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ABSTRACT

The Jacquet-Langlands correspondence asserts that an automorphic representation π of
GL2(A) transfers to an automorphic representation of a quaternion algebra over Q if and
only if the local component πv is square-integrable at places v that are ramified in the
quaternion algebra. It is known that the local representation π∞ of GL2(R) associated to a
cusp form of weight one is not square-integrable. Thus, weight 1 forms do not transfer to a
quaternion algebra ramified at infinity. Nevertheless, fixing a prime p split in the quaternion
algebra that is ramified at ∞, we will discuss a p-adic formulation of the Jacquet-Langlands
correspondence that includes cuspidal newforms of weight 1 that are supercuspidal at p.
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CHAPTER I
Introduction

This thesis takes place at the intersection of two themes in Langlands Programme—Langlands’
functoriality and its compatibility with p-adic variation of automorphic forms.

Let G be a connected reductive group over Q. Recall that the (Weil form) L-group LG

of a reductive group G over Q is ∨G(C) ⋊WQ where ∨G(C) is the dual reductive group
of G and WQ is the Weil group of Q; and an L-homomorphism is a group homomorphism
between the L-groups of two connected reductive groups G and H which is identity on the
Weil group factor:

LH LG

WQ

.

The general principle of functoriality is then that, an L-homomorphism between L-groups
LH → LG of two connected reductive groups H and G over Q gives rise to a map{

L-packets of automorphic
representations of H

}
→

{
L-packets of automorphic

representations of G

}
.

The simplest example of functoriality arises when G is quasi-split over Q and H is an inner
form of G, viz., H is a connected reductive group such that H/Q is isomorphic to G/Q via
an isomorphism

G/Q H/Q

ϕ

defined over Q that satisfies the following property: for every σ ∈ Gal(Q|Q), the isomor-
phism φ−1 ◦ φσ = φ−1 ◦ σ ◦ φ ◦ σ−1 is an inner automorphism of G. The L-groups of inner
forms are equal and so the identity map is a morphism of L-groups.

In this thesis, G will be the group GL2/Q, and H one of its inner forms. A standard fact
is that the group H is then the group of units in a quaternion algebra over Q. It is also
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well known that a quaternion algebra B over Q is characterized upto isomorphism by the
set Σ of places v of Q such that the Qv-algebra Qv ⊗Q B is not isomorphic to the matrix
algebra M2×2(Qv); the set Σ is necessarily finite and of even cardinality and conversely given
any finite subset Σ of places of Q of even cardinality, there is a quaternion algebra over Q

(unique upto isomorphism) that is ramified at precisely places in Σ.
Fix a finite subset Σ of places of Q of even cardinality. Let B be the quaternion al-

gebra over Q that is ramified precisely at places in Σ. The classical Jacquet-Langlands
correspondence is an injective map from the infinite-dimensional admissible automorphic
representations of the group B× to that of GL2, together with a description of the image.

Given an automorphic representation π of GL2(A), there is an automorphic represen-
tation π′ of B×(A) such that, for all v /∈ Σ, the representations π′

v and πv are equivalent
under an isomorphism (B ⊗Q Qv)

× ' GL2(Qv) if and only if πv is square-integrable for all
v ∈ Σ. It follows from the proof of Jacquet-Langlands correspondence that multiplicity one
holds for the group B×; therefore, when such a π′ exists, it is unique. We denote π′ by πJL.
The correspondence πJL 7→ π then induces an injective map from the set of classical Hecke
eigensystems on B× to that on GL2 (cf. Proposition II.21); see Definition II.20 for the notion
of “classicality”.

Let us now fix an odd1 prime p once and for all, and turn to the theme of p-adic variation.
It is a theorem of Hida [Hid88] that Hecke eigensystems on GL2 and B× vary in p-adic
families. We will exclusively deal with the case where B is ramified at ∞ (the so-called
definite quaternion algebras) and split at p—for an exposition of Hida theory in this (arguably
elementary) case, see [LV12, §3], [Buz04, §4 ff], [Hsi21, §4.4], [BD07, §2], and [BDI10, §1-§4];
for Hida theory with tame levels deeper than the maximal order at the ramified places, see
[Dal23b].

The spectral theory of the Up-operator underlying Hida theory is reasonably well-understood,
reaching a crescendo in the work of Coleman-Mazur [CM98], Buzzard [Buz07] and Ch-
enevier [Che05] for the purpose of providing context to our thesis. Fix a natural num-
ber N that is relatively prime to p (the so-called tame level). Let WN denote the rigid
analytic space Spf ZpJ(Z/NZ)× × Z×

p Krig; the Cp-points of WN are continuous characters
(Z/NZ)××Z×

p → C×
p ; in particular, this space contains the classical weight characters κ(k,ψ)

given by
κ(k,ψ) : (a, z) 7→ 〈z〉kψ(a, log〈z〉 mod pm);

here 〈z〉 = zω−1(z) where ω : Z×
p → Z×

p denotes the Teichmüller character, log denotes the
branch of the p-adic logarithm that satisfies log p = 0, and ψ : (Z/Npm+1Z)× → C×

p is a
1This an assumption of convenience because it lightens the notation and does not take away from the

other ideas.
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Dirichlet character (for some m ⩾ 0). Coleman-Mazur (for N = 1) and Buzzard (for general
N) have constructed a rigid analytic variety

wt : EGL2 →WN

over the space WN whose fiber over a weight κ is the set of Hecke eigensystems λ on GL2 of
tame level N and weight κ such that the λ(Up) 6= 0 (“finite slope” eigensystems).

We restrict now to the case of definite quaternion algebras. Let D be a quaternion algebra
over Q that is split at p. Under the hypothesis that the primes that divide the discriminant
d divide the tame level N exactly (thus forcing that the eigensystems that are in the image
of the classical Jacquet-Langlands correspondence with tame level N are twists of Steinberg
at places dividing d), Chenevier [Che05] has constructed an eigenvariety wt : ED× → WN

for the group D× and an immersion of eigenvarieties

ED× EGL2

WN

wt wt

interpolating the Jacquet-Langlands correspondence. Amongst classically studied cuspidal
newforms for the group GL2, those of weight 1 are interesting from this perspective; indeed
if f is a cuspidal newform of weight 1 for the group GL2, then:

• The automorphic representation πf associated to f does not transfer to D× since πf,∞
is not square-integrable.

• The local representation πf,q is never a twist of Steinberg at primes q dividing the level
of the form f .

Thus, weight 1 forms are excluded from the classical Jacquet-Langlands correspondence and
from Chenevier’s p-adic Jacquet-Langlands correspondence. However, a cuspidal p-stabilized
newform f of weight 1 with ap(f) 6= 0 (equivalently, that f is p-ordinary) is a p-adic limit
of cuspidal newforms of weight ⩾ 2 by Hida theory. For the sake of an informal discussion,
let us suppose that F = {Fκ}κ∈WN

is a Hida family of cusp forms of weight κ = (k, χ) with
k ⩾ 2 specializing to f in weight 1. Since the automorphic types of arithmetic specializations
and specializations to weight 1 are rigid in Hida families [Dim14, §6], if we start with f such
that f is supercuspidal at primes dividing d, then the Hecke eigensystems corresponding to
Fκ transfer to D× for weights κ = (k, χ) such k ⩾ 2. This leads us naturally to inquire about
the existence of p-adic interpolation of the Jacquet-Langlands correspondence that includes
this situation.

3



Constructing aD×-eigenvariety and a p-adic analytic interpolation of the Jacquet-Langlands
correspondence that both include weight 1 points however is subtle owing to the following
observations:

1. If q is a prime dividing the quaternion algebra and Oq is an order in Dq := Qq ⊗Q D

deeper than the maximal order in the division algebra, then the dimension of (πJL
q )O

×
q ,

whenever non-zero, may be more than one; globally, for an order O of D of “level”
N , the relationship between πU1(Nd) and (πJL)Ô is more complicated. The situation is
however understood in the literature; see [Piz80, HPS89, PRV05, Mar20].

2. there may be more than one Galois-conjugacy class of Hida families through f ; in
view of the automorphic rigidity we mentioned above, the local structure at fJL of
a putative D×-eigenvariety that includes weight 1 forms is at least as complicated as
that of the GL2-eigenvariety at f .

In any event, even if we succeeded in constructing the D×-eigenvariety that includes
weight 1 forms and produced a p-adic Jacquet-Langlands correspondence at the level of
eigenvarieties, we’d merely have a spectral correspondence without an understanding of how
the interpolation happens in any model for the space of p-adic modular forms on D×. Such
an understanding is crucial to us for the arithmetic applications we have in mind.

Instead we ask if there is a “p-adic automorphic representation” on D× that witnesses
this phenomenon. In his influential paper [Eme06], Emerton debuted:

• completed cohomology as a proxy for the space of p-adic modular forms; and

• a notion of classical p-adic automorphic representation; see Definition 3.1.5 in loc. cit.

To describe these ideas, let us fix some notations. Let L be a finite extension of Qp, let O

be the ring of integers in L and let k be the residue field of O. We fix a uniformizer $ in O;
we also fix an algebraic closure Qp of Qp and an isomorphism ι : C → Qp. Let K(p) be a
compact open subgroup in D×(A(p∞)); let K∞ denote the group D×(R)1 of norm 1 elements
in D×(R). We look at the family of finite sets

Y (KpK
(p)) = D×(Q) \D×(A) / R×

+K∞KpK
(p)

obtained by varying the level subgroup Kp ⊂ D×(Qp) = GL2(Qp) at p; if K ′
p ⊂ Kp,

then there is a canonical surjection Y (K ′
pK

(p)) ↠ Y (KpK
(p)). The completed cohomol-

ogy H̃
0
(K(p)) of tame level K(p) for the group D× is defined to be

H̃
0
(K(p))O = lim←−

s

lim−→
Kp

H0(Y (KpK
(p)),O/$sO)

4



as s ranges over non-negative integers and Kp over compact open subgroups of D×(Qp).
The L-vector space H̃

0
(K(p))L = L⊗ H̃

0
(K(p))O is then an L-Banach space for the sup norm,

and in which the O-module H̃
0
(K(p))O is the unit ball. One checks (v. Lemma II.15) that

H̃
0
(K(p))O (resp. H̃

0
(K(p))L) is the space of O-valued (resp. L-valued) continuous functions

on the profinite set YK(p) = lim←−Kp
Y (KpK

(p)).
Classical p-adic automorphic representations of the group D× are constructed out of

certain infinite dimensional smooth admissible automorphic representations π of D×(A)

over C. Factor π into
π = π∞ ⊗ πfin = π∞ ⊗ πp ⊗ π(p)

fin

where π∞ is an admissible representation of D×(R), and πp and π
(p)
fin are respectively in-

finite dimensional smooth admissible representations of D×(Qp) and D×(A(p∞)). If the
infinitesimal character of π∞ coincides with that of an irreducible finite dimensional alge-
braic representation W of the group D×(R) over C, then we say that π is W -allowable and
the classical p-adic automorphic representation π̃ associated to π is the representation of
D×(A(∞)) = D×(Qp)×D×(A(p∞))

(πp ⊗C W )⊗C π
(p)
fin ⊗C,ι Qp

defined2 over Qp.
Emerton observed that the classical p-adic automorphic representations are summands

of the space H̃
0
(K(p))L,lalg of locally algebraic vectors in H̃

0
(K(p))L (cf. Proposition 3.2.4 of

loc. cit.). For convenience, let us base change to Qp; then, his theorem states that there is
an isomorphism

H̃
0
(K(p))L,lalg ⊗Qp =

⊕
W

⊕
π

(
(πp ⊗C W )⊗C (π

(p)
fin )

K(p)
)⊕mD× (π)

⊗C,ι Qp

of Qp-vector spaces where the first direct sum runs over irreducible algebraic representations
of D×(R) over C and the second direct sum runs over automorphic representations of D×(A)

that are W -allowable. In particular, passing to the inductive limit over K(p), we get an
isomorphism of Qp-representations of D×(A(∞))

lim−→
K(p)

H̃
0
(K(p))L,lalg ⊗Qp =

⊕
W

⊕
π

(
(πp ⊗C W )⊗C π

(p)
fin

)⊕mD× (π)

⊗C,ι Qp.

A cuspidal newform f of weight 1 which is supercuspidal at primes dividing d is only a
2As Emerton shows in ¶3.1 of loc. cit., the representation descends uniquely to a finite extension of Qp

but we suppress that here.
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p-adic limit of algebraic vectors in H̃
0
(K(p))L. Thus to locate weight 1 forms in completed

cohomology, we should work with the larger space H̃
0
(K(p))L,la of locally analytic vectors in

H̃
0
(K(p))L.
Note that, if π is an automorphic representation of D×(A) to which a p-adic Galois

representation ρπ may be associated (e.g., C-algebraic in the sense of [BG14]), the local
components πv of π may be recovered from the Weil-Deligne representation WDv(ρπ|GQv

)

via the (classical) local Langlands correspondence; the web of theorems of this flavor go under
the name “local-global compatibility” and was first established in Carayol [Car86] for v 6= p,
and in Saito [Sai97] for v = p; for automorphic representation πf of GL2(A) associated to
a cuspidal newform f of weight 1, the local-global compatibility can be deduced from Hida
theory (cf. [Wil88]). This suggests that we ought to think of the local component π̃p as
arising from a p-adic local Langlands correspondence while the smooth local representations
at primes different from p still come from the classical local Langlands correspondence.

Motivated by these considerations, and the intervening developments in the p-adic Lang-
lands programme, we are led to the following conjectural p-adic Jacquet-Langlands corre-
spondence:

Conjecture I.1. Let D be the quaternion algebra of discriminant d∞ over Q; we suppose
that p ∤ d. Fix a continuous absolutely irreducible representation ρ : GQ → GL2(k). Assume
that ρ satisfies the following conditions3:

(Modρ) ρ is GL2-modular;

(Genp) ρ|GQp
is not equivalent to (

1 ∗
0 χ

)
⊗ ψ

for some character ψ : GQp → k× and χ is the mod p cyclotomic character;4

(SId) for v | d, the local representation ρ|GQv
is irreducible, or is of the form

(
1 ∗
0 χ−1

)
⊗ ψv

where ψv is some character GQv → k× and χ is the mod p cyclotomic character.

Suppose that λ : T(U1(N))→ L is a classical eigensystem on GL2 and to which there is an
3See the discussion in §IV.1.
4For more on this point, see Remark 6.1.23 of [Eme11].
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associated p-adic Galois representation ρλ defined over L; suppose5 also that ρλ is equivalent
to ρ. There exists a tame level K(pd∞) of D×(A(pd∞)) (cf. [Mar20]) such that there is a
continuous T(K(pd∞))[D×(Qp)×

∏
q|dD

×(Qq)]-equivariant embedding

LLp(ρλ|GQp
)

⋏⊗
L

⊗q|d LLq(WDq(ρλ|GQq
)) ↪→ lim−→

Kd

Ĥ
0
(KdK

(pd∞))L.

Here, on the left-hand side, the notation
⋏⊗
L

refers to the completed tensor product, LLv

denotes the classical local Langlands correspondence for v | d, and LLp denotes the p-adic
local Langlands correspondence; on the right-hand side, the injective limit is taken over open
compact subgroups Kd of

∏
q|dD

×(Qq).

In this thesis, under stronger assumptions than in our conjecture, we prove the p-adic
Jacquet-Langlands correspondence before passing to the inductive limit over all levels at
primes dividing d. Our main theorem is the following:

Theorem I.2. Let G = D× where D is a definite quaternion algebra of discriminant d∞;
we assume that p ∤ d so D ⊗Qp is the matrix algebra. Fix a finite extension L of Qp with
ring of integers O, and residue field kL.

