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Abstract

One of the goals of computer vision is to develop visual agents that can learn without

human annotation. This is typically done by learning from images and their augmenta-

tions. In contrast, humans learn from dynamic and multi-sensory environments without

requiring such explicit supervision. My dissertation delves into this contrast, exploring

how models can learn visual representations directly from their environments. My core

observation is that such environments, despite their complexity, present consistent pat-

terns across modalities. These cross-modal patterns offer a rich training signal as we can

leverage similarity in one modality for learning generalizable representations in another

without requiring additional supervision.

In this dissertation, I argue that cross-modal correspondence provides a rich signal for

learning visual representations and a useful tool for analyzing them. I first discuss how

models can learn visual representations by finding 3D correspondence in RGB-D videos.

Through estimating geometrically consistent correspondences between video frames, mod-

els can learn representations that rival supervised models. I then discuss how the notion of

correspondence could be applied to language. I propose language-guided self-supervised

learning, where language models are used to find image pairs that depict similar concepts.

I show that using language guidance outperforms self-supervised and language-supervised

models; further showcasing the utility of learning from correspondence. Finally, I explore

how correspondence can also be used to analyze the 3D awareness and consistency of vi-

sual representations learned by large-scale vision models. My analysis suggests that while

current approaches yield good models for semantics and localization, their 3D awareness

remains limited.

xvii



Chapter 1

Introduction

While my eyes perceived no interval,

my mind preserved an abyss.

—Marcel Proust, In Search of Lost Time

Our minds form coherent and stable representations of the world from noisy and incon-

sistent sensory inputs. As you walk around a city, your visual input fluctuates widely due

to changes in your perspective and the environment. Despite this, your understanding of

the city and its dwellers remains consistent. Beyond consistency, you can recognize objects

and spaces, estimate their shape, and group them into meaningful categories for efficient

communication and decision-making. This process is so effortless that early theories of vi-

sion focused solely on the sensory optics of the eye [169], yet decades of computer vision

research reveal that the challenge lies in interpreting what the eye senses.

One of the core challenges in computer vision is how to convert images—two-

dimensional arrays of light intensity values—to representations that are useful for down-

stream tasks. Early work developed hand-crafted features based on wavelets [186] and

gradient orientations [58] that capture low-level details in the vision. While such features

enabled early advances in object detection [58] and structure for motion [243], their low-

level nature made them less effective for high-level visual tasks such as recognition and

segmentation.

The next advancement came in moving from representation design to representation

learning. This approach extends back to early work on associative learning [86, 104,

230], but it regained popularity when AlexNet [147] won the ImageNet competition [63].

The core idea is that the correct representation is one that minimizes the task prediction

error [234]. Interestingly, such representations were also useful for other visual tasks [69,

250]. Nevertheless, the impressive performance of supervised learning came with the cost

of data annotation, which is often expensive and time-consuming. It is also unclear if such
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extensive annotation is needed as humans exhibit incredible visual abilities despite never

being trained with explicit labels, object masks, or 3D meshes.

To relieve the need for explicit annotation, self-supervised approaches that only learn

from images were proposed. This idea can be traced back to the Neocognitron [86] which

learned “without a teacher.” Broadly speaking, there have been two general approaches

to self-supervision: generative and discriminative. Generative approaches posit that good

representations are ones that capture the distribution of images. The intuition here is

straightforward: if you can generate images, you understand them. This has been done

through colorization [344], autoregressive modeling [204], auto-encoding [103, 298],

and text-conditioned generation [229].

In contrast, discriminative approaches posit that models can learn good representations

by learning to discriminate between images. While the idea can be traced back to Hadsell

et al. [98], it has seen a recent revival with a range of work that learns representation

through instance discrimination [40, 102, 315]. Instance discrimination builds on the

success of classification-based pre-training and treats each instance as a separate class.

As a result, one can learn through augmenting images and training a model to associate

augmented versions of the same image with each other. Given that we can learn good

representations just from images, can we extend self-supervision to the kind of multimodal

data that any visual agent would have access to?

1.1 Multimodal Consistency and Correspondence

This dissertation is primarily concerned with how to learn visual representations. However,

we first might ask: what should visual representations “represent”? This old question goes

back to the earliest theories of vision [169]. More recently, it has seen a revival in debates

about the veridicality of perception [110] and the nature of mental imagery [290].

One idea that has shown up in both cognitive science and machine learning is the con-

cept of consistent representation. Shepard and Chipman [252] argued that the relationship

between external objects and internal representation is best characterized as a second-order
isomorphism: i.e., the similarity between representations should correlate the similarity

between the external objects. The idea also lies at the core of the discriminative visual

representation learning and was made explicit by Hadsell et al. [98]. However, the theory

remains unclear on what forms of similarity matter between objects, resulting in different

forms of discriminative representation learning. Supervised learning matches a classifica-

tion ontology with models trained to generate consistent representations for members of

the same class. Self-supervised approaches eschew a global structure for a much smaller
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Geometric Correspondence

Language Embedding

Conceptual Correspondence

Snowy owl 
lifting off

Snow owl 
taking off

Figure 1.1: This dissertation explores two types of correspondence: geometric correspon-
dence in 3D space and conceptual correspondence in language embedding space.

neighborhood defined by the image and its augmentations. However, this formulation is

not as assumption-free as it first seems since the choice of augmentation [318] and cura-

tion of the dataset [10] influence the quality of the learned representations. While both

formulations have been successful, can we find a better learning signal than a single all-

encompassing ontology that aims to explain the relationship between all images or a set

of image augmentations that ignore those relationships?

We argue that the answer lies in looking towards our environment and learning from

cross-modal consistency. The world manifests itself in different, but consistent, ways across

sensory modalities. Consider an encounter with a friend’s kitten; as you walk into the

room, you see him from many different angles and in different contexts as he plays around.

Beyond sight, you also get information in multiple other modalities: e.g., haptics, depth,

language, etc. As a result, you can also identify the kitten from his purr, fur, or the many

references provided by your friend. We posit that such cross-modal relationships, while

not perfectly correlated, are a valuable training signal for visual representation learning.

We propose to take advantage of this structure by identifying and learning from cross-

modal correspondence. The concept of correspondence arose in research on stereo-vision,

where it meant two image patches that depict the same 3D point [129, 188]. However,

correspondence need not be limited to 3D. We can conceive of a generalized notion of

correspondence that encompasses multisensory inputs that we discussed earlier. In this

dissertation, we define correspondence more broadly as two sensory inputs that depict the

same entity in a different modality. This provides us with different types of correspon-

dence; e.g., sounds coming from the same instrument or creature, image patches depicting

the same point in space, or even images that depict the same animal species or visual

concept.
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1.2 Dissertation Outline

In this dissertation, we argue that cross-modal correspondence provides a rich consistency

signal for learning visual representations and a valuable tool for analyzing them. We

explore two forms of correspondence, as shown in Fig. 1.1: geometric correspondence

are visual inputs that depict that same 3D point, and conceptual correspondence are

images that depict the same concept. The dissertation is organized as follows:

In Chapters 2 to 4, we explore how we can learn from 3D correspondence in RGB-D

video. We observe that close-by video frames capture closely related views of the same

scene, which can provide a rich signal for learning visual representations.

In Chapter 2, we explore learning correspondence by relying on photometric consis-

tency. It is based on the idea that if a model predicts accurate correspondence between

two views, it should be able to accurately register and render the scene. We propose a dif-

ferentiable registration and rendering approach for learning point cloud registration which

outperforms prior supervised approaches despite only learning from RGB-D video. We find

that by integrating principle components into the learning pipeline, we can learn repre-

sentations that outperform supervised training. This chapter is based on work previously

published in [77].

In Chapter 3, we further simplify our approach by only relying on geometric consis-

tency. We observe that randomly initialized convolutional neural networks are already

effective feature extractors. While their correspondences can be very noisy, a robust es-

timator can still estimate a coarsely accurate transformation. As a result, we can train

models by constructing a loss function that penalizes correspondences that deviate from

the estimated transformation. This means that we can greatly simplify the setting, achieve

better performance, and learn both image-based visual features as well as point cloud-

based geometric features. This chapter is based on work previously published in [75].

In Chapter 4, we go beyond image pairs and explore learning correspondence via mul-

tiview registration. The methods proposed in Chapters 2 and 3 assume partial overlap

between view pairs. This is ensured by sampling at a relatively high frequency (1.5 Hz),

which also limits the viewpoint change between frame pairs. We overcome this approach

by learning multiview synchronized registration, allowing us to train with larger view-

point changes and further improve performance. This chapter is based on work previously

published in [79].

In Chapter 5, we go beyond the traditional formulation of correspondence and explore

how language can provide us with conceptual correspondence. Intuitively, when people

observe similar scenes, they tend to describe them in similar ways. We can use language
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models to sample image pairs that correspond to the same caption and use them for visual

representation learning. We observe that language-guided pairs provide naturally aug-

mented versions of the same visual concept and yield better visual representations than

existing self-supervised and language-supervised approaches. This chapter is based on

work previously published in [78].

Over the past five years, the area of visual representation learning has grown at an

incredible pace with several large-scale models exhibiting interesting capabilities that go

beyond their training objective. Specifically, these models learn representations to per-

form well on both semantic and localization tasks such as classification and segmentation.

However, it remains unclear if such models understand the 3D world or are good models

of its 2D projections. In Chapter 6, we analyze the 3D awareness of visual representations

through the lens of correspondence. The basic idea here is that the consistency we rely on

for correspondence is both a learning signal and a desirable property in representations.

Our analysis reveals mixed results showing that large-scale models appear to encode 2.5D

properties such as depth and surface normals, but still struggle with 3D consistency.

Finally, we take a step back in Chapter 7 to discuss the contributions of this work, place

them in the larger context of modern-day computer vision, and sketch out some future

directions.
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Chapter 2

Learning from Photometric Consistency

We begin our journey by considering how we can learn directly from video. As we move

around, we perceive the same scene from multiple closely related viewpoints. Yet, our

understanding of the scene is a single consistent whole, rather than a collection of partial

views. The ability to align the partial views is both something we expect a visual agent

to be able to do as well as a useful task for learning visual representations. We use this

observation to learn dense visual features by estimating 3D correspondence between video

frames and aligning the scene.

In this chapter, we propose UnsupervisedR&R: an end-to-end unsupervised approach

to learning point cloud registration from raw RGB-D video. Given two RGB-D views of

the scene, our model extracts visual features from the images, estimates correspondence,

aligns the partial views, and then finally renders the point cloud from the estimated input

views. The core intuition is that if the correspondences are accurate, then the resulting ren-

ders should match the input views and the correspondences should be consistent with the

estimated transformation. Our approach combines representation learning and differen-

tiable rendering with older and more principled techniques such as Lowe’s ratio test [179]

and Ummeyama’s algorithm [292]. Furthermore, through the use of differentiable meth-

ods for alignment and rendering, we can ensure that our model learns end-to-end directly

from RGB-D video without requiring any pose or correspondence supervision.

We evaluate our approach on indoor scene datasets and find that it can learn good fea-

tures that enable accurate correspondence estimation and point cloud registration. Inter-

estingly, our approach even outperforms supervised point cloud registration approaches,

despite not requiring any supervision. Our results showcase the rich signal available in

RGB-D video and support our thesis that cross-modal correspondence allows us to learn

without requiring human annotation or additional supervision. This chapter is based on

work previously published in [77].
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Figure 2.1: What 3D scene do the two views on the left portray? Given 2 RGB-D images, we
train a model to estimate the camera motion between them through enforcing photometric
and geometric consistency losses on point cloud renderings of the scene.

2.1 Introduction

Consider the two scenes depicted in Figure 2.1. How are they related? What is the layout

of the room they depict? Aligning partial views of a scene into a single whole is essential to

understanding one’s environment and is a key component of numerous robotics tasks such

as SLAM and SfM. Recent approaches have leveraged supervised learning to develop end-

to-end systems that outperform traditional methods in both accuracy and speed [51, 89].

However, with the rising prevalence of cameras with depth sensors, we can expect a new

stream of raw RGB-D data without the annotations needed for supervision. How can we
leverage this data for unsupervised learning of point cloud registration?

The common approach to point cloud registration relies on correspondence estima-

tion and geometric model fitting. Traditional approaches rely on hand-crafted fea-

tures [125, 179] and robust estimators such as RANSAC [82]. While those approaches

work well, their performance is limited by their inability to flexibly adapt to different

data distributions. Recent work leverages supervised learning to address those limita-

tions by learning to extract feature descriptors [50, 66, 329], finding better correspon-

dences [51, 89, 241], and training more efficient robust estimators [26, 27, 221]. How-

ever, accurate pose annotation can be challenging to attain automatically due to sensor

error or reliance on traditional SfM pipelines with no convergence guarantees [243].
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Meanwhile, self-supervised visual learning has made remarkable progress in learning

semantic [64, 68, 87, 94, 280] and 3D [120, 148, 289, 293, 354] features. The key idea is

to use natural transformations in the data as indirect supervision. RGB-D video provides us

with this supervision since successive frames capture different views of the same scene. In

this case, aligning two point clouds from nearby frames is not only about achieving good

geometric consistency but also showing good photometric consistency between the two

views. By achieving both photometric and geometric consistency, we can train our model

using RGB-D image pairs without relying on additional supervision.

We propose using view synthesis between RGB-D images as a task for learning point

cloud registration. Given two RGB-D video frames, we extract features from each frame

to generate a feature point cloud, where each point is represented by both a 3D coordi-

nate and a feature vector. The extracted features serve as descriptors for correspondence

estimation. The model is trained end-to-end using photometric and geometric consistency

losses between the input and rendered frames. Through using differentiable components,

we back-propagate the losses to the feature encoder to learn features that allow us to

estimate unique correspondences and accurately register the two views.

We evaluate our model on ScanNet [56], a large indoor scene dataset. Our model

outperforms the traditional registration pipeline with visual or geometric descriptors. Fur-

thermore, it performs on par with supervised geometric registration approaches despite

being unsupervised; supporting our claim that RGB-D self-supervision can alleviate the

need for pose annotation. Finally, we analyze our model through several ablations.

2.2 Related Work

Feature Descriptors. Early work on feature point extraction can be traced back to us-

ing corners for stereo matching [197]. This work culminated in patch-based feature

2D descriptors [15, 179, 233] and geometric features based on histograms of local 3D

relationships [125, 236]. Those descriptors have been very popular due to being effi-

cient to compute, relatively robust, and data-agnostic. More recently, there has been

an interest in leveraging convolutional neural networks to extract good visual descrip-

tors [66, 70, 100, 329, 335] and geometric descriptors [13, 52, 60, 62, 88, 165, 305, 327].

Relevant to our work are approaches that use geometric transformations to learn visual

features. This has been commonly done by using known pose or correspondences between

large collections of images [66, 70, 329] or point clouds [52, 60, 62, 88, 305]. We extend

this work by leveraging the transformations between RGB-D video frames and relying on

consistency losses instead of pose supervision.
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Correspondence Estimation and Fitting. Early work on image and point cloud registra-

tion assumes perfect correspondences [8, 176]. ICP relaxes this assumption for closely

aligned points by introducing the simple heuristic of assuming the closest point is the cor-

respondence [347]. However, extending to real-world settings requires the ability to deter-

mine such correspondences from the raw input or extracted features. Early work uses fea-

ture similarity and heuristic approaches to determine correspondence and robust estima-

tors such as RANSAC to handle noise and outliers in the correspondences [179, 285, 348].

For a review, see [215]. More recent approaches advance this idea by learning differen-

tiable functions for weighting correspondences [26, 27, 51, 89, 115, 180, 221, 241, 328].

Finally, there have been recent self-supervised approaches for registering object point

clouds [4, 108, 115, 304, 305, 328, 334]. Those approaches operate on dense point

clouds that are either augmented and sampled for partial views with known pose and cor-

respondences. Hence, while the setup might be self-supervised, the methods still require

ground-truth annotation. We are inspired by this line of work but differ from it in two key

ways: (1) we take RGB-D images as input, not keypoints or 3D scenes; (2) our approach

is unsupervised, while those approaches require pose or correspondence supervision.

Differentiable SfM. There has been a large number of recent approaches that replace

the traditional SfM pipeline with end-to-end learning approaches [34, 183, 218, 274, 276,

293, 297, 332, 354]. Related to our work are approaches that propose unsupervised learn-

ing of depth and camera motion. This is typically done through learning two CNNs, a

pose network and a depth network, that are trained to minimize a consistency loss be-

tween video frames. While CNN pose estimators have shown a lot of success on outdoor

scenes, they have been challenged by cases with larger and more erratic camera motions

(e.g.video from a hand-held device) [21]. Similar to those approaches, we train an end-to-

end system using photometric and geometric consistency losses. Unlike that work, we are

interested in pointcloud registration with larger camera motions and learning features for

correspondence alignment of RGB-D scans.

View Synthesis. View synthesis is the task of generating views of the scene from image

inputs. One line of work focuses on synthesizing views with small camera motions [131,

202, 213, 255, 266, 267]. NeRF and its variants [189, 194, 342] learn a rendering function

for a specific scene from a large collection of multiview images. While the goal of that work

is highly photorealistic rendering, we are primarily interested in utilizing view synthesis

as a training task to enforce photometric consistency. Similar to our goals are approaches

that synthesize views for unsupervised 3D learning of object shape [76, 120, 132, 288]
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and depth [34, 183, 293, 297, 332, 354]. Closest to our work is [310], who train a model

for depth estimation and view synthesis with the goal of generating highly photorealistic

views of the scene. Our work is complementary to the work of Wiles et al. [310] as we use

depth to learn the pose, while they use the pose to learn depth.

2.3 Unsupervised Registration via Differentiable Rendering

Our goal is to build a system that can learn point cloud registration from RGB-D video with-

out any explicit supervision. Our approach, shown in Fig. 2.2, is based on the traditional

registration pipeline as it similarly extracts feature descriptors, finds correspondences, and

finds the best alignment. We adapt this pipeline by operating directly on the images and

learning our own features, as well as using photometric and geometric consistency losses

to learn those features. We first present a high-level sketch of our approach before explain-

ing each stage in more detail.

Approach Sketch. Given two RGB-D views of a scene and the camera’s intrinsic ma-

trix, we first extract 2D features for each view and lift them into two feature point clouds.

We extract correspondences between the two point clouds and rank the correspondences

based on their uniqueness. We then use a differentiable optimizer to align the top k corre-

spondences and estimate the 6-DOF transformation between them. Finally, we render the

point cloud from the two estimated viewpoints. We use photometric and geometric con-

sistency losses between the RGB-D inputs and outputs and back-propagate through our

entire pipeline.

2.3.1 Point Cloud Generation

Given an input RGB-D image, I ∈ R4×H×W , we would like to generate a point cloud

P ∈ R(6+F )×N . Each point p ∈ P is represented by a 3D coordinate xp ∈ R3, a color

cp ∈ R3, and a feature vector fp ∈ RF . We first use a feature encoder to extract a feature

map using each image’s RGB channels. The extracted feature map has the same spatial

resolution as the input image. As a result, one can easily convert the extracted features

and input RGB into a point cloud using the input depth and known camera intrinsic matrix.

However, given that current depth sensors do not output the depth for every pixel, we omit

the pixels with missing depth from our generated point cloud. To avoid heterogeneous

batches, we mark points with missing depths so that subsequent operations ignore them.
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Figure 2.2: UnsupervisedR&R. Given two RGB-D images of a scene, we first encode the
images into a feature map and project them into a 3D point cloud. We then extract cor-
respondences between the two feature point clouds and use them to estimate Rt0→1; a
6-DOF transformation that aligns the two point clouds. Finally, we differentiably render
the points from both point clouds and apply consistency losses.

2.3.2 Correspondence Estimation

Given two feature point clouds1, P, Q ∈ R(6+F )×N , we would like to find the correspon-

dences between the point clouds. Specifically, for each point in p ∈ P, we would like to

find the point qp such that

qp = argmin
q∈Q

D(fp, fq), (2.1)

where D(p, q) is a distance metric defined on the feature space. In our experiments, we

use cosine distance to determine the closest features.

We extract such correspondences for all points in both P and Q since correspondence

is not guaranteed to be bijective. As a result, we have two sets of correspondences, CP→Q

and CQ→P , where each set consists of N pairs.

Ratio Test. Determining the quality of each correspondence is a challenge faced by any

correspondence-based geometric fitting approach. Extracting correspondences based on

only the nearest neighbor will result in many false positives due to falsely matching repet-

itive pairs or non-mutually visible portions of the image.

The standard approach is to estimate a weight for each correspondence that cap-

tures the quality of this correspondence. Recent approaches estimate a correspondence

1As noted in Sec. 2.3.1, point clouds will have different numbers of valid points based on the input depth.
While our method deals with this by tracking those points and omitting them from subsequent operations,
we assume all the points are valid in our model description to enhance clarity.
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weight for each match using self-attention graph networks [241], PointNets [89, 330],

and CNNs [51]. In our experiments, we found that a much simpler approach based on

Lowe’s ratio test [179] works well without requiring any additional parameters in the net-

work. The basic intuition behind the ratio test is that unique correspondences are more

likely to be true matches. As a result, the quality of correspondence (p, qp) is not simply

determined by D(p, qp), but rather between the ratio r which is defined as

r =
D(p, qp,1)

D(p, qp,2)
, (2.2)

where qp,i is the i-th nearest neighbor to point p in Q. Since 0 ≤ rp ≤ 1 and a lower ratio

indicates a better match, we weigh each correspondence by w = 1− r.

In the traditional formulation, one would define a distance ratio threshold for inlier

vs outliers. Instead, we rank the correspondences by their ratio weight and pick the top

k correspondences. We pick an equal number of correspondences from CP→Q and CQ→P .

Additionally, we keep the weights for each correspondence to use in the geometric fitting

step. Hence, we end up with a correspondence set M = {(p, q, w)i : 0 ≤ i < k} where

k=400.

2.3.3 Geometric Fitting

Given a set of correspondences M, we would like to find the transformation, T ∗ ∈ SE(3)

that would minimize the error between the correspondences

T ∗ = argmin
T ∈ SE(3)

E(M, T ) (2.3)

where the error E(M, T ) is defined as:

E(M, T ) = |M|−1
∑

(p,q,w)∈M

w (xp − T (xq))
2 (2.4)

This can be framed as a weighted Procrustes problem and solved using a weighted

variant of Kabsch’s algorithm [130].

While the original Procrustes problem minimizes the distance between a set of un-

weighted correspondences [93], Choy et al. [51] have shown that one can integrate

weights into this optimization. This is done by calculating the covariance matrix between

the centered and weighted point clouds, followed by calculating the SVD of the covariance

matrix. For more details, see [51, 130].
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Integrating weights into the optimization is important for two reasons. First, it allows

us to build robust estimators that weigh correspondences based on our confidence in their

uniqueness. More importantly, it makes the optimization differentiable with respect to the

weights, allowing us to backpropagate the losses to the encoder for feature learning.

Randomized Optimization. While this approach is capable of integrating the weights

into the optimization, it can still be sensitive to outliers with nonzero weights. We take

inspiration from RANSAC and use random sampling to mitigate the problem of outliers.

More specifically, we sample t subsets of M, and use Eq. (2.3) to find t candidate trans-

formations. We then choose the candidate that minimizes the weighted error on the full

correspondence set. Since the t optimizations on the correspondence subsets are all in-

dependent, we are able to run them in parallel to make the optimization more efficient.

We deviate from classic RANSAC pipelines in that we choose the transformation that min-

imizes the weighted error instead of maximizing the inlier count to avoid having to define

an arbitrary inlier threshold.

It is worth noting that the model can be trained and tested with a different number of

random subsets. In our experiments, we train the model with 10 randomly sampled subsets

of 80 correspondences each. At test time, we use 100 subsets with 20 correspondences

each. We evaluate the impact of those choices on performance and run time in Sec. 2.4.2.

2.3.4 Point Cloud Rendering

The final step is to render the RGB-D images of the aligned point clouds. This provides us

with our primary learning signals: photometric and depth consistency. The core idea is that

if the camera locations are estimated correctly, the point cloud render will be consistent

with the input images. We use differentiable rendering to project the colored point clouds

onto an image using the estimated camera pose and known intrinsics. Our rendering

pipeline is based on Wiles et al. [310].

A naive approach of simply rendering both point clouds suffers from a degenerate

solution: the rendering will be accurate even if the alignment is incorrect. An extreme case

of this would be to always estimate cameras looking in opposite directions. In that case,

each image is projected in a different location of space, and the output will be consistent

without alignment. We address this issue by forcing the network to render each view

using only the other image’s point cloud, as shown in Fig. 2.3. This forces the network to

learn consistent alignment, as a correct reconstruction requires the mutually visible parts

of the scene to be correctly aligned. This introduces another challenge: how to handle the
non-mutually visible surfaces of the scene?
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Figure 2.3: Point Cloud Rendering. We project the views from both views, but only
render from the alternative view; e.g.we render the points projected from view 2 in the
perspective of view 1. This can result in invalid pixels, visualized in white. (For clarity, we
show 1D projections in 2D space.)

While view synthesis approaches hallucinate the missing regions to output photo-

realistic imagery [310], earlier work in differentiable SfM observed that the gradients

coming from the hallucinated region negatively impact the learning [354]. Our solution to

this problem is to evaluate the loss for valid pixels only. Valid pixels, as shown in Fig. 2.3,

are ones for which rendering was possible; i.e., there were points along the viewing ray

for those pixels. This is important in this work since invalid pixels can occur due to two

reasons: non-mutually visible surfaces and pixels with missing depth. While the first rea-

son is due to our approach, the second reason for invalid pixels is governed by the current

depth sensors, which do not produce a depth value for each pixel.

In our experiments, we found that pose networks are very susceptible to the issues

above; the network starts estimating very large poses within the first hundred iterations

and never recovers. We also experimented with rendering the features and decoding them,

similar to [310], but found that this resulted in worse alignment performance.

2.3.5 Losses

We use three consistency losses to train our model: photometric, depth, and correspon-

dence. The photometric and depth losses are the L1 losses applied between the rendered

and input RGB-D frames. Those losses are masked to only apply to valid pixels, as dis-

cussed in Sec. 2.3.4. Additionally, we use the correspondence error calculated in Eq. (2.4)

as our correspondence loss. We weight the photometric and depth losses with a weighting

of 1, while the correspondence loss receives a weighting of 0.1.
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2.4 Experiments

We now empirically evaluate our model on pairwise point cloud registration. Our experi-

ments aim to answer several questions:

1. Does unsupervised training provide us with useful features for alignment?

2. Does training with RGB-D frames alleviate the need for pose supervision?

3. How do the different components of the model contribute to its performance?

We address those questions by evaluating our approach on two datasets of indoor

scenes: ScanNet [56] and 3DMatch [337]. We find that our approach achieves better reg-

istration accuracy than off-the-shelf visual and geometric feature descriptors (Sec. 2.4.1).

We also find that our approach performs on par with supervised geometric registration ap-

proaches despite using significantly simpler correspondence matching and alignment algo-

rithms; supporting our claim that RGB-D video can alleviate the need for pose supervision.

Finally, we analyze our model components through several key ablations (Sec. 2.4.2).

Datasets. We evaluate our approach using ScanNet [56] and 3D Match [337]. Scan-

Net contains RGB-D images and ground-truth camera poses for 1513 scenes, while 3D

Match is a much smaller dataset with a total of 101 scenes. We use the official data

split of 1045/156/312 scenes for train/val/test for ScanNet. 3D Match only provides a

train/test split, so we further divide the train split into train and validation; resulting in

71/11/19 RGB-D sequences for train/val/test split. We generate view pairs by sampling

image pairs that are 20 frames apart. We sample the training scenes more densely by sam-

pling all pairs that are 20 frames apart. This results in 1594k/12.6k/26k ScanNet pairs

and 122k/1.5k/1.5k 3D Match pairs.

Baselines. We compare our model to several learned and non-learned point cloud reg-

istration approaches. Since we are interested in the unsupervised setting, we first compare

with methods that do not require pose supervision. Our first set of baselines uses off-the-

shelf keypoint detectors and descriptors with RANSAC [82] as the robust estimator. For

all these baselines, we use Open3D’s RANSAC implementation [353]. Despite being pro-

posed over a decade ago, SIFT features are still used and serve as a strong baseline for

a non-learned method. SuperPoint [66] is a recently proposed approach for keypoint de-

tection and description and has achieved state-of-the-art performance in correspondence

matching on several benchmarks. Finally, FCGF [50] is a recently proposed geometric

feature descriptor that has also achieved state-of-the-art performance on several 3D cor-
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respondence benchmarks. Furthermore, FCGF features have been used by several recent

approaches for point cloud registration without further fine-tuning [51, 89].

We also compare with two supervised geometric registration approaches: DGR [51]

and 3D MV Registration [89]. Both of these approaches operate on FCGF point cloud

embeddings as their input and learn how to extract good correspondences between pairs.

There are two salient differences between our approaches: First, our approach is unsuper-

vised, while those approaches rely on pose supervision. Second, our approach operates on

RGB-D, while those approaches use the FCGF embedding of the point cloud without rely-

ing on the images. This comparison demonstrates how leveraging the currently ignored

RGB modality could alleviate the need for pose supervision and pre-trained descriptors.

We emphasize that we use the weights provided by the authors, which were trained on the

3D Match Geometric Registration benchmark.

Feature Encoder. The feature encoder is the only trainable component in our pipeline.

We use a small ResNet model consisting of 6 layers. The first layer is a 2D convolution

layer with a kernel size of 3 and an output channel dimension of 64. This is followed by

two ResNet basic blocks that retain the spatial and feature dimensions of the activations.

Finally, we use a 2D convolution layer to map the feature dimension from 64 to 32. We

reduce the feature dimension to 32 as it allows us to use the fast kNN CUDA kernel de-

fined in PyTorch3D [224]. All convolution layers are followed by BatchNorm and ReLU

activation, except for the last layer.

Training Details. We train our model with the Adam [137] optimizer with a learning

rate of 10−4 and momentum parameters of (0.9, 0.99). We train each model for 200K

iterations. We implement our approach in PyTorch [224], while making extensive use of

PyTorch3D [224] and Open3D [353].

2.4.1 Pairwise Registration

We first evaluate our approach on point cloud registration. Given two RGB-D images, we

estimate the 6-DOF pose that would best align the first input image with the second. The

transformation is represented by a rotation matrix R and translation vector t.

Evaluation Metrics. We evaluate pairwise registration by evaluating the pose prediction

as well as the chamfer distance between the estimated and ground-truth alignments. We

16



compute the angular and translation errors as follows:

Erotation = arccos(
Tr(RprR

⊤
gt)− 1

2
), (2.5)

Etranslation = ||tpr − tgt||2. (2.6)

We report the translation error in centimeters and the rotation errors in degrees.

While pose gives us a good measure of performance, some scenes are inherently am-

biguous and multiple alignments can explain the scene appearance; e.g., walls, floors, and

symmetric objects. To address these cases, we compute the chamfer distance between

the scene and our reconstruction. Given two point clouds where P represents the correct

alignment of the scene and Q represents our reconstruction of the scene, we can define

the closest pairs between the point clouds as set ΛP,Q = {(p, argminq∈Q ||p − q||) : p ∈ P).

We then compute the chamfer error as follows:

Echam = |P|−1
∑

(p,q)∈ΛP,Q

||xp − xq||+ |Q|−1
∑

(q,p)∈ΛQ,P

||xq − xp||. (2.7)

For each of these error metrics, we report the mean and median errors over the dataset

as well as the accuracy for different thresholds.

We conduct our experiments on ScanNet and report the results in Tab. 2.1. We find

that our model learns accurate point cloud registration, outperforming prior feature de-

scriptors and performing on par with supervised geometric registration approaches. We

next analyze our results through the questions posed at the start of this section.

Does unsupervised learning improve over off-the-shelf descriptors? Yes. We evalu-

ate our approach against the traditional pipeline for registration: feature extraction using

an off-the-shelf keypoint descriptor and alignment via RANSAC. We show large perfor-

mance gains over both traditional and learned descriptors. It is important to note that

FCGF and SuperPoint currently represent the state-of-the-art for feature descriptors. Fur-

thermore, both methods have been used directly, without further fine-tuning, to achieve

the highest performance on image registration benchmarks [241] and geometric regis-

tration benchmarks [51, 89]. We also find that our approach learns features that can

generalize to similar datasets. As shown in Tab. 2.1, our model trained on 3D Match out-

performs the off-the-shelf descriptors while being competitive with supervised geometric

registration approaches.
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Table 2.1: Pairwise Registration on ScanNet. We outperform existing registration
pipelines that use traditional or learned feature descriptors with RANSAC. Furthermore,
we perform on-par with supervised geometric matching methods that were trained on 3D
Match, demonstrating the utility of unsupervised training in this domain.

Rotation Translation Chamfer
Features Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Error ↓

Vis 3D 5◦ 10◦ 45◦ Avg Med 5 10 25 Avg Med Avg Med
RANSAC + Feature Descriptors
SIFT ✓ ✗ 55.5 75.8 89.2 18.6 4.4 17.8 45.0 80.0 26.2 11.2 40.8 1.7
SuperPoint [66] ✓ ✗ 65.7 86.7 96.7 8.8 3.5 21.0 51.7 88.0 16.2 9.7 19.3 1.2
FCGF [50] ✗ ✓ 69.5 87.6 96.1 9.4 3.2 28.1 58.2 82.8 23.6 8.3 23.8 0.9
Supervised Geometric Approaches
DGR [51] ✗ ✓ 81.1 89.3 94.8 9.4 1.8 54.5 76.2 88.7 18.4 4.5 13.7 0.4
3D MV Reg [89] ✗ ✓ 87.7 93.2 97.0 6.0 1.2 69.0 83.1 91.8 11.7 2.9 10.2 0.2
Ours (3D Match) ✓ ✗ 87.6 93.1 98.3 4.3 1.0 69.2 84.0 93.8 9.5 2.8 7.2 0.2
Ours (ScanNet) ✓ ✗ 92.7 95.8 98.5 3.4 0.8 77.2 89.6 96.1 7.3 2.3 5.9 0.1

Does RGB-D training alleviate the need for pose supervision? Yes. We compare

our approach to two recently proposed supervised point cloud registration approaches:

DGR [51] and 3D Multi-view Registration [89]. Since their model was trained on 3D

Match, we also train our model on 3D Match and report the numbers. We find that our

model is competitive with supervised approaches when trained on their dataset and can

outperform them when trained on ScanNet. However, a direct comparison is more nuanced

since those two classes of methods differ in two key ways: training supervision and input

modality.

