in solution.  

The sensing chips were fabricated by Genaltye, Inc.30 and contained 128 individual 

microring sensors, spatially arrayed in sixteen clusters of four across two distinct microfluidic 

channels. The chips also contain unexposed, cladding-covered rings that serve as thermal 

controls. This technology allows for thermally controlled measurements of up to 16 different 

targets, each with four technical replicates, in two samples simultaneously. 

The instruments were from Genalyte, Inc. Data from this chapter was collected using two 

different instrument versions. Data related to samples and calibrations (dilution analysis, 

calibration comparisons, and stability studies) were collected on the Matchbox instrument, as 

previously described in Chapter 2.31 The IL-8 alternate assay experiments, and any other 

optimization work, were completed on the M1 instrument, as previously described in the 

literature.32 Both instruments process samples using the same sensor chip design and automate 

fluidic handling at 30 μL/min across both microfluidic channels. The main difference between 

the Matchbox and M1 instruments is the sensor chip holder mechanism. In the Matchbox, plastic 

injection-molded cartridges from Genalyte, Inc. house the chips in a plug-and-play fashion and 

are discarded after use. This instrument setup is generally used for plasma- and serum-containing 

experiments, and the disposable cartridge eliminates potential carryover from prior samples and 

reduces clogging. In the M1, the chips are layered with a gasket and cartridge top, then manually 

screwed down to secure the set-up. The M1 chip holder is reused from experiment to experiment 
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and is, therefore, mainly for optimization and testing assays with running buffer as the 

experimental matrix. 

7.3.2 Sensor chip spotting and preparation 

For the IL-8 assay development projects, the preparation of the sensor chips was 

completed by hand and a detailed protocol is described in Chapter 2. Briefly, sensor chips were 

silanized with (3-aminopropyl)triethoxysilane (APTES), followed by introduction of a homo-

bifunctional linker, bis(sulfosuccinimidyl)suberate (BS3), and functionalized with the capture Ab 

of interest. The BS3 covalently links the amine group on the silane to the amine group on the 

capture Ab. Various capture reagents were spatially arrayed across both microfluidic channels, 

with two to three ring groups, or eight to twelve rings, covered per target using the hand spotting 

method. The capture agents were incubated on-chip for one hour, followed by a one-hour 

incubation with a BSA-containing blocking buffer to blanket any unreacted BS3 and prevent a 

reaction between target proteins and surface-linked BS3. Finally, the spotted chips were dried 

with nitrogen and coated with dry coat, a sugar-based solution to protect the Abs until use. For 

the data collected in the other sections of this chapter, a 14-plex array (IL-1β, IL-2, IL-6, IL-8, 

IL-10, IL-15, IL-17, CCL2, CCL3, CCL4, CCL8, IP-10, TNF-α, IFN-γ) was functionalized using 

microspotting techniques by Genalyte, Inc. Each antibody capture covered one ring cluster of 

four rings per channel. The functionalization reagents and steps are identical to the hand-spotting 

method. 

7.3.3 Microring resonator immunoassay, calibrations, and sample analysis 

The assays completed for data discussed in relation to dilution factors, calibration 

comparisons, and many of the IL-8 alternate assay sections were standard immunoassays 
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discussed in the previous chapters. In brief, the running buffer (1X-PBS with 5% BSA) was 

flowed across the chip to equilibrate the surface for five minutes. The data collection began with 

running buffer flowing consistently for five minutes to collect the baseline signal. This was 

followed by diluted sample or standard solution (various concentrations, 10 mins), a buffer rinse 

(2 mins), biotinylated tracer antibody (Bt-Ab) mixture for all targets in the sample (various 

concentrations, 10 mins), a buffer rinse (2 mins), streptavidin horse-radish peroxidase (SA-HRP, 

4 μg/mL, 10 min), a buffer rinse (2 mins), 4-chloro-1-napthol (4CN, stock concentration, 8 

mins), and a final buffer rinse (3 mins), for a total assay time of 52 minutes using the M1 

instrument. The same assay completed on the Matchbox instrument reduces reagent steps from 

10 to 7 minutes, resulting in a 40-minute assay. The protein of interest and Bt-Ab form the 

sandwich complex that is tagged with the SA-HRP recognition reagent through strong Bt-SA 

interactions. The 4CN initiates a catalytic precipitation with the localized HRP and forms an 

insoluble byproduct within the evanescent field, amplifying the resonant wavelength and 

resulting in lower detection limits and broader sensing regions.  

Calibrations were conducted for each set of sensor chips acquired from Genalyte, Inc. 

Sensor chip batches varied in volume from 200 to 450 chips. Two calibrations for each sample 

matrix (50% plasma and 10% plasma) were conducted immediately upon receipt of a chip batch. 

Samples were then analyzed with that chip batch. After ~150-200 chips or two months, 

whichever came first, another set of calibrations was completed. This continued until all chips in 

the chip batch were used. Conducting calibrations over the course of running samples, rather 

than all at the beginning or end, accounts for any variation over time in the sensor chips. At least 

three calibrations were completed for smaller chip batches (n=200-300 chips) for each matrix. 
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For larger chip batches (n=300-450), at least four calibrations were completed over the time of 

running samples.  

Calibration curves consisted of eight data points ranging from a concentration that 

achieves a saturating signal to a matrix blank, with six five-fold dilutions in between, as 

described in Chapter 2. All targets in a multiplexed panel were calibrated simultaneously, with 

all relevant targets as a standard mixture in the matrix of interest (50% plasma or 10% plasma) 

and all relevant Bt-Abs as a tracer mixture in buffer. Each of the eight standards was analyzed 

using the same assay method described above. Resulting net shifts from each standard were fit to 

a four parametric logistic function: 

𝑦 =
𝐴% −	𝐴)
1 +	( 𝑥𝑥*

)+
+	𝐴) 

where y is the net shift (Δpm) of the sample with concentration x (pg/mL), A1 is the minimum 

net shift (Δpm), A2 is the maximum net shift (Δpm), xo is the center value (pg/mL), and p is the 

power parameter affecting the slope around the inflection point, using R programming.31,32 The 

fit parameters (A1, A2, xo, and p) were exported as CSV files and plotted, as seen in the figures of 

this chapter. Once multiple calibrations had been completed within a chip batch, the net shifts for 

each standard concentration were averaged and used to construct a final calibration curve that 

was subsequently used to quantify the targets analyzed with that chip batch. New calibrations 

were constructed for each new sensor chip batch in both matrices (50% and 10% plasma) and 

used only for samples analyzed with that chip batch.  

Samples were analyzed at two dilutions, 2× and 10×. Prior to analysis, plasma samples 

were thawed at 4°C and centrifuged in a benchtop centrifuge for 3-5 seconds to pellet any solid 

particles that could clog the system. The supernatant was diluted two-fold and ten-fold into the 
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running buffer at a total volume of 330 μL. The sample was analyzed using the same assay 

method described above, with a cocktail mixture of all Bt-Abs in the panel.  

7.3.4 Immunoassay data work-up 

The data from each assay was analyzed by in-house codes using R programming. The 

detailed data analysis steps are described in Chapter 2 and the work-up relevant to the data in this 

chapter is further described in the opening of the “Results and Discussion” section. Each 

microring sensor outputs the relative shift at specific times in a CSV file. The code aggregated 

all the raw data, labeled the rings with the respective capture antibody name, subtracted thermal 

controls, and averaged the net shifts across the technical replicates. Various data plots, including 

a trace of the relative shift for each ring throughout the full assay and a bar graph of the final net 

shift for each ring, were output for quality control and analysis.  

Once all samples had been analyzed for a given chip batch, an in-house R programming 

code was used to convert from net shifts to target concentrations. All data from analyzed samples 

was aggregated and the net shifts were converted to concentrations using each target’s respective 

calibration curve fit. At this point, each analyzed target in every sample had two associated 

concentrations: one from the two-fold dilution and one from the ten-fold dilution. The code 

compared the resulting concentrations from each dilution and selected the one that resulted in a 

concentration closer to the midpoint, or xo value, of the dilution’s calibration curve. If both 

dilutions resulted in a concentration of zero, the 10× dilution was selected as a placeholder. If 

both dilutions resulted in a concentration above the upper limit of the calibration, that data point 

was removed. The selected concentrations were multiplied by the respective dilution factor and 

used for further analysis.  

7.3.5 Calibration comparisons analysis 
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Calibration curves across multiple chip batches were plotted as overlays using an in-

house R programming code. The calibrations explored in this chapter came from the four 

different multiplexed sensor chip batches spotted by Genalyte, Inc. obtained during my time in 

the Bailey Lab. The first was received in June 2021 and primarily used to finish analyzing the 

neonate samples (Chapter 4). Approximately sixty sensor chips were allocated to analyze the 

first ten LTBI subjects (Chapter 5 and Chapter 6), which is equivalent to forty samples. All 

samples were analyzed in a week; therefore, only two LTBI calibrations per matrix were deemed 

necessary for this chip batch. The second set of sensor chips was received in February 2022, with 

approximately 200 chips fully allocated for the LTBI project. Three calibrations per matrix were 

constructed: two in the middle of February upon receipt of chips and one at the end of March 

when samples were almost fully analyzed. The third set of sensor chips was received at the end 

of June 2022, with approximately 200 chips fully allocated for the LTBI project. Three 

calibrations per matrix were constructed, two in July and one at the end of August. Finally, the 

fourth set of sensor chips was received at the end of November 2023, with approximately 450 

chips fully allocated for the LTBI project. One calibration has been constructed, with more to 

come in the early months of 2024. The calibrations were conducted on the Matchbox instrument. 

7.3.6 Intra-batch, long-term assay stability study 

The long-term assay stability study data was collected using the November 2023 sensor 

chip batch. Upon receipt of the sensor chip batch, there were four storage boxes, or decks, with 

~113-115 chips each. Quality control precision experiments that included a full amplification 

assay with a set group of biomarkers that spatially span across the flow channel were completed. 

These markers include IL-2, IL-6, IL-8, IL-15, CCL4, and IFN-γ. The targets IL-6, IL-15, CCL4, 

and IFN-γ were selected as they span from one end of the chip to the other, allowing us to see if 
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there is variation specific to the time BS3 was left on-chip before Ab functionalization. IL-2 and 

IL-8 were added because of the capture Ab volume-related issues discussed in this chapter. The 

Mouse (Ms) IgG negative control spotted rings on either end of the chip were also assessed for 

variation. To complete these quality control experiments, the protein standards at 10 ng/mL were 

analyzed using the standard immunoassay method.  

For the stability study, the same experiment to test this group of six targets was 

completed every month in a sample matrix of 1X PBS-BSA buffer. The first time point was upon 

receipt of the chip batch in early December. Two chips from each deck, eight chips in total, were 

tested. The remaining time points tested one chip from each deck and occurred every month for 

the first three months. It is planned to continue with a time point each month until at least six 

months since receipt and potentially out to one year. 

7.3.7 Dilution selection data analysis 

Data from the LTBI project was used to explore if any conditions or targets favored the 

2× or 10× dilutions. No clinical data or concentration of cytokines were assessed, as the interest 

was related to stimulation, target, and dilution selected. Any net shifts that resulted in a zero 

concentration (n=459 out of 4,852 concentrations) were removed from the data set, as the code 

uses the 10× dilution as the placeholder for targets resulting in a zero concentration. Keeping the 

data present would artificially increase the number of targets perceived to select the 10× 

dilution. The data points removed included: 2 from CCL2, 3 from CCL3, 8 from CCL4, 72 from 

CCL8, 70 from IFN-γ, 7 from IL-15, 230 from IL-17, 8 from IL-1β, 11 from IL-2, 3 from IL-6, 

32 from IP-10, and 26 from TNF-α. Looking at the removed data from the stimulation condition 

perspective, 51 data points were removed from MIT conditions, 160 from NIL, 119 from TB1, 

and 142 from TB2. Alluvial diagrams were chosen for visualization due to their ability to show 
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two data splits from a central node (selected dilution). The diagrams were made by inputting the 

CSV file into the RawGraphs 2.0 web interface, assigning nodes, and setting design 

preferences.33  

7.3.8 Various IL-8 assay designs 

Various assay methods were employed to shift the IL-8 assay to the right, allowing for 

more samples to have an IL-8 concentration within the linear dynamic range of the curve. Unless 

otherwise stated, the Bt-Ab tracers used in the following assays were anti-IL-8 antibodies. All 

experiments were conducted on the M1 instrument with hand-spotted chips. IL-8 standards at 

relevant concentrations were made using 100 μg/mL stock IL-8 protein diluted into 1X PBS-

0.5% BSA buffer (PBS-BSA). 

7.3.8.1 Non- Biotinylated tracer Ab  

In this assay design, the steps were identical to the standard microring immunoassay 

method, as described in the “Microring resonator immunoassay, calibrations, and sample 

analysis” section above, and included sample introduction, followed by the Bt-Ab, SA-HRP, and 

4CN. However, instead of the Bt-Ab tracer being deployed at a running concentration of 2 

μg/mL, a mixture of Bt-Ab and non-biotinylated tracer antibody (non-Bt-Ab) was deployed at 

various concentrations and ratios in standard PBS-BSA buffer. The non-Bt-Ab was functionally 

identical to the Bt-Ab, meaning they bound to the same spot on the IL-8 protein but did not 

contain the biotin tag.  

7.3.8.2 Capture Ab dilution 

In this assay design, the steps were identical to the standard microring immunoassay 

method, as described in the “Microring resonator immunoassay, calibrations, and sample 
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analysis” section above, and included sample introduction, followed by the Bt-Ab, SA-HRP, and 

4CN. The alteration in this assay design is not in the assay itself but in the spotted capture Abs. 

The capture is spotted at 0.25 mg/mL (stock = 0.5 mg/mL) with 10% glycerol in 1X PBS for 

standard sensor chip spotting. In this assay design, concentrations of spotted IL-8 capture Ab 

included 0.45 mg/mL, 0.25 mg/mL, 25 μg/mL, 20 μg/mL, 10 μg/mL, 2.5 μg/mL, and 0.25 

μg/mL, with 10% glycerol in 1X PBS. In addition, mixtures of IL-8 capture Ab and mouse 

control IgG Ab were tested for spotted IL-8 capture Ab at 0.25 mg/mL, 25 μg /mL, 20 μg/mL, 10 

μg/mL, 2.5 μg/mL, and 0.25 μg/mL with IgG Ab held constant at 0.25 mg/mL and 10% glycerol 

in 1X PBS. The chip functionalization protocol described in the “Sensor chip spotting and 

preparation” section above was followed for all capture dilutions.  

7.3.8.3 Streptavidin bead-based assay  

Additional preparation for this assay design included constructing SA-bead calibrations 

and washing the streptavidin (SA) coated 100 nm magnetic beads. The calibration was 

constructed using four two-fold dilutions, ranging from 250 μg/mL to 31.25 μg/mL. The beads 

(stock concentration = 1 mg/mL) were diluted in PBS with 0.05% tween-20 (PBST) to a total 

volume of 10 μL. The absorbance of the standards was measured at 286 nm with a nanodrop 

blanked with PBST.  

The washing procedure was adapted from Luchanksy, M.S. et al.34 First, 37.5 μL of 1 

mg/mL SA-beads were diluted to 150 μg /mL in an Eppendorf tube using PBS-T and centrifuged 

at 10,000 rcf for four minutes. Using a magnet, the bead pellet was held at the bottom of the tube 

while the supernatant was removed, leaving approximately 30-40 μL of bead solution. The beads 

were resuspended in 250 μL of PBST, pipetted up and down approximately 50 times, and 

subsequently centrifuged at 10,000 rcf for four minutes. This washing procedure was repeated 
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for a total of four exchanges. After the final supernatant removal, the beads were resuspended in 

250 μL of PBST, and the absorbance was measured at 286 nm using the nanodrop; a final 

concentration was obtained using the constructed calibration, and the beads were diluted to the 

running concentration of 50 μg /mL. For this assay design, the standard assay method was 

altered. The sample introduction was followed by biotinylated tracer Ab (2 μg /mL, 10 mins) and 

SA-beads (50 μg /mL, 10 mins), with a final 10-minute buffer rinse.  

7.3.8.4 HRP-linked tracer Ab 

Additional preparation for this assay design included conjugating horse radish peroxidase 

(HRP) to the unmodified IL-8 tracer Ab. An HRP conjugation kit was purchased from Abcam, 

and the protocol was followed.35 All steps took place under a fume hood. First, the HRP and 

modifier reagent from the kit were thawed from the -20°C freezer and 8 μL of modifier reagent 

was added directly to 80 μL of unmodified IL-8 Ab and inverted to mix. The entire mixture was 

added to the lyophilized HRP vial and mixed by pipetting. The resulting reddish solution was 

transferred to a black Eppendorf tube to protect from it light and left to react at room temperature 

for three hours. Finally, the quencher was thawed and 8 μL was added to the black Eppendorf to 

stop the reaction. The resulting solution was used in subsequent assays, as directed by the 

manufacturer. For this assay design, the standard assay method was altered. The sample 

introduction was followed by the HRP-tracer Ab (2 μg /mL, 10 mins) and 4CN (stock, 8 mins).  

7.4 Results and Discussion 

This chapter aims to aggregate various observations and analyses stemming from the 

LTBI project data collection and from projects initiated for our graduate student rotators to 

complete. While the results may not be pertinent to a larger audience, this will be useful 

documentation for future Bailey Lab members working with the microring resonator platforms, 
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specifically those working on the longitudinal LTBI project. This chapter includes four different 

topics: (1) variations in calibrations for each target across sensor chip batches and plasma 

matrices, (2) trends in dilution selection for LTBI samples, (3) stability of sensor chip decks over 

time, and (4) development of an alternate assay for a specific target, IL-8. A general background 

of data collection workflow is needed to understand these topics.  

The current data collection workflow from microring resonator assay to data processing 

for clinical samples is depicted in Figure 7.1 and has been developed and employed for many 

years in the Bailey Lab. The workflow starts with a multiplexed immunoassay that includes up to 

fifteen target-specific capture Abs and mouse IgG negative controls (Figure 7.1A). The standard 

assay steps include analyte introduction, sandwich complex formation with a biotinylated tracer 

antibody (Bt-Ab) specific to each target, enzymatic labeling of each sandwich with streptavidin 

horse radish peroxidase (SA-HRP), and signal amplification with 4CN. The 4CN amplification 

reagent reacts with the localized HRP to form a precipitate in the sensing region, drastically 

altering the RI within the evanescent field, shifting the resonant wavelength, and resulting in 

lower limits of detection and broader sensing regions, in comparison to using the shifts from the 

intermediate assay steps for quantitation. All fluid is handled with automated microfluidics and 

1X-PBS-BSA buffer rinses occur between each step.  

Each sample for clinical projects is analyzed at two dilutions, 2× and 10×, aiming to 

achieve a concentration for each target within the dynamic range of the calibration curve (Figure 

7.1B). For samples high in concentration, the 2× dilution may result in a net shift in the 

saturating range (upper horizontal asymptote) of the assay, but the 10× dilution would result in a 

net shift closer to the inflection point of the calibration curve, where it is most sensitive. 

Conversely, for samples low in concentration, the 10× dilution would be too dilute and reside 



 305 

below the limit of detection; however, the 2× dilution would result in a net shift closer to the 

curve’s inflection point.  

Once the samples are analyzed on the multiplexed assay at two dilutions, the constructed 

calibration curves convert the net shifts for each target to its associated concentration at both the 

2× and 10× dilutions (Figure 7.1C). However, one dilution must be selected as the overall value 

used in bioinformatics analysis. The standard method we employed to keep selection uniform 

across samples and projects is to select the dilution that resulted in a concentration closest to the 

midpoint, xo, of the respective calibration curve. The selected dilution is then multiplied by the 

dilution factor of the selected dilution: two for the 2× dilution and ten for the 10× dilution. In 

the example depicted in Figure 7.1C, the ‘grey’ target was higher in concentration 

comparatively to the ‘blue’ target. The ‘grey’ target’s 2× dilution fell within the saturating range 

of the 50% plasma calibration curve, but the 10× dilution fell within the dynamic range of the 

10% plasma calibration curve. Therefore, the 10× dilution was selected. Conversely, the ‘blue’ 

target’s 2×	and 10× dilution fell within the dynamic range of the respective calibration curves, 

but the 2× dilution resulted in a net shift closer to the inflection point of the 50% calibration 

curve. Therefore, the 2× dilution was selected for the ‘blue’ target. This selection process is done 

for each target in each sample. For the LTBI project, approximately 360 samples were analyzed 

with a 14-plex assay at two dilutions, resulting in 10,080 individual concentrations, which were 

reduced to 5,040 lines of data after dilution selection.  

In this chapter, I discuss four different topics that tangentially relate to analytical 

considerations for longitudinal projects and assay design. The first project direction assesses 

variations in calibrations for each target across sensor chip batches and seeks to qualitatively and 

quantitatively identify which targets are most robust, leading to trends in expected variation for 
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future sensor chip batches. The second project direction identified trends in which dilution (2× 

or 10×) was selected as the final concentration for LTBI samples, leading to relevant 

information regarding sample process reduction for future LTBI project study plans. The third 

project generates data to quantitatively assess the stability of antibody spotted multiplexed sensor 

chip decks over time, data we currently do not have and can be used to determine optimal 

timeframes for using the Genalyte, Inc. spotted sensor chips. The final project direction, inspired 

by the results from the second project, was pursued by graduate student rotators under my 

supervision and direction. This project aimed to alter the IL-8 assay in a way that would shift the 

calibration curve to the right, an attempt to reduce the number of assays that resulted in 

saturating responses, with implications in future assay design projects. 

7.4.1 Analyzing calibrations across multiple chip batches to identify expected variation 

7.4.1.1 Logistical changes in chip batch spotting runs can result in shifted calibration 

curves that are still usable. 

There is a level of expected variation between assays analyzed by different chip batches. 