Fix a continuous absolutely irreducible representation ρ : GQ → GL2(kL) that is modular
and satisfies the hypotheses

(Irrp) ρ|GQp
is irreducible

and (SId) above. Let Σ0 be a finite set places not containing p so that ρ is unramified outside
Σ = Σ0 ∪ {p}.

Let π = V(ρm|GQp
) be the p-adic local Langlands correspondent of the universal modular

deformation ρm.
Let λ : Tρ,Σ → O be any system of Hecke eigenvalues; let p = kerλ. Then:

1. There is a non-zero G(Qp)-equivariant map

π/pπ → Ĥ
0

ρ,O[p]

of Tρ,Σ-modules.
5This assumption forces that N is divisible by the Artin conductor of ρ; see, generally, the discussion in

§IV.1, and [Liv89] in particular.
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2. If λ is associated to a Galois representation ρλ : GQ → GL2(L), then, (π/pπ) is
the locally analytic representation Π(ρλ|GQp

) associated to ρλ|GQp
by the p-adic local

Langlands correspondence and so every non-zero map of (1) above extends to a non-zero
map

Π(ρλ|GQp
) ↪→ Ĥ

0

ρ,L .

We close with the following conjecture, strongly inspired by the theory of eigenvarieties:

Conjecture I.3. Suppose that f is a cuspidal newform of weight 1. Suppose that ρf satisfies
the conditions (Genp) and (SId) outlined in the Introduction. Let Σ0 be a finite set places
not containing p so that ρ is unramified outside Σ = Σ0 ∪ {p}. Then there is a prime ideal
pf of Tρf ,Σ such that the Hecke eigenvalues encoded by pf coincide with those of f at places
` /∈ Σ.

Together with part 2 of our main theorem, this provides a p-adic Jacquet-Langlands
correspondence for cuspidal newforms of weight 1.
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CHAPTER II
Generalities on Completed Cohomology

In this chapter, we closely follow Emerton’s ICM survey [Eme14]; cf. also the survey by
Calegari and Emerton [CE12]. The fundamental properties of completed cohomology are
established in Emerton’s seminal paper [Eme06].

We spend the first six sections of this chapter on generalities concerning completed co-
homology. Before we move on to the Galois side in the next chapter, we mention that
the completed cohomology may be identified with the space of p-adic automorphic forms à
la Hida (resp. Buzzard) for ordinary (resp. finite slope) families in the context of definite
quaternion algebras (§II.7). In the final section (§II.8), we shall reformulate the classical
Jacquet-Langlands correspondence in terms of the p-adic Hecke algebras.

Notations for this chapter

• Let G be a reductive linear algebraic group over Q; we also fix a prime p.

• We write G∞ for the real points G(R) of G, and write G for the Qp-points G(Qp) of
G. Thus G∞ is a reductive Lie group while G is a p-adic Lie group.

• Fix a maximal Q-split torus A∞ in the center of G, and a choice of maximal compact
subgroup K∞ of G∞.

II.1: The definition

For a open compact subgroup Kfin ⊂ G(A(∞)), we form the double quotient

Y (Kfin) = G(Q) \G(A) / A◦
∞K

◦
∞Kfin.

Note that if K ′
fin ⊂ Kfin are two open compact subgroups, then there is a natural surjection

Y (K ′
fin) ↠ Y (Kfin).
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We fix an open compact subgroup K(p) ⊂ G(A(p∞)), the so-called tame level. Taking
Kfin = KpK

(p) as Kp ranges over open compact subgroups of G, we get a projective system

{Y (KpK
(p))}Kp⊂G,Kpopen compact.

Note that this projective system has an action ofG and the component group π0 = A∞K∞/A
◦
∞K

◦
∞.

Definition II.1.

1. The completed cohomology of tame level K(p) is defined as

H̃
i
(K(p))O := lim←−

s

lim−→
Kp

Hi
(
Y (KpK

(p)),O/$s
)

where the projective limit is taken over open compact subgroups Kp of G, and the
injective limit is taken over integers s ⩾ 0. The O-module H̃

i
(K(p))O is equipped with

its $-adic topology; this coincides with the projective limit topology suggested by the
presentation here–viz., if we endow the O/$s-modules

lim−→
Kp

Hi
(
Y (KpK

(p)),O/$s
)

with the discrete topology, the projective limit topology on H̃
i
(K(p))O coincides with

the $-adic topology of the O-module H̃
i
(K(p))O.

2. The naïve completed cohomology Ĥ
i
(K(p))O is the p-adic completion

Ĥ
i
(K(p))O = lim←−

s

Hi/$sHi

of the injective limit Hi given by

Hi = lim−→
Kp

lim←−
s

Hi
(
Y (KpK

(p)),O/$s
)
' lim−→

Kp

Hi
(
Y (KpK

(p)),O
)
.

Note that these O-modules fit in a short exact sequence

(II.1.1) 0→ Ĥ
i
(K(p))O→ H̃

i
(K(p))O→ TpH

i+1 → 0

where TpHi+1 is the projective limit lim←−sH
i+1[$s]; the notation Hi+1[$s] refers to the O/$s-

module of $s-torsion elements in Hi+1.
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We are interested in the cases where G is the group GL2, or the units D× in a quaternion
algebra D over Q split at p and ramified at ∞.

Lemma II.2. Let i equal 1 or 0 accordingly as G = GL2, or D× where D is a quaternion
algebra over Q as above. Then, the natural map Ĥ

i
(K(p))O→ H̃

i
(K(p))O is an isomorphism.

Proof. In the cases above, note that Hi+1 is the zero module; hence TpHi+1 = 0. The claim
now follows from the exact sequence (II.1.1).

Definition II.3. For an O-algebra A, we will write

H̃
i
(K(p))A = A⊗O H̃

i
(K(p))O

Ĥ
i
(K(p))A = A⊗O Ĥ

i
(K(p))O

for the A-module obtained by change of scalars. (Often, for us, A is one of the residue field
k of O, or torsion O-modules O/$sO, or the field of fractions L of O.)

The L-vector spaces H̃
i
(K(p))L and Ĥ

i
(K(p))L are Banach spaces, containing H̃

i
(K(p))O

and Ĥ
i
(K(p))O respectively as unit balls.

II.2: Completed cohomology as a G-representation

The action ofG on the projective system
{
Y (KpK

(p))
}
Kp⊂G

gives rise to an action ofG on the

O-module H̃
i
= H̃

i
(K(p))O. The following fundamental result makes completed cohomology

amenable to study using largely algebraic and soft analytic techniques:

Theorem II.4. The G-action of H̃
i
affords a continuous $-adically admissible representation

of G; that is

• H̃
i

is $-adically complete as an O-module;

• the action map G× H̃
i
→ H̃

i
is continuous when H̃

i
is given its $-adic topology; note

that this amounts to the fact that H̃
i
/$s is a smooth G-representation for all s; and

• H̃
i
/$s is admissible (i.e., for each open compact subgroup Kp of G, the O-submodule

of Kp-invariants is finitely generated over O).

In particular, H̃
i

being admissible is equivalent to the fact that its Schikof dual (H̃
i
)∗ :=

HomO(H̃
i
,O) is finitely generated as OJKpK-module for some (and hence every) open compact

subgroup Kp of G.

Proof. This is the main theorem in [Eme06]. For the equivalence, see [ST02a, Theorem 3.5].
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II.3: Emerton’s spectral sequence: recovering cohomology at finite
levels from completed cohomology

The manner in which the completed cohomology encodes the cohomology of the spaces at
finite levels is a bit subtle. To illustrate this phenomenon, we consider a topological situation
analogous to the arithmetic case of interest to us – viz., the tower of coverings of the circle
Y0 = Y = R/Z of p-power degree. For n ⩾ 0, let Yn = R/pnZ so there are natural covering
maps Ym → Yn with Galois group pnZ/pmZ; the projective system {Yn}n has an action of
the group G = Zp. In this situation,

Hi(Yn,Z/p
sZ) =

Z/psZ, for i = 0, 1

0, otherwise
.

Since the induced map H0(Yn,Z/p
sZ)→ H0(Yn+1,Z/p

sZ) is the identity, we get

H̃
0
= lim←−

s

lim−→
n

H0(Yn,Z/p
sZ) = Zp.

Note that the action ofG on H̃
0

is trivial. On the other hand, the induced map H1(Yn,Z/p
sZ)→

H1(Yn+1,Z/p
sZ) is multiplication by p; therefore,

H̃
1
= lim←−

s

lim−→
n

H1(Yn,Z/p
sZ) = 0.

Neverthless, we can recover the cohomology H•(Yn,Zp) of Yn from H̃
•
:

Theorem II.5. There is a first quadrant E2-spectral sequence

Hi
cts(Kp, H̃

j
(K(p))O) =⇒ Hi+j(Y (KpK

(p)),O)

abutting to the O-cohomology of the congruence quotients at finite p-power levels.

In our topological example, the spectral sequence

Hi
cts(p

nZp, H̃
j

Zp
) =⇒ Hi+j(Yn,Zp)

collapses on the second page since the only non-zero terms are in the row j = 0 and the
differentials have bidegree (2,−1), so we do recover the expected infinity page.

Proof of Theorem II.5. In this setting, taking K ′
p ⊂ Kp to be an open compact subgroup,
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we have the Hochschild Serre spectral sequence for continuous cohomology

Hi
cts(Kp/K

′
p,H

j(Y (K ′
pK

(p)),O/$s)) =⇒ Hi+j(Y (KpK
(p)),O/$s).

Since inductive limit commutes with cohomology, we get a spectral sequence:

Hi
cts(Kp, lim−→

K′
p

Hj(Y (K ′
pK

(p)),O/$s)) =⇒ Hi+j(Y (KpK
(p)),O/$s).

Now, we consider the projective limit over s of these spectral sequences and argue that the
prosystem

{
lim−→K′

p
Hj(Y (K ′

pK
(p)),O/$s)

}
s

can be replaced by the prosystem
{
H̃
j
(K(p))O ⊗ O/$s

}
s
.

This step is subtle, and relies on finiteness properties of the spaces Y (Kfin) and its coho-
mology groups. We refer the interested reader to the details in Emerton’s paper [Eme06,
Proposition 2.1.11 and Theorem 2.2.11 (v)].

II.4: Completed cohomology of local systems

Let W be a finitely generated torsion-free O-module equipped with a continuous represen-
tation of an open compact subgroup Kp of G; suppose also that Kp is sufficiently small
so that the left translation by G(Q) has trivial stabilizers on G(A)/A◦

∞K
◦
∞KpK

(p) (i.e.,
G(Q) ∩ x−1A◦

∞K
◦
∞KpK

(p)x = {1} for all x ∈ G(A)).
Then, the O-module W defines a local system VW → Y (K ′

pK
(p)) for all open compact

subgroups K ′
p ⊂ Kp by

VW = G(Q) \
(
(G(A)/A◦

∞K
◦
∞K

(p))×W
)
/K ′

p

where γ ∈ K ′
p acts on pairs (g, w) with g ∈ (G(A)/A◦

∞K
◦
∞K

(p)) and w ∈ W via

γ · (g, w) = (gγ, γ−1w),

and the action of G(Q) is by left translation on the first factor.
One can then define completed cohomology with local system coefficients:

Definition II.6. The completed cohomology H̃
i
(KpK

(p),VW )O with coefficients in the local
system VW is given by

H̃
i
(KpK

(p),VW ) = lim←−
s

lim−→
K′

p

Hi
(
Y (K ′

pK
(p)),W/$sW

)
where, the inductive limit is taken over compact open subgroups K ′

p of Kp and the projective
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limit over non-negative integers s.

Let us now observe that the W/$sW is finite and hence every small enough open compact
subgroup of Kp fixes W/$sW pointwise. This leads to an isomorphism

lim−→
K′

p

Hi(Y (K ′
pK

(p)),W/$sW )
'−→ lim−→

K′
p

Hi(Y (K ′
pK

(p)),O/$sO)⊗W/$sW

(where the injective limits are taken over all open compact subgroups of Kp); one then has
the following corollary:

Corollary II.7 (Theorem 2.2.17 of [Eme06]). Let W∨ denote the O-dual of W endowed with
the contragredient Kp-action. There is a first quadrant E2-spectral sequence

Ei,j
2 = ExtiOJKpK(W∨, H̃

j
(K(p))O) =⇒ H i+j(Y (KpK

(p)),VW )

that computes the cohomology of local systems at finite levels.

This is to be compared with Hida theory, say over GL2, where the object that interpolates
over p-power levels (and fixed weight) has specializations to automorphic forms of all possible
weights. But, unlike Hida theory, we have a substantial upgrading of structure on our
model for the space of p-adic modular forms—viz., the completed cohomology; the completed
cohomology modules now admit the action of the entire group G(Qp) (and the tame level
Hecke algebra) as opposed to just the Up-operator (and the tame Hecke algebra). This
makes it possible to view irreducible subrepresentations of completed cohomology as “p-adic
automorphic representations” of the group G.

We close this section with a simpler description of the space of global sections of the local
system VW . This helps connect completed cohomology to p-adic automorphic forms when
Y (Kfin) are zero-dimensional.

Lemma II.8. The O-module H0(KpK
(p),VW ) is G(A)-equivariantly identified with the space{

f : G(Q) \G(A)/A◦
∞K

◦
∞K

(p) → W
∣∣∣ f is continuous and
f(gγ) = γ−1f(g) for all g ∈ G(A), γ ∈ Kp

}
.

Proof. This is standard. If s is a section to the natural map π : VW → Y (KpK
(p)), then

for all γ ∈ Y (KpK
(p)), there exists g ∈ G(A) and wγ ∈ W such that π([(g, wγ)]) = γ and

s(γ) = [(g, wγ)]; that [(g, wγ)] lies in the fiber over γ means that there exists k ∈ Kp such
that gk = γ. Define

s̃ : G(Q) \G(A)/A◦
∞K

◦
∞K

(p) → W
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by s̃(γ) = k−1wγ. One now checks that s̃ satisfies the properties asserted of f in the lemma,
and that the map s 7→ s̃ is a G(A)-equivariant isomorphism of the O-module of sections of
VW onto the O-module given in the lemma.

II.5: Hecke action on completed cohomology

Recall that a connected reductive group G over Q extends to a reductive group over Z[ 1
Σ0
]

(also abusively denoted G) where Σ0 is a finite set of primes. In particular, for v /∈ Σ0,
the group G/Qv admits a distinguished maximal compact subgroup (up to conjugacy), viz.,
G(Zv); this is called a hyperspecial maximal compact subgroup of G(Qv).

Recall that we have fixed the tame level K(p) ⊂ G(A(p∞)); by further enlarging Σ0 if
necessary, we may (and do) assume that K(p)

v is the hyperspecial maximal compact subgroup
for all v /∈ Σ0. The algebra Hv := H(G(Qv)//K

(p)
v ) of O-valued functions of the double coset

space K(p)
v \ G(Qv)/K

(p)
v is called the spherical Hecke algebra. It is commutative and acts

naturally by continuous endomorphisms on the cohomology groups Hi(Y (KpK
(p)),VW ) for

any finitely generated OJKpK-module W .
Letting i range over all cohomological degrees, Kp over all compact open subgroups of

G, and W over all continuous representations of Kp on finitely generated torsion O-modules,
the product

(II.5.1)
∏
i

∏
Kp

∏
W

Endcts H
i(Y (KpK

(p)),VW )

is a profinite ring. We now define the p-adic Hecke algebra for the group G as an O-subalgebra
of this profinite ring:

Definition II.9. The p-adic Hecke algebra T(K(p)) of tame level K(p) is the closure of the O-
subalgebra of the profinite ring (II.5.1) generated by Hℓ for ` /∈ Σ0. If we wish to emphasize
the underlying group G, we will then write TG(K(p)) for this Hecke algebra.

