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Abstract 

 Up to 60 percent of spinal cord injuries occur at the cervical level which often results in a 

reduction or even complete loss of hand function, severely impacting a person’s ability to interact 

with the world around them. In the past few decades, significant research has gone into using brain-

machine interfaces (BMIs) to help restore independence in more severe cases where rehabilitative 

therapies are not effective. These interfaces can read out a user’s intentions, allowing them to 

control devices by thinking about movements rather than relying on residual movements. BMIs 

have especially gained traction in the last 20 years; clinical studies have used them to control 

cursors, robotic arms, synthesize speech, type text, and even to restore native limb function by 

controlling stimulation to paralyzed muscles. Stimulating muscles to restore functional movements 

is a therapy called functional electrical stimulation (FES), and brain-controlled FES presents a 

promising but challenging method to restore the full chain of hand control, bypassing damage to 

the spinal cord. However, this method has seen limited translation to clinical use, chiefly due to a 

lack of dexterity that it can restore in the hand and reliability with which it can be restored. The 

aim of this work is to inform how robust BMI are for the type of control required for brain-

controlled FES, to assess to what extent FES can restore two-degree-of-freedom movements in the 

hand and what factors impact reliability, and then to extend FES methods to restoring movements 

to multiple joints in the hand.  

In my first study, I investigated the impact that wrist postures and resistance at the fingers, 

two task perturbations occurring commonly in acts of daily living, have on a BMI for controlling 

virtual finger movements in non-human primates (NHP). I found that these changes impact cortical 

neural activity during the task, resulting in increased prediction error for intended movements and 

the NHP needing to adjust their control of the BMI. In my second study, I showed that current 

intramuscular FES methods can achieve graded control of simultaneous finger and wrist flexion 

as well as how well a BMI can control virtual finger and wrist movements. Additionally, I found 

that stimulation restored a large range of movements in both the wrist and the fingers, but the range 
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of movements is significantly impacted by muscle fatigue and interactions between stimulation-

evoked movements for each degree-of-freedom. In my third study, I present a proof-of-concept 

intramuscular FES implant method targeting multiple nerve entry points in each muscle. Using 

this method, stimulation evoked more discrete finger movements with individual electrodes, 

theoretically increasing the available hand postures that can be restored. 

 The results of this work demonstrate that BMI can be used to infer intended finger and 

wrist movements in real-time and FES can be used to control graded movements of the wrist and 

fingers. We found reduced efficacy in both BMI decoding accuracy and stimulated range of 

movements due to interactions controlling both the wrist and fingers. As future work continues to 

increase the degrees-of-freedom that are simultaneously controlled, there is a need to design 

stimulation protocols that account for interactions with stimulation on more electrodes and design 

BMI algorithms that are intentionally trained to generalize well, for example with variable postures 

and force requirements.  
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Chapter 1 Introduction 

Sections 1.1 and 1.3 in this chapter were adapted from sections that I authored in the review 

article “Neurotechnologies to restore hand functions” published in the journal Nature Reviews 

Bioengineering (Losanno, Mender, et al., 2023). 

 

The hand is a person’s most fundamental tool for interacting with the world around them, 

even the most mundane activities require a variety of hand postures. Spinal cord injury often leads 

to motor disabilities in the hands, severely impacting people’s ability to interact with the world. 

There are an estimated 18,000 new spinal cord injuries in the Unites States every year (Jain et al., 

2015; National Spinal Cord Injury Statistical Center, 2023) and 59.6% of spinal cord injuries can 

be classified as complete or incomplete tetraplegia (National Spinal Cord Injury Statistical Center, 

2023) which involves injury to the cervical spine. Hand function is present as low as the thoracic 

spine (level T1), so any injury to the cervical spine can result in hand impairment. As the degree 

of spinal cord injury becomes more complete and the injury is more chronic, interventions 

transition from restorative to compensatory (Rupp, 2020). At the same time, the highest priority 

for people with tetraplegia is the improvement of hand function (Anderson, 2004; Collinger et al., 

2013).  

Electrical stimulation of the muscles or motor nerve fibers produces muscle contractions 

and can be used to rehabilitate or restore movements. As the peripheral nerve fibers are much more 

responsive to electrical stimulation than muscles (Mortimer, 2011), the peripheral nerve fibers are 

the target of stimulation to elicit movements. As a result, this type of therapy has primarily been 
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studied in motor disabilities where lower motor neurons are still intact such as stroke and cervical 

spinal cord injury. In stroke and many spinal cord injuries, typically both upper motor neurons and 

lower motor neurons are still intact or partially intact and voluntary movement can be rehabilitated 

by exercise. With more severe injuries, rehabilitation can instead be done with electrical 

stimulation, matching intended movements with artificially generated movements to generate the 

same regenerative processes (Nagai et al., 2016). Significant research has gone into clinical 

applications aimed at rehabilitating voluntary movement with stimulation (Marquez-Chin & 

Popovic, 2020) and there is evidence for rehabilitation working in different severity of spinal cord 

injury (Kapadia et al., 2013; Mangold et al., 2005; Popović et al., 1999; Popovic et al., 2011). 

However, electrical stimulation therapy is often not able to completely restore voluntary 

movements. Instead, devices can be engineered to use electrical stimulation to restore functional 

movements such as arm movements and grasping. This is referred to as functional electrical 

stimulation (FES) and represents an opportunity to restore a person’s own movements rather than 

just compensating for motor disability. To date, multiple clinical trials have reported using FES to 

restore specific grasps (Ajiboye et al., 2017; Coste et al., 2022; Tigra et al., 2020), however 

restoring full dexterity to the hand is a challenge.  

FES devices are often controlled with residual body movements (section 1.3.1). However, 

patients with higher tetraplegia have little residual movement left with which to control the 

devices. Brain-machine interfaces (BMIs) are promising methods for controlling stimulation in an 

intuitive way. In BMIs, intended movements are decoded from neural activity to control devices. 

These have been used to control computer cursors or robotic arms for over a decade (Collinger, 

Wodlinger, et al., 2013; Hochberg et al., 2006; Kim et al., 2008). With advances in the 

understanding of neurophysiology and significant improvements in machine learning (Glaser et 
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al., 2020), BMIs are reaching new milestones in performance (Metzger et al., 2023; Willett et al., 

2023; Willsey et al., 2024). BMIs have also been used for controlling FES, although with relatively 

simple algorithms (Ajiboye et al., 2017; Ethier et al., 2012). With the high dimensionality of hand 

control, advances in BMI algorithms are needed to expand the dimensionality of BMI control to 

restore movements (Nason et al., 2021). In this chapter I review the different methods for restoring 

upper extremity movements with FES and for decoding upper extremity movements in BMI 

applications. Then I end with a discussion of the current state of brain-controlled FES applications, 

ultimately motivating the need for more robust BMI algorithms and more characterization of FES 

for controlling multi-degree-of-freedom movements in the hand.  

1.1 Normal Control of Hand Movements 

The human hand is a complex biomechanical system with 27 degrees-of-freedom (DoFs) 

(ElKoura & Singh, 2003), 6 in the wrist (1 for flexion–extension, 1 for radio-ulnar deviation, 1 for 

supination–pronation and 3 for translation in space), 5 in the thumb (3 for flexion–extension and 

2 for abduction–adduction) and 4 in each of the other fingers (3 for flexion–extension and 1 for 

abduction– adduction) with some finger interdependence (Martin et al., 2011), which allow for a 

variety of shapes and functions. Although hand movements are very similar between humans and 

non-human primates (NHPs), human hand dexterity is unique, partly owing to its morphology: a 

higher thumb-to-finger-length ratio and a more complex muscular structure in the thumb than in 

NHPs allow higher flexibility in finger opposition and the ability to create forceful precision grips 

(Nanayakkara et al., 2017). The collection of human hand movements can be divided into two 

main groups, namely prehensile and non-prehensile movements, used for grasping and pushing or 

lifting objects, respectively (Napier, 1956) (Figure 1-1a). Prehensile movements are more 

prevalent (Gracia-Ibáñez et al., 2018; Kilbreath & Heard, 2005) and have been studied more 
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extensively. Prehensile movements have been systematically arranged into 33 grasp types based 

on hand configuration and object geometry, which can be reduced to 17 prototypical types when 

not considering object geometry (Feix et al., 2016). Moreover, each grasp movement can be 

classified as power, precision or intermediate, based on whether large force, precision or a mixture 

of both is required. The occurrence of different grasp types in daily life has been extensively 

studied to determine their importance for neuroprosthetics and neurorehabilitation (Bullock et al., 

2013; Vergara et al., 2014). However, despite providing some general guidance — for example, 

the prevalence of lateral and medium wrap grasps — there is high variability in the frequency of 

grasp types across environments and subjects investigated (Feix et al., 2016). Thus, 

neuroprostheses that restore a large set of hand movements are needed to benefit more patients in 

more contexts. 

1.1.1 Anatomical Pathway 

Human hand movements are controlled by coordinated contractions of extrinsic and 

intrinsic hand muscles, located in the forearm and within the hand itself, respectively (Figure 1-

1b). Extrinsic muscles provide strength, whereas intrinsic muscles allow fine movements. These 

muscles contract owing to electrical signaling originating from motoneurons in the ventral horn of 

the spinal cord. The motoneurons travel out of the spinal cord in the spinal nerves at different 

levels to reach their target muscle, where they enter at a location called the motor point. The 

muscles of the hand are targeted by the spinal roots at the C5–T1 levels, according to a rostro-

caudal somatotopy (Schirmer et al., 2011): the more proximal the muscle, the more rostral the peak 

of the spinal motoneuron pool that innervates it, but with a high degree of overlap of the 

motoneuron pools across muscles. In the upper extremity, the C5–T1 spinal nerves first form the 

brachial plexus, where they reorganize into different nerve trunks to efficiently travel to different 
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regions of the arm (Bollini & Wikinski, 2006). The nerve trunks that form in the brachial plexus 

and are responsible for hand function are the median nerve, which innervates most flexor and 

pronator muscles in the ventral forearm and some intrinsic hand muscles, the ulnar nerve, which 

innervates the flexor carpi ulnaris and the medial half of the flexor digitorum profundus as well as 

the majority of intrinsic hand muscles, and the radial nerve, which innervates extensor and 

supinator muscles in the forearm and hand (Boles et al., 2000; Bollini & Wikinski, 2006; Jabaley 

et al., 1980). Motoneuron axons travel within fascicles in these nerves. The density, diameter and 

functional topography of nerve fascicles depend on the distance from the spinal cord (Delgado-

Martínez et al., 2016): more, smaller and better functionally partitioned fascicles emerge distally, 

as fibers innervating the same muscle organize in separate patches and eventually form a distinct 

fascicle to branch out of the nerve trunk towards the muscle.  

Spinal motoneurons receive input from multiple neural pathways, that is, sensory afferents 

and supraspinal regions, either directly or through spinal interneurons (Lemon, 2008; Porter & 

Lemon, 1995). Multiple cortical regions are involved in voluntary movements, where the primary 

motor cortex (Broadmann’s area 4) mainly contributes to the execution of movements. Here, 

pyramidal cells in layer 5 of the primary motor cortex project to spinal interneurons and 

motoneurons and constitute about 30% of the corticospinal tract. Anatomical and evolutionary 

differences have led to the classification of two areas in the primary motor cortex that are thought 

to affect dexterous movements like those of the hand, namely the caudal and rostral regions 

(Rathelot & Strick, 2006; Strick et al., 2021; Witham et al., 2016). Compared with caudal primary 

motor cortex, the rostral primary motor cortex is evolutionarily older, has primarily disynaptic 

connections with motoneurons through interneurons and is thought to use spinal cord mechanisms 

to control a wide range of motor behaviours. Caudal primary motor cortex is more developed in 



 6

humans and apes, is characterized by monosynaptic connections to motoneurons and is thought to 

control highly skilled movements. A large area of human primary motor cortex, about 9 cm2 (Roux 

et al., 2020), is associated with hand movements; although cortical representations for different 

fingers largely overlap (Sanes et al., 1995), multiple studies support the hypothesis that finger 

somatotopy is present in this area (Beisteiner et al., 2001; Dechent & Frahm, 2003).  

