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Abstract 

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with a current 5-year survival rate of 

13% (1). PDA accounts for ~90% of pancreatic cancer cases and arises from the exocrine tissue 

– responsible for digestive functions in the pancreas. The pancreas also has endocrine functions 

primarily responsible for blood/sugar homeostasis, composed of acinar, islet, and ductal cells (4).   

Most patients present with locally advanced or metastatic disease at diagnosis, which is 

refractory to chemotherapy, radiotherapy, and immunotherapy (1,2). Even when surgical 

resection is possible, relapse is frequent (3). Thus, there is a critical need to identify new 

treatment strategies, increase the efficacy of standard of care, and overcome therapeutic 

resistance. Pancreatic cancer cells are encapsulated by a dense, fibrotic, heterogenous stroma 

consisting of the extracellular matrix, immune cells, and fibroblasts (4). Metabolic 

reprogramming due to tumorigenesis engenders metabolic co-adaptations in malignant, non-

malignant, and immune cells in the tumor microenvironment (TME) (5–18). The advent of single 

cell RNA-seq has aided in assessing immune infiltration, identifying novel cellular subtypes, and 

inferring putative cellular interactions in the pancreatic cancer microenvironment (19–26,26–30). 

Still, access to healthy pancreas tissue for sequencing is difficult as there isn’t clinical indication 

to biopsy. Further, adjacent normal tissue has been found to display signs of inflammation, thus 

not an appropriate control to compare to tumor tissue (30). 

Through a unique partnership with Gift of Life Michigan (tissue and organ procurement 

program), we were able to obtain healthy pancreata for single cell RNA-Seq – a true 



 xiv 

experimental “control”. Our lab previously published findings characterizing the immune 

landscape of pancreatic cancer via the sequencing of human pancreatic tumor samples (29). 

Taken together, these data sets presented the opportunity to investigate metabolic alterations 

across cellular compartments engendered by malignancy. To map metabolic alterations 

engendered by malignancy I developed a robust computational pipeline employing various 

computational approaches; pseudo bulk analysis, differential gene expression (DGE) analysis, 

gene set enrichment analysis (GSEA), and transcription factor inference analysis. In addition, I 

assessed cellular crosstalk activity between cancer cells and immune cells. To validate 

computational findings, in vitro experiments were performed as well as co-immunofluorescent 

staining on healthy human pancreata and patient cancer tumor tissue. In summary, I identified 

downregulation of mitochondrial programs in several immune populations, relative to their 

normal counterparts in healthy pancreas. While granulocytes, B cells, and CD8+ T cells all 

downregulated oxidative phosphorylation, the mechanisms by which this occurred was cell-type 

specific. In fact, the expression pattern of the electron transport chain complexes was sufficient 

to identify immune cell types without the use of lineage markers. I also observed changes in 

tumor associated macrophage (TAM) lipid metabolism, with increased expression of enzymes 

mediating unsaturated fatty acid synthesis and upregulation in cholesterol export. Concurrently, 

cancer cells exhibit upregulation of lipid/cholesterol receptor import. Thus, I identified a 

potential crosstalk whereby TAMs provide cholesterol to cancer cells. I suggest that this may be 

a new mechanism boosting cancer cell growth and therapeutic target in the future.  

In this body of work, I present the first metabolic atlas of co-adaptations engendered by 

malignant and non-malignant cells in human pancreatic cancer. Further, I define novel metabolic 
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alterations that may aid our understanding of the role of metabolic rewiring in immune cell 

dysfunction and subsequent therapeutic resistance in pancreatic cancer.   

Unpublished work characterizing immune landscape changes following genetic inactivation or 

pharmacological inhibition of oncogenic Kras in a late stage murine model of PDA will also be 

presented. Initial studies performed include analysis of single cell sequencing data, flow 

cytometry results,  multiplex immunofluorescent staining, and immunohistochemistry (IHC) on 

orthoptic tumors harvested from murine models of PDA . Future directions arising from these  

studies are also detailed in this section. Overall, this chapter will provide an overview of  

pancreatic cancer metabolism, the composition of the pancreatic tumor microenvironment, and 

the immune landscape of PDA to provide context for the following chapters in this dissertation.  
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Chapter 1 Introduction  

 

1.1 Pancreatic Cancer 

Pancreatic ductal adenocarcinoma is a deadly malignancy, with a dismal 5 year survival rate of 

13% (1). New therapeutic approaches are desperately needed to increase the efficacy of current 

standard of care, overcome therapeutic resistance, and increase life expectancy for patients. 

Detecting pancreatic cancer is difficult, as symptom presentation is rare and generalizable to a 

variety of diseases, thus detection and diagnosis occurs when a patient already presents with 

locally advanced or metastatic disease (31,32). The most common form of pancreatic cancer is 

pancreatic ductal adenocarcinoma (PDA), responsible for ~90% of cases. Even for 15-20% of 

cases in which surgical resection is possible ~80% of patients go on to develop resistance to 

chemotherapy (4,33) . Often drugs targeting pancreatic cancer cells fail due to resistance 

mechanisms engendered in neighboring stromal cells (31,34–40). In this manner, the tumor 

milieu aids in creating a microenvironment apt at immune suppression.  

Oncogenic KRAS is the driving mutation in PDA, with  ~ 95% of tumors carrying a mutant 

form. This genetic alteration is typically accompanied by loss of function or deletion of the 

following tumor suppressors ; TP53, SMAD4, and CDKN2A (32). Pancreatic cancer arises from 

the exocrine pancreas, responsible for digestive functions - composed of acinar and ductal cells 

(32,41,42). The progression of PDA is a multi-step process in which early precursor lesions, 

pancreatic intraepithelial lesions (PanINs) become progressively higher grade lesions over time, 
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ultimately leading to metastasis (4). Currently, there is a still a need to develop  biomarkers for 

early detection of PDA. Though, the advent of small molecule inhibitors targeting mutant KRAS 

variants have recently become available, and new combinatorial treatment strategies are 

currently underway (43,44).  

1.2 Oncogenic Kras 

KRASG12D is most frequent amino acid substitution in PDA, consisting of a single base 

substitution, glycine to aspartic acid at position 12, KRASG12D.  About 90% of PDA tumors 

carry this mutant form of KRAS (33). KRAS is a GTPase from the Ras G protein family 

responsible for signaling involved in cell proliferation, survival, and invasion (45,46).  More 

specifically, KRAS is a membrane bound G protein and functions as a molecular switch; either 

in an active state when bound to guanosine- 5’-triphospahte (GTP) or inactive when bound to 

guanosine- 5’- diphosphate (GDP). The oscillation between states is modulated by GTPase 

activating proteins (GAPs), which hydrolyze GTP, rendering KRAS inactive. KRAS mutations 

typically occur close to the binding pocket, consequently decreasing GAP binding affinity, 

leading to a constitutively active state (47). Consequently, the increased GTP binding affinity 

leads to increased levels of GTP bound oncogenic KRAS, driving cell growth and survival via 

the downstream effector pathways  mitogen activated protein kinase (MAPK) and 

phosphatidylinositol 3 kinase (PI3K).  

1.2.1 Targeting Mutant KRAS  

Previously, oncogenic KRAS was thought to be “undruggable” due to inaccessible binding sites 

for small molecule inhibitors, and its high affinity for GTP binding. Attempts at manufacturing 

drugs targeting mutant KRAS were largely  unsuccessful due to low binding affinity and poor 
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selectivity, rendering them ineffective (47). For the first time in decades targeting KRASG12C 

became possible with the small molecule inhibitor (Sotarasib), which binds covalently to the 

cysteine 12 residue. Sotarasib is a highly specific, irreversible inhibitor of KRASG12C (glycine to 

cysteine), with shown anti-tumor activity and minimal safety concerns in a phase 2 trial. 

Importantly, this trial administered Sotarasib (AMG510) as a monotherapy, in a cohort of 

patients who had been previously treated for colorectal cancer (31,36). Response rate was a mere  

9.7% overall, but as previously mentioned most patients had been heavily pretreated with a 

variety of chemotherapy and immunotherapy regimens. Adagrasib (MRTX849), another 

selective inhibitor of KRASG12C irreversibly binds at the switch II pocket, locking it in its 

inactive state (43,48,49) . In a phase 1B clinical trial, in a cohort of patients with non-small cell 

lung cancer (NSCLC), with previous treatment status (chemotherapy and immunotherapy) 42.9% 

had a response to monotherapy. Unfortunately, the median duration of response to treatment was 

8.5 months, with a median progression free survival of 6.5 months. Again, treatment intervention 

with this inhibitor was in a cohort of patients with refractory or metastatic cancer whom 

previously received treatment (49).  

Although the clinical trials with Sotarasib and Adagrasib monotherapies showed promising 

results, mechanisms of acquired resistance were investigated shortly after. Genomic analysis was 

performed on a cohort of patients treated with Adagrasib, utilizing paired patient samples before 

and after treatment with Adagrasib. The cohort consisted of patients with colorectal, NSCLC,  or 

appendiceal cancer, and detected putative resistance mechanisms in 17/38 patients (45%) (50). 

Multiple KRAS alterations were found to be highly amplified, to name a few (G12D/R/V). In 

addition, KRASG12C was amplified  and downstream mediators of RAS signaling such as MET, 

BRAF, RAF1 demonstrated amplification and activating mutations, all acquired bypass 
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mechanisms in response to targeting mutant KRASG12C. Collectively, these results show 

acquired resistance to single agent therapy through binding pocket mutations, mutant KRAS 

amplification, loss of function mutations in tumor suppressors, and  acquired bypass mechanisms 

(amplification of downstream RAS signaling mediators) (51).  

KRASG12D (glycine to aspartic acid) is the prominent mutation in pancreatic cancer and 

recently became an actionable target with the small molecule inhibitor MRTX1133, which binds 

noncovalently and irreversibly to the switch 2 pocket of mutant KRASG12D (51,52). In PDA 

murine implantation models, MRTX1133 inhibited tumor growth, and altered macrophage 

polarization in the TME (51). Currently, there is a phase 1b clinical trial utilizing the 

MRTX1133 inhibitor in a cohort of patients with  advanced solid tumors; with the genetic 

KRASG12D alteration. As previously demonstrated with targeting KRASG12C, acquired resistance 

mechanisms are likely to arise (53). Nonetheless, targeting KRASG12D in combination with 

current standard of care may be provide a promising new treatment strategy. 

1.3 Pancreatic Tumor Microenvironment 

The pancreatic tumor microenvironment is composed of various fibroblast sub types, cancer 

cells, extracellular matrix components, and immune cells (4). Oncogenic KRAS alters pancreatic 

cancer cell signaling and reprograms neighboring immune cells towards an immunosuppressive 

phenotype, aiding in immune evasion (14). PDA is characterized by a fibroinflammatory stroma, 

in which cancer cells orchestrate cellular crosstalk with immune cells and fibroblasts to gain 

access to bio intermediates to survive the harsh conditions of the TME (12). Consequently, 

competition for resources engenders T cell exhaustion/dysfunction due to unmeet energetic 

demands, unable  to execute  an anti-tumor response (54,55).  
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Myeloid cells are the most abundant immune compartment present in the pancreatic TME and 

play a critical role in immune suppression as most are myeloid derived suppressor cells. Tumor 

associated macrophages are involved in a myriad in metabolic process that can be either pro or 

anti-tumor, and secrete cytokines and metabolites which drive tumor survival and therapeutic 

resistance (8,38,56–59). The complex interplay between cancer cells, the immune milieu, 

fibroblasts, and the extracellular matrix make targeting one specific metabolic pathway, 

signaling axis, or cell type difficult in PDA. As compensatory and resistance mechanisms arise in 

response, due to the complex nature of the TME. Combinatorial targeting of multiple 

components of the TME are underway and may be a promising approach in advancing treatment 

strategies in PDA (60,61). Of note, studies have recently identified “sub TMEs” in patients that 

differ based on spatial location within the tumor, further highlighting the complexity of the PDA 

tumor landscape (62,63). Here, the focus will be on cancer cell autonomous metabolic 

reprogramming and extrinsic metabolic rewiring in the pancreatic tumor microenvironment.  

1.4 Metabolic Reprogramming  

Metabolic reprogramming is a consequence of cancer cells adjusting to meet metabolic 

requirements necessary to continue proliferation, survival, and metastasis in a resource limited 

microenvironment (13,64–68). Oncogenic signaling shifts metabolic dependencies in cancer 

cells, and in response non-malignant and immune cells must also acquire metabolic co-

adaptations to compete for fuel sources (69–73). Symbiotic interactions between cancer cells and 

immune cells restructure the metabolic landscape in the microenvironment by modulating levels 

of nutrients, increasing  byproducts due uptick in catabolism, and metabolite signaling (12,32). 

Cancer cell intrinsic metabolic rewiring promotes cancer cell intrinsic changes as well as 

reciprocal changes in immune and non-malignant cells as an adaptive response.  
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1.5 Cancer cell autonomous metabolic reprogramming 

Oncogenic KRAS alters various metabolic processes in pancreatic cancer cells such as 

upregulation of  glycolysis, the hexosamine biosynthesis pathway, and glutamine metabolism 

(7,13,14,67,74,75). Due to the reversibility of enzymatic reactions and overlap in enzymes 

driving multiple pathways, metabolic mutations are rare. Typically, metabolic enzyme 

expression is up/down regulated transcriptionally.  

1.5.1 Glycolysis  

Glucose reprogramming driven by mutant KRAS alters glucose availability in the TME and 

increases lactate production in parallel. The increase in glycolytic flux is mediated through 

augmented expression of key enzymes driving glycolysis such as  hexokinase (HK1/2),  

phosphofructokinase (PFK1), and lactate dehydrogenase (LDHA). Further, glycolytic 

intermediates may be funneled into the non-oxidative arm of the pentose phosphate pathway, to 

be utilized for nucleotide biosynthesis and ribose production (15,76). A byproduct of lactate 

uptake is NADPH production, which can be shunted to the mitochondria to participate in the 

ETC, ultimately replenishing NAD+ levels (15). 

