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ABSTRACT

A holomorphic map is said to be postsingularly finite (PSF) if it has finitely many singular
values and every singular orbit is finite. If every singular value is a critical value, a postsingu-
larly finite map is also called postcritically finite (PCF). As shown by Douady and Hubbard
in their study of the Mandelbrot set, these maps are crucial in understanding the structure
of parameter spaces, and can often be determined by a finite amount of combinatorial data.
Thurston’s theory considers a certain class of continuous maps with a finite postsingular set
and asks when such a map is equivalent to a holomorphic PSF map. While this theory was
initially introduced by William Thurston for topological analogs of rational maps on the
sphere, the last few decades have seen a push to generalize this theory to topological analogs
of entire maps on the plane, starting with the work of Hubbard, Schleicher and Shishikura
on topological versions of exponential functions. In this thesis, we explore the relationship
between finite and infinite degree Thurston theory, and use this relationship to establish

dynamically meaningful approximations for PSF entire functions by PCF polynomials.
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CHAPTER I

Introduction

For an entire function g : C — C, a critical value of g is a point y € C for which exists a
point z € g7 (y) such that ¢’(z) = 0; an asymptotic value is a point a € C for which there
exists an arc v : [0,00) — C with the property that v(t) — oo and g(y(t)) — a as t — o0.
The critical values and asymptotic values of g are collectively called its singular values; they
can be equivalently characterized as the points in C where some branch of g~ does not exist
locally.

The structures of the Fatou, Julia and escaping sets of an entire function g are known to
be highly dependent on the iterative behavior of the set of singular values S, (see | ],
[ ], [ ), [ | and [[219]). Generally, the dynamical behavior of entire functions is
markedly different from that of polynomials. However, certain classes of entire maps show
many similarities with polynomials in their dynamical behavior. One such class is the family
of entire maps ¢ with |S,| < oo, for which Sullivan’s theorem on non-wandering domains holds.
For general entire functions g, the relationship between the dynamical system g|S, : S, — S,
and the existence of Fatou components such as Baker and wandering domains, which are
unique to the transcendental setting, has been studied in | I, 1 I, 1 ] and
[Baks].

Singular values also come into play in the study of parameter spaces. The complicated
structure of the Mandelbrot set, for instance, can be explained using special maps that satisfy
the property of postsingular finiteness (see | 1,1 ]); an entire map ¢ is said to be
postsingularly finite (or PSF) if its postsingular set, defined as P, = m, is finite.
If, as in the case of polynomials, there are no asymptotic values, a postsingularly finite map
is also said to be posteritically finite (or PCF in short).

While it is hard to overstate the importance of PSF functions, a huge challenge in utilizing
these is that they are hard to find: it is difficult to answer questions such as “what is a
transcendental entire map g with a hundred singular values, with each singular value fixed

under ¢g?”



I.1: Classical Thurston Theory

One of the major breakthroughs in complex dynamics is William Thurston’s program to
construct postcritically finite rational maps on C with prescribed iterative behavior on their
set of critical values, by starting with orientation-preserving branched covers of the sphere S
For such a map f, we let Sy denote the set of critical values (which may now include the
point at infinity), and define Py as the closure of the union of singular orbits, as above. The
function f is called a Thurston map if the set Py is finite. Two Thurston maps f and ¢ on S?
are said to be combinatorially equivalent if there exist homeomorphisms g, ¢; € Homeo™ (S?)

which are isotopic rel. Pf such that the following diagram commutes:

(SQ>Pf) L (S27P9>

I g

(Szvpf) L (Sz,Pg)

If a Thurston map is combinatorially equivalent to a PCF rational map, then it is said to
be realized. Otherwise, it is said to be obstructed. 1t is useful to think of realizability of a
Thurston map as the existence of a holomorphic model for that map. The core of Thurston
theory is a pathway to determine whether a given Thurston map is realized. However,
it is known that the case |P;| = 1 does not occur, and if |Pf| = 2, then f is Thurston
equivalent to z +— 2987 (see | , Corollary 10.6.6]). Associated with every Thurston map
f with |Pf| > 3 is an operator called its Thurston pullback map, denoted oy, which acts on
the Teichmiiller space T(S?, P;). The realizability of f is equivalent to a condition on the

dynamics of oy:

Theorem I.1 (Thurston’s theorem; | , Theorem 10.6.4]). A Thurston map f on S
with |Pr| = 3 is combinatorially equivalent to a postcritically finite rational function if and

only if the Thurston pullback map o; has a fized point in T(S?, Py).

For a rational Thurston map f on the sphere with hyperbolic orbifold (see | ,
Definition 10.1.9]), Douady and Hubbard also proved Thurston’s criterion, which gives an
equivalent condition for f being obstructed. Somewhat surprisingly, this condition is purely
topological: f is obstructed if and only if it does not have a certain invariant multicurve with
special properties under iteration. In [ |, Hubbard and Schleicher further studied the
special case of unicritical polynomials, and provided an answer for the realizability problem
in terms of an operator called the spider operator, which emulates the behavior of Thurston
pullback but is distinct from the latter.



I.2: Thurston Theory on the plane

Thurston’s program was first extended by Hubbard, Schleicher and Shishikura (] ]) to a
class of maps on the plane which were topological analogs of PSF exponentials. Following
their work, there has been a drive to generalize Thurston’s work even further, to topological
analogs of general PSF entire maps.

Formally, a Thurston map on R? is a continuous function f : R?> — R? which satisfies
three properties: (1) at each point z in the domain, f locally “looks” like z + 2¢ for some
d € N that depends only on z; (2) f is postsingularly finite; (3) f has stable parabolic type.
Condition (3) is equivalent to the statement that for any complex structure (i.e., maximal
holomorphic atlas) A on R? such that (R?, A) has the conformal type of C, the Riemann
surface (R?, f*A) obtained by pulling back A also has the conformal type of C. Under this
formulation, for every orientation-preserving homeomorphism ¢ : R? — C , there exists an
orientation-preserving homeomorphism 1 : R? — C unique up to post-composition with an
affine map, such that the function ¢ o f o4)~! : C — C is entire. Thurston maps on R? can
have finite or infinite degree: those of the former type are said to be polynomial, and the
latter are referred to as transcendental. Note that polynomial Thurston maps can be thought
of as Thurston maps on S? in the classical sense, which additionally satisfy the condition
fH(o0) = {oo}.

As in classical Thurston theory, two Thurston maps f and g on R? are said to be
combinatorially equivalent if there exist homeomorphisms g, 1 € Homeo* (R?) which are
isotopic rel. Py, such that ¢o(Pf) = ¢1(Pf) = P,, and g = g o fop;'. We say f is realized
if it is combinatorially equivalent to a postsingularly finite entire function, and obstructed
otherwise. For a Thurston map f on the plane, the Thurston pullbak operator o is similarly
defined, but in this setting it acts on the Teichmiiller space T(S?, P; u {o0}). This operator
o has a fixed point if and only if f is Thurston equivalent to a PSF entire map.

By a theorem due to Berstein, Lei, Levy and Rees (| , Theorem 10.3.8]), a polynomial
Thurston map is known to be realized if and only if it doesn’t have a topological multicurve
called a Levy cycle. Conditions for being obstructed are not fully understood for transcendental
Thurston maps, outside of the case |S¢| = 1 handled by Hubbard, Schleicher and Shishikura,
where it was shown that f is realized if and only if it does not have a Levy cycle. Since then, it
is conjectured that the Levy cycle criterion holds for larger spaces of transcendental Thurston
maps. Presently, understanding equivalent conditions for being obstructed remains one of
the most important open questions in complex dynamics. However, the striking similarities
between the topological exponentials studied in | ] and unicritical polynomial Thurston

maps motivates the question of whether there is a more direct link between Thurston theory



in the polynomial and transcendental regimes.

This thesis explores the relationship between Thurston theory in the polynomial and
transcendental settings. Our driving force is the philosophy of approximation: we are
interested in approximating transcendental Thurston maps and their pullback operators
by corresponding polynomial objects. We will also present results that utilize this link
between polynomial and transcendental Thurston theory to construct dynamically meaningful
approximations for transcendental entire functions. Furthermore, in Chapter IX, we provide
detail on possible future applications of our results in tackling the question of realizability for
transcendental Thurston maps.

We summarize our results in the remainder of this chapter.

1.3: Main Results

1.3.1: Approximating Thurston pullback maps

This thesis studies ways to approximate a transcendental Thurston map by polynomial
Thurston maps. Through Chapters III, IV and V, we present joint work with Nikolai
Prochorov and Bernhard Reinke.

In Chapter III, we introduce two notions of convergence for a sequence of Thurston
maps (f,).

Given a sequence of Thurston maps f,: R> — R2 n € N and a Thurston map f: R? — R?
such that P;, = Py = A for all n € N, the maps f, are said to converge to f topologically
if for every compact subset K of R?, f,|K coincides with f|K for all n sufficiently large.
While this is seemingly a strict notion of convergence, it is equivalent in a certain sense to
combinatorial convergence, which, loosely, only requires that loop-lifting under f,, eventually
resemble loop-lifting under f.

More formally, for f and f,, as above, we say that f,, — f combinatorially if there exists
a point t € R*\ A and points b, b, with f(b) = f,(b,) = t for all n € N, such that the following
condition is satisfied: for every loop v = R*\ A based at ¢, there exists N(7) € N such that
for all n = N(v),

e the lift of v under f based at b, denoted 1(f,b) (also see Definition A.3 ) is a loop if
and only if y1(f,, b,) is a loop;

o if y1(f,b) is a loop, then it is path-homotopic in R*\ A to y1(fn, bn)-

It is straightforward that topological convergence implies combinatorial convergence; we also

show that if f,, — f combinatorially, then there exists a sequence (fn) of Thurston maps



converging topologically to f such that fn and f, are isotopic rel. A (i.e., fn = fn 0, for
some (, € Homeog (R?, A)).
Combinatorial convergence of the sequence ( f,,) implies controlled behavior of the sequence

of pullback operators (o, ).

Theorem I.2 (Mukundan, Prochorov and Reinke; | , Main Theorem B]). Let f,,: R* —
R% n e N and f: R? — R? be Thurston maps with Py = Py, = A for allne N. If f, — f

combinatorially, then oy, — oy locally uniformly on T(S?*, A U {0}).

In Chapter IV, we describe a technique of constructing topological holomorphic maps
using covering maps between regular planar graphs, and use it in Proposition IV.15 to
construct, for a given Thurston map f : (R? A) ©, a sequence of polynomial Thurston maps

converging combinatorially to f.

Figure 1.1: Rose graph R (top) and its pre-image I (bottom) for the PSF function
f(z) = mwcos(z)/2, where Py = {ai, as, a3} = {—7/2,0,7/2}.

We give a rough sketch of this construction here: we draw a rose graph R based at a vertex
t ¢ R%\A (see Figure 1.1 above), whose edges form a generating set for m(R?\A,t). The
graphs R and T := f~!(R) are both 2|A|-regular, and the restriction f|T : I' — R is a
covering map. For any exhaustion (K,,) of I' by finite graphs, we construct a sequence of
fn: T — R, where T, is a finite planar 2| A|—regular graph (see Figure 1.2) containing K, .
The covering f,, also coincides with f on K,. To end, we show how to extend each f, to a
polynomial Thurston map with postsingular set A, so that the sequence (f,) converges to f

combinatorially. This discussion leads to the following result:

Theorem 1.3 (Mukundan, Prochorov and Reinke; Proposition IV.15, together with The-
orem 1.4). For any Thurston map f : R? — R? with P; = A, there exists a sequence of

polynomial Thurston maps f, : R* — R? with Py, = A such that oy, — oy locally uniformly
on T(S? A u {w0}).



Figure 1.2: Example of a sequence graphs I',, approximating I" in Figure 1.1 for the function
f(2) = mcos(z)/2. Here the subgraph K,, < I' is the union of all directed paths in I" with
< 2n + 1 edges starting and ending at the point b.

The contraction properties of pullback maps and the local uniform convergence of oy, — oy
imply that if f is realized, then f, is realized for all n sufficiently large, and the fixed points

of the oy, converge to the fixed points of oy in Teichmiiller space.

1.3.2: Dynamical approximations of postsingularly finite entire functions

Say f is an entire map that is realized as the local uniform limit on C of a sequence of entire
maps (f,). In a broad sense, the approximation f,, — f is considered to be dynamically
meaningful if there is some dynamical property of f that every map f, also satisfies.

Several major results in transcendental dynamics have been derived using techniques gen-
eralized from polynomial dynamics, as well as by developing dynamically meaningful approxi-
mations by polynomials that preserve a prescribed property. Devaney, Goldberg and Hubbard
illustrated a dynamical approximation for escaping exponentials (see | ]), and
Kisaka (| ]) provided sufficient conditions for the convergence of Julia sets of sequences
of entire maps.

The question of whether any dynamical approximation by polynomials exists for a given
entire map also has a meaningful formulation at the parameter level. Mihaljevi¢-Brandt
([ ]) studied the convergence of non-escaping hyperbolic components within spaces of
entire functions, and the authors of | | showed that hyperbolic components (and
certain parameter rays) in the space of unicritical polynomials of the form z +— A(1 + )"
converge to hyperbolic components (resp. parameter hairs) of exponential functions of the
form z — Aexp(z).

In this thesis, Chapter V is focussed on dynamically approximating postsingularly finite
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Figure 1.3: Py p, for f(2) = §cosz. Here, —7 and 7 are the singular values.

entire maps by polynomials. Generally, for a Thurston map f, we define its postsingular
portrait Py p, as a weighted graph with vertex set Py, with an oriented edge from v to f(v)
with weight deg,(v) for each v € Py. This graph is a visual representation of the dynamical
system f|P; : Py — Py (see Figure 1.3). We say that two postsingular portraits Py p,
and P, p, are dynamically isomorphic if there exists an isomorphism ¢ of weighted graphs
from Py p, to Py p, such that ¢ maps Sy bijectively to S,. Clearly, the existence of such an
isomorphism implies that f|Py is conjugate to g|P,. It is also worthwhile noting that two
Thurston maps that are combinatorial equivalent have dynamically isomorphic postsingular
portraits.

We state our main result below.

Theorem I.4 (Mukundan, Prochorov, Reinke; | , Main Theorem A]). Let g be a
postsingularly finite entire map. Then there exists a sequence of postcritically finite polynomials
(gn) converging locally uniformly to g such that g and g, have dynamically isomorphic

postsingular portraits for all n € N.

For entire maps with finitely many singular values, the iterative behavior of the singular
values controls the global dynamics (| ]). In a broad sense, in the setting of Theorem
[.4, the “dynamical cores” of the polynomials g, look more and more like the “dynamical
core” of the limiting map ¢ as n tends to infinity. This supplies a contrast with Taylor
approximations (h,,) for g, where it is possible that the number of critical values of h,, tends
to infinity, resulting in the sets P, having a structure very different from that of P.

The combinatorics of the PCF polynomials g, from Main Theorem 1.4 also approach
the combinatorics of g in the following sense: let v < C\P, be a simple closed curve and
¥ be a connected component of g~!(). If ¥ is also a simple closed curve, then, as shown
in Corollary V.6, for any sufficiently small ¢ > 0 and sufficiently large n € N, there exists a
unique simple closed curve ¥,, < g, () that lies in the e—neighbourhood of ¥. In particular,
for all sufficiently large n, the curves ¥, and ¥ are free-homotopic relative to P,, u P,
and, moreover, deg(g|7) = deg(gn|¥n). If 7 is not a simple closed curve, or in other words,

deg(g|¥) is infinite, then for all sufficiently large n, there exists a unique simple closed curve
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Y < g, (7y) such that d(z,75,) — 0 for every z € ¥ and deg(g,|¥,) — o0. For a more detailed
version see Corollary V.6.

Our strategy for proving Theorem 1.4 is to first solve an approximation problem for o, on
the Teichmiiller space T(S?, P, u {o0}). Setting A = P,, from Theorem 1.3, we get a sequence
of polynomial Thurston maps g, : (R? A) ©O such that o,, — 0,. Since g is realized, the
maps g, are eventually realized, and the fixed points 7,, of 0,4, converge to the fixed point 7
of 0,. We then show that there exist representatives v, ¢, € 7,, such that the polynomials

©n © gn 091 are posteritically finite and converge to g locally uniformly on C.

1.3.3: Case study: unicritical polynomials to exponential functions

In Chapters VI, VII and VIII, we explore Thurston theory specifically for exponential
maps and unicritical polynomials. We are mainly motivated by the classical approximation
A1+ 2)" — Aexp(z) for every A € C* that has, in the past, helped us decode the dynamics
of exponentials. We exhibit approximations for exponential PSF maps and their Thurston
pullback operators by unicritical PCF polynomials and their corresponding Thurston pullback
operators; these approximations, moreover, are meaningful at a parameter level.

We first describe in brief the parameter spaces of unicritical polynomials and exponential
maps. This background material is also recalled in more detail in Chapter II. Fix a degree
n € N>o. Every unicritical polynomial is conjugate by affine maps to a polynomial of the form
fne(z) = 2" +c. For A e C, let Paa(2) = A(1 4+ 2)". For a unicritical polynomial f, . which
is not critically fixed, there exists a unique A € C* so that f, . is affine conjugate to p, ». On
the other hand, for every A € C*, there are exactly (n — 1) complex numbers ¢ such that p,, »
is affine conjugate to f,.(z) = 2" + ¢; we call these values ¢ the monic representatives for A.

We note that S, , = {0}, and that p,(0) = X. If p, is postcritically finite, there are

exactly two possibilities:

1. 0 is periodic under p, » with period & (i.e., the postsingular portrait is a cyclic graph of
length k)

2. 0 is pre-periodic under p,, », with pre-period ¢ > 1 and eventual period k£ > 1 (in this
case, the cyclic graph is chain of length ¢ attached to a cycle of length k).

Let P,, denote the set of A € C* such that the unicritical polynomial p, ) is postcritically
finite. Every A € P, is associated with a finite set of angles ©,(\) < R/Z, such that the
parameter ray at each angle in this set, which lives in the space {f, . : ¢ € C}, lands at some
monic representative ¢ for A if A is critically pre-periodic, or on a hyperbolic component
containing a monic representative ¢ if A is periodic. We call this set ©,,(\) the set of angular

coordinates for \.



Similarly, for A € C*, we let py(2) = Aexp(z) and denote by A = C* the set of A\ values
for which the orbit under py of the set S,, = {0} is bounded. Let P < A be the subset of
postsingularly finite parameters. We observe that for any A € P, the singular value 0 is
strictly pre-periodic under py, and thus the postsingular portrait of p, looks like that in case
(2) above.

As for the unicriticals, every A € P is associated with a finite set of sequences O, (\) < ZN
called external addresses. In broader generality, an external address s is an element of Z, and
for a subset of ZY consisting of exponentially bounded addresses, each address corresponds to
a simple arc, called a parameter hair, contained in the complement of A. For any A € P, the
set O () consists of all external addresses whose corresponding hairs have A as a limiting
value; in other words, these are exactly the hairs that land at .

To summarize, angles and external addresses are combinatorial representations of the
location of postsingularly finite parameters in the spaces P,, n € N>, and the space P. There
is a further analogy between them: for fixed degree n, we can think of angles in R/Z in terms
of their n—adic expansions, which are sequences in {0,1,--- ,n — 1}

Our main result is the following theorem, proved in Chapter VIII:

Theorem 1.5 (| , Theorem Al). Given X\ € P, there exists an N = N(\) € Nyy and a

sequence of complex numbers A\, € P,, n = N such that

1. the sequence (pn.»,) converges to py locally uniformly on C, and for all n = N, the

postsingular portrait of py x, s dynamically isomorphic to the postsingular portrait of

Dx;

2. there exists a polynomial Q) € Z[X]| and integers €,k > 1 with deg@ < { + k — 2
depending only on X\, and a sequence of angles 0, € Q/Z,n = N, such that 6,, € ©,,(\,)
and (n —1)0, = %92 (110d 1), for alln > N.

n = pf(nkF-1)

The second condition above essentially shows that the n—adic expansions of \ exhibit a
stability condition as n — o0. We show in Proposition VIII.4 that the n—adic expansions of
the 6#,, above converge in a combinatorial sense to an external address of .

Theorem 1.5 is a refinement of Theorem 1.4 for the special case of exponentials.

Our approach will rely on building a combinatorial relationship between the sets P, and
the set P. The polynomials in P, can be completely classified by the combinatorial data
contained in their spiders (see for example | ], 1 ) [ ]). We recall that a spider
for a unicritical polynomial is the finite forward orbit of some dynamical ray landing at its
critical value. Hubbard and Schleicher introduced the approach of using spiders to build

topological models for unicritical polynomials (see | |). They constructed, for each angle



0 € Q/Z, an abstract graph Sy(f) < S? called the degree n spider of 6, and a polynomial
Thurston map Fay : S* — S? which leaves S5(6) invariant. The map Fag is shown to be
combinatorially equivalent to p, x, where A is the unique parameter in P, such that 6 € ©5(\).
Their theory generalises to all degrees n > 2.

The authors of | | developed a similar approach for exponentials: for every pre-
periodic external address s, there exists a finite graph Sy (s) and a Thurston map G, : R* — R?
such that Sy (s) is invariant under G, and G, is Thurston equivalent to py where A is the
landing point of the parameter ray at address s.

We show in Chapter VI that spiders in one degree are realized in the next:

Theorem 1.6 (] , Lemma 1.1]). For every n € Ny, there exist distinct maps Jump,, ; :
Q/Z—QJ/Z,j=0,1,2,--- ,n—1 such that for each j,

1. considering Q/Z as a subset of [0,1), Jump,, ; is strictly increasing;
2. for every 6 € Jump,, ;(0), the spiders S,(0) and S,.1(Jump,, ;(0)) are congruent.

The congruency condition above means that the spiders have the same circular order of
edges, or ‘legs’, at infinity. The maps Jump,, ; additionally preserve landing relations between
angles in Q/Z: if two angles 6y, 6, correspond to parameter rays to M, that land at the
same point, then Jump,, ;(¢1) and Jump,, ;(¢2) land at the same point in M, ;.

In Chapter VII, we promote this realization of spiders from one degree to the next, into
an embedding of P,, into P, 1. First we define a poset structure on P,, defining \ < N\ if
there exist 01,0, € ©,()\) and 0 € @n(X) such that the parameter rays R,(0;) and R, (0s)
land together, and #; < 6 < #,. We call a map from X < P, to Y < P, a combinatorial

embedding if it preserves the poset order defined above, and preserves postsingular portraits.

Theorem 1.7 (] , Lemma 1.2]). For every n € Nxo, there exist distinct combinatorial

embeddings &, ; : P, — Ppy1, for j=0,1,--- ,n—1.

For a fixed A € P, using Theorems 1.6 and 1.7, we show that for any external address s of
A, there exist a sequence of angles (6,,) whose degree n spiders are congruent to the spider
corresponding to s, and which satisfy the growth condition (3) of Theorem 1.5. We then
construct a topological approximation of G, by polynomial Thurston maps G, , such that
for n large enough, G, is combinatorially equivalent to F,,9,. We realize the ), required in

Theorem 1.5 as landing points in degree n of the angle 6,,.
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1.4: Notations and Conventions

e The cardinality of a set X is denoted by | X| and the identity map on X by idyx. We
denote by (z,) a sequence of elements z,, € X. If f: X — Y isamap and U c X, then
f|U stands for the restriction of f to U.

e We denote by N, Z, R, and C, respectively the sets of positive integers, integers, real
and complex numbers. When X = N, Z or R and £ € X, the notation X will be used
for the set of elements {z : x € X and x > k}. We can similarly define X<;. We also

let I =[0,1]. By (z,), we denote a sequence x1,xs, - ,Z,, - indexed by the set N.

e If X is a topological space and U — X, then U denotes the closure, int(U) the interior,
and oU the boundary of U in X.

e We denote the 2—dimensional plane by R?. We identify the 2—sphere S? with the one-
point compactification R? U {00} of the plane. The complex plane C is then the sphere S?
endowed with the standard complex structure. When we are working with C purely as a
topological surface, we will often conflate it with the topological plane R?. In the complex
plane, we let D := {z € C: |2| < 1}, D* := D\{0}, H := {z € C: Re(z) < 0}. The open
disk of radius r > 0 centered at z; € C is denoted by D(zp,7) := {z € C: |z — 2| < 1},
and, for simplicity, DD, is the disk of radius r centered at 0. We denote by C the Riemann
sphere C U {0},

e When we refer to a map between R? and C, we think of C as a Riemann surface and R?
as a topological surface. When working with holomorphic maps, we will rarely refer to
them as maps on R?; these will be notated as maps on C. For a sequence of entire maps
fn that converge to the identity, we say f, — idc. If these maps are not holomorphic,

we write f, — idr2 instead.
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CHAPTER I1
Background

II.1: Thurston maps

Thurston maps are topological analogs of postsingularly finite entire functions. In this section
we introduce the background required to define these maps and explore their basic properties.

For the notation used for various topological objects in this thesis, refer to Appendix A.

11.1.1: Topological holomorphicity
Let X,Y be oriented topological surfaces and f : X — Y be continuous.

Definition II.1. The map f is said to be topologically holomorphic if it is open, has discrete
fibers, and satisfies the property that for every point x € X where f is locally injective, it
is locally an orientation-preserving homeomorphism. We denote by Cp,(X,Y) the set of

holomorphic maps from X to Y.

An equivalent set of conditions for topological holomorphicity of f is that for every z € X,
there exists a neighborhood U of x, orientation-preserving homeomorphisms ¢: U — D and
Y: f(U) — D, and d € N such that p(x) = ¢(f(x)) = 0 and 1 o (f|U) o ¢~ 1(2) = 2¢ for all
z € D.; for a proof, see | | or | ]

If X =Y =R2 the map f is called a topological polynomial if it has finite degree, and

transcendental otherwise.

11.1.2: The type problem

Let X and Y be oriented topological surfaces. We refer to a maximal holomorphic atlas on
X as a complex structure, and denote by A(X) the set of all complex structures on X.

If X = R? and A € A(X), then the Riemann surface (X,.A) is conformally equivalent to
either C or . In the former case, we say A is a flat structure; in the latter, we call it a
hyperbolic structure. The partition A(X) = Ajq(X) U Apyp(X) decomposes A(X) into flat

and hyperbolic complex structures.
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It is known that we can pull back complex structures under topologically holomorphic
maps (see | , Stoilow’s factorisation theorem| and | , Lemma A.12]) as the following

proposition states.

Proposition I1.2. Let f € Cho(X,Y). For every A€ A(Y), there exists a unique structure
f*Ae A(X), such that the map f: (X, f*A) — (Y,.A) is holomorphic.

This implies that for any orientation-preserving homeomorphism ¢ : Y — Sy, where
Sy is a Riemann surface, there exists a Riemann surface Sx and an orientation-preserving
homeomorphism 1 : X — Sy such that the function po fo1~!: Sx — Sy is holomorphic.

Now assume X =Y = R? and let f € Cu(X,Y). It is clear that if A € Ap,,(Y) and
f is non-constant, then f*A e Ap,,(X). However, if A e Apqu(Y), it is possible for f*A
to be either flat or hyperbolic. This ambiguity in the comformal type of f*A is called the
type problem, and was first posed by Speiser in | |. This problem is hard to solve and
a general solution is still unknown; however, special cases have been resolved in | ],
| | and [Rob30).

The map f is said to have stable conformal type if the conformal equivalence class of
(f*A, X) is constant over all A € A (Y). In this case, the conformal type of f is said to
be parabolic if (f*A, X) = C for every A € Apq(Y), and hyperbolic otherwise. Later on in

this section we will explore a class of maps for which the conformal type is stable.

Quasiconformality

Let U = C be a simply connected domain. An orientation-preserving homeomorphism
p:U — f(U) c C is K -quasiconformal for K > 1 if for every annulus V' < U of finite
modulus, we have

mod(V)/K < mod(p(V)) < Kmod(V),

where mod (V') and mod(¢(V)) are the moduli of the annuli V' and ¢(V') respectively. The
infimum of all values K such that ¢ is K-quasiconformal is called the dilatation of ¢, and
is denoted by K(p) (in particular, ¢ is K(p)-quasiconformal). For further properties and
equivalent definitions of quasiconformal maps, see | I, [ ], or | .

Here we list some properties of quasiconformal maps used in this thesis.

Theorem I1.3 (Weyl’s Lemma,; | , Theorem 1.14)). If ¢ : C — C is 1—quasiconformal,

then ¢ is conformal.

Theorem I1.4 (] , Theorem 1.26]). The set of K—quasiconformal homeomorphisms
Y C—C fixing three points {a,b, c} is compact in the topology of uniform convergence on

compact subsets of @\{a, b, c}.
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Proposition I1.5. Let ¢, : C— @, n e N be a sequence of K,,-quasiconformal maps fizing
three distinct points a,b,c € C. Suppose that K,, — 1 as n — oo, then the sequence (yy,)

converges to ida uniformly on compact subsets of @\{a, b, c}.

Proof. Let us consider an arbitrary subsequence (¢y, ) of (¢,,). Theorem I1.4 implies that from
(¢n,,), we can extract a further subsequence converging to a quasiconformal limit ¢: C — C
uniformly on compact subsets of ((Aj\{a, b, c}. Moreover, from the same theorem, it is evident
that K(¢) equals 1. Theorem II.3 implies that ¢ is holomorphic. Since it also fixes three
distinct points of (@, it coincides with idz.

As the above argument applies to any arbitrary subsequence of (¢, ), we conclude that

(pn) converges uniformly on compact subsets of C\{a, b, ¢} to ida. O

11.1.3: The Speiser class S
Fix oriented surfaces X and Y, and let f € Cpp(X,Y). Given a point y € Y,

e y is a regular value for f if there exists a neighborhood V of y such that for every

connected component U of f~1(V), f|U is a homeomorphism onto V;

e y is a singular value for f otherwise.

we denote by S the set of singular values of f. It is important to observe that every
y € Sy, the map f is branched at y. By definition of regular values, it is clear that the map
FIXNS7H(Sy): X\f1(Sy) — Y\S; is a covering.

