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ABSTRACT

The performance of assistive and augmentative lower-limb exoskeletons has been tested in

laboratory settings and can achieve goals of improved walking economy and metabolic cost

reduction. However, it has been shown that even in controlled laboratory environments, ex-

oskeletons may experience errors of improper torque assistance due to misalignments between

the measured and actual state of the human-exoskeleton system. If the torque assistance

repeatedly hinders a user’s actions due to errors, the user may begin to anticipate errors

and resist the exoskeleton. In order for exoskeletons to be adopted for everyday use, it is

important to understand the immediate and long-term effects of exoskeleton errors on user

motion and trust in the system, as errors are likely to occur in operational settings with com-

plex, changing environments. It is also necessary to understand the strategies that people

utilize when interacting with exoskeletons to design control methods to support collabora-

tion between humans and exoskeletons. This work used the Dephy bilateral, powered ankle

exoskeleton, which applied an assistive plantarflexion torque during push-off to minimize

energy expenditure during walking. The main aims of this thesis are to characterize the (1)

immediate effects and (2) residual effects of exoskeleton errors on human gait strategies, as

well as (3) develop a co-adaptive exoskeleton controller to support collaboration between the

user and exoskeleton.

In Chapter 2, immediate compensatory hip behavior was identified in response to pseudo-

random exoskeleton errors (loss of exoskeleton assistance) as users maintained acceptable

task performance on a targeted stepping task. Quantitative measures of human-exoskeleton

fluency—the alignment of the user and exoskeleton’s goals—were developed using joint kine-

matics and muscle activity metrics. Emergent gait strategies were identified in Chapter 3

using k-means clustering as users walked with imperfect exoskeleton algorithms with fixed

error frequencies (0-10% error in all strides) and were characterized as fluent or non-fluent. In

Chapter 4, we designed and modeled a co-adaptive control algorithm that supports human-

exoskeleton fluency by adjusting torque assistance in response to measures of muscle activity

and joint kinematics along the lower limbs. The proposed co-adaptive algorithm successfully

modulated peak torque in response to various fluent and non-fluent behaviors compared to

an ankle-only controller that did not account for hip and knee compensatory strategies.

xii



These results inform future exoskeleton controller design and evaluation metrics for

human-exoskeleton collaboration. For example, developers may utilize measures of fluency

during system development and testing. They also contribute to current literature on adap-

tation to exoskeletons, co-adaptive algorithms, and human-robot interaction metrics for the

field of human-exoskeleton research.
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CHAPTER 1

Introduction

1.1 Motivation

Exoskeletons are wearable robotic devices designed to assist, augment, or rehabilitate a hu-

man’s physical capabilities. For healthy individuals, exoskeletons may improve strength and

endurance, as well as mitigate musculoskeletal risk, for those performing repetitive or fatigu-

ing tasks, such as industrial workers, soldiers, and search-and-rescue workers [111, 49, 99].

Exoskeletons can also assist people with disabilities and aging populations with activities of

daily living by restoring walking capability [28], improving walking economy [73], and aiding

grasping [45]. Rehabilitation programs may also benefit from incorporating exoskeleton-

based training following injury or physical disease [71, 97, 78]. The benefits of exoskeletons

have been tested in laboratory settings and can achieve goals of improving energy expen-

diture during walking [70, 86, 64] and restoring motion for people with disabilities [28, 73].

In order for exoskeletons to be adopted for every day use, performance must be tested in

operational settings with complex, changing environments that may be difficult to observe.

It has been shown that even in controlled laboratory settings, exoskeletons may experience

errors [86], which may impact the human user’s motions and trust in the system.

Exoskeleton errors may involve misalignments between the measured and actual state

of the human-exoskeleton system, which may then change the timing and magnitude of

assistance provided by the exoskeleton. Improper assistance may inhibit the user’s actions,

affect their stability, and drive the user to develop strategies that work against the goals of

the exoskeleton. For example, if assistance directly and repeatedly impeded a user’s actions,

the user may begin to anticipate errors and stiffen their limbs to resist the exoskeleton,

thereby increasing energy expenditure and muscle recruitment. Thus, it is important to

understand the immediate and residual effects of exoskeleton errors on user motion and trust

in the system, which can inform the performance requirements of exoskeletons in operational

settings. Trust involves the attitude that the user has toward the system (exoskeleton) in an
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uncertain environment [54] and is impacted by the system’s reliability. It is also necessary

to characterize strategies that people utilize when interacting with exoskeletons to ensure

proper use, where the user and exoskeleton’s actions and goals are aligned (e.g. metabolic

cost reduction, trajectory following for rehabilitation). Then, we can develop exoskeleton

control methods to support collaboration between humans and exoskeletons.

This thesis addresses the following questions:

1. What are the immediate effects of exoskeleton errors on human gait strategies?

2. What are the residual effects of exoskeleton errors on gait strategies?

3. How do we support human-exoskeleton collaboration through exoskeleton control?

We will first review a subset of the relevant literature and then formulate the specific aims

of this thesis.

1.2 Lower-Limb Exoskeletons

Lower-limb exoskeletons typically apply torques about the hip, knee, or ankle joints to reduce

the metabolic cost or muscle recruitment associated with locomotion. These torques may

be applied passively, using a series of spring and variable dampers [100, 112, 6], or actively

through actuators [113, 64, 70]. Exoskeleton assistance must also be applied at the right

time, in the right direction, and at the appropriate intensity to be effective. A key metric

used to measure the performance of assistive exoskeletons for able-bodied users is metabolic

cost, which is typically obtained using respiratory measurements [83] while performing a task

such as walking. In laboratory settings, powered lower-limb exoskeletons have demonstrated

the ability to decrease energy expenditure by applying an assistive plantarflexion torque

about the ankle during gait [70, 110]. It has been shown that the timing of the exoskeleton

actuation significantly impacts the magnitude of metabolic cost reduction [109]. Thus, in

order to apply appropriate torque, exoskeleton control algorithms must accurately detect the

current state of the human-exoskeleton system and apply actuation at the correct phases of

movement while remaining transparent in others.

In this section, we discuss current state estimation techniques and control strategies used

with lower-limb exoskeletons, as well as human-in-the-loop optimization methods that may

inform exoskeleton torque assistance. We also detail the topic of exoskeleton errors in oper-

ational settings to highlight a key component of real-world adoption of exoskeletons.
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Figure 1.1: A person progressing through a gait cycle that begins and ends with subsequent
heel strikes, where stance and swing occur during 0-60% and 61-100% of the gait cycle,
respectively.

1.2.1 State Estimation and Control Techniques

State estimation techniques often rely on mechanical sensor input (e.g. encoders, inertial

measurement units) to determine the current gait cycle phase to apply the desired level of

torque about the joints. One of the key state variables is gait phase, a continuous variable

with values between 0 to 100% that represents progression through the gait cycle, where 0

and 100% are successive heel strikes on the same leg during locomotion. The gait cycle is

further divided into stance, where the foot is in contact with the ground, and swing, where

the foot leaves the ground and moves to the front of the body (Fig. 1.1. Accurate estimation

of gait phase is essential for exoskeletons to provide the appropriate assistance to a user for

optimal performance, such as maximizing reductions in metabolic cost [109].

A common phase estimation method is a time-based estimator (TBE), which uses previous

stride times to predict the current stride time and estimates the gait phase using the time

since the last heel strike and the predicted stride time. The previous stride times may be

determined using foot contact switches or kinematics derived from inertial measurement

units (IMUs) and a pre-specified number of previous stride times may be averaged to predict

the next stride time [64, 70]. Another common method is to use a finite state machine

(FSM), which may segment the gait cycle into defined states (e.g. stance and swing phases)

and apply different assistive torques according to the identified state [58]. Similar to TBE,

FSM may also use foot switches and IMUs to detect and transition between states. While
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studies have shown significant reductions in metabolic cost using TBE [64, 70] and FSM

[58] methods, these studies have been limited to steady-state ambulation, such as constant-

speed treadmill walking, as they assume steady, periodic gait. Thus, newer state estimation

techniques have integrated advanced techniques to address more complex locomotion modes.

In order for exoskeletons to be adopted to operational settings, they must be robust

in changing, uncertain environments. Bayesian filtering has recently been applied for gait

estimation in wearable robotics and allows for estimation of the underlying gait state using

noisy measurements obtained using sensors such as IMUs [61]. Studies have used Extended

Kalman Filters (EKF) to estimate gait phase and other relevant parameters (e.g. ground

inclination, phase velocity) with low RMSE for most parameters (< 0.1 degrees) for lower-

limb exoskeleton control under varying speeds and slopes [92, 67]. Deep learning approaches

have also been used for gait phase estimation with variable-speed walking [86, 48], which

have resulted in significant reductions in estimation error compared to TBE methods (> 10

ms reduction in RMSE [86]).

Exoskeletons use information derived via state estimation to control the torque assistance

provided to the user. As techniques for state estimation are continuously being developed and

validated, it is important to also refine methods of torque profile control and evaluate how

human users may react to exoskeleton torque. Many existing studies involving exoskeleton

control apply a predefined trajectory dependent on gait state estimates, such as gait phase

and stance/swing indicators [70, 86, 67]. There is an implicit assumption that humans are

expected to adapt to the exoskeleton and reduce metabolic cost, based on an understanding

of the mechanics and energetics of human movement [96] and simulations [95, 21]. However, it

has been shown that some users may actively fight against the exoskeleton and stiffen the limb

rather than adapting to the exoskeleton during early adaptation [2], preventing reductions in

metabolic cost due to muscle co-contraction. Gait strategies developed while walking with

an exoskeleton are often user-specific [2, 46, 102] and evolve over time [31, 56, 53]. Thus,

it is important to incorporate feedback on the user’s state within the control algorithm to

allow an exoskeleton to make adjustments to torque assistance to align with the user’s intent

and encourage fluent strategies. A gait strategy may be considered fluent when the user’s

actions and underlying goal is aligned with that of the exoskeleton, such as minimizing

energy expenditure or muscle recruitment. There exist various ways to determine torque

profile parameters, including human-in-the-loop optimization, user preference, and identified

heuristics.
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1.2.2 Defining Torque Profile Parameters

Human-in-the-loop (HIL) optimization presents a promising approach to modify control laws

for individual users and facilitate learning. During optimization, device control is system-

atically varied via parameter values in order to minimize the cost function, such as human

metabolic cost, and maximize performance. However, several challenges are presented dur-

ing HIL optimization. The objective function involving human performance may be difficult

to approximate and are based on measurements that typically involve lengthy evaluation

periods and low signal-to-noise ratio. For instance, metabolic cost via respiratory breath

analysis is inferred indirectly by averaging noisy respiratory measurements over a number of

breaths, usually over a period of 1 to 2 seconds [83]. Additionally, control laws that approx-

imate globally optimal assistance strategies involve multiple parameters per assisted joint,

which created high-dimensional optimization problems [35].

Initial optimization methods have been explored to optimize a single gait or device pa-

rameters, such as gradient descent [52] and line search [25]. These methods, however, may

be sensitive to drift and noise [77], scale poorly, and require many samples and evaluations

for each parameter due to high dimensionality. To address these concerns, Zhang et al. [110]

developed a sample-based optimization method for identifying exoskeleton control parame-

ters (peak torque, peak torque time, rise and fall times) which minimize the metabolic cost

of walking. During optimization, exoskeleton control laws and the subsequent torque profile

are continuously updated as metabolic rate is measured. Then, steady-state metabolic cost

is estimated using 2 minutes of transient metabolic data, which is then used to update the

control laws to represent the best estimate of optimal control parameters. The strategy from

Zhang et al. [110] is relatively tolerant to sensor noise and human adaptation and scales well

to benchmarking problems.

While this method achieved a mean reduction of 33% in metabolic cost compared to

zero torque, optimization requires relatively long measurement times, which may require

multi-day protocols to avoid user fatigue that can cause significant changes in muscle energy

efficiency [104]. Users are also forced to walk with diverse control laws during optimization,

some of which have been uncomfortable and sub-optimal. To address long optimization pro-

tocols, Gordon et al. [30] proposed a HIL methodology that optimizes exoskeleton assistance

profiles using online simulations of metabolic rate based on musculoskeletal models, thus

significantly reducing time investments required for sampling specific torque profiles. How-

ever, the experimental protocol was conducted over two days and the difference in relative

reduction in metabolic cost between HIL simulation-based control and generic, fixed control

was dependent on the participant. Additionally, the optimal control law is used as a static

control law after optimization and does not change even though humans may continue to
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adapt after the optimization protocol.

Studies have also explored preference-based selection of torque parameters for customized

control of exoskeletons [43, 44]. Incorporating user preference into exoskeleton control may

support human-exoskeleton collaboration, as it allows the user to guide device behavior

based on perceptions of speed, exertion, comfort, and other performance factors. Ingraham et

al. [43] demonstrated that users can reliably identify preferred assistance parameters, such as

the timing and magnitude of peak torque, through self-exploration. Lee et al. [55] developed

a preference-based optimization of control parameters using sample-efficient learning, which

enabled users to converge on preferred parameters with 88% accuracy within 43 queries

compared to randomly generated parameters. Overall, utilizing user preference is an exciting

approach for defining exoskeleton control, but results in a static torque profile, similar to HIL

optimization. It has been shown that experienced users preferred higher torque compared

to novices [43], motivating the need for algorithms that evolve over time with the human.

Thus, control algorithms that promote co-adaptation between the user and exoskeleton may

address issues with fixed exoskeleton control and HIL optimization.

1.2.3 Exoskeleton Errors

While exoskeleton control algorithms are continuously being developed and improved, they

are unlikely to be perfect and will experience errors. For instance, although Sheperd et

al. [86] achieved an root-mean-squared error (RMSE) of 3.9% across all online validation

trials, the authors reported that in approximately 10% of all training and testing trials,

the exoskeleton had ”critical errors”, which caused the boot to become unstable. Users’

trust may have been affected by these errors, yielding alterations in gait to ensure stability.

Additionally, machine learning may not generalize well across set speeds and individuals, as

the model outputs are limited by various features represented the training dataset. Speeds

and environment states outside of the training set and differences in user characteristics, such

as anthropometrics and mobility, may impact model performance and thus the gait phase

estimation used for low-level torque control. For example, initial research on transfer learning

techniques for torque estimation may reduce model training time through parameter sharing

across subjects [90], but used a limited subject pool, which may affect generalizability.

Gait phase estimation errors may also result in errors in exoskeleton torque assistance and

performance. If gait phase estimates are inaccurate, assistive torques may be applied earlier

or later in the gait cycle than appropriate, which may impact a user’s stability and prevent

reductions in metabolic cost [109, 64]. The exoskeleton may also fail to actuate during a

stride, thus affecting the user’s joint kinematics and energetics due to loss of exoskeleton
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torque. Thus, it is important to understand how humans respond to exoskeleton errors,

which are likely to occur in uncertain, dynamic environments found in operational settings.

The formation and modification of human motor strategies can inform our understanding of

the impact of exoskeleton errors on gait and use of exoskeleton systems.

1.3 Factors That Influence Human Movement

Human motor strategies have been attributed to internal mental models, which is a theory

that there exist state-dependent approximations of external forces that inform motor com-

mands and predictions [94, 105]. In a novel environment with external forces, the central

nervous system minimizes movement errors by either stiffening the limb or learning internal

models to respond to the force [91]. An internal model comprises of an inverse model of body

mechanics that calculates the neural commands necessary to produce a specific movement

and a forward model which uses an copy of the neural commands to predict the sensory

feedback when movement occurs (Fig. 1.2). Movement errors due to unforeseen pertur-

bations in novel environments then prompt motor adaptations, which are modifications of

movement in response to trial-to-trial error feedback [65] or the changes in strategy and the

internal model over time. Internal models also account for high and low-level control, as

humans can alter feedforward strategies and reflex responses depending on the given task

and environment [37]. Multiple internal models may also be formed or combined to support

motor strategies in various environments [18].

Random trials with unexpectedly altered dynamics—catch trials—have been introduced

by researchers to understand internal model formation. During gait, catch trials have been

used to examine internal models formed when participants experience environments with

external forces. Bucklin et al. [11] showed that participants walking towards a target in a

uniform force field adapted motor strategies for center-of-mass trajectories. During catch

trials, participants’ trajectories deviated in the direction opposite of the force, indicating a

learned internal model corresponding to the force field. Similarly, Cajigas et al. [12] observed

that participants modified their hip and knee kinematics when walking in a constant force

field. Similar to these force-field studies, exoskeletons apply external torques that can be

learned and anticipated (Fig. 1.3). Catch trials involving the absence of external torques

can be used to understand the internal models developed with exoskeletons while completing

goal-directed tasks. Catch trials may also be used to examine behavior in uncertain situations

with unexpected dynamics. However, catch trials may affect users’ trust and thus system

usage.

Exoskeleton errors, such as loss of assistive torque for a stride, may induce movement
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Figure 1.2: (From Hybart et al. [41]) Internal models involve an inverse and forward model of
body dynamics for controlling body movements. The nervous system calculates the necessary
efferent signals to stimulate muscles for the desired movement. A copy of the signal is sent
to the forward model to predict expected sensory feedback, which is then compared to the
actual sensor feedback during the movement. This process is how the nervous system learns
to improve control of body movements.

errors and may prompt motor adaptations if errors consistently occur. These errors may

be viewed as a type of catch trial, as the exoskeleton behavior deviates significantly from

nominal torque assistance. It is also currently unclear if there exists a threshold of error

frequency where a user would modify their internal model or develop a different internal

model when walking with imperfect exoskeleton control, resulting in different or sub-optimal

gait strategies even during strides with nominal exoskeleton behavior. Several studies inves-

tigating the internal models for reaching movements in force fields have induced catch trials

at frequencies of 1/6 to 1/7 (16.7 to 14.3%) [91, 51], but error frequencies may impact gait

differently due to stability and other considerations for locomotion. There also exist various

factors that may influence gait strategies, such as human-exoskeleton fluency and human

trust in exoskeletons, which will be detailed in this section.

1.3.1 Human-Exoskeleton Fluency

Fluency is defined as the coordinated meshing of actions between the human and robot

[39] and is a necessary component of human-robot interaction to consider when develop-

ing robots that will be adopted in the real world [20]. Human-robot interaction metrics

are mainly evaluated in applications involving human supervisory control of robots, teleop-
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Figure 1.3: (From Hybart et al. [41]) Internal model of the coupled human-exoskeleton
system, which accounts for the exoskeleton’s actuators and dynamics in addition to the
human’s muscles and dynamics.

eration, autonomous vehicles, and human-robot social interactions [87]. Unlike these four

application areas, exoskeletons are physically coupled with the human and directly apply

forces upon their body. Thus additional metrics may be interpreted to align with the in-

teractions that occur between humans and exoskeletons. Using the definition of fluency, we

can then consider that human-exoskeleton fluency occurs when the human and exoskeleton’s

goals align. For example, human users may decrease muscular activity and metabolic cost

when using exoskeletons designed to reduce energy expenditure. When exoskeleton errors

occur, users may modify their gait strategy and underlying internal model to increase muscle

activity in anticipation of repeated errors. This strategy may negatively affect fluency as

increased muscle activity opposes the exoskeleton’s goal of metabolic cost reduction. For a

supervisory tasks that is not physically coupled, errors may be less noticeable and operators

may underestimate the frequency and impact of errors [72, 9]. Thus, it is important to

understand how exoskeleton errors impact gait strategies and human-exoskeleton fluency in

order to inform performance requirements for exoskeleton algorithms.

Human-exoskeleton fluency can also be linked to embodiment of lower-limb exoskeletons.

Embodiment describes the acceptance of an external object as part of one’s own body and

long-term use of the object may modify the body’s representation in the sensory motor sys-

tem [14, 10]. Studies have investigated how humans adopt a prosthesis to their body schema
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after limb-loss, where embodiment of the prosthesis may impact the user’s stability [42] and

greater familiarity with the prosthesis may be connected to feelings of embodiment [24].

Exoskeletons are also objects that directly interface with humans and may be incorporated

into the body’s representation and internal models. Recently, Hybart et al. [41] determined

that embodiment of lower-limb exoskeletons is dependent on whether the human can form an

internal model that combines their own biological system dynamics with robotic dynamics

(Fig. 1.3). Discrepancies between the exoskeleton’s actions and the human’s intentions may

be registered as errors by the nervous system, affecting the internal model developed [41]. If

the representations stored in the internal model and the actions of the exoskeleton are mis-

aligned, this may negatively impact human-exoskeleton fluency, as the human’s movements

and strategies no longer align with the designed control.

1.3.2 Trust in Human-Robot Systems

Trust in human-automation systems is defined as “the attitude that another entity (e.g.,

human, machine, system) will help achieve a person’s goals in a situation characterized by

uncertainty and vulnerability” [54] and may be impacted by the automation’s reliability

[79]. Calibrated trust exists when the perceived and actual capabilities of the automation

are aligned [54]. However, if the automation’s perceived capabilities are higher than its actual

capabilities, the user may over-trust the system and misuse the automation. Alternatively,

if automation capabilities are perceived as lower than they actually are, the human will

distrust the system, which may lead to disuse in situations where the exoskeleton could

provide benefit. Studies involving simulated search-and-rescue and process-control tasks

have shown that as automation reliability decreased from 100% to as low as 60%, the user’s

perceived trust in the system decreased [79, 15]. Even small degradations in fidelity, as

low as 0.1% in near-perfect automation with supervisory control tasks, have been shown to

significantly impact trust [27]. While studies have investigated trust and trust calibration

with autonomous systems, human trust in exoskeletons during imperfect operation has not

been explored as of this time.

Wearable robotic devices are designed to support specific tasks while interacting with

humans similar to automation; however, wearable systems also physically interact with the

human. The impact of errors on trust and perceived capabilities may be different when

considering wearable systems. During supervisory control tasks, it is possible that humans

will miss automation errors. However, exoskeletons directly apply torque on the human’s

body and the human-exoskeleton system is tightly coupled. The threshold to perceive an

exoskeleton error in timing has been shown to be as low as 2.8% of a stride period [74].
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Thus, exoskeleton errors may be more easily perceived, which impacts the effect of errors on

trust. It is important to understand the effect of exoskeleton errors on trust, as it influences

the user’s behavior when interacting with the exoskeleton and the likelihood of adoption to

the real world.

1.4 Adaptation Between the Human and Exoskeleton

Co-adaptation between a human user and exoskeleton involves changes to the exoskeleton

torque output in response to real-time human adaptation of gait strategies. A co-adaptive

control scheme draws inspiration from human-in-the-loop optimization, which modifies con-

trol laws to minimize the cost of walking for individual users [110, 30]. However, while HIL

optimization results in a static optimal torque profile, co-adaptive control updates during

real-time operation to continuously support various metrics of human performance, such

as metabolic cost or muscle recruitment. Co-adaptive control can be viewed as a type of

human-in-the-loop control, where the human is involved in the control loop and is actively

performing a task (e.g. walking) while the robot provides support and guidance simulta-

neously. Control algorithms which continuously modify torque assistance in response to

human actions and intentions may support human-exoskeleton fluency as the user adapts to

the exoskeleton. Additionally, training protocols have been shown to support the formation

of gait strategies that minimize metabolic cost [83]. In this section, we discuss current ap-

proaches to co-adaptive and human-in-the-loop control, as well as guided training protocols

to encourage certain gait strategies.

1.4.1 Co-Adaptive Control

Control schemes to support adaptation between the human and exoskeleton have been an

emerging area of interest in the exoskeleton community. Jackson et al. [47] demonstrated

heuristic-based control of an ankle exoskeleton to support co-adaptation using EMG sig-

nals from muscles involved with ankle movement and ankle kinematics. The algorithm

used muscle activity that worked cooperatively with and antagonistically against the desired

plantarflexion torque supported by the exoskeleton to increase and decrease the exoskeleton

assistance, respectively. Users were able to reduce metabolic cost by 22% and soleus mus-

cle activity by 35% using the co-adaptive controller compared to normal walking and the

controller was responsive to changes in each user’s coordination strategies. While this study

showed significant success, only ankle muscles and kinematics were used as inputs in the

algorithm and it has been shown that assistive devices that act upon one joint may affect
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the activity of muscles for another joint within the limb [21]. Thus, all joints across the

lower-limbs should be evaluated and incorporated into co-adaptive algorithms to ensure that

sub-optimal strategies using the hip or knee are not present when walking with an ankle

exoskeleton.

A different approach to human-in-the-loop control leveraged variable impedance control

to support human-robot collaboration across multiple joints of a lower-limb exoskeleton

[60, 59, 40]. Impedance control regulates the interaction forces between the human and robot,

which may improve exoskeleton compliance and comfort when walking with the exoskeleton.

Li et al. [59] demonstrated two cooperative control frameworks of a 10 DoF exoskeleton that

had active joints at the hip and knee and passive joints at the ankle. The control frameworks

also incorporated an adaptive method to perceive and follow the human user’s intentions

and joint trajectories to minimize interaction forces. While this method was able to provide

assistance to the user and incorporate multiple lower-limb joints, the control algorithm was

developed for individuals with muscle injuries during rehabilitation to accurately track and

follow the user’s actions. Additionally, while Li et al. [59] were able to minimize interaction

forces, they did not include measures of human performance, such as metabolic cost or muscle

recruitment, which are commonly used to evaluate the effect of exoskeleton assistance for

able-bodied users.

By combining the heuristic-based co-adaptive control developed by Jackson et al. [47]

and incorporating all lower-limb joints similar to the impedance control methods, we can

extend existing work on co-adaptive control to account for strategies involving joints and

muscles higher in the leg kinematic chain. Additionally, utilizing muscle activity in the con-

trol framework gives additional insight on human intention from agonist-antagonist muscle

activity when walking with ankle exoskeletons that was not included in control methods in

[60, 59]. Increases in muscle activity across a joint may cause higher co-contraction, which

stiffens the joint and may signify that a user is resisting the motions of the exoskeleton. Mus-

cle activity is also linked to metabolic cost [89], and may be used as a metric that indirectly

informs metabolic cost without respiratory measurements.

1.5 Aims of this Thesis

The literature discussed in this chapter has informed the direction of this thesis and has the

following three main research questions:

1. What are the immediate effects of exoskeleton errors on human gait strategies?

2. What are the residual effects of exoskeleton errors on gait strategies?
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3. How do we support human-exoskeleton collaboration through exoskeleton control?

To address these questions, this project is the following corresponding aims:

1. Characterize the immediate effects of exoskeleton errors on human gait strategies

(Chapter 2)

2. Characterize the residual effects of exoskeleton errors on gait strategies in terms of

human-exoskeleton fluency (Chapter 3)

3. Develop a co-adaptive exoskeleton controller which incorporates all major lower-limb

joints and muscles to support human-exoskeleton fluency

Figure 1.4: The overarching goal of this thesis, the identified gaps in literature, and corre-
sponding aims of this thesis.

We introduced relevant work on exoskeleton control, human movement, and co-adaptive

control in the literature that we will incorporate to address each of the gaps and aims

identified in the thesis (Fig. 1.4). Chapter 2 of this thesis addresses the immediate effects

of catch trials (exoskeleton errors), which informs our understanding of the internal model

formed when walking with an exoskeleton. The work presented in Chapter 2 also is one of

the first in the literature to investigate and characterize trust in exoskeletons. Chapter 3

investigates the residual effects of different fixed levels of exoskeleton errors on gait strategies,

task performance, and the underlying internal models when normal torque assistance is

present. Both Chapters 2 and 3 interpret gait strategies in the context of human-exoskeleton

fluency, trust, and internal model development. Chapter 4 proposes a co-adaptive controller

to support fluent gait strategies by modifying torque assistance in response to changes in

joint kinematics and muscle activity across the lower-limbs. Finally, Chapter 5 provides the

proposed timeline of the remaining work of this thesis and the proposed contributions to the

field.
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CHAPTER 2

Immediate Effects of Exoskeleton Errors on

Gait Strategies

In addition to human-exoskeleton fluency and trust, there exist several other factors that

can impact motor strategies. Task performance time and accuracy are considered when

performing a goal-oriented task. Gait strategies are also linked with energy expenditure

[103], stability [34], and comfort [101]. These factors may interact, as different motivational

prompts have supported interactions between metabolic cost and stability [69]. These in-

teractions are beginning to be examined with exoskeletons [33]. Understanding trust and

internal model development in context with human-exoskeleton fluency and task accuracy

will broaden our understanding of tightly-coupled human-machine systems and support re-

quirement definition for exoskeletons.

In this study, we introduced catch trials via missed actuations to understand how hu-

mans interact with imperfect exoskeleton algorithms found in operational settings. Catch

trials also allow us to understand the internal model developed when adapting to a powered

exoskeleton and how that model changes with repeated exoskeleton errors. We explored

human-exoskeleton fluency and gait characteristics when completing a targeted stepping

task. We hypothesized that there would be time-dependent changes in (1) step character-

istics (step length and width), (2) task performance (step accuracy), (3) joint kinematics

(selected peak hip, knee, and ankle angles within the stride), and (4) muscle activity in

response to catch trials.

These measures are interpreted in the context of human-exoskeleton fluency, trust, and

internal model development. In this study, human-exoskeleton fluency may manifest as

a decrease in muscle activation used to support plantarflexion during normal operation.

If fluency is negatively impacted by exoskeleton errors, muscle activation may increase to

support plantarflexion and task performance, which opposes this exoskeleton’s primary goal.

Changes in trust may result in changes in gait strategies over the course of the experiment.

For instance, muscle activity may increase over time as users learn to anticipate errors in
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exoskeleton performance. Finally, catch trials will allow us to understand the internal models

developed while walking with a lower-limb exoskeleton.

2.1 Materials and Methods

Figure 2.1: (top) Powered ankle exoskeleton, which provides assistance by applying torque
via the inelastic belt attached to the lever arm (DpEb45, Dephy Inc) [2]. (bottom) Exoskele-
ton torque profile applied at all non-catch trial strides for one representative participant. The
solid line is the average torque applied throughout the stride and the shaded region includes
±1 standard deviation.

2.1.1 Participants

Participants (N = 15, age = 30.7±9.9 years (mean±SD), height = 1.73±0.10 m, mass =

74.9±13 kg, leg length = 931.6±64.2 mm, 6 female and 9 male) provided written informed

consent. The exclusion criteria included lower extremity injuries within the past 6 months

and the use of assistive walking devices. The experimental protocol was approved by the

Massachusetts Institute of Technology Committee on the Use of Humans as Experimental

Subjects.

2.1.2 Experimental Setup

Participants walked on a split-belt, instrumented treadmill in a Computer Assisted Reha-

bilitation Environment (CAREN) System (Motekforce Link, Amsterdam, the Netherlands),

which included an 18-camera optical motion capture system (Vicon Motion Systems Ltd,
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Oxford, UK) and a 24-foot diameter virtual reality dome with a 360 degree projection screen.

Reflective markers were placed according to the Vicon Plug-in Gait model, adjusted for the

exoskeleton by placing the lower limb markers on the lateral side of the exoskeleton when

necessary. Markers were also placed on the treadmill on the four corners of the stepping tar-

get. Electromyography (EMG) sensors (Delsys, Natick, MA, USA) were placed on following

7 muscles on each leg: tibialis anterior (TA), soleus (SOL), medial gastrocnemius (GAS),

biceps femoris (BF), rectus femoris (RF), tensor fasciae latae (TFL), and gluteus maximus

(GMax). The treadmill, motion capture, EMG sensors, and exoskeleton were controlled and

time-synchronized via D-Flow software. Motion capture and EMG data were collected at 100

and 2000 Hz, respectively. Participants wore the Dephy ExoBoot on both legs (DpEb504,

Dephy Inc, Maynard, MA, USA) [63]. Torque was applied at push-off during the stance

phase of the gait cycle, learned from 25 strides (Fig. 2.1).

2.1.3 Protocol

Anthropometric measures were collected prior to walking with the exoskeleton. Leg length

was measured as the distance from the anterior superior iliac spine to the medial malleolus.

Participants were introduced to a targeted stepping task (a 320 mm long projected rectangle

that spanned the treadmill width), while walking at 1.25 m/s through a virtual city scene.