We argue that the recent rise in RGB-D cameras on both hand-held devices and robotic

systems supports our setup. First, the rise in devices suggests a corresponding increase

in RGB-D raw data that will not necessarily be annotated with pose information. This in-

crease provides a great opportunity for unsupervised learning to leverage this data stream.

Second, while there are cases where depth sensing might be the better or only option

(e.g., dark environment or highly reflective surfaces.), there are many cases where one

has access to both RGB and depth information. The ability to leverage both can increase

the effectiveness and robustness of a registration system. Finally, while we only learn vi-

sual features in this work, we note that our approach is easily extensible to learning both

geometric and visual features since it is agnostic to how the features are calculated.
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Table 2.2: Ablation Results. Our ablation experiments demonstrate the utility of the ratio
test for correspondence filtering. Furthermore, we find that some ablations can improve
model performance when used for training, but not for testing.

Ablation Rotation Translation Chamfer

Train Test Mean Med. Mean Med. Mean Med.
Full Model 3.4 0.8 7.3 2.3 5.9 0.1
Model with Joint Rendering ✓ 5.5 1.1 12.0 3.1 9.0 0.2
- Randomized Optimization ✓ ✓ 4.7 1.3 10.8 3.9 8.2 0.3
- Ratio Test ✓ ✓ 6.9 1.9 15.1 5.2 10.5 0.5
- Randomized Optimization ✓ ✗ 2.8 0.8 6.1 2.1 5.0 0.1
- Ratio Test ✓ ✗ 4.1 1.1 9.3 3.2 6.8 0.2
- Randomized Optimization ✗ ✓ 5.8 1.6 13.3 4.7 9.7 0.4
- Ratio Test ✗ ✓ 16.6 5.5 35.5 13.4 27.8 2.8

2.4.2 Ablations

We perform an ablation study to understand the model’s performance and its various

components. In particular, we are interested in better understanding the impact of the

optimization and rendering parameters on the overall model performance. While some

ablations can only be applied during training (e.g., rendering choice), ablations that af-

fect the correspondence estimation and fitting can be selectively applied during training,

inference, or both. Hence, we consider all variants.

Joint Rendering. We first investigate the impact of our rendering choices. As we discuss

in Sec. 2.3.4, we render alternate views to force the model to align the point clouds to

produce accurate renders. As shown in Tab. 2.2, we find that naively rendering the joint

point cloud results in a significant performance drop. This supports our claim that joint

rendering negatively impacts feature learning as the model achieves good photometric

consistency even if the point clouds are not accurately aligned.

Ratio Test. In our approach, we use Lowe’s ratio test to estimate the weight for each

correspondence. We ablate this component by instead using the feature distance between

the corresponding points to rank the correspondences. Since this ablation can be applied

to training or inference independently, we apply it to training, inference, or both. Our

results indicate that the ratio test is critical to our model’s performance, as ablating it

results in the largest performance drop. This supports our initial claims about the utility of

the ratio test as a powerful heuristic for filtering correspondences. It is worth noting that
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Table 2.3: Run-time Analysis. We find that using a larger number of random subsets
improves our performance while also increasing the inference time. This trade-off between
performance and run-time could be used to tune the model based on the use case.

Rotation Translation Chamfer

Number of Subsets Mean Median Mean Median Mean Median Time (ms)
5 4.8 1.2 10.5 3.4 7.8 0.2 50.4 ± 0.3
10 4.2 1.0 9.2 2.9 7.1 0.2 60.2 ± 0.3
20 3.8 0.9 8.4 2.6 6.7 0.2 79.2 ± 0.5
50 3.5 0.9 7.7 2.4 6.0 0.1 135.4 ± 1.1
100 3.4 0.8 7.3 2.3 5.9 0.1 239.6 ± 1.2
200 3.3 0.8 7.2 2.2 5.9 0.1 425.2 ± 6.1

Lowe’s ratio test [179] shows incredible efficacy in determining correspondence weights, a

function often undertaken by far more complex models in recent work [51, 89, 221, 241].

Our approach is able to perform well using such a simple filtering heuristic since it is also

learning the features, not just matching them.

Randomized Subsets. In our model, we estimate t transformations based on t randomly

sampled subsets. This is inspired by RANSAC [82] as it allows us to better handle outliers.

We ablate this module by estimating a single transformation based on all correspondences.

Similar to the ratio test, this ablation can be applied to training or inference independently.

As shown in Tab. 2.2, ablating this component at test time results in a significant drop in

performance. Interestingly, we find that applying it during training and relieving it during

testing improves performance. We posit that this ablation acts similarly to DropOut [268]

which forces the model to predict using a subset of features and is only applied during

training. As a result, the model is forced to learn better features during training, while

gaining the benefits of randomized optimization during inference.

Number of subsets. We find that the number of subsets significantly impacts run-time

and performance. During training, we sample 10 subsets of 80 correspondences each.

During testing, we sample 100 subsets of 80 correspondences each. For this experiment,

we use the same pre-trained weights and only vary the number of subsets used. As shown

in Tab. 2.3, a larger number of subsets improves the performance while also increasing the

run-time, but the gains saturate at 100 subsets.
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Table 2.4: Impact of feature and alignment algorithm on Pairwise Registration. Using
Lowe’s Ratio test to filter correspondences improves performance as expected, while using
it to further weight the correspondences in the Weighted Procrustes algorithm further
improves performance. Furthermore, our features outperform the baselines regardless of
choice of alignment algorithm.

Rotation Translation Chamfer
Features Estimator Mean Median Mean Median Mean Median
SIFT RANSAC 25.4 5.4 33.8 12.5 54.3 2.5
SuperPoint RANSAC 13.1 4.0 20.9 10.6 30.0 1.4
FCGF RANSAC 10.9 4.9 20.3 11.8 15.9 2.2
Ours RANSAC 10.6 4.6 19.9 11.0 9.9 1.6
SIFT RANSAC-Corr 18.6 4.3 26.5 11.2 42.6 1.7
SuperPoint RANSAC-Corr 8.9 3.6 16.1 9.7 19.2 1.2
FCGF RANSAC-Corr 9.5 3.3 23.6 8.3 24.4 0.9
Ours RANSAC-Corr 3.5 1.8 8.5 5.6 4.4 0.5
SIFT Ours 14.5 2.0 26.5 5.7 20.8 0.5
SuperPoint Ours 4.8 1.6 8.5 4.1 7.4 0.3
FCGF Ours 15.3 4.3 34.8 11.6 28.9 2.0
Ours Ours 3.4 0.8 7.3 2.3 5.9 0.1

Alignment Algorithm. During training, we use the Weighted Procrustes algorithm for

registration to maintain the differentiability of the pipeline. However, during testing, we

can use our pretrained features with any alignment method; e.g., RANSAC. Furthermore,

we could use the Weighted Procrustes algorithm with other feature descriptors to better

understand its performance. we evaluate the pairwise registration performance for differ-

ent pairs of feature descriptors and alignment algorithms.

Given that the choice of correspondence set can be critical to the performance of an

alignment algorithm, we compare two variants of RANSAC. The first variant, RANSAC,

considers a large correspondence set that includes all nearest neighbors in the feature

space. The second variant, RANSAC-Corr, filters the correspondences using Lowe’s ratio

test and only keeps the top 400. This is similar to our approach, and the comparison allows

us to understand the impact of Lowe’s ratio test for filtering as opposed to both filtering

and weighing the correspondence as done by the Weighted Procrustes algorithm. We use

Open3D’s RANSAC implementation [353] with a limit of 105 iterations.

We present the results in Tab. 2.4. We first observe that filtering the correspondences

improves the performance of all feature descriptors, as shown by the improved perfor-

mance of RANSAC-Corr and Weighted Procrustes. We note that some of those differences

would decrease by allowing RANSAC to run for a longer number of iterations. However,
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even with 100,000 iterations, we find the inference with RANSAC can be up to 10x slower

than using Weighted Procrustes. Intuitively, filtering correspondences should improve the

performance since it makes it easier for RANSAC to find the best alignment by decreasing

the number of outliers. This is especially true for methods that output a large number of

feature descriptors, like FCGF and our method. Finally, we observe that using Weighted

Procrustes further improves the performance of all visual features.

2.5 Qualitative Analysis

We visualize our correspondence registration and rendering in Figs. 2.4 and 2.5 to provide

a clear picture of our model’s performance and limitations. First, we show the additional

registration results in Fig. 2.4. Our model can extract dense correspondences between

images, allowing it to accurately estimate the camera motion in the scene and register

the images. Similar to registration methods, our approach struggles when there is limited

visual and geometric texture in the image. This results in the failure mode shown in

the bottom row of Fig. 2.4. However, as shown in the second to last row, the dense

correspondences can still help it identify the correct correspondences.

Second, we also show the RGB-D renderings produced by the model in Fig. 2.5. As

can be seen, our model’s reconstruction from the rendered features closely matches the

appearance of the input images. Furthermore, as discussed in Sec. 2.3.4, our model only

renders the overlapping sections of the scene, resulting in the sections of the image not

being rendered. As presented in the image, our image pairs do not have significant overlap,

demonstrating our model’s ability to perform wide-baseline correspondence matching and

point cloud registration.
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Input Images Estimated AlignmentExtracted Correspondences

Figure 2.4: Pairwise Registration Results. Our model extracts can extract dense corre-
spondences that enable accurate registration. However, we observe that the estimates can
be very noisy for scenes with limited visual texture. Nevertheless, the correspondences es-
timated for such scenes have lower confidence, as indicated by the correspondence colors,
which range from green for high confidence to red for low confidence.
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Input RGB Rendered RGB Input Depth Rendered Depth

Figure 2.5: RGB-D Rendering Results. Our model accurately aligns and renders the
scene. While missing depth pixels in the input are due to sensor issues, missing pixels in
our renders can be due to non-mutually visible surfaces either due to a change in camera
view, occlusion, or missing depth.
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2.6 Discussion

In this chapter, we present an unsupervised, end-to-end approach to pairwise RGB-D point

cloud registration. We observe that existing approaches to point cloud registration rely on

pose supervision for learning geometric point cloud alignment. However, with the increase

in cameras with depth sensors, we expect a large stream of raw RGB-D data. This provides

us with the opportunity to develop approaches that learn directly from their sensor data

without requiring any supervision.

Our key insight is that an accurate alignment entails geometrically consistency corre-

spondence and the ability to accurately re-render the scene. Hence, we can train a model

that learns good visual features by relying on those two signals, which it gets directly from

its inputs and intermediate estimates. At the time of publication, our approach outper-

formed all existing traditional and learned feature descriptors, showcasing the utility and

promise of relying on those simple consistency signals.

Furthermore, we observed that the use of principled components that are integrated

into the learning can greatly simplify the approach. One clear example of this was the use

of the ratio test which was proposed by Lowe [179] two decades ago. Despite its relative

simplicity, we were still able to outperform approaches that trained neural networks to do

the filtering of the correspondence.

Nevertheless, we observe several limitations in our work. First, our reliance on photo-

metric consistency makes our approach sensitive to lighting changes that are inherent to

many indoor environments. The rendering pipeline can also be slow and complicates our

overall pipeline. Another limitation is that we assume that the transformation between

the two views can be explained by a single rigid-body transform. This limits our ability

to handle dynamics and is further exacerbated by photometric consistency which would

struggle with any dynamics in the scene. However, those limitations are due to our mod-

eling choices and are not inherent in the learning from correspondence. Furthermore,

we alleviate some of those limitations in our next chapter by only relying on geometric

consistency for learning.
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Chapter 3

Learning from Geometric Consistency

In this previous chapter, we showed how models can learn good visual representations

from RGB-D video by relying on photometric and geometric consistency. We now challenge

this assumption and show that geometric consistency is actually sufficient for learning good

representation learning. The intuition here is very simple: if our estimated correspondence

is accurate, they should all agree on a single global consistency. If we assume that our

estimates will contain a small set of consistent correspondences, then we can train models

by penalizing any deviation from a robust estimate of the transformation. This observation

allows us to both simplify our approach and extend to learning both visual and geometric

representations.

In this chapter, we propose BYOC: a self-supervised approach that learns visual and

geometric features from RGB-D video. Our approach relies on two key observations: First,

randomly initialized convolutional neural networks are still effective feature extractors for

correspondence estimation. Second, the noisy correspondences estimated by randomly

initialized features can estimate coarsely accurate transformations when combined with

robust estimators. BYOC builds on UnsupervisedR&R, presented in Chapter 2, by sim-

plifying its setup, proposing a more robust geometric consistency loss, and incorporating

geometric feature encoders. We are particularly interested in learning geometric features

based on point cloud data, and we show how correspondences based on visual features

provide good pseudo-labels for geometric feature learning. BYOC matches the perfor-

mance of prior traditional and learned geometric feature descriptors and exhibits strong

cross-dataset generalization. Those results are surprising when considering the training

signal: how well the model can align its own predicted correspondences. This chapter is

based on work previously published in [75].
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Figure 3.1: BYOC estimates visual correspondences and uses them to train a visual and
a geometric encoder on RGB-D video frames. At test time, we only use the geometric
encoder to register uncolored point clouds.

3.1 Introduction

One’s ability to align two views of the same scene is closely intertwined with their ability

to identify corresponding points between the two views. The duality between correspon-

dence estimation and point cloud registration has long been recognized and serves as the

basis for many approaches to both problems. Given an accurate registration of a scene,

one can easily extract correspondences between the two views. Conversely, given point

correspondences, one can easily register two views of a scene. Can we leverage this cycle to
jointly learn both correspondence estimation and point cloud registration from scratch?

At the core of this cycle is the ability to generate good feature descriptors for points in

the scene. The prevailing approach to 3D feature learning relies on preregistered scenes

to sample ground-truth correspondences for the supervised training of a feature encoder.

This is done by sampling positive and negative feature pairs and applying triplet [50, 135,

165, 327] or contrastive [13, 50, 319] losses. While very successful, these approaches

require us to have already registered the raw depth or RGB-D scans to generate the training

data. This limits this approach to data that can be successfully registered with automated

approaches like COLMAP [243]. Ideally, we would leverage the success of supervised

approaches without relying on ground-truth correspondence labels.

27



To this end, we propose Bootstrap Your Own Correspondences (BYOC): a self-

supervised end-to-end approach that learns point cloud registration by leveraging pseudo-

correspondence labels. Our approach extracts pseudo-correspondences using the features

of a randomly initialized feature encoder. We use the sampled correspondences to register

the point clouds and apply losses based on the quality of the registration to train the fea-

ture encoders. This allows us to slowly bootstrap1 the feature learning process and learn

from RGB-D scans without relying on any pose or correspondence supervision.

This approach works well for registering RGB-D frames, but it is less effective for raw

point clouds. This is primarily due to the fact that randomly initialized 2D CNNs produce

more distinctive features than current point cloud encoders, as shown in Fig. 3.3. We

leverage this observation and propose bootstrapping the geometric feature learning using

visual correspondences. We do this by using the estimated visual correspondences, as op-

posed to ground-truth correspondences [13, 50, 135, 165, 319, 327], to train the geomet-

ric encoder. We train the geometric encoder by adapting SimSiam [42], a non-contrastive

self-supervised approach, for 3D representation learning. Unlike typical contrastive self-

supervised approaches, SimSiam allows us to train the model using only positive pairs

without requiring negative sampling or momentum encoders.

Our work draws inspiration from two sources: iterative closest point algorithm

(ICP) [17, 45, 347] and self-supervised learning with pseudo-labels [31, 97, 154]. While

seemingly different, the same intuition lies at the core of both lines of work. ICP is a

registration algorithm that assumes that the closest points between two point clouds cor-

respond to each other. Through iterative refinement and resampling, it can register roughly

aligned point clouds. Meanwhile, self-supervised learning with pseudo-labels learns to pre-

dict pseudo-labels in the form of the current top prediction [154], feature clusters [31], or

even a previous prediction [97]. Through redefining the labels over time, the model can

progressively learn better representations. Both rely on the observation that pseudo-labels

in a well-structured space (i.e., similar entities already lie close to each other) can provide

a valuable learning signal. This is particularly relevant for learning due to the observation

that CNNs, even when randomly initialized, are good feature extractors [231, 291].

We evaluate our approach on two indoor scene datasets: ScanNet [56] and 3D

Match [337]. Despite the simplicity of our approach, it outperforms hand-crafted features

as well as several supervised baselines while being competitive with current state-of-the-art

supervised approaches.

In summary, we propose a self-supervised approach that uses sampled correspondences

from randomly initialized feature encoders to learn point-wise features for point cloud

1We use bootstrap in its idiomatic rather than its statistical sense.
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registration. We further demonstrate how visual correspondences can further improve

geometric feature learning. We demonstrate the efficacy of this approach on point cloud

registration and correspondence estimation.

3.2 Related Work

3D Feature Descriptors. Early work on feature point extraction can be traced back to

using corners for stereo matching [197]. The core intuition of extracting features based

on histograms of gradients was later extended to 3D features [124, 125, 236, 239, 284].

More recently, the focus has shifted towards leveraging supervised learning for 3D feature

learning [13, 50, 60–62, 88, 135, 165, 305, 327, 350]. The common approach is to sample

positive and negative pairs between two views and then use them in triplet [50, 135,

165, 327] or contrastive [13, 50, 61, 319] losses. Other approaches propose applying

unsupervised learning on reconstructed scenes [60, 319, 350]. While those approaches do

not explicitly use ground-truth pose, they rely on reconstructed scenes that are generated

using ground-truth pose. Unlike prior work, our approach learns directly from RGB-D

scans without relying on ground-truth pose.

Point Cloud Registration. Early work on point cloud registration assumed perfect cor-

respondence between the point clouds [8, 176]. This assumption was later relaxed by

ICP by assuming that the closest point is the correspondence [17, 45, 347]. While this

assumption holds for several applications (e.g., registering scans from a high frame-rate

scanner or fine-tuning alignment), it is challenged by large transformations and partially

overlapping point clouds. Later work focused on designing feature descriptors for estab-

lishing correspondence and using robust estimators such as RANSAC to handle noise and

outliers [285, 348]. For a review, see [215]. This has been extended further by incorpo-

rating learning into the registration process [26, 27, 51, 77, 89, 115, 221, 328]. Finally,

recent work has proposed self-supervised approaches for registering objects [4, 108, 115,

304, 305, 328, 334] or reconstructed scenes [60, 135, 350]. Those approaches operate

on dense point clouds that are constructed from aligned partial views. Hence, while the

method might be self-supervised, the overall approach still requires ground-truth annota-

tion. We are inspired by this line of work and extend it by learning directly from RGB-D

scans instead of reconstructed scenes.

Self-supervised learning. Self-supervised learning refers to approaches that apply su-

pervised learning to tasks where the data itself serves as the supervision. This idea has
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Figure 3.2: BYOC. Our model takes as input two RGB-D images of a scene. First, we extract
visual features from the images and geometric features from the point clouds. This results
in two point clouds where each point has a 3D location, visual feature, and geometric
feature. We then extract correspondences from the visual and geometric features. Those
correspondences are used to estimate a transformation and compute a registration loss.
We also apply a feature similarity loss on geometric features sampled using the visual
correspondences.

been very popular for 2D representation learning with the goal of learning representations

that generalize to downstream tasks [42, 64, 68, 87, 94, 97, 280]. Recently, PointCon-

trast [319] and DepthContrast [346] demonstrated how to extend this formulation to 3D

representation learning. We are inspired by this line of work but differ from it in several

ways. First, our goal is to learn good features for registration, not for different downstream

tasks. Second, we learn from RGB-D videos, not reconstructed scenes like [319]. Also, we

learn point-level representations, not scene-level representations like [346]. Finally, while

prior work has focused on using contrastive learning, we show that non-contrastive learn-

ing [42, 97] can be very effective for 3D feature learning despite being far simpler.

3.3 Bootstrap Your Own Correspondence

The goal of this work is to learn geometric point cloud registration from RGB-D video

without relying on pose or correspondence supervision. Our approach, shown in Fig. 3.2,

has three major components: visual registration, geometric registration, and correspon-

dence transfer. The first two components are based on the traditional registration pipeline

of feature extraction, correspondence estimation, and geometric fitting. The only differ-

ence between them is whether the features are extracted using a visual encoder from the

image or a geometric encoder from the point cloud. The third component is based on
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SimSiam [42] and applies a feature similarity loss on pairs of geometric features that are

sampled using visual correspondences. Our key insight is that randomly initialized CNNs

produce features that allow for coarse correspondence estimation and registration. This al-

lows us to bootstrap the learning of both visual and geometric encoders by using estimated

correspondences with registration and feature similarity losses.

3.3.1 Point Cloud Registration

Given two point clouds, P0 and P1, point cloud registration is the task of finding the

transformation T ∈ SE(3) that aligns them. Registration approaches commonly consist of

three stages: feature extraction, correspondence estimation, and geometric fitting. In our

approach, we register the point cloud pair using either visual or geometric features. Below

we discuss each of these steps in detail.

Geometric Feature Extraction. The geometric encoder extracts features based on the

geometry of the point cloud. We first generate a point cloud for each view using the input

depth and known camera intrinsic matrix. We then encode each point cloud using a sparse

3D convolutional network [49, 96]. We use this network due to its success as a back-end

for supervised registration approaches [50, 51, 89] and 3D representation learning [319,

346]. This network applies sparse convolution to a voxelized pointcloud, allowing it to

extract features based on local geometry while maintaining a quick run-time. Similar to

prior work [50, 319, 346], we find that a voxel size of 2.5 cm works well for indoor scenes.

This step maps our input RGB-D image, I0, I1 ∈ R4×H×W to P0,P1 ∈ RN×(3+F ) where each

point cloud has N points, and each point p is represented by a 3D coordinate xp and a

F -dimensional geometric feature vector gp.2 We use a feature dimension of 32.

Visual Feature Extraction. The visual encoder extracts features based on the image.

We use a ResNet encoder with two residual blocks as our image encoder and map each

pixel to a feature vector of size 32. We use the projected 3D coordinates of the voxelized

point cloud from the geometric encoder to index into the 2D feature map. This allows us

to generate a point cloud for each input RGB-D image, where each point p ∈ P has a 3D

coordinate xp, a visual feature vp, and a geometric feature gp. Since each point can be

represented by a visual or a geometric feature, we can easily transfer the correspondences

between the different feature modalities as shown in Sec. 3.3.2. We note that we only

use the visual encoder during training to bootstrap the geometric feature learning. At test

time, we register point clouds using only the geometric encoder.

2Voxelization will result in point clouds of varying dimension. We use heterogeneous batching to handle
this in our implementation but assume that point clouds have the same size in our discussion for clarity.
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Correspondence estimation. We estimate the correspondences between the two input

views for each feature modality to output two sets of correspondences: Cvis and Cgeo. We

first generate a list of correspondences by finding the nearest neighbor to each point in

the appropriate feature space. Since each point cloud has N points, we end up with 2N

candidate correspondences for each modality.

The candidate correspondences will likely contain a lot of false positives due to poor

matching, repetitive features, and occluded or non-overlapping portions of the image. The

common approach is to filter the correspondences based on some criteria of uniqueness or

correctness. Recent approaches propose learning networks that estimate a weight for each

correspondence [51, 89, 221]. In this work, we leverage the method proposed by [77] of

using a weight based on Lowe’s ratio [179]. Given two point clouds, P0 and P1, we find

the correspondences of point p ∈ P0 by finding the two nearest neighbors qp and qp,nn2 to

p in P1 in feature space. We can calculate the Lowe’s ratio weight as follows:

wp,qp = 1−
D(fp, fqp)

D(fp, fqp,nn2
)

(3.1)

where D is cosine distance, and fp is either the visual or the geometric feature descriptor

depending on the feature modality used. It is worth noting that this formulation is similar

to the triplet loss often used in contrastive learning, where qp is the positive sample and

qp,nn2 is the hardest negative sample. We use the resulting weights to rank the correspon-

dences and only include the top k correspondences. We use k = 400 in our experiments.

Each element of our correspondence set C consists of the two corresponding points and

their weight (p, q, wp,q).

Geometric Fitting. For each set of correspondences, we estimate the transformation,

T∗ ∈ SE(3) that would minimize the mean-squared error between the aligned correspon-

dences:

E(C,T) =
∑

(p,qp,w)∈C

w∑
C w

||xqp −T(xp)|| (3.2)

This problem can be reformulated as a weighted Procrustes problem [93, 130, 263, 292]

allowing for weights to be integrated into the operation to improve the optimization pro-

cess while maintaining differentiability with respect to the weights [51]. We adopt this

formulation due to its relative simplicity and ease of incorporation within an end-to-end

trainable system.

Despite having filtered the correspondences, the correspondence set might still include

some outliers that would result in an incorrect geometric fitting. We adopt the randomized
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Figure 3.3: Randomly-initialized CNNs are good feature extractors. Random visual
features provide much better correspondence than random geometric features. We use this
to bootstrap the learning of geometric features using estimated visual correspondences.

optimization used in [77] and similarly find that we get the best performance by only using

it at test time.

Registration Loss. Our registration loss is defined with respect to our correspondence

set and the estimated transformation as follows:

Lreg(C) = argmin
T∈SE(3)

E(C,T) (3.3)

There are a few interesting things about this loss. First, the gradients are back-propagated

to the feature encoder through both the weights, w, and the transformation, T. Hence,

the loss can be formulated without using the weights. We find that using the weight

improved the performance of visual registration while deteriorating the performance of

geometric registration. Therefore, in our model, we only apply the weighting to the visual

registration branch while removing it from the geometric branch.

Second, the loss operates as a weighted sum over the residuals. Specifically, the loss

is minimized if the correspondence with the lowest residual error has the highest weight.

Since the weights are L1 normalized, the relative weighing of the correspondences mat-

ters. Removing the normalization results in an obvious degeneracy since the loss can be

minimized by driving the weights to 0, which can be achieved by mode collapse. Finally,

the weighted loss closely resembles a triplet loss since we estimate both a positive (first

nearest neighbor) and a hardest negative (second nearest neighbor) sample. However,

unlike the commonly used margin triplet loss, this formulation does not require defining a

margin as it operates on the ratio of distances rather than their absolute value.
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3.3.2 Visual To Geometric

The approach outlined in Sec. 3.3.1 works well with visual features, but it is less effective

with geometric features. The reason for this becomes apparent once we consider the

registration performance using features from randomly initialized encoders. As shown in

Fig. 3.3, we observe that the features extracted from a randomly initialized visual encoder

provide some distinctive output, while a random geometric encoder’s outputs are more

random. This has a strong impact on registration as shown in Tab. 3.2. Additionally, as

we find in Sec. 3.4.1, our approach using visual features performs much better than our

approach with geometric features.

Ideally, we would leverage good visual correspondence to improve geometric feature

learning. We observe that geometric feature learning approaches typically rely on ground-

truth correspondence sampled from the 3D reconstructed scene. [13, 50, 88, 165, 327].

We adapt this approach to the unsupervised setting by sampling feature pairs using visual

correspondences. This is simple in our approach since each point has both a visual feature

and a geometric feature, so transferring correspondences is simply indexing into another

tensor. Since the correspondences act as indices, the loss is only back-propagated to the

geometric encoder.

Current 3D feature learning approaches rely on both positive and negative pairs to

define triplet [50, 135, 165, 327] or contrastive [13, 50, 319] losses. However, as noted

in the literature, those losses can be difficult to apply due to their susceptibility to mode

collapse and sensitivity to hyperparameter choices and negative sampling strategy [50,

319, 346]. Those issues are amplified in our setting since the visual correspondences

only provide us with estimated, not ground-truth, positive samples. Instead of the typical

contrastive setup, we adapt the recently proposed non-contrastive self-supervised learning

approaches [42, 97] to the point cloud setting. We use SimSiam [42] due to its simplicity

and strong performance: it does not require negative sampling or a momentum encoder.

We adapt SimSiam by applying it to the geometric features of visually corresponding

points instead of different augmentations of the same image. Given a correspondence

(p, q) ∈ Cvis, we first project the features using a two-layer MLP projection head and apply

a stop-gradient operator on the features:

zp = project(gp). (3.4)

gp = stopgradient(gp). (3.5)
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We then compute the loss based on the cosine distance between each geometric feature

and the projection of its correspondence:

LV→G(Cvis) =
1

|Cvis|
∑

(p,q)∈Cvis

D(gp, zq) +D(zp,gq) (3.6)

where D is the cosine distance function and Cvis is the set of visual correspondences.

3.4 Experiments

We evaluate our approach on point cloud registration of indoor scenes. We train our

model on ScanNet, a large dataset of indoor scenes, and evaluate it on ScanNet and the

3D Match registration benchmark. Our experiments aim to answer two questions: (1) can

we learn accurate point cloud registration from bootstrapped correspondences?; (2) can

we leverage RGB-D video at training time to train better geometric encoders?

BYOC variants. We consider two variants of our model: BYOC-Geo and BYOC. BYOC-

Geo is trained only on depth pairs using the geometric registration loss. This variant ap-

plies the bootstrapping idea without leveraging the visual correspondence. BYOC, shown

in Fig. 3.2, is trained using RGB-D pairs but only uses the geometric encoder for registra-

tion at test time. Since BYOC uses visual correspondences to train the geometric features,

we use data augmentation to further improve the geometric feature learning. We sample

random rotations and apply them to the point cloud before the geometric encoder. This is

a common augmentation in 3D feature learning [50, 319] and is intended to improve the

learned feature’s rotational equivariance. We note that training BYOC-Geo with rotation

augmentation greatly deteriorates its performance.

RANSAC Baselines. We use the Open3D [353] RANSAC implementation and use the

same parameters for all experiments, including our features. We run RANSAC for 105

iterations with estimates being scored on the number of inliers (within a threshold of

3 cm). It is worth emphasizing that this work is focused on learning better geometric

features. As a result, our comparison here is against other features (e.g., FPFH and FCGF),

not against RANSAC. A more accurate or robust estimator would improve the performance

of all methods.

Datasets. We evaluate our approach on two datasets of indoor scenes: ScanNet [56] and

3D Match [337]. While both datasets provide RGB-D video annotated with ground-truth
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camera poses, 3D Match provides an additional geometric registration benchmark that

is more challenging due to the larger viewpoint changes. ScanNet provides pose anno-

tated RGB-D video for 1513 scenes, while 3D Match only has 101 scenes. We emphasize

that we only use RGB-D video and camera intrinsics for training our model. We use the

official scene splits for both datasets and generate view pairs by sampling image pairs

that are 20 frames apart. This results in 1594k/12.6k/26k RGB-D pairs for ScanNet and

122k/1.5k/1.5k RGB-D pairs for 3D Match.

Training Details. We use the Adam [137] optimizer with a learning rate of 10−4 and

momentum parameters of (0.9, 0.99). We train each model for 200K iterations with a

batch size of 8. We implement our models in PyTorch [224], with extensive use of Py-

Torch3D [224], Open3D [353], and Minkowski Engine [49]. The code is available at

https://github.com/mbanani/byoc.

3.4.1 Point Cloud Registration

We first evaluate our approach on point cloud registration on ScanNet and report our

results in Tab. 3.1. Given two point clouds, we estimate the transformation T ∈ SE(3) that

would align the point clouds. We emphasize that we discard the visual encoder at the test

time and only use the geometric encoder on the point cloud input.

Baselines. We compare our approach to both classical hand-crafted and supervised learn-

ing approaches. We first compare our approach against two variants of ICP [235]. ICP

is an important baseline since it is both an inspiration of this work and a classical point

cloud registration algorithm. We also compare against a RANSAC-based aligner using

FPFH [236] or FCGF [50] 3D feature descriptors. FPFH [236] is a hand-crafted 3D feature

descriptor that represents a point by a histogram of the spatial relationships to its nearest

neighbors. FPFH is one of the best non-learned 3D feature descriptors and is representative

of the performance of hand-crafted 3D features. FCGF [50] is a recently proposed learned

3D feature descriptor that combines sparse 3D convolutional networks with contrastive

losses trained with ground-truth correspondences.

We also compare against Deep Global Registration [51] and 3D Multiview Registra-

tion3 [88]: two supervised approaches that learn to estimate correspondences on top of

FCGF features. Those approaches use supervision for both feature learning and correspon-

dence estimation, while our approach is unsupervised for both.

3It is worth noting that 3D Multi-view Registration [89] proposes both a method for pairwise registration
and synchronizing multiple views at the same time. We only compare against their pairwise registration
module.
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Table 3.1: Pairwise Registration on ScanNet. We outperform existing registration
pipelines that use traditional or learned geometric feature descriptors with a RANSAC
or Weighted Procrustes estimator. Furthermore, we perform on-par with supervised ap-
proaches that were trained on 3D Match, demonstrating the utility of unsupervised train-
ing in this domain.

Rotation Translation Chamfer
Recall ↑ Error ↓ Recall ↑ Error ↓ Error ↓

Train Set 5◦ 10◦ 45◦ Mean Med. 5 10 25 Mean Med. Mean Med.
ICP (Point-to-Point) - 31.7 55.6 99.6 10.4 8.8 7.5 19.4 74.6 22.4 20.0 32.9 14.1
ICP (Point-to-Plane) - 54.4 68.0 98.6 8.6 3.6 30.0 36.7 70.4 23.6 18.0 29.5 8.2
FPFH + W. Procrustes - 22.2 48.2 84.9 27.8 10.4 7.4 19.6 56.3 54.1 25.3 26.5 5.8
FPFH + RANSAC - 34.1 64.0 90.3 20.6 7.2 8.8 26.7 66.8 42.6 18.6 23.3 2.9
Pose-Supervised Approaches
FCGF + W. Procrustes 3DMatch 54.1 73.3 92.2 15.3 4.3 30.8 46.2 73.0 35.0 11.6 21.5 1.4
FCGF + RANSAC 3DMatch 75.3 87.7 95.6 9.7 2.5 39.7 64.9 86.5 20.8 6.4 13.0 0.6
DGR [51] 3DMatch 83.6 90.5 95.2 9.0 1.7 57.6 78.8 91.3 17.1 4.2 10.7 0.3
3D MV Reg [89] 3DMatch 87.7 93.2 97.0 6.0 1.2 69.0 83.1 91.8 11.7 2.9 10.2 0.2
BYOC 3DMatch 66.5 85.2 97.8 7.4 3.3 30.7 57.6 88.9 16.0 8.2 9.5 0.9
BYOC-Geo ScanNet 80.3 92.8 98.8 4.8 2.3 46.5 74.6 94.6 10.6 5.4 7.2 0.5
BYOC + RANSAC ScanNet 81.3 92.8 98.4 5.6 2.4 37.8 69.7 92.1 13.3 6.4 7.7 0.5
BYOC ScanNet 86.5 95.2 99.1 3.8 1.7 56.4 80.6 96.3 8.7 4.3 5.6 0.3

Evaluation Metrics. We evaluate the pairwise registration by calculating the rotation

and translation error between the predicted and ground-truth transformation as follows:

Erotation = arccos(
Tr(RprR

⊤
gt)− 1

2
), (3.7)

Etranslation = ||tpr − tgt||2. (3.8)

We report the translation error in cms and the rotation errors in degrees. We also report

the chamfer distance between predicted and ground-truth aligned point clouds. For each

metric, we report the mean and median errors and recall at different thresholds.

