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Abstract

Although robots can perform in structured environments, they struggle to perceive

and operate within cluttered, dynamic, and previously unseen settings. Nonparametric

Bayesian inference has the potential to address these problems caused by uncertainty

and reason over nonlinear high dimensional states. However, sampling-based Bayesian

inference methods are susceptible to mode collapse of the belief distribution, where

the inference process incorrectly converges to a single region of the state space.

Inference with more samples can improve the ability to represent the state space

fully, but it is often not feasible due to computational and resource constraints in

robotics domains.

This dissertation introduces a counter-hypothetical approach to evidential reasoning

for addressing the problems of mode collapse in nonparametric Bayesian inference.

Evidential reasoning, in the context of nonparametric Bayesian inference, allows us

to explicitly model likelihood, ambiguity, and doubt in the underlying belief of the

distribution. With these more delineated measurements of belief, we no longer need

to infer quantities of ambiguity and doubt from likelihood weightings alone. We

demonstrate this extension can enable nonparametric Bayesian inference to sample

over high-dimensional state spaces with more robustness to particle deprivation.

We begin by introducing the Counter-Hypothetical Particle Filter, CH-PF, to

overcome mode collapse when tracking rigid objects from monocular video observations.

Previous methods predict failures during inference based on the likelihood function.

We observe that low likelihood weightings for a given hypothesis can be attributed

to error in the pose or ambiguity in the observation. For this reason, we present the

x



counter-hypothetical likelihood function to estimate doubt independently of likelihood

or ambiguity. The counter-hypothetical particle filter quantifies the evidence that

supports a hypothesis and refutes the hypothesis. This independent and explicit

modeling of doubt through a proposed counter-hypothetical likelihood function enables

the filter to better detect failure modes and adaptively redistribute probability mass

to a null hypothesis.

To better evaluate the performance of our methods on tracking high-dimensional

states under heavy occlusion, we present a benchmark dataset. The Progress LUM-

BER (Looking Upon a Moving BipEdal Robot) Dataset contains 100 sequences

of a bipedal humanoid robot Digit moving within highly obstructed scenes. The

annotations require no external markers to label the pose of 29 links. The oc-

clusions featured in the dataset make it unique in its representation of real-world

environments that humanoid mobile manipulators may face in practical scenarios.

Extending counter-hypothetical reasoning to higher dimensional systems, we present

Weighted And Graphical Evidential Reasoning for Differentiable Nonparametric

Belief Propagation, (WAGER-DNBP). This method models evidential reasoning

within a differentiable nonparametric belief propagation algorithm. WAGER-DNBP

not only learns the unary and pairwise potentials via labeled tracking data but

also the counter-hypothetical likelihood. We then use inconsistencies between a given

hypothesis’s likelihood and counter-hypothetical likelihood scores and observation to

estimate ambiguity. WAGER-DNBP then uses these measurements of ambiguity to

determine which observations within the factor graph should carry more weight in

the posterior belief distribution. We validate our method on the Progress LUMBER

Dataset to show that the explicit modeling of ambiguity and doubt within WAGER-

DNBP can enable it to recover from particle deprivation more efficiently.

xi



Chapter 1

Introduction

1.1 Motivation: Robots for the Real World

Our current times are a catalyst for the transition of robots from performing

predictable jobs in repeatable factory workspaces to helping with everyday tasks in

common human environments. The next generation of robots has been envisioned to

assist with cooking, cleaning, organizing, and assembling on our behalf. We often

avoid executing these duties ourselves due to the physical demands, time constraints,

or tediousness we may associate with a given task. Beyond convenience, many

societal necessities, such as infrastructure maintenance or working within hazardous

areas, can be dangerous for humans even to attempt.

Extending the responsibilities of robots from repeatedly grasping the same object

on a conveyor belt to finding your kitchen scissors demands an evolution of their

fundamental abilities. Within the domestic realm, a realistic kitchen and its manipu-

lation requirements are shown in Figure 1.1. Most of the objects are only partially

Figure 1.1: Example of the everyday environments [1] a mobile manipulator will
have to understand in order to perform manipulation tasks [2].
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Figure 1.2: A warehouse environment with several colocated Locus robots and humans,
all of which a robot must perceive and avoid (left). Estimating the pose of another
agent must be robust to partial observability, as shown in the heavy occlusion of a
Figure robot (right).

observable, so the robot must form a thorough and consistent scene understanding

despite only gleaming pieces of information from each vantage point or relative

positioning of the objects. Such visual tracking is further complicated when the

objects are moving and have high degrees of freedom. A robot might also operate

within a complex and fast-paced warehouse, as depicted in Figure 1.2. However,

planning its trajectory within the space carries additional safety and time constraints

due to the presence of human coworkers. In all of these examples for perception

and trajectory generation in robotics applications, the autonomous system must be

able to reliably reason under uncertainty quickly for complex problems that provide

minimal and noisy information.

Let us highlight specifically the implications of partial observability for pose track-

ing. In Figure 1.3, the end of a plastic banana is shown peaking out from behind

a blue pitcher. The geometry of the object contains symmetry, and distinguishing

between symmetries is not aided by the lack of any texture or features on the

plastic. At the robot’s first and partial glance at the banana, it may mistakenly

flip the pose of the banana in its initial estimate. Later in the sequence, as shown

in at the bottom, more of the banana is viewable. From this vantage point, it is

easier for the robot to correctly estimate the pose of the banana. This example

2



Figure 1.3: Observation and estimate at an initial viewpoint (top) when the partial
observability and symmetry of the banana cause an inversion of the orientation in
the pose estimation. Sometime later (bottom), he banana is viewable enough to
disambiguate similar poses and correct the orientation.

deviates from the typical assumption—leveraging information and estimates from pre-

vious time-steps will help a robot maintain consistent and accurate estimates. As

we will discuss further, we propose an alternative method for reasoning about the

uncertainty of the pose at each frame, such that the system is more capable of

making such a necessary correction.

1.1.1 Uncertainty and Inference

Particle Filters, as a form of Sequential Monte Carlo, is one such method

to reason under uncertainty through probabilistic Bayesian inference [7]. While

Gaussian filters [8] are constrained to only solve linear systems, particle filters are

nonparametric and able to represent nonlinear systems. The distributions they can

represent are not constrained to be Gaussian, which is particularly advantageous

3



when there are multiple reasonable hypotheses that should be considered in the belief

distribution, e.g. observing rotations of an object with symmetry or representing the

configuration of an over-actuated robot. Even when the sequential information is

represented as a complex graphical model [9], it can be implemented as a sampling-

based method through nonparametric belief propagation [10].

The current era of reasoning under uncertainty features blends of methods that

have traditionally been siloed. Observation models of nonparametric inference that

previously relied on expert-engineered features [11, 12] have been expanded to include

data-driven models [13, 14, 15]. Differentiable filtering pipelines have enabled action

models and pairwise potentials to even be learned as opposed to created based on

domain-specific knowledge [16, 17, 6]. Conversely, probabilistic reasoning remains a

more stable and principled underlying framework to handle the noisy estimates from

neural networks. Learned methods can measure uncertainty based on the consistency

of predictions when there is stochasticity added to the network, such as training the

weights to be represented by a probabilistic density function [18, 19] or randomly

dropping out portions of the network [20, 21].

1.1.2 Particle Deprivation

Though these methods alleviate some of the hand-tuning traditional filters and

overconfidence of neural networks, the nondifferentiable particle resampling step often

propels the inference process into failure modes at the time of inference. Because its

posterior distribution is determined by sampling from the prior distribution, states

unrepresented in the previous instance of time will continue to be unrepresented

unless their distance to the particle set is within the variance of the action model.

The omission of the true state within the particle set will cause the filter to

maintain an incorrect estimate, even if its likelihood function is perfect.

This problem is referred to as particle deprivation, and it is exacerbated in robotics

4



due to its computational and time constraints limiting the particle set size in relation

to the state space. Because of this disparity, many robotics works (particularly in

the domain of mobile robot localization) have examined how to overcome particle

deprivation. They examine increasing the size of the sample set and redistributing

the samples as needed, known as adaptive particle reinvigoration [22]. In these cases,

the need to recover regions of the belief through particle reinvigoration is typically

signaled by heuristics centered on the likelihood function. Measuring uncertainty is

indirectly inferred by examining the likelihood because these quantities are dependent

on one another in Bayesian reasoning. They can be categorized as zero-sum, meaning

any increase in one quantity directly implies a decrease in the other quantity.

It is with this emphasis on the mechanics of the reasoning about belief and

doubt within a filter that this dissertation begins to deviate from previous works.

Given that certain viewpoints do not contain enough visual information to disam-

biguate between the correct pose and other plausible hypothetical poses, it may be

difficult to precisely quantify the belief and doubt associated with a pose. Some of

the uncertainty surrounding a given pose might not be caused by the presence of

unsupporting evidence but rather a lack of evidence. Allowing for this third quantity

of ambiguity to be considered alongside belief and doubt removes the dependency

between likelihood and uncertainty. While perhaps creating a more useful representa-

tion of confidence, the greater intricacy requires additional measurements beyond the

standard likelihood function.

We propose additional quantification to more completely represent the confidence

associated with a pose estimate. As shown in Figure 3.1, we illustrate how different

observations and their respective hypothetical poses would induce varying delineations

between belief, ambiguity, and doubt. In this dissertation, we introduce the counter-

hypothetical likelihood function to quantify the doubt associated with a given pose. A

pose estimate that can be clearly confirmed by the observation results in a relatively
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high likelihood score, while a pose estimate that the observation unquestionably

discounts would in turn have a high counter-hypothetical likelihood weighting. When

little of the possible evidence can be definitively categorized as either supporting

or unsupporting of a given pose, this implies the presence of a higher amount of

ambiguity.

We validate this extension by comparing it against prior methods in a context

that is more realistic for robotics applications. For the particle filter, we re-evaluate

a state-of-the-art rigid object tracking framework [14] on a standard benchmark [23].

In our experiment, we disable any initialization with or usage of ground truth

since it is typically not available at the time of inference. By forcing the tracking

framework to recover the pose without a ground truth prior, it is more prone to

mode collapse of the true pose. Our counter-hypothetical likelihood function seeks

to address this failure by predicting when the samples need to be redistributed to

recover pose.

We then demonstrate that higher-dimensional inference methods [6] are susceptible

to particle deprivation when estimating the pose of highly occluded objects. To

complete this aim, we observed there was a lack of robot pose datasets featuring

heavy occlusions in the real world, as described further in Section 4.3. This gap

motivated our collection and annotation of tracking a humanoid robot under heavy

occlusion. By focusing on the challenge caused by limited observability of the object,

we motivate the benefit of our measuring ambiguity and doubt independently of

likelihood within belief propagation.

1.1.3 Thesis Statement

In this dissertation, we posit Evidential Theory [24] can improve the reliability

of nonparametric probabilistic inference. Evidential Theory models the likelihood of

a hypothesis, the doubt associated with it, as well as the ambiguity or ignorance of
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the observation. It is a generalization of Bayesian reasoning, as Bayesian reasoning

only accounts for likelihood and the resulting belief. This additional modeling allows

for a separate measurement of doubt, because we no longer assume it is strictly

dependent on the estimated likelihood. Synergistically, an emerging trend in deep

learning research is to quantify the network’s confidence in its performance, as

opposed to mere confidence in a given hypothesis. Deep evidential reasoning is

the learning community’s response to limitations with the lack of transparency and

trustworthiness in neural networks, but this representation has yet to be sufficiently

incorporated within probabilistic robotics. The insights of this dissertation are our

work at the intersection of the state of the art of probabilistic reasoning under

uncertainty and emerging trends in deep uncertainty quantification.

In this dissertation, we propose using deep uncertainty quantification to improve

the quality of the perception framework itself and incorporate it into the formalization

of uncertainty in Bayesian nonparametric inference. Our proposed thesis relaxes the

Bayesian assumption of nonparametric inference to allow the integration of evidential

reasoning. We argue that deep evidential reasoning can be integrated into Bayesian

nonparametric inference as a signal to increase the reliability of the inference.