Since the 1960s, investigators have asked how the motor system, with more than 30 

muscles and 20 joints in the human hand contributing to motion production, reduces the burden of 

regulating the large number of variables available (Bernshteĭn, 1967). Despite the great number of 

muscles involved, most voluntary movements in vertebral species can be generated from the 

activation of relatively few muscle synergies (Bizzi & Cheung, 2013). In the human hand, postures 

and movements have been represented by the activation of a few joint, force or muscle synergies 

(Bicchi et al., 2011; Mason et al., 2001; Santello & Soechting, 2000; Thakur et al., 2008; Weiss & 

Flanders, 2004). Whether these synergies are a fundamental property of neural motor control or 

whether they are an artefact of task structure is still debated (Tresch & Jarc, 2009). Motor responses 

to cutaneous (Tresch et al., 1999) and intraspinal stimulation (Lemay & Grill, 2004; Tresch & 

Bizzi, 1999) revealed that the spinal cord in vertebrates is organized into modules that generate 

specific patterns of muscle activation. Additionally, cortical stimulation in NHPs evokes complex 

movements (Overduin et al., 2015). Together, these findings have led to the idea that movement 

is generated by the activation of modular muscle synergies with the motor cortex determining the 

patterns of activation (Bizzi & Cheung, 2013). Nonetheless, evidence suggests that the motor 

cortex might be more involved and also encodes muscle synergies (Rathelot & Strick, 2006) and 

contributes to the flexible activation of motor units (Marshall et al., 2022). 
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Figure 1-1 Normal hand movements and their anatomical pathway.  
a, Examples of prehensile and non-prehensile hand movements, used for grasping and pushing or lifting objects, 
respectively (Napier, 1956). Prehensile movements are classified into power, precision and intermediate grasps (Feix 
et al., 2016). Non-prehensile movements can involve single digits or the whole hand. b, Hand movements are 
generated by contracting extrinsic and intrinsic hand muscles, located in the forearm and in the hand, respectively. 
The skeletal muscle is composed of muscle fibres organized in fascicles, surrounded by a connective tissue called 
epymisium. The nerve motor branch enters the muscle belly at the motor point. Hand muscles are innervated by the 
median, radial and ulnar nerves, which form in the brachial plexus. A peripheral nerve is composed of motor fibres 
organized into fascicles, surrounded by a connective tissue called epineurium. Hand muscles are targeted by the C5–
T1 spinal nerves. Spinal motoneurons, originating in the ventral horn of the spinal cord, receive input directly from 
cells originating in the caudal primary motor cortex (M1, which is composed of six layers) or from spinal interneurons, 
which in turn receive input from cells originating in the caudal and rostral M1. Large pyramidal cells in layer 5 send 
their axons to the spinal cord.  

1.1.2 Motor Control 

Although anatomical pathways for human hand motion production are well described, how 

the motor cortex controls movement is still debated. The historical view of motor control in higher 

vertebrates has been that the cortex must take a neural representation of high-level parameters, 
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such as movement direction or velocity, and convert that into commands for muscles through a 

series of transformations (Bizzi et al., 1991). The classical approach has relied on trying to find 

the movement parameter that the motor cortex is representing by correlating extracellular 

intracortical recordings in primary motor cortex of animal models with a variety of movement 

parameters during movement tasks (Kalaska, 2009). Ultimately, a multitude of variables 

represented in primary motor cortex have been found, ranging from movement direction 

(Georgopoulos et al., 1982) and instantaneous hand kinematics (Moran & Schwartz, 1999) to 

muscle activations (Townsend et al., 2006). However, no consensus has been reached on what the 

role of the motor cortex is in motor control. Alternatively, neurophysiology recordings in NHPs 

have pointed out heterogeneity in the parameters represented by individual neurons in primary 

motor cortex (Churchland & Shenoy, 2007; Graziano, 2006; Kalaska, 2009; Scott, 2008; Stephen 

H. Scott et al., 2001), suggesting that a paradigm shift away from representational modelling is 

needed to understand the encoding of movements. With the rise of microelectrode arrays and the 

ability to record from up to hundreds of neurons at the same time (Nicolelis et al., 2003), research 

focus has shifted towards looking at the covariance of neurons activating in the motor cortex of 

NHPs to understand how they work together to compose movement-generating outputs. In this 

view, the role of neurons is not to represent any specific movement covariate; instead the primary 

motor cortex activity reflects a mixture of signals, some of which output to drive muscles, but 

many of which are internal processes composing those outputs (Churchland et al., 2012). 

Dimensionality-reduction methods have become widely used to visualize the covariance of neural 

activity (Cunningham & Yu, 2014; Kalaska, 2019), revealing various aspects of motor control, 

including preparatory activity (Kaufman et al., 2014), motor learning and plasticity (Golub et al., 

2018b; Oby et al., 2019; Sadtler et al., 2014), and the formation of descending motor commands 
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(Churchland et al., 2012; Russo et al., 2018; Shenoy et al., 2013). One view is that a large amount 

of variance of neural activity resides in a low-dimensional space, which ensures robustness in 

movement execution (Russo et al., 2018). This subspace might be preserved between different 

movements, with only a small amount of neural variance accounted for by movement specific 

subspaces. These dynamics have been studied largely in upper arm movements in NHPs and, 

although they could also be applied to hand movements, the increased sensory feedback during 

hand movements points to different dynamics (Suresh et al., 2020). Therefore, a systematic 

evaluation of motor cortex dynamics during hand movements and the impact of sensory feedback 

is needed to understand whether these findings can be extended to hand movements. 

1.2 Restoring Hand Movement with Electrical Stimulation 

Based on the anatomy and physiology of natural hand movements, there are multiple 

available targets for stimulation to restore hand movements. Primarily this includes targeting either 

the peripheral nerves, the muscles, or the spinal cord. Functionally, these approaches vary by the 

dexterity of restored movements and the reliability of evoked movements. Notably, the methods 

also have key differences in the potential for deployment (i.e. cost and surgical complexity) and 

comfort (Losanno et al., 2023). Figure 1-2a illustrates how different stimulation methods fare with 

respect to restored dexterity, potential for deployment, and comfort. In order to restore dexterous 

movements, stimulation needs to be able to selectively target specific muscles in the wrist and 

hand. Typically, this is done by stimulating at more invasive locations closer to the muscles or 

closer to the peripheral nerves. A key factor in the reliability of evoked movements is the resistance 

to fatigue, a phenomenon in which muscles produce less force after repeated activation. Due to 

key differences between muscle fiber recruitment from electrical stimulation and from 

physiologically natural recruitment, fatigue occurs rapidly in electrical stimulation (Giat et al., 
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1993; Singh et al., 2000; Veltink et al., 1989). First, in natural muscle fiber recruitment, fibers are 

recruited asynchronously and tetanic contraction is achieved through a temporal summation of 

many muscle fibers activated at 6-8Hz (Lynch & Popovic, 2008). In contrast, electrical 

stimulation, both at muscles and peripheral nerves, recruits all motor fibers in an area 

synchronously, timed with each stimulation pulse. Therefore, to achieve tetanic contractions 

stimulation is at a higher frequency (e.g. 20-40Hz) than what is physiologically natural. Second, 

natural fiber recruitment activates small, fatigue resistant, slow twitch fibers before larger fast 

twitch fibers (Henneman, 1957). Electrical stimulation preferentially activates nearby motor axons 

and large axons which deviates from the natural order of recruitment or even goes in a reverse 

order of recruitment (Bickel et al., 2011). Due to this, methods that are more fatigue resistant either 

are closer to axons to be more specific in the ones that they activate or are able to activate the 

natural recruitment pathways in the spinal cord.  

1.2.1 Surface Stimulation 

The most widely used and least invasive method for FES is using surface electrodes. With 

this method, electrodes are placed on the surface of the skin, preferably near the targeted muscle’s 

motor point and then stimulation activates muscles transcutaneously (Figure 1-2b). There are 

multiple assistive devices commercially available specifically aimed at restoring grasping through 

surface stimulation, for example, the bionic glove (Prochazka et al., 1997), now known as the 

ReGrasp, and the NESS Handmaster (Snoek et al., 2000). These devices rely on external electrodes 

which must be placed correctly in order to restore functional movements. They typically use gloves 

or orthoses to align electrodes and can either strengthen or restore one to two grasps. The bionic 

glove consisted of a neoprene, fingerless glove, with electrodes on the inside over the thenar 
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Figure 1-2 Neurotechnologies to restore hand functions.  
Hand functions can be restored by electrically stimulating different regions of the neuromuscular system using 
different interfaces. a, Dexterity versus potential for deployment and comfort of use for different strategies to restore 
hand functions. b, Functional electrical stimulation (FES) is performed using transcutaneous or implanted (epymisial 
or intramuscular) electrodes targeting the extrinsic and intrinsic hand muscles. c, Peripheral nerve stimulation (PNS) 
is applied through epineural electrodes, such as the cuff electrode and the flat interface nerve electrode (FINE), or 
intrafascicular electrodes, such as the transverse intrafascicular multichannel electrode (TIME) and the Utah slanted 
electrode array (USEA) (Yoshida et al., 2017), targeting the median, radial and ulnar nerves above their bifurcations. 
d, Spinal cord stimulation (SCS) is implemented using transcutaneous, epidural or intraspinal leads targeting the C5–
T1 spinal nerves. Figure 4 from (Losanno et al., 2023) 

eminence and forearms. It functioned by detecting wrist movement and then stimulating muscles 

in the forearm to flex or extend the fingers. This setup improved the strength and dexterity of 

participants’ tenodesis grasping, a grasp made by flexing or extending the wrist which would in 

turn move fingers by shortening or lengthening the muscles of the fingers. The NESS Handmaster 

consisted of a fitted wrist splint with five surface electrodes on the inside. The device could provide 
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either key or palmar grasp, controlled by a sequence of stimulation after pressing the trigger button 

on the control unit, as well as stimulate muscles to exercise muscles.  

Surface stimulation suffers from multiple factors impacting the effectiveness of 

stimulation. In surface stimulation, the electrodes are relatively far from the motor points. As a 

result, stimulation current often spreads to multiple muscles and it is difficult to selectively activate 

deep muscles (Koutsou et al., 2016; Kuhn et al., 2010). With stimulation far away from the nerves, 

surface stimulation activates overlapping groups of muscle fibers repeatedly with a preference for 

large fast fatiguing fibers, resulting in fast fatigue occurring within minutes (Vromans & Faghri, 

2018). Additionally, surface stimulation requires a high stimulation amplitude for current to reach 

the target muscles. This activates superficial sensory fibers and pain receptors and potentially leads 

to discomfort (Kuhn et al., 2010). Lastly, there is also a lack of reliability with movement such as 

pronation and supination changing the relative position of the skin electrode and muscles (Bao et 

al., 2018; Popović-Bijelić et al., 2005). Due to the lack of dexterous movements and quick fatigue, 

surface FES has instead had a lot of success as an easily accessible neurorehabilitation therapy 

(Mangold et al., 2005; Marquez-Chin & Popovic, 2020; Popovic et al., 2011).  

Advances to surface stimulation have used electrode arrays to improve the selectivity of 

evoked movements. With more electrodes, stimulation parameters can be modified to shape the 

generated electric field to activate desired muscles (Koutsou et al., 2016; Popović-Maneski et al., 

2013). This has even been used to evoke single finger movements (Bao et al., 2018; Bouton et al., 

2016).  One clinical trial for example used up to 130 surface electrodes embedded in a wearable 

sleeve to restore grasp and wrist movements (Bouton et al., 2016; Friedenberg et al., 2017). New 

technologies also aim to improve comfort and conformity for individual patients (Moineau et al., 

2021; RaviChandran et al., 2023). 
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1.2.2 Muscular Stimulation 

A step more invasive than surface stimulation are intramuscular and epimysial stimulation. 

Electrodes can be implanted percutaneously without an incision by using a needle to poke through 

the skin into the muscle belly, however percutaneous sites increase the infection risk with the 

implants. For chronic implants, an incision is made and electrodes are sutured onto (epimysial) or 

into (intramuscular) the muscle belly where they scar into place over time (Figure 1-2b). Electrodes 

can then be tunneled to one percutaneous site, or to an implanted stimulator (Smith et al., 2005). 

Like surface stimulation, the electrodes are generally implanted near the motor point in order to 

more easily activate the nerve without current spreading to other muscles and nerves. In practice, 

electrode locations are determined with intraoperative stimulation.   

This approach resulted in the clinically available Freehand system for restoring hand 

movements, which was implanted in more than 250 users (Peckham et al., 2001). The Freehand 

system used 8 epimyseal electrodes implanted in muscles of the hand and wrist to restore palmar 

and lateral grasps. A second version of the Freehand system attempted to improve on some 

limitations of the Freehand system (Kilgore et al., 2018; Peckham et al., 2002), including a lack of 

finger extension, arm reaching, and forearm pronation. In the second version, 3 participants were 

implanted with four additional stimulating channels, two of which went into intrinsic hand muscles 

to provide two additional grasps unique to the participant.  

Muscular stimulation is perhaps the best suited approach for restoring hand dexterity. 

Electrodes can be implanted in all muscles including deep muscles and small intrinsic hand 

muscles, so stimulation can selectively activate individual muscles (Grandjean & Mortimer, 1986) 

as long as they can be identified intraoperatively. Electrodes can even be implanted into 

neuromuscular compartments within muscles, that is the portion of a muscle innervated by one 
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primary muscle nerve branch (English et al., 1993). In hand muscles like flexor digitorum 

profundus, neuromuscular compartments have functional differences (Schieber et al., 2001), 

further increasing the selectivity of muscle fibers that can be activated. Additionally, because 

electrodes are implanted, stimulation can be consistent over years (Kilgore et al., 2003, 2009). 

Muscular electrodes preferentially recruit muscle fibers with axons near the stimulating 

electrode, in a pattern that spreads out radially from the current source (Singh et al., 2000). Because 

of this, force recruitment from activating muscle fibers with intramuscular electrodes is smooth 

within individual muscles (Grandjean & Mortimer, 1986) or individual neuromuscular 

compartments (Gruner & Mason, 1989; Singh et al., 2000), but may become nonlinear when 

current spreads to new neuromuscular compartments (Gruner & Mason, 1989). This type of 

stimulation suffers from quick fatigue due to the high stimulation frequencies (20-30Hz) and the 

recruitment pattern being equally effective at activating large fast fatiguing fibers as small fatigue-

resistant fibers. The fatigue effect may be less pronounced in intramuscular stimulation than nerve 

stimulation due to large motoneurons branching to reach more muscle fibers compared to small 

motoneurons. Example estimates using intermittent stimulation (330ms of 40Hz stimulation every 

1s) in cat medial gastrocnemius show peak force declining to 19.7% or 4% of the initial peak force 

after 15 minutes for intramuscular stimulation and nerve stimulation (bipolar hook electrodes) 

respectively (Singh et al., 2000). Fatigue is still rapid in intramuscular stimulation, reaching 20% 

of initial peak force within an average of 101s (Singh et al., 2000), although fatigability varies with 

muscle fiber composition (Vromans & Faghri, 2018).  