Results. We note that ICP approaches fail on this task. ICP assumes that the point clouds

are prealigned and can be very effective at fine-tuning such alignment by minimizing a

chamfer distance. However, our view pairs have a relatively large camera motion with the

mean relative transformation being 11.4 degrees and 19.4 cm. As a result, ICP struggles

with the large transformations and partial overlap between the point cloud pairs. Similarly,

FPFH also fails on this task as its output descriptors are not distinctive enough, resulting

in many false correspondences that greatly deteriorate the registration performance.
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Table 3.2: Random Visual Features are surprisingly good for registration. Visual fea-
tures outperform geometric features with and without training.

Rotation (deg) Translation (cm) Chamfer

Mean Median Mean Median Mean Median
Random Visual 6.4 2.7 14.9 7.0 9.8 0.6
Random Geometric 21.3 13.0 46.5 28.5 26.0 8.6
BYOC (Visual) 2.7 0.9 6.4 2.6 3.3 0.1
BYOC-Geo 4.8 2.3 10.6 5.4 7.2 0.5
BYOC 3.8 1.7 8.7 4.3 5.6 0.3

On the other hand, learned approaches show a clear advantage in this domain as they

are able to learn features that are well-tuned for the task and data domain. Our model is

able to outperform FCGF despite FCGF being trained with ground-truth correspondences

on an indoor scene dataset. This is true regardless of whether our model is trained using

RGB-D or depth pairs. While we find that our model trained on 3D Match performs worse

than FCGF, this is expected since 3DMatch is a much smaller dataset making it less suitable

for a self-supervised approach.

Finally, our approach is competitive with approaches that use supervision for both fea-

ture learning and correspondence estimation [51, 89]. This comparison represents the dif-

ference between full supervision on a small dataset vs. self-supervision on a large dataset.

Our competitive performance demonstrates the promise of self-supervision and its ability

to leverage a very simple learning signal: consistency between video frames.

What is the impact of the transformation estimator? While RANSAC improves the per-

formance of FPFH and FCGF compared to the Weighted Procrustes, we see the opposite

pattern with our approach. This is due to our model being trained specifically with a reg-

istration loss on filtered correspondence. As a result, Lowe’s ratio becomes a very effective

method of filtering our correspondences while being less effective for other approaches.

How good are random features? We find that random visual features can serve as a

strong baseline for point cloud registration on ScanNet, as shown in Fig. 3.3 and Tab. 3.2.

This is surprising since random visual features perform on par with FCGF. This explains

why our method is capable of achieving this performance without any supervision. We also

find that after training, our visual features achieve the highest registration performance.

Those results suggest that visual features are better descriptors for registration, but it is

unclear if this a fundamental advantage or if the performance gap can be be resolved

through better architectures or training schemes for geometric feature learning.
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3.4.2 Correspondence Estimation

We now examine the quality of the correspondences estimated by our method. We evaluate

our approach on the 3D Match geometric registration benchmark and follow the evaluation

protocol proposed by Deng et al. [61] for evaluating the correspondence recall. Intuitively,

feature-match recall measures the percentage of point cloud pairs that would be registered

accurately using a RANSAC estimator by guaranteeing a minimum percentage of inliers.

Baselines. We compare our approach against three sets of baselines. The first set is

hand-crafted features based on the local geometry around each point [236, 239, 284].

The second set is supervised approaches that use known pose to sample ground-truth cor-

respondences and apply a metric learning loss to learn features for geometric registration.

Finally, the third set is unsupervised approaches trained on reconstructed scenes. While

those approaches do not directly use ground-truth pose during training, their training data

(reconstructed scenes) is generated by aligning 50 depth maps into a single point cloud.

Hence, while those approaches do not use pose supervision explicitly, pose information is

needed to generate their data. We refer to those approaches as scene-supervised.

Evaluation Metrics. Given a set of correspondences C, FM(C) evaluates whether the

percentage of inliers exceeds τ2, where an inlier correspondence is defined as having a

residual error less than τ1 given the ground-truth transformation T∗. Feature-match recall

is the percentage of point cloud pairs that have a successful feature matching.

FM(C) =
[ 1

|C|
∑

(p,q)∈C

1
(
||xp−T∗xq|| < τ1

)]
> τ2 (3.9)

Similar to [50, 60, 61], we calculate feature-match recall over all view pairs using τ1 = 10

cm and τ2 = 5%. Prior approaches often generate feature sets without any specified means

of filtering them. As a result, they define the correspondence set as the set of all nearest

neighbors. Unlike prior work, we output a small set of correspondences after ranking them

using Lowe’s ratio test.

Results. BYOC achieves high feature match recall, outperforming traditional and scene-

supervised approaches while being competitive with supervised approaches. This perfor-

mance is achieved by only training on the raw RGB-D or depth scans without requiring

any additional annotation or postprocessing of the data. This across-dataset generaliza-

tion is interesting since ScanNet and 3DMatch differ in two key ways. First, 3D Match

point clouds are generated by integrating 50 depth frames. As a result, they are denser

than single-frame ScanNet point clouds. Second, point cloud pairs in 3D Match have larger
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Table 3.3: Feature-Match Recall on 3D Match. Our approach achieves better recall than
hand-crafted and scene-supervised approaches while being competitive with supervised
approaches.

Training Data FMR
Dataset Data Format Recall St. Dev.

SHOT [239] - - 0.238 0.109
USC [284] - - 0.400 0.125
FPFH [236] - - 0.481 0.150
FPFH [236] (corr) - - 0.462 0.198
3D Match [337] 3D Match Posed Depth 0.596 0.088
PPFNet [61] 3D Match Posed Depth 0.623 0.108
PerfectMatch [88] 3D Match Posed Depth 0.947 0.027
FCGF [50] 3D Match Posed Depth 0.952 0.066
FCGF [50] (corr) 3D Match Posed Depth 0.932 0.104
CGF [221] SceneNN Scenes 0.582 0.142
PPF-FoldNet [60] 3D Match Scenes 0.718 0.105
3D Point Capsule Networks [350] 3D Match Scenes 0.787 0.062
BYOC (no filtering) ScanNet RGB-D Video 0.662 0.225
BYOC 3D Match RGB-D Video 0.690 0.172
BYOC ScanNet RGB-D Video 0.766 0.181
BYOC-Geo ScanNet Depth Video 0.786 0.195

viewpoint changes. Despite those differences, our model can still generalize from ScanNet

to 3D Match. This can be attributed to both the voxelization performed by the geometric

encoder and the augmentation, which gives the model some degree of equivariance with

respect to point cloud density and rotation.

We also observe that BYOC-Geo, which is only trained with geometric correspondence,

generalizes better to 3D Match despite doing worse on ScanNet. One explanation for this

discrepancy is that bootstrapping with visual correspondences biases the model towards

representing features that are meaningful in both modalities. Such representations might

be more dataset-specific, hindering across-dataset generalization. This finding opens up

the possibility of using datasets that only have depth video; e.g., lidar.

While our best configuration performs on par with the best scene-supervised approach,

they outperform us if we do not filter our correspondences. We observe that when we

attempt to filter the correspondences for FPFH or FCGF, their performance deteriorates.

This is consistent with some of the reported results by [60] where using a larger number

of features improved their performance. Hence, it is unclear how correspondence filtering

would affect the performance of self-supervised methods. Due to the lack of publicly
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available implementations of those methods and the complexity of their approach, we

were unable to run additional experiments to better understand the impact of the training

data and correspondence filtering on the learning process.

3.5 Qualitative Analysis

We visualize the extract features, correspondence, and registration to better understand

the model performance. We emphasize that the RGB images are only used for visualiza-

tion; our model operates on the uncolored point cloud computed from depth images. We

visualize the feature point clouds by using t-SNE [294] to map each 32-dimensional fea-

ture vector to a scalar. We then normalize the values onto the Spectral color map [118]

following Choy et al. [50]. We use the features from both input pairs when computing the

t-SNE to map similar features to similar colors.

Feature Quality. BYOC extracts features that appear to consistently map the same parts

of the scene to similar features as shown in Fig. 3.4. This allows the model to estimate

accurate correspondences and register the point clouds. Beyond consistent mapping, we

observe that the t-SNE mapping of the features displays sharp discrete jumps around object

boundaries. It would be interesting to explore the efficacy of our learned representations

for more semantic tasks such as 3D detection or segmentation.

Correspondence estimation. We also find that our model is able to extract accurate

correspondences for different scenes and different degrees of overlap. As a result, our

model is able to accurately register point clouds under a variety of setups. Furthermore,

the density of extracted correspondences allows us to accurately register the object even if

some of the correspondences are incorrect.

Failure modes. Finally, we also observe some failure modes in our model that are

shown in the bottom 3 rows. In the seventh row, the model’s correspondences appear to

be mapping points on the sink’s surface across the images, resulting in the registration

being slightly off. We observe this pattern for images with large, fairly flat surfaces. This

can be seen to a larger extent in the eighth row where the model extracts correspondences

between random points on the carpet, resulting in very poor registration performance.

Finally, the bottom row shows a case where the incorrect depth estimation results in erro-

neous registration. In this case, the input incorrectly specified the open window as a flat

surface, resulting in a large number of incorrect correspondences.
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Figure 3.4: BYOC’s geometric features allow for accurate registration by mapping
corresponding points to similar feature vectors. Our approach takes uncolored point
clouds as input; images and colored point clouds are presented to aid visualization. We
find that the features appear to delineate objects such as chairs and floor edges, resulting
in accurate registration. We observe several failure modes that can be caused by relatively
flat geometry (rows 7 and 8) or incorrect depth input (row 9).
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3.6 Discussion

In this chapter, we presented another way of learning from 3D correspondence in RGB-D

video. BYOC simplifies the setup of UnsupervisedR&R while achieving strong performance.

Our key insight is that geometric consistency provides a strong enough signal to learn

visual representations and support geometric representation learning. This is enabled by

the surprisingly strong performance of randomly initialized convolutional neural networks

that estimate noisy but relatively accurate correspondences without any training. Our

approach takes advantage of visual encoders to provide pseudo-correspondence labels to

enable geometric feature learning.

This approach shares some of the limitations in Chapter 2. Namely, it assumes that

the transformation between scenes is a rigid body transformation, which makes it diffi-

cult to handle learning from dynamic scenes or deformable objects. Furthermore, all our

experiments focused on indoor scenes which greatly benefit from being generally static

and structured. Finally, both approaches rely on close-by video frames, which limits the

viewpoint change. This limitation is quite fundamental to the current approach as it re-

lies on the assumption that overlap exists between frames. However, as discussed in the

following chapter, we can alleviate this concern by extending from pairwise to multiview

registration. While this does not completely alleviate the issue, it is a step towards better

leveraging video data and learning from longer-range consistency.

43



Chapter 4

Learning from Multiview Consistency

In Chapters 2 and 3, we explored how we can learn 3D correspondence from RGB-D

video. In both cases, we use frame pairs with the primary signal provided by video is

spatio-temporal consistency and view overlap between close-by frames. However, close-by

frame pairs depict small viewpoint changes and miss out on richer long-range consistency

between distant overlapping frames. We overcome this challenge by simply sampling more

frames for multiview registration. Our key insight is that multiview registration allows

us to obtain correspondences over longer time frames; increasing both the diversity and

difficulty of our training pairs.

In this chapter, we propose SyncMatch: a self-supervised approach for correspondence

estimation that learns from multiview consistency from short RGB-D sequences. We build

on the visual stream discussed in Chapter 3 and enhance it with a geometry-aware corre-

spondence estimation algorithm and a RANSAC-inspired transformation fitting algorithm.

We estimate pairwise transformations for all pairs and propose a novel SE(3) transfor-

mation synchronization algorithm to convert pairwise estimates into a single canonical

frame. This allows us to improve the representation learning and handle more frames

during training and testing. This chapter is based on work previously published in [79].

4.1 Introduction

Consider the couch in Fig. 4.1. While the start and end frames depict overlapping regions

in space, the large viewpoint change makes them appear significantly different. The ability

to establish correspondence across views lies at the core of scene understanding and visual

tasks such as SLAM and structure-from-motion. The common approach to learning corre-

spondence estimation relies on correspondence supervision; i.e., telling the model which

pixels belong to the same point in space. However, we commonly learn about the world by

moving and observing how appearance changes without such explicit supervision. Could
we learn correspondence estimation directly from video?
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Figure 4.1: Multiview RGB-D registration allows us to learn from wide-baseline view pairs
which exhibit more appearance change that adjacent frames.

Modern correspondence estimation approaches rely heavily on supervision. This is

typically obtained by applying classical 3D reconstruction algorithms on large image col-

lections [167, 260, 311] or carefully captured indoor scans [35, 56, 57], and then sam-

pling overlapping view pairs for training. This has been widely successful, as it provides

correspondence supervision with large viewpoint and lighting changes. While current

methods benefit from supervision, they are limited to learning from carefully captured

videos that can already be constructed using standard algorithms. Recently, there has

been a rise in self-supervised correspondence approaches that rely on close-by frames in

video [75, 77, 121, 152]. This sampling strategy limits the appearance change, as shown

in Fig. 4.1, resulting in poor performance on image pairs with large viewpoint changes.

Ideally, we would leverage the temporal consistency within the video to learn from distant

overlapping frames while ignoring non-overlapping pairs.

To this end, we propose SyncMatch: a self-supervised approach for learning correspon-

dence estimation through synchronized multiview pointcloud registration. Our approach

bootstraps itself, generating wide-baseline view pairs by registering and synchronizing all

pairwise transformations within short RGB-D video clips. Our core insight is that through

synchronizing transformations across longer time frames, we can detect and learn from

difficult pairs with large viewpoint changes. Despite only relying on geometric consistency

within RGB-D videos, we achieve comparable performance to fully-supervised approaches.
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Our approach is inspired by self-supervised pointcloud registration [75, 77] and trans-

formation synchronization [7, 89]. The core insight in self-supervised pointcloud registra-

tion is that randomly initialized networks provide sufficiently good features for narrow-

baseline pointcloud registration. This allows them to provide good pseudo labels for self-

supervised training. Meanwhile, transformation synchronization allows us to estimate an

accurate camera trajectory from a potentially noisy set of pairwise relative camera poses.

Our approach combines both ideas for self-supervised multiview registration, allowing us

to learn correspondence estimation across large viewpoint changes.

We evaluate our approach on RGB-D indoor scene videos. We train our model on RGB-

D videos from ScanNet and ETH-3D, and evaluate it on correspondence estimation and

RGB-D pointcloud registration. Despite only learning from RGB-D video, our approach

achieves a similar performance to supervised approaches with more sophisticated match-

ing algorithms. Furthermore, we provide a comprehensive analysis of our approach to

understand the impact of the training data and the model components.

4.2 Related Work

Correspondence Estimation. Correspondence estimation is the task of identifying

points in two images that correspond to the same physical location. The standard ap-

proach for establishing correspondence has two distinct steps: feature extraction and fea-

ture matching. Early work exploited hand-crafted feature detectors [179, 192] to extract

normalized image patches across repeatable image points, combined with hand-crafted

descriptors based on local statistics to obtain features with some robustness to illumina-

tion changes and small translations [5, 15, 179]. These features are matched via nearest

neighbor search and filtered using heuristics; e.g., ratio test [179] or neighborhood consen-

sus [242]. With the advent of deep learning, learnt keypoint detectors [151, 157], descrip-

tors [14, 283], and correspondence estimators [227, 241, 330] have been proposed. These

models are trained using correspondence supervision from traditional 3D reconstruction

algorithms [57, 243] on image collections of tourist landmarks [167, 260, 311] or indoor

scene video scans [35, 56, 337]. Other approaches have explored self-supervision using

synthetic data [66, 191, 226, 354], traditional descriptors [325], or RGB-D pairs from

video [75, 77]. Our work shares the motivation of self-supervised approaches and extends

it to learning from multiview consistency to better exploit the rich signal in video.

Pointcloud Registration. Pointcloud registration is the task of finding a transforma-

tion that aligns two sets of 3D points. Early work assumes access to perfect correspon-
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dence and devised algorithms to estimate the rigid body transformation that would best

align them [8, 130, 292]. Later work proposed robust estimators that can handle corre-

spondence errors and outliers that arise from feature matching [82, 348]. More recently,

learned counterparts have been proposed for 3D keypoint descriptors [50, 62, 96], cor-

respondence estimation [26, 27, 51, 89, 115, 221, 328], as well as models for directly

registering a pair of pointclouds [62, 108, 153, 180]. Closest to our work are approaches

that use RGB-D video to learn correspondence-based pointcloud registration [75, 77, 306].

Similar to our approach, they learn from the geometric consistency between RGB-D frames

in a video. However, unlike those approaches, we train on short sequences of videos in-

stead of frame pairs, allowing us to train on view pairs with larger camera changes.

SE(3) Transformation Synchronization Given a set of pairwise estimates, synchroniza-

tion estimates that set of latent values that explain them. Transformation synchronization

refers to this problem applied to SO(3) and SE(3) transformations, as it commonly arises

in SLAM settings [30, 149, 200, 238]. For video, one could naively only consider ad-

jacent pairs to construct a minimum spanning tree and aggregate the transformations.

However, this only works if all pairwise estimates are accurate since a single bad esti-

mate can be detrimental. More robust approaches have been proposed that can leverage

the information from multiple (or all) edges in the graph [22, 113, 114, 116, 149, 228].

Most relevant to our work are Arrigoni et al. [6, 7] and Gojcic et al. [89]. Arrigoni et

al. [6, 7] propose a closed-form solution to SO(3) and SE(3) synchronization based on

the eigendecomposition of a pairwise transformation matrix. Gojcic et al. [89] builds on

those ideas and integrates transformation synchronization with a supervised end-to-end

pipeline for multiview registration. We are inspired by this work and propose a different

approach to SE(3) synchronization based on iterative matrix multiplication, which allows

for accurate synchronization while being more numerically stable. Furthermore, unlike

prior work [89, 114, 228], we use transformation synchronization for learning without

supervision.

4.3 Correspondence Estimation via Multiview Registration

We learn correspondence estimation from multiview registration of short RGB-D sequences

without relying on pose or correspondence supervision. We first provide a high-level sketch

of our approach, shown in Fig. 4.2, before discussing each component in detail.
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Figure 4.2: SyncMatch. Given a sequence of N RGB-D video frames, we extract fea-
tures for each image and project them to a 3D pointcloud using input depth. We extract
all pairwise correspondences to estimate pairwise SE(3) transformations. We then syn-
chronize the pairwise transformations to register the scene. Finally, we use the estimated
registration to refine our correspondence and transformation estimates. We compute cor-
respondences losses for both the initial and refined registrations, and backpropagate them
to the feature encoder.

Approach Sketch. Given N RGB-D frames, we extract features for each RGB image and

project them onto a 3D pointcloud using input depth and camera intrinsics. We then

extract correspondences between all pointcloud pairs and estimate pairwise SE(3) trans-

formations. Given
(
N
2

)
pairwise transformations, we apply transformation synchronization

to find the N camera extrinsic parameters in a shared global frame. Given this coarse

alignment, we resample correspondences based on both feature and spatial proximity. We

repeat the registration using the updated correspondence. Finally, we compute the loss

using the estimated correspondences and SE(3) transformations and backpropagate it to

the feature encoder.

4.3.1 Feature Pointcloud

We use a randomly initialized ResNet-18 for feature extraction. While correspondence

estimation methods often rely on keypoint detection, our approach is detector-free and

generates dense features uniformly across the image. Similar to Sun et al. [272], we

generate the feature grid at a lower resolution (1/4) than the input image. For each frame i,

we use the input depth map and camera intrinsics to project the features into a pointcloud

Pi where each point p ∈ Pi has a feature fp and a 3D coordinate xp.
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4.3.2 Correspondence Estimation

We estimate feature correspondences for all view pairs (i, j). We first generate an initial

set of correspondences by finding for each point in image i the point in image j with the

closest matching feature vector. The initial correspondence set will include mismatches

due to poor matching, repetitive textures, or occlusion.

Correspondences can be filtered using measures of unique matches or geometric con-

sistency. Heuristics such as Lowe’s ratio test [179] prefer unique matches and have been

extended to self-supervised pointcloud registration [75, 77] and attention-based match-

ing [112, 241, 272]. Geometric consistency relies on the idea a geometrically consistent

set of correspondences is likely correct. This can be done by estimating the transforma-

tion similar to RANSAC [82] or directly estimating the inlier scores [51, 221, 330]. We

use the ratio test for initial alignment and leverage geometric consistency for refinement

(Sec. 4.3.5). Specifically, we compute a ratio between the cosine distances in feature space

as follows:

wp,q = 1− D(p, q)

D(p, q′)
, (4.1)

where D(p, q) is the cosine distance between the features, and q and q′ are the first and

second nearest neighbors to point p in feature space. We use the weights to rank the cor-

respondences and only keep the top k correspondences. This results in a correspondence

set Ci,j for each pair of frames. The correspondences (p, q, wp,q) ∈ Ci,j consists of the two

matched points and the match weight.

4.3.3 Pairwise Alignment

For each pair of frames, we can identify a transformation Ti,j ∈ SE(3) that minimizes the

weighted mean-squared error between the aligned correspondences across the images:

Ti,j = argmin
T∈SE(3)

∑
(p,q,w)∈Ci,j

w||xq −T(xp)||22. (4.2)

A differentiable solution is given by the Weighted Procrustes (WP) algorithm [51], which

adapts the classic Umeyama pointcloud alignment algorithm [130, 292].

WP-RANSAC. While the WP algorithm can handle small errors, it is not robust against

outliers. El Banani et al. [77] propose combining the alignment algorithm with random

sampling to increase robustness. However, a single large outlier can still perturb the solu-

tion since solutions are still ranked according to the average residual error on all matches.
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We modify the WP algorithm to more closely resemble classic RANSAC [82]. We randomly

sample k correspondence subsets, estimate k transformations, and compute an inlier score

based on each transformation. We choose the transformation that maximizes the inlier

score instead of minimizing the weighted residual error [77], making us more robust to

large outliers. Finally, we update the correspondence weights with the inlier scores, which

can zero out large outliers. We compute the final registration using the WP algorithms

with the updated weights, maintaining differentiability with respect to the correspondence

weights.

4.3.4 SE(3) Transformation Synchronization

Given estimates for the
(
N
2

)
camera-to-camera transformations, we want to find the N

world-to-camera transformations that best explain them. Arrigoni et al. [6, 7] propose

a closed-form solution to SE(3) synchronization using spectral decomposition. This ap-

proach was later extended to end-to-end learning pipelines [89, 114]. The approach op-

erates by constructing a block matrix of pairwise transformations where block (i, j) corre-

sponds to the transformation between camera i to camera j. The core insight in that line

of work is that the absolute transformations constitute the basis of the pairwise transfor-

mations matrix and, hence, can be recovered using eigendecomposition.

While those approaches are successful for inference, they suffer from numerical insta-

bilities during training. This is caused by the backward gradient of the eigendecomposition

scaling with 1
mini ̸=jλi−λj

where λ are the eigenvalues. Given that the rank of a perfect SE(3)

pairwise matrix is 4, mini ̸=jλi − λj approaches 0 for an accurate pairwise matrix which

results in exploding gradients. We observed this instability during training. To avoid this

instability, we compute the relevant part of the eigendecomposition by power iteration,

similar to PageRank [207]. We observe that this converges quickly while being stable

during training. We refer the reader to the appendix for more details.

Pairwise confidence. Synchronization is more effective when provided with confidence

weights for each of the pairwise estimates. While prior approaches train separate networks

to estimate pairwise confidence [88, 114], we instead opted for a simpler approach. We

observe that the mean confidence weight is well correlated with view overlap as shown

in Fig. 4.3, where pairwise confidence is computed as ĉi,j = 1
|Ci,j |

∑
w∈Ci,j

w.

While confidence is correlated with view overlap, non-overlapping frames still receive

non-zero confidence. Incorrect transformations from non-overlapping pairs can negatively

affect both synchronization and learning. We address this by rescaling the confidence
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Figure 4.3: Mean correspondence confidence is an effective overlap filter. While con-
fidence is not perfectly correlated with view overlap, simple thresholding can accurately
filter out low- and no-overlap view pairs.

values based on a threshold to ignore any non-overlapping pairs. While this criterion is

simple, it has many false negatives, as shown in Fig. 4.3. To ensure that synchronization is

always possible, we exclude adjacent pairs from rescaling since we know they most likely

overlap. The pairwise confidence terms are adjusted as follows:

ci,j =

max(0, ĉi,j − γ)
/
(1− γ) if |i− j| > 1,

ĉi,j otherwise.
(4.3)

where γ is the confidence threshold. We only estimate pairwise correspondences for pairs

(i, j) where i < j to avoid repeated calculations. For pairs where j > i, we set cj,i = ci,j

and Tj,i = T−1
i,j .

Pairwise Transformation Matrix. We form a block matrix A using the weighted trans-

formations as follows:

A =


c1I4 c1,2T1,2 · · · c1,NT1,N

c2,1T2,1 c2I4 · · · c2,NT2,N

... . . . ...

cN,1TN,1 cN,2TN,2 · · · cNI4

 , (4.4)
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Figure 4.4: Geometry-aware sampling greatly improves our correspondence set.
GART allows us to extract accurate correspondence even if the initial feature matches
are very noisy.

where ci,j is the pairwise confidence, Ti,j is the estimated pairwise transformation, and

ci =
∑

k∈N ci,k. We perform t matrix multiplications to calculate A2t and extract the syn-

chronized transformations by taking the first block column and normalizing each transfor-

mation by its confidence (bottom right element). This results in N SE(3) transformations

in the first view’s frame of reference.

4.3.5 Refinement

While feature-based matching is powerful, it can produce false positive feature matches

that could be easily filtered out through geometric consistency. To this end, we use the

predicted scene alignment to refine our correspondences by filtering matches that are not

geometrically consistent with the estimated transformation. We resample the correspon-

dences but compute the ratio test based on both feature similarity and spatial proximity.

We update our correspondence filtering criteria by changing the distance function in the

ratio test to:

Drefine(p, q) = DC(fp, fq) + λ∥xp − xq∥2, (4.5)

where DC(x, y) is cosine distance, fp is the feature vector belonging to point p, λ is a

weighing constant, and xp is the aligned 3D coordinate of point p in a common global

frame. We refer to this updated ratio test as a Geometry-Aware Ratio Test (GART).
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4.3.6 Losses

We emphasize that our approach is self-supervised. Hence, we only rely on the consistency

within the video for training. We use the registration loss proposed by El Banani and John-

son [75], which minimizes the weighted residual error of the estimated correspondences

using the estimated alignment. For a given pair (i, j), we compute a registration loss as

follows:

Lreg(i, j) =
∑

(p,q,w)∈Ci,j

w∥T−1
j xq −T−1

i xp∥2, (4.6)

where p and q are the corresponding points, w is their weight, and Ti is the synchro-

nized transformation (Sec. 4.3.4). We compute this loss for both the initial and refined

correspondence sets and predicted transformations for all view pairs.

4.4 Experiments

We evaluate our approach on two indoor scene datasets: ScanNet [56] and ETH3D [244].

Our experiments address the following questions: (1) does multiview training improve

over pairwise training?; (2) can multiview self-supervision replace full-supervision?; (3)

can we reconstruct scenes from RGB-D sequences?; (4) can we learn from videos that

cannot be reconstructed using standard approaches?

Training Dataset. ScanNet provides RGB-D videos of 1513 scenes and camera poses com-

puted using BundleFusion [57]. We use the train/valid/test scene split from ScanNet v2.

While automated reconstruction models like BundleFusion are able to reconstruct ScanNet

scenes, ETH3D [244] videos are more challenging to such systems, with BundleFusion fail-

ing on most of those sequences. As a result, ETH3D offers us an interesting set of videos

that cannot be currently used for supervised training. We emphasize that we only use

RGB-D video and camera intrinsics for training, and any provided camera poses are only

used for evaluation. We generate view pairs by sampling views that are 20 frames apart.

For longer sequences, we combine adjacent pairs to get N-tuples.

Training Details. We train our model with the AdamW [137, 178] optimizer using a

learning rate of 10−3 and a weight decay of 10−3. We train for 100K iterations with a batch

size of 16. Unless otherwise stated, we use 6 views for training. Our implementation is in

PyTorch [211], with extensive use of PyTorch3D [224], FAISS [127], PyKeOps [38], and

Open3D [353]. We make the code publicly available.1

1https://github.com/facebookresearch/SyncMatch
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Figure 4.5: Correspondence Estimation on ScanNet. Our model extracts accurate corre-
spondences for large viewpoint change. Through combining both strong feature descrip-
tors and geometric refinement, we can successfully handle cases where prior approaches
fail. Correspondences are color-coded by 3D error.

4.4.1 Correspondence Estimation

We evaluate our model on correspondence estimation. While our model is trained on

adjacent pair sequences, the primary challenge is how it performs for wide-baseline cor-

respondence estimation. We evaluate this on the test set proposed by SuperGlue [241]

of 1500 view pairs. This dataset includes difficult pairs with large camera motions; e.g.,

images from opposite sides of a room.

Evaluation Metrics. We evaluate the estimated correspondences based on their 2D and

3D errors. We lift the estimated correspondences into 3D using known depth and intrinsics

and only consider keypoints with valid depth values. We use ground-truth transformations

to align the keypoints and compute the 3D error and the 2D reprojection error. We ex-

tract 500 correspondences for all methods to allow for a meaningful comparison between

precision values.2

Baselines. We compare our approach against classic, self-supervised, and supervised cor-

respondence estimation methods. First, we compare against two commonly used feature

descriptors: RootSIFT [5] and SuperPoint [66]. RootSIFT is a hand-crafted feature that is

still used in modern pipelines, while SuperPoint is a self-supervised descriptor trained on

synthetic data and affine transformations of web images. We report the performance of

these features for image-only matching using the ratio test [179] as well as depth-refined

matching using our proposed GART.

2LoFTR and SuperGlue use a mutual check heuristic for matching, which can produce fewer correspon-
dences. In such cases, we use all the correspondences they produce.
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Table 4.1: Wide-Baseline Correspondence Estimation on ScanNet. SyncMatch extracts
accurate wide-baseline correspondences; performing on-par with supervised methods. Our
proposed GART uses estimated alignment to sample more accurate correspondences re-
gardless of the underlying feature descriptor.

3D Corres. 2D Corres.
Method 1cm 5cm 10cm 1px 2px 5px
Unsupervised Features with Heuristic Matching
RootSIFT [5] 7.1 29.2 35.1 2.8 8.6 22.9
RootSIFT [5] + GART 14.1 72.4 84.3 3.8 12.8 42.8
SuperPoint [66] 7.5 41.4 51.3 2.5 8.6 29.5
SuperPoint [66] + GART 16.8 73.7 84.3 4.7 15.5 47.9
BYOC† [75] 12.8 53.3 63.0 4.5 14.6 41.9
BYOC† [75] + GART 22.8 73.1 81.4 6.0 19.6 54.0
SyncMatch (Ours) 13.1 55.1 65.4 4.6 15.3 43.9
SyncMatch (Ours) + GART 26.8 76.5 84.4 7.5 23.5 59.7
Supervised Features with Trained Matching
SuperGlue [241] 8.7 62.4 78.7 2.5 9.0 36.9
SuperGlue [241] + GART 13.8 74.8 87.7 3.3 11.7 44.4
LoFTR [272] 16.0 72.2 84.6 5.6 18.5 55.5
LoFTR [272] + GART 21.4 80.8 90.2 6.5 21.2 59.0

We consider three end-to-end approaches: SuperGlue [241], LoFTR [272], and

BYOC [75]. SuperGlue is an attention-based matching algorithm trained with SuperPoint

features. LoFTR and BYOC are detector-free approaches that train features from scratch.

SuperGlue and LoFTR use transformers for matching that are trained with correspondence

supervision. BYOC is self-supervised and uses a variant of the ratio test for matching.

We take several measures to ensure a comprehensive fair comparison. First, we update

BYOC’s visual backbone from ResNet-5 to ResNet-18. This results in a stronger and fairer

baseline which we refer to as BYOC†. Second, SuperGlue and LoFTR are both fully super-

vised image-based approaches that use transformers for feature matching. Hence, it was

unclear how to adapt their matching algorithm to use depth information. Instead of adapt-

ing their matching, we use GART to re-rank their proposed matches and only retain the

top set of matches. This resulted in large performance improvements as seen in Tab. 4.1

How does heuristic matching perform? We find that well-tuned matching allows hand-

crafted features to achieve a strong performance against learned features, as observed by

Efe et al. [72]. Nevertheless, self-supervised feature descriptors still retain a performance

advantage. Furthermore, our proposed approach outperforms both hand-crafted and self-

supervised descriptors regardless of whether depth is used at test time for refinement.
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Table 4.2: Pairwise Registration on ScanNet. SyncMatch outperforms all approaches
on narrow-baseline registration, while under performing some methods for wide-baseline
registration. WP-RANSAC results in large performance gains for all methods across metrics.

Narrow Baseline Wide Baseline
AUC5◦ AUC10cm AUC5◦ AUC10cm

Unsupervised Features with Heuristic Matching
RootSIFT [5] + RANSAC 36.7 28.9 15.5 11.1
SuperPoint [66] + RANSAC 50.3 39.8 24.9 17.0
RootSIFT [5] + Ours 84.3 77.9 64.4 52.3
SuperPoint [66] + Ours 83.8 77.0 61.7 49.2
BYOC† [75] 84.6 77.6 60.4 48.4
SyncMatch (Ours) 85.3 78.8 63.4 50.5
Supervised Features with Trained Matching
SuperGlue [241] + RANSAC 65.7 54.0 47.6 33.2
LoFTR [272] + RANSAC 75.0 64.6 57.2 41.8
SuperGlue [241] + Ours 82.3 75.0 66.0 51.2
LoFTR [272] + Ours 84.5 78.1 70.5 56.2

Can self-supervision replace correspondence supervision? While our approach out-

performs classic and self-supervised approaches, it still underperforms the strongest su-

pervised approaches. This is expected since we use pseudo correspondence labels from

short sequences, whereas supervised approaches are trained with view pairs that were

sampled the same way as the test pairs [241]. Nevertheless, we argue that our approach is

still promising, as it can match SuperGlue supervised features and matching despite being

self-supervised and using the ratio test for matching.