1.2 Statement of Dissertation Scope

To address the problems of reasoning under uncertainty for applications in mobile

manipulation robots, this thesis introduces integrating evidential reasoning within

Sequential Monte Carlo. We present novel methods to translate the doubt explicitly

modeled in evidential reasoning to redistribute its samples. To overcome particle

deprivation and mode collapse, our work also demonstrates how the ambiguity of

evidential reasoning can inform the balance between information visually observed

and information deducted from known geometry.

More specifically, this dissertation makes the following contributions:
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1. Counter-Hypothetical Particle Filters for Single Object Pose Tracking (Chap-

ter 3) [25]: In this chapter, we estimate the necessary reinvigoration rate at

each time step by introducing a counter-hypothetical likelihood function, which is

used alongside the standard likelihood. The addition of our counter-hypothetical

likelihood function assigns a level of doubt to each particle, allowing us to esti-

mate doubt independently of ambiguity or likelihood. The competing cumulative

values of confidence and doubt across the particle set are used to estimate the

level of failure within the filter in order to determine the portion of particles

to be reinvigorated. We demonstrate the effectiveness of our method on the

rigid body object six-degree-of-freedom pose tracking task.

2. The Progress LUMBER Dataset (Chapter 4): We present the Progress

LUMBER Dataset(Looking Upon a Moving BipEdal Robot), which captures

100 sequences of a walking bipedal humanoid robot. Its presence of heavy

occlusions due to external obstacles separates it from previously collected robot

pose datasets. The dataset allows us to test our tracking methods on a moving

highly articulated object of a known model in realistic and occluded scenes.

3. WAGER-DNBP: Weighted And Graphical Evidential Reasoning for Dif-

ferentiable Nonparametric Belief Propagation (Chapter 5): Tracking highly

articulated robots poses a significant challenge due to the intricate state space

and potential partial observability. We introduce deep evidential reasoning to

nonparametric belief propagation to better handle noisy and error-prone tracking

scenarios. This work continues the use of the counter-hypothetical likelihood

to determine the reinvigoration needed at each node of the filter. However,

since belief propagation allows for reinvigorating samples near neighboring nodes,

we present adaptive particle reinvigoration for two random distributions. We

additionally use our independent quantifications of likelihood and doubt to
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estimate the ambiguity associated with an observation and hypothesis. We then

use these ambiguity scores to modulate the effect each observation has on a

sample’s final importance weighting.
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Chapter 2

Related Work

Our work examines methods to improve the robustness of robot perception for

enhancing dexterous mobile manipulation. A robot’s understanding of its environment

hinges on both sensing low-level information about the scene accurately as well as

intelligently reasoning about these extracted details over different viewpoints and

timesteps. With this schema, inaccuracies or ambiguities in the initial perception

can be filtered out, and the system can additionally reason about higher-level and

semantic properties of the environment.

This thesis seeks to improve the performance of autonomous perception tasks

by incorporating advancements in the interpretability of deep learning, namely deep

evidential regression, into the underlying probabilistic reasoning system of many

robotics platforms. To better explain the novelty and significance of our contribu-

tions, we cover the related work within Computer Vision for Mobile Manipulation

(Section 2.1), Sequential Monte Carlo (Section 2.2), and Deep Uncertainty Quantifica-

tion (Section 2.3).

2.1 Computer Vision for Mobile Manipulation

Our proposed methods are demonstrated on multiple perception applications neces-

sary for a robot to move about and grasp objects in a real-world environment. As

such, we highlight some of the tasks of the perception pipeline, as well as briefly

cover historical trends for implementing them. The field has generally navigated
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from hand-engineered visual features crafted by humans to latent models trained in

a data-driven manner.

Though deep learning has improved the accuracy of computer vision tasks, it

comes with a specific set of concerns. It learns a “black box” model to infer about

new data, so engineers cannot precisely understand the relationship the model has

assumed of the real world. Additionally, if errors remain, retraining the model on

more balanced and comprehensive data is not an exact science, and no guarantees

can be made about the hopeful improvement in performance. Not only is the latent

representation opaque, but it is unclear how much an algorithm should rely on the

output of a neural network. These networks can be over-confident, leaving little

indication to a downstream autonomous system when the perception is critically

failing.

2.1.1 Object Detection

Object detection is a crucial aspect of mobile manipulation and has been a

significant challenge for computer vision in the real world for several decades. This

problem space can generally be divided into inferring if a specific instance of an

object is present or looking for all possible instances of a generic class [26]—a more

practical use case in robotics. The Viola-Jones detectors were the first face detection

network that achieved fast and accurate face detection without constraints [27]. This

was accomplished by exhaustively applying sliding windows over the image. Over

time, an improved feature descriptor, the Histogram of Oriented Gradients (HOG),

was developed [28]. This descriptor demonstrated better generalizability to object

variance in scale and shape, and it was integrated into the Deformable Parts-based

Model [29, 30]. This model identified smaller components of the object and modeled

object identification as a composition of these lower-level detections in post-processing.

Then data-driven neural networks began to replace engineer-designed feature de-
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scriptors, significantly improving object detection performance [31]. Neural networks ex-

panded the capabilities of generic object detection by generating category-independent

proposal regions [32] instead of relying on provided bounding boxes. However, these

proposal regions were still classified via category-specific features. However, the dra-

matic performance improvement inspired later frameworks to extend the technique

by additionally classifying the proposed regions by training in an end-to-end fash-

ion [33, 34, 35] with the most notable networks being Fast RCNN [36] and Faster

RCNN [37]. As the networks deepened in complexity, they grew to additionally esti-

mate the instance’s segmentation [38]. Validation for accuracy improvements in data-

hungry neural networks has motivated the need for benchmarked datasets [39, 40].

2.1.2 Object Pose Estimation

Once an accurate bounding box or region of interest of an object is generated, the

pose can be estimated. These methods are categorized as either instance-level, where

an exact model of the object is known, or category-level, where it is not. Category-

level pose estimation has produced a large body of work [41, 42, 43, 44, 45, 46, 47],

with foundational papers already having been expanded upon for greater advancements.

However, since this dissertation will focus on instance-level pose estimation and

tracking, we have only referred to a few sampled papers from category-level pose

estimations impressive works.

Instance-level object pose estimation follows a similar history to object detection in

that it originally began with hand-crafted feature-based methods. For example, when

registering an object within a point cloud, known geometries between two points in

an object could be encoded in Point-Pair features [48, 49]. By using the descriptor

to match the corresponding 3D points between the point cloud and observed depth,

the pose of the known object could recovered based on the necessary transformation

for registration. Additional methods [50, 51] then focused on visual landmarks in
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RGB images of an object and then used the Perspective-n-Point algorithm (PnP)

to recover 3D pose from 2D features [52, 53, 28, 54]. Another traditional method,

template matching [55, 56], preprocessed the features in an image of the object with

a known pose. By similarly extracting the features of the captured image, it can

be determined which pose in the data of previously labeled images most resembles

the captured image. This match of best fit is used to infer the object’s pose.

The features used in these methods struggle to have consistent descriptions of a

3D point on an object across lighting changes and occlusions. As such, the matching

algorithms can fail, resulting in poor performance in pose estimation in clutter.

These methods also lacked scalability, as the individual features had to be tediously

engineered and tested across different objects and scenes. Because of this burden,

deep learning has also been used to create data-driven features [57, 58, 59, 60].

Though learning features have become scalable, PnP and template matching can

have a high computational cost during inference, leading to the exploration of

regression-based deep learning pose estimation methods.

The foundational paper for pose regression for a 6D object pose estimation is

generally considered PoseCNN [23]. This work initially predicted the pose using

RGB information, then refined with point cloud registration using depth information.

The intertwinement of this task with object detection is showcased in multiple

pose estimation networks being implemented as an additional branch of an object

detection network, with Deep-6DPose [61] building off of Mask R-CNN [38] and

YOLO-6D [62] as an extension of YOLO [63]. Subsequent works have focused on

specific cases, such as overcoming occlusion [64, 65], the lack of a mesh model [66],

or transparency in the object [67, 68, 69]. Iterative methods estimate the needed

transformation between an initial pose estimate and a viewed object [70, 71]. This

concept has also been used to create a tracking network in which the action model

is replaced by the refinement model [72]. Another tracking-focused work of note

13



is Pose-RBPF, which implements a Rao-Blackwellized implementation through the

orientation of the pose being decoupled from translation and recovered from template

matching on learned embeddings [14]

Though these methods report high accuracy on rigid objects, transferring their

success to high-dimensional objects remains an open problem. Some works have

looked at end-to-end regression on highly articulated objects [73]. It can be difficult

to thoroughly represent possible vantage points for a rigid object in a balanced

manner, but to additionally represent the configuration space dramatically exacerbates

this problem. As such, multiple works have examined using deep learning for local

pose information that is integrated through a factor graph backbone. One such work

by Pavlasek et al. [13] presented a generative-discriminative framework for parts-based

instance-level pose estimation of articulated objects, and a later work focused on

this task at a category level [74]. Since a graphical model requires the tedious

creation of many unary and pairwise likelihood functions, Opipari et al. presented a

differentiable belief propagation network trained end-to-end [6].

This dissertation focuses on improving the performance of these Bayesian pose

tracking methods while observing objects with occlusion. For a 6D pose tracking

framework [14], we demonstrate the ADD and ADD-s error metrics for the pose

estimates significantly increase when the object is partially observable. We then

contribute a high dimensional, heavily occluded tracking dataset of a humanoid to

examine the failure modes of differentiable belief propagation [6] when obstacles

are present. We show that with these partial observabilities, differentiable belief

propagation has increased error in its estimations of joint positions for the robot.

We then show how incorporating evidential reasoning into the underlying Bayesian

inference can help alleviate these failure modes.
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2.2 Sequential Monte Carlo

Robotics applications must be mindful of errors in their perception system to

avoid hazards when planning based on this information. Sequential Monte Carlo is

a probabilistic foundation traditionally used to compensate for noise and ambiguities

in local estimations. Recent works seek to harness the discriminative power of deep

learning by integrating it into the filter.

Sequential Monte Carlo is still valued due to the reliability and diagnosability it

provides. While inference from a neural network can be noisy, filters can be explicitly

coded to provide consistent and plausible estimates. Additionally, their extracted

information is modular and grounded in our mathematical models of the real world.

This allows humans to better predict when they are performing poorly, as well

as modify the algorithm to avoid any preventable repeats of failure. Our work

combines modern techniques for associating uncertainty with a possible hypothesis

for state-of-the-art pose tracking and particle reinvigoration. For this reason, we will

focus on Sequential Monte Carlo.

Known by many names, Sequential Monte Carlo was conceptualized by multi-

ple independent works. The bootstrap filter was first introduced as a solution to

represent the nonlinearity present in tracking problems [75]. It was also presented

as the Condensation algorithm by the computer vision community for visual hand

tracking [4]. The mathematics community coined it the Monte Carlo filter [76]. As

a canonical method in robotics, Dellaert et al. introduced the particle filter [77]

for mobile robot localization from laser rangefinding inferred by Sequential Monte

Carlo inference. The contribution from these methods provided a general method

for nonlinear and non-Gaussian estimation, which has long been a gold standard for

robotics.

Sequential Monte Carlo was also shown to integrate well within inference methods
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expressed as graphical models, such as algorithms for belief propagation. Belief

propagation was first presented as a probabilistic algorithm for performing exact

inference on tree structures [9]. It was later extended to approximate inference on

structures containing loops [78]. Isard et al. [79] implemented the connection between

Sequential Monte Carlo and probabilistic graphical inference by presenting PAMPAS–

PArticle Message PASsing for computer vision applications. Tracking parts-based

models, Sudderth et al. applied nonparametric belief propagation to tracking [10]

and, more specifically, hand-tracking [11].

2.2.1 Differentiable Filters

Even with a growing focus on neural networks, Sequential Monte Carlo has

remained a useful probabilistic backbone with module models that can be trained

through backpropagation. The Differentiable Particle filter was presented by Jon-

schkowski et al. [16], which introduced differentiable observation and action models.