RAS signaling initiates a downstream signaling cascade which activates the PI3K-Akt signaling 

axis, which in turn upregulates the expression of  glucose transporter 1 (GLUT1), which is then 

translocated to the outer membrane to participate in glucose uptake. Downstream intermediates 

in glycolysis can also be shunted into the serine biosynthesis pathway, creating an alternative 

source of phospholipids and carbon backbones for cancer cells (15). Since, cancer cells can 

divert to serine thesis for a variety of bio intermediates, even including electrons to fuel the ETC, 

enzymes in this pathway are often upregulated (12).  One such example is the amplification of 
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phosphoglycerate dehydrogenase (PHGDH), a key rate limiting enzyme in the serine synthesis 

pathway (77,78).  

Hypoxia is  a hallmark of pancreatic cancer, which drives metabolic reprogramming, epigenetic 

modifications, and gene expression in malignant and non-malignant cells in hypoxic niches.  

Limited oxygen supply pressures cancer cells to shift dependency to anaerobic glycolysis and 

decrease reliance on oxidative phosphorylation (39,79). Since oxygen is the last electron 

acceptor in the ETC, hypoxia may lead to stalling, resulting in inability to carry out oxidative 

phosphorylation. Hence, pancreatic cancer cells metabolically adapt and obtain energy through 

other metabolic pathways. 

1.5.2 Amino acids 

Amino acid metabolism is co-opted by cancer cells to acquire biomass, sustain proliferation 

demands, and promote survival. Glutamine metabolism is typically increased in cancer cells as 

glutathione (GSH) biosynthesis requires glutamine derived glutamate, which is then converted to 

alpha- ketoglutarate by glutamate dehydrogenase 1 (GLUD1)  to fuel the TCA 

cycle(13,67,75,80). But in pancreatic cancer cells, glutamine derived glutamate is used to obtain 

aspartate, which is then converted to oxaloacetate by glutamic oxaloacetate transaminase 1 

(GOT1) (81). This process is catalyzed by the mitochondrial uncoupling protein 2 (UCP2), 

which is deregulated in various cancer settings (74). Oxaloacetate can be further processed into 

pyruvate, which increases NAD+/NADPH ratios in the mitochondria, aiding in redox balance, 

cholesterol biosynthesis, and fatty acid synthesis, (15,81). KRAS mutations drive glutaminolysis 

in tumors as well, this metabolic co-adaptation leads to increased gene expression of the  

glutamine transporter in the amino acid transport family; ASCT2 (76). Pancreatic cancer cells 

also gain access to carbon sources and nitrogen  via  branch chain amino acid  (BCAA) 
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metabolism. BCAA metabolism plays a role in fatty acid biosynthesis, lipogenesis, and 

contribution towards  metabolites that may feed into the TCA cycle (34,82). This is mediated in 

part by the increased uptake of BCAAs in pancreatic cancer tissue, via carrier transporters, which 

are significantly upregulated as well. 

1.5.3 Mitochondria  

Redox homeostasis is often disrupted in cancer, as reactive oxygen species (ROS) levels increase 

due to increased electron flow through the electron transport chain (ETC) (10,65,83,84). The 

NAD+/NADH cofactors drive multiple anabolic processes; oxidative phosphorylation, 

glycolysis, and the tricarboxylic acid (TCA) cycle, all processes necessary for cancer cells to 

sustain an increased bioenergetic state. Increased demand for NADH production can overload 

the ETC capacity to regenerate NAD+, especially in oxygen limited environments such as 

hypoxic regions in pancreatic cancer tumors. To offset this, carbon units from the TCA cycle  

can be diverted to be used as precursors to produce amino acids. For example,  α-ketoglutarate 

can be converted to glutamate, which may be further processed to make proline (76). 

Oxaloacetate, a TCA cycle intermediate can be funneled into aspartate biosynthesis, which in 

turn produces asparagine – a pyrimidine building block (85). The mitochondria is a signaling hub 

that drives multiple metabolic processes, fine tunes redox homeostasis to protect against free 

radical damage, and plays a role a role in tumor initiation and progression (84,86–89).  

 

1.5.4 Nutrient Scavenging  

Oncogenic KRAS triggers pro-survival and pro-proliferation signaling through downstream 

mediators, and due the constitutively active state of mutant KRAS, these signals are in essence 
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always “on”. Cancer cells consume copious amounts of  nutrients  and metabolites in the  already 

resource scare  tumor milieu, exacerbating poor vascularization and oxygen availability in the 

TME (39,90). Due the limited availability of  bio intermediates cancer cells may rely on 

scavenging and recycling pathways for alternative fuel sources. Autophagy is a highly 

evolutionarily  conserved process  triggered during cell stress and nutrient deprivation, through 

which organelles, proteins, and other macromolecules are degraded and byproducts are recycled. 

Cellular components are degraded by lysosomes, turnover of biomaterial then allows cancer cells 

to access metabolic precursors (91). Thus, autophagy plays a critical role in regulating cell 

proliferation and energy homeostasis. In several pancreatic cancer cell lines, inhibition of 

autophagy with pharmacological agents or siRNA resulted in decreased proliferation (92).  

Autophagy also plays a role in immune evasion (92,93). Yamamoto et al. demonstrated 

increased lysosomal degradation of MHC- I molecules in pancreatic cancer ,via an  autophagy 

mediated mechanism, involving the NBR1 cargo receptor (93).  KRAS alters dependency on 

macropinocytosis as well, an endocytic pathway responsible for the digestion/internalization  of 

plasma membrane proteins, and immune cells (93). In a murine model of pancreatic 

adenocarcinoma, loss of function in the PTEN tumor suppressor led to increased mTOR and 

macropinocytosis. Combined inhibition of mTOR signaling and lysosomal processes reversed 

resistance mediated through macropinocytosis in this model, demonstrating combined inhibition 

to be synergistic in this model (94). Overall, KRAS alters scavenging and recycling pathways so 

that cancer cells can divert intracellular energy sources to acquire more biomass and sustain 

bioenergetic process while protecting against reactive oxygen species damage.   

1.5.5 Lipid metabolism  
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Lipids play a critical role as signaling molecules, providing substrates for membranes, and 

contributing nutrients in the form of; fatty acids, cholesterol,  glycerolipids, sphingolipids, 

phospholipids, etc. Lipid composition, metabolism,  and availability is directly impacted by 

changes metabolic alterations engendered in non-malignant and malignant cells present in the 

tumor microenvironment (95,96).  Lipids are composed of a hydrophilic head group and 

hydrophobic tail which dictate the  curvature of the lipid bilayer and transmembrane 

composition. This is crucial as many growth factor receptors inhabit the transmembrane, and 

lipid rafts serve as docking sites for signaling complexes (16). Oncogenic KRAS signal 

transduction leads the activation of downstream pathways such as the PI3K- AKT- mammalian 

target of rapamycin( mTORC1) axis, as well as MYC (64). Activation of this signaling cascade 

triggers de novo synthesis of fatty acids, mediated by the transcription factor sterol regulatory 

binding element protein 1 SREBP1 (97–99). Augmented levels of monounsaturated and 

saturated fatty acids have been linked to combatting ROS damage but have also been shown to 

contribute to tumor progression. 

1.6 Metabolic Rewiring in the Tumor Microenvironment  

Oncogenic signaling and nutrient dysregulation in the tumor microenvironment leads to 

metabolic rewiring of immune cells and non-malignant cells in proximity. As competition for 

scarce resources engenders immune dysfunction due to unmeet energetic demands necessary to 

execute an immune response (15). PDA is characterized a complex, fibro-inflammatory 

microenvironment rich in extracellular matrix components, myeloid cells, and fibroblast (4). 

CD8+ T cells have been shown to be sparce and show signs of “exhaustion” which can in part be 

attributed to insufficient nutrients (54,100,101). Macrophages, the most prominent immune cell type 

present, engage in cooperative metabolic exchange with cancer cells which aids in tumor growth 
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and survival (40,58,59,102–105). Recent work has also shown that fibroblasts participate in metabolic 

exchange with cancer cells, specifically by increasing expression of branch chain amino 

transferase BCAT1. 

1.6.1 T cells  

When naïve T cells are stimulated by costimulatory molecules and TCR ligation, metabolic 

rewiring ensues marked by a shift towards aerobic glycolysis and increase in oxidative 

phosphorylation (69,106–108). Glycolysis and oxidative phosphorylation provide T cells with 

glucose necessary to fuel nucleotide biosynthesis, DNA replication, and serine synthesis. These 

metabolic alterations are mediated by cytokine growth factors  such as IL-2 and IL-17, mTOR 

signaling, transcription factors, and increased expression of nutrient transporters. Together 

mTOR and Akt regulate T cell differentiation through the activation of downstream signaling 

cascades which stimulate transcription factors such as SREBF2, which regulates cholesterol and 

lipid synthesis (71,108). T cell proliferation is also promoted by the upregulation of nutrient 

transporters such as GLUT1, the enzyme responsible for glucose transport (76).  

Transcription factors play a critical role in T cell reprogramming, hypoxia inducible factor-1α 

(HIF1α) and c-Myc promote metabolic processes necessary to satisfy energetic demands 

associated with T cell differentiation and effector T cell clonal expansion (108,109). More 

specifically, c-MYC drives aerobic glycolysis and glutamine synthesis during T cell expansion, 

which provides bio intermediates that can be utilized for nucleotide and lipid biosynthesis (109).  

HIF1α promotes upregulation of GLUT1  and other key enzymes which drive glycolysis, a 

process critical for T cell effector activity (79,110). 

Mitochondrial programs are also employed in T cell metabolic rewiring, as ROS signaling plays 

a critical role in T cell response to viral infections and tumor encounters (65,89). Importantly, 
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different T cell subsets have distinct metabolic profiles based on function, developmental stage, 

and external stimuli. For example, TH17 CD4+ T cells have recently been reported to largely 

depend on oxidative phosphorylation to execute anti tumoral response, without an accompanied 

shift of augmented glycolytic activity (72). Murine derived naïve CD4+ T cells were cultured 

and polarized towards TH17 activation, under conditions optimized to promote oxidative 

phosphorylation. Oxidative phosphorylation enabled TH17 cells to resist apoptosis via a 

mitophagy mediated mechanism (72), subsequently allowing the cells to mount an immune 

response upon tumor challenge. Methionine import is also augmented in T cell for S-

adenosylmethionine (SAM) synthesize, a substrate involved in DNA histone methylation. In this 

manner, metabolic programs dictate epigenetic programming and promote T cell engagement 

with a myriad of metabolic processes to sustain activation, proliferation, and differentiation 

(111). T cells strategically engage metabolic processes such as glycine and serine synthesis, the 

TCA cycle, fatty acid synthesis,  as well as one carbon anabolism to gain access to energetic 

substrates and co-factors to fuel a epigenetic programs needed for proliferation and survival (69). 

Extracellular metabolites, nutrient availability, and intrinsic and extrinsic signaling  in the tumor 

microenvironment inform T cell metabolic reprogramming . For example, lactate, the end 

product of glycolysis has been shown to be involved in immune modulation of T cells. Nutrient 

availability and metabolite levels are altered in cancer settings and lead t exhausted/dysfunctional 

phenotypes in CD8+ T cells. Competition for fuel sources limits the T cell engagement with 

metabolic programs, leading to inability to mount an anti-tumor response, sustain proliferation, 

and undergo differentiation (112). As previously mentioned, CD8+ T cells upregulate glycolysis 

to meet metabolic demands imposed by effector functions, but glucose levels are depleted in the 

tumor microenvironment – suppressing cytotoxic T cells activity. Transcriptional analysis of T 
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cells has revealed heterogenous profiles amongst CD8+ T cells subsets, as naïve and memory 

CD8+  T cells shift towards fatty acid metabolism in glucose deprivation- but effector CD8+ T 

cells do not (71). Overall, T cells up/down regulate various metabolic process based on extrinsic 

cues in the microenvironment,  nutrient availability, and inflammatory signaling and adjust 

metabolic dependencies in response. 

1.6.2 Macrophages  

Macrophages are the largest immune component in the pancreatic tumor microenvironment. 

Tumor associated macrophages (TAMs) participate in immune crosstalk, extracellular matrix 

remodeling, immunosuppressive signaling, and aid in tumor maintenance and progression 

(28,113–115). Thus, TAMs carry out a myriad of metabolic processes that may be either pro-

tumor or anti-tumor. Macrophages present in the pancreatic cancer tumor environment are 

largely derived from myeloid derive suppressor cells (MDSCs) , a majority of  which are pro 

tumori-genic. When activated in a cancer setting, macrophages can phagocytosis cancer cells, 

engage in metabolic crosstalk with innate and adaptive immune cells, and execute metabolic 

programs in response to extrinsic cues in the microenvironment (11,34,35,56,116–118). M1- like 

macrophages metabolically shift towards increased dependence on glycolysis, resulting in 

increased levels of reactive oxygen species (119,120). M2- like macrophages increase oxidative 

phosphorylation and fatty acid synthesis and oxidation, thus this subset of macrophages is more 

resistant to hypoxia in the tumor microenvironment (90). Still, TAMs are diverse and metabolic 

transcriptional programs can’t be ascribed in a binary fashion, where a metabolic process is 

either antitumorigenic or inflammatory.  

 In pancreatic cancer, TAMs have been shown to be largely immunosuppressive, 

participating in cooperative metabolic crosstalk with cancer cells, augmenting expression of 
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immune checkpoint glands, immune suppressive cytokine signaling -  enabling tumor cell 

growth and survival (63,119,121). TAMs undergo metabolic reprogramming in response to 

altered metabolite levels, crosstalk with malignant cells and immune cells, and in response adjust 

cytokine and growth factor signaling. Primary pancreatic tumor samples in PDA, demonstrated 

that a bulk of TAMs present were alternatively activated towards and M2-like phenotype. 