Variability can result from reagents (spotting or assay reagents) aging over time, changes in 

reagent lots or manufacturers, or inherent variation in the spotting procedure. The nine 

calibrations I have completed for all fourteen measured targets (IL-1β, IL-2, IL-6, IL-8, IL-10, 

IL-15, IL-17, CCL2, CCL3, CCL4, CCL8, IP-10, TNF-α, and IFN-γ) in 10% and 50% plasma 

matrices are presented in Figure 7.2 and Figure 7.3, respectively. The calibrations are grouped 

by variation in the midpoint (xo value), with the four least variable in Figure 7.2A and Figure 

7.3A, the four most variable in Figure 7.2C and Figure 7.3C, and the remaining grouped in 

Figure 7.2B and Figure 7.3B.  
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Nine calibrations are plotted in each graph across four sensor chip batches. The June 

2021 chip batch stands apart from the other three in many targets at both dilutions. For example, 

the green lines in Figure 7.2 for IL-6, IL-10, CCL2, TNF-α, IL-1β, and CCL4 and in Figure 7.3 

for IL-6, IL-2, IL-10, CCL4, TNF-α, IL-1β, IL-17, CCL2, and IFN-γ are significantly shifted 

right or truncated in dynamic range. The calibrations were still usable for that chip batch, but 

with subsequent chip batches, the calibrations were noticeably of better quality. The difference 

between the June 2021 chip batch and the others could be due to updated spotting procedures or 

the age of the capture antibodies. However, all reagents were tested for quality before sending to 

Genalyte, Inc. for sensor chip spotting.  

Additionally, the IL-2 calibrations in blue lines in Figure 7.2 were heavily shifted right. 

These calibrations were completed with a new lot of IL-2 protein standard that degraded rapidly 

after thawing. This led to further investigation with nanodrop and gel electrophoresis 

experiments to compare the new protein lot with an older one. Ultimately, a new company was 

identified to provide us with the IL-2 protein standard. These two noted blue calibrations were 

not used for quantifying the IL-2 in patient samples; instead, new calibrations were constructed 

with the viable protein standard. These lines were kept in this figure to highlight how 

understanding what calibrations have looked like in past chip batches can help to identify 

irregularities in reagent behavior.  

The most recent chip batch, November 2023, only has one calibration to date (grey line) 

and is the largest chip batch we have ordered. The more chips spotted in a sensor chip spotting 

run, the longer the BS3 linker sits on-chip before Ab introduction, which could result in more 

degradation and less efficiency in linking Abs to the silanized surface. On average, each target 

probe takes about 7 minutes to spot 484 chips and 5.5 minutes to spot 242 chips, as four minutes 
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are required to switch out probes and wash the nozzle, which does not change based on chip 

number. Across sixteen capture agents being spotted (the fourteen targets and two clusters of 

mouse IgG controls on either end of the flow channel), it would take roughly 112 minutes to spot 

484 chips and 88 minutes for 242 chips. All previous batches had around 200 chips spotted at a 

time; however, the November 2023 batch was doubled, allowing us to establish the effect of an 

extra 30 minutes of spotting time. Another complication for this chip batch was loss of antibody 

stock solution after shipping that will be mitigated with parafilmed vials in the future. The CCL2 

and IL-17 antibodies were slightly lower in volume but close to what is needed for spotting at 

0.25 mg/mL. However, IL-2 and IL-8 had very little volume, about one-third to one-half of what 

was needed. It is unclear if the liquid in these samples evaporated, leaving a more concentrated 

solution, or if volume leaked out of the closed Eppendorf in transit.  

 For most targets, there is little difference in the November 2023 batch compared to 

previous chip batches. However, the grey line in Figure 7.2 for IP-10, IL-2, IL-8, IL-15, IL-1β 

and CCL4 and in Figure 7.3 for IL-8, IL-2, IP-10, and CCL2 are shifted right, more so like the 

June 2021 calibrations. The shifts to the right may be an artifact of lower coupling efficiency, as 

fewer antibodies successfully spotted would result in lower net shifts. The lower-than-expected 

antibody volume for chip spotting can explain the IL-2, IL-8, and CCL2 variation. The IL-1β and 

CCL4 targets are the most variable across calibrations (discussed more below). The most 

concerning target here is the truncation and shift of IP-10, especially considering the influence of 

the IP-10 target for the LTBI diagnostic assays (Chapter 5 and Chapter 6). Further testing of IP-

10 will include buying fresh reagents and recalibrating. While there are noted differences in 

comparison to the February 2022 and June 2022 chip batches, the November 2023 chip batch is 
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still usable for all targets. At least two to three additional calibrations will be completed and 

averaged before converting the net shifts of samples analyzed to analyte concentrations.  

7.4.1.2 There is more variability in the 50% plasma matrix and specific targets can be 

identified as low or high calibration variability, regardless of the sensor chip batch. 

Comparing calibrations from multiple chip batches can provide insight into which targets 

are most robust because most chip batches are analyzed with different lots of assay reagents 

(capture Abs, protein standards, tracer Abs). The comparison can also determine which targets 

have an expected variation in inter- and intra-chip batch calibrations and how the matrix affects 

each target’s calibration. The variation between the calibrations was measured by calculating the 

average and standard deviation of the midpoint, xo value, of the calibration curve. The June 2021 

chip batch was excluded from these calculations due to the inherent differences in some of the 

targets that we believe to be due to spotting procedure changes and reagent differences, as well 

as the two July 2022 calibrations for IL-2 in the 10% plasma. The calibration parameters of 

interest are the xo value in pg/mL (Table 7.1) and the maximum and minimum shift in 

picometers (Table 7.2).  

The calibrations completed in the 50% plasma matrix have greater variation in the 

midpoint value than in the 10% plasma matrix. This could be due to over blocking of the chip 

surface from exogenous proteins in the matrix, preventing binding of the analyte to its antibody 

and increasing the variation calibration to calibration.  

In the 10% plasma matrix, IL-6, CCL3, CCL8, and IP-10 have the lowest standard 

deviation in xo value between the February 2022, July 2022, and November 2023 chip batches 

(Table 7.1, Figure 7.2A) and IL-1β, IL-17, CCL4, and IFN-γ have the highest variation (Figure 

7.2C), with the rest of the six targets in between (Figure 7.2B). The calibration overlays show 
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that inter-chip batch calibrations are more similar than intra-chip batch calibrations, meaning the 

deviation in xo value is associated more with batch -to- batch variability than calibration-to-

calibration variability.24 Lower inter-chip batch deviation is preferred, as calibrations of a chip 

batch are used for the samples analyzed with the same chip batch. These results highlight the 

importance of calibrating for every chip batch, with multiple calibrations for each.  

In the 50% plasma matrix, IL-6, IL-8, CCL3, and CCL8 have the lowest standard 

deviation in xo value between the February 2022, July 2022, and November 2023 chip batches 

(Figure 7.3A, Table 7.1,) and IL-1β, IL-17, CCL2, and IFN-γ have the highest variation (Figure 

7.3C), with the rest of the six targets in between (Figure 7.3B). These results are extremely 

similar to the grouping in the 10% plasma calibrations. Three of the four targets identified as the 

lowest variation (IL-6, CCL3, and CCL8) and three of the four targets identified as the highest 

variation (IL-1β, IL-17, and IFN-γ) are the same across the 10% and 50% plasma calibrations. 

This overlap and consistency in low/high variation between chip batches means the variation is 

more likely due to functional variability in the antibodies or the assays themselves rather than in 

the sensor chips that have been previously demonstrated to have low batch-to-batch variation or 

in the preparation of the reagents and calibration standards. 

Targets like IL-6 and CCL3 that have both inter- and intra-chip batch calibration curves 

overlaid almost directly on top of each other can be used as quality controls, as large shifts or 

differences in profiles in these targets can be signals of faulty chip spotting, reagents, or standard 

generation. They also demonstrate the reproducibility in spotting procedures and calibration 

construction. Targets such as IL-1β and CCL4 should be less likely to qualify chip batches or 

calibration constructions as faulty, as this evidence suggests there is expected variation in these 
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specific targets. Even still, there is less variation in intra- batch calibrations, validating the need 

for calibrations of every chip batch. 

The patterns identified and quantified between the nine most recent calibrations can be 

used to notice extreme differences in chip batches. Future calibrations from the November 2023 

and subsequent sensor chip batches should be aggregated. After five different sensor chip 

batches have been fully calibrated, reference ranges for xo values, maximum shifts, and 

minimum shifts can be calculated and used for future sensor chip batch qualification. Set ranges 

will provide students working on these long-term projects with a benchmark of where the 

calibrations should fall for new sensor chip batches. Additionally, normal ranges for xo values, 

maximum shifts, and minimum shifts within one chip batch can be calculated to standardize 

expected changes within individual chip batches over time. These benchmarks can then be used 

to qualify new chip batches, helping to keep the patient data high quality through the longitudinal 

clinical projects. 

7.4.1.3 Inter-matrix comparisons show the majority of targets result in comparable 

calibrations between the 10% and 50% plasma matrices. 

The February 2022 sensor chip batch calibrations were averaged within the matrix and 

used for converting net shifts to analyte concentrations in patient samples. Additionally, the 

averaged calibrations for the 50% and 10% plasma matrices were plotted together to assess 

similarities or differences in how the targets calibrate in the different matrices (Figure 7.4). This 

subsection will separate the targets by qualitative and quantitative similarities in the profiles of 

the 10% and 50% plasma calibrations. Half of the studied targets, IL-6, IL-8, IL-10, IL-17, 

CCL3, CCL8, and IP-10, are generally very similar between the two matrix calibrations in xo 

values and in curve profiles (Figure 7.4A). Four of the fourteen studied targets, IL-2, IL-15, 
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CCL4, and TNF-α, are similar in profile but the 50% matrix has a slight right shift compared to 

the 10% matrix (Figure 7.4B). The remaining three targets, IL-1β, CCL2, and IFN-γ, have 

different profiles, or shapes of the curves, between the two matrices (Figure 7.4C).  

The targets most similar across both matrices when assessing the averaged calibrations in 

the February 2022 chip batch were IL-6, IL-8, IL-10, IL-17, CCL3, CCL8, and IP-10. In all of 

these calibrations, the range between the two horizontal asymptotes is directly overlaid onto each 

other, and the xo values differ by less than 0.62 ng/mL. This is the critical part of the calibration 

curve, as it is where the assay sensitivity is generated. The greatest variation within these targets 

is in the saturating or baseline signals. IL-6 and IL-8 differ in baseline net shifts by an average of 

210 pm and in saturating net shifts by an average of 430 pm. These are relatively low differences 

in net shifts but result in noticeable differences in profiles as compared to IL-10 and IL-17. Both 

dilutions have the same baseline shift for CCL3, but the 50% matrix results in a saturating shift 

of 517 pm greater than the 10% matrix. Similarly, but on the opposite end of the curve, IP-10 

and CCL8 matrices result in very similar saturating shifts, but the 50% matrix baseline shift is 

401 pm and 375 pm greater than the 10% matrix, respectively. However, even with these slight 

differences in one or both horizontal asymptotes of the curve, the most sensitive regions of the 

curve and the midpoint values are highly similar between matrices. These specific targets 

highlight that some sandwich assay reagents do not change with a changing sample matrix and 

there is potential for generating just one calibration curve to be used for both analyzed dilutions.  

Four targets, IL-2, IL-15, CCL4, and TNF-α, have similarities between the matrices in 

the fit profile and one or both of the horizontal asymptotes, but the 50% plasma matrix has a 

right shift in the midpoint, and therefore the central region of the curve is shifted to the right by 

an average value of 1.18 ng/mL. Three targets, IL-2, IL-15, and TNF-α, result in baseline and 
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saturating shifts with less than 118 pm and 197 pm difference between the matrices, respectively. 

CCL4 resulted in a baseline difference of just 17 pm but 647 pm between the two saturating 

regions. This difference did not drastically change the midpoint value to any greater extent than 

the other targets in this classification. The shift right in the 50% plasma calibration indicates a 

slightly less effective assay, as lower concentrations do not result in as measurable of a shift as 

the 10% calibration, likely a consequence of higher exogenous protein content in 50% plasma 

than in 10%. The protein and other waste in the plasma matrix may temporarily block the 

binding sites due to non-covalent forces or slow down the binding kinetics in the analyte 

introduction step. These targets must be further studied to entertain the ability to use one 

calibration curve for both matrices. 

The final grouping of three targets, IL-1β, CCL2, and IFN-γ, have the most differences in 

midpoint value, saturating shift values, and overall profiles, but all vary in different ways. The 

50% matrix calibration for IL-1β has a saturating shift of 920 pm higher, a baseline shift of 125 

pm higher, and a midpoint 4.9 ng/mL higher than the 10% matrix. However, the profiles of the 

two curves are generally the same. The 50% matrix calibration for CCL2 has a saturating shift of 

1136 pm higher, a baseline shift of 150 pm higher, and a midpoint 2.3 ng/mL higher than the 

10% matrix. Additionally, the profiles of the curves are different. The 10% matrix has a steeper 

middle region of the curve, resulting in a higher sensitivity and more of a signal off/on assay 

reminiscent of CCL3. The 50% matrix is less steep, but provides a greater dynamic range, 

similar to IL-10. The IFN-γ calibration curves are almost identical in midpoint value (0.02 

pg/mL difference), but the 50% plasma matrix had a higher baseline shift by 247 pm and a lower 

saturating shift by 1045 pm when compared to the 10% matrix. The profiles are slightly 

different, with the 10% matrix providing a greater detection range, but they are not as distinctly 
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different as the CCL2 curves. While these three targets demonstrated the greatest variation 

between 10% and 50% plasma matrices, they varied for different reasons. These targets would 

not be suitable for reducing the calibrations to one matrix due to the high variation in the fit 

parameters and the profiles. 

These inter-matrix groupings overlap heavily with the calibration variation across chip 

batches (Figure 7.2 and Figure 7.3) discussed in the previous subsection. The targets with the 

least variable xo values in inter- and intra-chip batch calibrations for both 50% and 10% matrices 

were IL-6, IL-8, CCL3, CCL8, and IP-10, all of which are classified as similar between the two 

matrices. Furthermore, the targets with the most variability in xo values for multi-chip batch 

calibrations were IL-1β, IL-17, CCL2, CCL4, and IFN-γ, three of which (IL-1β, CCL2, and IFN-

γ) were classified as the most different between the two matrices. These overlaps support the 

individual results of each subsection, furthering the conclusion that variation results from the 

functional variation in the antibody sandwich pairs. 

Most of the measured targets were highly similar in all parameter values and profiles or 

in some parameter values and fit profiles, indicating the excellent robustness of the assay. These 

targets could potentially rely on one matrix calibration curve for all sample dilutions. However, a 

few targets need further analysis or optimization to allow for this. Each calibration uses four 

sensor chips and four equivalents of detection reagents and each matrix in a study requires at 

least three calibrations to be completed for a full chip batch; therefore, reducing the number of 

calibration matrices required to analyze samples would be advantageous to save time, money, 

sensor chips, and reagents, if doing so would not compromise the accuracy and integrity of the 

assay. 

7.4.2 Dilution analysis identifies 2×	as the more important dilution for LTBI samples 
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Moving away from calibration curves, this section explores trends in post-sample 

processing. The human plasma samples for the LTBI project are analyzed using the standard 

multiplexed assay method and then converted to analyte concentrations based on calibration 

curves. As described in the “Dilution selection data analysis” section above, the in-house code 

uses the 50% plasma calibration to convert the net shifts in the 2× dilution to analyte 

concentration and the 10% plasma calibration to convert the net shifts in the 10× dilution to 

analyte concentration. The code calculates the distance the resulting analyte concentration is 

from the xo value of the respective curve, selects the closest dilution, and then adjusts the 

concentration for the dilution effect. One research direction initiated by this analysis process was 

to investigate what sample dilution tends to be selected and whether the sample type (QFT 

stimulation) or target tends to select a specific dilution. The implication of these results is to 

identify if one dilution should be prioritized if sample volumes provided are lower than required 

to analyze both dilutions or if just one dilution can be used to analyze all the samples in future 

LTBI projects, cutting costs and analysis time in half. 

Alluvial diagrams are typically used to show the flow of data counts between bins, or 

nodes. The diagram in Figure 7.5 centers the selected dilution between the LTBI stimulation 

sample type and the specific targets. The data used here originated from the patient samples I 

analyzed for the projects presented in Chapter 5 and Chapter 6. The 87 patient sample sets 

included four samples per patient (NIL=negative stimulation, MIT= positive stimulation, TB1 

and TB2 = TB specific peptide stimulations) and fourteen targets (IL-1β, IL2, IL6, Il8, IL10, 

IL15, IL17, CCL2, CCL3, CCL4, CCL8, IP-10, IFN-γ and TNF-α) per sample. After removing 

any failed assays, the study resulted in 4,872 individual concentrations. Any net shifts that 

resulted in a zero concentration (n=459) were removed. The 10× dilution is arbitrarily selected 
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as the dilution placeholder for target net shifts below the baseline threshold and keeping them in 

the data set would artificially increase the number of times the 10× dilution was perceived to be 

selected. 

The dilutions were selected relatively evenly (57% for 2× and 43% for 10×) with a slight 

preference towards the 2× dilution, validating that the dilutions we use for this project are 

appropriate for the targets of interest. If the split between 10× and 2× was highly different, we 

may have reconsidered the dilutions we use in sample analysis. All four stimulation conditions 

had a preference, albeit small, towards the 2× dilution, with 51.4% of MIT, 60.8% of NIL, 

54.8% of TB1, and 61.3% of TB2 stimulation-associated pieces of data selecting the 2× dilution. 

The MIT and TB1 stimulations are more evenly split between dilutions in comparison to the NIL 

and TB2 stimulations. This intuitively makes sense for the NIL stimulation, as the media blank is 

expected not to cause high responses and some targets will be at lower concentrations, resulting 

in lower dilution (2×) preference.  

The two most surprising findings are the MIT and TB2 splits. Opposite of the NIL 

condition reasoning, it was expected that the MIT, or positive stimulation control, would prefer 

the 10× dilution, as many of the targets would be higher in concentration. It may be that the 

target concentrations are high in both the 10× and 2× but are just closer to the midpoint of the 

50% calibration than the 10% calibration. The finding that the TB2 stimulation relies more on 

the 2× dilution than the TB1 stimulation is interesting, given the discussion in Chapter 5 

regarding the similarities in the TB1 and TB2 stimulation tubes. There may be target 

concentrations in the TB1 stimulation that lay close to the midpoint of one calibration, while the 

concentration in the TB2 stimulation lies close to both calibration midpoints. After account for 

dilution factors, this would lead to different dilution selections but still result in similar 
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concentrations. Overall, there is no major reliance on one dilution when looking at overall 

dilution selection or stimulation condition, but evidence suggests a slight preference towards the 

2× dilution. If volume becomes a limitation in the LTBI samples, the 2× dilution should be 

completed before the 10× dilution.  

Splitting the data between the nodes of selected dilution and target led to disparities. Over 

half of the targets (CCL3, CCL4, IL-1β, IL-2, IL-10, IL-15, IL-17, IP-10, IFN-γ, and TNF-α) 

select the 2× dilution over 50% of the time. Specifically, targets CCL4, IL-10, IL-2, and TNF-α 

rely on the 2× dilution for over 70% of samples. This highly preferential 2× selection indicates 

that these targets are generally lower in concentration than the other targets. Three of the four 

remaining targets (CCL2, CCL8, and IL-6) select the 2× dilution 40-50% of the time, which is 

still close to an even split between the dilutions. The last target, IL-8, selects the 2× dilution only 

12% of the time, a finding that led to the project discussed in section 7.4.4. The data splits at the 

target nodes suggest that since more targets preferentially select the 2× dilution, and only one 

target is highly preferential to the 10× dilution, the 2× dilution should be prioritized over the 

10× dilution if needed. Taken together, the data from all LTBI subjects plotted using an alluvial 

diagram suggests that while both dilutions are used relatively evenly, the 2× dilution is 

preferentially selected more of the time in all stimulation conditions and most targets and should 

be prioritized if sample volume does not warrant analyzing both dilutions. 

7.4.3 Intra-batch, long-term assay stability study 

A longitudinal study was planned and started with a goal to acquire data pertaining to 

stability of the sensor chips spotted with capture antibodies. The study was started using the 

November 2023 sensor chip batch and, to date, four time points have been completed: one upon 

sensor batch receipt, and three spanning almost three months post receipt. The same cocktail of 
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standard proteins was run in both channels on each chip and the average net shift across both 

channels was taken as the net shift of the target for each deck. The average net shifts of the six 

targets and Ms IgG controls were plotted for each of the four chip decks within this sensor chip 

batch over four time points (Figure 7.6).  

There is some variation across the time points, but there is no definitive fall-off over the 

first three months in any target or chip deck. The net shifts are most similar within time points 

than within decks. However, within the decks the time point one net shift and time point four net 

shifts are highly similar with overlapping standard deviations across almost all targets. The least 

variable targets showing the most consistent shift across decks, within decks, and across time are 

IL-2, IL-6, and IL-8. IL-15 has little intra-deck variation in decks one and two, but more 

variation in decks three and four. The deck dependency could be related to the time the chips are 

waiting for spotting, as the chips within a deck are spotted closer together than those in other 

decks. CCL4 has slight variability between time points, with time point four having a slightly 

higher average across all decks. A time point dependent difference across all decks, but only for 

one target, is likely due to reagent preparation. If all targets demonstrated a related difference, it 

may be more apt that it’s related to deck or stability. However, time point four is only different in 

this way for CCL4 and, in addition, the net shift is still within standard deviations of various 

other time points. The next tested time point will reflect if the time four data is sustained.  

IFN-γ is the most interesting, in that there is a consistent decrease in shift across all decks 

starting at time point three, and not rebounding or further decreasing at time point four but 

staying consistent. However, IFN-γ net shift is very consistent between deck within each time 

point. Finally, the control rings show the greatest variability. It is known that IFN-γ protein 

exhibits non-specific binding when analyzed in buffer, rather than serum or plasma. Decks three 
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and four are very consistent in control ring response. However, decks one and two are variable, 

with high up ticks being sustained in deck one. One reason for highest variability in deck one is 

that the deck one chip has been the first to be analyzed immediately after reagent preparation for 

all time points. The reagents for all four chips are made simultaneously and the mixture may be 

more homogenous after sitting. Future changes to test this and potentially mitigate the high 

variation in deck one is to let the protein standard sit for an hour before analysis. A second 

reason for this high variability is that the spotting of chip deck one is different than chip deck 

four, such as it may be the first or last to be spotted. It is clear in the target-specific spotted rings 

that there is little effect across decks, within time points. To note, chips from deck one and deck 

two were the chips used to analyze some latent tuberculosis project samples in early 2024 and 

controls were not consistently decreased to the levels seen in this study. This could point to the 

high net shifts being due to the absence of biologic matrix, as in plasma samples they are more 

stable. 

The data from the first four data points in this sensor chip batch stability study show the 

antibodies spotted on these sensors are generally stable for at least three months from receipt. 