Instead of training the models on manufactured accuracy measurements or intermedi-

ate steps of the pipeline, they could all be trained end-to-end on the downstream

task of state estimation. Similarly, Karkus et al. presented the Particle Filter

Network [17], which emphasized visual understanding more.

It is important to note that though these networks can be trained end-to-end,

the resampling stage of Sequential Monte Carlo is not differentiable. This has been

circumvented by training up until the resampling step [16] or parametrizing the

resampling step for a differentiable approximation (soft resampling) [17]. It’s also

been modeled as a deterministic and differentiable optimal transport problem [80],

which can be solved via the Sinkhorn algorithm [81], by Corenflos et al. [82].
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2.2.2 Resampling

We emphasize the resampling step because resampling’s ability to disregard the

samples nearest the true state has been a well-studied portion of the particle

filter algorithm. One suggestion has been to anneal the likelihood function such

that its shape oscillates between a uniform distribution and the true form of the

distribution [83]. This process prevents particles from being stuck in the local

optima of nonlinear likelihood functions. This issue can also be partially alleviated

by having more samples to distribute. KLD sampling [22] monitors the distribution

of the particles by discretizing the state space and tracking the occupancy. It

then calculates the necessary number of samples to theoretically represent the true

posterior distribution through the Kullback-Leibler divergence to augment the particle

set. Robotics applications often leverage Sequential Monte Carlo due to the nonlinear

problems of their domain, but computation time constraints often prevent them from

adding more samples.

For this reason, many robotics works have looked at redistributing a fixed number

of particles as needed. Lenser et al. proposed that the unnormalized values of

the importance weightings could indicate when the particle filter was in failure

mode [84]. Since likelihood functions were hand-designed at the time, the engineer

should have an approximation for a typical unnormalized weighting of the true

state. As the average likelihood of the set dropped below the threshold, a higher

portion of the samples would be reinvigorated by being initialized from the proposal

distribution. Since the optimal weighting can vary between trials, Augmented Monte

Carlo [85, 86] was proposed to use decaying rates to track if the short-term average

of the weights had fallen below the long-term average of the weights to signal when

the filter had lost track of the true state. Unfortunately, particle deprivation is most

often caused by poor initialization, which would not be identified in this proposed

modification. Recent work [87] has examined how a neural network’s noisy output
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can be fused with sampling from the prior distribution to create a more accurate

posterior distribution.

2.2.3 Evidential Reasoning for Sequential Monte Carlo

Bayesian inference has only quantified the evidence supporting a hypothesis

through the likelihood function. We augment differentiable filters to additionally

learn to quantify the ambiguity and doubt associated with a given hypothesis and

observation. After we estimate doubt independently of likelihood, we use these quan-

tities to inform the portion of samples that should be initialized during resampling.

The measurements of ambiguity associated with an observation convey the usefulness

of the visual information at each graph node. Based on this score, we extend

nonparametric belief propagation to learn to modulate the influence each observation

has on a given hypothesis’s final importance weighting.

2.3 Deep Uncertainty Quantification

Though neural networks have demonstrated high accuracy in performance overall,

they can be overconfident even when inaccurate. In some of these problem domains,

the noisy output of neural networks can induce discrimination [88] and even dan-

ger [89]. While many robotics applications have countered this with more reliable

underlying reasoning systems [90, 2], there has also been a demand for explainable

artificial intelligence [91] to improve the interpretability of neural networks themselves.

This vision outlines a sub-goal for users to “appropriately trust” artificial intelligence

systems and provide them with an accurate mental model of when it will succeed

and fail.

The deep learning community has avoided regressing to hard-coded and hand-

designed algorithms for reliability and interpretability. In this vein, many works have

investigated methods to indicate when a given estimate from a neural network cannot
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be trusted through deep uncertainty quantification. Note these techniques are not the

same as confidences from the network on the original classification or regression

task on a single data example [21]. Deep uncertainty quantification examines new

supervisory signals and frameworks for a neural network that can be more indicative

of the network’s performance on unseen data. Additionally, neural networks are

extremely unreliable when tested on data outside the training data domain, so out-

of-distribution detection has been an essential form of model uncertainty quantification

for deep learning. There has been promise in classifying the category of the domain

shift [92] and their implications to safety [93].

2.3.1 Uncertainty in Deep Learning

Figure 2.1: Visualization of categories of uncertainty. The dotted lines represent
the bounds of the training data shown in the model. a) Predictive uncertainty is
the total uncertainty comprised of aleatoric and epistemic uncertainty. b) Aleatoric
uncertainty stems from unpredictable randomness in the data and cannot be reduced
by more training data. c) Epistemic uncertainty is caused by the model’s lack of
proper knowledge and occurs when tested on data outside of its training distribution.
from [3]

Predictive uncertainty can be separated into two categories—aleatoric, caused by

the inherent randomness of the data, or epistemic, caused by a lack of knowledge of

the model [94]. Epistemic uncertainty arises from uncertainty about the model itself,
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such as the network’s architecture or weights. It also applies to out-of-distribution,

in which the training data distribution is dissimilar enough to the testing example

that the previously seen examples are not helpful. Epistemic uncertainty cannot

be reduced by adding more examples of more relevant data. On the other hand,

aleatoric uncertainty cannot be reduced by more data. It refers to the randomness

and unpredictability of the data. This applies to errors or noise in the sensor or

partial observability.

A depiction of the variance of both uncertainties concerning the training data

domain is shown in Figure 2.1. In essence, aleatoric uncertainty is meant to show

more variance when there is randomness or noise associated with the data, and

epistemic uncertainty is meant to increase uncertainty as the data extends past the

bounds of the previously seen data. Many works have analyzed inference methods

on their ability to quantify both of these sources of uncertainty individually [95, 96,

3, 97].

2.3.2 Bayesian Methods

Bayesian Neural Networks (BNNs) [98, 99, 100] further quantify uncertainty by

making the neural network stochastic. The weights are modeled as a prior Gaussian

distribution, with training examples modifying the mean and variance of each weight

distribution. At the time of inference, the network determines the weights of its

model by sampling from this distribution. This stochasticity allows the framework

to have slightly different estimates from the same architecture for the same input,

such that the repeatability and agreement between these outputs can be analyzed

to determine the degree of uncertainty.

Another method of stochastic uncertainty quantification is achieved by randomly

changing the architecture of the network. Dropout [20] is a method that was

originally proposed to prevent overfitting in the network. Activation layers of the
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network and their corresponding incoming and outgoing connections are randomly

chosen to be temporarily removed at different iterations of training. Monte Carlo

Dropout (MC-Dropout) by Gal and Ghahramani [21] showed that testing the data

through a feedforward version of the network with dropout multiple times can

quantify prediction uncertainty. This method is thought to be less computationally

draining than BNNs, as it has similar implementations for training and testing.

2.3.3 Ensemble Methods

Determining predictive uncertainty through analyzing multiple estimates was con-

tinued with the work of deep ensembles [101]. As opposed to adding stochasticity to

a single network and measuring the repeatability of output, this methodology allows

for different networks and training data entirely when quantifying consensus. With

the plug-and-play nature of pre-trained neural networks, it has gained increasing

popularity. For example, in robotics, a camera on a mobile manipulator measured

the alignment of pose estimates from several networks at each frame. The frame that

produced the most similar estimates across the networks was chosen for viewpoint

selection to determine the object’s pose to grasp [102].

2.3.4 Deterministic Single-Network Methods

The previously suggested methods all require multiple passes of a network at

the time of inference for uncertainty quantification, which is not always feasible

for robotics applications. The final category of uncertainty quantification seeks to

use a single network with a single set of weights on a single inference pass to

estimate the uncertainty. Given our motivation to improve performance when time

and resources for the estimation are limited, we draw inspiration from this category.

Several methods implement this network as an external neural network for the

prediction. The introduction of a separate and external network to quantify the
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uncertainty of the prediction framework was introduced to prevent bias of any bias

in the uncertainty quantification [103]. This idea was built upon by having the

secondary network not only reason about the estimate but also consider how the

current input’s representation compares to the distribution of representations from

the training data to inform its uncertainty quantification [104]. Another example

is applied to the classification task, which sums the probabilities of all classes. It

demonstrates how lower sums indicate the testing data is out of the distribution of

the training data [105].

2.3.5 Deep Evidential Reasoning

The idea of quantifying the ignorance of the model itself stems from Evidential

Theory, or Dempster-Shafer Theory [24, 106]. This work was originally applied to

discrete probabilities and formalized how varying and possibly contradictory sources

of information could be unified for probabilities on what one might conclude. It

is important to note that pushback on this ideology has occurred due to concerns

it is erroneously used to quantify probability as opposed to the more appropriate

probability of provability [107]. Evidential Theory models belief in an outcome, the

disbelief of an outcome, and ambiguity or ignorance in measuring the possibility of

an outcome. These quantities are also combined to give the notions of plausibility

and implausibility, as visualized in Figure 2.2.

Evidential Theory has been the foundation for another wave of deep uncertainty

quantification—deep evidential reasoning [108, 109, 110]. Whereas BNNs place a prior

distribution on the network weights, deep evidential reasoning places a prior on

the likelihood function itself. This was originally applied in the domain of discrete

classification [109, 110, 108]. An example is adding a semantic class of ‘unknown’ to

the output set, where the network can assign some probability to avoid penalization

from erroneously assigning that quantity to a real class during softmax.
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Figure 2.2: Evidential Theory quantifies the evidence of support (generalized belief)
and unsupporting evidence (generalized disbelief) of an outcome, and it additionally
quantifies the ambiguity or ignorance associated with the deduction itself. These
quantities are used to measure the plausibility and implausibility of an outcome.

Amini et al. extended deep evidential reasoning to the continuous problem

space [111] and coined the term deep evidential regression. They train a network to

predict the associated evidence associated with an estimate. Their likelihood function

is a Gaussian likelihood function, and the network learns to predict the parameters

of this distribution. This method did not require out-of-distribution training data or

sampling at the inference time to measure the predictive uncertainty.

Similarly, our work uses a single and deterministic network to quantify uncertainty

for a regression task. We also build off the Evidential Theory paradigm to distinguish

between ambiguity and doubt. Our work is inspired by a loss term in Deep

Evidential Regression that seeks to penalize learning evidence for incorrect estimates.

However, instead of quantifying uncertainty, our work aims to explicitly quantify

doubt independently of ambiguity. Additionally, this dissertation focuses on integrating

the estimated uncertainty measurements into a nonparametric filter.
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Chapter 3

Counter-Hypothetical Particle Filters for Single Object Pose

Tracking

Particle filtering is a common technique for six degrees of freedom (6D) pose

estimation due to its ability to tractably represent belief over object pose. However,

the particle filter is prone to particle deprivation due to the high-dimensional nature

of the 6D pose. When particle deprivation occurs, it can cause mode collapse of the

underlying belief distribution during importance sampling. If the region surrounding

the true state suffers from mode collapse, it is challenging to recover belief since the

area is no longer represented in the probability mass formed by the particles. This

failure mode is depicted in the previously presented Figure 1.3, where the initial

occluded estimate results in an incorrect pose of the banana. The rendered pose of

this estimate aligns well with the border of the visible banana, but we can see a

180◦ flip of its orientation. Sampling off of the previous set of samples would not

correct the pose because the variance of the action model cannot represent such a

large area of the state space. Instead, determining a portion of the samples to be

reinitialized through particle reinvigoration allows the filter to recover the true pose.

Previous methods mitigate this problem by randomizing and resetting particles in

the belief distribution, but determining the frequency of reinvigoration has relied on

hand-tuning abstract heuristics.

In this chapter, we estimate the necessary reinvigoration rate at each time step

by introducing a counter-hypothetical likelihood function, which is used alongside the
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standard likelihood. Inspired by the notions of plausibility and implausibility from

Evidential Reasoning, the addition of our counter-hypothetical likelihood function

assigns a level of doubt to each particle. The competing cumulative values of

confidence and doubt across the particle set are used to estimate the level of failure

within the filter and to determine the portion of particles to be reinvigorated. We

demonstrate the effectiveness of our method on the rigid body object 6D pose

tracking task. As previously shown in Figure 1.3, our method aims to identify

when a larger error in the estimate is due to mode collapse and correct the

pose by redistributing the samples. This work has led to the publication, ‘counter-

hypothethical Particle Filter for Single Object Pose Tracking’ [112].

