
Transcendental Thurston Theory and
Dynamical Approximations

by

Malavika Mukundan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in The University of Michigan
2024

Doctoral Committee:

Professor Sarah Koch, Chair
Professor John Hamal Hubbard
Professor Vilma Mesa
Associate Professor Giulio Tiozzo
Assistant Professor Jennifer Wilson



Malavika Mukundan
malavim@umich.edu

ORCID iD: 0000-0003-4783-0231

© Malavika Mukundan 2024

All Rights Reserved



To my Amma and Appa

ii



ACKNOWLEDGEMENTS

This work was partially supported by the National Science Foundation under Grant No.

DMS-1928930.

I would like to thank my advisor Sarah Koch for her constant support and guidance

throughout the years of my Ph.D., and for teaching me to be independent as a mathematician.

She encouraged me to apply to the MSRI semester in complex dynamics in Spring 2022,

which is where I met my future collaborators and began most of the work outlined in this

thesis. It was a phenomenal experience which exposed me to a great deal of new math and

made me excited to work in complex dynamics. I thank John Hubbard for his guidance,

and his constant enthusiasm and interest in my work. He gave my very first problem to

work on. I am grateful to Dierk Schleicher for his constructive feedback throughout the

process of working on the projects outlined in this thesis, and for expanding my research

horizon. My special thanks to Lasse Rempe and Giulio Tiozzo for all their insights and

encouragement, and for their efforts in including me in their local mathematics communities.

Moon Duchin has been an inspiration from whom I have learnt so much about navigating

academia. Working in her MGGG Redistricting lab has been one of the best experiences of

my life.

It has been a pleasure working with my collaborators Nikolai Prochorov and Bernhard

Reinke, and I look forward to all our future interactions. I have greatly benefitted from

mathematical and professional conversations with Kevin Pilgrim, Dylan Thurston, Núria
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ABSTRACT

A holomorphic map is said to be postsingularly finite (PSF) if it has finitely many singular

values and every singular orbit is finite. If every singular value is a critical value, a postsingu-

larly finite map is also called postcritically finite (PCF). As shown by Douady and Hubbard

in their study of the Mandelbrot set, these maps are crucial in understanding the structure

of parameter spaces, and can often be determined by a finite amount of combinatorial data.

Thurston’s theory considers a certain class of continuous maps with a finite postsingular set

and asks when such a map is equivalent to a holomorphic PSF map. While this theory was

initially introduced by William Thurston for topological analogs of rational maps on the

sphere, the last few decades have seen a push to generalize this theory to topological analogs

of entire maps on the plane, starting with the work of Hubbard, Schleicher and Shishikura

on topological versions of exponential functions. In this thesis, we explore the relationship

between finite and infinite degree Thurston theory, and use this relationship to establish

dynamically meaningful approximations for PSF entire functions by PCF polynomials.

xi



CHAPTER I

Introduction

For an entire function g : C ! C, a critical value of g is a point y P C for which exists a

point x P g´1pyq such that g1pxq “ 0; an asymptotic value is a point a P C for which there

exists an arc γ : r0,8q ! C with the property that γptq ! 8 and gpγptqq ! a as t ! 8.

The critical values and asymptotic values of g are collectively called its singular values; they

can be equivalently characterized as the points in C where some branch of g´1 does not exist

locally.

The structures of the Fatou, Julia and escaping sets of an entire function g are known to

be highly dependent on the iterative behavior of the set of singular values Sg (see [Mil06],

[Fat26], [EL89], [BKL91] and [Er9]). Generally, the dynamical behavior of entire functions is

markedly different from that of polynomials. However, certain classes of entire maps show

many similarities with polynomials in their dynamical behavior. One such class is the family

of entire maps g with |Sg| ă 8, for which Sullivan’s theorem on non-wandering domains holds.

For general entire functions g, the relationship between the dynamical system g|Sg : Sg −! Sg

and the existence of Fatou components such as Baker and wandering domains, which are

unique to the transcendental setting, has been studied in [BHK`93], [Bak63], [Bak76] and

[Bak84].

Singular values also come into play in the study of parameter spaces. The complicated

structure of the Mandelbrot set, for instance, can be explained using special maps that satisfy

the property of postsingular finiteness (see [DH84], [Sch04]); an entire map g is said to be

postsingularly finite (or PSF) if its postsingular set, defined as Pg “
Ť

ně0 g
˝npSgq, is finite.

If, as in the case of polynomials, there are no asymptotic values, a postsingularly finite map

is also said to be postcritically finite (or PCF in short).

While it is hard to overstate the importance of PSF functions, a huge challenge in utilizing

these is that they are hard to find: it is difficult to answer questions such as “what is a

transcendental entire map g with a hundred singular values, with each singular value fixed

under g?”

1



I.1: Classical Thurston Theory

One of the major breakthroughs in complex dynamics is William Thurston’s program to

construct postcritically finite rational maps on pC with prescribed iterative behavior on their

set of critical values, by starting with orientation-preserving branched covers of the sphere S2.

For such a map f , we let Sf denote the set of critical values (which may now include the

point at infinity), and define Pf as the closure of the union of singular orbits, as above. The

function f is called a Thurston map if the set Pf is finite. Two Thurston maps f and g on S2

are said to be combinatorially equivalent if there exist homeomorphisms φ0, φ1 P Homeo`
pS2q

which are isotopic rel. Pf such that the following diagram commutes:

pS2, Pf q pS2, Pgq

pS2, Pf q pS2, Pgq

φ1

f g

φ0

If a Thurston map is combinatorially equivalent to a PCF rational map, then it is said to

be realized. Otherwise, it is said to be obstructed. It is useful to think of realizability of a

Thurston map as the existence of a holomorphic model for that map. The core of Thurston

theory is a pathway to determine whether a given Thurston map is realized. However,

it is known that the case |Pf | “ 1 does not occur, and if |Pf | “ 2, then f is Thurston

equivalent to z 7! zdeg f (see [Hub16, Corollary 10.6.6]). Associated with every Thurston map

f with |Pf | ě 3 is an operator called its Thurston pullback map, denoted σf , which acts on

the Teichmüller space TpS2, Pf q. The realizability of f is equivalent to a condition on the

dynamics of σf :

Theorem I.1 (Thurston’s theorem; [Hub16, Theorem 10.6.4]). A Thurston map f on S2

with |Pf | ě 3 is combinatorially equivalent to a postcritically finite rational function if and

only if the Thurston pullback map σf has a fixed point in TpS2, Pf q.

For a rational Thurston map f on the sphere with hyperbolic orbifold (see [Hub16,

Definition 10.1.9]), Douady and Hubbard also proved Thurston’s criterion, which gives an

equivalent condition for f being obstructed. Somewhat surprisingly, this condition is purely

topological: f is obstructed if and only if it does not have a certain invariant multicurve with

special properties under iteration. In [HS94], Hubbard and Schleicher further studied the

special case of unicritical polynomials, and provided an answer for the realizability problem

in terms of an operator called the spider operator, which emulates the behavior of Thurston

pullback but is distinct from the latter.
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I.2: Thurston Theory on the plane

Thurston’s program was first extended by Hubbard, Schleicher and Shishikura ([HSS09]) to a

class of maps on the plane which were topological analogs of PSF exponentials. Following

their work, there has been a drive to generalize Thurston’s work even further, to topological

analogs of general PSF entire maps.

Formally, a Thurston map on R2 is a continuous function f : R2 ! R2 which satisfies

three properties: (1) at each point x in the domain, f locally “looks” like z 7! zd for some

d P N that depends only on x; (2) f is postsingularly finite; (3) f has stable parabolic type.

Condition (3) is equivalent to the statement that for any complex structure (i.e., maximal

holomorphic atlas) A on R2 such that pR2,Aq has the conformal type of C, the Riemann

surface pR2, f˚Aq obtained by pulling back A also has the conformal type of C. Under this
formulation, for every orientation-preserving homeomorphism φ : R2 ! C , there exists an

orientation-preserving homeomorphism ψ : R2 ! C unique up to post-composition with an

affine map, such that the function φ ˝ f ˝ ψ´1 : C ! C is entire. Thurston maps on R2 can

have finite or infinite degree: those of the former type are said to be polynomial, and the

latter are referred to as transcendental. Note that polynomial Thurston maps can be thought

of as Thurston maps on S2 in the classical sense, which additionally satisfy the condition

f´1p8q “ t8u.

As in classical Thurston theory, two Thurston maps f and g on R2 are said to be

combinatorially equivalent if there exist homeomorphisms φ0, φ1 P Homeo`
pR2q which are

isotopic rel. Pf , such that φ0pPf q “ φ1pPf q “ Pg, and g “ φ0 ˝ f ˝ φ´1
1 . We say f is realized

if it is combinatorially equivalent to a postsingularly finite entire function, and obstructed

otherwise. For a Thurston map f on the plane, the Thurston pullbak operator σf is similarly

defined, but in this setting it acts on the Teichmüller space TpS2, Pf Y t8uq. This operator

σf has a fixed point if and only if f is Thurston equivalent to a PSF entire map.

By a theorem due to Berstein, Lei, Levy and Rees ([Hub16, Theorem 10.3.8]), a polynomial

Thurston map is known to be realized if and only if it doesn’t have a topological multicurve

called a Levy cycle. Conditions for being obstructed are not fully understood for transcendental

Thurston maps, outside of the case |Sf | “ 1 handled by Hubbard, Schleicher and Shishikura,

where it was shown that f is realized if and only if it does not have a Levy cycle. Since then, it

is conjectured that the Levy cycle criterion holds for larger spaces of transcendental Thurston

maps. Presently, understanding equivalent conditions for being obstructed remains one of

the most important open questions in complex dynamics. However, the striking similarities

between the topological exponentials studied in [HSS09] and unicritical polynomial Thurston

maps motivates the question of whether there is a more direct link between Thurston theory

3



in the polynomial and transcendental regimes.

This thesis explores the relationship between Thurston theory in the polynomial and

transcendental settings. Our driving force is the philosophy of approximation: we are

interested in approximating transcendental Thurston maps and their pullback operators

by corresponding polynomial objects. We will also present results that utilize this link

between polynomial and transcendental Thurston theory to construct dynamically meaningful

approximations for transcendental entire functions. Furthermore, in Chapter IX, we provide

detail on possible future applications of our results in tackling the question of realizability for

transcendental Thurston maps.

We summarize our results in the remainder of this chapter.

I.3: Main Results

I.3.1: Approximating Thurston pullback maps

This thesis studies ways to approximate a transcendental Thurston map by polynomial

Thurston maps. Through Chapters III, IV and V, we present joint work with Nikolai

Prochorov and Bernhard Reinke.

In Chapter III, we introduce two notions of convergence for a sequence of Thurston

maps pfnq.

Given a sequence of Thurston maps fn : R2 ! R2, n P N and a Thurston map f : R2 ! R2

such that Pfn “ Pf “ A for all n P N, the maps fn are said to converge to f topologically

if for every compact subset K of R2, fn|K coincides with f |K for all n sufficiently large.

While this is seemingly a strict notion of convergence, it is equivalent in a certain sense to

combinatorial convergence, which, loosely, only requires that loop-lifting under fn eventually

resemble loop-lifting under f .

More formally, for f and fn as above, we say that fn ! f combinatorially if there exists

a point t P R2zA and points b, bn with fpbq “ fnpbnq “ t for all n P N, such that the following

condition is satisfied: for every loop γ Ă R2zA based at t, there exists Npγq P N such that

for all n ě Npγq,

• the lift of γ under f based at b, denoted γ"pf, bq (also see Definition A.3 ) is a loop if

and only if γ"pfn, bnq is a loop;

• if γ"pf, bq is a loop, then it is path-homotopic in R2zA to γ"pfn, bnq.

It is straightforward that topological convergence implies combinatorial convergence; we also

show that if fn ! f combinatorially, then there exists a sequence p rfnq of Thurston maps
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converging topologically to f such that rfn and fn are isotopic rel. A (i.e., rfn “ fn ˝ φn for

some φn P Homeo`
0 pR2, Aq).

Combinatorial convergence of the sequence pfnq implies controlled behavior of the sequence

of pullback operators pσfnq.

Theorem I.2 (Mukundan, Prochorov and Reinke; [MPR24, Main Theorem B]). Let fn : R2 !

R2, n P N and f : R2 ! R2 be Thurston maps with Pf “ Pfn “ A for all n P N. If fn ! f

combinatorially, then σfn ! σf locally uniformly on TpS2, A Y t8uq.

In Chapter IV, we describe a technique of constructing topological holomorphic maps

using covering maps between regular planar graphs, and use it in Proposition IV.15 to

construct, for a given Thurston map f : pR2, Aq ý, a sequence of polynomial Thurston maps

converging combinatorially to f .

Figure 1.1: Rose graph R (top) and its pre-image Γ (bottom) for the PSF function
fpzq “ π cospzq{2, where Pf “ ta1, a2, a3u “ t´π{2, 0, π{2u.

We give a rough sketch of this construction here: we draw a rose graph R based at a vertex

t R R2zA (see Figure 1.1 above), whose edges form a generating set for π1pR2zA, tq. The

graphs R and Γ :“ f´1pRq are both 2|A|´regular, and the restriction f |Γ : Γ ! R is a

covering map. For any exhaustion pKnq of Γ by finite graphs, we construct a sequence of

fn : Γn ! R , where Γn is a finite planar 2|A|´regular graph (see Figure 1.2) containing Kn .

The covering fn also coincides with f on Kn. To end, we show how to extend each fn to a

polynomial Thurston map with postsingular set A, so that the sequence pfnq converges to f

combinatorially. This discussion leads to the following result:

Theorem I.3 (Mukundan, Prochorov and Reinke; Proposition IV.15, together with The-

orem I.4). For any Thurston map f : R2 −! R2 with Pf “ A, there exists a sequence of

polynomial Thurston maps fn : R2 −! R2 with Pfn “ A such that σfn ! σf locally uniformly

on TpS2, A Y t8uq.
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Figure 1.2: Example of a sequence graphs Γn approximating Γ in Figure 1.1 for the function
fpzq “ π cospzq{2. Here the subgraph Kn Ă Γ is the union of all directed paths in Γ with

ď 2n ` 1 edges starting and ending at the point b.

The contraction properties of pullback maps and the local uniform convergence of σfn ! σf

imply that if f is realized, then fn is realized for all n sufficiently large, and the fixed points

of the σfn converge to the fixed points of σf in Teichmüller space.

I.3.2: Dynamical approximations of postsingularly finite entire functions

Say f is an entire map that is realized as the local uniform limit on C of a sequence of entire

maps pfnq. In a broad sense, the approximation fn ! f is considered to be dynamically

meaningful if there is some dynamical property of f that every map fn also satisfies.

Several major results in transcendental dynamics have been derived using techniques gen-

eralized from polynomial dynamics, as well as by developing dynamically meaningful approxi-

mations by polynomials that preserve a prescribed property. Devaney, Goldberg and Hubbard

illustrated a dynamical approximation for escaping exponentials (see [MSRIBDGH86]), and

Kisaka ([Kis95]) provided sufficient conditions for the convergence of Julia sets of sequences

of entire maps.

The question of whether any dynamical approximation by polynomials exists for a given

entire map also has a meaningful formulation at the parameter level. Mihaljević-Brandt

([MB12]) studied the convergence of non-escaping hyperbolic components within spaces of

entire functions, and the authors of [BDH`00] showed that hyperbolic components (and

certain parameter rays) in the space of unicritical polynomials of the form z 7! λp1 ` z
n

qn

converge to hyperbolic components (resp. parameter hairs) of exponential functions of the

form z 7! λ exppzq.

In this thesis, Chapter V is focussed on dynamically approximating postsingularly finite
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Figure 1.3: Pf,Pf
for fpzq “ π

2
cos z. Here, ´π

2
and π

2
are the singular values.

entire maps by polynomials. Generally, for a Thurston map f , we define its postsingular

portrait Pf,Pf
as a weighted graph with vertex set Pf , with an oriented edge from v to fpvq

with weight degf pvq for each v P Pf . This graph is a visual representation of the dynamical

system f |Pf : Pf ! Pf (see Figure 1.3). We say that two postsingular portraits Pf,Pf

and Pg,Pg are dynamically isomorphic if there exists an isomorphism φ of weighted graphs

from Pf,Pf
to Pg,Pg such that φ maps Sf bijectively to Sg. Clearly, the existence of such an

isomorphism implies that f |Pf is conjugate to g|Pg. It is also worthwhile noting that two

Thurston maps that are combinatorial equivalent have dynamically isomorphic postsingular

portraits.

We state our main result below.

Theorem I.4 (Mukundan, Prochorov, Reinke; [MPR24, Main Theorem A]). Let g be a

postsingularly finite entire map. Then there exists a sequence of postcritically finite polynomials

pgnq converging locally uniformly to g such that g and gn have dynamically isomorphic

postsingular portraits for all n P N.

For entire maps with finitely many singular values, the iterative behavior of the singular

values controls the global dynamics ([Sch10]). In a broad sense, in the setting of Theorem

I.4, the “dynamical cores” of the polynomials gn look more and more like the “dynamical

core” of the limiting map g as n tends to infinity. This supplies a contrast with Taylor

approximations phnq for g, where it is possible that the number of critical values of hn tends

to infinity, resulting in the sets Phn having a structure very different from that of Pg.

The combinatorics of the PCF polynomials gn from Main Theorem I.4 also approach

the combinatorics of g in the following sense: let γ Ă CzPg be a simple closed curve and

rγ be a connected component of g´1pγq. If rγ is also a simple closed curve, then, as shown

in Corollary V.6, for any sufficiently small ε ą 0 and sufficiently large n P N, there exists a

unique simple closed curve rγn Ă g´1
n pγq that lies in the ε´neighbourhood of rγ. In particular,

for all sufficiently large n, the curves rγn and rγ are free-homotopic relative to Pgn Y Pg

and, moreover, degpg|rγq “ degpgn|rγnq. If rγ is not a simple closed curve, or in other words,

degpg|rγq is infinite, then for all sufficiently large n, there exists a unique simple closed curve
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rγn Ă g´1
n pγq such that dpz, rγnq ! 0 for every z P rγ and degpgn|rγnq ! 8. For a more detailed

version see Corollary V.6.

Our strategy for proving Theorem I.4 is to first solve an approximation problem for σg on

the Teichmüller space TpS2, Pg Y t8uq. Setting A “ Pg, from Theorem I.3, we get a sequence

of polynomial Thurston maps gn : pR2, Aq ý such that σgn ! σg. Since g is realized, the

maps gn are eventually realized, and the fixed points τn of σgn converge to the fixed point τ

of σg. We then show that there exist representatives ψn, φn P τn such that the polynomials

φn ˝ gn ˝ ψ´1
n are postcritically finite and converge to g locally uniformly on C.

I.3.3: Case study: unicritical polynomials to exponential functions

In Chapters VI, VII and VIII, we explore Thurston theory specifically for exponential

maps and unicritical polynomials. We are mainly motivated by the classical approximation

λp1 ` z
n

qn ! λ exppzq for every λ P C˚ that has, in the past, helped us decode the dynamics

of exponentials. We exhibit approximations for exponential PSF maps and their Thurston

pullback operators by unicritical PCF polynomials and their corresponding Thurston pullback

operators; these approximations, moreover, are meaningful at a parameter level.

We first describe in brief the parameter spaces of unicritical polynomials and exponential

maps. This background material is also recalled in more detail in Chapter II. Fix a degree

n P Ně2. Every unicritical polynomial is conjugate by affine maps to a polynomial of the form

fn,cpzq “ zn ` c. For λ P pC, let pn,λpzq “ λp1 ` z
n

qn. For a unicritical polynomial fn,c which

is not critically fixed, there exists a unique λ P C˚ so that fn,c is affine conjugate to pn,λ. On

the other hand, for every λ P C˚, there are exactly pn´ 1q complex numbers c such that pn,λ

is affine conjugate to fn,cpzq “ zn ` c; we call these values c the monic representatives for λ.

We note that Spn,λ
“ t0u, and that pn,λp0q “ λ. If pn,λ is postcritically finite, there are

exactly two possibilities:

1. 0 is periodic under pn,λ with period k (i.e., the postsingular portrait is a cyclic graph of

length k)

2. 0 is pre-periodic under pn,λ, with pre-period ℓ ě 1 and eventual period k ě 1 (in this

case, the cyclic graph is chain of length ℓ attached to a cycle of length k).

Let Pn denote the set of λ P C˚ such that the unicritical polynomial pn,λ is postcritically

finite. Every λ P Pn is associated with a finite set of angles Θnpλq Ă R{Z, such that the

parameter ray at each angle in this set, which lives in the space tfn,c : c P Cu, lands at some

monic representative c for λ if λ is critically pre-periodic, or on a hyperbolic component

containing a monic representative c if λ is periodic. We call this set Θnpλq the set of angular

coordinates for λ.

8



Similarly, for λ P C˚, we let pλpzq “ λ exppzq and denote by Λ Ă C˚ the set of λ values

for which the orbit under pλ of the set Spλ “ t0u is bounded. Let P Ă Λ be the subset of

postsingularly finite parameters. We observe that for any λ P P, the singular value 0 is

strictly pre-periodic under pλ, and thus the postsingular portrait of pλ looks like that in case

(2) above.

As for the unicriticals, every λ P P is associated with a finite set of sequences Θ8pλq Ă ZN

called external addresses. In broader generality, an external address s is an element of ZN, and

for a subset of ZN consisting of exponentially bounded addresses, each address corresponds to

a simple arc, called a parameter hair, contained in the complement of Λ. For any λ P P , the

set Θ8pλq consists of all external addresses whose corresponding hairs have λ as a limiting

value; in other words, these are exactly the hairs that land at λ.

To summarize, angles and external addresses are combinatorial representations of the

location of postsingularly finite parameters in the spaces Pn, n P Ně2 and the space P . There

is a further analogy between them: for fixed degree n, we can think of angles in R{Z in terms

of their n´adic expansions, which are sequences in t0, 1, ¨ ¨ ¨ , n ´ 1uN

Our main result is the following theorem, proved in Chapter VIII:

Theorem I.5 ([Muk23, Theorem A]). Given λ P P, there exists an N “ Npλq P Ně2 and a

sequence of complex numbers λn P Pn, n ě N such that

1. the sequence ppn,λnq converges to pλ locally uniformly on C, and for all n ě N , the

postsingular portrait of pn,λn is dynamically isomorphic to the postsingular portrait of

pλ;

2. there exists a polynomial Q P ZrXs and integers ℓ, k ě 1 with degQ ď ℓ ` k ´ 2

depending only on λ, and a sequence of angles θn P Q{Z, n ě N , such that θn P Θnpλnq

and pn ´ 1qθn ”
pn´1qQpnq

nℓpnk´1q
pmod 1q, for all n ě N .

The second condition above essentially shows that the n´adic expansions of λ exhibit a

stability condition as n! 8. We show in Proposition VIII.4 that the n´adic expansions of

the θn above converge in a combinatorial sense to an external address of λ.

Theorem I.5 is a refinement of Theorem I.4 for the special case of exponentials.

Our approach will rely on building a combinatorial relationship between the sets Pn and

the set P. The polynomials in Pn can be completely classified by the combinatorial data

contained in their spiders (see for example [DH84], [HS94], [BFH92]). We recall that a spider

for a unicritical polynomial is the finite forward orbit of some dynamical ray landing at its

critical value. Hubbard and Schleicher introduced the approach of using spiders to build

topological models for unicritical polynomials (see [HS94]). They constructed, for each angle
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θ P Q{Z, an abstract graph S2pθq Ă S2 called the degree n spider of θ, and a polynomial

Thurston map F2,θ : S2 ! S2 which leaves S2pθq invariant. The map F2,θ is shown to be

combinatorially equivalent to pn,λ, where λ is the unique parameter in Pn such that θ P Θ2pλq.

Their theory generalises to all degrees n ě 2.

The authors of [LSV08] developed a similar approach for exponentials: for every pre-

periodic external address s, there exists a finite graph S8psq and a Thurston map Gs : R2 ! R2

such that S8psq is invariant under Gs, and Gs is Thurston equivalent to pλ where λ is the

landing point of the parameter ray at address s.

We show in Chapter VI that spiders in one degree are realized in the next:

Theorem I.6 ([Muk23, Lemma 1.1]). For every n P Ně2, there exist distinct maps Jumpn,j :

Q{Z ! Q{Z , j “ 0, 1, 2, ¨ ¨ ¨ , n ´ 1 such that for each j,

1. considering Q{Z as a subset of r0, 1q, Jumpn,j is strictly increasing;

2. for every θ P Jumpn,jpθq, the spiders Snpθq and Sn`1pJumpn,jpθqq are congruent.

The congruency condition above means that the spiders have the same circular order of

edges, or ‘legs’, at infinity. The maps Jumpn,j additionally preserve landing relations between

angles in Q{Z: if two angles θ1, θ2 correspond to parameter rays to Mn that land at the

same point, then Jumpn,jpθ1q and Jumpn,jpθ2q land at the same point in Mn`1.

In Chapter VII, we promote this realization of spiders from one degree to the next, into

an embedding of Pn into Pn`1. First we define a poset structure on Pn, defining λ ◁ pλ if

there exist θ1, θ2 P Θnpλq and θ P Θnppλq such that the parameter rays Rnpθ1q and Rnpθ2q

land together, and θ1 ă θ ă θ2. We call a map from X Ă Pn to Y Ă Pn1 a combinatorial

embedding if it preserves the poset order defined above, and preserves postsingular portraits.

Theorem I.7 ([Muk23, Lemma 1.2]). For every n P Ně2, there exist distinct combinatorial

embeddings En,j : Pn −! Pn`1, for j “ 0, 1, ¨ ¨ ¨ , n ´ 1.

For a fixed λ P P , using Theorems I.6 and I.7, we show that for any external address s of

λ, there exist a sequence of angles pθnq whose degree n spiders are congruent to the spider

corresponding to s, and which satisfy the growth condition (3) of Theorem I.5. We then

construct a topological approximation of Gs by polynomial Thurston maps Gn,s such that

for n large enough, Gs is combinatorially equivalent to Fn,θn . We realize the λn required in

Theorem I.5 as landing points in degree n of the angle θn.
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I.4: Notations and Conventions

• The cardinality of a set X is denoted by |X| and the identity map on X by idX . We

denote by pxnq a sequence of elements xn P X. If f : X ! Y is a map and U Ă X, then

f |U stands for the restriction of f to U .

• We denote by N, Z, R, and C, respectively the sets of positive integers, integers, real

and complex numbers. When X “ N,Z or R and k P X, the notation Xěk will be used

for the set of elements tx : x P X and x ě ku. We can similarly define Xďk. We also

let I “ r0, 1s. By pxnq, we denote a sequence x1, x2, ¨ ¨ ¨ , xn, ¨ ¨ ¨ indexed by the set N.

• If X is a topological space and U Ă X, then U denotes the closure, intpUq the interior,

and BU the boundary of U in X.

• We denote the 2´dimensional plane by R2. We identify the 2´sphere S2 with the one-

point compactification R2Yt8u of the plane. The complex plane C is then the sphere S2

endowed with the standard complex structure. When we are working with C purely as a

topological surface, we will often conflate it with the topological plane R2. In the complex

plane, we let D :“ tz P C : |z| ă 1u, D˚ :“ Dzt0u, H :“ tz P C : Repzq ă 0u. The open

disk of radius r ą 0 centered at z0 P C is denoted by Dpz0, rq :“ tz P C : |z ´ z0| ă ru,

and, for simplicity, Dr is the disk of radius r centered at 0. We denote by pC the Riemann

sphere C Y t8u.

• When we refer to a map between R2 and C, we think of C as a Riemann surface and R2

as a topological surface. When working with holomorphic maps, we will rarely refer to

them as maps on R2; these will be notated as maps on C. For a sequence of entire maps

fn that converge to the identity, we say fn ! idC. If these maps are not holomorphic,

we write fn ! idR2 instead.
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CHAPTER II

Background

II.1: Thurston maps

Thurston maps are topological analogs of postsingularly finite entire functions. In this section

we introduce the background required to define these maps and explore their basic properties.

For the notation used for various topological objects in this thesis, refer to Appendix A.

II.1.1: Topological holomorphicity

Let X, Y be oriented topological surfaces and f : X ! Y be continuous.

Definition II.1. The map f is said to be topologically holomorphic if it is open, has discrete

fibers, and satisfies the property that for every point x P X where f is locally injective, it

is locally an orientation-preserving homeomorphism. We denote by CholpX, Y q the set of

holomorphic maps from X to Y .

An equivalent set of conditions for topological holomorphicity of f is that for every x P X,

there exists a neighborhood U of x, orientation-preserving homeomorphisms φ : U ! D and

ψ : fpUq ! D, and d P N such that φpxq “ ψpfpxqq “ 0 and ψ ˝ pf |Uq ˝ φ´1pzq “ zd for all

z P D.; for a proof, see [Sto28] or [Sto56].

If X “ Y “ R2, the map f is called a topological polynomial if it has finite degree, and

transcendental otherwise.

II.1.2: The type problem

Let X and Y be oriented topological surfaces. We refer to a maximal holomorphic atlas on

X as a complex structure, and denote by ApXq the set of all complex structures on X.

If X “ R2 and A P ApXq, then the Riemann surface pX,Aq is conformally equivalent to

either C or D. In the former case, we say A is a flat structure; in the latter, we call it a

hyperbolic structure. The partition ApXq “ AflatpXq Y AhyppXq decomposes ApXq into flat

and hyperbolic complex structures.
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It is known that we can pull back complex structures under topologically holomorphic

maps (see [LP20, Stöılow’s factorisation theorem] and [BM17, Lemma A.12]) as the following

proposition states.

Proposition II.2. Let f P CholpX, Y q. For every A P ApY q, there exists a unique structure

f˚A P ApXq, such that the map f : pX, f˚Aq ! pY,Aq is holomorphic.

This implies that for any orientation-preserving homeomorphism φ : Y −! SY , where

SY is a Riemann surface, there exists a Riemann surface SX and an orientation-preserving

homeomorphism ψ : X −! SX such that the function φ ˝ f ˝ ψ´1 : SX ! SY is holomorphic.

Now assume X “ Y “ R2, and let f P CholpX, Y q. It is clear that if A P AhyppY q and

f is non-constant, then f˚A P AhyppXq. However, if A P AflatpY q, it is possible for f˚A
to be either flat or hyperbolic. This ambiguity in the comformal type of f˚A is called the

type problem, and was first posed by Speiser in [Spe29]. This problem is hard to solve and

a general solution is still unknown; however, special cases have been resolved in [Ahl35],

[PeiwsS26] and [Rob39].

The map f is said to have stable conformal type if the conformal equivalence class of

pf˚A, Xq is constant over all A P AflatpY q. In this case, the conformal type of f is said to

be parabolic if pf˚A, Xq – C for every A P AflatpY q, and hyperbolic otherwise. Later on in

this section we will explore a class of maps for which the conformal type is stable.

Quasiconformality

Let U Ă pC be a simply connected domain. An orientation-preserving homeomorphism

φ : U ! fpUq Ă pC is K-quasiconformal for K ě 1 if for every annulus V Ă U of finite

modulus, we have

modpV q{K ď modpφpV qq ď KmodpV q,

where modpV q and modpφpV qq are the moduli of the annuli V and φpV q respectively. The

infimum of all values K such that φ is K-quasiconformal is called the dilatation of φ, and

is denoted by Kpφq (in particular, φ is Kpφq-quasiconformal). For further properties and

equivalent definitions of quasiconformal maps, see [Ahl06], [Hub06], or [BF14].

Here we list some properties of quasiconformal maps used in this thesis.

Theorem II.3 (Weyl’s Lemma; [BF14, Theorem 1.14]). If φ : pC −! pC is 1´quasiconformal,

then φ is conformal.

Theorem II.4 ([BF14, Theorem 1.26]). The set of K´quasiconformal homeomorphisms

φ : pC ! pC fixing three points ta, b, cu is compact in the topology of uniform convergence on

compact subsets of pCzta, b, cu.
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Proposition II.5. Let φn : pC ! pC, n P N be a sequence of Kn-quasiconformal maps fixing

three distinct points a, b, c P pC. Suppose that Kn ! 1 as n ! 8, then the sequence pφnq

converges to id
pC uniformly on compact subsets of pCzta, b, cu.

Proof. Let us consider an arbitrary subsequence pφnk
q of pφnq. Theorem II.4 implies that from

pφnk
q, we can extract a further subsequence converging to a quasiconformal limit φ : C ! C

uniformly on compact subsets of pCzta, b, cu. Moreover, from the same theorem, it is evident

that Kpφq equals 1. Theorem II.3 implies that φ is holomorphic. Since it also fixes three

distinct points of pC, it coincides with id
pC.

As the above argument applies to any arbitrary subsequence of pφnq, we conclude that

pφnq converges uniformly on compact subsets of pCzta, b, cu to id
pC.

II.1.3: The Speiser class S

Fix oriented surfaces X and Y , and let f P CholpX, Y q. Given a point y P Y ,

• y is a regular value for f if there exists a neighborhood V of y such that for every

connected component U of f´1pV q, f |U is a homeomorphism onto V ;

• y is a singular value for f otherwise.

we denote by Sf the set of singular values of f . It is important to observe that every

y P Sf , the map f is branched at y. By definition of regular values, it is clear that the map

f |Xzf´1pSf q : Xzf´1pSf q ! Y zSf is a covering.

Let X “ Y “ R2 and f P CholpX, Y q. If Sf is finite, the map f is said to be of finite type.

The set of topologically holomorphic maps on R2 that are of finite type is called the Speiser

class, and denoted S. It is known that maps in class S have stable conformal type (see [Tei20a],

[Tei20b], [Ere04, pp3-4]). In other words, for all f P S, the set f˚pAflatpR2qq Ă ApR2q is

fully contained in either AflatpR2q or AhyppR2q. Also note that if f is of finite degree, then f

belongs to class S and also has stable parabolic type.