Intramuscular electrodes also have practical issues for clinical translation. Implanting 

many electrodes becomes surgically difficult quickly. In the forearm for example, one estimate 

includes 19 muscle targets with an average of 58.8 motor points that could be targeted (Safwat & 
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Abdel-Meguid, 2007). While difficult, in clinical trials 36 electrodes have been implanted 

throughout the arm (Ajiboye et al., 2017), and systems with more electrodes (up to 58) are being 

tested in preclinical studies (Hasse et al., 2022; Holly et al., 2022). 

1.2.3 Peripheral Nerve Stimulation 

Stimulating the peripheral nerves themselves is a promising route for evoking selective 

movements with minimal electrodes. Nerves are composed of fascicles that are selectively carrying 

both afferent and efferent fibers for single muscles or synergistic sets of muscles the more distal 

they go from the spinal cord (see section 1.1). If nerves are targeted before they bifurcate, then one 

implant could activate many different motoneuron populations. Electrodes can be placed on the 

nerve (epineural), typically with a cuff electrode, or electrodes can penetrate the nerve 

(intrafascicular) in order to target specific fascicles (Figure 1-2c). Theoretically, by steering 

current with multiple electrode contacts, epineural stimulation can achieve selective activation of 

muscles (Dali et al., 2018; Polasek et al., 2009). In practice, clinical trials have shown that using 

nerve cuffs can evoke synergistic movements with single contact (Herring et al., 2023), or 

multipolar stimulation (Coste et al., 2022; Tigra et al., 2020) in order to produce functional grasps. 

Intrafascicular electrodes stimulate very close to the axons as they travel to the muscles, so they 

can selectively activate muscles as long as an electrode contact is near the motoneuron population. 

In preclinical studies, intrafascicular electrodes have been shown to be able to selectively activate 

individual muscles in the arm (Badi et al., 2021; Ledbetter et al., 2013). By coordinating 

stimulation on multiple contacts of a slanted Utah array (Ledbetter et al., 2013) or a linear array 

(Badi et al., 2021), three different grasps were restored in non-human primates.  

When comparing epineural and intrafascicular stimulation, intrafascicular is typically more 

fatigue resistant and more selective. While nerve cuff stimulation can evoke some selective 
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movements (Coste et al., 2022; Tigra et al., 2020), these clinical trials typically combined 

synergistic movements to make grasps. Epineural stimulation results in a relatively large spread of 

current over the fascicles which activates multiple groups of motor fibers.  As a result, stimulation 

from multiple contacts tends to activate overlapping groups of motor fibers. Additionally, this type 

of stimulation is susceptible to reverse recruitment because of the different sized fibers present in 

the fascicles (Veltink et al., 1989). Preclinical studies have shown that pulse waveforms can be 

designed to enact a more natural recruitment order and improve fatigue resistance (Fang & 

Mortimer, 1991), however they have not been implemented in clinical trials for restoring hand 

movements due to the complexity of generating the waveforms.  

Intrafascicular stimulation is able to activate distinct groups of motor fibers, or groups of 

afferent fibers for sensory restoration, and is less susceptible to reverse recruitment due to the close 

proximity to the target fibers (Veltink et al., 1989). Simulations show that intrafascicular electrodes 

are able to activate more individual muscles, and are better than nerve cuffs at activating 

motoneuron axons deep in the fascicle (Badi et al., 2021). As different contacts can activate 

different motor fiber groups, intrafascicular stimulation can be used to produce more fatigue 

resistant-movements by interleaving stimulation on multiple contacts at a lower frequency. 

Interleaving stimulation creates a tetanic contraction by sequentially activating a different group 

of motor fibers on each contact (McDonnall et al., 2004; Normann et al., 2012; Yoshida & Horch, 

1993). This approach however results in a decrease in maximal achievable force (Yoshida & 

Horch, 1993).  

1.2.4 Spinal Cord Stimulation 

A different approach to FES has been to activate the lower motor neurons where they 

originate in the spinal cord.  The spinal cord is commonly accessed transcutaneously, with 
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intraspinal stimulation, or with epidural stimulation. Spinal cord stimulation activates 

motoneurons transynaptically, preferentially activating afferent sensory fibers which subsequently 

activate motoneurons through reflex circuits in the spinal cord. For example, intraspinal 

stimulation with microwires in the ventral horn activates sensory afferent axons at lower stimulus 

levels than motoneurons (Gaunt et al., 2006), and both transcutaneous and epidural stimulation 

activate afferent sensory fibers in the dorsal root (Capogrosso et al., 2013; De Freitas et al., 2022; 

Hofstoetter et al., 2018). Cervical intraspinal microstimulation can activate upper limb muscles, 

typically coactivating synergist or antagonist muscles as well (Moritz et al., 2007). Additionally, 

it has been used in nonhuman primates to restore palmar grasp (Zimmermann et al., 2011) but has 

not been used clinically for restoring hand movements. Epidural stimulation has been translated to 

clinical trials much more successfully. Due to success in restoring gait (Angeli et al., 2018; Gill et 

al., 2018; Harkema et al., 2011; Wagner et al., 2018), epidural spinal cord stimulation has been 

extended to cervical levels for restoring upper limb and hand movements, in non-human primates 

(Barra et al., 2022), then in patients after stroke (Powell et al., 2023), as well as a pilot with patients 

with tetraplegia (D. C. Lu et al., 2016).   

Selectivity and fatigue of epidural spinal cord stimulation have not been characterized as 

in depth as other stimulation methods. This partly owes to the different mechanism of movement 

restoration. With regard to generating movements, epidural stimulation is not very selective. 

Studies have shown that laterally placed epidural electrodes will preferentially activate the dorsal 

roots segmentally which will result in muscle activations primarily in the muscles innervated by 

that spinal segment (Greiner et al., 2021; McIntosh et al., 2023). There is however an interaction 

between descending cortical commands and epidural stimulation. Cortical input is necessary for 

restoring movement through epidural stimulation, and the stimulation may be facilitating 
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movements rather than directly generating movements (Barra et al., 2022; Greiner et al., 2021). 

Additionally, due to the natural recruitment of spinal motoneurons (Moraud et al., 2016), epidural 

stimulation is expected to be fatigue-resistant.  

1.3 Decoding Intended Hand Movements 

In order to control stimulation and restore a range of hand movements, it is necessary to 

estimate an intended hand movement from the user. Various approaches can be taken to infer 

intended hand movements. For example, discrete commands can be extracted, such as to perform 

grasping, to select a certain type of grasp, or to flex or extend a certain finger or group of fingers. 

Discrete commands can be substituted or combined with continuous control of single DoFs, such 

as the level of grasp or finger closure or force. Discrete decoding has been implemented using 

noninvasive interfaces with the body (decoding through residual body movements) or the brain 

(using electroencephalography, EEG). Higher decoding accuracy on several finger movements has 

been obtained with implantable electrodes placed on the surface of the brain (using 

electrocorticography, ECoG). However, restoring hand dexterity for a larger spectrum of daily 

activities is more complex. In this case, the decoder should allow continuous and independent 

control of multiple DoFs. Although decoding all 27 DoFs of the hand is probably not necessary 

for functional performance in daily life, decoding at least 7 DoFs (flexion–extension of the wrist, 

flexion–extension and abduction–adduction of the thumb, and flexion–extension of the other four 

fingers) would allow graded control of a variety of prehensile and non-prehensile movements and 

recovery of many tasks. For more flexibility, abduction–adduction of the index finger, but also of 

the other fingers, adding 1 to 4 DoFs, could be considered. So far, continuous multi-DoF hand 

control has been obtained only with intracortical electrodes that penetrate the brain. In this section 
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we describe existing neurotechnologies that use various sources to decode hand movements. We 

present solutions based on residual body movements, EEG, ECoG and intracortical electrodes 

1.3.1 Residual Body Movement Decoding 

Most of the current clinical applications of neuroprostheses for hand movement restoration 

rely on the user’s residual body movements to provide motor commands. Body control sources 

can be distinguished into homologous and non-homologous solutions depending on whether they 

are part of the natural ‘command chain’ (that is, neuromuscular control pathway) of the hand, or 

not. Examples of nonhomologous approaches include movements of the contralateral shoulder and 

button presses, used in the first-generation Freehand system (Peckham et al., 2001) and the NESS 

H200 (Bioventus LLC, Durham, NC, USA; Snoek et al., 2000), respectively, to select the desired 

type of grasping and its onset and offset. Despite non-homologous approaches being robust and 

easy to implement, they scale poorly in controlling multiple DoFs for more complex movements 

and increase the cognitive load.  

A more intuitive, but not truly homologous, solution was implemented in the Bionic Glove 

(Prochazka et al., 1997), now commercialized as ReGrasp (Rehabtronics, Edmonton, Canada), 

whereby people with C6 tetraplegia controlled the onset and offset of grasping using the residual 

extension and gravity-induced flexion of the wrist, respectively. This technique resulted in a 

natural amplification of their already mastered tenodesis grasp, a passive grasp mechanism in 

which extension of the wrist leads to shortening of the finger flexors and thus to flexion of the 

fingers. This approach was later extended to the second-generation Freehand system (Kilgore et 

al., 2008), employing implanted electromyography (EMG) or kinematic wrist sensors (Hart et al., 

1998). The use of multi-muscle EMG signals recorded from the forearm and hand has been 

proposed as a truly homologous solution providing an increased control of dimensionality, that is, 
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more DoFs can be controlled. Classification of hand postures has been performed using 

myoelectric pattern recognition in subjects with incomplete tetraplegia (Liu & Zhou, 2013; Z. Lu 

et al., 2019). In addition, subthreshold muscle activity — detectable with EMG but without 

producing open movements — has been reported in most patients diagnosed with motor complete 

SCIs (Heald et al., 2017; Sherwood et al., 1992). These low-level EMG signals were recorded with 

surface electrode arrays positioned on the forearm in a patient with complete SCI and used to 

discriminate between attempted single finger movements (Ting et al., 2021). One limitation of 

homologous residual body control is that there is currently no robust solution to disentangle in real 

time the voluntary activity from that evoked by the neuroprosthesis without loss of data (Osuagwu 

et al., 2020). Moreover, it must be tailored to each patient and is not applicable when the residual 

kinematic and muscle activities are completely absent. 

1.3.2 Brain-Decoding  

A more generalizable solution would be to use neurotechnologies that decode hand 

movements from brain activity. Brain activity can be recorded using interfaces with different levels 

of invasiveness (transcutaneous, intracranial or intracortical; Figure 1-3a), leading to different 

recording and decoding resolutions (Figure 1-3b). 

1.3.2.1 Non-Invasive Signals: EEG 

The non-invasive (transcutaneous) solution using EEG has generated the largest number 

of human studies in the field. EEG signals have high temporal but low spatial resolution because 

they are based on the cumulative activity of many neurons. Therefore, to decode specific 

movements it is necessary to extract relevant features across time and electrodes. Frequency-

related features are generally extracted using Fourier transform, wavelets or bandpass filtering, 

and it is common to see spatial features extracted through Laplacian filters, spatial patterns, 
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principal component analysis and independent component analysis (McFarland et al., 2006). 