The length of the stepping target was chosen to be the length of the largest exoskeleton boot

size, a Men’s size 13. Participants were asked to focus on aiming their heel at the horizontal

center-line of the target at the end of every stride. Each participant first underwent a

training period, where they walked for 30 minutes with the exoskeleton powered on with

torque applied during each stride and completed the stepping task. Then, participants

were given a 5-minute break before proceeding to the testing portion, where catch trials

were randomly dispersed among normal strides (1900 strides total), with 20-100 strides

between each catch trial. 32 catch trials (1.68% of 1900 total strides; 16 per limb) were

included by not actuating the exoskeleton for a single stride. The number of catch trials

was selected after a power analysis to ensure there were sufficient number of trials to assess

significant differences between catch trials and baseline behavior. The exoskeleton algorithm

also included a recovery period after each catch trial, where the exoskeleton torque ramps

up from 0% to 50% of the normal torque on the first stride after a catch trial, then 80% on

the second stride after a catch trial, and finally back to 100% from the third stride onward.

These strides were not included in the analysis to avoid confounding factors.
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2.1.4 Data Analysis

Gait cycles were segmented with a custom MATLAB script using the treadmill’s force plates

to identify heel strikes. Normalized step length (NSL), normalized step width (NSW), and

task accuracy were calculated using heel marker positions. Step length and step width were

the difference in anterior and lateral heel marker position at consecutive heel strikes, respec-

tively, and were normalized by leg length. Task accuracy was calculated as the difference

between anterior footfall locations at each heel strike and the center-line of the stepping

target. Acceptable task error was within ±160 mm of the center-line, as the target was 320

mm long. Joint kinematics were calculated per stride according to the Plug-in Gait model.

Three metrics of interest were identified for each stride (Fig. 2.2) – maximum hip flexion

during swing, minimum knee flexion after loading response, and maximum ankle plantarflex-

ion. Joint kinematics and muscle activity were separated to the ipsilateral leg (the leg on

which the catch trial occurred) and the contralateral leg (the opposite leg).

EMG data were pre-processed using a high-pass 3rd-order Butterworth filter at 40 Hz,

rectification, and a low-pass 3rd-order Butterworth filter at 10 Hz. EMG data for each

muscle was normalized to the peak value across the entire protocol. Heel strikes and toe off

identified from force plate data were used to segment the EMG data to strides, then stance

and swing phases. To quantify changes in muscle activation, the root-mean-square (RMS)

value of each muscle was calculated. Muscle activity for BF and RF were segmented into

the stance and swing phase, as they are biarticular muscles across the knee and hip and may

result in changes at the knee during stance and the hip during swing. The GAS RMS values

were calculated across the entire stride period even though it is a biarticular muscle, as the

muscle activation occurs in a single burst. The RMS values for the SOL, TA, GMax, and

TFL were calculated across the entire stride period, as they primarily act across a single

joint.

Steps and strides were segmented into the following Trial Type: the step/stride of the

catch trial (CT), 1 step/stride after to the catch trial (CT+1), and baseline (B) as the 6th to

25th step/stride after each CT. NSL, NSW, and task accuracy were evaluated when parsed

by step. Joint kinematics and muscle activity metrics were evaluated when parsed by stride.

2.1.5 Statistical Analysis

A custom R (version 4.2.1, R Foundation) script was used to compute all statistical models.

All participants showed similar trends for joint kinematics, step characteristics, and task ac-

curacy, so independent linear mixed-effects models were fit for each metric. Joint kinematics

models were fit with factors of Trial Type (2 fixed levels, CT and B), Timing (continuous,
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[1,32]), and a random factor of Participant. Step characteristics and task accuracy models

were fit with an additional Trial Type (3 fixed levels, CT, CT+1, B) to capture the effects

of both the ipsilateral and contralateral legs, Timing (continuous, [1,32]), and a random

factor of Participant. The Timing factor was determined to be a continuous variable, as

time increases linearly throughout the experiment and a slope was fitted to each CT and B

condition to investigate the effects of time.

A linear model was fit for each participant for all muscle activity RMS metrics to evaluate

the effect of catch trials and timing for each individual, as previous studies have shown

individual strategies for muscle adaptation with exoskeletons [1]. Each linear model was fit

with a random intercept, Trial Type (2 fixed levels, CT and B), and Timing (continuous,

[1,32]) with significance level at α = 0.05.

2.2 Results

2.2.1 Task Accuracy and Step Characteristics

There was an effect of Participant on NSL, NSW, and Task Accuracy, but no effect due to

Trial Type or Timing (Table 2.1). Participants maintained their step characteristics and

task performance with the absence of the actuation during catch trials (Fig. 2.3).

2.2.2 Joint Kinematics

There were main effects of Trial Type and Timing on the ipsilateral and contralateral joint

ankle metrics. Catch trials resulted in a significant difference between CT and B on the

ipsilateral leg (Fig. 2.4). During ipsilateral CT, hip flexion during swing increased (B vs CT:

p < 0.001), minimum knee flexion after loading response increased (B vs CT: p < 0.001), and

peak plantarflexion decreased (B vs CT: p < 0.001). The slope fitted to the timing factor

of ipsilateral knee flexion at CT over time was significantly greater than at B (Timing:

p < 0.005). During contralateral CT, peak hip flexion during swing increased (B vs CT:

p < 0.001) and peak plantarflexion decreased (B vs CT: p < 0.001) to a lesser extent

compared to the ipsilateral leg, as shown by the fitted estimates. Contralateral minimum

knee flexion was not significantly impacted by catch trials.

2.2.3 Muscle Activity

There were main effects of Trial Type and Timing on muscle activity across the hip, knee, and

ankle joints. Changes in muscle activity about the ipsilateral and contralateral joints were
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observed on the individual level (Fig. 2.5). There were main effects of Trial Type and Timing

for select participants. TFL, GMax, RF, and BF on both legs were evaluated in the swing

phase of gait (Fig. 2.5a,d). At ipsilateral CT, 11 (73%) participants significantly increased

TFL activity (p < 0.01, mean=62.7%), 5 (33%) participants increased BF activity during

swing (p < 0.05, mean=15.1%), 3 (20%) participants increased GMax activity (p < 0.01,

mean=18.9%), and 4 (27%) participants increased RF activity during swing when compared

to B (p < 0.05, mean=20.5%). At contralateral CT, 2 (13%) participants significantly

increased TFL activity (p < 0.05, mean=21.6%), 3 (20%) participant increased BF activity

during swing (p < 0.01, mean=13.0%), 1 (6%) participant increased GMax activity (p <

0.005, 16.3%), and 6 (40%) participants increased RF activity (p < 0.05, mean=23.7%)

during swing when compared to B.

Knee muscle activity was assessed by changes in GAS, BF, and RF during stance. At

ipsilateral CT, 6 (40%) participants decreased GAS activity (p < 0.05, mean=-12.0%), 6

(40%) participants increased RF activity (p < 0.01, mean=13.5%), and 2 (12%) participant

increased BF activity (p < 0.05, mean=25.5%) when compared to B. At contralateral CT, 9

(60%) participants increased GAS activity (p < 0.05, mean=13.8%), 10 (67%) participants

increased RF activity (p < 0.05, mean=25.4%), and 13 (87%) participants increased BF

activity (p < 0.05, mean=71.4%).

Ankle muscle activity assessed by changes in GAS, SOL, and TA, which were affected by

CT. At ipsilateral CT, 11 (73%) participants increased SOL activity (p < 0.05, mean=13.2%)

and 6 (40%) participants increased TA activity (p < 0.05, mean=17.1%). At contralateral

CT, 12 (80%) participants increased SOL activity (p < 0.05, mean=12.8%) and 9 (60%)

participants increased TA activity (p < 0.05, mean=25.0%).

Table 2.1: Summary of statistics for linear mixed-effects models fitted to step characteristics
and task accuracy for 15 participants with a total of 10,480 steps for Normalized Step Length,
Normalized Step Width, and Task Error. CT refers to all catch trial steps, CT+1 is the first
step after each CT, and B includes the 6th to 25th steps after each CT.

Normalized Step Length Normalized Step Width Task Error
Estimate p Estimate p Estimate p

Participant 0.934 <0.001 0.156 <0.001 -92.93 0.004
CT+1 vs CT -0.020 0.373 0.007 0.079 -7.346 0.586
B vs CT 0.004 0.800 0.004 0.115 -1.673 0.856
Timing <-0.001 0.248 <-0.001 0.116 0.059 0.902

CT+1 * Timing 0.002 0.125 <-0.001 0.991 0.266 0.692
B * Timing <0.001 0.598 <-0.001 0.165 0.540 0.269
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Table 2.2: Summary of statistics for linear mixed-effects models fitted to joint kinematics
for 15 participants with a total of 9,881 strides for Ipsilateral and Contralateral Peak Hip
Flexion, Minimum Knee Flexion, and Peak Plantarflexion. CT refers to all catch trial strides
and B includes the 6th to 25th strides after each CT.

Ipsilateral Contralateral
Peak Hip Flexion Min Knee Flexion Peak Plantarflexion Peak Hip Flexion Min Knee Flexion Peak Plantarflexion
Estimate p Estimate p Estimate p Estimate p Estimate p Estimate p

Participant 2.289 <0.001 3.637 <0.001 -10.11 <0.001 1.735 <0.001 0.320 0.065 -0.575 0.003
B vs CT -2.428 <0.001 -3.543 <0.001 10.20 <0.001 -1.828 <0.001 -0.172 0.328 0.745 <0.001
Timing 0.002 0.794 0.028 0.002 -0.007 0.545 -0.013 0.056 -0.005 0.613 -0.0223 0.029

B*Timing 0.003 0.651 -0.038 <0.001 0.685 0.548 0.017 0.017 -0.005 0.556 0.0226 0.031

2.3 Discussion

This study explored the interaction of human-exoskeleton fluency, task accuracy, muscle

activity, and gait characteristics in response to pseudo-random exoskeleton errors during

walking. Exoskeleton torques can be learned and anticipated by developing internal models

to represent their anticipated dynamics. However, human-exoskeleton fluency may shift

across the continuum of trust with the exoskeleton. For instance, if a user becomes less

trusting of the system, they may prioritize stability over task performance and thus increase

muscle activation, which conflicts with the goal of this exoskeleton. These changes in trust

may be assessed by differences in performance throughout the study, which were assessed

here using task accuracy, joint kinematics, muscle activity, and step characteristics.

2.3.1 Gait Strategies and Task Performance

Our first two hypotheses posited that there would be changes in step characteristics and

task accuracy in response to catch trials. In our initial analysis, Wu et al. [106] found there

was not evidence that missed actuations at the provided level affect NSL, NSW, or task

accuracy. As the exoskeleton torque was removed for the catch trials, the motor actions

must be adjusted to maintain task goals.

Our third hypothesis that joint kinematics would have time-dependent changes in response

to catch trials was supported by the data and the changes were driven by muscle activation

modulation. Peak ipsilateral ankle plantarflexion decreased during catch trials when the

exoskeleton’s assistive torque was not applied (Fig. 2.2f, 2.4c). A previous study observed

participants reduced their muscle-generated plantarflexion after adapting to the same ex-

oskeleton, which was interpreted as fluency between the human and exoskeleton [1]. These

reductions were interpreted as the participants coordinating with the exoskeleton. During

catch trials in the present study, the exoskeleton did not generate assistive plantarflexion

torque; thus, participants relied on their muscle-generated plantarflexion for push-off. The
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Figure 2.2: Hip, knee, and ankle kinematics for ipsilateral leg (blue, d-f) and contralateral
leg (orange, a-c) for a representative participant. Flexion/plantarflexion is positive and
extension/dorsiflexion is negative. Regions of interest include peak hip flexion during swing,
knee flexion after loading response, and peak ankle plantarflexion, indicated by the red
arrows and dotted lines. CT conditions include 16 strides each and B contains the 6th to
25th strides after each catch trial.

Figure 2.3: (a) NSL, (b) NSW, (c) and task accuracy in response to catch trials (N=15).
CT and CT+1 conditions include 32 steps and B contains 6th to 25th stride after each catch
trial.

ankle muscles that could compensate for the lost plantarflexion include the ipsilateral SOL

and GAS. While 53% of all participants increased ipsilateral SOL activation, 42% of those

participants also decreased ipsilateral GAS activation. Reductions in this muscle activity and

the resulting plantarflexion moment align with the decreased peak ankle angles observed.
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Figure 2.4: Mean-shifted (a-c) ipsilateral and (d-f) contralateral peak hip flexion during
swing, minimum knee flexion after loading response, and maximum ankle plantarflexion in
response to catch trials (N=15). Joint angles were shifted by subtracting the mean of each
participant’s baseline. CT conditions include 16 strides each and B contains the 6th to 25th
strides after each catch trial. Red brackets marked with bars indicate that CT vs B were
significantly different.

The reduced plantarflexion then affected behavior in the proximal joints of the kinematic

chain. In our previous study, Wu et al. [106] observed that ipsilateral knee flexion increased

after loading response due to a diminished knee extension moment during catch trials (Fig.

2.2e, 2.4b). Ipsilateral GAS activity decreased to mitigate the increase in knee flexion, as

the GAS acts bilaterally for ankle plantarflexion and knee flexion. 40% of participants also

increased RF activation, which would generate additional knee extension torque in response

to increased knee flexion, thus stiffening the knee and preventing the leg from buckling.

The changes in ankle and knee kinematics align with the feedforward mechanisms of an in-

ternal model of the exoskeleton. These data support that participants may have learned and

applied internal models that support human-exoskeleton fluency by lessening their contribu-

tion to total ankle plantarflexion during baseline. Wu et al. [106] postulated that participants

used visual feedback and increased ipsilateral hip flexion during swing to correct for potential

stepping task errors during catch trials (Fig. 2.2d, 2.4a). The increase in hip flexion com-

pensated for the decreased ankle torque during push-off, resulting in no net change in NSL

and task accuracy. The change in ipsilateral hip flexion was driven by the increase in TFL
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Figure 2.5: Changes in muscle activity about the (a-c) ipsilateral and contralateral (d-f)
hip, knee, and ankle during catch trials. Each bar represents the average difference between
CT and the mean of B for each participant. Flexion/extension is about the respective joint
shown in each plot. Stars indicate significant differences between CT and B. CT includes all
catch trials and B includes the 6th to 25th stride after each catch trial.

activity during swing, which is a secondary hip flexor. There was a corresponding increase

in BF and GMax activation, which act as antagonistic muscles to the TFL, and increased

hip stiffness to stabilize the leg. The modulation of hip flexion was driven by increases in

muscle activation about the hip, which opposes the intended design goals of the exoskeleton

to reduce energy expenditure and impacts human-exoskeleton fluency.

Following the ipsilateral catch trial, an exoskeleton torque was applied on the contralat-

eral leg. There was a smaller but significant change in the contralateral hip and ankle angles,

which is reflected by the changes in contralateral muscle activity. While there was no signif-

icant change in contralateral knee kinematics, contralateral muscle activity about the knee

and ankle increased for 87% of participants during catch trials. Muscle activation of the

SOL and GAS was greater in the step following the catch trial on the contralateral leg for

80% and 60% of participants, respectively. This increase aligns with participants expecting
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the contralateral actuation to also be removed. However, this actuation was present for the

contralateral leg. 60% of participants increased activation of the TA, which would stiffen

the joint to limit, but does not eliminate, excess ankle motion from the unneeded additional

torque provided by the user when the exoskeleton is actuating. The additional plantarflexion

torque then affected joints more proximal in the leg’s kinematic chain, thus passively increas-

ing hip flexion rather than the active change seen on the ipsilateral leg. As the participant

proceeded from contralateral stance to swing, the exoskeleton operated without a missed

actuation, thus eliminating the need for active compensation at the hip.

While the data support the formation of an internal model corresponding with normal

exoskeleton operation, there is no indication of an internal model of the catch trials. The

stiffening of the contralateral joints following a catch trial may indicate that an internal

model of the catch trials was not formed, as studies have shown that people may stiffen their

limbs in response to novel forces rather than adapting motor strategies [91]. If an internal

model of the catch trials were formed, gait strategies at CT would change over time, as

participants learn and adapt to the missed actuations. However, there was no significant

change in most CT joint kinematics over time for both legs. This study had a low level of

exoskeleton errors (1.68%), which may have been too infrequent for participants to form an

internal model of missed actuations.

2.3.2 Implications for Trust in Exoskeletons

Trust in wearable robotics, such as exoskeletons, has been largely undefined. A recent

framework proposed the concept of relational trust, which may be adapted to describe trust

in exoskeletons. Relational trust describes the relationship where humans and automation

are considered agents engaged in a joint activity by a shared awareness of each other being

engaged in the activity [16]. The relational trust framework states that the behavior of each

agent depends on the environment, tasks, and interactions with other agents over time. The

framework portrays automation as an agent that is capable of adapting to both the human

and environment, which differs from earlier frameworks with primarily supervisory control

tasks. Thus, the automation described by relational trust is similar to robots that are able

to perform tasks while interacting with both the human and environment. The concept of

relational trust may be applied to human-exoskeleton systems, as exoskeletons may modulate

behavior based on the human, the environment, and estimated task. The framework also

highlights scenarios where the human and automation’s goals and tasks align, which we can

relate to human-exoskeleton fluency.

By adapting the concept of relational trust proposed for human-automation teams [16],
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the actions of the exoskeleton then affect the human’s trust in the system, which may cause

them to modulate their own behavior depending on the environment and their tasks. In this

study, we introduced an exoskeleton algorithm that exhibited operational errors of missed

actuations throughout the experiment. If the human’s trust in the system changed over

time, the human would adjust their behavior over the course of the experiment by changing

their gait strategies. However, there were no significant differences in step characteristics

and task error over time for trial types CT, CT+1, and B. (Table 2.1, Fig. 2.3). Ipsilateral

minimum knee flexion and contralateral ankle plantarflexion did show a significant change

over time, but the slope estimates were small and thus deemed not operationally relevant.

The difference between trials when normalized by the standard deviations was less than

0.3, indicating small effect sizes (0.87◦ increase in ipsilateral knee flexion over CT trials

with average standard deviation = 3.18◦, 0.69◦ decrease in contralateral plantarflexion over

CT trials with average standard deviation = 3.29◦) (Table 2.2, Fig. 2.4). All other joint

kinematics metrics did not change over the course of the experiment. This observation

suggests trust was maintained throughout the study for this reliability of the system. If trust

decreased, there may be greater hip flexion, ankle plantarflexion, and muscle activity about

those joints across additional steps as the user anticipates the loss of torque and attempts

to compensate. This study had catch trials for 1.68% of the strides. The frequency of catch

trials should be increased in future studies to probe how gait strategies are modifications to

characterize changes in users’ trust.

2.3.3 Limitations and Future Work

This study supports that exoskeleton users adjust their joint kinematics and muscle activity

to compensate for the absent exoskeleton torque to meet task performance goals, impacting

human-exoskeleton fluency. A limitation of this study is the assumption that all partici-

pants were fully adapted to the exoskeleton after the 30-minute training period, as motor

strategies may change during adaptation. Different and more complex systems may result

in other observed strategies, as the exoskeleton in this study was intended to reduce energy

consumption and only applied torques about the ankle. For instance, users may modify joint

kinematics and muscle activity differently when experiencing errors with an exoskeleton that

affects multiple joints. Our study also involved an exoskeleton algorithm that experienced

errors 1.68% of all strides, which is equivalent to a 98.32% accuracy. Future work will in-

troduce higher error rates to determine if there exists an error threshold where users will

permanently alter gait strategies to anticipate errors when walking with an ankle exoskele-

ton, thus affecting system usability. This future study with various error rates will also
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continue to explore if trust is impacted by imperfect exoskeleton algorithms and develop a

quantitative measure for trust in exoskeletons.

2.4 Conclusion

This study explored the impact of missed exoskeleton actuations on users’ human-exoskeleton

fluency, task performance, muscle activity, and gait characteristics. Participants maintained

acceptable task accuracy by increasing ipsilateral hip flexion and muscle activity when the

exoskeleton did not provide an assistive torque. During the stride after a missed actuation,

participants increased contralateral joint stiffness and plantarflexion torque to support task

accuracy. Human-exoskeleton fluency was impacted by catch trials as ipsilateral hip and

contralateral knee and ankle muscle activity increased in response to catch trials, but trust

was maintained throughout the study since gait strategies did not change over time. Under-

standing the interactions between human-exoskeleton fluency and gait strategies will support

defining the design requirements for acceptable error rates as well as developing adaptive al-

gorithms for exoskeleton controllers. For instance, future controllers may modulate behavior

based on quantitative measures of fluency and trust.
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CHAPTER 3

Emergent Gait Strategies Defined By Cluster

Analysis When Using Imperfect Exoskeleton

Algorithms

In Chapter 2, random errors were introduced during exoskeleton operation by not applying

an expected exoskeleton torque while participants completed a targeted stepping task. The

study used an algorithm with approximately 2% error, or 98% accuracy, and found that step

characteristics and task accuracy were not impacted by exoskeleton errors during missed

actuations and strides with normal torque as users adapted their joint kinematics during

errors to perform the stepping task. The level of error in the study was relatively low, so it is

important to understand how more frequent exoskeleton errors will impact stepping strategies

and task performance. For instance, it is possible that users will begin to increase muscle

activation as they anticipate repeated errors, which is against the goals of the exoskeleton

and would negatively impact human-exoskeleton fluency.

In this study, we introduce exoskeleton algorithms with defined error rates in order to

understand how users respond to more frequent errors. We hypothesized that there would be

time-dependent and algorithm-dependent changes in (1) joint kinematics, (2) muscle activity,

and (3) task performance during the nominal steps. We also hypothesized that higher levels

of error would cause larger changes in the above metrics. Our initial individual linear model

analysis revealed various gait strategies across participants and error rates (Appendix B),

so we utilized a k-means clustering to identify key behavior. Gait strategies were defined

using a k-means cluster analysis on a reduced set of gait features involving joint kinematics,

muscle activity, and task performance. These results will be interpreted in the context of

human-exoskeleton fluency and can inform exoskeleton design requirements in operational

environments. We also evaluated user perceptions of exoskeleton performance, task accuracy,

and future exoskeleton usage probability (Appendix A).
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3.1 Materials and methods

3.1.1 Participants

Participants (N = 22, age = 25.3±5.0 years (mean±SD), height = 1.67±0.30 m, mass =

68.0±9 kg, leg length = 903.0±43.7 mm, 12 female and 10 male) provided written informed

consent. Participants were excluded if they had a lower extremity injury within the past 6

months or used an assistive walking device. The protocol was approved by the University of

Michigan Institutional Review Board (HUM00217656).

3.1.2 Experimental Setup

Participants walked on a treadmill in a room equipped with a 10-camera optical motion

capture system (Vicon Motion Systems Ltd, Oxford, UK). Reflective markers were placed

on the participants according to the Vicon Plug-in Gait full-body model. Markers were

adjusted for the exoskeleton by placing the lower limb markers on the lateral side of the

exoskeleton when necessary. Electromyography (EMG) sensors (Cometa, Bareggio, Italy)

were placed on the following 7 muscles on each leg: tibialis anterior (TA), soleus (SOL),

medial gastrocnemius (GAS), biceps femoris (BF), rectus femoris (RF), tensor fasciae latae

(TFL), and gluteus maximus (GMax). Motion capture and EMG data were collected at 100

and 2000 Hz, respectively. Study participants wore the Dephy ExoBoot on both legs (Fig.

2.1) (DpEb504, Dephy Inc, Maynard, MA, USA) [63]. The ExoBoot applied torque at the

ankle at push-off during the stance phase of the gait cycle, learned from 25 strides, which is

the same as Chapter 2 [106].

3.1.3 Protocol

Anthropometric measures were collected prior to walking with the exoskeleton. Leg length

was measured as the distance from the anterior superior iliac spine to the medial malleolus.

Participants were given a target stepping task, which was a 320 mm-long region marked along

the sides of the treadmill, while walking at a fixed speed of 1.2 m/s. A targeted stepping

task was chosen as foot placement is an important component of gait in an operational

environment, such as stepping off a curb or avoiding an obstacle on the ground. Task

accuracy may then be used to assess prioritization of the task with respect to coordinating

with the exoskeleton. Participants were asked to aim their heel at the center-line of the

target region at the end of each stride. The stepping target length was chosen to be the

length of the largest exoskeleton boot size, a Men’s size 13.
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Participants underwent a training protocol where they walked with the stepping target

for 15 minutes with the exoskeleton powered on and torque applied during each stride (Fig.

3.1). The Dephy exoskeleton applied a plantarflexion torque about the ankle during mid-late

stance and reverted to a zero-torque control modality during the swing phase. The controller

adjusts the torque-angle relationship as a function of estimated walking speed, where dorsi-

flexion stiffness and plantarflexion passive power increase as walking speed increases.

Participants were then separated into two groups (N = 11 per group), which experienced

the exoskeleton control algorithm with fixed error rates in different orders. There were

5 different error rates: 0%, 2%, 5%, 7%, and 10% error. This translates to controller

accuracies of 100%, 98%, 95%, 93%, and 90%, respectively. Errors were introduced randomly

throughout each trial by not actuating the exoskeleton for a single stride. We chose errors of

no exoskeleton assistance rather than adjustment of control parameters for this study, as it

has been shown that individuals may exhibit different sensitivities toward parameters such as

actuation timing [74], which may introduce additional confounding factors. The exoskeleton

algorithm also included a recovery period after each error, where the exoskeleton gradually

ramps up from 0% to 100% between the error stride and the third stride after.

Participants experienced each controller twice for a total of 10 trials in one of two fixed

orders. A fully randomized order was not selected as it creates difficulty in disambiguating

between order and participant effects. By selecting two fixed orders, we can begin to examine

the effect of order separate from participant variability. Group 1 started with a 0% error

controller, increased to 10% error, and then decreased to 0% error. Group 2 started with a

10% error controller, decreased to 0% error, and then increased to 10% error. Details on the

groups and control algorithms are shown in Table A.1. The number of strides for 2% error

trials was higher than other trials to ensure an adequate amount of errors within the trial,

verified via power analysis.

3.1.4 Data Analysis

Gait cycles were segmented with a custom MATLAB script by using the heel marker data

from motion capture to identify heel strikes. Absolute task error was calculated as the

absolute value of distance between each heel strike and the center-line of the stepping target.

Acceptable absolute task error was determined as≤ 160 mm, which is half of the 320 mm-long

target. Joint kinematics were calculated according to the Plug-in Gait model. Four metrics

of interest were identified for each stride according to our previous study [106] – maximum

hip flexion during swing, minimum knee flexion during loading response, maximum knee

flexion during swing, and maximum ankle plantarflexion. These metrics were shown to be
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Figure 3.1: (a) Powered bilateral ankle exoskeleton, which provides assistance by applying
torque via the inelastic belt attached to the exoskeleton armature (DpEb45, Dephy Inc) [74].
(b) Torque profile applied at strides with nominal torque, where the peak torque is applied
at approximately 60% of the stride.

immediately impacted during strides with missed actuations, but did not change during

strides with normal exoskeleton torque, which indicated that the users’ gait strategies were

not affected by 2% error in the previous study.

Only strides where the exoskeleton applied a normal torque were used in the analysis, as

we were primarily interested in observing the effect of various error rates on gait strategies

while the system was operating nominally over time. The joint kinematics metrics and task

error of each trial were separated into 20 equal bins and averaged within each bin to observe

time-dependent changes over a trial (20-length vector per metric).

EMG data were pre-processed using a high-pass 3rd-order Butterworth filter at 40 Hz,

rectification, and a low-pass 3rd-order Butterworth filter at 10 Hz. Heel strikes identified

from motion capture data was used to segment the EMG data to strides, then stance and

swing were segmented using toe-off identified using the toe markers, respectively. The root-

mean-square (RMS) values of each muscle in stance and swing were calculated for each stance

and swing phase of each stride.

The mean of the RMS EMG values for last 60 strides of the training session was used as a

baseline for each muscle. The RMS EMG values of each trial were normalized by subtracting

the corresponding baseline value, then dividing by that baseline value, thus creating %RMS

EMG values. Similar to joint kinematics and task performance, only strides without errors

were used for the analysis. A mean %RMS EMG value for each muscle in stance and swing
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Table 3.1: Trial order of each participant group

Trial Group 1 Group 2 Order

1 0% (0/300) 10% (30/300) 1
2 2% (12/600) 7% (21/300) 1
3 5% (15/300) 5% (15/300) 1
4 7% (21/300) 2% (12/600) 1
5 10% (30/300) 0% (0/300) 1
6 10% (30/300) 0% (0/300) 2
7 7% (21/300) 2% (12/600) 2
8 5% (15/300) 5% (15/300) 2
9 2% (12/600) 7% (21/300) 2
10 0% (0/300) 10% (30/300) 2

Notes: The percentages represent the error rate of each control algorithm and the ratios in
parentheses show the number of errors to the number of total strides within a trial. An error
consists of not actuating the exoskeleton for a single stride. The order represents whether
the trial is the first or second time that a participant experiences an error rate.

phases was calculated for each trial (14 values per leg).

3.1.5 Gait Features Matrix

A gait features matrix was created using the joint kinematics metrics, task error, and mean

%RMS EMG values across all participants and trials. This analysis was inspired by a study

from Rozumalski et al. [80], which used a k-means cluster analysis on a reduced set of gait

features based on time-series kinematic data. Gait features vectors (114-length vector) were

created for each trial-participant-leg combination by appending the four 20-length kinematics

vectors, one 20-length task error vector, and 14 mean %RMS EMG values:

gs,t,l = [(maxhip1−20), (min knee1−20),

(maxknee1−20), (maxankle1−20),

(task error1−20), (%RMS EMG1−14)] (3.1)

where s is the participant number, t is the trial number, and l is the leg number.
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All gait vectors were then vertically concatenated to form the gait features matrix:

G =


g11,1,1 ... g1141,1,1

g11,2,1 ... g1141,2,1
...

g122,10,2 ... g11422,10,2

 (3.2)

A total of 49 of 440 vectors were removed from the gait matrix due to issues with the

EMG signals, potentially caused by EMG sensors detatching from skin during a trial or the

exoskeleton cables hitting the sensors. The final gait matrix G was a 391x114 matrix.

3.1.6 Cluster Analysis

Principal component analysis (PCA) was performed to reduce the dimensionality of the data.

The first 35 basis vectors accounted for 95% of the data’s variability. Thus, the projection

of the original gait matrix G onto the first 35 basis vectors, also known as the gait scores

(G̃) were used to perform the cluster analysis, thus reducing the dimensionality by 69.3%.

A k-means cluster analysis [36] was performed on G̃ to identify groups of gait strategies.

The number of clusters was iteratively increased from 2 to 10 clusters and the Calinski-

Harabasz (CH) index was calculated for each iteration. The CH index is a measure of the

ratio between intra-cluster distances and inter-cluster distances [3] and was maximized to

find the appropriate number of clusters.

3.1.7 User Perception of Fluency

A survey on user perception of exoskeleton system performance and task accuracy was con-

ducted after each trial. The methodology and results are detailed by Wu et al. [? ] in

Appendix A. The question “Rate how you felt the exoskeleton supports your actions” was

used to obtain a measure of user perception of human-exoskeleton fluency. The associated

rating scale responses ranged from 1 (extremely hinders actions) to 5 (extremely supports

actions).

3.1.8 Statistical Analysis

One-sample t-tests were performed within clusters across all metrics (kinematics, EMG, and

absolute task error) with no p-value corrections (α = 0.05). Cohen’s d effect sizes (d) were

calculated for all t-tests to provide context on effect size, where 0.2 < d < 0.5 was considered

small, 0.5 < d < 0.8 was medium, and d > 0.8 was large. An ANOVA was performed for
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the survey responses on exoskeleton supportiveness with a random factor of Participant and

a fixed factor of Cluster (5 levels). Post-hoc analysis involved independent t-tests across

Clusters with a Bonferroni correction.

3.2 Results

Figure 3.2: Mean joint kinematics metrics and abs. task error over a trial across five clusters.
Joint kinematics metrics were mean-shifted by baseline values, calculated as the mean of each
metric at the last 60 strides during the training session. Cluster assignment numbers are
labeled on the right of each line.