For the rest of Section II.1, we assume X “ Y “ R2 and that f P S. In this case we have

a classification of singular values; for every y P Sf , at least one the following is true:

• y is a critical value for f ; in other words, there exists a point x P f´1pyq where f is not

locally injective;

• y is an asymptotic value; or equivalently, there exists an arc γ : r0,8q ! X that leaves

every compact set of X as t! 8, and satisfies limt!8 fpγptqq “ y.

Analogous to [ERG15, Propostion 2.3] and proven in a similar way, we have the following

isotopy lifting property applicable to maps in S.
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Proposition II.6. Let pf : R2 ! R2 be a topologically holomorphic map in class S, with
φ0 ˝ f “ pf ˝ ψ0 for some φ0, ψ0 P Homeo`

pR2q.

Let A Ă R2 be a finite set containing Sf , and φ1 P Homeo`
pR2q be isotopic rel. A to φ0.

Then φ1 ˝ f “ pf ˝ ψ1 for some ψ1 P Homeo`
pR2q isotopic to ψ0 rel. f´1pAq.

II.1.4: Properties of topologically holomorphic maps on R2

For the next two propositions, assume that f has stable parabolic type.

Proposition II.7. Let V Ă R2 be a bounded simply connected domain, and U be a connected

component of f´1pV q.

1. If V XSf “ tyu, then U is simply connected, and exactly one of the following statements

is true:

(a) there exist orientation-preserving homeomorphisms φ : U ! D and ψ : V ! D and

an integer d P N such that ψpyq “ 0 and ψ ˝ pf |Uq ˝ φ´1pzq “ zd for all z P D.
In particular, Uzf´1pyq is an annulus and f |pUzf´1pyqq : Uzf´1pyq ! V ztyu is a

covering map of degree d. Additionally, if BV X Sf “ H, then U is bounded;

(b) there exist orientation-preserving homeomorphisms φ : U ! D and ψ : V ! H
such that ψpyq “ 0 and ψ ˝ pf |Uq ˝ φ´1pzq “ exppzq for all z P H. In particular,

U is unbounded, and the map f |U : U ! V ztyu is a universal covering.

2. Else if V X Sf “ H, then U is simply connected and f |U : U ! V is an orientation-

preserving homeomorphism. Additionally, if BV X Sf “ H, then U is bounded.

Proof. When f is an entire function, the same statement can be found, for example, in [For91,

Theorem 5.10, 5.11].

For the general case, let h : R2 ! C be an orientation-preserving homeomorphism,

and A0 be the standard complex structure on C. Then f˚h˚A0 is a flat structure. Let
ph : pR2,A0q ! C be a biholomorphism. Then the map g “ h ˝ f ˝ ph´1 is entire, and the

proposition follows easily.

Proposition II.8. Let V be an unbounded simply connected domain, and U be a connected

component of f´1pV q. If V X Sf “ H, then U is an unbounded simply connected domain,

and f |U : U ! V is an orientation-preserving homeomorphism. If V “ R2zW , where W is

a compact simply connected set containing Sf , then U is unbounded, and exactly one of the

following is true:
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1. if f is a topological polynomial of degree d, then there exist orientation-preserving

homeomorphisms φ : U ! D˚ and ψ : V ! D˚ such that ψ ˝ pf |Uq ˝ φ´1pzq “ zd for

all z P D˚. In particular, U is an annulus, R2zU is compact, and f |U : U ! V is a

covering map of degree d;

2. if f is transcendental, then there exist orientation-preserving homeomorphisms φ : U !

D˚ and ψ : V ! H such that ψ ˝ pf |V q ˝ φ´1qpzq “ exppzq for all z P H. In particular,

f |U : U ! V is a universal covering map.

Proof. The proof is similar to that of Proposition II.7.

II.1.5: Postsingular finiteness

Fix a map f P CholpR2q.

Definition II.9. The map f is said to be postsingularly finite (PSF) if its postsingular set,

defined as

Pf “
ď

ně0

f ˝npSf q ,

is finite. If all singular values are critical values, then a PSF map is also said to be postcritically

finite (PCF).

It is immediate from this definition that postsingularly finite maps are contained in class

S.

Definition II.10. The map f is said to be a Thurston map if it is postsingularly finite and

has stable parabolic type.

We use the notation f : pR2, Aq ý for a Thurston map f with a marked finite set A, with

fpAq Ă A and Pf Ď A. If no information about A is given, or no marked set is specified, we

assume that A “ Pf . Some natural examples of Thurston maps are PCF polynomials and

PSF entire functions.

II.1.6: Combinatorial equivalence of Thurston maps

Definition II.11. We say that two Thurston maps f : pR2, Aq ý and pf : pR2, Bq ý are

combinatorially equivalent, and write f »comb
pf , if there exist homeomorphisms φ, ψ P

Homeo`
pR2q such that φpAq “ ψpAq “ B, φ and ψ are isotopic rel. A, and φ ˝ f “ pf ˝ ψ.
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Definition II.12. A Thurston map f : pR2, Aq ý is said to be realized if it is combinatorially

equivalent to a PSF entire map g. If f is not realized, we say that it is obstructed.

Definition II.13. Two Thurston maps f1 : pR2, Aq ý and f2 : pR2, Aq ý are called isotopic

(rel. A) if there exists φ P Homeo`
0 pR2, Aq such that f1 “ f2 ˝ φ.

We recall from Appendix A that for an oriented topological surfaceX, we take Homeo`
pX,Aq

to be the set of orientation-preserving homeomorphisms that fix the set A pointwise (this

is different from the usual notation in the literature), and Homeo`
0 pX,Aq is the subset of

maps in Homeo`
pX,Aq that are isotopic to idX rel. A. The following proposition classifies

topologically holomorphic maps with a unique singular value, as well as Thurston maps with

a unique postsingular value.

Proposition II.14. Suppose that f : R2 ! R2 is a topologically holomorphic map such

that |Sf | “ 1. Then f “ φ´1 ˝ g ˝ ψ, for some orientation-preserving homeomorphisms

φ, ψ : R2 ! C and a unique g P tz 7! zd|d P Ně2u Y tz 7! exppzqu.

If f : pR2, Aq ý is a Thurston map with |A| “ 1, then f is combinatorially equivalent to

z 7! zd for some degree d ě 2. In particular, A consists of a unique fixed critical point of f .

Proof. The first part essentially follows from Proposition II.8.

Suppose now that f : pR2, Aq ý is a Thurston map with |A| “ 1. Thus, f has a fixed

singular value, so it cannot be of the form φ´1 ˝ exp ˝ ψ for any orientation-preserving

homeomorphisms φ : R2 ! C and ψ : R2 ! C. Therefore, φ ˝ f ˝ ψ´1pzq “ zd for all z P C
and d “ degpfq, where A “ tφp0qu “ tψp0qu. In particular, φ and ψ are isotopic rel. A, and

f is combinatorially equivalent to z 7! zd.

The dynamics of a Thurston map on its marked set can also be represented visually.

Definition II.15. Let f : pR2, Aq ý be a Thurston map with some marked set A. The

marked portrait (rel. A) of f is a weighted directed abstract graph Pf,A such that the vertex

set of Pf,A equals A, and for each vertex v P A there exists a unique directed edge from v to

fpvq with weight degpf, vq. Additionally, among all vertices of Pf,A, we label the ones that

are singular values of f .

If A “ Pf , then, for simplicity, we denote by Pf the marked portrait rel. Pf of f and call

it the postsingular portrait of f .

Let f : pR2, Aq ý and pf : pR2, Bq ý be Thurston maps. We say that the postsingular

portraits Pf and P
pf are dynamically isomorphic if there exists a bijective map φ : A ! B

such that

• φpSf q “ S
pf ,
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(a) G1pzq “ π cospzq{2. (b) G2pzq “
?
ln 2p1 ´ exppz2qq.

Figure 2.1: Examples of postsingular portraits

• φ is an isomorphism between the weighted directed abstract graphs Pf and P
pf . In

other words, there exists an edge eu,v of Pf joining u with v if and only if there exists an

edge peφpuq,φpvq of P pf joining φpuq with φpvq. The weights of eu,v and peφpuq,φpvq coincide.

If two Thurston maps f : pR2, Aq ý and pf : pR2, Bq ý have dynamically isomorphic

postsingular portraits, then it is clear that f |A and pf |B are conjugate dynamical systems.

Combinatorial equivalence of f and pf is a sufficient condition for them to have dynamically

isomorphic portraits.

Example II.16. Given below are two postsingularly finite entire maps that we will use as

prototypical examples throughout this thesis.

1. The map G1pzq “ π cospzq{2 has no asymptotic values and two critical values ˘π{2,

with PG1 “ t0,´π{2, π{2u;

2. The map G2pzq “
?
ln 2p1 ´ exp pz2qq has a unique critical value 0 and a unique

asymptotic value
?
ln 2, with PG2 “ t0,´

?
ln 2,

?
ln 2u.

Figure 2.1 illustrates PG1 and PG2 . Singular and non-singular vertices of the corresponding

graphs are labeled by solid and hollow squares, respectively.

II.2: Conditions for holomorphic realizability

Proposition II.14 tells us that every Thurston map with |Pf | “ 1 is realized. The core tenet

of Thurston’s theory is that a Thurston map f with |Pf | ě 2 is realized if and only if its

Thurston pullback operator σf which acts on the Teichmüller space TpS2, Pf Y t8uq has a

fixed point. We describe this operator and its properties in this section.
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II.2.1: Teichmüller spaces modelled on a punctured sphere

Let B Ă S2 be a finite set with |B| ě 3.

Definition II.17. The Teichmüller space of S2 with the marked set B (or Teichmüller space

modelled on S2zB) is defined as

TpS2, Bq :“ tφ|φ : S2 ! pC is an orientation-preserving homeomorphismu{ „

where φ „ ψ if there exists a Möbius transformation M such that φ is isotopic rel. B to

M ˝ ψ. Given τ P TpS2, Bq, for any φ P τ , we will write τ “ rφs.

If B “ A Y t8u for some finite set A Ă R2, we note that for every τ P TpS2, Bq, there

exists φ P τ so that φp8q “ 8, and if ψ P τ also satisfies ψp8q “ 8, then there exists an

affine transformation M such that M ˝ φ and ψ are isotopic rel. A.

The space TpS2, Bq is known to have a natural structure of a complex p|B|´3q-dimensional

manifold ([Hub06, Theorem 6.5.1]) that is contractible. The Teichmüller metric on TpS2, Bq

is defined as

dpτ1, τ2q :“ inf
ψ

logKpψq

where the infimum is taken over all quasiconformal homeomorphisms ψ : pC ! pC such that

for some ψ1 P τ1 and ψ2 P τ2, φ1 is isotopic to ψ ˝ φ2 rel. B.

It is known that the Teichmüller metric is complete, and TpS2, AY t8uq with this metric

is a path metric space in the sense of [Gro07, Definition 1.7], (for a proof, see [FM12a, Section

11.8] and [Gro07, Sections 1.8bis and 1.8bis+]). By the metric version of Hopf-Rinow theorem

([Gro07, page 8]), every bounded closed set of TpS2, A Y t8uq is compact. For more details

about TpS2, A Y t8uq, see [Hub06] and [Ahl06].

We also describe a group action on TpS2, Bq.

Definition II.18. Themapping class group MCGpS2, Bq is the group of orientation preserving

homeomorphisms φ : pS2, Bq −! pS2, Bq where φpBq “ B, with φ and ψ equivalent if φ is

isotopic to ψ rel. B. The group law is given by function composition. We let xhy denote

the equivalence class of h in MCGpS2, Bq. The subgroup of homeomorphisms that fix B

pointwise is called the pure mapping class group, denoted PMCGpS2, Bq.

The topology of uniform convergence on compact subsets sets of S2zB on the space of

homeomorphisms in Homeo`
pS2q that fix the set B also induces a topology on MCGpS2, Bq.

With this topology, MCGpS2, Bq is known to be a discrete group.

We can also look at the group MCG˘
pS2, Bq of all homeomorphisms φ P Homeo`

pS2q Y

Homeo´
pS2q such that φpBq “ B, modulo isotopy rel. B. Here, Homeo´

pS2q represents

19



the group of orientation-resversing homeomorphisms of S2. Note that if xψy “ xφy in

MCG˘
pS2, Bq, then ψ and φ are either both orientation-preserving, or both orientation-

reversing. From this we get the following sequence of maps which is short exact:

1 −! MCGpS2, Bq −! MCG˘
pS2, Bq −! Z{2Z −! 1

Here the map MCG˘
pS2, Bq −! Z{2Z sends each class of homeomorphisms to 0 if they are

orientation-preserving, and to 1 if they are orientation-reversing.

Given a group G and an element g P G, the group of inner automorphisms InnpGq of G is

the collection tTg P AutpGq : g P Gu, where Tg is the automorphism h 7! ghg´1. It is easy to

see that for any Tg as above and H P AutpGq, H ˝ Tg ˝H´1 “ HHpgq. In other words, InnpGq

is a normal subgroup of AutpGq.

Definition II.19. Given a group G, the outer automorphism group of G, denoted OutpGq,

is defined as the quotient AutpGq{ InnpGq.

Given φ P Homeo`
pS2q Y Homeo´

pS2q with φpBq “ B, let p be a path from t to φptq.

Consider the map φ˚,p : π1pS2zB, tq ! π1pS2zB, tq given by rγs 7! rp ¨φpγq ¨ps. For a different

choice q of path from t to φptq, we see that φ˚,q “ Tq¨p ˝ φ˚,p. Furthermore, if we choose a

different representative ψ isotopic to φ rel. A, then for some choice of path q from t to ψptq,

we have ψ˚,q “ φ˚,p. So we can define φ˚ as the equivalence class of φ˚,p in Outpπ1pS2zB, tqq,

and we get a homomorphism Φ : MCG˘
pS2, Bq −! Outpπ1pS2zB, tqq defined as xφy 7! φ˚.

The following result, known as the Dehn-Neilson-Baer theorem, is proved in [FM12b]:

Theorem II.20 ([FM12b, Theorem 8.8]). Φ is a homeomorphism.

The group PMCGpS2, Bq acts on TpS2, Bq as xhy ¨ rφs “ rφ ˝ h´1s. Fricke’s Theorem

states that this action is properly discontinouous (see [FM12b, Chapter 12] for a proof). The

quotient TpS2, Bq{PMCGpS2, Bq is a complex manifold of dimension |B| ´ 3, and is called

the moduli space of S2 with the marked set B. It can be alternatively described as follows:

Definition II.21. The moduli space

MpS2, Bq “ tφ|φ : B ã! pCu{ „

where φ „ ψ if φ “ M ˝ ψ for some Möbius map M P AutppCq.

We denote by rrφss the equivalence class of φ in MpS2, Bq.

The map TpS2, Bq −! MpS2, Bq defined as rφs 7! rrφss is a universal covering, and the

fiber over rrφss is PMCGpS2, Bq ¨ rφs. For more details and a proof sketch, see [FM12b,

Chapter 12].
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II.2.2: Thurston pullback

The notion of the Thurston pullback map is classical for rational Thurston maps (e.g., [Hub06,

Definition 10.6.1]), but is less well-known in the transcendental setting (see for example

[HSS09] for the case of exponential Thurston maps).

Any orientation-preserving homeomorphism φ : R2 −! C can be extended to a homeo-

morphism from S2 to pC by setting φp8q “ 8. With this in mind, for any finite set A Ă R2

with |A| ě 2, the element rφs P TpS2, A Y t8uq is well-defined.

Proposition II.22. Let f : pR2, Aq ý be a Thurston map such that |A| ě 2 and φ : R2 ! C
be an orientation-preserving homeomorphism. Then there exists an orientation-preserving

homeomorphism ψ : R2 ! C such that gφ :“ φ ˝ f ˝ ψ´1 : C ! C is an entire holomorphic

map. In other words, the following diagram commutes

pR2, Aq pC, ψpAqq

pR2, Aq pC, φpAqq

ψ

f gφ

φ

The map ψ is unique up to post-composition with an affine map. Different choices of φ that

represent the same point in TpS2, A Y t8uq yield maps ψ that represent the same point in

TpS2, A Y t8uq.

In other words, we have a well-defined map σf : TpS2, A Y t8uq ! TpS2, A Y t8uq such

that σf prφsq “ rψs, called the Thurston pullback map associated with f . As φ ranges across

all maps representing a single point in TpS2, AY t8uq, the function gφ is uniquely defined up

to pre- and post-composition with affine maps.

Proof. The existence of a homeomorphism ψ follows from Proposition II.2, the Uniformization

Theorem and the fact that f has stable parabolic type. It is also clear that ψ is unique up to

post-composition with an affine map and that post-composing φ with an affine map does not

affect ψ.

Due to Proposition II.6, changing φ by isotopy rel. A does not change rψs. Thus, changing

φ within its equivalence class in TpS2, AYt8uq does not affect rψs, showing that σf introduced

as above is well-defined. These arguments also show that gφ is uniquely defined up to pre-

and post-composition with affine maps.

The operator σf is a holomorphic map with respect to the natural complex structure

on TpS2, A Y t8uq (for a proof, see, for instance, [BCT14, Section 1.3]). Moreover, it is
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well-behaved with respect to the Teichmüller metric, as the next two propositions suggest.

Proposition II.23. Let B Ă S2 be a finite set with |B| ě 3. Every holomorphic map

H : TpS2, Bq ! TpS2, Bq is 1-Lipschitz in the Teichmüller metric; in other words, for all

τ, pτ P TpS2, Bq, we have dTpHpτq, Hppτqq ď dTpτ, pτq.

Proof. This result follows directly from [Hub06, Corollary 6.10.7].

Proposition II.24. Let f : pR2, Aq ý be a Thurston map. Then,

1. σf is 1-Lipschitz with respect to the Teichmüller metric;

2. if f is transcendental, then σf is locally uniformly contracting; in other words, for any

compact set K Ă TpS2, A Y t8uq there exists εK ą 0 such that

dTpσf pτq, σf ppτqq ď p1 ´ εKqdTpτ, pτq

for every τ, pτ P K;

3. if f is polynomial, then σ˝2
f is locally uniformly contracting.

Proof. The first item is clear by Proposition II.23. The second item follows from [HSS09,

Section 3.2]. The last item is proved in [Hub16, Corollary 10.7.8].

Remark II.25. If Thurston maps f : pR2, Aq ý and pf : pR2, Bq ý are combinatorially equiva-

lent, then σf : TpS2, AY t8uq ! TpS2, AY t8uq and σ
pf : TpR2, BY t8uq ! TpR2, BY t8uq

are conjugate by a biholomorphism. In the special case where A “ B and f is isotopic rel. A

to pf , we have σf “ σ
pf .

We now state the main theorem of Thurston theory. This result follows from Definition

II.11 and Proposition II.22 (also cf. [Hub16, Theorem 10.6.4] and [HSS09, Theorem 3.1]).

Theorem II.26. A Thurston map f : pR2, Aq ý is realized if and only if the Thurston

pullback map σf : TpS2, A Y t8uq ! TpS2, A Y t8uq has a fixed point τ P TpS2, A Y t8uq.

Proof. Suppose that f is realized by a postsingularly finite entire map g : pC, Bq ý. Then

by Definition II.11, there exist orientation-preserving homeomorphisms φ, ψ : R2 ! C such

that φpAq “ ψpAq “ B, φ and ψ are isotopic rel. A, and φ ˝ f “ g ˝ ψ. Clearly, τ “ rφs “

rψs P TpS2, A Y t8uq is a fixed point of σf .

Now suppose that τ “ rφs P TpS2, AY t8uq is a fixed point of σf . Let ψ : R2 ! C be an

orientation-preserving homeomorphism so that gφ “ φ ˝ f ˝ψ´1 is entire. Since rφs “ rψs, by

post-composing ψ with an affine map we can assume that φ|A “ ψ|A, which in turn implies

that φ and ψ are isotopic rel. A. Thus, gφ : pC, φpAqq ý is a postsingularly finite entire map

Thurston equivalent to f .
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Remark II.27. Let f : pR2, Aq ý be a Thurston map. If |A| “ 1, TpS2, A Y t8uq is not

well-defined; however, recall from Proposition II.14 that f is realized by z 7! zd for some

degree d ě 2.

If |A| “ 2, since TpS2, AY t8uq consists of one point, Theorem II.26 immediately implies

that f is realized.

Finally, Proposition II.24 and Theorem II.26 lead to the following result called Thurston’s

rigidity (this result is similar to [Hub06, Corollary 10.7.8] in classical Thurston theory).

Proposition II.28. Let f : pR2, Aq ý be a Thurston map. Then

1. σf can have at most one fixed point;

2. if g1 : pC, A1q ý and g2 : pC, A2q ý are postsingularly finite entire maps Thurston

equivalent to f , then g1 and g2 are conjugate by an affine map.

Proposition II.29. If f : pR2, Aq ý and g : pR2, Aq ý are Thurston maps that are isotopic

rel. A, then the operators σf and σg coincide.

Proof. There exists a map φ P Homeo`
0 pR2, Aq such that g “ f ˝ φ. Then for any τ “ rψs P

TpS2, A Y t8uq, if σgpτq “ pτ , then there exists a representative pψ P pτ such that pψp8q “ 8,

and gψ :“ ψ ˝ g ˝ pψ´1 : C ! C is entire. Also note that ψ´1 ˝ gψ “ g ˝ pψ´1 “ f ˝ pφ ˝ pψ´1q. By

Proposition II.6, since φ˝ pψ´1 is isotopic to pψ´1 rel. A, there exists a map ψ1 P Homeo`
pR2, Aq

isotopic to ψ rel. A such that ψ´1
1 ˝ gψ “ f ˝ pψ´1. In other words, σf pτq “ rψ1s “ rψs “ pτ .

This finishes the summary of basic properties of Thurston maps visited by this thesis. We

will now move on to known results concerning our special case study described in Section I.3.3.

II.3: Postsingularly finite maps in complex dynamics

This section reviews the properties of two prominent families of PSF maps: unicritical

polynomials and exponentials. For the foundational theory of holomorphic dynamics, see

[Mil06] and [Hub16].

II.3.1: The dynamics of unicritical PCF polynomials

Definition II.30. Given a polynomial f : pC ! pC, the filled Julia set Kf of f is the set of

points z P pC such that the orbit z, fpzq, f ˝2pzq, ¨ ¨ ¨ is bounded.
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For any monic polynomial f with deg f ě 2, it is known that there exists a neighborhood

U8 of 8 contained in pCzKf and a conformal map φf : U8 ! pCzD such that pφf pzqqdeg f “

φf ˝ fpzq. This conformal map is called the Böttcher chart, and it is unique up to post-

multiplication by an pn ´ 1qth root of unity. If Kf is connected (or equivalently, all the

critical points of f are in Kf), then we can take U8 “ pCzKf . In this case, we may define

dynamical rays in the plane of f by setting Rf pθq “ φ´1
f ptr expp2πiθq : r ą 1uq, for every

θ P R{Z. If limr!1` φ´1
f pr expp2πiθq exists, we say that Rf pθq lands; this limits belongs to

BKf .

A polynomial is said to be unicritical if it has exactly one critical point on the plane. By

[Mil06], it is known that any unicritical polynomial is affine conjugate to a polynomial of

the form fn,cpzq “ zn ` c for some c P C. It is known that Kfn,c is connected if and only if

0 P Kfn,c .

Operations on angles

All angles in this thesis are taken to be elements of R{Z. Given distinct angles α, β, the

complement of these angles in R{Z consists of two connected components or arcs. The length

of the shorter arc is denoted dR{Zpα, βq. We take the linear order on R{Z induced by that on

r0, 1q. The map µn : R{Z ý is defined as µnpxq “ nx, and we let Onpθq “ tnj´1θ : j ě 1u.

Every rational angle is pre-periodic under µn with pre-period ℓ ě 0 and eventual period

k ě 1 (we will often drop the word ‘eventual’).

Itineraries and kneading data

Given θ P R{Z, for j “ 0, 1, ..., n ´ 1, we define the jth static sector with respect to θ

as the interval
´

θ`j
n
, θ`j`1

n

¯

Ă R{Z, and denote it T statn,j pθq. Note that
Ťn´1
j“0 T

stat
n,j pθq is the

complement of the set µ´1
n pθq in R{Z.

Now suppose θ P T statn,i pθq. For j “ 0, 1, ..., n ´ 1, we define the jth dynamic sector with

respect to θ to be T statn,j`ipθq, and denote it T dynn,j pθq. Dynamic sectors are well-defined if and

only if θ R µ´1
n pθq.

For any angle t P R{Z, the itinerary of t with respect to θ, denoted Σn,θptq, is the sequence

ν1ν2ν3.... P t0, 1, ..., n, ˚uN where

νm “

$

&

%

j nm´1t P T dynn,j pθq

˚ nm´1t P
Ťn´1
j“0 BT dynn,j pθq

An itinerary is called ˚´periodic if it is periodic under the shift map ν1ν2ν3ν4.... 7! ν2ν3ν4....

with period k, and the ˚’s occur exactly at indices k, 2k, 3k, etc. For an angle θ, the itinerary
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Figure 2.2: Some PCF parameters in M2 marked by a ‘‹’ symbol, along with their portraits

Σn,θpθq is called the kneading sequence of θ. We note that kneading sequences of rational

angles are always periodic or ˚´periodic.

Example II.31. When n “ 2, the angle 1
7
has kneading sequence 00˚, while the angle

17
240

“ 17
24p24´1q

has kneading sequence 00010.

II.3.2: Parameter spaces of unicritical polynomials

Unicritical non-escaping loci

The set of c P C for which the orbit of 0 under fn,c is bounded is called the non-escaping

locus of the polynomials tfn,c, c P Cu, and is commonly known as the Multibrot set of degree

n. We denote this set by Mn. We recall some known facts about Mn here. Proofs can be

found in [Hub16, Chapters 9, 10], and [EMS16].

• Mn is connected and compact, and the map Φn : ĈzMn −! ĈzD given by Φnpcq “

φn,cpcq, where φn,c is the Böttcher chart of fn,c, is a conformal isomorphism. This was

proven first for n “ 2 by Douady and Hubbard in [DH82], and their proof generalizes

to higher degrees.

Given θ P R{Z, the parameter ray at angle θ, denoted Rnpθq, is the preimage under Φn

of the set tre2πiθ : 1 ă r ď 8u. Landing of parameter rays is defined analogously. If

θ P Q{Z, then it is known that Rnpθq lands.
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• Given any hyperbolic component U Ă Mn (for a definition, see [DH84, Chapter 3] or

[Hub16, Chapter 9]), the multiplier map ρU : U −! D is a ramified covering of degree

pn ´ 1q branched over 0. The unique critical point c0 of ρU is called the center of U ,

and fd,c0 has a super-attracting cycle of exact period k. For c P U , fn,c has a unique

attracting cycle of exact period k. ρU extends to a continuous map BU −! BD, and
the fiber ρ´1

U p1q consists of pn ´ 1q parabolic parameters c1, c2, ..., cn´1 on BU .

Of these, there exists a unique parameter, say c1, which is the landing point of exactly

two rays: Rnpθq and Rnpθ1q, where θ, θ1 are periodic under µn with exact period k. This

point is called the root of U , and the angles θ, θ1 are said to form a companion pair.

The points c2, ¨ ¨ ¨ , cn´1 are called the co-roots of U and each ci is the landing point of

exactly one ray Rnpθiq, where θi has exact period k under µn. In the dynamical plane

of fn,c0 , the dynamic rays at angles θ1, θ, θ2, ¨ ¨ ¨ , θn´1 all land on the Fatou component

U0 containing c0, and θ, θ
1 land at a unique point z0 P BU0, called its root. The dynamic

rays at angles θ, θ1 separate c0 from the other points in the postcritical set.

• Let U be a hyperbolic component of Mn, with center c0. Suppose the parameter rays

Rnpθq, Rnpθ1q with θ ă θ1 land at the root of U . Then Rnpθq Y Rnpθ1q split MnzU

into two components. The component not containing 0 is called the wake of U , and

denoted WpUq (we will also refer to this as the wake c0). Furthermore, suppose

θ1 ă θ2 ă ¨ ¨ ¨ ă θn´2 are the angles that land at the co-roots of U . Then the subsets

of WpUq bound by a pair of rays of the form pRnpθqj, Rnpθj`1qq, pRnpθq, Rnpθ1qq or

pRnpθn´2q, Rnpθ1qq are called sub-wakes of U .

• If θ P Q{Z is k´periodic under µn, Rnpθq lands on the root or co-root of a hyperbolic

component of period k. If θ is pre-periodic under µn with pre-period ℓ ě 1 and eventual

period k, then Rnpθq lands at a Misiurewicz parameter c whose critical value has

pre-period ℓ and period dividing k.

• We call θ P Q{Z an angular coordinate for c P Mn if

1. c is Misiurewicz, and Rnpθq lands on c, or

2. c is critically periodic, and Rnpθq lands on the root or a co-root of the hyperbolic

component containing c.

Given a PCF parameter c, we let Ωnpcq denote its set of angular coordinates. Letting
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ω denote the complex number expp 2πi
n´1

q, it can be shown that

ωMn “ Mn,

@c P Mn, ,Ωnpωcq “ Ωnpcq `
1

n ´ 1
.

• If fn,c is postsingularly finite, its filled Julia set is locally connected, so the inverse

Böttcher chart φ´1
n,c :

pCzD extends to a continuous surjective map from S1 “ BD to

BKfn,c . Let γ denote this boundary map; it is called the Carathéodory loop of fn,c.

Choose any θ P Ωnpcq. For all angles t, t1 P R{Z, it is known that γptq “ γpt1q if and

only if Σn,θptq “ Σn,θpt
1q.

The quotients Λn

For all c P C, fn,c is affine conjugate to fn,ωc, where ω “ expp 2πi
n´1

q. Moreover, for c ‰ 0, fn,c

is affine conjugate to pn,λpzq “ λp1 ` z
n

qn, where λ “ ncn´1, and pn,λ is affine conjugate to

pn,µ if and only if λ “ µ.

We define Λn as the image of Mnzt0u under the map c 7! ncn´1. Equivalently, Λn is the

set of λ P C˚ such that pn,λ has connected filled Julia set.

Given λ “ ncn´1, we refer to the parameters c, ωc, ω2c, ..., ωn´2c as the monic representa-

tives for λ, and denote this set Mnpλq. We call θ an angular coordinate for λ if θ P Ωnpcq for

some c P Mnpλq. The set of angular coordinates is denoted Θnpλq.

Θnpλq “

n´2
ď

n“0

Ωnpωncq

We shall denote by Pn the set of PCF parameters λ for which pn,λ is postsingularly finite.

This consists of all Misiurewicz parameters, and all critically periodic parameters with period

ě 2.

II.3.3: Dynamics of postsingularly finite exponential maps

The exponential family is simplest among all families of transcendental maps, since for any

exponential function f , the set Sf contains only one point. This section covers some basic

properties of exponential maps, with a focus on postsingularly finite maps.

For λ P C˚, let pλpzq “ λ exppzq. We note that Spλ “ t0u, and that pλp0q “ λ. The set

of λ P C˚ for which the pλ´orbit of 0 is bounded is called the non-escaping locus of the

exponential family tpλ|λ P C˚u, denoted Λ. Any λ R Λ is called an escaping parameter.
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Figure 2.3: The non-escaping locus Λ of the exponential family tpλ : λ P C˚u; here the white
region represents CzΛ

We note that for each λ, the map pλ is affine conjugate to an exponential map of the form

z 7! exppzq ` c, with c unique upto translation by 2πin for some n P Z. We could also look

at the non-escaping locus in the family tz 7! exppzq ` c|c P Cu, which forms a natural analog

to Mn; however, it is preferable to work in the pλ normalization since we can then use the

fact that limn!8 λp1 ` z
n

qn “ λ exppzq.

Similar to unicritical polynomials, for λ P Λ, the structure of the set of points tz P C :

limn!8 p
˝n
λ pzq “ 8u, called the escaping set of pλ, is well-understood on a topological level.

We list some of its properties in this section. For a more complete description, see [SZ03a],

[SZ03b], [Rem06], and [Rem10] .

The escaping set also helps play a vital role in classifying postsingularly finite exponential

maps; in fact, the authors of [LSV08] carry out this classification and develop a theory of

spiders akin to that of polynomials.

Dynamic and parameter hairs

Just as angles in R{Z correspond to dynamical rays, which are subsets of pCzKf for a

polynomial f , in the exponential regime, certain subsets of the escaping set, called hairs, can

be labelled by sequences of integers called external addresses. We formalize this theory below
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(for more details, see [Rem06]).

Given λ P C˚, choose c “ lnλ such that Im c P r´π, πq. For j P Z, define

U stat
8,j pλq “ tz : p2j ´ 1qπ ´ Im c ă Im z ă p2j ` 1qπ ` Im cu

Note that every connected component of p´1
λ pCzRď0q is of the form U stat

8,j pλq for some j, and

that the map pλ|U stat
8,j pλq : U stat

8,j pλq −! CzRď0 is a conformal isomorphism for each j P Z.
The collection tU stat

8,j pλqujPZ is a partition of the plane, and is called the static partition with

respect to λ.

Definition II.32. We call a sequence s P ZN an external address. Let µ be the left shift

map on ZN. For any z P C with p˝n
λ pzq R Rď0 for all n, the external address of z is the

sequence s1s2 ¨ ¨ ¨ sm ¨ ¨ ¨ with p
˝pm´1q

λ pzq P U stat
8,smpλq for all m P N. For any external address s

and integer r, the external address rs is the sequence rs1s2 ¨ ¨ ¨ .

Let ă denote the standard lexicographic order on ZN: s ă t if at the first index m where

sm ‰ tm, we have sm ă tm. Additionally, let ăă denote the cylindrical order: s ăă t if one

of the following is true:

• s ă t, or

• t ă 0 ă s

As for angles, for every j P Z, we let T stat8,j psq denote the interval pjs, pj ` 1qsq “ tu P ZN :

js ă u ă pj ` 1qsqu; we call this a static sector with respect to s.