Let X =Y =R? and f € Cpu(X,Y). If S} is finite, the map f is said to be of finite type.
The set of topologically holomorphic maps on R? that are of finite type is called the Speiser
class, and denoted S. It is known that maps in class S have stable conformal type (see | ],
[ I, [ , pp3-4]). In other words, for all f € S, the set f*(Apu.(R?)) < A(R?) is
fully contained in either A4 (R?) or Ap,,(R?). Also note that if f is of finite degree, then f
belongs to class S and also has stable parabolic type.

For the rest of Section II.1, we assume X =Y = R? and that f € S. In this case we have

a classification of singular values; for every y € Sy, at least one the following is true:

e y is a critical value for f; in other words, there exists a point x € f~!(y) where f is not

locally injective;

e y is an asymptotic value; or equivalently, there exists an arc : [0,00) — X that leaves

every compact set of X as ¢t — oo, and satisfies lim; ., f(7(t)) = .

Analogous to | , Propostion 2.3] and proven in a similar way, we have the following

isotopy lifting property applicable to maps in S.
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Proposition I1.6. Let ]?: R? — R? be a topologically holomorphic map in class S, with
woo f = fouy for some @y, o € Homeo™ (R?).

Let A = R? be a finite set containing Sy, and p; € Homeo™ (R?) be isotopic rel. A to ¢q.
Then pi o f = fo Y1 for some 1P, € Homeo™ (R?) isotopic to vy rel. f~1(A).

I1.1.4: Properties of topologically holomorphic maps on R?

For the next two propositions, assume that f has stable parabolic type.

Proposition I1.7. Let V < R? be a bounded simply connected domain, and U be a connected
component of f~1(V).

1. If V.nSy = {y}, then U is simply connected, and exactly one of the following statements

18 true:

(a) there exist orientation-preserving homeomorphisms ¢: U — D and ¢: V — D and
an integer d € N such that ¥ (y) = 0 and v o (f|U) o p~1(2) = 2¢ for all z € D.
In particular, U\ f~(y) is an annulus and f|(U\f1(y)): U\f1(y) = V\{y} is a
covering map of degree d. Additionally, if OV n Sy = &, then U is bounded;

(b) there exist orientation-preserving homeomorphisms ¢: U — D and ¢: V — H
such that Y(y) = 0 and v o (f|U) o o™ 1(2) = exp(z) for all z € H. In particular,
U is unbounded, and the map flU: U — V\{y} is a universal covering.

2. Else if V.n Sy = &, then U is simply connected and f|U: U — V is an orientation-
preserving homeomorphism. Additionally, if 0V n Sy = &, then U is bounded.

Proof. When f is an entire function, the same statement can be found, for example, in | ,
Theorem 5.10, 5.11].

For the general case, let h : R?> — C be an orientation-preserving homeomorphism,
and Ay be the standard complex structure on C. Then f*h*A, is a flat structure. Let
h (R?, Ay) — C be a biholomorphism. Then the map g = ho fo hlis entire, and the
proposition follows easily.

m

Proposition I1.8. Let V' be an unbounded simply connected domain, and U be a connected
component of f~H(V). If V. n Sy = &, then U is an unbounded simply connected domain,
and f|\U: U — V is an orientation-preserving homeomorphism. If V.= R*\W, where W is
a compact simply connected set containing Sy, then U is unbounded, and exactly one of the

following s true:
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1. if f 1s a topological polynomial of degree d, then there exist orientation-preserving
homeomorphisms o: U — D* and 1: V — D* such that 1 o (f|U) o o~ 1(2) = 2% for
all z € D*. In particular, U is an annulus, R*\U is compact, and flU: U — V is a

covering map of degree d;

2. if f is transcendental, then there exist orientation-preserving homeomorphisms p: U —
D* and v: V — H such that ¥ o (f|V) oo ') (2) = exp(z) for all z € H. In particular,

fIU: U =V is a universal covering map.

Proof. The proof is similar to that of Proposition I1.7. m

I1.1.5: Postsingular finiteness
Fix a map f € Cp(R?).

Definition I1.9. The map f is said to be postsingularly finite (PSF) if its postsingular set,
defined as

Pr=J sy

n=0

is finite. If all singular values are critical values, then a PSF map is also said to be postcritically
finite (PCF).

It is immediate from this definition that postsingularly finite maps are contained in class

S.

Definition I1.10. The map f is said to be a Thurston map if it is postsingularly finite and
has stable parabolic type.

We use the notation f: (R?, A) © for a Thurston map f with a marked finite set A, with
f(A) € A and Py < A. If no information about A is given, or no marked set is specified, we
assume that A = P;. Some natural examples of Thurston maps are PCF polynomials and

PSF entire functions.

I1.1.6: Combinatorial equivalence of Thurston maps

Definition II.11. We say that two Thurston maps f: (R% A) © and f: (R%, B) © are
combinatorially equivalent, and write f ~comp ]?, if there exist homeomorphisms ¢, ¢ €
Homeo™ (R?) such that ¢(A) = ¢ (A) = B, ¢ and v are isotopic rel. A, and po f = fou.
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Definition I1.12. A Thurston map f: (R?, A) O is said to be realized if it is combinatorially

equivalent to a PSF entire map g. If f is not realized, we say that it is obstructed.

Definition II.13. Two Thurston maps f;: (R? A) © and fy: (R? A) © are called isotopic
(rel. A) if there exists ¢ € Homeog (R?, A) such that f; = fy 0 ¢.

We recall from Appendix A that for an oriented topological surface X, we take Homeo™ (X, A)
to be the set of orientation-preserving homeomorphisms that fix the set A pointwise (this
is different from the usual notation in the literature), and Homeog (X, A) is the subset of
maps in Homeo™ (X, A) that are isotopic to idy rel. A. The following proposition classifies
topologically holomorphic maps with a unique singular value, as well as Thurston maps with

a unique postsingular value.

Proposition I1.14. Suppose that f: R?> — R? is a topologically holomorphic map such
that |Sy| = 1. Then f = ¢t o go, for some orientation-preserving homeomorphisms
0, R? — C and a unique g € {z — 2%d € Nxp} U {z — exp(2)}.

If f: (R* A) © is a Thurston map with |A| = 1, then f is combinatorially equivalent to

2+ 2% for some degree d = 2. In particular, A consists of a unique fized critical point of f.

Proof. The first part essentially follows from Proposition IL.8.

Suppose now that f: (R* A) © is a Thurston map with |A| = 1. Thus, f has a fixed
singular value, so it cannot be of the form ¢! o expo v for any orientation-preserving
homeomorphisms ¢: R? — C and 1: R? — C. Therefore, po foy~1(z) = 24 for all z€ C
and d = deg(f), where A = {¢(0)} = {¢(0)}. In particular, ¢ and ¢ are isotopic rel. A, and

f is combinatorially equivalent to z — z¢. O]
The dynamics of a Thurston map on its marked set can also be represented visually.

Definition I1.15. Let f: (R? A) ©O be a Thurston map with some marked set A. The
marked portrait (rel. A) of f is a weighted directed abstract graph Py 4 such that the vertex
set of Py 4 equals A, and for each vertex v € A there exists a unique directed edge from v to
f(v) with weight deg(f,v). Additionally, among all vertices of P; 4, we label the ones that
are singular values of f.

If A= Py, then, for simplicity, we denote by P, the marked portrait rel. Py of f and call
it the postsingular portrait of f.

Let f: (R%,A) © and f: (R?, B) © be Thurston maps. We say that the postsingular
portraits Py and P 7 are dynamically isomorphic if there exists a bijective map ¢p: A — B
such that

o o(Sy) =S5,
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(a) G1(z) = wcos(z)/2. (b) Ga(2) = vVIn2(1 — exp(2?)).

Figure 2.1: Examples of postsingular portraits

e ¢ is an isomorphism between the weighted directed abstract graphs P; and P 7 In
other words, there exists an edge e, , of P; joining v with v if and only if there exists an

edge €y p(v) of ﬂ)f joining ¢(u) with ¢(v). The weights of e, , and €,(y),,(w) coincide.

If two Thurston maps f: (R%, A) © and f: (R?, B) © have dynamically isomorphic
postsingular portraits, then it is clear that f|A and f |B are conjugate dynamical systems.
Combinatorial equivalence of f and f is a sufficient condition for them to have dynamically

isomorphic portraits.

Example I1.16. Given below are two postsingularly finite entire maps that we will use as

prototypical examples throughout this thesis.

1. The map G;(z) = mcos(z)/2 has no asymptotic values and two critical values +m/2,
with Pg, = {0, —7/2,7/2};

2. The map G5(2) = VIn2(1 — exp(2?)) has a unique critical value 0 and a unique
asymptotic value vIn 2, with Pg, = {0, —vIn2,+/In 2}.

Figure 2.1 illustrates Pg, and Pg,. Singular and non-singular vertices of the corresponding

graphs are labeled by solid and hollow squares, respectively.

I1.2: Conditions for holomorphic realizability

Proposition I1.14 tells us that every Thurston map with |Ps| = 1 is realized. The core tenet
of Thurston’s theory is that a Thurston map f with |Pf| > 2 is realized if and only if its
Thurston pullback operator oy which acts on the Teichmiiller space T(S?, Py u {o0}) has a

fixed point. We describe this operator and its properties in this section.
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I1.2.1: Teichmiiller spaces modelled on a punctured sphere
Let B < S? be a finite set with |B| > 3.

Definition I1.17. The Teichmiiller space of S* with the marked set B (or Teichmiiller space
modelled on S*\B) is defined as

T(S? B) := {plp : S* — C is an orientation-preserving homeomorphism},/ ~

where ¢ ~ v if there exists a Mobius transformation M such that ¢ is isotopic rel. B to
M o). Given 7 € T(S?, B), for any ¢ € 7, we will write 7 = [p].

If B= A u {00} for some finite set A = R?, we note that for every 7 € T(S?, B), there
exists ¢ € 7 so that p(o0) = oo, and if ¢ € 7 also satisfies 1)(0) = o0, then there exists an

affine transformation M such that M o ¢ and v are isotopic rel. A.

The space T(S?, B) is known to have a natural structure of a complex (| B| —3)-dimensional
manifold ([ , Theorem 6.5.1]) that is contractible. The Teichmiiller metric on T(S?, B)
is defined as

d(11,72) := igf log K (1))

where the infimum is taken over all quasiconformal homeomorphisms ) : C — C such that
for some 1 € 71 and ¥y € Ty, @y is isotopic to ¥ o s rel. B.

It is known that the Teichmiiller metric is complete, and T(S?, A U {o0}) with this metric
is a path metric space in the sense of | , Definition 1.7], (for a proof, see | , Section
11.8] and | , Sections 1.8bis and 1.8bis+]). By the metric version of Hopf-Rinow theorem
([ , page 8]), every bounded closed set of T(S?* A U {o0}) is compact. For more details
about T(S?, A U {0}), see | | and | ].

We also describe a group action on T(S?, B).

Definition I1.18. The mapping class group MCG(S?, B) is the group of orientation preserving
homeomorphisms ¢ : (S?, B) — (S?, B) where ¢(B) = B, with ¢ and v equivalent if ¢ is
isotopic to ¢ rel. B. The group law is given by function composition. We let (h) denote
the equivalence class of h in MCG(S?, B). The subgroup of homeomorphisms that fix B
pointwise is called the pure mapping class group, denoted PMCG(S?, B).

The topology of uniform convergence on compact subsets sets of S*\ B on the space of
homeomorphisms in Homeo™ (S?) that fix the set B also induces a topology on MCG(S?, B).
With this topology, MCG(S?, B) is known to be a discrete group.

We can also look at the group MCG™(S?, B) of all homeomorphisms ¢ € Homeo™ (S?) u
Homeo ™ (S?) such that ¢(B) = B, modulo isotopy rel. B. Here, Homeo™ (S?) represents

19



the group of orientation-resversing homeomorphisms of S?. Note that if (1)) = {(¢) in
MCG™(S?, B), then ¢ and ¢ are either both orientation-preserving, or both orientation-

reversing. From this we get the following sequence of maps which is short exact:
1 — MCG(S? B) — MCG*(S* B) — Z/27Z — 1

Here the map MCG™*(S?, B) — Z/27Z sends each class of homeomorphisms to 0 if they are
orientation-preserving, and to 1 if they are orientation-reversing.

Given a group GG and an element g € G, the group of inner automorphisms Inn(G) of G is
the collection {T, € Aut(G) : g € G}, where T, is the automorphism h — ghg™'. It is easy to
see that for any T, as above and H € Aut(G), HoT,0 H ' = Hpyy. In other words, Inn(G)

is a normal subgroup of Aut(G).

Definition I1.19. Given a group G, the outer automorphism group of G, denoted Out(G),
is defined as the quotient Aut(G)/Inn(G).

Given ¢ € Homeo™ (S?) U Homeo™ (S?) with ¢(B) = B, let p be a path from ¢ to ¢(t).
Consider the map ¢, , : m (S?\B,t) — m1(S*\B, t) given by [v] — [p-¢(v) -p]. For a different
choice ¢ of path from ¢ to ¢(t), we see that ., = T3 © ps,. Furthermore, if we choose a
different representative 1 isotopic to ¢ rel. A, then for some choice of path ¢ from t to ¥(t),
we have 1, , = px,. S0 we can define @, as the equivalence class of ., in Out(m(S?\B, t)),
and we get a homomorphism ® : MCG*(S?, B) — Out(m(S?\B, 1)) defined as (©) > .

The following result, known as the Dehn-Neilson-Baer theorem, is proved in | |:
Theorem I1.20 (| , Theorem 8.8]). ® is a homeomorphism.

The group PMCG(S?, B) acts on T(S?, B) as (h) - [¢] = [¢ o h™!]. Fricke’s Theorem
states that this action is properly discontinouous (see | , Chapter 12] for a proof). The
quotient T(S?, B)/ PMCG(S?, B) is a complex manifold of dimension |B| — 3, and is called

the moduli space of S* with the marked set B. It can be alternatively described as follows:

Definition I1.21. The moduli space
M(S*, B) = {¢l¢: B — C}/ ~
where ¢ ~ ) if o = M o 1) for some Mobius map M € Aut(@).

We denote by [[¢]] the equivalence class of ¢ in M(S?, B).

The map T(S?, B) — M(S?, B) defined as [¢] — [[¢]] is a universal covering, and the
fiber over [[¢]] is PMCG(S?, B) - [¢]. For more details and a proof sketch, see |
Chapter 12].

Y
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11.2.2: Thurston pullback

The notion of the Thurston pullback map is classical for rational Thurston maps (e.g., | ,
Definition 10.6.1]), but is less well-known in the transcendental setting (see for example
[ | for the case of exponential Thurston maps).

Any orientation-preserving homeomorphism ¢ : R? — C can be extended to a homeo-
morphism from S? to C by setting ¢(00) = co. With this in mind, for any finite set A < R?
with |A| > 2, the element [p] € T(S?, A U {o0}) is well-defined.

Proposition 11.22. Let f: (R?, A) ©© be a Thurston map such that |A| =2 and ¢: R* — C
be an orientation-preserving homeomorphism. Then there exists an orientation-preserving
homeomorphism ¢: R* — C such that g, := po foyp™': C — C is an entire holomorphic

map. In other words, the following diagram commutes

(R?, A) — (C,¥(A))

o

|
(R?, 4) —— (C,p(A4))

The map 1 is unique up to post-composition with an affine map. Different choices of ¢ that
represent the same point in T(S? A U {o0}) yield maps 1 that represent the same point in
T(S% A U {0}).

In other words, we have a well-defined map o;: T(S*, AU {o0}) — T(S? A U {o0}) such
that o¢([¢]) =[], called the Thurston pullback map associated with f. As ¢ ranges across
all maps representing a single point in T(S?*, A U {o0}), the function g, is uniquely defined up

to pre- and post-composition with affine maps.

Proof. The existence of a homeomorphism v follows from Proposition I1.2, the Uniformization
Theorem and the fact that f has stable parabolic type. It is also clear that v is unique up to
post-composition with an affine map and that post-composing ¢ with an affine map does not
affect .

Due to Proposition I1.6, changing ¢ by isotopy rel. A does not change [¢)]. Thus, changing
¢ within its equivalence class in T(S?, Au{co}) does not affect [¢], showing that o introduced
as above is well-defined. These arguments also show that g, is uniquely defined up to pre-

and post-composition with affine maps. O

The operator oy is a holomorphic map with respect to the natural complex structure

on T(S?, A u {0}) (for a proof, see, for instance, | , Section 1.3]). Moreover, it is
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well-behaved with respect to the Teichmiiller metric, as the next two propositions suggest.

Proposition I1.23. Let B < S? be a finite set with |B| > 3. Ewvery holomorphic map
H : T(S* B) — T(S? B) is 1-Lipschitz in the Teichmiiller metric; in other words, for all
7,7 € T(S?, B), we have dv(H (1), H(T)) < dr(7,7).

Proof. This result follows directly from | , Corollary 6.10.7]. m
Proposition 11.24. Let f: (R?, A) ©O be a Thurston map. Then,

1. o4 1s 1-Lipschitz with respect to the Teichmiller metric;

2. if f is transcendental, then oy is locally uniformly contracting; in other words, for any

compact set K = T(S?* A U {0}) there exists e > 0 such that
dr(of(7),04(7)) < (1 — ex)dn(7,7)

for every 7,7 € K ;

3. if f is polynomaial, then 0332 1s locally uniformly contracting.

Proof. The first item is clear by Proposition 11.23. The second item follows from | ,
Section 3.2]. The last item is proved in | , Corollary 10.7.8]. O

Remark 11.25. If Thurston maps f: (R?, A) © and Iz (R?, B) ©O are combinatorially equiva-
lent, then o;: T(S? Au{w0}) — T(S? Au{w}) and o T(R?, Bu{w}) — T(R? Bu {wx})
are conjugate by a biholomorphism. In the special case where A = B and f is isotopic rel. A
to f, we have o5 = 0.

We now state the main theorem of Thurston theory. This result follows from Definition
I1.11 and Proposition I1.22 (also cf. | , Theorem 10.6.4] and | , Theorem 3.1]).

Theorem I1.26. A Thurston map f: (R?, A) © is realized if and only if the Thurston
pullback map op: T(S*, AU {0}) — T(S?, A U {0}) has a fized point T € T(S*, A U {o0}).

Proof. Suppose that f is realized by a postsingularly finite entire map ¢: (C, B) ©>. Then
by Definition I1.11, there exist orientation-preserving homeomorphisms ¢, 1): R? — C such
that p(A) = ¥(A) = B, ¢ and 9 are isotopic rel. A, and g o f = go. Clearly, 7 = [¢] =
[¢] € T(S?, A U {0}) is a fixed point of o;.

Now suppose that 7 = [¢] € T(S? A U {o0}) is a fixed point of o;. Let ¢: R? — C be an
orientation-preserving homeomorphism so that g, = ¢ o fo¢ ™! is entire. Since [p] = [¢], by
post-composing 1 with an affine map we can assume that ¢|A = 1| A, which in turn implies
that ¢ and ¢ are isotopic rel. A. Thus, g,: (C,¢(A)) O is a postsingularly finite entire map
Thurston equivalent to f. O
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Remark 11.27. Let f : (R* A) © be a Thurston map. If |A] = 1, T(S?, A U {0}) is not
well-defined; however, recall from Proposition 11.14 that f is realized by z — 2¢ for some
degree d > 2.

If |[A| = 2, since T(S?, A U {0}) consists of one point, Theorem I1.26 immediately implies
that f is realized.

Finally, Proposition I1.24 and Theorem I1.26 lead to the following result called Thurston’s
rigidity (this result is similar to | , Corollary 10.7.8] in classical Thurston theory).
Proposition I1.28. Let f: (R?, A) ©O be a Thurston map. Then

1. oy can have at most one fized point;

2. 4f g1: (C, A1) O and go: (C, Ay) O are postsingularly finite entire maps Thurston

equivalent to f, then g and go are conjugate by an affine map.

Proposition 11.29. If f : (R? A) © and g : (R?, A) ©© are Thurston maps that are isotopic

rel. A, then the operators oy and o, coincide.

Proof. There exists a map ¢ € Homeog (R?, A) such that g = f o ¢. Then for any 7 = [¢] €
T(S?, A U {w©}), if 0,(7) = 7, then there exists a representative ¥ € 7 such that @Z(oo) = o0,
and gy 1= Yogoy~!:C — C is entire. Also note that ¢ 0 gy = go~l = fo (900121\_1). By
Proposition I1.6, since poth~! is isotopic to ¢! rel. A, there exists a map ¢; € Homeo™ (R2, A)
isotopic to 1 rel. A such that ¢;'ogy, = fo ¢~1. In other words, of(t) =[] = [¥] =7.
O

This finishes the summary of basic properties of Thurston maps visited by this thesis. We

will now move on to known results concerning our special case study described in Section I.3.3.

I1.3: Postsingularly finite maps in complex dynamics

This section reviews the properties of two prominent families of PSF maps: unicritical

polynomials and exponentials. For the foundational theory of holomorphic dynamics, see

[ | and | ].

11.3.1: The dynamics of unicritical PCF polynomials

Definition 11.30. Given a polynomial f : C— @, the filled Julia set Ky of f is the set of
points z € C such that the orbit z, f(z), f°2(2),- -+ is bounded.
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For any monic polynomial f with deg f > 2, it is known that there exists a neighborhood
U, of co contained in @\Kf and a conformal map ¢;: Uy — @\ﬁ such that (p(z2))def =
@ws o f(z). This conformal map is called the Bottcher chart, and it is unique up to post-
multiplication by an (n — 1)th root of unity. If K is connected (or equivalently, all the
critical points of f are in Ky), then we can take U,, = @\Kf. In this case, we may define
dynamical rays in the plane of f by setting R;(0) = go;l({r exp(2mif) : r > 1}), for every
0eR/Z. If lim,_,+ gp}l(r exp(2mif) exists, we say that Ry(6) lands; this limits belongs to
0Kjy.

A polynomial is said to be unicritical if it has exactly one critical point on the plane. By
[ ], it is known that any unicritical polynomial is affine conjugate to a polynomial of
the form f,, .(2) = 2" + ¢ for some c € C. It is known that K7, . is connected if and only if
Oe Ky, ..

Operations on angles

All angles in this thesis are taken to be elements of R/Z. Given distinct angles «, 3, the
complement of these angles in R/Z consists of two connected components or arcs. The length
of the shorter arc is denoted dgr/z(c, ). We take the linear order on R/Z induced by that on
[0,1). The map u, : R/Z © is defined as p,(z) = nz, and we let O, (0) = {n/710: j > 1}.
Every rational angle is pre-periodic under pu, with pre-period ¢ > 0 and eventual period

k =1 (we will often drop the word ‘eventual’).

Itineraries and kneading data

Given 0 € R/Z, for j = 0,1,....,n — 1, we define the jth static sector with respect to 6
as the interval (%, MTJrl) < R/Z, and denote it T;;'#*(¢). Note that [ J;_, ! T344(0) is the
complement of the set p,'(0) in R/Z.

Now suppose 0 € T;;#(0). For j = 0,1,...,n — 1, we define the jth dynamic sector with
respect to 0 to be T41,(0), and denote it Tgf’j"(ﬁ). Dynamic sectors are well-defined if and
only if 0 ¢ ., *(0).

For any angle ¢ € R/Z, the itinerary of ¢ with respect to 6, denoted 3, 4(t), is the sequence

vivprs.... € 40,1, ..., n, N where

j ol e TE(0)
N 1t€Un 18Tdyn

An itinerary is called =—periodic if it is periodic under the shift map vis1314.... — Vov3Y4....

with period k, and the =’s occur exactly at indices k, 2k, 3k, etc. For an angle 6, the itinerary
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Figure 2.2: Some PCF parameters in My marked by a ‘x’ symbol, along with their portraits

Yn0(0) is called the kneading sequence of §. We note that kneading sequences of rational

angles are always periodic or *—periodic.

Example I1.31. When n = 2, the angle 1 has kneading sequence 00+, while the angle

2% = WZ—U has kneading sequence 00010.

11.3.2: Parameter spaces of unicritical polynomials
Unicritical non-escaping loci

The set of ¢ € C for which the orbit of 0 under f, . is bounded is called the non-escaping
locus of the polynomials {f, ., c € C}, and is commonly known as the Multibrot set of degree
n. We denote this set by M,,. We recall some known facts about M,, here. Proofs can be
found in [Hub16, Chapters 9, 10|, and [ENS16].

e M, is connected and compact, and the map ®, : C\M,, — C\D given by ®,(c) =
©n.c(c), where ¢, . is the Bottcher chart of f,, ., is a conformal isomorphism. This was
proven first for n = 2 by Douady and Hubbard in [DH&2], and their proof generalizes
to higher degrees.

Given 0 € R/Z, the parameter ray at angle 6, denoted R, (), is the preimage under &,
of the set {re*™® : 1 < r < o}. Landing of parameter rays is defined analogously. If
0 € Q/Z, then it is known that R, () lands.
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e Given any hyperbolic component U < M,, (for a definition, see [ , Chapter 3] or
[ , Chapter 9]), the multiplier map py : U — D is a ramified covering of degree
(n — 1) branched over 0. The unique critical point ¢y of py is called the center of U,
and fg4., has a super-attracting cycle of exact period k. For ce U, f, . has a unique
attracting cycle of exact period k. py extends to a continuous map oU — 0D, and

the fiber p;'(1) consists of (n — 1) parabolic parameters ci, cg, ..., c,—1 on U,

Of these, there exists a unique parameter, say c;, which is the landing point of exactly
two rays: R, (0) and R, ('), where 0,0 are periodic under p,, with exact period k. This
point is called the root of U, and the angles 6,6 are said to form a companion pair.
The points ¢y, - - -, ¢,—1 are called the co-roots of U and each ¢; is the landing point of
exactly one ray R, (0;), where 6; has exact period k under p,. In the dynamical plane
of fn.c, the dynamic rays at angles ¢',6,0,,--- ,6,_; all land on the Fatou component
Uy containing ¢y, and 6,6’ land at a unique point zy € 0Uy, called its root. The dynamic

rays at angles 6,0’ separate ¢y from the other points in the postcritical set.

e Let U be a hyperbolic component of M,,, with center ¢y. Suppose the parameter rays
R.(0), R,(0") with 6§ < ¢ land at the root of U. Then R,(0) u R,(#") split M,\U
into two components. The component not containing 0 is called the wake of U, and
denoted W(U) (we will also refer to this as the wake ¢y). Furthermore, suppose
0, <0y <--- <6, 5 are the angles that land at the co-roots of U. Then the subsets
of W(U) bound by a pair of rays of the form (R, (0);, R,,(6;4+1)), (Rn(0), Rn(61)) or
(R, (0,-2), R,(0")) are called sub-wakes of U.

e If 0 € Q/Z is k—periodic under p,, R,(#) lands on the root or co-root of a hyperbolic
component of period k. If # is pre-periodic under p,, with pre-period ¢ > 1 and eventual
period k, then R,(#) lands at a Misiurewicz parameter ¢ whose critical value has

pre-period ¢ and period dividing k.
e We call § € Q/Z an angular coordinate for c € M,, if

1. ¢ is Misiurewicz, and R,(f) lands on ¢, or

2. ¢ is critically periodic, and R, (#) lands on the root or a co-root of the hyperbolic

component containing c.

Given a PCF parameter ¢, we let €, (c) denote its set of angular coordinates. Letting
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271
n—1

w denote the complex number exp(=%), it can be shown that

wM,, = M,
1
n—1

Vee M, ,Q,(we) =Q,(c) +

o If f, . is postsingularly finite, its filled Julia set is locally connected, so the inverse
Bottcher chart gp;}c : @\ﬁ extends to a continuous surjective map from S' = dD to
0Ky, . . Let v denote this boundary map; it is called the Carathéodory loop of f, .
Choose any 0 € Q,(c). For all angles ¢, € R/Z, it is known that v(¢t) = ~(t') if and
only if ¥, 4(¢) = X, 0(t).

The quotients A,

For all ce C, f, . is affine conjugate to f, .., where w = exp(ffil). Moreover, for ¢ # 0, f,.
is affine conjugate to p,(z) = A(1 + )", where A = nc"~!, and p, , is affine conjugate to
P if and only if A = p.

We define A,, as the image of M,,\{0} under the map ¢ — nc"'. Equivalently, A, is the
set of A € C* such that p, » has connected filled Julia set.

2 n

"=1 we refer to the parameters c,we, w?c, ...,w

Given A = nc ~2¢ as the monic representa-
tives for A, and denote this set M, (A). We call 8 an angular coordinate for A if 6 € Q,,(c) for

some ¢ € M,,(\). The set of angular coordinates is denoted O,,()\).

We shall denote by P, the set of PCF parameters A for which p,, ) is postsingularly finite.
This consists of all Misiurewicz parameters, and all critically periodic parameters with period
> 2.

11.3.3: Dynamics of postsingularly finite exponential maps

The exponential family is simplest among all families of transcendental maps, since for any
exponential function f, the set Sy contains only one point. This section covers some basic
properties of exponential maps, with a focus on postsingularly finite maps.

For A € C*, let px(z) = Aexp(z). We note that S,, = {0}, and that p,(0) = A. The set
of A € C* for which the py—orbit of 0 is bounded is called the non-escaping locus of the
exponential family {p)|A € C*}, denoted A. Any X ¢ A is called an escaping parameter.
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Figure 2.3: The non-escaping locus A of the exponential family {py : A € C*}; here the white
region represents C\A

We note that for each A\, the map p, is affine conjugate to an exponential map of the form
z — exp(z) + ¢, with ¢ unique upto translation by 27min for some n € Z. We could also look
at the non-escaping locus in the family {z — exp(z) + ¢|c € C}, which forms a natural analog
to M,,; however, it is preferable to work in the p) normalization since we can then use the
fact that lim, ., A(1 + 2)" = Aexp(z2).