Myeloid cells drive therapeutic resistance, TAMs have been shown to expel pyrimidines which 

can be taken up by cancer cells, making pyrimidine nucleoside analogs such as gemcitabine, a 

chemotherapeutic for pancreatic less effective (115).  

1.6.3 Innate immune cell metabolism  

Neutrophils are innate immune cells that undertake different metabolic phenotypes depending on 

environmental stimuli during their lifespan. At basal state neutrophils rely largely on glycolysis, 

but in setting of tissue  inflammation or cancer neutrophils shift to oxidative phosphorylation to 

facilitate bursting. Respiratory bursting is activated by chemokines, chemo attractants, or other 

environmental stimuli, causing neutrophils to release reactive oxygen species, degrading foreign 

pathogens and nearby tissue in the process (9). Neutrophils migrate to sites of inflammation in a 

multistep process consisting of; selectin mediated rolling, chemokine stimulated activation, 

integrin mediated adhesion, and ultimately migration (9,18,122).   

B cells are a part of the innate immune system and contribute towards mounting an anti-tumor 

response. The role of B cell immune-metabolism modulation in the context of the tumor 

microenvironment remains to be fully investigated, though it has been established that B cells 

metabolism influences efficacy of immunotherapy in solid tumors (123). The lifespan of B cells 

entails multiple transitional stages from an immature to mature B cell, ultimately to a memory B 

cell. At each stage metabolic dependencies shift to fulfill demands of the functional phenotype 
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imposed on B cells due to environmental stimuli. Glycolysis and oxidative phosphorylation 

mediate are the prime metabolic processes altered by B cells to transition through development 

though (118,123). Overall, there is a need to understand how environmental cues and extrinsic 

signaling influence B cell immune metabolism  activity, as B cells may also dampen the immune 

response. 

1.6.4 Fibroblasts 

The tumor milieu in pancreatic cancer is characterized by a fibroinflammatory stroma, abundant 

with a heterogenous mixture of cancer associated fibroblasts (CAFs) and extra cellular matrix 

components (4,119,124). CAFs are key immune modulators that dictate an immunosuppressive 

program in PDA by secreting paracrine signals, inhibiting cytotoxic functions of CD8+ T cells, 

and increasing vascularization of the tumor microenvironment (26). Further, a recent report has 

demonstrated CAFs provide branch chain ketoacid derivatives to pancreatic cancer cells, as a 

result of  cancer mediated stromal reprogramming (34). CAFs also participate in ECM 

remodeling which contributes to tumor progression, invasion, and metastasis (125–127).  

1.7 Single cell RNA- Seq  

The advent of next generation sequencing (NGS)  has enabled the characterization of tumor 

microenvironment landscapes, novel cellular subtypes, and putative cellular interactions at an 

unprecedented rate (19–25,27,29,126,128). More specifically, single cell -RNA sequencing has 

enabled the identification of new cancer associated fibroblast subtypes in a murine model of 

PDA (129). Single cell RNA -Seq data has also been utilized to query metabolic programs 

utilized by diverse subsets of TAMs derived from murine models with liver metastasis, revealing 

purine metabolism as a metabolic co-adaptation that promotes tumor growth (11). To decipher if 
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this metabolic reliance on purine metabolism translated to human data, publicly available single 

cell sequencing data from patients was mined. Indeed, human derived TAMs with increased 

expression of genes driving purine metabolism correlated with poor response to immunotherapy 

(11). 

 The immune landscape has also been profiled in pancreatic cancer by utilizing single cell 

RN-Seq on human pancreatic cancer samples (29). This study reported a heterogenous profile of 

cytotoxic T cells across patients samples, but strikingly a large proportion of cytotoxic T cells 

were found to have exhausted/dysfunctional transcriptomic profiles with high expression of 

TIGIT (29). 

1.8 PDA Murine Models  

To investigate pancreatic cancer, murine models have been genetically engineered to closely 

recapitulate human PDA, via expression of  mutant KRAS and loss of expression in  tumor 

suppressor genes (45). Murine PDA models demonstrate a similar genetic landscape, mirror 

disease progression, and the immune profile mimics that seen in human PDA (33).  

To understand the role of mutant KRAS in pancreatic cancer initiation and progression am 

inducible and reversible murine model of pancreatic tumorigenesis was genetically engineered 

by the Pasca Lab (45). The iKras* mouse model enables the activation and inactivation of 

KRASG12D in the pancreas epithelium, enabling the investigation of the role of oncogenic 

KRAS during early and late stage PDA. To develop the model, three genetically altered mouse 

stains were utilized to create triple transgenic p48-Cre;R26-rtTa-IRES-EGFP;TetO-KrasG12D  

mice. Expression of Cre is driven by the p48-Cre allele which is specific to the pancreas, and 

rtTA activation through doxycycline administration or removal dictates mutant Kras* expression 

– hence the process is organ specific and reversible. In addition, to more closely mimic disease 
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progression the iKras model was crossed with mice in which there inactivation of one allele of  

tumor suppressor gene tp53 – iKras *-p53+/-  (45). Overall, the iKras* model is an organ 

specific, reversible, and inducible system that serves as a powerful tool to study immune cell 

interactions, genetic alterations, and immunosuppressive signaling in pancreatic cancer.  
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Figure 1.1 Schematic for  metabolic alterations engendered by the pancreatic tumor microenvironment.  

The healthy pancreas is composed of islet, acinar, and ductal cells as well as extracellular matrix and immune 

components. The endocrine system is responsible for blood/sugar homeostasis levels and the exocrine system is 

concerned with digestive functions – pancreatic ductal adenocarcinoma arises through the exocrine tissue. To 

investigate metabolic alterations across cellular compartments engendered by malignancy, a unique single cell data 

set compromised of healthy pancreata, and patient pancreatic cancer samples was leveraged. Tumor associated 

macrophages displayed an upregulation of lipid/cholesterol production, while cancer cancers cells differentially 

increased expression of the cognate receptor for lipid/cholesterol import. Tumor associated immune compartments 

significantly decreased oxidative phosphorylation in an electron transport chain (ETC) complex and cell type 

dependent manner. Overall, cancer cell underwent autonomous metabolic reprogramming , immune cells underwent 

metabolic alterations, and TAMs participated in cellular crosstalk with cancer cells.  
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Chapter 2 Mapping the Metabolic Landscape of the Healthy Human and Pancreatic Tumor 

Microenvironment 

2.1 Abstract  

Pancreatic cancer, one of the deadliest human malignancies, is characterized by a fibro-

inflammatory tumor microenvironment and wide array of metabolic alterations. To 

comprehensively map metabolism in a cell type specific manner, we harnessed a unique single 

cell RNA sequencing dataset of normal human pancreata. This was compared with human 

pancreatic cancer samples using a computational pipeline optimized for this study. In the cancer 

cells we observed enhanced biosynthetic programs. We identified downregulation of 

mitochondrial programs in several immune populations, relative to their normal counterparts in 

healthy pancreas. While granulocytes, B cells, and CD8+ T cells all downregulated oxidative 

phosphorylation, the mechanisms by which this occurred was cell-type specific. In fact, the 

expression pattern of the electron transport chain complexes was sufficient to identify immune 

cell types without the use of lineage markers. We also observed changes in tumor associated 

macrophage (TAM) lipid metabolism, with increased expression of enzymes mediating 

unsaturated fatty acid synthesis and upregulation in cholesterol export. Concurrently, cancer cells 

exhibit upregulation of lipid/cholesterol receptor import. We thus identified a potential crosstalk 

whereby TAMs provide cholesterol to cancer cells. We suggest that this may be a new 

mechanism boosting cancer cell growth and therapeutic target in the future. 

1 Chapter 2 has been submitted for publication to JCI Insight as a resource article.  
2 Author List: Monica E. Bonilla1,4, Megan D. Radyk2, Matthew D.Perricone3, Ahmed M. Elhossiny4, Alexis C. Harold1, Paola I. Medina-
Cabrera1, Padma Kadiyala3, Jiaqi Shi5,6, Timothy L. Frankel5,7, Eileen S. Carpenter5,8, Michael D. Green1,5,10,11,12 , Cristina Mitrea4,†, Costas A. 
Lyssiotis2,5,8,†, Marina Pasca di Magliano5,7,9,† 
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2.2 Introduction  

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with a current 5-year survival rate of 

13% (1). Its poor prognosis can be attributed to a lack of early detection methods and a paucity 

of effective therapeutic options. Indeed, at diagnosis, most patients present with locally advanced 

or metastatic disease that is refractory to chemotherapy, radiotherapy, and immunotherapy (2). 

At the genetic level, pancreatic cancer is almost invariably associated with mutations in Kras, 

together with common loss of tumor suppressor genes such as TP53, the INK4A locus and 

SMAD4 (3). A hallmark of pancreatic cancer is the extensive tumor microenvironment (TME), 

an agglomerate of fibroblasts, immune cells, and non-cellular components of the extracellular 

matrix, that is hypovascularized and extremely nutrient deprived (3,4). Within the TME, 

fibroblasts and immune cells actively support cancer cells, allowing them to persist and grow 

even in the absence of adequate vascularization (5). PDA cells scavenge nutrients to circumvent 

limited supply, sourcing non-classical nutrients from their environment through expression of 

high avidity nutrient transporters, bulk engulfment, and crosstalk with other cell types (6–11).  

Competition for nutrients promotes immune cell dysfunction (12). Metabolic restrictions 

imposed on T cells have been shown to decrease proliferation and cytotoxic effector functions 

which dampen anti-tumor responses (13). Tumor associated macrophages (TAMs), the most 

prevalent immune cell type in pancreatic cancer, exert tumor-promoting and immunosuppressive 

functions through multiple parallel mechanisms, including expression of immune checkpoint 

ligands, production of tumor-supporting growth factors, and production of immune suppressive 

cytokines (14). Among the mechanisms through which TAMs promote immunosuppression is 

depletion of nutrients that are essential for T cell proliferation/activation, such as arginine, 
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through expression of the enzyme Arginase (15–17); arginine is one of the most depleted 

nutrients in the pancreatic TME (18). In addition to dampening immune responses, arginine 

depletion directly benefits cancer cells (19). In another role, TAMs can also provide cancer cells 

with pyrimidines, a building block for DNA required for proliferation; in the process also 

conferring resistance to pyrimidine nucleoside analog chemotherapeutics such as gemcitabine 

(20). However, a comprehensive map of metabolic co-adaptations across cell types in human 

pancreatic cancer has so far been missing. 

Until recently, one of the challenges with generating data from normal pancreas was the 

lack of single cell level gene expression data. The latter is explained by the absence of clinical 

indications for sampling normal pancreas in healthy individuals, and by the rapid degradation of 

pancreas tissue through autodigestion after death. As a result, most studies have used adjacent 

normal samples as controls; this approach has significant limitations, as the adjacent normal 

pancreas presents with morphologic and inflammatory changes that lead to gene expression 

alterations (21). Through a unique partnership with Gift of Life Michigan, an organ donation 

organization, we have obtained pancreata from healthy individuals of varied age group, sex, and 

race, and performed single cell RNA sequencing (21). The availability of “true normal” pancreas 

has given us a unique opportunity to define metabolic alterations, at the transcriptional level, 

between the normal pancreas and pancreatic cancer on a cell type by cell type basis.  

To investigate both (i) cell type specific metabolic changes and (ii) coordinated changes 

between cell types that promote cooperative metabolism in the pancreatic microenvironment, we 

leveraged single cell RNA sequencing data from normal human pancreata and human pancreatic 

tumors (21,22). To this data, we performed differential gene expression (DGE) analysis, gene set 

enrichment analysis (GSEA), and  transcription factor activity analysis. In addition, we also 
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assessed for cooperative metabolic crosstalk pathways that were differentially regulated in 

cancer relative to normal. This collective analysis revealed prominent changes in amino acid and 

vitamin metabolism in the epithelial compartment that recapitulated previous findings 

(11,23,24). We also discovered alterations that were not previously described. In the immune 

compartments, multiple tumor associated immune cell subtypes had decreased expression of the 

oxidative phosphorylation signature compared to their counterparts in the healthy pancreas.  

Intriguingly, the specific gene expression signatures were cell-type specific. 

We then investigated reciprocal metabolic interactions between cancer cells and 

components of the microenvironment. Notably, TAMs were found to upregulate the cholesterol 

exporter ABCG1, while pancreatic cancer cells significantly increased expression of the cognate 

receptor LDLR. This interaction was validated through immunofluorescent staining of human 

tissue, suggesting a novel metabolic interaction in pancreatic cancer that allows cancer cells to 

prioritize cholesterol scavenging relative to biosynthesis. Overall, our study provides an atlas of 

metabolic alterations engendered in pancreatic cancer across multiple cellular compartments, 

which may promote cancer cell growth and the maintenance of an immunosuppressive 

microenvironment resistant to existing therapeutic strategies. 

2.3 Results 

2.3.1 Single cell atlas from healthy human pancreata and pancreatic cancer samples reveals 

metabolic alterations in several compartments of the tumor microenvironment. 

To query metabolic reprogramming across the pancreatic tumor microenvironment, we leveraged 

datasets previously published by our laboratory, including pancreatic cancer (n=16, across 

disease stages) and normal pancreas (n= 6) (21,22). Using DGE analysis, GSEA, and 
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transcription factor inference analysis, we sought to understand metabolic alterations in 

malignant and non-malignant cells in the pancreas (Figure 2.1A). The data, visualized using 

Uniform Manifold Approximation and Projection (UMAP), included 44,019 cells from healthy 

pancreata and 43,997 cells from pancreatic cancer samples (Figure 2.1B and Figure 2.1C). 

Healthy and tumor samples readily segregated based on gene expression profiles (Figure 2.1D). 