An address s is said to be pre-periodic if its orbit under µ in ZN is finite; it is periodic if

this orbit is cyclic (we will often take ‘pre-periodic’ to mean strictly pre-periodic). If s is not

periodic with period 1, then there exists a unique j P Z such that s P T stat8,j psq. In this case,

we define, for m P Z, the dynamic sector with respect to s as T dyn8,mpsq “ T stat8,j`mpsq.

Remark II.33. There is a direct analogy between external addresses and angles in R{Z that

correspond to rays for a degree n polynomial : every angle in R{Z has an n´adic expansion,

and can therefore be viewed as an element of t0, 1, ¨ ¨ ¨ , n´ 1uN. Furthermore, rational angles

can be thought of as pre-periodic sequences in t0, 1, ¨ ¨ ¨ , n ´ 1uN.

Definition II.34. Let s, t P ZN. The itinerary of t with respect to s, denoted Σsptq, is a

sequence ν1ν2ν3 ¨ ¨ ¨ νm ¨ ¨ ¨ where

νm “

$

&

%

j µ˝pm´1qptq P T stat8,j psq

˚ µ˝pm´1qptq “ js for some j P Z

29



Definition II.35. A sequence s P ZN is bounded if there exists a constant C ą 0 such that

|sn| ď C for all n.

Let F ptq “ et ´1. An address s is said to be exponentially bounded if there exist constants

A ě 1, x ą 0 such that |sn| ď A|F ˝pn´1qpxq| for all n ě 1.

Fix λ P C˚. The following theorems illustrate the behaviour of escaping points in the

dynamic plane of pλ.

Theorem II.36 ([SZ03b, Theorem 2.3]). If λ P Λ, then for every bounded s there is a unique

injective and continuous curve γs : p0,8q −! C of external address s satisfying

lim
t!8

Re γsptq “ `8

which has the following properties: it consists of escaping points such that

pλpγsptqq “ γsppλptqq @t ą 0

γsptq “ t ´ c ` 2πis1 ` rsptq @t ą 0

with |rsptq| ă 2e´tp|K| ` Cq, where C P R depends only on a bound for s.

If the singular orbit does escape, then the statement is still true for every bounded address

s for which there is no n ě 1 and t0 ą 0 such that 0 “ γµ˝npsqpt0q.

For those exceptional s, there is an injective curve γs : pt˚s ,8q −! C with the same

properties as before, where t˚s ą 0 is the largest number which has an n ‰ 1 such that

F ˝npt˚s q “ t0 and 0 “ γµ˝npsqpt0q.

The curve γs is called the dynamic ray (or hair) at external address s.

For λ P C˚, let argpλq be the argument of λ that in the interval r´π, πq. On the

dynamical plane of any pλ, a point z in the escaping set has external address s if and only if

p
˝pm´1q

λ pzq P U stat
8,mpλq for every m P N.

Theorem II.37 ([LSV08, Theorem 2.6]). For every pre-periodic external address s starting

with the entry 0, there exists a postsingularly finite exponential map z 7! λ exppzq such that

the dynamic ray at external address s lands at the singular value 0. Every postsingularly

finite exponential map is associated in this way to a positive finite number of pre-periodic

external addresses starting with 0.

As in the polynomial case, we have a notion of parameter rays to the exponential family.

Theorem II.38 ([FRS08, Theorem 1.1]). The set of parameters λ P C˚ for which p˝n
λ p0q ! 8

consists of uncountably many disjoint curves in C. More precisely, every path-connected
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component of this set is an injective curve γ : p0,8q −! C or γ : r0,8q −! C with

limt!8 γptq “ 8.

Every path connected component as in the above theorem above is referred to as a

parameter ray. We say that a parameter ray γ as above lands if limt!0` γptq exists. Parameter

rays are also defined in [FS09] for the exponential family tz 7! exppz ` κq, κ P Cu.

Let P denote the collection of λ P C˚ such that pλ is postsingularly finite.

Theorem II.39 ([LSV08, Theorem 3.4]). For every postsingularly finite exponential map pλ

and every pre-periodic external address s with s1 “ 0, the dynamic ray at address s lands at

the singular value if and only if the parameter ray at address s lands at λ.

Theorem II.40 ([LSV08, Corollary 3.5]). Every parameter ray at a strictly pre-periodic

external address s lands at a postsingularly finite exponential map, and every pre-periodic

exponential map is the landing point of a finite positive number of parameter rays at strictly

pre-periodic external addresses.

We let Θ8pλq denote the set of external addresses s such that the parameter ray with

address s lands at λ (note that for any such s, we have s1 “ 0).

When exponential maps are normalized as exppzq ` c, dynamic rays for these maps and

parameter rays in the c´plane are analogously defined. We note that if c “ lnλ and the

dynamic ray at address s “ s1s2..... lands at c in the dynamic plane of z 7! exppzq ` c, then

the dynamic ray at address 0ps2 ´ s1qps3 ´ s1qps4 ´ s1q.... lands at 0 in the dynamic plane of

pλ.

II.4: Combinatorial theory

II.4.1: Combinatorics of unicritical PCF polynomials

Postsingularly finite polynomials admit several combinatorial descriptions: in terms of spiders,

hubbard trees and kneading sequences. In this section we give a brief overview of these tools

for unicritical polynomials. These tools have been used to completely classify postsingularly

finite polynomials.

For the rest of Section II.4.1, fix a degree n ě 2.

Orbit portraits

Given any repelling cycle tz1, ..., zru of a polynomial p, the orbit portrait associated with this

cycle is the collection tA1,A2, ...,Aru, where Ai is the set of angles θ P R{Z such that the

dynamic ray at angle θ in the plane of p lands at zi.
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Definition II.41. A collection A “ tA1,A2, ...,Aru is called a formal degree n orbit portrait

if

1. Each Ai is a non-empty finite subset of Q{Z.

2. µn maps each Ai bijectively onto Ai`1 and preserves the cyclic order of the angles.

3. Each Ai is contained in some arc of length less than 1{n in R{Z.

4. Each α P Yr
i“1Ai is periodic under µn and all such α’s have a common period rp for

some p ě 1.

5. For every m, let Am,i = Am ` i
n`1

. For all pairs pm, jq ‰ pm1, j1q, Am,j and Am1,j1 are

unlinked.

Given any formal portrait A “ tA1,A2, ...,Aru, there exists j P t1, 2, ..., ru and distinct

angles α, β P Aj such that dS1pα, βq is uniquely minimal among all arc lengths dS1pα1, β1q

where α1 and β1 are distinct angles in some Aj1 . The pair pα, βq is called the characteristic

angle pair of A. Moreover, the portrait A can be reconstructed from pα, βq, and we call A

the degree n orbit portrait generated by pα, βq.

[EMS16, Theorem 2.12] states that given a formal degree´n portrait A “ tA1, ...,Aru

and p as in point p4q above, there exists a PCF polynomial of the form fn,cpzq “ zn ` c such

that

1. fn,c is critically periodic with period rp, and

2. A is the orbit portrait associated with the cycle pz1, z2, ..., zrq of fn,c, where, for each

j P t1, 2, ..., ru, the point zj is the root of the Fatou component containing f
˝pj´1q
n,c pcq.

The authors of [BFH92] carry out a combinatorial classification of critically pre-periodic

polynomials of a given degree, in terms of angles landing on the orbit of the critical values.

The following lemma sheds light on the relationship between characteristic angle pairs; while

the result below was proved by Lavaurs for degree n “ 2, it generalizes naturally to higher

degrees.

Lemma II.42 (Lavaurs’ Lemma; [Lav86]). Let P1 “ pθ1, θ
1
1q and P2 “ pθ2, θ

1
2q be companion

angle pairs with the same period k, and U1, U2 be the hyperbolic components defined by P1

and P2 . If θ1 ă θ2 ă θ1
2 ă θ21, then there exists a companion pair R3 “ pθ3, θ

1
3q with period

ă k such that such that

θ1 ă θ3 ă θ2 ă θ1
2 ă θ1

3 ă θ1
1

In other words, R3 separates R1 from R2.
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Internal addresses

Definition II.43. Let c be a critically periodic PCF parameter in Mn with period k.

If c ‰ 0, let R1 be the parameter ray pair of lowest period in Mn that separates c from 0

(by Lemma II.42, there is exactly one ray pair whose period is lowest is among all ray pairs

that separate 0 and c). Let s1 be the period of R1. For n ě 2, inductively define Rn to be

the ray pair of lowest period that separates Rn´1 from c, and let s1 be the period of Rn. This

sequence ends after finitely many (say r) steps, with the last entry sr “ k. The internal

address of c (and its hyperbolic component) is given by the sequence

s0 “ 1 7! s1 7! s2 7! ¨ ¨ ¨ 7! sr “ k.

Example II.44. For the quadratic rabbit parameter c « ´0.122561 ` 0.744862i, we have

R1 “ p1
7
, 2
7
q, and s1 “ 3. The full internal address is in fact 1 7! 3.

It is proved in [BS08] showed that kneading sequences and internal addresses are equivalent.

Given any sequence ˚´periodic kneading sequence ν in degree n, consider the function

ρν : N Y t8u −! N Y t8u

ρνpkq “

$

&

%

inftn ą k : νn´k ‰ νnu k ‰ 8

8 k “ 8

For any periodic PCF parameter c in Mn with kneading sequence ν, the internal address of

c can be computed as the sequence 1 7! ρνp1q 7! ρ˝2
µ p1q 7! ¨ ¨ ¨ , upto the entry before 8.

Note that the internal address of c can be used to determine if c is primitive or a satellite:

c is primitive if and only if sr´1 does not divide sr.

Generalised spiders

Definition II.45. Given n P Zě2, a degree n generalised spider is a tuple pS, tq where t P R2

and S Ă S2 is an undirected planar graph satisfying the following properties:

1. The vertex set of S is tt,8u Y ta1, a2, ¨ ¨ ¨ , aru, where the ai are not necessarily distinct

from each other, but are all distinct from t and 8.

2. For each i P t1, 2, ¨ ¨ ¨ , ru, there is a unique edge given by a Jordan arc joining 8 and

ai.
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3. The other edges are given by finitely many Jordan arcs η1, η2, ¨ ¨ ¨ , ηn joining 8 and t

which are pairwise disjoint.

Spiders are so named because of the resemblence with the eponymous insect perched on S2

with the head placed at 8. We will call each edge of S a ‘leg’. We will always assume that

the ηj’s are labelled so that η1, η2, ¨ ¨ ¨ ηn are in counterclockwise order at 8.

Definition II.46. Given n, n1 P Zě2, let pS, tq and pS 1, t1q be two generalised spiders, and

W Ď S and W 1 Ď S 1 be connected subgraphs. The graphs W and W 1 are said to be similar

if they satisfy the following properties:

• They have the same number of edges, t P W if and only if t1 P W 1, and if t P W , then

the local degree of W at t is equal to the local degree of W 1 at t1.

• There exists a relabelling of the γ´type edges in W and W 1 such that for any three

legs, say γi, γj and ηk in W that are in counterclockwise order at 8, the corresponding

legs γ1
i, γ

1
j and η

1
k in W 1 are in counterclockwise order at 8.

Remark II.47. We will often describe S and S 1 with a fixed labellings of their edges; if

subgraphs W and W 1 are similar with respect to the given labelling on S and S 1, we say that

W and W 1 are congruent.

Definition II.48. Given a generalised spider pS, tq as above, a spider map on pS, tq is a

continuous map f : S −! S that takes vertices to vertices and edges to edges, and satisfies

the properties below:

There exists a relabelling of the edges set as tγ1, γ2, ¨ ¨ ¨ , γru (and the corresponding

vertices ai), such that f additionally satisfies the following properties:

1. fp8q “ 8 and fptq “ a1;

2. f maps ηj homeomorphically to γ1 for all j P t1, 2, ¨ ¨ ¨ , nu;

3. for j “ 1, 2, ¨ ¨ ¨ , r ´ 1, f maps γj, homeomorphically to γj`1, and maps γr home-

omorphically to γℓ`1 for some ℓ, or else maps γr homeomorphically to ηi for some

i;

4. for each j P t1, 2, ¨ ¨ ¨ , ru, the map f preserves the circular order of all legs contained

between ηj to ηj`1p mod rq.

The above points imply that f has critical points t and 8, and that the orbit of each critical

point under f is finite. Condition (3) above also implies that S2zfpSq is an open topological

disk.
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A spider map f : S ! S as in the above definition can be extended in the way outlined

in the following remark (Remark II.49) to a polynomial Thurston map. Recall that in

Appendix A, we explore graphs embedded in R2. We can similarly think of graphs embedded

on the sphere S2; this includes graphs that contain the point at infinity.

Remark II.49. Suppose G and G1 are graphs embedded on S2 such that U “ S2zG and

U 1 “ S2zG1 are open topological disks. Let f be a homeomorphism from G to G1; we show a

way to extend f to a homeomorphism of S2.

There exist homeomorphisms φ : D ! U and ψ : D ! U 1 such that φ extends to a

branched cover of degree 2 from BD to G, and ψ extends to a branched cover of degree 2

from BD to G1 (this becomes clear when we think of S2zG as cutting the plane along G; the

boundary of the new region contains two copies of G).

Then there exists a homeomorphism h of BD such that the following diagram commutes:

BD BD

G G1

h

φ ψ

f

Using Proposition A.5, extend h to D, and define, for all z P U , fpzq “ ψ ˝φ´1. This extends

f as a homeomorphism of S2. For different choices of φ, ψ, we get different extensions of f ;

however, by Proposition A.5, any two such extensions are isotopic rel G. This process is also

known as the Alexander trick.

By following the construction in Remark II.49 on every connected component of S2zS,

we extend any spider map f : S −! S to S2. Since there are n such connected components,

and the closure of each component maps onto S2, we see that this newly defined map f has

degree n. By restricting it to R2, we get a polynomial Thurston map.

Proposition II.50. Given two maps f : S ! S and g : S 1 ! S 1, where pS, tq and pS 1, t1q

have the same degree, if there exists a homeomorphism h : S ! S 1 such that

1. hp8q “ 8 and hptq “ t1,

2. h preserves the circular order of legs at 8,

3. hpPf q “ Pg, and pg|S 1q ˝ h “ h ˝ pf |Sq,

then the extended Thurston maps f, g on R2 are Thurston equivalent.

Proof. Since h preserves the circular order of legs, by using the Alexander trick on each

component of S2zS, the map h can be extended to a homeomorphism from S2 to S2; note
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that each connected component of S2zS maps under h homeomorphically onto a connected

component of S2zS 1. LetD be an open connected component of S2zS 1. OnD, let rg “ h´1˝f˝h.

Since rg agrees with g on BD, it is isotopic to g relative to BD. We can similarly define rg on

every connected component of S2zS 1 to get a map rg on R2 such that rg ˝ h “ h ˝ f , with rg

isotopic to g rel. Pg.

Proposition II.51. Given two spider maps f : S ! S and g : S 1 ! S 1, where pS, tq and

pS 1, t1q have the same degree, assume that their edge sets are labelled so that f and g satisfy

conditions (1)-(4) in Definition II.48.

If S and S 1 are congruent, then f and g extended to R2 are Thurston equivalent.

Proof. Let h be a homeomorphism that maps 8 to 8, t to t1, γi to γ
1
i for all i P t1, 2, ¨ ¨ ¨ , ru

and ηj to η
1
j for all j P t1, 2, ¨ ¨ ¨nu. It is clear that h preserves the circular order of legs at

8. Moreover, h can be defined so that h ˝ f |S “ pg|S 1q ˝ h. Therefore the statement follows

from Proposition II.50.

Standard spiders for unicritical polynomials

Fix n P Zě2 and λ P Pn.
A spider for pn,λ is an invariant graph in its dynamical plane, from which we can recover

several of its dynamical properties. While a comprehensive theory for spiders is described

in [Hub16, Chapter 10], in this section, we restrict our approach to generalised spiders on

the sphere S2 that can be used to construct a topological model (i.e., a Thurston map) that

is combinatorially equivalent to pn,λ . The construction here generalizes that presented in

[HS94] and [Hub16, Chapter 10] for n “ 2.

Definition II.52. Let θ P Θnpλq.

• If θ is pre-periodic under µn, the standard degree n spider of θ is defined as

pSnpθq :“
ď

jě1

tr expp2πinj´1θq : r P r1,8su

• Else if θ is periodic under µn with period k, the standard spider pSnpθq is the union of

the above set and tr expp2πink´1θq : r P r0, 1su.

• The extended degree n spider pSextn pθq :“ Snpθq Y
Ťn´1
j“0 tr expp

2πipθ`jq

n
q : r P r0,8su.

In the sense of Definition II.45, we note that p pSextn pθq, 0q is a generalized spider.
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(a) The standard spider pS2

´

17
240

¯

. The curve

γ forms a Levy cycle

(b) The quotient spider S2

´

17
240

¯

. The Levy

cycle γ has been contracted to a point

Figure 2.4: Spiders in degree 2

Figure 2.4a shows an example of a standard degree 2 spider. Note that there exists a

natural map pFn,θ : pSextn pθq −! pSnpθq that simulates the map µn on R{Z:

pFn,θpr expp2πitqq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

8 r “ 8

expp2πiθq r “ 0

r expp2πintq nt ‰ θ

pr ` 1q expp2πiθq nt “ θ

For θ periodic under µn with period k, the definition of pFn,θ is the same as above, but

we additionally let Fn,θpr expp2πink´2θqq “ pr ´ 1q expp2πink´1θq for all r ě 1. With this

definition, it is clear that 0 is periodic under Fn,θ.

The only critical points of Fn,θ are 0,8, each with local degree n. By the Alexander trick,

we can extend Fn,θ to a n-sheeted branched self-cover of S2. As shown in [HS94] and [Hub16,

Chapter 10], if θ is an angular coordinate for λ,

• if θ is periodic, Fn,θ is Thurston equivalent to pn,λ;

• if θ is pre-periodic, Fn,θ is realized if and only if the eventual period of θ under µn

is equal to the eventual period of λ under pn,λ. If this equality holds, then Fn,θ is

Thurston equivalent to pn,λ.

Suppose that θ has pre-period ℓ ě 1 and period k ě 1 under µn, and k is strictly larger

than the eventual period k1 of λ under pn,λ. Then for each m ě ℓ, the points of the form
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expp2πinmθq, expp2πinm`k1

θq, expp2πinm`2k1

θq, etc, all have the same itinerary with respect

to θ. By drawing loops around all points that share an itinerary, we obtain a Levy cycle C

for Fn,θ. Moreover, this is the only Levy cycle upto homotopy relative to the postsingular set

of Fn,θ.

In this case, we form a new topological polynomial by contracting each curve in C to a

point. More precisely, form a quotient surface of S2 by shrinking each region in R2 bounded by

some γ P C to a point (we always assume 0 is mapped to 0 in this quotient construction). This

gives rise to quotient graphs Snθ and S
ext
n pθq of the standard and extended spiders respectively.

The pair pSextn pθq, 0q is a generalized degree n spider. While this quotient construction is

dependent on C, we will assume that we have made a choice of C for every θ P Q{Z (it is

also easy to see that the quotient spiders for different choices of C are congruent).

Given the above construction, pFn,θ descends to a map Fn,θ : S
ext
n pθq −! Snpθq, which in

turn can be extended to a topological polynomial Fnpθq : S2 ! S2 using the Alexander trick,

unique upto isotopy rel Sextn pθq. This extension is Thurston equivalent to pn,λ.

When θ is known, we let x1 denote the equivalence class of expp2πiθq in Snpθq, and let

xj “ F˝pj´1q

n,θ px1q for all j P Zě1.

II.4.2: Combinatorics of postsingularly finite exponentials

Spiders

Given a strictly pre-periodic external address s, we recall the construction of the spider

graph S8psq in [LSV08, Section 5.1] here, with some slight modifications. Let ℓ and k be the

pre-period and period of s respectively under the left-shift map µ : ZN −! ZN.

First, we extend C to a bigger space Cext “ CY tpe´8, pe`8u, and declare, for every r P R, the
sets tpe´8u Y tRepzq ă ru and tpe`8u Y tRepzq ą ru to be open. We can think of pe`8 and

pe´8 as points at `8 and ´8 respectively. With this topology, it is clear that the space Cext

is Hausdorff.

Now let pe1 “ 0. For every m P t2, 3, ¨ ¨ ¨ , ℓ`ku, define points pem P C so that Reppemq “ 0, and

1. Imppemq P
`

p2sm ´ 1qπ, p2sm ` 1qπ
˘

;

2. for m ‰ m1, Im pem ă Im pem1 if µ˝mpsq ă µ˝m1

psq, and pem “ pem1 if µ˝mpsq “ µ˝m1

psq.

The second condition implies that if m ą ℓ` k, we can think of the point pem as pem´k. For

every m P t1, 2, ¨ ¨ ¨ , ℓ ` ku, also define γm as the closure of the horizontal ray tRepzq ě

0, Impzq “ Im pemu in Cext (this is in fact equal to tRepzq ě 0, Impzq “ Im pemu Y tpe`8u).

Further, for each r P Z, let pm be the closure of the horizontal line tImpzq “ p2r ´ 1qπu in

Cext (this is simply tImpzq “ p2r ´ 1qπu Y tpe`8, pe´8u).
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Figure 2.5: The standard spider pS8psq and the quotient S8psq corresponding to the external
address s “ 000p´1q0010

The standard exponential spider and its corresponding extended spider of s are respectively

defined as follows:

pS8psq “

ℓ`k
ď

m“1

γm

pSext8 psq “ pS8psq Y
ď

rPZ

pr

We mark the points in tpe`8, pe´8uYtpe1, pe2, ¨ ¨ ¨ , peℓ`ku as vertices of the spiders above (note that

pe´8u R pS8psq). Also observe that Cextz pS8psq is a topological surface that is homeomorphic

to an open topological disk. We will often call an edge in either of the graphs above a ‘leg’.

As for polynomials, we define a ‘spider map’ pG8,s : pSext8 psq −! pS8psq as follows:

pG8,spzq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 z “ pe´8

pe`8 z “ pe`8

Repzq ` pem`1 Impzq “ pem for some m P t1, 2, ¨ ¨ ¨ ℓ ` ku

exppRepzqq ` pe1 z P pr for some r P Z

We note that pF8,s satisfies the following properties:

• pG8,s, and has two branch points, pe`8 and pe1.
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• for everym P t1, 2, ¨ ¨ ¨ , ℓ`k´1u, pG8,sppemq “ pem`1 and pG8,s maps γm homeomorphically

to γm`1

• for every r P Z, pG8,s maps pr homeomorphically to γ1.

Next, we construct a transcendental Thurston map from pG8,s.

For each r P Z, consider the connected component Ur of Cextz pSext8 psq bounded by pr and

pr`1. It is evident that the closure of Ur in Cext is homeomorphic to a closed topological disk.

By this discussion and the definition of pF8,s, it is clear that we can use the Alexander

trick to extend pG8,s to a continuous map from Ur Y tpe`8, pe´8u to Cext that maps Ur

homeomorphically to Cextz pS8psq. Doing this for every r P Z, pG8,s can be extended to a

continuous map from Cext to Cext.

From this point, we will restrict this map to C. We see that pF8,s : C ! C is open

and has discrete fibers. Furthermore, pF8,s is locally injective at z P C if and only if z R pr

for any r P Z. If z R Yrpr, then by definition, pG8,s is locally an orientation-preserving

homeomorphism at z. Following from this, we also see that pG8,s : C −! Cztpe1u is a universal

covering, and that pe1 is an asymptotic value for Gs.
To summarize, this discussion shows that pG8,s is topologically holomorphic. It is also

postsingularly finite: the postsingular set is tpe1, pe2, ¨ ¨ ¨ , peℓ`ku. We may regard it as a map

from R2 to R2 by forgetting the standard complex structure. We use the following proposition

to show that pG8,s : R2 −! R2 is of stable parabolic type, and is therefore a Thurston map.

Proposition II.53. Let f : R2 ! R2ztau be a universal cover for some a P R2. Then f has

stable parabolic type.

Proof. Let A P AflatpR2q. Then by the Uniformization Theorem, there exists a biholomor-

phism φ from the Riemann surface pR2,Aq to the complex plane C. For a unique X P tC,Du,

there exists a biholomorphism ψ : pR2, f˚Aq ! X. Then the map φ ˝ f ˝ψ´1 : X ! C would

be a universal cover, and this is possible only if X “ C.

We can also identify if the map pG8,s is realized holomorphically. We recall that the

parameter ray at address s lands at a unique PSF parameter λ P Λ. [LSV08] showed that

• if the eventual period of the orbit of λ is k, then pG8,s is Thurston equivalent to pλ;

• if the eventual period of the orbit of λ is k1 ă k, then pG8,s has a Levy cycle C; it can be

described as a multicurve tγ1, γ2, ¨ ¨ ¨ , γk1u where, for each m P t1, 2, ¨ ¨ ¨ , k1u, the loop

γm surrounds tpeℓ`m, peℓ`m`k1 , ¨ ¨ ¨ , peℓ`m`ku.

However, by collapsing this Levy cycle we may form a map Thurston equivalent

equivalent to pλ. Formally, form a quotient space of Cext by collapsing each region in C
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bounded by a loop in C to a point; this induces quotient graphs Sext8 psq and S8psq of

the extended and standard exponential spiders respectively. Then pG8,s| pSext8 psq descends

to a map Gs : Sext8 psq −! S8psq. In other words, the following diagram commutes:

pSext8 psq pS8psq

Sext8 psq S8psq

pG8,s

π π

Gs

Here π is the quotient map that describes collapsing C.

By a similar discussion as for pG,8,s, this map Gs can be extended to a Thurston map

defined on R2, and moreover, this extension is combinatorially equivalent to pλ.

Note that the quotient construction in the point above can be done for any s, and so the

graph S8psq is well-defined for all pre-periodic addresses s. We define the legs of S8psq to be

the images of the legs of pS8psq, and we will call them by the same names (i.e., pr or γm).

When s is evident, we let en denote the class of pen in S8psq, and let As “ te1, ..., eℓ`ku. We

note that |As| ě 2 for all adresses s.

Consider a line β “ ty “ bu disjoint from all the legs of pSext8 psq X C, where b is chosen
so that b ă Im pem if and only if 0 ă µ˝pm´1qpsq, and β is bound between pr and pr`1

if r0 ă β ă pr ` 1q0. The line β represents the lexicographic position of the external

address 0: note that µ˝pn´1qpsq ăă µ˝pm´1qpsq if and only if, starting from γn and moving

counterclockwise in a neighborhood of 8, we can reach γm without intersecting β. This gives

a circular order of the legs of pSext8 psq (and correspondingly, on Sext8 psq), which can be shown

to be independent of b.

Poset structure on Pn and P

We can use parameter rays to define partial orders on the spaces Pn and P .

Fix n P Ně2. In Pn, we say that λ◁ pλ if there exist angles θ1, θ2 P Θnpλq and pθ P Θnppλq

such that θ1 ă pθ ă θ2, and the parameter rays Rnpθ1q and Rnpθ2q land at the same point of

Mn.

Similarly, in P, we say that λ ◁ pλ if there exist external addresses s1, s2 P Θ8pλq and

ps P Θ8ppλq such that s1 ă ps ă s2 and the parameter hairs corresponding to s1 and s2 land

together in Λ.
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CHAPTER III

Convergence of Thurston Maps

In this chapter, we introduce various notions of convergence for sequences of Thurston maps.

We provide two different points of view (see Definitions III.2 and III.7), and show that they

are equivalent.

Afterward, we give a construction that allows us to approximate, in an appropriate sense,

an arbitrary transcendental Thurston map by a sequence of polynomial Thurston maps

(Proposition IV.15). We use these results to establish Main Theorem I.4. For the notation

for topological objects used here, we refer to Appendix A.1.

III.1: Combinatorial convergence

Our first criterion is combinatorial convergence. This is a condition on how a sequence of

Thurston maps fn : pR2, Aq lift loops in R2zA, which we regard as elements of π1pR2zAq. We

will want to quantify curves that eventually lift to loops under fn (i.e., loops that belong to

pfnq˚π1pR2zf´1
n pAqq for all n sufficiently large). So we first introduce a notion of convergence

for subgroups of π1pR2zAq.

More generally, we use the following notion of convergence, in the sense of Chabauty

([Cha50]), of sequences of subgroups of a given group.

Definition III.1. Let G be a group endowed with the discrete topology and pHnq be a

sequence of its subgroups. We say that the sequence pHnq converges to a subgroup H of G

and write lim
n!8

Hn “ H if for every g P G, there exists N “ Npgq P N so that if g P H, then

for every n ě N , g P Hn; and if g R H, then g R Hn for every n ě N .

Definition III.2. Let fn : pR2, Aq ý, n P N be a sequence of Thurston maps. We say that

the sequence pfnq converges combinatorially to a Thurston map f : pR2, Aq ý if there exist

points t P R2zA b P f´1ptq, bn P f´1
n ptq and paths pn Ă R2zA @n P N such that

• fnpbnq “ fpbq “ t @n P N;
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• pnp0q “ b and pnp1q “ bn @n P N;

• for every rγs P π1pR2zA, tq, the following hold:

1. The lifts γ"pfn, bnq eventually have the same closing behavior as γ"pf, bq (Defini-

tion A.2). Equivalently,

lim
n!8

pfnq˚π1pR2
zf´1
n pAq, bnq “ f˚π1pR2

zf´1
pAq, bq,

in the sense of Definition III.1.

2. If γ P f˚π1pR2zf´1pAq, bq, then for all n sufficiently large, the closed curves γ"pf, bq

and pn ¨ pγ"pfn, bnqq ¨ p´1
n are homotopic relA.

III.2: Independence from isotopy

Proposition III.3. Let A Ă R2 be a finite set. Two Thurston maps f, pf : pR2, Aq ý are

isotopic rel. A if and only if there exist points t P R2zA, b P f´1ptq and pb P pf´1ptq where the

following conditions hold:

1. f˚π1pR2zf´1pAq, bq “ pf˚π1pR2z pf´1pAq,pbq;

2. there exists a path p Ă R2zA with pp0q “ b and pp1q “ pb such that for all γ P f˚π1pR2zf´1pAq, bq,

the loop γ"pf, bq is homotopic to p ¨ γ"p pf,pbq ¨ p.

Before we prove this proposition, we formulate a simple observation.

Lemma III.4. Suppose A Ă R2 is finite with |A| ě 2, and φ is an orientation-preserving

homeomorphism such that φpbq “ t for some b, t P R2zA. Then φ is isotopic rel. A to idR2 if

and only if there exists a path p Ă R2zA joining b with t such that every loop γ Ă R2zA based

at b is homotopic rel. A to p ¨ pφ ˝ γq ¨ p.

Proof. ( ùñ ): Suppose that φ is isotopic rel. A to idR2 via an isotopy pφsqsPI, where φ0 “ idR2

and φ1 “ φ. Define p : I ! R2zA as ppsq “ φspbq for each s P I. Then it is evident that

for any loop γ Ă R2zA based at b and p ¨ pφ ˝ γq ¨ p are homotopic rel. A via a homotopy

Hs :“ ps ¨ pφs ˝ γq ¨ ps, where ps is a subpath of p joining b with φspbq for every s P I.
( ðù ): Now suppose that there exists a path p Ă R2zA joining b with t such that every

loop γ Ă R2zA based at b is homotopic rel. A to p ¨ pφ ˝ γq ¨ p Ă R2zA. Taking γ to be a loop

separating a unique point a P A from the other points of A and using continuity of φ, we can

show that φpaq “ a for each a P A. The rest follows from Theorem II.20.
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Proof of Proposition III.3. p ùñ q : First suppose that pf “ f ˝φ for some φ P Homeo`
0 pR2, Aq

and choose a point b P R2zf´1pAq. Let pb “ φpbq and t “ fpbq. Given any loop γ P π1pR2zA, tq,

we note that γ"p pf,pbq “ φpγ"pf, bqq. This immediately proves item (1). For r P I, let φr P

Homeo`
pR2, Aq be such that φ0 “ idR2 and φ1 “ φ. Define continuous maps pr : I ! R2zA,

r P I as s 7! φsrpbq. Then prp0q “ b and prp1q “ φrpbq. Letting p “ p1, it is evident that for

all γ P π1pR2zf´1pAq, bq, the map r 7! pr ¨ φrpγ"pf, bqq ¨ pr is a homotopy (rel. A) between

γ"pf, bq and p ¨ γ"p pf,pbq ¨ p.

p ðù q : Now conversely, suppose the conditions (1) and (2) above are satisfied for some

b,pb, t P R2zA and path p as above. Due to condition (1), there exists a homeomorphism

φ : R2zf´1pAq ! R2z pf´1pAq such that the following diagram commutes:

pR2zf´1pAq, bq pR2z pf´1pAq,pbq

pR2zA, tq

φ

f
pf

Since f´1pAq is discrete, we can extend φ to a homeomorphism from R2 to R2. Let

γ P f˚π1pR2zA, bq. By the diagram above, we have φpγq “ fpγq " p pf,pbq. Due to con-

dition (2), we know that γ “ fpγq " pf, bq „A p ¨φpγq ¨ p. In particular, for any a P A, we can

take γ above to be a loop separating a from every other point of A. The discussion above

shows that φpaq “ a for all a P A, and by Theorem II.20.

Proposition III.5. Let fn : pR2, Aq ý, n P N be a sequence of Thurston maps that converges

combinatorially to a Thurston map f : pR2, Aq ý. If pfn, pf : pR2, Aq ý are Thurston maps

such that pfn is isotopic to fn rel. A for all n P N and pf is isotopic to f rel. A, then p pfnq

converges combinatorially to pf .

Proof. Let φn, φ P Homeo`
pR2, Aq be such that fn “ pfn ˝ φn for all n P N and f “ pf ˝ φ.

By assumption, there exist points t P R2zA, b P f´1ptq, bn P f´1
n ptq and paths pn Ă R2zA for

all n P N such that all the conditions of Definition III.2 are satisfied. Let pbn “ φnpbnq, and
pb “ φpbq. Then, by Proposition III.3,

lim
n!8

p pfnq˚π1pR2
z pf´1
n pAq,pbnq “ lim

n!8
pfnq˚π1pR2

zf´1
n pAq, bnq

“ f˚π1pR2
zf´1

pAq, bq

“ p pfq˚π1pR2
z pf´1

pAq,pbq.