3.2.1 Cluster Analysis

Five clusters were identified (CH index = 59.22) across all participant gait strategies

(Figs. 3.2, 3.4). CH index values for other clustering k-values ranged from 47.98 to 57.76;

thus, we selected the cluster number (k = 5) with the highest CH index. A t-SNE plot was

created to illustrate the separation between gait strategies using the reduced gait matrix

(Fig. 3.3). Four clusters exhibited different strategies that allowed the participant to accom-

plish the targeted stepping task (≤160 mm error) and one cluster had increasingly poor task
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Figure 3.3: A t-SNE plot of G̃, the gait matrix projected onto the first 35 principal compo-
nents identified using PCA dimensionality reduction.

performance (>160 mm error) over a trial. The mean joint kinematics metrics, task error,

and RMS muscle activation are summarized in Tables 3.2 and 3.3.

Cluster 1 significantly increased hip flexion at swing (+1.95◦, d = 1.26) compared to

baseline in order to maintain acceptable task error (116.62 mm) (Fig. 3.2). At swing,

participants in this cluster increased RF (+33.68%, d = 0.48) and TFL (13.14%, d = 0.27)

activation and decreased GMax (-9.10%, d = 0.21) activation, thus supporting an increase in

active hip flexion at swing (Fig. 3.4). Participants of Cluster 1 also decreased their minimum

knee flexion during loading response (-1.83◦, d = −1.39) and increased knee flexion during

swing (4.49◦, d = 1.58). Participants modulated their muscle activity during stance by

decreasing GAS activation (-4.25%, d = 0.30), which may have impacted knee flexion at

loading response. Participants also increased GAS activation at swing (20.95%), which may

have contributed to increased knee flexion at swing. Cluster 1 participants did not have a

significant change in plantarflexion across a trial (0.18◦, d = 0.07).

Cluster 2 did not significantly (p > 0.05) change their joint kinematics metrics (hip flexion

= 0.03◦ (d = −0.03), min. knee flexion at stance = -0.07◦ (d = −0.09), max. knee flexion at

swing = 0.10◦ (d = −0.04)) and maintained acceptable task error (82.42 mm). Participants

significantly increased plantarflexion (0.23◦, p < 0.001) but with a very small effect size
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Figure 3.4: Boxplots of %RMS EMG of muscle activation during stance (top row) and swing
(bottom row) phases across five clusters. %RMS EMG metrics were mean-shifted by baseline
values, calculated as the mean of each metric at the last 60 strides during the training session,
then divided by the baseline values. Each box includes 25th to 75th percentile and whisker
length is 1.5*IQR. Significant changes in %RMS EMG compared to baseline are marked with
red symbols, where ◦ represent very small effect sizes (|d| < 0.2), ∗ are small (0.2 < |d| < 0.5),
† are medium (0.5 < |d| < 0.8), and ‡ are large (|d| > 0.8).

Table 3.2: Joint kinematics metrics and abs. task error across five clusters

Cluster 1 (n=59) Cluster 2 (n=161) Cluster 3 (n=57) Cluster 4 (n=57) Cluster 5 (n=57)

Max. hip flexion @ swing (◦) 1.95 (1.74) * 0.03 (1.42) 0.75 (1.63) * 0.33 (1.58) -0.50 (1.68) *
Min. knee flexion @ l.r. (◦) -1.83 (1.54) * -0.07 (1.07) 2.74 (1.61) * -0.46 (1.38) * -1.75 (2.05) *
Max. knee flexion @ swing (◦) 4.49 (3.07) * 0.10 (3.06) 4.97 (3.03) * 1.38 (2.80) * 0.66 (2.29) *
Max. plantarflexion (◦) 0.18 (2.77) 0.23 (1.89) * 4.81 (2.50) * -0.20 (3.20) 4.39 (2.42) *

Abs. task error (mm) 116.62 (52.58) 82.42 (41.80) 108.14 (53.94) 240.62 (47.39) 87.94 (51.11)

Notes: Joint kinematics metrics (mean (SD)) were mean-shifted by baseline values, calcu-
lated as the mean of each metric at the last 60 strides during the training session. The
n-values represent the number of gait vectors sorted to each cluster (391 total). The aster-
isks (*) mark significant changes from baseline.

(d = 0.18). Muscle activation at stance and swing had small significant changes in most

muscles (|d| < 0.20), with small increases in TA (12.44%, d = 0.20) and GAS (10.31%,

d = 0.29) activation at stance.

Cluster 3 had significant changes (p < 0.001) at the knee and ankle compared to baseline

and had acceptable task accuracy (108.14 mm). Participants increased minimum knee flexion

during loading response (+2.74◦, d = 1.84), maximum knee flexion during swing (+4.97◦,

d = 1.67), and maximum plantarflexion (+4.81◦, d = 2.14). The changes in knee kinematics

during stance were supported by decreases in antagonistic BF activation (-11.47%, d = 0.47)

and RF activation (-15.65%, d = 0.29), creating a positive knee flexion moment between

antagonistic muscles. Increases in knee flexion at swing corresponded to increases to BF

(84.10%, d = 1.15) and GAS (26.88%, d = 0.71) activation at swing. The increase in
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Table 3.3: %RMS EMG at swing and stance phases across five clusters

Cluster 1 (n=59) Cluster 2 (n=161) Cluster 3 (n=57) Cluster 4 (n=57) Cluster 5 (n=57)

TA @ stance (%) 41.66 (62.43) * 12.44 (63.20) * -14.68 (38.15) * -24.09 (41.98) * 37.41 (71.92) *
GAS @ stance (%) -4.25 (13.98) * 10.31 (35.35) * -0.41 (32.61) 1.72 (9.04) 29.63 (57.64) *
SOL @ stance (%) -4.01 (22.74) 9.24 (51.46) * 3.45 (56.53) 2.55 (19.34) 46.28 (111.97) *
BF @ stance (%) -1.94 (36.80) -3.87 (30.05) -11.47 (23.78) * 2.71 (60.91) 23.60 (37.36) *
RF @ stance (%) -4.60 (29.89) -9.95 (48.77) * -15.63 (53.28) * -12.04 (35.29) * -7.76 (44.00)
GMax @ stance (%) -7.78 (15.35) * 3.14 (46.61) -5.76 (20.28) -7.47 (10.87) * 23.31 (55.68) *
TFL @ stance (%) -6.51 (25.11) -7.45 (38.62) * -27.69 (17.51) * -28.48 (47.34) * 9.85 (47.08)

TA @ swing (%) 7.01 (33.49) 8.65 (35.48) * 42.19 (72.92) * 30.88 (26.69) * 20.01 (58.52) *
GAS @ swing (%) 33.27 (68.41) * 2.70 (52.41) 26.88 (37.13) * 19.03 (40.78) * 9.23 (62.22)
SOL @ swing (%) 5.91 (56.91) -0.54 (60.21) 44.53 (71.97) * -8.93 (45.10) -24.16 (41.68) *
BF @ swing (%) 2.89 (42.88) 12.13 (59.04) * 84.10 (72.03) * 12.00 (44.60) -8.45 (29.99) *
RF @ swing (%) 33.68 (50.23) * 6.76 (45.84) 11.47 (23.24) * 16.25 (57.68) * 9.76 (36.21) *
GMax @ swing (%) 9.10 (42.40) 3.82 (57.70) 19.39 (20.28) * 26.46 (41.22) * 19.11 (56.46) *
TFL @ swing (%) 13.14 (47.41) * 5.07 (69.11) 98.04 (98.46) * 2.31 (46.13) 2.90 (41.51)

Notes: %RMS EMG metrics (mean (SD)) were mean-shifted by baseline values, calculated
as the mean of each metric at the last 60 strides during the training session, then divided by
the baseline values. The %RMS EMG metrics were calculated during the stance phase (top
half) and swing phases (bottom half). The n-values represent the number of gait vectors
sorted to each cluster (391 total). The asterisks (*) mark significant changes from baseline.

plantarflexion were linked to increased GAS (26.88%, d = 0.71) and SOL (44.53%, d = 0.61)

activation during swing. Participants in cluster 3 also moderately increased hip flexion

(0.75◦, d = 0.50), driven by a large increase in TFL activation at swing (98.04%, d = 0.98)

and reduced by an antagonistic increase in BF activity (84.10%, d = 1.15).

Cluster 4 had mostly unchanged (p > 0.05) joint kinematics metrics (hip flexion = 0.33◦

(d = 0.23), plantarflexion = -0.20◦, d = 0.07), with a small decrease in minimum knee

flexion at loading response (-0.46◦, p = 0.01, d = 0.35), a moderate increase in maximum

knee flexion at swing (+1.38◦, p < 0.001, d = 0.52), and unacceptable task error (240.62

mm). Participants increased GAS activation at swing (19.03%, d = 0.46), which may have

contributed to the increase in knee flexion at swing. TA activation at swing also increased

by 30.88% (d = 1.14), thus counteracting additional plantarflexion. Other muscles had small

to moderate changes in activation (-28.48 to 24.09%, −0.57 ≤ d ≤ 0.63), with the no net

change due to antagonistic muscle activity.

Cluster 5 primarily increased ankle plantarflexion (+4.48◦, d = 2.42) and decreased min-

imum knee flexion at loading response (-2.26◦, d = 0.88), with small changes to hip flexion

(-0.50◦, d = 0.33) and maximum knee flexion at swing (+0.72◦, d = 0.31). Participants in

this cluster also had acceptable task performance across the trial (76.32 mm). The increase

in plantarflexion may have been driven by the increase in GAS (29.63%, d = 0.51) and SOL

(46.28%, d = 0.41) activation at stance, as well as a small increase in GAS (9.23%, d = 0.15)

swing. Antagonistic TA muscle activation also increased at stance (37.41%, d = 0.51) and
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Figure 3.5: Cluster assignments for all participants and trials. 49 trials were excluded from
analysis due to noisy or unusable EMG data and are marked using unlabeled black boxes.
Participant number and leg (left or right) are marked on the left of each cluster map. Trial
error rates and order (1st or 2nd exposure to the error rate) are shown on the x-axis.

swing (20.01%, d = 0.34). Notably, GMax activation at swing increased by 23.31% (d = 0.41)

with little to no change in hip flexion, as antagonistic TFL activation also increased by 9.85%

(d = 0.21).

3.2.2 Gait Strategies Across Trials

Cluster assignments for gait vectors were then sorted according to the participant number,

group, trial number, and leg (Fig. 3.5). Group 1 trial strategies were most often sorted into

Cluster 2 (108/201 trials), then to Cluster 4 (37/201 trials), Cluster 1 (34/201 trials), Cluster

3 (14/201 trials), and Cluster 5 (8/201 trials). Nine (81.8%) participants in Group 1 used

strategies defined in Cluster 2 in the first trial and six (54.5%) of those participants changed

strategies as they experienced different exoskeleton controllers with varying error rates. Two

(18.2%) participants primarily used the Cluster 4 strategy and did not successfully complete

the stepping task across trials.

Group 2 trial strategies were sorted into the clusters with the following frequencies: Clus-

ter 2 (53/190 trials), Cluster 5 (49/190 trials), Cluster 3 (43/190 trials), Cluster 1 (25/190

trials), and Cluster 4 (20/190 trials). All 11 participants in Group 2 used strategies of various

clusters when experiencing different controllers.
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3.2.3 User Perception of Fluency

The Subject factor (F (21, 388) = 23.61, p < 0.001) and Cluster factor (F (4, 388) = 2.66, p =

0.033) were significant for perceived exoskeleton supportiveness. Perceived supportiveness

in Cluster 2 (3.51± 0.90) was significantly higher than in Cluster 3 (3.06± 1.09). Responses

in Clusters 1 (3.78±0.98), 4 (3.84±1.38), and 5 (3.71±0.94) were not significantly different

compared to Cluster 2.

3.3 Discussion

In this study, we introduced an exoskeleton algorithm with varying error rates (0%, 2%, 5%,

7%, and 10% error) to observe the effect of exoskeleton error levels on gait strategies during

nominal operation periods. Participants were sorted into two groups that experienced each

controller twice, but in different orders. A k-means clustering algorithm (k = 5) was used

to define gait strategies across participants using metrics of joint kinematics, task error,

and muscle activity. These clusters of strategies were then interpreted in the context of

human-exoskeleton fluency.

3.3.1 Interpretation of Clusters

Gait strategies defined by the cluster analysis had varying impacts on human-exoskeleton

fluency, which was maximized when users reduced muscle activity, as the goal of the Dephy

exoskeleton is to reduce the metabolic cost of walking. Muscle activity was used to assess

strategies as it has been shown to be linked to metabolic cost during walking [89]. Fluent

strategies may involve minimal changes or decreases in muscle activity with respect to par-

ticipants’ initial adaptation to the exoskeleton at the end of training. Cluster 2 exhibited

strategies that supported human-exoskeleton fluency while successfully completing the step-

ping task, even when errors were present throughout a trial. Participants in Cluster 2 were

able to coordinate with the exoskeleton and utilize the exoskeleton’s assistive torque during

nominal steps to complete the task without significant modifications to joint kinematics and

muscle activity (Tables 3.2 and 3.3). While participants in Cluster 4 were also fluent with

the exoskeleton, they were unable to achieve acceptable task error (≤160 mm), suggesting

that users may have directed less attention to the task or were unable to match the treadmill

speed and may have altered walking speed if they had been on a self-paced treadmill or were

overground.

In comparison, Clusters 1, 3, and 5 increased muscle activation and modified joint kine-

matics about the hip (Cluster 1), knee (Clusters 3 and 5), and ankle (Clusters 3 and 5)
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in order to complete the task with acceptable error (Fig. 3.2 and 3.4). Cluster 1 utilized

a strategy observed in our previous study with a 2% error algorithm [106], where partici-

pants increased hip flexion and muscle activity about the hip to extend the leg and reach

the stepping target during exoskeleton errors. This strategy was previously only observed

during exoskeleton errors and participants were able to return to baseline behavior after

errors. In this study, participants increased hip flexion and muscle activity even during

nominal exoskeleton behavior, indicating that users may have expected the presence of er-

rors and modified their strategies to accomplish the stepping task. Similarly, Clusters 3

and 5 may have increased plantarflexion and muscle activation about the ankle in anticipa-

tion of additional exoskeleton errors. The added plantarflexion may have generated a larger

push-off force, which then followed with increased muscle activation and co-contraction in

the hip and knee, possibly to stiffen the joints and prevent over-stepping the target. The

strategies used by Clusters 1, 3, and 5 negatively impacted human-exoskeleton fluency as

participants increased joint flexion and muscle activity, which increased energy usage and

thus opposed the design goals of this exoskeleton. These strategies may also indicate that

users in these clusters may have prioritized task performance over fluent gait strategies and

lost trust in the exoskeleton to actuate correctly over time. Participants in Cluster 3 also

perceived the exoskeleton as less supportive than those in Cluster 2, which may be linked

to non-fluent strategies in Cluster 3. While participants in Clusters 1 and 5 also utilized

non-fluent strategies, the increases in muscle activation supporting hip flexion and ankle

plantarflexion occurred during stance. The increased muscle activation across all muscles

during swing observed in Cluster 3 may be more salient, leading to lower supportiveness

ratings.

3.3.2 Gait Strategies Across Trials

Most participants (18 of 22, 81.8%) changed gait strategies as they experienced additional

exoskeleton algorithms with different error levels (Fig. 3.5). In Group 1, participants often

began with gait strategies defined in Cluster 2 that were fluent with the exoskeleton’s goals

and accomplished the stepping task. Six participants (54.5%) were able to maintain fluent

gait strategies (Cluster 2) on one or both legs during all trials. These participants may

have trusted the exoskeleton to continue to support their actions, even when walking with

algorithms with higher error frequencies. These six participants stated that they primarily

focused on completing the stepping task and tried to coordinate with the exoskeleton’s

behavior, regardless of error rate. Three participants (27.3%) transitioned to strategies that

increased hip or ankle flexion and muscle activity in order to maintain task accuracy (Clusters
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1, 3, and 5), thus reducing human-exoskeleton fluency. These users may have lost trust in

the exoskeleton once they encountered controllers with higher error, as they continued with

these compensatory strategies when walking with 0% or 2% error controllers. The contrast

between participant behavior within Group 1 may indicate that some users may be more

heavily impacted by poor algorithm performance than others.

In Group 2, all participants changed strategies across trials and were more likely to

increase hip and ankle flexion and underlying muscle activity (50% of strategies) than to

utilize strategies that supported human-exoskeleton fluency (27.9% of strategies). Group

2 participants were also more likely to start with non-fluent strategies on at least one leg

(90.9%) compared to Group 1 participants (18.2%). This behavior aligns with the order

presented, as Group 2 began with the lower performing algorithm (10% error) after training,

while Group 1 began with the algorithm with no errors, thereby impacting the strategies

used during the first trial. However, when Group 2 participants transitioned to algorithms

with lower error (0% or 2%) in later trials, most participants (90.9%) maintained increases

in hip or ankle flexion as defined in Clusters 1, 3, and 5. This behavior is similar to users in

Group 1 who were strongly impacted by poor controllers and modified their gait strategies

for the remaining trials. These users may have updated their underlying internal models—

representations of the dynamic properties of the limb in the environment [85]—when walking

with an exoskeleton, leading to changes in walking strategies. Adaptation of internal models

may occur in response to visual [105] or mechanical changes in the environment [93], which

cause errors in movement. Algorithms with higher error rates induce a higher frequency of

movement errors and may influence the dynamics within coupled human-exoskeleton system,

thus prompting modifications of internal models and the resulting motor commands.

Participants who experience poor controllers earlier or are sensitive to exoskeleton errors

were more likely to use gait strategies with increased muscle activity and joint flexion, thereby

conflicting with the exoskeleton’s goal. Users should first adapt to and use exoskeletons in

settings where error frequency is low for an ample amount of time (i.e. steady-state walking

in laboratory) before walking in more uncertain environments where errors may be more

prevalent (i.e. uneven terrain, ramps, speed-variable walking) to build sufficient experience

and trust in the exoskeleton. In this study, participants walked for 15 minutes with a 0%

error controller at a fixed speed during the training session, which may have been too short

and uniform for some participants to explore different speeds and develop a resilient and

fluent gait strategy. Participants in Group 1 began to utilize less fluent walking strategies

once algorithm errors increased to 5-7% of all strides. Participants who started with 10%

error were less likely to exhibit fluent strategies throughout the experiment. Thus, it is

recommended that researchers strive to have systems with errors below 5-7% error. We
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acknowledge that this threshold may be larger if error types were less noticeable compared

to this study (loss of assistive torque) or may be lower if gait stability or foot clearance were

affected (i.e. early or late actuations).

It is currently unclear how long a system must operate correctly after a period of errors

for the user to transition to more fluent strategies. A study involving the same Dephy

exoskeleton found that some participants maintained a stepping strategy developed when

adapting to the exoskeleton even when the exoskeleton was turned off for 5 minutes [2]. This

suggests that some users may need at least 5 minutes of walking without exoskeleton errors

before modifying their gait strategies. Due to time limitations of the study, none of the

controllers other than 0% error had a period greater than 5 minutes without errors as each

trial lasted between 10-15 minutes. It is also important to evaluate the impact of lower-limb

exoskeletons on the entire kinematic chain of the leg rather on one specific joint, as the

data shows increased muscle activity and modified kinematics about the hip and knee while

walking with an ankle exoskeleton.

3.3.3 Limitations and Future Work

This study supports that users may utilize various gait strategies when given a targeted

stepping task with a powered ankle exoskeleton in the presence of errors. Fluent strategies

minimize changes in joint kinematics and muscle activity during nominal exoskeleton behav-

ior. Users may increase hip or ankle flexion to support completing the task, thus negatively

impacting human-exoskeleton fluency. A limitation of this study is the assumption that

participants were fully adapted to the exoskeleton’s normal operation within 15 minutes of

training, which would impact our calculation of baseline joint kinematics and muscle activa-

tion. Clusters defined in this study did not show large decreases in GAS or SOL activation

(an indication of post-training adaptation), though individual users may have continued to

adapt to the system after training. A study estimated that users may need up to 109 minutes

to fully adapt to a different ankle exoskeleton [75], which was not feasible for the duration

of this study.

While this study introduced error rates in two fixed orders, randomized error rates may

result in different user responses. For instance, if the randomized order began with a higher

error, the user may increase muscle activation as they anticipate repeated errors (non-fluent

strategy), even if the following controller had a low error rate. Future work may explore

how the order of error rates may affect learning and adaptation to an exoskeleton to inform

training protocols and operational use. Alternate exoskeletons and error types (i.e., changes

in different control parameters) may also yield different responses across error ranges. Future
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work may explore new algorithms that modulate exoskeleton behavior in response to gait

strategies that reduce human-exoskeleton fluency.

3.4 Conclusion

In this study, we investigated the impact of imperfect exoskeleton algorithms (up to 10%

error) on joint kinematics, muscle activation, and task error. Error rates were presented in

two orders–Group 1 experienced controllers with low error (0-2%) before those with higher

error rates (5-10%) and Group 2 experienced controllers with higher error before those with

lower error rates. A k-means cluster analysis (k = 5) was used to define the emergent

gait strategies. The fluent strategy minimized muscle activation and aligned with the ex-

oskeleton’s goal of reducing metabolic cost while maintaining acceptable task error. Three

strategies had acceptable task error, but increased muscle activation about the hip or an-

kle, thus negatively impacting human-exoskeleton fluency. One strategy minimized muscle

activity, but had unacceptable task performance. Participants in Group 2 who experienced

10% error first were more likely to use non-fluent gait strategies compared to those who

walked with 0% error first. A subset of users across both groups transitioned from fluent

to non-fluent gait strategies after using the controller with higher error rates. Exoskeleton

users may build fluent and resilient gait strategies if they first walk with the exoskeleton

in environments with low variability (i.e., treadmill walking) before transitioning to more

uncertain environments where exoskeleton errors may be more prevalent. Understanding

emergent gait strategies can inform the development of exoskeleton algorithms that support

appropriate gait strategies and system use.
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CHAPTER 4

Modeling Co-Adaptive Control of Ankle

Exoskeletons

In Chapter 3, fluent and non-fluent gait strategies were identified and characterized as peo-

ple walked with imperfect exoskeleton algorithms. While fluent strategies were defined as

those that minimized muscle activation and aligned with the exoskeleton’s goal of reduc-

ing metabolic cost, non-fluent strategies involved increased muscle activity about the hip

or ankle, which would yield increased energy usage. It may be possible to induce different

strategies in healthy users using exoskeletons. For example, Selinger et al. [84] showed that

a knee exoskeleton applying resistive torque was able to guide users to new stepping frequen-

cies by shifting the energetically optimal step frequency away from the normally preferred

and optimal step frequency. A subset of users in Chapter 3 also transitioned from fluent to

non-fluent strategies as we manipulated the system reliability using missed actuation errors

(no torque applied at specified strides). Thus, modulating exoskeleton torque according to

user behavior may encourage users to utilize fluent strategies.

Thus, it is important to develop a co-adaptive control algorithm that supports fluent

strategies and modifies the torque assistance in response to non-fluent strategies to encourage

convergence to fluent strategies. A previous study by Jackson et al. [47] found that a co-

adaptive algorithm involving only ankle muscle activity and kinematics was able to reduce

metabolic cost with a bilateral ankle exoskeleton by adjusting torque based on ankle metrics.

However, we previously identified non-fluent strategies with nominal ankle behaviors and

compensatory motions higher in the kinematic chain. The proposed algorithm incorporated

joints and muscles along the lower-limb rather than only about the ankle to observe and react

to compensatory behaviors higher in the leg’s kinematic chain. For instance, in Chapter 3,

users anticipated repeated errors and increased hip flexion and underlying muscle activity to

compensate for the potential loss of torque. This behavior may cause the proposed algorithm

to reduce peak torque in order to allow the user to adjust to a lower level of exoskeleton

torque and lessen compensatory muscle activation.
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In this study, we developed a co-adaptive control algorithm for an ankle exoskeleton and

modeled the anticipated changes in resulting torque profiles depending on user behavior. The

proposed co-adaptive algorithm modulated peak torque, which is the maximum amplitude

of the torque profile, in response to user strategies. This study also highlighted the impact

of incorporating additional inputs to the algorithm (muscle activity and joint kinematics

about the hip and knee) and compared the generated torque profiles against an ankle-only

co-adaptive controller with only ankle kinematics and muscle activity.

4.1 Algorithm Formulation

The proposed co-adaptive control algorithm utilizes muscle activity and joint kinematics

measurements to guide the evolution of the exoskeleton torque assistance. In our proposed

algorithm, electromyography (EMG) and joint angle measurements from the hip, knee, and

ankle were incorporated, as our previous study [108] found non-fluent strategies involving

increased muscle activity and deviations from baseline kinematics about the knee and hip.

Similar to the Jackson et al. [47] co-adaptive controller, our algorithm used heuristic-based

metrics calculated from the EMG and joint kinematic deviations and extended the work

to include the hip and knee joints. The contributions from each metric were scaled and

combined in a linear expression to drive the progression of the torque profile over strides.

The exoskeleton torque output was be modified by changing key parameters of the torque

profile.

The torque profile provided by the exoskeleton can be parameterized using four variables:

peak torque, the time of peak torque, rise time, and fall time [110]. The proposed controller

calculates peak torque applied at subsequent strides while holding the rise, fall, and peak

torque times constant. Changing the peak torque also modifies the rising slope and falling

slope, thus impacting the total torque and energy provided over each stride. Peak torque

τpk(n) of the torque profile at stride n was calculated as the sum of the previous peak torque,

τpk(n−1), and a specified change in peak torque, dτpk(n). The change in peak torque, dτpk(n),

was expressed as linear combination of scaled metrics of (1) the EMG of major muscles at the

ankle, knee, and hip, (2) the associated deviations in joint kinematics, and (3) the previous

peak torque.

4.1.1 Proposed Control Algorithm

Our proposed algorithm calculates the total change in peak torque dτpk as a combination of

the joint-specific components (dτpk,ankle, dτpk,knee, dτpk,hip), as well as the peak torque applied
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during the previous stride, τpk(n − 1). The previous peak torque term is scaled by gain k9

and provides negative feedback to the system, thus establishing an equilibrium point and

stabilizing the system. At the equilibrium point, the algorithm assumes that muscle activity

of the SOL, GAS, and TFL are minimized with low co-contraction about the knee and hip

joints, along with no deviations from baseline ankle and hip kinematics. The magnitude of

the gain k9 shapes the equilibrium point, as larger k9 values will result in lower equilibrium

taupk and smaller values will result in larger τpk. The total change in peak torque at stride

n is written in Eq. 4.1 as follows.

dτpk(n) = dτpk,ankle(n) + dτpk,knee(n) + dτpk,hip(n)− k9 ∗ τpk(n− 1) (4.1)

The peak torque applied at stride n is the sum of the previous peak torque τpk(n−1) and

dτpk if the magnitude of the dτpk is greater than a defined threshold, τthres, and 0 otherwise.

The threshold requirement on dτpk exists to prevent small deviations in peak torque from

the positive contributions of the plantarflexors and TFL terms, which may cause the peak

torque to drift upwards and become unstable. We also bound τpk(n) between a minimum

of 5 N-m and a maximum of Tnorm ∗muser, where Tnorm is a scaling factor with units of

N-m/kg and muser is the user’s mass in kg. The minimum boundary ensures that a small

level of torque is applied during each stride even if the user exhibits continuous non-fluent

strategies over the course of many strides and the peak torque is driven downwards from

the negative contributions from muscle co-contraction and kinematic deviations. The peak

torque is also limited by Tnorm and the user’s body mass to ensure the peak torque does

not exceed the exoskeleton’s motor capabilities or cause harm to the user. Finally, τpk(n) is

formulated in Eq. 4.2 and 4.3 as follows.

τ̂pk(n) = τpk(n− 1) + sign(dτpk(n)) ∗max(abs(dτpk(n))− τthres, 0) (4.2)

τpk(n) =


5 τ̂pk(n) ≤ 5

τ̂pk(n) 5 < τ̂pk(n) < (Tnorm ∗muser)

(Tnorm ∗muser) τ̂pk(n) ≥ (Tnorm ∗muser)

(4.3)

4.1.2 Ankle Contributions

The muscle activity of the soleus (SOL), medial gastrocnemius (GAS), and tibialis anterior

(TA) contribute to the change in peak torque at subsequent strides. EMGmetrics SOL(n−1)

and GAS(n − 1) are calculated from the SOL and GAS measurements from the previous
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stride in Eq. 4.4 and 4.5.

SOL(n− 1) = RMS

(
EMGSOL(n− 1)

⟨EMGSOL(n− 1)⟩mankle

)
(4.4)

GAS(n− 1) = RMS

(
EMGGAS(n− 1)

⟨EMGGAS(n− 1)⟩mankle

)
(4.5)

EMGSOL and EMGGAS are the time-series EMG signals of the respective muscles across

a stride and the ⟨·⟩ operation finds the mean value of the time-series EMG. The means are

raised to the power mankle, where mankle ≥ 1 to reduce the contribution of higher GAS and

SOL muscle activation, as the exoskeleton’s goal is to reduce the muscle activity from the

plantarflexors. Dividing the term by the mean EMG activation creates an inverse relationship

between the EMG signal amplitude and the term’s magnitude—as the amplitude of the

SOL and GAS EMG signals increases, the magnitude of the terms decrease. Higher muscle

activity from the plantarflexors may signify that the user may need more time adapting

to the exoskeleton, while lower muscle activity indicates the user is working collaboratively

with the exoskeleton and may benefit from increased torque. The terms SOL(n − 1) and

GAS(n− 1) are thus expressed as the root-mean-squared (RMS) mean of the scaled muscle

activity across a stride. Since SOL and GAS muscle activity work cooperatively with the

exoskeleton torque to produce a plantarflexion moment, these terms contribute positively to

dτpk(n). These SOL and GAS terms are also scaled by the gains k1 and k2, respectively.

The TA term, TA(n− 1), for the previous stride is expressed in Eq. 4.6, where EMGTA

is the time-series EMG signal of the TA muscle across a stride.

TA(n− 1) = RMS (EMGTA(n− 1)) (4.6)

Since the TA is responsible for ankle dorsiflexion and acts antagonistically to the plantarflex-

ors and exoskeleton torque, the TA term contributes negatively to the change in peak torque.

The TA term is scaled by the gain k3 and reduces dτpk(n) as TA muscle activity increases

over subsequent strides. The TA term is not scaled by the mean of the EMG signal, as

increased TA activity should create a larger decrease in peak torque to slow the growth of

the torque profile. The ratio between the TA, GAS, and SOL terms can act as an indica-

tor of muscle co-contraction—a mechanism to control joint stiffness [38, 66]—as the these

muscles form agonist-antagonist pairs driving ankle movement. A user strategy that relies

on ankle co-contraction is characterized by larger magnitudes of the ankle muscle terms and

may signify the user is not fluent with the system, as they may be stiffening their ankle to

resist the motion of the exoskeleton. The gains k1, k2, and k3 are thus scaled appropriately

so these terms result in no change or a decrease in peak torque when ankle co-contraction is

46



high or the TA term dominates the ankle muscle contributions.

Deviations from baseline ankle kinematics contribute negatively to dτpk(n). The devia-

tions are calculated during the push-off portion of gait, as our previous study in Chapter

3 [108] found non-fluent strategies involving increased plantarflexion with corresponding in-

crease muscle activity. Baseline kinematics may be derived using a period of walking with the

exoskeleton powered with a static torque profile or without exoskeleton torque. The ankle

kinematics term, θankle, is an indirect measure of significant deviations from peak baseline

plantarflexion (Eq. 4.7). Incorporating the ankle kinematics term also accounts for strate-

gies where the user increases plantarflexion without reducing plantarflexor muscle activity.

In this scenario, the resulting peak torque would decrease to encourage the user to adapt to

the exoskeleton with a reduced torque profile.

θankle(n− 1) =

−k4 abs(θpushoff (n− 1)− θb) ≥ θthresholda

0 otherwise
(4.7)

The gain k4 is included in the θankle piece-wise expression, where θankle is equal to −k4

if the absolute value of deviation in peak plantarflexion at push-off compared to baseline

exceeds a predefined threshold θthresholda and is zero otherwise. The kinematic term was

set to a specified value rather than a direct calculation from ankle angle to standardize

the contribution of the kinematic term across participants. Using a direct calculation for

the kinematic term resulted in unstable behaviors due to inter-subject variability in joint

kinematics during the initial tuning of the gain k4.