We have the following facts about the p-adic Hecke algebra:

Lemma II.10. Let G be the group GL2 or one of its inner forms. Fix a tame level K(p) in
G(A(p∞)).

1. The p-adic Hecke algebra T(K(p)) is reduced, p-torsionfree and p-adically complete.

2. The O-algebra T(K(p)) is commutative and acts faithfully on Ĥ
i
(K(p))O and Ĥ

i
(K(p))L.

3. The O-algebra T(K(p)) is semi-local and its maximal ideals are in bijection with the
systems of Hecke eigenvalues λ : T(Kp)→ k.
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4. The maximal ideals of the O-algebra T(Kp)[1/p] are in bijection with the systems of
Hecke eigenvalues λ : T(Kp)→ O.

Proof. The first two claims follow from classical theory once we recognize that

T(K(p)) = lim←−
Kp

T(KpK
(p));

here Kp ranges over open compact subgroups of G, and T(KpK
(p)) is the O-algebra generated

by the image of the Hecke operators Tℓ and Sℓ (for ` 6= p and ` /∈ Σ0) in EndHi0(Y (KpK
(p)),O)

(where i0 is the only relevant cohomological degree for G).
The finiteness of the set of mod p eigensystems of a given tame level (equivalently, the

set of maximal ideals in T(K(p))) is a theorem of Jochnowitz [Joc82, Theorem 2.2].

II.6: Analytic vectors and locally algebraic vectors

Let Π be an L-Banach representation of the p-adic Lie Group G. Let C la(G,Π) denote
the space of locally L-analytic Π-valued functions on G. It is a Hausdorff locally convex
barrelled topological L-vector space. The natural right translation action of G on C la(G,Π)

is continuous (cf. Lemma 2.2 of [ST02b]). Schneider and Teitelbaum [ST02b] considered the
space of locally analytic vectors in a Banach representation as a topological G-module by
embedding it into C la(G,Π) via the orbit map v 7→ (g 7→ g−1v).

Definition II.11.

1. A vector v ∈ Π is said to be locally analytic if the orbit map g 7→ g · v is a locally
analytic Π-valued function on G.

The L-subspace
Πla := {v ∈ Π : v is locally analytic}

of analytic vectors in Π is G-invariant and is equipped with the closed subspace topol-
ogy inherited via the embedding Πla ↪→ C la(G,Π).

2. We say that the representation Π is locally analytic if every vector in Π is locally
analytic. It is shown in [ST02b, Lemma 3.7] that the topology defined on Πla coincides
with that of Π if the representation Π is locally analytic.

An important theorem of Schneider-Teitelbaum [ST03, Theorem 7.1] is that, for an ad-
missible L-Banach representation Π, the space Πla of locally analytic vectors in Π is dense in
Π and the functor Π 7→ Πla is exact on the category of admissible L-Banach representations.
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Let g be the Lie algebra of G; we write exp for the exponential map to G that is defined
in a small neighbourhood of 0 in g. Then g acts continuously on C la(G,Π) (and hence on
Πla):

(xf)(g) =
d

dt
f(g exp(tx))

∣∣∣∣
t=0

.

By the universal property of the enveloping algebra U(g), there is then an action on U(g)

on Πla by continuous linear endomorphisms.

Remark II.12. Emerton [Eme11, Definition 3.5.3] has considered a different topology on
the space of locally analytic vectors; it is finer in general but in the cases of interest to
us—viz., when the Banach L-representation Π is an admissible continuous representation—
Emerton’s topology coincides with that considered by Schneider-Teitelbaum (v. Remarks
after Theorem 3.5.7 in loc. cit.).

We now turn to locally algebraic vectors in Π.

Definition II.13.

1. Let W be an algebraic representation of G over L. We say that a vector v ∈ Π is
locally W -algebraic if there exists an open subgroup H of G, a natural number n, and
an H-equivariant homomorphism W n → Π whose image contains the vector v. The
space ΠW - lalg is a G-invariant subspace of Π.

2. We say that a vector v ∈ Π is locally algebraic if there is an algebraic representation
W of G over L such that v is locally W -algebraic. Denote by Πlalg the space of locally
algebraic vectors in Π. We say that Π is locally algebraic if Π = Πlalg; i.e., if every
vector in Π is locally algebraic.

This definition is due to Emerton [Eme11, Proposition-Definition 4.2.6]; it is equivalent
to that considered by D. Prasad in the appendix to [STP01] (and used by Colmez in [Col10]).
This equivalence follows from the characterisation of locally algebraic representations offered
by Theorem 1 in the Appendix to [STP01]) and by Emerton [Eme17, Proposition 4.2.8].

We close with a general result due to Emerton [Eme17] that clarifies the structure of the
space of locally algebraic vectors in a locally analytic representation of G:

Proposition II.14. Let Π be a locally analytic representation of G over L; and let W be
an algebraic representation of G over L. Let Ĝ denote the set of isomorphism classes of
irreducible algebraic representations of G over L. Then:

1. the evaluation morphism Homg(W,Π)⊗LW → ΠW - lalg is an isomorphism of topological
L-vector sapces and ΠW - lalg is a closed subspace of Π.
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2. The natural map ⊕
W∈Ĝ

ΠW - lalg → Πlalg

is an isomorphism.

II.7: Relation to automorphic forms: the case of definite quaternion
algebras

In this subsection, we let G be the group D× where D is a definite quaternion algebra of
discriminant d∞. We retain the other running notations in the previous sections.

Lemma II.15. Let A = O, or L. The space H̃
0
(K(p))O is identified with the space of

continuous A-valued functions on the profinite set

YK(p) := lim←−
Kp

Y (KpK
(p))

Proof. Owing to the compactness of YK(p) , the natural map L⊗ C0(YK(p) ,O)→ C0(YK(p) , L)

is an isomorphism. Thus, it suffices to prove the claim for A = O.
A function f : YK(p) → O is continuous if and only if the composition of f with nat-

ural quotients πs : O → O/$sO to the discrete space O/$sO are continuous; this means
that πs ◦ f is locally constant. The profinite topology on YK(p) means that there is a com-
pact open subgroup Kp(s) of G such that πs ◦ f is pulled back from an arbitrary function
Y (Kp(s)K

(p))→ O/$sO between two finite sets. This discussion gives us the identification
claimed in the lemma.

Theorem II.16. Let W be an algebraic representation of G over L. Factor an automor-
phic representation π of G, definable1 over L, into πp ⊗ π

(p)
f ⊗ π∞ where πp is a smooth

L-representation of GL2(Qp), π(p)
f a smooth representation of G(A(p∞)), and π∞ a represen-

tation of G∞. Then there are positive integers mG(π) and an isomorphism

H0(K(p),VW∨)L ∼=
⊕

π:π∞=W∨

(
πp ⊗ (πf )

K(p)
)⊕mG(π)

Proof. This is called Matsushima’s formula in the theory of automorphic forms and is stan-
dard. The proof is therefore omitted.

1See Lemma 3.1.4 and the discussion thereafter in [Eme06].
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Theorem II.17. Let W be an irreducible algebraic representation of G over L. There is an
isomorphism

H0(K(p),VW∨)L ∼= Homg(W, Ĥ
0
(K(p))laL)

of L-vector spaces.

Proof. This is Corollary 2.2.25 of Emerton [Eme06].

From Proposition II.14, we get:

Corollary II.18. Let W be an irreducible algebraic representation of G over L. There is
an isomorphism

W ⊗L H0(K(p),VW∨) ∼= Ĥ
0
(K(p))L,W−lalg

of L-vector spaces.

This brings us finally to the characterization of the space of locally algebraic vectors in
completed cohomology as the space generated by classical p-adic automorphic representations
in the sense of Emerton (and recalled in the introduction to this thesis). Concretely, we have:

Corollary II.19 (Proposition 3.2.4 of [Eme06]). Let W be an irreducible algebraic repre-
sentation of G over L. There is an isomorphism

Ĥ
0
(K(p))L,W−lalg

∼=
⊕

π:π∞=W∨

(
πp ⊗W ⊗ (πf )

K(p)
)⊕mG(π)

where π ranges over all automorphic representations definable over L and such that π∞ = W∨.

The comparison between the p-adic modular forms for GL2 and the completed coho-
mology Ĥ

1
is not as straightforward; since we do not use such considerations, we content

ourselves with a reference to the Emerton’s answer on Mathoverflow [44].

II.8: Reformulation of the Jacquet-Langlands correspondence

In this subsection, we shall decorate our Hecke algebras with the underlying group G as
the Jacquet-Langlands correspondence concerns the Hecke algebras acting on completed
cohomology of multiple groups. Fix an isomorphism ι : C→ Qp as in the last subsection.

Definition II.20. Let G be an inner form of GL2/Q; let Σ be the set of places v such that
GQv is ramified. We say that an eigensystem λ : TG → Qp is classical modular if there exists
an automorphic representation πλ of the group G(A) with the following property:
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for all v /∈ Σ ∪ {∞}, if πv is unramified, then the Satake parameters {αv(π), βv(π)} of
the local representation πv of GL2(Qv) are related to the eigensystem λ via

λ(Tv) = ιαv(π) + ιβv(π);

here Tv is the Hecke operator at place v.

The classical Jacquet-Langlands correspondence can then be formulated in terms of the
p-adic Hecke algebras as follows:

Proposition II.21. Let B be a quaternion algebra over Q of discriminant ∆. Let O be an
order of level2 M in B. Write Ô× for the open compact subgroup (O⊗ Ẑ)× of B×(A). For
an integer r, let U1(r) ⊂ GL2(A) denote the open compact subgroup

U1(r) =

{
γ ∈ GL2(A) : γp ≡

(
1 ∗
0 1

)
mod pvp(r) for all p

}
.

There is a morphism of O-algebras

TGL2(U1(∆M))O→ TB×
(Ô×)O

preserving the Hecke operators away from the discriminant ∆ of the quaternion algebra B

such that the induced map{
λ : TB×

(Ô×)O→ Qp

λ is classical modular

}
→

{
λ : TGL2(U1(∆M))O→ Qp

λ is classical modular

}

is a bijection onto the set of those eigensystems λ that satisfy the property that the local
representation πλ,v of GL2(Qv) is square-integrable for all v | ∆.

2We say that an order O in B has level M if O has index M in a maximal order in B. This notion is
best behaved for Eichler orders, or more generally if vp(M) is odd for p | M . But orders with vp(M) = 2
are particularly relevant to the context in which this thesis is situated; see [Dal21] (equivalently, the papers
[Dal23b] and [Dal23a]) and the references to the works of Hijikata, Pizer and Shemanske therein.
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CHAPTER III
The p-adic Local Langlands Correspondence

Our aim in this chapter is modest—we wish to state Colmez’s p-adic local Langlands corre-
spondence, its compatibility with an earlier construction of Berger-Breuil in the trianguline
case, and the compatibility of this correspondence with the classical local Langlands corre-
spondence (including in weight 1).

The p-adic local Langlands correspondence is a functor Π from the category of two-
dimensional representations of L-representations of GQp to the category of locally analytic
L-Banach representations of GL2(Qp). The construction of this correspondence is due to
Colmez [Col10]; it uses the notion of (ϕ,Γ)-modules introduced by Fontaine to classify p-
adic local Galois representations; this background is discussed in §III.1, III.2 and III.3. The
construction and properties of the functor Π(−), and the properties of its inverse V(−) are
stated in §III.4; the construction of V(−) is discussed in §III.5. The reformulation of this
correspondence using deformation theory, due to Kisin [Kis10], is discussed in §III.6.

In addition to the in-text references, we are indebted to Berger’s IHP course notes from
2010 [Ber] for a crisp introduction to the theory (ϕ,Γ)-modules, to Colmez’s big paper
[Col10] for a systematic exposition of the p-adic local Langlands correspondence, and to
Breuil’s Séminaire Bourbaki exposé [Bre12] for a quick and accessible introduction to the
work of Colmez, Emerton and Kisin on this subject.

Notations for this chapter

• For finite extensions F of Qp, we will normalize the valuation on F so that vF (F ∗) = Z

(by setting the valuation of uniformizers in F to be 1).

• Let L be a finite extension of Qp; let OL be the ring of integers in L, $ a fixed
uniformizer in O. Write kL for the residue field of L. We will sometimes supress the
subscript L in OL and kL if no confusion is imminent. These, and more generally the
$-torsion O-modules O/$n, are to serve as the coefficients for representations of GQp

and GL2(Qp).
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• Here are the various categories of representations of GQp that we shall work with:

– Reptors GQp , the category of continuous representations of GQp on OL-modules of
finite length;

– RepOL
GQp , the category of continuous representations V of GQp on free OL-

modules of finite rank such that V/pnV ∈ Reptors GQp for all n; and

– RepL GQp , the category of continuous representations V of GQp on finite dimen-
sional L-vector spaces such that V admits a GQp-invariant lattice V0 ∈ RepOL

GQp .

• Let χ : GQp → Z∗
p denote the cyclotomic character of GQp . For σ ∈ GQp , the p-adic

integer χ(σ) is determined by requiring

σ(ζn) = ζχ(σ) mod pn

n

for all n ⩾ 0; here ζn is a primitive pnth root of unity.

• In this chapter, we will write p-adic representation of GQp to mean an object of one
of the categories above; we will write OL-representation of GQp to mean an object of
Reptors GQp or RepOL

GQp .

• For a p-adic representation V of GQp , we write V̌ to denote the Tate dual of V given
by

V̌ =


HomOL

(V, (L/OL)⊗ χ) , V ∈ Reptors GQp

HomOL
(V,OL ⊗ χ) , V ∈ RepOL

GQp

HomL (V, L⊗ χ) , V ∈ RepL GQp

• Here are the various categories of representations of G = GL2(Qp) that we shall work
with:

– ReptorsG, the category of smooth1 admissible2 representations Π of G on OL-
modules of finite length, and such that Π admits a central character;

1this means that the action of G on Π is locally constant; i.e., every vector v ∈ Π is fixed by an open
compact subgroup in G.

2this means that ΠK has finite length as an OL-module for every open compact subgroup K of G; this
condition turns out to be superfluous in the presence of the other conditions defining the category Reptors G;
cf. [BL94, Bre03a]
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– RepOL
G, the category of representations ofG on OL-modules Π that are separated,

p-adically complete and p-torsionfree, and such that Π/pnΠ ∈ ReptorsG for all n;
and

– RepLG, the category of representations of G on L-vector spaces Π that admit a
G-invariant OL-lattice Π0 ∈ RepOL

G.

III.1: The field of norms construction

Let F be a finite extension of Qp. Let Fn = F (µpn) and F∞ = F (µp∞). Fontaine’s classifi-
cation of GF -representations over O (resp. L) relies on the dévissage suggested by the field
diagram (with the corresponding Galois groups marked) below—

F

F∞

Fn

F

HF

GF

ΓF

or, equivalently, the exact sequence

1→HF → GF → ΓF → 1.

The group ΓF is a subgroup of finite index in Z∗
p; so it is essentially pro-cyclic. A remarkable

discovery of Fontaine-Wintenberger, via their field of norms construction, is that the group
HF is (abstractly) isomorphic to the Galois group of Fq((T )) where Fq is the residue field of
F∞. Moreover, owing to the Frobenius map on Fq((T )), Fontaine obtains a classification of
OJ GFq((T ))K-modules in terms of modules over a Cohen ring for Fq((T )) which comes equipped
with a lift ϕq of the Frobenius3, and is then able to classify OJ GF K-modules in terms of
(ϕq,ΓF )-modules.