In the healthy exocrine pancreas, the epithelial compartment is composed of acinar, 

ductal, and endocrine cells. While both acinar and ductal cells can give rise to pancreatic cancer 

in mouse models, cancer cells are more transcriptionally similar to ductal cells. Conversely, 

acinar cells have a specific transcriptional profile characterized by a prevalence of genes 

encoding for digestive enzymes (25,26).  To compare tumor and healthy tissue, we excluded 

acinar cells from our analysis and focused primarily on ductal and malignant cells, hereafter 

referred to as non-acinar epithelial cells. As expected, acinar cells were mostly detected in 

healthy tissue, while non-acinar epithelial cells, fibroblasts, and multiple immune compartments 

were present in both healthy and malignant tissue, although immune cells were more abundant in 

tumors (Figure 2.2A). A few populations, namely endocrine, dendritic, and neural cells, had 

limited representation with only hundreds of cells. Due to low statistical power, these cell types 

were interrogated only in a subset of our analyses ( Figure 2.2B-H).  

DGE analysis allows for the investigation of differentially regulated genes that drive 

multiple biological processes, including metabolism, on a per cell type basis. Application of 

DGE analysis on tumor samples relative to normal revealed differential upregulation of 4,977 

genes and downregulation of 4,104 genes in non-acinar epithelial cells, which includes normal 

ductal cells and cancer cells (Figure 2.1E). Granulocytes from tumors exhibited differential 

upregulation of 18 genes and downregulation of 812 genes (Figure 2.1F). Among lymphocyte 
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populations, CD8+ T cells from pancreatic tumors exhibited significant differential upregulation 

of 287 genes and downregulation of 89 genes; in CD4+ T cells, we observed 121 upregulated 

and 6,530 downregulated genes, respectively (Figure 2.1G and Figure 2.1H). Macrophages 

upregulated 993 genes and downregulated 881 genes (Figure 2.1I). We also analyzed several less 

abundant types of cells; however, due to limited cell number, the DGE were less informative 

(Figure 2.2C-H). 

We next performed transcription factor inference analysis to ascertain master regulatory 

networks in the healthy human pancreas and PDA samples (Table 1 and Table 2). Further, we 

performed analysis to distinguish transcription factors that had the highest log fold change in 

PDA samples compared to healthy tissue (Table 3). We used the single-cell regulatory network 

inference and clustering (SCENIC) package in R to infer putative regulon activity. Transcription 

factor motif enrichment analysis enables the identification of gene targets regulated by a 

transcription factor – these comprise a “regulon”, and AUCell assigns a corresponding regulon 

activity score to cells (27). Collectively, these analyses revealed changes in regulon activity for 

corresponding transcription factors by cell type and disease status.  

In epithelial cells, we observed increased activity for transcription factors that positively 

regulate cell proliferation (GRHL1, NR2F6, FOXC2) and immunosuppression (KLF3, IRF6, 

TBX21) in tumor samples as compared to normal pancreata (28–33). In addition, regulon 

activity corresponding to ONECUT2 increased in epithelial cells from tumor tissue. ONECUT2 

has been implicated in driving neuroendocrine prostate cancer and promoting metastasis in 

ovarian cancer (34,35). Tumor infiltrating T cells expressed higher regulon activity scores for 

FOXO family transcription factors, which mediate induction of renewal capacity in memory T 

cells and effector function in cytotoxic T cells (36–38). In addition, NFKB2, STAT4, and 
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STAT1 regulon activity were increased in T cells from tumor tissue. These transcription factors 

are critical regulators of innate and adaptive immune responses, T cell effector and memory 

function, and helper T cell differentiation (39,40). Tumor associated macrophages exhibited 

enrichment for SREBF2 and PPARG, regulators of cholesterol and lipid homeostasis, 

respectively (31,41). Recent studies have shown that PPARG plays a critical role in TAM 

polarization in the tumor microenvironment, and may be an actionable therapeutic target (42,43).  

Finally, to compare metabolic gene expression programs, we performed GSEA with a 

curated list of pathways containing all metabolic gene sets available from the KEGG database 

(44). GSEA relies on gene sets to computationally determine statistical significance between two 

states. It is therefore more stringent than DGE analysis and may capture processes not readily 

apparent with DGE analysis. We focused this analysis on epithelial cells, macrophages, 

granulocytes, T cells (both CD4+, and CD8+), and B cells, based on the abundance of cells 

available for this analysis (Figure 2.1C). As noted above, some cell populations could not be 

compared as they had limited representation in both  healthy and tumor samples. Epithelial 

cancer cells exhibited higher vitamin A and biosynthetic machinery (Figure 2.3B-E), while many 

immune cell types in the tumor downregulated mitochondrial respiration (Figure 2.5B-D), and 

CD8+ T cells in the tumor demonstrated unique metabolic deregulation associated with 

exhaustion (Figure 2.7G-H). These observations are divided on a cell type-specific basis in the 

sections that follow. 
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Figure 2.1 Data composition and workflow.  

(A) Schematic of single cell sequencing performed on 6 healthy pancreatas procured from a collaboration with the 

Gift of Life Michigan, a center for organ and tissue procurement and 16 pancreatic cancer samples; 10 from surgical 

resections and 6 from fine needle biopsies at the University of Michigan. Followed by analysis workflow.  

(B) Uniform manifold approximation and projection (UMAP) visualization of all identified cell types present in the 

pancreatic microenvironment.  

(C) UMAP visualization of cell types which demonstrated significant metabolic alterations in the pancreatic cancer 

samples compared to healthy human pancreas tissue when GSEA is performed with metabolic gene sets. 

(D)Principal component analysis (PCA) plot of healthy human pancreata samples and PDA samples.  

(E-I) Volcano plots of differential gene expression by cell type. Genes that are significantly up- (top-right) and 

down- regulated (top-left) in tumor versus heathy and the gene symbols are included for representative differentially 

expressed genes. 
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Figure 2.2 Cell numbers across cell types in healthy and pancreatic tissue and DGE analysis.  

(A) Table with number of cells per population in the healthy and tumor samples. 

 (B-H) Volcano plots of differential gene expression by cell type. Genes that are significantly up- (top-right) and 

down- regulated (top-left) in tumor versus heathy and the gene symbols are included for representative differentially 

expressed genes. 
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Table 1 Transcription Factor Analysis for the Healthy Pancreas 
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Table 2 Transcription Factor Inference Analysis for Tumor Derived Tissue 
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Table 3 Transcription factors with highest log fold change in PDA compared to healthy tissue 
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2.3.2 Pancreatic cancer cells engage vitamin A metabolism and downregulate amino acid 

catabolism. 

We started our investigation into metabolic rewiring with cancer epithelial cells relative to 

normal epithelial cells (Figure 2.3A). Cancer cells co-opt a wide array of metabolic adaptations 

to manage deregulated nutrient and oxygen availability and to disrupt access to anti-tumor 

immune cells (45). Similar to prior reports, we observed that pentose conversions were increased 

in cancer cells, as described previously (6,46), as were lipid and vitamin metabolism pathways 

(Figure 3.1A and Figure 3.1B). Specifically, epithelial cells derived from tumor tissue decreased 

oxidative phosphorylation and fatty acid oxidation, as well as several amino acid catabolic 

pathways (Figure 2.3A, Figure 2.3C-E and Figure 2.4A) (47,48).  

Next, we examined differential expression of genes that contributed most to the 

enrichment score, denoted as leading edge genes (Figure 2.3F-I). Retinol metabolism was the 

only significantly increased pathway in tumor derived epithelial cells compared to healthy 

epithelial cells (Figure 2.3B). Within in this pathway, we observed that tumor cells differentially 

increased the expression of genes encoding enzymes related to the production of retinol 

aldehydes, retinyl esters, and retinoic acid (Figure 2.3F). Retinoic acid signaling is involved in 

development, proliferation, and mediation of mechanosensing in the stroma through its 

interaction with myosin light chain 2 (MLC-2) (49,50). More specifically, the vitamin A 

metabolite all-trans retinoic acid has been implicated in reprogramming the PDA  stroma via 

downregulation of MLC-2, leading to pancreatic stellate cell quiescence (51). For this reason, 

targeting vitamin A metabolism has been proposed as a potential therapeutic strategy for stromal 

reprogramming (52). Our data demonstrate a significant increase in RETSTAT expression 

(Figure 2.3F), which Bi et al. identified as a crucial mediator of ferroptosis (53). Collectively, 
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our data add to the growing body of research pointing towards retinoic acid signaling as a critical 

mediator of tumor progression and maintenance.  

Amino acid degradation pathways were the most downregulated in epithelial cells from 

pancreatic tumors, relative to normal epithelial cells (Figure 2.3C-E). These included branched 

chain amino acid (BCAA) metabolism; glycine/serine/threonine metabolism; and 

cysteine/methionine metabolism. In general, the broad downregulation of amino acid catabolism 

may suggest increased utilization/prioritization of amino acids for protein biosynthesis. 

However, each of these pathways serve other functions and their downregulation may reflect 

other altered purposes. For example, BCAA catabolism can fuel tricarboxylic acid (TCA) cycle 

anaplerosis, a process that also provides nitrogen for other functions (54) (Figure 3.1G). In either 

case, our observation is consistent with a recent study that illustrated decreased BCAA 

degradation in PDA models (23). In a related study, it was also shown that stromal cell 

reprogramming in PDA can lead to the production and release of BCAAs from stromal cells and 

their provision to PDA cells (11). These studies and others (54) have focused on the branched 

chain amino acid transaminase (BCAT); our data showed significantly decreased BCAT1/2 gene 

expression in tumor derived epithelial cells, thereby adding to a growing body of work 

demonstrating that PDA cells seemingly prioritize BCAAs for purposes other than degradation. 

Similarly, glycine/serine/threonine have non-proteinogenic functions. In humans, 

threonine is not catabolized (55), and the inclusion of this GSEA term was captured based on the 

functions of glycine and serine. Unlike BCAAs, glycine and serine are non-essential amino 

acids. They can be obtained through diet or made de novo in most cell types in the body (56). 

We observed that both serine synthesis (based on PHGDH expression) and catabolism (based on 

SHMT1 expression) were downregulated in cancerous epithelial cells (Figure 2.3H), indicating 
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that serine is likely derived from diet or other cell types in pancreatic cancer. Further, glycine 

and serine are substrates for 1-carbon metabolism, and glycine (which can be derived from 

serine) is one of three amino acids in the glutathione tripeptide. Our data also suggest a 

decreased reliance on serine and glycine for these pathways. 

GSEA also revealed a significant decrease in cysteine and methionine metabolism in 

tumor derived epithelial cells compared to healthy epithelial cells (Figure 2.3E). Based on the 

genes involved, this centered around methionine metabolism, and its role in providing one 

carbon units (Figure 2.3I). The decrease in 1-carbon units from serine/glycine and methionine 

metabolism indicates that either there is a decrease in histone methylation or that another source 

of one carbon units stand in for these amino acids. Collectively, these observations suggest 

decreased amino acid catabolism in the cancer cells may support protein biosynthesis. 
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Figure 2.3 Metabolic co-adaptations in pancreatic cancer cells.  

(A) Significantly altered metabolic pathways in epithelial cells derived from pancreatic cancer samples compared to 

healthy pancreas samples, with corresponding normalized enrichment scores (NES) and adjusted p-values from 

GSEA analysis.  

(B-E) GSEA Enrichment plots of significantly up or down regulated metabolic pathways in cancer cells with 

corresponding NES and adjusted p-values. 

(F) Schematic of retinol metabolism, blue corresponding to differentially decreased genes, and red to differentially 

increased in tumor derived epithelial cells. Violin plots of selected retinol metabolism genes comparing healthy to 

tumor, with adjusted p-values for significantly differentially expressed genes.  

(G) Schematic of valine, leucine, and isoleucine degradation. Violin plots of selected valine, leucine, and isoleucine 

metabolism genes comparing healthy to tumor, with adjusted p-values for significantly differentially expressed 

genes. 

(H) Schematic of glycine, serine , and threonine metabolism . Violin plots of selected glycine, serine , and threonine 

metabolism genes comparing healthy to tumor, with adjusted p-values for significantly differentially expressed 

genes.  

(I) Schematic of cysteine and methionine metabolism . Violin plots of  cysteine and methionine metabolism genes 

comparing healthy to tumor, with adjusted p-values for significantly differentially expressed genes. 
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Figure 2.4 GSEA Analysis.  

(A) Enrichment plot of oxidative phosphorylation signature significantly increased in cancer cells, with 

corresponding NES and adjusted p-value.   
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2.3.3 Differential repression of oxidative phosphorylation machinery across immune 

populations in pancreatic tumors. 

Next, we sought to determine how innate and adaptive immunity is metabolically shaped by the 

tumor microenvironment.  We observed that multiple immune compartments in pancreatic 

cancer samples significantly decreased their oxidative phosphorylation signature compared to 

healthy human pancreas tissue (Figure 2.5A). Most prominent among these were CD8+ T cells, B 

cells, and granulocytes (Figure 2.5B-D). Next, we assessed the leading edge genes per cell type 

and per ETC complex (Figure 2.5E-K). As shown in Figure 2.5E, we performed principal 

component analysis (PCA) based on gene expression of the 44 subunits in Complex I. 

Remarkably, we found that expression levels of genes encoding for subunits of Complex I 

distinguished immune compartments from each other in the tumor condition, without lineage 

markers (Figure 2.5E). In other words, the metabolic signature of each immune cell population in 

the tumor is as distinct as the canonical cell surface markers used to define immune cells.  

Next, we segregated immune compartments in the tumor condition based on average 

expression and percentage of cells expressing genes that encode for the subunits of complexes 

(Figure 2.5F-I). Complex I-encoding gene expression components were downregulated to 

varying degrees across all immune compartments, compared to their counterparts in healthy 

pancreata (Figure 2.5F). Most notably, B cells in the tumor decreased expression of multiple 

genes encoding proteins that drive complex I. Meanwhile, complex I genes were not highly 

expressed in granulocytes, nor did they differ significantly based on sample condition. Lastly, 

tumor CD8+ T cells exhibited decreased expression of a few genes in complex I. In complex II, 

the second entry into the electron transport chain, tumor associated granulocytes decreased 

expression of succinate dehydrogenase isoforms SDHC and SDHB (Figure 2.5G). To our 
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knowledge, dysregulation of complex II in tumor associated granulocytes has not been shown in 

pancreatic cancer. In contrast, B cells did not display a shift in expression of complex II genes in 

the tumor compared to healthy tissue (Figure 2.5G). CD8+ T cells showed a slight increase in the 

expression of SDHA and SDHD in tumors (Figure 2.5G).  