Traditionally, we have aimed to use spotted chips within six months of receipt but have no data 

from these antibodies to support this timeline. Testing the same assay for the next six to nine 

months in one-month intervals will provide data supporting the anecdotal timeframe and possibly 

data supporting lengthening or shortening the usable range. The compiled data will be analyzed 

for variation within and across chip decks and time points. Along with chip use timelines, the 

data will allow us to better understand when in the lifetime of chip batches calibrations should be 

ran to account for slight signal drop-off, how antibody stability is similar or different target-to-

target, and the ideal number of chips we should be ordering in chip batches moving forward. 
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7.4.4 Alternate assays for IL-8 can shift the curve, but at the cost of the detection range 

Analysis of dilution selection in section 7.4.2 revealed that target IL-8 selects the 10× 

dilution in 88% of the samples. Furthermore, 56% of the pieces of data noted as being above the 

upper bound of the calibration curve are from IL-8 alone. This means that the concentration of 

IL-8 in the samples we are analyzing is very high. Ideally, the concentration needs to be adjusted 

to be closer to the midpoint of the calibration curve rather than in the saturating region. To meet 

this goal, either the sample needs to be further diluted or the assay needs to be adjusted to 

capture a higher analyte concentration. The former solution is not amenable to the current 

workflow, as a third dilution would need to be analyzed, increasing cost, time, and required 

volume from each patient sample. Therefore, we set out to optimize the IL-8 assay to capture a 

higher concentration. 

Detecting a higher concentration of analyte is the opposite of what most assay 

optimization aims to do. The ideal assay in this scenario would shift the IL-8 calibration to the 

right, as visualized in Figure 7.7. The midpoint xo value would shift to a higher analyte 

concentration while keeping the same saturating and baseline shift values. This would allow the 

assay to measure higher concentrations more accurately without compromising its dynamic 

range. 

This section covers four different assay methods that aimed to shift the IL-8 calibration 

curve while maintaining the dynamic range. The current biocatalytic precipitation-based assay 

method using 4CN sequentially flows analyte, Bt-Ab, SA-HRP, and 4CN across capture 

antibodies specific to the analyte of interest, as depicted in Figure 7.8A. Two assay methods 

modified the IL-8 specific reagents in the current assay design, making them easy to integrate in 

a multiplexed panel. The first used a non-biotinylated tracer Ab (non-Bt-Ab) to block some of 
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the binding sites of the Bt-Ab (Figure 7.8B). The second diluted the concentration of IL-8 

capture antibodies on the chip, keeping the assay steps the same as the current method (Figure 

7.8C). The other two assay methods modified the assay steps, with one replacing SA-HRP and 

4CN with SA-coated magnetic beads (Figure 7.8D) and one replacing the Bt-Ab and SA-HRP 

with HRP directly conjugated to IL-8 tracer Ab (Figure 7.8E). In this section, the results and 

challenges of each method are discussed. 

7.4.4.1 Mixing in non-Bt-Ab with Bt-Ab shifted the midpoint of the curve but truncated 

the dynamic region. 

One modified assay method tested was using a non-Bt-Ab for IL-8 (Figure 7.8B). The 

hypothesis was that the non-Bt-Ab would occupy the binding site on the IL-8 protein and prevent 

the Bt-Ab from binding, effectively reducing the signal at the same analyte concentration. The 

fewer biotinylated sandwich assays localized to the surface would decrease the precipitation of 

4CN, reducing the amount of precipitate covering other sandwich motifs, allowing more 

biocatalytic turnover, and facilitating higher concentrations being detected. A similar method for 

adjusting the calibration curve of a proximity-based ligation assay called this type of scheme 

‘epitope depletion’ and was used in conjunction with a second tuning method, ‘probe loading’, to 

quantitate target proteins at physiologic concentrations spanning multiple orders of magnitude.15 

First, to ensure the non-Bt-Ab was working as expected, an assay with the current 

saturating protein concentration for IL-8 of 50 ng/mL was completed with the standard method 

of 2 μg/mL Bt-Ab (Figure 7.9A) and with the same concentration of non-Bt-Ab (Figure 7.9B). 

The binding traces in the figures show that both tracers bind the protein (~17 minutes into the 

assay) but the subsequent SA-HRP reagent only binds the Bt-Ab (~30 minutes into the assay). 

The assay with Bt-Ab continued to a saturating net shift (8400 ± 200 pm) for the IL-8 spotted 
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rings, and the assay with non-Bt-Ab continued to produce a response negligible from the Ms IgG 

control spotted rings (60 ± 10 pm), as displayed in the first two bars of Figure 7.9C. These 

results validated that the non-Bt-Ab was still binding the IL-8 protein but did not result in a 

significant net shift after the completion of all assay steps.  

Varying combinations of Bt-Ab and non-Bt-Ab were tested in the full assay format to 

detect 50 ng/mL of IL-8 protein (Figure 7.9C). The net shift did not substantially decrease (7500 

± 300 pm) compared to the standard assay when both Abs were mixed at 1 μg/mL, likely due to 

the overcompensation in typical Bt-Ab concentration. A 4-fold decrease to 250 ng/mL Bt-Ab did 

not substantially decrease the net shift (6880 ± 80 pm). A 40-fold decrease of Bt-Ab to 25 ng/mL 

with 2 μg/mL of non-Bt-Ab led to a drop off in the signal (3000 ± 300 pm) produced by the 50 

ng/mL of IL-8 standard. However, when the non-Bt-Ab was removed, the shift produced by the 

assay with 25 ng/mL Bt-Ab alone increased back to 6800 ± 200 pm, highlighting both that the 

high running concentrations we typically use could be decreased if needed and that the non-bt-

Ab needs to be present for the signal to decrease. Together, these preliminary experiments to 

detect 50 ng/mL IL-8 protein narrowed down the range of Bt-Ab concentrations that should be 

tested at higher IL-8 standard concentrations to between 25 and 250 ng/mL. Furthermore, the net 

shifts at 25 ng/mL Bt-Ab with and without the non-Bt-Ab present indicate that the two 

antibodies compete for protein binding sites, and the non-Bt-Ab prevents the Bt-Ab from binding 

to the target analyte. This illustrates the importance of including the non-Bt-Ab at a higher 

concentration than the Bt-Ab to successfully decrease the resulting net shift instead of simply 

diluting out the Bt-Ab alone. 

The assay with varying concentrations of Bt-Ab and non-Bt-Ab at 2 μg/mL was 

completed at an increased concentration of IL-8 protein standard, 300 ng/mL (Figure 7.9D). As 
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expected, decreasing the Bt-Ab content decreased the resulting net shift. The 25 ng/mL Bt-Ab 

condition reached a net shift of approximately 3600 ± 200 pm, just 600 pm higher than the shift 

resulting from 50 ng/mL of IL-8 standard protein. This difference in shift is lower than desired 

for a six-fold change in protein standard concentration. Therefore, concentrations of Bt-Ab above 

25 ng/mL but below 250 ng/mL were analyzed in a full calibration curve to understand directly if 

the curve could be shifted to the right. 

Three concentrations of Bt-Ab mixed with 2 μg/mL of non-Bt-Ab were used as the tracer 

step in an eight-point calibration curve that ranged from 19 pg/mL to 300 ng/mL of IL-8 protein 

(Figure 7.9E). The decrease of Bt-Ab content with non-Bt-Ab present successfully shifted the 

midpoint, xo, value to higher concentrations. However, the dynamic range and assay sensitivity 

suffer just as systematically. As higher concentrations of Bt-Ab were tested, the curve 

transitioned back to the original 2 μg/mL Bt-Ab curve. To note, the 200 ng/mL and 100 ng/mL 

Bt-Ab calibration curves are flipped in expected order for midpoint value and profile, and the 

100 ng/mL calibration resulted in a higher baseline shift than the other conditions. Additional 

replications would need to be completed to understand if this was due to user variation or if there 

is an underlying cause for this switch at these concentrations.  

The non-Bt-Ab method was validated using the assay trace profiles and the importance of 

adding the non-Bt-Ab counterpart to a diluted concentration of Bt-Ab was highlighted in net shift 

results. The modified assay successfully shifted the xo value of the calibration curve to the right. 

However, due to the truncation in dynamic range and sensitivity, this assay method was deemed 

unusable for further optimization and use with patient samples. We next moved to the other IL-8 

specific component in the standard assay design: the capture antibody. 
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7.4.4.2 Diluting the capture antibody did not change the net shift for higher 

concentrations of IL-8 protein. 

The capture antibodies on the surface of the sensor chip are one of the two target-specific 

components of the assays; therefore, modifying their concentration would not affect other targets 

in a multiplexed assay (Figure 7.8C). The standard spotting concentration of each capture 

antibody is 0.25 mg/mL, or 250 μg/mL, with 10% glycerol in 1X PBS. Similar to the non-Bt-Ab 

method hypothesis, we hypothesized that lower concentrations of IL-8 capture Ab would result 

in less biocatalytic precipitation for a given standard concentration, reducing precipitate coverage 

of the remaining sandwich motifs, allowing for detection of higher concentrations. Intuitively, 

we hypothesized that as capture Ab concentration decreased, the signal would follow. Figure 

7.10A shows that the lower spotting concentrations of 10 and 2.5 μg/mL result in a significant 

drop off in signal. 

A complication when diluting the capture Ab was decreased steric hindrance, a similar 

issue encountered with the dilution of Bt-Ab. In the tracer experiments, this was countered with 

non-Bt-Ab to increase hindrance and prevent the Bt-Ab from binding to the protein. In the 

capture dilution experiments, lower steric hindrance increases the possibility for the capture 

antibody to simultaneously bind to the multiple BS3 linker motifs. Tethering the Ab in multiple 

sites increases the chances of obscuring the pertinent binding sites on the Ab. To increase the 

steric hindrance, mouse IgG Ab were mixed with diluted IL-8 capture Ab at a constant 

concentration of 250 μg/mL. At the normal Ab spotting concentration (250 μg/mL), the addition 

of IgG did not result in a different shift; however, at diluted IL-8 capture Ab concentrations, the 

mixtures containing IgG increased the net shift in comparison to no IgG (Figure 7.10A) when 

detecting 50 ng/mL of IL-8 standard protein. The data here indicate that including an exogenous 
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control capture Ab in the spotting solution increases the number of IL-8 capture antibodies 

tethered to the microring surface in the correct orientation to detect the IL-8 standard.  

The optimal concentration of capture Ab that reduced the signal at 50 ng/mL IL-8 protein 

was determined by spotting multiple dilutions of capture Ab mixed with 250 μg/mL IgG Ab on a 

chip and running a standard assay over the captures. In Figure 7.10B, the resulting signal for 50 

ng/mL protein standard decreased, as expected, with decreased capture Ab. However, the results 

in Figure 7.10C reveal that the net shifts do not significantly fluctuate with increasing 

concentrations of IL-8 protein across any capture condition. Similar to the non-Bt-Ab method, 

the assay still saturates around 50 ng/mL protein and would not be a viable method for shifting 

the IL-8 calibration curve while retaining the dynamic region. 

These two assay methods made changes centered on the idea that the 4CN precipitation 

coats the sandwich motifs before all HRP molecules can be converted. By reducing the total 

number of analytes binding (capture dilution) or the number of sandwich motifs made (non-Bt-

Ab), the 4CN precipitation would not reach saturation until higher analyte concentrations. 

Eliciting these theories did not solve the challenges in the way we intended, which would have 

allowed us to integrate these changes into the existing multiplexed assay easily. To continue the 

work towards shifting the IL-8 calibration curve, we shifted focus to implementing assays with 

similar steps but different reagents. This could present complications when trying to integrate 

into the current multiplexed assay, but there were avenues for each explored method to work for 

IL-8 without compromising the other targets. 
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7.4.4.3 Implementing a bead-based assay to detect IL-8 standard did not increase the 

detection range and introduced additional steps to the current workflow. 

Streptavidin-coated beads (SA-beads) were previously used as the amplification reagent 

in early versions of immunoassays using the microring resonators.34 Using the previously applied 

procedure as a starting point, we employed the SA-bead assay to detect IL-8 (Figure 7.8D). The 

steps to form the sandwich motif were identical to the standard assay. However, instead of SA-

HRP and 4CN reagents deployed to tag the sandwich motif and amplify the signal, SA-beads 

served both functions. There reagents have size differences: streptavidin is ~60 kDa and HRP is 

~44 kDa, with diameters in a low nanometer scale. The beads themselves were 100 nm and 

coated with ~60 kDa streptavidin. We hypothesized that the size of the bead would act as the 

lone amplification reagent, eliminating the coverage of sandwich motifs by 4CN precipitation 

and allowing for higher analyte concentrations to be detected.  

The bead-based assay required preparation of the beads before running the assay, which 

increased the preparation time at the start of each experiment. The beads needed to be washed to 

remove unbound SA, and the final concentration was determined using absorbance at 286 nm 

and a fresh calibration curve (Figure 7.11A). The washing procedure included three buffer 

exchanges and centrifugation steps in the recommended buffer of 1X PBS with 0.05% Tween-20 

(PBST). The washing step resulted in different bead loss each time, ranging from 0% to 30% loss 

in expected concentration. The variation in the washing method, the requirement to wash the 

beads each day, and the reconstruction of the calibration curve for each wash would not be ideal 

for implementing this method into the existing clinical sample workflow, but the detection of IL-

8 using this method was still tested. 
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The trace of the assay blank and the assay to detect 50 ng/mL IL-8 protein are presented 

in Figure 7.11B and C, respectively. The decrease in resonant wavelength at the 30-minute mark 

corresponds to the introduction of the bead solution. The beads were diluted half-fold from their 

post-wash concentration into the running buffer of PBS-BSA, meaning that half of the buffer 

introduced at the 30-minute mark contained tween-20. The method was reattempted after 

substituting all the running buffer steps with PBST, but the removal of BSA led to a steady 

decrease in the baseline signal throughout the assay, as BSA was not present to continue 

blocking the microring surface. The method was also attempted in a complex matrix of 10% 

serum acting as the blocking agent. The negative control rings improved, but the IL-8 capture 

spotted rings significantly increased to a net shift of 500 ± 100 pm in the blank (no protein 

standard) experiment. The assay successfully detects 50 ng/mL of IL-8 protein with a net shift of 

970 ± 90 pm; however, similar to previous methods, introducing higher IL-8 protein 

concentrations did not increase the final net shift (Figure 7.11D).  

The preparation required for the beads, the negative shift in the negative control rings, no 

increase in net shift with increasing IL-8 standard concentrations, and signal increase in a 10% 

serum blank experiment together did not make this a viable method to shift the curve or to 

integrate into the existing workflow. Moving forward, a final method change was attempted that 

would more readily integrate into the existing workflow. 

7.4.4.4 HRP-conjugated IL-8 Abs combines two assay steps into one and shifts the 

curve, but still truncates the dynamic range. 

Exploring alternate assay methods led to the discovery of sandwich assay method that 

directly conjugates the HRP enzyme to the detection antibody, eliminating the biotin-streptavidin 

interaction step.36 Translating the assay method to our existing setup would be simple, as the IL-
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8 HRP conjugated tracer Ab (HRP-Ab) could be mixed with the other target’s Bt-Ab. The SA-

HRP step would occur for the other targets but would not affect the IL-8 target sandwich. The 

4CN would then turn over the HRP on all targets and the amplification would occur as usual 

(Figure 7.8E). The hypothesis was that fewer HRP molecules (44 kDa) than biotin molecules 

(0.2 kDa) on each tracer Ab would lead to fewer HRP enzymes localized to the surface, again 

decreasing the amount of coverage by 4CN precipitation product, allowing for higher 

concentrations to be analyzed. 

The preparation for the HRP-Ab assay only required HRP conjugation to the tracer Ab 

using a commercialized kit and protocol, similar to biotin conjugation. The assay using 2 μg/mL 

HRP-Ab was conducted at various concentrations of IL-8 protein standard, just as had been done 

with the previous assays (Figure 7.12A). However, after 50 ng/mL of IL-8 protein, the shift did 

not increase. An eight-point calibration curve from 3.2 pg/mL to 50 ng/mL IL-8 protein showed 

the assay method was successful at shifting the xo value of the calibration curve but truncated the 

more sensitive region of the curve (Figure 7.12B), like many of the other tested assays. 

Many of the tested assay methods successfully shifted the xo value of the calibration 

curve to higher concentrations of IL-8 standard. This ‘worse’ assay would allow for higher 

concentrations of IL-8 protein that are found in the LTBI samples to be more accurately 

measured. However, the shift in the midpoint came with the truncation of the dynamic, and most 

sensitive, range, potentially increasing the number of samples over the saturation limit even with 

the shift. In addition, different capture and tracer antibodies and catalytic amplification reagents 

were tested but did not provide evidence of reaching the goal. None of the tested assays were 

selected to pursue for further use with patient samples. An assay method that can be tested in the 

future is inspired by Schulte et al. and is amplification by hybridization chain reaction, which 
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uses an initiator linked tracer antibody that triggers self-assembly of a labeled polymer and is 

followed by binding of anti-label reporter antibody.37 The polymerization may be enough 

amplification for the assay, but the anti-label antibodies can be employed to improve signal. A 

second assay method that could be tested is inspired by Hou et al. and is amplification using 

tyramine-HRP repeats, followed by the current biocatalytic precipitation.38 This takes advantage 

of the current amplification step but may shift the calibration due to steric bulk. In the meantime, 

the standard assay has proven to be very well optimized for detecting protein targets. 

7.5 Limitations and Future Directions 

The analysis of calibrations, plasma matrices, and dilution selection described in this 

chapter is intended to document observed patterns in the LTBI project. These were not formal 

studies and would benefit from more calibrations of future chip batches. The variation described 

is mainly between two chip batches (February 2022 and July 2022) and just one calibration with 

the latest chip batch that had noted logistical differences in the spotting process. More full chip 

batch calibrations are needed to make more formal ranges for each target’s xo value, saturation 

value, and baseline value. It would be interesting to further characterize the calibrations within 

chip batches and set acceptable reference ranges for both inter- and intra-chip batch calibrations. 

Additionally, analyzing the 10% and 50% plasma calibrations within each target for more than 

the July 2022 chip batch presented here would allow for more decisive conclusions on target-

specific variation. 

The limitation of the IL-8 shifting experiments was that none of the tested methods 

sufficiently shifted the sensitive region while maintaining the dynamic range. Most of the 

methods relied on the hypothesis that the limiting factor was 4CN precipitate saturating the 

signal. By reducing the amount of 4CN that could precipitate at a set concentration, there would 
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be less 4CN coverage, allowing for higher concentrations to increase 4CN turnover. If this were 

the case, higher concentrations would have led to a higher signal, keeping the saturating signal 

around 7000 pm but increasing the concentration at which that occurs. Future directions for the 

IL-8 shifting project include trying other amplification reagents, such as TMB substrate, rather 

than 4CN, and testing more abstract assay methods, such as adapting a silver nanoparticle, non-

enzyme aggregation method or using a polymerization scheme to amplify the signal for IL-

8.37,39,40 However, the current method for IL-8 is still relevant to our studies and can continue to 

be used successfully if no alternate assay method can be identified. 

7.6 Conclusion 

The analysis of these pieces of data collected as part of more extensive studies has 

provided insight into what can be deemed as ‘regular’ variation for each target. Passing on this 

information will help future students have a starting point for evaluating each new chip batch. 

Within the calibration comparisons and dilution selection data, there are smaller conclusions 

regarding how some targets are more robust, while some are more variable, that the 50% plasma 

calibrations have higher variability in xo value than the 10% plasma calibrations, and that there is 

a slight preference towards the 2× dilution in all stimulation conditions and in most targets. 