The total contribution from ankle muscle activity and kinematics can be expressed as:

dτpk,ankle(n) = k1 ∗ SOL(n− 1) + k2 ∗GAS(n− 1)− k3 ∗ TA(n− 1)− θankle(n− 1) (4.8)

4.1.3 Knee Contributions

Muscle activity from the biceps femoris (BF) and rectus femoris (RF) are used to calculate

the co-contraction index (CCI) of the knee joint. The BF and RF are bi-articular mus-

cles responsible for knee flexion/extension and hip extension/flexion and act as an agonist-

antagonist pair. While these muscles may induce motion about both the hip and knee, they

are used to assess the knee contribution to dτpk in this study. Researchers are recommended

to place EMG sensors closer to the knee on the RF and BF muscle body to accurately assess

muscle activity contribution to knee motion. High levels of knee CCI contribute negatively

to the change in peak torque, as it may suggest the user is stiffening their knee to resist the

motions of the exoskeleton. The knee co-contraction metric is derived from Rudolph et al.
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[81], which has been shown to correlate with joint stiffness for quadriceps-hamstring pairs

for knee and hip stiffness [57].

CCIknee(t) =
min(EMGBF (t), EMGRF (t))

max((EMGBF (t), EMGRF (t))
(EMGBF (t) + EMGRF (t))) (4.9)

dτpk,knee(n) = −k5 ∗
1

T

T∑
t=0

CCIknee(t, n− 1) (4.10)

Knee co-contraction, CCIknee(t), at each time point t along a stride is the product of

the ratio between the lower and higher absolute EMG magnitude and the sum of both BF

and RF activity at t. CCIknee(t) measurements range from [0,2], where 0 represents no

activity from the antagonist muscle and 2 signifies that both muscles are contracting equally

at maximum amplitude over the stride (assuming peak amplitude = 1). The contribution to

dτpk is then calculated as the summation of CCIknee across all time points along the stride

divided by the number of total time points and scaled by gain k5 (Eq. 4.10). We utilize

a measure of knee CCI rather than a direct metric from BF and RF activation, similar to

ankle muscle contributions, as knee motion cannot be mapped to cooperating or resisting

the exoskeleton’s plantarflexion torque as simply as ankle motion.

4.1.4 Hip Contributions

The muscle activity of the tensor fasciae latae (TFL) and gluteus maximus (GMax) are

used to calculate EMG metrics. A direct measure of TFL activity of the previous stride,

TFL(n−1), was constructed similar to the GAS and SOL terms, as we previously identified

a non-fluent strategy where users compensated for low system reliability by increasing hip

flexion and TFL activity at swing in Chapter 3 [108]. TFL muscle activity can generate hip

flexion and the TFL term is expressed as the RMS mean of the scaled TFL muscle activity

across a stride, as shown in Eq. 4.11.

TFL(n− 1) = RMS

(
EMGTFL(n− 1)

⟨EMGTFL(n− 1)⟩mhip

)
(4.11)

EMGTFL is the time-series EMG signal of the TFL muscle across a stride and ⟨EMGTFL⟩
is the mean of the TFL EMG signal, raised to the power mhip where mhip ≥ 1. The term

TFL(n−1) is then scaled by gain k6 and contributes positively to the change in peak torque

for the following stride. When TFL activity is low, the magnitude of the term is larger, as

this behavior may indicate that the user is properly adapting to the system and may benefit

from greater torque assistance. The TFL term addresses the non-fluent strategy found in
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Chapter 3 by reducing the magnitude of its contribution to dτpk when muscle activity is high

and aligned with compensatory behavior.

Similar to the knee, a metric for hip co-contraction, CCIhip, is derived using the Rudolph

et al. [81] definition of CCI with the TFL and GMax muscles as the agonist-antagonist

pair for hip flexion/extension. The hip CCI at each time point t along a stride ranges from

[0,2], where 0 indicates no activity of the antagonistic muscle and 2 indicates equal maximal

activity, assuming peak muscle activity is normalized to 1. The hip CCI term is scaled by

gain k7 and negatively contributes to dτpk, where high levels of hip CCI may indicate the user

is less fluent with the system and is stiffening their hip to resist the exoskeleton assistance.

CCIhip(t) =
min(EMGTFL(t), EMGGMax(t))

max((EMGTFL(t), EMGGMax(t))
(EMGTFL(t) + EMGGMax(t))) (4.12)

CCIh(n− 1) =
1

T

T∑
t=0

CCIhip(t, n− 1) (4.13)

Deviations from baseline hip kinematics contribute negatively to the change in peak

torque. The deviations are calculated during the swing phase, as we found in Chapter 3

that some users increased hip flexion during swing as a compensatory strategy when walking

with imperfect control algorithms. Similar to ankle kinematics, baseline kinematics may be

derived using a period of walking with the exoskeleton powered with a static, predefined

torque profile or without exoskeleton torque. The hip kinematics term, θhip is a piece-wise

function that is equal to −k8 when deviations in hip kinematics during swing are larger than

a specified threshold, θthresholdh (Eq. 4.14). When users utilize a strategy with increased

hip flexion, the algorithm will decrease dτpk at subsequent strides until hip flexion at swing

returns to baseline levels.

θhip(n− 1) =

−k8 abs(θswing(n− 1)− θb) ≥ θthresholdh

0 otherwise
(4.14)

Thus, the total contribution from hip muscle activity, co-contraction, and kinematics can

be written as:

dτpk,hip = k6 ∗ TFL(n− 1)− k7 ∗ CCIh(n− 1)− θhip (4.15)

4.1.5 Ankle-Only Control Algorithm

To assess the impact of incorporating major lower-limb joints to the co-adaptive controller,

an ankle-only controller was developed based on heuristics defined in the Jackson et al. [47].

While the similar muscle activity and joint kinematic measurements were included in both
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formulations of the ankle-only controller, the results may differ as our study utilizes metrics

involving the RMS mean of EMG signals to calculate a change in peak torque rather than a

direct mapping from EMG signals to the torque profile. The peak torque generated by the

ankle-only controller, τpk,ankle(n), is defined using only the ankle contributions to dτpk, the

negative feedback term, and the previous peak torque (Eq. 4.17). We enforced the same

minimum and maximum bounds on τpk,ankle(n) as those on τpk (Eq. 4.18).

dτankle−only = dτpk,ankle(n)− k9,ankle−only ∗ τpk,ankle (4.16)

τ̂pk,ankle(n) = τpk,ankle(n− 1) + sign(dτankle−only) ∗max(abs(dτankle−only)− τthres, 0) (4.17)

τpk,ankle(n) =


5 τ̂pk,ankle(n) ≤ 5

τpk,ankle(n) 5 < τ̂pk,ankle(n) < (Tnorm ∗muser)

(Tnorm ∗muser) τ̂pk,ankle(n) ≥ (Tnorm ∗muser)

(4.18)

4.2 Simulating Torque Output

Muscle activity and joint kinematics data from Chapter 3 were used to model the evolution of

peak torque over approximately 300 strides from 0% error trials, as these trials do not contain

exoskeleton errors that produce immediate changes in kinematics and EMG. The proposed

co-adaptive control algorithm and ankle-only algorithm were used to generate peak torque

over strides according to user behavior. The performance of each controller was assessed

based on the modulation of the peak torque as users exhibit fluent and non-fluent strategies.

The gains for muscle activity, co-contraction, and kinematics terms were hand-tuned using

representative trials of each gait strategy found in Chapter 3 to dictate controller behavior.

The model gains were tuned to ensure various characteristics, such as decreasing or constant

peak torque as the user struggles with adapting to the system (e.g., increased muscle activity,

non-fluent) and increasing torque as the user becomes fluent with the system (e.g., decreased

ankle muscle activity). These gains were used across all users’ data in this study, but may be

adjusted according to the desired controller behavior and participant pilot data. We used the

same procedure to set mankle = 1.3, mhip = 1.0, θthresholda = 1.5 deg, θthresholdh = 1.25 deg.

The thresholds for ankle and hip angle deviations were chosen to align with the variability

in ankle and hip kinematics found in Clusters 3/5 and 1, respectively. The hand-tuned gains

are shown in Table 4.1.
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Gains Values
k1 0.1
k2 0.1
k3 0.11
k4 0.04
k5 0.04
k6 0.04
k7 0.06
k8 0.05
k9 0.00845

k9,ankle−only 0.009

Table 4.1: Model gains for proposed co-adaptive controller and ankle-only controller.

4.2.1 Data From Identified Strategies

In Chapter 3, fluent and non-fluent strategies were identified as users walked with prede-

fined, fixed torque profiles with varying error rates. Three main strategies were selected for

simulations:

1. Fluent strategy (Cluster 2): Users minimized muscle activity across the lower-limb

with minimal to no deviations in ankle plantarflexion or hip flexion at swing.

2. Non-fluent strategy (Cluster 1): Users increased hip flexion at swing and underlying

TFL muscle activity to compensate for potential errors in exoskeleton assistance (loss

of torque over a stride).

3. Non-fluent strategy (Clusters 3 & 5): Users increased plantarflexion during push-off

and underlying ankle muscle activity in anticipation of low system reliability. Knee

kinematics also deviated from baseline with increased knee muscle activation and co-

contraction.

A representative trial was selected for each strategy in this study and the initial peak

torques τpk(0) were set to the mean peak torque of the static profile that users walked with

in Chapter 3. The initial peak torques were (1) fluent strategy, τpk(0) = 23.88 N-m; (2)

non-fluent strategy, τpk(0) = 19.20 N-m, and (3) non-fluent strategy, τpk(0) = 22.02 N-m.

4.2.2 Simulated Adaptive Behaviors

Potential scenarios that may occur while using a co-adaptive controller, but were not iden-

tified in Chapter 3, were modeled by sampling the data from Chapter 3. The following
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scenarios were constructed by scaling existing muscle activity and kinematics data from

fluent strategies to simulate different trends (e.g., increasing or decreasing EMG).

• A1 - Increasing GAS/SOL activity and ankle plantarflexion: SOL and GAS

muscle activity increased across all strides using a vector of evenly-spaced, linearly-

increasing factors between 1 and 1.5. Scaling factors were generated using the MAT-

LAB command linspace(1,1.5,n), where n is the number of total strides. The EMG

signals were thus scaled by 1 for the first stride and 1.5 for the last stride. An increase

in ankle plantarflexion was simulated by adding a vector of evenly-spaced, linearly

increasing offsets between 0 and 6 degrees (linspace(0,6,n)) to the ankle angle devi-

ations at each stride. These scaling factors were chosen to align with identified muscle

activity and joint kinematics changes in the Chapter 3 and induced noticable changes

in the scenario’s torque output.

• A2 - Varying GAS/SOL activity and ankle plantarflexion: SOL and GAS

muscle activity increased for the first 50 strides, decreased for the next 50 strides, and

remained unscaled for the remaining strides using the following MATLAB scaling vec-

tor [linspace(1.25,1.5,50), linspace(1.5,1,50), linspace(1,1,n-100)]. An-

kle plantarflexion followed the same trend of varying ankle angle deviations using the

offset vector [linspace(0,6,50), linspace(6,0,50), linspace(0,0,n-100)].

• K1 - Increased knee co-contraction: BF and RF muscle activity increased across

all strides using a scaling vector ranging from 1.25 to 2.5 (linspace(1.5,2.5,n)).

The increase in muscle activity of the agonist-antagonist pair generated an increase in

knee CCI.

• H1 - Increased TFL/CCI and hip flexion: TFL activity increased across all

strides using a scaling vector ranging from 1.25 to 1.75 (linspace(1.25,1.75,n)).

The increase in TFL activity increases the ratio of TFL activity to GMax activity,

thus increasing hip co-contraction. Hip flexion deviations at swing increased using the

offset vector ranging from 0 to 6 degrees (linspace(0,6,n)). Similar to Scenario A1,

these scaling and offset values were selected according to cluster strategies identified

in Chapter 3 and produced observable changes in torque output.

• H2 - Varying TFL/CCI and hip flexion: TFL activity increased for the first

third of all strides, decreased for the next third of strides, and remained unscaled

for the remaining strides using the following scaling vector [linspace(1,1.5,n/3)

, linspace(1.5,1,n/3), linspace(1,1,n/3)]. Hip flexion at swing followed the
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same trend of varying hip angle deviations using the offset vector [linspace(0,6,n

/3, linspace(6,0,n/3), linspace(0,0,n/3].

While different user strategies may manifest while walking with a co-adaptive controller,

we decided to highlight the above scenarios as they may be representative of users who are

struggling to adapt to the system (Scenarios A1, K1, and H1) and users that initially have

difficulties adapting before becoming fluent with the system (Scenarios A2 and H2). The

scenarios were created using data from the fluent strategy, thus the initial peak torque τpk(0)

was set to 23.88 N-m for these potential simulated strategies.

4.3 Results

4.3.1 Data From Identified Strategies

The three identified strategies from Chapter 3 resulted in varying simulated behaviors mod-

eled using the proposed co-adaptive controller and ankle-only controller (Fig. 4.1). The

fluent strategy minimized ankle muscle activity of the GAS and SOL muscles after a pe-

riod of adaptation, as the initial RMS muscle activations were reduced from 1.43 ± 0.43

(mean±SD) and 1.16± 0.11 across the first 10 strides to 1.05± 0.13 and 0.95± 0.09 across

the last 10 strides, respectively. Deviations in ankle plantarflexion and hip flexion were cen-

tered about −.43±1.05 and 0.16±0.95 degrees, respectively. When the user exhibits a fluent

strategy, the proposed co-adaptive controller increased peak torque from τpk(0) = 23.88 N-m

and converged to a final peak torque of τpk = 26.08. The ankle-only controller exhibited

similar behavior and converged to a final peak torque of τpk,ankle−only = 27.59.

When the user exhibits non-fluent strategies, the proposed co-adaptive algorithm and

ankle-only controller differ in peak torque evolution. One of the non-fluent strategies was

characterized by increased hip flexion (7.54±2.78 degrees), TFL activation (0.96±0.10), and

hip co-contraction (0.78± 0.08). The proposed co-adaptive controller decreased peak torque

from τpk(0) = 19.20 N-m to a final peak torque of τpk = 15.21 N-m, due to the negative

contributions from the increased hip CCI and deviations in hip flexion. In contrast, the

ankle-only controller resulted in increased final peak torque of τpk,ankle−only = 22.00 N-m.

The second non-fluent strategy highlighted in this study exhibited increased GAS acti-

vation (1.34 ± 0.26), SOL activation (1.25 ± 0.16), and TA activation (1.22 ± 0.20), indi-

cating increased co-contraction of the ankle. Ankle plantarflexion deviations also increased

to 1.58 ± 2.18 degrees during the last 120 strides, which exceeded the predefined thresh-

old θthresholda = 1.50 degrees. Knee and hip co-contraction also maintained larger values of

0.71± 0.07 and 1.04± 0.09. This non-fluent user behavior resulted in decreased peak torque
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Figure 4.1: Representative data and resulting torque profiles using identified fluent and non-
fluent strategies from Chapter 3.

from τpk(0) = 22.02 N-m to a final value of τpk = 13.88 N-m when using the proposed co-

adaptive algorithm. The ankle-only controller resulted in a smaller decrease in peak torque

with a final value of τpk,ankle−only = 19.59 N-m.

4.3.2 Simulated Adaptive Behavior

Distinct controller behaviors from the proposed co-adaptive algorithm and ankle-only algo-

rithm emerged from three of the five potential scenarios involving modifications in ankle,

knee, and hip kinematics and muscle activity (Fig. 4.2). All scenarios were started at an

initial peak torque of τpk(0) = 23.88 N-m, as the underlying data was sampled from the

fluent strategy described in Section 4.3.1.
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Figure 4.2: Simulated potential strategies with changes in ankle, knee, and hip behavior.

4.3.2.1 Modified Ankle Scenarios

Scenarios A1 and A2 comprised of strategies with modified ankle muscle activity and plan-

tarflexion behavior. In Scenario A1, GAS and SOL activation increased from 1.43 ± 0.43

(mean±SD) and 1.16±0.11 across the first 10 strides to 1.57±0.19 and 1.43±0.13 across the

last 10 strides, respectively. Deviations in ankle plantarflexion also increased from 1.17±0.10

to 5.78 ± 0.73 degrees across the first and last 10 strides, respectively. This user behav-

ior prompted similar controller responses between the proposed and ankle-only algorithms,

where the proposed controller resulted in a final peak torque of τpk = 21.58 N-m and the

ankle-only controller resulted in τpk,ankle−only = 22.22 N-m.
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At the first stride of Scenario A2, the initial RMS muscle activations of the GAS and SOL

were 2.14 and 1.47, respectively. GAS and SOL activity increased to peak values of 1.93

and 1.77 at the 50th stride and then decreased until the 100th stride. Deviations in ankle

plantarflexion followed the same trend—ankle angle deviation increased from 0.39 to 7.44

degrees across the first 50 strides, then decreased to 0.57 degrees across the next 50 strides.

During the remaining strides, GAS activity, SOL activity, and ankle angle deviations were

centered about 1.03 ± 0.16, 0.95 ± 0.09, and −0.44 ± 1.04 degrees, respectively. Similar

to Scenario S1, the proposed co-adaptive controller and ankle-only controller resulted in

comparable peak torque evolution. The peak torque simulated with the proposed algorithm

initially decreased to τpk = 21.96 N-m at stride 84, then increased and plateaued at a final

peak torque of τpk = 26.75 N-m. The ankle-only controller initially decreased peak torque

to τpk,ankle−only = 22.22 N-m at stride 84, then increased peak torque to τpk,ankle−only = 27.04

N-m.

4.3.2.2 Modified Knee Scenario

Scenario K1 was driven by an increase in knee co-contraction due to an underlying increase

in BF and RF muscle activation. BF activation increased from 1.56±0.23 across the first 10

strides to 2.34± 0.37 across the final 10 strides. RF activation increased from 2.22± 0.23 to

2.96±0.28 between the first and final 10 strides. The corresponding knee CCI thus increased

from 1.12 ± 0.14 to 1.53 ± 0.10 between the first and final 10 strides. This user behavior

resulted in differing strategies from the proposed and ankle-only algorithms. The proposed

controller initially increased peak torque to a maximum value of τpk = 25.31 N-m at stride

177, then decreased peak torque to a final value of τpk = 24.39 N-m. In contrast, the ankle-

only controller increased peak torque until reaching an equilibrium at τpk,ankle−only = 27.64

N-m.

4.3.2.3 Modified Hip Scenario

Scenarios H1 and H2 involved modifications to hip muscle activity, co-contraction, and kine-

matics. In Scenario H1, TFL activity and corresponding hip CCI increased from 1.34± 0.28

and 0.82 ± 0.03 across the first 10 strides to 1.52 ± 0.23 and 0.87 ± 0.07 across the last

10 strides. GMax activity was not altered in this scenario. Deviations in hip flexion during

swing increased from 0.33 to 4.60 degrees over simulated strides. Simulated peak torque with

the proposed algorithm gradually decreased to a final value of τpk = 22.53 N-m. The ankle-

only controller resulted in increased peak torque with a final value of τpk,ankle−only = 27.64

N-m.
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In Scenario H2, TFL activity increased from 1.16 at stride 1 to 1.87 at stride 99, then

decreased to 0.68 at stride 200. The mean RMS TFL activation for the remaining 99 strides

was centered about 0.89±0.19. The corresponding hip CCI followed a similar pattern, where

CCI values increased from 0.71 to 0.83 across the first 99 strides, then decreased until stride

206 and plateaued about 0.64 ± 0.04. Hip flexion deviations at swing also increased from

0.33 degrees at stride 1 to 7.30 degrees at stride 102, then decreased and converged about

−0.43± 0.92 degrees. The proposed controller initially reduced peak torque to a minimum

value of τpk = 23.17 N-m at stride 123 and then increased peak torque to a final value

of τpk = 25.89 N-m. The ankle-only controller produced the same peak torque pattern as

Scenario H1, as no ankle kinematics or muscle activity were modified.

4.4 Discussion

4.4.1 Comparing Proposed vs. Ankle-Only Algorithm

User strategies involving changes in ankle muscle activity and plantarflexion resulted in

similar controller behavior from the proposed co-adaptive algorithm and the ankle-only al-

gorithm. The fluent strategy characterized by Cluster 2 had reduced GAS and SOL acti-

vation over time with minimal changes in plantarflexion, which led to to gradual increases

in peak torque from the proposed and ankle only controllers (Fig. 4.1, left). Peak torque

was designed to increase with minimized muscle activation and plantarflexion deviations, as

lowered plantarflexor EMG signals indicated the user was leveraging the added exoskeleton

torque while walking. When a user increased ankle EMG and plantarflexion deviations in

Scenario A1, peak torque decreased over time for both controllers as larger muscle activity

and plantarflexion levels may suggest that the user is struggling to adapt to the exoskeleton

torque (Fig. 4.2). Modifications in only ankle behavior caused nearly identical peak torque

evolution between the proposed and ankle-only controllers, as the hip and knee terms were

not impacted in these strategies.

Gait strategies with increased knee or hip muscle activity and kinematic deviations, how-

ever, prompted reductions in peak torque over time when using the proposed co-adaptive

controller compared to the ankle-only controller. Strategies found in Cluster 1 and simulated

in Scenarios H1 and H2 led to decreased peak torque with the proposed controller when TFL

activity, hip co-contraction, and hip flexion deviations were large (Figs. 4.1, 4.2). Similarly,

when knee co-contraction and its underlying muscle activity increased in Scenario K1, peak

torque decreased over time with the proposed algorithm. The changes in user behavior may

be indicative of the user stiffening their knee or hip to resist the motions of the exoskeleton
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(increased CCI) or anticipating and compensating for poor system performance (increased

TFL and/or hip flexion). Thus, the proposed controller decreases peak torque to allow the

user to adjust to a lower level of exoskeleton torque. In contrast, the ankle-only controller

does not account for changes in hip or knee behavior and thus continues to increase peak

torque over time until the specified equilibrium torque. The behavior of the ankle-only con-

troller may inhibit adaptation to the exoskeleton if the user is uncomfortable and resists

higher levels of torque.

Scenarios where users initially utilized non-fluent strategies before adapting to the ex-

oskeleton were modeled using the proposed and ankle-only controller. Scenario A2 involved

an initial non-fluent strategy of increasing ankle muscle activity and plantarflexion, then

coordinating with the exoskeleton torque by lessening EMG and deviations in ankle angle

(Fig. 4.2). The resulting peak torque profiles were nearly identical for both controllers, as

only ankle behavior was modified. The peak torque initially decreased in the regions of rising

EMG and ankle plantarflexion, then increased and plateaued to a larger final peak torque.

In Scenario H2, hip muscle activity and kinematics were modulated to simulate an initial

non-fluent strategy of increased hip EMG and flexion then adaptation to the exoskeleton

with lowered hip EMG and flexion levels. The ankle-only algorithm generated the same

peak torque evolution as Scenario A2, as the ankle behavior remained the same between

Scenarios A2 and H2. The proposed algorithm, however, decreased peak torque in regions

with increased hip EMG and flexion and increased peak torque when muscle activity and

kinematic deviations were lessened. Thus, the proposed algorithm was able to adjust peak

torque in response to signs of poor fluency and indicators of user adaptation, while the ankle-

only exoskeleton did not respond to user strategies involving knee and hip angle and EMG

modulation.

4.4.2 Considerations for Implementation

There exist various factors that should be considered for a real-time implementation of the

proposed co-adaptive control algorithm. First, in this study, the gains for the muscle activity,

CCI, and kinematics terms were hand-tuned according to previously collected data of people

walking with the Dephy exoskeleton. These gains were used across different participants’ data

and generated peak torques aligned with controller behavior designed to support adaptation

to the exoskeleton and fluency. In future studies, these gains may be tuned on pilot data

of users walking with or without the powered exoskeleton in order to induce the desired

controller output. The tuning of the gains may be conducted by hand or using a learning

or optimization algorithm formulated to the the parameters. For instance, the gains can
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be scaled by the same factor to cause smaller or larger changes in peak torque over each

stride with respective changes in EMG and joint angles. The gains can also be scaled with

respect to each other (e.g. larger gains for ankle contribution compared to hip contribution)

to prioritize the effect of different joint or muscle behavior on peak torque. Different lower-

extremity exoskeletons may require varying hand-tuned weights depending on the desired

torque output in response to user behavior.

Our proposed control algorithm was designed for level-ground walking with minimal ob-

stacles. The controller may be extended to different and more complex environments, such

as uneven terrain or stair ascent/descent, by modifying certain aspects of the algorithm.

When users are walking in uneven terrain or environments with obstacles, they may increase

joint co-contraction to stiffen their joints for stability and alter their joint kinematics to

ensure accurate foot placement for obstacle avoidance [98, 62, 17]. The proposed controller

would thus decrease exoskeleton torque output, which may be desirable as it allows the user

to have more control of their movements with lower exoskeleton assistance. Stair and ramp

ascent/descent require different joint angle profiles and muscle activation compared to level-

ground walking [76, 82, 13]. The proposed controller could be modified to a mode-based

controller, where baseline joint trajectories and EMG profiles could be stored for each mode

(e.g., stair ascent, descent) for calculations of kinematic deviations and EMG normalization.

The data used in this study was constrained to trials with approximately 300 strides per

leg (5-10 minutes), which is a relatively short period compared to shifts performed by industry

workers or military personnel. In operational settings, users may don the exoskeleton for

longer periods of time, which may cause changes in EMG signals due to fatigue. Thus, we may

incorporate a fatigue model to the proposed algorithm to offset potential changes in EMG

signals. Two common measures of muscle fatigue using the Joint Analysis of Spectrum and

Amplitude (JASA) method are the median frequency (MDF) and root-mean-square (RMS)

or electrical activity (EA) of the EMG signals [29, 23]. The MDF is used to characterize

the EMG power spectral distribution and the RMS of the EMG signal is a measure of signal

amplitude. Muscle fatigue can be assessed as a decrease in MDF and an increase in RMS

EMG with the same joint kinematics. Our proposed algorithm currently calculates EMG

terms based on the RMS of the direct or scaled EMG signals. We can thus easily incorporate

the MDF and RMS measures to our controller by calculating these measures across strides.

When a shift in MDF and a corresponding increase in muscle activity is detected, the EMG

signals can be re-normalized using a higher EMG signal in order to account for fatigue. Using

this model, the torque profile provided by the co-adaptive controller will sustain a similar

peak torque regardless of fatigue, assuming the user does not compensate using non-fluent

hip or knee behavior.
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4.4.3 Limitations

This study presented a formulation for a co-adaptive controller involving the major lower-

limb joints and muscles and assessed its performance on existing and simulated muscle ac-

tivity and joint kinematics data. A limitation of this study is that the controller has not

been implemented in real-time on the Dephy exoskeleton, so it has not been determined if

a change in peak torque would be sufficient to encourage fluent strategies. A co-adaptive

algorithm [47] mapped ankle EMG signals and joint kinematics to the torque profile of an

ankle exoskeleton, rather than the peak torque, and were able to reduce metabolic cost across

multiple users. Future studies could explore shifting the torque profile’s timing parameters

in addition to peak torque in order to support reductions in muscle activity and energy

expenditure. Additionally, this study modeled the controller behavior on a set of representa-

tive user behaviors from Chapter 3. Future work could apply the proposed algorithm to all

available data from Chapter 3 and additional potential strategies to refine the fitted gains

used in the controller.

4.5 Conclusion

In this study, we developed and modeled a co-adaptive control algorithm for ankle exoskele-

tons that incorporated muscle activity and joint kinematics measurements from the hip, knee,

and ankle. The proposed controller modulated the peak torque of the exoskeleton torque

profile in response to user gait strategies to support human-exoskeleton fluency. We modeled

the controller behavior in multiple scenarios informed by strategies identified in Chapter 3

and simulated potential unseen strategies of non-fluency and user adaptation. The proposed

co-adaptive controller was able to adjust peak torque over strides in response to indicators

of low fluency (e.g., increased SOL/GAS activation, increased knee and hip co-contraction)

and adaptation (e.g., minimized ankle muscle activity, minimal deviations in joint angles).

The performance of our controller was compared to an ankle-only control algorithm, which

was unable to adjust torque output in response to user strategies involving changes in knee

and hip muscle activity and kinematics. This work is one of the first approaches to utilize

measurements from joints higher in the leg kinematic chain for a co-adaptive ankle control

algorithm.
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CHAPTER 5

Conclusions and Future Work

The overarching goal of this work was to investigate strategies that people use when in-

teracting with imperfect exoskeletons in the presence of foot placement goals and develop

control algorithms to support human-exoskeleton fluency, which is maximized when the user

and exoskeleton’s goals are aligned (e.g. metabolic cost reduction). This thesis expands

the existing literature on lower-limb exoskeletons, human factors, and co-adaptive control,

through the following three main aims:

1. Characterize the immediate effects of exoskeleton errors on human gait strategies and

trust in exoskeletons

2. Characterize the residual effects of exoskeleton errors on gait strategies in terms of

human-exoskeleton fluency

3. Develop a co-adaptive exoskeleton algorithm that incorporates all major lower-limb

joints and muscles to support human-exoskeleton fluency

The first aim was addressed in Chapter 2, which investigated the immediate effects of

exoskeleton errors (loss of torque for select strides) and informed our understanding of mo-

tor strategies formed when walking with an exoskeleton, which aligned with the internal

model hypothesis. Chapter 2 was the first study to define early direct measures for user

trust in exoskeletons. Chapter 3 characterized the residual effects of selected fixed levels of

exoskeleton errors on gait strategies and task performance via k-means clustering. Then, in

Chapter 4, we developed and modeled a co-adaptive control algorithm using hip, knee, and

ankle angle and muscle activity, as well as compared its performance against an ankle-only

controller.
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5.1 Summary of Results

We briefly summarize the key results from each chapter of this thesis prior to defining the

major contributions to the literature.

5.1.1 Immediate Effects of Exoskeleton Errors on Gait Strategies

In Chapter 2, we found that exoskeleton users maintained acceptable targeted stepping task

accuracy by increasing ipsilateral hip flexion and muscle activity when there was a loss of

torque. Contralateral joint stiffness and plantarflexion torque were also increased to support

task accuracy for the targeted stepping task. During catch trials, users had decreased ipsilat-

eral plantarflexion and increased ipsilateral knee flexion, which indicated that users may have

decreased muscle-generated plantarflexion torque. This ankle and knee behavior aligns with

an internal model developed when adapting to an exoskeleton that provided plantarflex-

ion assistance. We determined that human-exoskeleton fluency was impacted by missed

actuations, as ipsilateral hip activity and contralateral knee and ankle activity increased

in response to errors. A preliminary assessment of trust in exoskeletons was maintained

throughout the study since gait strategies did not change over the course of the trials.

5.1.2 Emergent Gait Strategies When Using Imperfect Exoskele-

ton Algorithms

Chapter 3 utilized a k-means clustering analysis to define five emergent gait strategies as

users walked with imperfect exoskeleton algorithms with fixed error rates up to 10% error.

Our initial individual linear model analysis revealed various strategies across participants

and error rates, so we utilized a k-means clustering to identify key behavior. We assessed

user strategies in terms of muscle activation, joint kinematics, and stepping task perfor-

mance. The resulting clusters were significantly different from baseline muscle activity and

joint kinematics (evaluated using t-tests) and were aligned with compensatory behavior

found in Chapter 2. One of the identified strategies was considered fluent, where users

minimized muscle activity and aligned with the exoskeleton’s goal of reducing metabolic

cost while maintaining acceptable task performance. Three strategies had acceptable task

error but involved increased hip or ankle muscle activity, thus negatively impacting human-

exoskeleton fluency. Users may have anticipated poor system performance and thus utilized

compensatory strategies by extending their leg further during swing (increased hip flexion

and EMG) or increasing plantarflexion to supplement propulsive energy during push-off in

case of missed actuations. We also found that participants who experienced 10% error first
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(Group 2) were more likely to utilize non-fluent strategies compared to those who walked

with 0% error first (Group 1). Some users also transitioned from fluent to non-fluent strate-

gies when using controllers with poor reliability (5-10% error). While this study had a small

sample size (N=22), the observed behaviors and changes in response to exoskeleton errors

warrant further investigation to understand how people interact with imperfect algorithms

with longer exposure periods and different systems.