Sensorimotor-related rhythms commonly extracted are the mu band (8–12 Hz) and beta band (18–

30 Hz), as these change in amplitude with overt movement, imagined movement and movement 

preparation. EEG recordings have been used in healthy subjects and patients with tetraplegia for 

discrete decoding of hand movements. Linear discriminant analysis classifiers can decode the 

onset of grasping (Randazzo et al., 2015) and discriminate between two or three grasp types 

(Iturrate et al., 2018; Jochumsen et al., 2016; Muller-Putz et al., 2019; Ofner et al., 2019; Sburlea 

et al., 2021; Schwarz et al., 2018) and object affordances (Sburlea et al., 2021) using EEG signals 

over the motor cortex and fronto-parietal areas. Unfortunately, classification accuracy has never 

reached high values; that is, not exceeding 70% in binary classification. EEG signals have low 

amplitude and lack the specificity to decode motor intentions for the hand well above chance 

levels. Therefore, the accuracy of predicted movements might not be high enough to control a hand 

in daily life. In addition, EEG caps are cumbersome and require skill and time to be placed and 

calibrated, further limiting their acceptance for daily assistance. However, EEG signals can also 

be used to trigger muscle stimulation (Gant et al., 2018) or to control an orthosis or exoskeleton 

(Al-Quraishi et al., 2018) in a neurorehabilitation setting. A double-blind study with 32 patients 

with chronic stroke showed substantially higher motor improvement in the BMI group (the BMI 

was used to trigger an orthosis attached to the plegic limb) compared with a sham-BMI group after 

4 weeks of training (Ramos-Murguialday et al., 2013), as measured by the modified Fugl–Meyer 

assessment motor score (Fugl Meyer et al., 1975), which assesses voluntary movement of the upper 

limb. In this case, the contingent link between brain activity and repetitive activation of the 

afferents is thought to promote a Hebbian-like plasticity mechanism (a form of synaptic plasticity 

caused by the causal relationship between pre and post-synaptic activity), which might increase  
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Figure 1-3 Interfaces and strategies to decode hand movements from brain activity.  
a, Brain signals can be recorded with transcutaneous (electroencephalography, EEG), intracranial 
(electrocorticography, ECoG) or intracortical electrodes, from the least to the most invasive interface, resulting in 
different levels of spatial resolution (number of recorded neurons, or units, and the covered area of cortical tissue). b, 
Classification of selected studies in terms of type of brain interface used and decoded information, such as the intention 
to grasp (Pistohl et al., 2012; Randazzo et al., 2015) (with 3D control of a robotic arm; Hochberg et al., 2012), discrete 
grasps (Colachis et al., 2018; Muller-Putz et al., 2019; Pistohl et al., 2012) discrete single finger movements (Chestek 
et al., 2013; Jorge et al., 2020) and continuous multi-finger kinematics (Nason et al., 2021). Part b is adapted from 
(Hochberg et al., 2012), Springer Nature Limited. Part b is adapted from (Colachis et al., 2018), CC BY 4.0 (https:// 
creativecommons.org/licenses/by/4.0/). Part b is adapted with permission from (Jorge et al., 2020), Wolters Kluwer 
Health, Inc. Part b is adapted with permission from (Nason et al., 2021), Elsevier. Part b is adapted from (Pistohl et 
al., 2013). CC BY 4.0 (https://creativecommons.org/ licenses/by/4.0/). Part b is adapted with permission from (Pistohl 
et al., 2012), Elsevier. Part b is adapted with permission from (Chestek et al., 2013), IOP. © [2015] IEEE. Reprinted, 
with permission, from (Randazzo et al., 2015), adaptation permission from author. © [2019] IEEE. Reprinted, with 
permission, from (Muller-Putz et al., 2019), adaptation permission from author. 
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the excitability of motor circuits to a level that allows voluntary activation of preserved, functional 

corticospinal fibers (Ethier et al., 2015). The key element here is high temporal resolution such 

that the cortical motor command is synchronized with the afferent signal (Ethier et al., 2015; 

McFarland & Wolpaw, 2017; Mrachacz-Kersting et al., 2012), rather than achieving 100% 

decoding accuracy. 

1.3.2.2 Invasive Signals: ECoG 

In comparison with EEG, a higher spatiotemporal resolution and the elimination of external 

components can be obtained by recording signals from the surface of the brain using ECoG. 

Because ECoG electrodes are large and far from the neurons in the cortical layer V projecting to 

the spinal cord, they still record the combined activity of many neurons. However, ECoG motor 

signals are more specific and have a larger frequency range of interest than EEG, with mu and beta 

rhythms still present and a higher-frequency gamma range that is thought to be related to the 

activity of single neurons (Buzśaki & Wang, 2012). ECoG recordings have been used to accurately 

classify up to five hand postures and single finger movements (Chestek et al., 2013; Miller et al., 

2009; Pistohl et al., 2012, 2013). Moreover, ECoG activity has also been used to control prosthetic 

hands through online detection and classification of hand or finger movements (Hotson et al., 

2016; Yanagisawa et al., 2011). These studies employ linear classifiers, such as linear discriminant 

analysis or support vector machines. Moreover, offline studies demonstrate accurate 1-DoF 

continuous hand control with ECoG. For example, linear decoders with nonlinear transforms at 

the output applied to ECoG recordings can predict single finger kinematics (Flint et al., 2017, 

2020) and force (Flint et al., 2020). Moving to completely non-linear methods, a convolutional 

neural network combined with a long short-term memory has been used for decoding single finger 

trajectories (Xie et al., 2018), with the convolutional layer replacing the feature extraction pipeline. 
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ECoG electrodes remain on the surface of the brain and cause little damage or foreign body 

response, which is thought to allow longer electrode lifetimes and more consistent signals over 

time compared with more invasive approaches (Schalk & Leuthardt, 2011). However, despite 

having great potential for clinical applications, it might be difficult to substantially increase the 

number of hand DoFs controlled by ECoG-based systems. The limited spatial separation of human 

cortical areas devoted to different fingers limits the specificity that can be reached using ECoG 

electrodes, which record the summation of the activity of many units. 

1.3.2.3 Invasive Signals: Intracortical 

The solution that has shown the highest levels of accuracy, control rate and dimensionality 

involves the recording of spikes through intracortical electrodes. Intracortical electrodes penetrate 

the cortex, recording from neurons micrometres away and allowing the spiking rate of single units 

or multi-units to be calculated, thus estimating the neural activation in highly localized areas. Since 

the early 2000s, intracortical multi-electrode arrays have been used for movement decoding 

because they allow large ensembles of neurons (100–400 units) to be recorded, which is necessary 

for dexterous control. Discrete hand movements can be accurately decoded online and offline 

using intracortical signals. Linear discriminant analysis classifiers applied to intracortical activity 

can predict the grasping intention during 3D control of a robotic arm (Hochberg et al., 2012) or 

discriminate between single finger movements (Jorge et al., 2020) in humans with tetraplegia. 

Similarly, support vector machines applied to intracortical signals could accurately classify four 

to six grip types offline (Carpaneto et al., 2012) and allow switching between seven hand postures 

in a human BMI controlled FES study (Colachis et al., 2018). Classification from intracortical 

recordings has also been performed using non-linear methods, specifically neural networks. 

Applied on a dataset from the 1990s, in which intracortical activity was recorded one electrode at 
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a time from NHPs moving all five fingers individually (Schieber & Hibbard, 1993), neural 

networks were reported to be particularly accurate at classifying which finger was moving 

(Aggarwal et al., 2008; Hamed et al., 2007), with nearly 100% success offline. Moreover, 

compared with a support vector machine, a deep neural network showed lower decline in accuracy 

and lower increase in response time when increasing the number of hand postures to classify 

(Skomrock et al., 2018). Intracortical signals are also effective for continuous hand control. For 

example, an intracortical BMI reported continuous decoding of a hand grasp aperture using simple 

linear regression (Carmena et al., 2003). Similarly, linear control enabled modulation of the grasp 

aperture of a robotic hand to enable self-feeding in a patient with paralysis (Collinger, Wodlinger, 

et al., 2013). In this case, accuracy was improved using ridge regression to prevent overfitting 

(Wodlinger et al., 2015), and in many of these linear-only approaches, part of the time history 

(typically 100–200 ms) of the signal is included to achieve a better fit. Extending to more DoFs, a 

linear decoder with one nonlinear transform at the output was used to predict EMGs of up to five 

hand muscles in a brain-controlled FES system for grasping in NHPs  (Ethier et al., 2012). 

Intracortical signals can be used to decode not only the kinematics of the hand as a whole (Irwin 

et al., 2017), but also of separate finger groups simultaneously (Nason et al., 2021; Vaskov et al., 

2018), showing great potential for recovery of complete hand dexterity. The decoder applied in 

these studies is the Kalman filter, which was introduced in intracortical BMI studies of the 2000s 

and is still widely used, and which enables smoother and more controllable movements than 

traditional linear regression (Kim et al., 2008; Wu et al., 2004). 

From an algorithmic perspective, improved performance in continuous BMIs has emerged 

from refining rather than replacing linear models. For example, retraining parameters based on 

online data have been developed for 2D cursor movements (Gilja et al., 2012; Orsborn et al., 2014), 
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but can also improve accuracy when applied to decoding finger kinematics (Vaskov et al., 2018). 

Neural networks were being explored for continuous control in the early 2000s (Sanchez et al., 

2004), but their performance was not yet competitive with linear algorithms. After more than a 

decade of offline analysis of intracortical data using neural network methods, it is now clear that 

they can achieve a much better fit to kinematic data than their linear counterparts (Glaser et al., 

2020; Haghi et al., 2019; Pandarinath et al., 2018; Willsey et al., 2022). Moreover, the neural 

network field is constantly advancing, not only for increasing decoding accuracy but also for 

preventing overfitting, reducing training data and improving computation speed (Gu et al., 2018). 

Neural networks are being tested for regression in online settings (Willsey et al., 2022) using faster 

parallel computing and training paradigms (Mehrotra et al., 2018; Santurkar et al., 2018) and 

regularization methods to prevent overfitting (Ioffe & Szegedy, 2015; Li et al., 2019; Srivastava 

et al., 2014).  

Currently, intracortical electrodes outperform ECoG in hand control in terms of accuracy, 

control rate and dimensionality, but at the cost of more invasive surgery and potentially less signal 

stability over time (Schalk & Leuthardt, 2011), which could affect decoder performance. There is 

ongoing effort to improve intracortical electrode electronics (Even-Chen et al., 2020) and 

flexibility to increase the stability of the implants and to implement automatic, unsupervised 

recalibration methods to avoid the frequent collection of calibration data (Bishop et al., 2014; 

Jarosiewicz et al., 2015). 

1.3.3 Intracortical Electrode Technologies  

Most intracortical brain–machine interface (BMI) studies in humans and non-human 

primates (NHPs) have been performed using one or more Utah arrays, arrays of 100 

microelectrodes on a 4 mm by 4 mm silicon substrate (Nordhausen et al., 1996; Normann & 
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Fernandez, 2016). This device has remained the gold standard for decades, establishing a strong 

track record of long-term safety in dozens of patients (Bullard et al., 2020). However, this device 

causes substantial scarring in the immediate vicinity of the electrodes (Szymanski et al., 2021; 

Welle et al., 2020), resulting in a low neuronal yield per electrode, with 70% of arrays having only 

a 40% or greater yield in the first 3 months and decreasing to 50% of arrays with such a yield at 1 

year after implant (Sponheim et al., 2021), thereby limiting performance.  

One strategy to solve this problem is to record from more channels and optimize power 

consumption by recording spiking activity features with lower power than the traditional spike 

threshold crossing rate (Even-Chen et al., 2020; Nason et al., 2020). There is also an emerging 

class of subcellular electrodes (<20um cross-sectional area) that cause minimal scarring and which 

can enable higher long-term neuronal yields than silicon arrays (Guitchounts et al., 2013; Luan et 

al., 2017; McNaughton et al., 1983; Musk, 2019) using soft materials to match the mechanical 

properties of the brain (Chung et al., 2019; Hanson et al., 2019; Hong & Lieber, 2019; Liu et al., 

2015; Luan et al., 2017; McCallum et al., 2017). However, approaches using soft materials usually 

require a stiff insertion shuttle to implant the electrode, which can cause damage during insertion. 

Subcellular electrodes can also be made out of stiff materials that do not require a shuttle such as 

metals (Ali et al., 2021; Obaid et al., 2020), silicon carbide (Frewin et al., 2016) or carbon fiber 

(Patel et al., 2015; E. J. Welle et al., 2021; Yoshida Kozai et al., 2012). Even for traditional silicon 

probes, emerging devices have dramatically higher channel density than the Utah array; for 

example, the Neuropixel probe has 384 recording sites on a 10-mm-long 70 μm × 20 μm cross-

sectional shank, allowing for recording from hundreds of well-isolated neurons per probe (Jun et 

al., 2017). Another approach is to minimize the foreign body response by coating the implanted 

electrodes with a neuroadhesive protein coating (Golabchi et al., 2020). With hermetic 
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feedthroughs (which allow electrical signal transmission without transfer of particles or fluids) 

getting smaller, miniaturized titanium ceramic packages (Shah et al., 2012) could soon be used in 

BMIs. Another approach to increase channel count could be achieved using ‘neural dust’, that is, 

submillimeter-sized electronic implants spread over large areas of cortex that wirelessly transmit 

neural data using ultrasound backscatter (Seo et al., 2016), transcutaneous radiofrequency links (J. 

Lee et al., 2021) and optical interfaces (S. Lee et al., 2018; Lim et al., 2020). Unlike existing high 

channel-count devices that record hundreds of intracortical signals but only from a few cortical 

locations, like the Neuropixel probe (Jun et al., 2017), neural dust would allow for single unit-level 

signals to be obtained across several centimeters of cortex. Moreover, these small electronic 

implants would eliminate the need for chronic dura openings or a percutaneous connector, 

allowing for more electrodes to be implanted with lower risk of adverse events to the patient. 

1.4 Brain-Controlled Functional Electrical Stimulation 

Thus far we have detailed methods to infer intended movements and methods to restore 

movements. An ultimate goal in this field is to combine these two parts, bypassing the damaged 

spinal cord to restore dexterous hand movements. Much research has been dedicated to combining 

these, primarily using intracortical BMI to control stimulation. Studies in non-human primates for 

example have used intracortical spiking activity to control muscle force with intramuscular 

electrodes (Ethier et al., 2012; Moritz et al., 2008), to control stimulation to the radial nerve to 

open the hand for a ball grasp task (Badi et al., 2021), to control continuous hand opening and 

closing with intramuscular electrodes (Nason-Tomaszewski et al., 2023) or with intrafascicular 

electrodes (Losanno et al., 2022), and to control epidural spinal cord stimulation to restore 

voluntary upper limb movements (Barra et al., 2022). A few of these methods have been used in 

clinical trials as well. Intracortical signals have been decoded into joint angles for controlling arm, 
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hand, and wrist movements through 36 intramuscular electrodes, ultimately allowing the 

participant to perform a functional task drinking from a mug of coffee (Ajiboye et al., 2017). 

Similarly, intracortical signals have been decoded into elbow flexion and hand opening and used 

to control nerve cuff stimulation in real time to enable a participant to do a self-feeding task 

(Herring et al., 2023). Another study used intracortical signals to classify hand movements and 

then was able to classify intended movements in real time and stimulate forearm muscles with an 

array of surface electrodes to enable a participant to do a pour and stir task (Bouton et al., 2016). 