Differences in expression based on cell type in the tumor compared to healthy pancreas were 

also seen in complexes III and IV (Figure 2.5H and Figure 2.5I). Notably, B cells had the 

greatest decrease in expression of genes encoding Complexes III and IV. Segregation based on 

expression and percentage of cells expressing complex IV and III genes, respectively, did not 

display a pattern in the tumor condition, unlike our findings in complex I (Figure 2.6A and 

Figure 2.6B). However, expression of leading-edge genes related to ATP synthase, i.e., complex 

V,  led to segregation of the immune compartments in the tumor condition (Figure 2.5J). As 

previous trends demonstrated, the degree of downregulation and the leading edge genes that 

decreased in expression were cell type dependent for complex V (Figure 2.5K). Each immune 

compartment followed a different pattern of expression in tumor compared to healthy tissue. 

Importantly, we assessed read coverage of glycolytic genes across immune compartments and 

found adequate coverage, and yet tumor associated B cells and granulocytes did not significantly 

alter glycolysis in relative to the normal pancreas (Figure 2.6C-E). In contrast, there is a marked 

upregulation of glycolytic gene expression in CD8+ T cells, as is discussed below. The increase 

in glycolytic gene expression beginning at GAPDH is reflective only of CD8+ T cells, not 

granulocytes and B cells (Figure 2.6F-G). Collectively, this may suggest that tumor associated B 

cells and granulocytes don’t shift towards glycolytic dependence in the same manner as CD8+ T 

cells. 
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Figure 2.5 Down regulation of oxidative phosphorylation in immune cells.  

(A)Schematic of electron transport chain.  

(B-D)GSEA Enrichment plots demonstrating oxidative phosphorylation is significantly downregulated in CD8+ 

T cells, B cells, and granulocytes derived from PDA samples, compared to healthy human pancreas tissue, with 

corresponding NES and adjusted p-values.  

(E) PCA visualization based on the expression of genes driving complex I in B cells, granulocytes, and CD8+ T 

cells in healthy human and PDA samples.  

(F-I) Dot plot visualization based on the average expression and percent of cells expressing genes driving 

complex I, II, II and IV, respectively, in B cells, granulocytes, and CD8+ T cells in healthy human (black) and 

PDA samples (purple).  

(J) Principal component analysis (PCA) visualization based on the expression of genes driving  ATP synthase 

in B cells, granulocytes, and CD8+ T cells in healthy human and PDA samples.  

(K) Dot plot visualization cells expressing ATP synthase related genes and percent expressing these genes in 

immune cells from tumor tissue (purple) and healthy tissue(black). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

56 

 

 

 



 
 
 

57 

Figure 2.6 Tumor associated immune compartments have adequate coverage of glycolytic genes 

(A) Principal Component Analysis (PCA) visualization based on the average expression and percent of cells 

expressing genes related to complex IV in B cells, granulocytes, and CD8+ T cells in healthy human and PDA 

samples.  

(B) PCA visualization based on the average expression and percent of cells expressing SDH/A/B/C/D in B cells, 

granulocytes, and CD8+ T cells in healthy human and PDA samples.  

(C-E) Box plots of reads corresponding to glycolytic genes in healthy and tumor conditions  for B cells, CD8+ T 

cells, and granulocytes.  

(F-G) Dot Plot visualization of glycolytic genes, displaying average expression and percent expressed in B cells and 

granulocytes, respectively, in tumor (purple) and healthy pancreas tissue (black). 
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2.3.4 Metabolic rewiring of T cells. 

Intrigued by the marked decrease in ETC complex expression, we next assessed more globally 

the metabolic differences between tumor derived CD8+ T cells and CD8+ T cells from the 

healthy pancreas by performing GSEA (Figure 2.7A). In agreement with previous studies of T 

cells in solid tumors, tumor derived CD8+ T cells showed significant upregulation of glycolysis 

(57,58) (Figure 2.7A). However, unlike classical descriptions of CD8+ T cell differentiation and 

expansion, the increase in glycolytic gene expression was accompanied by a decrease in 

oxidative phosphorylation (Figure 2.7A and Figure 2.7B). We put forth that this dichotomous 

activation of bioenergetic pathways is the likely result of low oxygen availability in the 

pancreatic TME, based on the observed hypoxia signature in CD8+ T cells (Figure 2.8 A and 

Figure 2.8B). Further, analysis of expression of individual glycolytic enzymes demonstrated an 

increase in expression of genes downstream of GAPDH (Figure 2.7B and Figure 2.7C). We 

hypothesize that this occurs to assist in clearance of reductive stress to facilitate continued 

glycolysis in low oxygen conditions. When CD8+ T cells were subsetted into exhausted, 

cytotoxic, and naive populations, no significant metabolic alterations were seen between 

conditions (Figure 2.8D-F). It is important to note that since sample sizes decreased when 

subsetting CD8+ T cell populations, these comparisons are less robust. At the population level, 

CD4+ T cells did not exhibit significant differences in gene expression between the tumor 

condition and healthy pancreas. Thus, we subclustered the CD4+ T populations to gain a more 

granular view (Figure 2.7D). We used previously published markers to delineate the various 

subtypes of T cells (Figure 2.8C). Subclustering CD8+ and CD4+ T cells revealed additional 

insights(Figure 2.7E); for example, naive CD4+ T cells exhibited metabolic changes in the tumor 

microenvironment that largely mirror those in bulk CD8+ T cell populations (Figure 2.7F).  
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To interrogate master regulators of transcriptional programs in T cells, transcription 

factor analysis was performed using the scenic package in R. The activity of transcription factor 

target genes corresponds to regulon activity, where a higher score indicates a higher inferred 

activity level of target genes. The strongest scoring transcription factor for this analysis was 

FOXO1. We observed that CD8+ T cells and CD4+ T cells derived from tumors showed 

increased FOXO1 regulon activity scores in comparison to CD4+ and CD8+ cells derived from 

healthy pancreas tissue (Figure 2.7G and Figure 2.7H). FOXO1 is critical for the activation of 

memory T cells capable of re-expansion in response to antigen presentation (36,37,59). In this 

capacity FOXO1 mediates glycosylation (38), pathways that we observed to be highly 

differentially regulated in the GSEA (Figure 2.7A). 

Second to FOXO1 was EOMES, a transcription factor involved in the regulation of 

memory and regulatory T cell function and homeostasis. Increased expression of EOMES has 

been observed in a terminally exhausted subset of infiltrating CD8+ T cells (60). Interestingly, 

TBX21 regulon activity was increased in tumor derived T cells (Table 3). TBX21 is a critical 

transcription factor in chronic infection and has been shown to promote a terminally exhausted 

phenotype in T cells (33,61). Collectively, our data suggest that a population of tumor associated 

T cells may be on a trajectory towards progenitor or terminal exhaustion, unable to execute 

tumor clearance.  This is consistent with previous observations, including by our group, that T 

cells in pancreatic cancer are dysfunctional (22,62,63).Overall, the metabolic profiles of T cell 

subsets derived from PDA samples suggest a dysfunctional phenotype, marked by hypoxia, 

decreased oxidative phosphorylation, and a compensatory increase in glycolysis. These results 

provide a more detailed understanding of how the pancreatic tumor microenvironment 
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deregulates CD8+ T cell metabolism and thus function, as well as insight into how T cells 

compensate. 
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Figure 2.7 Metabolic rewiring of T cells in the pancreatic cancer microenvironment.  

(A) Significantly altered pathways in CD8+ T cells from PDA samples compared to CD8 + T cells derived from the 

healthy.  

(B)  Dot plot visualization of the average expression and percent of cells expressing genes driving glycolysis in 

CD8+ T cells from tumor tissue (purple) and healthy tissue (black).  

(C) Violin plots of the expression of selected differentially expressed glycolysis metabolism genes comparing CD8+ 

T cells from tumor samples to those from healthy samples.  

(D) Uniform manifold approximation and projection (UMAP) visualization of CD4 and CD8 T cells populations in 

the tumor and healthy tissue.  

(E) Dot plot visualization of the average expression and percent of cells expressing genes driving glycolysis in CD4 

and CD8 T cells populations  from tumor tissue (purple) and healthy tissue (black). 

(F) Significantly altered pathways in CD4 naïve cells from PDA samples compared to healthy naïve CD4+ cells.  

(G-H) Transcription Factor Analysis showing regulon activity of FOXO1 and EOMES in CD8+ T cells in tumor 

and healthy samples. 
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Figure 2.8 Tumor derived cytotoxic and exhausted CD8+ T Cell subsets significantly increase hypoxic 
signature  

(A-B) GSEA Enrichment plots demonstrating  hypoxia is significantly downregulated in exhausted  and cytotoxic 

CD8+ T cells in pancreatic cancer tissue compared to healthy counterpart. (C)Dot plot visualization of marker 

expression utilized to subset T cell populations.  

(D-F) GSEA results for CD8 naïve, exhausted, and cytotoxic T cells from PDA samples compared to healthy 

samples, with corresponding normalized enrichment scores (NES) and adjusted p-values. 
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2.3.5 Metabolic alterations in TAMs. 

Macrophages, play important roles in healthy tissues, and many metabolic crosstalk features 

have been documented in the tumor microenvironment. In PDA, TAMs dictate milieu 

composition, immunosuppressive programs, and efficacy of therapeutic agents (14,20, 64, 65). 

To begin our interrogation into macrophages, we first investigated significantly increased or 

decreased metabolic pathways in TAMs compared to macrophages in the healthy pancreas 

(Figure 2.9A). In TAMs, we observed that glycolysis, the pentose phosphate pathway (PPP), 

unsaturated fatty acid synthesis, and fructose and mannose metabolism were significantly 

increased. This is consistent with previous studies pointing to altered carbohydrate, lipid, and 

amino acid metabolism in TAMs (20,64, 66).  

We then observed that TAMs upregulated the expression of several enzymes that drive 

unsaturated fatty acid synthesis, including ACOT2/4/7, HACD4, and SCD (Figure 2.9B and 

Figure 2.10A). In addition, we found PPARG regulon activity to be increased in TAMs 

compared to healthy macrophages based on PPARG regulon activity (Figure 2.9C). As 

upregulation of unsaturated fatty acid synthesis enzymes in pancreatic TAMs has not been 

previously reported, we employed a murine model of pancreatic TAM polarization to assess 

whether SCD, a key enzyme in this pathway, was expressed at the protein level. In brief, we 

isolated bone marrow derived monocytes and polarized them with tumor conditioned media; this 

approach activates expression of hallmark genes of tumor associated macrophages (15). 

Polarization with tumor conditioned media promoted increased SCD expression in TAMs at the 

protein level (Figure 2.9D). These results indicate that TAMs upregulate components of the 

unsaturated fatty acid synthesis pathway in response to cancer cell signals. TAMs can display 

considerable cellular plasticity, dependent on exogenous signaling factors in their environment. 
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To explore this, we next subclustered macrophage populations for higher resolution analysis 

using markers reflecting current classification paradigms (67,68) (Figure 2.10B and Figure 

2.10C). To better visualize the changes between macrophage subsets in tumor compared to 

normal tissue, we assessed the following pathways: glycolysis, PPP, and tryptophan catabolism 

based on the percentage of cells expressing genes related to each significantly altered pathway, 

alongside average expression (Figure 2.9E-H). 

TAMs exhibited the greatest increase in glycolysis in tumor samples compared to healthy 

counterparts (69) (Figure 2.9E and Figure 2.9F). Monocyte derived cells also trended towards an 

increase in glycolysis. Consistent with precedent, pro-inflammatory macrophages derived from 

both tumor and healthy pancreas expressed genes driving the PPP to a greater degree than the 

other macrophage subtypes (Figure 2.9G). Next, we looked at tryptophan metabolism in 

macrophage subtypes, as it was borderline significant in our analysis and a well-known 

metabolic pathway in macrophages (70–72). The shift towards tryptophan metabolism in tissue 

resident macrophages derived from tumor compared to healthy pancreas exhibited several 

notable features (Figure 2.9D and Figure 2.10D). Indeed, we observed a combination of 

increased tryptophan catabolism, based on IL4I1 expression, and a marked increase in AFMID, 

which yields kynurenine, a well-known metabolic suppressor of T cell function and activation 

(12,69,73). Lastly, we performed GSEA on each subpopulation of macrophages and found 

significantly increased glycolysis and oxidative phosphorylation metabolic signatures in 

alternatively activated macrophages (Figure 2.10E). In contrast, the remaining macrophage 

subsets in pancreatic cancer samples did not have significantly altered metabolic programs 

compared to healthy pancreas (Figure 2.10F-H), demonstrating that TAMs engage in 
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heterogeneous metabolic activities in the tumor microenvironment that are not restricted to either 

pro- or anti-tumor programs. 
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Figure 2.9 Metabolic alterations in tumor associated macrophages.  

(A) Significantly altered metabolic pathways in macrophages derived from pancreatic cancer samples compared to 

healthy pancreas samples, with corresponding normalized enrichment scores (NES) and adjusted p-values.  

(B) Violin plot of the expression of stearoyl-CoA Desaturase (SCD) in macrophages in tumor and healthy samples, 

showing differential expression.  

(C) Transcription Factor Analysis showing regulon activity of PPARG in macrophages in tumor and healthy 

samples. (D) Western blot, protein expression of SCD is higher in murine BMDMs treated with tumor condition 

media compared to control condition with M-CSF.  