Does geometry-based refinement help? We find that our proposed geometry-based re-

finement improved the performance for all methods. Furthermore, the improvement is

most pronounced for our method, which performs on par with supervised methods when

using depth and outperforms them for some thresholds.

4.4.2 Pointcloud Registration

We next evaluate pairwise and multiview pointcloud registration performance. We evalu-

ate pairwise registration using view pairs extracted from ScanNet. We also evaluate our

model’s ability to scale up to large sequences by reconstructing the challenging sequences

in the ETH-3D dataset.

56



Figure 4.6: RGB-D Scene Reconstruction. SyncMatch can scale at inference time to
longer videos to reconstruct longer sequences.

Pairwise Registration. We evaluate the approaches on pairwise registration for both

narrow-baseline and wide-baseline view pairs, as shown in Tab. 4.2. We evaluate narrow-

baseline view pairs similar to BYOC and wide-baseline view pairs similar to SuperGlue.

We report the area under the curve for pose errors with a threshold of 5◦ and 10cm for

rotation and translation errors, respectively. For RootSIFT and SuperPoint, we compute

correspondences using the ratio test, while SuperGlue and LoFTR provide us with matches.

We use either Open3D’s [353] RANSAC or our proposed WP-RANSAC for alignment. For

SyncMatch and BYOC, we use the method’s estimated transformation. We report numbers

without depth refinement to avoid confounding the evaluation.

Our approach outperforms all baselines for narrow-baseline registration but under-

performs several in wide-baseline registration. This is surprising given our model’s strong

performance in wide-baseline correspondence estimation, but probably arises from the do-

main shift from the mostly narrow-baseline pairs used for training. Furthermore, we note

that our proposed alignment algorithm greatly improves the performance of all baselines,

especially RootSIFT. We observe this improvement from supervised models with trained

correspondence estimators, suggesting that their predicted correspondences still contain

significant structured errors that benefit from robust estimators that can utilize the match

confidence weights.

Scaling up to longer sequences. Computing pairwise correspondence for N frames

scales as O(N2), which is problematic for longer videos. However, with minor reformula-
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Table 4.3: Impact of number of training views. Training with more views improves
correspondence estimation performance.

3D Corres. 2D Corres.
Number of Views 1cm 5cm 10cm 1px 2px 5px
2 24.7 73.9 81.6 6.2 19.8 54.0
3 26.2 76.8 85.2 7.0 22.6 58.8
4 26.8 75.4 83.5 7.5 23.3 59.2
5 26.9 75.9 83.6 7.6 23.5 59.7
6 26.8 76.5 84.4 7.5 23.5 59.7

tion, SyncMatch can be adapted to significantly reduce its run-time. Instead of considering

all pairs, we only consider adjacent frames in the first step to give us an approximate

camera trajectory from N−1 pairs. We use this trajectory to refine the correspondences

and then consider all frames within a specific window w; i.e., only consider frames (i, j) if

|i− j| < w. We can then run the synchronization step with the confidence of all other pairs

set to 0. This allows us to scale the model’s run-time linearly with the number of frames,

instead of quadratically, which allows us to handle hundreds of frames. We visualize two

reconstructions from ScanNet in Fig. 4.6.

We apply our adapted model to the challenging ETH3D dataset. ETH-3D sequences

are challenging to traditional RGB-D reconstruction models, with BundleFusion failing on

nearly 75% of the sequences. SyncMatch can reconstruct 33/61 training scenes and 16/35

test scenes. This outperforms standard systems such as BundleFusion (14/61 and 7/35)

and ORB-SLAM [199] (25/61 and 16/35). Since such systems are often used to gener-

ate annotations automatically for RGB-D video datasets, SyncMatch’s strong performance

against them shows the promise of self-supervised approaches to using videos that are

currently missing from large-scale RGB-D scene datasets. We emphasize that our model

was not designed for full-scene reconstruction; this evaluation is only intended to show-

case our model’s performance against existing methods for automatically generating pose

annotation for RGB-D videos.

4.4.3 Analysis

We analyze our model through a series of experiments aimed at answering some key ques-

tions regarding its performance. The analysis experiments are aimed at understanding

the impact of the multiview setting, training data, as well as the impact of our model’s

components during both training and inference.
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Table 4.4: Ablation Experiments. While WP-RANSAC is crucial to model performance,
the impact of other components depends on downstream tasks.

Ablation Pairwise Correspondence Multiview Registration

Train Test AUC10cm AUC10px AUC5◦ AUC10cm

Full Model 65.9 48.1 83.4 77.8
Naive Synchronization ✗ 65.7 48.9 82.8 76.2
No Depth Refine ✗ 66.0 49.0 82.9 76.3
No Confidence Threshold ✗ 35.2 20.4 17.9 14.5
No WP-RANSAC ✗ 1.2 0.2 1.1 3.3
Naive Synchronization ✗ 65.9 48.1 82.6 76.9
No Depth Refine ✗ 29.7 19.4, 83.4 77.7
No Confidence Threshold ✗ 65.9 48.1 76.9 70.9
No WP-RANSAC ✗ 42.2 27.7 74.4 66.0

What’s the impact of the number of training views? We train our model with a variable

number of training views to understand the impact of multiview training. We observe

that increasing the number of training views results in progressively better performance.

However, the performance gains saturate after 5 views. This could be explained by how

ScanNet videos were captured: often, the camera is moving laterally, and after 5 frames (3

seconds), there is often no overlap. Our results suggest that using more views for training

will not help until enough frames are used to provide loop closure for the model to learn

from.

How do the different components contribute to the model performance? We ana-

lyze the impact of various model components through a series of ablations that are ap-

plied either during training or testing. We report the performance for both pairwise corre-

spondence estimation (3D and 2D correspondence error) as well as multiview registration

with 6 views (rotation and translation error) in Tab. 4.4. Similar to prior work [77], we

observe that ablations that make it harder to register the point cloud can boost corre-

spondence performance when ablated during training; e.g., using naive synchronization

based only on adjacent views or training without depth refinement. However, replacing

WP-RANSAC with WP prevents the model from learning due to inaccurate registration

early during training. We also observe that almost all test-time ablations result in worse

performance. One surprising exception is removing depth refinement, which greatly re-

duces wide-baseline correspondence estimation accuracy while not impacting multiview

registration. This could be explained by the performance saturating for narrow-baseline

registration such that depth refinement is not needed there.
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Table 4.5: Training on ETH-3D data. Our model is capable of learning for the more
challenging videos in ETH-3D.

3D Correspodence 2D Correspodence
Training Set 1cm 5cm 10cm 1px 2px 5px
ETH-3D 17.4 66.4 74.5 4.8 16.1 47.3
ScanNet Mini 18.5 67.0 75.6 4.8 16.2 47.6

Can we learn from more challenging sequences? While ScanNet offers a large set

of videos, these videos are carefully captured to ensure successful downstream 3D re-

construction. We investigate whether our approach can be trained on more challenging

videos, such as ETH-3D. ETH-3D has fewer and more erratic videos, forcing us to reduce

the view stride during training. However, our model can still learn without supervision on

ETH-3D videos, and the features can be used for wide-baseline correspondence estimation

as shown in Tab. 4.5. For comparison, we train on a subset of ScanNet to match a number

of instances and view spacing. Both models achieve similar performance. This suggests

that our approach could scale to challenging videos beyond carefully captured ScanNet

sequences.

4.5 Qualitative Analysis

We include additional qualitative results to provide a better sense of our model’s perfor-

mance. We also clarify some of the color schemes used throughout the chapter.

Correspondence color. We color-coded our correspondence using their 3D error. Specif-

ically, correspondences with an error of less than 5 cm were plotted in dark green, errors

between 5 cm and 10 cm were plotted in yellowish green, errors between 10 cm and 15

cm were plotted in orange, and errors larger than 15 cm were plotted in red.

Correspondence Estimation. We provide additional qualitative examples of correspon-

dence estimation results in Fig. 4.7. We find that for easy cases that involve the camera

panning or zooming, all approaches perform fairly well (rows 1-3). Meanwhile, cases

with large camera rotation can be challenging to all models, with different models failing

for different cases. We find that our model can overcome those challenges in some cases

where some prior approaches have limited performance (rows 4-9). In cases with repeated

textures, our model can inaccurately predict a consistent set of correspondences that are

accurate, as shown in row 10 of Fig. 4.7. We find that LoFTR can succeed in such a case,

60



likely due to its use of cross-attention, which is noted by the authors of both LoFTR and

SuperGlue. Future iterations of self-supervised correspondence estimation should explore

the incorporation of attention modules and integrate it with geometric-aware matching.

Finally, we observe that some cases are challenging to all models, especially when there is

a very large camera motion, such as looking at the same object from opposing sides (row

11) or when there is limited overlap and plain textures (row 12).

Correspondence Refinement. We provide qualitative examples of estimated correspon-

dences before and after refinement in Fig. 4.8. In many cases, the initial feature-based cor-

respondences are already fairly accurate. In those cases, we find that refinement results in

the correspondences being more spread out and increasing in accuracy. More interesting

cases involve a very noisy initial set that can be refined into a dense, accurate set of cor-

respondences. This can be seen clearly in rows 5-7 in Fig. 4.8. Finally, in some difficult

cases, our initial estimation is extremely noisy, and our model is unable to recover from

that.
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Figure 4.7: Correspondence Estimation. We observe several modes of qualitative results.
The top three rows present examples where all models perform well. The following six
rows present cases where our model succeeds and other models perform poorly. Those
are cases where geometric refinmenet allows us to refine a noisy set of correspondence.
Finally, we report some challenging cases for our model: repetitive textures (row 10), very
large camera motion (row 11), limited overlap and plain textures (row 12). In some cases,
we find that LoFTR perfroms better for large camera motions.
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Figure 4.8: Correspondence Refinement. We show the impact of correspondence refine-
ment using depth. In the top three rows, we find that feature-based correspondences are
already accurate and incorporating geometry simply improves the accuracy. The following
four rows present cases where refinement greatly improves the correspondence quality as
the feature based correspondence had a small subset of accurate matches. Finally, the last
two row present cases where the initial correspondence is so noisy that the model cannot
generate a good transformation estimate rendering refinement useless.
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4.6 Discussion

In this chapter, we presented a self-supervised approach to learning correspondence esti-

mation that relies on multiview registration to learn from difficult view pairs. Our core

insight is that multiview registration allows us to leverage the consistency within short

video sequences to obtain difficult view pairs for learning. To this end, we propose a

series of components that integrate self-supervised correspondence estimation with multi-

view registration in a single end-to-end differentiable pipeline. Our approach follows the

conventional registration pipeline with several technical contributions that improve regis-

tration and correspondence estimation performance while maintaining differentiability.

This chapter concludes our arc on learning from 3D correspondence and point cloud

registration in RGB-D video. Our goal was not to beat supervised methods or even to argue

that one should not use supervised learning when labels are available. Rather, we aim to

demonstrate that supervision is not needed as the raw sensory stream available through

RGB-D video already provides a sufficiently strong learning signal. While standard 3D

reconstruction systems like COLMAP and BundleFusion provide us with good reconstruc-

tions, learned approaches trained with their outputs are starting to rival their accuracy.

Furthermore, those systems share the same inability to handle dynamic scenes that our

current approaches suffer from. We argue that the way forward is to think about the prob-

lem more holistically and go back to the source of the data, which is video. By proposing

self-supervised pipelines that learn directly from videos, we take a step towards enabling

the development of approaches that go beyond conventional setups and scale to more

uncurated data, allowing us to both achieve better 3D reconstruction and tackle difficult

challenges like dynamic scene reconstruction.

Moving forward, we argue that the next advancements will come from learning from

dynamic scenes. In our work, we assume that the motion in the scene can be explained

by a global rigid body transformation. There has also been exciting work that learns from

videos of dynamic scenes through through tracking or optical flow estimation [121, 302].

However, such models learn from motion in the 2D plane and do not handle the under-

lying 3D world that they represent. As a result, they often struggle with occlusion and

dis-occlusion, similar as shown by Shrivastava and Owens [256]. We argue that the next

advancement will come from models that can handle the full 3D dynamics of the world.

There is already some exciting progress on this front with dynamic scene representations

that capture both static and dynamic components [29, 181]. Through integrating such rep-

resentations with self-supervised learning, one can expect models that learn better visual

representations compared to ones that rely on rigid body transforms or optic flow.
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Chapter 5

Learning from Conceptual Consistency

In the previous chapters, we used the traditional notion of 3D correspondence: i.e., image

patches that depict the same 3D point. However, the concept of correspondence also arose

in the study of multisensory perception and representation [265] where it has a more

general meaning: two sensory inputs that depict the same “thing.” We experience cross-

modal correspondence all the time; e.g., seeing a cat, hearing its purr, and feeling its fur.

This general notion of correspondence is more relevant to representation learning. Per-

haps the most popular instantiation is CLIP [219], which learns by associating image and

text embeddings of a captioned image. In this formulation, there is a single multimodal

representation where everything is jointly embedded; e.g., the visual embedding of an

image and the language embedding of its caption are the same. However, this approach

suffers from a modality gap, as shown by Liang et al. [168]. An intuitive explanation of the

modality gap is that visual and linguistic modalities, while sharing some commonalities,

are different. We expect this gap to be exacerbated as we incorporate more modalities.

We argue that a different approach is to consider cross-modal correspondence between

unimodal representations. This is motivated by the representation as second-order isomor-
phism theory of Shepard and Chipman [252]. Rather than require the representation of

multiple modalities to be the same, we can learn unimodal representations such that if two

instances have similar representations in one modality, it should also be similar in other

modalities. This deviates from current learning approaches and offers a new learning

paradigm from multimodal learning.

In this chapter, we explore this idea in the space of vision and language. Rather than

embed images and captions in the same space, we use language models to find image

pairs whose captions have similar language embeddings. We use these language-sampled

image pairs for contrastive learning. We call this language-guided visual learning and show

that it learns more generalizable representations than both self-supervised and language-

supervised approaches. This presents a first step in this new paradigm, which we hope to

expand to other modalities. This chapter is based on work previously published in [78].
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ℒ
Visual Embedding

Snowy owl 
lifting off

Snow owl 
taking off

Language Embedding

Late after post 
thunderstorm, 
north Ohio

Figure 5.1: Language allows us to find conceptually similar image pairs even if they are
visually dissimilar. We use those pairs to learn generalizable visual features.

5.1 Introduction

Consider the images in Fig. 5.1, is the center image more similar to its left or right neigh-

bor? Despite the difference in background and lighting, it is clear that the right pair cap-

tures the same concept: a flying snow owl. Nevertheless, a self-supervised image model

will judge the left pair as more similar. Human perception and language abstract away

appearance differences to capture conceptual similarity rather than just visual similarity.

Ideally, we could learn visual features that capture conceptual similarity, allowing them to

effectively generalize to other visual tasks. In this work, we show how language can be a

proxy for conceptual similarity, allowing us to sample better pairs for contrastive learning

and train more generalizable visual models.

Image-only contrastive learning uses visual similarity as a proxy for conceptual similar-

ity. This is based on the observation that discriminative approaches can discover inter-class

similarity–e.g., cheetahs are similar to lions– without explicit annotation [315]. The core

idea is to then train a discriminative model where each instance is treated as a separate

class, and the model is trained to map augmented versions of the same image to similar

features [40–43, 315]. While successful, instance discrimination ignores the similarity be-

tween different instances as it assumes all other images are unrelated. Later work focused

on inter-image relationships by estimating clusters [9, 31, 32] or finding nearest neigh-

bors [71]. However, those relationships are estimated using visual embeddings, resulting

in visually, rather than conceptually, similar pairs.
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Language similarity is a strong proxy for semantic relationships. Consider the example

in Fig. 5.1; images that depict the same concept are often described in very similar ways.

Radford et al. [219] propose language-image contrastive learning by mapping images and

captions to the same space and achieve impressive generalization capabilities. However, it

is unclear whether forcing models to map onto a joint space is optimal for visual learning.

Although linguistic and visual similarity might align for very similar instances, it is not

clear that all distances in one space should map exactly to the other. Instead of learning

a joining embedding for vision and language, we argue that it is better to use linguistic

similarity to guide visual learning.

To this end, we propose language-guided contrastive learning: a simple adaptation to

contrastive learning that uses language models to find conceptually similar image pairs

for visual learning. Our approach is motivated by the observation that language models

that were never trained on visual data can sample caption pairs that belong to concep-

tually similar images, as seen in Fig. 5.2. Furthermore, the sampled pairs exhibit desir-

able variations in pose, lightning, and context, which are very different from hand-crafted

augmentations which can be ill-suited to downstream tasks [318] or too focused on back-

ground textures [247]. We use the sampled pairs instead of image augmentations within

standard self-supervised visual learning approaches such as SimCLR [40], SimSiam [42],

and SLIP [198]. Our approach departs from image-only contrastive learning by relying

on conceptually similar image pairs rather than visually similar augmentations or cluster

assignments. We also depart from image-caption pre-training by allowing the model to be

guided by language similarity rather than learning a joint embedding space.

We conduct a series of controlled experiments to analyze our approach and compare

it to commonly used representation learning paradigms on generalization to downstream

classification tasks. In controlled settings, our approach outperforms all baselines on lin-

ear probe and few-shot classification on a range of downstream classification datasets.

Our analysis suggests that while learning multi-modal joint embeddings can result in good

representations, it is better to use one modality to guide the training of the other. Further-

more, while language guidance can boost performance, we found that the exact choice of

sampling strategy or language model appears to be less impactful.

5.2 Related Work

Visual Representation Learning aims to learn visual embedding spaces that capture

semantics, with a typical focus on learning from scalable data sources. Broadly speaking,

there are two general approaches: generative and discriminative. Generative approaches
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hypothesize that a model that can capture the image distribution will learn semantically

relevant features [68, 87, 103, 204, 298, 344]. In contrast, discriminative approaches

posit that differentiating between images will give rise to better features. This idea can

be traced to early work on metric learning [48] and dimensionality reduction [98] and

is clearly seen for supervised classification models [250]. More recently, Wu et al. [315]

proposed treating each image as a separate class and using augmented images as class

instances to relieve the need for human annotation. This was followed by papers that

simplified this approach [40, 41, 43, 102] and proposed non-contrastive variants [42,

97]. While those approaches have been successful, the utility of augmentation-based self-

supervised learning has been questioned [201, 318] with follow-up work proposing the

use of objectness [196, 212] and saliency [247] to alleviate some of those concerns. While

we share the motivation for visual representation learning, we also question the reliance

on image augmentation and propose using language sampling to learn better invariances.

Language-supervised vision pre-training aims to learn visual representations from lan-

guage data. Early work of Li et al. [161] trained n-gram models using YFCC [278] images

and user-tag metadata. While some work learns joint embeddings for vision and language

tasks like visual question answering [3, 95, 117, 355], visual reasoning [133, 271, 336],

and retrieval [209, 333], we are interested in methods that use language to learn better

visual features [64, 64, 219, 240, 270]. Early work learned features by generating cap-

tions [64, 240], but contrastive approaches gained more popularity due to their relative

simplicity and generalization capabilities [123, 219]. Follow-up work extends the con-

trastive formulation to learn denser features [322, 326] or uses additional self-supervised

losses to improve performance and data efficiency [55, 155, 166, 198]. While we share

the motivation of using language for visual learning, we depart from the typical discrimi-

native approach and use a pre-trained language model to guide the learning by providing

conceptually similar visual pairs.

Leveraging structure in the data. This is commonly done in dense feature learning,

where optical flow [99, 121, 248, 302] or 3D transformations [77, 111, 249, 272, 314]

provide natural associations between image patches. For images, prior approaches used

class names [134, 232], class hierarchies [162, 324], meta data [91, 128, 161] or cluster-

ing [9, 31, 32, 282, 351] to improve learning and inference. Within contrastive learning,

clustering has been a popular choice for leveraging dataset structure. The intuition is that

natural clusters emerge in feature spaces, which can provide an additional training sig-

nal or useful pseudo-labels. While such approaches work well on curated datasets (e.g.,
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ImageNet) where the label set provides an estimate of the number of clusters, it strug-

gles with imbalanced and uncurated data [10]. Others sample the nearest neighbor as a

feature-driven within-domain augmentation [71, 166]. While these approaches differ in

how they extract inter-instance relationships, they all use within-domain feature similarity

to sample positive pairs or clusters and, hence, do not leverage the rich cross-modal rela-

tionships. Closest to our work is Han et al. [99], who propose a co-training [23] scheme

for jointly learning image and optic flow representations. We share their motivation of us-

ing similarity in one space to learn in another but apply it instead to vision and language.

Furthermore, instead of relying on co-training on the same dataset, we extract distances

from a text-only language model, allowing us to better leverage unaligned data.

5.3 Language-Guided Self-Supervised Learning

The goal of this work is to learn visual representations that can be generalized to other

datasets. We extend visual contrastive learning beyond hand-crafted augmentations and

visually sampled clusters to learn from conceptually similar images. Through learning to

associate images that depict the same visual concept, models can learn visual invariances

that more closely capture human semantics. To achieve this, we propose sampling images

that have similar captions using a pre-trained sentence encoder [225]. This work does

not propose a new model or loss but rather a novel way of sampling image views that is

applicable to a variety of approaches and losses.

5.3.1 Learning from Conceptual Similarity

Instance discrimination has been the dominant task for visual representation learning. Its

core intuition is that visual similarity is a good proxy for semantic similarity. At a high

level, these approaches generate positive view pairs by randomly augmenting the input

image and maximizing their embedding similarity, with or without negative views. While

there has been a large number of contrastive learning approaches, view pair generation

has largely remained the same. Other methods use visual feature similarity to sample

learned prototypes [9, 31, 32] or previously seen instances [71] for contrastive learning.

While these approaches extend beyond instances and consider relations in the dataset,

they still rely on visual similarity to generate their contrastive pairs. This limits what

visual invariances they can learn [318].

We propose training models to identify the same visual concept instead of the same

instance. Our key observation is simple: Images that have similar captions often depict

similar concepts regardless of the actual similarity in appearance. This can be clearly seen

69



Source Self-Supervised Visual Sampling Supervised Visual Sampling Language Sampling

Figure 5.2: Language sampling provide semantically-similar and visually-diverse
image pairs. We sample the top 3 nearest neighbors using a self-supervised visual
model [41], an ImageNet supervised model [101, 309], and a self-supervised language
model [225, 262]. While visual sampling retrieves pairs with high visual similarity, lan-
guage sampling retrieves both semantically relevant and visually diverse images. We argue
that the combination of semantic consistency and visual diversity allows our model to learn
more generalizable features.

in Fig. 5.2. Nearest neighbors in visual feature space depict objects in similar scenes and

poses, with self-supervised models showing some color invariances due to color augmen-

tation. Conversely, similarly captioned images depict objects in different colors, poses, and

contexts. This makes language-sampled images an excellent source for visual learning as

they implicitly capture human-like visual invariances.

5.3.2 Sampling Image Pairs using Language

Given a captioned image dataset, we want to sample image pairs that have very similar

captions. While caption similarity may be a good proxy for conceptual similarity, measur-

ing caption similarity is a challenge on its own. Traditional metrics such as BLEU [208]

and CIDER [295] rely on n-gram overlap, which can be too sensitive to phrasing and sen-

tence structure. This makes them ill-suited for our needs. Other metrics such as SPICE [2]

account for such variety by comparing parse trees. However, they still can not account for

different word choices. Inspired by advances in language models as well as approaches like

BERTScore [345] and CLIPScore [109], we use a pre-trained language model to compute

caption similarity.

Sentence encoders are trained to extract sentence-level features [139, 175, 225]. We
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RedCapsCC12MCC3M

Animal jumps into the 
water.

Animal jumps into the 
water.

Illustrations of a cute 
little pink owl stock 

illustration.

A sweet little pink owl 
stock illustration.

My mini panther, 
Pascal. My mini panther.

A statue of monarch 
with a pigeon on top of 

her head.

Bronze statue with 
pigeon on top of the 

head.

Lord Of The Rings - On 
Gwaihir statue.

Lord Of The Rings - On 
Gwaihir statue.

Spatchcock chicken on 
the Weber E-310. Happy 

sunday!

Spatchcocked chicken 
with asparagus on the 
Weber 22 Performer.

Catamaran, a fast ferry, 
leaving a city heading 
for English civil parish.

A ferry departing 
English civil parish for 

a city.

Studio portrait of a 
black and white cat 

stock images.

Portrait of a black and 
white cat, isolated 

stock photos.

I managed to snag 
these teapots today for 

a great price! The 
collection grows!

Finally got some nice 
teapots!

Figure 5.3: Language-Guided image pairs for the different pre-training datasets.

use SBERT, which fine-tunes a pre-trained language model to allow it to better cap-

ture semantic similarity using feature cosine distance [225]. SBERT is trained in two

stages: first, a language backbone is trained using a standard self-supervised task such

as masked [67, 193] or permuted [262] language modeling; second, the language mod-

eled is fine-tuned via contrastive learning. Contrastively fine-tuning the model simplifies

downstream usage as it allows features to be compared directly using cosine similarity. We

use an SBERT [225] model with an MPNet [262] backbone. However, we find that our

formulation is not sensitive to the choice of language encoder, as shown in Tab. 5.8.

We present language-sampled nearest neighbors for different datasets in Fig. 5.3.

CC3M and CC12M were collected using alt-text data and were heavily post-processed,

resulting in these generic descriptions. Meanwhile, RedCaps contains captions that were

written by someone as they uploaded their image to Reddit. As a result, they tend to be

more descriptive, referring to pet names or specific product brands or models, as well as

occasionally noisy. Empirically, we find that RedCaps results in better performance.
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One concern might be that the nearest neighbor search on a large dataset will be pro-

hibitive. We find that modern similarity search libraries [126] significantly speed up the

sampling and scale up to very large datasets. For example, nearest neighbor sampling runs

in under 3 hours for RedCaps (12 million instances) on 4 GPUs, with 43 minutes spent

on feature extraction and 117 minutes on nearest neighbor search. Furthermore, we find

that we can reduce the complexity of the sampling by only searching within subsets of the

data, as shown in Tab. 5.9.

5.3.3 Language-Guided Visual Learning

Our approach is applicable to several representation learning methods as it only affects the

training views. We focus on contrastive learning since its fairly minimal setting allows us

to analyze the impact of language guidance with minimal confounding factors. We train

SimCLR with the language-sampled pairs and refer to it as LGSimCLR. We also evaluate

the impact of language guidance on SimSiam [42] and SLIP [198], and find that they

can also benefit from language guidance. We only use random cropping for image aug-

mentations since language-sampled pairs are naturally augmented versions of each other.

For LGSLIP, we match their setup by applying the CLIP loss only between the source’s im-

age and caption, ignoring an additional loss between the nearest neighbor image and its

caption.

5.4 Experiments

Our experiments evaluate the efficacy of learning visual features from conceptually similar

images. We hypothesize that a model trained with language guidance will learn useful vi-

sual invariances and better generalize to downstream tasks. We are interested in answering

these questions: Does language guidance improve generalization over other pre-training

approaches? Does language guidance generalize to other datasets and pre-training ap-

proaches? How can language be used for visual pre-training?

5.4.1 Experimental Setup

We formulate our experimental setup to compare the efficacy of different learning signals.

We train models with language-guided sampling and compare them with image-only self-

supervised models and image-text contrastive models. We are interested in conducting

controlled experiments for a fair comparison.
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Recent work in self-supervised learning has demonstrated the impressive impact of

scaling on existing approaches [40, 219, 338]. While such work has shown impressive

performance, it has complicated the evaluation as different models are trained on different

pretext tasks on different datasets using varying amounts of compute and training recipes.

Furthermore, replication is difficult, if not impossible, due to the unavailability of training

data or prohibitive compute requirements. Fortunately, several papers report results that

indicate that performance patterns often hold at smaller scales [32, 40, 55, 198, 219].

Hence, we conduct our experiments at a scale that allows us to perform a comprehensive

evaluation and allows its replication by others.

We conduct our experiments with a standard backbone [101] on publicly available

datasets [37, 65, 251]. To account for variation in training recipes, we retrain all meth-

ods from scratch using the same training recipe. We scale down experiments to a level

that permits fair comparisons and replication. We also provide system-level comparisons

in Tab. 5.4 and scaling results in Sec. 5.5.3. We also released all code and pre-trained

models.1

Training details: We use a ResNet-50 backbone and train all models using the AdamW

optimizer [178] with a learning rate of 10−3 and a weight decay of 10−2. We use a cosine

learning scheduler [177] with 5000 warm-up steps. Models are trained using a batch size

of 512 for 250k steps; this corresponds to 10.5 epochs on RedCaps. We use a constant

number of steps to make meaningful comparisons between models trained on different

datasets.

Evaluation setup: We evaluate all approaches using linear probe and few-shot classifi-

cation on 15 classification datasets shown in Appendix B.2 inspired by [144, 219]. We use

the linear probe evaluation proposed by [144] and learn a single linear layer using logistic

regression. We sweep over a large range of cost values and choose the one with the highest

validation performance. We then retrain a classifier on both the train and validation split

and report test performance. We also evaluate all approaches on fewshot classification to

understand their generalization ability. Rather than train a probe for few-shot classifica-

tion, we simply use a weighted kNN classifier on the frozen support features inspired by

the findings [303]. Please see Appendix B.1 for more details.

Baselines: While there have been a large number of proposed approaches to visual

representation learning, one can identify several key directions that differ in the training

1https://github.com/mbanani/lgssl
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Figure 5.4: Contrasting Contrastive Formulations. While Image-only and Image-Text
contrastive learning directly extract views from the instance, Nearest Neighbor methods
rely on a memory bank of previously extracted features for training. In contrast, our
approach samples nearest neighbors in caption space using a pretrained language model
and use the associated image for visual representation learning.

signal and pre-text task. We focus our comparison on representative approaches of each

key direction as this allows us to explore the impact of learning signals. We overview our

baselines here and provide more details in Appendix B.3.

The first set of approaches rely on contrastive learning. Contrastive approaches operate

over two sets of paired source and target feature embeddings: zs and zt. The goal is to

maximize the similarity between the paired embeddings and minimize it with respect to

all other embeddings. Given a batch size N and embedding dimension F , zs, zt ∈ RN×F .

The contrastive loss [261] is:

L(zs, zt) = − log
exp(sim(zs

i , z
t
i)/τ)∑N

k=1 exp(sim(zs
i , z

t
k)/τ)

, (5.1)

where τ is a scaling parameter and sim(·, ·) is cosine similarity. Contrastive approaches

primarily differ in the source of the embeddings used within this loss.

Image-based Contrastive Learning contrasts features extracted from two randomly

augmented views of the same image to perform instance discrimination [315]. We use

SimCLR [40] as a representative approach due to its simplicity and strong performance.

Image-Text Contrastive Learning learns by contrasting features extracted from images

and their captions. Unlike image-only approaches, this approach can inject some semantics

into the learning process. We use the CLIP [219] formulation due to its simplicity. SLIP

extends this formulation by adding an image-only contrastive loss.
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Table 5.1: Linear Probe Evaluations. We train ResNet-50 models on RedCaps and report
performance of logistic regression using frozen features on 15 downstream tasks. Models
are split based on whether they use image captions. LGSimCLR outperforms all previous
approaches with strong performance gains for fine-grained classification datasets.
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SwAV 63.6 81.3 57.5 21.6 47.5 22.9 35.4 68.1 61.1 70.5 78.0 87.7 94.3 79.9 84.3 63.6
SimSiam 64.1 79.9 56.1 28.2 48.3 29.5 41.2 66.2 69.1 73.6 83.6 85.7 94.4 82.1 83.3 65.7
Visual NNCLR 65.4 82.8 60.2 26.6 50.0 26.6 40.9 68.0 65.2 75.4 83.5 88.5 95.3 82.2 83.8 66.3
SimCLR 69.0 82.9 61.6 30.6 52.6 33.7 43.7 69.8 70.5 74.1 86.9 88.0 95.4 84.6 84.4 68.5
Language NNCLR 81.2 83.1 61.9 48.6 56.5 45.1 37.2 68.8 78.1 82.0 90.2 93.4 92.5 81.1 80.7 72.0
CLIP 80.9 84.7 62.7 50.4 57.4 45.8 36.7 67.6 79.8 84.0 91.0 93.5 93.9 82.2 82.6 72.9
SLIP 77.7 87.2 67.0 42.4 58.1 48.7 45.2 72.3 79.5 82.7 92.1 92.7 95.6 85.5 83.4 74.0
LGSimCLR (Ours) 83.2 87.8 69.0 59.3 60.3 62.3 53.4 71.2 81.8 89.4 95.9 94.0 95.6 88.0 81.1 78.2

Nearest Neighbor Contrastive Learning contrast image embeddings with retrieved em-

beddings from a memory bank. The target features are used to retrieve the nearest neigh-

bor embedding from a memory bank of previous batches; see Fig. 5.4. We use the

NNCLR [71] as Visual NNCLR. Li et al. [166] applied this idea to image-language pre-

training; we adopt their approach by using the CLIP and NNS losses as Language NNCLR.

Image-based Non-Contrastive Learning deviates from the typical contrastive setup by

learning without negative samples [42, 97]. We use SimSiam as a representative approach

due to its simplicity and strong performance.

Cluster-based methods extracts prototypes through clustering and learns by predicting

cluster assignments [9, 31, 32]. Caron et al. [32] show that cluster-based methods perform

similarly when compared fairly. We use SwAV without the multi-crop strategy as it is

applicable to other methods. We compare with the full SwAV model in Tab. 5.4.