Let us now discuss the field of norms construction for infinite strictly arithmetically profi-
nite (sAPF) extensions K|F (v. [Win83])—while we make explicit use of this construction
only for the infinite p-cyclotomic extension of F , we need the functoriality of this construc-
tion to explain the mysterious isomorphism between HF and the Galois group of Fq((T )).
While the definition of an sAPF extension can be succintly stated using the upper ramifica-
tion filtration for the extension K|F , and the associated Herbrand function ψK|F as in loc.

3The Witt vector construction would provide Cohen rings for perfect residue fields, equipped with lift of
Frobenius; in our case however, since Fq((T )) is not perfect, Fontaine constructs the Cohen ring as a subring
of W (Fq((T ))

perf,∧) where Fq((T ))
perf,∧ is the completion of the perfect closure of Fq((T )).
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cit., it is more intuitive to work with an equivalent4 definition that explicates the tower of
elementary subextensions in an sAPF extension:

Definition III.1. An infinite extension K|F is said to be strictly arithmetically profinite
(sAPF) if

• the field K can be be written as an increasing union K =
⋃
n⩾−1 Fn of finite extensions

Fn of F such that

– F−1 = F ,

– F0|F is unramified, and

– F1|F0 is totally ramified of degree prime to p (i.e., F1|F0 is tamely ramified)

– Fn+1|Fn is an extension of degree prn for n ⩾ 1;

• letting $n be an uniformizer in Fn, the quantity vFn(σ$n −$n)− 1 is independent of
the embedding σ : Fn → F sep into a fixed separable closure F sep of F , distinct from
the inclusion;

• setting i0 = 0 and in = vFn(σ$n −$n)− 1 for n ⩾ 1, the rational numbers in satisfy
the following properties:

– The numbers in are strictly increasing and tend to +∞ as n→∞,

– The numbers bn given by

bn =
n∑
k=1

ik − ik−1

p
∑k−1

j=1 rj

satisfy limn→∞ bn = +∞.

Example III.2.

1. The prototypical example to which we will apply this theory is the p-cyclotomic ex-
tension F (µp∞) of the field F [Ben22, ¶6.1.2].

In the special case that F is an unramified extension of Qp, one has that F−1 = F0 = F

and Fn = F (µpn) for n ⩾ 1. It can be checked easily that i0 = 0, ik = (p− 1)pk−1 for
k ⩾ 1, and bn = (p−1)2(n−1)

p
+ (p− 1).

2. Let K|F be an sAPF extension. Then, a finite extension M of K is also an sAPF
extension of F (cf. [Win83, ¶1.2.3]).

4We do not rely on this equivalence here but see [Win83, §1] (especially ¶1.4.2 in loc. cit.).
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Let E(K|F ) denote the directed set of finite extensions of F contained in K. We set

(III.1.1) X(K|F ) = lim←−
E∈E(K|F )

E

with the transition maps E ′′ → E ′ given by the norm map NE′′|E′ . In words, X(K|F ) is the
set of all norm-compatible sequences inK. This construction is called the field of norms of the
extension K|F after the following theorem of Fontaine-Wintenberger (cf. [Fon72, Win83]).

Theorem III.3. Let K|F be an sAPF extension. Let α = (αE)E and β = (βE)E be two
elements in X(K|F ).

1. For each finite extension E ∈ E(K|F ), the limit

lim
E′∈X(K|E)

NE′|E(αE + βE)

exists in E. Denoting this limit by sE, the sequence (sE)E is a norm-compatible
sequence in K. That is, for finite extensions F ⊂ E ′ ⊂ E ′′ of F contained in K, one
has

NE′′|E′(sE′′) = sE′ .

2. With the sum α + β and the product αβ defined by

α + β = (sE)E

α · β = (αEβE)E

the set X(K|F ) is a field of characteristic p.

3. The field K is an sAPF extension of F1 and the fields X(K|F ) and X(K|F1) are
canonically isomorphic. The map

kF →X(K|F1)

x 7→ ([x[E:F1]−1

])E

is an isomorphism of kF onto the residue field of X(K|F1). Here, [x] ∈ F is the
Teichmüller lift of x ∈ kF ; recall that Teichmüller representatives have distinguished
p-power roots so our element [x][E:F1]−1 is unambiguously defined.

4. If M/K is a finite extension, then M is an sAPF extension of F and the field X(M |F )
is a finite separable extension of X(K|F ). For an arbitary algebraic separable extension
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M of K, set
X(M |F ) = lim−→

M ′∈E(M/K)

X(M ′|F )

The functor {
algebraic separable

extensions of K

}
→

{
algebraic separable

extensions of X(K|F )

}
M 7→X(M |F )

induces an equivalence of categories which preserves the Galois correspondence.

As a consequence of this theorem, we see that the absolute Galois group of the fields K (a
field in mixed characteristic (0, p)) and X(K|F ) (a field in characteristic p) are isomorphic!
Applying this to K = F∞, we see that the group HF is isomorphic to the Galois group of
X(F∞|F )!

For our purposes, it is useful to have a construction of a “canonical, functorial” complete
perfect field containing X(K|F ) for an sAPF extension K|F . To this effect, let’s first discuss
a general construction, referred to as Fontaine’s functor R(−) in the pre-perfectoid literature
and as the “tilting” construction in the modern literature.

Theorem III.4. Let K be an extension of Qp complete for the valuation v (normalized so
that v(p) = 1); suppose that the residue field kK is perfect. Let [−] : kK → K denote the
Teichmüller lift. Let K♭ denote the set of p-power compatible sequences in K, i.e.,

K♭ = lim←−
x7→xp

K.

Then:

1. K♭ is a perfect field of characteristic p for addition and multiplication laws given by

(xn) + (yn)n = ((x+ y)n)n where (x+ y)n = lim
m→∞

(xn+m + yn+m)
pm ;

(xn) · (yn)n = ((xy)n)n where (xy)n = xnyn.

2. The field K♭ is complete for the valuation given by v♭((xn)n) = v(x0).

3. The map

kK → K♭

x 7→ ([xp
−n

])n
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is an isomorphism of kK onto the residue field of the ring OK♭of integers in K♭.

Proof. See Théorème 4.1.2 and ¶4.1.4 in [Win83].

We wish to use the tilting correspondence for perfectoid fields [Sch12, §3] and its com-
patiblity with the field of norms construction [Win83, §4.3]. Let us now recall the definition
of perfectoid fields:

Definition III.5. A field K equipped with an absolute value | · |K : K → R+ such that
|p|K < 1 is said to be perfectoid if

1. |K|K is non-discrete;

2. K is complete for | · |K ; and

3. the Frobenius map x 7→ xp on OK/pOK is surjective.

For example, the field F̂∞ is perfectoid. The tilting construction for perfectoid fields
preserves the Galois correspondence and hence induces an isomorphism of Galois group of a
perfectoid field with that of its tilt:

Theorem III.6. Let K be a perfectoid field of characteristic 0. Fix an algebraic closure Ksep

of K and denote by CK the completion of Ksep. Then the tilting functor E 7→ E♭ preserves
the Galois correspondence and induces an isomorphism Gal(Ksep|K) → Gal(K♭,sep|K♭);
moreover, writing CK♭ for the completion of an algebraic closure of K♭, one has that CK♭ =

C♭
K.

Proof. A proof is offered at the end of Section 5 in [Sch12]. A somewhat more elementary
proof is offered in the book by Fargues and Fontaine on their eponymous curve [FF18,
Théorème 3.2.1]. We also refer the reader to the exposition in [Ben22, Chapter 5].

We now have the theorem due to Fontaine-Wintenberger [Win83] that constructs an
embedding of the field of norms X(K|F ) of an sAPF extension K|F into the tilt of the
completion of K identifying the completion of the perfect closure of the field of norms with
K̂♭:

Theorem III.7. Let K|F be an sAPF extension; recall that F1|F is the maximal tamely
ramified extension of F contained in K. Let En denote the set of all finite extensions E of
F contained in K such that pn | [E : F1]. Let (αE)E ∈ X(K|F ). For every n, the family
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(α
p−n[E:F1]
E )E∈En converges to an element xn ∈ K̂ and the sequence (xn)n defines an element

in K̂♭. Moreover, the map

ΛK|F : X(K|F )→ K̂♭

(αE)E 7→ (xn)n

is a continuous embedding, identifying K̂♭ as the completion of the inseparable closure of
X(K|F ).

Proof. This is Corollaire 4.3.4 in [Win83].

We are now ready to introduce the various anneaux gnomiques5 that underly the theory
of (ϕ,Γ)-modules.

Definition III.8. Recall that F is a finite extension of Qp; let F∞ = F (µp∞) denote the
infinite p-cyclotomic extension of F . Fix an algebraic closure F sep of F and a completion
CF of the algebraic closure of F .

1. Let ẼF denote the field F̂ ♭
∞. Note that ẼF admits an action of ΓF , and a Frobenius

automorphism (like any perfect field of characteristic p).

2. Let Ẽ denote the field C♭
F . Then, by6 Theorem III.6, Ẽ is the completion of the

algebraic closure of ẼF , the Galois group GF of the extension F sep|F acts on the Ẽ

and moreover ẼHF = ẼF .

3. Let EF denote the image of field X(F∞|F ) in ẼF .

4. Let E denote the separable closure of EQp in Ẽ. By Theorem III.3, the field E is the
union

E =
⋃
M

EM

as M ranges over finite extensions of Qp; and the Galois group of E over EF is the
group HF .

5. Let Ã = W (Ẽ). Then Ã is a complete discrete valuation ring with residue field Ẽ and
comes equipped with a lift of the Frobenius on ẼQp . To wit, every element in Ã may

5We owe the bilingual pun to Colmez’ survey article [Col19b, §§2.3.3].
6We note that F , being a finite extension of Qp, is not perfectoid; but the field F̂∞ is, and we have

C
F̂∞

= CF (with the obvious meaning for C
F̂∞

).
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be written uniquely as
∑∞

j=0 p
j[xj] with xj ∈ Ẽ where [−] is the Teichmüller lift, and

the Frobenius endomorphism on Ã in this presentation is given as

ϕ

(
∞∑
j=0

pj[xj]

)
=

∞∑
j=0

pj[xpj ].

6. Let ε = (ζn)n be a sequence of p-power roots of unity with ζ1 6= 1, and ζpn+1 = ζn for
all n ⩾ 1. Then ε defines a well-defined element in Ẽ. Set T = [ε]−1 ∈ Ã. The action
of ϕ on T is given by (1 + T )p − 1.

7. We recall from the construction of Witt vectors7 that there is a bijection of sets

(III.1.2) Ã = W (Ẽ)→ ẼN

and that Ẽ is complete for the valuation v♭ (v. 2 of Theorem III.4). There are,
therefore, two topologies on Ã:

• The strong topology on Ã is that obtained by transport of structure via the bijec-
tion (III.1.2) when Ẽ is endowed with with the discrete topology, and the product
ẼN with the product topology. A neighborhood basis of 0 for this topology is
given by {pjÃ}j∈Z⩾0

.

• The weak topology on Ã is that obtained by transport of structure via the bijection
(III.1.2) when Ẽ is endowed with with the v♭-adic topology, and the product ẼN

with the product topology. A neighborhood basis of 0 for this topology is given
by {T kW (Ẽ+) + pn+1Ã}k,n∈Z⩾0

where Ẽ+ is the v♭-adic valuation ring in Ẽ.

8. The action of GF on Ẽ extends to a continuous action of GF on Ã (for its weak
topology). The action of ϕ and GF on T is given by

ϕ(T ) = (1 + T )p − 1 and σ(T ) = (1 + T )χF (σ) − 1

where χF is the cyclotomic character of GF .

9. Let AF denote the closure of OF [T, T−1] in Ã for the p-adic topology (the strong
7For the construction of Witt vectors, and the topological considerations in the next point, please see §6

and §16 of [Ber]; see also §1.5 of [Sch17].
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topology); this may be described as the ring{∑
k∈Z

akT
k

∣∣∣∣∣ ak ∈ OF ,

vp(ak)→∞ as k → −∞

}
.

Here vp is the valuation on F normalized so that vp(p) = 1. Note that AF is stable
under the action of ϕ and GF .

10. Let B̃ = Ã[1
p
]; this is the field of fractions of the valuation ring Ã.

11. Let B denote the completion of the maximal unramified extension of BF contained
in B̃. For a finite extension K of F , let BK be the unramified extension of BF with
residue field EK ; one then obtain B as the completion of the union of the fields BK

in B̃. The field B is stable under ϕ and the action of GF on B̃. Conversely, the fields
BK can be recovered from B using the Galois action: namely, BK = BHK .

12. Set A = B ∩ Ã; then A is a discrete valuation ring with field of fractions of B and
residue field E. The field A is stable under ϕ and the action of GF on B̃. Note that
Aφ=1 = OF and Bφ=1 = F .

While we have introduced what appears to be a menagerie of rings, the symbology for
these rings has a system to it—

• the rings in characteristic p go by flavors of E; the ones with ·̃ over them are completion
of the perfect closure of those without it; the ones with a subscript are unramified
extensions ordered by the natural inclusion among the subscript.

• the “integral” rings in characteristic 0 go by flavors of A; ones with ·̃ over them have
perfect residue field, and

• the fields in characteristic 0 go by flavors of B; they are obtained by inverting p in the
corresponding A-version.

We are almost exclusively interested in the case F = Qp (though the development of this
case with some details would have amounted to similar amount of labor). We specialize to
this case for the rest of this thesis.

III.2: (ϕ,Γ)-modules

The anneau-nomics of the last section, with F = Qp, gives us a ring A that satisfies the
following properties:
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• A is a discrete valuation ring with residue field E and is equipped with an endomor-
phism ϕ and a continuous action of GQp that commutes with ϕ;

• (OL ·A)φ=1 = OL; and

• the ring (OL ·A)HQp and the field (OL ·A)HQp have explicit description as subrings of
the ring of bi-infinite formal power series with coefficients in L (cf. 9 of Definition III.8);
moreover they support an endomorphism ϕ and a residual action of ΓQp = Z∗

p.

We begin by lightening the notation and making some of these objects explicit.
Let E denote8 the field

E :=


∑
k∈Z

akT
k

∣∣∣∣∣∣∣
ak ∈ L,

(vp(ak))k∈Z bounded below,
vp(ak)→∞ as k → −∞

.
The field E is complete for the discrete valuation v{0} defined by

v{0}

(∑
k∈Z

akT
k

)
= inf

k∈Z
vp(ak).

Let OE denote9 the ring of integers in E; it consists of those elements of E with coefficients
in OL

OE =

{∑
k∈Z

akT
k

∣∣∣∣∣ ak ∈ OL,

vp(ak)→∞ as k → −∞

}
.

The residue field kE of E is kL((T )).
We will study OE not with the topology defined by the valuation v{0} (the strong topology),

but instead the weak topology—the coarsest topology that renders the natural reduction map
OE → kE continuous, where kE is given the T -adic topology. To describe this weak topology,
let us set

O+
E = OLJT K, E+ = O+

E

[
1

p

]
, and k+E = kLJT K.

The set of open ideals {pkOE + T nO+
E : k, n ∈ N} is a neighbourhood basis of 0 for the

weak topology on OE. (See 7 of Definition III.8.) The field E, being the increasing union⋃
m∈N p

−mOE, is then given the inductive limit topology.
8We will sometimes write EL if we wish to emphasize that the coefficients of the formal Laurent series in

E come from L. This is the field L ·BQp
of the last section.