Lastly, while a BMI hasn’t been used to control epidural spinal cord stimulation at the cervical 

level, similar stimulation at the lumbar level was controlled with ECoG electrodes, classifying 

which joint was moving (ankle, hip, or knee), and enabling an individual with tetraplegia to walk 

(Lorach et al., 2023). A similar control strategy was used with intracortical recordings and cervical 

spinal cord stimulation to allow NHP with SCI to do a reach-grasp-pull task (Barra et al., 2022) 

indicating that this could be a viable method in clinical trials.  

Notably, in all of these clinical trials the functional tasks were limited to reaching and one 

or a few grasps. More work is needed both on the BMI side and the FES side to truly restore 

dexterous hand movements in patients with SCI. On the BMI side, while the dimensionality of 

control has been improving with better recording technologies and algorithms, it will also be 

important to understand how well decoding methods will generalize to changes in a task. For 

example, in FES the hand will be opening and closing in different wrist postures and will be 

manipulating objects with different forces. In these scenarios, the fingers are expected to move 

with the same kinematics, however the muscle activations required to move the fingers will 

change. In addition, similar movements can be made with the hands but with different intentions 

(i.e. prehensile versus nonprehensile). Ultimately, it is not fully understood how cortical activity 
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drives movements (see section 1.1.2), so it is unknown how cortical activity will change in these 

situations. BMI decoders on the other hand have been trained on very structured movements. As a 

result, error is introduced to the decoders when the task changes for example when moving the 

wrist at different forces (Naufel et al., 2019), or while trying to maintain a grasp while moving the 

arm (Bouton et al., 2016). Studies have been successful in designing BMI decoders to be robust 

for specific applications by augmenting training data (Naufel et al., 2019) or by engineering 

features for the specific application (Dekleva et al., 2021; Schroeder et al., 2022). More work is 

needed to determine how accurate BMI decoders will remain in situations common to upper limb 

FES control and then how to decode intended movements in a robust manner when controlling 

FES. 

Similarly, more work is needed in characterizing how well FES performs when controlling 

hand movements in different postures or when simultaneously controlling multiple joints. Studies  

controlling hand and upper limb movements have controlled each joint independently (Ajiboye et 

al., 2017; Herring et al., 2023). Muscles can have multiple tendons or cross multiple joints, 

therefore exerting a force on multiple joints when activated. This happens especially in the hand 

where extrinsic finger muscles cross the wrist and have tendons to each finger. Individuated finger 

movements for example are generated by the activation of several muscles, all acting on multiple 

fingers (Schieber, 1995). As a result, stimulation to control the fingers is not independent from 

stimulation to control other fingers or the wrist like typical FES control strategies would treat them. 

Unfortunately, there has yet to be a characterization of how well FES can individuate the joints in 

the hand. Future work should focus on stimulation strategies to individuate joints in the hand as 

well as how to successfully control the stimulation with a BMI.  
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1.5 Summary of Thesis 

In this thesis, I investigate generalizable BMI decoding for FES applications and using 

intramuscular FES to restore graded multi-DOF movements in the wrist and fingers, ultimately to 

improve the reliability and dexterity of restored hand movements with brain-controlled FES.  

In Chapter 2, I investigate the impact of task changes, similar to those that may be 

experienced in FES and acts of daily living, on BMI performance. We have previously established 

an intracortical BMI to control two finger groups in a virtual hand (Nason et al., 2021). I found 

that when I changed the context of the task by either adding springs to each finger group or altering 

the wrist posture, that trained decoders did not generalize well to these new contexts, leading to 

significant increases in prediction error, especially for muscle activation predictions. Interestingly, 

context changes only had a small impact on BMI performance when using the decoders in the 

closed-loop virtual BMI task. I explain this dichotomy by showing that the structure of neural 

population activity remained similar in new contexts, which could allow for fast adjustment online. 

Additionally, I found that neural activity shifted neural trajectories proportional to the required 

muscle activation in new contexts, suggesting a feature that could help predict different magnitude 

muscle activations while producing similar kinematics. These results suggest that BMIs making 

predictions of intended kinematics can successfully produce command signals for an FES 

application and using additional neural features could provide a method to modulate FES 

commands by the required muscle activation of the task.  

In Chapter 3, I investigate how well current FES control strategies can provide graded 

control of two-DOFs, wrist flexion and hand opening and closing, simultaneously. Two rhesus 

macaques were implanted with intramuscular electrodes in muscles of the forearm controlling the 

wrist and fingers. I found that controlling each DOF independently allowed us to move the desired 
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DOF through a large range of movements, however the stimulation evoked movements in both 

DOFs. That is, moving the fingers also evoked large movements in the wrist, and moving the wrist 

also evoked smaller but still significant movements in the fingers. As a result, when controlling 

both DOF simultaneously, the resulting range of motion changes due to interactions in stimulation 

for each DOF. Additionally, muscle fatigue has a large and quick (within minutes) impact on the 

range of motions of evoked movements. Despite this, graded stimulation can be used to acquire 

targets throughout the range of motion. I also demonstrate a BMI to control continuous finger and 

wrist flexion that could be used in a nerve block model of hand and wrist paralysis. These results 

are the first characterization of the effectiveness of intramuscular FES for continuously controlling 

more than one-DOF in the hand and emphasize that evoked movements in one DOF should not be 

treated as independent despite that being the common approach for BMI commands.  

In Chapter 4, I investigate the efficacy of a new intramuscular electrode implantation 

method for evoking selective finger movements with NHP. I show that by targeting the various 

nerve entry points to the extrinsic finger muscles, we can evoke twitches in single fingers and 

larger movements in combinations of two fingers. This approach gives us control of more distinct 

finger movements, suggesting a method that can control individual fingers with stimulation on 

combinations of these electrodes.  

Finally, in Chapter 5, I will discuss the results of each study with respect to the full set of 

research chapters and the current state of the field, present my projections for immediate next steps 

of this work, and discuss my visions for brain-controlled FES.  
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Chapter 2 Cortical Activity Changes and Error in Brain-Machine Interface Predictions of 

Intended Finger Movements Due to Task Context 

A version of this chapter “The impact of task context on predicting finger movements in a brain-

machine interface” was published in eLife in June 2023 (Mender et al., 2023) 

 

2.1 Introduction 

Spinal cord injury affects an estimated 302,000 people in the United States (National Spinal 

Cord Injury Statistical Center, 2023). People with quadriplegia have ranked the restoration of hand 

and arm function as very important for quality of life (Anderson, 2004; Collinger, Boninger, et al., 

2013). Functional electrical stimulation (FES) is a therapy that can restore hand and arm function 

by electrically stimulating muscles in order to cause contractions. Studies have demonstrated the 

use of FES to restore at least some hand function since the 1980s (Kilgore et al., 1989; Peckham 

et al., 1980), which has resulted in commercially available systems such as the Freehand System 

(Peckham et al., 2001) that was available until the late 2000s. These systems, however, typically 

relied on external motion or myoelectric commands from residual muscles. These control schemes 

for FES require residual function and can be unintuitive to use, especially when controlling more 

than one degree-of-freedom.  

Brain-machine interfaces (BMIs) have the potential to provide more intuitive control 

signals that enable people with paralysis to interact with computers, prostheses, or control therapies 

like FES. These BMI capabilities have been made possible by a history of neuroscience studies 
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finding that motor cortex activity is correlated with a multitude of movement variables, from 

intrinsic variables like joint angle and muscle activation (Evarts, 1968), to extrinsic movement 

direction (Georgopoulos et al., 1986). Taking advantage of these correlations allows linear models 

to predict these movement variables from neural activity. This approach has been used in BMIs to 

allow non-human primates to control computer cursors (Gilja, Nuyujukian, Chestek, Cunningham, 

Yu, Fan, Churchland, et al., 2012; Serruya et al., 2002; Taylor et al., 2002), prosthetic arms 

(Carmena et al., 2003; Velliste et al., 2008), and FES (Badi et al., 2021; Ethier et al., 2012; Moritz 

et al., 2008). Additionally, success in animal BMIs led to the use of similar models in clinical trials 

as well (Ajiboye et al., 2017; Bouton et al., 2016; Collinger, Wodlinger, et al., 2013; Gilja et al., 

2015; Wodlinger et al., 2015). These studies, however, are generally performed in a controlled lab 

environment, and use relatively simple linear models to make predictions. One key factor in the 

translation of lab BMI FES systems to tasks of daily living will be how robust they are to the 

varying environment found in patient’s homes. Groups have included object interaction in their 

tasks, for example grabbing single objects (Ajiboye et al., 2017; Downey et al., 2017), or different 

size objects (Wodlinger et al., 2015), however there has not yet been a systematic effort to 

understand how task context affects BMI performance.  

Offline studies of how motor cortex controls movement have helped to inform how well 

we can expect BMI models to generalize. This work has shown that the linear encoding of 

movements in motor cortex can change with many factors such as posture or task duration 

(Churchland & Shenoy, 2007; Kakei et al., 1999; Naufel et al., 2019; Sergio et al., 2005; Stephen 

H. Scott et al., 2001). Recent studies have emphasized instead that the role of motor cortex is to 

generate movements rather than represent movements (Churchland et al., 2012; Russo et al., 2018; 

Shenoy et al., 2013). In this view, the activations of single neurons are coordinated. The underlying 
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network connectivity constrains population activity to a low-dimensional manifold and activations 

on this low-dimensional manifold then form the basis for neural dynamics which generate 

movements (Gallego et al., 2017; Shenoy et al., 2013). A key feature of these dynamics that is 

different from a representation model is that they may have a more computational function, for 

example ensuring that outgoing commands can be generated reliably (Russo et al., 2018). The 

resulting activity may then change when the same movements are done in different ways because 

a different computation is needed to generate the movements. As a result, an individual neuron’s 

activity, which is related to the latent activity in this low-dimensional manifold, could correlate 

with movements differently when the task is changed to one that requires different neural 

dynamics. With respect to BMI applications, the decoding models assuming a linear relationship, 

and non-linear models that do not account for these changes, would then be unable to make 

accurate predictions in the new tasks.  

It is still unclear how large of a task change will require different neural dynamics and thus 

a different decoding strategy. It has been shown that different dynamics are required for large 

changes in a task, such as forward versus backward arm pedaling (Russo et al., 2018), reaching or 

walking (Miri et al., 2017), or using one arm or the other (Ames & Churchland, 2019). At the same 

time, there is evidence that tasks with the same movements performed differently may have similar 

neural dynamics. A recent study found that cycling at different speeds led to similar elliptical 

trajectories in high variance neural dimensions, with a lower variance dimension encoding task 

speed (Saxena et al., 2022). Additionally, a study of isometric, resisted, and free-moving wrist 

movements found a neural manifold that explained a large amount of neural variance in all tasks 

(Gallego et al., 2018) and a similar study comparing the same wrist movements found that they 

could still predict muscle activations between the contexts although it required a gain-factor related 
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to required muscle activation (Naufel et al., 2019). These observations suggest that the neural 

dynamics may be similar across tasks with small changes, such as a change in speed or muscle 

exertion, with differences occurring in lower variance dimensions of population activity.  

Which tasks require a change in neural dynamics is a particularly important question to 

study for hand movements, as the hand is the major end effector interacting with the environment 

in varying postures and with different loads. However, this work has not yet been extended to 

continuous finger movements. Finger movements are less studied than arm reaches but initial 

studies show that grasping movements may show different dynamics due to the increased 

proprioceptive and tactile feedback present (Goodman et al., 2019; Suresh et al., 2020). In a 

promising start to studying decoder generalization for individuated finger movements, it has been 

shown previously that multiple finger movements can be predicted simultaneously, in real-time, 

and that a linear model trained with data from individual finger movements could also predict 

combined finger movements (Nason et al., 2021), suggesting that individual finger movements 

and combined finger movements may have similar neural dynamics.  

In this study, we investigate how well the decoding of finger movements from intracortical 

neural activity in nonhuman primates can generalize to realistic alterations of the context in which 

a task is performed, similar to those that may be found in a BMI user’s home. These context shifts 

represent a small range of the possible shifts but relate back to common musculoskeletal changes 

in the task, i.e. muscle length and activation. We ask how the relationship between intracortical 

neural activity, non-prehensile finger movements, and the related muscle activations are impacted 

by context changes, such as spring-like resistances and postural changes. We show that these 

context changes reduce our ability to predict finger kinematics and finger-related muscle 

activations offline. However, in an online kinematic-based finger BMI task, the monkey can 
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accommodate for the changed task context and achieve near equivalent performance with or 

without the context change. We explain this by showing that the underlying neural manifolds stay 

well aligned between contexts, the neural dynamics are shifted due to context, and the shift in 

neural dynamics can be related to the muscle activation required in the new context.   

2.2 Results 

2.2.1 Context Changes Alter Muscle Activations and Neural Activity 

We are ultimately interested in understanding the impact of context changes, such as wrist 

flexion or spring resistance, on BMI decoding performance. In the virtual finger movement task 

(Figure 2-1A), the monkey moves their fingers within a manipulandum in order to move virtual 

fingers on a screen in front of them. Cortical spiking activity is recorded during these movements. 