3.1 Introduction

As robot assistants become tasked with accomplishing complex chores, such as

preparing a meal or tidying a room, they must be able to interact with various

objects. Object pose estimation in unstructured scenes remains challenging due to the

ambiguity in perception, which arises from occlusion and symmetries. Particle-based

inference methods have been widely applied to six degree of freedom (6D) object

pose estimation and tracking due to their ability to represent high-dimensional spaces

with finite sample sets [113, 114, 14]. These methods model estimation uncertainty

and can maintain multiple possible pose hypotheses, which provides robustness in

challenging scenarios such as object occlusion and ambiguous symmetries.

Despite these promising properties, particle filter algorithms are forced to limit the

size of their sample sets to ensure tractability for robotics applications. When applied

to 6D pose tracking, particle filters typically can afford only a small number of

samples compared to the overall size of the continuous state space. Since the sample

set cannot completely cover the space, certain regions of the state space will contain

no particles, making their representation in the belief distribution collapse. This
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phenomenon is called particle deprivation and can occur due to poor initialization

or the stochasticity of importance sampling. Regaining belief in these regions is

challenging and can cause the filter to converge to an incorrect local optimum.

One strategy for mitigating particle deprivation is particle reinvigoration [86], in

which reinitialized samples are routinely added to the set. However, determining

the portion of particles to be reinvigorated at a given iteration often requires

tedious hand-tuning through trial and error. Many adaptive approaches have been

proposed to mitigate this challenge by leveraging the information in the likelihood

function [115, 84, 116]. The likelihood function gives an importance weighting to

each sample by measuring the correspondence of the hypothesis to the observed

sensor data. However, it only provides a relative weighting of which samples are

better or worse, and no indication of the absolute error in the sample set.

We introduce the counter-hypothetical particle filter (CH-PF) to counteract particle

deprivation in high-dimensional state spaces. Our method proposes quantifying the

confidence that the true state is unrepresented in the sample set. To this aim, we

model the evidence against a particular hypothesis, termed the counter-hypothetical

likelihood. Our work measures this weighting independently of the traditional likeli-

hood through the lens of Evidential Reasoning (Dempster-Shafer Theory) [106]. This

framework argues that the plausibility and implausibility of proving an outcome can

be based on different factors and are not zero-sum due to the potential overlap

and ambiguity of the underlying evidence. Each particle is given both a likelihood

and a counter-hypothetical likelihood weight. Our method utilizes both likelihoods to

quantify the cumulative confidence and doubt across the sample set. The relationship

between these values is used to reason about the likelihood that the true state is

underrepresented in our sample set and, in turn, used to compute an adaptive rate

of particle reinvigoration.

We propose the counter-hypothetical particle filter, a particle filtering algorithm
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Figure 3.1: We quantify both the evidence against a given estimate (gray), as well
as in support of it (yellow). We estimate these quantities independently of one
another because they are not zero-sum due to ambiguity in the observation (blue).
The relative magnitudes of these weightings fluctuate based on the quality of both
the observations and estimates, as illustrated by a mug that is (A) unambiguously
unlikely (B) plausible yet ambiguous due to the occluded handle (C) unambiguously
likely (D) highly ambiguous.

designed to mitigate particle deprivation for 6D pose tracking in challenging environ-

ments. We introduce a counter-hypothetical likelihood and explain how its utilization

alongside the traditional likelihood counteracts particle deprivation by leveraging im-

plausibility information, as illustrated in Figure 3.1. We evaluate CF-PF on 6D single

object pose tracking on the YCB Video Dataset [23]. Our method achieves better

accuracy for cases of high occlusion, particularly when depth data is unavailable.
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3.2 Related Work

3.2.1 Object Pose Estimation and Tracking for Robotics

Pose estimation and tracking have received considerable attention in the robotics

community. In recent years, various works have demonstrated the capability of data-

driven methods to provide discriminative pose estimates over a single view [23, 61,

117, 118], or pose tracking over a sequence of observations [72]. These methods

have achieved impressive results but are prone to inaccuracies, particularly in chal-

lenging scenes with heavy clutter. Probabilistic inference methods instead maintain

belief over pose estimates to provide additional robustness for robotic manipulation

applications [119]. We focus on probabilistic inference for object pose estimation and

tracking, specifically on particle filtering.

Particle filtering is an iterative inference algorithm that can represent an arbitrary

nonparametric belief distribution using a set of weighted particles sampled from the

state space [115]. Particle filtering is a common technique for 6D pose estimation and

tracking [114, 2, 120, 121] due to its ability to approximate high-dimensional state

spaces efficiently and represent multiple competing hypotheses in the belief. More

recently, deep convolutional neural networks (CNNs) have been applied to particle

filtering for pose estimation. Deng et al. [14] create an observation model from

autoencoder embeddings for use within a Rao-Blackwellized particle filter. Recently,

this method has been extended to category-level tracking [46]. Though the main

contribution of our work is introducing the counter-hypothetical likelihood function,

we also demonstrate how it could be similarly learned in an end-to-end fashion.

To mitigate challenges associated with fully sampling the high-dimensional 6D

pose space, previous works have leveraged domain-specific knowledge such as physical

constraints [122], robotic arm joint angles [123, 113], or context information [124].

Belief propagation using particle belief representations [125] has been applied to parts-

28



based object models to factor the high-dimensional articulated object localization

task [126, 13]. Similarly, our work addresses the problem of particle deprivation in

sampling-based methods for manipulation tasks. We aim to do so through adaptive

reinvigoration and do not rely on provided object-environment interaction models or

parts-based object models.

3.2.2 Robust Particle Filtering

Many works have focused on mitigating particle deprivation. One approach is

annealing, in which the distribution of importance weights is smoothed according to

a hand-tuned schedule to avoid collapsing modes during importance sampling [83].

Pfaff et al. propose an adaptive method to smooth the importance weights using

local density estimation around each particle for mobile robot localization [127]. In

contrast, CH-PF does not require modification to the sampling weights but instead

handles particle deprivation through reinvigoration.

In the global localization stage of Monte Carlo localization for mobile robots,

particle deprivation is a common problem [115], motivating many works to reinitialize

samples as needed. One approach is to sample from an inverse distribution based on

the sensor readings [128] or “reset” a subset of particles when the average likelihood

of the sample set is low [84]. Augmented Monte Carlo Localization [86, 85] extends

this idea by performing particle reinvigoration from a uniform distribution at a

rate proportional to the difference between the long- and short-term averages of the

particle weights instead of a fixed threshold. These methods require a sensor model

from which samples can be efficiently drawn, which is challenging to model in RGB

images. Fox et al. proposed modifying the size of the sample set based on the

quality of the sample approximation [116]. Zhang et al. propose a self-adaptive

method that maintains a fixed sample size augmented by samples from a “similar

energy region” [129]. This method requires a discretization of the state space. Recent
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work in localization leverages the estimates of a neural network by sampling from

this proposal at a fixed rate and fuses the particles into the distribution through

importance sampling [87].

Each of these methods uses the likelihood weights of the particles to estimate

the quality of the sample set. CH-PF instead uses a separate source of information,

the counter-hypothetical likelihood, alongside the likelihood function, to estimate the

overall quality of the particle set. We draw inspiration from Evidential Reason-

ing [106] for measuring the evidence disproving a hypothetical estimate separately

from the likelihood function that looks for supportive evidence.

3.3 Background: Particle Filtering

We consider the problem of tracking a known object over time. Given a sequence

of RGB images or RGB-D data, z1:t, we seek to localize the pose, xt ∈ X , of an

object at time t. We also model any motion to the system caused by either user

input or jittering with u1:t. Here, X represents the space of 6D poses comprised of

3D translation and 3D rotation.

The Bayes filter seeks to model the posterior distribution of the state, p(xt |

x1:t−1, z1:t, u1:t) by iteratively updating the distribution at each timestep t. The

posterior is called the belief of xt, bel(xt). At each time step, the predicted belief,

b̂el(xt), is obtained by applying the action model to the prior belief distribution.

Employing the Markov assumption:

b̂el(xt) =

∫
p(xt | xt−1, ut)bel(xt−1)dxt (3.1)

We can then update this distribution based on the current observation, zt, to
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estimate the posterior distribution:

bel(xt) = p(zt | xt)b̂el(xt) (3.2)

3.3.1 Particle Filtering

The particle filter is a Bayes filtering algorithm in which the belief distribution

bel(xt) is a nonparametric distribution approximated by a particle set, Xt:

Xt = {(x1t , π1
t ), (x

2
t , π

2
t ), . . . , (x

N
t , π

N
t )} (3.3)

Each particle, xit has a corresponding weight, πi
t. The predicted belief in Equation

(3.1) is formed by applying action ut to each particle in the previous sample set,

Xt−1.

The particle set, Xt, is generated through importance sampling, where the target

distribution is bel(xt) and the proposal distribution is b̂el(xt). Samples from the

proposal are drawn with replacement, in which the probability of a particle being

drawn is proportional to its weight, πi
t. Typically, the weight is computed using a

likelihood function, L(xit), which represents the observation model:

πi
t = L(xit) := p(zt | xit) (3.4)

3.3.2 Particle Deprivation and Particle Reinvigoration

If the proposal distribution does not include samples close to the true value

of the state, the probability of sampling values in this region is negligibly small.

This phenomenon is known as particle deprivation and is illustrated in Figure 3.2

(left). It can occur due to poor initialization, unmodelled movements in the state,

or a series of unfortunate draws in importance sampling, causing the particle set to
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converge to local optima.

A common approach to mitigating particle deprivation is particle reinvigoration, in

which particles are drawn jointly from the predicted belief, b̂el(xt) and a candidate

distribution, ϕcand(xt). Choices of candidate distribution might include a uniform

distribution over the region of interest of the state space or a wide Gaussian

distribution around an initial estimate. This modification allows importance sampling

to draw from outside the sample set, reintroducing samples in underrepresented

regions. A hyperparameter α, where 0 ≤ α ≤ 1, controls the proportion of samples to

be drawn from ϕcand(xt). The final particle set is defined as the union of particles

drawn from each set:

Xt ={(x1t , π1
t ), , . . . , (x

αN
t , παN

t )} (3.5)⋃
{(xαN+1

t , παN+1
t ), . . . , (xNt , π

N
t )}

where xit ∼ ϕcand for 1 ≤ i ≤ αN , and xjt ∼ b̂el for αN < j ≤ N . Note that in

practice, αN is constrained to be an integer.

3.4 Counter-Hypothetical Particle Filter

Selecting the reinvigoration rate, α, is challenging in practice. Sampling from

the candidate distribution too frequently can discard key information from the belief

distribution, while sampling from the belief distribution too frequently could lead

to particle deprivation. Adaptive particle reinvigoration mitigates this challenge by

determining the frequency with which to draw from each distribution online at each

time step. The counter-hypothetical particle filter (CH-PF) adaptively selects the

reinvigoration rate, α, such that it fluctuates in accordance with the portion of the

true belief distribution estimated to be underrepresented by Xt.

One method of achieving adaptive particle reinvigoration is Sensor Resetting
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Localization (SRL) [84]. This method defines a probability threshold, β, representing

a threshold for “good” unnormalized likelihood values. The reinvigoration rate is

defined as:

α = 1−

(
1

βN

N∑
i=1

L(xit)

)
(3.6)

CH-PF builds on this equation, using Counterhypothetical likelihood to compute the

reinvigoration rate instead of a probability threshold.

3.4.1 Counter-Hypothetical Resampling

To motivate our proposed method for determining the reinvigoration rate, we first

rewrite Equation (3.6):

α = 1−
∑N

i=1 L(xit)
(
∑N

i=1 f(x
i
t)) + (

∑N
i=1 L(xit))

(3.7)

where f(xit) := β − L(xit). With this notation, the numerator and right-hand side of

the denominator are an aggregate measurement of the likelihood of the sample set.