5.4.2 Results

We train all models with a ResNet-50 backbone on RedCaps and report results in Tabs. 5.1

and 5.2. Our model outperforms all baselines with a significant margin for both evalua-

tions. We discuss the results below through a series of questions:

Does language-guided sampling provide better training pairs than image augmenta-

tions? By using language sampling, instead of image augmentations, LGSimCLR learns

stronger invariances and outperforms SimCLR. We find that the largest gains arise in fine-
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Table 5.2: Few-Shot Evaluations. We train ResNet-50 models on RedCaps and report 5-
way, 5-shot fewshot classification performance. We observe that language results in huge
performance gains as shown by the performance of CLIP and LGSimCLR. Furthermore, the
use of any augmentations hurts performance as seen by SLIP’s drop in performance.
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SwAV 64.5 54.0 61.8 45.8 84.9 36.5 34.1 74.8 66.5 78.1 75.5 72.6 80.4 72.9 64.5
SimSiam 63.9 49.9 57.2 49.5 84.5 39.3 37.9 75.7 67.8 79.7 81.5 69.6 80.6 79.4 65.5
Visual NNCLR 65.6 54.1 61.7 45.8 85.3 37.9 34.9 75.2 67.3 81.1 75.4 74.3 83.6 76.7 65.6
SimCLR 66.9 45.7 51.0 51.5 87.1 44.0 38.4 77.6 70.1 80.0 86.9 69.6 83.5 81.3 66.7
Language NNCLR 89.3 65.3 73.4 78.6 90.8 68.4 40.4 75.2 78.8 90.9 94.3 89.6 75.2 71.9 77.3
CLIP 88.9 64.6 73.1 78.3 90.9 69.7 40.7 75.7 77.5 91.6 94.7 89.8 75.3 74.8 77.5
SLIP 81.5 63.5 70.8 63.1 91.3 62.9 42.1 79.6 76.4 88.4 92.2 83.4 82.7 80.8 75.6
LGSimCLR (Ours) 90.3 66.3 75.5 83.1 92.7 77.6 50.6 81.1 84.1 95.4 97.6 86.5 85.0 89.0 82.5

grained datasets: Cars, CUB, and Food101. The performance gains can be explained when

considering the critique of Xiao et al. [318]: the training augmentations dictate the invari-

ances learned by the model. Consider the third row of Fig. 5.2, while language sampling

yields three Aston Martin cars in different perspectives, locations, and appearances, visual

nearest neighbors are sports cars in similar poses and different colors; closely resembling

the flip and color augmentations used for training. Similarly, while visual features nearest

neighbors result in owls of different species in similar poses, language sampling retrieves

three great horned owls in different contexts. These trends are further amplified when fea-

tures are used directly for fewshot classification. Language sampling captures relationships

that go beyond visual similarity and more closely resemble semantic similarity.

Can we just sample nearest neighbors from previous batches? LGSimCLR also greatly

outperforms NNCLR. NNCLR uses the nearest feature embedding from a memory bank.

However, the quality of their retrieved samples is limited by the size of the queue. Further-

more, those features were only trained on image augmentations, limiting the invariances

they capture. To further capture this point, we visualize the nearest neighbor embedding

retrieved by NNCLR for different memory bank sizes in Fig. 5.5. We find that the retrieval

quality varies greatly and is poor for smaller queue sizes but that even a larger queue size

isn’t guaranteed to retrieve a good positive pair. Interestingly, we find that NNCLR also

under-performs SimCLR on RedCaps, despite performing better on ImageNet. We posit

that ImageNet’s curated distribution explains this. With only 1000 classes, a queue of 16k

will most probably contain some examples from each class, resulting in both visually and

conceptually similar retrievals.
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Figure 5.5: Nearest Neighbor methods are limited by the memory bank size. Even with
a large memory bank, the nearest embedding can still be unrelated to the source image
while language sampling provides us with conceptually similar pairs.

Can cluster-based approaches learn better features? Similar to nearest-neighbor sam-

pling, clustering is performed based on visual similarity. Furthermore, it is based on an

assumed number of clusters in the dataset for training. Although this can be determined

for ImageNet due to its known class structure, the number of clusters in an arbitrary un-

curated dataset is unknown. This results in a large performance drop, as seen in Tab. 5.1

and Tab. 5.2. On the other hand, sampling related pairs assumes no global structure

within the data, and hence is able to better capture inter-instance similarity. This results

in nearest-neighbor sampling outperforming clustering and both being outperformed by

contrastive learning and language-guided contrastive learning.

Should we use language for guidance or supervision? LGSimCLR outperforms both

CLIP and SLIP. We consider two possible explanations: (a) SBERT extracts better language

embeddings than CLIP can learn from the data, or (b) language-guided contrastive learn-

ing is a better training objective than image-text contrastive learning. To evaluate this, we

compare four models in Tab. 5.3. The first two models use CLIP’s training objective, but

one trains a language encoder from scratch, while the other uses a frozen SBERT model

and only learns the visual encoder and projection layers. The second two models use

LGSimCLR’s training objective but sample pairs using a pre-trained language-only SBERT

or the language encoder from a CLIP model trained on RedCaps. While CLIP does not ben-

efit from an SBERT backbone, LGSimCLR benefits from sampling using a language encoder

trained on the same dataset. Our results suggest that joint embedding results in worse fea-

tures than language-guided self-supervision. This is likely the result of the modality gap

identified by Liang et al. [168].
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Table 5.3: Language guidance outperforms language supervision. We compare two
language-based objectives: using captions to sample image pairs or using captions in an
image-text contrastive loss. We find language-guidance yields better visual features re-
gardless of the choice of text encoder.

Objective Text Encoder Linear Probe Few-Shot

Image-Text
CLIP (RedCaps) 72.9 77.5
Frozen SBERT 71.8 77.1

Image-Image
CLIP (RedCaps) 78.3 82.4
Frozen SBERT 78.2 82.5

System-level comparisons: We compare LGSimCLR with publicly-available checkpoints

of prior approaches; see Appendix B.3 for details. We emphasize that while previous ex-

periments were done in a controlled setup–same batch size, training data, optimizer– the

system level comparisons are trained on different datasets using different training recipes

and utilizing several training enhancements to further boost performance; e.g., large batch

sizes, longer training, multi-crop augmentation. Furthermore, it has been shown that

models trained on ImageNet implicitly benefit from its curated nature [10, 198]. Nev-

ertheless, our approach still outperforms prior self-supervised approaches. We fall short

of CLIP’s ResNet-50 due to its training scale; 64× larger batch, 32× larger dataset, and

75×. We also observe that ImageNet-supervised ResNet-50 achieves better fewshot per-

formance. Examining the performance breakdown, see Tab. B.3, we find the improvement

mainly comes from CIFAR10, CIFAR100, and Pets. We posit that this can be explained by

ImageNet’s class structure; mostly pets with a large overlap with CIFAR’s classes.

Table 5.4: System Level Comparisons. We outperform prior self-supervised approaches
despite them benefiting from ImageNet’s curation for training and using larger batch sizes.
CLIP outperforms us due to the scale of their training.

Batch # Image Updates Dataset Linear Fewshot
Supervised [309] 1024 1.3×108 ImageNet 78.0 85.7
SimSiam [42] 512 1.3×108 ImageNet 72.9 78.7
SimCLR [41] 4096 1.0×109 ImageNet 75.4 77.4
MoCo [44] 4096 1.3×108 ImageNet 77.7 80.1
SwAV [32] 4096 1.3×108 ImageNet 78.2 78.5
CLIP [219] 32768 1.0×1010 CLIP 81.8 87.8
LGSimCLR 512 1.3×108 RedCaps 78.2 82.5
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5.5 Analysis

We now analyze language-guided contrastive learning by evaluating the impact of pre-

training data, the choice of embedding space, and the pre-text task. Through understand-

ing the impact of those choices, we can better understand what the model is learning.

5.5.1 Approach generality

We extend language guidance to two other self-supervised representation learning ap-

proaches: SimSiam and SLIP. Using language-sampled pairs consistently improves the

performance of models compared to image-augmented pairs as shown in Tab. 5.5. In-

terestingly, we find that SLIP’s performance is still improved by using language-sampled

pairs despite the fact that it already uses a language-based loss. This further supports our

claim that language guidance might be superior to language supervision.

Table 5.5: Approach Generality. Using our language-sampled image pairs can provide
strong performance boosts over image augmentations for several self-supervised learning
formulations.

Image Augmentations Language Sampling

Linear Fewshot Linear Fewshot
SimSiam 65.7 65.5 71.2 75.7
SimCLR 68.5 66.7 78.2 82.5
SLIP 74.0 75.6 78.8 82.8

5.5.2 Training Data

We train our model on four datasets: CC3M [251], CC12M [37], RedCaps-2020, and

RedCaps [65]. In Tab. 5.6, we observe that larger datasets result in stronger performance,

indicating that our approach could scale well with even larger datasets. Furthermore,

we observe that RedCaps results in better performance than Conceptual Captions. This

may be attributed to the higher quality of captions in RedCaps – while the alt-text captions

CC3M and CC12M can be short and contain image metadata, RedCaps captions are diverse,

longer, and more descriptive. This allows our model to sample more interesting visual pairs

that capture more visual diversity. Results in Sec. 5.6 further support this.
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Table 5.6: Language-guided learning scales well with datasets size and quality. We
observe that training on larger datasets results in consistent performance improvements.
Furthermore, training on datasets such as RedCaps which have longer and more natural
captions results in better performance than training on CC3M or CC12M whose captions
are more generic and heavily processed.

Size Linear Fewshot
CC3M 2.7M 71.5 76.3
CC12M 10.9M 76.8 81.9
RedCaps 2020 3.2M 73.8 78.8
RedCaps 12.0M 78.2 82.5

5.5.3 Batch Size Scaling

We explore the scaling performance of our data with respect to batch size. Prior work has

shown that contrastive methods can benefit larger batch sizes [40, 41, 219]. While we

conduct our comparisons with a batch size of 512 to allow us to perform comprehensive

experiments and evaluations, we show that our models can also scale to larger batch sizes.

Our results, shown in Tab. 5.7, show that our performance scales with batch size and that

we maintain our performance gains over SimCLR for larger batch sizes. Furthermore, we

show in Tab. 5.6 that our model benefits from larger datasets. We note that the improve-

ment is not limited to finding the nearest neighbor in more images, but rather than having

more images to train on improves performance as can be seen in the improvement of the

RedCaps model sampled on Years compared to the RedCaps-2020 models. While both

models sample the nearest neighbors from each year, the RedCaps trained model has 4×
more data and shows clear performance gains over the RedCaps-2020 trained model.

Table 5.7: Batch Size Scaling. Our model scales well with larger batch sizes similar to
other contrastive approaches.

SimCLR LGSimCLR

Batch Size Linear Fewshot Linear Fewshot
256 67.5 67.2 77.7 82.3
512 68.5 66.7 78.2 82.5
1024 69.3 68.4 78.6 82.6
2048 69.8 68.6 79.1 83.1
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5.5.4 Sampling space

The idea of using offline nearest neighbor sampling does not require a specific language

model or even language as a modality. We explore other choices for embedding space:

four sentence encoders and two image models. In our experiments, we use SBERT’s MP-

Net model [225, 262]; the highest performing SBERT model for sentence similarity. We

compare it to two other sentence transformers: a smaller SBERT model, MiniLM [301],

and the language encoder from CLIP [219]. We also compared against a bag-of-words

(BoW) sentence encoder that uses FastText [24] embeddings. Results are presented in

Tab. 5.8.

While we expected that using CLIP for sampling would improve performance due to its

multimodal training, we were surprised that MiniLM also improved performance despite

its lower performance on language tasks. We find that pairs obtained using a BoW model

result in weaker performance which might hint at the importance of contextual sentence

embeddings. Nevertheless, the BoW-sampled pairs still result in higher performance than

all previous approaches on RedCaps. This indicates that language guidance still provides a

useful performance gain even with a naive choice of language embedding and that choos-

ing a more sophisticated sentence embedding can further improve performance.

We also consider two visual models: ImageNet-supervised ResNet-50 [309] and

ImageNet-trained SimCLR [41]. Our results indicate that using a visual model for sam-

pling is only beneficial if the visual model captures some semantic relations; e.g., through

supervised training. Using a self-supervised language model results in a strong drop in per-

formance relative to the other sampling spaces. Nevertheless, it still allows the model to

achieve better performance than using a self-supervised visual approach on the same data.

This indicates that while language is a better modality to use, “sample-guided” contrastive

learning can still achieve a stronger performance than only using self-supervised learning.

Table 5.8: Impact of Sampling Space. While language sampling consistently results in
good pairs for training, visual sampling only helps if it has access to semantics through
labels through supervised training or language through vision and language pre-training.

Sampling Space Linear Fewshot
SBERT (MPNet) 78.2 82.5
SBERT (MiniLM) 78.6 83.3
CLIP Language (ViT-B/32) 78.3 83.1
FastText BoW 76.1 80.9
ImageNet-supervised 78.3 81.8
SimCLR (ImageNet) 73.1 74.6
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5.5.5 Sampling Scope

One issue with our approach is the computational cost of nearest neighbor search. While

fast similarity search libraries have made this more feasible, searching over billions or

trillions of images could be very expensive. As a result, we explore how our model’s

performance changes as we adapt the sampling to be restricted to subparts of the dataset.

We use RedCaps since it provides us with several ways of splitting the data. Subreddits

offer a natural separation of datasets that is domain-specific. This allows us to explore how

our model would perform is restricted to search within more relevant instances. RedCaps

was also collected over several years. Splitting by years allows us to explore the impact of

random splits of the data as years would only have minimal domain shift. We also explore

Subreddit-Year, which only samples nearest neighbors from the same subreddit that were

posted in the same year. This sampling combines both size and domain-specificity.

Our results, presented in Tab. 5.9, show that domain-specific sampling actually im-

proves performance. Meanwhile, more random sampling minimally degrades perfor-

mance. Finally, restricting the scope of the nearest neighbor sampling is not the same

as sub-sampling the data. This is shown by the higher performance of RedCaps with Year

sampling compared to RedCaps-2020. Those results indicate two opportunities: First, our

approach can scale to very large datasets by only performing nearest neighbor searches

within subsets of the data. This is especially beneficial in some domains such as federated

learning. Second, identifying further domain structure within the dataset can result in

improved performance by allowing the model to sample nearest neighbor images within

the same domain.

Table 5.9: Impact of Restricted Sampling. LGSimCLR can still learn good features if
it is restricted to only sampling from a subset of the datasets. Domain-specific sampling
(e.g., subreddits) improves performance, while domain agnostic partitions (e.g., Year or
Subreddit-Year) minimally degrades performance.

Dataset Sampling Scope Number of Partitions Linear FewShot
RedCaps 2020 All 1 73.8 78.8

RedCaps

All 1 78.2 82.5
Year 4 77.2 80.2
Subreddit 350 79.0 80.5
Subreddit-Year 1391 77.6 78.2
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5.6 Qualitative Analysis

We now analyze the types of image pairs that we get via sampling. We identify four

patterns when comparing sampling using language, supervised vision models, and self-

supervised vision models. We present some examples in Fig. 5.6.

Similar objects in different context: The first set of results depict examples where

language-guided sampling results in very diverse images of the same concept. For ex-

ample, while visually sampled images (regardless of whether they are self-supervised or

supervised) depict shoes on their owl, language-samples depicts 3 images of the same shoe

model in different contexts. The third row also depicts humming birds in different poses,

while self-supervised models provide birds on a branch, and supervised models provide

humming birds taken in similar poses as the source image.

Visual similarity misses the object: The second set show examples where visual sim-

ilarity misses the salient object in the image. The fourth row is a halibut dish with veg-

etables. Visual sampling results in other dishes pictured from the top, while language

sampling gives us three other halibut dishes with vegetables that look different from the

source image. Rows 5 and 6 show examples where visual sampling just focused on the

overall appearance missing the herb scissors (row 5) and coyote (row 6). Self supervised

models provide nearest neighbors that have animals in snow, but its different animals like

a lynx or a dog.

Captions capture subtle relationships: The third set shows examples where the lan-

guage captures subtle relationships. Can you guess what the captions were? In row 7, the

source image was captioned “itap of a tunnel created by the autumn leaves.” Visual similarity

focuses on the trees, while language similarity resulted in images that more clearly depict

autumn. In row 8, the source caption mentions a cheetah which can be seen at the right

corner of the source image, but the overall sunset appearance results in different sets of

visual nearest neighbors. Finally, the caption for row 9 mentions a mating ritual between

birds. This element is captured by language guidance while visual similarity retrieves im-

ages of animals in grass. These results suggest that conditioning the model similarity on

the caption could result in a better posed learning problem.

Vague Captions: Those examples show cases where the caption is very vague or unre-

lated to the image content, resulting in odd nearest neighbors in the language space. Can

83



you guess the captions from the nearest neighbor images? Answers in footnote.2 The cap-

tion of row 10 refers to the appearance of the eyes of the penguin, but since the “googly

eyes” can also refer to a small toy, it retrieves images of that toy being used on a coffee

machine and a wall. In row 11, the caption asks what the object is, but this is indepen-

dent of the object, resulting in language retrievals with miscellaneous objects, while visual

retrievals return other insects. Finally, row 12 shows a case where the retrieval uses the

dog’s name in some context, resulting in the retrieval of other pets playing in gardens.

These cases represent limitations of language sampling that might result in poor learning.

However, since the core issue arises from misalignment or vagueness in the caption, it is a

limitation shared by any model that uses captions and images.

5.7 Limitations

We observe a few limitations in our approach. Image captions can be noisy, vague, and

often omit obvious relations in the image [12]. While this broadly affects image-language

models, it can result in us retrieving unrelated image pairs. For example, captions like “I
found this in the garden” or “Photo from our family trip” could describe a large range of

images, some of which are unrelated. We expanded on this in Sec. 5.6. Image descrip-

tions also depend on the context and the perceiver; e.g., a tourist and an art curator will

describe an artwork in very different ways. We observe that descriptions in topic-focused

subreddits (e.g., r/birdpics and r/woodworking) are more specific than in generic sub-

reddits (e.g.,r/itookapicture and r/pics). Our experiments in Sec. 5.5.5 support this

observation. Since a caption only captures one aspect of the image, sampled pairs can be

similar for a variety of reasons. Allowing the model to condition the feature extraction or

similarity calculation on captions could alleviate this issue.

2Source Image Captions: row 10: “Built-in googly eyes.” row 11: “I found this today. Anyone knows what
it is?” row 12: “Cinda having fun in the garden!”
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Figure 5.6: Nearest neighbor image pairs sampled using different modalities.
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5.8 Discussion

In this chapter, we propose using language to find conceptually similar images for con-

trastive learning. This is based on a simple observation: people describe an object in

similar ways even when it appears in different contexts. We use pre-trained language

models to sample similar captions and use the captioned images for contrastive learning.

We hypothesized that using language-guidance, instead of image augmentations, would

result in learning invariances

We evaluate our approach on multiple train and test datasets and find that it outper-

forms previous self-supervised and image-text contrastive models. Our analysis demon-

strates the utility of using nearest-neighbor instances for training and the superiority of

language sampling over other approaches for unlabeled datasets. Our findings align with

prior work that critiques the use of image augmentations [247, 318] and shows the utility

of cross-modal guidance [99] and intra-instance relationships [71, 134]. Within the scope

of vision and language research, our results demonstrate the potential of incorporating

language as guidance rather than as a direct supervisory signal.

In a broader sense, this work provides a new paradigm for learning from multimodal

data. We hope that by providing a first step in this direction, this work can inspire others

to explore other modalities, such as audio or haptics. Those two modalities lie at the core

of the study of cross-modal correspondence in humans [265], and it would be interest-

ing to explore those theories in the context of machine learning. Finally, our approach

only focused on global image representations. However, we hope that future work will

extend this towards dense representation learning as the ability of the model to identify

the corresponding components within the image should provide a strong learning signal

for representation learning.
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Chapter 6

Evaluating the 3D Consistency of Visual Representations

The study of vision must, therefore, include not only the study of how to

extract from images the various aspects of the world that are useful to us, but

also an inquiry into the nature of the internal representations by which we

capture this information.

—David Marr, Vision

In the previous chapters, we demonstrated how correspondence can be used to learn vi-

sual representations without explicit supervision. Our primary claim is that the consistency

signals provided by cross-modal correspondence allow the model to learn good represen-

tations. In this chapter, we consider the flip-side of this: do “good” visual representations
exhibit semantic and geometric consistency?

Over the past decade, there has been a plethora of methods for learning good vi-

sual representations based on various learning signals and data sources. While earlier

work focused on leveraging different forms of supervision, such as image labels, object

masks, or 3D annotations, it soon became clear that such methods would be challenging

to scale due to the high cost of annotation. This shifted attention to methods that could

best leverage two forms of easily scalable types of data: curated [63, 206] or captioned

images [65, 219, 245]. The combination of scalable data and large-scale training has

yielded visual models with impressive generalization capabilities. Such models can clas-

sify [163, 219], caption [164], and generate [36, 229, 237] arbitrary images. Given that

those models excel in various image understanding tasks, it became natural to ask what

their representations capture.

There has been extensive work evaluating the semantic capabilities of visual mod-

els [90, 94, 299]. The standard evaluation of visual representations is ImageNet linear

probe classification. The intuition is that good features should allow one to discrimi-

nate between different object classes. Furthermore, it has been observed that ImageNet
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Figure 6.1: Are visual foundation models 3D aware? We analyze the 3D awareness of
visual foundation models by evaluating how well their features encode depth and surface
normals, as well as how consistent their representations are across views.

performance often correlates well with other datasets [144]. More recent work has ex-

panded such evaluations to include dense localization tasks such as detection and segmen-

tation [1, 190, 206, 323] with more mixed results. Overall, it appears that self-supervised

and vision-language models learn representations useful for a wide array of visual tasks,

but they still struggle with novel objects and compositions [279].

If models have a good understanding of images and their semantics, might they also be

representing the 3D world that images depict? Recent work has explored using pre-trained

vision models for 3D visual tasks with mixed results. Several works have shown that image-

generation models implicitly represent depth in the process of generation [20, 46]. While

others have shown that the intermediate representations can be used to estimate semantic

correspondence [1, 105, 275, 341] and object pose [92]. However, when those models are

used for 3D object reconstruction [216], they suffer from artifacts such as multiple faces

that suggest a lack of 3D consistency [172]. Given the mixed performance, it remains

unclear how well those models represent or understand the 3D world.

In this chapter, we analyze how well image-trained vision models represent the 3D

world. We focus on two different 3D capabilities: single-view surface reconstruction and

multi-view consistency. We argue in Sec. 6.1 that those two capabilities capture a represen-

tation’s 3D awareness and lie at the core of many 3D tasks. We are particularly interested

in understanding how different types of image supervision impact a model’s 3D awareness.

We focus our analysis on several performant vision models, which have been recently re-

ferred to as visual foundation models. We consider models that represent different strands

in visual learning: classification supervision, generative modeling, vision-language, self-

supervised models, and dense supervision. In our experiments, we keep the models frozen

and use feature probes to evaluate the model’s 3D awareness. We then consider overarch-

ing trends and correlations between different models and tasks.
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6.1 3D Aware Visual Representations

We first discuss what it means for a representation to be 3D aware. When we view a scene,

we seem to effortlessly understand its 3D structure. This enables us to make inferences

about how to navigate scenes, manipulate objects, as well as reason about spatial relation-

ships and scene dynamics. These impressive capabilities raise the question of the nature

of the representations that mediate these capabilities.

Early work on computer vision proposed explicitly 3D representations such as general-

ized cylinders [187] or part-based models [83]. It seemed reasonable that if your internal

model was the 3D model, then it represented the 3D environment by definition. However,

our most performant models look nothing like that and instead consist of learning neural

networks that represent images through dense feature grids. In order to understand the

representations, we need a way to analyze those feature vectors and explain them. Exist-

ing interpretability methods, such as GradCAM [246], are not helpful here as they help us

associate activations with inputs, while we are interested in the overarching structure of

the representation.

To answer this challenge, we look at how this question has been framed and studied in

developmental cognitive psychology. Specifically, we take inspiration from prior work on

shape perception [142, 264] and mental representations [252, 253]. Spelke et al. [264]

presented findings that humans appear to encode specific geometric properties such as dis-

tance, angles, and orientation. This provides us with the first property: if a feature is 3D

aware, it should allow us to decode these geometric quantities with relative ease. Since

such 3D qualities only represent the visible surface, they have historically been referred

to as 2.5D [187]. While 2.5D understanding is important, it only captures view-specific

surface properties, not the overall 3D shape. We consider how the second-order isomor-

phism ideas of Shepard and Chipman [252] could be extended to dense features. We posit

that they imply some form of 3D consistency: points that are close to each other should

have similar representations. This naturally maps to the notion of visual correspondence

discussed in the earlier chapter, which is well-studied within computer vision.

We propose evaluating the 3D awareness of models by probing them on two capabil-

ities: single-view 3D and multiview consistency. While those properties are not compre-

hensive, they capture two essential aspects of 3D awareness. Furthermore, they can be

directly mapped to three well-studied problems in computer vision of estimating depth,

surface normals, and correspondence.

Another important question is how to probe the models. One common approach is

transfer learning, where the pre-trained model is fine-tuned using task-specific supervi-
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sion. While this can be a good practical choice, it is ill-suited for our analysis for two

reasons. First, fine-tuning changes the model weights, which negatively impacts any other

zero-shot capabilities it may have. Hence, it sacrifices the generality of the pre-training

to specialize the model. This can be problematic if we hope to use the model for several

tasks. Second, transfer learning confounds the learned representations with the trainabil-

ity of the weights. As a result, it is unclear if good transfer performance is due to the

model being 3D aware or the model weights being a good initialization [94]. Instead, we

propose using trainable probes or zero-shot inference methods that do not change model

weights nor significantly alter model capacity. This allows us to evaluate the pre-trained

representations of models with the assumption that the same model may be used for a

wide range of tasks. This can be very useful for tasks where the same set of features allows

one to segment objects, extract their 3D surface, as well as classify them.

6.2 Experiments

The goal of our experiments is to evaluate the 3D awareness of large-scale pre-trained

visual models. Specifically, we hope to answer the following questions:

1. Do models encode the geometry of the visible surface?

2. Do the models represent surfaces consistently across views?

3. Are those two capabilities correlated with each other?

4. How does the training objective impact 3D awareness?

We provide high-level descriptions of our experimental setup in this chapter and refer

the reader to Appendix C for more details.

Evaluated Models. We consider models that have shown strong image understanding

and generalization performance, regardless of their training objective. To focus our analy-

sis, we consider several different forms of training supervision and choose a representative

model for each.

• ImageNet supervision used to be the standard pre-training recipe due to its strong gen-

eralization performance [144, 250] and recent papers have demonstrated their utility

when scaled to ImageNet-22k [90]. We use DeIT III [287] vision transformers.

• Vision-Language models have recently emerged as a strong backbone due to their

impressive zero-shot performance [219]. We use CLIP’s vision transformers. We also

use SigLIP [339] as a different (non-contrastive) vision-language objective.

• Text-conditioned Generation is a novel objective that trains models to generate images
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conditioned on a specific text input. Besides its success at generating photorealistic

images, such models also learn features that are useful for classification [160] and

segmentation [323]. We use StableDiffusion 2.1 [229] as it is the prototypical example

of this objective.

• Self-supervised models are trained with global or dense objectives on image datasets.

While such models do not require labels, they have shown more success on curated

datasets such as ImageNet [63] and LVD-142M [206]. We consider two different ob-

jectives: masked autoencoding and self-distillation. We consider those objectives as

they have been commonly used as feature extractors or backbones to other performant

models. We use MAE [103] for masked autoencoding. For self-distillation, we use

DINO [33], iBOT [352], and DINOv2 [206].

• Segmentation models are trained to localize objects within images. SAM [138] has

been recently proposed as a segmentation foundation model that can segment anything

and has exhibited impressive generalization and robustness. We use SAM’s transformer-

based backbone as it provides the feature that supports this impressive performance.

• Scale-Invariant Depth models are trained to estimate the pixel-wise depth of the scene

up to scale. This has allowed such models to train on a wide range of different scenes

and achieve impressive generalization. We use MiDaS [222, 223] as a representative

example.

A comment on the fairness of comparisons. One major challenge is how to fairly

compare models that were trained with different data and compute resources. It is not

possible to recreate most of those models as they are trained with datasets that are

not publicly available [206, 219], and even recreating such datasets requires extensive

resources [245, 321]. Furthermore, models have different data requirements from la-

bels [287], captions [219], masks [138], or even simple curation [206]. Finally, even if

such data is available, the prohibitive compute resources required would limit any kind of

broad comparison. Instead, we choose to consider publicly available checkpoints of the

same or comparable model sizes. However, the different data sources limit the conclusions

that we can draw, as we discuss in Sec. 6.2.3.

6.2.1 Single-View Surface Reconstruction

We first evaluate how well can models represent the visible surface in the image. We

consider two tasks for single-view 3D understanding: depth estimation and surface normal

estimation. Those tasks are both well-established in computer vision and are commonly
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Figure 6.2: Depth Estimation Results. We observe that pretrained representations ex-
hibit large variation in their representation of depth, but that their performance is con-
sistent on objects and scenes. CLIP and MAE features do not encode depth and appear
to instead capture rough priors such as ”floor pixels are close”. Other models appear to
capture the rough structure of the scene and vary in how accurately they capture details.
DINOv2 generates the most accurate estimates and accurately captures fine details; e.g.,
cow’s ear, desk chair, coffee table.

studied in human perception and development [264]. While both tasks are closely related,

they appear to rely on different visual cues in both human [143] and computer vision [84].

Evaluation. We apply the standard formulation of depth and surface normals but use

scale-invariant depth estimation for objects. Depth losses and metrics often assume that

the variance in depth is high compared to the mean depth. This assumption fails for objects

where a 10cm object may be at 2 meters away. This results in both the loss and metrics

being dominated by predicting the correct scale, which is a known ambiguity in monocular

depth estimation. Hence, we instead rely on scale-invariant depth estimation for objects.

We report the root-mean-squared prediction error for both tasks in meters and degrees

for depth and surface normals, respectively. For scale-invariance depth, the ground-truth

depth is scaled to a (0-1) norm, making the error unitless.

Probe. We use a multi-scale probe for both tasks. This deviates from the common choice

of linear probing commonly used in bench-marking self-supervised models [144]. Linear

probing is useful for semantic tasks since the linear separability of classes is a desired and

expected property. However, it is not well suited for dense 3D prediction tasks for two

reasons. First, it is unclear if the representation should be linearly separable, especially for
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Figure 6.3: Performance is well-correlated across tasks. We find that the depth and
surface normal performance is strongly correlated for both objects and scene.

regression tasks. Second, dense tasks often utilize multi-scale prediction heads as the in-

formation needed is distributed between different parts of the network. Hence, we extract

features from multiple stages of the model and use a multi-layer probe. We use the same

probe for both tasks with the exception of the final output parameterization: AdaBins [18]

for depth estimation and uncertainty-aware angular prediction [11] for surface normals.

Optimization. We train probes for 10 epochs using the AdamW [137, 177] optimizer

with a linear warm and cosine decay learning rate scheduler. While longer training further

improves performance, trends stabilize after 5 training epochs due to the relatively small

capacity of the probe.

Datasets. We evaluate models on two datasets to assess their performance on objects

and scenes datasets. For scenes, we use the NYUv2 [257], which is a common benchmark

for indoor scene 3D understanding. We also evaluate the performance on objects using

the NAVI dataset [122], which depicts a set of object instances in a wide range of scenes

and orientations. Both datasets provide aligned depth. For surface normals, we use the

annotations generated by Ladickỳ et al. [150] and generate the surface normal annotations

for NAVI.

Depth Estimation Results. We observe both a large variance in depth estimation perfor-

mance across models and tasks as shown in Fig. 6.3. While DINOv2 features can predict

depth for both objects and scenes very accurately, CLIP features do not appear to en-

code any depth information. This is evident when considering the qualitative results in
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Figure 6.4: Surface Normal Qualitative Examples. With the exception of CLIP, models
can capture the rough orientation of object and scene surfaces; e.g., floors, walls, ceilings.
The main distinctions seem in how well they capture finer details. Similar to depth results,
we find that DINOv2 and StableDiffusion perform best and can capture fine details such
as the edges of the toy car and the white seat. Surprisingly, we find that SAM’s prediction
are not as detailed despite its ability to predict accurate segmentation boundaries.

Fig. 6.2. While models can rely on rough semantic priors for scenes and generate coarse

predictions—e.g., floors (bottom pixels) tend to be close—this is more difficult for objects,

resulting in more random and flat predictions. We find that model performance for ob-

jects and scenes is highly correlated with a coefficient of 0.97. This is surprising as one

would expect that different pretext tasks would bias representations towards object- or

scene-centric representations.

In terms of absolute performance, we find that DINOv2 performs best across the consid-

ered models, achieving an RMSE of 0.324 on NYUv2. This is an impressive performance,

considering that this is a small probe on the frozen feature of a base-level backbone. To

contextualize this, ZoeDepth [19] achieves an RMSE of 0.270 by training a larger back-

bone (ViT large) on a combination of 12 depth datasets before fine-tuning on NYUv2. This

comparison underscores the generality of the representations learned by the models and

the non-trivial performance that they achieve.

Another interesting result is that MiDaS [222, 223] does not perform much best on

depth probing despite the strong overlap between the downstream data and its pre-training

objective. Specifically, MiDaS is trained using a scale-invariant depth estimation objective

on a combination of indoor and outdoor depth datasets. Despite this, probing its features

results in worse predictions than models trained with self-supervision, class-supervision,

or generative objectives. This is very surprising and suggests that strong, more generic
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pre-training might be just as useful as task-specific pre-training.

Surface Normal Estimation Results. Surface normal probing reveals similar trends to

depth estimation. The qualitative results, shown in Fig. 6.4, indicate that most models

capture coarse (planar) orientation but struggle with details and areas of large normal

variation. It is unclear if this limitation is due to model representation or the coarse spatial

resolution of the feature embedding.

In terms of absolute performance, we find that the best model performs favorably com-

pared to the state-of-the-art. DINOv2 achieves an RMSE of 24.6◦ which is close to the 22.8◦

RMSE achieved by iDisc [214], the best-performing model on NYUv332. iDisc achieves this

impressive performance by introducing several innovative components that are designed

for dense geometric tasks and training the full model on this task. It is surprising that a

self-supervised model learns representations that are even comparable.

Summary: Our single-view experiments suggest that most pre-training objectives end up

encoding information about the visible surface. Furthermore, it seems that this ability is

not specific to objects or scenes, as indicated by the high correlation shown in Fig. 6.3. Self-

supervised models that rely on both dense and image-level objectives, such as DINOv2 and

iBOT, perform very well. This is interesting as DINOv2 outperforms StableDiffusion, whose

image generation pre-training objective seems to require a better understanding of scene

geometry. The other surprising finding is how poorly language-supervised such as CLIP

and SigLIP perform, especially when considering their strong semantic understanding.