(E) Glucose and PPP pathway schematic.  

(F) Dot Plot visualization of genes driving glycolysis displaying average expression and percent expressed in 

macrophages in tumor (purple) and healthy pancreas tissue (black).  

(G) Dot Plot visualization of genes driving PPP that don’t overlap with glycolysis, displaying average expression 

and percent expressed macrophages in tumor (purple) and healthy pancreas tissue (black).  

(H) Tryptophan metabolism schematic, Dot Plot visualization of genes driving tryptophan metabolism, displaying 

average expression and percent expressed in macrophages in tumor (purple) and healthy pancreas tissue (black). 
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Figure 2.10 Subsetting myeloid subsets  

(A)Violin plots of genes involved in unsaturated fatty acid synthesis, with adjusted p-values for significantly 

differentially expressed genes.  

(B) Dot Pot of markers used to identify sub populations of myeloid cells.  

(C) Uniform Manifold Approximation and Projection (UMAP) of myeloid populations in the healthy and tumor 

conditions.  

(D) Violin plots of differentially genes involved in tryptophan metabolism.  

(E) GSEA results for alternatively activated macrophages.  

(F) GSEA results for tissue resident macrophages. (G) GSEA analysis for neutrophils.  

(H) GSEA results for pro-inflammatory macrophages. All GSEA results contain corresponding normalized 

enrichment scores (NES) and adjusted p-values. 
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2.3.6 Cellular crosstalk between epithelial cells and TAMs. 

Pancreatic tumors have limited functional vasculature. Thus, cells in the tumor have varied and 

constrained access to serum-derived nutrients and oxygen. To compensate, numerous reports 

have detailed cooperative metabolic cross-feeding pathways where cancer cells capture nutrients 

from other non-cancer cell types present in the tumor microenvironment to sustain cellular 

proliferation and tumor growth (12). We sought to investigate if we could identify putative cross-

feeding pathways from our datasets based on differential pathway activity or importer/exporter 

expression between cellular compartments that could result in a symbiotic relationship when 

considered together. Application of this approach led us to identify increased expression of the 

cholesterol exporter ABCG1 in TAMs relative to macrophages derived from healthy pancreatic 

tissue (Figure 2.11A). This observation suggests that TAMs release more cholesterol. Next, we 

found that the low density lipoprotein receptor (LDLR) was differentially increased in cancer 

cells (Figure 2.11A), suggesting that cancer cells may selectively import cholesterol (Figure 

7.1B). 

The transcription factor SREBP2 activates genes involved in cholesterol synthesis, efflux, and 

expression of the LDL receptor (31). We assessed the regulon activity score associated with 

SREBF2, the transcript encoding for SREBP2, and found it to be higher in epithelial cells 

derived from PDA compared to healthy tissue (Figure 2.11C). To assess if cancer cell derived 

factors play a functional role in TAM ABCG1 expression, we utilized the in vitro mouse model 

of pancreatic TAM polarization described above. Treatment of unpolarized macrophages with 

cancer cell conditioned media boosted ABCG1 expression in TAMs by western blot, relative to 

that in unpolarized macrophages (Figure 2.11D). Next, we set out to corroborate these findings at 

the protein level in human samples. We stained normal pancreas and pancreatic tumor tissue for 
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macrophage specific (CD163+) expression of ABCG1. Indeed, ABCG1 expression was higher in 

TAMs compared to non-tumor associated macrophages present in healthy human pancreatic 

tissue (Figure 2.11E). In parallel, human pancreatic cancer tissue and healthy human pancreata 

were probed for LDLR expression in epithelial cells (panCK+). LDLR expression was elevated 

in human pancreatic cancer tissue compared to healthy human pancreatic tissue (Figure 2.11F). 

Collectively, these data suggest that pancreatic TAMs may provide cholesterol to cancer cells, as 

has been previously described in prostate and breast cancer (65,74). 
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Figure 2.11 Metabolic cellular crosstalk between epithelial cells and TAMs.  

(A) Violin plots showing ABCG1 is significantly upregulated in TAMs, and LDLR is significantly upregulated in 

tumor derived epithelial cells.  

(B) Schematic of TAMs significantly increasing ABCG1 (cholesterol exporter) expression, and cancer cells 

significantly increase expression of a corresponding lipid/cholesterol receptor LDLR.  

(C) Transcription Factor Analysis showing SREBF2 regulon activity is increased in tumor derived epithelial cells. 

(D)Western blot,  protein expression of ABCG1 is higher in murine BMDMs treated with tumor condition media 

compared to control condition with M-CSF.  

(E) Immunofluorescent staining. Healthy human tissue and pancreatic cancer tissue probed for CD163, ABCG1, and 

DAPI.  

(F) Immunofluorescent staining. Healthy human tissue and pancreatic cancer tissue probed for LDLR, panCK, and 

DAPI. 
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2.4 Discussion 

Cancer and immune cells acquire a wide array of metabolic adaptations, including autonomous 

and symbiotic adaptations, to circumvent the nutrient deregulated conditions in the tumor 

microenvironment, sustain increased bio-energetic demands, and engage in competition for 

scarce fuel sources (13,45,73,80). Since cancer cells participate in immune-metabolic crosstalk 

in the TME, oncogenic signaling can both directly and indirectly affect immune cells. This leads 

to metabolic alterations also engendered in several immune compartments (43,73,81). Previous 

studies have shown immune cell dysfunction in PDA attributed to exhausted T cells unable to 

execute effector functions, regulatory T cell activity hindered by interactions with TAMs 

excreting kynurenine, and other signaling pathways co-opted by cancer cells (30,55,82,83). 

Metabolism directly informs the functional phenotypes of every cell present in the 

microenvironment. 

The advent of next generation single cell sequencing technology has enabled the mapping 

of gene expression, metabolic pathways, and potential cellular interactions in the tumor 

microenvironment at high resolution (75,76,77). Single cell RNA-seq has been employed to 

query metabolic heterogeneity in TAMs from other tumor models, where  a correlation between 

metabolic phenotype and function in murine models was observed (77). Nevertheless, access to 

patient tumor tissue for investigation using single cell techniques remains difficult; especially 

from organs not routinely sampled for medical procedures (78,79). Adjacent normal pancreatic 

tissue, often used as control, is not “normal”, as it is affected by inflammation and desmoplasia 

in the pancreas. The availability of “true normal” allowed us to map out gene expression changes 

linked to malignancy, and specifically query metabolic alterations across all cellular 

compartments. Thereby, building a metabolic atlas from healthy and pancreatic tumor tissue.  
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Here, we characterize metabolic rewiring of malignant, non-malignant, and immune cells 

in the healthy human pancreas compared to human PDA cancer samples. Our findings serve as a 

resource atlas for understanding the various pathways co-opted by pancreatic cancer cells to 

maintain survival, while detailing immune cell rewiring and crosstalk in response to oncogenic 

signaling. Many metabolic studies have leveraged in vitro systems, which enable manipulation of 

media, metabolite levels, and can include select stromal and immune cells (5,8,9,20,66,84,85–

89). These conditions do not fully recapitulate physiological circumstances in which the tumor 

microenvironment milieu contributes to metabolic dysregulation and competition for bio-

energetic substrates, nor do they  account for the complexities of immunosuppression.  

Accordingly, this unique resource could  also be of value to compare/contrast metabolic rewiring 

of the TME in other cancers, immunometabolism in other healthy and diseased states, including 

but not limited to those interested in the truly healthy pancreas. Our work suggests that 

mitochondrial respiration is downregulated across multiple immune compartments; CD8+ T 

cells, B cells, and granulocytes. This significant decrease in oxidative phosphorylation 

dependency may be attributed to hypoxic regions in the tumor, a hallmark feature of PDA 

(90,91). Limited oxygen availability may pressure immune cells to downregulate ETC 

dependency (92,93). Interestingly, the manner in which immune cells shift dependency is not 

homogenous – rather, it is ETC complex and cell-type specific. Remarkably, our work shows CI 

subunit expression is reduced in B cells, CII is down in granulocytes, and ETC complex 

expression is more uniformly decreased in CD8+ T cells. Recent work demonstrated that the 

oxidative flow of electrons through the ETC plays a critical role in cancer cell immune evasion 

in melanoma. In melanoma cells, loss of CII augmented succinate levels, leading to epigenetic 

activation of genes related to antigen presentation and processing (94). Or stated reciprocally, 
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enhanced CI activity promotes anti-tumor immune cell recognition. Our data reveals for the first 

time that CI subunit expression is decreased  B cells in pancreatic cancer. This sets precedence 

for the investigation of electron flow manipulation employed by immune cells in PDA, and how 

this may contribute to immunosuppression. In addition, nutrient scarcity, as well as the secreted 

products of altered metabolism in cancer cells, shifts phenotypes of innate immune cells, which 

are supported by metabolic processes (57).  

Overall, our data shows a comprehensive analysis across immune compartments that points to 

mitochondrial immune dysfunction in PDA. TAMs are a metabolically heterogeneous group of 

cells that engage in cellular exchange of nutrients and metabolites with cancer cells present in the 

TME. Our work agrees with previous findings, and sheds light on more novel metabolic changes 

and interactions. We found that TAMs significantly increase expression of the unsaturated fatty 

acid synthesis protein SCD1 in vitro, and that this was regulated by factors secreted from tumor 

cells. Thus, we became interested in investigating metabolic exchanges advantageous to cancer 

cells. For example, a recent study illustrated that TAMs transfer cholesterol to cancer cells, 

conferring therapeutic resistance in castration resistant prostate cancer by modulating 

cholesterol/androgen signaling. This phenomenon was demonstrated in a breast cancer model, 

although in an IL-4 mediated fashion as well (74). These findings, together with altered lipid 

metabolism in TAMs in our data, prompted us to investigate the reciprocal relationship between 

the increased expression of the ABC cholesterol exporter on TAMs and the cognate 

lipid/cholesterol receptor on pancreatic cancer cells. Through co-immunofluorescent staining in 

healthy human tissue and pancreatic cancer samples we found increased ABCG1 expression in 

macrophages and increased LDLR in pancreatic cancer samples. To our knowledge this is the 

first report suggesting pancreatic cancer cells engage in cholesterol exchange with TAMs. How 
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this crosstalk may mediate an immunosuppressive signaling axis in pancreatic cancer remains to 

be further investigated. 

2.5 Methods 

2.5.1 Donor Sample Procurement and Tissue Processing  

Donor pancreata were collected at the Gift of Life Michigan Donor Care Center and preserved as 

previously published in Carpenter et al., 2023 (21).The research project and protocol for sample 

acquisition was approved by the Gift of Life research review group. The protocol was previously 

described and approved by the University of Michigan Institutional Review Board 

(HUM00025339). Briefly, portions of the dissected pancreas (head, body, and tail) were each 

placed into DMEM with 1% BSA/10 μmol/L Y27632 or 10% formalin for single cell sequencing 

or paraffin embedding, respectively. Further processing was done to prepare the samples for 

single-cell processing: mince tissue into 1-mm3 pieces, digest with 1 mg/mL collagenase P for 20 

to 30 minutes at 37°C with gentle agitation, rinse three times with DMEM/1% BSA/10 μmol/L 

Y27632 and then filter through a 40-μm mesh. Resulting cells were submitted to the University 

of Michigan Advanced Genomics Core for single cell sequencing using the 10x Genomics 

Platform.  

2.5.2 PDA patient samples 

Resected PDA from patients seen at the University of Michigan Healthy system from 2021 to 

2022 were included in this study, described previously (Steele et al., 2020)(22). Tissues were 

fixed in 10% neutral buffered formalin and paraffin embedded using standard protocols before 

sectioning and staining. All hematoxylin and eosin-stained slides were reviewed, diagnoses 

confirmed, and corresponding areas were carefully selected and marked. The collection of 
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patient-derived tissues for histological analyses was approved by the Institutional Review Board 

at the University of Michigan (IRB number: HUM00098128).  

2.5.3 Single- cell RNA Sequencing  

The samples were run on the 10x Genomics platform and subsequent analysis was previously 

described and published by Carpenter et al., 2023 (21). To subset the T cell population, as well 

as the myeloid population for higher resolution of cell types, markers from previously published 

studies were utilized to annotate sub populations. 

2.5.4 Pseudobulk RNA Differential Gene Expression  

As previously published in Carpenter et al., 2023, counts were aggregated from all of the 

different samples, or for a subset of cells (21). Counts were corrected by removing background 

contamination signal  and transformed to integer. To aggregate to the sample level, the mean 

function was utilized. For normalization and differential gene expression (DGE) analysis of the 

samples the DESeq2 package was used. Dimensionality reduction was employed better 

visualization of differences between groups was performed using the PCAtools package. 

2.5.5 Metabolic pathways and gene set enrichment analysis 

Selected metabolic pathways were retrieved from the Kyoto Encyclopedia of Genes and 

Genomes database: https://www.genome.jp/kegg/pathway.html#metabolism. 

The list of pathways was downloaded using a bash script and the pathway to gene mapping was 

downloaded from the KEGG database at: https://rest.kegg.jp/link/pathway/hsa. Gene set 

enrichment was performed using the GSEABase 

(https://bioconductor.org/packages/release/bioc/html/GSEABase.html) R package. For gene set 

enrichment analysis, the fgsea package in R was used together with the metabolic gene sets 

https://www.genome.jp/kegg/pathway.html#metabolism
https://rest.kegg.jp/link/pathway/hsa
https://bioconductor.org/packages/release/bioc/html/GSEABase.html
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downloaded from KEGG. This analysis was performed to identify significantly enriched 

metabolic pathways.  

2.5.6 Transcription factor inference analysis 

Transcription factor inference analysis was performed using SCENIC (v1.3.1) per cell type with 

raw count matrices corresponding to tumor and healthy tissue respectively. The regulons and TF 

activity (AUC) per cell was calculated with the pySCENIC program (v 0.12.1) with motif 

collection version mc9nr. 