Also by Proposition III.3, there exist paths ppn, pp : I ! R2zA with ppnp0q “ bn and ppnp1q “ pbn
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for all n P N, and a path pp with ppp0q “ b and ppp1q “ pb such that for every n P N,

@γ P pfnq˚π1pR2
zf´1
n pAq, bnq, the loop γ"pfn, bnq „A ppn ¨ γ"p pfn,pbnq ¨ ppn for all n P N,

@γ P f˚π1pR2
zf´1

pAq, bq, the loop γ"pf, bq „A pp ¨ γ"p pf,pbq ¨ pp.

Then for every γ P p pfq˚π1pR2z pf´1pAq, bq, for all sufficiently large n P N,

γ"p pf,pbq „A pp ¨ γ"pf, bq ¨ pp

„A pp ¨ ppn ¨ γ"pfn, bnq ¨ pnq ¨ pp

„A ppp ¨ pn ¨ ppnq ¨ γ"p pfn,pbnq ¨ pppn ¨ pn ¨ ppq.

This shows that p pfnq converges combinatorially to pf .

Convergence to a polynomial Thurston map

If the limiting map f of a combinatorially convergent sequence pfnq is of finite degree, then

we show that the maps fn form a constant approximation upto isotopy.

Proposition III.6. Let fn : pR2, Aq ý, n P N be a sequence of Thurston maps converging

combinatorially to a Thurston map f : pR2, Aq ý. If f is a topological polynomial, then for

all sufficiently large n, fn is isotopic to f rel. A.

Proof. Choose points t P R2zA, b P f´1ptq, bn P f´1
n ptq and paths pn Ă R2zA that satisfy the

conditions of Definition III.2. Since f is a topological polynomial, f´1pAq is a finite set, and

the group f˚π1pR2zf´1pAq, bq is finitely generated. Let Γ “ tγ1, γ2, ..., γku be a generating

set for f˚π1pR2zf´1pAq, bq.

Since the maps fn converge to f combinatorially, for sufficiently large n, the set Γ is a subset

of pfnq˚π1pR2zf´1
n pAq, bnq, and thus, f˚π1pR2zf´1pAq, bq is a subgroup of pfnq˚π1pR2zf´1

n pAq, bnq.

From the classical theory of covering maps, there exists a covering map φn : R2zf´1pAq !

R2zf´1
n pAq such that the following diagram commutes:

pR2zf´1pAq, bq pR2zf´1
n pAq, bnq

pR2zA, tq

φn

f
fn

In particular, degpφnq and degpfnq are bounded above by degpfq for all n sufficiently large.

Let α Ă R2zA be a simple loop based at t such that the unique bounded component of R2zα

contains the set A. Proposition II.8 implies that for every ℓ P Z, the lift αℓ " pf, bq is a loop if

and only if degpfq divides ℓ. A similar statement holds for the topological polynomials fn as
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well. Thus, condition (1) implies that degpfq “ degpfnq for all sufficiently large n. Hence, the

covering map φn : R2zf´1pAq ! R2zf´1
n pAq is an orientation-preserving homeomorphism

and, therefore, it can be extended to R2. Finally, condition (2) and Lemma III.4 imply that

φn is isotopic rel. A to idR2 .

III.3: Topological convergence

Now we move on to our second notion of convergence. Throughout this section, we assume

A Ă R2 is a finite set.

Definition III.7. Let fn : pR2, Aq ý, n P N be a sequence of Thurston maps. We say that

pfnq converges topologically to the Thurston map f : pR2, Aq ý if for every compact set

D Ă R2, there exists N P N such that for n ě N , we have fn|D ” f |D.

It is easier to establish σfn ! σf if the fn converge topologically to f . However, to

establish that every transcendental Thurston map f , that there exists a sequence of polynomial

Thurston maps that converge combinatorial approximations. But by showing the equivalence

of combinatorial and topological convergence upto isotopy, we sidestep this difficulty.

Proposition III.8. Let fn : pR2, Aq ý, n P N be a sequence of Thurston maps. Then pfnq

converges combinatorially to a Thurston map f : pR2, Aq ý if and only if there exists a

sequence of Thurston maps pfn : pR2, Aq ý converging topologically to f , where pfn is isotopic

rel. A to fn for every n P N.

Before we prove Proposition III.8 we need to obtain the following result of non-dynamical

nature.

Proposition III.9. Suppose that fn : R2 ! R2, n P N and f : R2 ! R2 are topologically

holomorphic maps in class S such that Sfn “ Sf “ A for all n P N. Let b, bn P R2 and

t P R2zA be points such that fnpbnq “ fpbq “ t for every n P N. Further suppose that

lim
n!8

pfnq˚π1pR2
zf´1
n pAq, bnq “ f˚π1pR2

zf´1
pAq, bq.

Then for every bounded domain D Ă R2 containing b, for sufficiently large n, there exists a

continuous injective map φn : D ã! R2 such that the following diagram commutes:

pD, bnq pR2, bq

pR2, tq

φn

f
fn
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Figure 3.1: Top: the co-domain of G2pzq “
?
ln 2pexppz2q ´ 1q along with its postsingular set

ta1, a2, a3u; Bottom: an illustration of D1, where D is the shaded region bounded by the
dotted loop
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Proof. Let D be as above. Without loss of generality, we can assume that BDX f´1pAq “ H.

Choose a simple continuous curve ω : r0,8q ! R2 such that ω passes through all points of A,

ωp0q P A, and lim
t!8

ωptq “ 8.

Claim 1. Let K Ă R2 be a bounded set and W Ă R2 be a closed locally connected set. Then,

only finitely many connected components of R2zf´1pW q intersect K.

Proof of Claim 1. Suppose there exist distinct connected components E1, E2, . . . , En, . . . of

R2zf´1pW q intersectingK. Pick an arbitrary point xn P EnXK for all n P N. We may assume

without loss of generality that the sequence pxnq converges to x P K X f´1pW q. Thus, any

neighbourhood of x intersects infinitely many connected components of R2zf´1pW q, which

leads to a contradiction since W is locally connected and f is topologically holomorphic. ■

Claim 2. There exists a bounded domain D1 Ă R2 containing D such that for every connected

component F of R2zf´1pωq, the set D1 X F is connected (perhaps, empty).

Proof of Claim 2. For every a P A Y t8u we choose a set Ua such that

1. Ua “ Dpa, raq for some ra ą 0, and U8 “ R2zV8, where V8 is an open ball containing

A,

2. Ua X U
pa “ H if pa P A Y t8u is distinct from a, and

3. every connected component of f´1pUaq is either contained in D or disjoint from it.

The last condition can be satisfied if we pick the values ra to be sufficiently small and U8

sufficiently far from fpDq. Indeed, due to the previous claim, D intersects with finitely many

connected components of f´1pUaq for every a P A Y t8u, and BD X f´1pAq “ H. Thus, the

rest easily follows from Propositions II.7 and II.8.

Let U :“
Ť

aPAYt8u
Ua and WF :“ F zf´1pUq for every connected component F of

R2zf´1pωq. Therefore,

pWF Y Dq X F “ WF Y

´

D X pWF Y pF X f´1
pUqqq

¯

“ WF Y pD X F X f´1
pUqq

“ WF Y
ď

aPAYt8u

FXf´1pUaqĂD

F X f´1
pUaq.

By Proposition II.8, the map f |F : F ! R2zω is a homeomorphism. Thus, WF is connected,

and for every a P A Y t8u, F X f´1pUaq is a connected set whose boundary intersects WF .

This discussion implies that the set pWF Y Dq X F is connected.
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Therefore, D1 :“ DY
Ť

F :FXD‰H
WF is an open set such that D1 XF is connected for every

connected component F of R2zf´1pωq. The set D1 is connected since WF X D “ H if and

only if F XD “ H. At the same time, D1 is bounded since each WF “ F X f´1pR2zpU Y ωqq

is bounded by Proposition II.7, only finitely many regions F intersect D.

■

See Figure 3.1 for a depiction of D1 for the map G2 from Example II.16. Due to the claims

above, there exists a positive integer m such that for all x P D1zf´1pAq, the point b can be

joined to x by a path contained in D1zf´1pAq and intersecting f´1pωq at most m times.

Denote by Pω,k the set of elements of π1pR2zA, tq that can be represented by a loop

α : I ! R2zA such that |α´1pωq| ď k. Clearly, Pω,k is finite for all k P N.
Now we construct a continuous map φn : D

1 ! R2 and prove its injectivity as required.

Let D2 be an open Jordan region containing D1. Since the group f˚π1pD
2zf´1pAq, bq is

finitely generated, then by our initial assumptions in this proposition, it is a subgroup of

pfnq˚π1pR2zf´1
n pAq, bnq for all n sufficiently large. Therefore, there exists a continuous map

φn : D
2zf´1pAq ! R2zf´1

n pAq such that f “ fn ˝ φn on D2zf´1pAq and φnpbq “ bn. We

prove that the map φn is injective on D1zf´1pAq for all n sufficiently large.

Suppose φn is not injective for some n, choose distinct points x1, x2 P D1zf´1pAq such

that φnpx1q “ φnpx2q. We join b with x1 and x2 by simple paths α1 : I ! D1zf´1pAq and

α2 : I ! D1zf´1pAq in D1zf´1pAq, respectively, so that |α´1
1 pf´1pωqq|, |α´1

2 pf´1pωqq| ď m.

Let γ :“ f ˝ α1 ¨ f ˝ α2. By definition, γ " pf, bq is not a loop; however, γ " pfn, bnq is the

loop φn ˝ α1 ¨ φn ˝ α2. Thus,

rγs P Gn :“ Pω,2m X

´

pfnq˚π1pR2
zf´1
n pAq, bnq z f˚πpR2

zf´1
pAq, bq

¯

.

Since Pω,2m is a finite set, if φn fails to be injective for infinitely many n, then there exists

rpγs P π1pR2zA, tq such that rpγs P Gn for infinitely many n. This, however, is not possible

since for all n large enough, rpγs R pfnq˚π1pR2zf´1pAq, tq.

Finally, since f´1pAq and f´1
n pAq are discrete subsets of R2, we can extend φn to a

continuous injective map defined on D1 such that f “ fn ˝ φn on D1 and φnpbq “ bn for all

sufficiently large n.

Proof of Proposition III.8. If the sequence p pfnq converges topologically to f , then it does so

combinatorially with respect to t, b, pbnq, ppnq, where t P R2zA and b P f´1ptq are arbitrary,

bn :“ b and pn is a constant loop based at b for every n P N. Hence, Proposition III.5 implies

that the sequence pfnq converges combinatorially to f .
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Now suppose that the sequence pfnq converges combinatorially to f with respect to some

choice of pbnq, b, t and ppnq. Let pDmqm be an exhaustion of R2 by closed topological disks

containing A and b in their interiors for every m P N. Then for sufficiently large n let

m “ mpnq be the maximal index such that

1. there exists a continuous injective map φn : Dm ! R2 such that f |Dm “ fn ˝ φn and

φnpbq “ bn;

2. for every loop γ Ă R2zA based at t such that rγs P f˚π1pDmzf´1pAq, bq, the lifted loops

γ"pf, bq and pn ¨ γ"pfn, bnq ¨ pn are homotopic rel. A.

These conditions hold for sufficiently large n because of Definition III.2, Proposition III.9

and the fact that f˚π1pDmzf´1pAq, bq is finitely generated. Moreover, it is easy to show that

mpnq converges to infinity as n tends to infinity.

Now we can extend φn to an orientation-preserving homeomorphism pφn of R2. In fact, by

the Alexander trick, all such extensions of φn are isotopic to each other rel. Dm. Clearly, if

γ Ă Dmzf´1pAq is a loop based at b, then φn˝γ is a fn-lift (based at bn) of f ˝γ. In particular,

γ „A pn ¨ ppφn ˝ γq ¨ pn for every loop γ Ă R2zA based at b. Thus, the homeomorphism pφn is

isotopic rel. A to idR2 by Proposition III.3.

Now consider the sequence p pfnq of Thurston maps, where pfn “ fn ˝ pφn for all n P N.
Clearly, p pfnq converges topologically to f .

III.4: Convergence of Thurston pullback maps

In this section we use the theory developed in this chapter so far to establish Theorem I.4.

We assume throughout that A Ă R2 is finite.

Proposition III.10. Let τn, n P N and τ be points in TpS2, AY t8uq. Suppose there exist

representatives φn P τn, n P N and φ P τ such that φp8q “ 8 and φnp8q “ 8 for all n P N,
and φn ! φ uniformly on compact sets of R2. Then dTpτn, τq ! 0 as n! 8.

Proof. Without loss of generality, we may assume that there exists a P A such that φnpaq “

φpaq for all n P N.
By the given conditions, in the moduli space MpS2, AY t8uq, we note that rrφnss ! rrφss.

Therefore, there exists a sequence of homeomorphisms qn P Homeo`
pS2, A Y t8uq such that

dTprφn ˝ q´1
n s, rφsq ! 0. Equivalently, for every n P N, there exists a quasiconformal map

kn : pC ! pC isotopic to φn ˝ q´1
n ˝ φ´1 rel. A Y t8u, such that Kpknq ! 1 as n! 8.
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For every n P N, letMn be the unique Möbius map satisfyingMnp8q “ 8,Mnpbq “ b, and

Mnpφn ˝ φ´1pb̂qq “ b̂ for some b̂ P φpAqztbu. Then pMn ˝ knq is a sequence of quasiconformal

maps that fix the three points 8, b and pb; and KpMn ˝ knq ! 1. By Proposition II.5,

Mn ˝ kn ! id
pC uniformly on compact subsets of pCzt8, b,pbu. Note that Mn ! id

pC uniformly

on compact subsets of C; this implies that kn ! id
pC locally uniformly on compact subsets of

pCzt8, b,pbu. But then we have xqny “ xφ´1 ˝ k´1
n ˝ φny “ xφ´1 ˝ k´1

n ˝ φ ˝ φ´1 ˝ φny ! xidS2y

in PMCGpS2, AY t8uq. Since this is a discrete group we must have xqny “ xidS2y eventually,

thereby proving the proposition.

Proposition III.11. Let τ, τn P TpS2, AY t8uq. Suppose there exist representatives φn P τn

and φ P τ such that φ, φn : R2 ! C are orientation-preserving homeomorphisms, and for

each open set D Ă R2 with compact closure, the map pφn ˝ φ´1q | φpDq is holomorphic for

all n ě ND. Then dTpτn, τq ! 0 as n! 8.

Proof. Let ψn “ φn ˝ φ´1 for each n P N.
Without loss of generality, we may assume D is an open disk. We also assume that D is

large enough so that Dpa, 1q Ă D for every a P A. Suppose without loss of generality that for

all n P N, there exists b P φpAq such that ψnpbq “ b and ψ1
npbq “ 1 for some b P φpAq. Due to

Proposition III.10, it suffices to establish the following:

Claim 1. The sequence pψnq converges locally uniformly on φpDq to idφpDq.

In order to establish the above, we first prove a preliminary statement:

Claim 2. If z0 P φpDq satisfies ψnpz0q ! z0 and ψ1
npz0q ! 1, then given r ą 0 such

that Dpz0, rq Ă φpDq, the sequence of maps
´

ψn|Dpz0,
r
16

q

¯

converges locally uniformly to

idDpz0,
r
16

q.

Proof of Claim 2. Let hnpzq “ Mn ˝ ψn, where Mnpzq “ 1
ψ1
npz0q

pz ´ ψnpz0qq ` ψnpz0q. Then

hnpz0q “ z0 and h1
npz0q “ 1. Let r ą 0 be such that Dpz0, rq Ă φpDq. Then by the

Koebe 1/4-theorem, there exists N “ ND P N such that Dpz0,
r
4
q Ă hnpDpz0, rqq for all

n ě N . Consider the sequence ph´1
n |Dpz0,

r
16

qq. Again by the Koebe 1/4-theorem, we see

that Dpz0,
r
16

q Ă h´1
n pDpz0,

r
4
qq for all n ě ND.

Thus we get the sequence hn|Dpz0,
r
16

q : Dpz0,
r
16

q ã! Dpz0,
r
4
q satisfying hnpz0q “

z0, h
1
npz0q “ 1 for all n ě N . By Montel’s theorem, every subsequence of this sequence has a

subsequence that converges to idDpz0,
r
16

q locally uniformly. Therefore, hn|Dpz0,
r
16

q ! idDpz0,
r
16

q

locally uniformly. Since ψn “ M´1
n ˝hn andMn converges to idC locally uniformly, this proves

the claim.

■
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Proof of Claim 1. Let U be the set of points z P φpDq such that pψnq converges locally

uniformly to idUz on some neighborhood Uz of z. By Claim 1, U is an open set, and we see

that b P U .

Suppose U ‰ φpDq, there exists a point pz P BU and r ą 0 such that Dppz, rq Ă φpDq. We

can also choose a point z0 P U X Dppz, r
2
q such that 16|pz ´ z0| ă r

2
. Then for any δ such that

16|pz ´ z0| ă δ ă r
2
, we observe that Dpz0,

δ
16

q is contained in D but not in U . By Claim 1,

however, Dpz0,
δ
16

q Ă U . ■

Proposition III.12. Let fn : pR2, Aq ý, n P N be a sequence of Thurston maps that

converge combinatorially to a Thurston map f : pR2, Aq ý. For every τ P TpS2, A Y t8uq,

dTpσfnpτq, σf pτnqq ! 0.

Proof. Due to Proposition II.29 and III.8, we may assume without loss of generality that

the sequence pfnq converges topologically to f . Let φ P τ such that φp8q “ 8.

Then there exist maps ψ P σf pτq, ψn P σfnpτq for n P N and entire maps g and gn, n P N
such that the following diagrams commute:

pR2, Aq pC, ψpAqq

pR2, Aq pC, φpAqq

ψ

f g

φ

pR2, Aq pC, ψpAqq

pR2, Aq pC, φpAqq

ψn

fn gn

φ

By Proposition III.12, it suffices to show that for any open set D Ă R2 with compact closure,

the map ψn ˝ ψ´1|ψpDq is holomorphic for all n sufficiently large.

Let pD “ ψpDq. Then there exists N P N such that for all n ě N , fn|D ” f |D.

Fix an n ě N . Let z0 be a point in pD such that z0 R g´1pφpAqq. Since the point

y0 :“ φ´1pgpzqq R A, there exists a local inverse h : Vy0 ! R2 for f in a neighborhood Vy0 Q y

such that x0 :“ hpy0q “ ψ´1pz0q and hpVy0q Ă D. Moreover, φpfnpx0qq “ φpfpx0qq “ gpz0q.

Since gpz0q R φpAq, there exists a local inverse kn : pVn ! C for gn in a neighborhood pVn of

gpz0q such that knpgpz0qq “ z0. Let Un be a neighborhood of z0 such that gpUnq Ă pVn and

φ´1 ˝ gpUnq Ă Vy0 .
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Then for every z P Un,

ψn ˝ ψ´1
pzq “ pkn ˝ φ ˝ fnq ˝ ph ˝ φ´1

˝ gqpzq

“ kn ˝ φ ˝ pfn ˝ hq ˝ pφ´1
˝ gqpzq

“ kn ˝ gpzq.

The last equality is due to the fact that the point φ´1 ˝ gpzq is in Vy0 , and since fn and f

coincide on D, we have fn ˝ h ” idVy0 .

The above discussion shows that ψn ˝ ψ´1 is holomorphic at every point in pDzg´1pφpAqq.

Since pD is compact, the intersection pDXg´1pφpAqq is a finite set. Moreover, ψn˝ψ´1pDq Ă R2

has compact closure. Therefore, ψn ˝ ψ´1 extends to a holomorphic map on pD. Since this is

true for all n ě N , the proposition follows.

Now fix a Thurston map f : pR2, Aq ý and let fn : pR2, Aq ý, n P N be a sequence of

entire Thurston maps that converge topologically to f .

Proof of Theorem I.4. We first show that pσfnq converges to σf pointwise. Given τ “

rφs P TpS2, A Y 8q, let σf pτq “ rψs and σfnpτq “ τn “ rψns, where ψ, ψn, φ : R2 ! C are

orientation-preserving homeomorphisms for all n P N.
Given any compact set D Ă R2, there exists N P N such that fn|D “ f |D for all n ě N .

In particular, ψn ˝ ψ´1 is holomoprhic on φpDq. By Proposition III.12, we have

lim
n!8

dTpσf pτq, σfnpτqq “ 0.

Next we show that the convergence σfn ! σf is in fact locally uniform on TpS2, AYt8uq. Let

K Ă TpS2, A Y t8uq be a compact set. Given ε ą 0, cover K by open balls B1, B2, . . . , Bk

each of radius ε{3, with Bj centered at µj P TpS2, A Y t8uq for each j “ 1, 2 . . . , k.

Since pσfnq converges to σf pointwise, for sufficiently large n, the distance dTpσfnpµjq, σf pµjqq

is bounded above by ε{3 for each j “ 1, 2, . . . , k. Hence, for sufficiently large n and any

µ P K we have

dTpσfnpµq, σf pµqq ď dTpσfnpµq, σfnpµjqq ` dTpσfnpµjq, σf pµjqq ` dTpσf pµjq, σf pµqq ď ε.

Here j is chosen so that dTpµ, µjq ď ε{3. We also use the fact that all σ-maps above are

1-Lipschitz (see Proposition II.24).

Corollary III.13. Let f : pR2, Aq ý be a realized Thurston map and fn : pR2, Aq ý, n P N
be a sequence of Thurston maps converging combinatorially to f . Then fn is realized for
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sufficiently large n. Moreover, letting τn P TpS2, A Y t8uq be a unique fixed point of σfn, we

have τn ! τ , where τ is the fixed point of σf .

Proof. If f is a polynomial Thurston map, by Remark II.25 and Proposition III.6, the equality

σfn “ σf holds for sufficiently large n.

Now suppose that f is transcendental. Let B Ă TpS2, AY t8uq be a closed ball of radius

r ą 0 centered at τ , the fixed point of σf . Since B is closed and bounded, it is compact.

Proposition II.24 implies the existence of εB ą 0 such that the inequality dTpσf pµ1q, σf pµ2qq ď

p1 ´ εBqdTpµ1, µ2q is satisfied for all µ1, µ2 P B. Thus, for any µ P B we have the following:

(III.4.1) dTpσfnpµq, τq ď dTpσfnpµq, σf pµqq ` dTpσf pµq, τq ď εn ` p1 ´ εBqr,

where we know by Main Theorem I.4 that εn ! 0 as n ! 8. In other words, σfnpBq Ă B

for all sufficiently large n. By Proposition II.24, σ˝2
fn

is uniformly contracting on B and,

therefore, by the Banach fixed point theorem, when n is large enough, the map σfn has a

fixed point τn P B.

Lastly, similar to inequality (III.4.1), we have

dTpτn, τq ď dTpσfnpτnq, σf pτnqq ` dTpσf pτnq, σf pτqq ď εn ` p1 ´ εBqdTpτn, τq.

This shows that the sequence pτnq converges to τ .
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CHAPTER IV

Admissible Quadruples

In this chapter, we show how to construct topologically holomorphic maps in class S from a

covering map between a pair of regular planar embedded graphs. In subsequent sections, we

will use this construction to define Thurston maps. The foundational theory of planar graphs

we use here is explored in Appendix A.2.

IV.1: Rose graphs and quadruples

Let R be a directed rose graph based at t that surrounds a finite set A Ă R2 (see Defini-

tion A.7), and suppose |A| “ m. For a P A, let pa be the edge of R that surrounds A, and

let Pa be the bounded face of R containing a. Also denote by P8 the unique unbounded face

of R.

Let Γ Ă R2 be a 2m-regular and connected graph, and Φ : Γ ! R be a covering map

such that Φpvq “ t for all v P V pΓq and Φpeq P EpRq for all e P EpΓq. The graph Γ can be

assumed to be a directed graph with the orientation induced by the map Φ (see Appendix A.2).

Let us assume that m ě 2. Consider an arbitrary face F P F pΓq. We label F by Pa if

ΦpBF q “ tpau. If no such a exists (or equivalently, the image ΦpBF q spans at least two

petals of R), we label F by P8. We denote by Γ˚ the directed planar embedded graph

obtained by subdividing each edge of Γ (see Definition A.8).

Definition IV.1. Let A,R,Γ,Φ be as above. Label the points of A as a1, a2, ¨ ¨ ¨ , am such

that the edges pa1 , pa2 , ¨ ¨ ¨ , pam are arranged in counterclockwise order around t. We say that

the quadruple ∆ “ pA,R,Γ,Φq is admissible if m “ 1, or

1. every face F of Γ labeled by P8 is unbounded, and

2. for each v P V pΓq, the set of edges of Γ˚ at v (both incoming and outgoing) can

be written in the counterclockwise order as e1 “ e2m`1, e2, e3, ¨ ¨ ¨ , e2m such that the

following conditions are satisfied for each j “ 1, 2, . . . ,m:
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• e2j´1 is incoming at v and e2j is outgoing at v;

• there exists F P F pΓq labelled by Paj such that e2j´1, e2j P BF ;

• there exists F 1 P F pΓq labelled by P8 such that e2j, e2j`1 P BF 1.

Remark IV.2. Suppose that ∆ “ pA,R,Γ,Φq is an admissible quadruple and F is a face of

Γ. If F is not labelled by P8, then clearly, BF is a counterclockwise directed cycle if F is

bounded, and is otherwise an infinite directed chain. If F is labelled by P8, then BF is a

unilaterally connected graph (see Definition A.10).

IV.2: Functions on R2 from quadruples

Natural examples of admissible quadruples are preimages of rose graphs under entire topologi-

cally holomorphic maps in class S. More precisely, suppose that f : R2 ! R2 is topologically

holomorphic and rose graph R surrounds the set A, where Sf Ă A. Denote by ∆pA,R, fq

the quadruple pA,R, f´1pRq,ΦR,f q, where ΦR,f pxq “ fpxq for each x P f´1pRq.

Proposition IV.3. Let f , A, and R be as above. Then ∆pA,R, fq is an admissible quadruple.

Moreover, if m ě 2, then for each face F of f´1pRq the following properties hold:

1. if F is bounded and labeled by Pa for some a P A, then fpF q “ Pa and |F X f´1pAq| “ 1.

If |V pBF q| “ 1, then F does not contain any critical points of f and f |F is injective,

otherwise, F contains a unique critical point xF with degpf, xF q “ |V pBF q|;

2. if F is unbounded and labeled by Pa for some a P A, then fpF q “ Paztau and F X

f´1pAq “ H. In particular, a P Sf and F is an asymptotic tract of f over a;

3. if F is labeled by P8, then fpF q “ P8 and F X f´1pAq “ H. In particular, f restricts

to a universal covering map from F to P8.

Proof. First, we show that f´1pRq is connected. Consider any two distinct vertices u and

v of f´1pRq. There exists a path α : I ! R2zf´1pAq joining u and v. Note that f ˝ α is a

loop in R2zA based at t. Label A as a1, ..., am such that pa1 , ..., pam are counterclockwise

around t. Assuming that each paj is parameterized by αaj : I ! paj , it follows that f ˝ α is

homotopic to a loop γ “ γ1 ¨ γ2 ¨ ¨ ¨ ¨ ¨ γk rel. A, where γℓ P tα1, α2, . . . , αm, α1, α2, . . . , αmu

for each ℓ P t1, 2, ¨ ¨ ¨ , ku. By the homotopy lifting property, the path α is homotopic rel.

f´1pAq to rγ :“ γ"pf, uq. In particular, rγ joins u with v. Since rγ Ă f´1pRq, the vertices u

and v belong to the same connected component of f´1pRq.

Proposition II.8 implies that every face of f´1pRq labeled by P8 is unbounded. Finally,

the regularity of f´1pRq and admissibility of ∆pA,R, fq follow from the fact that f is locally
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injective and orientation-preserving at every v P V pf´1pRqq. Thus, the quadruple ∆pA,R, fq

is admissible.

The rest of the statement easily follows from Propositions II.7 and II.8.

Remark IV.4. Let ∆ “ pA,R,Γ,Φq be an admissible quadruple with m “ |EpRq| “ 1. In

this case, Γ is a counterclockwise directed cycle or an infinite directed chain. It is easy to

see that there exists a map f such that ∆pA,R, fq “ ∆ satisfying f “ φ ˝ g ˝ ψ´1 for some

orientation-preserving homeomorphisms φ, ψ : C ! R2, where gpzq “ zd if d “ |V pΓq| ă 8,

and gpzq “ exppzq if Γ is infinite. In particular, using Proposition II.14, we can formulate a

statement close in spirit to Proposition IV.3 for the case m “ 1.

Now assume that f : R2 ! R2 is an arbitrary topologically holomorphic map such

that Sf Ă A and ∆pA,R, fq “ ∆. Since R is a deformation retract of R2zA and Γ is a

deformation retract of R2zf´1pAq as Proposition IV.3 suggests, for any v P V pΓq, we see that

f˚π1pR2zf´1pAq, vq “ Φ˚π1pΓ, vq, and

Φ˚π1pΓ, vq “ trΦpδ1q ¨ Φpδ2q ¨ ¨ ¨ ¨ ¨ Φpδℓqs : each δi is a path parameterizing an edge of Γ,

and δ1 ¨ δ2 ¨ ¨ ¨ ¨ ¨ δℓ is a loop in Γ based at vu.

Now suppose that γ is a loop based at the center of the rose graph R such that γ is homotopic

to γ1 ¨γ2 ¨ ¨ ¨ ¨ ¨γk rel. A, where γj P tα1, α2, . . . , αm, α1, α2, . . . , αmu and αj is a parametrization

of pj for each j “ 1, 2, . . . ,m. If we know Φ, we can easily reconstruct γ"pf, vq for any vertex

v P V pΓq up to homotopy rel. f´1pAq.

The following result is the converse to Proposition IV.3:

Proposition IV.5. Let ∆ “ pA,R,Γ,Φq be an admissible quadruple. Then there exists a topo-

logically holomorphic map f : R2 ! R2 of finite type such that Sf Ă A and ∆pA,R, fq “ ∆.

Proof. When |A| “ 1, the desired result follows from Remark IV.4. Thus, we assume |A| ě 2

and give an outline of the construction.

First, we define f on Γ simply by setting f |Γ :“ Φ. Choose orientation-preserving

homeomorphisms φPj
: D ! Pj and φP8

: H ! P8. Similarly, since each face F of Γ is simply

connected, choose an orientation-preserving homeomorphism ψF : X ! F where X “ D if F

is bounded, and X “ H if F is unbounded.

Given a face F with label P P F pRq, we define f |F so that

1. if F is bounded, then f |F :“ φP ˝ gd ˝ ψ´1
F , where d “ |V pBF q| and gdpzq “ zd;

2. if F is unbounded, then f |F :“ φP ˝ exp ˝ψ´1
F .
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Due to admissibility conditions and Remark IV.2, the sets of homeomorphisms tφP uPPF pRq

and tψF uFPF pΓq can be chosen so that the map f we construct above is continuous. Finally,

one can show that f acts locally as a power map z 7! zd for some d P N, and that Sf Ă A.

Thus, f is topologically holomorphic, has finite type, and satisfies ∆pA,R, fq “ ∆.

Definition IV.6. Two admissible quadruples ∆1 “ pA,R1,Γ1,Φ1q and ∆2 “ pA,R2,Γ2,Φ2q

are said to be equivalent if there exist ψ P Homeo`
0 pR2, Aq and φ P Homeo`

pR2, Aq such that

1. ψ is an isomorphism between R1 and R2;

2. φ is an isomorphism between Γ1 and Γ2;

3. ψ ˝ Φ1 “ Φ2 ˝ φ.

It is easy to see that Definition IV.6 provides an equivalence relation on the set of all

admissible quadruples with a fixed marked set.

Proposition IV.7. Let A Ă R2 be finite, and R1, R2 be rose graphs surrounding A such that

R1 isotopic to R2 rel. A. Let f1 : R2 ! R2 and f2 : R2 ! R2 be topologically holomorphic

maps such that Sf1 Ă A and Sf2 Ă A. Then ∆pA,R1, f1q and ∆pA,R2, f2q are equivalent if

and only if there exists a map ψ P Homeo`
pR2q such that f1 “ f2 ˝ ψ.

Moreover, if f1 and f2 are holomorphic, and ∆pA,R1, f1q and ∆pA,R2, f2q are equivalent,

then the map ψ is an affine transformation.

Proof. Suppose that the admissible quadruples ∆pA,R1, f1q and ∆pA,R2, f2q are equivalent.

Due to Proposition II.6 we can assume that R1 “ R2 “ R and that the equivalence

between ∆pA,R1, f1q and ∆pA,R2, f2q is provided by ψ “ idR2 and an orientation-preserving

homeomorphism φ. By pre-composing f2 with φ we can further assume ψ “ φ “ idR2 , or

equivalently, ∆pA, f1,R1q “ ∆pA, f2,R2q “ pA,R,Γ,Φq. Then by the previous discussions,

we have that

pf1q˚π1pR2
zf´1

1 pAq, vq “ Φ˚π1pΓ, vq “ pf2q˚π1pR2
zf´1

2 pAq, vq

for every v P V pΓq. By the classical theory of covering maps, there exists an orientation-

preserving homeomorphism ψ : R2zf´1
1 pAq ! R2zf´1

2 pAq such that f1 “ f2 ˝ψ on R2zf´1
1 pAq.

Since f´1
1 pAq is a discrete subset of R2, we can extend ψ to R2, still satisfying f1 “ f2 ˝ ψ.

Conversely, let us suppose there exists ψ P Homeo`
pR2q such that f1 “ f2 ˝ ψ. By our

assumptions on R1 and R2, we can find ψ P Homeo`
0 pR2, Aq such that ψpR1q “ R2. Then
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Figure 4.1: Admissible quadruple realized by g1pzq “ cospzq.

by Proposition II.6, there exists φ P Homeo`
pR2q such that ψ ˝ f1 “ f2 ˝ φ, and the rest

easily follows.