9This is the ring OL ·AQp of the last section.
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Definition III.9. The topological field E is called the Fontaine field; it comes equipped
with a lift ϕ of Frobenius on kEQp

given by ϕ(T ) = (1 + T )p − 1 and extended to E so as to
be L-linear and continuous. There is an L-linear continuous action of Γ = Z×

p on E given by

σa(T ) = (1 + T )a − 1 =
∞∑
n=1

(
a

n

)
T n.

Note that the actions of ϕ and Γ commute with each other, and preserve OE.

The field B of the last section is just the completion of the maximal unramified extension
of EQp and the ring A is just the ring of integers in B. The rings OE and E serve as base rings
for (ϕ,Γ)-modules while the rings A and B will feature in Fontaine’s equivalence between
the category of (ϕ,Γ)-modules and p-adic Galois representations.

Definition III.10. Let A be any ring equipped with an endomorphism ϕ : D → D and an
action of Γ = Z×

p that commutes with ϕ. (For us, the ring A is either OE, or E.)

1. A (ϕ,Γ)-module D over A is an A-module of finite type equipped with an A-semilinear
endomorphism ϕ and an A-semilinear action of Γ that commute with each other.

2. A (ϕ,Γ)-module D over OE is said to be étale if ϕ(D) generates D as an OE-module.
A (ϕ,Γ)-module D over E is said to be étale if there exists an OE-lattice ∆ which is
stable under ϕ and Γ such that ∆ is étale as an OE-module.

The following categories of étale (ϕ,Γ)-modules will be central in our considerations, in
view of their equivalence to categories of p-adic Galois representations (v. Theorem III.13):

• the category ΦΓét
tors of étale (ϕ,Γ)-modules of finite length over OE;

• the category ΦΓét(OE) of étale (ϕ,Γ)-modules that are free of finite rank over OE; and

• the category ΦΓét(E) of étale (ϕ,Γ)-modules that are free of finite dimension over E.

III.2.1: The left inverse ψ of ϕ for an étale (ϕ,Γ)-module

Let D be an étale (ϕ,Γ)-module over OE. Then, every element x ∈ D can be written uniquely
as

x =

p−1∑
i=0

(1 + T )iϕ(xi)

for some xi ∈ D; the operator ψ : D → D defined by setting

ψ

(
p−1∑
i=0

(1 + T )iϕ(xi)

)
= x0
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satisfies the following properties:

(i) ψ is O-linear and is a left inverse to ϕ;

(ii) ψ(ϕ(a)x) = aψ(x) for a ∈ OE and x ∈ D;

(iii) ψ(aϕ(x)) = ψ(a)x for a ∈ OE and x ∈ D; and

(iv) ψ is Γ-equivariant.

III.2.2: The Tate dual of a (ϕ,Γ)-module

Let Ω1
OE

denote the OE-module of continuous OL-differentials of OE. Then, Ω1
OE

is a free module
of rank 1 generated by dT or dT

1+T
; it has the structure of an étale (ϕ,Γ)-module over OE via

σa

(
dT

1 + T

)
= a

dT

1 + T
, a ∈ Z∗

p and ϕ

(
dT

1 + T

)
=

dT

1 + T
.

We can now define the Tate dual of a (ϕ,Γ)-module:

Definition III.11. The Tate dual of an étale (ϕ,Γ)-module D is defined as

Ď =


HomOE

(
D, (E /OE)

dT
1+T

)
, D ∈ ΦΓét

tors

HomOE

(
D,OE

dT
1+T

)
, D ∈ ΦΓét(OE)

HomE

(
D, E dT

1+T

)
, D ∈ ΦΓét(E)

.

III.2.3: Examples

Many naturally arising p-adic analytic objects turn out to be examples of (ϕ,Γ)-modules.
Conversely the coefficient rings for (ϕ,Γ)-modules introduced above have nice p-adic analytic
interpretations. This idea, together with the insights of Berger-Breuil [BB10], contains
the germ of the construction of the functor Π(−) that realizes the p-adic local Langlands
correspondence (see, for example, Remarque II.1.1 in [Col10] and Remark 6 in [Dos12]). So
we include this discussion here.

To minimize repetition, let M be a topological OL-module; we will need to take M = OL
and M = L to interpret the rings O+

E ,OE, E
+, and E.

1. Let C0(Zp,M) denote the space of M -valued continuous functions on Zp. The space
C0(Zp,OL) is an orthonormalizable OL-module (v. Definition III.18 (2)); Mahler’s the-
orem states that C0(Zp,OL) is the completion of the free OL-module generated by the
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OL-linearly independent subset {
(
x
n

)
: n ⩾ 0} (v. Théorème I.1.3 of [Col10]). The

L-vector space C0(Zp, L) is an L-Banach space, being complete for the norm

‖f‖ = sup
x∈Zp

|f(x)|;

in paticular, the OL-module C0(Zp,OL) is the unit ball in C0(Zp, L).

2. Let D0(Zp,M) denote the OL-module consisting of continuous OL-linear homomor-
phisms C0(Zp,OL)→ M . For M = OL or L, we endow the space D0(Zp,M) with the
topology given by the norm

‖µ‖ = sup
f∈C0(Zp,M)\{0}

|µ(f)|
‖f‖

.

Lemma III.12 (Théorème I.1.4 in [Col10]).
For f ∈ E, define the L-valued function φf : Zp → L by

φf (x) = res0

(
(1 + T )xf(T )

dT

1 + T

)
.

For µ ∈ D0(Zp,M), define its Amice transform by

Aµ(T ) =

∫
Zp

(1 + T )xµ =
∞∑
n=0

(∫
Zp

(
x

n

)
µ

)
T n.

Then, the map A induces isomorphisms

D0(Zp,OL) ∼= O+
E and D0(Zp, L) ∼= E+

and together with φ assembles into the following exact sequences:

0→ D0(Zp,OL)
A−→ OE

ϕ−→ C0(Zp,OL)→ 0

0→ D0(Zp, L)
A−→ E

ϕ−→ C0(Zp, L)→ 0

III.3: Fontaine’s equivalences

We are now ready to state the theorem due to Fontaine that classifies p-adic representations
of GQp in terms of semi-linear algebraic data.
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Theorem III.13.

1. If D is an étale (ϕ,Γ)-module, then V(D) = ((OL ·A)⊗OE D)φ=1 is a p-adic represen-
tation of GQp.

2. If V is a p-adic representation of GQp, then D(V ) =
(
A⊗Zp V

)H is an étale (ϕ,Γ)-
module.

3. The functors V and D are exact, inverses of each other and induce the following
equivalences of categories:

Reptors GQp ↔ ΦΓét
tors, RepOL

GQp ↔ ΦΓét(OE), RepL GQp ↔ ΦΓét(E).

4. The functors V and D commute with taking Tate duals.

III.3.1: (ϕ,Γ)-modules of dimension 1

Let δ : Q×
p → O×. Via local class field theory (normalized so that the geometric frobenius

maps to p), we get a GQp-representation T (δ) of rank 1. Explicitly, T (δ) is the Galois char-
acter σ 7→ unr−1

δ(p) δ(χ(σ)) where unrλ is the unramified character that sends the geometric
frobenius to λ.

Consider the OE-module OE(δ) = OE eδ of rank 1 on which ϕ and γ ∈ Γ act by the
semilinear extensions of ϕ(eδ) = δ(p)eδ and γ(eδ) = δ(χ(γ))eδ. It can be checked that

D(T (δ)) = OE(δ).

Fontaine’s equivalence implies, moreover, that every (ϕ,Γ)-module over OE of rank 1 is of
the form OE(δ) for a continuous O×-valued valued character of Q×

p .

III.4: The p-adic local Langlands correspondence

Let C be an algebraically closed field of characteristic 0 endowed with the discrete topology.
Recall that the classical local Langlands correspondence is a bijection between the set of
isomorphism classes of semisimple Weil-Deligne representations of Qp of dimension 2 over
C and the set of isomorphism classes of smooth (admissible) irreducible representations of
GL2(Qp) over C such that the L-functions and the ε-factors of correspondents match.

On the other hand, the category of p-adic representations (i.e., L-vector spaces endowed
with continuous GQp-action where L is given its p-adic topology as opposed to the discrete
topology) is much richer.
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However, Fontaine [Fon94], and Colmez and Fontaine [CF00] have shown that there is
an equivalence between the category of potentially semistable representations of GQp with
coefficients in L and that of weakly admissible filtered (ϕ,N, GQp , L)-modules; this equiva-
lence is mediated by a certain period ring Bpst =

⋃
L Bst,K of Fontaine. While we won’t need

more about the period ring Bpst, let us describe this semi-linear algebraic data briefly. A
filtered (ϕ,N, GQp , L)-module over L is a Qunr

p ⊗ L-module D equipped with the following
structures:

• a Frobenius endomorphism ϕ : D → D that is L-linear and Qunr
p -semilinear;

• a nilpotent Qunr
p ⊗L-linear monodromy operator N : D → D that satisfies Nϕ = pϕN ;

• an Qunr
p -semi-linear, and L-linear action of GQp that is continuous for the discrete

topology; and

• a decreasing, separated, exhaustive filtration of D = Qp ⊗Qunr
p
D by Qp-vector spaces

that are stable under the action of GQp .

We omit the definition of weak admissibility (or, what amounts to the same after Colmez-
Fontaine (loc. cit.), admissibility) and just refer the reader to [Fon94, §4.4] and [BM02,
Definition 3.1.1.1].

For example, there are two distinguished “families” of two-dimensional weakly admissible
filtered (ϕ,N)-modules cut out using p-adic Hodge theoretic conditions. It is known that
potentially semi-stable representations of GQp are Hodge-Tate; after a suitable Tate twist, we
may suppose that the Hodge-Tate weights are (0, k−1) for an integer k ⩾ 1. The potentially
semistable representations of GQp that are irreducible and crystalline correspond to filtered
(ϕ,N, GQp , L)-modules over L in which the filtration is determined by k—

D = Qpe1 ⊕Qpe2

ϕ =

(
0 −1

pk−1µ ν

)
(µ ∈ Z

∗
p, ν ∈ mZp

) and N = 0

FiliD =


D, if i ⩾ 0

Qpe1, if i ∈ [1, k − 1]

0, if i ⩾ k

and non-crystalline ones correspond to those in which the filtration is determined by two
parameters, the integer k and an L ∈ Qp (we fix a square root of p for the description
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below)—

D = Qpe1 ⊕Qpe2

ϕ =

(√
pkµ 0

0
√
pk−2µ

)
(µ ∈ Z

∗
p) and N =

(
0 0

1 0

)

FiliD =


D, if i ⩾ 0

Qp(e1 + Le2), if i ∈ [1, k − 1]

0, if i ⩾ k

(For more details, see [BM02, Example 3.1.2.2] which in turn refer to Theorem A and its
proof in Appendix A in the celebrated paper of Fontaine-Mazur [FM95] announcing the
conjectural characterization of geometric Galois representations.)

Moreover, Fontaine [Fon94, §4.2.1] has associated a Qunr
p -linear Weil-Deligne representa-

tion to a (ϕ,N, GQp , L)-module over L which is functorial—given a (ϕ,N)-module (D,ϕ,N, ρ0,Fil•)
over L, then the associated Weil-Deligne representation WD(D,ϕ,N, ρ0,Fil

•) has the un-
derlying vector space D, the monodromy operator N , and the representation ρ of the Weil
group on D given by

ρ(w) = ρ0(w)ϕ
−v(w).

Thus there is a forgetful functor ρ 7→WD((Bpst⊗ρ)GQp ) from the category of potentially
semistable p-adic representations (of dimension 2) to the category of semisimple Weil-Deligne
representations of Qp (of dimension 2) which forgets the Hodge filtration on the Dieudonne
module Dpst(ρ) := (Bpst ⊗ ρ)GQp .

This shows that if one desired to lift the classical local Langlands correspondence to
potentially semistable p-adic representations, one needs to be able to recover the Hodge fil-
tration of Dpst(ρ) (equivalently, the parameters k and L) from the putative p-adic Langlands
correspondent Π(ρ) for a potentially semistable p-adic Galois representation ρ. In a stroke
of ingenuity, Breuil considered the locally algebraic representation

LAlg(ρ) = Symk−2Q⊕2
p ⊗ LLC(ρ)

(that encodes the positive jump in the Hodge filtration) and conjectured that the set of
commensurability classes of GL2(Qp)-invariant O-lattices in LAlg(ρ) is in bijection with the
set of isomorphism classes of potentially semi-stable p-adic Galois representations ρ whose
local Langlands correspondent is the smooth representation LLC(ρ) (so that the topology of
the completion encodes the L-invariant).
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It is now tantalizing to ask if there is a functorial correspondence between the category
all p-adic Galois representations and a suitable category of p-adic Banach representations of
the group GL2(Qp) that extends the construction of Schneider-Teitelbaum [ST06], Breuil-
Schneider [BS07] and Breuil-Berger [BB10].

Thanks to the work of Colmez [Col10] (see references therein to his earlier work in the
case of p-adic principal series) and Colmez-Dospinescu-Paškūnas [CDP14], there’s now a
well-defined p-adic local Langlands functoriality for the group GL2(Qp).

Let us introduce the constructions that underpin this theory in the following proposition:

Proposition III.14. Let D be an irreducible étale (ϕ,Γ)-module over OE (resp. E) of di-
mension 2. Let αD : Q×

p → O× be such that ∧2D = OE(αD) (resp. ∧2D = E(αD)). Set
δD(x) = (x|x|)−1αD(x). For an étale (ϕ,Γ)-module D over E, let ∆ be an OE-lattice stable
by ϕ and Γ.

1. If D is an étale (ϕ,Γ)-module over OE, then, there is a unique smallest ψ-stable compact
O+

E -submodule D♮ that generates D. If D is an étale (ϕ,Γ)-module over E, then we set
D♮ = L ·∆♮.

2. The monoid

P+ =

(
Zp \ {0} Zp

0 1

)
acts on D by (

pka b

0 1

)
z = (1 + T )bϕk(σa(z))

for z ∈ D, a ∈ Z∗
p, b ∈ Zp, and k ∈ Z⩾0. The endomorphisms ϕ, ψ and the P+-action

on D can be packaged into a sheaf D ⊠ − = (U 7→ D ⊠ U,Res•) on Zp satisfying the
following properties:

(a) D ⊠ Zp = D;

(b) the sheaf D⊠− is P+-equivariant10—that is D⊠ γZp = γD⊠Zp for all γ ∈ P+;

(c) after identifying D ⊠ ( p
k a
0 1

)Zp with the O-submodule (1 + T )aϕk(D) of D, the
restriction map

Resa+pkZp
: D ⊠ Zp → D ⊠ (a+ pkZp)

is given by ( 1 a
0 1 ) ◦ ϕk ◦ ψk ◦ ( 1 −a

0 1 ).

(d) the sum of the restriction maps ResU ⊕ResV : D ⊠W → (D ⊠ U)⊕ (D ⊠ V ) is
an isomorphism whenever U, V , and W are opens in Zp such that W = U t V .

10Note that the monoid P+ also acts continuously on Zp by ( a b
0 1 )x = ax+ b for a ∈ Zp \ {0} and b ∈ Zp.
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Note that these properties identify D ⊠ Z∗
p with the O-submodule Dψ=0.

3. The sheaf D⊠− extends further to a sheaf on Qp that is equivariant for the action of
the mirabolic group P (Qp) = (Q∗

p Qp

0 1
) and whose space of global sections D⊠Qp is the

O-module lim←−ψD—

(a) The action of the group P (Qp) acts on z = (z(n))n∈Z ∈ D ⊠ Qp is defined as
follows:

• (( p
k 0
0 1

) · z)(n) = z(n+k) for k ∈ Z;
• (( a 0

0 1 ) · z)(n) = σa(z
(n)) for a ∈ Z∗

p;
• (( 1 b

0 1 ) · z)(n) = (1 + T )bp
n
z(n) for b ∈ Qp and n ⩾ −vp(b);

(b) There is a P+-equivariant injection ι : D → D ⊠ Qp given by ι(x) = (ϕn(x))n;
identify the image of ι with D = D ⊠ Zp. We therefore get a projection map
ResZp : D ⊠Qp → D ⊠ Zp by (x(n))n 7→ ι(x(0)).