2.5.7 Data Availability  

Human sc-RNA-seq data were previously published in Steele et al., 2020 (NIH dbGaP database 

accession #phs002071.v1.p1). Human sc-RNA-seq data were previously published in Carpenter 

et al., 2023, Raw single-cell sequencing data from donor pancreata are available at the NIH 

dbGaP database under the accession phs003229. Feature matrices of single-cell RNA data are 

available at accession number GSE229413. 

2.5.8 Cell Culture ( BMDM isolation + cell culture (TCM))  

Conditioned media: 

To make fibroblast or tumor conditioned media (CM), L929 fibroblast or 7940b tumor cells were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM, 11965-092) with 10% fetal bovine 

serum (FBS) and media were collected after 48 hours of growth. CM were centrifuged at 200 g 

for 5 min and passed through a 0.22 um filter to remove cells. 

BMDM isolation/ polarization:  

To make macrophage growth media, fibroblast CM were added at 30% volume to DMEM. Bone 

marrow cells were then harvested from WT C57BL/6 mice femurs and tibias and cultured in 

https://elifesciences.org/articles/80721#bib68
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macrophage growth media for 7 days. Fresh media were added on days 2 and 5 and cells were 

re-seeded in 6-well plates on day 6 to prepare for polarization. 

On day 7, media were replaced with polarization media, which consisted of DMEM with either 

M-CSF (10 ug/ml, PeproTech), LPS (10 ug/ml, Fisher Scientific), IL-4 (PeproTech) or 50% 

tumor CM. Polarized macrophages were harvested after 48 hours for analysis by western blot. 

2.5.9 Western blot analysis 

Western Blotting. Protein was isolated from cells with RIPA Lysis and Extraction Buffer( 

Thermo Fisher Scientific). Isolated protein was quantified and normalized via Pierce BCA assay 

(Thermo Fisher Scientific). 60 μg protein was run on 4-15% SDS- polyacrylamide gel 

electrophoresis gel and transferred onto nitrocellulose membranes(Invitrogen, Life 

Technologies). Membrane was blocked with 5% BSA( Fisher Scientific) in Tris-buffered saline-

Tween buffer. The membranes were probed with the antibodies mentioned above. 

2.5.10 Immunofluorescence 

FFPE normal pancreas and pancreatic cancer tissue sections were mounted onto glass slides, 

deparaffinized, dehydrated in graded ethanol, and rinsed in deionized water. Slides were 

quenched with hydrogen peroxide solution for 15 minutes and washed with PBS. Antigen 

retrieval was performed with 10 mM sodium citrate buffer at pH 6.0 with 0.05% Tween 20 for 

30 min in 96°C. Slides were cooled to room temperature and washed three times with PBS.  

For co-immunofluorescence with primary antibodies made in the same animal (ABCG1 and 

F4/80) the Tyramide SuperBoost™ Kit with Alexa Fluor™ Tyramide (Invitrogen) was used per 

manufacturer’s protocol. Briefly, tissues were blocked with kit blocking buffer (Component A) 

for one hour at room temperature and the first primary antibody was added and incubated 
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overnight at 4C in PBS with 2.5% BSA and 0.2% Triton-X. Slides were rinsed with PBS, and kit 

HRP-conjugated streptavidin (Component B) was added for one hour at room temperature. 

Tyramide working solution was added for 10 minutes followed by Reaction Stop Reagent 

working solution for 5 minutes. After rinsing in PBS, slides were boiled in 10 mM sodium citrate 

buffer at pH 6.0 with 0.05% Tween 20 for 20 minutes. Slides were cooled and blocked in kit 

blocking buffer (Component A) for one hour at room temperature. Additional primary antibodies 

were incubated overnight at 4C in PBS with 2.5% BSA and 0.2% Triton-X. Slides were rinsed 

with PBS and secondary antibodies were added for one hour at room temperature. DAPI was 

added to slide for 10 minutes at room temperature, slides were rinsed in PBS, and mounted in 

ProLong Gold Antifade Mountant (Invitrogen). 

 

For co-immunofluorescence with primary antibodies made in different animals, slides were 

blocked for one hour at room temperature in PBS with 2.5% BSA and 0.2% Triton-X. Primary 

antibodies were incubated overnight at 4C. The next day, slides were rinsed and incubated with 

secondary antibodies for one hour at room temperature. DAPI was added for 10 minutes at room 

temperature, slides were rinsed in PBS, and mounted in ProLong Gold Antifade Mountant 

(Invitrogen).High-magnification images were obtained on a Leica Stellaris confocal microscope 

at the University of Michigan Biomedical Research Core Facilities Microscope Core. 
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Table 4 Immunofluorescence and western blot antibodies and dilutions used in Chapter 2 

Reagent Type 

(species) or 

resource 

Designation  Source or 

reference 

Identifiers  Additional 

Information  

Antibody ABCG1( rabbit) Proteintech 13578-1-AP 

 

IF: 1:100 

Antibody  F4/80 (rabbit) Cell Signaling  70776S IF: 1:250 

Antibody  LDLR  Invitrogen  MA5-32075 IF: 1:100 

Antibody  Pan-

cytokeratin(mouse) 

Biolegend  628602 IF: 1:200 

Antibody  Alexa 488 (goat 

anti-rabbit 

secondary)  

Invitrogen A32731 IF: 1:500 

Antibody Alexa 594 (goat 

anti- rabbit 

secondary) 

Fisher A11012 IF:1:500 

Antibody  Alexa 555(goat 

anti-mouse 

secondary) 

Invitrogen A32727 IF: 1:500 

Antibody  Vinculin ( rabbit)  Cell Signaling  13901S WB:1:1000  

cell line (M. 

musculus) 

7940B Long et al., 2016  KPC cell line 

Commercial 

Assay Kit  

Alexa fluor 488 

Tyramide 

SuperBoost Kit 

Invitrogen B40922  
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Chapter 3 The Role of Oncogenic KRAS in Late Stage PDA 

3.1 Abstract 

Oncogenic KRAS is a hallmark mutation and drives progression and maintenance of pancreatic 

adenocarcinoma (PDA). Preliminary data shows that oncogenic Kras, expressed by pancreatic 

cancer cells, promotes a T cell-poor, immunosuppressive microenvironment. Here, I used a 

genetically engineered murine model of PDA, single cell RNA-Seq data, and a combination of  

in vitro and in vivo approaches to dissect the pathways driving immune suppression in pancreatic 

cancer. Overall, I aimed to characterize the role of mutant KRAS on the immune landscape in 

late stage pancreatic cancer by leveraging wet lab techniques and bioinformatics approaches.  
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Figure 3.1Schematic for oncogenic KRAS driven alterations in TME.  

Oncogenic KRAS drives  immunosuppressive signaling in the tumor microenvironment that 
results in cytotoxic T cell dysfunction/exhaustion and phenotypic changes in tumor associated 
macrophages.  
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3.2 Introduction   

Oncogenic KRAS is a driving mutation in PDA; 95% of tumors carry the mutant form with a 

single amino acid substitution, most frequently KRASG12D (4–6). Oncogenic signaling 

reprograms immune cells in proximity of the cancer cells, creating an immunosuppressive 

microenvironment adept at suppressing anti-tumor immune responses (8–15). Thus, there is a 

need to understand drivers of late stage PDA to develop more effective therapeutic strategies that 

target both cancer cells and stromal cells in the tumor microenvironment (TME). The Pasca lab 

and others have shown that oncogenic Kras regulates the surrounding microenvironment in a cell 

extrinsic manner and is necessary for tumor maintenance (10,12,13,15–17). 

To investigate the role of KRASG12D inhibition in late stage PDA, the iKras murine model 

was employed and single cell data from orthoptic tumors was analyzed. In addition, bulk 

transcriptomic data derived from patients with pancreatic cancer was mined to assess expression 

of genes reported to play a critical role in PDA progression. To ascertain immune landscape 

alterations following inhibition of oncogenic KRAS multiplex immunofluorescent staining and 

flow cytometry were performed. Dissecting changes in immune profiles as consequence of 

mutant Kras signaling may aid in targeting stromal and cancer cells for increased therapeutic 

efficacy.  
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3.3 Results 

3.3.1 Investigating the role of oncogenic Kras in the regulation of CD8+ T cell status in 

PDA 

The stroma is composed of pro and anti-inflammatory fibroblasts and immune cells which play a 

role in creating an immunosuppressive immune environment in PDA. More specifically, tumor-

associated macrophages (TAMs), regulatory T cells (Tregs) and inflammatory cancer-associated 

fibroblasts (iCAFs) make up a signaling axis that dampens the activation of CD8+ T cells 

(13,17–20). The inability of CD8+ T cells to recognize and execute tumor clearance allows for 

immune evasion. Further, CD8+ T cells display an exhausted phenotype in human pancreatic 

cancer (3). How mutant Kras regulates functional CD8+ T cell status remains to be fully 

determined in advanced PDA. I sought to determine whether the dysfunctional status of CD8+ T 

cells is directly mediated by oncogenic Kras expression in cancer cells using genetically 

engineered mouse models that recapitulate the human disease. 

To investigate if mouse models recapitulate the dysfunctional status of CD8+ T cells seen 

in human tumor tissue I orthotopically implanted murine PDA cells with doxycycline inducible 

mutant KrasG12D cells derived from genetically engineered mice into syngeneic mice (5). These 

cells, referred to as iKRAS, express oncogenic KRAS in presence of Doxycycline 

(DOX); withdrawal of DOX inactivates oncogenic KRAS expression (Figure 3.2A).The iKRAS 

cells are derived in FVBN pure strain mice and can be implanted in syngeneic FVBN host mice, 

thus retaining a functional immune system. We harvested tumors from mice kept on DOX for the 
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whole experiment, or following 3 days DOX withdrawal, dissociated them, and performed 

single-cell RNA sequencing (scRNA-seq). I visualized the results, and projected them using 

uniform manifold approximation and projection (UMAP) (Figure 3.2A). Interestingly, there were 

few lymphocytes in the Kras ON state, consistent with the immunosuppressive nature of 

pancreatic cancer (Figure 3.2B). Genetic inhibition of Kras globally reshaped the tumor immune 

microenvironment composition, with a notable increase in CD8+ T cells. CD8+ T cells are 

responsible for mounting anti-tumor responses; their increase upon Kras inactivation is 

consistent with lessened immune suppression. However, CD8+ T cells still expressed Tox, a 

transcription factor known to promote T cell exhaustion, following Kras inactivation, showing 

that even as T cell infiltration increased these cells are not likely to mount an anti-tumor immune 

response (Figure 3.2C). Additionally, I also observed changes in fibroblast abundance and type 

upon KRAS inactivation, similar to recent findings from our lab in early-stage disease (13). 

These preliminary data suggests that CD8+ T cell dysfunction is regulated by oncogenic Kras in 

epithelial cells.  

Next, to assess alterations in tumor associated macrophages (TAMs) as a result of acute 

Kras inhibition, macrophages were isolated and profiled using flow cytometry with the following 

panel:anti-Cd11b, anti-F4/80, anti-Ly6C, anti-Ly6G (Figure 3.2D). This analysis revealed that 

the population number of macrophages (F480+)  did not change due to Kras inhibition, but a 

greater proportion became Ly6C+ . The data suggests that macrophage density is not changed 

due to genetic inhibition of Kras, but that the polarization status is altered and should be further 

investigated.  
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Figure 3.2 Genetic Kras inhibition remodels the tumor microenvironment. 

( A) Three weeks after tumor implantation a subset of mice continued receiving 

doxycycline(Kras on) and a subset of mice did not receive doxycycline (Kras off) for three days 

or one week. Tumors were then harvested and dissociated to perform scRNA-Seq.  

(B) Results demonstrate remodeling of the immune microenvironment, with fewer lymphocytes 

(immune cells) and a more inflammatory fibroblasts (iCAFs) when Kras is expressed . 

(C)Acute inhibition of Kras restores CD8+T cell infiltration but exhaustion marker (Tox) was 

still expressed by T cells demonstrating ongoing dysfunction. 

(D) Representative flow plots for the analysis of F4/80+ cells following acute genetic Kras 

inhibition. 
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3.3.2 Interrogation of T cell infiltration following acute genetic Kras inactivation in vivo 

To assess infiltration of CD8 and CD4 T cells in the tumor, the above mentioned murine model 

was orthotopically implanted with iKras* cells, after tumor formation Kras was inactivated for 

three days, then tumors were harvested (Figure 3.3A) . Multiplex immunofluorescent staining for 

CD8+ and CD4+ T cells revealed an increase in immune cell infiltration following acute 

inhibition (Figure 3.3B). To ascertain if T cells colocalized with tumor cells, staining for CK19 

was performed. Both CD4 and CD8 T cells significantly increased levels following inhibition 

regardless of whether in CK19 high or low regions (Figure 3.3C-D). 

3.4 Discussion 

Pharmacological inhibition and genetic inactivation of Kras altered the immune landscape of 

TAMs and infiltrating lymphocytes in a murine model of PDA (Figure 3.1 and Figure 3.2) .The 

question remains whether this is a direct effect of the interaction between cancer cells and T 

cells, or whether it is mediated by other cell types (e.g., fibroblasts, macrophages, or other 
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myeloid cells, with known immunosuppressive role). To address this question, I will utilize a 3D 

co-culture system of pancreatic tumor cells and CD8+ T cells sorted from the tumor; I will 

determine whether the exhaustion phenotype is induced in vitro. I will then repeat these 

experiments adding cancer associated fibroblasts (CAFs) and/or tumor associated macrophages 

(TAMs) to determine whether they are required/contribute to T cell exhaustion.  