If f1 and f2 are holomorphic, any homeomorphism ψ satisfying f1 “ f2 ˝ψ is holomorphic,

and therefore affine.

We say that a topologically holomorphic map f : R2 ! R2 realizes an admissible quadruple

∆ “ pA,R,Γ,Φq or, equivalently, ∆ defines f , if Sf Ă A and ∆pA,R, fq is equivalent to ∆.

In particular, Propositions IV.5 and IV.7 imply that every admissible quadruple ∆ defines an

entire topologically holomorphic map f of finite type, which is unique up to pre-composition

by an orientation-preserving homeomorphism.

Note that an admissible quadruple ∆ “ pA,R,Γ,Φq is a combinatorial object even

though Φ is a continuous map. In fact, to define the map Φ uniquely (up to a certain notion

of equivalence introduced below), it is sufficient to know the images Φpeq, e P EpΓq and the

orientation of the graph Γ induced by Φ. Indeed, suppose that Ψ: Γ ! R is a covering

map such that Ψpvq “ t for each vertex v P V pΓq, Φpeq “ Ψpeq for each edge e P EpΓq, and

the orientations of Γ induced by the maps Φ and Ψ coincide. In this case, it is clear that

there exists a homeomorphism φ : Γ ! Γ isotopic rel. V pΓq to idΓ such that Ψ “ Φ ˝ φ.

In particular, the orientation of the graph Γ and the images of its edges under the map Φ

uniquely define the equivalence class of the admissible quadruple ∆.

The language of admissible quadruples provides a convenient way of thinking about entire

topologically holomorphic (and holomorphic) maps of finite type, which we demonstrate in

the following example.

Example IV.8. Let A “ t´1, 1u be the set represented by solid black squares at the top of

Figure 4.1. Denote by R1 and Γ1 the planar embedded graphs shown at the top and bottom

of Figure 4.1, respectively. The map Φ1 : Γ1 ! R1 is a covering that maps each edge of Γ1

to the unique edge of R1 of the same color. Arrows on the edges of the graphs R1 and Γ1
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Figure 4.2: Admissible quadruple realized by g2pzq “ 2 exppz2q ´ 1.

indicate the orientations of the corresponding graphs. It is straightforward to check that

∆1 “ pA,R1,Γ1,Φ1q is an admissible quadruple, which is realized by the map g1pzq “ cospzq.

Thus, any entire holomorphic map realizing ∆1 has the form cospaz ` bq for some constants

a, b P C with a ‰ 0.

Figure 4.2 is analogous to Figure 4.1, and provides another example ∆2 “ pA,R2,Γ2,Φ2q

of an admissible quadruple. This quadruple can be shown to be realized by the map

g2pzq “ 2 exppz2q ´ 1. In particular, the planar embedded graph Γ2 has two unbounded

faces that correspond to the asymptotic tracts of g2 over w0 “ 1, two unbounded faces that

correspond to the asymptotic tracts of g2 over 8, and the only face with the boundary

consisting of two edges, corresponding to the unique critical point of g2 (see Proposition

IV.3).

Definition IV.9. Let ∆ be an admissible quadruple. If every topologically holomorphic

map f : R2 ! R2 realizing ∆ is of parabolic type, then we say that ∆ is parabolic. If every

such map f is hyperbolic, then ∆ is called hyperbolic.

Proposition IV.7 implies that every admissible quadruple is either parabolic or hyperbolic.

Moreover, from Proposition II.2, it follows that every parabolic admissible quadruple ∆ with
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a marked set A defines an entire holomorphic map of finite type with Sf Ă A, which is unique

up to pre-composition with an affine transformation.

Definition IV.10. An admissible quadruple ∆ “ pA,R,Γ,Φq is called dynamically admissible

if ∆ is parabolic, Γ X A “ H, and every face F of the graph Γ contains at most one point

of A if F is bounded and no points of A, otherwise.

Proposition IV.3 implies that ∆pA,R, fq is dynamically admissible if f : pR2, Aq ý is a

Thurston map. Also, analogous to Proposition IV.5, we can establish the following statement.

Proposition IV.11. Let ∆ “ pA,R,Γ,Φq be a dynamically admissible quadruple. Then

there exists a Thurston map f : pR2, Aq ý such that ∆pA,R, fq “ ∆.

In a similar way we define a dynamical equivalence relation on the set of all dynamically

admissible quadruples with a fixed marked set. We say that two dynamically admissible

quadruples ∆1 “ pA,R1,Γ1,Φ1q and ∆2 “ pA,R2,Γ2,Φ2q are dynamically equivalent if there

exist ψ, φ P Homeo`
0 pR2, Aq such that

1. ψ is an isomorphism between R1 and R2;

2. φ is an isomorphism between Γ1 and Γ2;

3. ψ ˝ Φ1 “ Φ2 ˝ φ.

Finally, the following observation provides a dynamical analog of Proposition IV.7.

Proposition IV.12. Let f1 : pR2, Aq ý and f2 : pR2, Aq ý be Thurston maps, and R1, R2

be rose graphs surrounding A such that R1 is isotopic rel. A to R2. Then ∆pA,R1, f1q and

∆pA,R2, f2q are dynamically equivalent if and only if f1 and f2 are isotopic rel. A.

Proof. First suppose that ∆pA,R1, f1q and ∆pA,R2, f2q are dynamically equivalent via

ψ, φ P Homeo`
0 pR2, Aq. As in the proof of Proposition IV.7, we can assume thatR1 “ R2 “ R

and ψ “ φ “ idR2 . The rest easily follows from Proposition III.3 and the discussion of Section

IV.1.

Conversely, suppose that there exists ψ P Homeo`
0 pR2q such that f1 “ f2 ˝ ψ. Choose

ψ P Homeo`
0 pR2, Aq with ψpR1q “ R2. By Proposition II.6, there exists φ P Homeo`

0 pR2, Aq

such that ψ˝f1 “ f2˝φ. It directly implies that ∆pA,R1, f1q and ∆pA,R2, f2q are dynamically

equivalent.

Given dynamically admissible quadruple ∆ “ pA,R,Γ,Φq, we say that a Thurston map

f : pR2, Aq ý realizes ∆ (or equivalently, ∆ defines f), if ∆pA,R, fq is dynamically equivalent

to ∆. Propositions IV.11 and IV.12 imply that every dynamically admissible ∆ with a marked

set A defines a Thurston map f : pR2, Aq ý, unique up to isotopy rel. A.
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Figure 4.3: Dynamically admissible quadruple realized by the PSF entire map
G1pzq “ π cospzq{2, where PG1 “ ta1, a2, a3u “ t´π{2, 0, π{2u.

Figure 4.4: Dynamically admissible quadruple realized by the PSF entire map
G2pzq “

?
ln 2

`

1 ´ exppz2q
˘

, where PG2 “ ta1, a2, a3u “ t´
?
ln 2, 0,

?
ln 2u.
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Example IV.13. Let G1 : pC, PG1q ý and G2 : pC, PG2q ý be the postsingularly finite entire

maps defined in Example II.16. The graphs in Figures 4.3 and 4.4 describe dynamically

admissible quadruples realized by G1 and G2 respectively (compare with Figures 4.1 and

4.2 referenced in Example IV.8). The solid black squares in these figures represent the

postsingular values of G1 and G2, respectively.

IV.3: Construction of combinatorial approximations of polynomial

type

Proposition IV.14. Let fn : pR2, Aq ý, n P N and f : pR2, Aq ý be Thurston maps, and R
be a rose graph that surrounds A. Then the sequence pfnq converges combinatorially to f if

and only if for every finite subgraph K of f´1pRq and all sufficiently large n, there exists

a homeomorphism φK,n P Homeo`
0 pR2, Aq such that φK,npKq is a subgraph of f´1

n pRq and

Φf,R|K “ Φfn,R ˝ φK,n|K.

Proof. Sufficiency easily follows from Definition III.2, Proposition III.5, and the discussion of

Chapter IV.1. Necessity can be obtained by applying Proposition III.8.

Proposition IV.15. Let f : pR2, Aq ý be an arbitrary Thurston map. Then there exists a

sequence fn : pR2, Aq ý, n P N of polynomial Thurston maps converging combinatorially to f .

Proof. Due to Proposition II.14 and Remark IV.4, the case when |A| “ 1 is trivial and,

therefore, we can assume that |A| ě 2. Let us choose a rose graph R surrounding the set A

and consider the dynamically admissible quadruple ∆pA,R, fq “ pA,R,Γ,Φq. Next, we

choose an arbitrary exhaustion of Γ by finite connected subgraphs Kn “ pVn, Enq. We shall

construct a sequence of eventually dynamically admissible quadruples ∆n “ pA,R,Γn,Φnq,

where Γn is obtained from Kn by adding several new edges, and the maps Φn and Φ coincide

on Kn. We describe this more precisely by defining Γn and Φn algorithmically. For each

n P N, initialize Γn as Kn, and Φn as Φ|Kn. Let F be an arbitrary face of Γ labelled by a

bounded face P of R with the property that BF intersects Kn but it is not a proper subset

of Kn.

Claim. C :“ BF X Kn is a directed finite chain.

Proof of Claim. First we consider the case when F is bounded: here, BF is a counterclockwise

directed cycle by Remark IV.2. It suffices to show that C (or equivalently BF zC) is connected.

Supposing the contrary, let e1 and e2 be two edges in disjoint components of BF zC. It is easy

to see that each edge e P EpΓq is a boundary of exactly two faces and one of them is always

unbounded. Therefore, for i “ 1, 2, there exists a continuous curve Li : r0,`8q ! R2 that
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Figure 4.5: Constructing the directed edge eF . The diagram on the left represents the face F
and the graph Kn, and the diagram on the right demonstrates the newly added edge eF .

Black dots and colored (solid and dashed) arcs represent the vertices and directed edges of Γ,
respectively. The solid blue arcs are edges of Kn, while the dashed ones are in ΓzKn.

joins an interior point xi :“ Lip0q of ei with 8 (i.e., limt!`8 Liptq “ 8) and intersects Γ

only at the point xi. Let y1 and y2 be vertices of C lying in disjoint components of

BF ztintpe1q, intpe2qu. Any path in R2 joining y1 to y2 has to intersect F Y tintpe1q, intpe2qu

or L1 Y L2. In particular, there is no path in Kn joining y1 to y2. This forms a contradiction

since Kn is connected. The case when F is unbounded is analogous. ■

Let u and v be the endpoints of C (it is possible that u “ v). Then there exist unique

edges eu, ev P EpBF zKnq such that eu is incident to u, and ev is incident to v (again, eu and

ev might coincide). We shall construct an edge eF with endpoints at v and u (see Figure 4.5)

with eF Ă eu Y ev Y F , so that eF coincides with the edges eu and ev in small neighborhoods

of u and v, respectively. In particular, intpeF q does not intersect Kn. We add eF to Γn and

define Φn|eF so that Φn and Φ coincide on eF X eu and eF X ev. Then we repeat the above

procedure for all faces F P F pΓq satisfying previously listed properties.

Now consider the sequence of constructed quadruples ∆n “ pA,R,Γn,Φnq. Since pKnq is

an exhaustion of Γ, there exists N P N such that for each n ě N , if F P F pΓq is bounded

and contains a point of A, then BF Ă Kn. For each n ě N , it is straightforward to check

that the conditions of Definitions IV.1 and IV.10 are satisfied. In particular, ∆n is parabolic

since Γn is a finite graph. By Proposition IV.11, we can construct a polynomial Thurston

map fn : pR2, Aq ý such that ∆pA,R, fnq “ ∆n for each n ě N . Thus, the sequence pfnq

converges combinatorially to f due to Proposition IV.14.

Remark IV.16. Suppose that we are in the setting of the proof of Proposition IV.15. Let

F be a face of Γn labelled by a bounded face P of R (with respect to the quadruple ∆n)

for some n ě N . Then there exists a unique face F 1 P F pΓq having the same label P (with

respect to the quadruple ∆) such that F Ă F 1. Moreover, exactly one of the following is true:

1. degpfn|F q “ degpfn|F 1q. Then Proposition IV.3 implies that F contains a (unique)

critical point zn of fn if and only if F 1 contains a (unique) critical point z of f and,

moreover, degpf, zq “ degpfn, znq.
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Figure 4.6: Sequence of graphs that define polynomial Thurston maps converging
combinatorially to G2 : pC, PG2q ý, where G2pzq “

?
ln 2p1 ´ exppz2qq and

PG2 “ ta1, a2, a3u “ t´
?
ln 2, 0,

?
ln 2u.

2. degpfn|F q ă degpfn|F 1q. If F contains a critical point of fn, then it is unique in F . In

this case F 1 is either an asymptotic tract of f or it contains a unique critical point z of

f and, moreover, degpf, zq ą degpfn, znq.

With this discussion and the following example, we show that dynamically admissible

quadruples provide a convenient way for constructing “combinatorial” approximations and

thinking about combinatorial convergence.

Example IV.17. Consider the postsingularly finite entire map G2 from Example II.16, real-

izing the dynamically admissible quadruple ∆G2 “ ∆pPG2 ,R, G2q “ pPG2 ,R,Γ,Φq depicted

in Figure 4.4 along with a chosen point b P V pΓq. Define the graph Kn Ă Γ to be a collection

of all vertices and edges of Γ accessible from b via a path in Γ intersecting interiors of at

most n edges. It is clear that the sequence pKnq is an exhaustion of Γ by finite connected

graphs. Starting with ∆G2 and pKnq and applying the construction from the proof of Propo-

sition IV.15, we obtain a sequence of polynomial Thurston maps fn : pR2, PG2q ý, n P N
converging combinatorially to G2 : pC, PG2q ý, with each fn defined by a dynamically ad-

missible quadruple ∆n “ pPG2 ,R,Γn,Φnq. Figure 4.6 illustrates the graphs Γn and the

maps Φn for n “ 1, 2, 3 (from left to right). As usual, Φn : Γn ! R maps each edge of Γn to

the unique edge of R of the same color, and the set PG2 is represented by solid black squares.

We also recall Figure 1.2 from Chapter I as an example of a combinatorial approximation for
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Figure 4.7: Sequence of graphs that define transcendental Thurston maps converging
combinatorially to G2 : pC, PG2q ý, where G2pzq “

?
ln 2p1 ´ exppz2qq and

PG2 “ ta1, a2, a3u “ t´
?
ln 2, 0,

?
ln 2u.

Figure 4.8: Sequence of graphs that define polynomial Thurston maps converging
combinatorially to G1 : pC, PG1q ý, where G1pzq “ π cospzq{2 and

PG1 “ ta1, a2, a3u “ t0,´π{2, π{2u.
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the map G1pzq “ π
2
cos z from Example II.16, with ∆G1 “ ∆pPG1 ,R, G1q “ pPG1 ,R,Γ,Φq

given in Figure 1.1 (as well as Figure 4.3).

However, combinatorial approximations need not to be polynomial. Consider the sequence

of infinite graphs ppΓnq depicted in Figure 4.7. For each n, we can similarly define a map
pΦn : pΓn ! R such that p∆n “ pPG2 ,R, pΓn, pΦnq is a dynamically admissible quadruple.

These maps pΦn can be constructed so that they have only finitely many critical points and

asymptotic tracts (i.e., unbounded faces that map to a bounded face of R). In this special

case, a theorem of Nevanlinna ([Nev32]) shows that p∆n is parabolic (see also [Cui21, Theorem

4.1]). Then p∆n determines a transcendental Thurston map pfn such that the sequence p pfnq

converges combinatorially to G2 : pC, PG2q ý as n tends to 8.

There is also no canonical choice for a sequence of polynomial Thurston maps converging

combinatorially to a given transcendental Thurston map. For instance, the sequence of

polynomial Thurston maps illustrated in Figure 4.8 (with respect to the rose graph showed at

the top of Figure 4.3) converges combinatorially the map G1 : pC, PG1q ý from Example II.16,

which realizes dynamically admissible quadruple ∆G1 as in Figure 4.3. However, the property

of Remark IV.16 cannot be satisfied for these combinatorial approximations.
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CHAPTER V

Dynamical Approximations

The main goal of this chapter is to prove Theorem V.9, which is a stronger version of Theorem

I.2. To do this, we first construct combinatorial polynomial approximations, and then use

upgrade those to analytic approximations.

We will use several combinatorial and topological properties of locally uniform convergence

of sequences in S. In particular, we develop techniques of combinatorial nature for finding

the limit of a sequence of maps pfnq in S, where |Sfn | is constant (see Theorem V.7). We

refer to Appendix A.1 for some of the notation used in this Chapter. We will be using several

properties of holomorphic covering maps, so we will start by exploring these.

V.1: Properties of holomorphic covering maps

We are mainly interested in convergence conditions for sequences of maps whose domains

vary, and in the behavior of lifts of loops under every map in a converging sequence.

Definition V.1. Let X be an oriented topological surface. Given a collection U “ tUjujPI of

open subsets of X, we define the kernel of U , denoted kerpUq as the set of points x P X with

an open neighborhood V such that V P Uj for all but finitely many j P I.

Given a topological surface Y and a sequence of continuous maps gn : Dompgnq ! Rgpgnq

with Dompgnq Ă X and Rgpgnq Ă Y for all n P N, we say that the sequence pgnq converges

locally uniformly on U Ă X if for every x P U , there exists a neighborhood W of x such

that W Ă Dompgnq eventually, and a continuous map g : W ! Y such that pgnq converges

uniformly on W to g.

The kernel of tDompgnqunPN is a natural space where we can hope for the sequence pgnq to

converge. Bargmann proved that with some assumptions of regularity, the desired convergence

occurs on some connected component of kerptDompgnqunPNq:

Proposition V.2 ([Bar01, Theorem 1]). Let gn : Dompgnq ! Rgpgnq be a sequence of

holomorphic covering maps. Suppose that pgnq converges locally uniformly in a neighborhood
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of a point z P C to a limiting function that is not locally constant at z, and X is the connected

component of kerptDompgnqunPNq that contains z.

Then, letting Y be the connected component of kerptRgpgnqunPNq containing w “ limn!8 gnpzq,

there exists a holomorphic covering map g : X ! Y such that pgnq converges to g locally

uniformly on X.

For a converging sequence of holomorphic covers, sequences consisting of certain local

inverse functions also exhibit controlled behavior, as we show below.

Proposition V.3. Let pgnq be a sequence of holomorphic coverings that converge locally

uniformly on X Ă C to a holomorphic covering g : X ! Y . Let x be a point in X and V Ă Y

a bounded Jordan domain containing gpxq P V , such that V Ă Y .

1. Let U be the connected component of g´1pV q, and for every n P N, Un be the conneced

component of g´1
n pV q containing x. If φV,x : V −! U and φV,x,n : V −! Un are the

inverses of g|U and gn|Un respectively, then φV,x,n ! φV,x uniformly.

2. There exists a neighborhood W of x such that W Ă Dompgnq and gn maps W injectively

into V for all sufficiently large n.

For proving the above, we will use the following result of Kisaka:

Proposition V.4 ([Kis95, Theorem 1]). Let gn, n P N and g be entire maps in S such that

pgnq converges to g locally uniformly on C. If w P Sg, then for some N P N and some sequence

of points wn P Sgn, n ě N , we have limn!8 wn “ w.

Proof of Proposition V.3. We first prove item (1). Choose a bounded Jordan domain V 1 such

that V Ă V 1 and V 1 Ă Y . As before, we have the local inverse φV 1,x : V
1 ! U 1 of g at gpxq,

where U 1 is the connected component of g´1pV 1q containing x. Note that U 1 is again a Jordan

domain, and U 1zU is an open annulus. Let γ Ă U 1zU be an essential simple closed curve that

separates CzU 1 from U . Let U2 be the bounded component of Czγ. Note that U Ă U2 and

U2 Ă U 1.

We claim that Un Ă U2 for all sufficiently large n. By the injectivity of g on U 1, the

Hausdorff distance dpgpγq, V q is strictly greater than zero. Since pgnq converges uniformly to

g on γ, we also have dpgnpγq, V q ą 0 for sufficiently large n. But this implies that γXUn “ H,

and since Un is connected and contains x, we must have Un Ă U2.

Now suppose the sequence pφV,x,nq does not converge uniformly to φV,x. Then there

exists a real number ε ą 0 such that for infinitely many n, there exists a point yn P V with

|φV,x,npynq ´φV,xpynq| ą ε. Without loss of generality, we can assume that pynq converges to a

point y P V . Since Un Ă U2 eventually, the sequence pφV,x,npynqq converges to a point z P U2,
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implying that |z ´ φV 1,xpyq| ě ε. Since g is injective on U2, we have gpzq ‰ gpφV 1,xpyqq, but

at the same time,

gpzq “ lim
n!8

gnpφV,x,npynqq “ lim
n!8

yn “ y “ gpφV 1,xpyqq

resulting in a contradiction. This proves item (1).

Let λ “ |φ1
V,xpgpxqq|. For n sufficiently large, we have λn “ |φ1

V,x,npgpxqq| ą λ
2
. By the

Koebe 1/4-Theorem, it follows that Dpx, λ
4
q Ă U , and that Dpx, λ

8
q Ă Dpx, λn

4
q Ă Un. Clearly,

W :“ Dpx, λ
8
q satisfies the requirements of item (2).

Lastly, we investigate the behavior of lifts of closed loops under a sequence of converging

holomorphic covers.

Proposition V.5. Let pgnq be a sequence of holomorphic coverings that converge locally

uniformly on X Ă C to a holomorphic covering g : X ! Y . Further suppose there exist points

x0 P X, y0 P Y such that gnpx0q “ gpx0q “ y0 for all n P N.
Then for any loop α Ă Y based at y0, we have

1. α Ă Rgpgnq eventually, and thus, βn “ α"pgn, x0q is eventually well-defined,

2. assuming that the βn and β :“ α"pg, x0q are parametrized by I , with βnp0q “ βp0q “ x0

and gnpβnptqq “ gpβptqq for all n and forall t P I, then pβnq converges to β uniformly

on I, and

3. for n sufficiently large, the lifts βn and β have the same closing behavior (refer to

Definition A.2)

Proof. We can infer from Proposition V.3 that for every y P Y , there exists an open

neighborhood V of y in Y such that V Ă Rgpgnq eventually. Thus, Y Ă kerptRgpgnqunPNq.

This in turn implies that some open neighborhood of α in Y is contained in Rgpgnq eventually,

proving item (1).

To show item (2), we choose bounded Jordan domains U1, U2, . . . , Uk in X covering β and

a strictly increasing finite sequence t0 :“ 0, t1, t2, . . . , tk´1, tk :“ 1 of points in I so that

• g|Uj is injective for each j P t1, 2, ¨ ¨ ¨ , ku;

• βpIjq Ă Uj for each j “ 1, 2, . . . , k, where Ij “ rtj´1, tjs.
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Let uj :“ βptjq for each j P t0, 1, . . . , k ´ 1u and Vj :“ gpUjq for each j P t1, 2, ¨ ¨ ¨ , ku.

Assume that n is large enough so that Uj Ă Dompgnq and Vj Ă Rgpgnq for each j in the set

t1, 2, ¨ ¨ ¨ , ku.

We will use induction on ℓ P t0, 1, ¨ ¨ ¨ , ku to see that pβnq converges to β uniformly on

r0, tℓs. The base case ℓ “ 0 is obvious since βnp0q “ βp0q “ z0. Now we show that if pβnq

converges to β uniformly on r0, tℓs, then it does so uniformly on r0, tℓ`1s. Indeed, since

βnptℓq ! βptℓq “ uℓ, due to Proposition V.3 we have φVℓ,βnptℓq,n “ φVℓ,vℓ,n for sufficiently large

n. Thus,

β|Iℓ`1 “ φUl,vlpα|Iℓ`1q

βn|Iℓ`1 “ φUl,βnptlq,npα|Iℓ`1q “ φUl,vl,npα|Iℓ`1q

Item (3) follows from the two cases below:

• if β is a closed curve, by item (2), βnp1q ! x0 as n ! 8. By Proposition V.3, there

exists a neighbourhood of U of x0 such that for large enough n, W Ă Dompgnq and

gn|W is injective. Therefore, we must have βnp0q “ βnp1q for sufficiently large n.

• if β is not a closed curve, by item (2), we have βnp1q ! βp1q ‰ x0. Thus, for all n

sufficiently large, we have x0 “ βnp0q ‰ βnp1q.

V.2: Convergence properties of entire maps in class S

We will now use the discussions in the previous section to establish conditions under which

maps in class S converge. First, however, we are interested in observing the behavior of

lifts of loops under maps in class S, all with the same number of singular values, which also

converge to a map in class S.

Proposition V.6. Let gn, n P N and g be entire maps in class S of finite type such that

|Sgn | “ |Sg| for all n P N, and gn ! g locally uniformly on C.
Let γ Ă CzSg be a simple closed curve and rγ be a connected component of g´1pγq. Then

for every z P rγ there exists ε “ εpz, γq ą 0 such that for all n sufficiently large, there is a

unique connected component rγn of g´1
n pγq satisfying dpz, rγnq ă ε. Moreover,

1. if degpg|rγq is finite (i.e., rγ is a simple closed curve), then for any δ ą 0, the following

hold true for all n large enough:

• rγn is a simple closed curve;
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• degpg|rγnq “ degpg|rγq;

• rγn Ă Nδprγq.

2. if degpg|rγq is infinite (i.e., rγ is an unbounded curve), then degpg|rγnq ! 8 as n! 8,

and for every bounded Jordan disk D Ă C and every ε ą 0, we have rγnXD Ă NεprγXDq

for large enough n.

Proof. Since |Sg| “ |Sgn | for all n P N, Proposition V.4 implies that Sgn ! Sg in the sense

of Hausdorff. Then the holomorphic coverings gn|Czg´1
n pSgnq converge to the holomorphic

covering g|Czg´1pSgq locally uniformly on Czg´1pSgq. The statement then follows from

Proposition V.5 applied to the maps gn|Czg´1
n pSgnq.

We are now ready to establish equivalent conditions for convergence in class S, under
certain assumptions on the singular value sets and a normality condition.

Theorem V.7. Let gn, n P N and g be entire maps in class S, and Bn Ą Sgn and B Ą Sg be

finite subsets of C. Further assume that |Bn| “ |B| for all n P N and Bn ! B in the sense

of Hausdorff.

Let z0, w0 P C be points such that z0 R B Y
Ť

nPNBn, and gpz0q “ gnpz0q “ w0 for all

n P N. Then pgnq converges locally uniformly to g if and only if the following conditions hold:

1. lim
n!8

g1
npz0q “ g1pz0q;

2. for any loop α Ă CzB based at w0, the lifts α"pgn, z0q eventually have the same closing

behavior as α"pg, xq.

Proof. ( ùñ ): If gn ! g locally uniformly, then condition (1) is obvious and condition (2)

easily follows from Proposition V.5 applied to the sequence gn|Czg´1
n pBnq converging locally

uniformly on Czg´1pBq to g|Czg´1pBq.

( ðù ): Now suppose that conditions (1) and (2) are satisfied. It suffices to show that

any arbitrary subsequence pgnk
q of pgnq contains a further subsequence converging locally

uniformly to g. For the sake of simplicity, we will relabel pgnk
q as pgnq.

Claim 1. There exists an open neighborhood U of z0 and a subsequence pgnk
q of pgnq converging

uniformly on U to a limiting function that is not locally constant at z0.

Proof of Claim 1. Let Dpw0, rq be a disk contained in CzBn for all sufficiently large n, and Un

be the connected component of g´1
n pDpw0, rqq containing z0. By Proposition II.7, gn maps Un

biholomorphically to Dpw0, rq and has an inverse φn : Dpw0, rq ! Un satisfying φnpw0q “ z0.

Note that φ1
npw0q “ 1{g1

npz0q. Since g1
npz0q ! g1pz0q ‰ 0, there exists λ ą 0 such that

|φ1
npw0q| ą λ for every n P N. By the Koebe 1/4-Theorem, the disk W “ Dpz0, rλ{4q is
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contained Un for each n. In particular, the map gn is injective on W for all n sufficiently

large.

Since gnpW q Ă Dpw0, rq, by Montel’s Theorem, tgn|W unPN is a normal family. Thus we

extract a converging subsequence pgnk
|W q from pgn|W q. Clearly the limiting function for the

maps gnk
cannot be locally constant at z0 since lim

n!8
g1
npz0q “ g1pz0q ‰ 0. ■

We again relabel the converging subsequence pgnk
q above as pgnq. Now apply Proposi-

tion V.2 to the sequence of maps hn “ gn|Czg´1
n pBnq: letting X Ă C be the connected

component of kerptCzg´1
n pBnqunPNq that contains z0, we see that phnq converges locally uni-

formly on X to a holomorphic covering map h : X ! CzB. We will now show that g|X ” h.

To begin with, we observe that

h˚π1pX, z0q “ g˚π1pCzg´1
pBq, z0q Ă π1pCzB,w0q,

following from condition (2) above and Proposition V.5. By the classical theory of covering

maps, there exists a biholomorphism φ : Czg´1pBq ! X with φ1pz0q “ 1 such that the

following diagram commutes:

pCzg´1pBq, z0q pX, z0q

pCzB,w0q

g

φ

h

Claim 2. The map φ extends to a Möbius transformation of pC.

Proof of Claim 2. As g´1pBq is a discrete set in C and φ is injective, every point in g´1pBq

is a removable singularity of φ, considered as a map to pC. It follows that φ extends to a

map from C to pC which can, moreover, be shown to be injective. Since φpCq is conformally

equivalent to C, the set φpCq is obtained by removing a single point from pC. This then means

that φ extends to an automorphism of pC. ■

Claim 2 also implies that X is obtained from pC by removing countably many points which

have at most one accumulation point, namely φp8q.

Claim 3. The map φ equals id
pC.

Proof of Claim 3. Let us first prove that φp8q “ 8. Suppose that φp8q “ z P C. There

exists a compact set K Ă C such that z P intpKq and BK Ă X. Note that gn ! h uniformly

on BK.
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Let m P p0,`8q be the maximum of |h| on BK. Then by the maximum modulus principle,

for any ε ą 0, there exists N P N such that for all n ě N and z P K, we have |gnpzq| ď m` ε.

Thus, |h| is bounded by m on K X X.

On the other hand, one can find a sequence pznq Ă φ´1pKqzg´1pBq such that pgpznqq ! 8.

However, as φpznq P X X K for all n, pφpznqq converges to z. This means that |gpznq| “

|hpφpznqq| is bounded by m for all n P N, leading to a contradiction. We have thus shown

that φp8q “ 8.

Thus, φ|C : C ! C is an affine map satisfying φpz0q “ z0 and φ1pz0q “ 1, which implies

that φ ” id
pC.

■

Claim 3 implies that g coincides with h on X “ Czg´1pBq. In particular, pgnq converges

locally uniformly on Czg´1pBq to g. This suffices to conclude that pgnq converges locally

uniformly on C to g.

V.3: Dynamical approximations

In this section, we establish Theorem I.2. We will use the following fact multiple times:

Proposition V.8. Let φn P Homeo`
pR2q, n P N and φn P Homeo`

pR2q be such that φn ! φ

uniformly on compact subsets of R2zX for some discrete set X. Then sequence φn ! φ

locally uniformly on R2.

Proof. Given x P X, it suffices to show φn ! φ locally uniformly at x. Let γr be a loop

such that the bounded component Dr of R2zγ contains x but no other point of X, and

φpγrq Ă Dpφpxq, rq. Since φnpγrq ! φpγrq uniformly, we must have φnpγrq Ă Dpφpxq, rq

for all n sufficiently large. But this means φnpDrq Ă Dpφpxq, rq for all n sufficiently large.

Therefore, for every z P Dr,

|φpzq ´ φnpzq| ď |φpzq ´ φpxq| ` |φpxq ´ φnpzq| ă 2r.

This shows φn ! φ locally uniformly at x.

Theorem V.9. Let fn : pR2, Aq ý, n P N and f : pR2, Aq ý be Thurston maps such that

the sequence pfnq converges combinatorially to f . If f is realized as a postsingularly finite

entire function g : pC, Bq ý, then there exists a sequence of postsingularly finite entire maps

gn : pR2, Bnq ý such that
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1. gn : pC, Bnq ý is Thurston equivalent to fn : pR2, Aq ý for sufficiently large n;

2. the sequence pBnq converges to B in the sense of Hausdorff topology;

3. gn converges locally uniformly to g on C.

Proof. By proposition III.13, we know that fn’s are realized eventually as holomorphic PSF

maps gn. If |A| “ 1, by Proposition II.14, there exists d ě 2 such that gpzq “ zd, and

gnpzq “ zd for all n sufficiently large, and we are done.

Now suppose |A| ě 2. Without loss of generality, assume that pfnq converges topologically

to f , and that there exist points b P R2zf´1pAq and t P R2zA such that fpbq “ fnpbq “ t

for all n P N. Since f »comb g, it follows from Proposition II.28 that there exists a unique

point τ P TpS2, A Y t8uq such that τ “ rφs “ rψs, g “ φ ˝ f ˝ ψ´1, and B “ φpAq, where

φ : R2 ! C and ψ : R2 ! C are orientation-preserving homeomorphisms isotopic to each

other rel. A Y t8u.

By Corollary III.13, there exists N P N such that for all n ě N the map σfn has a unique

fixed point τn P TpS2, A Y t8uq and, moreover, the sequence pτnq converges to τ . We may

assume without loss of generality that N “ 1.

For each n P N, we pick homeomorphisms φn, ψn P τn isotopic rel. A Y t8u, such

that φnp8q “ ψnp8q, such that the map hn :“ φn ˝ fn ˝ ψ´1
n is entire. Note that the set

Bn :“ φnpAq contains Shn . By Proposition II.22, the φn and ψn can be chosen to satisfy the

following conditions for all n P N:

• φn ˝ φ´1 : pC −! pC is quasiconformal, with limn!8 Kpφn ˝ φ´1q “ 1;

• φnptq “ φptq and φnpyq “ φpyq for some arbitrary point y ‰ t;

• ψnpbq “ ψpbq and h1
npψnpbqq “ g1pψpbqq for every n P N.