However, the large conclusion that stems from all this analysis is that the assay method we 

currently use as our gold standard and the workflow for sample analysis was very well optimized 

by the prior project team members. My work here shows that the foundations laid on these 

projects can stand the test of time and generations of graduate students conducting the work. I 

am the first to document the data this way, as my time on the LTBI project was the first to use 

multiple chip batches, necessitating understanding how different the chip batches could be. By 

implementing the analysis of calibration comparisons and stability studies, I have further 
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improved the workflow to better identify when targets or chip batches are faulty. While we were 

unsuccessful in developing a better (or ‘worse’) assay for IL-8, it highlights the robust design of 

the current biocatalytic precipitation assay we employ. Overall, this work aims to provide 

documentation of various analytical considerations and patterns that should be taken and 

compared for future chip batches and sample results within the Bailey Lab. 
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7.7 Figures 

 

Figure 7.1 Diagram of a data collection workflow relevant to LTBI sample processing. The assay is conducted on a 
functionalized, multiplexed chip (A) that contains target-specific capture antibodies (blue and black) and mouse IgG 
negative antibody spotted negative control rings (purple). Each assay step happens in succession using all automated 
microfluidics. The negative control rings are spotted with Mouse IgG antibodies. Each sample is analyzed at two 
dilutions (2× and 10×), resulting in two measurements of each target (B) per sample. The net shifts are converted to 
analyte concentration in a sample using the respective calibration curves for each target and dilution (C). Reduction 
of the data to one concentration associated with each analyte occurs by selecting the dilution that results in a 
concentration with the lowest distance from the mid-point of the calibration curve. This constitutes the final data set 
for further analysis. 
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Figure 7.2 Variation in the 10% plasma calibration between sensor chip decks. The individual calibrations were 
overlaid and color-matched to calibrations conducted on the same chip deck to visualize both variations between 
chip decks and variations over time within a single chip deck. Targets IL-6, CCL2, CCL3, and CCL8 have the 
lowest variability between chip decks (A), targets IL-2, IL-8, IL-10, IL-15, CCL2, and TNF-α have some variation 
between chip decks (B), and targets IL-1β, IL-17, CCL4, and IFN-γ have the greatest variation between chip decks. 
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Figure 7.3 Variation in the 50% plasma calibration between sensor chip decks. The individual calibrations were 
overlaid and color-matched to calibrations conducted on the same chip deck to visualize both variations between 
chip decks and variations over time within a single chip deck. Targets IL-6, IL-8, CCL3, and CCL8 have the lowest 
variability between chip decks (A), targets IL-2, IL-10, IL-15, CCL4, IP-10, and TNF-α have some variation 
between chip decks (B), and targets IL-1β, IL-17, CCL2, and IFN-γ have the greatest variation between chip decks. 
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Figure 7.4 Comparing calibrations for both matrix calibrations. The variation between dilutions can be assessed per 
target using the average calibrations from the July 2022 chip deck. Targets IL-6, IL-8, IL-10, IL-17, CCL3, CCL8, 
and IP-10 (A) are similar in midpoint value between the two dilutions. Targets IL-2, IL-15, CCL4, and TNF-α (B) 
are similar in profile but the 50% calibration is slightly shifted to the right. Targets IL-1β, CCL2, and IFN-γ (C) 
have the most difference in midpoint and profile between matrix calibrations. 
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Figure 7.5 Alluvial diagram to visualize dilution selection across the LTBI patient sample set. This type of flow 
diagram is used to visualize changes in group composition between various states. From the center, the data flows 
from selected dilution to QuantiFERON stimulation on the left and to individual targets on the right. The height of 
the stripes indicates of number of samples connecting two nodes. 
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Figure 7.6 Intra-chip batch stability. Six targets ranging spatially across the chip were selected and analyzed at 10 
ng/mL through three months post receipt. Time one was the day the chips were received from Genalyte, Inc. Time 
two was three weeks after receipt, time three was one month after time two and time three was one month later. The 
different deck numbers refer the box number (1-4) that the chips were housed in, as four decks contained ~115 chips 
each. If a target was not measured at a time point, it was left blank. 
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Figure 7.7 Example of shifted calibration curve. The ideal shift (purple) would increase the concentration at which 
the midpoint of the original calibration curve (black) lies while not compromising the dynamic range. 
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Figure 7.8 Diagrams of different assay designs tested to shift the IL-8 calibration curve. The standard method (A) 
includes analyte introduction, biotinylated tracer antibody, streptavidin horse radish peroxidase (SA-HRP), and the 
4CN amplification step. The non-biotinylated tracer assay (B) includes the same steps, but the concentration of 
biotinylated tracer is decreased and supplemented with non-biotinylated tracer. The diluted capture assay (C) again 
uses the same steps as the standard method, but the capture antibody is spotted at a lower concentration and 
supplemented with mouse IgG control antibodies. The SA bead assay (D) includes analyte introduction and 
biotinylated tracer antibody, followed by SA-coated beads as both the recognition and amplification step, 
eliminating SA-HRP and 4CN steps. Finally, the HRP-conjugated tracer assay (E) includes analyte introduction, 
followed by an HRP-conjugated tracer, and ends with the 4CN amplification.
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Figure 7.9 Shifting IL-8 calibration using the non-biotinylated tracer assay design. The zoomed-in trace of the assay 
to detect 50 ng/mL of IL-8 standard protein with only biotinylated tracer Ab (A) and only non-biotinylated tracer Ab 
(B) highlights the differences between the same assay completed with the two tracer antibodies. The net shifts of the 
assay to detect 50 ng/mL of standard protein are plotted (C) to showcase changes when various combinations of Bt-
Ab and non-Bt-Ab were used. The net shifts of the assay using a higher standard concentration (300 ng/mL) are 
plotted (D) to determine optimal Bt-Ab concentration when non-Bt-Ab concentration is held consistent. Calibration 
curves for IL-8 (E) using various concentrations of Bt-Ab at a set non-Bt-Ab concentration show a shift in xo 
accompanied by a truncation of the dynamic range.
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Figure 7.10 Shifting IL-8 calibration by altering spotting concentration of capture Ab. The net shifts of completed 
assays are plotted to highlight the effect of adding 2 ug/mL of mouse IgG control Ab to varying concentrations of 
IL-8 capture Ab (A), show the signal decrease as IL-8 capture Ab concentration decreases at a set concentration of 
mouse IgG (B), and visualize the minimal change in shift between 50 and 1500 ng/mL of protein standard for all 
capture dilution combinations (C). IgG= 2 ug/mL mouse IgG control antibody.



 342 

 

Figure 7.11 Shifting IL-8 calibration by altering the assay format with streptavidin (SA) coated beads. The beads 
require washing before use and the post-washed bead concentration must be calculated from a SA-bead standard 
calibration curve (A). The assay trace for a blank, no protein, experiment (A) and 50 ng/mL protein (B) are plotted, 
showing a negative shift upon the addition of beads. The net shifts for control spotted rings and IL-8 capture spotted 
rings are plotted (D) across varying concentrations of IL-8 protein standard, with minimal differences. 
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Figure 7.12 Shifting IL-8 calibration by altering the assay design with HRP-conjugated tracer antibodies. The net 
shifts of completed assays for control spotted rings and IL-8 capture spotted rings were plotted (A) across varying 
concentrations of IL-8 protein standard, with minimal change. The calibration curve constructed with this method 
(purple) is overlaid with a typical IL-8 calibration curve (blue), showing a shift in xo but a truncation of the dynamic 
range (B). 
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7.8 Tables 

Table 7.1 Average and standard deviation (pg/mL) in the xo value of the calibration curves for 50% plasma and 10% 
plasma calibrations.  

Target 
Average xo valuea 

50% plasma 

Standard Deviation 

50% plasma 

Average xo valuea 

10% plasma 

Standard 

Deviation 

10% plasma 

CCL2 7460 6827 3946 1572 

CCL3 7460 6827 806 155 

CCL4 830 168 3724 2035 

CCL8 6164 5033 542 209 

IFN-γ 1138 394 3469 2816 

IL-10 5122 6192 2992 1795 

IL-15 4002 1344 2405 1519 

IL-17 7503 3913 4898 2456 

IL-1β 7171 5449 10698 9547 

IL-2 13408 5587 1646 1595 

IL-6 1522 715 651 181 

IL-8 939 222 1079 851 

IP-10 1173 649 1361 762 

TNF-α 1517 754 3468 1417 
aThe averages include the three February 2022, the three July 2022, and one November 2023 calibrations, but 
not the two June 2021 calibrations. 
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Table 7.2 Average and standard deviation of the maximum value (A) and minimum value (B) in picometers of the 
calibration curves for 50% plasma and 10% plasma calibrations.  

Target Parameter 
Average 
valuea 

50% plasma 

Standard 
Deviation 

50% plasma 

Average 
valuea 

10% plasma 

Standard 
Deviation 

10% plasma 

CCL2 
A 7273 560 6372 890 

B 539 182 238 223 

CCL3 
A 8074 440 7805 688 

B 211 85 203 113 

CCL4 
A 5935 872 5416 772 

B 242 117 255 101 

CCL8 

A 7610 556 6922 734 

B 572 200 258 89 

IFN-γ 

A 7928 1322 7565 947 

B 375 191 358 103 

IL-10 

A 8759 934 8485 1065 

B 233 164 183 147 

IL-15 

A 6719 889 5803 778 

B 195 79 212 114 

IL-17 

A 8468 590 7982 798 

B 572 365 608 320 

IL-1β 

A 7835 873 7218 1007 

B 199 119 189 128 

IL-2 A 14756 19958 6603 1099 
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B 155 61 192 132 

IL-6 

A 8534 558 8227 830 

B 268 186 186 163 

IL-8 

A 8175 1014 8024 1502 

B 338 202 190 200 

IP-10 

A 6053 844 5491 819 

B 793 482 307 101 

TNF-α 

A 7542 1117 7101 972 

B 165 81 292 173 

aThe averages include three February 2022, three July 2022, and one November 2023 calibrations, but not the 
two June 2021 calibrations. 
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8.2 Dissertation Summary 

The body of work presented in this thesis summarizes multiple projects tied together with 

the goal of developing and applying robust sandwich-style immunoassays to various disease 

states to identify or deploy diagnostic, prognostic, or monitoring protein biomarkers. Chapter 1 

weaves together the various projects I worked on through discussion of biomarker 

classifications, cytokines, and commercialized multiplexed cytokine assays. The basic protocol 

using the microring resonators to measure the concentration of chosen analytes in clinical 

samples was described in detail in Chapter 2, with specifications for the Ebola Virus project. 

The same method and analytical considerations discussed in this protocol chapter were employed 

across all clinical projects, with the only difference being the plexity and targets employed. 

A two-plex assay I developed for applications in Ebola virus diagnosis and prognosis is 

discussed in Chapter 3. We developed and validated an assay for detection of Ebola and Sudan 

virus soluble glycoproteins, an early biomarker of infection. The assay was applied to non-

human primate samples and was successful in detecting the Ebola virus glycoprotein, providing 

evidence that our assay could be used to diagnose infection. Chapter 4 employed a seven-plex 

immunoprofiling assay applied to the clinical population of preterm neonates. We explored the 

inflammatory protein levels between neonates exposed and unexposed to a maternal 

inflammation. We reported that exposure resulted in an unpredictable immune response in the 

early days of life, compared to those unexposed. Additionally, we noted patterns in the 

longitudinal profiles, acquired through multiple temporally distinct samples, in patients who 

underwent treatment for various infections during the study. The proof-of-concept results 

showed promise towards using a longitudinal profiling approach to identify monitoring 

biomarkers in this population. 
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The third main disease state studied in this dissertation is latent tuberculosis infection and 

is the focus of Chapter 5 and Chapter 6. In Chapter 5, we compare results from two clinically 

distinct data sets. Both data sets were comprised of non-specific protein immunoprofiles from 

stimulated plasma patient samples, which were employed in machine learning to differentiate 

patients by latent tuberculosis status and by risk of reactivation to active tuberculosis status. The 

machine learning results, and important biomarkers identified by the model, were similar 

between both cohorts, validating the separate sets of results. In Chapter 6, the two data sets were 

aggregated to increase the population size and analysis was repeated. In this combined cohort, 

we achieved latent tuberculosis classification with 87% accuracy and stratified latently infected 

patients at both high and low risks of reactivation. The results indicate the risk of reactivation 

can be thought of as a linear spectrum with levels of IL-10 and IL-2 being the distinguishing 

biomarkers. These projects represent years of data collection across two Bailey Lab members in 

collaboration with multiple external research groups. The main impact of this project is 

identification of the most predictive protein biomarkers that should be considered for future 

development of latent tuberculosis and risk stratification protein-based assays. 

The final data-focused chapter (Chapter 7) discusses analytical topics related to 

biomarker assays, including variation, dilutions, stability, and optimization. The chapter mainly 

uses data generated as part of the clinical-based chapters to begin quantitatively and qualitatively 

understanding variation in the multiplexed calibration curves. I discuss target-specific variation 

and conclude based on the inter- and intra-sensor chip deck and plasma matrix calibration 

comparisons that CCL3, IL-6, and CCL8 are least variable and can be used to qualify new sensor 

chip decks and method success. Additionally, I present data related to the temporal stability of 

the sensor chip deck towards understanding how long the sensor chips can be used after antibody 
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spotting. Finally, the chapter concludes with the different assay methods we used in attempts to 

optimize one of the specific biomarkers in our panel. This chapter will be useful for future Bailey 

Lab members working on long-term clinical projects including defining more quality control and 

analytical metrics.  

I take this final chapter to summarize a few side projects and discuss ideas of future 

directions in each of the main projects presented in this thesis. Two of the three side projects 

relate to the COVID-19 pandemic that led to the infamous shutdown of campus (and the world) 

during my first year of graduate school. The third discussed side project is an internal Bailey Lab 

collaboration that aimed to combine two of the lab’s techniques: droplet microfluidics and 

microring resonators. While these projects were not substantial enough to include in data 

chapters, they were instrumental in learning assay design and device engineering principles. The 

second section of the chapter will delve into future project directions related to each of my 

projects, as well as projects relevant to the Bailey Lab that I’ve enjoyed tangentially helping 

troubleshoot over the years.  

8.3 Short-lived side projects 

8.3.1 Covid Immunoprofiling: the highest plexity panel for the lowest sample count 

Coronavirus disease 2019 (COVID-19) is a disease caused by infection with severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). The respiratory-based infection led to total 

shutdowns of the country, and much of the world, in March 2020. To date, (January 2024), there 

have been over 700 million COVID-19 cases around the world and nearly 7 million deaths 

attributed to the effects of the disease.1 A large focus in the early part of the pandemic was 

development of rapid diagnostics to identify those who were infected and begin quarantine 

procedures. Polymerase chain reaction (PCR) assays were common at the dystopian mass testing 
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centers due to their sensitivity, but antigen-based tests, such as lateral flow assays or biosensor-

based diagnostics, became popular for cheap, at-home testing. Most antigen tests aimed to detect 

the SARS-CoV-2 nucleocapsid or spike proteins on the viral surface. 

Rather than focusing on diagnosing infection, as was being done by numerous companies 

in the industry, our lab moved to immunoprofiling non-specific inflammatory cytokine and 

chemokine biomarkers to understand the inflammatory dysregulation in COVID patients. Our 

collaborators, Dr. Tobias Peikart and Dr. Patricio Escalante at the Mayo Clinic, collected blood 

from 22 patients, 16 with COVID and 6 healthy controls. The peripheral blood mononuclear 

cells (PBMCs) were stimulated for forty hours with COVID specific (SS1 and SS2), positive 

controls (SAR, CD3, MYO, TET), and negative control (MED) antigens. SS1 and SS2 were 

recombinant subunits of the SARS-CoV-2 spike protein, SARS was the SARS-CoV-1 spike 

protein, TET was the tetanus toxoid, MYO was myoglobin, CD3 was anti-CD3 peptides, and 

MED was cell media. The stimulated supernatant was collected and frozen prior to analysis. The 

seven different stimulations per patient led to a total of 154 samples analyzed for this project.  

The assay steps utilized heavily throughout this thesis (buffer, sample/standard, buffer, 

biotinylated tracer antibodies, buffer, streptavidin horse radish peroxidase, buffer, 4-chloro-1-

napthol amplification, buffer) was used over a 15-plex Genalyte, Inc. spotted sensor chip. The 

targets on the panel were selected for both precedent in our existing assay panels and the current 

understanding of coronavirus infections, and included: IL-1β, IL-2, IL-6, IL-7, IL-10, CCL2, 

CCL3, CCL4, CCL7, IP-10, TNF-α, TGF-α, IFN-γ, IFN-λ1, and GM-CSF. Once researchers 

working on COVID-19 related projects were allowed back on campus, my Bailey Lab mentor, 

Dr. Cole Chapman, and I began validating and optimizing the reagents for targets that had not 

been previously employed on our platform (IL-7, CCL7, TGF-α, IFN-λ1, and GM-CSF). After 
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successful individual optimization, the antibodies were tested for cross-reactivity and then sent 

for spotting. The spotted sensor chip deck was calibrated in 0.5% and 5% serum (Figure 8.1A) 

and the raw concentrations of all 15 targets was measured in the 154 samples (example sample in 

Figure 8.1B).  

The data was worked up in the same method described in all previous chapters of this 

dissertation and normalization within each target and each subject was calculated under the 

following conditions: COVID specific minus negative control (SS1-MED, SS2- MED) and 

COVID specific minus positive control (SS1-CD3, SS1-MYO, SS1-SAR, SS1-TET, SS2-CD3, 

SS2-MYO, SS2-SAR, SS2-TET).  

The statistical tests between COVID negative and COVID positive groups was the Mann-

Whitney U test (Wilcoxon-Mann-Whitney, WMW, discussed in Chapter 5) due to the non-

normal concentration distribution, low sample counts, ordinal responses, and independence 

between the two groups. Across the 105 combinations of targets and raw conditions, only eight 

comparisons were statistically different in data distribution between COVID status (Figure 

8.1C) and across the 120 combinations of targets and normalized conditions, eight were 

significantly different between COVID status (Figure 8.1D).  

Of note, most of the significant comparisons showed the COVID negative group having 

higher concentrations of respective biomarker, indicating a suppression in the COVID positive 

patients. CCL3 under two of the positive control stimulations was higher in the COVID positive 

population. This could indicate CCL3 was an indicator of an immune response, rather than 

specific to COVID. There were significant differences between COVID populations for IL-2, IL-

7, and GM-CSF after stimulation with covid-specific antigen, SS2. The SS2 antigen stimulated 

sample is heavily present in the significant differences in the normalized conditions, with seven 
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of the eight resulting from a control stimulation subtracted from SS2 stimulation. The SS2 

antigen is related to the SARS-CoV-2 spike protein, therefore, these significant differences are 

due to COVID-specific responses. Many of the same targets that were significant in the raw 

condition were significant in the normalized condition and would have been targets to continue 

to monitor over more patient samples. 

This project showcased the ability to prepare and validate new targets for our platform, 

with the new targets IL-7, CCL7, TGF-α, IFN-λ1, and GM-CSF being optimized in a rapid 

timeframe (~1 month of half-week shift work). It also was the highest-plexity panel developed in 

the Bailey Lab, with all sixteen microring clusters functionalized with a different antibody 

(fifteen target-specific spotted clusters and one IgG negative cluster). However, the study was 

sample limited, especially for healthy controls, resulting in poor statistical power. This proof-of-

concept pilot study was used in a grant application with a respiratory based clinical team at the 

Mayo Clinic that was ultimately not awarded, and thus no further samples were sent for us to 

analyze and potentially improve the limitations of this small cohort study. 

8.3.2 Monobody based assay designs: it takes two reagents to tango 

This short-lived project involved the use of a type of new recognition element that has 

not been previously described in this thesis: monobodies (Mbs). A Mb is a synthetic binding 

protein using a fibronectin type III domain scaffold and is structurally similar to the variable 

region of an antibody’s heavy chain.2,3 The smaller size of Mbs make them advantageous as 

therapeutics for small binding pocket targets and for development of multi-valent recognition 

molecules, as multiple Mbs can be linked to a single carrier molecule. Tango Bioscience, whose 

slogan is, “It takes two to tango”, is a Chicago-based biotech company using phage display 

techniques to evolve Mbs towards specific binding domains with the goal of creating monobody 
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sandwich style assays.4,5 Our collaboration centered around screening monobody pairs for their 

ability to bind the receptor binding domain (RBD) protein of SARS-CoV-2.  

The company sent four untagged Mbs and an RBD-Fc fusion as the analyte standard.6. 

Half of each Mb was left untagged for use as the capture Mb, while the second half was 

biotinylated for use as the tracer Mb. The proposed assay design is similar to the standard assay 

design used in this thesis, with a pair of Mbs replacing the antibody pair (Figure 8.2A). The 

initial set of four Mbs sent from Tango Bioscience crashed out of solution upon thawing. After 

adjusting storage buffers, they sent a fresh set of four Mbs that was tested using a multiplexed 

format. We tested all sixteen possible combinations of capture and tracer Mbs, with the 

hypothesis that unique pairs (i.e. A-B, A-C, C-D) would have a greater chance of eliciting a 

signal than matched pairs (i.e. A-A, C-C) due to the expected binding sites. However, every 

microring resulted in the same final shift, including the Ms IgG negative control rings and blank, 

unspotted, microrings (Figure 8.2B) for all tested Mb tracers. 

After these initial results, Tango Bioscience provided biotinylated RBD (Bt-RBD) and c-

tagged RBD rather than the Fc fusion. A truncated assay using Bt-RBD as the analyte eliminates 

the need for a Bt-tracer and was used to test analyte binding to capture Mbs. The results 

indicated that there was a difference in ability of Mbs to capture the RBD analyte, with Mb B 

having the same result as the controls, Mb A having a shift greater than the controls, and Mb C 

and D having the greatest shift (~5000 pm) and greatest differentiation from the controls. These 

results indicated that the Mbs were acting differently and that they were able to bind the target 

analyte. However, when moving back to the sandwich assay design, the omnipresent signal 

returned when detecting 2 μg/mL of RBD-c (Figure 8.2C). The Ms IgG spotted rings did result 

in a slightly lower net shift but were still very high. Additionally, when a blank assay containing 
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no protein was tested, the results were almost identical to the assay with protein present (Figure 

8.2D).  

Taken together, these results indicate the Mbs acting as the tracer are extremely prone to 

non-specific binding, as there is similar, amplified signal with and without analyte present. We 

attempted to resolve the non-specific binding by having a tween additive in the running buffer 

and using a biologic matrix, but the non-specific binding of the tracer Mb could not be mitigated. 

In a conventional ELISA, this result would be seen as having a high background signal, which 

was exactly what Tango Bioscience was seeing in their ELISA tests with these four Mbs, 

validating that the issue was with the specificity of the evolved Mbs rather than the assay design. 

Our platform was able to identify the issue was specifically with the tracer Mb because the real 

time trace indicated the RBD analyte was specifically binding to the Mb spotted rings, with all 

rings only increasing after the Mb tracer step. Due to the high blanks and background signal, we 

were unable to identify a pair of Mbs that would work in the sandwich assay format and Tango 

Bioscience discontinued work with this method. 

This project showcased the ability to switch around potential reagents for assay 

development and screening related projects. With better optimized reagents, our method could 

have provided information regarding strongest binding partners and binding kinetics and could 

have quickly tested various reagent concentrations and Mb mixtures. The results we obtained for 

this project matched what the collaborators were seeing in plate based ELISAs, further validating 

that the issues stemmed from reagents, rather than the assay itself. 

8.3.3 Ring-Drops: two Bailey Lab techniques are better than one 

The third short-lived project, and final one discussed here, was an internal Bailey Lab 

collaboration between team microrings and team microfluidics (Dr. Nico Mesyngier).7 The 
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project concept was developed by Nico and had been a project on his mind for years, but no 

previous microring lab member had been interested in embracing the project. Luckily for Nico, I 

had a logistical hold up on my main projects that left me with some time to entertain our mutual 

side project. The aim of this project was to (1) simply combine two Bailey Lab techniques into 

one method and (2) detect a single aqueous droplet on the microring sensors.  

The two lab techniques we aimed to combine were the microring resonators (heavily 

discussed through this dissertation) and droplet microfluidics. Droplet microfluidics is a 

technique that generates small, nanoliter to picoliter scale, aqueous droplets housed in and 

separated by an immiscible oil phase.8 The oil prevents the aqueous droplets from merging, 

generating hundreds of individual microscale reactors each second, and provides a constant flow 

in direction from inlet to outlet. The droplets are generated at rates of hundreds per minute using 

in-house fabricated polydimethylsiloxane (PDMS) devices.9 Typically, droplet generation 

projects center around using the droplets as mini reaction vessels for automating bioassay steps, 

detecting analytes with thousands of replicates, or continuous monitoring. The set up includes 

two syringe pumps set to push an aqueous or oil phase onto the droplet generator microfluidic 

device at set, constant rates. On chip, the droplets are generated, and the aqueous droplets are 

carried by the oil phase to the outlet tubing. Visualization of the droplets is done using an optical 

microscope located over the microfluidic device. More complex systems can include magnetic 

plates, pulse electrodes, and laser setups for advanced detection. For this work, a flow focusing 

droplet generator with 150 μm by 150 μm square cross section channels was used with syringe 

pumps for liquid flow and optical camera for visualizing what was happening on the microfluidic 

device.  
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Integrating the droplet generator with the microring resonator instrument was the first 

engineering challenge we tackled. Variables such as ferrule sizes, flow rates, and the effects of 

gravity due the droplets being generated lower than the microring sensors needed to be optimized 

before flowing droplets across the microring chip. These variables were optimized and the final 

set up of the microfluidics equipment and connection of the droplet generator to the microring 

sensors can be seen in Figure 8.3A and B. After the appropriate connections were fitted and oil 

was able to consistently flow from the syringe, through the droplet generator, and across the 

microring chip, we started the water-containing syringe pump to begin the flow the droplets 

through the system. Droplets containing NaCl had previously showed the microrings were able 

to detect the change in refractive index (RI) between water- and NaCl-containing droplets, as the 

decrease in relative shift for NaCl droplets indicated that the evanescent field was reaching 

through the oil layer and into the passing droplets (Figure 8.3C). However, the rapidly passing 

droplets were not able to be interrogated individually and resulted in a characteristic bulk shift. 