Overall, our experiments suggest that most visual foundation models do represent the

visible surface, with the notable exception of language-supervised models.

6.2.2 Multi-view Consistency

We now evaluate the multiview consistency of representations. While single-image 3D

tests, if the model represents the visible surface, multiple 3D tasks require those repre-

sentations to be consistent across views. The canonical task for this is geometric corre-

spondence estimation, where the goal is to identify image patches that depict the same 3D

point.

Geometric vs. Semantic Correspondences. Prior work has shown that the dense

features learned by StableDiffusion and DINO are useful for semantic correspondence [1,

182, 341]. Semantic correspondence [16] generalizes the correspondence problem to

matching similar semantic parts across views; e.g., match a dog’s left ear across images
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Figure 6.5: StableDiffusion correspondence on SPair [195] chairs. StableDiffusion ap-
pears consistently represent semantic parts and their 2D location. This results in accurate
correspondence between objects viewed from similar angles, but very systematic errors
for objects viewed from different poses as shown in the confusion matrices. Semantically
similar classes are highlighted and correspondences are color coded for recall.
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of two different dogs. While this provides a useful signal, we note that semantic and

geometric correspondence are two different tasks.

Models can achieve good semantic correspondence performance even if they lack 3D

awareness. While StableDiffusion can estimate very accurate semantic correspondence,

we find that it makes very systematic errors that indicate a lack of 3D consistency. As

shown in Fig. 6.5, the model will often predict false correspondence between semantically

similar parts if they are located in the corresponding part of the image. For example, seat

corners in one image are mapped to seat corners in the other image. However, the mapping

depends on the 2D location on the object projection (seat corner on the left) as opposed

to its 3D location (back left seat corner). This suggests that the model representation is

a combination of the semantics of the part and its location relative to the object mask,

not the object itself. This distinction is similar to ego-centric vs. allocentric, but rather

depending on the viewer, it depends on the 2D projection vs. the 3D object.

To further support this observation, we analyze StableDiffusion’s performance on SPair-

71k [195], which is a common benchmark for semantic correspondence. However, instead

of the common approach of evaluating key point recall, we match the predicted correspon-

dence to the nearest key point and analyze the resulting confusion matrices. We focus on

the chair class here, but we find these results across classes and present additional results

in the supplemental. For image pairs with a small viewpoint variation, we find that the

model achieves a good performance. However, for large viewpoint variations, the model

consistently confuses semantically similar parts with each other. This is indicated by the

flipped diagonals for semantically similar parts. We suspect that this also explains the

Janus problem observed in Diffusion-based 3D reconstruction. Since most faces are front-

facing, a model will often assume that an ear at the top left is the left ear and will generate

a corresponding face. Our analysis suggests that semantic correspondence is not suitable

for evaluating the 3D understanding of the model.

Task. We evaluate the models on 3D correspondence estimation task: given two views

of the same object or scene, estimate the correspondence between them. Similar to our

single-view 3D experiments, we consider both scenes and objects. For scenes, we evaluate

our model on the Paired ScanNet [56] split proposed by Sarlin et al. [241]. For objects,

we sampled view pairs from the NAVI wild-set, which depicts the same object instances in

different environments. We sample views to have a maximum rotation of 120 degrees to

ensure there is a mutually visible surface.
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Image Pair SAM DeiT III StableDiffusion DINOv2

Figure 6.6: Correspondence Estimation Qualitative Results. We observe that models
can estimate accurate correspondence for small viewpoint changes, but struggle with large
viewpoint changes. This is true even if the change is an in-plane rotation as shown with
the eagle. This pattern is consistent for both objects and scenes, although performance is
not well-correlated: SAM and StableDiffusion perform better for scenes, while DeiT and
DINOv2 are more consistent for objects. Correspondence color-coded for accuracy.

Inference Procedure. We consider a zero-shot inference procedure since we are in-

terested in the consistency of the features as they are. This matches several recent ap-

proaches that evaluate features without additional training [1, 206, 275, 341] as well as

the traditional correspondence estimation pipeline that depended on pre-trained feature

descriptors. Following El Banani and Johnson [74], we use sample nearest neighbors in

feature space and use the ratio test to filter the top 1000 matches. For each model, we use

the layer that results in the best correspondence performance, as this can highly impact

performance.

Evaluation: We evaluate the multiview consistency of representation using correspon-

dence accuracy; i.e., how many of the predicted correspondences are within some thresh-

old in 3D space. Correspondence error is often computed in pixels to account for the large

variation in depth; e.g., a prediction off by 1 pixel can be a few millimeters on a close-

by surface or several meters for outdoor scenes. While this is useful for scenes, it is not

well-suited for object-level correspondence as many object parts get self-occluded. To ac-

count for those differences, we compute recall based on a 3D threshold for objects and a

pixel threshold for scenes. We also compute average performance for different viewpoint

changes to evaluate how it affects the model’s performance.
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Figure 6.7: While all models do poorly for larger viewpoint changes, StableDiffusion per-
formance drops the fastest, suggesting a strong single view performance and a weak mul-
tiview performance.

Results. Models tend to estimate accurate correspondence for small viewpoint changes

as seen in Fig. 6.7 but that performance quickly deteriorates for larger viewpoint changes.

While this is expected as larger viewpoint changes make the task more difficult, the rate

of deterioration is interesting. StableDiffusion performance drops far quicker than other

models. This suggests that its representations are not 3D consistent but rather capture a

combination of semantics and viewpoint. This is supported by both the results on SPair

in Fig. 6.5 and the qualitative results in Fig. 6.6. Meanwhile, DINOv2 performance drops

slower than the other models, even on ScanNet, where it performs poorly.

Another interesting trend we observe is a much weaker correlation between the per-

formance on objects and scenes. While performance on single-view 3D tasks was highly

correlated, we find that some models perform well on objects but not scenes and vice-

versa. This suggests that while a model’s representations may encode information about

the visible surface, its representations are view- or context-dependent. As a result, the

increased variation results in a fast drop in performance for large viewpoints and suggests

a limited multiview consistency in the features.

6.2.3 Analysis

We now analyze trends across all tasks to understand relationships across different tasks.

We are also interested in understanding the relationship between training objectives and

3D awareness. We note that while we highlighted specific models in our analysis, we

evaluated a much larger set of model variants and computed all correlations on the full

set. Please see Appendix C for the complete set of results.
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Figure 6.8: While performance on single view tasks and correspondence estimation with
similar viewpoints is strongly correlated, correspondence estimation across large viewpoint
is not strongly correlated with any tasks.

One important question is how correlated are different tasks. For example, if the

model’s representations accurately depict depth, how likely is it that they are also useful

for surface normals or correspondence? To address this question, we compute the correla-

tions between the models’ aggregated performance across multiple tasks. For single-view

3D, we separate the depth and surface normal performance for scenes and objects. For

multiview consistency, we separate the correspondence recall for small and large view-

point changes. Specifically, we consider the smallest and largest viewpoint bins for NAVI

and ScanNet. We compute the correlations between all task pairs as shown it in Fig. 6.8.

Our results indicate that while single-view tasks are strongly correlated, this correlation

is much weaker for multiview consistency. Surprisingly, there is only a weak correlation

between correspondence performance for small and large viewpoint changes.

While single-view performance and correspondence estimation with small viewpoint

changes are well-correlated, none of the tasks are well correlated with correspondence

across large viewpoint changes. One explanation that is consistent with our findings on

SPair in Fig. 6.5 is that while the representations might not be 3D consistent, they might

be view-consistent. In that case, the model generates consistent representations of similar

views of the object, but has a limited understanding of how the different views are con-
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nected. While this formulation is consistent with our findings, more research is needed to

further elucidate the nature of the representations learned by models.

Another important question is what properties of the training objective improve per-

formance. Our results suggest that self-supervised learning seems to enable very strong

feature learning. This is not simply due to scale or model capacity as DINOv1 and iBOT

achieve a strong performance despite being trained on ImageNet-1k. Furthermore, vision

and language models consistently perform poorly across tasks. While one explanation

is that learning general semantics discourages the model from encoding 3D properties,

we note that DeiT, which is trained on a classification task, performs very well. Further-

more, this is not a unique property on CLIP’s training data as both SigLIP and the LAION-

trained CLIP underperform as well. While our experiments point to self-supervised and

text-conditioned generation as the strongest performing tasks, it remains unclear if this is

due to the task itself or some auxiliary detail of the training.

6.3 Limitations

Our goal is to understand the degree to which current large-scale models “understand”

the 3D world that images depict, as well as what factors encourage or discourage such

understanding from emerging. This is very challenging as our collective understanding of

what models learn or how they represent what they learn is still very limited. Furthermore,

there are major debates about how 3D geometry should be represented as well as what it

even means for a model to have 3D understanding. Finally, there are concrete challenges

in evaluation that make it difficult to conduct controlled experiments. The study presented

in this work is a first step toward answering these questions. While our experiments and

analysis provide some initial answers to this question, our study suffers from several limi-

tations that limit the strength of the conclusions we can make and point to several avenues

for future exploration. We discuss the limitations below and outline some open questions

that we hope future work will address.

Comparisons are limited to publicly available checkpoints. We focused on our anal-

ysis on publicly available checkpoints due to their availability as well as common use in

the literature. However, as a result, our experiments often compare models trained with

different recipes on different datasets. This is a significant confounding variable as it is

unclear if the trends we are observing are due to the main differentiators we observe or

some minor implementation detail.

Ideally, one would train the same backbone architecture on the same dataset with the
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same training recipe but with different objectives as we did in Chapter 5. However, the

computational resources needed to train and tune all models are prohibitively large. This

problem is also likely to be exacerbated with the current trend of moving towards ever

larger scales. Beyond the resources required, different approaches often have different

data requirements such as curation, labels, captions, or dense annotations. There are

currently no large-scale datasets that meet all those requirements.

We attempted to make comparisons more fair by choosing model checkpoints of com-

parable model capacity and pretraining data scale. While we expected that the dataset or

pre-training scale might end up dominating all other effects, our experiments suggest that

other factors can be more important. For example, while CLIP is trained on a much larger

dataset than DINO, DINO consistently outperforms CLIP. Furthermore, model performance

does not seem to be very sensitive to training data with CLIP achieving similar performance

whether it was trained on WIT or LAION. We hope that our analysis identified interesting

patterns and that future work can conduct much more controlled experiments that focus

on a specific model comparison or dataset comparison.

Our analysis focuses on two specific aspects of 3D awareness. Our ability to perceive

and infer 3D properties is remarkable. While many tasks can showcase this ability, we re-

strict our analysis to single-image surface reconstruction and multi-view consistency. While

those two aspects are fundamental to 3D understanding, they are not comprehensive. The

ability to reconstruct the full 3D shape, predict deformation, and estimate physical proper-

ties such as support and containment all fall under the general umbrella of 3D understand-

ing. However, it is unclear which of those properties should be readily perceived from the

image as opposed to inferred with more complex processing. While such delineations can

be more philosophical in nature, they can guide the experimental design as it is important

to understand what we’re looking for before designing experiments to find it. We expect

that more comprehensive benchmarks of 3D understanding should measure such capabil-

ities as well, and we hope that this work provides an initial step towards the study of this

problem.

Our experimental methodology focuses on probing methods. Our analysis has fo-

cused on linear probe and zero-shot analysis approaches. We have done this to analyze

the features as they are without changing them to better adapt to the 3D tasks. While we

argue that frozen features provide a more accurate understanding of the 3D awareness of

the features, it would definitely be useful to understand how much of those patterns trans-

fer to fine-tuning setups. Furthermore, if we consider recent advances in natural language
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processing, we see a rise in in-context learning with similar adaptions in computer vision.

While linear probes could still be applied, it is likely that prompting-based methods will be

more suited to analyze the 3D awareness of such models.

6.4 Related Work

Analysis of Large-scale Pre-trained models. Since the recent revival of deep learning,

there has been a lot of effort into understanding how and what these models learn [94].

Early work focused on analyzing what those models could be used for [39, 95, 144] as

well as providing some interpretability into what they were learning [246]. We have been

inspired by recent work on analyzing whether generative models represent depth in the

process of generating images [20, 46]. While this work shares our goal of understand-

ing whether those representations are 3D aware, their analysis is specific to generative

models and does not tackle whether the model can represent depth for an image it did

not generate. This also makes it difficult to analyze non-generative models. More closely

related to our analysis is the concurrent work of Zhan et al. [340], which analyzes the 3D

understanding of StableDiffusion through a series of binary classification tasks. While we

share the same goal, we argue that forcing the model to densely estimate the 3D proper-

ties directly provides more analytical power and is less susceptible to semantic priors. Our

analysis also expands to include multiview consistency, not just depth and normals, which

were the focus of [340].

Using foundation models for 3D tasks. There has been a growing interest in leveraging

large-scale pre-trained models for 3D tasks. One line of work extracts features from models

for correspondence estimation [1, 105, 182, 206, 275, 341] and pose estimation [92, 343].

Others have shown how those models could be fine-tuned for accurate depth estimation

with Zhao et al. [349] achieving state-of-the-art performance by simply fine-tuning Sta-

bleDiffusion. Another line of work combines image generation with 3D representations

for text- or image-conditioned 3D reconstruction [216, 300, 320]. While those methods

generate impressive 3D shapes, it has been observed that their generations are not 3D

consistent and can generate animals with multiple heads (the Janus Problem). Fortu-

nately, recent work has shown that fine-tuning with 3D data can improve the generation

quality [136] and alleviate the 3D inconsistencies [172, 217, 220, 254]. While this work

showcases the utility of foundation models for 3D understanding, the features are often

used within a larger system, making it unclear how much the features capture the 3D prop-

erty as opposed to serving another function in the larger system. We have been inspired by
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this line of work to study the 3D awareness of representations. We hope that our findings

help clarify some of the existing trends in the field and provide some guidance on how to

select models for specific 3D tasks.

6.5 Discussion

In this chapter, we presented an exploratory study into the 3D awareness of visual models;

i.e., how well do the representations capture the 3D-ness of the scenes and objects? We

posit that 3D awareness can be evaluated along two dimensions: (1) encoding the visible

surface and (2) consistently representing the surface across views. We use trainable probes

and zero-shot inference methods to evaluate the frozen features of those models.

Our results revealed some interesting trends. First, we found that most models learn

representations that encode the depth and orientation of the visible surface, with vision-

language models being the notable exception. While it is possible that “3D understanding”

emerged for all those models, it is more likely that this performance is the result of good

discriminative dense features. Future work should analyze the relationship between depth

understanding and other dense tasks, such as segmentation, to clarify this point. Perhaps

good dense features are all you need?

Second, we found that while models can estimate accurate correspondence across im-

ages of a similar viewpoint, they struggle with large viewpoint changes. This indicates a

lack of multiview consistency, but it is unclear why this happens. One possibility is that

models are learning view-dependent representations. This could be similar to the theories

of shape perception proposed by Koenderink and Van Doorn [140, 141] where represen-

tations focus on 2D projection representations that are connected with an aspect graph.

Another possibility is that the features are consistent and that our zero-shot probing ap-

proach is too rigid to unveil that. Future work should explore the use of probes to assess

this question. A final possibility is that current models are simply good “image models”

with no 3D awareness or consistency. Under this interpretation, the only thing that is tying

images together is the semantics it learns from the data curation or supervisory signal.

This would explain the discrepancy between semantic and 3D correspondence estimation.

The study presented in this chapter is only a first step toward understanding the 3D

awareness of visual models. We hope that our findings will encourage more research

on the 3D understanding of foundation models and the development of other training

approaches that are more 3D aware.
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Chapter 7

Discussion

This dissertation presented the idea of using cross-modal consistency for both learning and

understanding visual representations. We motivated this goal by learning from the signals

available to us in the environment: information we can easily obtain from the environ-

ment without requiring an explicit teacher. Our core observation is that our environments,

despite their complexity, present consistent patterns across modalities. This allowed us to

develop models that leverage cross-modal correspondence to learn representations in one

modality using structure in another. We operationalized this idea in two settings: RGB-D

video and images with free-form captions.

In RGB-D video, the idea of correspondence was very simple: image patches that de-

pict the same 3D point in space. We integrated correspondence into an end-to-end learn-

ing pipeline along with differentiable alignment and synchronization algorithms based on

more traditional algorithms. We then developed models that learned from photometric

consistency (Chapter 2), geometric consistency (Chapter 3), and multiview consistency

(Chapter 4). Our models performed on par with supervised approaches that relied on 3D

reconstructions to obtain pose or correspondence supervision despite only relying on the

raw RGB-D stream for learning. Through this line of work, we aim to demonstrate two

things: First, the consistency signals inherent in our sensory stream provide a very strong

signal for learning that renders explicit supervision unnecessary; second, correspondence

allows us to sample learning instances from this stream by leveraging cross-modal rela-

tionships.

We then deviated from the common formulation of point correspondences in 3D and

explored the idea of conceptual correspondence from language. This work was motivated

by a very simple observation: when different people observe the same visual informa-

tion, they tend to describe it in similar ways. Hence, similarly captioned images should

be represented in similar ways. We propose language-guided visual learning and show

that it outperforms self-supervised approaches that rely on image augmentations as well

as language-supervised approaches that jointly embed images and text in the same space.
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While we proposed a vision-language approach, we discussed in Chapter 5 how this idea

is far more general and presents a new paradigm for thinking about learning from mul-

timodal data through leveraging cross-modal relationships of unimodal representational

spaces.

Finally, we took a step back and explored how correspondence could be a useful tool

to analyze features. We studied the 3D awareness of visual representations to understand

how well they represent the 3D structures whose images they train on. We found that

most models appear to encode single image 2.5D information, such as depth and surface

normals, with some degree of accuracy. Nevertheless, most of those models struggled with

multiview consistency, with their errors suggesting a focus on semantics and relative loca-

tion in the image plane. Those results suggest a path forward toward better understanding

the strengths and limitations of visual representation learning approaches and developing

models that better capture our 3D world.

Taken together, this dissertation presents a strong case for rethinking visual represen-

tation learning and moving from supervised settings or dataset-centric self-supervised ap-

proaches toward learning from signals available in the environment. To conclude this

dissertation, we frame our findings in a larger framework and suggest some avenues for

future work.

7.1 Towards Ecologically Plausible Perceptual Learning

In our quest to build machines that can see, we have found datasets to be incredibly useful

for developing, training, and benchmarking models. Without the availability of nicely

curated datasets, the work in this dissertation would not have been possible. However,

datasets are snapshots of the world that often depict a simplified, limited, and often biased

view of reality [286]. Ideally, models could learn to see, or see better, through their own

experiences and interactions. Toward this goal, we posit that we should be developing

ecologically plausible perceptual learning approaches.

Perceiving agents do not exist in isolation: their environment determines both the

signals they can perceive and learn from as well as the perceptual tasks they need to

perform. Consider the following three key ways that an environment affects the design of

a computer vision system: (1) input data, (2) learning signal, and (3) evaluation tasks.

For a system to be ecologically plausible, its input and learning signal should arise directly

from the environment; i.e., sensory data or interaction. This makes it difficult to justify the

reliance on ground-truth segmentation masks or 3D meshes within a long-term strategy.

Considering the environment also reveals the myriad sensory modalities we could leverage
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for learning and perception: instead of just relying on image data, we can integrate other

sensory modalities such as depth, haptics, and proprioception. Finally, our evaluation tasks

should capture the complexity, variety, and novelty inherent in the real world.

In the previous chapters, we focused on two signals that are a step towards more eco-

logically plausible learning. RGB-D video streams are a form of raw sensory data. Fur-

thermore, most of the learning is happening between close-by frames, making it possible

to deploy this directly on a robot; although it is possible that randomization is needed for

the current approach to work well. Language, while not sensed directly, arises naturally

in interactions with other humans. One could easily conceive of a system that extends our

approach by maintaining a memory of previous interactions to learn from. This is similar

to the visual memex proposed by Malisiewicz and Efros [185].

We hope that the work presented in this dissertation will motivate the community

to explore such approaches and move towards more ecologically plausible learning. We

finally discuss two interesting avenues that would be interesting to explore further.

Learning from Visual-Haptic Correspondence. The relationship between haptic

and visual perception has been a focus of philosophical [174] and psychological in-

quiry [107, 258]. While there has been some recent work on visual haptic learning

[28, 156], this area remains largely unexplored. One exciting question in this area is

the Molyneaux Problem [174], which asks whether a person born blind who learned to

differentiate between objects by touch could immediately differentiate them by sight if

they regained sight. While answering this question is very difficult, Held et al. [107]

showed that newly sighted individuals failed to do this upon regaining sight but could

learn to match objects within a few weeks. This is an avenue that is interesting to explore

through machine learning: do visual and haptic embedding spaces naturally align when

learned separately? How much data is needed to learn how to map from one modality’s

representations to another?

Discovering Concepts from Cross-Modal Structure. Infants generalize very well to

entire categories from a single instance [259]. Cognitive science researchers posited that

this arises from their rich, multi-modal experience. While single-modality correlations can

be confusing—e.g., cats and dogs are furry, different dogs can sound the same—cross-

modality correlations are often far more informative. In this dissertation, we focused

on cross-modal correspondence. However, an agent that reasons over the cross-modal

relationships could learn to discover novel concepts and use them to further refine their

perceptual models.
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Appendix A

SE(3) Camera Synchronization Algorithm

We explain the Camera Synchronization algorithm described in Chapter 4 in more detail.

Notation for SE(3) matrices. Recall that for pairs of frame i < j,

Ti,j = argmin
T∈SE(3)

∑
inliers (p,q,w)∈Ci,j

w||xq −T(xp)||22

is our estimate for the relative transformation from camera i to camera j. We can write

Ti,j as a 4x4 matrix consisting of a rotation and translation,

Ti,j =

 R 0

t 1

 , R ∈ SO(3), T ∈ R3.

Ti,j acts on points x = (x1, x2, x3, 1) in homogeneous form by right multiplication

Ti,j(x) = (x1, x2, x3, 1)×Ti,j.

Confidence-weighted transformations. Recall that ci,j is a confidence value attached to

Ti,j for i < j. Let S+ ⊂ R4×4 denote the set of 4× 4 matrices with the form:

α

 R 0

t 1

 , α ≥ 0, R ∈ R3×3, T ∈ R3.

Elements of S+ can be projected onto SE(3) by dividing by α, and then using SVD to project

R onto SO(3).

Note that S+ is closed in the sense that if A,B ∈ S+ and α ≥ 0, then A+B, A×B and

αA are all in S+ too.
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Confidences as jump probabilities We will make two simplifying assumptions. First, we

will assume that the ci,j have been scaled so that the rows sum to one: for all i,
∑

j ci,j = 1.

Second, we assume that for each i, ci,i+1 > 0. With these assumptions in place, C = [ci,j] is

the stochastic matrix for an N -state Markov chain (Xt),

ci,j = P[Xt+1 = j | Xt = i], t = 0, 1, 2, . . . .

The Markov chain is [158]:

• lazy: P[X1 = i | X0 = i] = ci,i = 1/2 as ci,i =
∑

j ̸=i ci,j,

• connected: for all i, j, for some t sufficiently large P[Xt = j | X0 = i] = (Ct)i,j > 0,

and

• time-reversible: πiCi,j = πjCj,i for all i, j with π ∈ [0, 1]N the equiilibrium distribu-

tion.

By the Perron–Frobenius theorem and the laziness property, the eigenvalues of C can be

written as

1 = λ1 > λ2 ≥ ...λN ≥ 0. (A.1)

The spectral gap 1− λ2 > 0, so convergence to equilibrium is exponential,

P[Xt = j | X0 = i] = (Ct)i,j = πj + O(λt
2).

The pairwise-transformations matrix In Sec. 4.3.4, Eq. (4.3), we define a 4N × 4N

matrix A,

A =



c1,1I4 c1,2T1,2 · · · c1,NT1,N

c2,1T2,1 c2I4 · · · c2,NT2,N

... . . . ...

... . . . ...

cN,1TN,1 cN,2TN,2 · · · cN,NI4


∈ SN×N

+ ⊂ R4N×4N ,

consisting of an N × N grid of elements of S+. To motivate the definition of A, we can

interpret it as generating a random walk on the set {1, 2, . . . , N} × SE(3),

P[(Xt+1, Yt+1) = (j, Yt ×Ti,j) | Xt = i] = ci,j, t = 0, 1, . . .

The expected value in S+ of the Y -component of the walk is a weighted sum of the products

of pairwise transformations. Pairwise transformations with greater confidence contribute
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more strongly to the sum.

The solution to the synchronization problem is related to the eigenvectors of A. If
there is a global collection of cameras (Ti) such that Ti,j = T−1

i Tj, then A will have four

independent eigenvectors with eigenvalue one, i.e.

[T1 . . .TN ]× (A− I4N) = 0, [T1 . . .TN ] ∈ SE(3)N ⊂ R4×4N .

All other eigenvalues λ will satisfy |λ| ≤ λ2 (c.f. inequality equation A.1 for the eigenvalues

of Markov chain Xt, and properties of matrix determinants). As integer k → ∞, each of the

N rows of Ak will converge to a globally consistent set of cameras. The different rows will

yield essentially the same solution but differing by an SE(3) transformation of the global

coordinates.

More generally, if no such perfect solution exists, then we want to find

argmin
{Ti∈SE(3):1≤i≤N}

∥[T1 . . .TN ]× (A− I4N)∥2F

= argmin
{Ti∈SE(3):1≤i≤N}

∑
j

∥∥∥∥∥Tj −
∑
i

ci,jTiTi,j

∥∥∥∥∥
2

F

= argmin
{Ti∈SE(3):1≤i≤N}

∑
i,j

ci,j ∥Tj −TiTi,j∥2F .

The solution in [89] involves calculating an eigendecomposition directly. Let Arot de-

note the 3N × 3N matrix obtained from A by taking the top 3 × 3 elements from each

sub-block of A. In the notation of [89, supplementary Sec. 2], our Arot is equal to their

“L/2 + D”. Each of the 3N eigenvectors of Arot (suitably padded with zeros to increase

their length from 3N to 4N , e.g.

[x1, x2, x3, . . . , x3N−2, x3N−1, x3N ] → [x1, x2, x3, 0, . . . , x3N−2, x3N−1, x3N , 0]),

becomes an eigenvectors of A. Three of these eigenvectors with largest eigenvalues, pro-

jected onto SO(3), solve [89, Eq. 5],

argmin
{Ri∈SO(3):1≤i≤N}

∑
i,j

ci,j∥Rj −Ri × (Ti,j)1:3,1:3∥2F

Rather than computing the eigendecomposition of A directly, we instead use power iter-

ation. Raising A to large powers filters out the effect of the smaller eigenvalues. To do

this efficiently, starting from A, we repeatedly takes squares to calculate A2, then A4, and
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Figure A.1: Synchronization Benchmark. Our approach achieves the same error as Gojcic
et al. [89], while being faster and more numerically stable.

so on until A2t. Each element in A2t is then projected into SE(3) using SVD as described

above; call the resulting matrix A. A is composed of N ‘rows’, each with shape 4 × 4N ;

each of these rows is an approximate solution to the synchronization problem. The dif-

ference between the rows is that each row is centered around a different camera. We

choose t = O(logN) so 2t > N ; the the number of FLOPs needed to calculate A is thus

O(N3 logN). In practice, the time spent on synchronization is small compared to feature

extraction and matching, as synchronization is independent of the image resolution. For

much larger N , a database of key-frames could be used to reduce the size of N .

Numerical stability. Empirically, we find that training using synchronizations extracted

from A2t was stable. Using an eigensolver to implement the method of [89] led to ex-

ploding gradients. The derivative with respect to a set of eigenvectors is unstable when

the eigenvalues a clustered together, as is normally the case with the largest eigenval-

ues of Arot; when the pairwise rotations are compatible, the largest eigenvalues will be

approximately equal.

Performance. We compare our synchronization approach to naive synchronization,

which aggregates the transformations using adjacent views, and the eigendecomposition

approach proposed by Gojcic et al. [89]. We compare the three algorithms on their ability

to handle rotation and translation perturbation in the pairwise estimates as well as their

runtime. As seen in Fig. A.1, our approach achieves the same performance as the eigende-

composition approach while being faster. Both approaches greatly naive synchronization

since they are able to use information from all pairs. Furthermore, since our approach only

relies on power iteration, it does not suffer from the numerical instability in the backward

gradient discussed above.
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Appendix B

Language-Guided Learning Experimental Setup

B.1 Evaluation Tasks

We compare all models by evaluating the encoder’s frozen features on two downstream

classification tasks: linear probe and few-shot. We chose to use simple classifiers since they

allow us either to evaluate the features as is with non-parametric methods or to perform a

comprehensive hyperparameter sweep (just one hyperparameter for logistic regression) to

ensure a fair comparison. We explain the two evaluation setups below. The code has been

made publicly available to simplify these comparisons in the future.

Linear Probe Classification

We follow the linear probe evaluation proposed by Kornblith et al. [144]: train a single

classification layer using the L-BFGS optimizer [170]. We follow prior work [144, 219]

and perform a hyperparameter sweep over the cost values in the logistic regression loss.

We sweep over 96 values in log space from 10−6 to 106. During the hyper-parameter

sweep, we train on the train split and evaluate on the valid split. We choose the cost value

with the best validation performance and train a final classifier on the combined train and

valid instances. We use the PyTorch [211] implementation of L-BFGS with all the default

parameters except for the maximum number of iterations, which is set to 1000 similar

to CLIP [219]. Our evaluation metric depends on the dataset, as shown in Tab. B.1, to

account for class imbalance.

Few-Shot Classification

We also propose using fewshot classification as an evaluation for frozen features. Previous

work [281, 303] has shown that simple classifiers on top of frozen features are strong

baselines for fewshot classification. More specifically, Wang et al. [303] shows that when

features are normalized (mean subtraction and L2 normalization), a nearest neighbor clas-

sifier is a very effective and strong baseline. Inspired by those results, we use simple

weighted nearest neighbor classifiers as an evaluation for pre-trained frozen features.
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Table B.1: Evaluation Datasets. Orange rows indicate datasets that do not have an
official validation split; we constructed one by randomly holding out 20% of the official
train split. Blue rows indicate datasets that do not officially define splits; we randomly
sample instances to construct non-overlapping splits.

Dataset Classes Train Val Test Metric
Food-101 [25] 101 60600 15150 25250 accuracy
CIFAR-10 [146] 10 40000 10000 10000 accuracy
CIFAR-100 [146] 100 40000 10000 10000 accuracy
CUB-2011 [307] 200 5795 1199 5794 accuracy
SUN397 [317] 397 15880 3970 19849 accuracy
Stanford Cars [145] 196 6515 1629 8041 accuracy
FGVC Aircraft [184] 100 3334 3333 3333 mean-per-cls
DTD [53] 47 1880 1880 1880 accuracy
Oxford-IIIT Pets [210] 37 2944 736 3669 mean-per-cls
Caltech-101 [81] 102 2448 612 6084 mean-per-cls
Oxford Flowers [203] 102 1020 1020 6149 mean-per-cls
STL-10 [54] 10 4000 1000 8000 accuracy
EuroSAT [106] 10 5000 5000 5000 accuracy
RESISC45 [47] 45 3150 3150 25200 accuracy
Patch Camelyon [296] 2 262144 32768 32768 accuracy

We set k to be the size of the support set and classify the features as follows:

y′ = argmax
v

∑
(I,y)∈Dsupport

1[v=y]sim(f(I ′), f(I)) (B.1)

where 1[v=y] is an indicator variable that is 1 if y is the same class as v and 0 other wise,

sim(·, ·) is cosine similarity between two vectors, f is the visual encoder, I ′ is the target

image, Dsupport is the support set.

We adopt 5-way, 5-shot classification as our fewshot classification task. For each

episode, we sample five random classes and then sample five images for each class for

the training set, resulting in 25 labeled training images. We also sample 5 images for each

class from the test set as our test images. For classes that have less than five test images, we

use all available test images for that class. This is primarily an issue for Caltech-101 [81].

We sample 5000 episodes and compute the average test accuracy across all episodes. We

experimented with increasing the number of episodes to 50000 to improve evaluation but

noticed little change in the mean performance.
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B.2 Evaluation Datasets

For evaluation, we use the datasets shown in Tab. B.1. We make use of TensorFlow datasets

for evaluation and easy of replication [277]. For all datasets, we preprocess the images

by resizing the image so that its smaller dimension is 224 using bilinear interpolation

followed by a center crop to 224×224. We use bilinear interpolation since it can improve

performance on low-resolution datasets such as CIFAR-10 and CIFAR-100. We normalize

the images using ImageNet’s mean and standard deviation for pixel values for all models

except for pre-trained CLIP. For CLIP, we use their provided mean and standard deviation

values as they have a large impact on performance: an average gain of 4̃% for linear

probes. We exclude Patch Camelyon from the fewshot evaluation since we do 5-shot,

5-way classification, and Patch Camelyon is a binary classification dataset.

B.3 Baselines

For fair evaluation, we retrained previous methods from scratch with several methods

reimplemented. We also provided several system-level comparisons using pretrained

checkpoints provided by prior work. Below, we provide additional details on our base-

lines.

B.3.1 Pre-trained Checkpoints

We use pretrained checkpoints for both sampling and as a basis for comparison. We list

the source of the checkpoints below.

• SBERT: We use two checkpoints from SBERT [225].1 The first checkpoint is

all-mpnet-base-v2 which uses the MPNet [262] backbone. The second second check-

points is all-MiniLM-L12-v2 uses the MiniLM [301] backbone.

• CLIP: We use the official checkpoints provided by CLIP for both system-level compar-

isons and sampling.2 We use the RN50 checkpoint in the system-level comparisons to

match the backbone for other models. We use the ViT-B/32 checkpoint for sampling to

provide the strongest performance for visual sampling in evaluating different modalities

for sampling.

• ImageNet pretrained model: We use the checkpoints provided by torchvision3 for all

ImageNet pre-trained models. For system-level comparisons, we use the ResNet-50 with

1https://www.sbert.net/
2https://github.com/openai/CLIP
3https://pytorch.org/vision/stable/models.html
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IMAGENET1K V2 checkpoint as it achieves better performance than the original ResNet-

50 checkpoint. For consistency, we use the ViT-base-32 model for sampling to match

the CLIP sampling strategy and provide a strong baseline for utility of language as a

sampling modality.

• SimCLR: We use the SimCLR checkpoint provided by PyTorch Lightning Bolts.4 While

SimCLR released some checkpoints for TensorFlow, we found that converting them to

PyTorch using the recommended tools resulted in lower performance. We use the same

checkpoint for both sampling and system-level comparison. SimCLR only released mod-

els trained for 800 epochs.