Similar to unicritical polynomials, for A € A, the structure of the set of points {z € C :
lim,, . pY*(2) = oo}, called the escaping set of py, is well-understood on a topological level.
We list some of its properties in this section. For a more complete description, see [SZ034],
[S703Db], [Rem06], and [Rem10] .

The escaping set also helps play a vital role in classifying postsingularly finite exponential
maps; in fact, the authors of [LL5V08] carry out this classification and develop a theory of

spiders akin to that of polynomials.

Dynamic and parameter hairs

Just as angles in R/Z correspond to dynamical rays, which are subsets of @\K ¢ for a
polynomial f, in the exponential regime, certain subsets of the escaping set, called hairs, can

be labelled by sequences of integers called external addresses. We formalize this theory below
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(for more details, see | 1.
Given A € C*, choose ¢ = In A such that Imc € [—m, 7). For j € Z, define

Usg:ljt()\) ={z:(2j—1)mr—Imec<Imz < (2§ + 1)m + Imc}

Note that every connected component of p; " (C\R<) is of the form U%(X) for some j, and
that the map px|UZ%(A) : UZ%(A) — C\Rg is a conformal isomorphism for each j € Z.
The collection {U5/%" ()} ez is a partition of the plane, and is called the static partition with

respect to A.

Definition I1.32. We call a sequence s € Z" an external address. Let p be the left shift
map on ZN. For any z € C with py"(z) ¢ R for all n, the external address of z is the
SeqUence 18y« - Sy - -+ with p3" ) (2) € Usiet (X) for all m € N. For any external address s
and integer 7, the external address rs is the sequence rsysy - - .

Let < denote the standard lexicographic order on ZY: s < t if at the first index m where
Sm 7 tm, we have s, < t,,. Additionally, let << denote the cylindrical order: s << t if one

of the following is true:

® s <, or

<0<

|H~

As for angles, for every j € Z, we let T3'%(s) denote the interval (js, (j + 1)s) = {u € Z" :
js <wu < (j+1)s)}; we call this a static sector with respect to s.

An address s is said to be pre-periodic if its orbit under p in ZN is finite; it is periodic if
this orbit is cyclic (we will often take ‘pre-periodic’ to mean strictly pre-periodic). If s is not
periodic with period 1, then there exists a unique j € Z such that s € T5'%(s). In this case,

we define, for m € Z, the dynamic sector with respect to s as Te/m(s) = Tt . (s).

Remark 11.33. There is a direct analogy between external addresses and angles in R/Z that
correspond to rays for a degree n polynomial : every angle in R/Z has an n—adic expansion,
and can therefore be viewed as an element of {0,1,--- ,n — 1}N. Furthermore, rational angles

can be thought of as pre-periodic sequences in {0,1,--- ,n — 1},

Definition I1.34. Let s, t € Z". The itinerary of ¢ with respect to s, denoted X4(t), is a

sequence VyVolg - - - Uy, - - - Where

() e TS (s)

Vm =

+  p°m=(t) = js for some j € Z
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Definition I1.35. A sequence s € Z" is bounded if there exists a constant C' > 0 such that
|s,| < C for all n.

Let F(t) = ¢! — 1. An address s is said to be ezponentially bounded if there exist constants
A =1, x>0 such that |s,| < A|F°"V(2)| for all n > 1.

Fix XA € C*. The following theorems illustrate the behaviour of escaping points in the

dynamic plane of py.
Theorem I11.36 (] , Theorem 2.3]). If A € A, then for every bounded s there is a unique
injective and continuous curve v, : (0,00) — C of external address s satisfying

lim Rev,(t) = +©

t—0o0

which has the following properties: it consists of escaping points such that

PA(7s(t)) = 7s(pa(t)) VE >0
V() =t — ¢ + 2misy + ry(t) ¥t >0

with |rs(t)] < 2e (| K| + C), where C € R depends only on a bound for s.

If the singular orbit does escape, then the statement is still true for every bounded address
s for which there is non =1 and to > 0 such that 0 = ,.n(5)(to).

For those exceptional s, there is an injective curve ;s : (t;,oo) — C with the same
properties as before, where t; > 0 is the largest number which has an n # 1 such that
Fr(ty) = to and 0 = yyon(s) (o).

The curve ~; is called the dynamic ray (or hair) at external address s.
For A\ € C*, let arg(\) be the argument of A\ that in the interval [—m, 7). On the
dynamical plane of any p,, a point z in the escaping set has external address s if and only if

"V (2) e Ustet () for every m e N.

Theorem I1.37 (| , Theorem 2.6]). For every pre-periodic external address s starting
with the entry 0, there exists a postsingularly finite exponential map z — \exp(z) such that
the dynamic ray at external address s lands at the singular value 0. Every postsingularly
finite exponential map is associated in this way to a positive finite number of pre-periodic

external addresses starting with 0.
As in the polynomial case, we have a notion of parameter rays to the exponential family.

Theorem I1.38 (] , Theorem 1.1]). The set of parameters A € C* for which pS"(0) — o

consists of uncountably many disjoint curves in C. More precisely, every path-connected
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component of this set is an injective curve v : (0,00) — C or v : [0,00) — C with

limt_m ’Y(t) = 00.

Every path connected component as in the above theorem above is referred to as a
parameter ray. We say that a parameter ray v as above lands if lim; o+ (t) exists. Parameter
rays are also defined in | | for the exponential family {z — exp(z + k), x € C}.

Let P denote the collection of A € C* such that p, is postsingularly finite.

Theorem I1.39 (] , Theorem 3.4]). For every postsingularly finite exponential map py
and every pre-periodic external address s with s; = 0, the dynamic ray at address s lands at

the singular value if and only if the parameter ray at address s lands at .

Theorem I1.40 (] , Corollary 3.5]). Every parameter ray at a strictly pre-periodic
external address s lands at a postsingularly finite exponential map, and every pre-periodic
exponential map is the landing point of a finite positive number of parameter rays at strictly

pre-periodic external addresses.

We let ©(A) denote the set of external addresses s such that the parameter ray with
address s lands at A (note that for any such s, we have s; = 0).

When exponential maps are normalized as exp(z) + ¢, dynamic rays for these maps and
parameter rays in the c—plane are analogously defined. We note that if ¢ = In A and the
dynamic ray at address s = $;5s..... lands at ¢ in the dynamic plane of z — exp(z) + ¢, then

the dynamic ray at address 0(sy — s1)(s3 — $1)(S4 — S1).... lands at 0 in the dynamic plane of

Dx.

I1.4: Combinatorial theory

11.4.1: Combinatorics of unicritical PCF polynomials

Postsingularly finite polynomials admit several combinatorial descriptions: in terms of spiders,
hubbard trees and kneading sequences. In this section we give a brief overview of these tools
for unicritical polynomials. These tools have been used to completely classify postsingularly
finite polynomials.

For the rest of Section 11.4.1, fix a degree n > 2.

Orbit portraits

Given any repelling cycle {z, ..., 2.} of a polynomial p, the orbit portrait associated with this
cycle is the collection {A;, As, ..., A}, where A; is the set of angles § € R/Z such that the

dynamic ray at angle 6 in the plane of p lands at z;.
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Definition I1.41. A collection A = {A;, As, ..., A} is called a formal degree n orbit portrait
if

1. Each A; is a non-empty finite subset of Q/Z.
2. p, maps each A; bijectively onto A;,; and preserves the cyclic order of the angles.
3. Each A, is contained in some arc of length less than 1/n in R/Z.

4. Fach a € U]_,A; is periodic under u, and all such a’s have a common period rp for

some p > 1.

5. For every m, let Ap,; = Ay + n+r1 For all pairs (m,j) # (m’, j’), Am; and A, ; are

unlinked.

Given any formal portrait A = {A;, Ay, ..., A, }, there exists j € {1,2,...,7} and distinct
angles «, f € A; such that dgi(«, §) is uniquely minimal among all arc lengths dg: (¢, ')
where o/ and [’ are distinct angles in some A;.. The pair («, 8) is called the characteristic
angle pair of A. Moreover, the portrait A can be reconstructed from («, §), and we call A
the degree n orbit portrait generated by (a, f3).

[ , Theorem 2.12] states that given a formal degree—n portrait A = {A4,..., A}
and p as in point (4) above, there exists a PCF polynomial of the form f, .(z) = 2" + ¢ such
that

1. fn. is critically periodic with period rp, and

2. A is the orbit portrait associated with the cycle (21, 2o, ..., ) of f, ., where, for each

j€{1,2,...,r}, the point z; is the root of the Fatou component containing fﬁfg_l)(c).

The authors of | | carry out a combinatorial classification of critically pre-periodic
polynomials of a given degree, in terms of angles landing on the orbit of the critical values.
The following lemma sheds light on the relationship between characteristic angle pairs; while
the result below was proved by Lavaurs for degree n = 2, it generalizes naturally to higher

degrees.

Lemma I1.42 (Lavaurs’ Lemma; | ). Let Py = (01,60,) and Py = (02, 6),) be companion
angle pairs with the same period k, and Uy, Uy be the hyperbolic components defined by Py
and Py . If 01 < 0y < 0, < Oy, then there exists a companion pair Rs = (03, 05) with period
< k such that such that

0 <03 <0y <0y <0; <6

In other words, Rz separates Ry from Rs.
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Internal addresses

Definition I1.43. Let ¢ be a critically periodic PCF parameter in M,, with period k.

If ¢ # 0, let Ry be the parameter ray pair of lowest period in M,, that separates ¢ from 0
(by Lemma I1.42, there is exactly one ray pair whose period is lowest is among all ray pairs
that separate 0 and c¢). Let s; be the period of R;. For n > 2, inductively define R, to be
the ray pair of lowest period that separates R, _; from ¢, and let s; be the period of R,. This
sequence ends after finitely many (say r) steps, with the last entry s, = k. The internal

address of ¢ (and its hyperbolic component) is given by the sequence
So=1+— 88 H- s =k

Example I1.44. For the quadratic rabbit parameter ¢ ~ —0.122561 + 0.7448627, we have

Ry = (%,2), and s; = 3. The full internal address is in fact 1 — 3.

It is proved in | | showed that kneading sequences and internal addresses are equivalent.

Given any sequence *—periodic kneading sequence v in degree n, consider the function

py: NU {0} — N U {0}
inf{n > k: v, #vn} k+#

pu(k) =
0 k = o0

For any periodic PCF parameter ¢ in M,, with kneading sequence v, the internal address of
¢ can be computed as the sequence 1 — p, (1) — p;’f(l) +— -+, upto the entry before co.
Note that the internal address of ¢ can be used to determine if ¢ is primitive or a satellite:

¢ is primitive if and only if s,_; does not divide s,.

Generalised spiders

Definition I1.45. Given n € Z=, a degree n generalised spider is a tuple (S, t) where t € R?

and S < S? is an undirected planar graph satisfying the following properties:

1. The vertex set of S is {t,0} U {a1,as,- - ,a,.}, where the a; are not necessarily distinct

from each other, but are all distinct from ¢ and co.

2. For each i€ {1,2,--- ,r}, there is a unique edge given by a Jordan arc joining oo and

Qa;.
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3. The other edges are given by finitely many Jordan arcs 7,12, -+ , 1, joining co and ¢

which are pairwise disjoint.

Spiders are so named because of the resemblence with the eponymous insect perched on S?
with the head placed at co. We will call each edge of S a ‘leg’. We will always assume that

the n;’s are labelled so that 7,12, - n, are in counterclockwise order at oo.

Definition I1.46. Given n,n’ € Zs, let (S,t) and (S’,t') be two generalised spiders, and
W < S and W' < S’ be connected subgraphs. The graphs W and W' are said to be similar
if they satisfy the following properties:

e They have the same number of edges, t € W if and only if ¢’ € W', and if t € W, then
the local degree of W at t is equal to the local degree of W' at .

e There exists a relabelling of the y—type edges in W and W' such that for any three
legs, say 7;,7; and n; in W that are in counterclockwise order at oo, the corresponding

legs 7;,7; and 7, in W’ are in counterclockwise order at oo.

Remark 11.47. We will often describe S and S’ with a fixed labellings of their edges; if
subgraphs W and W’ are similar with respect to the given labelling on S and S’, we say that

W and W’ are congruent.

Definition I1.48. Given a generalised spider (S,t) as above, a spider map on (S,t) is a
continuous map f : S — S that takes vertices to vertices and edges to edges, and satisfies
the properties below:

There exists a relabelling of the edges set as {71,72, - ,7} (and the corresponding

vertices a;), such that f additionally satisfies the following properties:
1. f(0) =00 and f(t) = ag;
2. f maps n; homeomorphically to v, for all j € {1,2,--- ,n};

3. for j = 1,2,--- ,r — 1, f maps 7;, homeomorphically to 7;;:, and maps v, home-
omorphically to 4,1 for some ¢, or else maps ~, homeomorphically to n; for some
i

4. for each j e {1,2,---,r}, the map f preserves the circular order of all legs contained

between 7; t0 1;41( mod r)-

The above points imply that f has critical points ¢ and oo, and that the orbit of each critical
point under f is finite. Condition (3) above also implies that S*\ f(S) is an open topological
disk.
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A spider map f : S — S as in the above definition can be extended in the way outlined
in the following remark (Remark I1.49) to a polynomial Thurston map. Recall that in
Appendix A, we explore graphs embedded in R?. We can similarly think of graphs embedded
on the sphere S?; this includes graphs that contain the point at infinity.

Remark 11.49. Suppose G and G’ are graphs embedded on S? such that U = S*\G and
U’ = S?\( are open topological disks. Let f be a homeomorphism from G to G'; we show a
way to extend f to a homeomorphism of S2.

There exist homeomorphisms ¢ : D — U and ¢ : D — U’ such that ¢ extends to a
branched cover of degree 2 from JD to GG, and v extends to a branched cover of degree 2
from dD to G’ (this becomes clear when we think of S*\G as cutting the plane along G the
boundary of the new region contains two copies of G).

Then there exists a homeomorphism h of JD such that the following diagram commutes:

oD —" s oD

b

a1

Using Proposition A.5, extend h to D, and define, for all z € U, f(z) = 1 o ~'. This extends
f as a homeomorphism of S%. For different choices of ¢, 1), we get different extensions of f;
however, by Proposition A.5, any two such extensions are isotopic rel GG. This process is also

known as the Alexander trick.

By following the construction in Remark I1.49 on every connected component of S*\S,
we extend any spider map f : S — S to S?. Since there are n such connected components,
and the closure of each component maps onto S?, we see that this newly defined map f has

degree n. By restricting it to R?, we get a polynomial Thurston map.

Proposition I1.50. Given two maps f : S — S and g : S" — S, where (S,t) and (S',t')

have the same degree, if there exists a homeomorphism h : S — S’ such that
1. h(w) =00 and h(t) =t/,
2. h preserves the circular order of legs at oo,
3. h(Pf) = P,, and (g|S") o h = ho (f|S),

then the extended Thurston maps f, g on R? are Thurston equivalent.

Proof. Since h preserves the circular order of legs, by using the Alexander trick on each

component of S*\S, the map h can be extended to a homeomorphism from S? to S?; note
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that each connected component of S?\S maps under 2 homeomorphically onto a connected
component of S*\S’”. Let D be an open connected component of S*\S’. On D, let § = h~ 1o foh.
Since g agrees with g on 0D, it is isotopic to g relative to dD. We can similarly define § on
every connected component of S?\\S’ to get a map § on R? such that joh = ho f, with §
isotopic to g rel. P. O]

Proposition I1.51. Given two spider maps f : S — S and g : " — S, where (S,t) and
(S',t") have the same degree, assume that their edge sets are labelled so that f and g satisfy
conditions (1)-(4) in Definition 11.48.

If S and S" are congruent, then f and g extended to R® are Thurston equivalent.

Proof. Let h be a homeomorphism that maps o to oo, ¢ to ¢/, ; to 7, for all i € {1,2,--- ,r}
and n; to n; for all j € {1,2,---n}. Tt is clear that h preserves the circular order of legs at
0. Moreover, h can be defined so that ho f|S = (g|S’) o h. Therefore the statement follows
from Proposition 11.50. O]

Standard spiders for unicritical polynomials

Fix n € Z=5 and X\ € P,,.

A spider for p, \ is an invariant graph in its dynamical plane, from which we can recover
several of its dynamical properties. While a comprehensive theory for spiders is described
in [ , Chapter 10], in this section, we restrict our approach to generalised spiders on
the sphere S? that can be used to construct a topological model (i.e., a Thurston map) that

is combinatorially equivalent to p, » . The construction here generalizes that presented in
[ ] and | , Chapter 10] for n = 2.

Definition I1.52. Let 6 € ©,,()\).

e If § is pre-periodic under pu,, the standard degree n spider of 6 is defined as

S,(0) = U{r exp(2min’~'0) : r € [1, 0]}

j>1

e Else if 6 is periodic under pu, with period k, the standard spider §n(9) is the union of
the above set and {r exp(2rin*=10) : r € [0, 1]}.

e The extended degree n spider S¢(6) := S, (6) U U’j:&{r exp(@) :r e [0,00]}.

In the sense of Definition I1.45, we note that (S¢*(6),0) is a generalized spider.
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240 240
~ forms a Levy cycle cycle v has been contracted to a point

(a) The standard spider §2< 17 ) The curve  (b) The quotient spider 5’2( 17 ) The Levy

Figure 2.4: Spiders in degree 2

Figure 2.4a shows an example of a standard degree 2 spider. Note that there exists a
natural map .7?”,9 ; §fft(9) — §n(9) that simulates the map p,, on R/Z:

p
oo r = o0

~ , exp(2mif) r=0
Fro(rexp(2mit)) = <
rexp(2mint) nt # 0

\ (r +1)exp(2mif) nt =10

For 6 periodic under p, with period k, the definition of ]?mg is the same as above, but
we additionally let F, o(r exp(2min*=20)) = (r — 1) exp(2min*~10) for all » > 1. With this
definition, it is clear that O is periodic under F,, g.

The only critical points of F,, g are 0, 00, each with local degree n. By the Alexander trick,
we can extend F, ¢ to a n-sheeted branched self-cover of S?. As shown in | | and | :

Chapter 10], if 8 is an angular coordinate for A,

e if 0 is periodic, F,, ¢ is Thurston equivalent to py, »;

e if 0 is pre-periodic, F, ¢ is realized if and only if the eventual period of ¢ under p,
is equal to the eventual period of A under p, . If this equality holds, then F,y is

Thurston equivalent to p;, ».

Suppose that 6 has pre-period ¢ > 1 and period k£ > 1 under pu,, and k is strictly larger

than the eventual period &' of A under p,, . Then for each m > ¢, the points of the form

37



mEk ) m+2K ) etc, all have the same itinerary with respect

exp(2min™0), exp(2min ,exp(2min
to 0. By drawing loops around all points that share an itinerary, we obtain a Levy cycle C
for F, 9. Moreover, this is the only Levy cycle upto homotopy relative to the postsingular set
of Frp.

In this case, we form a new topological polynomial by contracting each curve in C to a
point. More precisely, form a quotient surface of S? by shrinking each region in R? bounded by
some v € C' to a point (we always assume 0 is mapped to 0 in this quotient construction). This
gives rise to quotient graphs S,,0 and S¢*(0) of the standard and extended spiders respectively.
The pair (S5%(0),0) is a generalized degree n spider. While this quotient construction is
dependent on C, we will assume that we have made a choice of C for every 6 € Q/Z (it is
also easy to see that the quotient spiders for different choices of C' are congruent).

Given the above construction, .7?”,9 descends to a map F, g : S&(0) — S,,(0), which in
turn can be extended to a topological polynomial F,, () : S* — S? using the Alexander trick,
unique upto isotopy rel SE¥(#). This extension is Thurston equivalent to p,, .

When 6 is known, we let z; denote the equivalence class of exp(27if) in S, (), and let
x; = Fofgfl)(xl) for all j € Zs,.

n

11.4.2: Combinatorics of postsingularly finite exponentials
Spiders

Given a strictly pre-periodic external address s, we recall the construction of the spider
graph S (s) in | , Section 5.1] here, with some slight modifications. Let ¢ and k be the
pre-period and period of s respectively under the left-shift map p : ZY — ZN.

First, we extend C to a bigger space C*** = C U {€_, €.}, and declare, for every r € R, the
sets {€_o} U {Re(z) < r} and {€,0} U {Re(z) > r} to be open. We can think of €, and
€_o as points at +00 and —o0 respectively. With this topology, it is clear that the space C*
is Hausdorff.

Now let €; = 0. For every m € {2,3,--- ,{+ k}, define points €,, € C so that Re(e,,) = 0, and

L. Im(€,) € ((2sm — 1), (28, + 1)7);
2. for m # m’, Im&,, < Im &,y if p°™(s) < p™ (s), and &, = &y if p°™(s) = p°™ (s).

The second condition implies that if m > ¢ + k, we can think of the point €,, as €,,_,. For
every m € {1,2,--- ¢ + k}, also define ~,, as the closure of the horizontal ray {Re(z) >
0,Im(z) = Imé,,} in C** (this is in fact equal to {Re(z) = 0,Im(z) = Imé,,} U {€40}).
Further, for each r € Z, let p,, be the closure of the horizontal line {Im(z) = (2r — 1)} in
Ce* (this is simply {Im(z) = (2r — )7} U {€100, -0 })-
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p1 €6

€5="~9,

€8

4

Po

Po

Figure 2.5: The standard spider S (s) and the quotient S (s) corresponding to the external

address s = 000(—1)0010

The standard exponential spider and its corresponding extended spider of s are respectively

defined as follows:

R l+k
S(s) = | m
m=1
§1(s) = 8s) o U
reZ
We mark the points in {€,, € o} U{€1, €2, -+ , ik} as vertices of the spiders above (note that

€ o} ¢ S (s)). Also observe that Cm\goo (s) is a topological surface that is homeomorphic
to an open topological disk. We will often call an edge in either of the graphs above a ‘leg’.

As for polynomials, we define a ‘spider map’ ngoé : §ggt(§) — S, (s) as follows:

.
0 Z =€_xn

o~ €+o0 2= Crao

Re(z) + €mt1 Im(z) = &, for some m € {1,2,--- ¢ + k}

Lexp(Re(z)) +e z€p, for some reZ

We note that ﬁooé satisfies the following properties:

e Gy s, and has two branch points, €4 and é;.

39



o foreveryme {1,2,--- (+k—1}, C?ooé(ém) = €my1 and (jooé maps ,, homeomorphically

to Tm4+1
e for every r € Z, ngoé maps p, homeomorphically to ;.

Next, we construct a transcendental Thurston map from QAOOé.

For each r € Z, consider the connected component U, of C#*\§%(s) bounded by p, and
pro1. It is evident that the closure of U, in C®* is homeomorphic to a closed topological disk.

By this discussion and the definition of .7?0%7 it is clear that we can use the Alexander
trick to extend ngoé to a continuous map from U, U {€45,6_5} to C* that maps U,
homeomorphically to Cea’t\goo(g). Doing this for every r € Z, Q\mé can be extended to a
continuous map from C** to C¢,

From this point, we will restrict this map to C. We see that .7?0% : C — C is open
and has discrete fibers. Furthermore, ]?ooé is locally injective at z € C if and only if z ¢ p,
for any r € Z. If z ¢ uU,p,, then by definition, QAOOé is locally an orientation-preserving
homeomorphism at z. Following from this, we also see that ngoé: C — C\{é,} is a universal
covering, and that €; is an asymptotic value for G,.

To summarize, this discussion shows that Q\wé is topologically holomorphic. It is also
postsingularly finite: the postsingular set is {€1,€s,- - , €1 }. We may regard it as a map
from R? to R? by forgetting the standard complex structure. We use the following proposition

to show that éooé : R? — R? is of stable parabolic type, and is therefore a Thurston map.

Proposition I1.53. Let f : R* — R*\{a} be a universal cover for some a € R?>. Then f has
stable parabolic type.

Proof. Let A € Ag(R?). Then by the Uniformization Theorem, there exists a biholomor-
phism ¢ from the Riemann surface (R?,.A) to the complex plane C. For a unique X € {C, D},
there exists a biholomorphism v : (R?, f*A) — X. Then the map po foy ™ : X — C would

be a universal cover, and this is possible only if X = C. ]

We can also identify if the map ngo,é is realized holomorphically. We recall that the

parameter ray at address s lands at a unique PSF parameter A € A. | | showed that

e if the eventual period of the orbit of A is k, then (jooé is Thurston equivalent to py;

e if the eventual period of the orbit of A is &’ < k, then QAOOé has a Levy cycle C'; it can be

described as a multicurve {;, 72, , Y} where, for each m € {1,2,--- |k}, the loop
Y SUrrounds {€ym; €epmikts 5 Cormik}-

However, by collapsing this Levy cycle we may form a map Thurston equivalent

equivalent to py. Formally, form a quotient space of C*** by collapsing each region in C
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bounded by a loop in C' to a point; this induces quotient graphs S¢(s) and Sy (s) of
the extended and standard exponential spiders respectively. Then éw,§y§§gt (s) descends

to a map G, : S (s) — Sy(s). In other words, the following diagram commutes:

Sert(s) == S(s)

|7
Gs

SEH(s) — Sk(s)

3

Here 7 is the quotient map that describes collapsing C'.

By a similar discussion as for gA,oo,ﬁ, this map G, can be extended to a Thurston map

defined on R?, and moreover, this extension is combinatorially equivalent to pj.

Note that the quotient construction in the point above can be done for any s, and so the
graph Sy (s) is well-defined for all pre-periodic addresses s. We define the legs of Sy (s) to be
the images of the legs of Soe (s), and we will call them by the same names (i.e., p, or 7).
When s is evident, we let e,, denote the class of €, in S, (s), and let A; = {eq, ..., €41} We
note that |A,| > 2 for all adresses s.

Consider a line § = {y = b} disjoint from all the legs of §§g3t(§) N C, where b is chosen
so that b < Im@,, if and only if 0 < p°™ V(s), and B is bound between p, and p,,;
if 70 < 8 < (r +1)0. The line 8 represents the lexicographic position of the external
address 0: note that u°™Y(s) << p°™=V(s) if and only if, starting from 7, and moving
counterclockwise in a neighborhood of co, we can reach ~,, without intersecting 5. This gives
a circular order of the legs of 5%(s) (and correspondingly, on S<*(s)), which can be shown

to be independent of b.

Poset structure on P,, and P

We can use parameter rays to define partial orders on the spaces P,, and P.

Fix n € Noy. In P, we say that A < A if there exist angles 6,6, € O,(A\) and fe @n(X)
such that 0; < 6 < 6, and the parameter rays R, (6,) and R, () land at the same point of
M,,.

Similarly, in P, we say that A <1 A if there exist external addresses S1,89 € Op(A) and
se @oo(X) such that s; < 5§ < s, and the parameter hairs corresponding to s; and s, land

together in A.
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CHAPTER 111

Convergence of Thurston Maps

In this chapter, we introduce various notions of convergence for sequences of Thurston maps.
We provide two different points of view (see Definitions I11.2 and I11.7), and show that they
are equivalent.

Afterward, we give a construction that allows us to approximate, in an appropriate sense,
an arbitrary transcendental Thurston map by a sequence of polynomial Thurston maps
(Proposition IV.15). We use these results to establish Main Theorem I.4. For the notation
for topological objects used here, we refer to Appendix A.1.

II1.1: Combinatorial convergence

Our first criterion is combinatorial convergence. This is a condition on how a sequence of
Thurston maps f, : (R?, A) lift loops in R?\ A, which we regard as elements of 7 (R*\ A). We
will want to quantify curves that eventually lift to loops under f,, (i.e., loops that belong to
(fn)«m1 (R?\ [, 1(A)) for all n sufficiently large). So we first introduce a notion of convergence
for subgroups of 71 (R*\A).

More generally, we use the following notion of convergence, in the sense of Chabauty

([ |), of sequences of subgroups of a given group.

Definition III.1. Let G be a group endowed with the discrete topology and (H,) be a
sequence of its subgroups. We say that the sequence (H,,) converges to a subgroup H of G
and write lim H, = H if for every g € G, there exists N = N(g) € N so that if g € H, then
for every nn;wN, ge H,; and if g¢ H, then g ¢ H, for every n > N.

Definition II1.2. Let f,: (R? A) ©,n € N be a sequence of Thurston maps. We say that
the sequence (f,) converges combinatorially to a Thurston map f: (R?, A) © if there exist
points t € R*\A be f~1(t), b, € f,7*(t) and paths p, = R*\A Vn € N such that

o fulba) = f(b) =t VneN;
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e p,(0) =band p,(1) = b, VneN;
e for every [v] € m(R*\A, t), the following hold:

1. The lifts v7(fn, b) eventually have the same closing behavior as y{(f,b) (Defini-
tion A.2). Equivalently,

T (Fu)emu (REVS (4),50) = fum (RO (A), ),

in the sense of Definition III.1.

2. If y € fom (R®\ f71(A),b), then for all n sufficiently large, the closed curves y1(f,b)
and p, - (Y1 (fn, b)) - p,;' are homotopic rel A.

I11.2: Independence from isotopy

Proposition II1.3. Let A < R? be a finite set. Two Thurston maps f, f: (R% A) © are
isotopic rel. A if and only if there exist points t € R*\A, be f~(t) and be f’l(t) where the

following conditions hold:

1. fomi(RA\f7H(A),0) = fum (RP\f1(A),D);

2. there exists a path p = R*\ A with p(0) = b and p(1) = b such that for ally € fom (RA\ f~1(A),b),
the loop v1(f,b) is homotopic to p - WT(]?, g) - P.

Before we prove this proposition, we formulate a simple observation.