First note that for each n, the homeomorphism φn ˝ φ´1 fixes three distinct points

8, φptq, φpyq P pC. Therefore, by Proposition II.5, φn ˝ φ´1 ! id
pC locally uniformly on

compact subsets of pCztφptq, φpyqu as n! 8. By Proposition V.8, φn ! φ locally uniformly

on R2.

Claim 1. The sequence phnq converges to g locally uniformly on C.

Proof of Claim 1. We prove that the maps g and hn, n P N satisfy all the conditions of

Theorem V.7 with respect to the points z0 :“ ψpbq “ ψnpbq, w0 :“ φptq “ φnptq, and the sets

Bn and B.

Next we see that Bn Ą Shn converges to B Ą Sg in the Hausdorff topology of C since

φn ! φ as n ! 8. Due to our choices of φn and ψn, the equalities h1
npz0q “ g1pz0q and

75



hnpz0q “ gpz0q “ w0 are satisfied, and we have w0 R B Y
Ť

nPNBn. Hence, condition (1) of

Theorem V.7 is satisfied for the maps hn.

The condition (2) required in Theorem V.7 easily follows from the topological convergence

of pfnq to f and the locally uniform convergence of pφnq to φ.

■

With this choice of φn and ψn, the maps hn are not necessarily postsingularly finite. We

will now construct the required maps gn from the maps hn by showing that ψn and φn have

controlled behavior.

Claim 2. The maps ψn ! ψ locally uniformly on R2.

Proof of Claim 2. Let x P R2 be a regular point (i.e., not a critical point) of f such that

ψnpxq ! ψpxq as n ! 8 (the point b, for instance, satisfies this property). Then there

exists a Jordan domain V containing x such that f |V is injective. Assume without loss of

generality that V is compact. For sufficiently large n, we have fn|V “ f |V . Hence, the maps

g|ψpV q and hn|ψnpV q are injective, with inverses φU,ψpxq : U ! ψpV q and φUn,ψnpxq,n : Un !

ψnpV q, respectively, where U :“ hpψpV qq “ φpfpV qq and Un :“ hnpψnpV qq “ φnpfnpV qq “

φnpfpV qq.

Since hn ! g, using Proposition V.3, we see that the sequence pφUn,ψnpxq,nqn converges to

φU,ψpxq uniformly on U . Finally, we have

ψ|V “ φU,ψpxq ˝ pφ|fpV qq ˝ pf |V q,

ψn|V “ φUn,ψnpxq,n ˝ pφn|fnpV qq ˝ pfn|V q

“ φUn,ψnpxq,n ˝ pφn|fpV qq ˝ pf |V q.

Since φn|fpV q ! φ|fpV q uniformly, we have ψn ! ψ uniformly on V .

Let Uf be the set of regular points of f , and note that this is open in R2. We will first

show for all x P Uf , we have ψnpxq ! ψpxq. Let D “ tx P Uf |ψnpxq ! ψpxqu. We know

that D ‰ H. If D ‰ Uf , then there exists y P Uf X BD. Choose a bounded Jordan domain

W containing y on which f is injective. By the above discussion, since W contains a point

z P D, we have ψn ! ψ uniformly on W . This implies that for any such W , the open set

W X Uf is contained in D, which contradicts the fact that y P BD. By this discussion, we

also note that ψn ! ψ uniformly on compact subsets of Uf . Since the R2zf´1pAq Ă Uf and

f´1pAq is discrete, by Proposition V.8, the maps ψn ! ψ locally uniformly on R2. ■

Since rφns “ rψns, there exists an affine map Mn such that φn|A and Mn ˝ ψn|A coincide.

Then gn :“ hn ˝M´1
n : pC, Bnq ý is a postsingularly finite entire map. It is sufficient to show
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that pMnq converges locally uniformly to idC to prove that the sequence pgnq converges locally

uniformly to g.

Note that Mn is an affine map satisfying Mnpψnpaqq “ φnpaq for every n P N and a P A.

Now the desired statement follows from the fact that for every a P A, ψnpaq ! ψpaq “ φpaq

and φnpaq ! φpaq “ ψpaq as n! 8.

The next corollary is an immediate consequence of the proof of Theorem V.9.

Corollary V.10. Suppose that we are in the setting of Theorem V.9. Assume that the

sequence pfnq converges topologically to the map f and g “ φ ˝ f ˝ ψ´1, where φ : R2 ! C
and ψ : R2 ! C are orientation-preserving homeomorphisms isotopic to each other rel. A.

Then for sufficiently large n there exist orientation-preserving homeomorphisms φn : R2 ! C
and ψn : R2 ! C such that gn “ φn ˝ fn ˝ ψ´1

n , φn „ ψn rel. A, φn ! φ and ψn ! ψ locally

uniformly as n! 8.

The following result establishes Theorem I.2 and easily follows from Proposition IV.15

and Theorem V.9.

Corollary V.11. Let g be a postsingularly finite entire map. Then there exists a sequence of

postcritically finite polynomials pgnq converging locally uniformly to g, such that gn has the

same singular portrait as g for every n P N.

Remark V.12. Note that usually there is no canonical choice for a sequence of polynomials

pgnq in Corollary V.11. Constructing different “combinatorial approximations” by Proposition

IV.15 and then applying Theorem V.9 lead to different sequences of polynomials.
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CHAPTER VI

Persistence of Spiders

We now move on to our special case study involving the exponentials and unicritical polynomi-

als. In this chapter we lay the foundation for the approximation of postsingularly finite expo-

nentials by proving Theorem I.6. We will obtain, for every n P Ně2 and j P t0, 1, ¨ ¨ ¨ , n´ 1u,

a monotone increasing map Jumpn,j : Q{Z −! Q{Z that preserves spiders and respects

landing relations in the set Mn.

Throughout this chapter, fix a degree n P Ně2.

VI.1: Construction of Jumpn,j

Before we start, we note that for every θ P Q{Z, if θ is strictly pre-periodic under µn, then

Onpθq contains no element in µ´1
n pθq. However, if θ is k´periodic under µn, then there exists

a unique integer j “: jnpθq P t0, 1, ¨ ¨ ¨ , n ´ 1u such that µ
˝pk´1q
n pθq “

θ`jnpθq

n
.

Fix θ P

”

0, 1
n´1

¯

. Given an integer j P t0, 1, ¨ ¨ ¨ , n ´ 1u, we define a ‘symbol shift’ function

as follows:

un,j,θ : R{Z z tpθ ` jq{nu −! t0, 1, ¨ ¨ ¨ , nu

un,j,θptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

m t P
“

m
n
, m`1

n

˘

for some m P t0, 1, ¨ ¨ ¨ , j ´ 1u

m ` 1 t P
“

m
n
, m`1

n

˘

for some m P tj ` 1, j ` 2, ¨ ¨ ¨ , n ´ 1u

j t P
“

j
n
, θ`j

n

˘

j ` 1 t P
`

θ`j
n
, j`1

n

˘

Additionally, if θ`j
n

P Onpθq, let

un,j,θ

˜

θ ` j

n

¸

“

$

&

%

j if θ is the smaller angle in a companion pair

j ` 1 otherwise

The un,j,θ function assigns a symbol to each angle in Onpθq: we first divide r0, 1q into n
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(a) The symbol shift function u2,0,θ (b) The symbol shift function u2,1,θ

Figure 6.1: For n “ 2 and θ ” 1
7

pmod 1q, the two figures above illustrate the corresponding
symbol shift functions. The bold solid lines correspond to angles in O2pθ), and the regular
solid lines correspond to angles in µ´1

n pθq. The dotted lines represent the angles 0, 1
2
. Also

note that θ is smaller than its companion angle 2
7
. This comes into play in the definition of

u2,1,θ at
θ`1
2
.

sub-intervals of the form
“

m
n
, m`1

n

˘

, m P t0, 1, ¨ ¨ ¨ , n ´ 1u. The symbol assigned to an angle t

depends on which sub-interval t belongs to. The sub-interval
“

j
n
, j`1

n

˘

is ‘split’ at θ`j
n
, and the

symbols to the left and right of this angle differ by 1. The goal is to push angles in
`

θ`j
n
, 1

˘

exactly one sub-interval further. In effect, the map Jumpn,j pushes open a new sector in the

spider Sextn pθq (compare Figures 6.2 and 6.4).

Definition VI.1. Given j P t0, 1, ¨ ¨ ¨ , n´ 1u, the map Jumpn,j :
”

0, 1
n´1

¯

X Q{Z −! Q{Z is

defined as:

Jumpn,jpθq ”

8
ÿ

m“1

un,j,θ ˝ µ
˝pm´1q
n pθq

pn ` 1qm
pmod 1q

In other words, the angle Jumpn,jpθq has an pn ` 1q-adic expansion .x1x2x3 ¨ ¨ ¨ , where

xm “ un,j,θ ˝ µ
˝pm´1q
n pθq. For n “ 2, this defines Jumpn,j on Q{Z.

For n ą 2, we extend Jumpn,j to Q{Z as follows. Note that for any θ1 P Q{Z, there exists

a unique θ P Q{Z X

”

0, 1
n´1

¯

and m P t0, 1, ¨ ¨ ¨ , n ´ 2u such that θ1 ” θ ` m
n´1

pmod 1q. We

set

Jumpn,jpθ
1
q ” Jumpn,jpθq `

m

n
pmod 1q

Remark VI.2. Let θ P

”

0, 1
n´1

¯

be rational. Suppose there exists M P N such that for all
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(a) The symbol shift function u2,0,θ (b) The symbol shift function u2,1,θ

Figure 6.2: Symbol shift functions for n “ 2 and θ ” 17
24p24´1q

pmod 1q.

m ě M , we have

xm “ un,j,θ ˝ µ˝pm´1q
n pθq “ n

Then for all m ě M , we have µ
˝pm´1q
n pθq P rn´1

n
, 1q. This in turn implies µ

˝pM´1q
n pθq is the

angle 0, and thus, un,j,θ ˝µ
˝pM´1q
n pθq “ 0, contradicting our assumption. Thus the pn`1q´adic

expansion of Jumpn,jpθq produced by the symbol shift function does not end in the constant

stream nnnnnn ¨ ¨ ¨ .

Example VI.3. Let n “ 2. For θ ” 1
7

pmod 1q “ .001 in base 2, we have, in base 3,

Jump2,0pθq “ .112 ”
14

33
pmod 1q ”

14

26
pmod 1q

Jump2,1pθq “ .001 ”
1

33
pmod 1q ”

1

26
pmod 1q

The symbol shift functions u2,0,θ and u2,1,θ are illustrated in Figure 6.1.

Example VI.4. Let n “ 2. The angle θ ” 17
24p24´1q

pmod 1q ” 17
240

pmod 1q is strictly pre-

periodic under µ2, with pre-period 4 and period 4. The sequence .00010010 is a 2´adic

expansion for θ.

The angles Jump2,0pθq and Jump2,1pθq are given below in terms of 3´adic expansions

produced by symbol shift:

Jump2,0pθq “ .11121121 ”
3323

34p34 ´ 1q
pmod 1q ”

3323

6480
pmod 1q

Jump2,1pθq “ .00020010 ”
163

34p34 ´ 1q
pmod 1q ”

163

6480
pmod 1q
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(a) The standard spider of
ϕ “ Jump2,0pθq “ 14

33´1
“ .112 in base 3

(b) The standard spider of
ϕ “ Jump2,1pθq “ 1

33´1
“ .001 in base 3

Figure 6.3: The standard degree 3 spiders of Jumpn,0pθq and Jumpn,1pθq, for n “ 2 and
θ ” 1

23´1
pmod 1q. The dotted rays indicate the position of the angles 0, 1

3
and 2

3
. Compare

with Figure 6.1

See Figure 6.2 for an illustration of the symbol-shift.

VI.2: Monotonicity of Jumpn,j

Fix j P t0, 1, ¨ ¨ ¨ , n ´ 1u. In this section we show that Jumpn,j is injective and preserves

linear order, when we consider Q{Z as a subset of r0, 1q.

Proposition VI.5. Fix θ P

”

0, 1
n´1

¯

. Given s, t P R{Z such that s1
m “ un,j,θ ˝ µ

˝pm´1q
n psq and

t1m “ un,j,θ ˝ µ
˝pm´1q
n ptq are defined for all m P N, let

s1
“ .s1

1s
1
2s

1
3 ¨ ¨ ¨

t1 “ .t11t
1
2t

1
3 ¨ ¨ ¨

in base pn ` 1q. Then s ă t in r0, 1q if and only if s1 ă t1 in r0, 1q.

Proof. It is enough to prove one direction, since s ” t pmod 1q also implies s1 ” t1 pmod 1q.

So assume s ă t, and choose n´adic expansions s “ .s1s2s3 ¨ ¨ ¨ . and t “ .t1t2t3 ¨ ¨ ¨ ..

so that if either angle is rational, the corresponding expansion does not end in a constant

sequence of pn ´ 1q’s.

At the first index r where sr ‰ tr, we have

sr ă tr, implying s1
r ă t1r
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(a) The standard spider of
ϕ :“ Jump2,0pθq ” 3323

34p34´1q
pmod 1q,

equalling .11121121 in base 3

(b) The standard spider of
ϕ :“ Jump2,0pθq ” 163

34p34´1q
pmod 1q,

which equals .00020010 in base 3

Figure 6.4: For n “ 2 and θ ” 17
24p24´1q

pmod 1q, an illustration of the standard degree 3

spiders of Jump2,0pθq and Jump1,0pθq. The dotted rays indicate the position of the angles
0, 1

3
and 2

3
. Compare with Figure 6.2

For all indices m ă r, by assumption,

sm ď tm, and thus, s1
m ď t1m

This shows that s1 ď t1. Equality holds if and only if s1
r ` 1 “ t1r, s

1
m “ n and t1m “ 0 for all

m ą r; however, Remark VI.2 shows that the condition s1
m “ n for all m ą r can never be

true.

Proposition VI.6. Fix t P R{Z and j P t0, 1, ¨ ¨ ¨n ´ 1u. If 0 ď θ ă θ1 ă 1
n´1

are rational

angles such that tm “ un,j,θ ˝ µ
˝pm´1q
n ptq and t1m “ un,j,θ1 ˝ µ

˝pm´1q
n ptq are well-defined for all

m P N, then in base pn ` 1q, we have

.t1t2t3 ¨ ¨ ¨ ă .t11t
1
2t

1
3 ¨ ¨ ¨

Proof. The fact that θ ă θ1 implies that θ`j
n

ă
θ`j1

n
. By the definition of un,j,θ and un,j,θ1 , we

have tm ď t1m for all m P N.

Remark VI.7. Note: for n ą 2, the statement holds if we assume 0 ă θ ă 1
n´1

and

θ1 ” 1
n´1

pmod 1q.

Proposition VI.8. Jumpn,j is strictly increasing.

Proof. It suffices to show the following claim:
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Claim. 1. For m P t0, 1, ¨ ¨ ¨ , n ´ 2u, the map Jumpn,j satisfies the formula

Jumpn,j

´ m

n ´ 1

¯

”

$

&

%

m`1
n

pmod 1q j “ 0

m
n

pmod 1q j ě 1

2. Jumpn,j is strictly increasing on Q X

”

0, 1
n´1

¯

, and Jumpn,j

´

Q X

”

0, 1
n´1

¯¯

Ă Q{Z X
”

Jumpn,jp0q, Jumpn,jp0q ` 1
n

¯

.

Together with the definition of Jumpn,j , this claim implies that Jumpn,j is strictly increasing

on Q{Z.

Proof of Claim. 1. This is clear from the fact that

Jumpn,jp0q ”

$

&

%

0 pmod 1q j ě 1

1
n

pmod 1q j “ 0

2. Given rational angles 0 ď θ ă θ1 ă 1
n´1

, for every m P N, let xm “ un,j,θ1 ˝ µ
˝pm´1q
m pθq.

Then by Propositions VI.5 and VI.6, in base pn ` 1q, we have

Jumpn,jpθq ă .x1x2x3 ¨ ¨ ¨ ă Jumpn,jpθ
1
q

This shows that Jumpn,j is strictly increasing on
”

0, 1
n´1

¯

.

Note that Jumpn,j

´

1
n´1

¯

” Jumpn,jp0q` 1
n

pmod 1q. Thus, to prove point (2), it suffices

to show that Jumpn,jpθq ă Jumpn,j

´

1
n´1

¯

for all θ P

”

0, 1
n´1

¯

.

Let .t1t2t3 ¨ ¨ ¨ be an n´adic expansion for θ that does not end in the constant stream

nnn ¨ ¨ ¨ . Then there exists a minimal index r ě 1 such that tr “ 0, and for all integers

0 ă r1 ă r, we have tr1 “ 1. Thus, we note that 0 ď µ
˝pr´1q
n pθq ă 1

n
, and for all 0 ă r1 ă r,

we have 1
n

ď µ
˝pr1´1q
n pθq ă .1t1t2t3 ¨ ¨ ¨ in base n, and .1t1t2t3 ¨ ¨ ¨ ” θ`1

n
pmod 1q .

We split this into two cases:

• j “ 0: in this case, for all 0 ă r1 ă r, we have un,j,θ ˝ µ
˝pr1´1q
n pθq “ 2, and

un,j,θ ˝ µ
˝pr´1q
n pθq ď 1. Thus, in base pn ` 1q, Jumpn,jpθq ă .2 ” 2

n
pmod 1q ”

Jumpn,j

´

1
n´1

¯

pmod 1q.

• j ě 1: in this case, for all 0 ă r1 ă r, we have un,j,θ ˝ µ
˝pr1´1q
n pθq “ 1. We also

have un,j,θ ˝ µ
˝pr´1q
n pθq “ 0. Thus, in base pn` 1q, Jumpn,jpθq ă .1 ” 1

n
pmod 1q ”

Jumpn,j

´

1
n´1

¯

pmod 1q.
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VI.3: Jumpn,j preserves spiders

Next, we show that for any θ P Q{Z and j P t0, 1, ¨ ¨ ¨n ´ 1u, the spiders Snpθq and

Sn`1

´

Jumpn,jpθq

¯

are isomorphic. For the rest of this section, we fix θ P Q{Z and

j P t0, 1, ¨ ¨ ¨ , n ´ 1u. Let ϕ denote the angle Jumpn,jpθq, and .x1x2x3 ¨ ¨ ¨ . be a n´adic

expansion for θ that does not end in a constant string of pn ´ 1q’s.

Proposition VI.9. 1. The angles in Onpθq and On`1pϕq have the same circular order. In

particular, the pre-period and period of ϕ under µn`1 coincide with the pre-period and

period respectively of θ under µn.

2. If θ ” θ1 ` m
n´1

pmod 1q for some angle θ1 P

”

0, 1
n´1

¯

and some m P t0, 1, ¨ ¨ ¨ ,m ´ 1u,

then the µn`1´orbit of ϕ does not intersect T statn`1,j`mpϕq.

Proof. 1. Without loss of generality, we may assume that θ P

”

0, 1
n´1

¯

. This is because

for all degrees n and all angles t P R{Z, µ˝pm´1q
n

´

t ` 1
n´1

¯

“ µ
˝pm´1q
n ptq ` 1

n´1
for all

m P N, implying that Onptq and On

´

t ` 1
n´1

¯

have the same circular order. Item (1)

now follows directly from Proposition VI.5.

2. First assume m “ 0. So θ P

”

0, 1
n´1

¯

. For every r P N,

µ˝pr´1q
n pθq P

´m

n
,
m ` 1

n

¯

ùñ µ
˝pr´1q

n`1 pϕq P

$

&

%

´

m
n`1

, m`1
n`1

¯

m P t0, 1, ¨ ¨ ¨ , j ´ 1u
´

m`1
n`1

, m`2
n`1

¯

m P tj ` 1, ¨ ¨ ¨ , n ´ 1u

Moreover, if µ
˝pr´1q
n pθq P

`

m
n
, θ`m

n

˘

for some m P t0, 1, ¨ ¨ ¨ , j ´ 1u, then µ˝r
n pθq ă θ, in

turn implying µ˝r
n pϕq ă ϕ. But this means we must have µ

˝pr´1q

n`1 pϕq P
`

m
n`1

, ϕ`m
n`1

˘

.

Using similar arguments,

• the sector T statn,m pθq corresponds to T statn`1,mpϕq for m ă j, and to T statn`1,m`1pϕq for

m ą j, and the orbit points in these sectors are in the same circular order;

• the sector T statn,j pθq corresponds to T statn`1,j`1pϕq, and the orbit points in these sectors

are in the same circular order;
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• if there is an orbit point in Onpθq on the boundary of T statn,m pθq for some m P

t0, 1, ¨ ¨ ¨n ´ 1u, this implies θ is periodic under µn, with some period k. In this

case, if θ is the smaller angle in a companion pair, then

µ
˝pk´1q

n`1 pϕq ”
ϕ ` j

n ` 1
pmod 1q P BT statn`1,j´1pϕq X BT statn`1,jpϕq

Else,

µ
˝pk´1q

n`1 pϕq ”
ϕ ` j ` 1

n ` 1
pmod 1q P BT statn`1,jpϕq X BT statn`1,j`1pϕq

The rest of item (2) follows from the fact that

θ ” θ1
`

m

n ´ 1
pmod 1q

ùñ ϕ ” Jumpn,jpθ
1
q `

m

n
pmod 1q

ùñ T statn`1,j`mpϕq “ T statn`1,jpJumpn,jpθ
1
qq `

m

n

Example VI.10. Let n “ 2 and consider θ ” 1
23´1

pmod 1q ” 1
7

pmod 1q as in Example VI.3.

In Figure 6.3 we illustrate the spiders pS3pJump2,0pθqq and pS3pJump2,1pθqq.

Example VI.11. Let n “ 2 and consider θ ” 17
24p24´1q

pmod 1q as in Example VI.4. Figure 6.4

shows that pS2pθq, pS3pJump2,0pθqq and pS3pJump2,1pθqq are all isomorphic.

Remark VI.12. Proposition VI.9 implies that the graphs pSnpθq Ă pSextn pθq and pSn`1pϕq Ă

pSextn`1pϕq are congruent.

Proposition VI.13. pFn,θ| pSnpθq and pFn`1,ϕ| pSn`1pϕq are conjugate by a homeomorphism ph

that preserves the circular order of legs and satisfies php8q “ 8 and phpexpp2πiθqq “ expp2πiϕq.

Consequently, Fn,θ

ˇ

ˇ

ˇ
Snpθq and Fn`1,ϕ

ˇ

ˇ

ˇ
Sn`1pϕq are conjugate by a homeomorphism h :

Snpθq ! Sn`1pϕq that preserves the circular order of legs, and satisfies hp8q “ 8 and

hpx1q “ x1, where x1 is the equivalence class of expp2πiθq in Snpθq, and x1 is the equivalence

class of expp2πiϕq in Sn`1pϕq.

Proof. For m P N, let θm and ϕm denote the angles µ
˝pm´1q
n pθq and µ

˝pm´1q

n`1 pϕq respectively.

Define ph : pSnpθq −! pSn`1pϕq as hpr expp2πiϕnqq “ r expp2πiϕnq. Proposition VI.9 implies

that ph satisfies the required properties, and by definition of the graphs Snpθq and Sn`1pϕq,
ph descends to a homeomorphism h : Snpθq −! Sn`1pϕq as required. In other words, the
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following diagram commutes:

`

pSnpθq, expp2πiθq,8
˘ `

pSn`1pϕq, expp2πiϕq,8
˘

`

Snpθq, x1,8
˘ `

pSn`1pϕq, x1,8
˘

ph

π π

h

Here, π is the notation used for the quotient map between a standard or extended spider and

its corresponding quotient.

Remark VI.14. In later sections, we will simply say that Fn,θ

ˇ

ˇ

ˇ
Snpθq and Fn`1,ϕ

ˇ

ˇ

ˇ
Sn`1pϕq

are conjugate and assume that the conjugating map satisfy the properties in the above

proposition.

Proof of Theorem I.6. The theorem follows from Propositions VI.8 and Remark VI.12.

Remark VI.15. Let θ P

”

0, 1
n´1

¯

, and let ν be the kneading sequence of θ. Suppose T statn,m pθq is

the sector containing θ in its interior. Construct a sequence νj “ νj1ν
j
2ν

j
3.... using the following

rule for each m P N:

• If µ
˝pm´1q
n pθq in one of the sectors T statn,m pθq, T statn,m`1pθq, ¨ ¨ ¨ , T statn,j´1pθq (or equivalently,

νm P t0, 1, ¨ ¨ ¨ , j ´ 1 ´ mu), then νjm :“ νm.

• If µ
˝pm´1q
n pθq is in one of the sectors T statn,j pθq, T statn,j`1pθq, ¨ ¨ ¨ , T statn,m´1pθq (or equivalently,

νm P tj ´ m, j ` 1 ´ m, ¨ ¨ ¨ , n ´ 1u), then νjm :“ νm ` 1 pmod nq

In the resulting sequence νj, for all m,m1 P N, we have νjm “ νjm1 if and only if νm “ νm1 .

Proposition VI.5 shows that νj is the kneading sequence of Jumpn,jpθq.

Remark VI.16 (Distinctness of the Jump1
n,j s). Given any degree n, let θ be pre-periodic

angle under µn whose orbit intersects every static sector. For example, θ can be taken to

be 0x1x2 ¨ ¨ ¨ xn´1 in base n, where xi “ i for i “ 1, 2, ¨ ¨ ¨n ´ 1. Then for distinct elements

j,pj in the set t0, 1, ¨ ¨ ¨ , n´ 1u, it is clear that Jumpn,jpθq ‰ Jumpn,pjpθq. Thus Jumpn,j and

Jumpn,pj are different functions.
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CHAPTER VII

Combinatorial Embeddings in the Unicritical Family

Definition VII.1. Let n, n1 P Ně2. Given X Ď Pn and Y Ď Pn`1, a function E : X ! Y is

said to be a combinatorial embedding if for every λ P X,

1. the postsingular portraits of λ and pλ are isomorphic;

2. if pλ P X satisfies λ◁ pλ, then Epλq ◁ Eppλq;

3. if λ is hyperbolic and pλ P X is also hyperbolic and is a satellite of λ, then Eppλq is a

satellite of Epλq.

In this chapter, for every n P Zě2, we will construct a set of n distinct combinatorial

embeddings tEn,j : Pn ! Pn`1 : j P t0, 1, ¨ ¨ ¨ , n ´ 1uu using the ‘Jump’ maps defined in

Chapter VI. Fix a degree n ě 2. We will construct the embeddings En,j using Theorem I.6,

and prove Theorem I.7 by exhibiting additional properties of the Jumpn,j’s.

First, fix j P t0, 1, ¨ ¨ ¨ , n ´ 1u.

VII.1: Image of Jumpn,j

We give here a description of the image of Jumpn,j in Q{Z. Recall from Proposition VI.9

that every ϕ in the image of Jumpn,j

ˇ

ˇ

ˇ

”

0, 1
n´1

¯

has the property that at least one static sector

does not contain any angles in On`1pϕq. We will show here that all such angles are in the

image of Jumpn,j for some j.

Fix j P t0, 1, ¨ ¨ ¨ , n ´ 1u.

Proposition VII.2. Let ϕ P Q{Z X

”

Jumpn,jp0q, Jumpn,jp0q ` 1
n

¯

. If the µn`1´orbit of ϕ

does not intersect T statn`1,jpϕq, then ϕ ” Jumpn,jpθq pmod 1q for a unique angle θ P

”

0, 1
n´1

¯

.

Proof. Let ℓ, k be the pre-period and period respectively of ϕ under µn`1. If ℓ “ 0 and k “ 1

then it is clear that ϕ ” Jumpn,jp0q pmod 1q, since this is the only periodic angle of period 1

in the sector
”

Jumpn,jp0q, Jumpn,jp0q ` 1
n

¯

.
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Otherwise, let .y1y2 ¨ ¨ ¨ .yℓyℓ`1yℓ`2 ¨ ¨ ¨ yk`ℓ be an pn ` 1q´ adic expansion for ϕ that does

not terminate in a constant stream of n’s. We define another symbol shift function as follows:

w : On`1pϕq −! t0, 1, ¨ ¨ ¨ , n ´ 1u

wptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

m t P r m
n`1

, m`1
n`1

q for some m P t0, 1, .., j ´ 1u

j t P r
j

n`1
, ϕ`j
n`1

s

j t P r
ϕ`j`1
n`1

, j`2
n`1

q

m ´ 1 t P r m
n`1

, m`1
n`1

q for some m P tj ` 2, j ` 3, ¨ ¨ ¨ , nu

We claim that the angle θ ”
ř8

m“1

w˝µ
˝pm´1q

n`1 pϕq

nm pmod 1q is pre-periodic under µn with pre-

period ℓ and period k, and that Jumpn,jpθq ” ϕ pmod 1q.

For everym P N, for ease of notation, we let θm ” µ
˝pm´1q
n pθq pmod 1q, ϕm ” µ

˝pm´1q

n`1 pϕq pmod 1q

and xm “ wpϕmq. By this notation, .x1x2 ¨ ¨ ¨ is an n´adic expansion for θ. The angle θ is

clearly rational, and has some pre-period ℓ1 and period k1 under µn. It is clear that ℓ
1 ď ℓ

and that k1|k. We first prove the following claims:

Claim 1. θ P

”

0, 1
n´1

¯

.

Claim 2. ℓ1 “ ℓ and k1 “ k.

Assuming these claims to be true, by definition of the functions w and un,j,θ, we can see

that Jumpn,jpθq “ ϕ. By Proposition VI.8, the angle θ is unique.

Proof of Claim 1. Let Jumpn,jp0q ” r
n

pmod 1q. We note that r “ 0 if j ě 1, and r “ 1 if

j “ 0.

• if ϕ ă r`1
n`1

, we see that wpϕq “ 0. Thus θ P

”

0, 1
n

¯

.

• if ϕ P

”

r`1
n`1

, r`1
n

¯

, then there exists an index m ą 1 such that ym1 “ r`1 for all m1 ă m,

and ym ď r.

– if j “ 0, then r “ 1. By the above discussion, since ym1 ě j ` 2, we have

xm1 “ wpϕm1q “ ym1 ´ 1 “ 1 for all m1 ă m, and xm “ wpϕmq “ 0.

– if j ě 1, then r “ 0. Thus xm1 “ wpϕm1q “ 1 for all m1 ă m, and xm “ wpϕmq “ 0.

In both cases above, we see that θ P

”

1
n
, 1
n´1

¯

.

■
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Proof of Claim 2. Now suppose k1 ă k. Then θℓ1`1 ” θℓ1`k1`1 pmod 1q, which can happen

only if xm “ xm`k1 for all m ą ℓ1. We note, for all m P N,

ϕm P

”

0,
ϕ ` k1

n ` 1

ff

ùñ xm “ ym,

ϕm P

«

ϕ ` j1 ` 1

n ` 1
, 1

¸

ùñ xm “ ym ´ 1.

So if xm “ xm`k1 , then ym “ ym`k1 or tym, ym`k1u “ tk1, k1 ` 1u.

Let D “ tm ą ℓ1|ym ‰ ym`k1u. Note that D is non-empty, since k P D. Let r “ infD,

and observe that

•
yr ă yr`k1 ùñ ϕr P

´ k1

n ` 1
,
ϕ ` k1

n ` 1

ı

,

• since only one angle of the form ϕ`m
n`1

can belong to On`1pϕq, exactly one of the following

equalities holds:

ϕr ”
ϕ ` j

n
pmod 1q, or ϕr`j ”

ϕ ` j ` 1

n
pmod 1q.

Therefore,

ϕr`1 ă ϕr`k1`1

ðñ .yr`1yr`2 ¨ ¨ ¨ .. ă .yr`k1`1yr`k1`2 ¨ ¨ ¨ ..

So at the first index m ą r in D, we must have ym ă ym`k1 . The above discussion shows that

exactly one of the following statements is true:

ym ď ym`ℓ1 @m ą ℓ1, or ym ě ym`ℓ1 @m ą ℓ1.

Supposing the first condition to be true, we then have, for any m P D,

ym ď ym`k1 ď ¨ ¨ ¨ . ď ym`p k
k1 ´1qj ď ym`k “ ym,

which implies that ym “ ym`k1 , and thereby contradicts the definition of D. Thus we have

shown that k1 “ k.

Suppose ℓ1 ă ℓ, then there exists an integer r ą 0 such that ℓ1 “ ℓ ´ rk. Then

θℓ1`1 ” θk`ℓ1`1 pmod 1q, and this holds only if for all m ą ℓ1, we have xm “ xm`k. But
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this means, for all m ą ℓ1 such that ym ‰ ym`k, we have ym, ym`k P tk1, k1 ` 1u. We note

that yℓ ‰ yk`ℓ. Without loss of generality, suppose, yℓ “ k1, yk`ℓ “ k1 ` 1. Then we have

ϕℓ P
“

k1

n`1
, ϕ`k1

n`1

‰

and ϕk`ℓ P
“

ϕ`k1

n`1
, k

1`2
n`1

˘

. Therefore,

ϕℓ`1 ă ϕ ă ϕk`ℓ`1,

which is a contradiction. Thus, we must have ℓ1 “ ℓ.

■

Remark VII.3. This proposition also shows that if ϕ P

”

Jumpn,jp0q ` m
n
, Jumpn,jp0q ` m`1

n

¯

for some m P t0, 1, ¨ ¨ ¨ , n´ 1u, and On`1pϕq does not intersect T statn`1,j`mpϕq, then there exists

a unique angle θ P

”

m
n´1

, m`1
n´1

¯

such that ϕ ” Jumpn,jpθq pmod 1q.

For the rest of this section, we fix λ P Pn and a monic representative c P Mnpλq. We

saw that for any θ P Ωnpcq, the map Fn`1,j,Jumpn,jpθq defined in the discussion following

Definition II.52 is Thurston equivalent to a polynomial λj,θ
`

1 ` z
n`1

˘n`1
such that the angle

ϕ ” Jumpn,jpθq pmod 1q P Θn`1pλj,θq. We will show that λj,θ is independent of the choice of

θ and c, allowing us to define En,jpλq “ λj,θ.