5.1.3 Modeling Co-Adaptive Control of Ankle Exoskeletons

Chapter 4 presented the design of a co-adaptive control algorithm for an ankle exoskeleton

that incorporated muscle activity and kinematics measurements from the hip, knee, and ankle

joints. The controller was developed to support human-exoskeleton fluency by modifying the

peak torque of the exoskeleton torque profile in response to user behavior. We modeled the

proposed controller output in various scenarios informed by strategies identified in Chapter

3 and simulated potential unidentified strategies of non-fluency and user adaptation. The

proposed co-adaptive controller was able to adjust peak torque evolution in response to signs

of poor fluency (e.g., increased ankle EMG, increased joint co-contraction) and indicators of

adaptation to the exoskeleton (e.g., lowered SOL/GAS activation, decreased co-contraction).

The performance of the our controller was also compared against an ankle-only control

algorithm, which was unable to adjust torque behavior in response to user strategies involving

knee and hip angle and EMG modulation.

5.2 Contributions

This thesis makes several contributions to the existing literature on human-exoskeleton sys-

tems:

1. Immediate compensatory actions were identified when there was a loss of exoskeleton

torque about the ankle, where users walking with the Dephy exoskeleton increased hip

flexion and underlying muscle activity to maintain stepping task accuracy.

2. Trust in ankle exoskeletons was quantified by the change in gait strategies over time,

as modifications may indicate a change in trust.

3. Objective measures of fluency were developed using user joint kinematics and muscle

activity.

4. Emergent gait strategies that people may utilize when walking with imperfect exoskele-

ton algorithms were identified and characterized as fluent and non-fluent. Users may

63



transition between fluent and non-fluent strategies as they use controllers with higher

error rates, as their perception of system reliability is impacted by repeated errors.

5. User perceptions of exoskeleton algorithm performance and probability of future ex-

oskeleton usage were correlated with actual system performance.

6. Experimental methods of assessing the impact of exoskeleton errors on user perfor-

mance were introduced and may be extended to different systems and error modes.

These methods may be used to determine exoskeleton performance thresholds for

proper usage.

7. A co-adaptive control algorithm that modifies torque assistance based on muscle ac-

tivity and joints along the lower limbs was developed to support human-exoskeleton

fluency.

8. Recommendations for implementing co-adaptive control in complex environments (e.g.,

stair ascent, ramps) and addressing fatigue during long use times were defined for future

studies.

5.3 Connecting to Existing Literature

In Chapter 2, we extended our understanding of the underlying internal models developed

when people walk with ankle exoskeletons. We introduced pseudo-random catch trials in the

form of missed actuations, which aligned with methods in existing motor control literature

[11, 12]. During catch trials, users had immediate decreases in ankle plantarflexion with

the loss of exoskeleton torque, which indicated that users may have formed internal models

involving reduced muscle-generated plantarflexion as they adapted to exoskeleton torque

during push-off. These findings align with the modified internal model described by Hybart

et al. [41], where users may form internal models that combine their own biological system

dynamics with robotic dynamics. In Chapter 3, we characterized five emergent gait strategies

while walking in with imperfect exoskeleton algorithms. Studies have begun to assess gait

variability as people walk with exoskeletons in different environments [41] and during early

adaptation to exoskeletons [2]. The different gait strategies extends our understanding of

the variability in how people use exoskeletons with varying error frequencies and a foot

placement task.

We also developed a preliminary measure of trust in exoskeletons, where we hypothesized

that changes in user trust may manifest in changes in gait strategies over time. For instance,

if a user perceived that the exoskeleton’s actions were unreliable and thus decreased trust
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in the system, the user may increase compensatory hip behaviors during baseline strides

with normal torque in anticipation of poor exoskeleton performance. Our hypothesis aligns

with the established definition of trust in human-automation systems, where trust is ”the

attitude that another entity will help achieve a person’s goals in a situation characterized

by uncertainty and vulnerability” and humans calibrate trust according to the perceived

reliability of the system [54]. In Chapter 2, participants did not modify their baseline gait

strategies when walking with an exoskeleton algorithm with errors in approximately 2% of

all strides, which may indicate users maintained trust levels with 2% error. In Chapter 3,

however, we identified three non-fluent strategies involving changes in hip and ankle behavior

after exposure to poor exoskeleton performance, which may signal that users decreased trust

in the system.

We developed a co-adaptive controller for ankle exoskeletons in Chapter 4, which modified

torque assistance based on major lower-limb joint angles and muscle activation. This algo-

rithm adds to existing literature on heuristic-based co-adaptive control and the simulation-

based findings compare its performance against a controller that utilizes only ankle behavior,

which is common for control of ankle exoskeletons. Jackson et al. [47] previously proposed

and evaluated a co-adaptive controller for a bilateral ankle exoskeleton that directly maps

ankle muscle activity and kinematics to torque profiles. The ankle-only controller in Chapter

4 is analogous to the Jackson controller, as both algorithms modify the exoskeleton torque

profile using TA activation, plantarflexor muscle activity, and ankle plantarflexion. Addi-

tionally, we modulated peak torque in response to different hip, knee, and ankle strategies,

but there exist four parameters that can describe the exoskeleton torque profile used in this

thesis (rise time, fall time, peak torque, peak torque time) [110]. Future studies may in-

vestigate controllers that adjust timing parameters in response to user behavior to support

coordination between the human and exoskeleton. Overall, the formulation of our proposed

co-adaptive controller can inform future algorithm design for ankle exoskeletons and may

potentially map to different systems.

The construct of fluency enables researchers to assess collaboration between a human

and exoskeleton through direct measures of user behavior, as well as support effective ex-

oskeleton usage through algorithms that encourage fluent human-exoskeleton interactions.

While our co-adaptive control algorithm utilizes metrics defined to quantify various aspects of

human-exoskeleton fluency, it may be possible to encourage fluency with different algorithm

formulations without heuristic-based metrics. Since fluency has been defined as maximized

when the exoskeleton and user’s goals align, user behavior that is deemed as fluent depends

on the system and its design goals. In this thesis, we have defined fluent behavior as the re-

duction of plantarflexor muscle activity and minimal deviations from baseline kinematics as
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people walk with an assistive ankle exoskeleton for metabolic cost reduction. For a rehabili-

tative gait exoskeleton, fluent strategies may involve significant changes in joint trajectories

[7] or increases in energy expenditure [22] as people with motor deficits follow the desired ex-

oskeleton joint trajectories to encourage healthy gait patterns. Thus, one control method for

gait training exoskeletons may encourage fluency by minimizing interaction forces between

the human and exoskeleton to support healthy gait patterns using impedance-based control

[97, 8]. Exoskeleton designers can support safe and goal-based human-robot interaction by

supporting fluent behaviors through control algorithm formulations.

5.4 Applications and Recommendations

The co-adaptive control scheme with hip, knee, and ankle measurements for lower-limb

exoskeletons is one of the main immediate applications of this work. The controller adapts

to user behavior and modulates the exoskeleton torque profile to support fluent strategies

and user adaptation to the system. While the control algorithm currently uses hand-tuned

gains that dictate controller behavior, these gains can be used across multiple users once they

have been adjusted based on representative data, as shown in Chapter 4. We have also given

recommendations on extending the control algorithm into operational settings in Section

4.4.2, where the environment may necessitate different modes of locomotion (e.g., ramps,

stairs) and the terrain may be uneven or contain obstacles. Baseline muscle activity and

kinematics measurements may be defined in each locomotion mode to account for intentional

and necessary changes in gait strategies.

This work has also operationalized human-exoskeleton fluency using gait strategies as

people walk using an ankle exoskeleton. Fluent behaviors involve reductions in muscle ac-

tivity and minimal deviations in kinematics, while users with low fluency may increase joint

stiffness via muscle co-contraction and modify their joint angles to resist or compensate for

exoskeleton torque. While we have only assessed fluency with ankle exoskeletons, fluency

can be defined based on the desired exoskeleton system and its goals. For instance, a reha-

bilitative exoskeleton can be used to encourage normal and symmetrical muscle recruitment

and joint trajectories. An interpretation of human-exoskeleton fluency for the rehabilita-

tive robot may thus involve increased muscle activation and significant modifications in joint

kinematics, which opposes our definition of fluency for the assistive Dephy ankle exoskeleton.

Fluency can be incorporated into the design process of exoskeleton controllers, similar to our

proposed co-adaptive algorithm, and used as an evaluation metric for human-exoskeleton

team performance.

We observed in Chapter 3 that participants who experienced exoskeleton controllers with
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poor performance first (Group 2) were more likely to utilize non-fluent strategies than users

who walked with high performing controllers first (Group 1). Users in Group 2 may have

modified their underlying internal model or used a different strategy in anticipation of re-

peated exoskeleton errors with 5-10% error controllers to utilize compensatory strategies,

such as increased hip flexion and TFL activation. In comparison, multiple participants in

Group 1 were able to maintain fluent strategies even after walking with controllers with

higher error rates. We hypothesized that experiencing controllers with lower error may

encourage users to build robust internal models supporting fluent strategies. Users that

experienced higher error controllers may have lost trust in the exoskeleton, as the perceived

system performance lowered due to repeated errors, and utilized compensatory non-fluent

strategies. Thus, we recommend that users should first adapt to and use exoskeletons in set-

tings where error frequency is low (e.g., steady-state walking in laboratory) prior to walking

in more complex environments where errors may be more prevalent (e.g., uneven terrain,

variable speed walking). Training in a controlled environment allows users to build sufficient

experience and trust in the exoskeleton before using the system in uncertain, operational

settings.

The results of Chapter 3 also suggest there may exist a threshold for exoskeleton per-

formance where users will transition from fluent to non-fluent strategies. Users were more

likely to use strategies with increased hip or ankle muscle activity and joint flexion when

the frequency of missed actuations exceeded 5-7%. It is important to define the minimum

performance requirements for an exoskeleton system to ensure user behavior is likely to align

with the goals of the exoskeleton. Our experimental protocols in Chapters 2 and 3 provide an

approach to evaluating the immediate and residual effects of errors on user performance, and

may be adapted to different systems and error modalities. For instance, a knee exoskeleton

applies a different torque profile during gait compared to an ankle exoskeleton, so deviations

in the torque parameters may incur varying responses in user strategies. Exoskeleton perfor-

mance must be robust to a specified threshold prior to use in operational settings to support

user adoption.

5.5 Potential Future Work

This thesis lies in the intersection of exoskeleton control algorithms, human factors, and

human motor control and investigated key questions involving interactions between users

and exoskeletons and algorithm design. Here, we will detail other existing related areas and

topics that we did not address in this thesis, as well as promising areas and studies for future

development.
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5.5.1 Implementation of the Co-Adaptive Controller

A direct extension of this thesis is the implementation of the proposed co-adaptive controller

on an ankle exoskeleton. In this thesis, we utilized the Dephy exoskeleton, which applies a

plantarflexion torque about the ankle, and thus developed the controller for a similar assis-

tive exoskeleton. The algorithm could be directly mapped to exoskeletons with analogous

torque profiles, where the torque ramps to a peak value then decreases for predictable, cyclic

motions. Depending on the task and exoskeleton goal, peak torque or other parameters may

be modulated in response to user behavior. Exoskeletons that apply torques that do not

subscribe to a defined profile or assist tasks that do not have cyclic motions (e.g., upper

limb exoskeletons) require additional modifications to the control algorithm prior to imple-

mentation. While the controller was designed for exoskeletons with one degree of freedom,

increasing actuation to multiple degrees of freedom would allow for different tasks or as-

sistance profiles while adding to algorithm complexity. Greater degrees of freedom would

benefit exoskeletons that exert more control or assistance to support the user’s actions, such

as gait rehabilitation robots that guide patients to normal gait trajectories.

Following the implementation of a co-adaptive controller on a physical exoskeleton system,

the impact of co-adaptive control on user strategies should be compared to that of a fixed

torque controller, as controllers with fixed, predefined torque profiled are a common control

method for exoskeletons. Users should walk with both the fixed torque controller and the

co-adaptive controller in order to evaluate the impact of changing peak torque on user

adaptation. The experimental design of future studies should account for learning effects

by randomizing the order of controllers across participants. It is recommended that users

walk with each controller for at least 30 minutes, which is the time provided during the

training protocol in Chapter 2, and additional experience with longer walking periods may

encourage further adaptation to the exoskeleton. Future studies may assess the rate of

adaptation between using the co-adaptive and fixed torque controller by using measures

of muscle activity across key lower-limb muscles, where user adaptation may manifest as

decreased plantarflexor muscle activity (e.g. gastrocnemius, soleus) and minimal deviations

in joint kinematics compared to walking without an exoskeleton. Users may also converge

to different gait strategies when using a co-adaptive or fixed controller, so it is important

to also evaluate the progression of user behavior as they adapt to the control algorithms.

While we found that some users transitioned from fluent to non-fluent strategies while using

imperfect fixed torque controllers in Chapter 3, it may be possible that users may converge

to more fluent strategies if given additional time to walk with the fixed controller.
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5.5.2 Repeatability of User Strategies

We identified five different gait strategies in Chapter 3, where users modulated joint kine-

matics and muscle activity while walking with a powered ankle exoskeleton and completed

a targeted stepping task. It is important, however, to assess if these strategies would arise

repeatedly while people interact with ankle exoskeletons and develop algorithms to support

collaboration with exoskeletons. We developed experimental methods in Chapter 3 involving

various fixed error frequencies, which allowed us to probe different user behavior and may

be extended to different error modalities and systems. Future studies can investigate the

repeatability of user strategies by utilizing similar experimental methods over multiple ses-

sions, where the participants walk with the same controllers and error frequencies multiple

times over the course of days or weeks. Resulting user strategies could be sorted to the

defined clusters from Chapter 3 by transforming the data using the same identified principal

components and assigning cluster membership based on proximity to cluster centroids. It

may also be possible that strategies that were not identified in Chapter 3 may arise due to

additional exposure to the exoskeleton over multiple sessions or variability across different

users. Overall, it is important to understand variations in user gait strategies in order to de-

velop algorithms which support collaboration between the human and exoskeleton, as users

have individual and differing adaptation rates [2] and strategies as identified in Chapter 3.

5.5.3 Long-Term User Adaptation

Similar to many lower-limb exoskeleton studies, the training periods in Chapters 2 and 3

typically involved 15-30 minutes of steady-state treadmill walking, as the length was re-

stricted due to time constraints of the experimental protocol. A key assumption is that

users have undergone an initial adaptation to the exoskeleton after the training protocol and

baseline measures of performance may be calculated based on the end of training. It has

been shown, however, that adaptation to a bilateral ankle exoskeleton may take up to 109

minutes for healthy expert exoskeleton users [75]. The study by Poggensee et al. [75] also

noted that high variability training with a human-in-the-loop controller that continuously

optimized during training may have sped up adaptation rates. Thus, researchers should

explore if longer training times with the co-adaptive controller that also varies torque pa-

rameters (peak torque) would encourage users to converge to fluent strategies at a different

rate with varying reductions in muscle activity and metabolic cost.

Longitudinal studies, where participants utilize the exoskeleton for periods over the course

of days or weeks, could reveal long-term user adaptation to exoskeletons. Many exoskeleton

studies involving metabolic cost reduction or rehabilitative robots assess changes in user
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performance over one to two sessions in controlled laboratory settings, as the equipment

is typically restricted to the laboratory. A longitudinal study where users walk with the

exoskeleton in various environments over multiple sessions may deepen our understanding

of user adaptation. It may be possible that users can learn multiple gait strategies and un-

derlying internal models and utilize specific strategies depending on the environment. These

experiments are also important prior to adoption of exoskeletons in industry or medicine, as

the results may reveal long-term effects of exoskeleton assistance on workers and patients.

5.5.4 Feedback Modalities to Encourage Fluency

Incorporating different types of feedback modalities may be utilized to encourage differ-

ent behavior when interacting with the exoskeleton. Our previous study found that gait-

synchronized haptic cues could induce changes in gait speed and stride length as users walked

with an ankle exoskeleton [107]. We had observed reductions in feedback benefits when the

exoskeleton was powered on as people balanced collaborating with the exoskeleton and the

haptic cues, but were still able to modulate speed in response to different cue timing. Audi-

tory and visual cues have also been used during gait training for individuals with Parkinson’s

Disease to encourage specific stepping strategies, such as increased stride length [88], gait

cadence [4], and postural control [68]. Thus, it may be possible to use auditory and/or haptic

feedback to encourage certain gait strategies and variability during training protocols.

Training protocols may also be a key tool to support adaptation and convergence to op-

timal strategies when using exoskeletons. Many studies investigating human adaptation to

exoskeletons instruct users to walk with the powered exoskeleton at a predetermined speed

and duration [32, 70, 26] and found reductions in energy expenditure across grouped par-

ticipant data. On an individual scale, however, users may not adapt to the exoskeleton

by reducing the underlying muscle activity as expected [2], resulting in minimal changes to

metabolic cost. Thus, it is important to investigate if incorporating feedback that encour-

ages exoskeleton users explore different strategies when using the exoskeleton will support

adaptation to optimal strategies.

Guided exploration during training has been shown to improve adaptation to novel envi-

ronments. Selinger et al. [84] used an exoskeleton to apply torques that resisted motion in

order to shift people’s energetically optimal step frequencies to those higher or lower than

preferred. When users underwent a training protocol with auditory metronome cues that

enforced large variations in step frequency, they were able to reach the new energetically

optimal step frequency that could not be found with normal gait variability. Mapping this

exploration framework to augmentative exoskeletons that apply torques that assist motion
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during gait, we can also encourage exploration during training that may improve adaptation.

For instance, during guided training, users would walk at various speeds and step frequen-

cies by matching metronome cues similar to [84], which can support convergence to a new

preferred walking strategy with an assistive exoskeleton. For instance, metronome cues of

varying frequencies may be used as auditory feedback to guide the user’s gait cadence to

prompt higher variability during exoskeleton training, which may speed up adaptation and

expose the user to different gait strategies.

5.5.5 Linking Fluency to Additional Metrics

In addition to muscle activity and joint kinematics measurements, human-exoskeleton fluency

can be linked to additional metrics, such as direct measures that align with the exoskele-

ton’s goal (e.g., metabolic cost) and user perception measures. Studies involving lower-limb

assistive exoskeletons often involve measures of metabolic rate through respiratory indirect

calorimetry, so future work can investigate the relationship between different gait strategies,

fluency, and metabolic cost. User perceptions of exoskeleton performance may be assessed

through surveys and used to form perception-based measures of fluency. In Chapter 3, we

used the survey question ”Rate how well the exoskeleton supports your actions” to obtain

a measure of user perception of human-exoskeleton fluency. Participants who utilized one

of the three non-fluent strategies perceived lower exoskeleton supportiveness than those who

used a fluent strategy, which may indicate a connection between direct measures of fluency

and the perception-based measure. Future work can implement specific inquiries on system

reliability and performance to build additional user perception measures of fluency.

5.5.6 Measures of Human-Exoskeleton Trust

We developed a preliminary direct measure of user trust in exoskeletons in Chapter 2, where

changes in trust may manifest as modifications in gait strategies over time. For example,

users may lower their trust in the system due to poor system reliability or predictability,

which may be observed through sustained increases in ankle or hip muscle activation as the

user anticipates exoskeleton errors. Future work could assess our defined trust metric or other

potential measures by establishing a relationship between quantitative and user perception-

based measures of trust. Surveys involving user perception of trust and system performance

may inform perception measures, as perceived system reliability is linked to trust [54]. Similar

to Section 5.5.4, trust may then be linked to other metrics of user performance, such as

metabolic cost, in addition to muscle activity and joint kinematics.
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5.5.7 Different Error Modalities

The experimental protocols in Chapters 2 and 3 were used to assess the impact of missed

actuations on gait strategies and stepping task performance and may be mapped to different

error modalities and systems. For an assistive ankle exoskeleton, errors in actuation timing,

such as early or late actuations, may result in misalignment between muscle-generated plan-

tarflexion and exoskeleton torque and may impede food clearance. The resulting changes

in user behavior may differ between errors in actuation timing and peak torque (e.g., loss

of torque, unexpected reduction of torque). Additionally, we identified a threshold of 5-7%

error where a subset of users would transition between fluent and non-fluent strategies. The

experimental methods in Chapter 3 may be used to determine minimum performance metrics

for various error types prior to adoption in operational settings.

5.6 Concluding Remarks

This thesis explored defined aspects of exoskeleton design, from how people interact with

exoskeletons to a proposed co-adaptive control algorithm. At the beginning of this thesis,

we highlighted the question of how users would interact with exoskeleton errors that may

occur in operational settings. This question was addressed for missed actuation errors in

Chapter 2, in which immediate hip compensatory behaviors were identified in response to

loss of plantarflexion torque to maintain acceptable stepping task accuracy. We then char-

acterized the residual effects of exoskeleton errors, where users utilized different strategies

involving changes in muscle activity and joint kinematics. We also established a definition for

human-exoskeleton fluency—alignment of user and exoskeleton goals—that can be used to

evaluate user behavior when interacting with exoskeletons and as a design metric for control

algorithms. A co-adaptive control algorithm was then designed to support fluency through

torque profile modulation in response to user strategies during level-ground walking. We also

provided recommendations for implementation and extending the work to different environ-

ments and systems. Throughout this thesis, we investigated how humans and exoskeletons

may affect one another as a tightly-coupled system. In the future, designers of exoskeletons

and other wearable robots should continue to account for human behavior and perceptions

to support human-exoskeleton interactions and teams.
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APPENDIX A

Impact of Imperfect Exoskeleton Algorithms

on Step Characteristics, Task Performance,

and Perception of Exoskeleton Performance

A.1 Introduction

Lower-limb exoskeletons have the potential to assist a human user’s motor performance in

laboratory environments by decreasing energy expenditure [70, 110]. In order for exoskele-

tons to be adopted in operational settings, they must be robust in uncertain environments.

However, while exoskeleton control algorithms are continuously being developed and im-

proved [86, 48], they are unlikely to be perfect and will experience errors. For instance, if

gait phase estimation is inaccurate, the exoskeleton may miss an actuation during a stride

and affect gait strategies. Gait outcomes arise from the interaction between the human and

exoskeleton. As the coordinated meshing of actions between the human and robot is defined

as fluency [39], we can consider that human-exoskeleton fluency occurs when the human

and exoskeleton’s goals align. For example, the human decreasing muscular activity for ex-

oskeletons designed to reduce energy expenditure. Thus, it is important to understand how

exoskeleton errors impact gait strategies and human-exoskeleton fluency in order to inform

performance requirements for exoskeleton algorithms.

Previous work has begun exploring the impact of imperfect control algorithms when walk-

ing with a lower-limb exoskeleton. Wu et al. [106] introduced random errors in exoskeleton

operation by not applying an expected exoskeleton torque while participants completed a

targeted stepping task. The study used an algorithm with approximately 2% error, or 98%

accuracy, and found that step characteristics and task accuracy were not impacted by errors

due to adaptations in joint kinematics. The level of error in the study was relatively low,

so it is important to understand how more frequent exoskeleton errors will impact stepping

strategies and task performance. For instance, it is possible that users will begin to in-
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crease muscle activation as they anticipate repeated errors, which is against the goals of the

exoskeleton and would impact human-exoskeleton fluency.

The adoption of exoskeletons in real-world environments also depends on the user’s per-

ception of the exoskeleton’s performance and benefits. Perceived usefulness of technology

has been correlated with the current and future usage in the technology acceptance model

[19], which has been shown to be applicable to various forms of technology [50]. Similarly,

when users interact with exoskeletons, the algorithm’s performance informs their perceptions

of system usefulness, thus impacting their willingness to adopt the technology. Studies have

begun to characterize the perception of exoskeleton performance, such as control parameters

[74] and metabolic benefit [67], under nominal laboratory conditions. It is also necessary

to understand user perception of exoskeleton usefulness when exposed to exoskeleton errors

similar to operational settings.

In this study, we introduce exoskeleton algorithms with defined error rates in order to

understand how users respond to more frequent errors. We hypothesized that there would

be time-dependent and algorithm-dependent changes in (1) step characteristics (step length

and width), (2) task performance (task error), and (3) perception of exoskeleton performance

(survey ratings). We also hypothesized that higher levels of error would cause larger changes

in the above metrics. These results will be interpreted in the context of perceived exoskeleton

usefulness and human-exoskeleton fluency.

A.2 Methods

A.2.1 Participants

Participants (N = 22, age = 25.3±5.0 years (mean±SD), height = 1.67±0.30 m, mass =

68.0±9 kg, leg length = 903.0±43.7 mm, 12 female and 10 male) provided written informed

consent. A subset of N = 12 were analyzed in this study. Participants were excluded if

they had a lower extremity injury within the past 6 months or used an assistive walking

device. The protocol was approved by the University of Michigan Institutional Review

Board (HUM00217656).

A.2.2 Experimental Setup

Participants walked on a treadmill in a room equipped with a 10-camera optical motion

capture system. Reflective markers were placed on the participants according to the Vicon

Plug-in Gait full-body model. Markers were adjusted for the exoskeleton by placing the

lower limb markers on the lateral side of the exoskeleton when necessary. Motion capture
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data were collected at 100 Hz. Study participants wore the Dephy ExoBoot on both legs

(Fig. A.1) (DpEb504, Dephy Inc, Maynard, MA, USA) [63]. The ExoBoot applied torque

at the ankle at push-off during the stance phase of the gait cycle, learned from 25 strides,

which is the same as our previous study [106].

Figure A.1: Powered bilateral ankle exoskeleton, which provides assistance by applying
torque via the inelastic belt attached to the exoskeleton armature (DpEb45, Dephy Inc)
[74].

A.2.3 Protocol

Anthropometric measures were collected prior to walking with the exoskeleton. Leg length

was measured as the distance from the anterior superior iliac spine to the medial malleolus.

Participants were given a target stepping task, which was a 320 mm-long region marked

along the sides of the treadmill, while walking at a fixed speed of 1.2 m/s. Participants were

asked to aim their heel at the center-line of the target region at the end of each stride. The

length of the stepping target was chosen to be the length of the largest exoskeleton boot
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size, a Men’s size 13.

Participants underwent a training protocol where they walked with the stepping target

for 15 minutes with the exoskeleton powered on and torque applied during each stride.

Then, participants were separated into two groups (N=6 per group), which experienced the

exoskeleton control algorithms in different orders. There were 5 different controllers with

0%, 2%, 5%, 7%, and 10% error. This translates to controller accuracies of 100%, 98%,

95%, 93%, and 90% respectively. Errors were introduced randomly throughout each trial by

not actuating the exoskeleton for a single stride. The exoskeleton algorithm also included

a recovery period after each error, where the exoskeleton ramps up from 0% to 50% of the

normal torque on the first stride after each error, then 80% on the second stride after a error,

and finally back to 100% from the third stride onward.

Participants experienced each controller twice for a total of 10 trials. Group 1 started

with a 0% error controller, increased to 10% error, and then decreased to 0% error. Group 2

started with a 10% error controller, decreased to 0% error, and then increased to 10% error.

Details on the groups and control algorithms are shown in Tables A.1 and A.2.

Trial Group 1 Group 2 Order
1 0% 10% 1
2 2% 7% 1
3 5% 5% 1
4 7% 2% 1
5 10% 0% 1
6 10% 0% 2
7 7% 2% 2
8 5% 5% 2
9 2% 7% 2
10 0% 10% 2

Table A.1: Trial order of each participant group, where the percentages represent the error
rate of each control algorithm. The order represents whether the trial is the first or second
time that a participant experiences an error rate.

A.2.4 Survey

Participants were given a survey after every trial to rate their perceptions of the control

algorithms. The questions analyzed in this study and the associated Likert scales of 1 to 5

are described below:

• Rate how you felt the exoskeleton supports your actions.
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Error Rate # of Catch Trials Total # of Strides
0% 0 300
2% 12 600
5% 15 300
7% 21 300
10% 30 300

Table A.2: The number of catch trials and total strides for each error rate, where a catch
trial consists of not actuating the exoskeleton for a single stride.

(1 = extremely hinders actions, 3 = neither hinders nor supports actions, 5 = extremely

supports actions)

• Rate your accuracy in completing the stepping task.

(1 = not at all accurate, 3 = moderately accurate, 5 = extremely accurate)

• Rate the predictability of the exoskeleton’s actions.

(1 = not at all predictable, 3 = moderately predictable, 5 = extremely predictable)

• Rate the probability that you would use this controller again. (1 = not probable, 3 =

neutral, 5 = very probable)

A.2.5 Data Analysis and Statistical Analysis

Gait cycles were segmented with a custom MATLAB script by using the heel marker data

from motion capture to identify heel strikes. Normalized step length (NSL), normalized

step width (NSW), and task error were calculated using heel marker positions and treadmill

velocity. NSL and NSW were calculated as the distance between anterior and lateral foot fall

locations, normalized by leg length. Absolute task error was calculated as the absolute value

of distance between each heel strike and the center-line of the stepping target. Acceptable

absolute task error was determined as ≤ 160 mm, which is half of the 320 mm-long target.

Linear mixed-effects models were fit to NSL, NSW, and task error data with the following

factors: Participant (random, 12 levels), Step Number (continuous, [1, 600 or 1200]), Group

(2 fixed levels), and Order (2 fixed levels). The models were fit using a custom R script

and significance level was set to α = 0.05. Operationally relevant changes were identified as

significant changes in each metric between the beginning and end of a trial that were greater

than the mean standard deviation across the trial.

ANOVAs were fit to the responses of each survey question with the factors of Participant

(random) and Error Rate (5 fixed levels) with significance level set to α = 0.05. Spearman’s
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rank correlation coefficients (rs) were calculated for the survey results to assess if survey

scores were monotonically related.

A.3 Results

0% Error 2% Error 5% Error 7% Error 10% Error
Estimate p Estimate p Estimate p Estimate p Estimate p

Participant 0.675 <0.001 0.685 <0.001 0.673 <0.001 0.670 <0.001 0.668 <0.001
Step Num <0.001 <0.001 <0.001 0.125 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Order 1 vs 2 0.021 <0.001 -0.056 <0.001 0.007 0.001 <0.001 0.728 0.005 <0.001
Group 1 vs 2 0.020 <0.001 0.017 <0.001 0.023 <0.001 0.023 <0.001 0.020 0.0145

Step N*Order 2 <0.001 0.062 <0.001 <0.001 <0.001 0.849 <0.001 0.220 <-0.001 0.0349
Step N*Group 2 <-0.001 0.301 <0.001 0.211 <0.001 0.387 <0.001 0.294 <-0.001 0.497
Order 2*Group 2 -0.017 <0.001 0.054 <0.001 -0.003 0.384 0.011 <0.01 0.007 0.025
Step N*O2*G2 <-0.001 0.090 <-0.001 <0.001 <-0.001 0.272 <-0.001 0.006 <-0.001 0.713

Table A.3: Summary of statistics for linear mixed-effects models (N=12) fitted to normalized
step length (NSL) across all error rates. O2 represents Order 2 and G2 represents Group 2.

0% Error 2% Error 5% Error 7% Error 10% Error
Estimate p Estimate p Estimate p Estimate p Estimate p

Participant 0.136 <0.001 0.133 <0.001 0.135 <0.001 0.133 <0.001 0.143 <0.001
Step Num <0.001 0.699 <0.001 0.813 <-0.001 0.8687 <0.001 0.045 <-0.001 <0.001

Order 1 vs 2 <-0.001 0.778 0.022 <0.001 -0.006 0.003 0.001 0.510 -0.010 <0.001
Group 1 vs 2 -0.001 0.557 0.003 0.065 0.004 0.092 0.010 <0.001 0.003 0.130

Step N*Order 2 <-0.001 0.149 <-0.001 <0.001 <0.001 0.001 <-0.001 0.010 <0.001 <0.001
Step N*Group 2 <-0.001 0.201 <-0.001 0.490 <-0.001 0.954 <-0.001 0.001 <0.001 0.048
Order 2*Group 2 <0.001 0.802 -0.025 <0.001 -0.005 0.112 -0.016 <0.001 <0.001 0.924
Step N*O2*G2 <0.001 0.164 <0.001 <0.001 <-0.001 0.345 <0.001 <0.001 <-0.001 0.007

Table A.4: Summary of statistics for linear mixed-effects models (N=12) fitted to normalized
step width (NSW) across all error rates. O2 represents Order 2 and G2 represents Group 2.

A.3.1 Step Characteristics

While there were significant main effects of Participant, Step Number, Order, Group, and

interaction effects on normalized step length (NSL) across select error rates (Table A.3),

most were not operationally relevant. Pooled NSL across all participants at all error rates

are shown in Fig. A.2 (left). Using the definition of operationally relevant changes, only

participants in Group 2 increased NSL at an error rate of 2% at Order 1 (mean=15.2%

increase, SD=5.7%), despite significant factors in the linear-mixed effects models.