Lemma II1.4. Suppose A = R? is finite with |A| = 2, and ¢ is an orientation-preserving
homeomorphism such that p(b) =t for some b,t € R*\A. Then ¢ is isotopic rel. A to idgs if
and only if there exists a path p = R*\ A joining b with t such that every loop v = R*\ A based
at b is homotopic rel. A top-(po~y)-p.

Proof. (= ): Suppose that ¢ is isotopic rel. A to idge via an isotopy (@s)ser, where g = idgz
and ¢; = ¢. Define p : T — R*\ A as p(s) = p4(b) for each s € I. Then it is evident that
for any loop v < R?\A based at b and p - (p o y) - p are homotopic rel. A via a homotopy
Hg = ps- (s 07) - Ds, where py is a subpath of p joining b with () for every s € I.

( <= ): Now suppose that there exists a path p = R?\ A joining b with ¢ such that every
loop v < R?\ A based at b is homotopic rel. A to p-(po~y) p < R?\A. Taking 7 to be a loop
separating a unique point a € A from the other points of A and using continuity of , we can
show that ¢(a) = a for each a € A. The rest follows from Theorem I1.20. O
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Proof of Proposition I11.3. ( =) : First suppose that f = fop for some ¢ € Homeog (R?, A)
and choose a point b € R\ f~1(A). Let b = ¢(b) and t = f(b). Given any loop v € m (R*\ A4, ¢),
we note that fyT(f, g) = @©(v1(f,b)). This immediately proves item (1). For r € I, let ¢, €
Homeo™ (R?, A) be such that o = idg2 and ¢; = . Define continuous maps p, : I — R?\A,
relas s+ @g(b). Then p,.(0) = b and p.(1) = ¢, (b). Letting p = py, it is evident that for
all v e m (R?\ f~1(A ) b), the map r — p, - o.(vT(f,b)) - Pr is a homotopy (rel. A) between
Y1(f.b) and p-y1(f,) - B

( <) : Now conversely, suppose the conditions (1) and (2) above are satisfied for some
b,g,t € R?\A and path p as above. Due to condition (1), there exists a homeomorphism
¢ R2\ f~1(A) — R2\ f~1(A) such that the following diagram commutes:

(R?\f~1(A),0) —2— (R?\f~(A),)

b

(R?\A, t)

Since f7!(A) is discrete, we can extend ¢ to a homeomorphism from R? to R% Let
v € fim(R*\A,b). By the diagram above, we have p(v) = f(v) 1 (]?, B) Due to con-
dition (2), we know that v = f(v) T (f,b) ~a p- ¢(7y) - P. In particular, for any a € A, we can
take v above to be a loop separating a from every other point of A. The discussion above
shows that ¢(a) = a for all a € A, and by Theorem II.20.

O

Proposition ITL.5. Let f,: (R?, A) ©O,n € N be a sequence of Thurston maps that converges
combinatorially to a Thurston map f: (R?, A) ©. If J?n,f: (R%, A) © are Thurston maps
such that fn is isotopic to f, rel. A for allm € N and ]? 1s isotopic to f rel. A, then (fn)

converges combinatorially to f

Proof. Let ¢, € Homeo' (R?, A) be such that f, = froop, forallne Nand f = foo.
By assumption, there exist points t € R®\A, be f~1(t), b, € f,,(t) and paths p, = R*\ A for
all n € N such that all the conditions of Definition II1.2 are satisfied. Let Bn = ©n(bn), and
b= ©(b). Then, by Proposition II1.3,

~

Tim, (Fu)om (RAS,(4),B0) = Tim () om (RO S (4), Bn)

= fomi(RA\f71(A),b)
= (f)am (RA\f7Y(A),D).

Also by Proposition I11.3, there exist paths p,,p : I — R?\A with p,(0) = b, and p,(1) = b
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for all n € N, and a path p with p(0) = b and p(1) = b such that for every n € N,

Yy € (fu)smi(RA\ £ (A), b,), the 100p YT(fusbn) ~a B - 41 (s bu) - D for all me N,

¥y € fom(R2\f71(A),b), the loop Y1(f,0) ~a B -1(f,D) - .

~

Then for every v € (f).m (R*\ f- 1(A),b), for all sufficiently large n € N,

wﬁ@) ~a DA b) P
(pn fYT(fm n>p_n)ﬁ

’B)I ’U)I

—

This shows that (fn) converges combinatorially to f : O

Convergence to a polynomial Thurston map

If the limiting map f of a combinatorially convergent sequence (f,,) is of finite degree, then

we show that the maps f,, form a constant approximation upto isotopy.

Proposition II1.6. Let f,: (R? A) ©,n € N be a sequence of Thurston maps converging
combinatorially to a Thurston map f: (R? A) ©. If f is a topological polynomial, then for
all sufficiently large n, f, is isotopic to f rel. A.

Proof. Choose points t € R*\A, be f~1(t), b, € f,7(t) and paths p, = R?\A that satisfy the
conditions of Definition II1.2. Since f is a topological polynomial, f~1(A) is a finite set, and
the group fym (R*\f71(A),b) is finitely generated. Let T' = {v1,79, ..., %} be a generating
set for fom (R?\f~1(A), D).

Since the maps f,, converge to f combinatorially, for sufficiently large n, the set I" is a subset
of (fu)sm (R?\f;1(A), by), and thus, fum (R*\f~(A), b) is a subgroup of (f,,).m1(R*\f; ' (A), bn).
From the classical theory of covering maps, there exists a covering map ¢, : R*\ f71(A) —

R?\ f~1(A) such that the following diagram commutes:
(R2\f7H(A), b) —— (R*\f7'(A), bn)

\ |-

(R*\A, ¢)

In particular, deg(y,) and deg( f,) are bounded above by deg(f) for all n sufficiently large.
Let a < R?\A be a simple loop based at ¢ such that the unique bounded component of R\«
contains the set A. Proposition I1.8 implies that for every £ € Z, the lift o 1 (f,b) is a loop if
and only if deg(f) divides ¢. A similar statement holds for the topological polynomials f, as
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well. Thus, condition (1) implies that deg(f) = deg(f,,) for all sufficiently large n. Hence, the
covering map ¢, : R®\ f71(A4) — R\ f(A) is an orientation-preserving homeomorphism
and, therefore, it can be extended to R%. Finally, condition (2) and Lemma I11.4 imply that
©y, 1s isotopic rel. A to idge. O

I11.3: Topological convergence

Now we move on to our second notion of convergence. Throughout this section, we assume
A < R? is a finite set.

Definition IT1.7. Let f,: (R?, A) ©,n € N be a sequence of Thurston maps. We say that
(fn) converges topologically to the Thurston map f: (R?, A) © if for every compact set
D < R?, there exists N € N such that for n > N, we have f,|D = f|D.

It is easier to establish oy, — oy if the f, converge topologically to f. However, to
establish that every transcendental Thurston map f, that there exists a sequence of polynomial
Thurston maps that converge combinatorial approximations. But by showing the equivalence

of combinatorial and topological convergence upto isotopy, we sidestep this difficulty.

Proposition IIL.8. Let f,: (R?* A) ©,n € N be a sequence of Thurston maps. Then (f,,)
converges combinatorially to a Thurston map f: (R% A) © if and only if there exists a
sequence of Thurston maps fn: (R2, A) © converging topologically to f, where j,; 1s isotopic
rel. A to f, for everyn e N.

Before we prove Proposition I11.8 we need to obtain the following result of non-dynamical

nature.

Proposition II1.9. Suppose that f,: R? — R?, n € N and f: R? — R? are topologically
holomorphic maps in class S such that Sy, = Sy = A for all n € N. Let b,b, € R?* and
t € R®\A be points such that f,(b,) = f(b) =t for every n € N. Further suppose that

i (£, ) (RP\f(4).b) = fom (R2\F 7 (4).0)

Then for every bounded domain D < R? containing b, for sufficiently large n, there exists a

continuous injective map @, : D — R? such that the following diagram commutes:

(D,ba) = (R*,)

b
s
(R?,1)
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Figure 3.1: Top: the co-domain of G(2) = v/In2(exp(2?) — 1) along with its postsingular set
{a1, as, as}; Bottom: an illustration of D', where D is the shaded region bounded by the
dotted loop
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Proof. Let D be as above. Without loss of generality, we can assume that 0D n f~1(A) = &.
Choose a simple continuous curve w: [0,00) — R? such that w passes through all points of A,
w(0) € A, and tlgg) w(t) = oo.

Claim 1. Let K < R? be a bounded set and W < R? be a closed locally connected set. Then,
only finitely many connected components of R?\ f~1(T¥) intersect K.

Proof of Claim 1. Suppose there exist distinct connected components Eq, Es, ..., E,,... of
R?\ f~1(WW) intersecting K. Pick an arbitrary point z,, € E,,n K for all n € N. We may assume
without loss of generality that the sequence (z,,) converges to x € K n f~*(W). Thus, any
neighbourhood of x intersects infinitely many connected components of R?\ f~1 (W), which

leads to a contradiction since W is locally connected and f is topologically holomorphic. W

Claim 2. There exists a bounded domain D’ < R? containing D such that for every connected

component F of R?\ f~!(w), the set D' n F is connected (perhaps, empty).
Proof of Claim 2. For every a € A U {o0} we choose a set U, such that

1. U, = D(a,r,) for some r, > 0, and U,, = R*\V,,, where V, is an open ball containing
A,

2. U,nU; =g ifae Au {0} is distinct from a, and
3. every connected component of f~1(U,) is either contained in D or disjoint from it.

The last condition can be satisfied if we pick the values r, to be sufficiently small and Uy,
sufficiently far from f(D). Indeed, due to the previous claim, D intersects with finitely many
connected components of f~1(U,) for every a € AU {0}, and dD n f~1(A) = &. Thus, the
rest easily follows from Propositions I1.7 and I1.8.

Let U := U,cau(on) Ue and Wp = F\f~Y(U) for every connected component F of
R?\ f~!(w). Therefore,

(WrpuD)nF=Wgu (Dm (W U (Fﬁ*l(U))))
=Wru(DnFnfYU))
=Wru U Fn f~(U,).

acAu{}
Fnf~Y(Us)eD

By Proposition I1.8, the map f|F: F — R?\w is a homeomorphism. Thus, W is connected,
and for every a € A u {0}, F n f~1(U,) is a connected set whose boundary intersects Wp.

This discussion implies that the set (Wp U D) n F' is connected.
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Therefore, D" := DUJp.ppe o Wi is an open set such that D' N F is connected for every
connected component F of R?\ f~!(w). The set D’ is connected since Wr n D = &F if and
only if F n D = . At the same time, D’ is bounded since each Wr = F n f~1{(R?\(U v w))
is bounded by Proposition I1.7, only finitely many regions F' intersect D.

|

See Figure 3.1 for a depiction of D’ for the map G5 from Example I1.16. Due to the claims
above, there exists a positive integer m such that for all x € D'\ f~'(A), the point b can be
joined to z by a path contained in D'\ f~!(A) and intersecting f~!(w) at most m times.

Denote by P, the set of elements of 7;(R?\A,t) that can be represented by a loop
a: T — R?\A such that o' (w)| < k. Clearly, P, is finite for all k € N.

Now we construct a continuous map ¢, : D’ — R? and prove its injectivity as required.
Let D” be an open Jordan region containing D’. Since the group f,mi(D"\f"!(A),b) is
finitely generated, then by our initial assumptions in this proposition, it is a subgroup of
(fn)«mi (R2\f71(A), by,) for all n sufficiently large. Therefore, there exists a continuous map
on: D'\f71(A) — R*\f,'(A) such that f = f, o, on D"\f1(A) and p,(b) = b,. We
prove that the map ¢, is injective on D'\ f~!(A) for all n sufficiently large.

Suppose ¢, is not injective for some n, choose distinct points 1, zo € D'\ f~}(A) such
that ¢, (z1) = @n(22). We join b with z; and x, by simple paths oy : T — D'\ f~!(A) and
ag : I — D'\f7*(A) in D'\ f~*(A), respectively, so that |a;*(f~(w))|, o (f~H(w))] < m.
Let v := foay - foay By definition, v T (f,b) is not a loop; however, vy T (f,,by) is the

loop ¢, o ay - ¥, 0 ag. Thus,

(11 € G i= P 0 ((fa)em (RS (4),5) \ fur(REF71(4),0)).

Since P, o, is a finite set, if ¢, fails to be injective for infinitely many n, then there exists
[7] € m1(R*\ A, t) such that [§] € G,, for infinitely many n. This, however, is not possible
since for all n large enough, [Y] ¢ (fn)«mi(R?\f71(A), ).

Finally, since f~'(A) and f;'(A) are discrete subsets of R? we can extend ¢, to a
continuous injective map defined on D’ such that f = f, o ¢, on D’ and ¢, (b) = b, for all

sufficiently large n.
O

Proof of Proposition I11.8. If the sequence (J?n) converges topologically to f, then it does so
combinatorially with respect to t,b, (b,), (p,), where t € R?\A and b € f~1(t) are arbitrary,
b, := b and p, is a constant loop based at b for every n € N. Hence, Proposition II1.5 implies

that the sequence (f,,) converges combinatorially to f.
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Now suppose that the sequence (f,,) converges combinatorially to f with respect to some
choice of (b,),b,t and (p,). Let (D,,) be an exhaustion of R? by closed topological disks
containing A and b in their interiors for every m € N. Then for sufficiently large n let

m = m(n) be the maximal index such that

1. there exists a continuous injective map ¢, : D,, — R? such that f |Dyy = fn 0@, and
©n(b) = by;

2. for every loop v = R?\ A based at t such that [y] € fomi(D,,,\f~1(A),b), the lifted loops
Y1(f,b) and p, - YT (fn, bn) - P are homotopic rel. A.

These conditions hold for sufficiently large n because of Definition I11.2, Proposition II1.9
and the fact that f.m(D,,\f"1(A),b) is finitely generated. Moreover, it is easy to show that
m(n) converges to infinity as n tends to infinity.

Now we can extend ¢,, to an orientation-preserving homeomorphism @,, of R%. In fact, by
the Alexander trick, all such extensions of ¢, are isotopic to each other rel. D,,. Clearly, if
v < Dy\f1(A) is aloop based at b, then ¢, 07 is a f,-lift (based at b,) of fo~. In particular,
Y ~4 Pn (Pn o) Pn for every loop v « R?\A based at b. Thus, the homeomorphism @, is
isotopic rel. A to idg2 by Proposition III.3.

Now consider the sequence (ﬁ) of Thurston maps, where ]?n = f, 0@, for all n € N.
Clearly, (]?n) converges topologically to f.

O

I11.4: Convergence of Thurston pullback maps

In this section we use the theory developed in this chapter so far to establish Theorem I.4.
We assume throughout that A < R? is finite.

Proposition I11.10. Let 7,,,n € N and T be points in T(S?, A U {0}). Suppose there exist
representatives @, € T,, n € N and ¢ € T such that p(0) = w0 and ¢, () = © for alln € N,

and @, — @ uniformly on compact sets of R?. Then dr(7,,7) — 0 as n — oo.

Proof. Without loss of generality, we may assume that there exists a € A such that ¢,(a) =
p(a) for all n e N.

By the given conditions, in the moduli space M(S?, A U {o0}), we note that [[¢.]] — [[¢]]-
Therefore, there exists a sequence of homeomorphisms ¢, € Homeo™* (S?, A U {o0}) such that
dr([pn o q; '], [¢]) — 0. Equivalently, for every n € N, there exists a quasiconformal map

k, : C — C isotopic to ¢, 0 g o' rel. AU {00}, such that K(k,) — 1 as n — oo.

50



For every n € N, let M,, be the unique M&bius map satisfying M, (o) = oo, M, (b) = b, and
M, (pn © o~ 1(b)) = b for some b € p(A)\{b}. Then (M, o k,) is a sequence of quasiconformal
maps that fix the three points oo, b and B; and K (M, o k,) — 1. By Proposition I1.5,
M,, o k, — ida uniformly on compact subsets of @\{oo, b,g}. Note that M, — ida uniformly
on compact subsets of C; this implies that k,, — ida locally uniformly on compact subsets of
C\{c0,b,b}. But then we have {g,) = (o ok 0w, =(p okt opoptop,) — (ide)
in PMCG(S?, A U {o0}). Since this is a discrete group we must have (g,) = {(idg2) eventually,
thereby proving the proposition. O

Proposition II1.11. Let 7,7, € T(S?, A U {0}). Suppose there exist representatives p, € T,
and @ € T such that ¢, p, : R? — C are orientation-preserving homeomorphisms, and for
each open set D < R? with compact closure, the map (o, o @) | ¢(D) is holomorphic for

alln = Np. Then dyp(7,,7) — 0 as n — 0.

Proof. Let 1, = ¢, o ¢! for each n € N.

Without loss of generality, we may assume D is an open disk. We also assume that D is
large enough so that D(a, 1) < D for every a € A. Suppose without loss of generality that for
all n € N, there exists b € ¢(A) such that ¢, (b) = b and ¢/, (b) = 1 for some b € ¢(A). Due to
Proposition II1.10, it suffices to establish the following:

Claim 1. The sequence (1,,) converges locally uniformly on (D) to idy(py.
In order to establish the above, we first prove a preliminary statement:

Claim 2. If zy € (D) satisfies 1,(20) — 20 and ¢/, (z0) — 1, then given r > 0 such
that D(zg,r) < ¢(D), the sequence of maps (@Dn]D(zo, llﬁ)) converges locally uniformly to

idD(zo,%)-

Proof of Claim 2. Let h,(z) = M, o 1,, where M,(z) = m(z — Un(20)) + ¥n(20). Then
hn(z0) = zo and hl(z) = 1. Let r > 0 be such that D(zp,7) < (D). Then by the
Koebe 1/4-theorem, there exists N = Np € N such that D(z,%) < h,(D(z0,7)) for all
n = N. Consider the sequence (h,'|D(z, {;)). Again by the Koebe 1/4-theorem, we see
that D(z0, 1) < hy, ' (D(2,%)) for all n > Np.

Thus we get the sequence h,|D(z0,{5) : D(z0,75) — D(20,7%) satisfying h,(20) =
20, Ml (20) = 1 for all n > N. By Montel’s theorem, every subsequence of this sequence has a
subsequence that converges to id D(z0,%) locally uniformly. Therefore, h,|D(zo, f—ﬁ) —id D(20, %)
locally uniformly. Since v,, = M oh, and M, converges to id¢ locally uniformly, this proves
the claim.
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Proof of Claim 1. Let U be the set of points z € ¢(D) such that (¢,) converges locally
uniformly to idy, on some neighborhood U, of z. By Claim 1, U is an open set, and we see
that be U.

Suppose U # (D), there exists a point z € U and r > 0 such that D(Z,r) < (D). We
can also choose a point zy € U n D(Z, 5) such that 16|Z — 2| < §. Then for any § such that
162 — 29| < 6 < %, we observe that D(z, ) is contained in D but not in U. By Claim 1,
however, D(z, &) < U. [

[]

Proposition IT1.12. Let f, : (R?, A) ©, n € N be a sequence of Thurston maps that
converge combinatorially to a Thurston map [ : (R? A) . For every 7 € T(S?, A U {w0}),

dr(0,(7),05(m)) = 0.

Proof. Due to Proposition I1.29 and II1.8, we may assume without loss of generality that
the sequence (f,) converges topologically to f. Let ¢ € 7 such that ¢(0) = 0.
Then there exist maps ¢ € 0¢(7), ¥y, € 0y, (7) for n € N and entire maps g and g,,n € N

such that the following diagrams commute:

(R?, A) — (C,4(A))

J7 g

(R?, A) —— (C,p(A))

(R?, A) —2 (C,(A))

bk

(R?, A) —— (C,p(A))

By Proposition II1.12, it suffices to show that for any open set D = R? with compact closure,
the map 1), o ¢~ ¢(D) is holomorphic for all n sufficiently large.

Let D = (D). Then there exists N € N such that for all n > N, f,|D = f|D.

Fix an n > N. Let z be a point in D such that zo ¢ ¢g~*(¢(A)). Since the point
Yo := ¢ *(g(2)) ¢ A, there exists a local inverse h : V,, — R? for f in a neighborhood V,, 3y
such that zg := h(yo) = ¥ '(2) and h(V,,) < D. MAoreover7 o(fn(x0)) = o(f(x0)) = gA(zO).
Since ¢(zo) ¢ ¢(A), there exists a local inverse k, : V,, — C for g, in a neighborhood V,, of
g(zo) such that k,(g(z0)) = 2z0. Let U, be a neighborhood of zy such that ¢g(U,) < V, and
o g(Un) < V.
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Then for every z € U,

Yn o Wl(z) = (kpnowo fu)o(ho 9071 °0g)(2)
=knopo(faoh)o(p ' og)(2)
= kn 0 g(2).

The last equality is due to the fact that the point ¢! o g(z) is in V,,, and since f,, and f
coincide on D, we have f,, o h = idvyo-

The above discussion shows that t, o ¢~! is holomorphic at every point in D\g~!(¢(A)).
Since D is compact, the intersection ﬁmg_l(go(A)) is a finite set. Moreover, 1,,019~!(D) c R?
has compact closure. Therefore, 1), 0 1)~! extends to a holomorphic map on D. Since this is

true for all n > N, the proposition follows. O

Now fix a Thurston map f : (R? A) © and let f, : (R? A) ©O, n € N be a sequence of

entire Thurston maps that converge topologically to f.

Proof of Theorem I.4. We first show that (oy,) converges to o pointwise. Given 7 =
[p] € T(S*, AU ), let o4(7) = [¢] and oy, (7) = 7, = [n], where ¥, 1, ¢ : R* — C are
orientation-preserving homeomorphisms for all n € N.
Given any compact set D = R?, there exists N € N such that f,,|D = f|D for all n > N.
In particular, ¢, o ¢)~! is holomoprhic on ¢(D). By Proposition I11.12, we have
lim dr(of(7),04,(7)) = 0.

n—:oo

Next we show that the convergence o, — o is in fact locally uniform on T(S?*, Au {o0}). Let
K < T(S?, A U {0}) be a compact set. Given € > 0, cover K by open balls By, Bs, ..., By,
each of radius /3, with B; centered at u; € T(S?* A U {o0}) for each j =1,2... k.

Since (o4, ) converges to oy pointwise, for sufficiently large n, the distance dr (o, (145), o¢(145))
is bounded above by ¢/3 for each j = 1,2,..., k. Hence, for sufficiently large n and any
e K we have

dr(oy, (1), op(w) < dr(oy, (1), o5, (13) + dr(oy, (1), 05 (1) + dr(os (1), 05(1)) < e

Here j is chosen so that drp(u, ;) < €/3. We also use the fact that all o-maps above are
1-Lipschitz (see Proposition 11.24).
O

Corollary II1.13. Let f: (R?, A) © be a realized Thurston map and f,: (R* A) ©O,ne N

be a sequence of Thurston maps converging combinatorially to f. Then f, is realized for
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sufficiently large n. Moreover, letting 7, € T(S*, A U {o0}) be a unique fized point of oy, , we

have 7, — T, where T is the fixed point of oy.

Proof. If f is a polynomial Thurston map, by Remark I1.25 and Proposition II1.6, the equality
oy, = oy holds for sufficiently large n.
Now suppose that f is transcendental. Let B < T(S?, A U {o0}) be a closed ball of radius
r > 0 centered at 7, the fixed point of o;. Since B is closed and bounded, it is compact.
Proposition I1.24 implies the existence of e > 0 such that the inequality dr(o (1), of(p2)) <
(1 — ep)dr (1, p2) is satisfied for all uy, g € B. Thus, for any p € B we have the following:

(IH'4'1) dT(O-fn(:u)’ T) < dT(an (M)? O-f(:u)) + dT(O-f(N)ﬂ_) Sépt (1 - 8B)T’

where we know by Main Theorem 1.4 that €, — 0 as n — 0. In other words, oy, (B) < B
for all sufficiently large n. By Proposition 11.24, 0;}3 is uniformly contracting on B and,
therefore, by the Banach fixed point theorem, when n is large enough, the map oy, has a
fixed point 7, € B.

Lastly, similar to inequality (II1.4.1), we have

dr(Tn, 7) < dr(oy,(T0), 0p(T0)) + dr(op(1),06(7)) < ep + (1 —ep)dr(T,, T).

This shows that the sequence (7,,) converges to . O
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CHAPTER 1V
Admissible Quadruples

In this chapter, we show how to construct topologically holomorphic maps in class S from a
covering map between a pair of regular planar embedded graphs. In subsequent sections, we
will use this construction to define Thurston maps. The foundational theory of planar graphs

we use here is explored in Appendix A.2.

IV.1: Rose graphs and quadruples

Let R be a directed rose graph based at ¢t that surrounds a finite set A < R? (see Defini-
tion A.7), and suppose |A| = m. For a € A, let p, be the edge of R that surrounds A, and
let P, be the bounded face of R containing a. Also denote by P, the unique unbounded face
of R.

Let I' = R? be a 2m-regular and connected graph, and ® : I' — R be a covering map
such that ®(v) =t for all v € V(I') and ®(e) € E(R) for all e € E(I"). The graph T can be
assumed to be a directed graph with the orientation induced by the map ® (see Appendix A.2).

Let us assume that m > 2. Consider an arbitrary face F' € F(I'). We label F by P, if
O(0F) = {p.}. If no such a exists (or equivalently, the image ®(JF') spans at least two
petals of R), we label F' by P,. We denote by I'* the directed planar embedded graph
obtained by subdividing each edge of I' (see Definition A.8).

Definition IV.1. Let A,R,I',® be as above. Label the points of A as ay,as, - ,a,, such
that the edges pu,, Pays - -, Da,, are arranged in counterclockwise order around ¢. We say that
the quadruple A = (A, R, ', ®) is admissible if m = 1, or

1. every face F' of I' labeled by P, is unbounded, and

2. for each v € V(I'), the set of edges of I'* at v (both incoming and outgoing) can
be written in the counterclockwise order as e; = €g9,,,1, €2, €3, - , €9, such that the

following conditions are satisfied for each j = 1,2,...,m:
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® ey is incoming at v and ey; is outgoing at v;
o there exists I € F(I') labelled by P,; such that ey;_1, ey; € OF;
e there exists /' € F/(I') labelled by P, such that eq;, €941 € OF".

Remark TV.2. Suppose that A = (A, R,T", @) is an admissible quadruple and F' is a face of
I'. If F is not labelled by P, then clearly, 0F is a counterclockwise directed cycle if F' is
bounded, and is otherwise an infinite directed chain. If F' is labelled by P, then 0F is a
unilaterally connected graph (see Definition A.10).

IV.2: Functions on R? from quadruples

Natural examples of admissible quadruples are preimages of rose graphs under entire topologi-
cally holomorphic maps in class S. More precisely, suppose that f: R? — R? is topologically
holomorphic and rose graph R surrounds the set A, where Sy < A. Denote by A(A4, R, f)
the quadruple (A, R, f~Y(R), Pr ), where ®p ;(z) = f(x) for each z € f~1(R).

Proposition IV.3. Let f, A, and R be as above. Then A(A, R, f) is an admissible quadruple.
Moreover, if m = 2, then for each face F of f~(R) the following properties hold:

1. if F is bounded and labeled by P, for some a € A, then f(F) = P, and |F n f~1(A)] = 1.
If |V(OF)| = 1, then F does not contain any critical points of f and f|F is injective,

otherwise, F' contains a unique critical point xp with deg(f, xp) = |V (OF)|;

2. if F is unbounded and labeled by P, for some a € A, then f(F) = P,\{a} and F n
f7YA) = &. In particular, a € Sy and F is an asymptotic tract of [ over a;

3. if F is labeled by Py, then f(F) = Py and F ~ f~Y(A) = &. In particular, f restricts

to a uniwersal covering map from F to P.

Proof. First, we show that f~1(R) is connected. Consider any two distinct vertices u and
v of f7Y(R). There exists a path a: T — R?\ f~!(A) joining u and v. Note that foa is a
loop in R*\A based at ¢. Label A as ay, ..., a,, such that p,,,...,p,,, are counterclockwise
around ¢. Assuming that each p,, is parameterized by aq,: I — pg;, it follows that f o« is
homotopic to a loop v =1 - ya - -+ - rel. A, where v, € {ay,qg,...,qn, 01,0z, ...,0,}
for each ¢ € {1,2,--- ,k}. By the homotopy lifting property, the path « is homotopic rel.
F7YA) to ¥ := v7(f,u). In particular, ¥ joins v with v. Since ¥ = f~1(R), the vertices u
and v belong to the same connected component of f~!(R).

Proposition I1.8 implies that every face of f~'(R) labeled by P, is unbounded. Finally,
the regularity of f~}(R) and admissibility of A(A, R, f) follow from the fact that f is locally
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injective and orientation-preserving at every v € V(f~!(R)). Thus, the quadruple A(A, R, f)
is admissible.

The rest of the statement easily follows from Propositions I1.7 and IL.8.
O

Remark IV.4. Let A = (A,R,I', ®) be an admissible quadruple with m = |[E(R)| = 1. In
this case, I' is a counterclockwise directed cycle or an infinite directed chain. It is easy to
see that there exists a map f such that A(A, R, f) = A satisfying f = ¢ o got~! for some
orientation-preserving homeomorphisms ¢, 1: C — R?, where g(z) = 2% if d = |V(I')| < oo,
and g(z) = exp(z) if ' is infinite. In particular, using Proposition II.14, we can formulate a

statement close in spirit to Proposition IV.3 for the case m = 1.

Now assume that f: R? — R? is an arbitrary topologically holomorphic map such
that Sy < A and A(A4,R, f) = A. Since R is a deformation retract of R*\A and I is a
deformation retract of R?\ f~!(A) as Proposition V.3 suggests, for any v € V(T'), we see that
fem (R2\ f71(A),v) = &, (T,v), and

Q. (I, v) = {[P(61) - P(d2) - - -+ - P(d)] : each J; is a path parameterizing an edge of T,
and 01 - 09 - -+ - dg is a loop in T" based at v}.