The monkeys perform center-out and back movements in which they individuate index and 

middle-ring-small (MRS) finger groups to make one of eight movements (Figure 2-1B) starting 

from rest, hold the target, then return to rest. In some versions of the task the monkeys performed 

these movements with all fingers held together for 1-degree-of-freedom (1-DOF, Figure 2-1B 

bottom). Monkey N additionally had eight chronic electromyography (EMG) leads implanted in 

muscles of the hand and wrist (see Methods, Table 2-2) which were recorded from during 

manipulandum control trials. During the BMI task, a Kalman filter (KF) model is trained to relate 

cortical activity to finger movements, and the monkey controls the virtual hand with their brain 

activity through this model. We first asked whether introducing context changes during the 

manipulandum controlled virtual finger movement task causes any change in behavior, muscle 

activation, or neural channel activation. Our first manipulations were the addition of torsional 

springs or the static flexion of the wrist by 23 degrees (Figure 2-1C), referred to as the spring and 
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wrist contexts, respectively, during the 1-DOF center-out task. The torsional springs resist flexion 

such that more force is required to flex the fingers but less force is required to extend the fingers. 

 

Figure 2-1 Illustration of the behavioral task and context changes.  
(A) Experimental setup during manipulandum control and brain-machine interface (BMI) control experiments. The 
monkey individuates their index and middle-ring-small finger group, moving each in the manipulandum in order to 
acquire targets on the screen in front of them. During this task, neural activity and finger positions are both recorded. 
A model relating neural activity to intended finger movements can be trained and then used in real time to control the 
virtual hand in front of them. (B) Illustration of the possible finger movements. For 2-degree-of-freedom (2-DOF) 
movements, the index flexion is represented on the x-axis and MRS flexion is represented on the y-axis. In some tasks 
the monkeys also did a 1-DOF movement, which required flexing or extending all fingers together. (C) To alter the 
context of the task, the manipulandum could be rotated so that the wrist was flexed and torsion springs could be added 
to the underside of the finger doors. The torsion springs were at rest when the finger doors were at full extension and 
thus resisted flexion and assisted with extension. 

We expected the springs to cause minimal change in finger velocity during movements but 

a large increase in muscle activation for flexor muscles during flexion and a decrease in activation 

for extensor muscles during extension. The springs were chosen to be as strong as possible without 

decreasing the monkey’s motivation during the 2-DOF task. As a result, the task could still be 

completed close to as fast as their reactions allow. Figure 2-2A shows finger position and velocity 
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traces averaged over all flexion trials (solid lines) and all extension trials (dashed lines) on one 

representative day with the 1-DOF task for Monkey N where the spring manipulation was tested. 

We see small changes between the velocities in normal trials (black traces) and spring trials (blue 

traces). To quantify this change, we compared the peak velocities between normal trials and other 

context trials for one representative session with each context (Figure 2-2C). Each monkey had 

slight behavioral differences in how quickly they performed the task with context changes leading 

to small changes in peak velocities. We found that the largest changes in peak velocity were 

Monkey N extending fingers 12.5% faster during wrist trials (p=5e-24, two-sample t-test), and 

Monkey W flexing fingers 22.3% faster during wrist trials (p=2.6e-11, two-sample t-test), with 

both monkeys showing small changes in peak movement velocity for at least one movement in 

each context (p<0.05, two-sample t-test). 

In contrast, during the same 1-DOF task, muscle activations change substantially for trials 

toward both targets (Figure 2-2B), showing trends such as increased flexor digitorum profundus 

(FDP) muscle activation for flexion and less extensor digitorum communis (EDC) activation for 

extension. All muscles implanted for Monkey N are included in Table 2-2 (Methods) while 

Monkey W did not have EMG electrodes. Using the same representative sessions for Monkey N, 

we compared the average muscle activations from Monkey N in a 420ms window around peak 

movement between normal trials and off-context trials (Figures 2-2D and 2-2E). During spring 

trials, we found that every muscle except FCR required significantly higher than normal muscle 

activation for flexion (Figure 2-2D blue, p<0.004 two-sample t-test), an average increase of 91.9% 

for the finger flexor muscles (FDPid, FDPip, FDP), and every muscle except FDP and FCU 

required less muscle activation for extension (Figure 2-2E blue, p<1e-5 two-sample t-test), an 

average decrease of 8.2% in finger extensor muscles (EIP, EDC). Interestingly, even extensor 
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muscles were more activated during spring flexion trials, indicating that Monkey N was co-

contracting muscles more and moving with more stiffness. During wrist trials, finger flexor 

muscles showed an average 53.3% increase in activation for flexion trials (Figure 2-2D yellow) 

and finger extensor muscles had an average 32% decrease in activation for extension trials (Figure 

2-2E yellow). 

 

Figure 2-2 The impact of context changes on kinematics and muscle activation.  
(A) Trial-averaged traces of index finger position and index finger flexion velocity for an example 1-degree-of-
freedom (1-DOF) spring session with Monkey N. Trials are aligned to peak movement (vertical gray line). Black 
traces are normal trials, blue are trials with springs in the manipulandum, solid traces are for flexion trials, and dotted 
traces are for extension trials. Shaded area shows one standard deviation. (B) Trial-averaged traces of flexor digitorum 
profundus (FDP) muscle activation and extensor digitorum communis (EDC) muscle activation for an example spring 
session with Monkey N. Formatted the same as (A). (C) Change in peak velocity between normal trials and trials with 
either springs present or the wrist flexed for both Monkey N (left) and Monkey W (right). Trials are split by movement 
direction, either flexion or extension. Error bars indicate 99% confidence interval based on a two-sample t-test. (D, E) 
Change in average muscle activation in a window around peak movement between normal trials and trials in the spring 
(blue) or wrist context (yellow) for all eight muscles recorded in Monkey N. Trials are split between flexion (D) and 
extension (E) movements. Error bars indicate 99% confidence interval based on a two-sample t-test. 

After establishing that context had a large effect on muscle activity with a relatively small 

effect on finger kinematics, we next evaluated whether neural activity changed due to the addition 

of springs or altered wrist posture. For each neural channel we recorded two features, the threshold 

crossing firing rate (TCFR) and spiking band power (SBP). SBP is a low-power feature that has 
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been previously shown to be well correlated with the firing rate of the largest amplitude unit 

(Nason et al., 2020), often enabling us to identify more tuned channels. For both Monkey N and 

Monkey W, we evaluated how many channels were tuned to movement and how many of these 

tuned channels modulated activity with context change. Tuning and context modulation were 

determined by regressing finger kinematics with channel activity and channel activity multiplied 

by a dummy variable for context, as described in the Methods, one channel at a time. Regression 

coefficients were tested for significance with a t-test, a significant channel activity coefficient 

indicated that channel was tuned, and a significant dummy variable coefficient indicated that 

context modulated the channel’s tuning. The results are included in Table 2-1. The SBP feature 

resulted in an average of 86.9 and 28 tuned channels of 96 for Monkey N and Monkey W, 

respectively, while TCFR resulted in an average of 36.7 and 11.8 tuned channels of 96 for Monkey 

N and Monkey W, respectively. An average of 24.4% of the tuned TCFR channels and 37.7% of 

the tuned SBP channels significantly changed activity with the wrist context and an average of 

56.8% of the tuned TCFR channels and 52.3% of the tuned SBP channels significantly changed 

activity with the spring context. As both features had a similar proportion of tuned channels that  

Table 2-1 Channels tuned to movement and modulated by context 
The number of channels tuned to any movement using two features (threshold crossing firing rate [TCFR] and spiking 
band power [SBP]) and the percentage of tuned channels that showed a significant change in neural feature between 
normal trials and trials in the tested context for four types of experimental sessions (Monkey N or Monkey W with 
the spring or wrist context). 

 TCFR SBP 
 

Tuned Channels % Context 

Modulated Channels 

Tuned Channels % Context 

Modulated Channels 

Monkey N Spring Days (n=3) 38.3 (SD=4.0) 47.0% (SD=2.8) 89.3 (SD=2.1) 61.7% (SD=12.0) 

Monkey N Wrist Days (n=2) 35.0 (SD=1.4) 43.1% (SD=9.8) 84.5 (SD=7.8) 54.4% (SD=0.8) 

Monkey W Spring Days (n=3) 12.0 (SD=1.0) 66.5% (SD=2.8) 35.0 (SD=6.9) 42.8% (SD=7.1) 

Monkey W Wrist Days (n=2) 11.5 (SD=3.5) 5.6% (SD=7.9) 21.0 (SD=5.7) 20.9% (SD=4.5) 

Standard deviation (SD) is calculated across sessions of the same type and n is the number of sessions of that type 
which is indicated in the first column. 
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were modulated by context changes, we opted to use SBP as the primary feature for the subsequent 

analyses in order to increase the number of tuned channels available for analysis. 

2.2.2 Decoding Neural Activity Across Task Context 

After confirming that these context changes had large impacts on muscle activation (Figure 

2-2) and affected many channels of neural activity (Table 2-1), we next asked how this will impact 

the ability to decode intended movements for BMI applications. Typically, BMIs use linear models 

to relate neural firing rates to the desired control variable (Ajiboye et al., 2017; Nason et al., 2021; 

Wodlinger et al., 2015). Given the work showing that task changes similar to those tested here can 

alter how motor cortex linearly encodes muscle activations during different wrist movements 

across tasks (Naufel et al., 2019), we next ask if the same is true for individuated finger 

movements. To test this, we recorded kinematics for both monkeys and muscle activations for 

Monkey N during the 2-DOF task and then trained linear models with data from normal trials to 

predict muscle activations or kinematics in unseen normal trials or other context trials. 

We first present the results for decoding Monkey N’s muscle activations across context. 

Figure 2-3A shows average predictions of FDP and EDC muscle activations for normal trials and 

spring context trials from one example experimental day, both using a linear model trained on 

normal trials. We found that within-context linear models, that is models trained and tested on 

trials of the same context, could predict muscle activations well during individuated finger 

movements, with accuracy comparable to predictions of kinematics (Appendix Tables A-1 – A-

4). However, models trained on normal trials are consistently unable to predict muscle activations 

well in the off-context trials (Figure 2-3B). For example, when springs are present the predictions 

do not account for the large changes in FDP activation magnitude or EDC activation during flexion 

trials (Figure 2-3A, Figure 2-4). Across three sessions in each context including the wrist, spring, 
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or both wrist and spring contexts, prediction mean-squared error (MSE) increased significantly 

from the normal trial baseline. This held true for both flexor muscles (FDP, FDPip) and extensor 

muscles (EDC, EIP) (evaluated by paired t-test, p<2e-9), in each tested context, with an average 

increase of 188.7% across all context changes and muscles. The increases in error varied widely, 

ranging from a 21% increase (flexor muscles with wrist-flexed) to a 356% increase (flexor muscles 

with both wrist-flexed and springs). 

 

Figure 2-3 Offline predictions of muscle activations.  
(A) Recorded and predicted muscle activation traces for flexor digitorum profundus (FDP) muscle (top half) and 
extensor digitorum communis (EDC) muscle (bottom half) from one example session with Monkey N. Traces are 
aligned to peak movement and averaged over trials to the same target, shading represents one standard deviation. 
Predictions are from a model trained only on normal trials and the model is evaluated either on normal trials (top) or 
trials with springs present (bottom). r indicates the linear correlation coefficient between recorded and predicted 
muscle activations using all trials in the specified context for that session, excluding the normal context trials used for 
training the model where applicable. IF – index flexion, MF – MRS flexion, F – both fingers flexion, IE – index 
extension, ME – MRS extension, (E) – both fingers extension. (B) Change in prediction mean-squared error (MSE) 
when a model trained on normal trials is evaluated on trials in a different context. Color indicates which context is 
being tested, yellow is wrist, blue is spring, and both is red. Each dashed line and pair of dots represent one session 
during which the same model was used for both measurements. Error bars on the dots indicate one standard deviation 
for model performance calculated with 10-fold cross-validation. (C) Same as (B) but model performance is measured 
with prediction correlation. 
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We next asked whether this dramatic increase in prediction error is driven by a simple 

offset or magnitude change, or a reduced linear relationship with recorded muscle activations. For 

example, while the off-context predictions of FDP activation during flexion in Figure 2-3A both 

do not account for the offset in muscle activation at the beginning of trials and do not predict a 

large enough change in the magnitude of muscle activation throughout the trial, the same linear 

correlation is maintained. As a result, these predictions might only need a bias and scaling 

adjustment to recover performance. Alternatively, during flexion, the off-context predictions of 

EDC activation are less correlated with measured EDC activation because the model predicts EDC 

inactivation, which occurs during normal trials. However, in spring trials, measured EDC 

activation actually increases for flexion due to Monkey N co-contracting to move more stiffly. 

Since MSE is influenced by both changes to linear correlation and changes to offsets and scaling, 

we also measured prediction correlation (Figure 2-3C) which is less affected by the changes to 

offsets and scaling. Using the same sessions and models trained on normal trials as when we 

measured MSE, we found that prediction correlation decreased from normal baseline by an 

average of 25.8% across tested contexts and muscles. This change was significant for all tested 

contexts (paired t-test), ranging from a 2.4% decrease for FDPip in the wrist context (p=0.03) to a 

69.4% decrease for EDC in the both context (p=1.3e-17). While significant, the change in 

correlation was a smaller effect than the change in MSE. 

Kinematics are used as a control signal in BMI applications more frequently than muscle 

activation so we next examined the error in predicting finger position and velocity across contexts. 

Figure 2-4A shows trial-averaged predictions for each target from training a linear model on 

normal trials and predicting normal trials or spring trials for an example session with Monkey N. 