The left-hand side of the denominator,
∑N

i=1 f(x
i
t), measures the poor performance

across the sample set. In this way, calculating the rate of particle reinvigoration in

SRL can be seen as simultaneously measuring the positive performance and poor

performance of the sample set. However, the measure of poor performance, f(xit),

is dependent on the measure of positive performance, as it is defined by L(xit).

This dependency is due to traditional Bayesian probability, in which the observed

probability of a state being true and the probability of a state being false are

always zero-sum.

Our method relaxes this assumption by taking inspiration from evidential rea-

soning, also known as Dempster-Shafer Theory [106]. This paradigm allows for the

evidence discounting an event, generalized disbelief, to be quantified independently of

the evidence associated with supporting an event, generalized belief. As shown in
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Figure 2.2, evidential reasoning models these concepts and the presence of ambi-

guity or ignorance [130]. Generalized belief is a measurement of all evidence that

undeniably supports an event and is bounded from above by plausibility because

plausibility includes ambiguity in the belief. Similarly, generalized disbelief quantifies

the evidence that works to disprove an event, while implausibility is an upper bound

that considers ambiguity as well.

We posit that this framework is apt for evaluating object poses based on images.

The occlusions and geometric symmetries suggest ambiguity in how a given pose is

supported or unsupported by the evidence, motivating us to measure these quantities

independently. We consider the likelihood function analogous to Evidential Theory’s

notion of generalized belief and, therefore, introduce a counter-hypothetical likelihood

to function similarly to Evidential Theory’s generalized disbelief.1

We design the counter-hypothetical likelihood to measure how the observed image

provides evidence against the hypothetical proposed state. Our approach replaces

f(xit) from Equation (3.6) with a counter-hypothetical likelihood, which is estimated

independently of L(xit). We introduce a function to reason about the confidence of

a state counter to our given hypothesis, the counter-hypothetical likelihood, C(xt). By

comparing the quantities of the (unnormalized) likelihoods, L(xit) and C(xit), across

the proposal distribution, we can reason about the cumulative confidence and doubt

in our sample set. To this end, we redefine α, the reinvigoration ratio, as follows

by modifying Equation (3.7):

α = 1−
∑N

i=1 L(xit)∑N
i=1 C(xit) +

∑N
i=1 L(xit)

(3.8)

We then sample αN particles from ϕcand in accordance with our doubt in the set,

1A common critique of Evidential Theory is its appliance to true probability, instead of the probability of
provability [107]. We do not directly use generalized belief to reason about the true underlying probability
distribution. Our methods take inspiration from Evidential Theory to measure doubt independently of
confidence.
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Figure 3.2: An illustration of the counter-hypothetical extension to the resampling
step of the particle filter, using visuals from the Condensation Algorithm [4].

and sample the remaining (1−α)N particles from b̂el based on our confidence in the

set. As such, the counter-hypothetical likelihood quantifies our notion of generalized

disbelief, which controls the amount of particle reinvigoration to be performed.

A visualization of this algorithm is presented in Figure 3.2. In the traditional

particle filter (left), each iteration begins with a set of weighted particles (top). The

samples are drawn with replacement, and then the action model and diffusion are

applied to create the prediction distribution (blue). Each sample is passed through

the likelihood function (yellow) to receive a weighting. This posterior distribution

then becomes the prior for the next iteration. In our proposed modification (right),

each iteration begins with a set of weighted particles (top), as well as a weighting

for the counter-hypothetical (black). In the resampling stage, only five of the

eight particles are created by sampling off the prior distribution (blue), and the

counter-hypothetical weighting causes three samples to be randomly sampled from

the candidate distribution (pink). All of these samples are passed through the

counter-hypothetical likelihood to be assigned a counter-hypothetical weighting (gray).

These raw weightings are summed to create a new, singular counter-hypothetical

weighting representing the doubt across the set. All samples are also passed through
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the standard likelihood function (yellow). The posterior distribution and counter-

hypothetical weighting then become the inputs for the next iteration.

3.4.2 Counter-Hypothetical Likelihood for 6D Pose Estimation

In the context of our application, we design the counter-hypothetical likelihood

to signal when the pose tracking is in a failure mode. Unlike typical likelihood

functions that must be precisely crafted or trained to ensure the most accurate

samples have the highest weights, the counter-hypothetical likelihood function can be

more crudely or intuitively constructed.

For a simple example, consider how the captured depth data can be compared

against a rendered depth image of a sample at a candidate pose. A traditional

likelihood function might assign weightings based on the number of pixels of the

object that have rendered and captured depths within a given threshold. This

heuristic can be noisy due to the presence of occlusions and difficult to tune. On

the other hand, the counter-hypothetical likelihood could measure the number of

pixels in which the rendered depth is less than the captured depth. A potential

occlusion can explain away the measured depth being significantly closer than the

rendered depth, while the reverse indicates the given pose is wrong.

In this work, we use deep learning for the counter-hypothetical likelihood function

and use the encoder architecture of PoseRBPF [23]. We also use their synthetic

training data setup. However, instead of training the representation in an auto-

encoder manner, we leverage the true pose information in synthetic data. We generate

a synthetic scene containing the object and occlusions paired with a hypothetical

pose. For the hypothetical pose, half the training data are positive samples, where

the hypothetical pose is only slightly perturbed from the pose used to render the

object. In the rest of the training data, the hypothetical pose is randomly generated

to be significantly different than the rendered pose. Crops of the synthetic scenes
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are the inputs to duplicates of the encoder network, the output embeddings from

which are passed together through three fully connected layers. The network is

trained with binary cross-entropy loss. Through this fashion, the classifier learns to

estimate when a hypothetical pose is misaligned with the given observation. At test

time, the scores are used as the counter-hypothetical weightings.

3.5 Experiments

To evaluate the proposed counter-hypothetical likelihood, we measure key perfor-

mance metrics on the YCB-Video Dataset, a benchmarked real-world dataset [23].

We use their test set of 12 sequences, totaling 20, 738 images. We implement a

standard particle filter to estimate the 6D pose of a given object across the video

sequences. Our results test on both RGB and RGB-D data. All results are vari-

ants of the same particle filter, using the same likelihood function provided by

PoseRBPF [14] and use the same number of particles (50). However, each baseline

has a different strategy for combating particle deprivation, such as reinvigoration or

Rao-Blackwellization. Whenever a candidate distribution is needed for initialization

or reinvigoration, a uniform distribution of orientations located in the estimated 2D

bounding box from PoseCNN [23] is used. Depth values are sampled from a uniform

distribution, but when depth data is present, it is sampled off the measured depth

for the object’s location.

3.5.1 Baselines

We compare against methods for particle deprivation specifically designed for 6D

pose estimation and adopt other techniques common in mobile robot localization.

Annealing [83] does not use any particle reinvigoration but rather has an

annealed likelihood function that cyclically smooths the likelihood weightings.

SRL [84] performs adaptive particle reinvigoration from the candidate distribution
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by comparing the average unnormalized likelihood weighting to a predetermined

user threshold. This is a minimum cosine similarity between the embeddings in

PoseRBPF.

Aug. MCL [86, 85] also performs adaptive particle reinvigoration from the

candidate distribution, but the threshold is determined at each time step by user-

defined decay rates.

MCL + E2E [87] has a fixed number of samples from the predicted distribution,

with the remaining being sampled off a neural network estimate. We sample off a

Gaussian distribution centered at the full 6D pose estimate provided by PoseCNN

for the current frame.

PoseRBPF [14] is run as described in the publication, but with turning off any

ground truth information used in the system. The original implementation ensures

the initialization is close to the ground truth orientation or it is completely reset.

In our experiment, it is only reset when the likelihood weighting of the estimate

drops below a threshold. We also include its suggested variant, PoseRBPF++,

in which half the samples are reinvigorated at each time step from the candidate

distribution.

CH-PF, Annealing, SRL, Aug. MCL, and MCL + E2E filter all six dimensions

to better test their ability to withstand particle deprivation. Through their Rao-

Blackwellized implementation, PoseRBPF and PoseRBPF++ filter across only three

dimensions of continuous state space (the location) because the orientation space is

discretized.

3.6 Results

We present results with the absolute and symmetric pointwise matching errors

between the estimated and ground truth pose (commonly referred to as ADD and

ADD-S, respectively) [23]. When considering points from the object’s mesh at an
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estimated pose and the true pose, ADD is the average distance between corresponding

points. ADD-S does not measure the distance between corresponding points, but

rather the minimum distance to any point of the other pose. ADD-S is more

applicable for objects with an axis of symmetry that makes a single true pose

annotation difficult, such as the bowl. These errors are analyzed by viewing the

Area Under the Curve (AUC) score of each method up to 10 cm error, as in other

YCB works. The higher the AUC score, the lower the distance error threshold

most estimates fit within. An intuitive understanding of this metric depends on

the gripper used to grasp the object, as the amount of pose error the gripper can

overcome varies. Full quantitative results are shown in Figure 3.3.

Our analysis shows that for variants of a particle filter using the same weights

but different methods for maintaining particle diversity, there is little deviation

in performance across the entire dataset. The Rao-Blackwellized implementations,

PoseRBPF and PoseRBPF++, have the best performance. However, a disparity

in accuracy is visible when looking at the sequences where the given object is

occluded. In these cases, PoseRBPF has a decrease in performance. We hypothesize

that this is due to the orientation filtering mechanism in PoseRBPF, which makes

the system very sensitive to the quality of the initialization; an initial orientation

that is flipped is difficult to correct, even with reinvigoration. For this reason, the

poor initialization occurring in partially observable scenes lowers its accuracy ranking

concerning the other methods. Aug. MCL can work well when the filter loses track

of the pose, but in the case of poor initialization, it does not record a value for an

ideal likelihood threshold and, therefore, performs little reinvigoration during occlusion.

SRL and MCL + E2E perform on par with or without occlusions being present.

Our method performs similarly to the rest across the dataset but has the highest

AUC accuracy for RGB data with occlusions.

We also note the effect of depth on the performance. Results across all filter
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Figure 3.3: Area Under the Curve scores for all methods for object 6D pose
tracking on the YCB Video Dataset. ADD scores and the symmetric version (ADD-
S) are presented. Our presented method, CH-PF, has nominal performance across
the scenarios but has notable improvement for RGB sequences with occlusion.
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Figure 3.4: Selected qualitative results for the counter-hypothetical particle filter.
The cracker box is significantly occluded by other objects in the scene. In early
iterations (left), the cracker box belief is not converged, and the estimate has a high
error. The reinvigoration rate, calculated from the belief, is high. In later iterations
(middle), the belief converges to the ground truth state and the reinvigoration rate
drops. The reinvigoration rate is low once the belief has converged (right). This
figure is best viewed in color.
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variants were improved when using RGBD data over RGB. By including depth, we

hypothesize the likelihood function from PoseRBPF was more accurate and, therefore,

a more useful indicator of when the filter was failing.

Selected qualitative results for the counter-hypothetical particle filter are shown

in Figures 3.4 and 3.5. In these examples, the particle filter converged to an

incorrect estimate at the beginning of the sequence. While the error was high, the

counter-hypothetical particle filter could perform continued global localization with a

high percentage of particles that performed a coarse search. Once the error dropped

and a plausible region was found, the reinvigoration rate was reduced to focus its

resources on exploring the space more closely.

The main limitation of our work is the additional computation time used at

test time to evaluate each sample through an additional likelihood function. For

simple heuristics, this would not add much time. In our case of another neural

network, it doubles the inference time of extracting embeddings from the observation.

With our computing setup and a particle set size of 50, the original PoseRBPF

implementation can run at 30Hz. and our counter-hypothetical particle filter at

15Hz. Our performance was similar to that of using a single likelihood function for

most of the dataset, but improvements in performance for heavily occluded scenes

are promising.