The change in resonant wavelength shift based on droplet content was promising and led to the 

challenge of separating the droplets from each other to potentially detect one droplet. 

 We varied the flow rates administered by the syringe pumps (1-30 μL/min range) in 

attempts to space out the drops to no avail (Figure 8.3D). With the droplet generator, even with 

low aqueous flow rate, the droplets are still generated at hundreds per second.9 Additionally, the 

outlet tubing (ID= 0.3 mm) was larger than the dimension of the PDMS device, causing the 

droplets to expand and decrease the oil volume in between droplets. This forms a droplet train, 

rather than individual droplets. The presence of the camera over the droplet generator led us to 

noticing that after the aqueous phase syringe pump was stopped, droplets were still forming 

consistently for 3-4 minutes due to the pressure buildup in the PDMS device and tubing. 
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Thereafter, the droplets began forming in irregular patterns (ie packets of droplets, group of three 

droplets, single droplets) at irregular time intervals. We continued data collection during this 

time and began to notice spikes in the microring signal shortly after seeing the individual 

droplets moving out of the droplet generator (Figure 8.3D).  

We intentionally used this observation to connect groups of, and individual, droplets to 

peaks in the resonators. We used the logged timestamp we visually saw these small clusters of 

droplets escape from the droplet generator and, after accounting for the delay time for the droplet 

to traverse from the droplet generator to the resonator sensors, tabulated which resonator peak 

corresponded to visual droplets (Figure 8.3E and F). These results demonstrate the ability of the 

sensors to detect single aqueous droplets, with a lower shift in signal compared to groups of 

droplets. However, this ‘wait for pressure to decrease to get individual droplets’ method was not 

a feasible approach to continue this project. 

In addition to the results outlined here, we worked to visualize the droplets as they moved 

past the microring chip surface to understand the effects of surface treatments on keeping the 

droplets separated. This involved 3-D printing microring cartridge tops that included a window 

over the flow channels. While this project offered us a technically challenging engineering 

focused project, there were no identified applications in which using the microring resonators as 

a sensing mechanism would be beneficial in a droplet microfluidics setting. The cost aspect of 

the microrings instrumentation would be prohibitive and even if used for a droplet microfluidics 

assay format, the capture antibodies would saturate before single droplets could be made. 

Therefore, after proving to the previous lab members that you can, in fact, detect one aqueous 

droplet with the microring resonators, this internal collaboration concluded. This side project led 

us to better understandings of projects in the lab, allowed us to be creative engineers, and led to 
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the finding that we can detect a single droplet of fluid flowing across unfunctionalized microring 

resonators. 

8.4 Future Directions 

8.4.1 Future directions of hemorrhagic fever diagnostic panels  

8.4.1.1 Expanding to higher plexity assays to include disease specific and non-specific 

biomarkers for greater diagnostic and clinical efficiency  

The future direction of the Ebola virus (EBOV) diagnostic and prognostic panel 

discussed in Chapter 2 and Chapter 3 is to take advantage of the multiplexing capabilities of 

the microring platform and expand the panel of biomarkers to increase clinical utility. There are 

two proposed ways to increase the panel: with biomarkers specific to other hemorrhagic/endemic 

diseases or with non-specific inflammatory markers.  

The current work duplexed the EBOV soluble glycoprotein (sGP) with Sudan virus 

(SUDV) sGP, both specific biomarkers of their respective infections. Biomarkers specific to an 

additional ebolavirus strain that has infected humans, Bundibugyo ebolavirus (BDBV), or 

biomarkers indicative of filoviral family infections, including Marburgvirus (MARV), could 

build out a panel specific to filoviral hemorrhagic fever infections. The BDBV strain produces 

sGP, but there are minimal commercially available antibody (Ab) pairs for detection. Therefore, 

partnering with an Ab development company to generate BDBV sGP specific Abs or using 

another target of viral infection, such as the glycoprotein that coats the viral surface, would be 

needed. Furthermore, MARV is in the filoviral family but is a genus separate from ebolavirus 

and does not produce sGP. Commonly explored targets of MARV infection include the surface 
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glycoprotein, the virus matrix protein (VP40), virus like particles (VLP), or nucleoprotein (NP). 

These can also be targets for any of the ebolavirus strains if needed.10  

Other endemic diseases with similar symptom onset to filoviral infections could be 

addressed in a differential diagnostic platform. Possible targets could include the non-structural 

protein biomarkers for flaviviruses (yellow fever virus, Dengue virus, and zika virus)11,12 or 

novel protein biomarkers for malaria (glyceraldehyde 3-phosphate dehydrogenase and 

dihydrofolate reductase-thymidylate synthase)13 and leishmania (elongation factor1-a).14 

Published work regarding multiplexed diagnostic panels in this clinical space are currently 

focused within ebolavirus strains or are serology-based Ab detection platforms.11,15–17 

Multiplexed syndromic approaches to infectious disease diagnostics is critical for efficient 

surveillance and differential diagnosis.18 I propose to use the microring resonator platform to 

build a novel, protein-based, immunoassay that could differentially diagnose multiple ebolavirus 

strains (EBOV, SUDV, BDBV), Marburgvirus, yellow fever virus, dengue virus, zika virus, 

malaria, and leishmania. The implications of a cross-species multiplexed infectious disease tool 

would be desirable from an analytical capability standpoint and from a public health and 

outbreak control view.  

A secondary method of EBOV-focused panel expansion can move us towards 

researching diagnostic, prognostic, monitoring, or response biomarkers by multiplexing the 

EBOV sGP diagnostic biomarker with non-specific inflammatory protein biomarkers. Cytokines 

are the key players in immune cell signaling and, thus, play a large role in response to infection 

and are notable targets for building immunodiagnostics of infectious diseases.19 Early 

immunoprofiling of EBOV disease focused on determining differences in cytokines or 

chemokine levels in various disease populations. Comparisons included infected subjects 
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(humans or non-human primates (NHP)) versus non-infected subjects, infected and symptomatic 

subjects versus infected and asymptomatic subjects, and infected survivors versus infected non-

survivors. Hutchinson et al. found elevated levels of CCL2, CCL4, CCL5, and IL-1β in serum of 

EBOV infected NHP compared to healthy controls.20 A follow up study with SUDV as the 

exposure found CCL4, IL-6, IL-8, and IL-10 to be higher in non-surviving patients, while IFN-α 

was higher in survivors.21 Leroy et al. similarly found higher levels of CCL2, CCL3, CCL4, IL-

1β, IL-6, and TNF-α in plasma of EBOV infected asymptomatic human patients when compared 

to unexposed controls and non-survivors.22 The increased levels peaked 4-6 days post infection 

and rapidly waned in under three days, which avoided excessive fever and organ damage as was 

seen in non-survivors. The increased concentration with rapid decrease was hypothesized to be 

the reason that some individuals remained asymptomatic and survived the infection compared to 

others. Research focusing on identifying fatality associated biomarkers reported hypersecretion 

of IL-1β, IL-1ra, IL-6, IL-8, IL-15, IL-16, CCL2, CCL3, CCL4, IP-10 and MCSF was associated 

with fatal outcomes.23 A multi time-point study compared acute phase (0-11 days post infection) 

cytokine levels to convalescent phase (35-64 days post infection) and found IL-1a, IL-1β, IL-6, 

and TNF-α are suppressed in acute phase compared to convalescent phase and IFN-α2, IFN-γ, 

and IL-10 are higher in non-survivors than in survivors within the acute phase.24 

More recent work has changed focus towards identifying response biomarkers and 

biomarkers associated with post-infection complications. Viode et al. employed a proteomic 

workflow to identify differences in the acute response of survivors and non-survivors of EBOV 

infection and reported multiple response biomarkers of an IFN-β-1a treatment.25 Large cohort 

studies in the last five years have attempted to shed light on long lasting effects within survivors 

of EBOV infection, including musculoskeletal, neurologic, auditory, and visual 
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complications.26,27 Tozay et al. reported logistic regression correlations of higher IFN-γ 

concentration to patients with increased muscle pain, higher CRP and lower IL-8 levels to 

patients with vision problems, lower CCL3 concentrations in those with lower body numbness, 

lower TNF-α in those with chronic headaches, and lower IL-6 in those with hearing loss.27 

Although, these weak correlations were not significant after applying multiple comparisons. 

Finally, Wiedemann et al. reported that up to two years post infection, EBOV survivors have 

elevated inflammatory markers of IL-8 and TNF-α and chronic immune activation markers of 

CCL5, and sCD40L.28 These increases could be causing some of the chronic post-infection 

symptoms. 

Using the multiplexed microring panel, we could potentially complete a study similar to 

the tuberculosis immunoprofiling work in that a large cohort of patient samples under various 

clinical bins (healthy controls, EBOV infected asymptomatic, EBOV infected survivor, EBOV 

infected non-survivor) and at various time points (acute, convalescent, 1+ year post infection) are 

assessed. Many of the studies reported above include samples at multiple time points, which we 

have employed in the neonatal immunoprofiling work discussed in Chapter 4. The panel would 

include the EBOV and SUDV specific soluble glycoprotein antigens and an assortment of 

cytokines and chemokines with literature precedent (IL-1β, IL-1ra, IL-6, IL-8, IL-10, IL-15, 

CCL2, CCL3, CCL4, CCL5, IP-10, TNF-α, and sCD40L). With the exception of IL-1ra, CCL5, 

and sCD40L, all of these specific and non-specific biomarkers have been previously validated 

and applied on our platform. The three new targets would need to be tested and validated 

individually, and everything would need to be tested for cross-reactivity of the new reagents and 

of the EBOV-specific reagents.  
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Bioinformatic machine learning analysis would be done between the various clinical bins 

to associate the biomarkers with either a specific outcome or disease phase. Unlike previous 

studies, this multiplexed panel includes both specific and non-specific protein targets that can be 

used in conjunction as any one of either diagnostic, prognostic, monitoring, or response 

biomarkers. There is a possibility that the infection specific targets provide the best diagnostic 

information, while a subset of inflammatory markers provide prognostic (or other) information. 

Reporting this combination specific and non-specific assay and the set of biomarkers that could 

make the most concrete decisions could inform future development of protein-based rapid 

detection assays with implications in outbreak control and resource allocation. 

8.4.1.2 Increasing the portability of designed assays to improve accessibility 

An additional area of work orthogonal to the continued assay development for this 

project can include projects related to portability of the instrumentation and/or assay. The current 

technology we use, as well as what has been developed by Genalyte, Inc., are aimed at clinical 

laboratory use and are rather bulky. Our instrument fits on a benchtop but is still too large and 

requires a power source to operate. To implement any developed assay into an underserved 

environment requires a higher level of portability than is currently possible with our 

instrumentation and can be improved upon in multiple ways, one being development of smaller 

instrumentation and another being development of point-of-care assays. 

The development of smaller instrumentation would likely be outside the scope of our lab 

specifically but could be completed in collaboration with Genalyte, Inc. or another engineering 

focused group. The ideal instrumentation would be small, require minimal sample and 

instrumental input, run with a battery pack, and provide a quick and actionable response. There is 
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a possibility to miniaturize aspects of the current system with extensive engineering design and 

optimization.  

Within the realm of our lab work, smaller point-of-care tools could be developed for 

deployment in endemic areas. Current technologies, such as lateral flow assays, could be 

developed using specific biomarkers found as important in diagnosis or prognosis of disease 

using the previously described method. Development would need to include multiplexed printing 

of capture antibodies onto nitrocellulose paper, optimizing a multi-step (likely bead-based) 

assay, and identifying an appropriate visualization method. Once the portable assay is developed, 

many samples would need to be analyzed to determine response levels and correspond response 

to outcome. It is likely that the method would not be quantitative and ratios of response between 

various capture lanes would be used for diagnosis or prognosis. The implications of this work 

include an improved access to important diagnostic testing and creation of rapid testing for 

outbreak response and resource allocation. 

8.4.2 Future directions in pediatric profiling 

8.4.2.1 Longitudinal profiling for prognostic biomarker identification and monitoring 

assays 

The neonatal project presented in Chapter 4 discussed the unpublished investigation into 

the longitudinal profiles of the subjects who provided multiple samples over their time in the 

neonatal intensive care unit (NICU). It is clear through these profiles that the cytokines increase 

in concentration during clinically indicated treatment time points. These highlighted time points 

were not included in the statistical tests completed for the publication and were defined as 

timepoints that blood samples were taken while the subject was undergoing treatment for a 

known infection. The limitation of the current work was the low number of patients with similar 
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adverse events. However, a potential future research project can better take advantage of the 

longitudinal profiling towards identifying prognostic, diagnostic, and/or monitoring biomarkers 

for various infections. 

A study focused on a singular disease state that can be analyzed longitudinally would be 

an ideal case for employing this method. Multiple patients providing samples before, after, and 

during an infection or treatment would allow for machine learning analysis of the biomarker 

profiles as a use for diagnosis or onset of disease. Potentially, rather than raw biomarker levels, 

the rate of change or a ratio of biomarker levels from one time point to the next, could be used to 

make the desired evaluation. If there are similar profiles or ratios of biomarkers that peak or 

change before disease onset, they could be used as prognostic markers. If there are similar 

profiles or ratio of biomarkers that are present in groups of patients in which a treatment works 

that are different from that in groups of patients in which a treatment does not work, those 

markers could be used as response or treatment monitoring biomarkers.  

Applications for a longitudinal profiling project with goals of biomarker identification 

could span from health care impacts to public health epidemiological focused projects. In a 

health setting, patients who are hospitalized in long term care or who must visit a clinic 

repeatedly for a treatment would be advantageous populations for a longitudinal profiling study 

of a specific population. It is likely these patients are already receiving routine blood draws, and 

our platform has frequently used ‘waste’ sample, or leftover plasma or serum after clinical 

testing. Patient populations and research goals that would fit this project could include pediatric 

ICU stays for a specific disease (flu, RSV, pneumonia, etc.) to identify prognostic markers for 

infection outcome, ICU patients being monitored before and after a specific surgery (transplant, 

heart surgery, medical device implant, etc.) to identify response biomarkers, or patients 
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undergoing treatments for a specific cancer type to identify monitoring biomarkers for treatment 

effects or prognostic biomarkers for patient outcomes. An epidemiological project could entail 

monitoring people who live near a specific exposure (production plant, construction site, 

commercial farmland, etc.) to correlate exposures with biomarker levels over time with a goal of 

identifying monitoring, response, or susceptibility biomarkers. With a well-defined, specific 

subject population, a longitudinal study would have more power than when it was a secondary 

observation in a larger project. 

8.4.2.2 The newest clinical project in the lab: pediatric sepsis biomarker discovery 

The current future direction in a pediatric immunoprofiling context is the start of a 

pediatric sepsis-based project in collaboration with emergency medicine doctors at the Mott 

Children’s Hospital. The immunoprofiling panel will include many of the non-specific cytokine 

targets (IL-1β, IL-2, IL-6, IL-8, IL-10, CCL3, IFN-γ, TNF-α, and IP-10) and new targets (PCT, 

MMP8, PAI-1, and CRP) pending their optimization on our platform. Taken together, these 

targets will provide information on inflammatory dysregulation in the pediatric population. 

The study design aims to collect blood samples from the subjects at time of presentation 

to the emergency department (ED) and twenty-four hours later. The samples will be tested in 

clinical laboratories for clinically indicated tests and nucleic acid profiling. Serum samples will 

be stored and analyzed by our team for the inflammatory protein concentrations. The RNA 

signatures, cytokine and protein concentrations, and electronic health record data will be 

analyzed with machine learning with the overarching goal of predicting the onset of sepsis upon 

initial ED presentation. Additionally, various diagnostic, prognostic, monitoring, or response 

biomarkers could be identified using the data generated from this study. The implications of this 



 370 

work include better health outcomes, improved resource allocation, and decreased cost of 

treatment.  

While the overarching predictive analysis will include machine learning analysis done by 

collaborators, there are in-house statistical tests and analysis with the Bailey Lab generated data 

that can be completed. Similar to the LTBI biomarker panel, the new targets can be monitored 

for variation in inter- and intra- sensor chip deck calibrations. The overlapping targets can 

initially be used for spotting and method validation, as the variation in calibrations of these 

specific targets has been characterized in Chapter 7. The resulting concentrations of the thirteen 

biomarkers can be binned between subjects who did get sepsis versus those who did not and by 

timepoint (ED presentation vs 24 hours later), ideally age and gender matched between bins. 

Wilcoxon-Mann-Whitney analysis can be completed between the bins to identify statistical 

differences between disease groups, as well as between time points. The significant differences 

could indicate potential prognostic biomarkers. Additionally, ratios of biomarker concentrations 

between the two timepoints can be tested between disease groups to determine specifically if 

temporal changes of target concentrations are significant, identifying potential monitoring 

biomarkers. Overall, future work in pediatric or immunoprofiling projects will be an 

advantageous use for our developed assay platform and clinical workflow with implications in 

diagnostic, prognostic, and monitoring biomarker discovery. 

8.4.3 Future directions in latent tuberculosis diagnostic projects 

8.4.3.1 Moving into a new study cohort in Tijuana, Mexico and the logistic hurdle of 

establishing an international study site.  

The latent tuberculosis infection (LTBI) project discussed in Chapter 5 and Chapter 6 is 

part of an ongoing multi-institute project funded by the NIH. After finishing the proof-of-concept 
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work showcased here, we aim to repeat the method in a population where TB is highly prevalent 

and there are many reactivation events. The initial work was completed in Rochester, Minnesota, 

with our collaborators in respiratory medicine at the Mayo Clinic. While still present, TB is not 

generally widespread in the United States; therefore, we aim to implement this workflow in 

Tijuana, Mexico, which has a greater prevalence of TB infection. Our microring team and the 

Mayo Clinic team partnered with Dr. Rafael Laniado-Laborin of the tuberculosis clinic in 

Tijuana to longitudinally immunoprofile health care workers. The plan is to collect 

QuantiFERON (QFT) stimulated plasma waste from around 300 patients (mix of LTBI, active 

TB, non-TB respiratory infected, healthy controls, and case contacts) at four different time points 

across two to three years. 

One aspect of the study will be to assess differences in biomarker levels and predictive 

modeling results between the already analyzed Mayo Clinic population and this new cohort. 

Boxplots to visualize measured and normalized cytokine levels. Wilcox-Mann-Whitney 

statistical tests will be used to determine significant differences between cohorts when stratified 

by disease state. Results similar to the Mayo Clinic cohort in important predictive biomarkers 

would indicate we have identified a more generalizable trend, as it holds across cohorts from 

multiple locations. Dissimilar results would suggest the results are location- or demographic-

specific and more comparisons of the population statistics would be required.  

A second aspect of the study will be longitudinal profiling of the patients, making 

healthcare workers an ideal population due to their proximity to the TB clinic and general 

requirement to be in the area long term. Analyzing multiple time points, similar to the 

longitudinal profiling work in Chapter 4, will lead to cytokine profiles spanning multiple years, 

and possibly multiple disease states within one patient. Take, for example, a patient at time point 
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one who is clinically classified as a healthy control (LBTI negative and low risk of reactivation). 

At time point two, the QFT test indicates infection with TB, and further testing confirms an 

LTBI diagnosis with a high risk of reactivation. The patient would receive isoniazid treatment. 

The next time point may conclude the patient is still LTBI positive but now at a low risk of 

reactivation due to treatment. The final timepoint could be after the infection has cleared and 

they are LTBI negative, with prior infection and low risk of reactivation. The temporal change of 

each cytokine, or combinations thereof, within patients similar to this description can lead to 

information to predict reactivation preemptively rather than relying on cytokine levels at one 

time point.  

A third aspect of this study is the inclusion of close contacts. For the health care worker 

patients that result in a positive QFT test, their family members or people they live with will be 

contacted for enrollment in the study. The mode of transmission is respiratory droplets, and it is 

reasonable to presume that transmission occurs in the household. Including the close contact 

population in the study will provide insight into potentially protective biomarkers, especially if 

the study subjects display different immunoprofiles depending on whether they later have a 

presenting infection. 

This study was initially funded during my rotation with the Bailey Lab in the Fall of 2019 

which initiated conversations between our team and the Mayo Clinic team. In March 2020, the 

study at both the Mayo Clinic site and early implementation at the Mexico site were put on hold. 

In the middle of 2021, the Mayo Clinic restarted recruiting patients for this study and initial 

plans were made for equipment needed at the Mexico study site. The study site needed 

everything, including QFT supplies, lab consumables, a -80°C freezer, and specialized 

instrumentation.  
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In winter 2022, I was tasked with procuring the appropriate equipment and getting it to 

the study site. Coordinating with suppliers, our collaborators, and the wonderful procurement 

team at UM, led to a full-size standing -80°C freezer and a DYNEX fully automated ELISA 

system arriving at the study site in Tijuana in June. Unfortunately, the DYNEX instrument 

delivered was incorrect and the correct one was exchanged two months later. From there, 

everything from pipette tips, conical tubes, and pH meters to PBS buffer and QFT test kits 

needed to be purchased for the study site. Working closely with Dr. Laniado-Laborin, we 

identified multiple companies that could provide the supplies, but only a few could provide the 

materials with consistent communication and in appropriate delivery time frames. Despite the 

additional questions and paperwork from the UM procurement team, we determined it was 

easier, faster, and cheaper to buy materials from suppliers in Mexico rather than procuring from 

US-based sites, arranging transport, and paying import fees. Another of the many hurdles was 

that nobody at the study site had experience with these specific processes and tests, meaning 

each practice run held between the Mayo Clinic and the Tijuana study site would be cut short 

due to missing materials or reagents. We would then place the order through UM procurement 

and the item would arrive anytime between two weeks and three months later.  