In vivo, I will orthotopically implant pancreatic cancer cells into a GEMM of PDA 

previously described with inducible Kras expression and inactivation. Two weeks after tumor 

implantation I will pharmacologically inhibit mutant KRASG12D with  MRTX1133 at 10 mg/kg 

twice daily for three weeks or remove doxycycline (genetic inhibition) for 3 weeks to achieve 

tumor regression. Once tumors are established, I will leave half the mice in each group untreated, 

while I will administer anti-TIGIT based on work by us and others a key checkpoint in 

pancreatic cancer (15,17,25) or CD40 agonist (21–23).  I will then harvest  tumors and isolate 

CD8+ T cells for immune profiling to determine if an “exhausted” phenotype is displayed 

amongst any of the treatment strategies. To do so I will perform flowcytometry with the 

following panel: anti-PD1, anti-TIGIT, anti-LAG3, anti-TIM3. I will also perform multiplex 

immunofluorescent staining to examine immune tone (functional status) in the tissue samples 

from all conditions. I will stain for CD8+T cell, CD4+ T cells , F480(macrophages), and 

Arginase 1(Arg1) as well to assess TAM polarization as well. Next, I will perform scRNA-seq 

on the tumor tissue to investigate differences in differentially expressed genes in each cellular 

compartment based on treatment condition, followed by gene set enrichment analysis to examine 

different pathways upregulated and downregulated. This analysis will reveal extrinsic changes 
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and intrinsic changes in the tumor. I will also analyze the interactome, to characterize ligand-

ligand interactions that drive signaling and co-adaptations. Lastly, to identify potential metabolic 

co-adaptations utilized by pancreatic cancer cells to overcome ICI therapy following mutant Kras 

inhibition mass spectrometry will be employed to identify metabolic proteins that are 

up/downregulated due to experimental treatment conditions.  

. 
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Figure 3.3 Inactivation of Kras augments T cell infiltration in orthoptic murine model. 

(A)Schematic of orthoptic tumor implementation into syngeneic mice. After two weeks Kras was 

pharmacologically inhibited for 3 days and tumors were harvested.  

(B)Multiplex immunofluorescent staining to probe for CD8+ Tcells, CD4+ T cells, CK19,and 

pERK.  

(C)Percentage of CD4+ T cells in CK19 high and low regions of tissue, in KRAS on and off 

conditions.  

(D)Percentage of CD8+ T cells in CK19 high and low regions of tissue, in KRAS on and off 

conditions.  
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3.5 Methods  

3.5.1 Orthoptic Surgeries  

50 μl of 50,000 A9805 cells (derived from iKrasG12DP53R172H(ptf1a-Cre; TetO-

KrasG12D;Rosa26rtTa/+;p53R172H/+) were resuspended in a 1:1 ratio of RPMI medium (Gibco, 

11875093) and Matrigel matrix basement membrane (Corning, 354234) and injected into the 

pancreas of  FVBN mice. Activation of KRASG12D was induced in mice by providing 

doxycycline chow in place of regular chow. Cells used for orthoptic surgery were tested for 

mycoplasma with the MycoAlertTM Plus Mycoplasma Detection Kit(Lonza). After two weeks 

post implantation  mice had formed established tumors and were randomly divided into two 

treatment groups ( Kras activation) with MRTX1133 treatment or Kras activation without 

pharmacologically inhibition.  

3.5.2 Multiplex Immunofluorescent Staining  

Multiplex immunofluorescent staining  was performed on paraffin embedded murine pancreatic 

tissue sections. First, slides were baked in a hybridization oven for 1 hour at 600C, cooled for 10 
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minutes at room temperature, then submerged in Xylene for paraffin removal. Slides were then 

rehydrated in alcohol, followed by washes in deionized water for 2 minutes, then placed in 

formalin neutralizing buffer for 30 minutes. Again, slides were washed for 2 minutes with 

deionized water. The rest of the procedure has been previously described (13). Primary 

antibodies were diluted in blocking buffer and incubated on slides overnight at 4oC, followed by 

secondary antibody (Alexa Flour secondaries, 1:300) for 45 min at RT. Slides were then 

mounted with Prolong Diamond Antifade Mountant with DAPI(Invitrogen). In addition, TSA 

Plus Fluorescein was used during co-immunofluorescent staining of primary antibodies.  

3.5.3 Flow Cytometry 

Murine pancreatic tumors were harvested and dissociated into single cells by finely mincing 

tissue with scissors and collagenase IV (1 mg/mL; Sigma) digestion for 35 minutes at 37oC while 

shaking. To separate tumors into single cells, 40-um mesh strainers was utilized, and all red 

blood cells were lysed with lysis buffer. Live cells were stained for anti-F4/80, anti-CD11b, anti-

Ly6C, anti-Ly6G, then cells were stained for primary antibodies and fixed. Flow-cytometric 

analysis was done on a BD LSRFortessa (BD Bioscience) using BD FACS Diva software, and 

data analysis was performed using FlowJo v10 software.  

3.5.4 Statistics  

GraphPad Prism version 10.0.2 software was used for analysis, either a t-test or Man- Whitney 

test was performed for statistical analysis. The statistically significant threshold was set at 

P<0.05.  
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3.5.5 Single cell RNA-Sequencing  

Orthoptic tumors were established  in the pancreas of murine PDA model by injecting  

50 μl of 50,000 iKras* cells into (FVB/N strain) mice. Tumor were established as previously 

described (Velez), and then harvested for single cell RNA-Seq. Single-cell cDNA library was 

prepared and sequenced at the University of Michigan Sequencing Core using the 10x Genomics 

Platform.  
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Chapter 4 Summary and Future Directions  

PDA is characterized by a fibroinflammatory stroma,  high infiltration rate of tumor associated 

macrophages (TAMs), and T cells with exhausted/dysfunctional profiles (2–12). Extracellular 

matrix components also contribute to disease progression and metastasis through mediation of 

ECM stiffness, and contribution of tumor milieu components that may be up taken by cancer 

cells (13,14). PDA is marked by a high infiltration of myeloid derived suppressor cells; of which 

TAMs are the most abundant and metabolically diverse with a myriad of functional phenotypes 

and altered metabolic processes (15–21). Further, TAMs engage in cooperative metabolic 

crosstalk with cancer cells that enables sustained growth and survival of cancer cells (22,23). 

TAMs also secrete cytokines which can promote immunosuppressive signaling,  and reports 

have found that interactions between TAMs and cytotoxic T cells dampens T cell’s ability to 

mount an effective anti-tumor response (4,24–26). TAMs have been shown to secrete pyrimidine 

analogs which inhibit efficacy of gemcitabine, a chemotherapeutic agent used to treat PDA (27). 

Cancer cells also been shown to co-opt bio energetic derivatives from fibroblasts in the tumor 

milieu, for example intaking branch chain keto acid derivatives to fuel protein synthesis, TCA 

cycle precursors, and lipid biosynthesis (28). To investigate metabolic alterations in cell type 

specific manner, I leveraged a unique single cell RNA-Seq dataset comprised of healthy 

pancreata procured through a collaboration with Gift of Life Michigan (29). This dataset was 

compared to human pancreatic cancer samples  utilizing  robust computational approaches; 
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pseudo bulking, DGE analysis, metabolic GSEA, and transcription factor inference analysis. 

Further, computational findings were validated with in vitro and histology approaches.  

Overall, this study resulted in a metabolic atlas of metabolic alterations engendered as a 

result of malignancy across cell types, providing a resource for understanding metabolic 

vulnerabilities in PDA. This work may also be a reference for metabolic rewiring induced by 

malignancy in other cancers and disease settings. In this section I will summarize the main 

findings from this body of work and present future directions. 

4.1 Immune cells significantly decrease dependence on oxidative phosphorylation in the 

TME  

A main finding in chapter 2 corresponded to CD8+ T cells, B cells, and granulocytes 

significantly decreasing the oxidative phosphorylation signature in the tumor compared to 

healthy counterparts (Figure 2.5 B-D). During T cell development, CD8+ T cells upregulate 

dependence on glycolysis and oxidative phosphorylation to facilitate effector function demands. 

In our data, glycolysis was significantly increased in tumor derived CD8 T cells, but oxidative 

phosphorylation was not, we speculate this might be due hypoxic regions in the tumor. Hypoxia 

is common amongst solid tumors and is a hallmark of PDA, to adapt to oxygen deprivation 

cancer and immune cells undergo metabolic reprogramming (30–32). This is mediated by 

hypoxia inducible transcription factors (HIFs) activation which regulate processes related to 

angiogenesis, metabolism, invasion, etc. (30). Interestingly, principal component analysis (PCA) 

revealed that immune populations could be segregated by expression of genes driving the 
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electron transport chain complexes (Figure 2.5F). B cells in specific displayed decreased 

expression of genes driving CII (Figure 2.5F). In a previous report electron flow was found to be 

decreased in CII of the ETC which enabled tumorgenicity and immune evasion in a melanoma 

model (33). Augmenting electron flow led to increased levels of succinate production in CII via 

an epigenetic mediated signaling axis, ultimately leading to activation of genes involved in 

antigen presentation and processing(33).This study performed a  knockout of  mitochondrial 

respiration genes in CI (sgNdufa) and CII (sgSdha or sgSdhc) in melanoma cells and found that 

loss of CII did not change NADH activity related to CI but did result in succinate dehydrogenase 

activity diminishing.  

As a future direction I propose implementing a similar experimental design in pancreatic 

cancer cells to assess tumor growth and metastatic potential upon CII loss. To do this, I will 

generate 7904B KPC pancreatic cancer cells with either succinate dehydrogenase a (Sdha) or 

succinate dehydrogenase C (Sdhc) knocked out via CRISPR. Then these cells will be 

orthotopically implanted into a syngeneic mouse model, and tumor growth volume and weight 

will be tracked. Flow cytometry analysis will be performed on the tumors to profile immune 

markers, specifically assessing CD45+, CD8+, and CD4+ expression. To assess activation status 

of cytotoxic T cells expression of the following markers will be measured; GZMA, GZMB, and 

IFNG. In addition to genetic inhibition, pancreatic cancer cells will be treated with the 

mitochondrial inhibitor 3-nitropropionic acid (3-NPA) and proliferative capacity will be assessed 

(34). Lastly, if there is no change in tumor proliferation capacity and antigen processing and 

presentation in cancer cells it could be that other immune or stromal cells in the TME are 
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dictating the immune response. To test if CII loss  in other cell types might be the culprit of 

immune evasion, I will utilize a 3D co-culture system of pancreatic tumor cells and CAFs with 

Sdhc or Sdha knocked out. These experiments will then be repeated with co-cultures between T 

cells with CII loss and pancreatic cancer cells  Ultimately, the aim of the above experiments will 

be to investigate if CII loss in malignant or non-malignant cells plays a role in immune evasion 

and tumorgenicity in PDA.  

4.2 TAMs upregulate a myriad of metabolic processes  

TAMs drive a myriad of metabolic processes, in Chapter 2 we showed that TAMs upregulate 

glycolysis, PPP, fructose and mannose metabolism, and unsaturated fatty acid synthesis (Figure 

2.9A). This prompted us to investigate unsaturated fatty acid biosynthesis in greater detail, we  

found stearoyl-CoA desaturase 1 (SCD1) to be differentially upregulated in TAMs compared to 

healthy macrophages (Figure 2.9B). To see if this held true in vitro we isolated bone marrow 

derived macrophages and polarized the macrophages as previously described and found SCD1 to 

be increased in TAMs at the protein level as well (Figure 2.9D). Myeloid derived suppressor 

cells, specifically TAMs make up a significant portion of the pancreatic tumor and can engage in 

pro and anti-tumor responses. As a future direction I propose that SCD1 be pharmacologically 

inhibited to see if the polarization profile of TAMS is altered. The in vitro BMDM isolation and 

polarization methodology will be implemented, and TAM polarization markers associated with 

M1-like and M2-like signatures will be assessed with qPCR. The goal of this experiment would 
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be to investigate if unsaturated fatty acid synthesis promotes an immunosuppressive phenotype 

in TAMs, and if this process is plastic and can be reversed.  

4.3 TAMs engage in metabolic crosstalk with cancer cells  

  In Chapter 2, we found that TAMs engage in cooperative metabolic crosstalk with 

cancer cells (Figure 2.11 A and Figure 2.11B ). TAMs differentially increase expression of the 

gene ABCG1 which encodes a cholesterol exporter, and tumor derived epithelial cells 

significantly increase expression of the gene encoding the cognate receptor for lipid/cholesterol 

uptake LDLR. TAMs were also found to increase production of ABCG1 at the protein level. As 

a future direction, it would be imperative to perform a cholesterol assay to ascertain cholesterol 

efflux from TAMs polarized with conditioned media. To do so, I would utilize a the Amplex Red 

Cholesterol Assay kit on media collected post isolation and polarization of BMDM to assess if 

there are differences in levels of free cholesterol in control condition with MCSF vs. tumor 

conditioned media. Next, to investigate if pancreatic cancer cells promote cholesterol efflux from 

TAMs for subsequent uptake, I would co culture pancreatic cancer cells and BMDMs in vitro 

and perform the a cholera toxin B (CBT) staining (35). A CBT staining is commonly used when 

studying cholesterol rich lipid rafts, since it binds to ganglioside GM1 which is linked to 

cholesterol levels (35). If indeed, pancreatic cancer are intaking free cholesterol derived from 

TAMs there should be a change in CBT staining of TAMs as cholesterol would be depleted. 

Overall, these initial future directions would serve to clarify if cholesterol is expelled from 

cholesterol rich lipid rafts to then serve as a fuel source for pancreatic cancer cells.  
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 As a computational future direction an algorithm could be developed to infer putative 

transporter and exporter relationships based on gene expression from single cell data. This 

concept has been demonstrated in algorithms aimed at inferring ligand-receptor interactions from 

single cell data, in this case a curated list of known exporters and transporters with interactions 

would be constructed from querying public databases. This would provide potential leads for 

exporter/importer processes increased/decreased in cancer settings compared to basal 

physiology. In conclusion, the work described here serves as a resource for understanding the 

immune landscape of the pancreatic tumor microenvironment, metabolic alterations engendered 

by malignancy across multiple cellular compartments, and provides potential therapeutic targets 

to be further investigated.   
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