3.7 Conclusion

This work aims to improve the accuracy of particle filters in tracking the 6D

pose of rigid objects by adapting the rate of particle reinvigoration based on the

estimated incompleteness of the current belief distribution. We propose independently

estimating the potential error in each samples through a novel counter-hypothetical

likelihood function. This modification allows us to reason over the cumulative doubt

in our particle set, and use this estimate to apply particle reinvigoration as needed.
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Figure 3.5: Selected qualitative results for the counter-hypothetical particle filter.
The belief of the sugar box converges to a local maximum in early frames (left).
CH-PF applies a higher reinvigoration rate to mitigate this. The error in the
estimate briefly increases (middle), but the belief eventually converges to the correct
estimate (right).

This chapter demonstrates the effectiveness of this modification as it matches overall

performance when compared to standard methods of overcoming particle deprivation.

Moreover, our particle filter proposed modification improves performance for scenes

in heavy occlusion when only RGB data is present.
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Chapter 4

The Progress Looking Upon a Moving BipEdal Robot (LUMBER)

Dataset

Visual robot tracking allows us to compare tracking methods on a moving and

highly articulated known object. In this specific application, methods can exploit the

geometric information of a known model to overcome regions of the robot that may

be visually obstructed. Many works have presented datasets for this task, but they

are typically scenes with high observability or synthetically generated. We contribute

a new dataset of 100 15-sec sequences of the humanoid robot, Digit [131]. Our

dataset requires no external fiducial or motion capture markers and features heavy

occlusions (only 10% of the dataset is unoccluded). It also contains a variety of

obstacles, including fast, whole-body occlusions, static partial occlusions, and materials

similar to Digit’s parts. We also release this dataset to be a benchmark for the

tracking community (http://lizolson.dev/progresslumberdataset).

4.1 Introduction

We present the Progress Looking Upon a Moving BipEdal Robot (LUMBER)

Dataset. Its sequences feature a bipedal humanoid robot moving through an ob-

structed scene. We use a combination of manual and automatic labeling techniques

to provide annotations of each link location. Our dataset contains 100 sequences of

15 seconds each (> 44k frames). It includes static and dynamic obstructions, as well
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as variations in the size of the obstruction.

4.2 Motivation

As robots move about homes and warehouses, they must avoid collisions with

nearby agents, such as humans or colocated robots. Robust tracking of such agents

is therefore crucial, despite the occlusions in real-world environments. To overcome

this challenge, we must validate and improve visual tracking methods to ensure

reliability. This requires tracking datasets containing the types of heavy occlusions

representative of these work areas. Human pose estimation has been extensively

studied, but robot pose tracking remains a research area of emerging datasets. It is

also an application that presents the challenge of tracking a moving, high-dimensional

object while exploiting the accessibility of a known model.

Though real and annotated datasets for robot pose tracking exist, any ambiguity

in the scene is caused by self-occlusions [132, 133]. Recent work has focused on

synthetic datasets, which allow for scalable annotation of tracking sequences and

many scenes and obstacles to render [133, 134]. However, these datasets mainly

present synthetic training data and very limited real testing data, if presented at

all. To better test the sim-to-real gap and robustness to real-world environments,

we present a benchmark dataset of a robot moving in realistic scenes with heavy

occlusion. The Progress LUMBER Dataset was created to address this need through

sequences of a bipedal humanoid robot moving through scenes of static and dynamic

obstructions, as presented in this chapter.
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(a) Example image from the CRAVES [133] (b) Example from the DREAM [132]

Figure 4.1: Examples of RGB images from previous real-world collected robot pose
datasets.

4.3 Related Works

4.3.1 Real-World Robot Tracking Datasets

A limited amount of real-world robot pose datasets have featured the annotation

needed for deep learning pose estimation or tracking. The CRAVES [133] dataset

captures a table-top manipulator moving in an unoccluded space, containing only

a few thousand images. The DREAM [132] dataset contains a moving Panda

manipulator, with images captured from several camera sensors. More comprehensive,

this dataset contains over 50k images. However, it should be noted that these

datasets only capture a few sequences, and there are no obstacles in the scene–

meaning any obstruction is caused by self-occlusions. These characteristics make it

difficult to trust the robustness of a tracking algorithm to poor initialization and

partial observability. Examples from these datasets can be seen in Figure 4.1.

4.3.2 Synthetic Robot Tracking Datasets

From a deep learning perspective, tracking highly articulated objects such as

robots is more data-hungry than tracking 6DoF rigid objects. With highly articulated

objects, not only do various viewpoints of the object need to be represented in

training data, but a sampling of the various configurations as well [73]. Synthetic
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(a) Example image from CRAVES [134] (b) Example from DREAM [132]

Figure 4.2: Examples of RGB images from previous synthetic robot pose datasets.

datasets are heavily used for training to address the need for such a large amount

of annotated data.

Examples of the images in these synthetic datasets are displayed in Figure 4.2.

The CRAVES [133] features synthetic images of its table-top manipulator moving

about an unoccluded space. The DREAM [132] dataset also features synthetic images

of several robots while also rendering obstacles to better handle occlusion. A more

realistic synthetic image is produced by the Robot Tracking Benchmark [134] dataset,

which takes advantage of recent improvements in rendering.

4.4 Dataset Collection

For data collection, we captured sequences of Digit moving in front of an Azure

Kinect Sensor. RGB and depth images of the scene were recorded. To be able to

later annotate the dataset, we also recorded the joint values estimated by Digit’s

encoders, as well as a base link pose estimation provided by an onboard Extended

Kalman Filter(EKF). The coordinate frame Digit’s EKF has an origin at Digit’s

starting position, which is not the same origin as the world frame captured by the

camera. The RGB image was then synced with the depth image, joint values, and

EKF estimate temporarily closest to it.
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Figure 4.3: We present a humanoid robot tracking dataset featuring occlusions in
90% of the sequences. These occlusions occur from both dynamic and static obstacles,
such as a) a shaken cloth, b) a static table, c) a moving metallic ladder, and d)
thrown bags and buckets.

The sequences in the dataset featured a variety of movements and motions from

Digit. Digit moved forward and backward, laterally, turning, and popping up from a

lying down position. To test the robustness of tracking algorithms to fast movements,

its lateral and sitting-up motions had the highest velocity for the base link. The

turning and laying down positions also gave unique viewpoints of the robot not

often featured in videos. Each setup also included multiple sequences of the robot

not walking, but rather twisting its torso and moving its arms.

As is documented in Figure 4.3, the setup of the sequences for the dataset
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Setup Name Type Size Occlusion Frames
bags dynamic medium full 4451
cloth dynamic full-body full 4452
ladder-moving dynamic medium partial 4451
ladder-still static medium partial 4448
pole dynamic small full 4443
shelf static medium partial 4438
table static medium full 4451
unoccluded - - - 4439
whiteboard-
narrow

static medium full 4444

whiteboard-
wide

static full-body full 4450

Table 4.1: Catalogue of the ten sequence setups in the dataset. There are ten
sequences collected for each setup.

included many different obstructions. Some obstacles, such as a set of thrown bags,

moved cloth, a ladder, and a pole, were dynamic objects that quickly changed the

observability of Digit. Other sequences contained static objects, such as a ladder,

table, whiteboard, and shelf. We also note that some of these obstructions were

continuously blocking the background (like the whiteboard and table), while others

featured partial observability (mainly the shelf and ladder). In Table 4.1, we give

more information about each scene setup. Each setup was used for ten sequences.

These were comprised of two sequences of lateral walking, two sequences of forward-

backward walking, two sequences of walking while turning in place, two sequences

of hip and torso movements without walking, and two sequences of Digit lying on

the ground and then popping to a standing position.

4.5 Dataset Labeling

4.5.1 Coarse Manual Registration of Sequence

For each of the 100 sequences, we must have an initial pose annotation, the

process of which can be overviewed in 4.4. Using the rendering software Blender,
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Figure 4.4: An example of the labeling process for our contributed dataset. a)
We record Digit moving with an RGB-D sensor from the dataset that is then b)
converted to a point cloud of the scene. c) The recorded joint configuration of
Digit is rendered. d) Using iterative closest point (ICP) [5], the transformation of
the base link is found to compute the location of all joints with respect to the
RGB-D sensor’s frame.
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(a) Plane of point cloud when rendered from a front view

(b) Plane of point cloud when rendered from a side view

Figure 4.5: For a captured point cloud to match a rendered point cloud for manual
registration, a rough orientation of the robot needs to be input. Examples of changes
in the plane of the point cloud when rendered from different viewpoints

51



(a) Plane of point cloud when rendered from a side view

(b) Plane of point cloud when rendered from a side view

Figure 4.6: For a captured point cloud to match a rendered point cloud for manual
registration, a rough orientation of the robot needs to be input.
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the robot is rendered in the configuration of the recorded joint values. The depth

image produced is converted into a point cloud to be registered within the captured

point cloud of the scene. Since the captured point cloud only includes points in

the scene visible to the camera, the synthetic point cloud must include the same

respective regions of the robot. Otherwise, the registration algorithm may misalign

the point clouds. As illustrated in Figure 4.5, a rough orientation estimation is

used.

Once a point cloud similar to the scene is registered, it must be roughly aligned

to the scene. For this, manual point cloud registration is performed. As shown in

Figure 4.6, each point cloud is manually labeled with at least three correspondence

points. Then, a point-to-point implementation of iterative closest point (ICP) [135]

from the Open3d library [5] registers the rendered point cloud within the captured

point cloud.

4.5.2 Frame-Level Fine Annotation

We then looked at three different pipelines to propagate the coarse manual

annotation for the sequence to fine, frame-level annotations. We could not compare

them quantitatively because we did not have ground truth annotations. Instead,

we show examples of the RGB frame paired with the rendering of an annotated

pose overlayed on the RGB frame. In this Section 4.5.2.3, we describe the pipeline

ultimately used, which combined visual and proprioceptive information.

4.5.2.1 ICP-Only Annotation

At the first attempt, the coarse manual registration gave a rough estimate of

the pose to be corrected by ICP [136]. The current configuration was rendered to

a depth frame and converted to a point cloud, similar to the manual registration.

However, the registration was fine-tuned by the ICP algorithm. Unfortunately, this
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Figure 4.7: An example of a captured image (left) and its corresponding annotation
(right) when the clouds are automatically registered at each frame. The annotation
is too sensitive to changes in the visibility of the robot, resulting in annotation
across the sequence having too much jitter.

method was susceptible to a lot of noise and jitter between consecutive frames, as

shown in Fig 4.7. When the observability of Digit significantly changed between

frames, such as when the robot was moving laterally behind an obstacle, or a

thrown bag occluded the torso very quickly, the annotation became significantly

wrong.

4.5.2.2 EKF-Only Annotation

Our next strategy was to use the filtered pose from the Extended Kalman Filter

(EKF) running onboard the robot. Visualizing its pose, it was very smooth and

realistic. The coordinate frame of the EKF pose could be transformed to the

coordinate frame of the captured image (which had the camera at its origin) by

finding the transformation between the EKF pose and the manually labeled pose.

However, though the sequence was only 15 seconds, that was enough time for

drift to occur in the filter’s pose, as it did not have any corrections from visual

information. Such drift is depicted in Fig 4.8.
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Figure 4.8: An example of a captured image (left) and its corresponding annotation
(right) when the pose given by the EKF data is used throughout the sequence.
Since the filter uses no visual information, drift occurs over time.

Figure 4.9: Final annotations from the provided dataset
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4.5.2.3 ICP and EKF Annotation

The best results were achieved through a combination of the previously mentioned

methods. Manual registration gave the transformation between Digit’s internal frame

and the world frame. At each frame, we had an initial estimate of Digit’s pose in

its internal frame from EKF. The manual transformation with the frame’s pose from

EKF provided an initial estimate of Digit’s pose in the world frame. We needed

to use visual information to reduce drift, but ICP at each frame was too noisy.

We created a set of potential keyframes that refined the initial pose from EKF.

The keyframes were every 25 frames, making them less than one second apart. We

then used the depth image of the scene to refine the initial pose estimate through

ICP. These keyframes were often not useable and had to be manually removed. By

projecting the estimated pose on the RGB frame, we could remove keyframes that

were significantly wrong.