In both index and MRS flexion predictions, we observed the off-context predictions to be worse  
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Figure 2-4 Offline predictions of kinematics.  
(A) Recorded and predicted position traces for index finger position (top) and middle-ring-small (MRS) finger group 
position (bottom), averaged across all trials toward each target. Shading represents one standard deviation. Predictions 
are from a model trained only on normal trials and the model is evaluated either on normal trials or trials with springs 
present. r indicates the linear correlation coefficient between recorded and predicted finger positions using all trials in 
the specified context for that session, excluding the normal context trials used for training the model where applicable. 
(B) Change in prediction mean-squared error (MSE) when a model trained on normal trials is evaluated on trials in a 
different context. Color indicates which context is being tested, yellow is wrist, blue is spring, and both is red. Each 
dashed line and pair of dots represent one session during which the same model was used for both measurements. 
Error bars on the dots indicate one standard deviation for model performance calculated with 10-fold cross-validation. 
(C) Same as (B) but model performance is measured with prediction correlation. 

than the normal trial predictions. Predictions during the spring trials often showed a bias towards 

flexion. We measured changes in prediction accuracies on three days for each context – spring, 

wrist, and both – for Monkey N, and one additional day with each context for Monkey W (Figure 

2-4B, Figure 2-4C). All context changes resulted in significantly higher prediction MSE (paired t-

test, p<1e-4), averaging 68.2% for finger position and 11.4% for finger velocity. All context 

changes also resulted in small but significant decreases in prediction correlation (paired t-test, 

p<1e-4), averaging -18.6% for finger position and -12.8% for finger velocity. The smaller change 
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in the correlation of position predictions indicates that much of the prediction error is coming from 

offsets or magnitude differences in the predictions. 

2.2.3 Changing Task Context Has Small Effects on Online BMI Performance 

Based on these offline prediction results, we might expect that in a real-time BMI when 

cortical activity is controlling the virtual hand, a model trained on normal trials will be more 

difficult to use when controlling a virtual hand in a new context. We investigated this by training 

either a KF or a ReFIT Kalman filter (RFKF), as done previously by Nason et al. (2021), and 

having the monkey control the virtual hand with the model while we applied context changes to 

this virtual task. Briefly, the KFs are standard position/velocity KFs that update virtual finger 

position by integrating the predicted finger velocity in the current time step. We introduced context 

changes in two separate ways. First, we added springs, a static wrist flexion, or both to the 

manipulandum and had the monkey control the virtual hand with an RFKF trained on normal trials. 

Second, we trained different KFs using training data collected in different contexts and had the 

monkeys use the KFs in the online task without any context changes applied to the manipulandum. 

Due to the quality of recorded neural signals, Monkey W controlled only 1-DOF online while 

Monkey N controlled 2-DOF online 

We first tested whether online BMI performance changed when using a standard RFKF 

with context changes added to the manipulandum, referred to as the manipulandum context change 

BMI experiments. One RFKF model could be tested on multiple context changes in a single 

session. For example, Figure 2-5A shows the acquisition times during an experimental session 

where two contexts, spring and wrist, were tested in sets of separate trials. Figure 2-5B summarizes 

the changes in online performance over six experimental sessions for Monkey N and four sessions 

for Monkey W. During these 10 sessions the context changes were tested 15 times: four times for 
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the wrist context, seven times for the spring context, and four times for the combined wrist and 

spring context. Each bar compares the performance during one of the 15 tests between normal 

trials and one off-context condition in a session when using the same model for both. In two of 

these tests with Monkey N (one spring and one combined wrist and spring), random target 

presentation was used instead of center-out to increase task difficulty. Ultimately, both monkeys 

reached the same levels of performance despite added context changes to the manipulandum. Of 

the 15 tests, only one test resulted in a significant change in at least one of the performance metrics 

(p<0.01, two-sample t-test). In this case, Monkey N using the RFKF while his wrist was flexed 

resulted in a 13.0% increase in time to target (p=6.7e-3), the equivalent of 86 ms. This overall lack 

of change was somewhat surprising since the offline decoding results had greater prediction error. 

The expectation was that when the monkey moved their hand along with the BMI task, the 

performance would be impacted due to the context change. However, the data show that the 

monkeys made adjustments to how their hand moved with the online task (Appendix Figure A-1). 

To measure the amount that the monkeys had to adjust during online trials to get to average 

performance, we calculated the average acquisition time, defined as the time to reach the target 

plus the time to finish orbiting the target, for the first five trials after the start of online trials and 

compared that between normal and off-context runs of BMI trials. Acquisition times were z-scored 

within a series of trials performed in the same context before calculating the average in the first 

five trials. Figure 2-5C shows the distribution of these average acquisition times for every instance 

the online trials were started, split between normal trials and off-context trials. Monkey N had 

slightly worse initial performance during normal online BMI use as the average acquisition time 

during the first five trials was significantly greater than zero (p=0.002, one-sample Kolmogorov-

Smirnov test). Monkey W, on the other hand, did not have significant adaptation from the first five 
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BMI trials (p=0.22, one-sample Kolmogorov-Smirnov test). Interestingly, the performance in the 

first five off-context trials is not different from normal trials for both monkeys (two-sample 

Kolmogorov-Smirnov test, p=0.88 for Monkey N, p=0.79 for Monkey W). This suggests that 

adaptation to a BMI with the context changes tested here is as difficult as adaptation from hand 

control to BMI control. 

 

Figure 2-5 Online performance when context changes are tested by adding changes to the manipulandum 
during online trials.  
(A) Example online session in which both the spring and the wrist context are tested. Each dot indicates acquisition 
time of one trial, each grouping of dots is a series of trials before the context was changed. Red bars and numbers 
above each grouping illustrate the median acquisition time (in seconds) for that series of trials. (B) Change in 
performance metrics between normal online trials and online trials with the context change indicated by the bar color 
in the manipulandum. Each bar indicates one session where off-context online trials are compared to the normal online 
trials immediately before and after them. Error bars indicate 99% confidence interval in performance metric change. 
Dashed line separates Monkey N sessions from Monkey W sessions. (C) Average acquisition time during the first five 
trials each time online trials were started, split between normal trials and trials with context changes applied to the 
hand (off-context). Acquisition times were z-scored within a series of trials in the same context. Red lines indicate the 
median. (D) Neural activity patterns for one example session. Neural activity patterns are velocity predictions at the 
time point of peak brain-machine interface (BMI) movement using a single linear regression model trained on normal 
offline trials. Each dot indicates the readout velocity for one trial using the same linear model but for either a normal 
trial (black) or an off-context trial (red). Larger open circles indicate the centroid of velocity readouts for trials to one 
of eight target directions split by normal and off-context trials. Shaded areas bound patterns for all trials excluding 
trials outside the 95th percentile of index or middle-ring-small (MRS) velocities. 
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To help explain this minimal change in online performance, we examined the monkeys’ 

neural activity during online trials. Similar to other BMI adaptation work (Golub et al., 2018a), we 

used predicted velocities as a low-dimensional behaviorally relevant readout of neural activity 

during online trials. The velocity predictions are made using a linear regression model trained on 

SBP from the normal offline training trials in that session with an additional 250 ms history (five 

50 ms bins) of SBP from each channel appended as additional features. We call the predicted index 

and MRS velocity at the time of peak online velocity the ‘neural activity pattern’ for that trial. An 

example session for Monkey N is shown in Figure 2-5D with trials split between normal BMI trials 

(black dots) and off-context BMI trials (red dots). This session was one of two sessions near the 

median change in online acquisition time between contexts across the 10 sessions for Monkey N. 

Open circles show the centroid of velocity readouts for all trials in that context toward the same 

target. The close proximity of the centroids and the overlap of the cluster of normal and off-context 

points in general indicate that similar neural activity patterns were being produced. This suggests 

that the monkey was using the same strategy in both types of trials even though the precise patterns 

may have differed. Across 13 online tests, the target neural activity pattern centroids did not change 

their magnitude along the target direction when compared between context for flexion targets, 

extension targets, and split targets (Appendix Figure A-2, two-sample t-test with 5% false 

discovery rate correction). Note that we excluded the two sessions with random target presentation 

from this analysis because trials did not have consistent target directions for calculating centroids. 

In a second online experiment, referred to as the two decoder BMI experiments, the 

monkeys alternated between using two KFs: one trained on normal trials and another trained on 

off-context trials. In this paradigm the context change is added to the model used in a closed loop 

BMI so that it directly impacts BMI control. Monkeys N and W performed these tests on 9 and 6 
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separate days, respectively. On each day, two decoders were trained in order to compare one 

context change. Figure 2-6A shows an example session alternating between a decoder trained on 

normal trials and a decoder trained on wrist trials. Figure 2-6B shows the performance changes for 

15 sessions with five, six, and four sessions testing the wrist, spring, and combined wrist and spring 

contexts, respectively. In 15 sessions, this experiment revealed small but significant changes in at 

least one performance metric for 11 sessions (Figure 2-6B, p<0.01, two-sample t-test) although 

only two sessions had worse online performance for all three metrics. The significant decreases in 

performance averaged 32.6% for time to target, 46.5% for orbit time, and 8.5% for path efficiency, 

with the combined context having the largest effect. 

We compared the acquisition time in the first five trials while using the normal decoder or 

an off-context decoder (Figure 2-6C). Normal and off-context trials on average did not show 

different relative performance in the first five trials. Similar to Figure 2-5C, Monkey N had higher 

acquisition times in the first five trials (p=0.008, one-sample Kolmogorov-Smirnov test) that is the 

same between using the normal model and off-context models (p=0.99, two-sample Kolmogorov-

Smirnov test). Monkey W once again did not show a significant initial adaptation (p=0.17, one-

sample Kolmogorov-Smirnov test) which was the same between using the normal model and off-

context models (p=0.5, two-sample Kolmogorov-Smirnov test). This indicates that for both 

monkeys, adapting to the off-context decoder was as difficult as adapting to the normal decoder. 

As the off-context online performance was worse in many of the two decoder BMI 

sessions, we next asked if this BMI task required more adaptation than when context changes were 

added to the manipulandum. As done previously, we calculated neural activity patterns, that is 

velocity readouts from neural activity for each online trial. These patterns were calculated using 
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Figure 2-6 Online performance when context changes were tested by using decoders trained with normal 
training data or off-context training data.  
(A) Example online session in which the wrist context was tested. Each dot indicates acquisition time of one trial, and 
each grouping of dots is a series of trials before the context was changed. Red bars and numbers above each grouping 
illustrate the median acquisition time (in seconds) for that series of trials. (B) Change in performance metrics between 
normal online trials and online trials with the context change indicated by the bar color. Each bar represents one 
session where off-context online trials are compared to the normal online trials immediately before and after them. 
Error bars indicate 99% confidence interval in performance metric change. The dashed line separates Monkey N 
sessions from Monkey W sessions. (C) Average acquisition time during the first five trials each time online trials were 
started, split between trials performed with the model trained on normal trials and the model trained on off-context 
trials. Acquisition times were z-scored within a series of trials with the same model. Red lines indicate the median. 
(D) Neural activity patterns for one example session. Neural activity patterns are velocity predictions at the time point 
of peak brain-machine interface (BMI) movement using a single linear regression model trained on normal offline 
trials. Each dot indicates the readout velocity for one trial using the same linear model but for either a normal trial 
(black) or an off-context trial (red). Larger open circles indicate the centroid of velocity readouts for trials to one of 
eight target directions split by normal vs off-context trials. Shaded areas bound patterns for all trials excluding trials 
outside the 95th percentile of index or middle-ring-small (MRS) velocities. 

one linear regression model trained on the normal context offline training trials from the same 

session. Ultimately, observed adaptation was a small effect, likely due to very high correlations 

between the velocity decodes with both KFs (Appendix Figure A-3). Neural activity patterns for 

an example session for Monkey N with the median change in acquisition time are shown in Figure 

2-6D. Neural activity patterns for trials using the normal model are represented in black and 

patterns for trials using the off-context model are represented in red. While the overall repertoire 
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of neural activation patterns largely overlaps, we saw small shifts in the centroids of patterns for 

individual targets. These shifts in this session included higher velocity for flexion and smaller 

velocities for extension in the off-context trials. A shift toward higher velocities suggests that the 

monkey was ‘pushing’ harder during those trials. When comparing these centroids in all sessions 

the shifts along the target direction were generally larger for these two decoder sessions than the 

manipulandum context changing sessions (Appendix Figure A-2, Appendix Figure A-4). 

Additionally, across the 15 sessions there was a trend that if the monkey had to push harder, that 

would happen during flexion trials (Appendix Figure A-4), all three significant increases (two-

sample t-test with 5% false discovery rate correction) were for flexion targets. Altogether, this 

indicates a small trend that the monkeys would re-aim during off-context flexion trials in the two 

decoder sessions by aiming for a target further from center (i.e. pushing harder). 

2.2.4 Context Shifts Population Neural Activity 

To help explain how the monkeys were able to adjust to different contexts during the online 

task, we further examined changes in neural activity during the offline task in different contexts. 

First, we ask if there are any obvious trends in how the channel activity changes during simple 1-

DOF movements, for example increasing neural activation when flexion requires more muscle 

activation. In one experimental session, Monkey N performed the 1-DOF task normally as well as 

in the wrist, spring, and rubber band contexts. The rubber bands altered the required muscle 

activations for the task in the same way as the springs, however to a larger extent, and as such were 

only used in this 1-DOF task. In two additional sessions, Monkey W performed the 1-DOF task 

normally as well as in the wrist context in one session and spring context in the other session. 