After almost a full year of obtaining the consumable supplies and training the Mexico site 

study team, healthcare worker enrollment began in the fall of 2023. The (hopefully) final hurdle 

in the sample workflow was transport of the human samples across the border. We were able to 

make a connection with Professor Steffanie Strathadee at UCSD, who has a transport team that 

travels biweekly to Tijuana and brings back samples for processing. I set up the payment for the 

transport team, who will pick up the packaged samples at Dr. Laniado-Laborin’s lab, work with 

border patrol to transport human samples across the border, and then drop off the package at 
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UPS. The package will be sent to the Mayo Clinic, who will save the PBMCs for flow cytometry 

studies and forward the frozen QFT plasma samples to UM. The first transport finally occurred 

in January 2024. Unfortunately, it turned out that the ‘plasma samples’ that the Mexico team had 

saved and shipped to the Mayo Clinic was the plasma from the ficoll cell separation protocol and 

was not the leftover QFT test plasma. The QFT plasma from the patients enrolled in the study for 

cytokine profiling had been thrown away. Currently, new patients are being enrolled and the 

QFT plasma will be saved for our studies.  

This two-year period from when I began managing the set-up of the Mexico site to 

getting some samples across the border was filled with a lot of emails, stress, and many (many, 

many) hold ups. However, the opportunity to manage this large scale, international purchase and 

laboratory set-up was an invaluable experience in organization and effective communication 

between multiple stakeholders. While I’m disappointed that the preparation of the study site was 

drawn out, and I will not be part of the sample analysis for the Mexico site study, I’m glad to 

have played a role in this project and hope that this study can continue successfully in the years 

to come.  

8.4.3.2 Expanding the clinical designations bins to develop more specific diagnostic 

tools. 

Future studies to improve LTBI diagnostics need to include more samples spread across 

clinical bins of interest. One limitation of our completed studies was that we focused only on the 

LTBI phase of infection. This can be improved by expanding enrollment beyond those with 

latent infection. Clinical designations can also expand to identify TB infected individuals beyond 

active and latent to include incipient and subclinical infection. Differences between positive and 

negative subjects within these clinical designations, as well as across the different designations, 
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can then be assessed to provide more specific diagnostic or predictor biomarkers. In addition, 

including subpopulations of patients with other respiratory infections (i.e. pneumonia) or other 

bacterial infections (i.e. non-tuberculosis mycobacteria) would improve the specificity and 

decrease false positives of the diagnostic tool by accounting for immunological differences 

caused by non-TB/LTBI infections. 

Bringing attention to ensuring true homogeneity in machine learning separation bins can 

ultimately improve generalizability of the results within the target population. The ideal 

diagnostic would assess all patients who had suspected TB infection (all those who received QFT 

testing) and classify them as LTBI, active TB, or other. These results would confirm the QFT 

findings (for active TB) and provide additional separation between LTBI and other. From there, 

the profiles of those classified only as LTBI would be further identified as being high risk or low 

risk. Therefore, models using only the LTBI positive subpopulation to differentiate high and low 

risk would be ideal. It is a limitation of early studies (Chapter 5) that we were unable to do the 

high and low risk classifications within just LTBI+ bins but the aggregated data in Chapter 6 

removed this limitation. 

8.4.3.3 Including multidrug resistant TB infected subjects 

An interesting direction for future development of the tuberculosis project is in multidrug 

resistant TB (MDR-TB).29 MDR-TB is a strain that is resistant to isoniazid and rifampin and can 

result from misuse of antibiotics, incorrect dosage, poor quality drugs, or incorrect treatment. 

The spread of MDR-TB strains is even more damaging than non MDR strains, as treatment is 

more complicated. Additionally, continued antibiotic resistance could lead to superbug strains of 

infection that are extremely difficult to treat. Early detection is one strategy to mitigate 

transmission of all TB and is especially essential for MDR-TB strains.30 Various biosensor 
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technologies have been employed to detect MDR-TB including gold nanoparticle derivatized 

oligonucleotides that detect single base mutations in resistant strains, a loop-mediated isothermal 

amplification method to detect resistance using gold nanoprobes with perfect specificity and 

sensitivity, and a nucleic acid lateral flow immunoassay using gold nanoparticles for rapid 

detection of both isoniazid and rifampin resistance after PCR.31  

We could potentially include a subject population within our study of those with active 

TB from MDR strains. Subjects would have to be pre-identified as having an MDR strain to 

allow for the clinical designation. However, we could potentially identify specific host cytokine 

signatures associated with MDR-TB that are not associated with, or associated at different levels 

with, active TB, LTBI, or other respiratory infected individuals. We could implement 

identification of MDR strain infected individuals using the same panel and workflow as LTBI 

diagnosis and risk assessment, adding to the utility and impact of our method. 

8.4.3.4 Including social determinants of health to improve diagnostic predictions 

A final direction to consider for future work, especially when expanding the project into a 

geographic area with different socioeconomic factors, is to consider the social determinants of 

health (SDOH) of the study participants. SDOH are non-medical factors and conditions of a 

person’s environment, including where they were born, live, learn, work, and worship, that have 

studied effects on health and quality-of-life outcomes and risks.32 Additionally, a person’s 

relationship with various systems, such as economic policies, development agendas, social 

policies, and political systems, have important influence on health incomes. My interest in the 

public health aspect of diagnostics and disease intervention developed in a public policy course I 

took as part of the precision health certificate program where we explored various public health 
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systems, health care organizations, health disparities, and public policy advocacy strategies at 

local, state, and federal levels. 

There are five domains of SDOH that could each, in some way, be deployed in our 

study.32,33 These include: (1) economic stability (poverty levels, employment opportunities, 

wages, and food or housing stability), (2) education access and quality (degree achieved, general 

literacy, and language proficiency), (3) health care access and quality (primary care options, 

health insurance, proximity to medical care, and health literacy), (4) neighborhood and built 

environment (housing quality and availability, access to transportation, and local crime rates), 

and (5) social and community context (familial dynamics and responsibilities, discrimination, 

incarceration, mental health, systemic inequity, community cohesion, and workplace conditions). 

Many governmental (CDC, WHO) and local programs are working to understand the SODH in 

global and regional contexts and address the social and structural conditions through policy, data 

collection and surveillance, evaluation, partnership and collaborations, community engagement, 

and infrastructure.34,35 Addressing the SODH in a public health context will be one of the many 

methods to improve health equity, in the US and globally. 

The connection of public health to tuberculosis is clear. A contagious pathogen is readily 

spread through close contacts and diagnosis and treatment can be hard to obtain in low-income 

areas where prevalence is high. Addressing the SODH relevant to TB requires structural 

interventions in the upstream determinants of TB, such as unhealthy behaviors, living conditions, 

and community disease prevalence.36–38 Studies have concluded that along with co-morbidities 

(HIV, diabetes, rheumatoid arthritis), factors such as malnutrition, alcoholism, and tobacco abuse 

lead to an increased disease susceptibility.39 Many studies focus on determining the connection 
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between SDOH and infection, treatment outcomes, or health outcomes.40,41 There is a gap in the 

literature relating SDOH variables to LTBI reactivation events.42  

Work in other clinical areas, such as premature mortality, sepsis, and cardiovascular 

disease, have noted inclusion of SDOH increased the predictive modeling accuracy of the 

machine learning models and the results facilitated efforts in identifying patients who would 

benefit from more targeted services.43–47 Including SDOH in TB predictive modeling, 

specifically in predicting reactivation risk, could help save resources and provide targeted 

treatment to specific sub populations of patients. In our projects, the SDOH identified as 

important could be recorded in the clinical data set and then used as variables, alongside the 

biomarker concentrations, in the predictive models. Another method could entail using only the 

biologic variables to classify subjects into high or low risk bins, as we have done in the past, but 

then correlating subjects classified within a specific bin to their SDOH to identify patterns in 

SDOH associated with the high-risk clinical bins. These methods could help to identify which 

SDOH should be a focus for public health interventions and increase equitable outcomes in TB 

diagnostics.  

8.4.4 Future expansion of analytical metrics: Calculation of acceptance intervals for inter and 

intra chip deck validation 

The work presented in the first section of Chapter 7 regarding comparison for calibration 

curves across and within sensor chip deck lots can be further expanded with subsequent sensor 

chip decks from Genalyte, Inc. The average and standard deviation of the midpoint value, 

baseline shift, and saturating shift calculated for the chapter represented an aggregation of four 

sensor chip decks and nine calibrations. Future calibrations done on the current chip deck, and 

with future chip decks, should be added to the data set and new averages, standard deviations, 



 379 

and ranges should then be calculated. These calibration metrics should continue to be 

investigated across all chip decks (as was discussed in the chapter), as well as within individual 

chip decks. Variation mainly emanates from functional variation in target specific antibodies, 

rather than from the sensors or analytical methods employed.  

With an aggregated data set across five or more chip decks, or approximately fifteen 

calibrations, we can begin to record calibration metrics and ranges for each individual target to 

qualify future chip decks. In January 2022, I had received a sensor chip deck that, after initial 

cross-reactivity and amplification tests, was clearly malfunctioning. There was little binding and 

the amplification result for tested targets was low and highly variable across the different storage 

decks. After discussing the issues with the chip spotting team, we determined the issue and the 

chip deck received in February 2022 was significantly improved. I had only validated one chip 

deck at this time and decided that, moving forward, more formal validation of the chip decks was 

required. I implemented a cross-deck validation test where we measure the response of a handful 

of the targets across all storage boxes within the chip lot. Additionally, I began comparing the 

calibrations to the previous chip decks. These steps should continue to be implemented into the 

sensor chip deck validation workflow to ensure quality of the sensor chips before they are 

employed for patient sample analysis.  

The inter- chip deck validation ranges should be used within the lab to ensure any 

observed variation is within an expected range and to check reagent quality for new chip decks. 

Using the identified robust target reagents (CCL3, CCL8, IL-6), the spotting process, chip 

quality, and the method implementation by the researcher can be tested, as the new calibration 

curves for these targets should be very similar to previous calibrations. If a new calibration still 

looks (visually) appropriate, but quantitatively does not fall within the expected variation ranges 
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of more than one metric, care should be taken to understand why before use in samples. Was the 

capture antibody from a new supplier? Are the protein standards or the tracer antibody nearing 

their expiration dates? New reagents can be purchased and used for the next calibration. 

However, as long as the calibration curves are able to be constructed, the chip deck can be used.  

Intra-deck metrics should begin to be calculated to understand expected variation of the 

calibrations within an individual chip deck. This will provide information on the change in 

response from individual targets over time, as calibrations are conducted on the sensor chip 

decks over the lifetime of sample analysis. Traditionally, the net shifts from the same standard 

protein concentration are averaged across the calibrations from a chip deck and a four parametric 

curve is fit to those averaged values. However, no work has been done to characterize the 

variability in the intra-chip deck calibrations and how the variation in the metrics affects the fit 

of the average values. Investigation into this data analysis will be beneficial moving forward into 

procuring larger scale sensor chip decks. 

8.4.5 Future assay development towards more efficient assays 

8.4.5.1 Stop flow assay design 

A method that could be tested on the microring resonators that could potentially use less 

reagents is a stop-flow method. Currently, we use continuous flow of each reagent housed in a 

96-well plate over the capture antibodies at 30 μL/min for seven to ten minutes, using 210-300 

μL of sample. The continuous flow helps prevent nonspecific binding events from occurring but 

could potentially hinder lower-affinity or slower kinetic specific interactions, resulting in no 

binding events. Thinking of the reagent like a giant droplet housed between blocking buffer 

rinses could allow additional time for the specific interactions to occur. 
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Logistically, this would look like drawing the reagent from the well, stopping the flow, or 

slowing to <5 μL/min if stopping is not possible, and letting the reagent sit on the chip for an 

optimized time. The pumps would then turn back on for a blocking buffer rinse. This could be 

repeated for all the reagent steps or could just be done for the sample step if optimal. This change 

would then use less than 35-50 μL of sample or reagent, leading to lower volume requirement 

and decreased cost, which would increase the efficiency of our assays. 

8.4.5.2 Multi-biomarker multiplexed assay development 

A way to increase the efficiency of our assays and broaden the applicable disease states is 

to combine different types of molecular biomarkers into one assay. An early project in the Bailey 

Lab using the microring resonators was detection of microRNAs (miRNA).48,49 ssDNA was 

spotted as a capture agent on the microring sensor chips, the complementary miRNA standard 

was flowed across the microring surface, and the complex was detected with anti-DNA:RNA 

antibodies. Moving into clinical samples, the projects mainly transitioned to signaling protein 

targets due to stability, commercialized reagents, and applicability. However, an interesting 

research direction would be returning to miRNA detection, multiplexed with protein targets in 

one assay. 

There have been significant updates in assay methods, chip preparation, and 

instrumentation since the time of the miRNA work. At the time, a different spotting process was 

being used to link capture agents to the surface of the microrings, so initial work would need to 

determine if the updated spotting process would be sufficient for linking the modified ssDNA 

onto the surface. The miRNA standards were analyzed in a hybridization buffer that contained 

formamide, saline-sodium phosphate-EDTA, Denhardt’s solution (mixture of various blocking 

reagents), and sodium dodecyl sulfate. For multiplexing, the protein-specific antibody captures 
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would need to be tested for activity following exposure to this buffer. Additionally, the miRNA 

detection assay steps were on a much longer time scale (40–60-minute steps) compared to our 

current methods (7-10-minute steps). Finally, the detection scheme ended with the anti-

DNA:RNA antibody and further amplification (biotinylation of the DNA:RNA antibody, SA-

HRP, and 4CN steps) was not employed at the time. Therefore, the process of biotinylating the 

antibodies and using the biocatalytic precipitation step would have to be tested.  

If the modifications to our current assay design can be optimized for detection of the 

miRNA and appropriate limits of detection are able to be achieved, there is potential to multiplex 

the current protein targets with various miRNA. Due to the hybridization buffer requirement for 

the miRNA samples, there may have to be two separate sample steps, first a subset of the sample 

in hybridization buffer and a second without. However, if the protein targets are still viable and 

able to bind the antibody captures in the presence of the hybridization buffer, then a single step 

could still be feasible. Even with two sample steps, the additional 7-10 minutes of the assay 

would be minimal considering the implications of multiple target analytes being detected in one 

assay. 

An initial multi-marker assay could be multiplexing miRNA from the let-7 family with 

cytokine protein biomarkers, such as IL-2, IL-6, and IL-10. The let-7 family of miRNA have 

been linked as pathologic biomarkers of numerous viruses and diseases, such as hepatitis, 

herpesvirus, human immunodeficiency virus, respiratory syncytial virus, flu and sepsis 

infections, and have been detected in serum and blood samples.50 Let-7c was an initial target 

tested on the microrings, which would provide a starting point for comparing the current method 

to results from the previous method. Additionally, let-7a has been linked to sepsis infections and 

interactions with cytokines, such as IL-2, IL-6, IL-1β, and TNF-α.51  
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The application to sepsis diagnostic and prognostic work would fit into the future 

directions discussed above and current work being done in our lab. Multi-target multiplexing 

would increase the applicability and efficiency of our microring resonator platform and detection 

method. There is expected to be a lot of optimization and analytical work needed to evaluate the 

ability of multiplexing the different markers together, but it is an interesting possibility to move 

our work and platform into a novel diagnostic space. 

8.4.6 Additional Bailey Lab future project idea: Double emulsion microfluidics for 

multiplexed sensing 

During my time in the lab, I have become familiar with many of the projects housed in 

the other domains through many troubleshooting conversations with my lab mates, attending 

interdisciplinary talks and luncheons, and getting to work with some technologies first-hand 

(Section 8.3.3). Herein, I will briefly describe a potential future direction in the microfluidics 

space that was inspired by a departmental seminar and discussions with lab mates. A caveat: 

There may be logistical factors for this project that are not feasible or realistic, which I would be 

unaware of due to not working in the microfluidics development space. However, cool science 

can still come from a naïve mind! 

One of the microfluidics projects in our lab is ionic or polyionic sensing via droplet 

microfluidics and fluorescence-based sensing. There are various sensing components optimized 

for specific targets that facilitate the target of interest being drawn from an aqueous sample 

droplet (e.g. blood) into an oil carrier phase. A recent research direction for these specific 

projects revolves around multiplexed sensing, which currently involves spatial separation of 

droplets in different microfluidic channels, each with a different target-specific set of recognition 
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reagents in the oil phase. However, this spatial separation will require more sample than 

multiplexing within a single droplet.  

To multiplex temporally, rather than spatially, a research direction for the droplet 

microfluidics team could be using double emulsion techniques to swap oils with different target-

specific sensing components around a single aqueous droplet. This direction was inspired by Dr. 

Hee-Sun Han’s departmental lecture in 2023. The Han group has written a protocol paper for 

making double emulsion (DE) microfluidics devices that could be used as a starting point for the 

application of interest.52 In our current work, single emulsions (SE) are used, as the aqueous 

droplets are segmented emulsions in a continuous oil phase. In DE, the aqueous droplet is 

segmented by an oil shell within an aqueous continuous phase. Using various structures in the 

microfluidic device, the oil shell can be removed, coalescing the droplet back into the aqueous 

phase. I envision this technique used for multiplexing of ionic sensing by segmenting the 

aqueous sample with an initial oil mixture containing sensing reagents for a specific target (i.e. 

potassium). The DE would continue down a channel to allow for reagent mixing and pass 

through a detection space to measure the florescence in the oil shell. After detection, the oil 

would be removed through microstructures in the device, coalescing the droplet with the 

continuous, aqueous sample stream. A second oil mixture containing reagents for a second 

specific target (i.e. sodium) would then come in and re-form the DE shell. Similar to before, 

there would be mixing time and fluorescence detection in the oil shell. This process of moving 

from DE to SE and back to DE could be repeated for all targets of interest.  

The process of coalescing the aqueous droplet with the continuous stream between 

different sensing oil regimes would allow for remixing of the sample between sensing phases. In 

addition to detecting multiple analytes in one sample in an automated on-chip method, the 
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resulting fluorescence signal would be concentrated to the area around the shell. Current methods 

lack a concentrated florescence signal, as using the whole area of the carrier oil phase dilutes out 

the fluorescence response. Centralizing and concentrating the response to a ring around the 

droplet could improve signal to noise ratios. Furthermore, the oil shell would be in contact with 

the same sample in its inner and outer core surfaces. This would spatially increase the ways the 

target of interest could relocate into the oil phase, potentially increasing signal and lowering 

limits of detection. A limitation of this method would be that the continuous phase is the sample, 

rather than oil, and therefore, more sample volume would be needed than a SE method. 

However, running the current devices for over five hours uses only ~1 mL of continuous phase, 

which is feasible sample volume for a biologic sample and five hours represents an excessively 

long experiment. Overall, development of this method could provide a unique engineering, 

biosensing, and fluid dynamics project that could expand the technology toolbox and sensing 

techniques within the Bailey Lab.  

8.5 Concluding Remarks 

In this dissertation I have contributed research in diagnostic and prognostic profiling in 

multiple diseases and conditions, including latent tuberculosis, Ebola virus, and 

chorioamnionitis. The work I completed and presented in this thesis have increased the disease 

states in which microring resonators have been employed as the sensing platform and furthered 

their compatibility in clinical workflows. I have introduced a new analytical method to the field 

of multiplexed filoviral sGP detection, single-plex as detection had previously been done through 

ELISAs or lateral flow assays.53,54 Take together, I used silicon photonic microring resonators as 

the sensing platform and analyzed over 700 patient samples with multiplexed protein biomarker 

detection panels. The panels ranged from a two-plex assay for disease specific protein 
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biomarkers to seven-, fourteen-, and fifteen-plex nonspecific cytokine and chemokine protein 

biomarker panels. The data generated from the cytokine profiling clinical projects provided 

insight into host immune response to infection and allowed for calculation of various analytical 

metrics towards defining quality control values of our assays. Expansion of the viral diagnostic 

panel to include host cytokine profiling and including social determinants of health within the 

latent tuberculosis reactivation risk assessments will propel these projects into exciting clinical 

spaces for infectious disease management and risk intervention. 
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8.6 Figures 

 

Figure 8.1 COVID-19 immunoprofiling project summary. The project profiled 15 different cytokine and chemokine 
biomarkers (A) in 5% serum, with an example sample trace in (B). The legend in between the calibration and 
example trace is for both plots. Minimal statistical significances were found between COVID positive and COVID 
negative subject populations for both raw (C) and normalized (D) concentrations. 
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Figure 8.2 Tango monobody project summary. The proposed assay design (A) has one Mb linked to the microring 
surface that captures the analyte of interested (RBD of SARS-CoV-2. A separate biotinylated Mb would then detect 
the analyte, followed by SA-HRP and 4CN for signal amplification. Initial screening resulted in low relative shifts 
and non-specific binding (B) when detecting 2 ug/mL of RBD analyte. Optimizing reagent concentrations and buffer 
conditions allow for some separation between the rings spotted with Mb captures and Ms IgG spotted rings (C) 
when detecting 2 ug/mL of RBD with Mb C but is still plagued with non-specific binding to unspotted rings and 
there is little variation between the protein detection assay and the blank (D), indicating tracer Mb non-specific 
binding. 
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Figure 8.3 Ring-drops project summary. The necessary equipment for the droplet generator (computer, microscope, 
syringe pumps) was placed on a movable table (A) and moved into proximity with the microring instrument. The 
droplets were generated on the PDMS device using syringe pumps into a T-junction device, with the outlet tubing 
interfacing with the microring resonators (B). Initial experiments with bulk droplets flowing across the microrings 
showed a decrease in signal when NaCl solution replaced the aqueous solution (C). The constant droplet generation 
resulted in bulk shifts but stopping the Aq syringe pump resulted in smaller droplet packets able to be detected 
outside of bulk shifts (D). Using this pulsed packet method, we were able to detect small packets of droplets (E, F). 
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Appendix A: Chemistry Instructional Coaching: Adapting a Peer-Led Professional 

Development Program for Chemistry Graduate Teaching Assistants 

A.1 Author Contributions and Acknowledgements 

This appendix chapter is from the published article: Fantone, R.C.*, Zaimi, I.*, Meserve, 

K.*, Geragosian, E.K., Álvarez-Sánchez, C.O., Spencer, J.L., Shultz, G.V. Chemistry 

Instructional Coaching: Adapting a Peer-Led Professional Development Program for Chemistry 

Graduate Teaching Assistants, Journal of Chemical Education, 2023. Dr. Ginger Shultz and Dr. 

Jeff Spencer conceived the program and initial iterations were co-led by Dr. Jeff Spencer, Dr. 