There were significant main effects of the Participant, Step Number, Order, Group, and

interaction effects for normalized step width (NSW) across select error rates, shown in Table
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0% Error 2% Error 5% Error 7% Error 10% Error
Estimate p Estimate p Estimate p Estimate p Estimate p

Participant 79.64 <0.001 135.75 <0.001 118.55 <0.001 112.12 <0.001 101.95 <0.001
Step Num 0.06 <0.001 0.01 <0.001 0.05 <0.001 0.04 <0.001 0.06 <0.001

Order 1 vs 2 41.03 <0.001 7.28 0.005 -15.99 <0.001 14.11 0.002 10.07 <0.001
Group 1 vs 2 38.87 <0.001 -10.47 <0.001 1.99 0.582 -7.40 0.102 -4.00 0.130

Step N*Order 2 0.02 0.075 -0.02 <0.001 0.02 0.033 0.01 0.468 -0.03 <0.001
Step N*Group 2 -0.08 <0.001 -0.01 0.051 -0.02 0.087 0.02 0.131 0.04 0.048
Order 2*Group 2 -34.80 <0.001 -14.49 <0.001 13.50 0.008 48.69 <0.001 22.77 0.924
Step N*O2*G2 -0.002 0.857 0.03 <0.001 -0.02 0.191 0.01 0.544 -0.08 0.007

Table A.5: Summary of statistics for linear mixed-effects models (N=12) fitted to absolute
task error across all error rates. O2 represents Order 2 and G2 represents Group 2.

Figure A.2: (left) Normalized step length (NSL), (middle) normalized step width (NSW),
and (right) absolute task error pooled from all participants (N=12) across all error rates.
For the right figure, each ’x’ marker represents the mean abs. task error of a single trial for
one participant. Each box includes 25th to 75th percentile and whisker length is 1.5*IQR.

A.4. Pooled NSW across all participants at all error rates are shown in Fig. A.2 (middle).

When using the definition of operational relevance, there were no relevant changes in NSW

across all error rates despite significant fitted slopes in the linear models.

A.3.2 Task Accuracy

There were significant main effects of Participant, Step Number, Order, Group, and inter-

action effects on absolute task error, shown in Table A.5. While most participants were

able to achieve acceptable task accuracy (≤160 mm), some participants (6 of 12, 50%) had

significantly higher task error (Table A.6). A majority of participants (8 of 12, 67%) also

experienced a relevant operational change in task accuracy over time (A.7), as defined in

Section II.E. A plot of the absolute task error across all error rates is shown in Fig. A.2

(right).
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Order 1 Order 2

Error ≤ 160mm? N |TaskError| N |TaskError|
0 Y 10 89.58 mm 9 103.44 mm

N 2 213.16 mm 3 223.45 mm

2 Y 8 97.14 mm 9 94.94 mm

N 4 217.88 mm 3 240.22 mm

5 Y 10 104.23 mm 9 94.67 mm

N 2 264.41 mm 3 201.94 mm

7 Y 9 79.25 mm 7 89.27 mm

N 2 235.89 mm 5 219.82 mm

10 Y 10 101.29 mm 8 89.27 mm

N 2 233.40 mm 4 285.29 mm

Table A.6: Table of absolute task error data for acceptable (≤160 mm) and non-acceptable
(>160 mm) task performance. N represents the amount of participants in each group and
|TaskError| is the mean absolute task error per group.

Order 1 Order 2

Error N ∆|TaskError| N ∆|TaskError|
0 6 +65.58 mm 5 +66.83 mm

2 5 +47.67 mm 3 +48.82 mm

5 6 +54.99 mm 3 +63.61 mm

7 5 +48.38 mm 6 +66.57 mm

10 6 +87.74 mm 3 +52.55 mm

Table A.7: Table of operationally relevant changes in task error across all error rates. N is
the amount of participants that experienced changes and ∆|TaskError| is the mean change
in abs. task error for each error rate and Order.

Error Support Accuracy Predictability Usage Prob.
0% 4.08 (0.65) 4.00 (0.78) 4.13 (1.03) 4.17 (0.96)
2% 3.79 (1.02) 3.75 (0.85) 3.21 (1.18) 3.33 (1.52)
5% 3.63 (1.10) 3.54 (0.72) 2.63 (1.21) 2.88 (1.48)
7% 3.58 (1.14) 3.46 (0.88) 2.50 (1.14) 2.88 (1.54)
10% 3.38 (1.31) 3.50 (0.88) 2.41 (1.17) 2.58 (1.56)

Table A.8: Summary of survey responses, where users rated the exoskeleton’s supportiveness,
perceived task accuracy, algorithm predictability, and possibility of future usage on a scale
from 1 (low) to 5 (high). The mean and standard deviation are reported across all error
rates (mean (SD)).

80



A.3.3 Survey Results

The mean and standard deviation of the survey responses across all error rates are shown

in Table A.8. The factor of Error Rate was significant for perceived algorithm predictability

(F (4, 104) = 17.95, p < 0.001), exoskeleton supportiveness (F (4, 104) = 15.41, p < 0.001),

probability of future usage (F (4, 104) = 15.41, p < 0.001), and perceived task accuracy

(F (4, 104) = 4.24, p = 0.003). There was a moderate negative correlation between perceived

predictability and error rates (r = −0.46, p < 0.001), a very weak negative correlation be-

tween supportiveness and error rate (r = −0.18, p = 0.051), and a strong positive correlation

between perceived predictability and supportiveness (r = 0.73, p < 0.001) (Fig. A.3).

Figure A.3: (left) Perceived predictability vs. trial error rate (r = −0.46, p < 0.001),
(middle) perceived supportiveness vs. trial error rate (r = −0.18, p = 0.05), and (right)
perceived predictability vs supportiveness for all participants and trials (r = 0.73, p <
0.001). The numbers are the count of data-points for each combination of predictability,
supportiveness, and error rate.

A.4 Discussion

This study explored the effect of imperfect algorithms on step characteristics, task perfor-

mance, and perceptions of exoskeleton performance. We introduced algorithms with 0%,

2%, 5%, 7%, and 10% error, which corresponds to 100%, 98%, 95%, 93%, and 90% accuracy,

respectively. Participants were also sorted into two groups which experienced each controller

twice, but in different orders. We evaluated the impact of each error rate with respect to

the participant’s group, if it was their first or second exposure to the algorithm (order), and

over the time of each trial (step number). Operationally significant changes were defined as

changes in metrics over time that were greater than the standard deviation.

Overall, participants were able to maintain their step characteristics across error rates for

the assessed Orders and Groups. The data do not support the first hypothesis that there

would be time-dependent changes in step characteristics. Only participants within Group
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Figure A.4: Mean absolute task error plotted against the users’ rating of perceived task
accuracy, where 1 represents low accuracy and 5 represents high accuracy. Each marker
represents the data from one trial for one participant.

2 during the first exposure to 2% error increased NSL by 15.2%. This change in NSL may

have been motivated by the relatively low error rate compared to the previous 5%-10% error

controllers that the Group 2 participants experienced first. Participants may have relearned

to trust the exoskeleton when it performed with lower error, which allowed for improved

collaboration with the exoskeleton torque and thus increased NSL over time. The data had

no observed significant changes in NSW, which can be considered an indicator of mediolateral

stability [5] and may indicate that errors up to 10% do not impact this stability metric.

Our second hypothesis predicted that there would be time-dependent changes to task

accuracy and was supported by these data. There was a significant increase in absolute task

error over each trial. The changes in task accuracy were observed in multiple participants

(67%), regardless of their mean absolute task error, Group, and the Order (Table A.6).

Multiple participants (50%) were also unable to achieve acceptable absolute task accuracy

of ≤160 mm (Table A.7). The changes in task error with the consistent NSL and NSW

indicates that participants may be adjusting their position on the treadmill over time rather

than changing NSL to reach the stepping target. Participants with significant increases in

task error likely shifted further back along the treadmill. The significant task error changes
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may suggest that users directed less attention to completing the stepping task or were unable

to match the treadmill speed and may have slowed down if they had been on a self-paced

treadmill or were overground.

The trend in task accuracy is different from our previous study [106], where participants

were able to consistently achieve acceptable task accuracy when walking with a controller

with 2% error. The difference in task performance between studies may arise as this study’s

participants had experience with controllers with relatively poorer accuracy, impacting their

overall trust in the system and human-exoskeleton fluency. If participants were less trusting

of the system, they may either focus more on coordinating with the exoskeleton’s torque,

adjust their kinematics in anticipation of errors, or begin to fight the system by stiffening

their muscles to restrict joint movement, thus leading to deviations in task performance.

Changes in trust may be linked to the perception of exoskeleton performance, which was

qualitatively assessed through post-trial surveys.

Survey responses on exoskeleton performance and future usage were impacted by the

frequency of controller errors, which supports our third hypothesis of algorithm-dependent

changes in survey responses. As error rates increased, the average score for supportiveness,

predictability, and future usage probability significantly decreased (Table A.8). At 0% error,

participants on average felt that the exoskeleton moderately supports their actions with a

very predictable control algorithm that they would likely use again, enabling them to achieve

very accurate task performance. When errors were more frequent, users’ perceptions of the

exoskeleton become more neutral and tended towards negative. At 10% error, participants

on average felt that the exoskeleton neither hindered nor supported their actions; users found

the algorithm to be slightly to moderately predictable and rated it slightly improbable that

they would use the controller in the future. As perceived predictability of the exoskeleton’s

algorithm decreased, users also reported that the exoskeleton no longer supported their

actions (Fig. A.3). The transition to feeling neutral about the predictability and future

usage of the exoskeleton was observed as errors increase from 2% to 5%. The transition from

positive to negative perception of exoskeleton performance between 2 to 5% error should

inform minimum accuracy requirements for exoskeletons designed to support gait.

Users’ perception of task accuracy was consistently between moderate and very accurate

across all error rates (Table A.8). The data shows otherwise, with 6 participants (50%) with

a mean task error of >160 mm across all controllers, indicating that some users may overesti-

mate their task performance. Additionally, 8 participants (67%) significantly increased task

error over trials across all controllers. The misaligned perceived and actual task accuracy

may prevent users from making accurate adjustments to their stepping strategies to support

acceptable task accuracy.
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Overall, participants maintained step characteristics when walking with an exoskeleton

controlled by imperfect algorithms, but task accuracy and perceptions of exoskeleton per-

formance and future usage were impacted. Multiple participants were not able to achieve

acceptable task accuracy and some participants showed increases in absolute task error over

time as the exoskeleton experienced errors. Users also reported that they perceived exoskele-

ton algorithms as less predictable and less likely to be used in the future as the frequency

of errors increased. It is important to note that users’ survey responses are dependent on

their interpretation of terms such as ”predictability” and ”supportiveness.” For instance, it

is possible that users felt that the exoskeleton was supportive if they were able to feel the

applied torque, regardless of if the exoskeleton assisted or opposed their motions. Further

research should explore differences between actual and perceived exoskeleton goals and the

emergent torques. Alternate exoskeletons may also yield different responses across error

ranges. Future work will involve analyzing the joint kinematics and muscle activity data

collected with this dataset to understand the underlying adaptations across the range of

exoskeleton error frequency collected. The analysis will also help further define algorithm

accuracy requirements for gait-assist exoskeleton controllers.

A.5 Conclusion

This study explored the impact of imperfect exoskeleton algorithms with up to 10% error on

step characteristics, task performance, and perceived exoskeleton performance. Users were

able to maintain step characteristics, but multiple participants were not able to achieve ac-

ceptable task accuracy and also increased task error over time across all error rates. Users’

perception of exoskeleton performance was negatively impacted as the frequency of errors

increased, thus decreasing the probability of future usage. Understanding the effect of the

various exoskeleton error rates will inform minimum exoskeleton algorithm accuracy to sup-

port human-exoskeleton fluency and system performance.
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APPENDIX B

Initial Individual Linear Mixed Effects

Models Fit To Joint Kinematics

Our initial analysis in Chapter 3 involved individual linear mixed effects models to assess

changes in joint kinematics (peak hip flexion during swing, minimum knee flexion during

loading response, peak plantarflexion) across error rates and groups. The model utilized

factors of Error (fixed, 0, 2, 5, 7, 10% error), Leg (fixed, left or right), Order (fixed, the

first or second exposure to the error rate), and Stride Num (continuous, the stride number

associated with each measurement, used as a measure of time). Interaction effects were

calculated across all factors and levels. The intercept fit to each model was evaluated at the

first level of each fixed factor (0% error, left leg, first exposure to 0% error). The model was

fit for each participant and the results (fitted estimates and p-values) have been summarized

in Tables B.1 to B.20. Each table includes a note contextualizing the results of the fitted

model with respect to gait strategies over time.
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Table B.1: S003 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) 4.49E-01 0.108406 -0.058379017 0.739299555 0.276861769 0.232590348
error2 -2.10E+00 5.90E-05 0.105625184 0.747388156 -0.209671082 0.628645347
error5 1.06E+00 0.042368 0.294512622 0.366087163 1.130219327 0.008728445
error7 -1.35E+00 0.046439 0.349078491 0.411267814 0.007704408 0.989054389
error10 -1.87E+00 0.008608 0.143521551 0.747716641 -0.049746204 0.932789498
leg2 -4.92E-01 0.213525 0.230254177 0.353384528 2.69337844 3.10E-16
order2 -9.70E-01 0.014155 -1.639990618 4.30E-11 1.475873677 6.90E-06
stride num -3.00E-03 0.064014 0.000389193 0.701022168 -0.001845745 0.168456402
error2:leg2 8.62E-01 0.203729 0.797253719 0.060989395 -3.011282983 9.16E-08
error5:leg2 1.56E-01 0.87516 -1.227723659 0.049130474 -5.978427742 5.21E-13
error7:leg2 4.08E-01 0.659843 -2.042397723 0.00044401 -5.212639397 1.35E-11
error10:leg2 1.34E+00 0.173054 -1.010144442 0.100811542 -4.983772487 1.01E-09
error2:order2 1.17E+00 0.113672 0.530725302 0.252915175 0.266934552 0.663545823
error5:order2 -2.44E+01 2.00E-16 4.421964943 7.50E-22 -1.771848073 0.00337827
error7:order2 8.54E+00 2.00E-16 -8.801091296 2.58E-47 9.955370464 2.14E-35
error10:order2 1.77E+00 0.078535 2.168311995 0.000595909 -1.663947673 0.046115877
leg2:order2 1.54E+00 0.005842 0.358898554 0.306176507 -6.061971964 4.23E-38
error2:stride num 7.68E-03 0.000336 -0.000806725 0.54775538 0.001747913 0.324531438
error5:stride num -2.56E-02 8.93E-14 0.001084147 0.612922424 -0.016464379 6.77E-09
error7:stride num 2.00E-03 0.656491 -0.00218175 0.438682975 0.000187756 0.959791288
error10:stride num 7.00E-03 0.05137 -0.001426491 0.526498963 0.002130626 0.4742442
leg2:stride num 3.28E-03 0.151255 -0.001535028 0.28430612 -0.017955856 5.00E-21
order2:stride num 3.96E-03 0.082667 0.002402966 0.092945289 0.001217371 0.519597753
error2:leg2:order2 -1.62E+00 0.09221 -0.22625444 0.707072329 3.705579709 3.35E-06
error5:leg2:order2 2.12E+01 2.00E-16 -1.456791738 0.097995668 8.007154907 7.09E-12
error7:leg2:order2 -9.76E+00 1.13E-13 10.4744351 1.89E-36 -2.276614244 0.035862214
error10:leg2:order2 -1.33E+00 0.33969 -1.854270087 0.033190971 6.420592056 2.59E-08
error2:leg2:stride num -4.32E-03 0.123574 -0.004082351 0.020265227 0.014655778 3.23E-10
error5:leg2:stride num 1.88E-02 0.000554 0.000769391 0.821454121 0.036387743 9.52E-16
error7:leg2:stride num 2.40E-05 0.996534 0.004660962 0.17801337 0.024202789 1.29E-07
error10:leg2:stride num -2.75E-03 0.632428 0.005415467 0.133003485 0.022526622 2.36E-06
error2:order2:stride num -4.57E-03 0.130285 -0.001123835 0.553188425 -0.001700024 0.497429452
error5:order2:stride num 1.01E-01 2.00E-16 -0.016077891 5.92E-08 0.019174969 9.94E-07
error7:order2:stride num -1.10E-01 2.00E-16 0.111896142 2.22E-155 -0.124275609 1.13E-113
error10:order2:stride num -8.00E-03 0.115344 -0.00409859 0.197992351 -0.0003882 0.926504794
leg2:order2:stride num -5.69E-03 0.07838 0.00107727 0.594709806 0.016715262 4.79E-10
error2:leg2:order2:stride num 7.88E-03 0.046778 0.001365877 0.582400028 -0.01538396 2.91E-06
error5:leg2:order2:stride num -8.64E-02 2.00E-16 0.002579291 0.589227694 -0.042844231 1.37E-11
error7:leg2:order2:stride num 1.13E-01 2.00E-16 -0.114653303 3.27E-112 0.089137191 5.00E-42
error10:leg2:order2:stride num 4.19E-03 0.606112 0.003041213 0.55064804 -0.02300558 0.000645002

Notes: S003 decreased peak hip flexion by ±2 degrees at 2, 5, 7, and 10% error when com-
pared to 0% error. Minimum knee flexion at loading response generally did not change across
error rates at the first exposure, but varied at 5 and 7% error during the second exposure.
Peak plantarflexion was significantly different across legs and order, which interacted with
error rate.
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Table B.2: S005 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.07494 0.648592 1.741931 1.99E-16 -0.01108 0.965238
error2 -0.48467 0.115708 -3.46619 2.59E-18 0.254116 0.593626
error5 -0.88013 0.004481 -2.13181 8.17E-08 0.491901 0.303913
error7 -0.40517 0.308963 -2.13635 2.91E-05 1.03688 0.092193
error10 0.129017 0.7586 -1.83092 0.000673 0.664684 0.305799
leg2 0.052947 0.820044 -1.28429 1.71E-05 -1.07777 0.00276
order2 1.943722 1.25E-16 -4.44481 2.57E-48 4.50591 6.00E-35
stride num 0.0005 0.599043 -0.01161 2.78E-21 7.39E-05 0.959898
error2:leg2 -1.01424 0.010694 2.905022 1.24E-08 1.396629 0.022975
error5:leg2 2.674444 5.74E-06 2.485452 0.000996 -1.30735 0.15093
error7:leg2 2.10302 0.000115 1.735799 0.012923 -0.061 0.942239
error10:leg2 0.920308 0.111478 1.111221 0.133716 -0.05066 0.954798
error2:order2 -1.35917 0.001425 4.938385 2.39E-19 -2.81338 1.97E-05
error5:order2 0.615522 0.154167 3.243457 5.08E-09 -3.41615 3.29E-07
error7:order2 -0.53579 0.341778 1.942046 0.007199 -3.3331 0.000133
error10:order2 -1.59579 0.006742 3.777629 5.80E-07 -3.44447 0.000156
leg2:order2 0.94827 0.004129 -1.03217 0.01483 0.740252 0.14735
error2:stride num 0.000712 0.571502 0.01172 4.46E-13 -0.00069 0.724498
error5:stride num 0.005211 0.012463 0.007902 0.003116 -0.00753 0.01958
error7:stride num 0.001408 0.593774 0.002984 0.377927 -0.00069 0.866737
error10:stride num 0.001266 0.548748 0.001106 0.68256 0.002103 0.519399
leg2:stride num -0.00035 0.793586 0.008552 7.65E-07 0.007209 0.000543
order2:stride num -0.00042 0.759859 0.012398 1.44E-12 -0.00581 0.00575
error2:leg2:order2 1.143938 0.040427 -0.77881 0.276164 -3.04605 0.000419
error5:leg2:order2 -2.92921 0.000412 -0.33087 0.75533 0.945823 0.460267
error7:leg2:order2 -3.0088 9.65E-05 0.991644 0.315426 -1.53251 0.198433
error10:leg2:order2 0.149302 0.8545 0.604188 0.562551 -0.27274 0.828446
error2:leg2:stride num 0.003205 0.051506 -0.01128 9.46E-08 -0.00866 0.000672
error5:leg2:stride num -0.00946 0.003589 -0.00865 0.03758 0.00818 0.103068
error7:leg2:stride num 0.001163 0.719929 -0.01145 0.00593 -0.00328 0.513312
error10:leg2:stride num -0.00032 0.923431 -0.00785 0.069972 -0.00851 0.103469
error2:order2:stride num 0.003582 0.040852 -0.0159 1.71E-12 0.009545 0.000428
error5:order2:stride num -0.00981 0.000552 -0.01271 0.00048 0.015992 0.000272
error7:order2:stride num -0.00711 0.057309 0.000253 0.957949 0.006469 0.263346
error10:order2:stride num -0.00011 0.970939 -0.00768 0.04158 0.00518 0.254467
leg2:order2:stride num 0.003196 0.097264 -0.0072 0.003569 -0.0038 0.202656
error2:leg2:order2:stride num -0.00748 0.001317 0.008749 0.003373 0.00925 0.010181
error5:leg2:order2:stride num 0.006766 0.134872 0.001984 0.732185 -0.01722 0.013846
error7:leg2:order2:stride num 0.005134 0.264253 0.013147 0.025726 0.000819 0.908282
error10:leg2:order2:stride num -0.01098 0.021014 0.003411 0.575711 0.005597 0.446484

Notes: S005 decreased minimum knee flexion during loading response across error rates
when compared to 0% error and maintained peak hip flexion and plantarflexion. There was
a significant effect of order, which suggests there was a difference in gait strategies between
the first and second exposure to error rates.
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Table B.3: S006 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -1.34063 2.17E-13 0.569804 0.00488 1.338908 9.04E-12
error2 -0.0614 0.857043 0.878455 0.020507 -0.7773 0.033937
error5 1.209161 0.00028 -0.66289 0.073022 0.613422 0.086158
error7 0.964722 0.027819 -0.61705 0.205624 0.091732 0.845662
error10 2.057183 9.05E-06 -1.91675 0.000198 0.653718 0.188855
leg2 -0.84169 0.001081 0.462569 0.10599 -2.04302 1.91E-13
order2 -0.52863 0.039816 -0.15835 0.579636 1.450381 1.63E-07
stride num -0.00123 0.240238 -0.00092 0.433778 -0.00228 0.044121
error2:leg2 1.743464 8.08E-05 -1.83454 0.000191 0.879459 0.064096
error5:leg2 -0.00314 0.996105 0.66937 0.350054 -1.9183 0.005628
error7:leg2 1.885676 0.001713 -0.19886 0.765985 -0.94926 0.141721
error10:leg2 0.592843 0.353025 -0.0326 0.963361 -0.12363 0.857012
error2:order2 3.254229 1.71E-11 -2.82769 1.40E-07 1.539471 0.00298
error5:order2 -1.02567 0.029574 1.160751 0.026806 -0.43596 0.38948
error7:order2 -1.65122 0.007915 0.904957 0.190382 0.628614 0.346734
error10:order2 -1.36365 0.037579 2.209574 0.002454 -1.12333 0.111003
leg2:order2 0.842103 0.020704 1.00855 0.012722 0.444116 0.256251
error2:stride num 0.003077 0.027104 -0.00324 0.036272 0.002441 0.102883
error5:stride num 0.003192 0.131992 0.00091 0.699442 -0.00447 0.049767
error7:stride num 0.004769 0.102702 -0.00364 0.262402 -0.00066 0.833198
error10:stride num -0.00221 0.345122 0.008942 0.000583 -0.00578 0.021485
leg2:stride num 0.002279 0.125424 0.001534 0.353557 0.000661 0.679236
order2:stride num 0.011676 4.69E-15 -0.00083 0.613043 0.001347 0.398196
error2:leg2:order2 -3.95286 2.87E-10 1.979951 0.004406 -1.37227 0.041142
error5:leg2:order2 -0.96724 0.289418 -0.72412 0.475667 1.373926 0.161581
error7:leg2:order2 0.154146 0.856506 -0.15378 0.871126 -0.79107 0.38803
error10:leg2:order2 -0.62683 0.487868 0.087568 0.930548 -0.15153 0.876028
error2:leg2:stride num -0.00534 0.003418 0.002542 0.209923 -0.00272 0.164726
error5:leg2:stride num 0.000362 0.916912 -0.00806 0.036826 0.011718 0.001704
error7:leg2:stride num -0.00912 0.011121 -0.00123 0.757399 0.005063 0.189403
error10:leg2:stride num 0.000738 0.843406 -0.00644 0.121319 0.008187 0.04166
error2:order2:stride num -0.01794 1.18E-19 0.008996 3.94E-05 -0.00417 0.048472
error5:order2:stride num -0.01194 7.72E-05 -0.00453 0.177022 0.00577 0.075328
error7:order2:stride num -0.00534 0.195811 -0.00027 0.953461 -0.00066 0.882005
error10:order2:stride num -0.00993 0.002641 -0.00907 0.013551 0.010987 0.001978
leg2:order2:stride num -0.00852 5.23E-05 -0.00711 0.002366 -0.00016 0.943886
error2:leg2:order2:stride num 0.015636 1.50E-09 0.001192 0.677745 0.00466 0.092909
error5:leg2:order2:stride num 0.009743 0.047885 0.010611 0.052662 -0.01023 0.053244
error7:leg2:order2:stride num 0.004504 0.37575 0.005655 0.317277 0.003422 0.531291
error10:leg2:order2:stride num -0.00027 0.959594 0.010532 0.073239 -0.0088 0.121549

Notes: S006 significantly modified peak hip flexion and minimum knee flexion at select error
rates and across legs, but to a small margin (±2 degrees). While plantarflexion was not
affected across error rates, it was significantly different between legs and order.
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Table B.4: S007 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -1.34063 2.17E-13 0.569804 0.00488 1.338908 9.04E-12
error2 -0.0614 0.857043 0.878455 0.020507 -0.7773 0.033937
error5 1.209161 0.00028 -0.66289 0.073022 0.613422 0.086158
error7 0.964722 0.027819 -0.61705 0.205624 0.091732 0.845662
error10 2.057183 9.05E-06 -1.91675 0.000198 0.653718 0.188855
leg2 -0.84169 0.001081 0.462569 0.10599 -2.04302 1.91E-13
order2 -0.52863 0.039816 -0.15835 0.579636 1.450381 1.63E-07
stride num -0.00123 0.240238 -0.00092 0.433778 -0.00228 0.044121
error2:leg2 1.743464 8.08E-05 -1.83454 0.000191 0.879459 0.064096
error5:leg2 -0.00314 0.996105 0.66937 0.350054 -1.9183 0.005628
error7:leg2 1.885676 0.001713 -0.19886 0.765985 -0.94926 0.141721
error10:leg2 0.592843 0.353025 -0.0326 0.963361 -0.12363 0.857012
error2:order2 3.254229 1.71E-11 -2.82769 1.40E-07 1.539471 0.00298
error5:order2 -1.02567 0.029574 1.160751 0.026806 -0.43596 0.38948
error7:order2 -1.65122 0.007915 0.904957 0.190382 0.628614 0.346734
error10:order2 -1.36365 0.037579 2.209574 0.002454 -1.12333 0.111003
leg2:order2 0.842103 0.020704 1.00855 0.012722 0.444116 0.256251
error2:stride num 0.003077 0.027104 -0.00324 0.036272 0.002441 0.102883
error5:stride num 0.003192 0.131992 0.00091 0.699442 -0.00447 0.049767
error7:stride num 0.004769 0.102702 -0.00364 0.262402 -0.00066 0.833198
error10:stride num -0.00221 0.345122 0.008942 0.000583 -0.00578 0.021485
leg2:stride num 0.002279 0.125424 0.001534 0.353557 0.000661 0.679236
order2:stride num 0.011676 4.69E-15 -0.00083 0.613043 0.001347 0.398196
error2:leg2:order2 -3.95286 2.87E-10 1.979951 0.004406 -1.37227 0.041142
error5:leg2:order2 -0.96724 0.289418 -0.72412 0.475667 1.373926 0.161581
error7:leg2:order2 0.154146 0.856506 -0.15378 0.871126 -0.79107 0.38803
error10:leg2:order2 -0.62683 0.487868 0.087568 0.930548 -0.15153 0.876028
error2:leg2:stride num -0.00534 0.003418 0.002542 0.209923 -0.00272 0.164726
error5:leg2:stride num 0.000362 0.916912 -0.00806 0.036826 0.011718 0.001704
error7:leg2:stride num -0.00912 0.011121 -0.00123 0.757399 0.005063 0.189403
error10:leg2:stride num 0.000738 0.843406 -0.00644 0.121319 0.008187 0.04166
error2:order2:stride num -0.01794 1.18E-19 0.008996 3.94E-05 -0.00417 0.048472
error5:order2:stride num -0.01194 7.72E-05 -0.00453 0.177022 0.00577 0.075328
error7:order2:stride num -0.00534 0.195811 -0.00027 0.953461 -0.00066 0.882005
error10:order2:stride num -0.00993 0.002641 -0.00907 0.013551 0.010987 0.001978
leg2:order2:stride num -0.00852 5.23E-05 -0.00711 0.002366 -0.00016 0.943886
error2:leg2:order2:stride num 0.015636 1.50E-09 0.001192 0.677745 0.00466 0.092909
error5:leg2:order2:stride num 0.009743 0.047885 0.010611 0.052662 -0.01023 0.053244
error7:leg2:order2:stride num 0.004504 0.37575 0.005655 0.317277 0.003422 0.531291
error10:leg2:order2:stride num -0.00027 0.959594 0.010532 0.073239 -0.0088 0.121549

Notes: Hip flexion was significantly higher at 5-10% error compared to 0% error and varied
across leg and order. Minimum knee flexion and peak plantarflexion had small significant
changes at select error rates. Plantarflexion levels differed between legs and order of controller
exposure.
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Table B.5: S009 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) 1.113093 8.81E-10 0.642674 0.01029 0.246537 0.294459
error2 -0.4523 0.182427 -1.84299 8.67E-05 0.170478 0.698751
error5 -0.33317 0.313965 -0.31641 0.489157 1.085566 0.011564
error7 2.578377 4.50E-09 0.764851 0.207125 1.524829 0.007443
error10 -0.10174 0.825795 0.89387 0.16199 1.056888 0.078384
leg2 -0.85622 0.000835 -1.22272 0.00056 -0.87192 0.008777
order2 1.421925 3.03E-08 -1.91601 6.68E-08 0.40025 0.228784
stride num 0.001176 0.260941 -0.00332 0.021789 0.000532 0.695422
error2:leg2 1.151562 0.008843 0.064654 0.91529 -0.33976 0.551788
error5:leg2 1.377759 0.031671 -0.02273 0.97954 -1.66021 0.046194
error7:leg2 -0.76714 0.201691 0.094701 0.909232 1.167877 0.134505
error10:leg2 0.63234 0.320489 0.846808 0.33594 -0.65377 0.428998
error2:order2 -0.94075 0.049922 2.573363 0.000106 0.227498 0.714973
error5:order2 0.434472 0.353148 0.429811 0.50646 -2.01169 0.000941
error7:order2 -1.05833 0.086976 5.354404 4.24E-10 -1.05444 0.189119
error10:order2 0.093012 0.886645 -1.28417 0.154672 0.102731 0.903507
leg2:order2 0.710822 0.049715 -0.49805 0.319888 0.047221 0.920018
error2:stride num -0.00148 0.285719 0.00467 0.014792 -0.00124 0.488907
error5:stride num -0.00545 0.009749 0.001212 0.677673 -0.00533 0.051833
error7:stride num -0.01349 3.61E-06 -0.00117 0.771195 -8.48E-05 0.982077
error10:stride num -0.00603 0.009516 -0.00433 0.177733 -0.00318 0.292625
leg2:stride num 0.00296 0.045521 -0.008 9.32E-05 -0.00201 0.294816
order2:stride num -0.00436 0.003222 0.006133 0.002734 -0.00139 0.468983
error2:leg2:order2 -0.57118 0.358266 -1.16131 0.176761 -0.19748 0.806784
error5:leg2:order2 -3.00605 0.000923 0.221217 0.859909 2.89561 0.01396
error7:leg2:order2 2.041114 0.017474 1.670928 0.15927 -2.00784 0.071787
error10:leg2:order2 1.428431 0.113582 3.311195 0.008005 -0.64148 0.584217
error2:leg2:stride num -0.0041 0.02379 0.005643 0.024518 0.004975 0.034796
error5:leg2:stride num -0.00318 0.356859 0.003471 0.467456 0.012398 0.005751
error7:leg2:stride num 0.008871 0.013392 0.003181 0.521092 -0.00672 0.149145
error10:leg2:stride num -0.00312 0.401151 0.008959 0.081584 0.014349 0.002994
error2:order2:stride num 0.005653 0.003925 -0.01065 8.52E-05 -0.002 0.432823
error5:order2:stride num -0.00097 0.746046 -0.0039 0.34374 0.005548 0.152046
error7:order2:stride num 0.001638 0.685966 -0.02602 3.56E-06 -0.00546 0.299936
error10:order2:stride num 0.002688 0.413577 0.002688 0.55421 -0.01233 0.00391
leg2:order2:stride num -0.00242 0.248141 0.00375 0.194903 -0.00023 0.931828
error2:leg2:order2:stride num 0.002757 0.28265 0.005247 0.139184 0.002681 0.421108
error5:leg2:order2:stride num 0.025878 1.26E-07 0.020716 0.002181 -0.01377 0.030083
error7:leg2:order2:stride num -0.00479 0.352784 0.007927 0.265871 0.014361 0.031925
error10:leg2:order2:stride num 0.013191 0.013194 0.006898 0.348376 -0.00283 0.681894