Now suppose that v is a loop based at the center of the rose graph R such that v is homotopic
to v y2-- -y rel. A, where v; € {an, ag, ..., ap,, 07, @3, . . ., Gy} and «; is a parametrization
of pj for each j = 1,2,...,m. If we know ®, we can easily reconstruct y1(f,v) for any vertex
v e V(T) up to homotopy rel. f~(A).

The following result is the converse to Proposition IV.3:

Proposition IV.5. Let A = (A, R,T', ®) be an admissible quadruple. Then there exists a topo-
logically holomorphic map f: R?* — R? of finite type such that Sy < A and A(A, R, f) = A.

Proof. When |A| = 1, the desired result follows from Remark IV.4. Thus, we assume |A| > 2
and give an outline of the construction.

First, we define f on I' simply by setting f|I' := ®. Choose orientation-preserving
homeomorphisms ¢p,: D — P; and pp, : H — Py. Similarly, since each face F' of I' is simply
connected, choose an orientation-preserving homeomorphism ¢ p : X — F where X =D if F
is bounded, and X = H if F' is unbounded.

Given a face F' with label P € F(R), we define f|F so that

1. if F is bounded, then f|F := ¢p o gq0 95", where d = |V (0F)| and g4(2) = 2%
2. if F is unbounded, then f|F := ¢p oexpoyy'.
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Due to admissibility conditions and Remark IV.2, the sets of homeomorphisms {¢p} pep(r)
and {¢Yp} pe F(r) can be chosen so that the map f we construct above is continuous. Finally,
one can show that f acts locally as a power map z — 2% for some d € N, and that S; < A.
Thus, f is topologically holomorphic, has finite type, and satisfies A(A, R, f) = A.

m

Definition IV.6. Two admissible quadruples A; = (A, R1,T'1, ®;) and Ay = (A, Ro, Ty, 9)
are said to be equivalent if there exist ¢ € Homeog (R?, A) and ¢ € Homeo™ (R?, A) such that

1. ) is an isomorphism between R; and Rs;

2.  is an isomorphism between I'y and I'y;
3. Yody =DPy00.

It is easy to see that Definition IV.6 provides an equivalence relation on the set of all

admissible quadruples with a fixed marked set.

Proposition IV.7. Let A = R? be finite, and R, R be rose graphs surrounding A such that
R, isotopic to Ry rel. A. Let f1: R? — R? and fo: R? — R? be topologically holomorphic
maps such that Sg, < A and Sy, = A. Then A(A, R, f1) and A(A, R, f2) are equivalent if
and only if there exists a map 1 € Homeo™ (R?) such that fi = fo 0.

Moreover, if f1 and fo are holomorphic, and A(A, Ry, f1) and A(A, Rs, f2) are equivalent,

then the map 1 is an affine transformation.

Proof. Suppose that the admissible quadruples A(A, R4, f1) and A(A, Rs, f2) are equivalent.
Due to Proposition I1.6 we can assume that Ry = R = R and that the equivalence
between A(A, R1, f1) and A(A, Ry, f2) is provided by 1) = idgz and an orientation-preserving
homeomorphism ¢. By pre-composing f, with ¢ we can further assume ¢y = ¢ = idgz, or
equivalently, A(A, f1,R1) = A(A, f2,R2) = (A, R,T',®). Then by the previous discussions,

we have that

(fl)*7ﬁ<R2\f1_1(A)7U) = CI)*TFI(Fav) = (fQ)*Wl(RQ\fgl(A>7v)

for every v € V(I'). By the classical theory of covering maps, there exists an orientation-
preserving homeomorphism 1 : R?\ f;1(A) — R\ f; ' (A) such that f; = fo01 on R\ f1(A).
Since f{'(A) is a discrete subset of R?, we can extend 1) to R?, still satisfying f; = f; 0 4.
Conversely, let us suppose there exists 1 € Homeo™ (R?) such that f; = f, 0. By our
assumptions on Ry and R,, we can find ¢ € Homeog (R?, A) such that 1(R;) = Ra. Then
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Figure 4.1: Admissible quadruple realized by ¢;(z) = cos(z).

by Proposition IL.6, there exists ¢ € Homeo™ (R?) such that ¢ o f; = f, 0 ¢, and the rest
easily follows.
If f; and f5 are holomorphic, any homeomorphism ) satisfying f; = f5 0 is holomorphic,
and therefore affine.
O

We say that a topologically holomorphic map f: R? — R? realizes an admissible quadruple
A= (A R,T,®) or, equivalently, A defines f,if Sy = A and A(A, R, f) is equivalent to A.
In particular, Propositions IV.5 and IV.7 imply that every admissible quadruple A defines an
entire topologically holomorphic map f of finite type, which is unique up to pre-composition
by an orientation-preserving homeomorphism.

Note that an admissible quadruple A = (A, R,T",®) is a combinatorial object even
though @ is a continuous map. In fact, to define the map ® uniquely (up to a certain notion
of equivalence introduced below), it is sufficient to know the images ®(e),e € E(I') and the
orientation of the graph I' induced by ®. Indeed, suppose that ¥: I' — R is a covering
map such that U(v) =t for each vertex v € V(I'), ®(e) = ¥(e) for each edge e € E(I'), and
the orientations of I' induced by the maps ® and ¥ coincide. In this case, it is clear that
there exists a homeomorphism ¢: I' — I" isotopic rel. V(I') to idr such that ¥ = ® o .
In particular, the orientation of the graph I' and the images of its edges under the map ®
uniquely define the equivalence class of the admissible quadruple A.

The language of admissible quadruples provides a convenient way of thinking about entire
topologically holomorphic (and holomorphic) maps of finite type, which we demonstrate in

the following example.

Example IV.8. Let A = {—1,1} be the set represented by solid black squares at the top of
Figure 4.1. Denote by R, and I'y the planar embedded graphs shown at the top and bottom
of Figure 4.1, respectively. The map ®,: 'y — R; is a covering that maps each edge of I';
to the unique edge of R; of the same color. Arrows on the edges of the graphs R, and I'y
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Figure 4.2: Admissible quadruple realized by ¢»(z) = 2 exp(2?) — 1.

indicate the orientations of the corresponding graphs. It is straightforward to check that
Ay = (A, Rq,Tq,®y) is an admissible quadruple, which is realized by the map ¢;(z) = cos(z).
Thus, any entire holomorphic map realizing A; has the form cos(az + b) for some constants
a,be C with a # 0.

Figure 4.2 is analogous to Figure 4.1, and provides another example Ay = (A, Ro, Ty, ®3)
of an admissible quadruple. This quadruple can be shown to be realized by the map
g2(2) = 2exp(2?) — 1. In particular, the planar embedded graph I'; has two unbounded
faces that correspond to the asymptotic tracts of g, over wy = 1, two unbounded faces that
correspond to the asymptotic tracts of gy over oo, and the only face with the boundary

consisting of two edges, corresponding to the unique critical point of g, (see Proposition
IV.3).

Definition IV.9. Let A be an admissible quadruple. If every topologically holomorphic
map f: R? — R? realizing A is of parabolic type, then we say that A is parabolic. If every
such map f is hyperbolic, then A is called hyperbolic.

Proposition IV.7 implies that every admissible quadruple is either parabolic or hyperbolic.

Moreover, from Proposition I1.2, it follows that every parabolic admissible quadruple A with
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a marked set A defines an entire holomorphic map of finite type with Sy < A, which is unique

up to pre-composition with an affine transformation.

Definition IV.10. An admissible quadruple A = (A, R, T, ®) is called dynamically admissible
if A is parabolic, I' n A = J, and every face F' of the graph I' contains at most one point

of A if F'is bounded and no points of A, otherwise.

Proposition IV.3 implies that A(A4, R, f) is dynamically admissible if f: (R* A) © is a

Thurston map. Also, analogous to Proposition IV.5, we can establish the following statement.

Proposition IV.11. Let A = (A, R,[',®) be a dynamically admissible quadruple. Then
there exists a Thurston map f: (R?, A) O such that A(A, R, f) = A.

In a similar way we define a dynamical equivalence relation on the set of all dynamically
admissible quadruples with a fixed marked set. We say that two dynamically admissible
quadruples Ay = (A, Ry, ', ®1) and Ay = (A, Ro, 'y, Py) are dynamically equivalent if there
exist 1, ¢ € Homeog (R?, A) such that

1. 1 is an isomorphism between R, and Ra;
2.  is an isomorphism between I'; and I'y;
3. Ypod =Py0p.
Finally, the following observation provides a dynamical analog of Proposition IV.7.

Proposition IV.12. Let f;: (R* A) O and fo: (R* A) O be Thurston maps, and R, R
be rose graphs surrounding A such that Ry is isotopic rel. A to Ry. Then A(A, Ry, f1) and
A(A, R, fa) are dynamically equivalent if and only if fi and fy are isotopic rel. A.

Proof. First suppose that A(A, Ry, f1) and A(A, Ry, f2) are dynamically equivalent via
¥, o € Homeog (R?, A). As in the proof of Proposition IV.7, we can assume that Ry = Ry = R
and 1) = ¢ = idgz. The rest easily follows from Proposition III.3 and the discussion of Section
IV.1.

Conversely, suppose that there exists ¢ € Homeog (R?) such that f; = f, o 1. Choose
1 € Homeog (R?, A) with ¢)(R;) = Rs. By Proposition IL.6, there exists ¢ € Homeog (R?, A)
such that ¥o fi = fyop. It directly implies that A(A, Ry, f1) and A(A, R, f2) are dynamically

equivalent. O

Given dynamically admissible quadruple A = (A, R,T", ®), we say that a Thurston map
f: (R% A) © realizes A (or equivalently, A defines f), if A(A, R, f) is dynamically equivalent
to A. Propositions IV.11 and V.12 imply that every dynamically admissible A with a marked
set A defines a Thurston map f: (R? A) ©, unique up to isotopy rel. A.
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Figure 4.3: Dynamically admissible quadruple realized by the PSF entire map
G1(z) = mcos(z)/2, where Pg, = {a1,az2,a3} = {—7/2,0,7/2}.

Figure 4.4: Dynamically admissible quadruple realized by the PSF entire map

Ga(2) = VIn2(1 — exp(z?)), where Pg, = {a1, a2, a3} = {—vIn2,0,v/In2}.
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Example IV.13. Let G;: (C, Pg,) ©O and Gy: (C, Pg,) O be the postsingularly finite entire
maps defined in Example I1.16. The graphs in Figures 4.3 and 4.4 describe dynamically
admissible quadruples realized by G; and G respectively (compare with Figures 4.1 and
4.2 referenced in Example IV.8). The solid black squares in these figures represent the

postsingular values of G; and G, respectively.

IV.3: Construction of combinatorial approximations of polynomial
type

Proposition IV.14. Let f,: (R* A) ©O,ne N and f: (R* A) O be Thurston maps, and R
be a rose graph that surrounds A. Then the sequence (f,) converges combinatorially to f if
and only if for every finite subgraph K of f~'(R) and all sufficiently large n, there exists
a homeomorphism ¢, € Homeof (R? A) such that o, (K) is a subgraph of f,*(R) and
Prr|K =P ro prnlK.

Proof. Sufficiency easily follows from Definition I11.2, Proposition I11.5, and the discussion of

Chapter IV.1. Necessity can be obtained by applying Proposition IIL.8. O]

Proposition IV.15. Let f: (R?, A) O be an arbitrary Thurston map. Then there exists a

sequence fn: (R% A) ©,n € N of polynomial Thurston maps converging combinatorially to f.

Proof. Due to Proposition I11.14 and Remark TV.4, the case when |A| = 1 is trivial and,
therefore, we can assume that |A| > 2. Let us choose a rose graph R surrounding the set A
and consider the dynamically admissible quadruple A(A, R, f) = (A, R,I', ®). Next, we
choose an arbitrary exhaustion of I' by finite connected subgraphs K,, = (V,,, £,). We shall
construct a sequence of eventually dynamically admissible quadruples A,, = (A, R, T, ®,),
where I',, is obtained from K, by adding several new edges, and the maps ®,, and ® coincide
on K,. We describe this more precisely by defining I';, and ®,, algorithmically. For each
n € N, initialize T, as K,,, and ®,, as ®|K,. Let F be an arbitrary face of I labelled by a
bounded face P of R with the property that JF intersects K, but it is not a proper subset
of K,,.

Claim. C := 0F n K, is a directed finite chain.

Proof of Claim. First we consider the case when F' is bounded: here, 0F is a counterclockwise
directed cycle by Remark IV.2. It suffices to show that C' (or equivalently 0F\C') is connected.
Supposing the contrary, let e; and ey be two edges in disjoint components of 0F\C'. It is easy
to see that each edge e € E(I") is a boundary of exactly two faces and one of them is always

unbounded. Therefore, for i = 1,2, there exists a continuous curve L;: [0, +o0) — R? that
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Figure 4.5: Constructing the directed edge er. The diagram on the left represents the face F
and the graph K,,, and the diagram on the right demonstrates the newly added edge ep.
Black dots and colored (solid and dashed) arcs represent the vertices and directed edges of T,
respectively. The solid blue arcs are edges of K,, while the dashed ones are in I'\ K,,.

joins an interior point x; := L;(0) of e; with oo (i.e., limy_. ;o L;(t) = o0) and intersects I'
only at the point x;. Let y; and y, be vertices of C' lying in disjoint components of
OF\{int(e;),int(es)}. Any path in R? joining y; to y» has to intersect F' U {int(e;),int(ez)}
or Ly u Ly. In particular, there is no path in K, joining 1; to yo. This forms a contradiction

since K, is connected. The case when F' is unbounded is analogous. [ |

Let u and v be the endpoints of C' (it is possible that u = v). Then there exist unique
edges ey, e, € E(0F\K,) such that e, is incident to u, and e, is incident to v (again, e, and
e, might coincide). We shall construct an edge ep with endpoints at v and u (see Figure 4.5)
with ep c e, U e, U F', so that ep coincides with the edges e, and e, in small neighborhoods
of u and v, respectively. In particular, int(er) does not intersect K,. We add e to I',, and
define ®,|er so that ®,, and ® coincide on er N e, and er N e,. Then we repeat the above
procedure for all faces F' € F(I") satisfying previously listed properties.

Now consider the sequence of constructed quadruples A,, = (A, R, I, ®,,). Since (K,) is
an exhaustion of I', there exists N € N such that for each n > N, if F' € F(I") is bounded
and contains a point of A, then 0F < K,. For each n > N, it is straightforward to check
that the conditions of Definitions IV.1 and IV.10 are satisfied. In particular, A, is parabolic
since I',, is a finite graph. By Proposition IV.11, we can construct a polynomial Thurston
map f,: (R* A) © such that A(A, R, f,) = A, for each n > N. Thus, the sequence (f,)

converges combinatorially to f due to Proposition 1V.14. O]

Remark TV.16. Suppose that we are in the setting of the proof of Proposition IV.15. Let
F be a face of '), labelled by a bounded face P of R (with respect to the quadruple A,,)
for some n = N. Then there exists a unique face F’ € F(I") having the same label P (with

respect to the quadruple A) such that F' < F’. Moreover, exactly one of the following is true:

1. deg(fn|F) = deg(f.|F’). Then Proposition IV.3 implies that F' contains a (unique)
critical point z, of f, if and only if F’ contains a (unique) critical point z of f and,

moreover, deg(f, z) = deg(fn, zn)-
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Figure 4.6: Sequence of graphs that define polynomial Thurston maps converging
combinatorially to Ga: (C, Pg,) ©, where Gy(2) = vIn2(1 — exp(z?)) and
Pa, = {ar, a2, a5} = {—vIn2,0,v/n2}.

2. deg(fn|F) < deg(f,|F"). If F' contains a critical point of f,, then it is unique in F. In
this case F” is either an asymptotic tract of f or it contains a unique critical point z of

f and, moreover, deg(f, z) > deg(f,, z,)-

With this discussion and the following example, we show that dynamically admissible
quadruples provide a convenient way for constructing “combinatorial” approximations and

thinking about combinatorial convergence.

Example IV.17. Consider the postsingularly finite entire map G5 from Example 11.16, real-
izing the dynamically admissible quadruple Ag, = A(Pg,, R, G2) = (Pg,, R, T, ®) depicted
in Figure 4.4 along with a chosen point b € V(T"). Define the graph K,, < T" to be a collection
of all vertices and edges of I' accessible from b via a path in I' intersecting interiors of at
most n edges. It is clear that the sequence (K,) is an exhaustion of I' by finite connected
graphs. Starting with Ag, and (K,,) and applying the construction from the proof of Propo-
sition IV.15, we obtain a sequence of polynomial Thurston maps f,: (R? Pg,) ©,n € N
converging combinatorially to Gy: (C, Pg,) ©, with each f, defined by a dynamically ad-
missible quadruple A,, = (Pg,,R,T,,®,). Figure 4.6 illustrates the graphs I',, and the
maps ®,, for n = 1,2, 3 (from left to right). As usual, ®,: I';, — R maps each edge of T, to
the unique edge of R of the same color, and the set Pg, is represented by solid black squares.

We also recall Figure 1.2 from Chapter I as an example of a combinatorial approximation for
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Figure 4.7: Sequence of graphs that define transcendental Thurston maps converging
combinatorially to Gs: (C, Pg,) O, where G(2) = \/E(l — exp(2?)) and
Po, = {ay, az, as} = {—vIn2,0,v/n2}.

Figure 4.8: Sequence of graphs that define polynomial Thurston maps converging
combinatorially to G;: (C, Pg,) O, where G1(z) = mcos(z)/2 and
PG1 = {al, as, a3} = {O, —7T/2, 7T/2}
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the map G1(z) = §cosz from Example 11.16, with Ag, = A(Pg,,R,G1) = (Pg,, R, T, @)
given in Figure 1.1 (as well as Figure 4.3).

However, combinatorial approximations need not to be polynomial. Consider the sequence
of infinite graphs (fn) depicted in Figure 4.7. For each n, we can similarly define a map
®, : I, — R such that A, = (Pe,, R, fn,&Dn) is a dynamically admissible quadruple.
These maps &)n can be constructed so that they have only finitely many critical points and
asymptotic tracts (i.e., unbounded faces that map to a bounded face of R). In this special
case, a theorem of Nevanlinna (] ) shows that A, is parabolic (see also | , Theorem
4.1]). Then A, determines a transcendental Thurston map J?n such that the sequence (fn)
converges combinatorially to G : (C, Pg,) ©O as n tends to co.

There is also no canonical choice for a sequence of polynomial Thurston maps converging
combinatorially to a given transcendental Thurston map. For instance, the sequence of
polynomial Thurston maps illustrated in Figure 4.8 (with respect to the rose graph showed at
the top of Figure 4.3) converges combinatorially the map G;: (C, Pg,) O from Example I1.16,
which realizes dynamically admissible quadruple A¢, as in Figure 4.3. However, the property

of Remark IV.16 cannot be satisfied for these combinatorial approximations.
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CHAPTER V

Dynamical Approximations

The main goal of this chapter is to prove Theorem V.9, which is a stronger version of Theorem
[.2. To do this, we first construct combinatorial polynomial approximations, and then use
upgrade those to analytic approximations.

We will use several combinatorial and topological properties of locally uniform convergence
of sequences in §. In particular, we develop techniques of combinatorial nature for finding
the limit of a sequence of maps (f,,) in S, where |Sy, | is constant (see Theorem V.7). We
refer to Appendix A.1 for some of the notation used in this Chapter. We will be using several

properties of holomorphic covering maps, so we will start by exploring these.

V.1: Properties of holomorphic covering maps

We are mainly interested in convergence conditions for sequences of maps whose domains

vary, and in the behavior of lifts of loops under every map in a converging sequence.

Definition V.1. Let X be an oriented topological surface. Given a collection U = {U;}es of
open subsets of X, we define the kernel of U, denoted ker(U) as the set of points z € X with
an open neighborhood V' such that V' e U; for all but finitely many j € I.

Given a topological surface Y and a sequence of continuous maps g, : Dom(g,) — Rg(g,)
with Dom(g,) € X and Rg(g,) c Y for all n € N, we say that the sequence (g,) converges
locally uniformly on U < X if for every x € U, there exists a neighborhood W of x such
that W < Dom(g,) eventually, and a continuous map g : W — Y such that (g,) converges
uniformly on W to g.

The kernel of {Dom(g,)}.en is a natural space where we can hope for the sequence (g,,) to
converge. Bargmann proved that with some assumptions of regularity, the desired convergence

occurs on some connected component of ker({Dom(gy) }nen):

Proposition V.2 (| , Theorem 1]). Let g, : Dom(g,) — Reg(gn) be a sequence of

holomorphic covering maps. Suppose that (g,) converges locally uniformly in a neighborhood
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of a point z € C to a limiting function that is not locally constant at z, and X s the connected
component of ker({Dom(g,)}nen) that contains z.

Then, letting Y be the connected component of ker({Rg(gn) }nen) containing w = lim, .o gn(2),
there exists a holomorphic covering map g : X — Y such that (g,) converges to g locally

uniformly on X.

For a converging sequence of holomorphic covers, sequences consisting of certain local

inverse functions also exhibit controlled behavior, as we show below.

Proposition V.3. Let (g,) be a sequence of holomorphic coverings that converge locally
uniformly on X < C to a holomorphic covering g : X — Y. Let x be a pointin X andV Y

a bounded Jordan domain containing g(x) € V, such that V < Y,

1. Let U be the connected component of g~ (V'), and for every n € N, U,, be the conneced
component of g, ' (V) containing x. If oy, :V — U and pyap : V. — U, are the

inverses of g|U and g,,|U,, respectively, then @y, — @v. uniformly.

2. There exists a neighborhood W of x such that W < Dom(g,) and g, maps W injectively
into V' for all sufficiently large n.

For proving the above, we will use the following result of Kisaka:

Proposition V.4 (| , Theorem 1]). Let g,,n € N and g be entire maps in S such that
(gn) converges to g locally uniformly on C. If w € S,, then for some N € N and some sequence

of points wy, € Sy, n = N, we have lim,,_,o, w, = w.

Proof of Proposition V.3. We first prove item (1). Choose a bounded Jordan domain V' such
that V < V' and V' < Y. As before, we have the local inverse @y ,: V' — U’ of g at g(z),
where U’ is the connected component of g~(V’) containing z. Note that U’ is again a Jordan
domain, and U"\U is an open annulus. Let v = U’\U be an essential simple closed curve that
separates C\U’ from U. Let U” be the bounded component of C\7y. Note that U = U” and
U cu.

We claim that U, < U” for all sufficiently large n. By the injectivity of g on U’, the
Hausdorff distance d(g(v), V) is strictly greater than zero. Since (g,) converges uniformly to
g on 7y, we also have d(g,(), V) > 0 for sufficiently large n. But this implies that ynU,, = &,
and since U, is connected and contains x, we must have U, < U”.

Now suppose the sequence (¢y,.,) does not converge uniformly to ¢y,. Then there
exists a real number € > 0 such that for infinitely many n, there exists a point y,, € V' with
| ovzn(Yn) — @va(yn)| > €. Without loss of generality, we can assume that (y,,) converges to a

point y € V. Since U,, = U” eventually, the sequence (py.,(y,)) converges to a point z € U”,
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implying that |2 — ¢y . (y)| = €. Since g is injective on U”, we have ¢(2) # g(¢vr . (y)), but
Yy, evr,

at the same time,

9(2) = I gu(pven(yn)) = lim yn =y = g(ov2(y))

resulting in a contradiction. This proves item (1).

Koebe 1/4-Theorem, it follows that D(z,4) < U, and that D(z,%) < D(z, ) < U,. Clearly,

W := D(z, %) satisfies the requirements of item (2).

Let A = |oy,(g9(7))|. For n sufficiently large, we have A,

]

Lastly, we investigate the behavior of lifts of closed loops under a sequence of converging

holomorphic covers.

Proposition V.5. Let (g,) be a sequence of holomorphic coverings that converge locally
uniformly on X < C to a holomorphic covering g: X — Y. Further suppose there exist points
xo € X, yo €Y such that g,(xo) = g(xo) = yo for all n € N.

Then for any loop o < Y based at yo, we have
1. o < Rg(gn) eventually, and thus, B, = al(gn,xo) is eventually well-defined,

2. assuming that the (B, and B := aT(g,xo) are parametrized by 1 , with $5,(0) = 5(0) = xg
and g,(Bn(t)) = g(B(t)) for all n and forall t € 1, then (B,) converges to 8 uniformly

on I, and

3. for n sufficiently large, the lifts 5, and [ have the same closing behavior (refer to
Definition A.2)

Proof. We can infer from Proposition V.3 that for every y € Y, there exists an open
neighborhood V' of y in Y such that V' < Rg(g,) eventually. Thus, Y < ker({Rg(gn)}nen)-
This in turn implies that some open neighborhood of « in Y is contained in Rg(g,) eventually,
proving item (1).

To show item (2), we choose bounded Jordan domains Uy, Us, ..., Uy in X covering § and

a strictly increasing finite sequence tg := 0,tq,t9,...,tx_1,1x := 1 of points in I so that
e g|U; is injective for each j € {1,2,--- ,k};

o 3(I;) c U; for each j = 1,2,...,k, where I; = [t;_1,t;].
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Let u; := B(t;) for each j € {0,1,...,k — 1} and V; := g(U;) for each j € {1,2,--- ,k}.
Assume that n is large enough so that U; = Dom(g,) and V; < Rg(g,) for each j in the set
{1,2,--- ,k}.

We will use induction on ¢ € {0,1,--- ,k} to see that (5,) converges to 5 uniformly on
[0,%,]. The base case ¢ = 0 is obvious since 3,(0) = 5(0) = zo. Now we show that if (5,)
converges to [ uniformly on [0,%,], then it does so uniformly on [0,¢,:1]. Indeed, since
Bn(te) — B(te) = ug, due to Proposition V.3 we have vy, 5. (t,).n = ©vi,v.,n for sufficiently large
n. Thus,

Bllov1 = v, v (a|los)
6n|12+1 = (pUl,Bn(tl)m<a|If+1> = @Ul,vl,n<a’[€+1)

Item (3) follows from the two cases below:

e if §is a closed curve, by item (2), 5,(1) — g as n — co. By Proposition V.3, there
exists a neighbourhood of U of zy such that for large enough n, W < Dom(g,) and
gn|W is injective. Therefore, we must have (3,(0) = 5,(1) for sufficiently large n.

e if 5 is not a closed curve, by item (2), we have ,(1) — B(1) # zo. Thus, for all n
sufficiently large, we have xy = 5,(0) # 5,(1).

V.2: Convergence properties of entire maps in class S

We will now use the discussions in the previous section to establish conditions under which
maps in class § converge. First, however, we are interested in observing the behavior of
lifts of loops under maps in class S, all with the same number of singular values, which also

converge to a map in class S.

Proposition V.6. Let g,,n € N and g be entire maps in class S of finite type such that
1Sg.| = 9| for alln e N, and g, — g locally uniformly on C.

Let v = C\S, be a simple closed curve and 5 be a connected component of g~*(7y). Then
for every z € ¥ there exists € = (z,7v) > 0 such that for all n sufficiently large, there is a

unique connected component ¥, of g *(v) satisfying d(z,7,) < €. Moreover,

1. if deg(g|¥) is finite (i.e., 7 is a simple closed curve), then for any § > 0, the following

hold true for all n large enough:
e 7, is a simple closed curve;
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o deg(g[¥n) = deg(g]7):
b fNYn - N5(a)
2. if deg(g|y) is infinite (i.e., ¥ is an unbounded curve), then deg(g|y,) — % as n — o,

and for every bounded Jordan disk D < C and every e > 0, we have 5, "D < N.(Yn D)

for large enough n.

Proof. Since |Sy| = |S,,
of Hausdorff. Then the holomorphic coverings g,|C\g;, *(S,,) converge to the holomorphic

for all n € N, Proposition V.4 implies that S,, — S, in the sense

covering g|C\g~*(S,) locally uniformly on C\g~*(S,). The statement then follows from
Proposition V.5 applied to the maps ¢,|C\g,,* (S, )- O

We are now ready to establish equivalent conditions for convergence in class S, under

certain assumptions on the singular value sets and a normality condition.

Theorem V.7. Let g,,n € N and g be entire maps in class S, and B, > S,, and B > S, be
finite subsets of C. Further assume that |B,| = |B| for alln € N and B, — B in the sense
of Hausdorff.

Let zy,wy € C be points such that zo ¢ B u |J
n € N. Then (g,) converges locally uniformly to g if and only if the following conditions hold:

By, and g(zo0) = gn(z0) = wq for all

neN

1. lim ¢/ (20) = ¢'(20);
n—aoo
2. for any loop o = C\B based at woy, the lifts aT(gn, z0) eventually have the same closing

behavior as aT(g,x).

Proof. (= ): If g, — ¢ locally uniformly, then condition (1) is obvious and condition (2)
easily follows from Proposition V.5 applied to the sequence g,|C\g,*(B,) converging locally
uniformly on C\¢g~'(B) to ¢g|C\g~!(B).

( <= ): Now suppose that conditions (1) and (2) are satisfied. It suffices to show that
any arbitrary subsequence (g, ) of (g,) contains a further subsequence converging locally

uniformly to g. For the sake of simplicity, we will relabel (gn,) as (g,).

Claim 1. There exists an open neighborhood U of zy and a subsequence (gy, ) of (g,,) converging

uniformly on U to a limiting function that is not locally constant at z.

Proof of Claim 1. Let D(wy, ) be a disk contained in C\B,, for all sufficiently large n, and U,
be the connected component of g, (D(wy, 7)) containing zy. By Proposition I1.7, g,, maps U,
biholomorphically to D(wp, ) and has an inverse ¢, : D(wq,r) — U, satisfying ¢, (wy) = 2.

Note that ¢/, (wg) = 1/g!(20). Since ¢,(z0) — ¢'(20) # 0, there exists A > 0 such that
|l (wg)| > A for every n € N. By the Koebe 1/4-Theorem, the disk W = D(zg,7A/4) is
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contained U, for each n. In particular, the map g, is injective on W for all n sufficiently
large.