(c) For open subsets U of Zp, let D ⊠ U denote the image of D ⊠ U under ι and the
restriction map ResU : D ⊠Qp → D ⊠ U is the projector ι ◦ ResU ◦ι−1 ◦ ResZp.

(d) For open subsets U of Qp, choose an integer k such that pkU ⊂ Zp and define
D ⊠ U to be

D ⊠ U =

(
p−k 0

0 1

)
(D ⊠ pkU)

and the restriction map ResU : D ⊠Qp → D ⊠ U to be ( p
−k 0
0 1

) ◦ RespkU ◦( p
k 0
0 1

).

4. The construction in 3 works also for D♮ in place of D.

5. D extends to a GL2(Qp)-equivariant sheaf (U 7→ D ⊠δD U,Res•) of O-modules on
P1(Qp); the O-module of its global sections is therefore a representation of GL2(Qp);
viewing P1(Qp) as the space obtained by gluing two copies of Zp along Z∗

p via the
involution x 7→ x−1 (corresponding to the action of the element w = ( 0 1

1 0 )), the sheaf
D ⊠− has the following properties:

• The restriction of the sheaf to either copy of Zp is identified with P+-equivariantly
with the sheaf D ⊠ Zp of 2;

• The action of w on D ⊠ Z∗
p is given by the formula

w(z) = lim
n→∞

∑
i∈(Z/pnZ)∗

δD(i)(1 + T )i
−1

σ−i−2ϕnψn
(
(1 + T )−iz

)
;
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• The space D ⊠δD P1 of global sections is identified with the O-submodule

{
z = (z1, z2) ∈ D ×D : ResZ∗

p
z2 = w(ResZ∗

p
z1)
}

of D×D; in this representation, z1, and z2 can be recovered from z via restriction
maps by the formulae z1 = ResZp z and z2 = ResZp w · z;

• If U and V are compact opens in Qp such that U t wV = P1 (with 0 ∈ U), then
the map

z 7→ (ResU(z),ResV (wz)) : D ⊠δD P1 → D ⊠δD U ⊕D ⊠δD V

is an isomorphism; therefore, an element z ∈ D ⊠δD P1 is determined uniquely
by the pair ResZp z and RespZp wz, or by the pair RespZp z and ResZp wz; and

• The action of GL2(Qp) on z = (z1, z2) ∈ D ⊠P1 can be described as follows—

– the center ( a 0
0 a ) acts by the character δD; i.e., one has a · z = δD(a)z;

– for a ∈ Z∗
p, the element ( a 0

0 1 ) acts by ( a 0
0 1 ) · z = (σa(z1), δ(a)σa−1(z2));

– the element ( pk 0
0 1

) (k ∈ N) acts by ( p
k 0
0 1

) · z =
(
ϕk(z1), δ(p

k)ψk(z2)
)
;

– the element w = ( 0 1
1 0 ) acts by w · z = (z2, z1).

6. The map

ResQp : D ⊠P1 → D ⊠Qp

z 7→

(
ResZp

((
pn 0

0 1

)
z

))
n∈N

is ( ∗ ∗
0 ∗ )-equivariant. If ResZp z = z1, then the map ResQp is given by

ResQp z = ι(z1) = (ϕn(z1))n∈N.

7. the O-submodule11 D♮⊠P1 = {z ∈ D⊠δD P1 : ResQp z ∈ D♮⊠Qp} is stable under the
GL2(Qp)-action on D ⊠P1;

8. the quotient Π(D) := D ⊠δD P1/D♮ ⊠P1 is an irreducible representation of GL2(Qp).

11Despite the notation, note that D♮ ⊠P1 is not the O-module of global sections of a sheaf on P1(Qp).
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We now state the properties of the functor Π(−) constructed in the proposition above:

Theorem III.15. Let D be an étale (ϕ,Γ)-module over E of dimension 2; and let δD : Q∗
p →

L∗ be the character (x|x|)−1 detD (where detD is viewed as a character of Q∗
p by local class

field theory).

1. The functor D 7→ Π(D) induces an exact sequence of L-Banach spaces

0→ Π(D)∗ ⊗ δD → D ⊠P1 → Π(D)→ 0.

2. (Compatiblity with the classical local Langlands correspondence)
The set Π(D)alg of locally algebraic vectors in Π(D) is non-zero if and only if Π(D)

is de Rham with distinct Hodge-Tate weights. Moreover, letting12 Dpst be the filtered
(ϕ,N)-module over L associated to D, the space Π(D)alg of algebraic vectors in Π(D)

is isomorphic to
LLC(WD(Dpst))⊗ (Symb−a−1⊗ det a)

where a and b are the Hodge-Tate weights of D. Here Symk is the k-th symmetric
power of the standard representation of GL2(Qp) on Q⊕2

p .

Going in the opposite direction, we have the functor V:

Theorem III.16. There is an exact covariant functor

V : Rep? GL2(Qp)→ Rep? GQp

for ? ∈ {tors,O, L} with the following properties:

1. The functor V induces a bijection between the isomorphism classes of absolutely ir-
reducible non-ordinary13 objects in RepLG and two dimensional absolutely irreducible
objects in RepL GQp.

2. The functor V realizes the mod p local Langlands correspondence and its image con-
tains all representations ρ : GQp → GL2(kL) such that

ρ 6∼ ψ ⊗

(
1 ∗
0 χ

)

for any kL-valued character ψ of GQp and any ∗ (zero or otherwise).
12It is a theorem of Berger that every de Rham L-representation of GQp is potentially semistable [Ber02].
13We say that an absolutely irreducible admissible representation of GL2(Qp) on an L-Banach space is

ordinary if it is a subquotient of a unitary parabolic induction of a unitary character of Q×
p .
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3. If Π has central character δ, then V(Π) has determinant δχ.

4. D(V(Π(D))) is isomorphic to D.

5. Let π be a smooth irreducible infinite dimensional admissible representation of GL2(Qp)

defined over L. If Π is an admissible absolutely irreducible non-ordinary unitary
completion of π⊗(Symk−1 L⊕2⊗det a), then V(Π) is potentially semistable with Hodge-
Tate weights a and a + k and WD(Dpst(V(Π))) is the Weil-Deligne representation
associated to π by the classical Local Langlands correspondence.

6. The functor Π 7→ Dpst(V(Π))) induces a bijection between the admissible absolutely
irreducible non-ordinary unitary completions of π ⊗ (Symk−1 L⊕2 ⊗ det a) (with π as
in 5), and the set of isomorphism classes of weakly admissible absolutely irreducible
filtered (ϕ,N)-modules over L whose underlying Weil-Deligne representation is LLC(π)
and whose underlying filtration has jumps at the integers a and a+ k.

The Hodge-Tate weights of the p-adic Galois representation ρf associated to a cuspidal
newform f of weight 1 are (0, 0) so it is not even clear how one should formulate the com-
patibility of the p-adic local Langlands correspondence with the classical one. Yet, Colmez
[Col19a] discovered a weight-shifting technique and is able to formulate and prove a version
of local-global compatibility for weight 1 forms. To discuss this result, we should work with
(ϕ,Γ)-modules over the Robba ring R of Qp with coefficients in L.

Theorem III.17. Suppose that D is an irreducible étale (ϕ,Γ)-module over R whose Hodge-
Tate weights are (0, 0).Let δD denote the character (x|x|)−1 detD. Then:

1. For every k ∈ Z, there exists an extension of D to a GL2(Qp)-equivariant sheaf on P1

whose space of global sections is a locally analytic representation of GL2(Qp) with the
following properties:

• The center of GL2(Qp) acts by the character xkδD;

• The Casimir operator acts by multiplication by 1
2
(k2 − 1).

2. For every k ∈ Z, there exists a locally analytic representations Π(D, k) of GL2(Qp)

and a smooth representation π uniquely determined by the following properties:

• for k ∈ Z, the representation Π(D, k) fits in an exact sequence

0→ Π(D, k)∗ ⊗ xkδD → D ⊠xkδD P1 → Π(D, k)→ 0;
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• for k ⩾ 1, there is an isomorphism Π(D, k)alg ∼= π ⊗ Symk−1 L⊕2 of GL2(Qp)-
representations.

3. When D is de Rham (and hence potentially semistable), the smooth representation π

in 2 is the classical local Langlands correspondent of the Weil-Deligne representation
associated to the filtered (ϕ,N)-module associated to D.

III.5: The construction of V(−)

The construction of the functor V(−) proceeds in four steps. Briefly:

• we re-interpret OL-modules equipped with a continuous action of the monoid P+ =

( Zp\{0} Zp

0 1
) as a (ϕ,Γ)-module over O+

E = OLJT K;
• Let Π ∈ ReptorsGL2(Qp); we shall construct a module M(Π) equipped with a contin-

uous action of P+; this gives rise to a (ϕ,Γ)-module over O+
E . Thus, the OE-module

D(Π) := OE⊗O+
E
M(Π) is a (ϕ,Γ)-module over OE.

• We now extend the construction to objects Π in RepOL
GL2(Qp) by taking inverse limit

of D(Π/prΠ) over r, and to objects Π in RepLGL2(Qp) by taking D(Π0)[1/p] for an
O-lattice Π0 in Π invariant under the action of GL2(Qp).

• The GQp-representation V(Π) is then set to be the Tate dual of V(D(Π)); here V(−)
is the Fontaine’s functor from the appropriate category of (ϕ,Γ)-modules to the cor-
responding category of representations of GQp and D(−) is the functor constructed
above.

We shall say a few more words about the first two steps.

III.5.1: P+-modules and (ϕ,Γ)-modules over O+
E

Suppose that M is an OL-module equipped with a continuous action of the monoid P+. Then
M can be viewed as a module over the continuous group algebra OLJ( 1 Zp

0 1
)K. Recall that

Amice transform identifies this continuous group algebra with O+
E = OLJT K via the map

λ 7→
∫
Zp

(1 + T )xλ(( 1 x
0 1 ))
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which identifies the element [( 1 1
0 1 )]−1 with T . Moreover, there is a continuous endomorphism

ϕ :M →M and a continuous action of Γ = Z∗
p onM that commutes with ϕ given as follows—

ϕ(v) =

(
p 0

0 1

)
v and σa(v) =

(
a 0

0 1

)
v.

Recall that OLJ( 1 Zp

0 1
)K is endowed with a continuous endomorphism ϕ and a continuous

action of Γ that commutes with ϕ given by

ϕ

([(
1 a

0 1

)])
=

[(
1 pa

0 1

)]
and σβ

([(
1 a

0 1

)])
=

[(
1 βa

0 1

)]

(where β ∈ Z∗
p). The matrix identity(

a 0

0 1

)(
1 b

0 1

)
=

(
1 ab

0 1

)(
a 0

0 1

)

implies that the endomorphism ϕ and the action of Γ on M are semilinear over that on O+
E .

In other words, M may be viewed as a (ϕ,Γ)-module over O+
E .

III.5.2: The (ϕ,Γ)-module D(Π) for torsion Π

Let Π be an admissible smooth GL2(Qp)-representation of finite length over O. Thus, Π

is an O/$nO-module for some n. Let W ⊂ Π be any finitely generated O-module that is
stable under GL2(Zp) and such that Π = GL2(Qp)W ; for the existence of such a W , see
Lemma III.1.6 of [Col10]. Set

D♮
W (Π) =

∑
m⩾0

(
pm Zp

0 1

)
W.

Then, the matrix identities(
1 Zp

0 1

)(
pm Zp

0 1

)
=

(
pm Zp

0 1

)
(
a 0

0 1

)(
pm b

0 1

)
=

(
pm ab

0 1

)(
a 0

0 1

)
for a ∈ Z∗

p, b ∈ Zp
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and the GL2(Zp)-stability of W imply that D♮
W (Π) is stable under the action of ( 1 Zp

0 1
) and

( Z∗
p 0
0 1

). Consider the O-linear dual of D♮
W (Π):

D+
W (Π) = HomO(D

♮
W (Π),O/$nO).

Then, D+
W (Π) is naturally a P+-module whence a (ϕ,Γ)-module over O+

E . Colmez then
proves that OE⊗O+

E
D+
W (Π) is independent of the choice of W and is the (ϕ,Γ)-module D(Π)

required in the case of torsion representation Π of GL2(Qp).

III.6: Relation to deformation theory

The main results in this section are due to Kisin [Kis10]; we follow Emerton [Eme11]. We
will use the language of deformation groupoids developed in the Appendix to [Kis09b].

Let Comp(OL) denote the category of complete Noetherian local OL-algebras whose
residue fields are a finite extension of kL.

Fix a residual representation ρ : GQp → GL2(kL) such that

(III.6.1) ρ 6∼ ψ ⊗

(
1 ∗
0 χ

)

for any kL-valued character ψ of GQp and any ∗ (zero or otherwise).
Let π = Π(ρ) be the kL-representation of GL2(Qp) attached to ρ by the mod p local Lang-

lands correspondence (v. Theorem III.16). We wish to relate the groupoid over Comp(OL)

consisting of the category of deformations of ρ and isomorphisms between them to that of π
using the p-adic local Langlands correspondence.

III.6.1: The deformation groupoids

Definition III.18. Fix A ∈ Comp(OL); let m := mA denote its maximal ideal.

1. A deformation of ρ to A is a pair (V, ι) where V is a free A-module of rank 2 equipped
with a continuous action of GQp together with an A/m-linear and GQp-equivariant
isomorphism ι : V/mV

∼−→ A/m⊗kL ρ.

2. An A-module M is orthonormalizable if M is m-adically complete, separated and is
such that M/msM is free over A/ms for all s ⩾ 0. (Note that M is then the completion
of a free A-module of rank dimA/mM/mM .)
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3. An A[GL2(Qp)]-module M is said to be orthonormalizable admissible if M is orthonor-
malizable as an A-module and M/msA is a smooth admissible representation of G over
A/ms for every s ⩾ 0.

4. A deformation of π to A is a pair (π, ι) where π is an orthonormalizable admissible
A[GL2(Qp)]-module together with an A/m-linear and GL2(Qp)-equivariant isomor-
phism ι : π/mπ

∼−→ A/m⊗kL π.

5. The deformation functor Defρ for ρ is a category fibered in groupoids over Comp(O):
for any A ∈ Comp(O) with maximal ideal m, the groupoid Defρ(A) has as objects de-
formations of ρ to A, and as morphisms the A-linear and GQp-equivariant isomorphisms
that are compatible with ι.

6. The deformation functor Defπ for π is a category fibered in groupoids over Comp(O):
for any A ∈ Comp(O) with maximal ideal m, the groupoid Defπ(A) has as objects
deformations of π to A, and as morphisms the A-linear and GL2(Qp)-equivariant iso-
morphisms that are compatible with ι.

7. Let Def∗π be the subfunctor of Defπ whose fiber Def∗π(A) over A ∈ Comp(O) is the
subgroupoid consisting of deformations π of π to A on which the center of GL2(Qp)

acts by the character detV(π) · χ (where the Galois character detV(π) · χ is regarded
as a character of Q×

p by local class field theory).

8. The full subgroupoid of Defρ consisting of the Zariski closure of the set of crystalline
points in the generic fiber of Defρ is denoted by Defcrisρ .