Eleni Geragosian, and Christian Álvarez-Sánchez. Program adaptations and recent program 

iterations were co-led by Rebecca Fantone, Ina Zaimi, and the thesis author, Krista Meserve. The 

structure of the manuscript, data analysis, all figures and tables, and revisions were equally 

contributed to by the thesis author, Rebecca, and Ina. All authors contributed initial drafts of 

various sections and aided in manuscript editing.  

I have been a coach in the program since Summer 2020 and have been an administrator 

since Fall 2021. As an administrator, I worked on developing and implementing the adaptations 

discussed in the manuscript, particularly restructuring the KTI resources for a GTA context, 

spearheading the monthly coaches meetings, and editing and advising the team-developed 

resources. In addition, I have co-led coach training during summer 2022 and 2023 and have 

planned and led the monthly coaching meetings for two years. This program has had a huge 

impact on my time in Michigan by providing a space to improve the teaching culture in the 

department and to continue developing and practicing mentorship skills. I would like to thank 

http://doi.org/10.1021/acs.jchemed.3c00580
http://doi.org/10.1021/acs.jchemed.3c00580
http://doi.org/10.1021/acs.jchemed.3c00580
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my co-first authors, Rebecca and Ina, for making a great team. We spent many hours of 

brainstorming, writing, editing, and revising together and learned how to merge three (very) 

different writing styles! I would like to thank the co-authors, Eleni, Jeff, and Christian, for their 

work in starting this program here at Michigan, training me as a coach, and for being great 

mentors themselves. I’d like to thank Professor Ginger Shultz, and the rest of the Shultz Group, 

for their support on this project and publication. 

A.2 Abstract 

Graduate teaching assistants (GTAs) are crucial facilitators of undergraduate education, 

yet many begin their teaching appointments with minimal knowledge of teaching practices. 

Chemistry Instructional Coaching offers GTAs at the University of Michigan an opportunity to 

develop their instructional practice through a collaborative, non-evaluative, and reflective 

coaching program. We implemented an instructional coaching program designed in collaboration 

with Knowles Teacher Initiative to meet the needs of GTAs teaching in a postsecondary setting. 

In a coaching cycle, a trained GTA (the coach) guides a recruited GTA (the coachee) through 

conversations that allow the coachee to develop a teaching-related goal, plan how to implement 

changes to their instruction, and reflect on the measurable outcomes. This iterative cycle builds 

on itself over the course of one or two semesters, with new goals being identified for each cycle. 

Through adapting the program in our department over time, we utilized feedback from coaches 

and coachees to adjust the structure of the coaching program and develop relevant materials to 

support knowledge of instructional practice. Herein, we report on the program design, 

enrollment, and current structure, and we discuss the main adaptations we implemented to 

develop a sustainable program within the chemistry department. We believe that this graduate 
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student-led instructional coaching program has the potential to be integrated into other 

departments or postsecondary settings. 

A.3 Introduction 

GTAs Learning to Teach. Graduate teaching assistants (GTAs) are assets to chemistry 

undergraduate education because they teach laboratory and discussion sections with 20-30 

undergraduate students and, accordingly, provide one-on-one contact with them. However, many 

GTAs begin their teaching appointments with minimal teaching experience and professional 

development opportunities.1,2 GTAs may rely on their content knowledge, but content 

knowledge alone is not sufficient for teaching.3 Teaching also requires pedagogical knowledge 

and pedagogical content knowledge.4 Because of minimal teaching experience and professional 

development, chemistry GTAs often describe feeling unprepared to teach and exhausted from 

teaching.5 Additionally, they feel isolated in their teaching roles2,6 and view their teaching roles 

to be a “link,” a “supplement,” or a “manager,” not an instructor.5 Consequently, professional 

development opportunities for GTAs learning to teach must be expanded, and they must address 

the challenges GTAs face when learning to teach. 

Professional Development Opportunities for GTAs Learning to Teach. Scholars have 

designed, implemented, and evaluated a variety of chemistry GTA trainings. These published 

trainings vary in length, from a few days7 to a whole year.8 These trainings also vary in depth, 

including course specific,7 laboratory specific,9–12 or generalized for both laboratory and 

discussion sections.8,13–18 

For example, Marbach-Ad et al. developed a six-week unit that modeled teaching and 

emphasized teaching roles and a teaching community.13 Faculty, experienced GTAs, and, 

eventually, new GTAs shared stories of their teaching experiences. GTAs reported feeling 
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supported as a result of the training. Student evaluations of GTAs who participated in the 

training were higher on measures of effective teaching, being prepared, and respecting students 

than evaluations of GTAs who did not participate. Similarly, Lang et al. developed an eight-

week training that introduced laboratory and discussion GTAs to teaching practices and 

supported GTAs in implementing them in their classrooms.17 The training involved observations, 

reflections, and discussions with experienced GTAs. GTAs felt the training supported them; 

however, they desired more support in implementing teaching practices in their classrooms and 

more opportunities to observe their peers’ classrooms. These are just two of several examples of 

a structured approach to supporting GTAs learning to teach.  

In both cases, despite participating in long-term trainings, GTAs requested more 

specified and sustained support. Social teacher-learning structures, such as instructional 

coaching,19–21 could address GTAs’ requests. Instructional coaching structures reflections 

between the instructor and an experienced instructor around the instructor’s problem of 

practice,22,23 and student data.24,25 Because of its structure, instructional coaching provides 

specified, contextualized support (e.g., to the instructor’s problem of practice) and sustained 

support (e.g., with an experienced instructor). While instructional coaching is present in primary 

and secondary settings it is rare in postsecondary settings.26–30 

To support this process, we partnered with the Knowles Teacher Initiative (KTI) 

(knowlesteachers.org), which designs and implements instructional coaching in primary and 

secondary settings. Together, we designed, implemented, and adapted instructional coaching for 

the postsecondary setting. Here, we present Chemistry Instructional Coaching, including its 

structure, development, and the themes that we learned from its adaptation. We aim to show how 
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a teaching community can be constructed that addresses the challenges in GTAs learning how to 

teach. 

A.4 Chemistry Instructional Coaching 

We define Chemistry Instructional Coaching (coaching) as a mentorship program where 

mentors (coaches) support mentees (coachees) in developing their teaching. We value and 

commit ourselves to creating a reciprocal, collaborative, empathetic, reflective, and non-

evaluative coaching community. In this peer mentored program, coaches tend to be second-, 

third-, or fourth-year graduate students with teaching experience, and coachees tend to be first-

year GTAs (Appendix Table A-1). However, coachees can be and have been second-, third-, 

fourth-, or fifth year GTAs, as we emphasize the practice of teaching and growth throughout all 

stages of a GTAs development.  

The program is independent from the Chemistry Department it is situated in and is 

funded through internal institutional grants. Thus, it is entirely run and supported by a graduate 

advisor (GVS) and graduate student leaders. The program is primarily led by the graduate 

student leadership team (the leadership team), a small group of graduate students who are 

facilitators and administrators in addition to coaches. Their responsibilities include developing 

recruitment materials and recruiting for, planning, and implementing a yearly coaching training, 

creating coaching resources, pairing coachees with coaches, and planning and implementing 

monthly coaching meetings. Moreover, the leadership team maintains an audit trail of notes, 

memos, documents (and their versions), coaching artifacts, and surveys. We used these to 

provide the examples in this report. 

Coaching Cycle. At the start of the process, the leadership team pairs a coachee with a coach, 

and the coach initiates the coaching cycle (Appendix Figure A-1). The coaching cycle is a 
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three-stage cycle, consisting of a “planning” or a pre-instruction stage, an “implementation” 

stage with observations and data collection, and a “reflecting” or post-instruction stage.19–21,24,25 

During the planning stage, the coach and coachee identify the coachee’s problem of practice, and 

the coachee sets a goal.22,23 Related studies have shown that instructors set goals related to their 

teaching practices, their adaptation of teaching resources, and their alignment of teaching 

resources with their teaching context.26,27,29 We have found that, similar to secondary instructors, 

GTAs set goals related to their teaching practices (e.g., supporting student engagement or 

differentiating instruction). However, GTAs also set goals related to their classroom 

management (e.g., time management or providing directions) and their classroom environment 

(e.g., building confidence when communicating with students or setting boundaries with student 

contact) (Appendix Table A-2). During the implementation stage, the coach observes the 

coachee and collects the data that they planned during the planning stage. Student surveys, 

student work, or GTA reflective journals are examples of data collected in a coaching cycle. 

Finally, during the reflection stage, the coach compiles the data and presents the data to the 

coachee, allowing the coachee to interpret the data, incorporate the coach’s interpretation, and 

reflect. Ideally, the coaching cycle is iterative with at least two cycles completed over the course 

of a semester, where discussion and reflection spurs adaptation of the goal into the next coaching 

cycle (Appendix Table A-3). Across the semester, coaches and coachees tend to meet for a total 

of 4 hours—a relatively low time commitment outside of a GTA’s teaching responsibilities.  

As an example, we present a cycle with a coachee, who was a fifth-year organic 

chemistry graduate student teaching discussion sections for a second-semester organic chemistry 

course. During the planning stage in the first cycle, the coachee wanted to learn how to plan, 

implement, and adapt a lesson as part of the lesson planning process. The coach provided the 
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coachee with resources on lesson planning, and the coachee drafted and edited two lesson plans 

with the coach’s feedback. During the implementation stage, the coach observed the lessons, 

noting where the lesson plans aligned and misaligned with the coachee's enactment of the 

lessons. During the reflection stage, the coachee noticed that they lectured more than they 

planned to, and, because of that, they interpreted that students did not have the time to engage in 

their small-group problem-solving activities. Therefore, for the second coaching cycle, the 

coachee shifted their goal to improve student engagement during the planning stage. In this case, 

the coachee’s first goal exposed a problem that could be scaffolded into their second goal and 

might otherwise have gone unnoticed. 

Recruiting Coaches. The leadership team trains coaches in the summer, so they recruit graduate 

students to be coaches at the end of the spring semester. Coaches do not have to be active GTAs, 

but we do recruit graduate students who have taught at least two semesters. For recruitment, the 

leadership team use a variety of recruitment materials (Appendix Figure A-2) and approaches: 

posts on the Chemistry Department's Twitter; emails to the Chemistry Department’s listservs; 

posters on the Chemistry Department’s boards; and slides in course staff meetings. Moreover, 

the leadership team asks instructors to nominate GTAs who may be in their research group, who 

have taught with them, who have served on committees with them, or who they have worked 

with in departmental activities. These recruitment materials direct GTAs to the coaching website, 

where they can complete the application. The application collects contact information (e.g., 

name, email, and year) and asks, “Why do you want to be a coach?” Since 2019, we have 

recruited 17 GTAs (Appendix Table A-1), and all 17 GTAs have become coaches. 

Coaching Training. Coaching training is implemented in six, one-and-a-half-hour, in-person 

sessions (9 hours) with at-home work (3 hours) (Appendix Table A-4). The leadership team 
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leads the sessions and lectures on important concepts (e.g., the coaching cycle, coaching stances, 

teaching strategies), and they plan small-group activities, small-group discussions, and whole-

group discussions. Additionally, the leadership team invites, but does not require, trained 

coaches to participate in order to contribute various perspectives, experiences, and questions to 

the discussions. 

Recruiting Coachees. The leadership team recruits GTAs to be coached at the start of the fall 

and spring semesters. Similar to recruiting coaches, they recruit with a variety of recruitment 

materials and approaches. These recruitment materials direct GTAs to the coaching website, 

where GTAs can complete the application. The application collects contact information (e.g., 

name, email, and year) and asks, “What class will you be teaching?” In contrast to recruiting 

coaches, recruiting coachees is ongoing. The leadership team monitors the application and pairs 

coachees with coaches as soon as possible. Since 2019, we have recruited 28 GTAs (Appendix 

Table A-1), and all 28 GTAs have become coachees. 

Pairing Coachees with Coaches. While the focus of coaching is not content knowledge, the 

leadership team aims to pair coachees with coaches who have taught the same or similar courses. 

As of Fall 2022, 54% of coachees have been paired with a coach who has taught the same 

course, and 86% of coachees have been paired with a coach who has taught a similar course. 

This ensures that the coach has an understanding of the coachee’s course, including the content 

knowledge and curricular saliency for the course and the GTA’s role and responsibilities in the 

course. Approximately, half of the coachees continue with coaching at the start of our spring 

semester. Sometimes, the coach-coachee pair continues; other times, the coach-coachee pair 

changes. 
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Program Enrollment. The ratio of trained coaches to recruited coachees has varied (Appendix 

Table A-5). Initially, the number of coaches was kept small to pilot the program and assess 

feasibility. In the first year, we recruited six GTAs to be coaches, and the leadership team 

recruited eight GTAs to be coachees, allowing all coaches to be paired with at least one coachee. 

With positive trends in participation, the program expanded and seven new coaches were trained 

the following year, leading to a total of ten active coaches. However, this expansion in coaches 

occurred during the COVID-19 Pandemic, in which the coachee participation decreased to three. 

We suspect that coachee recruitment dropped because of the COVID-19 Pandemic and the 

demands of online teaching. Coaching – as well as teaching – pivoted from in-person meetings to 

online meetings. While the leadership team advertised that coaching is low-effort with four hours 

scheduled throughout the semester, it is likely that GTAs were experiencing “Zoom fatigue” and 

other external factors and were not able to join more Zoom meetings. Three coaches were paired 

with the enrolled coachees and conducted coaching cycles. The remaining seven trained coaches 

paired up, practicing coaching cycles with each other. While this arrangement was unplanned, it 

was helpful because coaches gained practice and the coach who became the coachee experienced 

the coaching cycle from the coachee perspective. Due to the low engagement from coachees 

during this period, we did not recruit and train more coaches. In the third year, teaching pivoted 

back to in-person meetings, and we recruited thirteen GTAs to be coachees, allowing all eight 

active coaches to be paired with one coachee and five of the eight to be paired with two 

coachees. Due to the high engagement from coachees, we recruited four GTAs to be coaches, 

resulting in eight active coaches in the fourth year. Some coaches expressed being able to 

balance two coachees while others wished to keep it to one due to additional graduate 

responsibilities. Therefore, we aim to maintain a 1:1 ratio where coaches can participate 



 405 

meaningfully, feeling neither underwhelmed without a coachee nor overwhelmed with many 

coachees. 

A.5 Program Evaluation 

Our evaluation was designed to understand the experiences of coachees within the 

coaching program and to describe the retention and reach of the program within the department. 

Furthermore, throughout the implementation of the program, we used our evaluation to make 

further adaptations to address challenges coaches and coachees faced (discussed in the next 

section). We guided our evaluation by taking extensive notes during administrative meetings and 

monthly coaching meetings about coaches’ experiences, soliciting coaches' feedback on 

coaching training, and surveying coachees on their experiences in the coaching program.  

We surveyed coachees via Qualtrics, a survey management system, at the end of each 

semester. Coachees’ anonymous responses are only accessible to the leadership team. The survey 

presents a series of multiple-choice, multiple-check, and short-response questions. Some 

questions solicit feedback on the coachee’s coach (e.g., “How was your coach helpful or 

unhelpful?”), and other questions solicit feedback on the coachee’s coaching experience (e.g., 

“What did you or didn’t you learn about your teaching?”). A few questions solicit information on 

the coachee’s goals (e.g., “What goal did you set for your first coaching cycle?”), allowing us not 

only to catalog goals but also group them into teaching practice, classroom management, or 

classroom environment goals (Appendix Table A-2). The survey is voluntary, and coachees are 

not required to answer the questions, whether they cannot answer them, or they do not want to 

answer them. In this section we report on the retention and reach of the coaching program, 

coaching goals established within coaching cycles, and coachees’ experiences as reported in their 

end-of-term surveys. 
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Retaining GTAs. The retention of coaches is critical to sustain the coaching program within the 

Department. As of 2023, we have recruited and trained 17 GTAs to be coaches (Appendix 

Table A-1). On average, GTAs have remained coaches for 3.7 ± 1.3 semesters. Coaches who 

serve for multiple semesters are able to build on their coaching experience and provide excellent 

coaching services to GTAs. Furthermore, experienced coaches have contributed to the 

development of the program by drawing on their diverse experiences as coaches over multiple 

semesters.  

Retention of coachees in the program is also important because it encourages sustained 

growth of GTAs. Since 2019, we have recruited 28 GTAs to be coachees (Appendix Table 

A-1). On average, GTAs have remained coachees for 1.5 ± 0.5 semesters. Approximately, half of 

GTAs stop being coached at the end of fall semester while half of them continue being coached 

at the start of the spring semester. Most coachees are first-year GTAs, and we notice that we 

recruit more coachees at the start of the fall semester than we do at the start of the spring 

semester. Coaching is introduced to GTAs in the Chemistry Department’s first-year orientation. 

Therefore, GTAs may be less confident before they have taught the first semester and may 

become more confident after they have taught that first semester. However, we still recruit at the 

start of both semesters because GTAs teaching roles and confidence can change. GTAs may use 

the coaching program as an initial support system because they are beginning many new 

activities during the start of their teaching experience. However, once they have completed their 

first semester, teaching may become more familiar, and they may be less apt to participate.  

Serving Introductory, Large-Enrollment Courses. Most GTAs who participate have taught 

introductory, large-enrollment courses. 64.3% of coachees have taught general chemistry or 

organic chemistry laboratory sections and 21.4% of coachees have taught general chemistry or 
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organic chemistry discussions sections. The remaining coachees have taught small-enrollment, 

upper-level courses. These introductory courses not only have the highest numbers of first-time 

GTAs but also the highest numbers of first- and second-year undergraduate students, both 

important populations to serve. These results emphasize the potential reach of the coaching 

program on GTA teaching and student learning.  

Coachee Experiences. Coachee experiences were captured in their responses to short response 

questions in the survey. In response to the question “How was your experience being coached on 

teaching this term?” coachees overwhelmingly reported positive experiences within the coaching 

program and described multiple benefits they received from the program, such as developing 

teaching skills, having access to a knowledgeable and skilled GTA, and experiencing positive 

social and communal interactions with their coach and students.  

For example, some coachees reported how coaching helped them learn new teaching 

skills, “This coaching experience helped me develop new sets of skills and improve on them, 

since this was my first official teaching experience.” 

Other coachees described how having a coach offered an additional perspective and 

guidance that they would otherwise not have had access to led to meaningful student 

experiences, “I enjoyed the insights and guidance to make my efforts more meaningful for 

student learning experience. The pattern allowed me to have some control over the kinds of goals 

I wanted to work toward, while providing an adequate amount of guidance to make those goals 

more refined and meaningful.” Many coachees described positive experiences of having another 

person to talk to their teaching about. One coachee described, “I enjoyed the helpful guidance 

from [my coach]. It was good to have a sounding board for ideas on how to improve as an 
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instructor.” Another coachee described the benefit of having a source of feedback about their 

teaching, “[It was] good to have feedback on specific concerns I had about the course.”  

Coachees further expanded upon the helpfulness of talking about teaching in response to 

the question “What was the most helpful part of having a coach this semester?” Some coachees 

benefited from hearing about their coach’s teaching experiences, “The most helpful part of 

having a coach was hear[ing] their experiences teaching and how they have dealt with unique 

situation[s].” Other coachees wrote about the benefits of having a peer to discuss shared 

experiences and challenges of teaching, “The most helpful part of having a coach this semester 

was being able to talk to someone about my struggles as a [GTA] for [Organic Chemistry II].” 

Indeed, having a proactive and compassionate coach is essential to the coaching process and are 

traits we encourage and instill in our training. By “having someone kind and proactive listen to 

my teaching struggles and want to help,” as one coachee wrote, our coachees feel supported and 

report positive teaching experiences. 

Finally, coachees were asked, “What was the least helpful/useful?” in a short response. 

The majority of coachees did not report aspects of the program they did not find helpful. 

However, a few coachees described challenges related to their lack of knowledge and 

experience. For example, one coachee reported struggling to find a problem of practice due to 

their limited teaching experience, “I felt like I struggled with coming up with ideas in the 

coaching cycle, because as [a] first year there is so much going on that I just don't know what I 

am looking for. I think maybe once I get a bit more teaching experience, I would have a better 

idea of what I wanted to work on, especially since I would have more to reflect on.” Another 

coachee suggested that the program provide more professional development resources on teacher 

learning, especially when skill development is essential for reaching their coaching goal, “The 
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lack of concrete guidance on resources for learning new skills was hard, especially when those 

new skills came up as part of a goal.” Both of these examples exemplified the need to provide 

additional structures and support within the coaching program to address GTA specific needs. 

The leadership team used these responses along with coaches’ experiences to further adapt the 

program and to prepare coaching resources to address GTA needs. 

A.6 Designing, Adapting, and Sustaining Coaching 

The Chemistry Instructional Coaching program originated from conversations on social teacher-

learning structures at the post-secondary level between co-authors GVS, a chemistry education 

researcher, and JLS, a chemistry education graduate student and high school science teacher. 

GVS and JLS thought that instructional coaching could address the challenges in chemistry 

GTAs learning how to teach. Mainly, instructional coaching could provide sustained support that 

would be semester- or year-long, flexible support that would be respectful of GTAs’ schedules 

and responsibilities, and contextualized support that would be responsive to an individual GTAs’ 

wants, needs, and constraints. JLS and co-author EKG attended their training, and GVS, JLS, 

and EKG worked with KTI to adapt KTI’s training and its materials from a secondary setting to 

a postsecondary setting. Adaptation is a part of implementation,31 and through anticipated 

changes of the program over time, we report on three of these: (1) coaches needed collaborative, 

reflective meetings; (2) the coaching cycle needed to be modified; and (3) our resources needed 

to support coaches’ teaching practice in addition to their coaching practice. Herein, we describe 

the challenges we faced while adapting instructional coaching to a postsecondary setting and the 

solutions used to address them in later iterations. 

Collaborating and Reflecting on Coaching Practice During Monthly Coaching Meetings. 

We found routine one-hour monthly coaching meetings with the coaches throughout the 
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academic year was an essential practice for facilitating learning within the program. For the 

leadership team, these meetings fostered conversations that led to necessary changes to the 

coaching format; for the coaches, they provided a platform for improving coaching and teaching 

practice and problem solving within their own coaching cycles. For example, during the first 

year’s monthly meetings, the leadership team provided logistical reminders to coaches on the 

coaching cycle and the program structure, and the coaches debriefed about their own coaching 

cycles. During the coaches debriefs, coaches noted that coachees struggled to identify a problem 

of practice or how to set a goal. Coaches reflected that they themselves struggled to support 

coachees in identifying a problem of practice and setting goals. From this, the leadership team 

created team-developed resources (described below) to support coaches and coachees finding a 

problem of practice and setting attainable goals during the planning meetings. In Year 2, the 

leadership team planned small-group activities in the monthly meetings to facilitate further 

discussions about their coaching practice. The coaches chose the topics (e.g., the coaching cycle 

and coaching practice) and the activities (e.g., discussion on articles and videos on coaching) for 

the meetings. This reflection and collaboration aligned with coaches’ coaching practice and their 

personal goals, such as developing transferable professional skills. Notably, coaches chose one 

topic to discuss month after month – their coaching experiences and how their teaching 

experiences affected that. Coaches expressed difficulty in supporting coachees’ teaching practice 

when they themselves have limited teaching practice. In response, the leadership team created 

additional team-developed resources to support coaches’ teacher learning (discussed in next 

section).  