With a reduced set of keyframes, we needed to combine the poses of the

keyframes with the EKF data for smooth and consistent pose estimations across the

sequence. To do this, we formulated the final pose of the robot as the original

EKF pose, transformed based on the EKF-to-image-pose we had calculated, and then

a final transformation to account for the drift over the sequence. The keyframes

told us what the drift of the previous timesteps would sum to, but we needed to

interpolate the drift in between. We used a spherical linear interpolation (slerp) [137]

to estimate the drift between keyframes. As shown in Figure 4.9, these annotations

were smooth and filtered between timesteps and free from drift across the sequence.

4.5.3 Label Generation

At this point in the annotation pipeline, we had the 6DoF pose of the base

link, the torso, as viewed by the camera. We rendered the base at this pose and

calculated the necessary positions of its neighboring links via forward kinematics.
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Blender also allowed us to label the segmentations and bounding boxes for each

link. We paired these labeled poses with the original RGB and depth images and

recorded joint configurations to release them to a larger audience.

4.6 Conclusion

In this work, we sought to create a dataset representative of a task we may

soon see in the real world: highly articulated moving objects in scenes of clutter

and occlusion. We collected and labeled a 100-sequence visual tracking dataset for a

humanoid biped. We separated its contents from similar datasets by featuring setups

in which the robot had partial observability—whether through external obstacles

or self-occlusion. We used a combination of internal filtered data from the robot’s

proprioceptive sensors and depth information captured from the camera to produce the

best labels. We provide 6DoF pose for each link, segmentations, joint configurations,

and bounding boxes for over 44k frames.
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Chapter 5

WAGER-DNBP: Weighted And Graphical Evidential Reasoning

for Differentiable Nonparametric Belief Propagation

Figure 5.1: (a,b) The observed humanoid robot (RGB version shown) is represented
as a graphical model for our nonparametric belief propagation representation. (c)
The current estimate is very off for the left arm. d) We use evidential reasoning
to estimate that the left shoulder’s observation is ambiguous, and the nodes of
the left arm are in failure mode. e) This conclusion informs our resampling and
redistribution of samples in the left arm for faster recovery.

In this chapter, we introduce Weighted And Graphical Evidential Reasoning for

Differentiable Nonparametric Belief Propagation, WAGER-DNBP as an extension of

nonparametric belief propagation beyond Bayesian reasoning to consider ambiguity

and disbelief — which we hypothesize is beneficial for the occlusions present in

real-world tracking. Tracking highly articulated robots presents a particularly moti-

vating challenge due to the intricate state space and potential partial observability.

58



Integrating data-driven modeling in a reliable probabilistic framework is useful, and

differentiable nonparametric belief propagation is one such method. However, random

sampling of the technique occasionally produces incorrect estimates when the filter

fails, and there is no dependable signal to redistribute the samples. To tackle this

issue, we introduce Deep Evidential Reasoning to nonparametric belief propagation to

better handle noisy and error-prone tracking scenarios. Our approach is validated on

our previously presented humanoid robot tracking dataset featuring major occlusions.

5.1 Introduction

As robots progress toward operating autonomously in unstructured and collabora-

tive environments, they are increasingly expected to be aware of the location and

movements of nearby agents. Sometimes, these robots must rely exclusively on visual

perception to track human collaborators or co-located robots. Meeting this expecta-

tion requires accurate tracking algorithms that remain efficient when tracking highly

articulated objects, especially in situations with heavy clutter or quick movements.

Differentiable Nonparametric Belief Propagation (DNBP) has demonstrated promis-

ing success due to its effective combination of powerful data-driven models with

robust and diagnosable probabilistic inference [6]. Despite these benefits, the time

constraints placed on robotic applications necessitate limited computation and small

sample sets within DNBP. This restriction can prevent the algorithm from sampling

near the true state and instead waste computation exploring implausible regions of

the state space. This failure mode could be alleviated by accurately identifying the

well-observed regions and weighting their information higher, as well as identifying

the poor-performing nodes and redistributing their samples to recover the true belief.

Because nonparametric belief propagation is founded in Bayesian reasoning, analysis

of whether the node is failing can only be indirectly inferred by noticing the low

likelihood scores. But, this raises an important question: is such a low likelihood
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due to to the inaccuracy of the hypothesis or due the model’s inability to reason

about any hypothesis given the vantage point?

Evidential reasoning is an emerging field within deep learning that aims to

quantify uncertainty and model ambiguity of neural network-based algorithms. This

paradigm distinguishes between uncertainty due to noise or ambiguity and uncertainty

due to glaring error, making it well-suited for augmenting factor graph models such

as DNBP. Many works have integrated neural networks into probabilistic filters, but

mainly by using the scores of the network as likelihood functions for the confidence

in the sample’s accuracy.

Our key insight is that a model’s estimated uncertainty in its own performance,

provided by evidential reasoning, can be embedded into a Bayesian nonparametric

belief propagation. These confidences can then be used to create a hierarchy of the

visual information being propagated through the network to enable faster recovery.

5.2 Related Works

5.2.1 Deep Uncertainty Quantification

In an attempt to mitigate the inherent opaqueness of deep neural networks, un-

certainty quantification provides a path towards diagnosability and transparency [138,

139]. It seeks to measure the risk associated with a given hypothesis—an important

consideration as these estimates can inform downstream robotic tasks that are becom-

ing increasingly critical [140] [141]. Uncertainty is generally categorized as either due

to the model’s need for further exposure to unfamiliar data (epistemic) or from the

noise and unpredictability intrinsic to the data (aleatoric) [94, 142]. Given neural

networks’ sensitivity to inferring on samples outside the distribution of their training

data, epistemic uncertainty has garnered extensive research in the field for out-of-

distribution detection [92, 109, 143]. Aleatoric uncertainty, applicable for reasoning

about partially observable scenes, is often quantified by computationally expensive ap-
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proaches, such as measuring the consensus of an ensemble of networks [101, 102], or

by analyzing the consistency of output from a single stochastic neural network[144].

In deep evidential reasoning, the network explicitly and internally models its

ignorance at the time of inference. It is grounded in Evidential Theory [24], a

generalization of Bayesian reasoning that not only quantifies likelihood but addition-

ally measures disqualifying information, as well as the ignorance and ambiguity of

reaching any conclusion. Examples include augmenting a classification set with an

‘unknown’ category [108] or learning to estimate the parameters of an underlying

distribution to measure uncertainty in regression applications [111]. The theory’s

independent quantification of counter-hypothetical information, or doubt, has also

been integrated into a particle filter to inform resampling [25]. This chapter paper

presents an approach to learning to measure the supporting, aleatoric-based, ambigu-

ous, and counter-hypothetical information associated with a possibility and extend

Bayesian graphical models to propagate the information. While previous deep eviden-

tial reasoning implementations inform a human supervisor or downstream planning

tasks, we present an integrated framework to improve the quality of the perception

itself.

5.2.2 Nonparametric Belief Propagation

Nonparametric belief propagation (NBP) is an established method for tracking

highly articulated objects in continuous state spaces [79, 10, 11, 12]. In contrast to

traditional sum-product belief propagation [9] that requires exact integral computations,

NBP algorithms approximate continuous posterior distributions using graph-based

message passing with discrete sample sets. For an articulated object of interest, these

approaches encode the known articulation constraints in a factor graph representation,

then use local message passing operations to infer the posterior distribution over

each part’s pose given access to some observed sensor data (e.g., images from a
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camera) [145]. The decoupled structure of NBP allows for faster and simpler training

than fully regressing high dimensional pose [73]. It can focus on regions of the

object that are observable for better local pose estimation.

Unfortunately, like all sampling-based inference methods, the algorithm can struggle

to fully represent such a large state space when constrained to a low number

of particles. Many works, particularly those from the Monte Carlo localization

community, have looked to reinitialize samples as needed in particle filters, known

as adaptive particle reinvigoration [85, 87, 84, 128, 112]. However, research has yet

to extend adaptive particle reinvigoration to NBP by estimating the appropriate

frequency to sample from the multiple proposal distributions available in NBP. Instead,

these methods maintain particle diversity by drawing from the different distributions

at fixed ratios determined by hand-tuning [146, 13]. Though the resampling step is

not truly differentiable for filters trained as neural networks [16, 17, 6], our work

explores learning auxiliary signals via Evidential Reasoning to determine when particle

redistribution is necessary.

5.3 Methodology

Given a sequence of t depth images, z1:t, we seek to localize the 6D pose, xst,

of an link s at time t. The marginal belief distribution of Xs at time t, belt(Xs),

can be approximated by

belt(Xs) ∝ ϕs(Xs, Zs)
∏

r∈ρ(s)

m̂t
rs(Xs) (5.1)

where ϕs(Xs, Zs) is the unary potential of the latent state Xs and its corresponding

observable state, Zs. m̂t
rs(Xs) represents the message passed from r to s, where r

is a neighboring node of s as indicated with r ∈ ρ(s). The messaged passed from r
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Figure 5.2: Explanation of our proposed observation model that leverages deep evi-
dential reasoning: 1) The hypothesis and depth image are passed into the network,
which assigns three weightings to the sample: likelihood, counter-hypothetical likeli-
hood, and ambiguity. 2) The aggregate of the unnormalized likelihood scores and
counter-hypothetical likelihood scores across the particle set determine αst, a measure
of the node’s overall performance. The α values of the given node and those of its
neighbor(s) determine the ratio of samples to be drawn from the prior distribution
(αst), neighboring distributions (βst), and random distribution (γst). 3) The ambiguity
score of each sample will be used in a weighted sum calculation for the messages
passed from Xst to its neighbors.
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to s at is defined as:

m̂t
rs(Xs) =

∑
Xr∈Xr

ϕt(Xr, Zr)ψr,s(Xr, Xs)
∏

u∈ρ(r)\s

m̂t
ur(X) (5.2)

These equations demonstrate the chain of messages passing into a given node through

belief propagation. Specifically with nonparametric belief propagation, the belief

distribution of belt(Xs) is represented by a set of particles Xs:

Xst = {(xst1, πst1), (xst2, πst2), . . . , (xstN , πstN)}, (5.3)

where xis is the ith sample of the particle set, and πi
s is its corresponding normalized

importance weighting, given from Equation 5.1, and N is the number of particles

at the given node. In traditional nonparametric belief propagation, the next set of

particles would be sampled off of the current set, and the probability of a given

particle being selected would be based on its importance weighting. However, this

causes mode collapse in the underlying belief distribution, pushing the filter into

failure mode. In practice, Xs for the next iteration is often a combination of samples

from the current set, Xprop
s , as well as randomized particles sampled off a set of

sampled off of other candidate proposal distributions, Xaug
s . With Xs = Xprop

s

⋃
Xaug

s ,

the ratio from which to sample off of each distribution needs to be addressed.

Similar to the counter-hypothetical particle filter [112], our observation model

outputs more weightings than just the typical likelihood score. Previously, a counter-

hypothetical likelihood and likelihood function were applied within a particle filter

to determine the number of samples to be drawn from a random distribution for

adaptive particle reinvigoration. However, with nonparametric belief propagation,

information is passed between multiple nodes, and more analysis can be considered

through evidential reasoning. From the counter-hypothetical particle filter, we similarly
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estimate αs, the ratio of samples from Xprop for the particle set at the s node:

αst =

∑N
i=1 L(xist)∑N

i=1 C(xist) +
∑N

i=1 L(xist)
(5.4)

where L(xit) is the unnormalized likelihood weighting for the given particle, and C(xit)

is the unnormalized weighting from the counter-hypothetical likelihood. Note that

the ratio of particles sampled from distributions other than the previous particle

set, comprising Xaug, would be 1− α. This formulation is incomplete for adaptive

particle reinvigoration within belief propagation, as there are multiple candidate

distributions from which the samples can be reset. They may be reinitialized from

a random uniform distribution, similar to initialization, which we’ll denote Xrand.