The functor V induces a natural transformation

V : Defπ → Defρ

between the deformation functors Defπ and Defρ; since the determinant of V(π) is deter-
mined by the central character of π, the natural transformation above induces a fully faitful
morphism of groupoids (v. [Kis10, Lemma 2.5])

Def∗π → Defρ .
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Together with the subgroupoid Defcrisρ , we have the following diagram of groupoids:

(III.6.2)
Defcrisρ

Def∗π Defρ .
V

.

Let Defcrisπ be the fiber product of Def∗π and Defcrisρ over Defρ; the groupoid Defcrisπ (A) (for
A ∈ Comp(O)) consists of pairs (Π, ρ) such that

• Π is a deformation of π to A whose central character is detV(Π) · χ;

• ρ is a deformation of ρ to A;

• for every maximal ideal x in the “generic fiber”14 A[1/p], the specialization ρ(x) of ρ
at x is crystalline; and

• V(Π) = ρ.

By definition, it comes equipped with a natural transformation

(III.6.3) Defcrisπ → Defcrisρ .

III.6.2: Reformulation of the p-adic local Langlands correspondence

The following is Theorem 3.3.13 of [Eme11]:

Theorem III.19. If ρ satisfies (III.6.1), then the Colmez’ functor V induces a fully faithful
embedding

Def∗π
V−→ Defρ

and the restriction (III.6.3) of V to Defcris(π) induces an equivalence onto to the groupoid
Defcris(ρ).

III.6.3: The case of absolutely irreducible ρ

In the case that ρ : GQp → GL2(kL) is absolutely irreducible, our deformation functors
above are representable by complete local O-algebras and the main theorems permit an

14It is easily checked that the maximal ideals of A[1/p] are kernels of L-algebra homomorphisms A[1/p]→
L′ for a finite extension L′ of L; the set of maximal ideals of A[1/p] is a way to algebraically phrase the rigid
analytic space associated to A.
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easier exposition. Since we plan to restrict ourselves to this case in our main theorem, we
include this discussion here.

Our assumption that the representation ρ is absolutely irreducible implies, by Schur’s
lemma, that EndGQp

(ρ) = kL. By Schlessinger’s criterion [Maz89, Proposition 1], the functor
Defρ is representable by a complete local O-algebra R(ρ); in particular, there are bijections

Hom(Comp(O))(R(ρ), A)
'−→ |Defρ(A)|

functorial in A ∈ Comp(O). In particular, plugging in A = R(ρ), the image of the identity
homomorphism is the universal deformation ρuniv : GQp → GL2(R(ρ)) of ρ.

It follows from [Kis10, Lemma 2.2] that EndGQp
(π) = kL. Thus, the functor Defπ is

representable by a complete local O-algebra R(π).
Since V is exact, it induces a local morphism V : R(ρ) → R(π) of complete local O-

algebras. The subgroupoid Def∗π consisting of deformations of π whose central character
is det(V(π)) · χ is representable by a quotient R(π)det of R(π); similarly, the subgroupoid
consisting of the Zariski closure of the set of crystalline deformations of ρ is represented by
the quotient

R(ρ)cris = R(ρ)/ ∩ p

as p ranges over kernel of homomorphisms x : R(ρ) → Zp such that the specialization of
ρuniv(x[1/p]) : GQp → GL2(Qp) is crystalline. (It is known that the intersection ∩p is zero—
that the crystalline points are dense in the space of deformations of ρ—but we do not need
this here.)

There is then a diagram of complete local O-algebras in which the vertical arrow is
surjective:

R(ρ) R(π)det

R(ρ)cris

We let R(π)cris denote the fiber product (viz., tensor product) of R(ρ)cris and R(π)det over
R(ρ); which comes equipped with the map

(III.6.4) R(ρ)cris → R(π)cris

The following is then an immediate corollary of III.19:

Theorem III.20. The map (III.6.4) is an isomorphism.
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CHAPTER IV
A p-adic Jacquet-Langlands Correspondence

IV.1: Setup

Let D be a definite quaternion algebra over Q of discriminant d∞; thus d is a square-free
integer that is a product of an odd number of primes. Our fixed prime p is such that
(p, d) = 1. Let G denote the Z-algebraic group D×, the group of units in D.

We also fix a finite extension L of Qp, and write O and kL for the ring of integers in L

and the residue field of O respectively. Fix a uniformizer $ in O.
Fix a continuous absolutely irreducible representation ρ : GQ → GL2(kL). Let Σ0 be a

finite set places not containing p so that ρ is unramified outside Σ = Σ0∪{p}. Assume that ρ
is modular. (This follows from that a priori weaker assumption that ρ is odd after the proof
of Serre’s conjecture by Khare-Wintenberger [Kha06, KW09a, KW09b] and Kisin [Kis09a].
It follows from loc. cit. that there exists a modular form f with level equal to the Artin
conductor N(ρ) of ρ and such that ρf is equivalent to ρ; the equivalence of this stronger
statement with the weaker Serre’s conjecture was known earlier; see [Kha06, p. 558] and the
references in [RS01] for more details. In particular, the modularity assumption implies that
there exists a newform f whose level is divisible only by places in Σ and such that ρf is
equivalent to ρ.)

We assume that ρ satisfies the following conditions:

(Irrp) ρ|GQp
is irreducible;

(SId) for v | d, the local representation ρ|GQv
is irreducible, or is of the form

(
ψv ∗
0 ψvχ

−1

)

where ψv is some character GQv → F
×
p and χ is the mod p cyclotomic character.

The local assumption at p is one of convenience for purposes of deformation theory; it must
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be possible to establish our results under the assumption (b) of Theorem 1.2.1 in [Eme11].
Presently however, our assumption excludes forms that are ordinary at p. On the other
hand, the assumption (SId) is crucial as we need to ensure square integrability at the places
ramified in the quaternion algebra D (cf. with the discussions in §4 of [BDJ10]).

IV.2: ρ-part of Ĥ
0 and T

Let Σ0 be as above; and let Σ = Σ0 ∪ {p}. Let GΣ0 denote the group
∏

v∈Σ0
G(Qv). Let

KΣ
0 :=

∏
ℓ/∈ΣGL2(Zℓ). The Hecke algebras T at finite pro-p levels, and at the infinite p-power

level are all for the group D× (so we mostly suppress it).

Definition IV.1.

1. We say that an open compact subgroup KΣ0 ⊂ GΣ0 is an allowable level for ρ if there
is a maximal ideal m of T(KΣ0) := T(KΣ0K

Σ
0 ) having residue field k and which is

associated to ρ; that is, the ideal m satisfies

Tℓ mod m = Tr ρ(Frobℓ)

`Sℓ mod m = det ρ(Frobℓ)

for all ` /∈ Σ (more concretely, there exists a cuspidal automorphic form on D× of tame
level KΣ0 whose associated Galois representation lifts ρ). Since the elements Tℓ and
Sℓ (` /∈ Σ) topologically generate the Hecke algebra T(KΣ0), the maximal ideal m is
uniquely determined by the requirements above and is denoted by mρ.

(In view of the parenthetical remark before the definition, note that any sufficiently
small open compact subgroup KΣ0 is allowable for ρ.)

2. For an allowable level KΣ0 , we write T(KΣ0)ρ for the completion of T(KΣ0) at m.

For an compact open subgroup Kp of G, let

T(KpKΣ0)ρ := T(KΣ0)ρ ⊗T(KΣ0
) T(KpKΣ0K

Σ
0 ).

This is complete local O-algebra. Following Carayol [Car94, Théorème 3], there exists a
deformation ρ(KpKΣ0) of ρ : GQ → GL2(T(KpKΣ0)ρ) to the ring T(KpKΣ0)ρ such that the
characteristic polynomial of ρ(KpKΣ0)(Frobℓ) is

X2 − TℓX + `Sℓ
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for all ` /∈ Σ. Since
T(KΣ0)ρ = lim←−

Kp

T(KpKΣ0)ρ,

by taking inverse limit of the representations ρ(KpKΣ0), we get a deformation of ρ to the
complete local O-algebra T(KΣ0)ρ.

Recall now that there is the universal deformation ring Rρ,Σ that parametrizes deforma-
tions, to complete O-algebras, of ρ that are unramified outside Σ (cf. §1.2 of [Maz89]). The
ring Rρ,Σ is then a complete local O-algebra with residue field k, and comes with the univer-
sal deformation ρuniv; viz., a continuous representation ρuniv : GQ → GL2(Rρ,Σ) such that, if
ρ : GQ → GL2(A) is a deformation of ρ to a complete local O-algebra A, then there is a local
homomorphism spcA : Rρ,Σ → A such that ρ = GL2(spcA) ◦ ρuniv. It follows from Carayol’s
Lemma [Car94, Théorème 2] for representations on finite free modules over complete local
O-algebras and the Chebotarev density theorem that Rρ,Σ is generated by Tr ρuniv(γ) as γ
varies over a dense subset of GQ. In particular, the elements tℓ ∈ Rρ,Σ (` /∈ Σ) given by

tℓ = Tr ρuniv(Frobℓ)

topologically generate the ring Rρ,Σ. In particular, the element sℓ ∈ Rρ,Σ (` /∈ Σ) given by

sℓ = `−1 det ρuniv(Frobℓ)

belongs to the closure of the subring generated by the tℓ’s.
For each allowable level KΣ0 , there is then a local homomorphism

φ(KΣ0) : Rρ,Σ → T(KΣ0)ρ

uniquely determined by the universal property; moreover, it follows from this that φ(KΣ0)(tℓ) =

Tℓ and φ(KΣ0)(sℓ) = Sℓ. In particular, the map φ(KΣ0) is surjective and that T(KΣ0)ρ is
generated by the Tℓ’s alone.

For every pair of allowable levels K ′
Σ0
⊂ KΣ0 , there is then a commutative diagram

(IV.2.1)
Rρ,Σ

T(K ′
Σ0
)ρ T(KΣ0)ρ

ϕ(KΣ0
)

ϕ(K′
Σ0

)

in which the vertical arrows are (and hence the horizontal arrow is) surjective.
We christen the the Hecke algebra obtained by passing to the inverse limit over allowable
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levels KΣ0 , the “ρ-part of T”:

Definition IV.2. Write
Tρ,Σ := lim←−T(KΣ0)ρ

as the inverse limit ranges over allowable levels KΣ0 for the residual representation ρ. Note
that the algebra Tρ,Σ acts on Ĥ

0
(KΣ0) for any allowable level KΣ0 via the quotient T(KΣ0)ρ.

Moreover, the transition maps preserve the Hecke operators Tℓ (` /∈ Σ), and hence there
is a well-defined element Tℓ ∈ Tρ,Σ which acts by Tℓ on Ĥ

0
(KΣ0) for any ` /∈ Σ and any

allowable level KΣ0 .

The following lemma shows that the O-algebra Tρ,Σ is isomorphic to the Hecke algebra
T(KΣ0)ρ for a sufficiently small allowable level KΣ0 ; in particular, Tρ,Σ is complete and local.

Lemma IV.3.

1. For allowable levels K ′
Σ0
⊂ KΣ0, the induced map

T(K ′
Σ0
)ρ → T(KΣ0)ρ

is a surjection of complete local Noetherian O-algebras.

2. If furthermore KΣ0 is a sufficiently small allowable level, then the induced map T(K ′
Σ0
)ρ →

T(KΣ0)ρ of part 1 is an isomorphism.

Proof.

1. This follows from the surjectivity of the vertical arrows in the commutative diagram
(IV.2.1).

2. This relies on the observations of Ron Livne [Liv89] and Henri Carayol [Car89] about
the behaviour of prime-to-p Artin conductors under reduction modulo p; from the
discussion in §1 of [Car89] for example, it follows that there is an integer NΣ0 such
that the Artin conductor of every modular deformation ρ of ρ divides NΣ0 ; thus, as
quotients of Rρ,Σ, the O-algebras T(KΣ0)ρ coincide whenever KΣ0 contains an open
subgroup of GΣ0 of level NΣ0 .

The commutative diagram (IV.2.1) packages to a local homomorphism

φΣ : Rρ,Σ → Tρ,Σ
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and gives rise to a continuous representation ρm : GQ → GL2(Tρ,Σ); we view this repre-
sentation as the universal modular deformation of ρ; cf. for example, §2 of [Car94] for the
aptness of this name.

Finally, using the Hecke action on Ĥ
0
, we can isolate its ρ-part:

Definition IV.4. For allowable levels KΣ0 and coefficients A = L or O, let

Ĥ
0
(KΣ0)A = Ĥ

0
(KΣ0K

Σ
0 )A

Ĥ
0
(KΣ0)A,ρ = T(KΣ0)ρ ⊗T(KΣ0

) Ĥ
0
(KΣ0)A

Finally, the ρ-part of Ĥ
0

is the inductive limit over levels KΣ0 allowable for ρ:

Ĥ
0

A,ρ = lim−→
KΣ0

Ĥ
0
(KΣ0)A,ρ

IV.3: Crystalline points of SpecTρ,Σ[1/p]

Definition IV.5. Fix an isomorphism ι : C→ Qp.

1. We say that an eigensystem λ : Tρ,Σ → Qp is classical modular if there exists an
automorphic representation πλ of the group D×(A) with the following property:

for all places v not dividing d∞, if πλ,v is unramified, then the Satake parameters
{αv(π), βv(π)} of the local representation πλ,v of GL2(Qv) are related to the eigensys-
tem λ via λ(Tv) = ιαv(π) + ιβv(π).

2. We say that a classical modular eigensystem λ of D× is crystalline if the local represen-
tation πλ,p of GL2(Qp) of the associated automorphic representation πλ is unramified.

À la Emerton’s Proposition 5.4.1 in [Eme11], we now prove:

Proposition IV.6. If KΣ0 ⊂ GΣ0 is an allowable level for ρ, then the space of GL2(Zp)-
algebraic vectors

(
Ĥ

0
(KΣ0)L,ρ

)
GL2(Zp)-alg

is dense in Ĥ
0
(KΣ0)L,ρ.

(Recall that a vector v in a (continous) G-module is GL2(Zp)-algebraic if the representation
〈GL2(Zp)v〉 is an algebraic representation of GL2(Zp). Cf. with our discussions in §II.6.)

Proof. Tracing through the proof of Proposition 5.4.1 in [Eme11], it suffices to show that
there is an isomorphism of $-adically admissible Kp-representations

(IV.3.1) Ĥ
0
(KΣ0)L,ρ

∼= C(Kp, L)
r
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for some r > 0 and a suitable compact open subgroup Kp of G. Admitting this fact, let us
complete the proof of Proposition IV.6 by bootstrapping (IV.3.1) to a GL2(Zp)-equivariant
embedding of Ĥ

0
(KΣ0)L,ρ into C(GL2(Zp), L)

s for some s > 0. Such an embedding would
immediately prove our claim—via the theory of Mahler expansions, it can be checked that
the space C(X(Zp), L)alg is a dense subspace of C(X(Zp), L) for an affine scheme X of finite
type over Zp (v. Lemma A.1 of [Paš14]).

Taking the topological L-linear dual Homcts
L (−, L) in (IV.3.1), we get an isomorphism

Ĥ
0
(KΣ0)

′
L,ρ

'−→ D0(Kp, L)
r.