Notes: S009 peak hip flexion was significantly higher at 7% error and differed between
the first and second exposures. Minimum knee flexion decreased at 2% error and peak plan-
tarflexion increased by approximately 1.5 degrees at 5-7% error. Changes to joint kinematics
were significant but relatively small in magnitude.
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Table B.6: S010 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.02244 0.922795 -0.53746 0.397303 -0.54062 0.209845
error2 0.640076 0.186303 -0.87209 0.511276 3.859629 1.90E-05
error5 1.937308 6.23E-06 -0.33599 0.774656 6.085323 2.90E-14
error7 1.495789 0.008919 0.787113 0.615526 4.509156 2.32E-05
error10 3.191379 1.15E-07 0.608083 0.711937 4.521039 5.38E-05
leg2 0.020464 0.95018 0.143716 0.872839 0.111908 0.85435
order2 2.122958 1.70E-10 -0.06165 0.945891 5.693491 4.72E-20
stride num 0.000143 0.910969 0.003423 0.328769 0.003443 0.147961
error2:leg2 -0.4514 0.455795 -0.99441 0.548997 -1.71655 0.12765
error5:leg2 2.06559 0.013408 -0.3246 0.887234 -3.70462 0.017187
error7:leg2 1.7458 0.025698 -1.02552 0.63255 -0.73464 0.613904
error10:leg2 -2.67378 0.001259 -0.30266 0.893981 -0.41193 0.789341
error2:order2 -1.54618 0.018645 1.81955 0.312421 -4.95247 5.24E-05
error5:order2 -0.55779 0.359669 -0.88568 0.595745 -4.1005 0.000301
error7:order2 2.487257 0.002152 -0.85026 0.701821 -4.51242 0.002783
error10:order2 2.085953 0.01446 -31.5411 2.12E-40 -5.27418 0.000898
leg2:order2 0.292886 0.53214 -3.12605 0.015053 -0.05842 0.94662
error2:stride num -0.00302 0.118692 0.00178 0.737547 -0.00572 0.11283
error5:stride num -0.00305 0.255051 0.000609 0.933894 -0.0047 0.345078
error7:stride num 0.002714 0.472037 0.002276 0.825918 -0.02437 0.000528
error10:stride num -0.00925 0.00208 -0.00292 0.723154 -0.01387 0.013147
leg2:stride num -0.00013 0.94253 -0.00092 0.85349 -0.00071 0.832263
order2:stride num -0.007 0.000191 0.002305 0.653529 -0.01151 0.000969
error2:leg2:order2 0.071205 0.932079 2.519947 0.271301 3.279066 0.03504
error5:leg2:order2 -5.62982 2.13E-06 6.820448 0.035935 2.836769 0.198669
error7:leg2:order2 -3.38478 0.002272 2.055672 0.498657 2.535883 0.218962
error10:leg2:order2 -1.46741 0.212258 32.70465 8.25E-24 0.650919 0.766236
error2:leg2:stride num 0.003266 0.177527 -0.00142 0.830302 0.003791 0.400344
error5:leg2:stride num -0.00975 0.028252 0.000369 0.975864 0.006941 0.401478
error7:leg2:stride num -0.0123 0.007961 -0.00432 0.733724 0.008647 0.315859
error10:leg2:stride num 0.010609 0.027751 -0.00177 0.89327 0.007998 0.372569
error2:order2:stride num 0.006491 0.014472 -0.00506 0.48695 0.007744 0.116911
error5:order2:stride num -0.00603 0.117078 0.006776 0.520266 -0.01775 0.013165
error7:order2:stride num -0.01684 0.001692 -0.00268 0.85521 0.015058 0.131251
error10:order2:stride num -0.00388 0.363924 0.843677 0 0.019607 0.013775
leg2:order2:stride num -0.01724 9.42E-11 -0.00604 0.406358 -0.00124 0.800987
error2:leg2:order2:stride num 0.016814 7.74E-07 0.006229 0.503461 -0.00493 0.435394
error5:leg2:order2:stride num 0.045654 7.50E-13 -0.0153 0.378779 0.001772 0.880696
error7:leg2:order2:stride num 0.040988 5.33E-10 0.0108 0.549494 -0.01186 0.333203
error10:leg2:order2:stride num 0.021451 0.001757 -0.83893 0 -0.00016 0.989836

Notes: S010 significantly increased peak plantarflexion across 2-10% error compared to 0%
error and the effects of error level interacted with exposure order. The participant also
increased peak hip flexion at swing when walking with 5-7% error compared to 0% error.
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Table B.7: S011 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.50426 0.000927 -1.45914 2.00E-09 1.732141 6.19E-16
error2 -0.31895 0.262118 0.723678 0.110633 -1.55358 9.83E-05
error5 -0.41161 0.142924 1.548794 0.000552 -3.31694 5.21E-17
error7 1.342948 0.000271 2.590178 1.07E-05 -0.94501 0.067172
error10 1.222689 0.001657 1.86998 0.002553 1.318874 0.015402
leg2 0.778502 0.000304 1.572732 4.82E-06 0.071904 0.811602
order2 0.482271 0.025044 0.828951 0.015736 -2.95997 1.89E-22
stride num 0.000588 0.503816 0.003395 0.015481 -0.0002 0.873584
error2:leg2 0.793296 0.031639 -0.26217 0.655967 1.449668 0.005073
error5:leg2 -1.56013 0.004008 0.779459 0.367045 1.471675 0.052597
error7:leg2 -1.57555 0.00178 -3.27072 4.80E-05 1.60155 0.023328
error10:leg2 -1.61595 0.002535 -1.52923 0.073064 -1.94009 0.009658
error2:order2 -0.51044 0.204445 -0.40696 0.525768 1.348858 0.016717
error5:order2 -0.05642 0.88649 -1.79756 0.004368 4.834189 3.98E-18
error7:order2 -1.94371 0.000194 -2.47429 0.002921 0.545062 0.455226
error10:order2 -1.27732 0.020098 -6.56415 8.58E-14 -1.42304 0.064482
leg2:order2 0.092092 0.762335 -0.33067 0.495939 8.353011 1.04E-80
error2:stride num 0.00059 0.612115 -0.00673 0.000294 0.001922 0.238585
error5:stride num 0.003254 0.074989 -0.0023 0.430949 0.004833 0.059093
error7:stride num -0.00427 0.080499 -0.01414 0.000288 -0.00197 0.564599
error10:stride num -0.00582 0.002918 -0.00451 0.14728 -0.00661 0.015712
leg2:stride num 0.001731 0.165044 -0.00048 0.81029 0.001609 0.356845
order2:stride num -0.00235 0.058521 -0.0036 0.069595 -0.00247 0.15677
error2:leg2:order2 -0.43148 0.408381 0.274493 0.741538 -2.63977 0.00031
error5:leg2:order2 2.296252 0.002711 -0.67839 0.57827 -3.53699 0.000979
error7:leg2:order2 1.442921 0.043145 3.407613 0.002757 -0.96198 0.335734
error10:leg2:order2 1.232135 0.103395 3.646552 0.00252 1.341562 0.205563
error2:leg2:stride num -0.00296 0.053006 0.00205 0.399862 -0.00118 0.581682
error5:leg2:stride num 0.003478 0.236668 -0.01095 0.019469 0.001215 0.767939
error7:leg2:stride num 0.003069 0.306628 0.016576 0.000541 -0.0049 0.244313
error10:leg2:stride num 0.004523 0.14809 -0.0028 0.574099 0.007009 0.109633
error2:order2:stride num 0.003 0.06842 0.003978 0.1297 0.000831 0.718552
error5:order2:stride num -0.00315 0.216189 -0.0025 0.537135 -0.00939 0.008465
error7:order2:stride num 0.0081 0.019114 0.003262 0.553784 0.009463 0.050634
error10:order2:stride num 0.010003 0.000297 0.013567 0.002085 0.011508 0.002959
leg2:order2:stride num -0.00206 0.24255 0.002158 0.442732 0.001455 0.555569
error2:leg2:order2:stride num 0.002018 0.34998 -0.00261 0.448639 0.002033 0.501518
error5:leg2:order2:stride num -0.007 0.090445 0.011363 0.084657 0.008927 0.123065
error7:leg2:order2:stride num -0.00383 0.368547 -0.01182 0.081556 -0.00323 0.587995
error10:leg2:order2:stride num -0.00925 0.036522 -0.00573 0.416197 -0.01627 0.008649

Notes: Participant S011 initially decreased peak plantarflexion at lower error rates (2-5%
error), then increased peak hip flexion at swing at higher error rates (7-10%), potentially
signalling a change in strategy across error levels. Minimum knee flexion also increased at
5-10% error.
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Table B.8: S012 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) 0.067896 0.687195 0.681882 0.000574 0.108996 0.653935
error2 0.305328 0.333774 -0.78492 0.034247 -0.97292 0.032732
error5 1.486446 1.47E-06 -0.60012 0.096983 -3.98762 4.65E-19
error7 -1.04823 0.009917 -1.49214 0.001761 -2.69428 4.40E-06
error10 -1.39356 0.001218 -2.09722 3.37E-05 -2.9779 1.68E-06
leg2 0.191967 0.420821 -0.45978 0.100376 -0.0326 0.924461
order2 -0.88087 0.000224 -0.35898 0.199516 -2.45586 1.12E-12
stride num -0.00045 0.642242 -0.00455 7.13E-05 -0.00073 0.605002
error2:leg2 0.265869 0.513735 0.085989 0.857138 1.486496 0.011374
error5:leg2 -1.10522 0.064187 0.990835 0.157246 3.093924 0.00033
error7:leg2 0.896859 0.107348 2.563041 8.92E-05 3.35624 2.99E-05
error10:leg2 -1.95307 0.000994 -0.00865 0.990079 -0.13839 0.87137
error2:order2 -1.46623 0.00104 -0.88969 0.08968 3.289796 3.45E-07
error5:order2 -0.83579 0.055651 -0.07449 0.88439 6.21778 1.09E-22
error7:order2 0.636746 0.269019 -0.87342 0.196296 5.818101 2.98E-12
error10:order2 0.162176 0.789936 0.471485 0.509214 5.203275 3.39E-09
leg2:order2 -3.90205 2.25E-30 0.885662 0.025252 5.839438 1.53E-32
error2:stride num 0.000763 0.554379 0.001887 0.212547 -0.00036 0.847982
error5:stride num -0.00911 3.62E-06 0.002129 0.355508 0.015169 9.00E-08
error7:stride num -0.00502 0.063688 0.006223 0.050219 0.009084 0.020031
error10:stride num -0.00102 0.637415 0.005347 0.035336 0.007888 0.011544
leg2:stride num -0.00128 0.353023 0.003065 0.058026 0.000217 0.912891
order2:stride num -0.00348 0.011671 0.002319 0.151558 0.001605 0.41911
error2:leg2:order2 1.133181 0.049754 0.824491 0.223622 -7.28475 3.34E-18
error5:leg2:order2 1.050937 0.214188 -1.55978 0.116149 -9.52696 7.62E-15
error7:leg2:order2 1.229017 0.119558 -1.81571 0.050015 -7.28855 1.73E-10
error10:leg2:order2 4.203742 5.58E-07 -1.04606 0.28755 -4.88541 5.42E-05
error2:leg2:stride num -0.00168 0.31721 -0.00082 0.679635 0.000387 0.873445
error5:leg2:stride num 0.000364 0.910037 -0.00226 0.548645 -0.00898 0.052962
error7:leg2:stride num -0.00968 0.003622 -0.01831 2.81E-06 -0.01895 7.88E-05
error10:leg2:stride num -0.0024 0.489214 -0.0052 0.200818 0.00358 0.473612
error2:order2:stride num 0.004791 0.00867 0.000373 0.8618 -0.00332 0.207595
error5:order2:stride num 0.007288 0.008711 -0.00212 0.516158 -0.02123 1.22E-07
error7:order2:stride num 0.010988 0.004136 0.000383 0.932074 -0.01322 0.016703
error10:order2:stride num 0.003202 0.295669 -0.00605 0.092113 -0.0055 0.212932
leg2:order2:stride num -0.001 0.607718 -0.00344 0.132066 -0.00308 0.272642
error2:leg2:order2:stride num 0.000441 0.853334 0.001872 0.503734 0.01073 0.001829
error5:leg2:order2:stride num 0.005718 0.208926 0.005947 0.26533 0.021264 0.001201
error7:leg2:order2:stride num 0.003623 0.442066 0.016175 0.003461 0.013148 0.053063
error10:leg2:order2:stride num 0.003748 0.444243 0.011825 0.039723 -0.01897 0.007275

Notes: Participant S012 significantly decreased peak plantarflexion at 2-10% error with
decreases in minimum knee flexion at higher error levels (5-10%). The participant also
increased hip flexion at 5% error, then decreased hip flexion at 7-10% error. Hip flexion and
plantarflexion were also affected by order of error exposure.
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Table B.9: S013 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.02966 0.769063 -0.90887 7.62E-13 0.91819 5.34E-09
error2 0.299844 0.113129 -0.40748 0.085087 -0.36863 0.209876
error5 -0.52603 0.004398 0.112821 0.624945 0.209183 0.465691
error7 0.152261 0.533644 0.888663 0.003687 -0.58509 0.123683
error10 -0.0987 0.701911 1.140846 0.000408 1.001983 0.012419
leg2 1.113729 8.48E-15 -0.11807 0.50859 -1.35327 1.20E-09
order2 -0.52114 0.000265 -0.24405 0.171511 0.990604 8.16E-06
stride num 0.003826 6.40E-11 -0.00256 0.000464 -1.53E-06 0.998651
error2:leg2 -1.4354 4.44E-09 -0.27162 0.373323 -0.28616 0.450306
error5:leg2 1.398728 9.83E-05 0.418158 0.351181 0.52531 0.345856
error7:leg2 -1.01764 0.002364 -1.52197 0.000277 0.267537 0.606638
error10:leg2 -0.15323 0.666073 0.602907 0.174512 -0.46005 0.404276
error2:order2 0.638506 0.017055 -0.31664 0.343882 1.009947 0.015144
error5:order2 0.345435 0.185673 -0.56352 0.084234 1.117945 0.005851
error7:order2 -0.30389 0.379636 -1.37495 0.001488 1.276163 0.017592
error10:order2 -0.7989 0.028518 -1.7223 0.000161 0.490799 0.386278
leg2:order2 0.206584 0.30633 -0.48866 0.053004 0.587339 0.061229
error2:stride num -0.00373 1.49E-06 0.001929 0.045963 0.003512 0.003458
error5:stride num 0.001086 0.355709 -0.0001 0.944064 0.002415 0.1864
error7:stride num -0.00491 0.002491 -0.00083 0.683755 0.002297 0.362049
error10:stride num -0.00385 0.003002 -0.00143 0.376691 -0.00315 0.118321
leg2:stride num 0.000294 0.721545 0.000936 0.364261 0.004287 0.000837
order2:stride num -0.00088 0.286368 0.001827 0.075959 0.004142 0.001215
error2:leg2:order2 0.545446 0.114901 0.419966 0.331572 0.854956 0.111669
error5:leg2:order2 0.458598 0.394564 -0.5531 0.411507 -2.03365 0.015126
error7:leg2:order2 1.224528 0.009666 1.144553 0.053016 0.433341 0.555361
error10:leg2:order2 -0.10624 0.832432 0.000307 0.999609 4.510646 8.03E-09
error2:leg2:stride num 0.000483 0.632502 -0.00027 0.83198 -0.00522 0.000882
error5:leg2:stride num -0.00718 0.000197 -0.00132 0.584051 -0.00963 0.001308
error7:leg2:stride num 0.004255 0.032759 0.002591 0.29838 -0.00398 0.198076
error10:leg2:stride num -0.00748 0.000317 -0.00515 0.047317 0.000708 0.826232
error2:order2:stride num -0.00188 0.084515 -0.00068 0.619697 -0.00716 2.47E-05
error5:order2:stride num -0.00391 0.018757 0.000835 0.687946 -0.00517 0.045268
error7:order2:stride num -0.00012 0.95999 0.003876 0.17649 -0.00342 0.33688
error10:order2:stride num 0.003366 0.066407 0.003226 0.159266 -0.00173 0.542506
leg2:order2:stride num 0.000925 0.427663 -0.00114 0.433908 -0.00633 0.000479
error2:leg2:order2:stride num 0.000834 0.559084 0.001148 0.520129 0.007729 0.0005
error5:leg2:order2:stride num -0.00322 0.286062 0.003612 0.337829 0.015959 0.00066
error7:leg2:order2:stride num -0.00412 0.143211 -0.00203 0.563581 0.00699 0.110236
error10:leg2:order2:stride num 0.00905 0.002056 0.004359 0.234804 -0.01245 0.006354

Notes: S013 exhibited small but significant changes in hip flexion (5% error), knee flexion
(7-10% error), and peak plantarflexion (10% error) at select error levels. Hip flexion and
plantarflexion metrics were also different across legs and exposure order. Interaction effects
between error levels, leg, and stride number were also observed.
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Table B.10: S014 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.09301 0.395282 0.400104 2.77E-07 -0.0622 0.803481
error2 -1.2558 9.23E-10 -0.64305 9.85E-06 -0.25512 0.585103
error5 -1.06749 9.95E-08 -0.7967 2.18E-08 1.001657 0.028376
error7 0.207912 0.430318 0.059803 0.749412 -6.91447 6.33E-30
error10 -1.01817 0.000271 0.081458 0.681345 -8.07344 7.82E-36
leg2 -0.5377 0.000522 -0.122 0.26735 0.406595 0.250517
order2 0.7642 8.23E-07 -0.56884 2.39E-07 1.944762 4.06E-08
stride num 0.00062 0.326717 -0.00267 3.13E-09 0.000415 0.774034
error2:leg2 1.568711 3.75E-09 0.36248 0.054526 -0.48025 0.42836
error5:leg2 1.30813 0.000742 0.3315 0.228309 -2.36935 0.007465
error7:leg2 0.904477 0.012363 0.236214 0.357417 7.669745 2.78E-20
error10:leg2 2.225957 7.84E-09 -0.06331 0.816725 8.755062 4.79E-23
error2:order2 0.998595 0.000562 0.45294 0.027516 4.175431 3.00E-10
error5:order2 0.700837 0.013227 0.826826 3.92E-05 -2.54417 8.37E-05
error7:order2 -1.52041 4.64E-05 0.195561 0.460172 7.507645 1.94E-18
error10:order2 0.457806 0.246516 0.341094 0.224095 8.157007 2.68E-19
leg2:order2 3.092324 5.32E-44 0.167353 0.281768 -1.86883 0.00019
error2:stride num 7.82E-05 0.925574 0.00194 0.001108 0.001093 0.567458
error5:stride num -0.00188 0.140375 0.002675 0.00313 -0.00352 0.227025
error7:stride num -0.00327 0.06246 0.001168 0.349185 -0.00612 0.127308
error10:stride num 0.0013 0.354851 0.001293 0.195073 0.000518 0.871858
leg2:stride num 0.003599 6.07E-05 0.000807 0.204873 -0.00272 0.18443
order2:stride num -0.00385 1.73E-05 -0.00171 0.007034 -0.00099 0.62895
error2:leg2:order2 -1.46371 9.78E-05 -0.91251 0.000624 -2.82497 0.000994
error5:leg2:order2 -1.52526 0.005394 1.178575 0.00247 4.517306 0.000312
error7:leg2:order2 -1.03082 0.043747 -0.91125 0.012089 -7.10565 1.29E-09
error10:leg2:order2 -3.87311 1.32E-12 -0.15029 0.697243 -8.71879 2.77E-12
error2:leg2:stride num -0.00279 0.011204 -0.00099 0.206086 0.001978 0.430562
error5:leg2:stride num -0.00049 0.815283 -0.00162 0.275947 0.009519 0.046118
error7:leg2:stride num 0.001927 0.372046 -0.00436 0.004492 0.006281 0.202889
error10:leg2:stride num -0.0026 0.247923 -0.00331 0.038052 0.002526 0.622911
error2:order2:stride num 0.002542 0.031794 0.001301 0.12163 -0.02058 3.54E-14
error5:order2:stride num -0.00068 0.707506 -0.00103 0.419698 0.012091 0.003335
error7:order2:stride num 0.01007 5.17E-05 0.00069 0.695971 0.01011 0.075013
error10:order2:stride num -0.00056 0.778752 0.000663 0.638417 -0.00124 0.784744
leg2:order2:stride num 0.001896 0.13429 0.002499 0.005464 0.012429 1.78E-05
error2:leg2:order2:stride num -0.0009 0.561887 0.000152 0.890053 0.008578 0.015589
error5:leg2:order2:stride num 0.001766 0.549741 -0.00159 0.448115 -0.0289 1.89E-05
error7:leg2:order2:stride num -0.0075 0.013997 0.003158 0.145213 -0.02086 0.0028
error10:leg2:order2:stride num 0.002836 0.37239 0.001345 0.55155 -0.01075 0.138913

Notes: Participant S014 decreased peak hip flexion by approximately 1 degree across error
rates of 2, 5, and 10% compared to 0% error. Peak plantarflexion increased at 5% error and
decreased at higher levels of 7-10% error. Joint kinematics were also significantly different
across exposure order and interaction effects between error levels, leg, and order were ob-
served.
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Table B.11: S015 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -1.99575 4.08E-58 -0.00144 0.991798 3.39486 1.84E-52
error2 0.51022 0.022659 0.29529 0.251349 -0.01419 0.971845
error5 1.033988 2.28E-06 -0.27129 0.280149 0.343613 0.38128
error7 0.470859 0.102613 -0.17283 0.602382 -1.60582 0.001962
error10 1.842364 1.30E-09 -0.18814 0.589086 -3.04404 2.40E-08
leg2 -0.22296 0.195096 0.316336 0.110038 -0.26182 0.397182
order2 0.579923 0.000648 0.024614 0.899759 1.223969 6.23E-05
stride num 0.00486 5.94E-11 -6.57E-05 0.938488 0.00097 0.465595
error2:leg2 -0.24336 0.402343 0.328578 0.325629 -0.6453 0.216634
error5:leg2 -1.0415 0.013808 0.391027 0.421395 -2.05408 0.006897
error7:leg2 0.200498 0.611288 0.175129 0.699544 2.257599 0.001464
error10:leg2 0.356032 0.394077 -0.28701 0.550317 1.283935 0.087297
error2:order2 -0.51977 0.09895 -0.46309 0.201216 -0.26499 0.639677
error5:order2 -1.3486 1.26E-05 0.254828 0.472523 -0.04863 0.93008
error7:order2 -1.86773 4.60E-06 -0.69165 0.139591 0.610383 0.403969
error10:order2 -6.50909 1.27E-50 -0.40974 0.404547 3.734148 1.21E-06
leg2:order2 -0.7262 0.002522 0.581168 0.035524 0.049667 0.908417
error2:stride num -0.00333 0.000449 -0.00078 0.474202 -0.00164 0.335248
error5:stride num -0.00325 0.021197 0.001011 0.532582 -0.00466 0.066028
error7:stride num 0.002193 0.254546 -0.00136 0.538564 0.005081 0.141845
error10:stride num -0.00439 0.004612 0.000118 0.947354 0.00802 0.003958
leg2:stride num -1.02E-05 0.992215 0.000156 0.897028 -0.00237 0.208283
order2:stride num -0.00348 0.000564 0.000288 0.804097 -0.00259 0.153294
error2:leg2:order2 1.058644 0.009663 -1.07471 0.022371 -0.71829 0.32838
error5:leg2:order2 3.2848 3.87E-08 -0.49432 0.471023 -1.13938 0.287627
error7:leg2:order2 0.654409 0.239717 0.014973 0.98134 -3.44664 0.000576
error10:leg2:order2 3.044993 1.22E-07 0.815699 0.216946 -5.3056 2.90E-07
error2:leg2:stride num 0.00126 0.314787 -0.0024 0.095621 0.002791 0.215238
error5:leg2:stride num 0.005163 0.02462 -0.00276 0.295863 0.014948 0.000297
error7:leg2:stride num -0.00545 0.021539 -0.00055 0.838871 -0.00451 0.28992
error10:leg2:stride num -0.00039 0.875463 -0.00053 0.853167 -0.00393 0.375233
error2:order2:stride num 0.002257 0.085659 0.000722 0.632366 0.002639 0.263434
error5:order2:stride num 0.003146 0.113458 -0.00251 0.272548 0.003978 0.265406
error7:order2:stride num -0.01785 4.99E-11 0.004832 0.120806 0.000191 0.968615
error10:order2:stride num 0.00742 0.000638 -0.00034 0.890227 -0.0079 0.04282
leg2:order2:stride num 0.004896 0.000605 -0.0053 0.001249 0.001403 0.584049
error2:leg2:order2:stride num -0.00483 0.005208 0.006772 0.000662 0.000518 0.867486
error5:leg2:order2:stride num -0.01298 6.04E-05 0.005498 0.139287 -0.00272 0.639623
error7:leg2:order2:stride num 0.011179 0.000798 -0.00051 0.893966 0.004014 0.502512
error10:leg2:order2:stride num -0.00664 0.044736 0.001223 0.747796 0.012846 0.030691

Notes: S015 increased peak swing hip flexion across 2-5% error in comparison to 0% error
while decreasing peak plantarflexion at higher levels of error (7-10%). No significant changes
in knee behavior were observed. There was a significant main effect of order for hip flexion
and plantarflexion, as well as interaction effects between error level, order, and leg.
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Table B.12: S017 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) 0.506965 0.04024 -0.13158 0.683972 -3.57779 6.84E-15
error2 -1.80664 7.79E-06 0.10421 0.843483 4.051798 6.08E-08
error5 -1.49749 0.000151 1.193879 0.020866 3.062736 2.81E-05
error7 -1.67445 0.000993 1.565698 0.01857 4.153678 1.02E-05
error10 -1.45288 0.006625 1.079526 0.12295 6.216395 3.78E-10
leg2 -0.63116 0.071648 -1.81168 7.90E-05 2.191768 0.000726
order2 -0.88457 0.005539 -0.89511 0.031887 6.759966 2.00E-16
stride num 0.004872 0.023016 -0.00743 0.008077 0.022748 1.04E-08
error2:leg2 2.34052 1.03E-05 4.623065 3.03E-11 -0.86374 0.378
error5:leg2 2.347062 0.001608 6.182937 2.39E-10 -1.42568 0.3
error7:leg2 1.702079 0.014675 4.369657 1.75E-06 -4.1229 0.0014
error10:leg2 1.760911 0.016992 0.867213 0.368769 -6.57102 1.52E-06
error2:order2 3.413697 6.94E-10 2.491916 0.000563 -6.05571 3.29E-09
error5:order2 1.45257 0.007136 0.387148 0.583441 -4.27107 1.93E-05
error7:order2 2.20208 0.001779 1.060908 0.249558 -7.14198 4.52E-08
error10:order2 0 0 0 0 0 0
leg2:order2 -1.23987 0.00605 0.59127 0.316798 -4.60081 3.89E-08
error2:stride num 0.001262 0.594087 0.00319 0.303309 -0.02725 5.65E-10
error5:stride num -0.00295 0.318725 0.004709 0.223333 -0.02326 2.14E-05
error7:stride num -0.00076 0.837977 0.000305 0.94983 -0.03532 2.61E-07
error10:stride num -0.00285 0.368172 0.000247 0.952535 -0.03441 4.68E-09
leg2:stride num -0.00487 0.110839 0.00472 0.23745 -0.00793 0.16
order2:stride num -0.00209 0.3922 0.010127 0.001512 -0.02846 3.17E-10
error2:leg2:order2 -1.5703 0.029319 -0.96551 0.305666 5.787862 1.44E-05
error5:leg2:order2 -1.6076 0.1186 -0.90435 0.502152 8.242315 1.56E-05
error7:leg2:order2 0.257232 0.790446 -1.58638 0.210454 9.366771 1.80E-07
error10:leg2:order2 0 0 0 0 0 0
error2:leg2:stride num -0.00178 0.585997 -0.00026 0.951881 0.008399 0.165
error5:leg2:stride num -0.00299 0.51754 -0.01142 0.05914 0.013386 0.118
error7:leg2:stride num 0.002076 0.660746 0.001806 0.770516 0.029202 0.000855
error10:leg2:stride num 0.000909 0.852295 -0.00166 0.794579 0.036837 4.62E-05
error2:order2:stride num -0.00706 0.01247 -0.01167 0.001611 0.034157 7.36E-11
error5:order2:stride num 0.004264 0.258307 -0.00974 0.048611 0.024305 0.000502
error7:order2:stride num 0.001262 0.797293 -0.01018 0.113187 0.049261 6.41E-08
error10:order2:stride num 0 0 0 0 0 0
leg2:order2:stride num 0.005312 0.125671 -0.0075 0.098498 0.030004 3.03E-06
error2:leg2:order2:stride num 0.003435 0.371154 0.005662 0.259937 -0.02878 5.22E-05
error5:leg2:order2:stride num 0.003918 0.514474 0.007796 0.321544 -0.04151 0.000192
error7:leg2:order2:stride num -0.00593 0.339703 0.010051 0.216441 -0.05237 5.41E-06
error10:leg2:order2:stride num 0 0 0 0 0 0