Proposition VII.4. Let c1 “ expp2πim
n´1

qc for some m P t0, 1, ¨ ¨ ¨ , n ´ 1u. For θ1 ” θ `

m
n´1

pmod 1q, we have λj,θ “ λj,θ1.

Proof. Jumpn,jpθq is an angular coordinate for a PCf parameter cn,j,θ P Mn`1pλj,θq. By

the definition of the Jumpn,j functions, we know that Jumpn,jpθ
1q ” ϕ ` m

n
pmod 1q, and

hence Jumpn,jpθ
1q P Θn`1pλj,θq. However, Jumpn,jpθ

1q is an angular coordinate for the point

expp2πim
n

qcn,j,θ P Mn`1pλj,θ1q, from which the statement follows.

Due to the above proposition, we can assume without loss of generality that c is in the

subwake defined by
´

0, 1
n´1

¯

.

VII.2: Definition for critically periodic parameters

First suppose λ has a k´periodic critical point, with k ě 2. Throughout this section, we

fix θ P Ωnpcq. By our assumption on c, we have θ P

´

0, 1
n´1

¯

. Note that the parameter ray

Rnpθq could land either at the root or a co-root of the hyperbolic component U containing c.
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(a) R2pθq and R2pθ1q (b) R3pJump2,1pθqq and R3pJump2,1pθ1qq

Figure 7.1: Jump2,1pθq and Jump2,1pθ
1q for the companion pair pθ, θ1q “ p1

7
, 2
7
q that land at

the hyperbolic component containing the “rabbit” parameter c « ´0.122561 ` 0.744862i

Landing at a root

We first suppose that θ lands at the root of U , and has companion θ1. Let ϕ and ϕ1 denote

the angles Jumpn,jpθq and Jumpn,jpθ
1q respectively.

Proposition VII.5. ϕ, ϕ1 are companion angles under µn`1.

Proof. Let A “ tA1, ¨ ¨ ¨ ,Aru be the orbit portrait generated by pθ, θ1q, and let Opθ, θ1q “
Ťr
i“1Ai. The symbol shift functions un,j,θ and un,j,θ1 coincide on Opθ, θ1q, since Opθ, θ1q X

`

θ`j
n
, θ

1`j
n

˘

“ H. We use the following for ease of notation:

@m P N, θm ” µ˝pm´1q
n pθq pmod 1q θ1

m ” µ˝pm´1q
n pθ1

q pmod 1q,

ϕm ” µ
˝pm´1q

n`1 pϕq pmod 1q, ϕ1
m ” µ

˝pm´1q

n`1 pϕ1
q pmod 1q

For every j P t1, 2, ¨ ¨ ¨ ru, we define the set Bi as follows:

Bi “ tϕm : θm P Aiu Y tϕ1
m : θ1

m P Aiu

The collection B “ tB1, ¨ ¨ ¨ ,Bru is a partition of the union of the µn`1-orbits of ϕ and ϕ1. In

order to show that pϕ, ϕ1q is a companion pair, we first show that the angles in their orbits

taken together form a formal orbit portrait.

Let Bpθ, θ1q “
Ťr
i“1Bi. We will prove that B satisfies the properties (1) through (5) listed

in Definition II.41.

1. This is clear by definition.
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2. The fact that µn`1 maps Bi onto Bi`1 is clear since µn maps Ai bijectively onto Ai`1.

The rest follows from Proposition VI.13.

3. For every i P t0, 1, ¨ ¨ ¨ ru, define

Bipθq “ On`1pϕq X Bi

Bipθ
1
q “ On`1pϕ

1
q X Bi

Since Ai Ă T statn,m pθq for some m P t0, 1, ¨ ¨ ¨ , n ´ 1u, we have Bipθq Ă T statn`1,m1pϕq and

Bipθ
1q Ă T statn`1,m1pϕ1q for some m1 P t0, 1, .., nu. It suffices to show that

Bi Ă

˜

ϕ1 ` m1

n ` 1
,
ϕ ` m1 ` 1

n ` 1

¸

“ T statn`1,m1pϕq X T statn`1,m1pϕ1
q

For any s P t0, 1, ¨ ¨ ¨ , nu, if there exists ψ P Bi X
“

ϕ`s
n`1

, ϕ
1`s
n`1

‰

, then there exists r P

t0, 1, ¨ ¨ ¨n ´ 1u such that Ai X
“

θ`r
n
, θ

1`r
n

‰

‰ H, which is not possible. Thus, for every

s P t0, 1, ¨ ¨ ¨ , nu,

Bi X

«

ϕ ` s

n ` 1
,
ϕ1 ` s

n ` 1

ff

“ H

The result follows immediately.

4. Since the period of all angles in Bpθ, θ1q is equal to k, and since A is a formal orbit

portrait, we have k “ rp for some p ě 1.

5. If Ai Ă
`

θ1`m
n
, θ`m`1

n

˘

for some m P t0, 1, ¨ ¨ ¨n ´ 1u, then Bi Ă
`

ϕ1`m
n`1

, ϕ`m`1
n`1

˘

.

Given distinct integers 0 ď i, i1 ď n, by property (2), the sets Bn,i and Bn,i1 are unlinked.

Givenm1 ‰ m, and any i, i1, we want to show that Bm,i,Bm1,i1 are unlinked. If i “ i1 “ 0,

this follows from the fact that Am,Am1 are unlinked. If at least one of i, i1 is nonzero

and Bm,i and Bm1,i1 are linked, then without loss of generality, we can find angles

α, β P Bm,i and η, δ P Bm1,i1 that satisfy

α ă η ă β ă δ

which implies that

pn ` 1qα ă pn ` 1qη ă pn ` 1qβ ă pn ` 1qδ
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The inequalities are strict since Bm`1 and Bm1`1 are disjoint. But Bs maps bijectively

onto Bs`1 for each s, and the above inequality implies that Bm`1,Bm1`1 are linked,

which is a contradiction.

Thus B is a formal, non-trivial orbit portrait. As a last step, we show that ϕ, ϕ1 are the

characteristic angles of this orbit portrait. The interval pϕ, ϕ1q has either the smallest or

largest arc length in B1. We let ℓi be the length of the unique complementary arc γi of Bi of

length greater than 1
n
. Each γi is a critical arc - that is, under multiplication by n ` 1, it

covers the circle n times. Furthermore, the γi’s are the only critical arcs of B.

For i ‰ r, γi is strictly contained in R{Zz
“

ϕ1`m
n`1

, ϕ`m`1
n`1

s for somem, whereas γr “ R{Zz
“

ϕ1`m0

n`1
, ϕ`m0`1

n`1

‰

for some m0. This proves that ℓr “ maxi ℓi. Therefore, the critical value arc bounded by

µn`1pBγrq is the shortest critical value arc among all critical value arcs. But we note that

µn`1pBγrq “ tϕ, ϕ1u, implying that

dR{Zpϕ, ϕ1
q “

r

min
i“1

min
α,βPBi

dR{Zpα, βq

This shows that pϕ, ϕ1q is the characteristic angle pair for B, and the result follows.

Example VII.6. Let n “ 2. The quadratic rabbit polynomial (so called because its Julia

set looks like a rabbit) is given by z2 ` c where c « ´0.122561 ` 0.744862i. The root of the

hyperbolic component containing the rabbit is the landing point of the companion angles

pθ, θ1q “ p1
7
, 2
7
q. The pair of angles pJump2,0pθq, Jump2,0pθ

1qq “ p14
26
, 16
26

q is a companion pair

forming angular coordinates for a “cubic rabbit” parameter c2,0,θ “ c2,0,θ1 « ´0.54056 ´

0.52858i.

Similarly, we also find that pJump2,1pθq, Jump2,1pθ1qq “ p 1
26
, 3
26

q also constitute angular

coordinates for a “cubic rabbit” parameter c2,1,θ “ c2,1,θ1 « 0.54056` 0.52858i. See Figure 7.1

for further details.

Landing at a co-root

In this section, we assume that θ lands at a co-root of U , and show that its image under

Jumpn,j lands at a co-root as well.

There exists an angle pair pα, α1q with period k landing at the root of U . By the previous

section, the angles ψ ” Jumpn,jpαq pmod 1q, and ψ1 ” Jumpn,jpα
1q pmod 1q land at the

root of a hyperbolic component V Ă Mn`1. Since Jumpn,j is order-preserving, the angle

ϕ ” Jumpn,jpθq pmod 1q lands in the wake of pψ, ψ1q, and by Proposition VI.5, ϕ, ψ and ψ1 all

have period k under µn`1. Additionally, by Remark VI.15, the kneading sequences of ϕ, ψ and
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ψ1 coincide with νj up to and including the index pk ´ 1q. The itineraries of ϕ with respect

to both ψ and ψ1 differ from each other, and from the sequence νj (see Remark VI.15) at the

kth position. Since ψ ă ϕ ă ψ1, we have µ
˝pk´1q

n`1 pϕq P
`

ψ`m
n`1

, ψ
1`m
n`1

˘

for some m P t0, 1, ¨ ¨ ¨ , nu.

We now show that ϕ lands at a co-root of V .

Proposition VII.7. 1. µ
˝pk´1q

n`1 pψq ı
ψ`m
n`1

pmod 1q, and µ
˝pk´1q

n`1 pψ1q ı
ψ1`m
n`1

pmod 1q.

2. There exists an angle ϕ1 landing at a co-root of V such that µ
˝pk´1q

n`1 pψ1q P p
ψ`m
n`1

, ψ
1`m
n`1

q.

Proof. 1. First, we note that we have

dR{Zpψ, ψ1
q ă dR{Z

`

µn`1pψq, µn`1pψ
1
q
˘

ă ¨ ¨ ¨ .. ă dR{Z
`

µ
˝pk´1q

n`1 pψq, µ
˝pk´1q

n`1 pψ1
q
˘

This in turn implies that

dR{Zpψ, ϕq ă dR{Z
`

µn`1pψq, µn`1pϕq
˘

ă ¨ ¨ ¨ .. ă dR{Z
`

µ
˝pk´1q

n`1 pψq, µ
˝pk´1q

n`1 pϕq
˘

Suppose µ
˝pk´1q

n`1 pψq ”
ψ`m
n`1

pmod 1q, we would then have dR{Z
`

µ
˝pk´1q

n`1 pψq, µ
˝pk´1q

n`1 pϕq
˘

“
dR{Zpψ,ϕq

n
, which is a contradiction. By a similar argument, µ

˝pk´1q

n`1 ψ1 ı
ψ1`m
n`1

pmod 1q.

2. For any co-root angle ϕ1 of the component V , the angle µ
˝pk´1q

n`1 pϕ1q cannot be in

r
ψ1`m
n`1

, ψ`m`1
n`1

s for any m P t0, 1, ¨ ¨ ¨ , nu, since this would imply that ϕ1 R pψ, ψ1q.

Therefore each µ
˝pk´1q

n`1 pϕ1q belongs to p
ψ`m
n`1

, ψ
1`m
n`1

q for some m that satisfies µ
˝pk´1q

n`1 pψq ı

ψ`m
n`1

pmod 1q and µ
˝pk´1q

n`1 pψ1q ı
ψ1`m
n`1

pmod 1q, by (1). There are pn ´ 1q co-roots for

V , and pn ´ 1q values of m that satisfy the latter this property.

Suppose we have two co-root angles ϕ1, ϕ2 with µ
˝pk´1q

n`1 pϕ1q, µ
˝pk´1q

n`1 pϕ2q P p
ψ`m
n`1

, ψ
1`m
n`1

q,

this again contradicts the chain of inequalities given in (1), thus for eachm P t0, 1, ¨ ¨ ¨ , nu

with µ
˝pk´1q

n`1 pψq ı
ψ`m
n`1

pmod 1q and µ
˝pk´1q

n`1 pψ1q ı
ψ1`m
n`1

pmod 1q, there exists exactly

one co-root angle ϕ1 P p
ψ`m
n`1

, ψ
1`m
n`1

q.

Proposition VII.8. ϕ lands at a co-root of V .

Proof. Let ϕ1 be the angle from item (2) in the previous proposition.

The angles ϕ and ϕ1 have the same itinerary with respect to ψ, and therefore, the dynamic

rays at angles ϕ and ϕ1 land at the same point z0 in the plane of fn`1,rc, where rc is the center

of V , making z0 a cut point in the Julia set of fn`1,rc unless ϕ “ ϕ1. But the co-root angle ϕ1

cannot land at a cut-point, and this forces ϕ ” ϕ1 pmod 1q.
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(a) Parameter rays corresponding
to tθiu

4
i“1 in degree 2

(b) Parameter rays corresponding
to tJump2,1pθiqu4i“1 in degree 3

Figure 7.2: Images under Jump2,1 for the angles θ1 ” 17
24p24´1q

pmod 1q, θ2 ” 19
24p24´1q

pmod 1q,

θ3 ” 23
24p24´1q

pmod 1q and θ4 ” 31
24p24´1q

pmod 1q which land at c « 0.36638 ` 0.59152i P P2.

The discussion in this section shows that for a periodic parameter λ, we may define

Eipλq “ λi,θ for any angle θ P Ωnpcq, for any choice of c P Mnpλq.

Proposition VII.9. Given a companion pair pϕ, ϕ1q with ϕ, ϕ1 P

”

Jumpn,jp0q, Jumpn,jp0q `

1
n

¯

landing at a hyperbolic root in Mn`1 such that the orbit of ϕ (or ϕ1) under µn`1 does not

intersect the interior of T statn`1,jpϕq, there exists a companion pair pα, α1q periodic under µn,

with α, α1 P

”

0, 1
n´1

¯

such that ϕ ” Jumpn,jpαq pmod 1q and ϕ1 ” Jumpn,jpα
1q pmod 1q.

Proof. By Proposition VII.2, there exists α P Q{Z X

”

0, 1
n´1

¯

such that Jumpn,jpαq ”

ϕ pmod 1q. If α lands at a co-root in Mn, this would imply that ϕ lands at a co-root in

Mn`1, contradicting our assumption. Thus α lands at a root, and has a companion α1. By

Proposition VII.5, ϕ1 ” Jumpn,jpα
1q pmod 1q.

VII.3: Definition for critically pre-periodic parameters

Supposing λ has a strictly pre-periodic critical point, let θ P Ωnpcq. As in the previ-

ous section, θ P

”

0, 1
n´1

¯

. Let us denote by cn,j,θ the landing point of the ray at angle

ϕ ” Jumpn,jpθq pmod 1q in Mn`1. Since ϕ is strictly pre-periodic under µn`1, cn,j,θ is

critically pre-periodic under zn`1 ` cn,j,θ.

Proposition VII.10. For θ1 P Ωnpcq, both ϕ and ϕ1 ” Jumpn,jpθ
1q pmod 1q land at cn,j,θ.
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Proof. Let γ denote the Carathéodory loop of fn,c. Then, given any α P Ωnpcq and t1, t2 P R{Z,

γpt1q “ γpt2q ðñ Σn,αpt1q “ Σn,αpt2q

This gives us Σn,θpθ
1q “ Σn,θpθq “ Σn,θ1pθq “ Σn,θ1pθ1q. This common sequence is also the

kneading sequence of both θ and θ1. Let us call it ν. By Remark VI.15, the angles ϕ and ϕ1 have

the kneading sequence νj, and by Proposition VI.5, it is clear that Σn`1,ϕpϕq “ Σn`1,ϕpϕ1q “

Σn`1,ϕ1pϕ1q “ Σn`1,ϕ1pϕq “ νj . So in the dynamical plane of zn`1`cn,j,θ, cn,j,θ “ γjpϕq “ γjpϕ
1q,

where γj is the corresponding Carathéodory loop. Hence the parameter ray at ϕ1 to Mn`1

also lands at cn,j,θ.

This proof shows that cn,j,θ is independent of θ. Due to Proposition VII.4, we may define

En,jpλq “ λj,θ “ pn ` 1qcnn,j,θ for any c P Mnpλq and any θ P Ωnpcq.

Example VII.11. Let n “ 2. The parameter rays at the following angles land at c «

0.36638 ` 0.59152i P M2:

θ1 ”
17

24p24 ´ 1q
pmod 1q, θ2 ”

19

24p24 ´ 1q
pmod 1q

θ3 ”
23

24p24 ´ 1q
pmod 1q, θ4 ”

31

24p24 ´ 1q
pmod 1q

Correspondingly, in degree 3, the angles listed below land at c2,1,θ “ c2,1,θ1 « 0.62759 `

0.29869i P M3:

Jump2,1pθ1q ”
163

34p34 ´ 1q
pmod 1q, Jump2,1pθ2q ”

169

33p34 ´ 1q
pmod 1q

Jump2,1pθ3q ”
187

34p34 ´ 1q
pmod 1q, Jump2,1pθ4q ”

241

34p34 ´ 1q
pmod 1q

See Figure 7.2 for an illustration.

This finishes the definition of En,jpλq for all λ P Pn.

VII.4: Properties of En,j

In the rest of the chapter, we show that En,j is a combinatorial embedding. As in previous

sections, fix λ P Pn , c P Mnpλq within the subwake
´

0, 1
n´1

¯

in the parameter plane, and

j P t0, 1, ¨ ¨ ¨ , n ´ 1u. First suppose λ is a periodic parameter with critical value of period

k ě 2. Thus c is the center of some hyperbolic component U Ă Mn.
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Proposition VII.12. Suppose that θ lands at the root of U and has companion θ1. Let V be

the hyperbolic component in Mn`1 associated with the pair pJumpn,jpθq, Jumpn,jpθ
1qq. Then

V is primitive if and only if U is primitive.

Proof. Clearly, ρν “ ρνj (see Section II.4.1).

A hyperbolic component is a satellite if and only if the penultimate entry of its internal

address divides the final entry. From this, the second statement follows.

Proposition VII.13. If pθ, θ1q is a satellite of pψ, ψ1q, then pJumpn,jpθq, Jumpn,jpθ
1qq is a

satellite of pJumpn,jpψq, Jumpn,jpψ
1qq.

Proof. Let k be the period of ψ, and let ν be the kneading sequence of pθ, θ1q. pJumpn,jpθq, Jumpn,jpθ
1qq

is a satellite of a ray pair pα, α1q of period k (since its internal address is the same as that of

pθ, θ1q), and it lies in the wake of pJumpn,jpψq, Jumpn,jpψ
1qq. Now suppose that the internal

address of pθ, θ1q is given by

1 7! s1 7! ¨ ¨ ¨ 7! sr´1 “ k 7! sr “ k1

Then for every m P t1, 2, ¨ ¨ ¨ , ru, there exist ray pairs Pm, Qm periodic under µn, µn`1

respectively that correspond to the entry sm, and moreover, we have

Pr “ pθ, θ1
q

Pr´1 “ pψ, ψ1
q

Qr “ pJumpn,jpθq, Jumpn,jpθ
1
qq

Qr´1 “ pα, α1
q

For any pair P “ pα1, β1q, let Jumpn,jpP q denote the pair pJumpn,jpα
1q, Jumpn,jpβ

1qq.

For each m P t1, 2, ¨ ¨ ¨ , ru, Qr is in the wake of Jumpn,jpPmq. Additionally, by definition,

Q1 “ Jumpn,jpP1q and Qr “ Jumpn,jpPrq

Let m1 P t1, 2, ¨ ¨ ¨ , ru be the first index where Jumpn,jpPm1q ‰ Qm1 . By Proposition VI.8, Qr

is in the wake of both Qm1 and Jumpn,jpPm1q. Therefore, one of the following is true: either

Qm1 is in the wake of Jumpn,jpPm1q or Jumpn,jpPm1q is in the wake of Qm1 . In either case, by

Lemma II.42, there exists a ray pair P of period p ă sm1 that separates Qm1 and Jumpn,jpPm1q.

But P lies in the wake of Qm1´1, and Qr lies in the wake of P . This suggests that

ρνpsm1´1q ď p ă sm1 , which is a contradiction to the fact that ρνpsm1´1q “ sm1 . There-
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fore, for all indices m1, we must have Qm1 “ Jumpn,jpPm1q. In particular, pα, α1q “ Qr´1 “

pJumpn,jpθq, Jumpn,jpθ
1qq.

More on co-roots

Let θ P

”

0, 1
n´1

¯

be an angle that lands at a co-root of a hyperbolic component U , whose

root angles are pα, α1q. Let V be the component in Mn`1 on which Jumpn,jpαq lands.

Note that in base pn ` 1q,

Jumpn,jpθq “ .un,j,θpθ1qun,j,θpθ2q ¨ ¨ ¨ .un,j,θpθkqpj ` 1q

where θm ” µ
˝pm´1q
n pθq pmod 1q. We also define the angles ψ ” Jumpn,jpθq pmod 1q, and

ψ1 “ .un,j,θpθ1qun,j,θpθ2q ¨ ¨ ¨ .un,j,θpθkqj in base pn ` 1q.

We know that ψ lands at a co-root of V . Note that ψ1 has itinerary νj with respect

to Jumpn,jpαq. Also note that ψ1 ” ψ ´ 1
pn`1qk´1

pmod 1q. By Proposition VII.7, we can

show that there exists an angle ψ2 landing at a co-root of V whose itinerary with respect

to Jumpn,jpαq coincides with that of ψ1. This forces ψ1 ” ψ2 pmod 1q, that is, ψ1 lands at a

co-root of V .

We will show that the image of Jumpn,j

ˇ

ˇ

ˇ

´

Q{Z X

”

0, 1
n´1

¯¯

does not intersect pψ, ψ1q.

Proposition VII.14. Given a rational angle β P pψ1, ψq, the µn`1´orbit of β intersects the

interior of T statn`1,jpβq.

Proof. We note that the angles ψ1
k ” pn ` 1qk´1ψ1 pmod 1q, βk ” pn ` 1qk´1β pmod 1q and

ψk ” pn ` 1qk´1ψ pmod 1q are in counterclockwise order. Let ε :“ dR{Zpβ, ψ1q. Then,

dR{Zpβk, ψ
1
kq “ pn ` 1q

k´1ε

dR{Z

´β ` j

n ` 1
,
ψ1 ` j

n ` 1

¯

“
ε

n ` 1

Since ψ1
k is the angle ψ1`j

n`1
, we note that ψ1`j

n`1
, β`j
n`1

and βk are also in counterclockwise order,

and moreover, ε P
`

0, 1
pn`1qk´1

˘

; from this it follows that

dR{Z

´

βk,
β ` j

n ` 1

¯

“ dR{Zpβk, ψ
1
kq ´ dR{Z

´β ` j

n ` 1
,
ψ1 ` j

n ` 1

¯

“ pn ` 1q
k´1ε ´

ε

n ` 1

ă
1

n ` 1
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Arguing similarly,

dR{Z

´

βk,
β ` j ` 1

n ` 1

¯

ă
1

n ` 1

Since n ě 2, this means that

βk P

”β ` j

n ` 1
,
β ` j ` 1

n ` 1

ı

The angles ψ1, ψ are consecutive among angles periodic of period k under µn`1, hence β

cannot be periodic of period k. Thus,

βk P

´β ` j

n ` 1
,
β ` j ` 1

n ` 1

¯

For any δ P

”

0, 1
n´1

¯

, by Proposition VI.9, the µn`1-orbit of Jumpn,jpδq does not intersect

T statn`1,jpδq. By the above proposition, we see that the image of Jumpn,j does not intersect

pψ1, ψq.

Critically pre-periodic parameters

Now assume that λ has pre-period ℓ ě 1 and period k ě 1. Choose an angular coordinate

θ P Ωnpcq, and let cn,j,θ be the landing point of ϕ ” Jumpn,jpθq pmod 1q.

Proposition VII.15. Ωn`1pcn,j,θq “ Jumpn,jpΩnpcqq; in particular, c and cn,j,θ have the

same number of angular coordinates.

Proof. By Proposition VII.10, Jumpn,jpΩnpcqq Ă Ωn`1pcn,j,θq. Given ϕ1 P Ωn`1pcn,j,θq with

ϕ1 ‰ ϕ, the µn`1-orbit of ϕ
1 does not intersect T statn`1,jpϕ

1q. By Proposition VII.2, there exists

an angle θ1 P

”

0, 1
n´1

¯

with Jumpn,jpθ
1q ” ϕ1 pmod 1q.

Let ν be the kneading sequence of θ. Note that the itinerary of ϕ1 with respect to ϕ is νj .

By construction, we can show that the itinerary of θ1 with respect to θ is ν. This implies

that in the dynamical plane of zn ` c, the ray at angle θ1 lands at c. Thus, the parameter ray

Rnpθ1q lands at c in Mn, implying ϕ1 P Jumpn,jpΩnpcqq.

Proof of Theorem I.7. Given λ P Pn, choose c P Mnpλq within the subwake
´

0, 1
n´1

¯

in the parameter plane. By Proposition VI.13, λ and En,jpλq have the same dynamics on

their postsingular sets, which shows (1) in Definition VII.1. The property (3) is clear by

Proposition VII.12.

We show that property (2) is true: given λ◁µ, there exist angles θ, θ1 P Θnpλq that land at

the same point inMn, and α P Θnpµq such that θ ă α ă θ1. Without loss of generality, we may
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(a) A few PCF parameters in P2

(b) An illustration of E2,0 : P2 −! P3 (c) An illustration of E2,1 : P2 −! P3

Figure 7.3: Images of a few parameters in P2 under E2,0 and E2,1. Parameters in the top
picture are mapped to those in the bottom row pictures with matching number labels
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assume that the landing point inMn of the parameter rays at angles θ, θ1 is within the subwake
´

0, 1
n´1

¯

. By monotonicity of Jumpn,j, we have Jumpn,jpθq ă Jumpn,jpαq ă Jumpn,jpθ
1q.

By definition of En,j, for all pλ P Pn, Jumpn,jpΘnppλqq Ď Θn`1pEn,jppλqq. This shows that

En,jpλq ◁ En,jpµq.

Lastly, we show En,j is injective. Suppose En,jpλq “ En,jpλ1q “ µ for λ ‰ λ1. Pick monic

representatives c, c1 for λ, λ1 respectively that are in the sub-wake
´

0, 1
n´1

¯

.

• If c is critically periodic, let θ, θ1 be the companion pair in Ωnpcq and α, α1 be the

companion pair in Ωnpc1q. Without loss of generality, assume

0 ă θ ă θ1
ă α ă α1

ă
1

n ´ 1

which implies

0 ă Jumpn,jpθq ă Jumpn,jpθ
1
q ă Jumpn,jpαq ă Jumpn,jpα

1
q ă

1

n

By Proposition VII.5, pJumpn,jpθq, Jumpn,jpθ
1qq, and pJumpn,jpαq, Jumpn,jpα

1qq are

companion pairs. The above inequality implies that they land on different hyperbolic

components, but since both components are in the sub-wake p0, 1
n

q, the centers of these

components cannot both be monic representatives for µ. This presents a contradiction.

• If c (and therefore c1) are critically pre-periodic, choose θ, θ1 P Ωnpcq and α, α1 P Ωnpc1q.

Again without loss of generality, we may assume

0 ă θ ă θ1
ă α ă α1

ă
1

n ´ 1

0 ă Jumpn,jpθq ă Jumpn,jpθ
1
q ă Jumpn,jpαq ă Jumpn,jpα

1
q ă

1

n

Let x be the landing point of Jumpn,jpθq. Proposition VII.15, Ωn`1pxq “ Jumpn,jpΩnpcqq,

and so Jumpn,jpαq and Jumpn,jpα
1q land at y ‰ x. Since x and y are both in the sub-

wake p0, 1
n

q, they are not both monic representatives of µ, which is a contradiction.

Figure 7.3 illustrates E2,0, E2,1 : P2 −! P3 on a few input points.

Remark VII.16 (Distinctness of the E 1
n,js). Given any degree n, let θ be pre-periodic angle

under µn whose orbit intersects every static sector. For example, as in Remark VI.16, we

can take θ to be 0x1x2 ¨ ¨ ¨ xn´1 in base n where xi “ i for i “ 1, 2, ¨ ¨ ¨n´ 1. Then for distinct

elements j,pj in t0, 1, ¨ ¨ ¨ , n ´ 1u, we saw that Jumpn,jpθq ‰ Jumpn,pjpθq. Moreover, it is
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easy to see that the angles Jumpn,jpθq and Jumpn,pjpθq do not share a degree n ` 1 kneading

sequence . Let λ P Pn be the unique element with θ P Θnpλq. By the above discussion, we

have En,jpλq ‰ En,pjpλq.
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CHAPTER VIII

Dynamical Approximations for Postsingularly Finite

Exponentials by Unicriticals

Our focus in this chapter is to prove Theorem I.5. With this end in view, throughout this

chapter we fix λ P P and s P Θ8pλq. Let ℓ and k be the pre-period and period respectively of

s under left shift. First we define a sequence of polynomial Thurston maps Gn,s : pR2, Asq ý

that converge topologically to Gs.
Next we obtain a sequence of angles pθnq such that Gn,s and Fn,θn are Thurston equivalent

for every n. We prove that these angles θn also satisfy the growth condition

pn ´ 1qθn ”
pn ´ 1qQpnq

nℓpnk ´ 1q
pmod 1q

for some polynomial Q with integer coefficients that satisfies degQ ď ℓ` k ´ 2. Letting λn

be the unique point in Pn such that θn P Θnpλnq, we then show that pn,λn ! pλ as required.

VIII.1: Construction of the maps Gn,s

Let Npsq “ 1 ` 2pmaxm |sm| ` 1q.

Recall the construction of the graphs Sext8 psq and S8psq from Section II.4.2, and let e1

denote the singular value of the map Gs : Sext8 psq ! S8psq.

Choose a real number R ą 0 such that DR contains As and Dpe1, 1{Rq does not contain

any other points of As. Let pβR “ BDR and consider the lift β “ G´1
s ppβRq. This is a simple,

unbounded arc on R2. Let γ1 be the leg of Sext8 psq landing at e1. Since pβR intersects γ1

exactly once, the path β intersects each leg pr exactly once, and divides R2 into two connected

components: one of them contains G´1
s pAsq, and the other one contains some right half plane.

Similarly, let pαR “ BDpe1, 1{Rq. Then αR “ G´1
s ppαRq is a simple unbounded arc in C,

and divides C into two connected components: one of them contains G´1
s pAsq, and the other

one contains some left half plane.

Let N “ Npsq. We note that |sm| ď N´3
2

for all m P N. Given n ě N , let rn “ ´tn´3{2u.
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Then As is contained in the infinite closed strip bounded by prn and prn`n´1, and this strip

intersects exactly n lines tprn , prn`1, ¨ ¨ ¨ , prn`n´1u. Let pRnqněN be a sequence of real numbers

such that Rn ! 8, the disk DRn contains As, and the disk Dpe1, 1{Rnq does not contain any

points of As other than e1. For n ě N , let Dn be the compact region bounded by αRn , βRn , prn

and prn`n´1, and D
1
n be the closure of the connected component of Czpα2Rn Y pr Y pn`r´1q

containing As.

Let pKn “ S8psq X D1
n. Define a new graph Kn from pKn by contracting all points on

α2Rn X pKn to a single new vertex an, and attaching a new vertex at 8. This can be done in

such a way that Kn XDn “ S8psq XDn. By this construction, it is easy to see that pKn, anq

is a generalized spider.

Proposition VIII.1. For every n ě Npsq, the map Gs|Dn as above can be extended to a

degree n Thurston map Gn,s : pR2, Asq ý. The sequence pGn,sq converges toopologically to Gs.

Proof. Let Gn,s “ Gs|Dn.

Let P be the set tprn , prn`1, ¨ ¨ ¨ , prn`n´1u. For every j P trn, rn ` 1, ¨ ¨ ¨ rn ` n ´ 1u, let

pqj be the unique edge of Kn that begins at an and coincides with pj on Dn, and qj Ă pqj

be the segment from an to the unique point bn P pj X αRn . Observe that the intersection

γ1 X BDpe1, 1{Rnq contains a single point, namely Gspbnq.

We extend Gn,s to qj (and hence, pqj) by mapping qj homeomorphically to γ1 XDpe1, 1{Rnq

in such a way that Gn,spanq “ e1. Similarly, for each j P trn, rn ` 1, ¨ ¨ ¨ rn ` n´ 2u, let ∆j be

the triangular region bounded by qj, qj`1 and αRn . Using the Alexander trick, we can define

Gn,s on intp∆jq so that it maps homeomorphically to Dpe1,
1
Rn

qzγ1.

Similarly, for every j as above, we extend Gn,s to the unbounded component of D1
nzppj Y

pj`1 Y βRnq so that said component maps homeomorphically onto CzpDRn Y γ1q.

Lastly, let ∆ be the unique unbounded face of Cz pKn. By the Alexander trick, we can

extend Gn,s to ∆ so that intp∆q is mapped homeomorphically to Czγ1.

By this construction, for every n ě Npsq, Gn,s maps Kn onto S8psq, and its restriction to

the plane is a degree n Thurston map with postsingular set As. Since pDnq is an exhaustion

of the plane and Gn,s|Dn “ Gs, we see that the sequence pGn,sq converges topologically to

Gs.

Remark VIII.2. For every n ě Npsq, we note that the legs of the generalized spider pKn, aq

coincide near 8 with the legs of Sext8 pθq bounded between prn and prn`n´1.
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VIII.2: Construction of the angles pθnq

Definition VIII.3. Given ℓ P Zě0, k P Zě1 and Q P ZrXs, let κQ : Zě2 −! Q{Z be the

function n 7! pn´1qQpnq

nℓpnk´1q
pmod 1q.

Proposition VIII.4. For n ě maxm |sm|, let θnpsq be the angle with n-adic expansion

.x1pnqx2pnq ¨ ¨ ¨xℓpnqxℓ`1pnqxℓ`2pnq ¨ ¨ ¨xℓ`kpnq given by

xmpnq “

$

&

%

sm sm ě 0

n ´ |sm| sm ă 0

for all m P N.
Then there exists an integer j P t0, 1, ¨ ¨ ¨ , Npsq ´ 1u and a polynomial Q P ZrXs with

degQ ď ℓ ` k ´ 2 such that

θn`1psq ” Jumpn,jpθnpsqq pmod 1q

pn ´ 1qθnpsq ” κqpnq pmod 1q

for all n ě Npsq.