Since ¢, (W) < D(wp, ), by Montel’s Theorem, {g,|W },en is a normal family. Thus we
extract a converging subsequence (g,,|W) from (g,|WW). Clearly the limiting function for the

maps g,, cannot be locally constant at zy since lim g/, (z9) = ¢'(20) # 0. |
n—aoo

We again relabel the converging subsequence (g,,) above as (g,). Now apply Proposi-
tion V.2 to the sequence of maps h, = g¢,|C\g,*(B,): letting X = C be the connected
component of ker({C\g, ' (B,)}nen) that contains zg, we see that (h,,) converges locally uni-
formly on X to a holomorphic covering map h: X — C\B. We will now show that g|X = h.

To begin with, we observe that
ham (X, 20) = gomi(C\g™'(B), 20) = m(C\B, wo),

following from condition (2) above and Proposition V.5. By the classical theory of covering
maps, there exists a biholomorphism ¢: C\g7'(B) — X with ¢/(29) = 1 such that the

following diagram commutes:

(C\g~(B), ) —— (X, 2)
x lh
(C\B, wy)

Claim 2. The map ¢ extends to a Mobius transformation of C.

Proof of Claim 2. As g~'(B) is a discrete set in C and ¢ is injective, every point in g~1(B)
is a removable singularity of ¢, considered as a map to C. It follows that @ extends to a
map from C to C which can, moreover, be shown to be injective. Since ¢(C) is conformally
equivalent to C, the set ¢(C) is obtained by removing a single point from C. This then means

that ¢ extends to an automorphism of C. |

Claim 2 also implies that X is obtained from C by removing countably many points which

have at most one accumulation point, namely ¢(o0).

Claim 3. The map ¢ equals idg.

Proof of Claim 3. Let us first prove that ¢(o0) = co. Suppose that p(w0) = z € C. There
exists a compact set K < C such that z € int(K) and 0K < X. Note that g, — h uniformly
on 0K.
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Let m € (0, +o0) be the maximum of || on K. Then by the maximum modulus principle,
for any € > 0, there exists IV € N such that for all n > N and z € K, we have |g,(z)| < m +e.
Thus, |h| is bounded by m on K n X.

On the other hand, one can find a sequence (z,) < ¢~ *(K)\g'(B) such that (g(z,)) — 0.
However, as ¢(z,) € X n K for all n, (¢(z,)) converges to z. This means that |g(z,)| =
|h(¢(2,))] is bounded by m for all n € N, leading to a contradiction. We have thus shown
that p(c0) = co.

Thus, ¢|C: C — C is an affine map satisfying ¢(z9) = 2o and ¢’(z9) = 1, which implies
that ¢ = ida.

|

Claim 3 implies that g coincides with h on X = C\g~!(B). In particular, (g,) converges
locally uniformly on C\g~!(B) to g. This suffices to conclude that (g,) converges locally
uniformly on C to g.

O

V.3: Dynamical approximations

In this section, we establish Theorem 1.2. We will use the following fact multiple times:

Proposition V.8. Let ¢, € Homeo" (R?),n € N and o, € Homeo™ (R?) be such that ¢, — ¢
uniformly on compact subsets of R?\X for some discrete set X. Then sequence @, — ¢

locally uniformly on R2.

Proof. Given x € X, it suffices to show ¢, — ¢ locally uniformly at z. Let v, be a loop
such that the bounded component D, of R?\y contains x but no other point of X, and

o) < Dip(z),7). Since ga() — () uniformly, we must have po(3) < Dlg(z),7)
for all n sufficiently large. But this means ¢,(D,) < D(p(x),r) for all n sufficiently large.

Therefore, for every z € D,,

[0(2) = @n(2)] < [0(2) = @(@)| + |o(x) — @n(2)] < 2r.
This shows ¢,, — ¢ locally uniformly at z. O]

Theorem V.9. Let f,: (R* A) O, ne N and f: (R* A) © be Thurston maps such that
the sequence (f,) converges combinatorially to f. If f is realized as a postsingularly finite

entire function g: (C, B) O, then there exists a sequence of postsingularly finite entire maps
gn: (R% B,) O such that
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1. gn: (C, B,) © is Thurston equivalent to f,: (R?, A) O for sufficiently large n;
2. the sequence (B,,) converges to B in the sense of Hausdorff topology;

3. gn converges locally uniformly to g on C.

Proof. By proposition I11.13, we know that f,’s are realized eventually as holomorphic PSF
maps ¢,. If |[A| = 1, by Proposition I1.14, there exists d > 2 such that g(z) = 2¢, and
gn(2) = 2¢ for all n sufficiently large, and we are done.

Now suppose |A| = 2. Without loss of generality, assume that (f,,) converges topologically
to f, and that there exist points b € R?\f~1(A) and t € R?\A such that f(b) = f.(b) =t
for all n € N. Since f ~comp g, it follows from Proposition I1.28 that there exists a unique
point 7 € T(S?, A U {0}) such that 7 = [p] = [¢], g = ¢ o forp™!, and B = p(A), where
¢: R? — C and v¢: R?> — C are orientation-preserving homeomorphisms isotopic to each
other rel. A u {o0}.

By Corollary III1.13, there exists N € N such that for all n > N the map oy, has a unique
fixed point 7,, € T(S?, A U {0}) and, moreover, the sequence (7,,) converges to 7. We may
assume without loss of generality that N = 1.

For each n € N, we pick homeomorphisms ¢,, 1, € 7, isotopic rel. A u {0}, such
that ¢, (0) = 1,(0), such that the map h, := ¢, o f,, o1, is entire. Note that the set
By, := ¢, (A) contains Sy, . By Proposition 11.22; the ¢,, and 1, can be chosen to satisfy the

following conditions for all n € N:
e ©,0¢ ! C— C is quasiconformal, with lim,_ K(p,op™) =1;
e ©,(t) = p(t) and p,(y) = ¢(y) for some arbitrary point y # t;
o () = ¥(b) and K, (4u(B)) = ¢/ ($(b)) for every n e N.

First note that for each n, the homeomorphism ¢, o ¢! fixes three distinct points

0, p(t), p(y) € C. Therefore, by Proposition 115, ¢, o ¢!

— idg locally uniformly on
compact subsets of (/C\I\{go(t), ©(y)} as n — oo. By Proposition V.8, ¢,, — ¢ locally uniformly
on R2.

Claim 1. The sequence (h,,) converges to g locally uniformly on C.

Proof of Claim 1. We prove that the maps ¢ and h,, n € N satisfy all the conditions of
Theorem V.7 with respect to the points zg := 1(b) = 1, (b), wo := ¢(t) = p,(t), and the sets
B, and B.

Next we see that B,, © S}, converges to B > S, in the Hausdorff topology of C since

©n — @ as n — . Due to our choices of ¢, and v, the equalities h! (zy) = ¢'(20) and
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hy(20) = g(z0) = wo are satisfied, and we have wy ¢ B U | J,, .y Bn- Hence, condition (1) of

neN
Theorem V.7 is satisfied for the maps h,,.

The condition (2) required in Theorem V.7 easily follows from the topological convergence
of (f,) to f and the locally uniform convergence of (¢,) to ¢.

With this choice of ¢,, and v,,, the maps h,, are not necessarily postsingularly finite. We
will now construct the required maps g, from the maps h,, by showing that v,, and ¢,, have

controlled behavior.

Claim 2. The maps 1, — 1 locally uniformly on R2.

Proof of Claim 2. Let x € R? be a regular point (i.e., not a critical point) of f such that
n(x) — () as n — o (the point b, for instance, satisfies this property). Then there
exists a Jordan domain V' containing x such that f|V is injective. Assume without loss of
generality that V is compact. For sufficiently large n, we have f,|V = f|V. Hence, the maps
gl¥(V) and h, |1, (V) are injective, with inverses oy y@): U — (V) and ¢y, 4, (2)n: Un —
¥ (V), respectively, where U := h((V)) = o(f(V)) and U, := h, (¥ (V) = @u(fu(V)) =
eulFV)).

Since h,, — g, using Proposition V.3, we see that the sequence (y, 4, (z),n)n cONVerges to

©U,p(z) uniformly on U. Finally, we have

VIV = vy o (el f(V)) o (fIV),
¢n|v = PUppn(z),n © (¢n|fn(v)) © (fn|v)
= PU, n(z),n © (¢n|f<v)) © (f|V>

Since ¢, |f(V) — ¢|f(V) uniformly, we have 1,, — 1 uniformly on V.

Let Uy be the set of regular points of f, and note that this is open in R?. We will first
show for all x € Uy, we have ¢, (z) — ¥(x). Let D = {x € Uf|¢p,(z) — ¥(x)}. We know
that D # . If D # Uy, then there exists y € Uy n dD. Choose a bounded Jordan domain
W containing y on which f is injective. By the above discussion, since W contains a point
z € D, we have ¥, — ¥ uniformly on W. This implies that for any such W, the open set
W n Uy is contained in D, which contradicts the fact that y € 0D. By this discussion, we
also note that v, — ¢ uniformly on compact subsets of U;. Since the R*\f~*(A) < U; and
f7Y(A) is discrete, by Proposition V.8, the maps 1, — 1 locally uniformly on R |

Since [p,] = [¢n], there exists an affine map M,, such that ¢, |A and M, o 1,|A coincide.
Then g, := h,o M ': (C, B,) © is a postsingularly finite entire map. It is sufficient to show
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that (M,,) converges locally uniformly to idc to prove that the sequence (g, ) converges locally
uniformly to g.

Note that M, is an affine map satisfying M, (¢, (a)) = p,(a) for every n € N and a € A.
Now the desired statement follows from the fact that for every a € A, ¥, (a) — ¥(a) = p(a)
and @, (a) — p(a) = ¢¥(a) as n — .

O

The next corollary is an immediate consequence of the proof of Theorem V.9.

Corollary V.10. Suppose that we are in the setting of Theorem V.9. Assume that the
sequence (f,) converges topologically to the map f and g = po f o™, where p: R? — C
and ¢ : R? — C are orientation-preserving homeomorphisms isotopic to each other rel. A.
Then for sufficiently large n there exist orientation-preserving homeomorphisms o, : R? — C
and ¥, : R? — C such that g, = ©n 0 fnobt, @ ~ by, rel. A, o, — @ and 1, — 1 locally

uniformly as n — co.

The following result establishes Theorem 1.2 and easily follows from Proposition V.15
and Theorem V.9.

Corollary V.11. Let g be a postsingularly finite entire map. Then there exists a sequence of
posteritically finite polynomials (g,) converging locally uniformly to g, such that g, has the

same singular portrait as g for every n € N.

Remark V.12. Note that usually there is no canonical choice for a sequence of polynomials
(gn) in Corollary V.11. Constructing different “combinatorial approximations” by Proposition

IV.15 and then applying Theorem V.9 lead to different sequences of polynomials.
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CHAPTER VI

Persistence of Spiders

We now move on to our special case study involving the exponentials and unicritical polynomi-
als. In this chapter we lay the foundation for the approximation of postsingularly finite expo-
nentials by proving Theorem 1.6. We will obtain, for every n € N>y and j € {0,1,--- ,n — 1},
a monotone increasing map Jump,, ; : Q/Z — Q/Z that preserves spiders and respects
landing relations in the set M,,.

Throughout this chapter, fix a degree n € Nys.

VI.1: Construction of Jump,, ;

Before we start, we note that for every 6 € Q/Z, if 0 is strictly pre-periodic under p,, then
0,,(6) contains no element in . '(6). However, if 6 is k—periodic under p,, then there exists
a unique integer j =: j,(#) € {0,1,--- ,n — 1} such that /ﬁf’“*”(e) = 9++”(9).

Fix 6 [O, ﬁ) Given an integer j € {0,1,--- ,n — 1}, we define a ‘symbol shift’ function

as follows:

Up,jo: RIZ\A{(0 +j)/n} — {0,1,--- ,n}

-

m te [z, ™) for some me {0,1,---,j — 1}

m+1 te %,mTH for someme {j+1,j+2,--- ,n—1}
Unjo(t) =4 [ o )

y tels52)

~ 0+j j+1

\‘7+1 te(T’T)

Additionally, if 22 € 0,,(6), let

. 0+3 J if # is the smaller angle in a companion pair
n?j?g =
j+1 otherwise

The wy, ;o function assigns a symbol to each angle in O,(6): we first divide [0,1) into n
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Hvl.l);:
2

(a) The symbol shift function us g (b) The symbol shift function ug 1 ¢

Figure 6.1: For n = 2 and = % (mod 1), the two figures above illustrate the corresponding

symbol shift functions. The bold solid lines correspond to angles in O5(#), and the regular

solid lines correspond to angles in y,;*(6). The dotted lines represent the angles 0, % Also

note that @ is smaller than its companion angle 2. This comes into play in the definition of
U21,0 at %1

sub-intervals of the form [%, mT“), m € {0,1,--- ,n— 1}. The symbol assigned to an angle ¢
depends on which sub-interval ¢ belongs to. The sub-interval [%, 3%1) is ‘split’ at %, and the
symbols to the left and right of this angle differ by 1. The goal is to push angles in (%, 1)
exactly one sub-interval further. In effect, the map Jump,, ; pushes open a new sector in the

spider S¢*() (compare Figures 6.2 and 6.4).

Definition VI.1. Given j € {0,1,--- ,n — 1}, the map Jump,, ;: [0, ﬁ) NQ/Z — Q/Z is
defined as:

1 o © i (60)
J (0) = i L d1
umpn,]( ) mZ_l (n+ 1)m (mo )
In other words, the angle Jump, ;(#) has an (n + 1)-adic expansion .z zox3---, where

T = Unjo © o™ (6). For n =2, this defines Jump,, ; on Q/Z.

For n > 2, we extend Jump,, ; to Q/Z as follows. Note that for any 0’ € Q/Z, there exists

a unique 0 € Q/Z n [0, ﬁ) and m € {0,1,--- ,n — 2} such that ¢ =6 + -7 (mod 1). We

set

Jumpw-(G’) = Jump,, ;(0) + % (mod 1)

Remark VI.2. Let 0 € [0, ﬁ) be rational. Suppose there exists M € N such that for all
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(a) The symbol shift function us g (b) The symbol shift function us 19

Figure 6.2: Symbol shift functions for n = 2 and 0 = ﬁ (mod 1).

m = M, we have

T = Unjp © o™ V@) = n

Then for all m > M, we have u;™ " (6) € [2=1,1). This in turn implies oM (9) is the
angle 0, and thus, u,, ; gopn ™™ 1)(9) = 0, contradicting our assumption. Thus the (n+1)—adic
expansion of Jump, ;(#) produced by the symbol shift function does not end in the constant

stream nnnnnn - - -

Example VL.3. Let n = 2. For = 1 (mod 1) = .001 in base 2, we have, in base 3,

— 14 14

Jump, ((0) = 112 = = (mod 1) = % (mod 1)
— 1 1

Jump, () = .001 = = (mod 1) = % (mod 1)

The symbol shift functions us 9 and us ;¢ are illustrated in Figure 6.1.

Example VI.4. Let n = 2. The angle 0 = m (mod 1) = 55
periodic under puo, with pre-period 4 and period 4. The sequence .00010010 is a 2—adic

” (mod 1) is strictly pre-

expansion for 6.
The angles Jump, ,(¢) and Jump,,(¢) are given below in terms of 3—adic expansions

produced by symbol shift:

S— 3323 3323
_ 163 163



(a) The standard spider of (b) The standard spider of

¢ = Jump, o(0) = 535 = .112 in base 3 ¢ = Jump, ;(f) = 55 = .001 in base 3

Figure 6.3: The standard degree 3 spiders of Jump, ,(¢) and Jump,, (), for n = 2 and
0= 23—171 (mod 1). The dotted rays indicate the position of the angles 0,% and % Compare
with Figure 6.1

See Figure 6.2 for an illustration of the symbol-shift.

V1.2: Monotonicity of Jump,, ;

Fix j € {0,1,---,n — 1}. In this section we show that Jump, ; is injective and preserves

linear order, when we consider Q/Z as a subset of [0,1).

Proposition VI.5. Fiz 0 € [0, ﬁ) Given s,t € R/Z such that s,, = uy ;g QMZ(W—I)(S) and
t, = UpjpO uz(m_l)(t) are defined for all m e N, let

! /AN

= bt
in base (n +1). Then s <t in [0,1) if and only if s <’ in [0,1).

Proof. 1t is enough to prove one direction, since s = ¢ (mod 1) also implies s’ = ¢’ (mod 1).

So assume s < t, and choose n—adic expansions s = .s18983--- . and t = .titatg--- ..
so that if either angle is rational, the corresponding expansion does not end in a constant
sequence of (n —1)’s.

At the first index r where s, # t,, we have

s, < t,, implying s/ <t/
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(a) The standard spider of (b) The standard spider of
¢ = Jump, o(0) = %‘1231) (mod 1), ¢ = Jump, o(0) = %‘13—1) (mod 1),
equalling .11121121 in base 3 which equals .00020010 in base 3

Figure 6.4: For n = 2 and 6 = %

spiders of Jump, ,(¢) and Jump, 4(¢). The dotted rays indicate the position of the angles
0, % and % Compare with Figure 6.2

(mod 1), an illustration of the standard degree 3

For all indices m < r, by assumption,

Sm < ty, and thus, s/ <t

This shows that s’ < . Equality holds if and only if s/, +1 =1¢., s/ =mn and ¢/, = 0 for all
m > r; however, Remark VI.2 shows that the condition s/, = n for all m > r can never be
true. 0

Proposition VI.6. Firt € R/Z and j € {0,1,---n—1}. If0 <0 <@ < -1 are rational

n—1
angles such that t,, = Uy g © ™ V(@) and ), = Up,jor O ™ V(t) are well-defined for all

m e N, then in base (n + 1), we have

Proof. The fact that 6§ < ¢’ implies that % < 9+Tj/. By the definition of w, ;¢ and u, j¢, we

have ¢, <t for all m e N. O
Remark VI.7. Note: for n > 2, the statement holds if we assume 0 < 0 < ﬁ and
0’ = - (mod 1).

Proposition VL.8. Jump,, ; is strictly increasing.

Proof. 1t suffices to show the following claim:
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Claim. 1. For me {0,1,--- ,n — 2}, the map Jump,, ; satisfies the formula

m mTH (mod 1) 7=0
Jump,; ()

Z(mod1l) j=1

2. Jump,, ; is strictly increasing on Q N [O, ﬁ), and Jump,, ; (Q N [0, ﬁ)) cQ/Z n
| Jump,,;(0), Jump, ;(0) + 1 ).

Together with the definition of Jump,, ;, this claim implies that Jump,, ; is strictly increasing

on Q/Z.

Proof of Claim. 1. This is clear from the fact that

O(mod1) j=>1
Jumpm](o) =
L (mod1) j=0
2. Given rational angles 0 < 0 < ¢’ < ﬁ, for every m € N, let x,, = u, o 0 M%m_l)(ﬁ).

Then by Propositions VI.5 and VI.6, in base (n + 1), we have
Jump,, ;(0) < .x1z923- - < Jump, ;(6)

This shows that Jump, ; is strictly increasing on [O 1 )

-
Note that Jump,, ; (ﬁ) = Jump,, ;(0)+ % (mod 1). Thus, to prove point (2), it suffices
to show that Jump,, ;(6) < Jump,, ; (ﬁ) for all 0 € [O, n%)

1
Let .titot3--- be an n—adic expansion for 6 that does not end in the constant stream
nnn - --. Then there exists a minimal index r > 1 such that ¢, = 0, and for all integers
0 <7’ <r,wehavet,, = 1. Thus, we note that 0 < ufl(rfl)(ﬁ) < %, and forall 0 < " < r,

(e}

we have % < un(rlfl)(H) < Atytats--- in base n, and .1tityts - = 2L (mod 1) .

n
We split this into two cases:

e j = 0: in this case, for all 0 < v’ < r, we have wu, g o MZ(TI_I)(H) = 2, and
Un o 0 e Y (0) < 1. Thus, in base (n + 1), Jump,, ;(#) < 2 = 2 (mod 1) =
Jump,, ; (ﬁ) (mod 1).

e j > 1: in this case, for all 0 < r’ < r, we have wu, g o uf}’“’*”(e) = 1. We also
have u,, ;¢ o " V(6) = 0. Thus, in base (n + 1), Jump,, ;(0) <.1= 1+ (mod 1) =

Jump,, ; (ﬁ) (mod 1).
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V1.3: Jump,, ; preserves spiders

Next, we show that for any § € Q/Z and j € {0,1,---n — 1}, the spiders S,(f) and
SnH(Jumpn’j(@)) are isomorphic. For the rest of this section, we fix § € Q/Z and
j€10,1,---,n —1}. Let ¢ denote the angle Jump,, ;(#), and .z z923--- . be a n—adic

expansion for ¢ that does not end in a constant string of (n — 1)’s.

Proposition VI.9. 1. The angles in O,(0) and O, +1(¢) have the same circular order. In
particular, the pre-period and period of ¢ under p, 1 coincide with the pre-period and

period respectively of 0 under p,.

2. If = 0' + =5 (mod 1) for some angle ' € [O, ﬁ) and some m € {0,1,--- ,m — 1},

then the fin1—orbit of ¢ does not intersect T\ .., ().

Proof. 1. Without loss of generality, we may assume that 6 € [0, ﬁ) This is because
for all degrees n and all angles ¢t € R/Z, g (t + %) = ,qu(m_l)(t) + —L for all

m € N, implying that O,(¢) and O, (t + ﬁ) have the same circular order. Item (1)

now follows directly from Proposition VIL.5.

2. First assume m = 0. So 0 € [O, ﬁ) For every r € N,

3

0(7"71)(0>E(@ m+1) e () e <%7n:11> me{0,1,---,j—1}

+
oy ’ Iun+1
" " (%’nii) mE{j—}—l?--"n—]_}

3

Moreover, if ;" " (6) € (m,%m) for some m € {0,1,---,j — 1}, then x4 (f) < 6, in

turn implying u;"(¢) < ¢. But this means we must have pfl(jl_l)(gb) € (%7 TTT)

Using similar arguments,

e the sector T7'%/(0) corresponds to T;)%{, (¢) for m < j, and to T4 . (¢) for

m > j, and the orbit points in these sectors are in the same circular order;

e the sector T;;%*(6) corresponds to T;%f ;. ,(¢), and the orbit points in these sectors

are in the same circular order;
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e if there is an orbit point in 0,(f) on the boundary of T:%(6) for some m €
{0,1,---n — 1}, this implies # is periodic under p,, with some period k. In this

case, if 6 is the smaller angle in a companion pair, then

e ¢+ y sta sta
wE06) = P mod 1) € AT (6) n OTE(6)

n+1
Else,
o(k—1 ¢ +j + 1 sta sta
i (9) = == (mod 1) € 0T (6) 0 0T 541 (0)

The rest of item (2) follows from the fact that

=0+

(mod 1)

n—1

— ¢ =Jump, ;(¢") + = (mod 1)

n+1,5+m n+1,j5

, m
= T n(9) = T (ump, ,(0)) +

]

Example VL.10. Let n = 2 and consider § = 3~ (mod 1) = £ (mod 1) as in Example VI.3.

In Figure 6.3 we illustrate the spiders §3(Jump2,0(9)) and §3(Jump271(9)).

Example VI.11. Let n = 2 and consider = % (mod 1) as in Example VI.4. Figure 6.4

shows that S5(6), §3(Jump270(9)) and §3(Jump2,1(0)) are all isomorphic.

Remark VI.12. Proposition VI.9 implies that the graphs S,(6) < 5°¢(6) and S,1(¢) ©

§§9§f1 (¢) are congruent.

Proposition VI.13. .7?”79|§n(9) and .7?”+17¢|§n+1(¢) are conjugate by a homeomorphism h
that preserves the circular order of legs and satisfies ?L(OO) = o0 and ?L(exp(Qm'@)) = exp(2mi¢).

Consequently, ]:me‘Sn(Q) and fn+1,¢‘5n+1(qb) are conjugate by a homeomorphism h :
Sn(0) — Sni1(@) that preserves the circular order of legs, and satisfies h(o0) = oo and
h(x1) = z,, where x1 is the equivalence class of exp(2mif) in S, (0), and x, is the equivalence
class of exp(2mi¢) in Syi1(P).

o(m

Proof. For m € N, let 6,, and ¢,, denote the angles 71)(9) and uz(ffl)(qb) respectively.
Define 7 : §n(0) — AnH(gb) as h(rexp(2mwi¢y,)) = rexp(2mi¢,). Proposition VI.9 implies
that % satisfies the required properties, and by definition of the graphs S, () and S,,.1(¢),

T descends to a homeomorphism A : Sp(0) — Spy1(¢) as required. In other words, the
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following diagram commutes:

A ~

(S,(0), exp(2mif), 0) —— (S,11(0), exp(2mig), )

I I

A~

(S.(0), 21, 0) - h (Sns1(9), 2y, 20)

Here, 7 is the notation used for the quotient map between a standard or extended spider and

its corresponding quotient. [

Sp(0) and Fi1,6|Sn11(0)

are conjugate and assume that the conjugating map satisfy the properties in the above

Remark VI.14. In later sections, we will simply say that F,

proposition.

Proof of Theorem 1.6. The theorem follows from Propositions VI.8 and Remark VI.12.
O

Remark VI.15. Let 6 € [0, ﬁ), and let v be the kneading sequence of 6. Suppose T;7'%/(0) is

the sector containing 6 in its interior. Construct a sequence v/ = 1413173.... using the following

rule for each m e N:

o If 15" (6) in one of the sectors T(0), Ttk 1 (0),- -+, T3t (0) (or equivalently,

n,m+1 y tn,g—1
Vm € {0,1,--+ ,j—1—m}), then v} :=v,,.

o If ;i Y(6) is in one of the sectors TH0), T (0), - -+, T 1 (0) (or equivalently,

n,j+1 y Tn,m—1
Um€{j—m,j+1—m,--- n—1}), then v/ := v, + 1 (mod n)

In the resulting sequence v, for all m,m’ € N, we have vJ, = v/, if and only if v, = v

Proposition VI.5 shows that v/ is the kneading sequence of Jump,, ;(0).

Remark VI1.16 (Distinctness of the Jump;m s). Given any degree n, let 6 be pre-periodic
angle under u, whose orbit intersects every static sector. For example, # can be taken to
be 0z125 - T,_1 in base n, where z; = i for + = 1,2,---n — 1. Then for distinct elements
4.7 in the set {0,1,--- ,n— 1}, it is clear that Jump,, ;(#) # Jump,, 5(#). Thus Jump,, ; and

Jump,, 5 are different functions.

86



CHAPTER VII

Combinatorial Embeddings in the Unicritical Family

Definition VII.1. Let n,n’ € N5y, Given X € P, and Y € P, 1, a function £ : X — Y is

said to be a combinatorial embedding if for every A € X,
1. the postsingular portraits of A and )\ are isomorphic;
2. if X € X satisfies A <1 A, then £(\) < E(N):

3. if A is hyperbolic and ) e X is also hyperbolic and is a satellite of A, then S(X) is a
satellite of E(A).

In this chapter, for every n € Z-,, we will construct a set of n distinct combinatorial
embeddings {&,; : P, — Ppy1 0 J € {0,1,--- ,n — 1}} using the ‘Jump’ maps defined in
Chapter VI. Fix a degree n > 2. We will construct the embeddings &,, ; using Theorem 1.6,
and prove Theorem .7 by exhibiting additional properties of the Jump,, ;’s.

First, fix j € {0,1,--- ,n — 1}.

VIIL.1: Image of Jump, ;

We give here a description of the image of Jump,, ; in Q/Z. Recall from Proposition VI.9

that every ¢ in the image of Jump,, ; [0, ﬁ) has the property that at least one static sector

does not contain any angles in O,,11(¢). We will show here that all such angles are in the
image of Jump,, ; for some j.

Fix 7€ {0,1,--- ,n—1}.
Proposition VIL2. Let ¢ € Q/Z n [Jumpmj(O), Jump,, ,(0) + %). If the [is1—orbit of ¢
does not intersect T\ ;(¢), then ¢ = Jump,, ;(0) (mod 1) for a unique angle 0 € [0, ﬁ)

Proof. Let £,k be the pre-period and period respectively of ¢ under pi,+1. If / =0 and k =1
then it is clear that ¢ = Jump,, ;(0) (mod 1), since this is the only periodic angle of period 1

in the sector [Jumpnyj(O), Jump,, ;(0) + l)-

n
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Otherwise, let .y1y2 -+ YeUer1Ues2 - Yrse be an (n + 1)— adic expansion for ¢ that does

not terminate in a constant stream of n’s. We define another symbol shift function as follows:

w:on+1(¢) —){0717 >n_1}

-

m t e [, =) for some m € {0,1,..,j — 1}
' te[-L, 2t
wy= 10
J te [ n-]‘rl ’il-‘rl)
|m—1 te [, ) for some me {j +2,j + 3, ,n}
wop{m—
We claim that the angle § = Y~ _, ””;—;w) (mod 1) is pre-periodic under pu, with pre-
period ¢ and period k, and that Jump,, ;(¢) = ¢ (mod 1).
Oor every m € or ease of notation, we let 6,,, = mo m = mo
For every m € N, f f let 6, = " "V(0) (mod 1), ¢ = 715" (¢) (mod 1)

and x,, = w(¢.,). By this notation, .x;xs - -+ is an n—adic expansion for . The angle 6 is
clearly rational, and has some pre-period ¢ and period k' under p,,. It is clear that ¢/ < ¢

and that k’'|k. We first prove the following claims:
Claim 1. 0 € [0, 1),

T n—1
Claim 2. ¢! = { and k' = k.
Assuming these claims to be true, by definition of the functions w and w, ;¢, we can see

that Jump,, ;(¢) = ¢. By Proposition VI8, the angle # is unique.