Notes: Peak plantarflexion significantly increased and peak hip flexion decreased across 2-
10% error compared to 0% error. Leg and order factors were observed to have significant
main and interaction effects on joint kinematics. No estimates were available for 10% error
at the second exposure, as the trial data was unavailable due to file corruption during data
collection.
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Table B.13: S018 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -1.05914 2.67E-12 -0.35882 0.009795 -0.87806 0.1793
error2 2.591046 5.68E-14 -0.15543 0.622708 -0.56117 0.705979
error5 -1.93485 2.71E-12 0.5332 0.035653 -1.16411 0.329872
error7 0.750148 0.040074 -0.59294 0.077882 0.625508 0.692771
error10 2.318936 1.92E-09 -1.3488 0.000144 -0.22237 0.89401
leg2 -0.0056 0.979089 0.054629 0.78102 0.750458 0.417376
order2 6.012629 8.73E-156 -1.97593 1.82E-23 -1.21098 0.19032
stride num 0.007061 7.70E-16 0.002392 0.002887 0.005854 0.121311
error2:leg2 -1.85961 9.35E-06 0.037556 0.922418 -2.15546 0.235262
error5:leg2 -3.41827 1.78E-10 0.260826 0.595746 -2.29114 0.322342
error7:leg2 0.21028 0.673807 -0.58549 0.202974 -1.56664 0.469354
error10:leg2 -0.91413 0.084817 -0.87183 0.07416 2.163966 0.346483
error2:order2 -5.61515 9.26E-36 0.896419 0.028401 1.038265 0.589673
error5:order2 -2.79887 9.56E-13 0.282305 0.432326 2.289929 0.176201
error7:order2 -3.10938 1.95E-09 -0.01929 0.967639 3.350126 0.134642
error10:order2 -5.02532 4.95E-20 1.2807 0.010664 2.719368 0.249332
leg2:order2 -1.65783 4.37E-08 1.446755 2.08E-07 -0.57122 0.662604
error2:stride num -0.0073 5.32E-07 -0.00204 0.127375 0.000699 0.911627
error5:stride num 0.005027 0.004235 -0.00585 0.000302 0.00834 0.273377
error7:stride num 0.001983 0.413009 -0.00183 0.412701 0.000335 0.97455
error10:stride num 0.003114 0.107897 -0.00377 0.034428 0.008985 0.284425
leg2:stride num 6.10E-05 0.960599 -0.00036 0.753349 -0.005 0.350538
order2:stride num 0.009797 2.61E-15 -0.00708 4.82E-10 -0.01417 0.008037
error2:leg2:order2 2.731031 9.66E-07 0.387213 0.449672 4.315658 0.073618
error5:leg2:order2 5.861704 1.09E-07 2.541825 0.012196 4.159442 0.383514
error7:leg2:order2 0.492235 0.486013 2.337095 0.000331 2.110159 0.490787
error10:leg2:order2 1.457079 0.052117 0.265888 0.700134 -1.20599 0.710644
error2:leg2:stride num 0.005939 0.000873 -0.00089 0.58919 0.004003 0.604344
error5:leg2:stride num 0.01683 5.58E-09 -4.35E-05 0.9869 -0.00123 0.921591
error7:leg2:stride num 0.001995 0.502735 -0.00151 0.581948 0.012616 0.328102
error10:leg2:stride num 0.002328 0.452724 0.00719 0.011789 -0.01128 0.401378
error2:order2:stride num 0.001486 0.423051 0.002379 0.163646 0.004562 0.570405
error5:order2:stride num -0.01424 1.08E-08 0.007161 0.001753 0.001022 0.924401
error7:order2:stride num -0.01769 2.55E-07 0.007423 0.01862 0.004248 0.774785
error10:order2:stride num -0.01413 2.60E-07 0.005504 0.029074 0.006208 0.600973
leg2:order2:stride num -0.01201 8.17E-12 0.000784 0.62643 0.007388 0.330015
error2:leg2:order2:stride num 0.00241 0.303384 0.001684 0.434656 -0.00854 0.399997
error5:leg2:order2:stride num -0.0089 0.123092 -0.00837 0.114961 -0.00831 0.739759
error7:leg2:order2:stride num 0.016923 5.96E-05 -2.31E-05 0.995248 -0.00335 0.854489
error10:leg2:order2:stride num 0.013019 0.003009 -0.00261 0.517088 0.0175 0.35718

Notes: S018 increased hip flexion at 2, 7, and 10% error and decreased hip flexion at 5%
error with no significant changes in knee or ankle kinematics. There were also interaction
effects observed between error level, leg, and order for hip kinematics.
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Table B.14: S021 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.12464 0.25491 3.827106 7.35E-82 2.379791 2.21E-49
error2 1.62453 6.44E-13 -1.4372 0.000323 -1.51186 3.60E-06
error5 1.938684 1.42E-18 -0.16039 0.679977 -1.82341 9.83E-09
error7 0.566616 0.054694 -5.56358 5.25E-26 -3.93395 5.23E-20
error10 0.45219 0.146581 -6.44588 7.50E-31 -3.49481 1.19E-14
leg2 1.174558 4.53E-14 -1.03327 0.000175 0.631592 0.00491
order2 -1.06669 1.31E-10 0.904812 0.002076 -0.73906 0.002052
stride num 0.003586 4.22E-13 0.003485 6.87E-05 0.000316 0.657377
error2:leg2 -1.0121 0.000487 1.420463 0.005781 0.937876 0.025488
error5:leg2 -0.09895 0.837198 -0.22408 0.793116 -0.90061 0.196429
error7:leg2 -0.8789 0.029123 3.914353 4.59E-08 1.412035 0.01547
error10:leg2 -1.94164 6.05E-06 3.686307 1.30E-06 1.309992 0.034753
error2:order2 -2.29857 1.40E-12 2.009672 0.000464 1.882415 5.87E-05
error5:order2 0.332878 0.291254 -0.03646 0.948044 1.087199 0.017301
error7:order2 0.901118 0.031958 3.563539 1.80E-06 3.367631 3.27E-08
error10:order2 1.17615 0.008151 6.053161 2.09E-14 3.612948 2.10E-08
leg2:order2 -0.42209 0.071688 -0.41343 0.319996 1.287484 0.00015
error2:stride num -0.00748 7.52E-21 -0.00051 0.715352 0.003025 0.008509
error5:stride num -0.01521 5.22E-29 -0.01352 1.70E-08 0.005056 0.009627
error7:stride num -0.00074 0.701837 0.017143 5.38E-07 0.010578 0.000148
error10:stride num -0.00577 0.000131 0.00742 0.005514 0.004494 0.039321
leg2:stride num -0.00149 0.033488 8.25E-05 0.946984 -0.00164 0.106334
order2:stride num -0.00551 2.80E-10 -0.00399 0.009752 0.00402 0.001429
error2:leg2:order2 0.891998 0.032891 -2.06331 0.005425 -1.06153 0.07943
error5:leg2:order2 0.637141 0.328469 1.885587 0.103156 -0.48768 0.60536
error7:leg2:order2 -0.06522 0.909645 -3.60862 0.000407 -1.11595 0.179843
error10:leg2:order2 1.498666 0.01431 -4.05256 0.000191 -1.3582 0.125072
error2:leg2:stride num 0.004346 1.54E-05 -0.00462 0.009469 -0.00035 0.810914
error5:leg2:stride num 0.000401 0.882782 0.002945 0.541402 0.007139 0.069723
error7:leg2:stride num -0.00245 0.294437 -0.02405 7.05E-09 -0.00513 0.129277
error10:leg2:stride num 0.006225 0.010838 -0.0141 0.001146 -0.00323 0.360608
error2:order2:stride num 0.011841 2.04E-21 -0.0021 0.3384 -0.00451 0.011884
error5:order2:stride num 0.00631 0.001423 0.004682 0.181938 -0.00168 0.557332
error7:order2:stride num -0.00104 0.706359 -0.01186 0.015849 -0.00799 0.046533
error10:order2:stride num 0.001685 0.442087 -0.00884 0.02307 -0.00343 0.279464
leg2:order2:stride num 0.001116 0.365821 4.58E-06 0.99833 -0.00174 0.32949
error2:leg2:order2:stride num -0.00497 0.001912 0.006721 0.017942 0.002772 0.23138
error5:leg2:order2:stride num -0.00341 0.344385 -0.00521 0.415693 0.001589 0.760803
error7:leg2:order2:stride num 0.007814 0.021001 0.019619 0.001096 -0.00021 0.966064
error10:leg2:order2:stride num -0.00439 0.213505 0.014503 0.020686 0.001234 0.809259

Notes: Participant S021 significantly decreased ankle plantarflexion and increased peak swing
hip flexion across 2-10% error compared to 0% error. The participant also decreased min-
imum knee flexion at 2, 7, and 10% error. There were significant main effects of leg and
exposure order, as well as interaction effects between error, leg, and order for hip, knee, and
ankle kinematics.
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Table B.15: S022 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.1587 0.112248 0.033578 0.827934 -0.3621 0.091765
error2 0.432814 0.040297 -0.27574 0.398043 2.050583 6.32E-06
error5 -0.31806 0.08155 -0.41892 0.137892 1.326075 0.000733
error7 0.842605 0.000502 0.105991 0.77694 1.734342 0.00086
error10 -0.64286 0.011764 -0.44308 0.261313 2.096297 0.000133
leg2 0.314889 0.026016 -0.08515 0.696959 -0.68416 0.024418
order2 -0.06073 0.667307 -0.62666 0.004152 2.043595 1.99E-11
stride num 0.001058 0.06692 -0.00022 0.801994 0.002414 0.051746
error2:leg2 -0.39937 0.126726 0.396156 0.327213 2.259163 5.93E-05
error5:leg2 -0.50863 0.151799 0.867881 0.113784 4.796791 3.59E-10
error7:leg2 -2.73616 1.95E-16 -0.79909 0.118412 3.730541 1.65E-07
error10:leg2 -1.15782 0.001079 0.206761 0.705544 1.677181 0.027481
error2:order2 -0.99367 0.000432 0.531802 0.222753 -1.60228 0.008238
error5:order2 0.05719 0.824695 0.699387 0.079881 -0.85409 0.123791
error7:order2 -1.71071 6.04E-07 0.558181 0.291465 -2.13655 0.003686
error10:order2 -0.27533 0.443897 0.430436 0.438908 -3.46676 7.50E-06
leg2:order2 -0.41276 0.038999 -0.44486 0.150167 -2.522 4.77E-09
error2:stride num -0.0021 0.009437 -0.00032 0.79687 -0.00316 0.068519
error5:stride num -0.00223 0.054804 0.001263 0.482774 -0.0018 0.472811
error7:stride num -0.00716 8.41E-06 -0.00189 0.446392 -0.00661 0.055134
error10:stride num -0.00149 0.244628 -0.00045 0.821087 -0.00549 0.046327
leg2:stride num -0.0021 0.010235 0.000569 0.653105 0.004584 0.009187
order2:stride num -0.00336 3.93E-05 0.001101 0.383305 -0.0002 0.909284
error2:leg2:order2 -0.24936 0.484575 -0.4566 0.407867 2.25752 0.003254
error5:leg2:order2 -1.36531 0.006541 -1.42281 0.066769 -3.56676 0.00095
error7:leg2:order2 1.874044 6.33E-05 -0.1163 0.872302 0.992151 0.323825
error10:leg2:order2 0.907283 0.068414 1.035093 0.178753 3.164376 0.003115
error2:leg2:stride num 0.001013 0.3282 -0.00025 0.874575 -0.00476 0.032743
error5:leg2:stride num -0.00038 0.843154 -0.00319 0.279883 -0.00429 0.295618
error7:leg2:stride num 0.009247 2.83E-06 0.003124 0.305495 -0.00316 0.455552
error10:leg2:stride num 0.001719 0.412903 -0.00198 0.541716 0.0091 0.043753
error2:order2:stride num 0.005124 4.23E-06 -0.00095 0.579992 0.00092 0.700289
error5:order2:stride num 0.001737 0.291237 -0.00293 0.250161 -0.00014 0.968954
error7:order2:stride num 0.012895 1.44E-08 -0.00291 0.40703 0.011182 0.021882
error10:order2:stride num 0.006006 0.000895 -0.00086 0.757198 0.016917 1.36E-05
leg2:order2:stride num 0.001083 0.349065 -0.00415 0.020398 0.001228 0.621013
error2:leg2:order2:stride num 0.000419 0.771095 0.002472 0.267249 -0.00925 0.00283
error5:leg2:order2:stride num 0.00859 0.001458 0.007471 0.073245 0.015456 0.007681
error7:leg2:order2:stride num -0.0108 0.000109 0.005355 0.214177 -0.00176 0.768836
error10:leg2:order2:stride num -0.0046 0.116335 -0.00122 0.788411 -0.01639 0.009317

Notes: S022 significantly increased peak plantarflexion across 2-10% error compared to 0%
error, which varied across legs and exposure order. Peak hip flexion at swing was significantly
different at 7-10% error and had significant interaction effects between error, leg, and order.
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Table B.16: S023 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -2.54987 4.35E-43 -0.29033 0.105996 2.983852 1.02E-40
error2 -0.37403 0.274207 -0.56914 0.090745 0.384584 0.351307
error5 1.538199 4.17E-06 0.315935 0.335681 0.222751 0.579949
error7 0.469555 0.285865 -0.07837 0.856276 0.397534 0.453818
error10 3.8099 4.23E-16 1.17891 0.010164 -2.12075 0.000165
leg2 -0.92928 0.000324 -0.07101 0.779785 -1.12743 0.000299
order2 5.23E-06 0.999984 -0.45112 0.075741 0.019556 0.949936
stride num -0.00098 0.350892 -0.00218 0.035508 0.000182 0.886133
error2:leg2 -0.01814 0.967369 -5.3458 8.14E-34 -0.39884 0.455791
error5:leg2 -1.25361 0.053248 0.078483 0.902049 -1.72458 0.027512
error7:leg2 0.039818 0.94735 -2.4253 4.42E-05 0.790297 0.277295
error10:leg2 2.389422 0.0002 -3.39721 7.88E-08 2.904725 0.000178
error2:order2 0.219837 0.649142 0.233534 0.623148 -0.23261 0.689841
error5:order2 -1.7929 0.000147 -0.3403 0.463391 -0.67236 0.23753
error7:order2 -0.56946 0.364669 -0.46712 0.449609 -0.43818 0.563086
error10:order2 -4.16132 2.88E-10 -2.33922 0.000305 3.165824 6.78E-05
leg2:order2 -2.05824 1.88E-08 1.088913 0.002447 -1.39863 0.00151
error2:stride num 0.003684 0.008382 0.002609 0.05763 -0.00223 0.184716
error5:stride num -0.00396 0.062405 -0.00094 0.651445 0.00033 0.897675
error7:stride num 0.005598 0.056315 -0.00068 0.814394 -0.00168 0.635591
error10:stride num -0.01036 1.03E-05 -0.00452 0.050235 0.008924 0.001612
leg2:stride num 0.00402 0.00709 -0.00163 0.265881 -0.00561 0.001828
order2:stride num 0.001623 0.276696 -0.00015 0.918355 -0.00315 0.079791
error2:leg2:order2 0.491791 0.43252 6.197421 1.87E-23 -3.458 4.92E-06
error5:leg2:order2 2.733833 0.002846 -1.45823 0.105433 -4.45523 5.60E-05
error7:leg2:order2 0.101643 0.902095 3.130889 0.000119 -0.80052 0.421897
error10:leg2:order2 -0.95318 0.293217 3.744554 2.75E-05 -3.75545 0.000603
error2:leg2:stride num -0.0084 4.56E-06 0.003094 0.085617 0.001162 0.59853
error5:leg2:stride num 0.004291 0.218086 0.002432 0.477871 0.005843 0.164439
error7:leg2:stride num -0.01141 0.001543 0.000838 0.813044 0.00203 0.640265
error10:leg2:stride num -0.0121 0.001272 0.02033 3.84E-08 0.00313 0.489089
error2:order2:stride num -0.00466 0.018378 -0.00066 0.732205 0.002474 0.299221
error5:order2:stride num 0.002285 0.447263 -0.00033 0.910101 0.000945 0.794394
error7:order2:stride num -0.0088 0.021398 0.004805 0.201477 0.002546 0.580973
error10:order2:stride num 0.00744 0.024872 0.00782 0.016512 -0.01022 0.010642
leg2:order2:stride num 0.000327 0.876675 0.003538 0.088296 0.007008 0.00593
error2:leg2:order2:stride num 0.002144 0.407325 -0.0092 0.000305 0.005127 0.100527
error5:leg2:order2:stride num -0.00743 0.131772 0.000239 0.960707 0.01615 0.00661
error7:leg2:order2:stride num 0.004835 0.311703 -0.01521 0.001223 -0.00054 0.924961
error10:leg2:order2:stride num -0.00373 0.482005 -0.03075 4.15E-09 -0.0019 0.766089

Notes: Peak hip flexion increased at select error rates (5 and 10% error) and significant
interaction effects were observed between error, leg, and exposure order. Minimal changes
were observed in knee and ankle behavior other than increased knee flexion and decreased
plantarflexion at 10% error.
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Table B.17: S025 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -2.16406 9.13E-22 0.431648 0.00358 2.94917 3.24E-13
error2 1.19589 0.000473 -0.60816 0.007149 0.156485 0.799156
error5 2.467518 2.30E-13 -0.57136 0.009949 1.368222 0.023327
error7 1.730492 4.16E-05 -0.16552 0.55269 -0.23274 0.759046
error10 2.285636 2.72E-07 0.191475 0.513761 -0.98055 0.219277
leg2 -1.19064 0.000182 -0.98309 3.00E-06 2.837622 7.34E-07
order2 -0.21343 0.440981 0.566266 0.002003 0.396281 0.426604
stride num -0.00148 0.543033 0.002103 0.190235 0.014397 0.000997
error2:leg2 0.142061 0.753362 -0.24523 0.412015 0.247215 0.761244
error5:leg2 1.837995 0.002916 0.29141 0.475041 -1.0479 0.345342
error7:leg2 1.74589 0.002674 0.367092 0.33924 -0.59471 0.569462
error10:leg2 1.11768 0.068424 0.236906 0.558988 1.447294 0.189725
error2:order2 -1.12114 0.014382 0.708937 0.01923 0.692325 0.400752
error5:order2 -1.15786 0.009839 0.321457 0.278141 0.544239 0.499917
error7:order2 -0.42154 0.464412 -0.11804 0.756656 2.110381 0.041883
error10:order2 -1.32561 0.029327 -0.43853 0.275422 2.955009 0.006961
leg2:order2 0.015426 0.968651 -0.72961 0.004962 0.413726 0.558081
error2:stride num 0.002438 0.341388 -0.00113 0.506537 -0.01322 0.004156
error5:stride num -0.00048 0.870133 0.000618 0.750076 -0.02723 2.67E-07
error7:stride num 0.004317 0.21008 -0.00336 0.1397 -0.00724 0.24286
error10:stride num -0.00132 0.665589 -0.00529 0.009065 -0.00788 0.152859
leg2:stride num 0.009698 0.005185 -0.007 0.002283 -0.01187 0.057173
order2:stride num 0.001378 0.596827 -0.00043 0.803219 -0.01341 0.004251
error2:leg2:order2 -0.07065 0.906341 0.542859 0.171572 -3.8765 0.000339
error5:leg2:order2 -2.0984 0.013038 0.586754 0.293496 -2.11382 0.164442
error7:leg2:order2 -2.47106 0.001823 -0.63359 0.226294 0.150801 0.915728
error10:leg2:order2 -2.52228 0.002669 -0.23616 0.670349 -1.30353 0.388045
error2:leg2:stride num -0.01009 0.005006 0.00619 0.009215 0.008129 0.208792
error5:leg2:stride num -0.01861 3.13E-05 0.001903 0.519016 0.018781 0.019412
error7:leg2:stride num -0.01484 0.001078 0.002059 0.492476 0.008489 0.298428
error10:leg2:stride num -0.00933 0.04401 0.01174 0.000129 -0.03569 1.91E-05
error2:order2:stride num -0.00098 0.731106 -0.00325 0.084911 0.013385 0.009081
error5:order2:stride num -0.00258 0.4603 -0.00212 0.359193 0.022217 0.000417
error7:order2:stride num -0.00885 0.040855 -0.00073 0.797157 0.007853 0.31303
error10:order2:stride num -0.00017 0.963499 0.001111 0.65049 0.006921 0.299913
leg2:order2:stride num -0.00958 0.009945 0.006717 0.006261 0.002915 0.662729
error2:leg2:order2:stride num 0.008797 0.025898 -0.00494 0.058396 0.002101 0.767423
error5:leg2:order2:stride num 0.018521 0.00067 -0.00766 0.033204 -0.00157 0.872502
error7:leg2:order2:stride num 0.018093 0.001148 -0.00046 0.899518 -0.01156 0.247862
error10:leg2:order2:stride num 0.017834 0.001822 -0.01243 0.001012 0.032128 0.001802

Notes: Participant S025 significantly increased hip flexion at error levels of 2-10% error in
comparison to 0% error, with small decreases in minimum knee flexion at 2-5% error. The leg
factor had a significant main effect on hip, knee, and ankle kinematics and had interaction
effects with error and order for hip flexion metrics.
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Table B.18: S026 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.9712 0.008128 0.729921 0.000811 -0.89711 0.023388
error2 1.546301 0.024464 -1.95479 1.72E-06 -0.17564 0.812638
error5 0.014326 0.982946 0.315295 0.42817 -0.0774 0.914722
error7 1.289449 0.144588 0.005308 0.991929 1.709061 0.073026
error10 7.719182 1.85E-16 -2.1676 9.27E-05 11.04665 1.47E-27
leg2 0.578487 0.265146 -0.31435 0.3078 0.605101 0.279841
order2 1.957555 0.000163 -1.20654 9.11E-05 0.40429 0.469874
stride num 0.006475 0.002265 -0.00487 0.000112 0.005981 0.008917
error2:leg2 -0.64262 0.470655 2.267694 1.86E-05 -0.56366 0.557413
error5:leg2 0.17422 0.893599 -0.64303 0.405751 0.060548 0.965624
error7:leg2 17.56413 5.20E-46 3.713737 2.72E-07 11.00379 6.35E-17
error10:leg2 -34.7608 6.78E-145 -0.10444 0.891272 -30.3483 7.09E-99
error2:order2 -2.33937 0.016102 2.131309 0.000224 1.432165 0.17181
error5:order2 0.241062 0.799229 -1.12172 0.046294 1.093098 0.284968
error7:order2 -0.98561 0.430335 0.086312 0.9074 0.541594 0.687834
error10:order2 -3.03282 0.021806 0.772734 0.324808 -2.63876 0.064227
leg2:order2 -0.44036 0.548442 0.968553 0.026272 0.70779 0.371195
error2:stride num -0.007 0.012698 0.004924 0.003136 -0.00279 0.356696
error5:stride num -0.00354 0.40717 0.001662 0.512307 0.003838 0.404724
error7:stride num -0.00901 0.125969 -0.00097 0.781001 -0.00885 0.163592
error10:stride num -0.09205 1.76E-80 0.027098 6.41E-22 -0.11366 3.47E-103
leg2:stride num -0.00385 0.200364 0.002086 0.242225 -0.00403 0.213985
order2:stride num -0.00701 0.019355 0.000363 0.83819 -0.00685 0.03402
error2:leg2:order2 1.127599 0.370674 -2.88707 0.000115 0.722232 0.594975
error5:leg2:order2 0.235273 0.898212 -2.69377 0.013679 14.03632 1.81E-12
error7:leg2:order2 -17.5859 2.64E-24 -4.01919 8.06E-05 -13.9823 5.22E-14
error10:leg2:order2 -6.05053 0.000904 -5.16779 1.85E-06 -3.49893 0.074997
error2:leg2:stride num 0.006544 0.075502 -0.00444 0.042148 0.001458 0.713512
error5:leg2:stride num 0.001938 0.78196 0.000308 0.941002 -0.00985 0.192082
error7:leg2:stride num -0.15491 2.03E-94 -0.02916 1.62E-11 -0.10546 3.35E-40
error10:leg2:stride num 0.247962 1.31E-204 -0.00912 0.041531 0.221472 4.22E-147
error2:order2:stride num 0.008628 0.02973 -0.00186 0.429799 0.001063 0.80387
error5:order2:stride num 0.001005 0.86783 0.004995 0.163702 -0.00667 0.30559
error7:order2:stride num 0.007823 0.347632 0.005457 0.269854 0.006101 0.497049
error10:order2:stride num -0.02454 0.000232 0.015396 0.0001 -0.02835 8.05E-05
leg2:order2:stride num 0.003449 0.416414 -0.00058 0.817431 0.011555 0.011629
error2:leg2:order2:stride num -0.00607 0.243013 0.005894 0.056395 -0.02112 0.00017
error5:leg2:order2:stride num -0.00167 0.865804 0.024937 2.27E-05 -0.09206 1.01E-17
error7:leg2:order2:stride num 0.154529 1.19E-49 0.029047 1.90E-06 0.104266 7.64E-21
error10:leg2:order2:stride num -0.13044 1.07E-33 -0.03037 1.66E-06 -0.08611 8.75E-14

Notes: S026 increased peak hip flexion and plantarflexion while decreasing minimum knee
flexion at 10% error. There was a significant slope (estimated using stride num factor),
which may indicate that the participant modified joint kinematics within trials. There were
observed interaction effects between error, leg, and order for hip, knee, and ankle kinematics.
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Table B.19: S027 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.15514 0.601475 -0.41153 0.056148 1.875266 7.13E-10
error2 -1.65169 0.002954 -0.35244 0.381483 0.350364 0.536715
error5 -0.73338 0.176717 0.72736 0.064706 2.643191 1.94E-06
error7 -0.38749 0.590107 0.011792 0.981965 1.591363 0.03036
error10 1.463747 0.052765 0.502472 0.359136 1.107317 0.151335
leg2 -0.26753 0.524582 1.217742 6.64E-05 5.117093 4.54E-32
order2 0.174555 0.677756 -0.38718 0.203809 1.501594 0.000471
stride num -0.00365 0.033705 0.000455 0.714798 0.005799 0.000948
error2:leg2 2.046808 0.004527 -0.2402 0.645745 -5.40908 2.49E-13
error5:leg2 -1.02342 0.332042 -0.29357 0.7012 -8.44704 6.08E-15
error7:leg2 -0.06489 0.947513 -4.12098 8.95E-09 -8.62105 1.68E-17
error10:leg2 -0.72969 0.48388 -0.65039 0.389557 -6.64307 4.92E-10
error2:order2 1.360073 0.083682 0.278267 0.625482 -0.68399 0.39428
error5:order2 -0.78833 0.304477 -0.99458 0.074075 -3.43396 1.22E-05
error7:order2 0.296846 0.769879 -0.7267 0.323432 -3.3803 0.001118
error10:order2 -3.60283 0.000754 -0.41321 0.593857 -2.47292 0.023496
leg2:order2 0.221671 0.709284 -0.50294 0.243508 -0.2992 0.622213
error2:stride num 0.004195 0.064954 0.000379 0.81819 -0.00409 0.077899
error5:stride num -0.00043 0.900171 -0.00323 0.197865 -0.01083 0.002189
error7:stride num -0.00365 0.44427 0.002026 0.55813 -0.00821 0.092124
error10:stride num -0.00371 0.330905 -0.00088 0.751486 -0.00662 0.089179
leg2:stride num 0.004769 0.050106 -0.00315 0.0743 -0.00561 0.024074
order2:stride num -0.00127 0.601949 0.000595 0.735314 -0.00759 0.002229
error2:leg2:order2 -1.96347 0.054213 0.378601 0.608649 6.176974 3.31E-09
error5:leg2:order2 2.45374 0.100119 1.138017 0.292943 9.939591 7.96E-11
error7:leg2:order2 0.591312 0.671048 5.133342 3.90E-07 9.089344 1.87E-10
error10:leg2:order2 1.969425 0.18157 0.569797 0.59401 7.356885 1.07E-06
error2:leg2:stride num -0.0097 0.001155 -0.0017 0.431198 -0.00501 0.100044
error5:leg2:stride num 0.002895 0.609646 0.001019 0.804365 0.008584 0.138361
error7:leg2:stride num 0.001464 0.803471 -0.00351 0.410427 0.013077 0.02962
error10:leg2:stride num -0.00199 0.744611 -0.00121 0.784617 0.005063 0.416791
error2:order2:stride num -0.00315 0.327334 -0.00164 0.482088 0.004891 0.136218
error5:order2:stride num 0.008634 0.07765 0.001776 0.616656 0.012688 0.01114
error7:order2:stride num 0.001834 0.785716 0.00078 0.87334 0.014165 0.039847
error10:order2:stride num 0.014807 0.006072 -0.00203 0.603467 0.009018 0.101641
leg2:order2:stride num -0.00163 0.635299 -0.00228 0.360319 0.007667 0.029216
error2:leg2:order2:stride num 0.009943 0.018412 0.0073 0.017012 0.002819 0.5127
error5:leg2:order2:stride num -0.0089 0.2673 0.0033 0.570408 -0.01824 0.025978
error7:leg2:order2:stride num -0.00081 0.92245 0.004379 0.468116 -0.0126 0.138205
error10:leg2:order2:stride num -0.00324 0.707097 0.00823 0.188733 -0.00653 0.459179

Notes: S027 significantly changed peak plantarflexion across all error rates, exposure order,
and between legs with a significant slope across strides within a trial. There were minimal
changes in hip and knee behavior in response to error levels, leg, and order.
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Table B.20: S028 linear mixed effects model fit to joint kinematics

Hip Estimate Hip P value Knee Estimate Knee P value Ankle Estimate Ankle P value
(Intercept) -0.81835 0.00149 0.24355 0.220603 -0.45704 0.300295
error2 0.360117 0.458961 0.234548 0.532286 -1.06182 0.202731
error5 0.838478 0.077124 1.777865 1.27E-06 0.293343 0.718196
error7 -9.03231 2.58E-45 1.173119 0.015857 1.081055 0.316353
error10 1.701059 0.010414 0.173492 0.735013 1.968302 0.083657
leg2 -0.11953 0.742853 -0.17359 0.537306 0.45134 0.469854
order2 -5.74466 1.67E-53 1.242422 1.15E-05 3.255359 2.27E-07
stride num 0.005331 0.000248 -0.00159 0.157592 0.002977 0.232075
error2:leg2 -0.04679 0.940802 0.399861 0.41123 0.373096 0.729723
error5:leg2 -5.33771 7.30E-09 -2.88525 5.05E-05 -0.34298 0.827899
error7:leg2 3.285787 0.000141 -0.95097 0.153295 -3.52601 0.017076
error10:leg2 -0.91968 0.314273 -1.67759 0.017511 8.364356 9.93E-08
error2:order2 0.181346 0.792338 -0.19515 0.713752 2.577546 0.029084
error5:order2 9.518997 4.35E-44 -1.75038 0.000769 -2.15698 0.061639
error7:order2 17.77621 5.80E-84 -0.92351 0.17856 -4.54749 0.002854
error10:order2 6.133645 7.63E-11 -0.2887 0.690699 -4.75196 0.003187
leg2:order2 0.480509 0.353883 -1.85207 3.85E-06 -0.39909 0.653256
error2:stride num -0.00559 0.004223 0.00206 0.1722 0.004685 0.161825
error5:stride num -0.00323 0.283354 -0.00192 0.407437 -0.00317 0.53883
error7:stride num 0.049118 1.79E-31 -0.00292 0.363708 0.00341 0.632802
error10:stride num -0.00185 0.577741 0.001649 0.520214 0.000693 0.903095
leg2:stride num 0.000799 0.698318 0.001129 0.477929 -0.00294 0.405166
order2:stride num -0.01137 5.83E-08 0.001481 0.359383 -0.00959 0.007518
error2:leg2:order2 -2.48266 0.005452 7.511819 3.65E-27 -30.4868 2.39E-83
error5:leg2:order2 1.080183 0.40805 3.543081 0.000447 4.277831 0.055993
error7:leg2:order2 -4.3203 0.000397 6.597252 2.88E-12 -15.0634 6.80E-13
error10:leg2:order2 -6.32147 1.07E-06 0.471532 0.63696 1.881039 0.396271
error2:leg2:stride num -0.00075 0.767636 -0.00694 0.000439 0.012924 0.003183
error5:leg2:stride num -0.06974 6.07E-44 -0.00117 0.75922 -0.00311 0.713195
error7:leg2:stride num -0.02279 8.43E-06 0.00463 0.240645 0.019852 0.023442
error10:leg2:stride num 0.006715 0.207241 -0.00264 0.521006 0.023066 0.01152
error2:order2:stride num 0.006737 0.015809 -0.00444 0.039593 -0.002 0.675867
error5:order2:stride num -0.01634 0.000133 -0.00386 0.242283 0.020223 0.005768
error7:order2:stride num -0.04816 4.69E-16 0.005081 0.264958 0.000358 0.971754
error10:order2:stride num 0.009637 0.040905 -0.00315 0.387453 0.022863 0.00467
leg2:order2:stride num 0.005516 0.062986 0.000169 0.94123 0.015037 0.00312
error2:leg2:order2:stride num 0.0028 0.443779 -0.008 0.004642 0.031812 4.04E-07
error5:leg2:order2:stride num 0.087956 2.65E-35 0.006117 0.258486 -0.02932 0.014721
error7:leg2:order2:stride num 0.025023 0.000567 -0.02753 9.30E-07 0.069763 2.17E-08
error10:leg2:order2:stride num -0.0005 0.946709 -0.00891 0.126344 -0.06378 8.66E-07

Notes: S028 decreased peak hip flexion at 7% error then increased hip flexion at 10% error
and a significant slope in hip flexion metrics was observed within trials. Minimum knee
flexion also increased when walking with 5-7% error controllers. Interaction effects were
observed for hip, knee, and ankle kinematics between error levels, leg, and order.
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