• SimSiam: We use the official checkpoint released by SimSiam.5 We use the checkpoint

trained with a batch size of 512 as it more closely matches our training setup.

• MoCo: We use the official checkpoint for MoCo v3.6 We use the checkpoint for the

model trained for 100 epochs to match other checkpoints more closely.

• SwAV: We use the official SwAV checkpoint.7 We use the checkpoint trained for 100

epochs to match the training duration of other methods. Unlike our implementation, the

method is full SwAV which includes the Multi-Crop strategy.

B.3.2 Retrained models

We re-implement and retrain all baselines. When an official implementation was available,

we adapted their code to fit within our pipeline.

For all models, we use a ResNet-50 backbone from torchvision with random initializa-

tion and a feature dimension of 2048 (the fc layer is removed). For projection layers, we

either use a linear layer or a multi-layer perceptron (MLP) where every layer except for the

last is followed by batch normalization and a ReLU non-linearity. We describe an N-layer

MLP with N + 1 numbers depicting the input dimension for the first layer followed by the

output dimension for all layers.

We use two forms of augmentation: SimCLR or global crop. Global crop consists of a

random resized square crop with a scale of (0.5, 1.0) to an image size of 224×224. SimCLR

augmentations consist of random resized square crop, color jittering, random gray scale,

random horizontal flipping, and Gaussian blur. We use the same augmentation parameters

as prior work [41, 44]. All images are normalized using ImageNet’s mean and standard

4https://lightning-bolts.readthedocs.io/
5https://github.com/facebookresearch/simsiam
6https://github.com/facebookresearch/moco-v3
7https://github.com/facebookresearch/swav
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deviation statistics.

Below we provide some details for each of the baseline methods:

• SimCLR: We use the backbone with a 3-layer MLP as a projection layer with feature

dimensions (2048, 2048, 2048, 128) similar to the original paper. We use the SimCLR

loss implementation from Mu et al. [198]. We adapt it to the distributed setting using

synchronized batch norm, as well as synchronizing the features and gradients for the

loss. We use SimCLR augmentations for SimCLR and global crop augmentations for

LGSimCLR. We experimented with mixing SimCLR augmentation and language sampled

pairs and found that it results in slightly inferior performance: adding augmentations

reduces the linear probe average accuracy from 78.3 to 77.9.

• CLIP: We use the backbone with a linear projection layer to a feature dimension of

512. We use the smallest CLIP language encoder, similar to SLIP [198], with a feature

dimension of 512 and a linear language projection layer. We use the loss implementation

from SLIP [198], but adapt it to share the loss gradients similar to the SimCLR loss. We

use global crop augmentation for CLIP since SLIP [198] reported that it performs better

than CLIP’s original center crop preprocessing.

• SLIP: We follow SLIP’s implementation and combine the augmentations, projections,

and losses from SimCLR and CLIP. We use the same language transformer as our CLIP

implementation. We generate two augmented views with SimCLR augmentation for the

SimCLR loss and one with global cropping for the CLIP loss. Those views are passed

through their respective projections (3-layer MLP for SimCLR and linear projection for

CLIP) and losses. For LGSLIP, we only use the global crop augmentation, resulting in

only 2 augmented views. We apply the SimCLR loss between the language-sampled

image pair and the CLIP loss between only one of the images and its caption.

• SimSiam: We follow the original SimSiam implementation and use a 3-layer MLP as

our projection head (2048, 2048, 2048, 2048) and a 2 layer MLP as our prediction head

(2048, 512, 2048). We use the loss formulation from the original paper. For LGSimSiam,

we use the same formulation but use global crop instead of SimCLR augmentations.

• SwAV. We follow the original SwaV implementation and use a 2 layer MLP (2048, 2048,

128) as our projection head and a linear layer as our prototype head with an output

dimension of 3000. The prototypes are frozen for the first epoch. We use the distributed

Sinkhorn clustering implementation from the official code release.

• NNCLR. We rely on the implementation of NNCLR provided by Lightly [273] since

NNCLR [71] did not release an official implementation. Specifically, we use the mem-
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ory bank implementation from Lightly and reimplement NNCLR. We find that while our

NNCLR implementation outperforms SimCLR on ImageNet, it under-performs on Red-

Caps. We use a 3 layer MLP (2048, 2048, 2048, 256) as our projection head and a

2 layer MLP (256, 4098, 256) as our prediction head. We also use a queue of length

16384 (equivalent to 32 batches) for the memory bank. For Language NNCLR, we use

the memory bank from Lightly as well, similar to DeCLIP [166]. We adapt the CLIP

implementation listed above with a memory bank for the language encoder. We use a

weighting of 0.8 for the CLIP loss and 0.2 for the language NNS loss, similar to De-

CLIP [166].

B.4 Complete Results

For clarity, we have chosen to provide averaged results in Chapter 5. However, we pro-

vide the full list of results here for the sake of completeness. We also report the complete

performance breakdown for all methods on linear probe in Tab. B.2 and fewshot classifi-

cation Tab. B.3. For fewshot classification, we also report the 95% confidence interval as a

subscript.
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Table B.2: Linear Probe Evaluations. We train models on RedCaps and report perfor-
mance of logistic regression using frozen features on 15 downstream tasks. Models are
split based on whether or not they require captions for training. The results show a strong
performance gain for language-guided sampling over previous approaches with strong per-
formance gains for fine-grained classification datasets.
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Avg.
Pre-trained Checkpoints
Supervised [309] ImageNet - 71.0 93.2 77.0 68.4 63.0 48.7 41.0 73.0 92.6 91.9 88.3 98.2 95.8 85.3 82.4 78.0
SimSiam [42] ImageNet - 70.6 92.2 74.9 47.1 0.3 52.4 52.6 74.4 83.3 89.3 91.8 95.9 96.7 86.4 85.2 72.9
MoCo v3 [44] ImageNet - 71.4 93.3 77.9 51.5 60.4 52.4 53.0 73.6 85.8 90.4 92.1 96.8 96.3 85.0 85.0 77.7
SwAV [32] ImageNet - 72.8 93.0 77.5 48.8 63.2 55.5 52.7 77.2 84.5 89.9 93.4 97.2 96.7 86.9 83.7 78.2
SimCLR [41] ImageNet - 71.4 91.3 73.9 44.3 60.3 44.6 46.7 74.9 83.9 87.4 90.2 96.2 95.9 84.4 85.1 75.4
CLIP [219] CLIP (400M) - 86.4 88.7 70.2 69.8 72.5 78.4 49.4 76.3 88.0 88.9 96.1 97.2 94.7 87.9 82.7 81.8
RedCaps-trained Baselines
SwAV RedCaps - 63.6 81.3 57.5 21.6 47.5 22.9 35.4 68.1 61.1 70.5 78.0 87.7 94.3 79.9 84.3 63.6
SimSiam RedCaps - 64.1 79.9 56.1 28.2 48.3 29.5 41.2 66.2 69.1 73.6 83.6 85.7 94.4 82.1 83.3 65.7
SimCLR RedCaps - 69.0 82.9 61.6 30.6 52.6 33.7 43.7 69.8 70.5 74.1 86.9 88.0 95.4 84.6 84.4 68.5
Visual NNCLR RedCaps - 65.4 82.8 60.2 26.6 50.0 26.6 40.9 68.0 65.2 75.4 83.5 88.5 95.3 82.2 83.8 66.3
CLIP RedCaps - 80.9 84.7 62.7 50.4 57.4 45.8 36.7 67.6 79.8 84.0 91.0 93.5 93.9 82.2 82.6 72.9
CLIP (SBERT Encoder) RedCaps - 80.5 81.3 59.4 50.6 56.9 45.9 35.7 69.1 76.7 81.7 90.2 93.6 92.9 81.1 81.3 71.8
Language NNCLR RedCaps - 81.2 83.1 61.9 48.6 56.5 45.1 37.2 68.8 78.1 82.0 90.2 93.4 92.5 81.1 80.7 72.0
SLIP RedCaps - 77.7 87.2 67.0 42.4 58.1 48.7 45.2 72.3 79.5 82.7 92.1 92.7 95.6 85.5 83.4 74.0
Sampling Space - Language
LGSimCLR RedCaps SBERT (MiniLM) 83.2 88.0 69.3 60.4 59.7 64.0 54.0 72.7 82.6 88.5 95.7 94.1 96.4 88.1 82.2 78.6
LGSimCLR RedCaps CLIP (400M) 83.3 87.6 68.9 60.1 59.9 62.9 53.7 70.5 82.6 88.7 95.6 94.3 96.2 88.2 82.0 78.3
LGSimCLR RedCaps CLIP (RedCaps) 83.7 88.0 67.8 59.6 60.7 60.8 53.7 71.4 82.4 89.1 95.9 93.8 96.1 88.4 82.7 78.3
LGSimCLR RedCaps FastText BoW 80.8 85.5 66.7 54.2 58.7 56.6 51.1 69.9 78.3 88.0 94.4 92.5 96.2 87.7 81.5 76.1
Sampling Space - Visual
LGSimCLR RedCaps ImageNet Supervised 75.7 92.2 75.4 57.5 60.2 53.7 52.2 71.7 90.3 90.2 93.1 95.5 96.8 87.7 83.0 78.3
LGSimCLR RedCaps SimCLR 71.4 87.0 67.5 36.8 57.9 41.8 46.3 74.2 82.8 82.6 90.7 93.4 95.7 85.2 83.2 73.1
LGSimCLR RedCaps CLIP (400M) 83.6 90.7 72.1 58.3 62.5 59.2 51.3 75.5 88.7 90.3 95.2 95.4 96.2 88.6 82.9 79.4
Sampling Scope
LGSimCLR RedCaps SBERT - Year 82.6 85.8 66.1 58.1 59.0 57.1 52.8 71.9 80.7 88.1 95.6 93.1 96.1 88.0 82.8 77.2
LGSimCLR RedCaps SBERT - Sub-Year 82.4 86.8 66.9 56.4 59.5 54.5 51.4 72.1 89.0 89.8 94.9 95.2 95.8 88.1 81.9 77.6
LGSimCLR RedCaps SBERT - Sub 83.2 88.7 69.5 60.4 59.9 60.0 53.0 72.4 89.7 90.3 96.2 94.8 96.2 88.4 82.2 79.0
Pre-training Datasets
LGSimCLR CC3M SBERT (MPNet) 64.4 84.6 65.4 44.4 59.1 41.9 46.8 66.0 70.7 83.9 91.2 91.6 95.6 86.1 80.5 71.5
LGSimCLR CC12M SBERT (MPNet) 73.4 88.6 70.1 50.4 66.0 58.7 52.4 72.6 79.0 88.3 92.6 94.5 95.6 87.5 81.6 76.8
LGSimCLR RC-20 SBERT (MPNet) 77.8 84.3 64.5 53.9 53.9 51.7 48.1 66.4 76.2 83.9 93.9 89.9 95.4 86.4 81.4 73.8
Batch Size Scaling
SimCLR (256) RedCaps - 67.1 83.1 60.5 28.5 51.0 32.5 42.4 70.0 68.3 73.9 85.8 86.5 96.2 84.2 83.1 67.5
SimCLR (1024) RedCaps - 70.0 84.4 62.8 31.9 52.4 35.8 44.2 70.9 72.7 74.7 87.9 88.3 95.6 84.8 83.3 69.3
SimCLR (2048) RedCaps - 70.4 83.9 62.6 32.5 53.3 36.7 44.9 70.9 73.1 75.5 88.1 88.8 96.5 85.1 84.2 69.8
LGSimCLR (256) RedCaps SBERT (MPNet) 82.9 87.3 68.0 58.7 60.2 58.2 52.6 73.2 81.1 88.2 95.2 94.0 96.1 87.7 81.8 77.7
LGSimCLR (1024) RedCaps SBERT (MPNet) 83.7 87.1 68.1 62.0 60.7 63.4 53.7 73.4 80.8 89.8 95.7 93.7 95.7 88.3 82.6 78.6
LGSimCLR (2048) RedCaps SBERT (MPNet) 84.2 88.2 69.1 63.2 60.9 65.2 55.5 71.4 81.7 89.7 96.0 94.4 96.3 88.5 82.1 79.1
Alternative Formulations
LGSimCLR RedCaps SBERT (MPNet) 83.2 87.8 69.0 59.3 60.3 62.3 53.4 71.2 81.8 89.4 95.9 94.0 95.6 88.0 81.1 78.2
LGSimSiam RedCaps SBERT (MPNet) 73.8 83.4 62.6 40.6 54.6 41.1 47.3 68.6 66.5 85.2 90.3 90.8 95.7 85.6 81.3 71.2
LGSLIP RedCaps SBERT (MPNet) 84.5 87.4 69.2 60.7 62.3 62.2 52.5 73.1 83.1 90.2 96.3 94.8 95.3 88.4 82.7 78.8

118



Table B.3: Few-Shot Evaluations. We train models on RedCaps and report the perfor-
mance of 5-way, 5-shot classification using frozen features on 14 downstream tasks. Mod-
els are split based on whether or not they require captions for training.
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Pre-trained Checkpoints
Supervised [309] ImageNet - 81.6 0.3 84.1 0.2 87.8 0.2 91.9 0.2 95.0 0.1 75.7 0.3 53.1 0.4 80.4 0.3 97.6 0.1 97.4 0.1 91.4 0.2 95.2 0.1 83.6 0.2 85.2 0.3 85.7
SimSiam [42] ImageNet - 70.5 0.3 77.5 0.3 82.0 0.3 67.4 0.4 92.1 0.2 51.9 0.3 43.7 0.4 81.8 0.3 86.7 0.3 94.9 0.2 93.7 0.2 89.7 0.2 87.7 0.2 82.2 0.3 78.7
MoCo v3 [44] ImageNet - 72.7 0.3 82.3 0.2 84.9 0.3 74.7 0.3 92.5 0.2 52.0 0.4 42.4 0.4 80.7 0.3 89.1 0.2 95.8 0.1 93.6 0.2 91.5 0.2 86.3 0.2 83.0 0.3 80.1
SwAV [32] ImageNet - 68.3 0.3 78.1 0.3 82.1 0.3 65.4 0.4 93.7 0.2 52.7 0.4 40.3 0.4 83.8 0.2 83.8 0.3 94.5 0.2 93.4 0.2 91.2 0.2 88.0 0.2 83.8 0.3 78.5
SimCLR [41] ImageNet - 70.0 0.3 76.9 0.3 80.9 0.3 67.5 0.4 92.5 0.2 51.9 0.3 42.1 0.4 82.2 0.3 85.0 0.3 93.0 0.2 90.3 0.2 88.8 0.2 83.6 0.3 78.5 0.3 77.4
CLIP [219] Web400M - 92.1 0.2 76.3 0.3 79.2 0.3 92.9 0.2 96.9 0.1 93.3 0.2 73.2 0.4 81.8 0.3 86.1 0.3 95.9 0.1 97.9 0.1 95.6 0.1 77.5 0.3 90.5 0.2 87.8
RedCaps-trained Baselines
SwAV RedCaps - 64.5 0.4 54.0 0.3 61.8 0.3 45.8 0.4 84.9 0.3 36.5 0.3 34.1 0.3 74.8 0.3 66.5 0.4 78.1 0.3 75.5 0.3 72.6 0.3 80.4 0.3 72.9 0.4 64.5
SimSiam RedCaps - 63.9 0.3 49.9 0.3 57.2 0.3 49.5 0.4 84.5 0.3 39.3 0.3 37.9 0.3 75.7 0.3 67.8 0.4 79.7 0.3 81.5 0.3 69.6 0.3 80.6 0.3 79.4 0.3 65.5
SimCLR RedCaps - 66.9 0.3 45.7 0.3 51.0 0.3 51.5 0.4 87.1 0.2 44.0 0.3 38.4 0.3 77.6 0.3 70.1 0.3 80.0 0.3 86.9 0.2 69.6 0.3 83.5 0.3 81.3 0.3 66.7
Visual NNCLR RedCaps - 65.6 0.3 54.1 0.3 61.7 0.3 45.8 0.3 85.3 0.3 37.9 0.3 34.9 0.3 75.2 0.3 67.3 0.4 81.1 0.3 75.4 0.3 74.3 0.3 83.6 0.3 76.7 0.3 65.6
CLIP RedCaps - 88.9 0.2 64.6 0.3 73.1 0.3 78.3 0.3 90.9 0.2 69.7 0.3 40.7 0.3 75.7 0.3 77.5 0.3 91.6 0.2 94.7 0.2 89.8 0.2 75.3 0.3 74.8 0.3 77.5
CLIP (SBERT) RedCaps - 89.9 0.2 59.9 0.3 67.9 0.3 83.2 0.3 91.1 0.2 70.2 0.3 41.0 0.3 75.0 0.3 79.4 0.3 91.2 0.2 94.5 0.2 89.4 0.2 72.3 0.3 74.9 0.3 77.1
Language NNCLR RedCaps - 89.3 0.2 65.3 0.3 73.4 0.3 78.6 0.3 90.8 0.2 68.4 0.3 40.4 0.3 75.2 0.3 78.8 0.3 90.9 0.2 94.3 0.2 89.6 0.2 75.2 0.3 71.9 0.3 77.3
SLIP RedCaps - 81.5 0.3 63.5 0.3 70.8 0.3 63.1 0.4 91.3 0.2 62.9 0.3 42.1 0.4 79.6 0.3 76.4 0.3 88.4 0.2 92.2 0.2 83.4 0.2 82.7 0.3 80.8 0.3 75.6
Sampling Space - Language
LGSimCLR RedCaps SBERT (MiniLM) 90.4 0.2 67.1 0.3 76.7 0.3 83.9 0.3 92.7 0.2 79.2 0.3 52.1 0.4 81.2 0.3 86.2 0.3 95.5 0.1 97.6 0.1 87.4 0.2 86.9 0.2 89.0 0.2 83.3
LGSimCLR RedCaps CLIP (400M) 90.7 0.2 65.8 0.3 75.6 0.3 83.8 0.3 92.8 0.2 80.9 0.3 52.0 0.4 81.4 0.3 85.6 0.3 95.5 0.1 97.5 0.1 87.3 0.2 84.8 0.2 89.3 0.2 83.1
LGSimCLR RedCaps CLIP (RedCaps) 90.4 0.2 64.8 0.3 75.3 0.3 82.2 0.3 92.8 0.2 76.6 0.3 50.4 0.4 81.3 0.3 84.6 0.3 95.2 0.2 97.7 0.1 86.9 0.2 86.5 0.2 89.1 0.2 82.4
LGSimCLR RedCaps FastText BoW 88.4 0.2 62.1 0.3 73.7 0.3 79.3 0.3 92.2 0.2 74.0 0.3 52.5 0.4 79.4 0.3 82.7 0.3 94.3 0.2 97.5 0.1 83.0 0.2 85.4 0.2 88.5 0.2 80.9
Sampling Space - Visual
LGSimCLR RedCaps ImageNet Supervised 79.6 0.3 75.6 0.3 83.0 0.3 76.6 0.3 92.5 0.2 64.6 0.4 46.1 0.4 80.7 0.3 94.3 0.2 96.3 0.1 94.8 0.2 87.4 0.2 86.4 0.2 87.3 0.2 81.8
LGSimCLR RedCaps SimCLR 72.0 0.3 62.9 0.3 71.9 0.3 58.9 0.4 90.8 0.2 51.3 0.3 38.7 0.3 81.8 0.3 86.4 0.3 91.3 0.2 90.7 0.2 83.8 0.2 85.5 0.2 78.6 0.3 74.6
LGSimCLR RedCaps CLIP (400M) 88.8 0.2 72.5 0.3 79.7 0.3 77.6 0.3 93.1 0.2 73.3 0.3 45.6 0.4 82.2 0.3 90.9 0.2 94.6 0.2 96.3 0.1 89.2 0.2 84.6 0.2 87.4 0.2 82.6
Sampling Scope
LGSimCLR RedCaps SBERT - Year 89.7 0.2 61.2 0.3 72.2 0.3 81.2 0.3 92.0 0.2 71.9 0.3 48.4 0.4 80.1 0.3 79.3 0.3 93.8 0.2 97.4 0.1 84.5 0.2 84.0 0.2 87.8 0.2 80.2
LGSimCLR RedCaps SBERT - Sub-Year 88.0 0.2 59.0 0.3 66.6 0.3 76.5 0.3 90.6 0.2 63.6 0.4 45.2 0.3 78.5 0.3 80.7 0.3 94.8 0.2 97.4 0.1 83.2 0.2 82.2 0.3 88.7 0.2 78.2
LGSimCLR RedCaps SBERT - Sub 88.7 0.2 70.4 0.3 78.4 0.3 75.3 0.3 90.7 0.2 67.3 0.3 47.6 0.4 78.3 0.3 76.6 0.3 95.4 0.1 97.8 0.1 86.5 0.2 85.3 0.2 89.1 0.2 80.5
Pre-training Datasets
LGSimCLR CC3M SBERT (MPNet) 69.2 0.3 60.6 0.3 71.7 0.3 72.0 0.3 92.8 0.2 58.8 0.3 48.9 0.4 77.4 0.3 77.8 0.3 92.9 0.2 95.0 0.2 83.0 0.3 82.4 0.3 86.3 0.3 76.3
LGSimCLR CC12M SBERT (MPNet) 79.6 0.3 72.0 0.3 78.5 0.3 71.2 0.3 95.2 0.1 78.2 0.3 55.5 0.4 81.8 0.3 82.1 0.3 96.2 0.1 95.3 0.1 90.0 0.2 83.6 0.3 88.0 0.2 81.9
LGSimCLR RC-20 SBERT (MPNet) 86.0 0.2 60.3 0.3 70.5 0.3 79.9 0.3 90.1 0.2 69.8 0.3 48.6 0.4 77.0 0.3 81.0 0.3 92.3 0.2 96.8 0.1 78.8 0.3 84.7 0.2 87.0 0.2 78.8
Batch Size Scaling
SimCLR (256) RedCaps - 64.9 0.3 52.7 0.3 57.9 0.3 51.4 0.4 86.6 0.2 43.6 0.3 38.3 0.3 77.1 0.3 68.7 0.3 79.2 0.3 85.9 0.3 69.7 0.3 84.1 0.3 81.3 0.3 67.2
SimCLR (1024) RedCaps - 67.5 0.3 54.0 0.3 59.2 0.3 53.0 0.4 87.2 0.2 44.7 0.3 38.9 0.3 77.9 0.3 71.5 0.3 80.4 0.3 87.9 0.2 71.8 0.3 82.5 0.3 81.8 0.3 68.4
SimCLR (2048) RedCaps - 68.4 0.3 51.8 0.3 57.8 0.3 53.3 0.4 87.3 0.2 45.4 0.3 38.8 0.3 77.8 0.3 73.2 0.3 81.6 0.3 87.9 0.2 71.6 0.3 84.0 0.3 81.6 0.3 68.6
LGSimCLR (256) RedCaps SBERT (MPNet) 90.3 0.2 66.6 0.3 75.8 0.3 81.6 0.3 92.6 0.2 75.3 0.3 50.5 0.4 81.6 0.3 83.2 0.3 95.3 0.1 97.6 0.1 86.8 0.2 86.4 0.2 88.9 0.2 82.3
LGSimCLR (1024) RedCaps SBERT (MPNet) 90.3 0.2 64.9 0.3 75.7 0.3 83.8 0.3 92.6 0.2 78.2 0.3 52.6 0.4 80.9 0.3 83.6 0.3 95.6 0.1 97.6 0.1 86.7 0.2 86.0 0.2 88.6 0.2 82.6
LGSimCLR (2048) RedCaps SBERT (MPNet) 90.6 0.2 67.5 0.3 76.6 0.3 83.9 0.3 92.6 0.2 79.7 0.3 51.5 0.4 80.6 0.3 83.8 0.3 95.8 0.1 97.6 0.1 87.1 0.2 86.6 0.2 89.2 0.2 83.1
Alternative Formulations
LGSimCLR RedCaps SBERT (MPNet) 90.3 0.2 66.3 0.3 75.5 0.3 83.1 0.3 92.7 0.2 77.6 0.3 50.6 0.4 81.1 0.3 84.1 0.3 95.4 0.1 97.6 0.1 86.5 0.2 85.0 0.2 89.0 0.2 82.5
LGSimSiam RedCaps SBERT (MPNet) 81.2 0.3 61.6 0.3 71.2 0.3 63.1 0.4 90.2 0.2 60.9 0.3 44.6 0.4 78.8 0.3 68.0 0.3 92.8 0.2 93.7 0.2 81.2 0.3 85.1 0.2 86.7 0.2 75.7
LGSLIP RedCaps SBERT (MPNet) 91.3 0.2 67.2 0.3 77.2 0.3 81.8 0.3 92.6 0.2 77.3 0.3 50.4 0.4 81.8 0.3 81.8 0.3 96.1 0.1 97.8 0.1 89.2 0.2 85.3 0.2 89.1 0.2 82.8
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Appendix C

3D Awareness Experimental Setup

We only provide high-level details in the chapter and omit details to enhance readability.

We provide more details regarding the experimental setup below and explain the rationale

behind our design choices.

C.1 Pre-trained Vision Models

We consider 16 checkpoints that represent models trained with 6 different kinds of su-

pervision. The models were chosen with two criteria in mind: (1) coverage of major

approaches used for large-scale training, and (2) comparable model and training scale to

allow for comparisons. We only use publicly available checkpoints to understand the 3D

awareness of the models that are commonly used. We list all models considered below:

MAE. He et al. [103] proposed masked auto-encoding as a pre-training recipe for vision

transformers. Such models are trained with a large masking ratio; e.g., 75% of the input

image patches are masked. In our experiments, we use the ViT-B/16 model trained on

ImageNet-1k. We use the checkpoint1 available on the Transformers library [312].

FCMAE. Fully-convolutional masked autoencoders (FCMAE) extend the MAE ap-

proach similarly trained to reconstruct images. However, unlike MAE, they use a Con-

vNeXtv2 [313] backbone instead of ViT. In our experiments, we use the ConvNeXtv2 base

architecture which has a comparable model capability to the base visual transformer ar-

chitectures. Following the analysis of Goldblum et al. [90], we use the model pre-trained

on ImageNet-22k to allow a more comparable training data to other models. We use the

checkpoint2 available on the timm library [308].

1https://huggingface.co/facebook/vit-mae-base
2https://huggingface.co/timm/convnextv2 base.fcmae ft in22k in1k 384
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DINO. Caron et al. [33] proposed a self-distillation approach for model pre-training.

The proposed approach trains a student network to generate features similar to a teacher

network, where the teacher is an exponential moving average of the student network. At

its core, this approach relies on instance discrimination as the model is trained to learn to

generate similar embeddings for different crops of the same image instance. In our work,

we use the ViT-B/16 architecture trained on ImageNet-1k. We use the checkpoint released

by the authors.3

iBOT. Zhou et al. [352] combine ideas from DINO and MAE by training a model to

reconstruct the masked dense features based on a teacher network. iBOT uses both an

image-level and a dense distillation objective. In our work, we use the ViT-B/16 architec-

ture trained on ImageNet-1k. We use the checkpoint released by the authors.4

DINOv2. Oquab et al. [206] scale up the hybrid approach proposed by Zhou et al. [352]

while improving the training recipe and incorporating improved losses and regularizers.

Furthermore, the training data and recipe are both scaled up in magnitude resulting in

much better performance. This includes the collection of a large curated private dataset

called LVD-142M, which is curated through the use of the clustered features of a pre-

trained self-supervised model using several downstream datasets, including NYUv2 [257].

While DINOv2 was trained on ImageNet-22k, those weights are not publicly available.

We discuss the impact of these curated datasets in Sec. 6.3. We also consider the new

DINOv2+reg, which incorporates register tokens [59]. However, we find that it results in

slightly worse performance than the classic DINOv2 model. Similar to other models, we

use the base-model visual transformer. However, DINOv2 is trained with a smaller patch

size of 14 instead of 16. We use the checkpoints released by the authors.5

DeiT III. Touvron et al. [287] propose an updated training recipe of supervised vision

transformers that incorporate recent best practices from self-supervised learning. The

result is a much stronger supervised transformer compared to previous training recipes.

Similar to other approaches, we use the ViT-B/16 architecture trained on ImageNet-22k.

We use the checkpoint released by the authors.6

3https://github.com/facebookresearch/dino
4https://github.com/bytedance/ibot
5https://github.com/facebookresearch/dinov2
6https://github.com/facebookresearch/deit
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CLIP. Vision and language models are trained to generate aligned feature embeddings

using a contrastive objective. The original CLIP family of models was proposed by Rad-

ford et al. [219] and included a large variety of architectures on a private dataset of 400M

image-text pairs called WIT. More recently, Ilharco et al. [119] trained several CLIP models

using several architectures trained on publicly available datasets. We consider four differ-

ent CLIP models. First, we consider two ViT-B/16 models trained on WIT or LAION [245].

This provides us with both the original CLIP, which is widely used, as well as a variant

trained with public datasets. We also consider two ConvNeXt-base [173] models trained

with and without additional augmentations [269], which were trained on LAION as well.

For all models, we use the checkpoints available through OpenCLIP [119].7

SigLIP. SigLIP modifies CLIP by replacing the contrastive objective with an instance-

wise sigmoid loss. The sigmoid loss does not require the computation of all pairs across

the batch, as it only relies on the image and text embedding. This simplifies the objective

while enabling further scaling up of the batch size for training. The publicly available

checkpoints were trained on WebLI, a private dataset. We use the checkpoint available

through OpenCLIP [119].7

StableDiffusion. StableDiffusion [229] is trained using on text-conditioned image gen-

eration using a denoising objective. This family of models have achieved a remarkable

generation performance. In our experiments, we use the text-conditioned checkpoint of

StableDiffusion v2-1.8 Following prior work [323, 341, 349], we extract features from the

decoding blocks of the UNet. However, we deviate from prior work in two ways. First,

some prior work [275, 340] computes features of the image with different sampled noise

and then averages them. While this form of ensembling is unique to Diffusion-based mod-

els, it is possible to compute features based on image crops and similarly average them.

To enable fair comparison with other models, we simply compute features once for each

image and instead experiment with different noise levels: t = {1, 150, 250}. Second, prior

work often computes features using both the image and some auxiliary information; e.g.,

VPD [349] uses the image class to generate prompts for feature extraction. Such auxiliary

information is not used by other models, nor is it available in many settings. Instead, we

use an empty vector as the prompt similar to Zhan et al. [340].

7https://github.com/mlfoundations/open clip
8https://huggingface.co/stabilityai/stable-diffusion-2-1
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MiDaS. MiDaS is a family of models trained on a collection of monocular depth datasets

using a scale-invariant depth estimation objective [222]. In this work, we consider Mi-

DaS 3.0 [223] DPT Large, which trains a dense prediction transformer (DPT) head on

top of the features extracted from a ViT-L/16. While newer iterations of MiDaS 3.1 and

ZoeDepth [19] include base-size transformers, we are unable to use them due to their

reliance on relative positional biases. Specifically, most ViTs rely on absolute learned or

heuristic positional encoding, which can be easily interpolated to handle variable image

sizes with minimal performance deterioration. However, we find that interpolating rela-

tive positional biases severely deteriorates performance. As a result, we instead use MiDaS

3.0 which used absolute positional embeddings. We note that the use of a larger back-

bone likely exaggerates the performance of MiDaS in our analysis. We use the checkpoint

released by the authors.9

SAM. Kirillov et al. [138] recently proposed interactive class-agnostic segmentation as a

training objective to enable generalizable, open-world segmentation. The model is trained

on a novel dataset of 10M images with 1 billion masks [138]. While the SAM architecture

uses a mask decoder and a prompt encoder, the features are computed by a visual trans-

former backbone. We use the backbone from the SAM base model which is a ViT-B/16

backbone. We use the checkpoint released by the authors.10

C.2 Evaluation Datasets

NAVI. NAVI is a dataset of objects annotated with high-quality 3D information, which

was proposed by Jampani et al. [122]. The dataset depicts a set of N objects in a wide

range of poses and environments. High-quality object meshes are aligned to each image

which provides accurate depth and pose annotation. We extend the dataset by generating

surface normal annotation for each image. The dataset is organized into multiview image

collections, which include a larger number of multiview images of the object in the same

pose and scene, as well as a wild set that depicts the object in different poses and environ-

ments. We use the full dataset and treat the multiview images for training and validation

and the wild set for testing. Furthermore, we exclude 2 objects from the dataset as they

do not have multiview and wildset images. For correspondence estimation experiments,

we only use the wild set images and for each image, we sample a pair that has a relative

rotation between 0 and 120 degrees.

9https://github.com/isl-org/MiDaS
10https://github.com/facebookresearch/segment-anything
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NYU v2. The NYU Depth v2 dataset is a dataset of indoor scenes proposed by Silber-

man et al. [257]. The dataset consists of RGB-D video collected using a Microsoft Kinect

camera and includes dense annotation for both depth and semantic segmentation. Fur-

thermore, Ladickỳ et al. [150] provided surface normal annotations for the labeled set of

1449 images. We use the original train/test split for surface normal estimation. For depth

estimation, we further include the unlabeled instances providing us with a total of 24231

images for training.

ScanNet Pairs. ScanNet [56] is a large dataset of RGB-D videos depicting indoor scenes.

Sarlin et al. [241] extracted a small subset of 1500 image pairs as a benchmark for corre-

spondence estimation. Since our correspondence estimation experiments require no train-

ing, we use all pairs as a test set.

SPair 71k. SPair-71k [195] is a dataset of image pairs that were extracted from the

PASCAL datasets [80, 316]. The image pairs depict a set of 18 categories and depict

different object instances of the same class. Furthermore, 8 of the categories depict non-

rigid objects; e.g., cats, cows, humans. All images are annotated with class-specific key

points, and image pairs are further annotated with auxiliary information such as viewpoint

variation. We follow the experimental setup of Zhang et al. [341] of sampling an equal

number of image pairs for each class, but instead, use a larger number of 200 image pairs

per class. We extend this setup by separating the sampled pairs based on the annotated

viewpoint variation, which is a subjective measure of how much the viewpoint changed

between the two instances and is annotated with 0, 1, or 2.