Remark VIII.5. We note that the expansions .x1pnqx2pnq ¨ ¨ ¨xℓpnqxℓ`1pnqxℓ`2pnq ¨ ¨ ¨xℓ`kpnq

of θnpsq given above also “converge” to s “ s1s2 ¨ ¨ ¨ in a combinatorial sense.

Before we prove the above proposition, we will need one more statement.

Proposition VIII.6. Given integers ℓ ě 0, k ě 1 and polynomials Q, pQ P ZrXs , if there

exists a polynomial H P ZrXs such that pQpXq ´QpXq “ HpXqXℓpXk ´ 1`Xk´2 ` . ¨ ¨ ¨ ` 1q,

then the functions κQ and κ
pQ coincide.

Proof. We note that in QrXs,

pX ´ 1qQpXq

XℓpXk ´ 1q
´

pX ´ 1q pQpXq

XℓpXk ´ 1q
“

pX ´ 1qHpXqXℓpXk´1 ` Xk´1 ` ¨ ¨ ¨ ` 1q

XℓpXk ´ 1q

“ HpXq

Since H P ZrXs, we have κQpnq ´ κ
pQpnq “ Hpnq ” 0 pmod 1q for all n P Zě2.

Proof of Proposition VIII.4. Let N “ Npsq “ 1 ` 2pmaxm |sm| ` 1q. For all m P N, and
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Figure 8.1: The standard spiders pSnpθnpsqq for n “ 5, 6, 7, 8, 9, when s is set to 000p´1q0010.
The dotted lines indicate the additional legs in Sextn pθnpsqq. The leg labelled m corresponds

to µ
˝pm´1q
n pθnpsqq. Compare with Figure 2.5.
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n ě N ,

sm ě 0 ùñ 0 ď xmpnq ď
N ´ 3

2

sm ă 0 ùñ
N ` 3

2
ď xmpnq ď n ´ 1

Recall that s1 “ 0. The interval pN´3
2
, N`3

2
q contains at least one integer j in t1, 2, ¨ ¨ ¨ , N´1u,

and for any such j, for all n ě N , it is easy to see that

θn P

”

0,
1

n ´ 1

¯

θn`1psq ” Jumpn,jpθnpsqq pmod 1q

We can think of the coefficients xmpnq as values taken by polynomials xm P ZrXs. More

particularly, for each m P N, define

xmpXq “

$

&

%

sm sm ě 0

X ´ |sm| sm ă 0

Let pQ P ZrXs be the polynomial given by

pQpXq “

ℓ
ÿ

m“1

xm
`

X
˘

Xℓ´m
pXk

´ 1q `

k
ÿ

m“1

xℓ`m
`

X
˘

Xk´m

Then,

pQpnq

nℓpnk ´ 1q
“

ℓ
ÿ

m“1

xmpnq

nm
`

k
ÿ

m“1

xℓ`mpnq

nm`ℓ´kpnk ´ 1q

“

ℓ
ÿ

m“1

xmpnq

nm
`

ℓ`k
ÿ

m“ℓ`1

xmpnq

nm
´

1 ´ 1
nk

¯

” θnpsq pmod 1q

Since x1pXq “ s1 “ 0 and x2pXq is either constant or linear in X, the degree of pQ is less

than or equal to ℓ ` k ´ 1. If deg pQ ď ℓ ` k ´ 2, set Q “ pQ. Otherwise, note that pQ has

degree ℓ ` k ´ 1 if and only if x2pXq “ X ´ |s2|. In this case, the leading coefficient of pQ is

1, and we set QpXq “ pQpXq ´ XℓpXk´1 ` Xk´2 ` ... ` X ` 1q.

The polynomial Q P ZrXs thus defined has degree ď ℓ` k´ 2, and by Proposition VIII.6,
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it satisfies

κQpnq ” κ
pQpnq ” pn ´ 1qθnpsq pmod 1q @n P Zě2

Example VIII.7. Given r P Z, for s “ 0r, we have two separate cases:

• If r ě 0, then Npsq “ 2r ` 3, θnpsq “ r
npn´1q

“ 0r in base n, for all n ě Npsq, and

QpXq “ r.

• If r ă 0, then Npsq “ 2|r| ` 3, θnpsq “
n´|r|

npn´1q
“ 0n ´ |r| in base n, for all n ě Npsq,

and QpXq “ ´|r| “ r.

Example VIII.8. Let s “ 000p´1q0010. We have Npsq “ 5, and for all n ě N ,

θnpsq “ .000pn ´ 1q0010 “
n5 ´ n4 ` 1

n4pn4 ´ 1q

We note that QpXq “ X4 ` X ´ 1.

In fact, letting θ “ 17
24p24´1q

, we have θnpsq “ Jumpn´1,1 ˝ Jumpn´2,1 ˝ ¨ ¨ ¨ ˝ Jump2,1pθq for

all n ě Npsq. Compare this with Example VI.4.

Next we show that for all n ě Npsq, with θnpsq defined as in Proposition VIII.4, the map

Gn,s from Section VIII.1 and the polynomial Thurston map Fn,θn from Definition II.4.1 are

Thurston equivalent.

Proposition VIII.9. Let N :“ Npsq, θ :“ θNpsq be as defined in Proposition VIII.4. Let

r “ 3
2

´ N
2
. The circular order of the legs of SextN pθq at 8 coincides with the circular order of

the set of addresses O8psq Y trs, pr ` 1qs, ¨ ¨ ¨ , pr ` n ´ 1qsu.

Proof. It suffices to prove the following claims:

Claim 1. The angles in ONpθq and the addresses in O8psq have the same circular order.

Claim 2. For every j P tr, r ` 1, ¨ ¨ ¨ , N´3
2

u,

if j ě 0, then µ˝pm´1q
psq P T stat8,j psq ùñ µ

˝pm´1q

N pθq P T statN,j pθq

if j ă 0, then µ˝pm´1q
psq P T stat8,j psq ùñ µ

˝pm´1q

N pθq P T statN,N`jpθq

Proof of Claim 1. Suppose µ
˝pm´1q

N pθq ă µ
˝pm1´1q

N pθq for some integers m ‰ m1, then

xmpNqxm`1pNq ¨ ¨ ¨ ă xm1pNqxm1`1pNq ¨ ¨ ¨

108



where the digits xmpNq are as defined in Proposition VIII.4. Let r ě 0 be the least integer

such that xm`rpNq ‰ xm1`rpNq. Then for all r1 ă r, there are two possibilities:

• If 0 ď xm`r1pNq ď N´3
2

, then sm`r1 “ xm`r1pNq “ xm1`r1pNq “ sm`r1 .

• Else, we have N`3
2

ď xm`r1pNq ď N´1, and thus, sm`r1 “ xm`r1pNq´N “ xm1`r1pNq´

N “ sm1`r1

This implies, for all r1 ă r, that sm`r1 “ sm1`r1 .

At the index m ` r we have xm`rpNq ă xm1`rpNq. There are only three possibilities:

• If xm1`rpNq ď N´3
2

, then sm`r “ xm`rpNq ă xm1`rpNq “ sm1`r.

• If xm`rpNq ě N`3
2

, then sm`r “ xm`rpNq ´ N ă xm1`rpNq ´ N “ sm1`r.

• If xm`rpNq ď N´3
2

and xm1`rpNq ě N`3
2

, then sm`r ą 0 and sm1`r ă 0.

In the first two cases, we directly get µ˝pn´1qpsq ă µ˝pm´1qpsq. In the third case,

µ˝pn´1qpsq ą 0 and µ˝pm´1qpsq ă 0. Thus µ˝pn´1qpsq ăă µ˝pm´1qpsq.

Lastly, if µ
˝pm´1q

N pθq “ θ`r
N

, then xmpNq “ r and xm1pNq “ 0 for all m1 ą m. The latter

condition implies sm1 “ 0 for all m1 ą m.

• If 0 ď r ď N´3
2

, then µ˝pm´1qpsq “ r0.

• If N´3
2

ď r ď N ´ 1, then µ˝pm´1qpsq “ ´c0.

■

Proof of Claim 2. First assume j ě 0. If µ˝pm´1qpsq P T stat8,j psq, then there are two cases:

• If js ă µ˝pm´1qpsq ă pj ` 1q0, then we note that sm “ j. Thus xmpNq “ sm “ j. This

assumption also implies that s ă µ˝mpsq ă 0. By the proof in Claim one, we have

θ ă µ˝m
N pθq in r0, 1q, and thus, θ`j

N
ă µ

˝pm´1q

N pθq ă
j`1
N

.

• Else, we must have pj ` 1q0 ă µ˝pm´1qpsq ă pj ` 1qs. In this case, xmpNq “ sm “ j ` 1,

and by an argument similar to the one above, we see that j`1
N

ă µ
˝pm´1q

N pθq ă
θ`j`1
N

are in counterclockwise order.

This shows that µ
˝pm´1q

N pθq P T statN,j pθq.

The case j ă 0 follows from a similar discussion, and using the fact that if sm ă 0, then

xmpNq “ N ` sm by definition. ■
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Figure 8.2: The star marks the position of λ « 1.16302 ` 0.71056i, the landing point of the
parameter ray at address 000p´1q0010 in the exponential parameter plane, indicated in blue

Proposition VIII.10. Let N “ Npsq. For all n ě Npsq, the maps Fn,θn and Gn,s are

Thurston equivalent.

Proof. Using the general argument followed in Proposition VIII.9, it is easy to see that for

every n P Npsq, the generalized spider Kn from Section VIII.1 is congruent to Sextn pθnpsqq for

all n ě N . Therefore, by Proposition II.51,the maps Fn,θnpsq and Gn,s are Thurston equivalent

for every n P N.

VIII.3: Proof of Theorem I.5

Let Gn,s : pR2, Asq ý, n ě N :“ Npsq be the sequence of Thurston maps constructed in

Proposition VIII.1. By Main Theorem I.4, the operators σn :“ σGn,s defined on TpS2, AsYt8uq

converge locally uniformly to the operator σ :“ σGs . Let τ P TpS2, As Y t8uq be the fixed

point of σ.

Fix n ě N . Let λn P Pn be the unique point such that θnpsqq P Θnpλnq. Since

Gn,s »comb Fn,θnpsq »comb pn,λn , there exists a unique fixed point τn P TpS2, As Y t8uq for the

operator σn.

Proposition VIII.11. The sequence of polynomials ppn,λnq converges to pλ locally uniformly.

Proof. It is possible to prove this using Theorem V.9; however, we give a different proof here.
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(a) λ10 « 1.1176 ` 0.86608i (b) λ50 « 1.1545 ` 0.74281i

(c) λ100 « 1.1575 ` 0.72671i (d) λ200 « 1.15891 ` 0.71869i

Figure 8.3: Approximating parameters pλnq for λ « 1.16302 ` 0.71056i, angular coordinates
given by 000pn ´ 1q0010 in base n. Compare with Figure 8.2

Recall that e2 “ Gspe1q “ Gn,spe1q and e3 “ Gspe2q “ Gn,spe2q for all n ě N . It suffices to

show that λn ! λ.

By Corollary III.13, we know that dTpτn, τq ! 0 as n! 8. Let φ P τ , φn P τn, n ě N be

representatives that satisfy

φp8q “ φnp8q “ 8

φpe1q “ φnpe1q “ 0

φpe2q “ λ

φnpe2q “ λn

for all n ě N .

There exists ψ P τ that satisfies ψp8q “ 8, ψpe1q “ 0, and ψpe2q “ λ. We note that

111



φ ˝ Gs ˝ ψ´1 ” pλ.

Similarly, for every n ‰ N , there exists ψn P τn that satisfies ψnp8q “ 8, ψnpe1q “ 0 and

ψnpe2q “ λn. We note that φn ˝ Gn,s ˝ ψ´1
n ” pn,λn . Let rφn “ λ

λn
φn. Note that rφn P τn, and

rφn ˝ Gn,s ˝ ψ´1
n ” pn,λ.

Since τn ! τ , there exists a quasiconformal map k : pC ! pC isotopic to φ rel. As Y t8u

and for every n ě N , a quasiconformal map kn : pC ! pC isotopic to rφn rel. As Y t8u such

that Kpkn ˝ k´1q ! 1. Then the sequence of maps kn ˝ k´1 fix the three points 8, λ and 0.

By Propositions II.5 and V.8, hn :“ kn ˝ k´1|C ! idC uniformly on compact subsets of C.
Let c “ φpe3q “ kpe3q and cn “ hnpcq; observe that

rφnpe3q “ knpe3q “ cn ! c “ φpe3q

We also note that cn “ pn,λpλnq, and c “ pλpλq. Letting rn “ |cn{λ|, r “ |c{λ|, wn “ argpcn{λq

and w “ argpc{λq, (where argpc{λq, argpcn{λq are all chosen to be in r´π, πq), we have

λ “ ln r ` wi ` 2πips2 ´ s1q “ ln r ` wi ` 2πis2

λn “ n
´

r1{n
n exp

´iwn
n

¯

exp
´2πipx2 ´ x1q

n

¯

´ 1
¯

where x1x2x3.... is the n´adic expansion of θnpsq given in Proposition VIII.4. In particular,

we have

x1 “ s1 “ 0,

x2 “

$

&

%

s2 sn ě 0

n ` s2 otherwise

Hence, we have expp2πipx2 ´ x1q{nq “ expp2πis2{nq. So the equation for λn becomes

λn “ n
´

prn{rq1{n exp
´iwn ` 2πis2

n

¯

´ 1
¯

Let U be a bounded neighborhood of c that contains no other point in rφpAsq, and V

be the connected component of p´1
λ pUq containing λ. Similarly, let Vn be the connected

component of p´1
n,λpUq containing λ. Then, using an argument similar to the one in the proof

of Proposition V.3, we see that for n sufficiently large, there exist local inverses qn : U −! Vn

of pn,λ|Vn, such that qn ! q uniformly on U , where q : U −! V is the local inverse of pλ|V .
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We note that qn and q have the following formulae: for all z P U , we have

qpzq “ ln |z{λ| ` i argpz{λq ` 2πis2

qnpzq “ n
´

|z{λ|
1{n exp

´i argpz{λq ` 2πis2
n

¯

´ 1
¯

where argpz{λq is chosen to be in r´π, πq. Comparing with the formula for λn, we see that

for n sufficiently large so that cn P U , we have

λn “ qnpcnq ! qpcq “ λ

Proof of Theorem I.5. The theorem follows from Propositions VIII.4, VIII.9, and VIII.11.

Example VIII.12. Let λ “ 2πir, where r P Zzt0u. The orbit of 0 under pλ is 0 −! 2πir ý,

and λ has a unique external address, 0r. We have

θnpsq “

$

&

%

r
npn´1q

r ą 0

n´|r|

npn´1q
r ă 0

QpXq “ r

λn “ n
´

expp2πir{nq ´ 1
¯

Example VIII.13. Let λ be the landing point of the ray at address s “ 000p´1q0010 (its

approximate value is 1.16302 ` 0.71056i; see Figure 8.2). The orbit of 0 under pλ has the

form 0 −! λ −! pλpλq −! p˝2
λ pλq −! p˝3

λ pλq −! p˝4
λ pλq −! p˝5

λ pλq ý.

In Example VIII.8, we computed θnpsq ” n5´n4`1
n4pn4´1q

pmod 1q, with n´adic expansion 000pn´

1q0010 “. In Fig 8.3 we have indicated the position of λnpsq for n “ 10, 50, 100 and 200,

along with approximate values.
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CHAPTER IX

Future Scope

In this chapter, we pose some questions and start some discussions that are highly relevant

to the results presented in this thesis, and connect these to well-known open problems in

transcendental Thurston theory.

IX.1: Obstructed Thurston maps

By Theorem I.2 and Proposition IV.15, we know that for every transcendental Thurston map

f : pR2, Aq ý, there exists a sequence of polynomial Thurston maps fn : pR2, Aq ý such that

σfn ! σf locally uniformly on TpS2, A Y t8uq. We also showed in Corollary III.13 that if f

is realized, then fn is realized for all n sufficiently large. We are interested in the converse:

Question IX.1. If fn is realized for all sufficiently large n, is f realized?

We give a simple sufficient condition for f to be realized: if there exists a compact set

K Ă TpS2, AY t8uq such that a subsequence of fixed points τnk
of σfnk

are contained in K,

then by completeness of the Teichmüller metric, some subsequence of pτnk
q converges to a

point τ P TpS2, A Y t8uq. It is easy to see that τ is a fixed point of σf .

If no such set K exists, or equivalently, the sequence pτnq of fixed points of σfn contains no

bounded subsequence, we then need to consider the augmented Teichmüller space pTpS2, AY

t8uq and classify all the limit points of the sequence pτnq in this space. Note that pTpS2, AY

t8uq is the metric completion of TpS2, AY t8u endowed with the Weil-Petersson metric (see

[Hub16, Chapter 7.7]). A related problem is the boundary behavior of σf . Selinger showed in

[Sel12] that for a classical Thurston map g : S2 −! S2, the operator σg extends continuously

to pTpS2, Pf q, and has a fixed point in this space. This raises another question, which is

especially curious since all the σfn ’s admit a continuous extension to pTpS2, A Y t8uq:

Question IX.2. Does σf extend to a continuous map on pTpS2, A Y t8uq?

A fixed point in pTpS2, AYt8uq for σf would also provide us with a topological obstruction

for f in the form of a topological multicurve.
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If f is obstructed by a Levy cycle, however, we can show that the fn’s are eventually

obstructed as well.

Definition IX.3. Let f : pR2, Aq ý be a Thurston map. A Levy cycle for f is a multicurve

G “ tγ0 “ γn, γ1, γ2, ¨ ¨ ¨ , γn´1u such that

• for every i P t0, 1, ¨ ¨ ¨ , n´ 1u, the curve γi is an essential simple closed curve contained

in R2zA;

• if i ‰ j, then γi and γj are disjoint;

• for every i P t0, 1, ¨ ¨ ¨ , n´ 1u, there exists a connected component η of f´1pγi`1q such

that η is homotopic to γi´1 rel. A, and the map f |η : η ! γi`1 has degree one.

By a theorem credited to Berstein, Lei, Levy and Rees ([Hub16, Theorem 10.3.8]), it is

known that a polynomial Thurston map is obstructed if and only if it has a Levy cycle. This

creterion was extended in [HSS09] for topological exponential Thurston maps. This proof

from [HSS09] generalises to show that if a transcendental Thurston map has a Levy cycle,

then it is obstructed. It is not known, however, that the converse is true.

Proposition IX.4. Let fn : pR2, Aq ý be a sequence of Thurston maps that converge

topologically to a Thurston map f : pR2, Aq ý. If G “ tγ0 “ γr, γ1, γ2, ..., γr´1u is a Levy

cycle for f , then for sufficiently large n, G is a Levy cycle for fn.

Proof. Let j P t1, ..., ru, and let ηj be the connected component of f´1pγjq that is an essential

closed curve that is isotopic to γj´1 rel. A, and f |ηj : ηj ! γj is a homeomorphism. Let

D Ă R2 be a compact set such that ηj Ă intpDq for all j. Then there exists N P N such that

for all n ě N , fn|D ” f |D. This implies that ηj is a connected component of f´1
n pγjq, and

fn|ηj is a homeomorphism onto γj . Thus for all n ě N , the multicurve G is a Levy cycle for

fn.

The above proposition constitutes a partial converse to Corollary III.13.

IX.2: Approximating tree lifting operators

Let f : C ! C be a postsingularly finite holomorphic polynomial. By a theorem of Douady

and Hubbard, it is known that there exists a finite tree Hf Ă C such that

1. Pf Ă V pHf q;

2. every vertex of degree less than or equal to 2 is an element of Pf ;
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3. fpHf q “ Hf .

This tree is unique, and can be defined as a union of regulated arcs in the filled Julia set of f

(we refer to [Hub16, Section 10.4, Definition 10.4.7] for a much more detailed discussion).

Hubbard trees are a powerful combinatorial tool to study PCF polynomials. The question

of which Hubbard trees are realized by polynomials, and whether the tree Hf and the

dynamical system f : Hf ý are sufficient to determine f were dicussed by Poirier (see

[Poi10]).

The preimage f´1pHf q contains Hf ; indeed, Hf is the convex hull of Pf in f´1pHf q. More

generally, for any polynomial Thurston map f : pR2, Pf q ý with Pf “ A, for any finite tree

T Ă C that satisfies the first two conditions above, let pT Ă f´1pT q be the convex hull of A

in f´1pT q. Then it can be shown that pT also satisfies conditions (1) and (2). The authors

of [BLMW22] used this property to construct an operator λf : TA ! TA, where TA is the

set of finite trees in C that satisfy conditions (1) and (2), modulo isotopy rel. A . This

space TA is countable, and can be realized as a spine for TpS2, A Y t8uq. The results of

[BLMW22] show that f is realized if and only if for every rT s P TA, the λf orbit of f lands

in a 2´neighborhood of rHf s after finitely many steps.

In our context of approximations, if fn : pR2, Aq ý is a series of polynomial Thurston

maps that converge combinatorially to a transcendental Thurston map f : pR2, Aq ý, we can

pose several questions about the sequence of tree-lifting operators λfn : TA ý. For example,

do they converge? Another question is whether it is possible to define the operator λf in

this setting. Recent work in ([PRS23]) which defines a homotopy Hubbbard tree for PSF

exponential maps and further examines lifting properties of finite trees, leaves the scope for

this open.
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APPENDIX A

Basic Topology

This chapter summarizes the notation used for various topological objects throughout this

thesis.

A.1: Loops, paths and homeomorphisms

If X is a topological space, then a path α in X is a continuous map α : I ! X. Points

x “ αp0q and y “ αp1q are called endpoints of the path α and we say that α joins x with y.

The interior of the path α is the set intpαq :“ αpp0, 1qq. The path α is called a loop if

αp0q “ αp1q, otherwise we say that α is a non-closed path. We say that the path α starts at

x P X if αp0q “ x. When α is a loop, we also say that α is based at x.

A non-closed path α is called simple if it has no self-intersections (i.e., α : I ! X is

injective). A loop α is called a simple if it has no self-intersections except at endpoints (i.e.,

α|p0, 1q is injective). A loop α is called constant if the map α : I ! X is constant. We often

conflate paths and their images. For instance, for a path α as above and Y Ă X, we write

α Ă Y to indicate that αpIq Ă Y . We say that γ Ă X is a simple closed curve if γ “ αpIq for

some simple loop α in X.

If α and β are two paths in X, then we denote by α ¨ β their concatenation; in other

words, the path that first traverses α and then β. By α we denote the path in X such that

αptq “ αp1 ´ tq for all t P I. For n P Z, we define αn to be a constant loop based at αp0q if

n “ 0, the concatenation of α with itself n times, if n ą 0, and the concatenation of α with

itself |n| times if n ă 0.

Definition A.1. Two paths α : I ! X and β : I ! X are called path-homotopic (or simply

homotopic) if there exists a continuous map H : I ˆ I ! X called a homotopy so that

Hpt, 0q “ αptq, Hpt, 1q “ βptq for all t P I, and Hp0, sq “ αp0q “ βp0q, Hp1, sq “ αp1q “ βp1q

for all s P I.
Let A be a finite subset of X. We say that two paths α and β are path-homotopic relative

A (abbreviated as “α and β are homotopic rel. A” and denoted α „A β) if α Ă XzA and
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β Ă XzA are homotopic in XzA, in other words, Hps, tq P XzA for all ps, tq P I ˆ I, where
H is the corresponding homotopy.

Definition A.2. Given a topological space X and paths α and β in X, we say they have the

same closing behavior if either both α and β are closed loops, or if neither is a closed loop.

If X is a topological space and x P X, then by π1pX, xq we denote the fundamental

group of X based at x, or in other words, the set of all homotopy equivalence classes of

loops in X based at x endowed with the operation of path concatenation. If f : X ! Y is

a continuous map between topological spaces X and Y such that fpxq “ y, then the group

homomorphism f˚ : π1pX, xq ! π1pY, yq is defined as f˚prαsq “ rf ˝ αs for any loop α Ă X

based at x, where r¨s denotes a homotopy equivalence class. Finally, we say that path α Ă Y

lifts under f to a path β Ă X, if α “ f ˝ β, and β is called the f -lift (or lift under f) of α.

Definition A.3. If f : X ! Y is a covering map and fpxq “ y, then every path α starting

at y has a unique f -lift starting at x, which is denoted by α"pf, xq.

By definition, the path α"pf, xq is a loop if and only if rαs P f˚π1pX, xq.

If pX, dq is a metric space, x P X ad α is a path in X, the distance dpx, αq “ inftPα dpx, tq.

For a path α, and a real number ε ą 0, Nεpαq :“ tx P X|dpx, αq ă εu.

For a topological space X, we denote by Homeo`
pXq of all orientation-preserving self-

homeomorphisms of X . Commonly in the literature, the notation Homeo`
pX,Aq is used for

the set of maps in Homeo`
pXq that fix the set A, however, we will take Homeo`

pX,Aq to mean

the set of maps in Homeo`
pXq that fix A pointwise. We use the notation Homeo`

0 pXq for the

subgroup of Homeo`
pXq consisting of homeomorphisms that are isotopic to idX . Similarly,

Homeo`
0 pX,Aq for the subgroup of Homeo`

pX,Aq consisting of all homeomorphisms isotopic

rel. A to idX .

Definition A.4. Suppose that X and Y are topological spaces. We say that homeomorphisms

φ : X ! Y and ψ : X ! Y are isotopic if there exists a continuous map H : Xˆ I ! Y called

an isotopy such that Hpx, 0q “ φpxq and Hpx, 1q “ ψpxq for all x P X, and Hp¨, tq : X ! Y

is a homeomorphism for every t P I. We say that φ and ψ are isotopic rel. A for some A Ă X,

if Hpx, tq “ x for all px, tq P A ˆ I.

We now list a property of homeomorphisms of disks that we use several times in this

thesis.

Proposition A.5. 1. Every orientation-preserving homeomorphism φ : BD ! BD extends

to a homeomorphism from D to D.
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2. Any two such extensions are isotopic rel. BD.

Proof. There is a more general version of this proposition proved in [Hub16, Proposition C2.1],

however we will restate it here. With φ as above, extend it to D by setting, for all t P I, z P BD,
φptzq “ tφpzq. This is called the radial extension of φ.

To show item (2), let rφ be another extension of φ to D. For every t P I, define a

homeomorphism φt : D ! D as follows:

φtpzq “

$

&

%

φpzq |z| ě t

trφpz{tq 0 ď |z| ď t

Then φ is an isotopy rel. BD between φ0 “ φ and φ1 “ rφ.

A.2: Planar embedded graphs

A planar embedded graph is a pair G “ pV,Eq, where

1. V is a discrete (in particular, countable) set of points in R2, and

2. E is a set of simple paths and simple loops (viewed as subsets of R2) such that their

endpoints belong to V , their interiors are pairwise disjoint and lie in R2zV , and every

compact set K Ă R2 intersects finitely many elements of E.

The sets V and E are called the vertex set and edge set of G, respectively. Our notion of

a planar embedded graph allows multi-edges (i.e., distinct edges that connect the same pair

of vertices), and loop-edges (i.e., edges that connect a vertex to itself).

A planar embedded graph G “ pV,Eq is said to be finite if V and E are finite sets. The

degree of a vertex v in G, denoted by degGpvq, is the number n1 ` 2n2, where n1 and n2 are

the numbers of simple paths and simple loops in E incident to v, respectively (the second

condition above ensures this is always finite). We say that G is k-regular if degGpvq “ k for

every v P V . A subgraph of G is a planar embedded graph G1 “ pV 1, E 1q such that V 1 Ă V

and E 1 Ă E.

The subset G :“ V Y
Ť

ePE e of R2 is called the realization of G. A face of the graph G

is a connected component of R2zG. The set of all faces of G is denoted by F pGq. By the

definition of a planar embedded graph, the set G is closed in R2, and thus, every face F of G

is open. If F is a face of G, then we denote by BF the subgraph of G forming the (topological)

boundary of F in R2. The graph G is called connected if its realization G is connected (or

equivalently, path-connected). It follows that G is connected if and only if each face of G is

simply connected. We will often conflate a planar embedded graph with its realization.
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Definition A.6. Let G1 “ pV1, E1q and G2 “ pV2, E2q be planar embedded graphs. The

graph G1 is said to be isomorphic to G2 if there exists a homeomorphism φ P Homeo`
pR2q

that maps vertices and edges of G1 into vertices and edges of G2, that is, φpV1q “ V2 and

φpE1q “ E2. In this case, we call φ an isomorphism between G1 and G2.

If φ is isotopic rel. A to idR2 for some set A Ă R2, we say that G1 is isotopic rel. A to G2.

Suppose that f : U ! W is a covering map, where U and W are open subsets of R2. If

G “ pV,Eq whose realization is a subset of U , then the preimage f´1pGq has a natural graph

structure, given by

V pf´1
pGqq “ f´1

pV q

Epf´1
pGqq “ tα|α Ă R2 is a simple path or a simple loop, and fpαq P Eu

We define some common types of embedded graphs below.

Definition A.7. Let G “ pV,Eq be a planar embedded graph.

• G is said to be a cycle if it is finite, connected and 2-regular.

• If G is infinite, connected and 2´regular, it is called an infinite chain. Any finite,

connected subgraph of an infinite chain is called a finite chain. Note that if a finite

chain has more than one vertex, it has exactly two vertices of degree one, which we call

its endpoints.

• G is called a rose graph if it satisfies the following conditions:

1. it has a single vertex, called the center ;

2. for every edge e P EpGq, the bounded connected component of R2zG does not

intersect G.

We say that G surrounds a finite set A Ă R2 if every bounded face of R contains a

unique point of A, and every point of A is contained in some bounded face of R.

Definition A.8. The graph G1 “ pV 1, E 1q is the result of subdivision of an edge e P EpGq

of the planar embedded graph G “ pV,Eq if G1 is obtained from G by adding a new vertex

in the interior of e. More precisely, there exists v P intpeq such that V 1 “ V Y tvu and

E 1 “ pEzteuq Y te1, e2u, and e1, e2 are the closures of the connected components of eztvu.

In particular, subdividing an edge does not change the realization of the graph, and the

resulting graph is uniquely defined up to an isotopy relative to the set V .
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Let G “ pV,Eq be a planar embedded graph and e P E be one of its edges. We say

that a continuous map α : I ! e is a parametrization of e if α|p0, 1q is bijective onto intpeq.

Two parametrizations α1 and α2 of e are considered equivalent if the function α´1
1 ˝ α2 is

increasing on p0, 1q. We note that every edge e P EpGq admits two distinct equivalence classes

of parametrizations. We call each of these equivalence classes a direction of the edge e.

Definition A.9. We say that a graph G is directed if each of its edges is endowed with a

unique direction (called the forward direction). A choice of forward directions for all edges of

a graph G is also called an orientation of G. Directions that are omitted from the orientation

of G are called backward.

In a similar way, we introduce notions of forward and backward parametrizations of the

edges of the directed graph G. If v is a vertex of G and e is an edge incident to v, then there

is a natural way to call e incoming or outgoing at v unless e is a loop-edge.

Suppose that Φ: G1 ! G2 is a continuous map, where G1 is a planar embedded graph

and G2 is a directed planar embedded graph, such that Φ´1pV pG2qq “ V pG1q and Φ| intpeq is

injective for each edge e P EpG1q. The map Φ and the orientation of the graph G2 naturally

induce an orientation of the graph G1. Indeed, we choose a forward direction for e P EpG1q

so that if α is a parametrization of e, then α is forward if and only if Φ ˝ α is a forward

parametrization of the edge Φpeq P EpG2q. Similarly, there is a natural way to define forward

directions for a subgraph and graph obtained by a subdivision of an edge of a directed planar

embedded graph.

Definition A.10. We say that a directed planar embedded graph G “ pV,Eq is unilaterally

connected if for every pair of vertices u, v P V , there exists a path α with endpoints at u and

v that is obtained by concatenation of forward parametrizations of edges of G.
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III. Preperiodic domains. Ergodic Theory Dynam. Systems, 11(4):603–618,

1991.

[BLMW22] James Belk, Justin Lanier, Dan Margalit, and Rebecca R. Winarski. Recog-

nizing topological polynomials by lifting trees. Duke Math. J., 171(17):3401–

3480, 2022.

[BM17] Mario Bonk and Daniel Meyer. Expanding Thurston maps, volume 225 of

Mathematical Surveys and Monographs. American Mathematical Society,

Providence, RI, 2017.

[BS08] Henk Bruin and Dierk Schleicher. Admissibility of kneading sequences and

structure of Hubbard trees for quadratic polynomials. J. Lond. Math. Soc.

(2), 78(2):502–522, 2008.

[Cha50] Claude Chabauty. Limite d’ensembles et géométrie des nombres. Bull. Soc.
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[Fat26] P. Fatou. Sur l’itération des fonctions transcendantes Entières. Acta Math.,

47(4):337–370, 1926.

[FM12a] B. Farb and D. Margalit. A primer on mapping class groups. Princeton

Math. Ser. 49. Princeton Univ. Press, Princeton, NJ, 2012.

[FM12b] Benson Farb and Dan Margalit. A primer on mapping class groups, vol-

ume 49 of Princeton Mathematical Series. Princeton University Press,

Princeton, NJ, 2012.

[For91] Otto Forster. Lectures on Riemann surfaces, volume 81 of Graduate Texts

in Mathematics. Springer-Verlag, New York, 1991. Translated from the 1977

German original by Bruce Gilligan, Reprint of the 1981 English translation.

[FRS08] Markus Förster, Lasse Rempe, and Dierk Schleicher. Classification of

escaping exponential maps. Proc. Amer. Math. Soc., 136(2):651–663, 2008.

[FS09] Markus Förster and Dierk Schleicher. Parameter rays in the space of

exponential maps. Ergodic Theory Dynam. Systems, 29(2):515–544, 2009.

[Gro07] Misha Gromov. Metric structures for Riemannian and non-Riemannian
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