Otherwise, they may be sampled off of a distribution created from samples of

the neighboring nodes [146, 147], denoted here as Xpair. To extend the notation

of particle reinvigoration to this case, we find Xaug = Xrand
⋃
Xpair, leaving us to

determine the ratio between Xrand and Xpair.

We then introduce β, the ratio of augmented particles sampled from neighboring

samples, Xpair
s . Intuitively, this ratio should be in accordance with our confidence

that the neighboring nodes contain plausible samples. Therefore, it is the average of

the α scores of each of the M neighboring nodes:

βst = (1− αst) ·
1

M

∑
r∈ρ(s)

αrt. (5.5)

For the particles reinvigorated in Xpair, the frequency from which each neighboring

node’s belief is sampled from is proportional to its α score relative to the other

neighbors.

The ratio of particles to be sampled from a uniform random distribution is

defined as γ. This is then calculated from the other ratios and the fact that they

65



must sum to 1:

γst = 1− αst − βst. (5.6)

The size of Xprop
s , Xpair

s , and Xrand
s are then αsN , βsN , γsN respectively. Note that

αsN , βsN , and γsN will need to be rounded to integers that have a sum of N .

These proposed extensions to nonparametric belief propagation incorporate the

notion of disbelief presented by Evidential Theory but could also benefit through

their modeling of ambiguity. Aleatoric uncertainty quantification measures the noise

and unpredictability of the observation, and we propose its implementation within

a graphical model as a mechanism to evaluate the usefulness and trustworthiness

of each node’s unary potential. The third scalar weighting each observation model

produces for each sample measures the ambiguity, A(xist). For this quantity, the

node learns to make a ‘wager’ that the unary potential is reliable for the given

hypothesis and observation. We use 1−A(xist) as the scaling factor in a weighted

sum of the message to be passed to the node’s neighbors. The less ambiguity a

sample has associated with its unary potential, the greater its influence on the

message’s sum. For this functionality, we modify Equation 5.2:

m̂t
rs(Xs) =

∑
Xr∈Xr

(1−A(Xr))ϕt(Xr, Zr)ψr,s(Xr, Xs)
∏

u∈ρ(r)\s

m̂t
ur(X) (5.7)

With this formalization, a node will mainly sample from its prior distribution

when there is little evidence that its current particles are wrong. If a node has

particles that are observed to be glaringly wrong and have neighboring nodes that

appear to be performing well, the node’s particles will be sampled off of particles

at the neighboring nodes. Otherwise, if the neighboring nodes also appear to have

poor performance, the node’s particles will be initialized from random. In this way,

incorporating evidential reasoning into the formulation of Bayesian nonparametric

belief propagation can result in a faster recovery of the true belief.
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5.4 Experiments

5.4.1 Implementation

Our implementation builds off of an open-source differentiable nonparametric belief

propagation network(DNBP) [6]. In both the original DNBP and our variant, the

network knows the connectivity of the joints but not the geometry. Instead of its

observation model giving a single likelihood score to each particle, we alter it to

score each particle with three scores(likelihood score, counter-hypothetical score, and

ambiguity score). For the unary likelihood score and pairwise potentials, we utilize

the original loss function, which maximizes the posterior distribution at the point of

the ground truth state.

Ls = −log(b̄elts(xGT
s )) (5.8)

where xGT
s is the ground truth pose of the joint and b̄el

t
s(x

GT
s ) is the density at

that point from a probabilistic density function formed of the weighted samples.

For training the counter-hypothetical likelihood function, we follow previous evi-

dential reasoning works [111, 112] that aimed to train a network to identify errors

in incorrect estimates. These works only penalize estimates significantly distanced

from the true label. This loss function trains the second weighting value to iden-

tify glaringly wrong samples by maximizing the counter-hypothetical weighting of

significantly wrong samples (those with a Euclidean distance greater than 0.1m).

L′
s =

∑
xi
st∈Xst


− log(C(xist)) if ∥xist − xGT

st ∥ > 0.1m

0 otherwise

(5.9)

Similar to the confidence prediction from Segment Anything [148], we compute

the compatibility between the likelihood and counter-hypothetical likelihood scores

during training and use this as a supervisory signal for training the ambiguity score,
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the final weighting provided by the observation model. We assume that when less

aleatoric uncertainty is present, the likelihood and counter-hypothetical likelihood

scores should be reliable and consistent. The likelihood and counter-hypothetical

likelihood functions are ultimately passed through a sigmoid layer, so we calculate

how close their sum is to 1. The ambiguity weighting learns to regress the error

between their sum and 1.

The networks were trained and tested on our contributed Progress LUMBER

Dataset. As our dataset has ten scene setups, we used eight for training and two

for testing for a standard 80/20 train/test split. We used the two scene setups with

the whiteboard, whiteboard-narrow (a side-view of a rolling whiteboard is occluding

the robot) and whiteboard-wide (the full length of the whiteboard is occluding the

robot), as testing data.

5.5 Results

We continue the error metric initially used for DNBP’s analysis on hand-tracking [6].

This metric measures the error distance between the estimated and true joint loca-

tions. These are recorded across all joints in all frames of the test set. Similar to

our work with the rigid object error metrics ADD and ADD-S, the aggregate of

these results is analyzed by a Receiver Operating Characteristic (ROC) Curve.

We highlight a sequence of results from the dataset to show the performance

of WAGER-DNBP over DNBP. During the evaluation of a lateral walking sequence,

two time snapshots are examined at Fram 10 and Frame 74 (Figure 5.3). Our

WAGER-DNBP method demonstrated consistent performance in maintaining accurate

estimates throughout the sequence. On the other hand, the baseline model, which

lacks the integration of evidential reasoning, displayed limitations. We see both

methods can recover the pose of the robot shortly after initialization. However,

once it passes behind a side-view of a rolling whiteboard, DNBP significantly loses
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Figure 5.3: Qualitative results on a sequence of Digit laterally moving behind a
pole at Frame 10 (left) and Frame 74 (right). While both methods perform well at
the beginning of the movement, our method can maintain proper belief after passing
behind the pole.
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track of the robot. We see its visualization of the belief distribution become more

sparse, and in turn, a visualization of its maximum likelihood estimate results in an

implausible configuration for Digit. This analysis underscores the enhanced reliability

of WAGER-DNBP in tracking scenarios.

Figure 5.4: Quantitative results showing the percentage of estimates on the test
dataset below error thresholds varying from 0 − 90cm. DNBP [6] loses track of
the robot more frequently, so it has a lower percentage of estimates below most
thresholds.

We also present quantitative results over the test set in Figure 5.4. Both

methods have similarly low performance for estimates with an error below 10cm.

However, Wager-DNBP has a significantly higher percentage of estimates that are

within thresholds that are generally close. We observe that when either tracking

estimate fails, the samples begin to disperse to far regions of the crop of the image.

Therefore, many estimates are very wrong (> 1m).
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5.6 Future Work

The quantitative results could be more meaningful to our objective of improving

on occlusion through further analysis. We would need to distill the poses in the

test set that were occluded. This could be done by comparing the measured

depth of each joint against its known ground truth depth based on our annotations

to determine if the joint is occluded. Additionally, we could use a segmentation

network to estimate the mask of the visible portions of the robot in the image.

These masks could be compared against the true segmentation from the rendering

of our annotation to calculate the percentage of the robot visible. It would be

interesting to look at how the methods perform across different levels of observability

of the humanoid. Anecdotally, we observe the robot loses track when the amount

of observability greatly changes between frames. By comparing the percentage of

observability of the robot across frames, we could specifically look at performance

relative to how observability changes.

5.7 Conclusions

In this work, we addressed the need for robots to operate effectively in complex

environments, particularly focusing on their ability to track other entities using

visual perception. We identified challenges with Differentiable Nonparametric Belief

Propagation (DNBP), notably its computational constraints and potential ambiguities

when analyzing specific viewpoints. To mitigate these issues, we integrated evidential

reasoning with DNBP, leading to the development of the WAGER-DNBP method.

This approach enhances nonparametric belief propagation by accounting for ambiguity

and disbelief, especially in occlusion-rich real-world scenarios. Our results indicate

that incorporating deep evidential reasoning into Bayesian graphical models allows

for improved handling of ambiguities and better recovery from poor initializations.
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This research contributes a robust method for improving robot navigation in dynamic

environments.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

This dissertation introduces deep evidential reasoning as an informative signal to

improve resampling in nonparametric Bayesian inference. We motivate the need for

sampling-based filters to quantify the confidence and doubt associated with a sample

and estimate the observation model’s ability to measure these quantities given the

observations at hand.

We introduce the concept of a counter-hypothetical likelihood function in our

counter-hypothetical particle filter. This work posits that the standard practice

of only quantifying supporting evidence is insufficient to infer doubt, as there is

the presence of ambiguity in observations. It presents a formulation for how an

independent measure of disqualifying evidence of a hypothesis could be integrated

into a nonparametric Bayesian filter. We demonstrated how counter-hypothetical

weightings for a hypothesis can indicate if the filter is in failure mode, showing

improved performance. Its novelty comes from estimating doubt independently of

likelihood or ambiguity and integrating these signals into nonparametric Bayesian

inference.

We introduce a unique humanoid robot pose-tracking dataset to focus on the

domain of tracking highly articulated objects of known models despite occlusion. In

the Progress LUMBER Dataset, we can annotate 29 links of the humanoid robot,
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Digit, with no external markers. While there are other pose-tracking datasets, they

do not feature any external obstacles, so ours features a much wider variety of

occlusions and ambiguous viewpoints. Additionally, we do not use a mounted or

stationary manipulator but rather a walking bipedal robot, increasing the movement

and difficulty of tracking.

Our work then extends the counter-hypothetical likelihood to a factor graph. It

also shows how quantifying ambiguity can improve a factor graph’s performance by

estimating which observations contain the most useful information. We then demon-

strate how this quantification of information in the observation can be integrated

into the message-passing algorithm to adapt the influence the observation has on the

samples’ importance weightings. This work is novel for building on deep evidential

reasoning to estimate ambiguity based on our independent estimates of likelihood and

doubt. In this way, we do not require a dataset labeled for regions of ambiguity

or occlusion.

6.2 Limitations

At a high level, our augmented likelihoods increase the time complexity of our

inference, similar to ensemble methods. This burden is problematic for real-time

robotics applications, especially when used as a workaround for more samples. Further

analysis could be done on changes in performance and time constraints compared

to increasing the number of samples. Additionally, further metrics and analysis are

needed to fully understand the benefit of this addition in occluded test cases.
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6.3 Future Directions

6.3.1 Data Collection: Clothing

While The Progress LUMBER Dataset is interesting, multiple supplementary

sequences could be added to increase its usefulness. For example, human tracking

works mention an inability to estimate pose when wearing baggy clothes, such as

skirts. With Digit’s human-like size, we could easily put clothes on the robot to

showcase this edge case, and the robot’s proprioceptive sensors could help with the

accuracy of annotation for this task. Additionally, most of the dataset is front-facing,

with side views and back only existing in 20% of the data, specifically in the

turning sequences.

6.3.2 Counter-Hypothetical Unsupervised Learning

More work could be done to explore the generalizability and usefulness of the

counter-hypothetical likelihood function. An area of interest is unsupervised learning,

as real-world annotated perception datasets for robotics are limited. A standard

likelihood function learning schema requires ground truth labeling. However, with the

counter-hypothetical likelihood, it could use non-labeled data as a supervisory signal.

For example, it can learn to produce high doubt weightings for estimates that are

not physically plausible when simulated. Additionally, hypotheses that do not form

trajectories consistently present in the image can also be labeled as incorrect.

6.3.3 Deep Evidential Reasoning

Dependencies and relationships within deep uncertainty quantification and evidential

reasoning are not fully utilized or enforced. For example, we did not constrain

Wager-DNBP to produce probability masses for likelihood, ambiguity, and doubt that

sum to one. Adding this constraint could improve training performance. Additionally,
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recognizing when these do not sum to one at test time could indicate another

failure mode or edge case.
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[55] Tomáš Hodaň, Xenophon Zabulis, Manolis Lourakis, Štěpán Obdržálek, and
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