Proof of Claim 1. Let Jump,, ;(0) = = (mod 1). We note that » = 0 if j > 1, and r = 1 if
j=0.

o if p < ;*1 we see that w(¢) = 0. Thus 0 € [0, %)

+1

n+1’
and y,, < 7.

o ifgpc [ﬂ %), then there exists an index m > 1 such that y,,, = r+ 1 for all m’ < m,

— if 5 = 0, then » = 1. By the above discussion, since y,y = 7 + 2, we have

Ty = W(Omy) = Y — 1 = 1 for all m’ < m, and z,,, = w(¢y,,) = 0.

—if j = 1, then r = 0. Thus x,,y = w(¢pyy) = 1 for all m’ < m, and z,,, = w(¢py,) =0

In both cases above, we see that 0 € [%, ﬁ)
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Proof of Claim 2. Now suppose k' < k. Then 6y, = 0p, 111 (mod 1), which can happen

only if x,, = x,,4p for all m > . We note, for all m € N,

o+ K
m 07 — m — Ym,
¢ e[ n+1 o Y
o+j +1
m 71 = m = m_l-
¢ e[ n+1 . Y

So if T, = Tpparr, then Yo, = Ymar O {Ym, Ymaw t = {K', K + 1}.
Let D = {m > 0|yy, # Ymsw}. Note that D is non-empty, since k € D. Let r = inf D,

and observe that

K o+ K
r < Yr+k’ r € ) )
Yr <Yrew = 9 <n+1 n—i—l]
e since only one angle of the form ‘ffT"f can belong to O,,11(¢), exactly one of the following
equalities holds:
+j +j+1
O = ¢+ (mod 1), or ¢,4; = otj+l (mod 1).
n n
Therefore,
Pri1 < Priwr11
= Yr1Yr+2 o < Yrik 1Ykl 2

So at the first index m > r in D, we must have y,, < ynm+w. The above discussion shows that

exactly one of the following statements is true:
Ym < Ymyrr Vm > E/, O Y, = Ym+r/ VYm > (.

Supposing the first condition to be true, we then have, for any m € D,

Ym S Ymtk S 00 - S ym+(%_1)j < Ymtk = Ym,
which implies that y,, = ym.w, and thereby contradicts the definition of D. Thus we have
shown that k' = k.

Suppose ¢/ < [(, then there exists an integer » > 0 such that ¢/ = ¢ — rk. Then

Opy1 = Opyp1 (mod 1), and this holds only if for all m > ¢, we have x,, = x,,,x. But
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this means, for all m > ¢ such that y,, # Ymsx, we have Y, Ymsr € {k', k' + 1}. We note
that vy # yrre. Without loss of generality, suppose, y, = k', yp1¢e = k' + 1. Then we have

k' +k-’ +kl k' +2
o€ [hg S ] and dppe € [257, K5F). Therefore,

Grp1 < @ < Pryos1s

which is a contradiction. Thus, we must have ¢’ = /.

]

n

for some m € {0,1,--- ,n — 1}, and O,,41(¢) does not intersect 7,7 ;.. (¢), then there exists

a unique angle 0 € [ﬂ m—“) such that ¢ = Jump,, ;(¢) (mod 1).

Remark VIL.3. This proposition also shows that if ¢ € [Jumpm (0) + 2, Jump,, ;(0) + m—“)

n—1° n—1

For the rest of this section, we fix A\ € P,, and a monic representative ¢ € M,,(\). We
saw that for any 6 € Q,(c), the map Fn+17j7jumpn,j(9) defined in the discussion following
" Such that the angle
¢ = Jump,, ;(¢) (mod 1) € ©,,1(A;0). We will show that \; is independent of the choice of
¢ and c, allowing us to define &, ;(A) = Ajp.

Definition I1.52 is Thurston equivalent to a polynomial )\jﬂ(l + niﬂ)

Proposition VIIL.4. Let ¢ = exp(Z™)c for some m € {0,1,--- ,n —1}. For ¢ =0 +

n—1

- (mod 1), we have Ajg = Ajor.

Proof. Jump, ;(f) is an angular coordinate for a PCf parameter ¢, ;o € Myy1(\j9). By
the definition of the Jump, ; functions, we know that Jump,, ;(¢') = ¢ + = (mod 1), and
hence Jump,, ;(0') € ©,41();9). However, Jump, ;(¢') is an angular coordinate for the point

exp(Z%) e, 0 € Myui1(Aje), from which the statement follows. O

Due to the above proposition, we can assume without loss of generality that ¢ is in the
subwake defined by (O, ﬁ) .
VI1I1.2: Definition for critically periodic parameters

First suppose A has a k—periodic critical point, with £ > 2. Throughout this section, we
fix 0 € Q,(c). By our assumption on ¢, we have 6 € (0, ﬁ) Note that the parameter ray

R, (0) could land either at the root or a co-root of the hyperbolic component U containing c.
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(a) R2(0) and Ro(0") (b) R3(Jumpy 1(#)) and R3(Jumpy 1 (6"))

Figure 7.1: Jump, (9) and Jump, (¢') for the companion pair (6,6') = (3, 2) that land at

the hyperbolic component containing the “rabbit” parameter ¢ ~ —0.122561 + 0.7448621

Landing at a root

We first suppose that € lands at the root of U, and has companion €. Let ¢ and ¢’ denote
the angles Jump, ;(#) and Jump, ;(6") respectively.

Proposition VIL.5. ¢, ¢' are companion angles under fi, 1.

Proof. Let A = {A4,---, A} be the orbit portrait generated by (#,6’), and let O(6,0")
U:_, Ai. The symbol shift functions w, j¢ and w, ;e coincide on O(6,6’), since O(6,0") N

(M M) = . We use the following for ease of notation:

n '’ n

YmeN, 6, = p2™ 1V (9) (mod 1) 8, = p2™ (@) (mod 1),
O = () (mod 1), ¢, = i 1iV(@) (mod 1)

For every j € {1,2,---r}, we define the set B; as follows:

The collection B = {Bq,--- ,B,.} is a partition of the union of the p,1-orbits of ¢ and ¢'. In
order to show that (¢, ¢') is a companion pair, we first show that the angles in their orbits
taken together form a formal orbit portrait.

Let B(6,0") = |J;_, B;. We will prove that B satisfies the properties (1) through (5) listed
in Definition I1.41.

1. This is clear by definition.
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2. The fact that u,.; maps B; onto B;,; is clear since p,, maps A; bijectively onto A; ;.

The rest follows from Proposition VI.13.

3. For every i € {0,1,---r}, define

Bi(9> = On+1(¢) N B;

Bi(0') = Ony1(d') N By
Since A; < T3%5H(0) for some m € {0,1,--- ,n — 1}, we have B;(0) < T;' . (¢) and
Bi(0') < T, (¢') for some m/ € {0,1,..,n}. Tt suffices to show that

1,m’/ 1,m/
n+1 7’L+1 n+1,m n+1lm

31;C <¢/+m/7¢+m/+]‘>:Tstat (¢)sttat (¢/)

For any s € {0,1,--- ,n}, if there exists ¢ € B; N [i’—ii, ﬁ/—ﬁ], then there exists r €

{0,1,---n — 1} such that A; n [eni, elni] # (7, which is not possible. Thus, for every
s€{0,1,--- ,n},

The result follows immediately.

4. Since the period of all angles in B(0,0') is equal to k, and since A is a formal orbit

portrait, we have k = rp for some p > 1.

5. If A; < (2Em, &mtl) for some m e {0,1,---n — 1}, then B; < (%, Mn—’f;’l)

Given distinct integers 0 < 4,7 < n, by property (2), the sets B,,; and B,, ; are unlinked.
Given m’ # m, and any ¢, 7', we want to show that B,, ;, B, »» are unlinked. If i = ¢/ = 0,
this follows from the fact that A,,, A, are unlinked. If at least one of 7,4’ is nonzero
and B,,; and B, ;s are linked, then without loss of generality, we can find angles
a,B € By, and 1,0 € B, » that satisfy

a<n<p<d
which implies that

m+la<n+1lnp<(n+1)<(n+1)
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The inequalities are strict since B,, 1 and B, are disjoint. But B, maps bijectively
onto By, for each s, and the above inequality implies that B,,.1, B, ,1 are linked,

which is a contradiction.

Thus B is a formal, non-trivial orbit portrait. As a last step, we show that ¢, ¢’ are the
characteristic angles of this orbit portrait. The interval (¢, ¢’) has either the smallest or
largest arc length in B;. We let ¢; be the length of the unique complementary arc ~; of B; of
length greater than % Each ~; is a critical arc - that is, under multiplication by n + 1, it

covers the circle n times. Furthermore, the ~;’s are the only critical arcs of B.

For i # r, ~; is strictly contained in R/Z\[d’;ﬂ"‘, 2rmtl] for some m, whereas 5, = ]R/Z\[‘ﬁ;j—f”lo, otmotl]

for some mg. This proves that ¢, = max; ¢;. Therefore, the critical value arc bounded by

tni1(07,) is the shortest critical value arc among all critical value arcs. But we note that
tni1(07) = {®, ¢'}, implying that

drjz(9,¢') = min min dr/z(a, B)

=1 CM,,BEBZ'
This shows that (¢, ¢’) is the characteristic angle pair for B, and the result follows. ]

Example VII.6. Let n = 2. The quadratic rabbit polynomial (so called because its Julia
set looks like a rabbit) is given by z? + ¢ where ¢ ~ —0.122561 + 0.744862i. The root of the
hyperbolic component containing the rabbit is the landing point of the companion angles

(0,0) = (3,2). The pair of angles (Jump, (), Jump, o(¢')) = (55, 32) is a companion pair

forming angular coordinates for a “cubic rabbit” parameter cyo09 = c200 ~ —0.54056 —
0.52858s.

Similarly, we also find that (Jump,;(6), Jump,(0')) = (35, 2

267 26
coordinates for a “cubic rabbit” parameter ca 19 = c21,0 ~ 0.54056 + 0.52858:. See Figure 7.1

for further details.

) also constitute angular

Landing at a co-root

In this section, we assume that 6 lands at a co-root of U, and show that its image under
Jump,, ; lands at a co-root as well.

There exists an angle pair («, ) with period k landing at the root of U. By the previous
section, the angles ¢ = Jump,, ;(a) (mod 1), and ¢’ = Jump,, ;(a’) (mod 1) land at the
root of a hyperbolic component V' < M,,,;. Since Jump, ; is order-preserving, the angle
¢ = Jump,, ;(¢) (mod 1) lands in the wake of (¢,7'), and by Proposition VL.5, ¢, and ¢’ all
have period k under p,, 1. Additionally, by Remark VI.15, the kneading sequences of ¢, ¢ and
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Y’ coincide with 27 up to and including the index (k — 1). The itineraries of ¢ with respect
to both 1 and ¢ differ from each other, and from the sequence v’ (see Remark VI.15) at the
kth position. Since ¥ < ¢ < ', we have ,uz(f:;l)(gb) e (& M) for some m € {0,1,--- ,n}.

n+l’ n+l
We now show that ¢ lands at a co-root of V.

Proposition VII.7. 1. nfl V() # L7 (mod 1), and unfl V(') # 7’&7;171” (mod 1).

n+1

o(k—1)

2. There exists an angle ¢' landing at a co-root of V' such that j,.; (1) € (L2 Wimy

n+1’ n+l

Proof. 1. First, we note that we have

dijz (0, 0) < dijz(tns1 (), pnr () < - o < dip (il V(@) uelT V(@)

This in turn implies that

dijz (0, 0) < dijz(fini1(¥); pnsr(9)) < -+ o < dryz (1ot (@), 170 (9))

Suppose ;57 (v) = 241 (mod 1), we would then have dg/z (,un(fl Yy, u;(fl_l)(gzﬁ)) =

dR/ZS’D’(ﬁ) which is a contradlctlon By a similar argument, Mn+1 W # ¢ 1 (mod 1).

2. For any co-root angle ¢’ of the component V', the angle ,unk D(qﬁ’ ) cannot be in

[%,w:—ﬁ’l] for any m € {0,1,--- ,n}, since this would imply that ¢' ¢ (u,¢").
Therefore each ,un ey U(qb’ ) belongs to ( nff, wnﬂ”) for some m that satisfies uz(fl_ 1)(7,0) =
241 (mod 1) and ,uz(fl V(') # ﬂfl” (mod 1), by (1). There are (n — 1) co-roots for
V', and (n — 1) values of m that satisfy the latter this property.
Suppose we have two co-root angles ¢/, ¢ with p %0 (¢/), uo7V (¢7) € (L wyiﬂn),
this again contradicts the chain of inequalities given in (1), thus for each m € {0,1,--- | n}
with ,uz(fl_l)(w) = TTT (mod 1) and Mz(fl_l)(’gb') = % (mod 1), there exists exactly
one co-root angle ¢’ € (M:TT, wrii;”)

[

Proposition VII.8. ¢ lands at a co-root of V.

Proof. Let ¢ be the angle from item (2) in the previous proposition.

The angles ¢ and ¢" have the same itinerary with respect to 1, and therefore, the dynamic
rays at angles ¢ and ¢’ land at the same point zy in the plane of f,,.1z where ¢ is the center
of V', making 2y a cut point in the Julia set of f,, 11z unless ¢ = ¢’. But the co-root angle ¢’

cannot land at a cut-point, and this forces ¢ = ¢’ (mod 1). O
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-1

(a) Parameter rays corresponding (b) Parameter rays corresponding
to {6;}}_; in degree 2 to {Jumpy 1 (#;)}?_; in degree 3
Figure 7.2: Images under Jump,; for the angles 6, = % (mod 1), 6, = % (mod 1),
03 = % (mod 1) and 0, = % (mod 1) which land at ¢ ~ 0.36638 + 0.59152i € Ps.
The discussion in this section shows that for a periodic parameter A\, we may define

Ei(A) = A for any angle 6 € Q,(c), for any choice of ¢ € M, ().

Proposition VIL.9. Given a companion pair (¢, ¢') with ¢, ¢’ € [Jumpn,j(()), Jump,, ;(0) +

%) landing at a hyperbolic root in M,y such that the orbit of ¢ (or ¢') under p,+1 does not
intersect the interior of T\ ;(¢), there exists a companion pair (o, ') periodic under ju,,

with a, o’ € [O, ﬁ) such that ¢ = Jump,, ;(a) (mod 1) and ¢' = Jump,, ;(a’) (mod 1).

Proof. By Proposition VII.2, there exists a« € Q/Z n [O, ﬁ) such that Jump, ;(a) =
¢ (mod 1). If o lands at a co-root in M,,, this would imply that ¢ lands at a co-root in
M., 11, contradicting our assumption. Thus « lands at a root, and has a companion o’. By

Proposition VIL5, ¢’ = Jump, ;(a’) (mod 1). O

VI1.3: Definition for critically pre-periodic parameters

Supposing A has a strictly pre-periodic critical point, let 0 € €,(c). As in the previ-

ous section, 6 € [0, ﬁ) Let us denote by ¢, ¢ the landing point of the ray at angle
¢ = Jump, ;(0) (mod 1) in M, ;. Since ¢ is strictly pre-periodic under ji,41, ¢y j0 is

.o, . . . 1
critically pre-periodic under 2"*" + ¢, ;.

Proposition VIL.10. For ¢ € Q,(c), both ¢ and ¢' = Jump,, ;(¢') (mod 1) land at c, ;.
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Proof. Let v denote the Carathéodory loop of f,, .. Then, given any o € §2,,(c) and t1,t2 € R/Z,

V(1) =(t2) = Znalti) = Snaltz)

This gives us X, 9(0") = X,,0(0) = £, 9/(0) = £, 0(6'). This common sequence is also the
kneading sequence of both # and ¢’. Let us call it v. By Remark VI.15, the angles ¢ and ¢’ have
the kneading sequence 17, and by Proposition VL5, it is clear that ¥,,14(¢) = X,114(¢") =
Ynt1.6(¢) = Zpt1.6(¢) = 7. So in the dynamical plane of 2" +c,, ; 4, ¢ui0 = Vi(0) = v;(¢'),
where 7, is the corresponding Carathéodory loop. Hence the parameter ray at ¢’ to M,

also lands at ¢, ;. O

This proof shows that ¢, ;¢ is independent of 6. Due to Proposition VII.4, we may define
Eni(N) =Xg=(n+1) ., for any c € M,(\) and any 6 € Q,(c).

n’j’e

Example VII.11. Let n = 2. The parameter rays at the following angles land at ¢ ~
0.36638 + 0.59152¢ € My:

17 19

01 = gigr—q) (mod 1), 02 = 5y (mod 1)
23 31

% = giga —1) wod 1), 04 = 5y (mod 1)

Correspondingly, in degree 3, the angles listed below land at cy19 = c219 ~ 0.62759 +
0.29869: € M3:

163 169

21V1) = gy —qy mod L, 21\"2) = 3y

Jump, ,(6;) 313 —1) (mod 1), Jump,,(62) (3 1) (mod 1)
187 241

Jumpm(ﬁg) = m (mod 1), Jump271(04) = m (mod 1)

See Figure 7.2 for an illustration.

This finishes the definition of &, ;(\) for all A € P,.

VII.4: Properties of &, ;

In the rest of the chapter, we show that &, ; is a combinatorial embedding. As in previous

sections, fix A € P, , ¢ € M, () within the subwake <0, ﬁ) in the parameter plane, and

j€{0,1,--- ,n—1}. First suppose A is a periodic parameter with critical value of period

k = 2. Thus c is the center of some hyperbolic component U < M,,.
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Proposition VII.12. Suppose that 0 lands at the root of U and has companion 0'. Let V' be
the hyperbolic component in M, 1 associated with the pair (Jump, ;(0), Jump,, ;(¢')). Then

V' is primitive if and only if U is primitive.

Proof. Clearly, p, = p,; (see Section 11.4.1).
A hyperbolic component is a satellite if and only if the penultimate entry of its internal

address divides the final entry. From this, the second statement follows. O]

Proposition VII.13. If (0,0') is a satellite of (,4'), then (Jump,, ;(¢), Jump, ;(0")) is a
satellite of (Jump,, ;(v), Jump,, ;(¢')).

Proof. Let k be the period of ¥, and let v be the kneading sequence of (6,¢). (Jump,, ;(¢), Jump,, ;(0"))
is a satellite of a ray pair («, ') of period k (since its internal address is the same as that of
(0,0')), and it lies in the wake of (Jump,, ;(¢), Jump,, ;(¥")). Now suppose that the internal
address of (0,60") is given by

l—si— -8 1=k—s. =k

Then for every m € {1,2,--- ,r}, there exist ray pairs P, Q,, periodic under i, fin+1

respectively that correspond to the entry s,,, and moreover, we have

P, =(0,6)

T 1= ( )
= (Jump,, ;(9), Jump,, ;(¢'))
= (

a,a’)

For any pair P = (o, 8'), let Jump,, ;(P) denote the pair (Jump, ;(a’), Jump,, ;(3')).
For each m € {1,2,--- ,r}, @, is in the wake of Jump,, ;(P,,). Additionally, by definition,

Ql = Jumpn,j(Pﬁ and Qr = Jumpn,j(PT)

Let m' € {1,2,---,r} be the first index where Jump,, ;(P,) # Q.. By Proposition VL8, Q,
is in the wake of both @, and Jump,, ;(P,). Therefore, one of the following is true: either
Qv is in the wake of Jump,, ;(FP,) or Jump,, ;(P,) is in the wake of Q. In either case, by
Lemma I1.42, there exists a ray pair P of period p < s, that separates @, and Jump,, ;(Fr).

But P lies in the wake of @, _1, and @, lies in the wake of P. This suggests that

Pu(Smr—1) < p < Spy, which is a contradiction to the fact that p,(s;,/—1) = Sn,v. There-
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fore, for all indices m', we must have @, = Jump,, ;(P,). In particular, (o, ') = Q,_1 =

(Jumpn,j(e)J Jumpn,](e/)) L

More on co-roots

Let 0 € [0, ﬁ) be an angle that lands at a co-root of a hyperbolic component U, whose
root angles are (o, o). Let V be the component in M, on which Jump, ;(c) lands.
Note that in base (n + 1),

Jump,, ;(0) = - j0(01)unjo(02) -+ Unjo(0)(j + 1)

where 0, = pn™" 1)(9) (mod 1). We also define the angles ¢ = Jump, ;(#) (mod 1), and
o= U je(01)un e(62) - unje(fk)j in base (n + 1).

We know that ¢ lands at a co-root of V. Note that ¢’ has itinerary v’ with respect
to Jump,, ;(a). Also note that ¢ = ¢ — m (
show that there exists an angle ¢” landing at a co-root of V' whose itinerary with respect
to Jump, ;(c) coincides with that of +/". This forces 1)’ = " (mod 1), that is, ¢ lands at a
co-root of V.

We will show that the image of Jump,, ; ‘(Q/Z N [O, ﬁ)) does not intersect (1, v").

mod 1). By Proposition VIL.7, we can

Proposition VII.14. Given a rational angle € (¢',1), the p,1—orbit of  intersects the

interior of Ti’ff] (B).

Proof. We note that the angles ¢, = (n + 1)*1¢/ (mod 1), B = (n + 1)*713 (mod 1) and
Y, = (n+ 1)* ¢ (mod 1) are in counterclockwise order. Let € := dg/z(8,¢’). Then,

drjz(Br, ¥y) = (n+ 1) e
B+7 v+ €

d —
R/Z<n+17 n+1> n+1

P'+j Y+j B+i
21> we note that 2=, =

and moreover, ¢ € (O, m) from this it follows that

Since v, is the angle and [ are also in counterclockwise order,

B+ / B+j v+
dR/Z<6k’n+1>:dR/Z(5k’wk) dR/Z( +1’ n—I—l)
_ k—1_ €
= (n+1)" "¢ 1
1

<
n+1
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Arguing similarly,

5+j+1)< 1
n+1 n+1

dr/z <6k»

Since n > 2, this means that

B+j B+i+1
Bk € [ J? J ]
n+1l n+1
The angles 1/, 1 are consecutive among angles periodic of period k under pu,, 1, hence S

cannot be periodic of period k. Thus,

B+ B+j+1)
n+1 n+1

5k€<

]

1
' n—1

For any 0 € [O ), by Proposition VL9, the p,,1-orbit of Jump, ;(d) does not intersect

T:%1;(6). By the above proposition, we see that the image of Jump, ; does not intersect

(W', ).

Critically pre-periodic parameters

Now assume that A\ has pre-period ¢ > 1 and period k£ > 1. Choose an angular coordinate
0 € Q,(c), and let c, ;g be the landing point of ¢ = Jump,, ;(¢) (mod 1).

Proposition VIL.15. Q,,1(c, ¢) = Jump,, ;(Q.(c)); in particular, ¢ and c, ;g have the

same number of angular coordinates.

Proof. By Proposition VIL.10, Jump,, ;(2.(c)) © Qny1(cnje). Given ¢ € Q1 1(cnj0) with
¢' # ¢, the py1-orbit of ¢’ does not intersect T ;(¢'). By Proposition VII.2, there exists
an angle 0’ € [O, ﬁ) with Jump,, ;(¢') = ¢’ (mod 1).

Let v be the kneading sequence of §. Note that the itinerary of ¢’ with respect to ¢ is 7.
By construction, we can show that the itinerary of # with respect to 6 is v. This implies

that in the dynamical plane of 2" + ¢, the ray at angle 6’ lands at ¢. Thus, the parameter ray
R,(0") lands at ¢ in M,,, implying ¢’ € Jump,, ;(Q2,(c)). ]

1
in the parameter plane. By Proposition VI.13, A and &, ;(\) have the same dynamics on

Proof of Theorem I.7. Given \ € P, choose ¢ € M,(\) within the subwake (0, n%)

their postsingular sets, which shows (1) in Definition VII.1. The property (3) is clear by
Proposition VII.12.

We show that property (2) is true: given A < pu, there exist angles ,60" € ©,,(\) that land at
the same point in M,,, and a € ©,,(p) such that 0 < o < #’. Without loss of generality, we may
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(a) A few PCF parameters in Ps

o .
» b,
(b) An illustration of & : Po — Ps (c) An illustration of £ 1 : Py — Ps

Figure 7.3: Images of a few parameters in P, under & and & ;. Parameters in the top
picture are mapped to those in the bottom row pictures with matching number labels
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assume that the landing point in M,, of the parameter rays at angles 6, # is within the subwake
<0, ﬁ) By monotonicity of Jump, ;, we have Jump, ;(#) < Jump, ;(a) < Jump,, ;(6").
By definition of &, ;, for all \ e P, Jumpw-(@n(X)) c @n+1(8n7j(X)). This shows that
Eng(A) Q& s(1).

Lastly, we show &, ; is injective. Suppose &, ;(A) = &, ;(N) = p for A # X. Pick monic

1

representatives ¢, ¢’ for A, \’ respectively that are in the sub-wake {0, — ).

e If ¢ is critically periodic, let 6,6 be the companion pair in €,(c) and a,a’ be the

companion pair in €,(c’). Without loss of generality, assume

1
n—1

0<h<b <a<d<

which implies
0 < Jump,, ;(#) < Jump,, ;(#') < Jump,, ;(a) < Jump,, ;(a’) < -
By Proposition VIL5, (Jump, ;(#), Jump, ;(¢')), and (Jump, ;(a), Jump, ;(a’)) are
companion pairs. The above inequality implies that they land on different hyperbolic

components, but since both components are in the sub-wake (0, %), the centers of these

components cannot both be monic representatives for p. This presents a contradiction.

e If ¢ (and therefore ¢’) are critically pre-periodic, choose 0,6 € Q,(c) and «, o’ € Q,(¢).

Again without loss of generality, we may assume

D<b<b <a<d<
n—1

1
0 < Jump,, ;(#) < Jump,, ;(¢') < Jump,, ;(a) < Jump,, ;(a’) < -

Let = be the landing point of Jump,, ;(#). Proposition VIL.15, Q,,1(z) = Jump,, ;(2,(c)),
and so Jump,, ;(a) and Jump,, ;(a’) land at y # z. Since x and y are both in the sub-

wake (0, %), they are not both monic representatives of u, which is a contradiction.

]

Figure 7.3 illustrates &, &1 : P — Ps on a few input points.

Remark VIL.16 (Distinctness of the & ;s). Given any degree n, let 6 be pre-periodic angle
under u,, whose orbit intersects every static sector. For example, as in Remark VI.16, we
can take 0 to be 0x1x5 - x,_1 in base n where x; =i for 2 = 1,2,---n — 1. Then for distinct

elements 7,7 in {0,1,---,n — 1}, we saw that Jump, ;(#) # Jump, 5(#). Moreover, it is
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easy to see that the angles Jump,, ;(¢) and J umpm;(@) do not share a degree n + 1 kneading
sequence . Let A € P, be the unique element with 6 € ©,,(\). By the above discussion, we
have &, j(\) # &, 5(N).
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CHAPTER VIII
Dynamical Approximations for Postsingularly Finite

Exponentials by Unicriticals

Our focus in this chapter is to prove Theorem [.5. With this end in view, throughout this
chapter we fix A € P and s € ©,(\). Let £ and k be the pre-period and period respectively of
s under left shift. First we define a sequence of polynomial Thurston maps G, , : (R? A,) O
that converge topologically to ;.

Next we obtain a sequence of angles (6,,) such that G, ; and F,, g, are Thurston equivalent

for every n. We prove that these angles 6,, also satisfy the growth condition

m (mod 1)

for some polynomial () with integer coefficients that satisfies deg @ < ¢ + k — 2. Letting \,
be the unique point in P,, such that 6, € ©,(\,), we then show that p, \, — p\ as required.

VIII.1: Construction of the maps G,

Let N(s) =1+ 2(max,, |s,| + 1).

Recall the construction of the graphs S&%(s) and S (s) from Section I1.4.2; and let e;
denote the singular value of the map G, : S&(s) — Su(s).

Choose a real number R > 0 such that Dg contains A; and D(e;, 1/R) does not contain
any other points of A,. Let ER = 0Dy and consider the lift g = Q;l(B\R). This is a simple,
unbounded arc on R2. Let v; be the leg of S¢(s) landing at e;. Since BR intersects v,
exactly once, the path 3 intersects each leg p, exactly once, and divides R? into two connected
components: one of them contains g;l(A§)7 and the other one contains some right half plane.

Similarly, let &p = dD(ey, 1/R). Then ar = G;'(ag) is a simple unbounded arc in C,
and divides C into two connected components: one of them contains G, '(A,), and the other
one contains some left half plane.

Let N = N(s). We note that |s,,| < 252 for all m € N. Givenn > N, let r,, = —|n—3/2].
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Then A, is contained in the infinite closed strip bounded by p,, and p,, +,—1, and this strip
intersects exactly n lines {p, , Pr, 41, s Prpan_1}- Let (Ry)n=n be a sequence of real numbers
such that R,, — oo, the disk Dp, contains Ay, and the disk D(e;, 1/R,) does not contain any
points of A other than e;. For n > N, let D,, be the compact region bounded by ag,, Bg,,, Pr,
and p, 1,1, and D/ be the closure of the connected component of C\(asg, U pr U Prir_1)
containing As.

Let IA(n = Sy(s) n D!. Define a new graph K,, from [?n by contracting all points on
QaR, N K, to a single new vertex a,, and attaching a new vertex at co. This can be done in
such a way that K,, n D, = Sy (s) n D,. By this construction, it is easy to see that (K, a,)

is a generalized spider.

Proposition VIIL.1. For every n = N(s), the map G4|D,, as above can be extended to a
degree n. Thurston map G, s : (R?, Ag) O. The sequence (G, ) converges toopologically to Gs.

Proof. Let G, s = Gs|Dy,.

Let P be the set {p, ,pr,+1, " s Pro+n_1}. For every j € {r,,r,+1,---r, + n — 1}, let
¢; be the unique edge of K, that begins at a, and coincides with p; on D,, and ¢; < ¢;
be the segment from a,, to the unique point b, € p; N ag,. Observe that the intersection
7 N dD(ey, 1/R,) contains a single point, namely G(b,,).