Over the course of the program, we found our routine coaching meetings focused on 

creating opportunities for coaches to discuss the status of their coaching cycle and providing a 
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platform to share stories of their experiences, successes, and challenges faced in their coaching 

cycles. These discussions equip the leadership team with ways to better support our coaches. The 

leadership team was able to facilitate these discussions by utilizing small-group activities and by 

giving the coaches agency to select coaching-related professional development topics to center 

the meetings around. Furthermore, these monthly coaching meetings create a space where 

coaches can reflect on their coaching practice and can collaborate on challenges, which, in turn, 

creates a sustainable coaching and teacher-learning community. 

Bending, Not Breaking, the Coaching Cycle. To address the finding that many GTAs found 

setting an initial goal to be challenging, we added the option for a pre-planning meeting and 

observation component to help the coach and coachee build trust and provide additional time to 

identify a goal for the first cycle. The pre-planning meeting is intended for the coach to 

understand the coachee as “a whole person,” keeping in mind their personal commitments, 

institutional constraints, and salient identities in addition to “teacher” or “researcher.” This 

knowledge, in conjunction with data from a classroom observation, helps the coach suggest or 

guide the coachee to set a goal and begins a long-term relationship that is essential to building a 

teaching community. 

Creating Team-Developed Resources and Adapting KTI Resources to Support Coaches’ 

Coaching and Teaching Practice. To facilitate sustained development of coaches’ coaching 

practice and teacher-learning, we found that more GTA-specific and context specific resources 

were needed. From Year 1 to Year 3, we trained coaches with KTI resources, such as their 

conversation maps and coaching stances, which are documents that guide the coach on how to 

navigate a coaching conversation through an organized list of prompts. In this context, GTAs 

rely on a two-day teaching training that is offered by the Chemistry Department and, as a result, 
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coaches found that first-year GTAs had limited knowledge of their teaching practice. For 

example, during the planning meeting, GTAs could not answer the prompt “What would you like 

to understand about your teaching practice?” from the KTI planning conversation map, 

constraining coaching conversations. Therefore, we adapted KTI resources for a first-time GTA 

audience. For example, we adapted the KTI planning conversation map to ask questions about 

GTAs’ past learning experiences and their current teaching experiences before it asks about their 

teaching practices. These questions include but are not limited to: “What have been the most 

challenging moments as a GTA?” “What have been your aha or uh-oh moments?” “What do you 

like about teaching?” “What do you dislike about teaching?” and “Is there a teacher who you 

enjoyed or would like to emulate?” Thus, our KTI-adapted resources direct coaches to learn 

about their coachees, so they can better support developing GTA’s knowledge of their teaching 

practices. In addition, we created team-developed resources (e.g., example coaching goals and 

example data collection methodologies; Appendix Figure A-3). These materials were used in 

conjunction with the KTI-adapted materials with the goal of providing inspiration and examples 

of coaching cycles to the coachee, as well as acknowledging their minimal teaching experiences. 

Furthermore, we found that coachees expected their coaches to be expert teachers or 

experts in teaching. Although coaches have more teaching experience than coachees do, coaches 

and coachees are peers, and both rely on the two-day teacher training from the Chemistry 

Department. We knew that building teaching knowledge was influential for developing teaching 

practices and, therefore, important for both coaches and coachees. We created a “teaching terms” 

resource, which defines and provides examples for common teaching terms along with links to 

literature on the terms. Moreover, we created “grading,” “lesson planning,” “balancing students’ 

access and your time,” “supporting students’ engagement,” and “guiding students’ knowledge” 
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resources, as these topics have been common teaching practice goals in our program. These 

teaching resources are educational, providing definitions, examples, and links. The teaching 

resources are also practical, including prompts, sentence stems, and spaces for both coaches and 

coachees to use during their meetings. 

Over the course of piloting and implementing the program, we faced multiple challenges 

in adapting coaching to our GTA context, including practically implementing coaching cycles 

with respect to our coachees responsibilities and teaching experiences and supporting our 

coaches in addressing these challenges in their cycles. We addressed these challenges by creating 

sustained support for our coaches with routine monthly meetings and adapting and developing 

various resources that consider the GTA as a whole person, with different teaching, class work, 

research, and personal responsibilities. The resources and adaptations we made continue to 

support coaches and their coachees. The lessons we learned can be used by others to inform their 

own GTA development program. 

A.7 Conclusions and Implications 

Graduate students play an outsized role in undergraduate teaching at many institutions. 

However, supporting their professional development as educators is challenging because of the 

many demands of graduate programs. Instructional coaching, which has been widely used at the 

K-12 level, is a promising approach to support graduate teaching because it is flexible, requires a 

relatively low time commitment, and, therefore, can work within the constraints of graduate 

programs. We built an instructional coaching program for chemistry graduate students at the 

University of Michigan and demonstrated that instructional coaching can be applied at the post-

secondary level to support GTAs from within their classroom. 
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To develop the program, we began by working with coaching experts from the Knowles 

Teacher Initiative. A group of graduate students first learned how to be coaches and later became 

coach leaders, training new coaches, collecting evaluation data, and using that data to improve 

the coaching structures. Specifically, we found that graduate students who participated as 

coaches and coachees needed additional resources in order to participate meaningfully in the 

coaching cycle. We developed resources that provided inspiration for coaching goals and 

educated both coaches and coachees on teaching practice. Both coaches and coachees self-

reported a benefit to participation, and their ongoing participation in the program reinforces this 

perspective. 

We believe that instructional coaching is transferable to other settings. The description of 

the program and the materials provided in the supporting information demonstrate how the 

program was adapted for our context. We encourage the uptake of instructional coaching by 

others. However, we strongly recommend involving an experienced coach or program at the 

onset to ensure that it is implemented as intended. 

A.8 Future Directions 

In this manuscript, we discussed how a coaching program was adapted to fit the needs of 

GTAs at our institution leading to the current state of the program. A natural next step will be to 

investigate coaches and coachees participation patterns and professional growth. For example, 

the program is “opt-in” and thus we are interested in how this may affect access to the program 

and more particularly why some GTAs elect to participate while others do not. Similarly, it 

would be helpful to better understand why some GTAs continue with coaching after a single 

term while others do not. Other fruitful lines of inquiry could include longitudinally tracking 

coachees attitudes toward teaching and the evolution of their teaching practice while being 
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coached. Further study could improve our understanding of how coaching functions in this 

setting and provide information for adapting the program to GTA’s evolving needs. 

Coach specific development would also be a productive direction for inquiry that could 

inform program adaptations. For example, investigating how coaches develop coaching ability 

could be conducted using a more holistic approach that would complement our current 

experience-based evaluations. This investigation focus would inform whether approaches to 

coach training improve coaching ability. For example, we have tried a coaching tiered coaching 

system, where trained coaches could opt into being coached by more experienced coaches. 

Coach specific investigations would inform whether this or other strategies are productive. 

Overall, this report focused on the initial adaptation of an instructional coaching program 

to a chemistry GTA context. Our next step is to expand the program to both increase 

participation of coaches and coachees and increase the impact of coaching within the department. 

The data and program changes we propose in this section will provide a more concrete look into 

the impact of the coaching program on GTAs through coachee participation, the growth of our 

coaches, and the reach of the program. 
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A.9 Figures 

 

Appendix Figure A-1 Coaching Cycle. The coaching cycle is a three-stage cycle, consisting of a “planning” or a pre-
instruction stage, an “implementation” stage with observations and data collection, and a “reflecting” or post-
instruction stage. Figure adapted from Knowles Teacher Initiative. 
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Appendix Figure A-2 Example recruitment materials. The coaching team used printed and digital flyers with QR 
codes that directed students to the sign up for both (A) coach and (B) coachee recruitment. 
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Appendix Figure A-3 Examples of team developed resources. To help coaches facilitate conversations with their 
coachees, we developed a range of resources specific to GTA context, included (A) potential goals for a coaching 
cycle and (B) data collection methods. 
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A.10 Tables 
Appendix Table A-1 Recruitment of Coaches and Coachees. 

 Year in Graduate School  
 First Year Second Year Third Year Fourth Year Fifth Year Total 

Coaches 0 6 6 4 1 17 
Coachees 24 3 0 0 1 28 

As of Fall 2022. For coaches, the year in graduate school corresponds to the year that they 
have completed their coaching training and are conducting their first coaching cycle. For 
coachees, it is the year in graduate school that coachees are in during their first coaching 
cycle. On average, there are approximately 100 active GTAs teaching in the department each 
year.  
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Appendix Table A-2 Summary of Coachee’s goals by program year and retrospective theme categorization. 

Year Theme Goals 

Year 1 

Classroom Management 
Preparing for the lesson 
Time management concerning enacting the lesson 
Providing directions and commanding students’ attention 

Classroom Environment n/a* 

Teaching Practices 
Supporting students’ learning  
Facilitating students’ discussions   
Supporting students’ engagement  

Year 2 

Classroom Management 
Lesson planning  
Grading efficiently and consistently 

Classroom Environment n/a* 

Teaching Practices Supporting students’ engagement  

Year 3 

Classroom Management 

Planning lectures  
Delivering lectures 
Providing directions and commanding students’ attention 
Time management concerning grading 

Classroom Environment 
Building confidence when planning and delivering lessons 
Building confidence when communicating with students 

Teaching Practices 
Supporting students’ engagement  
Minimizing power dynamics in groups for small-group work  

Year 4 

Classroom Management 

Time management concerning preparing for the lesson 
Time management concerning enacting the lesson 
Providing directions and commanding students’ attention 
Grading lab reports efficiently 

Classroom Environment 
Building confidence when teaching in English  
Setting boundaries with student contact 
Questioning role as a teacher 

Teaching Practices 
Asking students questions 
Differentiating instruction 

*n/a – No goals were identified for this category during this year. 
Coaches help coachees with a wide range of goals that can be classified by three main themes: classroom 
management, classroom environment, and teaching practices. 
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Appendix Table A-3 Recommended coaching schedule throughout the semester. 

 

 
September October November December 

Week 1  Observing and 
Collecting Data 1 

Observing and 
Collecting Data 2 Conclusion Meeting 

Week 2 Introduction Meeting 
Analyzing 

Data 1 
Analyzing 

Data 2 
 

Week 3 Planning Meeting 1 Reflecting Meeting 1 Reflecting Meeting 2  

Week 4  Planning Meeting 2   

The leadership team recommends this coaching schedule for the Fall semester. However, flexibility is important 
for both coach and coachee so the leadership team encourages the coaching pair to meet in adapted timelines that 
work for their goal. 
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Appendix Table A-4 Timeline of coaching training and description of content discussed in each session. 

Timeline  Description of Sessions 

Meeting 1 Defining Coaching and the Coaching Cycle 
• Community building activity and establish meeting norms 
• Individually and group define what coaching means 
• Learn parts of the coaching cycle and anticipated semester timeline 

Meeting 2 Coaching Stances, Planning Meetings, and Reflecting Meetings 
• Learn and identify differences in the three stances (cognitive, collaborative, and consultive) 

and pivoting between them 
• Introduction to conversation maps 
• Introduction and description of planning and reflection meetings 

Meeting 3 Implementation and Collecting Data 
• Define components of a SMART goal 
• Explore quantitative and qualitative methods of data collection and which types of goals 

each method is appropriate for 
• Discuss how to share collected data with a coachee, while allowing them to reach their own 

conclusions   

Meeting 4 Anticipating Challenges 
• Discuss how to use the ‘Facets of Trust’32 to build and maintain trust in the coaching 

relationship 
• Use ‘Mind the Gap’ framework33 to identify differences between desired and current 

abilities of a coachee 
• Discuss potential challenges in a coaching relationship 

Meeting 5 Coaching Goals and Teaching Resources 
• Review the various coaching and teaching related team-developed worksheets 
• Evaluation of the worksheets and how to put them into practice 
• Practice planning meeting conversations in pairs 

Meeting 6 Wrap-up and Practice Coaching 
• Review coaching definitions from meeting 1 and reflect on any changes individuals would 

make after finishing the workshop 
• Practice full coaching cycles in pairs and provide feedback 

The coaching training sessions are a mix of leadership team lectures, independent thinking, small group activities 
with discussions, and large group sharing and discussions. 
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Appendix Table A-5 Recruitment of coaches and coachees by year. 

 
Recruited Coaches Active Coaches Recruited Coachees 

Year 1 6 6 8 

Year 2 7 10 3 

Year 3 0 8 13 

Year 4 4 8 5 

As of Fall 2022. Recruited coaches represent the number of GSIs trained in the respective year. Active coaches 
represent the number of coaches actively coaching in the respective year. This number accounts for the newly 
trained coaches, continuing coaches from previous training years, and for coaches who left the program. 
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Appendix B: Record of Sandwich-Style Microring Assay Reagents Used in this Thesis 

B.1 Antibody Reagent Information 
Appendix Table B-1 Documented information for the antibody and standard reagents used in this thesis. 

Target Assay 
Context 

Storage/stock 
Concentration 

Running 
Concentration Supplier 

Item Number 
and most 
recent Lot 

CCL2 

Capture Ab 0.5 mg/mL 0.25 mg/mL Thermo 14-7099 
2493163 

Standard 
Protein 100 μg/mL 300 ng/mL Thermo RP8648 

WK3434642 

Detection Ab 0.5 mg/mL 2 μg/mL Thermo 13-7096 
2373788 

CCL3 

Capture Ab 0.5 mg/mL 0.25 mg/mL RnD MAB670 
HJ1119071 

Standard 
Protein 100 μg/mL 100 ng/mL RnD 270-LD 

CG132041 
Detection Ab 
(Bt in house) 0.5 mg/mL 1 μg/mL RnD MAB270 

DS00519101 

CCL4 

Capture Ab 0.5 mg/mL 0.25 mg/mL RnD MAB271 
KH0621051 

Standard 
Protein 100 μg/mL 150 ng/mL RnD 270-LD 

CG132041 

Detection Ab 
(Bt in house) 0.5 mg/mL 2 μg/mL 

RnD 
*Custom 
order 

CUST01702 
AZY022203A 

CCL7 

Capture Ab 0.5 mg/mL 0.25 mg/mL RnD MAB282 
ZF012006A 

Standard 
Protein 100 μg/mL 50 ng/mL RnD 282-P3 

Detection Ab 
(Bt in house) 0.2 mg/mL 1 μg/mL RnD BAF282 

AOP0718071 

CCL8 

Capture Ab 0.5 mg/mL 0.25 mg/mL RnD MAB281 
ZE0421112 

Standard 
Protein 100 μg/mL 100 ng/mL RnD 281-CP 

NS0223091 
Detection Ab 
(Bt in house) 0.2 mg/mL 2 μg/mL RnD BAF281 

ANM072209A 
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GM-CSF 

Capture Ab 0.5 mg/mL 0.25 mg/mL RnD MAB615 
ASX282006A 

Standard 
Protein 100 μg/mL 150 ng/mL RnD 7954-GM 

MAP2220041 

Detection Ab 0.5 mg/mL 1 μg/mL RnD BAM215 
ALG1619031 

IFN-γ 

Capture Ab 1 mg/mL 0.25 mg/mL Mabtech 3420-3 
116.3 

Standard 
Protein 100 μg/mL 100 ng/mL Thermo RIFNGSO 

XJ361814 

Detection Ab 1 mg/mL 1 μg/mL Mabtech 3420-6 
 

IFN-λ1 

Capture Ab 0.5 mg/mL 0.25 mg/mL RnD BAF1598 
KL60717091 

Standard 
Protein 100 μg/mL 150 ng/mL RnD 1598-IL 

IVI0619111 

Detection Ab 0.2 mg/mL 1 μg/mL RnD BAF1598 
KL60717091 

IL-1β 

Capture Ab 0.5 mg/mL 0.25 mg/mL Thermo 14-7018 
2355028 

Standard 
Protein 100 μg/mL 300 ng/mL Thermo RIL1BI 

XF343615 

Detection Ab 0.5 mg/mL 2 μg/mL Thermo 13-7016 
2252056 

IL-2 

Capture Ab 0.5 mg/mL 0.25 mg/mL BD 
Bioscience 

555051 
0156598 

Standard 
Protein 100 μg/mL 150 ng/mL BD 

Bioscience 
554603 
2301093 

Detection Ab 0.5 mg/mL 2 μg/mL BD 
Bioscience 

555040 
2021656 

IL-6 

Capture Ab 1 mg/mL 0.25 mg/mL Thermo 16-7069 
2432586 

Standard 
Protein 100 μg/mL 100 ng/mL Thermo RP8619 

 

Detection Ab 0.5 mg/mL 2 μg/mL Thermo 13-7068 
2748779 

IL-7 

Capture Ab 0.5 mg/mL 0.25 mg/mL RnD MAB207 
HE072006A 

Standard 
Protein 100 μg/mL 100 ng/mL RnD 207-IL 

AY1420013 

Detection Ab 0.2 mg/mL 1 μg/mL RnD BAF207 
AUM1019041 

IL-8 
Capture Ab 0.5 mg/mL 0.25 mg/mL BD 

Bioscience 
554716 
9014561 

Standard 
Protein 100 μg/mL 50 ng/mL BD 

Bioscience 
554609 
2237354 
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Detection Ab 0.5 mg/mL 2 μg/mL BD 
Bioscience 

554718 
0286237 

IL-10 

Capture Ab 1 mg/mL 0.25 mg/mL Thermo 16-7108 
2612963 

Standard 
Protein 100 μg/mL 300 ng/mL Thermo PHC0105 

2421697 

Detection Ab 0.5 mg/mL 2 μg/mL Thermo 13-7109 
2399963 

IL-15 

Capture Ab 0.5 mg/mL 0.25 mg/mL Biolegand 515001 
B362395 

Standard 
Protein 100 μg/mL 100 ng/mL RnD 247ILB 

TLM1723091 

Detection Ab 0.5 mg/mL 2 μg/mL Biolegand 515104 
B362226 

IL-17 

Capture Ab 0.5 mg/mL 0.25 mg/mL Mabtech 3520-3 
mABMT44.6 

Standard 
Protein 100 μg/mL 150 ng/mL Biolegand 570502 

B370981 

Detection Ab 0.5 mg/mL 2 μg/mL Mabtech 3520-6 
mAbMT504 

IP-10 

Capture Ab 0.5 mg/mL 0.25 mg/mL BD 
Bioscience 

555046 
9346140 

Standard 
Protein 100 μg/mL 50 ng/mL BD 

Bioscience 
551130 
2061779 

Detection Ab 0.2 mg/mL 0.5 μg/mL RnD BAF266 
AAP192203A 

TGF- α 

Capture Ab 0.5 mg/mL 0.25 mg/mL RnD AF-239-NA 
ANR0519091 

Standard 
Protein 100 μg/mL 100 ng/mL RnD 239-A 

CWW1319021 

Detection Ab 0.2 mg/mL 1 μg/mL RnD BAF239 
A001318101 

TNF-α 

Capture Ab 0.5 mg/mL 0.25 mg/mL Biolegend 502801 
B369417 

Standard 
Protein 100 μg/mL 300 ng/mL Biolegend 570102 

B344486 

Detection Ab 0.5 mg/mL 2 μg/mL Biolegend 502904 
B353934 

EBOV 

Capture Ab 0.5 mg/mL 0.25 mg/mL IBT 0365-001  
Standard 
Protein 100 μg/mL 2.4 μg/mL IBT 0565-001  

EBOV/SUDV 
pan tracer  0.5 mg/mL 2 μg/mL IBT N/A 

SUDV 
Capture Ab 0.5 mg/mL 0.25 mg/mL IBT 0302-030  

Standard 
Protein 100 μg/mL 2.4 μg/mL IBT 0570-001  
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EBOV/SUDV 
pan tracer 0.5 mg/mL 2 μg/mL IBT N/A 

B.2 Assay Reagent Information 
Appendix Table B-2 Documented information for the assay reagents used in this thesis. 

Reagent Storage 
Concentration 

Running 
Concentration Supplier 

Item 
Number and 
most recent 

Lot 
Mouse IgG control 
capture antibodies 5 mg/mL 0.25 mg/mL Invitrogen 0031903 

WG3344432 
Streptavidin horse 
radish peroxidase 

(SA-HRP) 
1 mg/mL 2-4 μg/mL Thermo 

21130 
YB3837133 

4-chloro-1-napthol 
(4CN) Stock Stock Thermo 0034012 

WG330477 
Plasma matrix: 
Human Plasma 

Apherisis Derived 
with Li Heparin 

anticoagulant 

Stock Stock Innovative 
Research 

IPALIH50ML 
34376 

Serum matrix: 
Human Serum Off 

the Clot 
Stock Stock Innovative 

Research 

ISER50ML 
36670 

Non-Bt IL8 
detection antibody 0.5 mg/mL Various 

concentrations BD Bioscience 55717 
2101159 

B.3 Storage Conditions 

Most capture antibodies were stored as received at 4°C. Capture antibodies for CCL3, 

CCL4, CCL7, CCL8, GM-CSF, IFN-λ1, IL-7, and TGF-α were reconstituted to respective 

storage concentration, aliquoted into small volumes, and stored at -80°C. Capture antibodies for 

EBOV and SUDV targets were desalted, diluted to 0.5 mg/mL, aliquoted, and stored at -80°C. 

All protein standards were reconstituted to 100 μg/mL, aliquoted into small volumes, and stored 

at -80°C. Most biotinylated detection antibodies were stored as received at 4°C. Tracer 

antibodies for CCL3, CCL4, CCL8, IP-10, CCL7, GM-CSF, IFN-λ1, IL-7, TGF-α, and 

EBOV/SUDV were reconstituted to respective storage concentration, aliquoted into small 



 431 

volumes, and stored at -80°C. Mouse IgG capture antibodies, SA-HRP, 4CN, and non-bt IL8 

antibodies were stored as received at 4°C. Plasma and serum matrices were aliquoted and stored 

at -20°C. Human and non-human primate specimen were stored at -80°C. 