C.3 Evaluation Tasks

We evaluate all models on three tasks: monocular depth estimation, surface normal esti-

mation, and correspondence estimation. We chose those tasks as they evaluate the model

along the two dimensions of 3D awareness we are interested in: single-image 3D under-

standing and multiview consistency. While we train the models for depth and surface

normal estimation, we directly evaluate the features for correspondence. We note that

while we use the same setup for evaluating correspondence for NAVI and NYU, SPair fol-

lows a different setup due to the existence of key points, which we describe separately. We

describe each of the tasks and their evaluation procedure below.
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C.3.1 Monocular Depth Estimation

Task Definition: Given an image, estimate a depth value for each pixel in the image.

This problem is ill-posed as it suffers from scale ambiguity; i.e., a larger object that is

further away will produce the same image as a smaller object that is closer to the camera.

While the regularity of our environment still allows objects to learn accurate metric depth

for specific image collections, such models struggle to generalize to other image collections

as different camera intrinsics or image augmentations can introduce effects similar to scale

ambiguity [331]. An alternative approach is to predict depth up to scale and then scale it

appropriately.

We use metric depth estimation for NYU due to the regularity of the data and to en-

able direct comparison to prior work. However, we observe that scale-invariant is more

appropriate for NAVI due to the larger variance in cameras as well as the relatively small

depth variation in the object surface relative to how far the object is. As a result, we scale

the depth for NAVI objects between 0 and 1 for a scale-invariant depth estimation task

where 0 means the closest pixel to the camera and 1 means the furthest point on the ob-

ject from the camera. This variation still enables models to learn accurate depth as shown

in Chapter 6 and allows us to use standard depth evaluation metrics.

We use the AdaBins [18] parameterization of depth estimation due to its relatively

strong performance. Rather than regressing depth values, Bhat et al. [18] propose dividing

the depth range into several bins and estimating the probability of each. The final depth

value is the weighted sum of the bin probabilities and bin center values. Similar to Oquab

et al. [206], we use 256 uniformly distributed bins and only estimate the bin probabilities.

We use a depth range of 0-10m for NYU and 0-1 for NAVI.

Losses: We use a combination of the scale-invariant sigmoid depth loss [73] and the

gradient matching loss [167] similar to Oquab et al. [206].

Evaluation Metrics: We follow the evaluation setup of Eigen et al. [73] and compute

the root-mean-square error and prediction accuracy at different thresholds. The accuracy,

δi, is computed as the number of pixels whose ratio of depth prediction to ground truth is

less than 1.25i:

δi(d
pr, dgt) =

1

N

∑
j∈N

max(
dprj

dgtj
,
dgtj
dprj

) < 1.25i (C.1)

where dpr is predicted depth and dgt is ground-truth depth.
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Probe: We use a non-linear multi-scale convolutional probe. The probe takes as input

multi-scale features that are extracted from several stages in the network. Prior work has

shown that vision transformer features focus on different objects at different layers [1,

341] and that the granularity is not consistent across models [299, 340]. Instead of using

a probe at a single layer, we train a multi-stage probe on features extracted from several

layers. ConvNeXt architectures often group their layers into four stages. We follow this

delineation and extract features after every stage. For ViTs, we split the layers into 4

equally sized blocks and extract features after each block; e.g., for ViT-B, this is after layers

3, 6, 9, and 12. For StableDiffusion, the decoding portion of the UNet similarly consists of

4 blocks. We extract features after each of those blocks. Since prior work has found that

the earliest stage features are often not useful, we only train the model on the latter three

stages. This is flipped for StableDiffusion (earlier three stages) as we’re sampling from the

decoding part of the UNet.

Given a set of feature maps, we first use a single convolution layer to map each feature

map into the same feature dimension f and concatenate them together. Next, we up-

sample the features by a factor of S and apply three convolutional layers. Finally, we

up-sample the features again by a factor of S and apply two final convolutional layers. All

convolutional layers are followed by a ReLU activation and have a feature dimension of

f , except for the final layer, whose output dimension matches the number of bins. This

results in an up-sampling factor of 16. In our experiments, we set f=512, S=4, and the

number of bins to 256.

Optimization: We train models for 10 epochs with a linear warm-up of the learning rate

for 1.5 epochs and cosine decay to 0. We use the AdamW optimizer [171] with a linear

rate of 0.001 and a weight decay of 0.01.

C.3.2 Surface Normal Estimation

Task Definition: Given an image, our goal is to estimate the direction of the surface at

every pixel. The direction is predicted as a unit norm that is orthogonal to the surface at

the point.

Training Loss: The cosine distance is a commonly used loss due to its relative simplicity.

However, Bae et al. [11] observe that the model can be heavily penalized by areas that are

ambiguous. As a result, they propose predicting a fourth value that captures the uncer-

tainty and calibrating the loss using that value. The loss uses the estimated uncertainty of
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weighing the loss at each pixel while encouraging the model to minimize its uncertainty.

We use the loss formulation proposed by Bae et al. [11] in our experiments.

Evaluation Metrics: For each pixel, we compute the error as the relative angle between

the predicted and ground-truth surface normals in degrees. Similar to depth estimation,

we compute the RMSE for each image as well as the accuracy at different thresholds.

However, instead of using the ratio as done in depth, we simply compute the accuracy at

different angular thresholds (11.25◦, 22.5◦, 30◦) similar to prior work [11, 85, 214].

Probe: We use the same probe design as depth estimation with the main difference of

the final layer output dimensionality being 4 instead of 256. The four values correspond

to the x-, y-, and z-components of the surface normal direction the uncertainty value used

in the loss computation. We normalize the 3 directional components to a unit normal.

Optimization: The optimization procedure is identical to that used for depth estimation.

C.3.3 3D Correspondence Estimation

Task Definition: Given two images that depict the same object or scene from different

views, the goal is to identify pairs of pixels across images that depict the same 3D point

in space. We consider two settings: object-centric and scene-centric. For the scene-centric

evaluation, we allow correspondences to be computed for all pixels across the images.

However, for object-centric evaluation, we only consider pixels that lie on the object mask.

Inference Procedure: Given two images, we first extract a feature map for each image.

We then estimate correspondence using nearest neighbors in feature space. This provides

us with correspondence for each pixel, many of which will be inaccurate. We filter the

correspondences using Lowe’s ratio test [179], which aims to find unique matches by

discounting points that have more than 1 strong correspondence. For each point p, we find

its first and second nearest neighbors: q0 and q1. We then compute the ratio r as follows:

r = 1− D(p, q0)

D(p, q1)
(C.2)

where D(x, y) is the cosine distance between x and y. We rank the correspondences using

the ratio test and keep the top 1000 correspondences.
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Evaluation: Correspondences are evaluated based on either 2D projection error or 3D

error. Given an estimated correspondence between pixel locations p in image 1 and q in

image 2, the 2D projection distance is computed by first projecting point p into 3D space

using known depth and intrinsics and then projecting it into image 2 using known camera

intrinsics and the relative viewpoint between the two images. This allows us to find the

actual location of point p when projected into image 2: p′. The 2D correspondence error

can be computed as distance between p′ and q in the image plane. This works very well

for scenes, but can be problematic for objects where points that are no invisible can still

be projected into the image plane. While it is possible to omit surface points that are not

visible, approach ignore a lot of points on thin structures; e.g., points on a wire. Instead,

we can simply compute the 3D correspondence error by projection both points p and q

into a shared 3D space and compute the distance between them. We use the 2D projection

error for scenes and 3D error for objects.

We evaluate performance using the percentage of correspondences whose error is be-

low a specific threshold. Since we’re interested in the consistency of representation, we

split the image pairs based on the viewpoint change between them where θji means the

error for image pairs whose relative viewpoint angle is between i and j degrees. One thing

to note is that while two views with a relative angle of 180◦ depict the opposite side of

the object with no mutually visible surfaces, a room viewed from the opposite corner has

a relative viewpoint change of 180◦ with a large portion of the images being mutually vis-

ible. Hence, while increasing relative viewpoints imply increasing difficulty, the numbers

are not directly comparable as one is viewing the scene from the inside of it but viewing

the object from the outside.

C.3.4 Semantic Correspondence Estimation

Task Definition: Given two images and a set of semantic key points in image one, the

goal is to find the pixel location belonging to those key points in the second image. Key

points are often semantic parts; e.g., a cat’s left ear or the front right wheel of the car.

Unlike the previous task, where one has to find a set of points in both images that match

each other, the set of points in the first image are already specified. Furthermore, while the

previous task is matching points belonging to the same scene or the same object instance,

semantic keypoints are defined at the class level so the images often depict two different

instance; e.g., two different cats or two different cars.

Inference Procedure: We follow prior work [275, 341] and simply use nearest neigh-

bors. There is no need for filtering as the goal is to just find the point in the second image
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that is most similar to the keypoint.

Evaluation Metrics: The evaluation is often based one percentage recall of keypoints

withing a pixel threshold; i.e., the percentage of predicted keypoints within N pixels of the

ground-truth match. The evaluation is based on the assumption that each key point has a

single valid match in the second image. This results in each evaluation only considering

the predicted key point and its ground-truth location and ignoring everything else. The

experiments reported in Appendix C.5, but we also consider an alternative evaluation as

discussed in Chapter 6.

An alternative way to evaluate the prediction is to compare all the key points in that

image. Instead of asking how close the prediction is to the ground-truth for the same

keypoint type, we can ask which ground-truth keypoint is closest to the prediction. This

allows us to understand which key points are getting confused with each other rather than

how many key points are being correctly classified. This is important since the threshold

is usually 10-20% of the bounding box size, which can include several different keypoints.

Prior work reports the average performance for all pairs. Instead, we separate the per-

formance for image pairs of different viewpoint changes. Specifically, we use the viewpoint

variation annotation provided by SPair [195] and report the performance for different

viewpoint difficulties.

C.4 Performance Correlation

One question tackled in Chapter 6 is how well the performance is correlated across tasks. If

several tasks are measuring the same capability, we would expect their performance to be

well-correlated. Although a high correlation could be caused by a variety of other factors.

Hence, while a high correlation provides some evidence that the tasks are measuring the

same capability, a very low correlation would imply that the tasks are not related.

We compute the correlation of model performance across different tasks and task do-

mains. Specifically, we compute the Pearson correlation coefficient, which assumes a linear

relationship between models. One possibility is that the relationships across tasks may not

be linear and that a rank correlation might be well-suited. Empirically, we observe that

both statistical measures often result in similar trends with some minor exceptions. When

considering cases where the correlations deviate from each other, we find that they are

caused by fluctuations in the rankings that arise for very small changes in performance

for similarly performing models. As a result, we choose to report the Pearson correlation

coefficient as a descriptive statistic of the relationships between model performance.
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When considering the overall model performance, such as Figure 1, we aggregate per-

formance across all tasks. Since the absolute performance values are not directly com-

parable, we instead rely on model rank. While a model’s ranking can fluctuate due to

minor differences, such fluctuations tend to get canceled out when averaging the ranking

across multiple tasks. We convert the rankings to a normalized rating where 1 means the

best-performing model and 0 means the worst performing model. The overall ratings are

shown in Figure 1. We emphasize that such ratings represent the relative, not absolute,

model performance. Hence, a rating of 1 does not mean the representations are 3D aware

but rather that they are more 3D aware than the other models considered.

C.5 Complete Results

We chose to focus on overall performance trends and salient comparisons in the main body

of the paper. In the supplemental, we report the complete results for all models and tasks

considered in Tables C.1 to C.5. We discuss each of the results below and provide some

additional analysis.

What explains CLIP’s low performance? One interesting finding is that CLIP appears

to perform poorly across all tasks. This supports prior work which shows that CLIP even

struggles with 2D spatial relationships and behaves like a bag-of-words model [159]. We

considered different possibilities: training data, training objective, model architecture, and

augmentations. One possibility is that CLIP’s WIT data does not capture such relationships.

However, we note that the OpenCLIP checkpoint trained on LAION achieves a very similar

performance across all tasks. It is worth noting that StableDiffusion is one of the strongest

performing models and is trained using LAION. Another possibility is that this is caused

by the training objective; i.e., the contrastive objective discourages such relationships. We

compared the CLIP model to SigLIP which is trained with a non–contrastive objective.

While SigLIP outperforms CLIP on most tasks, its performance is still much lower than

other models.

The largest improvement comes from changing the backbone from ViT to ConvNeXt.

This change results in a qualitative change in CLIP’s performance; e.g., from predicting

flat surfaces for depth to generating something that looks like a depth map. We note

that this is not because ConvNeXt is a strictly superior architecture; e.g., we find that

DeiT’s ViT performs better than ConvNeXt for supervised training on ImageNet-22k. This

suggests that training signal or model architecture do not independently determine the 3D

awareness of features, although more controlled experiments are needed to confirm this

claim.
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Horse Aeroplane

Figure C.1: Keypoint confusion matrices for horses and aeroplanes. We find simi-
lar confusion patters in other SPair classes where large viewpoint changes result in high
confusion between semantically related classes (highlighted in red). Furthermore, we find
that keypoints that experience a lot of deformation (e.g., knees and hooves) are confused
for all image pairs as they appear in different 2D locatons relative to each other. However,
we find that classes (highlighted in grey) that often appear in the same 2D configuration
do not suffer from this effect.

How does noise level affect StableDiffusion? There has been a recent surge of papers

on using StableDiffusion for, or analyzing its features on, a range of 3D tasks [46, 275,

340, 341]. One common variation is how to prompt StableDiffusion. Some models use a

text prompt to condition the denoising approach during feature extraction [46, 275, 349].

While this can improve performance, such prompts are not always available, so we use

an empty string for conditioning similar to Zhan et al. [340]. Another common design

choice is to extract features for multiple noise samples and average them. This is often

combined with a larger noise level. However, this implicitly converts the model into a

classifier ensemble [205] which is known to improve performance. Furthermore, one

could similarly generate such ensembles by running other models on different augmented

versions of the same image. We extract features for a single pass of the network.

In our experiments, we analyze the impact of two factors: where to sample features

from and what noise level to use. For feature extraction, our results are consistent with

prior work that find that the output of the second decoding block results in the best per-

formance. We observe this across correspondence tasks, as well as with linear probes in

preliminary experiments. On the other hand, the results for noise level are less consistent

and depend on the task. However, the variance is typically small, suggesting that the model

is able to extract good features for different noise levels. We note that while our results are

consistent with Chen et al. [46] who also find that depth representations even for larger

noise levels, we observe a larger variance in performance when extracting representations

from different layers.
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Additional SPair Confusion Matrices. In Chapter 6, we visualized the confusion matrices

for the chair class under different viewpoint variations. The chair class is most represen-

tative of this distinction for two reasons: (1) its keypoints neatly segment into semantic

groups that only differ based on their relative location in the chair’s canonical frame of

references; and (2) semantically similar keypoints can be visible in the same image in dif-

ferent relative orientations for each other. Many other classes do not fulfill those criteria,

especially the second point. For example, several keypoints for humans and animals are

unique; e.g., mouth, nose, tail, forehead. In other cases, semantically related keypoints

almost always appear in the same 2D configuration. For example, eyes and ears often ap-

pear in the same 2D configuration when they are both visible. As a result, their 2D relative

locations are very strongly correlated with their identity making it difficult to assess the

3D awareness of the model. This is confounded by the additional bias in the dataset of

most animals and humans pictured facing the camera. Finally, many symmetric key points

are almost never co-visible. It is very rare for both front left and front right wheels to be

co-visible in the same image. Most car pictures featuring more than 1 visible wheel are

side views. Hence, for most car view pairs, a combination of coarse semantic class (i.e.,

car wheel) and the relative location in the image can result in accurate correspondence.

We observe those findings in the data. We present the confusion matrices StableDiffu-

sion features on two additional classes: horses and aeroplanes. The results are shown in

Fig. C.1. First, we find that unique classes such as tail tip and tail base have similar accu-

racy across viewpoint variations. Furthermore, classes that appear in similar orientations

such as eyes or ears are similarly unaffected. We note that the ear annotation refers to the

front of the ear for horses. Meanwhile, the top of the ear, which is also visible when the

horse is looking away exhibits a different behavior where it is far more confused when for

larger viewpoint changes.

We observe similar patterns for airplanes where unique key points such as the airplane

noses, windshields, and cockpits are all accurately predicted for large viewpoint changes.

Meanwhile, wheels, wings, and stabilizers are all confused for larger viewpoint changes.

To support that this is not simply due to some key points being more difficult, one can com-

pare the performance of vertical stabilizers to the performance of right and left stabilizers.

While the right and left stabilizers are confused, the vertical stabilizer, which looks the

same but has a very different orientation, is still accurately predicted for larger viewpoint

changes.

Finally, we observe interesting trends for knees and hooves, which appear to be con-

fused regardless of viewpoint change. Since animals can deform, hooves and legs consis-

tently appear in different orientations, especially for horses, which are often pictured while
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moving. Nevertheless, the confusion is strongly restricted to the semantically equivalent

classes. This strongly suggests that while the model understands semantics, it lacks 3D

awareness.
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Table C.1: Depth Estimation Results. We present the depth estimation results for all
models. Models are grouped based on the supervisory signal.

NYU NAVI

Model Architecture Dataset δ1 δ2 δ3 RMSE δ1 δ2 δ3 RMSE
Self-Supervised Models
MAE [103] ViT-B16 IN-1k 65.86 90.79 97.71 0.6827 45.40 71.83 84.84 0.1336
FCMAE [313] ConvNeXtv2-B IN-22k 78.83 96.25 99.27 0.5419 58.58 82.13 91.30 0.1014
iBOT [352] ViT-B16 IN-1k 82.15 97.08 99.36 0.4903 57.15 81.16 90.72 0.1037
DINO[33] ViT-B16 IN-1k 81.08 96.68 99.28 0.5059 61.49 83.82 92.12 0.0946
DINOv2 [206] ViT-B14 LVD 93.67 99.40 99.90 0.3245 69.59 88.97 95.19 0.0765
DINOv2+reg [59] ViT-B14 LVD 93.40 99.34 99.90 0.3352 66.63 87.54 94.48 0.0823
Densely-Supervised Models
SAM [138] ViT-B16 SA-1B 75.06 94.93 99.04 0.5781 56.52 80.84 90.57 0.1047
MiDaS [223] ViT-L16 MIX 6 79.35 95.85 98.95 0.5216 60.53 83.20 91.74 0.0974
Classification-Supervised Models
DeiT III [287] ViT-B16 IN-22k 86.03 97.99 99.69 0.4390 66.58 87.16 94.04 0.0839
ConvNeXT [173] ConvNeXt-B IN-22k 80.49 96.71 99.44 0.5111 57.51 81.21 90.63 0.1049
Language-Supervised Models
SigLIP [339] ViT-B16 WebLI 61.81 88.70 97.11 0.7421 37.53 63.90 79.36 0.1558
CLIP [219] ViT-B16 WIT 49.76 79.88 92.90 0.9564 25.45 49.37 68.81 0.1988
CLIP [119] ViT-B16 LAION 50.22 80.24 93.00 0.9478 24.57 48.05 67.70 0.2014
CLIP [119] ConvNeXt-B LAION 80.05 96.51 99.37 0.5106 55.55 80.65 90.52 0.1067
CLIP [119] + AugReg ConvNeXt-B LAION 82.68 97.14 99.49 0.4820 57.45 81.79 91.19 0.1027
Text-Conditioned Image Generation Models
StableDiffusion [229] (t=1) UNet LAION 84.37 97.38 99.54 0.4494 57.79 82.03 91.24 0.0999
StableDiffusion [229] (t=150) UNet LAION 85.02 97.50 99.55 0.4461 59.13 82.80 91.82 0.0979
StableDiffusion [229] (t=250) UNet LAION 82.90 96.81 99.36 0.4835 57.57 81.69 91.13 0.1024

Table C.2: Surface Normal Estimation Results. We present the surface normal estima-
tion results for all models. Models are grouped based on the supervisory signal.

NYU NAVI

Model Architecture Dataset 11.25◦ 22.5◦ 30◦ RMSE 11.25◦ 22.5◦ 30◦ RMSE
Self-Supervised Models
MAE [103] ViT-B16 IN-1k 39.36 60.27 68.67 35.42 23.99 50.41 63.38 35.78
FCMAE [313] ConvNeXtv2-B IN-22k 32.04 53.44 63.30 38.01 34.14 60.48 71.31 32.18
iBOT [352] ViT-B16 IN-1k 46.28 66.58 74.00 32.11 35.14 60.95 71.84 31.50
DINO[33] ViT-B16 IN-1k 42.14 62.75 71.15 33.68 34.21 60.34 71.47 31.68
DINOv2 [206] ViT-B14 LVD 60.36 78.42 84.26 24.64 43.34 69.12 78.80 27.32
DINOv2+reg [59] ViT-B14 LVD 59.98 78.22 84.05 24.72 41.65 68.02 78.01 27.72
Densely-Supervised Models
SAM [138] ViT-B16 SA-1B 42.48 65.87 75.00 30.65 32.96 59.92 71.46 31.41
MiDaS [223] ViT-L16 MIX 6 43.66 64.40 72.22 33.20 35.25 61.30 72.12 31.41
Classification-Supervised Models
DeiT III [287] ViT-B16 IN-22k 45.58 67.13 75.03 31.04 38.08 64.00 74.41 30.04
ConvNeXT [173] ConvNeXt-B IN-22k 36.81 59.46 69.15 34.25 29.01 55.77 67.69 33.76
Language-Supervised Models
SigLIP [339] ViT-B16 WebLI 26.05 45.37 55.86 39.95 16.03 40.21 54.09 40.05
CLIP [219] ViT-B16 WIT 22.90 42.65 53.42 40.27 10.67 31.83 45.75 44.41
CLIP [119] ViT-B16 LAION 23.32 43.01 53.70 40.41 12.37 34.52 48.39 43.34
CLIP [119] ConvNeXt-B LAION 36.93 59.29 69.03 34.08 29.46 56.00 67.90 33.65
CLIP [119] + AugReg ConvNeXt-B LAION 38.51 61.28 70.79 33.10 31.18 57.96 69.48 32.87
Text-Conditioned Image Generation Models
StableDiffusion [229] (t=1) UNet LAION 58.77 76.39 82.21 26.55 38.69 65.52 76.10 28.91
StableDiffusion [229] (t=150) UNet LAION 58.22 75.58 81.39 27.01 39.53 65.59 75.96 28.89
StableDiffusion [229] (t=250) UNet LAION 55.41 72.95 79.03 28.75 37.93 63.67 74.24 29.93
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Table C.3: Correspondence Estimation Results for ScanNet. We present the ScanNet
correspondence estimation results for all models. The results are presented for features ex-
tracted at different layers with performance binned for different relative viewpoint changes
between image pairs. The highest performing set of results for each model are highlighted
and bolded.

Block0 Block1 Block2 Block3

Model Architecture Dataset θ150 θ3015 θ6030 θ18060 θ150 θ3015 θ6030 θ18060 θ150 θ3015 θ6030 θ18060 θ150 θ3015 θ6030 θ18060

Self-Supervised Models
MAE [103] ViT-B16 IN-1k 3.4 2.8 3.9 2.4 4.7 3.6 3.9 2.6 7.8 5.5 4.9 3.1 13.5 8.2 6.0 3.6
FCMAE [313] ConvNeXtv2-B IN-22k 26.8 20.1 12.2 5.6 60.8 49.8 28.1 9.9 31.8 22.6 13.3 6.0 36.6 26.6 14.9 7.3
iBOT [352] ViT-B16 IN-1k 7.0 5.1 5.1 3.0 11.9 8.0 6.8 3.3 19.5 13.1 9.6 4.1 27.3 18.3 12.8 5.7
DINO[33] ViT-B16 IN-1k 14.3 9.6 7.9 4.0 42.9 32.4 21.1 9.1 44.5 34.1 22.3 9.8 45.0 34.4 22.6 10.7
DINOv2 [206] ViT-B14 LVD 25.4 19.4 12.7 4.9 47.0 36.4 22.4 8.5 37.6 26.7 16.8 7.5 37.0 27.5 19.7 11.2
DINOv2+reg [59] ViT-B14 LVD 29.1 24.7 15.1 5.7 56.1 47.4 29.5 10.3 48.4 37.9 24.2 9.9 41.9 33.6 23.3 12.2
Densely-Supervised Models
SAM [138] ViT-B16 SA-1B 8.3 6.0 5.7 2.9 35.3 26.5 17.5 5.3 53.1 44.9 29.4 8.9 55.4 47.1 30.4 9.5
MiDaS [223] ViT-L16 MIX 6 50.5 39.1 24.5 11.2 56.5 47.4 31.6 13.9 55.6 46.1 30.8 14.3 52.5 42.2 27.6 13.2
Classification-Supervised Models
DeiT III [287] ViT-B16 IN-22k 17.6 12.2 8.8 3.3 38.3 29.8 17.8 7.2 28.5 21.3 13.9 6.7 20.6 13.8 9.2 5.0
ConvNeXT [173] ConvNeXt-B IN-22k 23.4 17.3 10.2 4.8 43.3 33.3 18.0 6.9 10.0 6.4 3.9 2.8 14.4 10.1 5.5 3.6
Language-Supervised Models
SigLIP [339] ViT-B16 WebLI 5.7 4.1 4.4 2.3 12.0 7.0 5.6 3.0 12.0 7.6 5.6 3.3 14.2 10.4 8.0 5.2
CLIP [219] ViT-B16 WIT 15.5 11.3 8.2 4.3 11.0 7.4 6.1 3.9 5.9 4.0 3.4 2.4 4.0 2.7 2.4 1.8
CLIP [119] ViT-B16 LAION 20.9 15.4 10.4 5.2 13.1 8.9 6.6 3.9 5.4 3.7 3.2 2.4 3.4 2.4 2.2 1.8
CLIP [119] ConvNeXt-B LAION 27.4 21.2 13.4 6.6 31.3 22.5 12.3 5.3 46.8 38.0 22.3 8.9 36.9 28.5 16.4 7.9
CLIP [119] + AugReg ConvNeXt-B LAION 24.6 19.3 12.6 6.3 37.7 27.5 14.5 6.0 32.2 22.8 12.8 5.5 31.1 22.4 12.8 7.0
Text-Conditioned Image Generation Models
StableDiffusion [229] (t=1) UNet LAION 10.2 5.1 3.0 1.3 66.5 55.0 31.1 8.3 63.3 50.8 29.3 9.4 31.0 23.5 14.5 6.7
StableDiffusion [229] (t=150) UNet LAION 14.3 7.8 4.0 1.5 62.8 53.1 32.6 8.4 54.4 43.2 24.0 7.2 21.9 17.0 11.1 5.5
StableDiffusion [229] (t=250) UNet LAION 13.7 7.8 4.0 1.7 56.8 47.5 28.2 7.2 47.7 36.6 19.9 6.3 19.2 14.8 10.0 5.1

Table C.4: Correspondence Estimation Results for NAVI. We present the NAVI cor-
respondence estimation results for all models. The results are presented for features ex-
tracted at different layers with performance binned for different relative viewpoint changes
between image pairs. The highest performing set of results for each model are highlighted
and bolded.

Block0 Block1 Block2 Block3

Model Architecture Dataset θ300 θ6030 θ9060 θ12090 θ300 θ6030 θ9060 θ12090 θ300 θ6030 θ9060 θ12090 θ300 θ6030 θ9060 θ12090

Self-Supervised Models
MAE [103] ViT-B16 IN-1k 75.7 39.5 18.8 10.8 79.0 41.3 19.5 11.1 79.6 41.9 19.6 11.3 76.6 39.9 18.9 11.0
FCMAE [313] ConvNeXtv2-B IN-22k 40.9 24.5 15.9 11.1 67.4 36.1 19.5 11.9 73.8 47.0 28.9 18.3 82.4 57.7 39.5 26.9
iBOT [352] ViT-B16 IN-1k 70.2 36.4 18.4 11.2 81.8 42.9 20.4 11.6 87.3 47.9 21.8 11.9 89.1 50.3 23.5 13.0
DINO[33] ViT-B16 IN-1k 87.5 48.7 22.3 12.5 90.0 56.9 29.4 18.4 87.9 56.8 31.0 20.5 86.8 55.5 30.7 19.9
DINOv2 [206] ViT-B14 LVD 81.4 44.6 21.6 12.5 94.2 62.4 29.0 14.8 94.5 68.6 36.3 20.3 90.4 69.7 45.4 32.2
DINOv2+reg [59] ViT-B14 LVD 75.4 40.7 20.9 12.3 93.2 61.0 28.5 14.5 94.5 69.6 37.8 21.3 88.4 67.3 44.3 31.2
Densely-Supervised Models
SAM [138] ViT-B16 SA-1B 80.2 41.7 19.6 11.4 84.4 47.4 22.0 12.0 89.7 55.1 25.0 12.7 89.5 56.0 25.1 12.7
MiDaS [223] ViT-L16 MIX 6 81.4 48.0 24.1 14.5 83.5 55.8 30.7 21.0 82.5 55.8 31.9 22.3 79.8 52.7 30.0 21.1
Classification-Supervised Models
DeiT III [287] ViT-B16 IN-22k 89.9 49.9 22.7 12.2 91.7 62.3 33.9 21.7 84.0 58.3 38.1 26.6 62.6 38.1 25.2 17.1
ConvNeXT [173] ConvNeXt-B IN-22k 41.1 24.2 15.6 10.2 50.0 25.4 14.6 9.3 74.4 46.2 25.6 16.7 79.0 50.7 30.8 21.1
Language-Supervised Models
SigLIP [339] ViT-B16 WebLI 73.5 37.7 18.1 11.3 69.3 38.0 19.7 12.2 45.1 26.9 16.8 11.5 37.7 23.5 15.8 11.8
CLIP [219] ViT-B16 WIT 48.6 27.0 16.3 11.1 38.7 23.4 14.9 10.4 27.8 18.4 12.7 9.1 22.9 15.8 11.3 8.2
CLIP [119] ViT-B16 LAION 44.4 25.1 15.3 10.7 38.5 22.4 14.0 9.9 26.5 17.4 12.2 8.6 22.5 15.5 11.1 7.8
CLIP [119] ConvNeXt-B LAION 36.8 22.6 14.7 10.6 47.3 27.2 17.2 11.3 85.3 55.6 32.5 19.8 77.6 46.8 29.6 20.3
CLIP [119] + AugReg ConvNeXt-B LAION 37.0 22.6 14.7 10.6 49.3 27.6 16.5 10.7 84.6 53.8 31.1 17.8 79.7 49.4 31.5 21.5
Text-Conditioned Image Generation Models
StableDiffusion [229] (t=1) UNet LAION 79.3 36.1 15.4 7.7 93.4 60.1 24.3 11.2 75.4 42.6 20.6 11.5 44.1 24.9 15.8 10.6
StableDiffusion [229] (t=150) UNet LAION 80.0 36.9 14.8 7.5 92.5 59.4 24.0 11.3 73.2 41.0 19.3 10.9 42.9 25.1 15.8 10.6
StableDiffusion [229] (t=250) UNet LAION 80.1 37.1 15.0 7.5 91.0 57.2 22.8 10.8 70.5 39.0 18.7 10.5 40.9 24.4 15.5 10.3
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Table C.5: Correspondence Estimation Results for SPair-71k. We present the SPair-71k
correspondence estimation results for all models. The results are presented for features
extracted at different layers with performance binned based on the viewpoint variation for
the image pair. The highest performing set of results for each model are highlighted and
bolded.

Block0 Block1 Block2 Block3

Model Architecture Dataset a0 a1 a2 a0 a1 a2 a0 a1 a2 a0 a1 a2
Self-Supervised Models
MAE [103] ViT-B16 IN-1k 7.5 4.2 3.5 8.9 5.7 4.3 9.8 6.1 5.2 9.4 6.3 4.8
FCMAE [313] ConvNeXtv2-B IN-22k 5.2 5.2 4.6 8.5 6.5 6.2 25.5 24.2 25.5 28.5 26.3 28.5
iBOT [352] ViT-B16 IN-1k 7.0 4.1 4.4 10.0 5.6 4.9 13.8 7.1 5.1 17.0 9.2 7.1
DINO[33] ViT-B16 IN-1k 14.7 8.0 6.2 26.1 18.4 18.2 31.8 25.5 25.2 29.7 24.6 25.1
DINOv2 [206] ViT-B14 LVD 12.6 8.4 7.0 36.4 21.5 16.8 56.1 37.3 34.4 62.7 52.4 51.8
DINOv2+reg [59] ViT-B14 LVD 11.8 8.3 7.2 33.6 20.3 15.9 57.8 40.3 36.4 58.5 51.7 51.7
Densely-Supervised Models
SAM [138] ViT-B16 SA-1B 9.2 5.7 4.3 15.9 10.0 8.2 28.5 18.9 13.9 30.1 19.4 13.7
MiDaS [223] ViT-L16 MIX 6 15.8 10.7 8.5 27.1 23.3 23.7 27.9 25.4 26.3 25.7 22.5 23.8
Classification-Supervised Models
DeiT III [287] ViT-B16 IN-22k 21.5 12.4 9.9 41.3 32.0 33.8 37.9 33.7 35.4 16.2 15.4 16.5
ConvNeXT [173] ConvNeXT-B IN-22k 4.3 4.2 3.5 8.2 6.5 6.8 20.4 17.3 17.0 14.7 12.4 11.3
Language-Supervised Models
SigLIP [339] ViT-B16 WebLI 11.0 6.1 4.9 12.3 7.9 7.1 8.3 7.0 7.1 5.8 5.4 5.8
CLIP [219] ViT-B16 WIT 6.3 5.4 5.3 5.4 4.7 4.0 5.2 3.9 2.8 6.2 3.4 2.2
CLIP [119] ViT-B16 LAION 5.4 4.8 3.7 5.2 4.1 3.7 6.9 3.2 2.7 7.8 3.2 2.3
CLIP [119] ConvNeXt-B LAION 5.7 5.5 4.9 5.1 3.8 4.4 23.9 19.9 19.5 21.3 19.1 22.4
CLIP [119] + AugReg ConvNeXt-B LAION 5.3 4.7 3.4 7.0 6.0 6.3 26.9 22.7 20.9 27.1 24.9 28.0
Text-Conditioned Image Generation Models
StableDiffusion [229] (t=1) UNet LAION 13.9 5.7 4.1 57.5 34.8 27.7 26.2 18.3 14.5 6.8 6.1 5.8
StableDiffusion [229] (t=150) UNet LAION 17.5 7.5 5.8 62.6 40.8 32.3 30.9 21.2 16.1 6.5 5.7 5.7
StableDiffusion [229] (t=250) UNet LAION 17.9 7.6 5.1 61.4 40.5 30.7 30.3 20.8 16.5 6.7 5.6 6.3
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[222] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer. TPAMI, 2020. 91, 94, 123
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