We extend G, s to ¢; (and hence, ¢;) by mapping ¢; homeomorphically to v, N D(e1, 1/R,)
in such a way that G, s(a,) = e;. Similarly, for each j € {r,,r, +1,-- -7, + n —2}, let A; be
the triangular region bounded by ¢;, gj+1 and ag,. Using the Alexander trick, we can define
Gns on int(A;) so that it maps homeomorphically to D(ey, Rin)\%.

Similarly, for every j as above, we extend G, 5 to the unbounded component of D)\ (p; u
pj+1 U Br,) so that said component maps homeomorphically onto C\(Dg, U 71).

Lastly, let A be the unique unbounded face of (C\}A(n By the Alexander trick, we can
extend G, , to A so that int(A) is mapped homeomorphically to C\y;.

By this construction, for every n = N(s), G, s maps K,, onto Sy (s), and its restriction to
the plane is a degree n Thurston map with postsingular set A,. Since (D,,) is an exhaustion
of the plane and G, 4|D,, = G,, we see that the sequence (G, ) converges topologically to
Gs- O

Remark VII1.2. For every n = N(s), we note that the legs of the generalized spider (K, a)

coincide near oo with the legs of S¢*(#) bounded between p,. and p, i, 1.
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VIIIL.2: Construction of the angles (6,)

Definition VIII.3. Given ¢ € Z>q, k € Z>, and Q € Z[X], let kg : Zsy — Q/Z be the

function n +— (Z[(:Lﬁ(f;) (mod 1).

Proposition VIIL.4. For n > max,, |s,|, let 0,(s) be the angle with n-adic expansion

21(n)x2(n) - Te(n) e (n)Tesa(n) - - - Tpr(n) given by

Sm Sm =0

n—|Sm| Sm <0

for all m e N.
Then there exists an integer j € {0,1,--- ,N(s) — 1} and a polynomial QQ € Z[X]| with
deg @ < { + k — 2 such that

for alln = N(s).

Remark VIIL.5. We note that the expansions .z1(n)za(n) - - xe(n)zp1(n)zee(n) - - - zorr(n)

of 0,,(s) given above also “converge” to s = sys9--- in a combinatorial sense.

Before we prove the above proposition, we will need one more statement.

Proposition VIIL.6. Given integers { = 0,k = 1 and polynomials Q, @ € Z[X] , if there
exists a polynomial H € Z[X] such that Q(X) — Q(X) = H(X)X (X* -1+ X+ 24 ... 41),

then the functions kg and kg coincide.

Proof. We note that in Q[XT],

~

(X -1D)QX) (X-1)Q(X) (X-1DHX)XY X+ XFI4...41)

XXk —1) XOXk—1) XXk —1)
= H(X)

Since H € Z[X], we have kg(n) — k5(n) = H(n) =0 (mod 1) for all n € Zs». O

Proof of Proposition VIII.j. Let N = N(s) = 1 + 2(max,, |s;,| + 1). For all m € N, and
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Figure 8.1: The standard spiders §n(9n(§)) for n =5,6,7,8,9, when s is set to 000(—1)0010.
The dotted lines indicate the additional legs in S¢**(6,,(s)). The leg labelled m corresponds
to ™ (6, (s)). Compare with Figure 2.5.
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Sm

Recall that s; = 0. The interval (852, £43) contains at least one integer j in {1,2,--- , N—1},

and for any such j, for all n > N, it is easy to see that

0, € [O, ;)

n—1
Ony1(s) = Jump,, ;(6,(s)) (mod 1)

We can think of the coefficients x,,(n) as values taken by polynomials z,, € Z[X]. More

particularly, for each m € N, define

Then,
Q) N #mln) v Tew(n)
-3
nf(nk —1) ~ & pm ik (pk — 1)
¢ Ok
_ xmfnn) N Z Tm(n)
m=1 n m=L+1 nm( - #)

Since z1(X) = s, = 0 and 25(X) is either constant or linear in X, the degree of Q is less
than or equal to £ + k — 1. If deg@ <Ul+k—2,set Q = @ Otherwise, note that @ has
degree ¢ + k — 1 if and only if 22(X) = X — |so|. In this case, the leading coefficient of Q is
1, and we set Q(X) = Q(X) — X/(XF1 + XF2 4 4+ X +1).

The polynomial @ € Z[X] thus defined has degree < ¢ + k — 2, and by Proposition VIIL.6,
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it satisfies

kg(n) = rka(n) = (n—1)0u(s) (mod 1) Vn € Zz,

Example VIIL.7. Given r € Z, for s = 07, we have two separate cases:

o If 7 > 0, then N(s) = 2r + 3, 6,(s) =
QX) =r.

o If r <0, then N(s) = 2|r| + 3, 0,(s) = n?;ﬁ') = On — |r| in base n, for all n > N(s),
and Q(X) = —|r| =r.

2y = OF in base n, for all n > N(s), and

Example VIIIL.8. Let s = 000(—1)0010. We have N(s) = 5, and for all n > N,

— nd-nt+1

We note that Q(X) = X4+ X — 1.
In fact, letting 6 = an
all n = N(s). Compare this with Example VI.4.

we have 0,,(s) = Jump,,_,, oJump,,_,,0--- o Jump,,(¢) for

Next we show that for all n > N(s), with 6,,(s) defined as in Proposition VIII.4, the map
Gp.s from Section VIII.1 and the polynomial Thurston map F, g, from Definition II.4.1 are

Thurston equivalent.

Proposition VIIL.9. Let N := N(s), 0 := Ox(s) be as defined in Proposition VIII.j. Let

r= % — % The circular order of the legs of S§F*(0) at oo coincides with the circular order of
the set of addresses Oy (s) U {rs,(r +1)s,---,(r +n—1)s}.

Proof. 1t suffices to prove the following claims:
Claim 1. The angles in On(0) and the addresses in Oy (s) have the same circular order.

Claim 2. For every j e {r,r+1,--- ,%},

if j > 0, then p°" 1 (s) € T3 (s) — uy™"(0) € TR (0)
if j < 0, then p*™D(s) € T35 (s) = ™ "(0) € TR, (6)

Proof of Claim 1. Suppose ij(m‘”(a) < u%m/_l)(Q) for some integers m # m’, then
T (N) T 1 (N) -+ < Tyt (N) Ty 1 (N) -+
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where the digits x,,(N) are as defined in Proposition VIII.4. Let r > 0 be the least integer

such that z,,4(N) # @ (N). Then for all ¥ < r, there are two possibilities:
o If0 < $m+r’(N) < %) then Smtr! = l'm-i-r’(N) = xm’-&-r’(N) = Sm4r'-

e Else, we have 2 <z, «(N) < N—1, and thus, $;m4r = Tyt (N) =N = Zppyr i (N) —

N = Sy

This implies, for all ¥’ < r, that s, = Sy

At the index m + r we have ., 4(N) < Zp4-(N). There are only three possibilities:

o If xm’Jrr(N) < %) then SmAr = merT(N) < xm’+r<N) = Sm/+r-

o Ifz, . (N) = %, then S;yir = Timar(N) = N < Ty (N) = N = Sy
o If z,, (V) < % and x4, (N) = %, then s,,., > 0 and s,,/4, < 0.

In the first two cases, we directly get u°™Y(s) < p°™ V(s). In the third case,
pe = (s) > 0 and p°™ Y (s) < 0. Thus p°™Y(s) << p°m=V(s).

Lastly, if u ™ "(6) = &ir | then x,,(N) = r and 2,y (N) = 0 for all m’ > m. The latter
condition implies s, = 0 for all m’ > m.
o If 0 <r <223 then p°m=Y(s) = r0.

o If 22 < r < N —1, then p°om=V(s) = —cD.

Proof of Claim 2. First assume j > 0. If p°(m(s) € T35 (s), then there are two cases:

o If js < pu°m=Y(s) < (j + 1)0, then we note that s,, = j. Thus z,,(N) = s,, = j. This
assumption also implies that s < u°"(s) < 0. By the proof in Claim one, we have

6 < u3(6) in [0,1), and thus, % < p3™ 7V (9) < L,

e Else, we must have (j +1)0 < u°™~Y(s) < (j + 1)s. In this case, 7,,,(N) = 5., = j + 1,
and by an argument similar to the one above, we see that ]%1 < u%mfl)(ﬁ) < (’“”%

are in counterclockwise order.

This shows that g™ "(6) € T9(0).
The case j < 0 follows from a similar discussion, and using the fact that if s,, < 0, then
Tm(N) = N + s, by definition. [ |

O
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Figure 8.2: The star marks the position of A ~ 1.16302 + 0.71056%, the landing point of the
parameter ray at address 000(—1)0010 in the exponential parameter plane, indicated in blue

Proposition VIIL.10. Let N = N(s). For all n = N(s), the maps F,y, and G, are

Thurston equivalent.

Proof. Using the general argument followed in Proposition VIIL.9, it is easy to see that for
every n € N(s), the generalized spider K, from Section VIIL.1 is congruent to S<*(6,,(s)) for
all n > N. Therefore, by Proposition I1.51,the maps J,, g, (s) and G, s are Thurston equivalent
for every n € N.

]

VII1.3: Proof of Theorem 1.5

Let G, : (R* Ay) ©,n > N := N(s) be the sequence of Thurston maps constructed in
Proposition VIIL.1. By Main Theorem 1.4, the operators o,, := og, , defined on T(S?, A;u{0})
converge locally uniformly to the operator o := og,. Let 7 € T(S? A, u {o0}) be the fixed
point of o.

Fix n = N. Let A\, € P, be the unique point such that 0,(s)) € 0,()\,). Since
Gs ~comb Fron(s) comb Pnr,, there exists a unique fixed point 7, € T(S?, A, U {o0}) for the

operator o,,.
Proposition VIII.11. The sequence of polynomials (pn.x,) converges to py locally uniformly.

Proof. 1t is possible to prove this using Theorem V.9; however, we give a different proof here.
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(¢) oo ~ 1.1575 + 0.72671i (d) Agoo ~ 1.15891 + 0.71869;

Figure 8.3: Approximating parameters (A,) for A ~ 1.16302 + 0.71056¢, angular coordinates
given by 000(n — 1)0010 in base n. Compare with Figure 8.2

Recall that ey = Gg(e1) = Gns(e1) and e3 = Gy(ey) = G, 5(eq) for all n > N. It suffices to
show that A\,, — A.
By Corollary I11.13, we know that dr(7,,7) — 0 asn — . Let o € 7, ,, € T,,n = N be

representatives that satisfy

p(0) = pn(0) = ©
ple1) = puler) =0
p(e2) = A

pnle2) = Ay

for all n > N.
There exists ¢ € 7 that satisfies ¥(00) = 0, 1(e1) = 0, and ¥(ez) = X\. We note that
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poGsot =py.
Similarly, for every n # N, there exists 1, € 7,, that satisfies 1, (00) = w0, 1, (e1) = 0 and
ty(ea) = A\p. We note that ¢, 0 G, 09, = p,,. Let @, = %gpn Note that @, € 7,,, and

Pn © Gns 0Pyt = P

Since 7,, — T, there exists a quasiconformal map & : C—C isotopic to ¢ rel. A; U {oo}
and for every n > N, a quasiconformal map k, : C—C isotopic to @, rel. A; U {oo} such
that K (k, o k') — 1. Then the sequence of maps k, o k~* fix the three points o0, A and 0.
By Propositions I1.5 and V.8, A, := k, o k~'|C — id¢ uniformly on compact subsets of C.
Let ¢ = p(e3) = k(e3) and ¢, = h,(c); observe that

Pn(es) = kn(es) = cn — ¢ = p(e3)

We also note that ¢, = ppa(A\n), and ¢ = py(A). Letting r,, = |e,/A|, 7 = |¢/A|, w, = arg(cn/N)
and w = arg(c/\), (where arg(c/\), arg(c,/A) are all chosen to be in [—7, 7)), we have

A=1Inr+wi+2mi(sy — s1) = Inr + wi + 27wisy
o, (e —
A = (2 esp (22) exp (M) -1)
n n

where z1x9x3.... is the n—adic expansion of 6,(s) given in Proposition VIIL.4. In particular,

we have
1 = 81 = O,
S9 Sp = 0

n + sy otherwise

Hence, we have exp(2mi(zy — x1)/n) = exp(27misy/n). So the equation for A, becomes
o, + 2
Ap = n((rn/r)l/” exp (—Zw hl 7r252> - 1)
n

Let U be a bounded neighborhood of ¢ that contains no other point in $(A,), and V
be the connected component of py'(U) containing A. Similarly, let V,, be the connected
component of pr_hl)\(U ) containing A. Then, using an argument similar to the one in the proof
of Proposition V.3, we see that for n sufficiently large, there exist local inverses ¢, : U — V,

of pua|Vi, such that ¢, — ¢ uniformly on U, where ¢ : U — V is the local inverse of p,|V.
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We note that g, and ¢ have the following formulae: for all z € U, we have

q(z) = In|z/A| + iarg(z/A) + 2misy

4n(2) = n(\z/)\ll/” exp <@'arg(z//\) + 27Ti52) B 1)

n

where arg(z/\) is chosen to be in [—7, 7). Comparing with the formula for \,, we see that

for n sufficiently large so that ¢, € U, we have

An = nlcn) = qlc) = A
[l

Proof of Theorem 1.5. The theorem follows from Propositions VIII.4, VIII.9, and VIII.11.
m

Example VIII.12. Let A = 2mir, where r € Z\{0}. The orbit of 0 under py is 0 — 2mir O,

and A has a unique external address, 0r. We have

()= {700 "7
21y r<0

Q) =7
An = n(exp(27m'r/n) - 1)

Example VIII.13. Let A be the landing point of the ray at address s = 000(—1)0010 (its
approximate value is 1.16302 + 0.71056; see Figure 8.2). The orbit of 0 under p, has the
form 0 — X — pa(A) — p2(A) — PP (A) — (N — P (N) ©.

In Example VIIL.8, we computed 6,,(s) = :i(::f_% (mod 1), with n—adic expansion 000(n—
1)0010 =. In Fig 8.3 we have indicated the position of \,(s) for n = 10,50, 100 and 200,

along with approximate values.
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CHAPTER IX
Future Scope

In this chapter, we pose some questions and start some discussions that are highly relevant
to the results presented in this thesis, and connect these to well-known open problems in

transcendental Thurston theory.

IX.1: Obstructed Thurston maps

By Theorem 1.2 and Proposition V.15, we know that for every transcendental Thurston map
f:(R? A) ©, there exists a sequence of polynomial Thurston maps f, : (R?, A) © such that
oy, — oy locally uniformly on T(S?, A U {o0}). We also showed in Corollary III.13 that if f

is realized, then f,, is realized for all n sufficiently large. We are interested in the converse:
Question IX.1. If f, is realized for all sufficiently large n, is f realized?

We give a simple sufficient condition for f to be realized: if there exists a compact set
K < T(S? A u {0}) such that a subsequence of fixed points 7,, of oy, are contained in K,
then by completeness of the Teichmiiller metric, some subsequence of (7,,) converges to a
point 7 € T(S? A U {o0}). It is easy to see that 7 is a fixed point of o;.

If no such set K exists, or equivalently, the sequence (7,) of fixed points of oy, contains no
bounded subsequence, we then need to consider the augmented Teichmiiller space TAF(SQ, AU
{oo}) and classify all the limit points of the sequence (7,) in this space. Note that T(SZ, Avu
{oo}) is the metric completion of T(S?, A U {0} endowed with the Weil-Petersson metric (see
[ , Chapter 7.7]). A related problem is the boundary behavior of o;. Selinger showed in
[ ] that for a classical Thurston map g : S* — S?, the operator o, extends continuously
to T(SQ, Py), and has a fixed point in this space. This raises another question, which is

especially curious since all the oy,’s admit a continuous extension to T(S?, A U {o0}):
Question IX.2. Does oy extend to a continuous map on T(S2, AL {0})?

A fixed point in T(S?, AU {c0}) for o 7 would also provide us with a topological obstruction

for f in the form of a topological multicurve.
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If f is obstructed by a Levy cycle, however, we can show that the f,’s are eventually

obstructed as well.

Definition IX.3. Let f : (R? A) © be a Thurston map. A Levy cycle for f is a multicurve
G =1{Y% =", 7,7, ,Vn1} such that

e for every i € {0,1,--- ,n — 1}, the curve ~; is an essential simple closed curve contained
in R*\A;

e if ¢ # j, then 7; and v, are disjoint;

e for every i € {0,1, -+ ,n — 1}, there exists a connected component n of f~!(v;41) such

that 7 is homotopic to v;_; rel. A, and the map f|n : n — 7,41 has degree one.

By a theorem credited to Berstein, Lei, Levy and Rees (] , Theorem 10.3.8]), it is
known that a polynomial Thurston map is obstructed if and only if it has a Levy cycle. This
creterion was extended in | | for topological exponential Thurston maps. This proof
from | | generalises to show that if a transcendental Thurston map has a Levy cycle,

then it is obstructed. It is not known, however, that the converse is true.

Proposition IX.4. Let f, : (R?, A) © be a sequence of Thurston maps that converge
topologically to a Thurston map f : (R?, A) ©. If G = {0 = Y, V1, V25 s Vr_1} @S a Levy
cycle for f, then for sufficiently large n, G is a Levy cycle for f,.

Proof. Let j € {1,...,7}, and let n; be the connected component of f~1(v;) that is an essential
closed curve that is isotopic to v;_; rel. A, and f|n; : n; — 7; is a homeomorphism. Let
D < R? be a compact set such that 7; < int(D) for all j. Then there exists N € N such that
for all n > N, f,|D = f|D. This implies that 7; is a connected component of f,'(v;), and
fnln; is a homeomorphism onto v; . Thus for all n > N, the multicurve G is a Levy cycle for
fn- O

The above proposition constitutes a partial converse to Corollary II1.13.

IX.2: Approximating tree lifting operators

Let f: C — C be a postsingularly finite holomorphic polynomial. By a theorem of Douady
and Hubbard, it is known that there exists a finite tree Hy < C such that

1. Py c V(Hy);
2. every vertex of degree less than or equal to 2 is an element of P;
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3. f(Hy) = Hy.

This tree is unique, and can be defined as a union of requlated arcs in the filled Julia set of f
(we refer to | , Section 10.4, Definition 10.4.7] for a much more detailed discussion).

Hubbard trees are a powerful combinatorial tool to study PCF polynomials. The question
of which Hubbard trees are realized by polynomials, and whether the tree Hy and the
dynamical system f : Hy © are sufficient to determine f were dicussed by Poirier (see
[Poil0]).

The preimage f~!(H/) contains H; indeed, H; is the convex hull of Py in f~'(H;). More
generally, for any polynomial Thurston map f : (R? Py) ©O with P; = A, for any finite tree
T < C that satisfies the first two conditions above, let T < f~(T) be the convex hull of A
in f~X(T). Then it can be shown that 7" also satisfies conditions (1) and (2). The authors
of | ] used this property to construct an operator Ay : Ty — T4, where T4 is the
set of finite trees in C that satisfy conditions (1) and (2), modulo isotopy rel. A . This
space Ty is countable, and can be realized as a spine for T(S? A U {«0}). The results of
[ | show that f is realized if and only if for every [1'] € Ta, the A; orbit of f lands
in a 2—neighborhood of [H| after finitely many steps.

In our context of approximations, if f, : (R% A) © is a series of polynomial Thurston
maps that converge combinatorially to a transcendental Thurston map f : (R?, A) ©, we can
pose several questions about the sequence of tree-lifting operators Ay, : T4 ©O. For example,
do they converge? Another question is whether it is possible to define the operator A; in
this setting. Recent work in (| |) which defines a homotopy Hubbbard tree for PSF
exponential maps and further examines lifting properties of finite trees, leaves the scope for

this open.
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APPENDIX A
Basic Topology

This chapter summarizes the notation used for various topological objects throughout this

thesis.

A.1: Loops, paths and homeomorphisms

If X is a topological space, then a path o in X is a continuous map «: I — X. Points
x = a(0) and y = (1) are called endpoints of the path o and we say that « joins x with y.
The interior of the path « is the set int(a) := «((0,1)). The path « is called a loop if
a(0) = a(1), otherwise we say that « is a non-closed path. We say that the path « starts at
x € X if a(0) = . When « is a loop, we also say that « is based at .

A non-closed path « is called simple if it has no self-intersections (i.e., a: I — X is
injective). A loop « is called a simple if it has no self-intersections except at endpoints (i.e.,
a(0,1) is injective). A loop « is called constant if the map a: I — X is constant. We often
conflate paths and their images. For instance, for a path o as above and Y < X, we write
a c Y to indicate that a(I) < Y. We say that v < X is a simple closed curve if v = a(I) for
some simple loop « in X.

If a and 8 are two paths in X, then we denote by « - 8 their concatenation; in other
words, the path that first traverses a and then 5. By @ we denote the path in X such that
a(t) =a(l —t) for all t € I. For n € Z, we define o™ to be a constant loop based at a(0) if
n = 0, the concatenation of o with itself n times, if n > 0, and the concatenation of @ with

itself |n| times if n < 0.

Definition A.1. Two paths a: I — X and : I — X are called path-homotopic (or simply
homotopic) if there exists a continuous map H: I x I — X called a homotopy so that
H(t,0) = a(t), H(t,1) = B(t) for all t € [, and H(0,s) = «(0) = 5(0), H(1,s) = a(1) = (1)
for all s e 1.

Let A be a finite subset of X. We say that two paths o and § are path-homotopic relative
A (abbreviated as “a and § are homotopic rel. A” and denoted o ~4 () if @« < X\ A and
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f < X\A are homotopic in X\ A, in other words, H(s,t) € X\A for all (s,t) € I x I, where
H is the corresponding homotopy.

Definition A.2. Given a topological space X and paths v and S in X, we say they have the

same closing behavior if either both « and 3 are closed loops, or if neither is a closed loop.

If X is a topological space and = € X, then by (X, x) we denote the fundamental
group of X based at x, or in other words, the set of all homotopy equivalence classes of
loops in X based at x endowed with the operation of path concatenation. If f: X — Y is
a continuous map between topological spaces X and Y such that f(z) = y, then the group
homomorphism f,: m(X,z) — m(Y,y) is defined as f.([«]) = [f o ] for any loop a = X
based at x, where [-] denotes a homotopy equivalence class. Finally, we say that path o < Y
lifts under f to a path § < X, if a = f o 3, and [ is called the f-lift (or lift under f) of .

Definition A.3. If f: X — Y is a covering map and f(x) = y, then every path « starting
at y has a unique f-lift starting at x, which is denoted by a1 (f, x).
By definition, the path af(f,z) is a loop if and only if [«a] € fom (X, z).

If (X, d) is a metric space, z € X ad « is a path in X, the distance d(z, ) = infe, d(z, ).
For a path «a, and a real number € > 0, N.(«) := {z € X|d(z,a) < &}.

For a topological space X, we denote by Homeo™ (X) of all orientation-preserving self-
homeomorphisms of X . Commonly in the literature, the notation Homeo™ (X, A) is used for
the set of maps in Homeo™ (X)) that fix the set A, however, we will take Homeo™ (X, A) to mean
the set of maps in Homeo™ (X)) that fix A pointwise. We use the notation Homeog (X) for the
subgroup of Homeo™ (X) consisting of homeomorphisms that are isotopic to idx. Similarly,
Homeog (X, A) for the subgroup of Homeo™ (X, A) consisting of all homeomorphisms isotopic
rel. A to idx.

Definition A.4. Suppose that X and Y are topological spaces. We say that homeomorphisms
p: X =Y and¢¥: X — Y are isotopic if there exists a continuous map H: X xI — Y called
an isotopy such that H(z,0) = ¢(x) and H(x,1) = ¢(z) for all z € X, and H(-,t): X =Y
is a homeomorphism for every ¢ € I. We say that ¢ and v are isotopic rel. A for some A < X,
if H(z,t) =z for all (z,t)e A x L

We now list a property of homeomorphisms of disks that we use several times in this

thesis.

Proposition A.5. 1. Every orientation-preserving homeomorphism o : 0D — 0D extends

to a homeomorphism from D to D.
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2. Any two such extensions are isotopic rel. JD.

Proof. There is a more general version of this proposition proved in | , Proposition C2.1],
however we will restate it here. With ¢ as above, extend it to D by setting, for all t € I, z € oD,
©(tz) = tp(z). This is called the radial extension of ¢.

To show item (2), let & be another extension of ¢ to D. For every t € I, define a

homeomorphism ¢, : D — D as follows:

p(z) |z =t
tP(z/t) 0< |z <t

pi(z) =

Then ¢ is an isotopy rel. JD between ¢y = ¢ and 1 = @. O

A.2: Planar embedded graphs

A planar embedded graph is a pair G = (V, E), where
1. V is a discrete (in particular, countable) set of points in R?, and

2. E is a set of simple paths and simple loops (viewed as subsets of R?) such that their
endpoints belong to V, their interiors are pairwise disjoint and lie in R*\V, and every

compact set K < R? intersects finitely many elements of E.

The sets V' and FE are called the vertex set and edge set of G, respectively. Our notion of
a planar embedded graph allows multi-edges (i.e., distinct edges that connect the same pair
of vertices), and loop-edges (i.e., edges that connect a vertex to itself).

A planar embedded graph G = (V| E) is said to be finite if V and E are finite sets. The
degree of a vertex v in G, denoted by degg(v), is the number n; + 2ny, where ny and ny are
the numbers of simple paths and simple loops in E incident to v, respectively (the second
condition above ensures this is always finite). We say that G is k-regular if deg,(v) = k for
every v € V. A subgraph of G is a planar embedded graph G’ = (V’, E’) such that V' c V
and E' ¢ E.

The subset G :=V U |, e of R? is called the realization of G. A face of the graph G
is a connected component of R*\G. The set of all faces of G is denoted by F(G). By the
definition of a planar embedded graph, the set G is closed in R?, and thus, every face F of G
is open. If F'is a face of G, then we denote by 0F the subgraph of G forming the (topological)
boundary of F in R%. The graph G is called connected if its realization G is connected (or
equivalently, path-connected). It follows that G is connected if and only if each face of G is

simply connected. We will often conflate a planar embedded graph with its realization.
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Definition A.6. Let G; = (V4, E;) and Gy = (V3, E5) be planar embedded graphs. The
graph G| is said to be isomorphic to Gy if there exists a homeomorphism ¢ € Homeo™ (R?)
that maps vertices and edges of GGy into vertices and edges of Gy, that is, ¢(V}) = V4 and
©(F1) = Es. In this case, we call ¢ an isomorphism between G and GS.

If ¢ is isotopic rel. A to idg: for some set A = R?, we say that G is isotopic rel. A to Gs.

Suppose that f: U — W is a covering map, where U and W are open subsets of R2. If
G = (V, E) whose realization is a subset of U, then the preimage f~!(G) has a natural graph

structure, given by

V(fHG) = (V)
E(f1Q)) = {a|a = R* is a simple path or a simple loop, and f(a) € £}

We define some common types of embedded graphs below.
Definition A.7. Let G = (V, E) be a planar embedded graph.
e (7 is said to be a cycle if it is finite, connected and 2-regular.

e If (G is infinite, connected and 2—regular, it is called an infinite chain. Any finite,
connected subgraph of an infinite chain is called a finite chain. Note that if a finite
chain has more than one vertex, it has exactly two vertices of degree one, which we call

its endpoints.
e (G is called a rose graph if it satisfies the following conditions:

1. it has a single vertex, called the center;

2. for every edge e € E(G), the bounded connected component of R*\G does not

intersect G.

We say that G surrounds a finite set A = R? if every bounded face of R contains a

unique point of A, and every point of A is contained in some bounded face of R.

Definition A.8. The graph G’ = (V’, E’) is the result of subdivision of an edge e € E(G)
of the planar embedded graph G = (V, E) if G’ is obtained from G by adding a new vertex
in the interior of e. More precisely, there exists v € int(e) such that V' = V u {v} and
E' = (E\{e}) U {e1, ez}, and ey, ey are the closures of the connected components of e\{v}.
In particular, subdividing an edge does not change the realization of the graph, and the

resulting graph is uniquely defined up to an isotopy relative to the set V.
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Let G = (V, E) be a planar embedded graph and e € E be one of its edges. We say
that a continuous map «: I — e is a parametrization of e if (0, 1) is bijective onto int(e).
Two parametrizations a; and as of e are considered equivalent if the function afl o g 18
increasing on (0, 1). We note that every edge e € F(G) admits two distinct equivalence classes

of parametrizations. We call each of these equivalence classes a direction of the edge e.

Definition A.9. We say that a graph G is directed if each of its edges is endowed with a
unique direction (called the forward direction). A choice of forward directions for all edges of
a graph G is also called an orientation of G. Directions that are omitted from the orientation

of G are called backward.

In a similar way, we introduce notions of forward and backward parametrizations of the
edges of the directed graph G. If v is a vertex of G and e is an edge incident to v, then there
is a natural way to call e incoming or outgoing at v unless e is a loop-edge.

Suppose that ®: G; — (G5 is a continuous map, where (G; is a planar embedded graph
and G is a directed planar embedded graph, such that ®~1(V(Gs)) = V(G;) and ®|int(e) is
injective for each edge e € E(G7). The map ® and the orientation of the graph G5 naturally
induce an orientation of the graph G;. Indeed, we choose a forward direction for e € E(G)
so that if « is a parametrization of e, then « is forward if and only if ® o « is a forward
parametrization of the edge ®(e) € E(G3). Similarly, there is a natural way to define forward
directions for a subgraph and graph obtained by a subdivision of an edge of a directed planar

embedded graph.

Definition A.10. We say that a directed planar embedded graph G = (V, E) is unilaterally
connected if for every pair of vertices u,v € V, there exists a path o with endpoints at u and

v that is obtained by concatenation of forward parametrizations of edges of G.
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