It follows then that Ĥ
0
(KΣ0)

′
L,ρ is projective over D0(GL2(Zp), L) since

HomD0(GL2(Zp),L)(Ĥ
0
(KΣ0)

′
L,ρ,−) = HomD0(Kp,L)(Ĥ

0
(KΣ0)

′
L,ρ,−)GL2(Zp)/Kp

is the composition of two exact functors; indeed, Ĥ
0
(KΣ0)

′
L,ρ is free over D0(Kp, L) and

taking invariants for a finite group action is exact in characteristic 0. As a projective
D0(GL2(Zp), L)-module, D0(Kp, L) is a direct summand of a free module D0(GL2(Zp), L)

s

for some s > 0. Now, undoing the duality and recalling that the restriction to the Dirac dis-
tributions supported on elements of GL2(Zp) induces an isomorphism [ST02a, Corollary 2.2]

Homcts
L (D0(GL2(Zp), L), L) ∼= C(GL2(Zp), L),

we get an embedding of the sort surmised in the last paragraph.
For the isomorphism (IV.3.1), we follow the ideas in §5.3 in [Eme11]. In our case, the proof

is a pleasant tour through non-commutative generalizations of standard fare commutative
algebra.

Recall that the Jacobson radical J(Λ) of a ring Λ is the two-sided ideal of Λ of elements r ∈
Λ that annihilate every simple left (equivalently, right) Λ-module. Moreover, the Jacobson
radical is also proper since we assume 1 6= 0 in our rings. We say that Λ is local if its
Jacobson radical J(Λ) is a maximal ideal in Λ. One has a version of Nakayama’s lemma in
this generality: if M is a finitely generated (left) Λ-module such that J(Λ)M = M , then
M = 0. Recall finally that a left Λ-module M is projective if the functor HomΛ(M,−) is
exact. We need the following case of a general theorem of Kaplansky [Kap58]:

Theorem IV.7. A finitely generated projective module M over a local ring Λ is free.

Proof. The homological algebraic characterizations of (finitely generated) projective modules
are available to us irrespective of whether Λ is commutative or not; in particular, we have
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the lifting property across surjections for maps out of projective modules and the fact that
surjections onto projective modules split.

Since Λ is local, the quotient Λ/JΛ of Λ by its Jacobson radical J = J(Λ) is a division
ring, therefore, every Λ/JΛ-module is free. Thus, there is an isomorphism

(Λ/JΛ)⊕n → P/JP.

Composing this isomorphism with the natural projections from Λ⊕n and P respectively onto
(Λ/JΛ)⊕n and P/JP , we have

Λ⊕n (Λ/JΛ)⊕n

P P/JP

∃ ' .

There’s then a lift of the isomorphism to a Λ-linear map φ : Λ⊕n → P making the diagram
commute; the commutativity of the diagram implies, in particular, that Im(φ) + JP = P .
Nakayama’s lemma then tells us that Im(φ) = P ; that is, φ is surjective. Since P is projective,
φ splits; setting K = kerφ, there is an isomorphism φ̃ : Λ⊕n → P ⊕ K such that the
composition with the projection to P equals φ. Reducing mod J , we learn that JK = K

since φ modulo J is an isomorphism. By Nakayama again, we have that K = 0, or that φ is
an isomorphism. This gives us our theorem.

It is a theorem of Lazard that, for a finitely generated pro-p group G, the completed group
algebra AJGK over a commutative local ring A is complete, both left- and right-Noetherian,
and local (v. Théorème 2.2.2 and ¶2.2.4 of Chapitre II, and Proposition 2.2.4 of Chapitre V
in [Laz65]). (In particular, we may take A = O/$sO, or O.)

The argument that there is an isomorphism (IV.3.1) proceeds as follows:

• Suppose that Kp is a compact open subgroup of G, and KΣ0 is an allowable level for
ρ such that Kfin = KpKΣ0K

Σ
0 is neat. If W is a smooth Kp-module over O/$sO then

the space H0(Kfin,VW ) is isomorphic to W⊕r for some r independent of W . (The r is
simply the cardinality of the finite set Y (Kfin).)

• Since we have

HomO[Kp](W,H
0(KΣ0K

Σ
0 ,O/$

sO)) ' H0(KpKΣ0K
Σ
0 ,VW )

it follows that H0(KΣ0K
Σ
0 ,O/$

sO) is injective as an (O/$sO)[Kp]-module; therefore
its Pontryagin dual H0(KΣ0K

Σ
0 ,O/$

sO)∨ is a projective (O/$sO)JKpK-module. By
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our Theorem IV.7 and the discussion after it, we get that

H0(KΣ0K
Σ
0 ,O/$

sO)∨ ' (O/$sO)JKpKr
for an r independent of s. Undoing the Pontryagin duality by noting that the Pon-
tryagin dual of (O/$sO)JKpK is C(Kp,O/$sO), we get that

Ĥ
0
(KΣ0)O/ϖsO ' C(Kp,O/$

sO)r

for an r independent of s.

• In particular, since the local ring T(KΣ0)ρ is a direct summand of T(KΣ0), we get that
Ĥ

0
(KΣ0)O/ϖsO,ρ is also injective and the arguments above apply equally to Ĥ

0
(KΣ0)O/ϖsO,ρ

to give us an isomorphism

Ĥ
0
(KΣ0)O/ϖsO,ρ ' C(Kp,O/$

sO)r

for some r independent of s.

• Since Ĥ
0
(KΣ0)O,ρ is the projective limit

lim←− Ĥ
0
(KΣ0)O,ρ/$

s Ĥ
0
(KΣ0)O,ρ

and the quotient Ĥ
0
(KΣ0)O,ρ/$

s Ĥ
0
(KΣ0)O,ρ is isomorphic to C(Kp,O/$sO)r for some

r > 0 independently of s as an admissible smooth Kp-representation, we get an iso-
morphism

Ĥ
0
(KΣ0)O,ρ

∼= C(Kp,O)
r.

• by extending scalars from O to L, the required isomorphism follows.

We shall show that the space of locally algebraic vectors generated by Hecke eigenvec-
tors corresponding to classical modular eigensystems that are crystalline is dense in Ĥ

0

L,ρ,Σ

(analogous to Corollary 5.4.5 of [Eme11]).

Corollary IV.8. Let C denote the set of closed points p ∈ SpecTρ,Σ[1/p] that are classical
and whose associated Galois representations are crystalline locally at p. The submodule⊕

p∈C Ĥ
0

L,ρ,Σ[p]
alg is dense in Ĥ

0

L,ρ,Σ.

Proof. This follows from the characterization of locally algebraic vectors in Ĥ
0
(KΣ0)L (v.

Corollary II.19) and passing to the inductive limit over KΣ0 in our previous proposition.
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We deduce that the set of classical modular eigensystems that are regular crystalline is
Zariski dense in the whole space.

Corollary IV.9. Let C denote the set of closed points p ∈ SpecTρ,Σ[1/p] that are classical
and whose associated Galois representations are crystalline locally at p. Then C is dense in
SpecTρ,Σ.

Proof. Note that a t ∈
⋂

p∈C p annihilates
⊕

p∈C Ĥ
0

L,ρ,Σ[p]
alg; since this space is dense in Ĥ

0

L,ρ,Σ,
it follows that t also annihilates Ĥ

0

L,ρ,Σ. But Ĥ
0

L,ρ,Σ is a faithful Tρ,Σ-module, so t = 0. This
proves that C is Zariski dense as desired.

We close with the following proposition:

Proposition IV.10. Suppose that ρf : GQ → GL2(L) is the Galois representation associated
to a cuspidal newform f of weight k ⩾ 2 that is unramified at p (equivalently, crystalline
locally at p) and ρf ' ρ. Then, there is an injective map

Π
(
ρf |GQp

)
↪→ Ĥ

0
(KΣ0)L,ρ

for a level KΣ0 allowable for ρ.

Proof. Under the assumptions on ρ at places dividing d, the Jacquet-Langlands correspon-
dence implies that f transfers to D×. Therefore, by Corollary II.19 and by definition of
allowable levels, there is an allowable level KΣ0 and a continuous GL2(Qp)- and Hecke-
equivariant injection

(IV.3.2) Symk−2 L⊕2 ⊗ LLC(ρ|GQp
) ↪→ Ĥ

0
(KΣ0)L,ρ.

By Theorem III.16 (6), the representation Π
(
ρf |GQp

)
is then the unitary completion of

LAlg(ρf |GQp
) = Symk−2 L⊕2 ⊗ LLC(ρ|GQp

)

with respect to a finitely generated GL2(Qp)-stable lattice (the key point is that, when k ⩾ 2,
the representation ρf |GQp

is trianguline and the set of commensurability classes of lattices
in LAlg(ρf |GQp

) is singleton; cf. the main theorem in [Bre03b]). Since the map (IV.3.2) and
its target is complete, the map extends to a non-zero map

Π
(
ρf |GQp

)
→ Ĥ

0
(KΣ0)L,ρ.

But since the source is irreducible, this non-zero map is also injective.
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IV.4: The multiplicity module

Let π = Π(ρ) be the smooth k-representation of GL2(Qp) attached to ρ by Colmez’s functor.
Let π be a deformation of π to the local O-algebra Tρ,Σ such that V(π) = ρm|GQp

, the
universal modular deformation of ρ introduced in Section IV.2

Since V is an exact functor, for any prime ideal p of Tρ,Σ, we have that

V(π/pπ) = ρm|GQp
(p)

where ρm|GQp
(p) is the composition of ρm with the map GL2(Tρ,Σ) → GL2(Tρ,Σ/p). Since

Π and V are exact, if p is the prime ideal associated to a classical modular eigensystem f

on D× (that is crystalline locally at p), then π/pπ is Π(ρf |GQp
).

In Proposition IV.10, we have shown that, for prime ideals p of Tρ,Σ which are classical
modular and crystalline locally at p, there is an injective map π/pπ ↪→ Ĥ

0

L,ρ,Σ; since the
source is annihilated by p, the image is a Tρ,Σ-submodule of Ĥ

0

L,ρ,Σ[p] ' Ĥ
0

O,ρ,Σ[p]; and in
Corollary IV.9, we have seen that the set of such prime ideals is dense in Tρ,Σ.

We now wish to show that for all prime ideals p of Tρ,Σ, there is an injection

Π(ρm|GQp
(p)) ↪→ Ĥ

0

O,ρ,Σ[p].

In analogy with Emerton’s work [Eme11], we therefore study the “multiplicity module”

X = HomTρ,Σ[GL2(Qp)]−cont(π, Ĥ
0

O,ρ,Σ)

Proposition IV.11.

1. The Tρ,Σ-module X is cofinitely generated.

2. The O-dual HomO(X,O) of X is finitely generated as a Tρ,Σ-module.

Proof.

1. Recall from [Eme11, Definition C.1] that we need to check the following properties for
X:

• X is $-adically complete, separated and O-torsion free;

• When Tρ,Σ is given its mρ-adic topology and Ĥ
0

O,ρ,Σ its $-adic topology, the
morphism affording the Tρ,Σ-module structure

Tρ,Σ × Ĥ
0

O,ρ,Σ → Ĥ
0

O,ρ,Σ
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is continuous; and

• the quotient (X/$X) [mρ] is finite dimensional over k.

Since Ĥ
0

is $-adically complete, separated and O-torsion free, so is X. The conti-
nuity of the action map is by definition of the Hecke algebra. To check that quo-
tient (X/$X) [mρ] is finite dimensional over k, we argue as in Emerton [Eme11, The-
orem 6.3.12]. Note that the reduction mod $ of the map

X→ HomTρ,Σ[GL2(Qp)]−cont(π, Ĥ
0

O,ρ,Σ)

induces an injective map

X/$X→ Homk[GL2(Qp)](πρ/$πρ, Ĥ
0

k,ρ,Σ).

Since O/$ = Tρ,Σ/mρ = k, and πρ is a deformation of Π(ρ) to the local O-algebra
Tρ,Σ, it follows that πρ/$πρ is isomorphic to Π(ρ) as a k[GL2(Qp)]-module.

Passing to mρ-torsion parts, we have an injective map

(X/$X) [mρ] ↪→ Homk[GL2(Qp)](Π(ρ), Ĥ
0

k,ρ,Σ[mρ])

∼−→ Homk[GL2(Qp)](Π(ρ), Ĥ
0

k,ρ,Σ).

Let W be any finite dimensional k-subspace of Π(ρ); since Π(ρ) is irreducible, the k-
subspace W generates Π(ρ). Since Π(ρ) is smooth, there is an open compact subgroup
Kp of G which fixes W pointwise. Restricting to Kp-action, we have an inclusion

Homk[GL2(Qp)](Π(ρ), Ĥ
0

k,ρ,Σ) ↪→ W
∨ ⊗k (Ĥ

0

k,ρ,Σ)
Kp .

The space (Ĥ
0

k,ρ,Σ)
Kp is finite dimensional by arguments in the proof of Proposi-

tion 5.3.13 and Corollary 5.3.14 of [Eme11] and therefore so is (X/$X) [mρ].

2. This follows from [Eme11, Proposition C.5] in view of 1.

IV.5: The theorem

Theorem IV.12. Let G = D× where D is a definite quaternion algebra of discriminant
d∞; we assume that p ∤ d so D ⊗Qp is the matrix algebra. Fix a finite extension L of Qp

with ring of integers O, and residue field kL.
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Fix a continuous absolutely irreducible representation ρ : GQ → GL2(k) that is modular
and satisfies the hypotheses (Irrp) and (SId) in Section IV.1. Let Σ0 be a finite set places
not containing p so that ρ is unramified outside Σ = Σ0 ∪ {p}.

Let π = V(ρm|GQp
) be the p-adic local Langlands correspondent of the universal modular

deformation ρm of ρ.
Let λ : Tρ,Σ → O be any system of Hecke eigenvalues; let p = kerλ. Then:

1. There is a non-zero G(Qp)-equivariant map

π/pπ → Ĥ
0

ρ,O[p]

of Tρ,Σ-modules.

2. If λ is associated to a Galois representation ρλ : GQ → GL2(L), then, (π/pπ) is
the locally analytic representation Π(ρλ|GQp

) associated to ρλ|GQp
by the p-adic local

Langlands correspondence and so every non-zero map of (1) above extends to a non-zero
map

Π(ρλ|GQp
) ↪→ Ĥ

0

ρ,L .

Proof. For avoidance of notational clutter, let T = Tρ,Σ. The proof proceeds in two steps:

Step 1 Consider the module

X = HomT[GL2(Qp)]−cts(π, Ĥ
0

ρ,O)

Then X[p] is identified with the T-module of maps

HomT[GL2(Qp)]−cts(π/pπ, Ĥ
0

ρ,O[p]).

The module X allows to argue that X[p] 6= 0 for all primes p can be deduced from
X[p] 6= 0 for a Zariski dense subset of primes. To make this reduction, we argue as
follows:

• There is a natural isomorphism (Proposition C.14 of [Eme11])

HomL(L⊗ X[p], L)→ L⊗ (HomO(X,O)⊗T/p)

thus, setting M = HomO(X,O), if M/pM 6= 0, then X[p] 6= 0.

• If there is a Zariski dense set of primes p such that M/pM 6= 0, then M is a
faithful T-module: if t ∈ T belongs to the annihilator of M , then t ∈ p for a
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Zariski dense set of primes so t belongs to every prime. Since T is reduced, we
deduce t = 0 as required.

• Recall that M is finitely generated (v. Proposition IV.11). Thus, if M = pM for
a prime p, then, there would exist a t ∈ p such that (1+ t)M = 0 by Nakayama’s
lemma. But M is a faithful T-module (by Step 2 in light of the discussion above),
so we’ve arrived at a contradiction.

Step 2 We recall from Proposition IV.10 that there are injective (in particular, non-zero!)
maps

π/pλπ = Π(ρλ|GQp
) ↪→ Ĥ

0

O,ρ,Σ[pλ]

for Hecke eigensystems λ of weight at least 2 and crystalline at p; thus, X[pλ] 6= 0.
Since the set C of such eigensystems is dense in SpecTρ,Σ, it follows that X[p] 6= 0 for
all primes p.
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