Figure 2-7A shows trial-averaged neural activation traces from two example modulated channels, 

one from each monkey, both comparing the activation during spring trials and normal trials. We 
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found that neural channels showed a mix of changes with context. For example, Monkey W’s 

channel 12 was activated more compared to normal for spring flexion targets (blue solid), similar 

to the muscle activations of the finger flexors. However, other example channels like Monkey N’s 

channel 90 show less neural activation during movement in the spring contexts for both flexion 

and extension targets. 

To quantify changes in activation for the population of tuned channels, we compared the 

average channel activation in a window spanning 420 ms around peak movement for each type of 

trial. Figure 2-7B and 2-C shows the change in SBP for all tuned channels between off-context 

trials and normal trials, split by flexion and extension trials, for Monkey W and Monkey N, 

respectively. Black dots indicate channels with significantly different trial SBP between off-

context and normal trials toward that target according to a two-sample t-test (p<0.01). During 

spring trials, context modulated channels were activated significantly less on average for extension 

and were activated significantly more for flexion with both monkeys (p<0.01, paired t-test). During 

wrist trials, context modulated channels were activated significantly less for extension for Monkey 

N only (p<0.01, paired t-test) and there were no trends for channels increasing or decreasing 

activation on average for flexion or extension for Monkey W. Notably, the majority of changes in 

neural activation are on the order of 10% or less for individual channels, fairly small relative to 

the large changes in muscle activation observed in Figure 2-2, which is consistent with the results 

from Naufel et al., 2019, with wrist movements. 
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Figure 2-7 The impact of context changes on neural activity.  
(A) Trial-averaged spiking band power (SBP) for two channels during a spring session for each monkey. Trials were 
aligned to peak movement before averaging, vertical dashed lines indicate peak movement. Black traces show normal 
trials, blue traces show trials with springs present, solid traces are flexion trials, and dotted traces are extension trials. 
(B) Change in average SBP in a window around peak movement for each tuned channel for a spring session (left) and 
wrist session (right), both for Monkey W. Black dots indicate significant differences according to a two-sample t-test 
(p<0.01). (C) Same as (B) but for Monkey N and using one session where the task was performed normally and in the 
spring, wrist, and rubber band contexts. (D) Principal angles between the PCA space calculated for normal trials and 
the PCA spaces calculated for spring trials (blue), band trials (green), or wrist trials (yellow). Black lines are average 
angles between PCA spaces for two random sets of normal trials, with gray shading indicating one standard deviation. 

We next investigated how consistent the covariance structure of the neural activity is across 

different task contexts. We calculated the principal components (PCs) underlying the neural 

activity in each context in order to obtain one manifold for each context. We then found the 

minimum angles, also known as the principal angles, required to align the PCs from each type of 

off-context trial with the PCs calculated from normal trials (Figure 2-7D), similar to what has been 

previously presented (Gallego et al., 2018). Principal angles were also calculated between 

manifolds calculated from random sets of normal trials to create a set of control angles. Two 

sessions with normal, spring, wrist flexed, and rubber band trials in the same session are included 

for Monkey N (Figure 2-7D Left), and two sessions, one with normal and wrist flexed and one 

with normal and spring trials, are included for Monkey W (Figure 2-7D Right). We found that the 

principal angles between off-context trial neural activity and normal trial neural activity match the 
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normal control angles well. This indicates that the activity in each context falls within well-aligned 

manifolds. 

Next we looked at how much variance in neural activity is due to the context changes. We 

calculated 16-dimensional demixed PCA (dPCA, Kobak et al., 2016) components for a neural 

manifold spanning neural activity during trials from all contexts in a single session. Figure 2-8A 

shows the dPCA components for one session with Monkey N. The components are organized in 

rows according to which behavioral parameter they explain the most variance for: time (condition-

independent), context, target, or context-target interaction. Using the four sessions included in 

Figure 2-7D and one additional session for Monkey N that included normal, spring, and rubber 

band trials, the amount of variance explained by each behavioral parameter is summarized in 

Figure 2-8B for both monkeys. The condition-independent and target components together explain 

the majority of the neural variance. On average, the target components explain 36.4% of neural 

variance, the condition-independent components explain 47.2% of neural variance, and the context 

and context-target interaction components together explain 24.1% of neural variance for Monkey 

N and 8.6% of neural variance for Monkey W. 

In inspecting the activation of components in Figure 2-8A, the context-related components 

add a shift to neural activity before and after movement (component #3) and separate normal and 

wrist trials from spring and rubber band trials during movement (component #6). This creates the 

picture of trajectories that are largely the same between context but slightly shifted, perhaps in 

response to a change in proprioceptive input or to generate more muscle activation. We compared 

the average activation around peak movement of the context-dependent dPCA component that 

explained the most neural variance with the average muscle activation of flexor or extensor 

muscles during flexion or extension trials in each context. Figure 2-8C shows this comparison for  
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Figure 2-8 Dimensionally reduced representation of neural activity across contexts.  
(A) Demixed PCA (dPCA) components for an example session with Monkey N performing normal trials (black), wrist 
trials (yellow), spring trials (blue), and rubber band trials (green). Solid traces are flexion trials, and dashed traces are 
extension trials. Components are organized by which behavioral parameter they explain the most neural variance for. 
Component numbers are ordered by how much neural variance they account for and the percent in brackets is the 
neural variance accounted for. (B) Percent of neural variance accounted for by each behavioral parameter. Bars with 
solid edges are for Monkey N, and bars with dashed edges are for Monkey W. Error bars indicate standard deviation 
across sessions. Three sessions are included for Monkey N, and two sessions are included for Monkey W. (C) Average 
muscle activation around peak movement for flexor muscles (top) or extensor muscles (bottom) during trials for each 
context and target plotted against the average activation of the first context-dependent dPCA component during the 
same trials. Each point represents the average activations in a series of trials in one context toward one target. Markers 
indicate which session the sample is from. Correlations are calculated within samples for one target, either flexion 
(red) or extension (black). 

the three sessions with Monkey N included in Figure 2-8B. Note that one session only included 

normal, spring, and rubber band trials (no wrist). Interestingly, we found that the first context-

dependent component correlated very strongly with the activation of the active muscle (i.e. flexor 

muscles during flexion or extensor muscles during extension) across contexts, with correlations of 
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0.91 for flexor muscles and –0.89 for extensor muscles. This result suggests a feature from neural 

activity that could be used to account for changes in required muscle activation between contexts. 

2.3 Discussion 

In this study we examined the impact of altering the context of a motor task, either adding 

an elastic resistance or postural change, while using a BMI for continuous finger control. These 

context changes represent a small sample of alterations found in activities of daily living but they 

include common changes to musculoskeletal properties of the hand during the task such as muscle 

tendon length and muscle activation range that give insight into how the results would extend to a 

wider range of changes. We found that changes in context increase the error of offline BMI decoder 

predictions significantly for both kinematics (Figure 2-4) and muscle activations (Figure 2-3). This 

effect was larger for predicting muscle activations than for predicting kinematics. In online trials 

using a kinematic-based BMI, the monkeys were able to quickly adjust for context changes and 

achieved comparable performance to normal online trials. We tested this in two ways. First, we 

added context changes to the manipulandum during online trials (Figure 2-5), which resulted in 

almost no change in online performance. Second, we trained two decoders (one on normal trials 

and the other on off-context trials) and swapped between them for closed-loop control (Figure 2-

6), which resulted in small but significant decreases in online performance for the model trained 

on off-context trials. 

During the offline tasks, many channels changed neural activity with context, with 20.9–

61.7% of tuned SBP channels modulating activity with context (Table 2-1). The magnitudes of 

these shifts were relatively small, especially when compared to the large changes in required 

muscle activation (Figures 2-2D and 2-2E), with weak trends to require greater activation for 

resisted flexion and lesser for assisted extension (Figures 2-7B and 2-7C). Additionally, the neural 
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manifolds underlying movements in each context were well aligned (Figure 2-7D). Using dPCA 

we found that while a large proportion of neural variance was explained by dPCA components that 

did not change with context, a significant proportion of the neural variance is associated with 

components that are context-dependent (Figure 2-8B). Visually, the context components are 

shifting the trajectories without changing the overall shape and the shift in neural activity is 

strongly correlated with muscle activations in new contexts (Figure 2-8C). This agrees with other 

studies which found lower variance activity may be related to the actual motor commands (Gallego 

et al., 2018; Russo et al., 2018; Saxena et al., 2022). 

The similar online performance in each context, despite large offline mismatch, may be 

explained by a few possible factors. First would be if normal online trials are performed using a 

model that already does not capture the relationship between neural activity and intended finger 

movements well. In a control-systems perspective, online BMI control changes the ‘plant’ from 

native fingers to the virtual fingers on the screen. There is evidence that as a result of this, neural 

activity is different during online BMI control (Carmena et al., 2003; Fan et al., 2014; Ganguly et 

al., 2011; Gilja et al., 2015; Jarosiewicz et al., 2013; Orsborn et al., 2012; Taylor et al., 2002). 

Additionally, it is unlikely that a linear model like those used here robustly capture the relationship 

between motor cortex activity and kinematics. Due to the change in neural activity during online 

trials and inaccuracies in the decoding model, there is likely adjustment required by the monkey 

to use the BMI online during the normal setup. In this case, performing the online task in a new 

context is swapping one non-optimal decoder for a new one. In both BMI experiments, the initial 

BMI performance, that is the first five trials, was not worse for off-context trials as compared to 

normal online BMI trials, suggesting that both types of trials were of similar difficulty to adjust to 

(Figures 2-5C and 2-6C). 
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The similar online performance could also be observed if the context change does not have 

a large impact on task-relevant neural activity. Studies into neural plasticity have shown that during 

a session of online trials, subjects can adjust to decoder perturbations that are within the same 

intrinsic manifold (Sadtler et al., 2014). We found that individual channel activations change on 

up to 61.7% of channels that are important for decoding movements (Table 2-1), and this 

introduces error into model predictions. However, if the perturbations we introduced did not shift 

activity outside of the intrinsic manifold, then it may have been easy to adjust to the new context. 

Our data show a near instantaneous adaptation to the perturbations whereas Sadtler et al. found 

some within-manifold perturbations required on the order of hundreds of trials to adapt to, 

indicating that our perturbation was intuitive to adapt to. Analyzing the monkey’s strategy during 

the BMI task revealed that they were able to do the BMI task with perturbations to the hand without 

adjusting their strategy (Figure 2-5D). This likely follows from the BMI task being driven by 

neural activity and visual feedback rather than movements of the hand itself. In the two decoder 

BMI task where off-context performance was often slightly worse, the monkeys did make small 

adjustments to perform the task (Figure 2-6D). For example, they tended to ‘push’ harder to flex 

the virtual hand during off-context trials. This re-aiming strategy is similar to what has been 

described in other work on short-term learning with motor BMIs (Golub et al., 2018a; Jarosiewicz 

et al., 2008). In this case re-aiming likely stems from the need to reproduce a higher or lower neural 

activation online in order to use a model trained on data where channel activation increased for 

flexion and decreased for extension for the spring context (Figures 2-7B and 2-7C). 

The online BMI experiments in this study used a kinematic-based BMI decoder. BMI 

studies typically predict kinematic variables for applications such as prosthesis control (Hochberg 

et al., 2012; Wodlinger et al., 2015) and cursor or virtual movement control (Gilja et al., 2015; 



 60

Hochberg et al., 2006; Young et al., 2019). In the offline predictions using linear models, we found 

that neither kinematics nor muscle activations could be predicted at the same accuracy in new 

contexts. While significant, kinematics, specifically flexion velocity, did show a smaller decrease 

in offline performance between contexts (Figures 2-4B and 2-4C). These results suggest that when 

designing BMIs, using kinematic variables as a command signal may allow for better 

generalization when the biomechanics of the task are not important, such as virtual tasks. 

However, in FES applications (Ajiboye et al., 2017; Bouton et al., 2016; Nason-

Tomaszewski et al., 2022), biomechanics are important. The final outputs are stimulation 

parameters that cause a desired amount of muscle contraction. Importantly, the required 

stimulation parameters could change with context due to the change in required muscle activation. 

As a result, even if predictions of position or velocity generalize well to new contexts, the mapping 

from kinematics to stimulation parameters would no longer be accurate. Our results with an online 

BMI indicate that the monkeys are able to adapt by re-aiming with the BMI to restore some ability 

to do the virtual online task, which indicates they may also be able to re-aim in FES applications 

as well. However, in our task this adaptation occurred with a performance loss (Figure 2-6B). 

Instead it would be better to account for how context changes the biomechanics of the task with 

the BMI. This could be done either through incorporating a better control system into the BMI, for 

example developing a controller to update stimulation parameters to match the decoded joint angle 

or velocity, or by better estimating the intended muscle activations from neural activity. Decoded 

intended muscle activations can be mapped to stimulation parameters as done by some FES studies 

(Ethier et al., 2012; Hasse et al., 2022). 

With regard to decoding intended muscle activations, non-prehensile finger movements are 

less studied than arm movements and grasping, partly due to experimental difficulty, with much 
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work coming from only a few data sets (Baker et al., 2009; Schieber, 1991). Although predictions 

of muscle activations from neural activity for muscles overlapping with those in this study have 

been done for movements of the wrist (Naufel et al., 2019; Oby et al., 2013) and grasp (Ethier et 

al., 2012), predicting finger related muscle activations during non-prehensile finger movements 

has to our knowledge not been attempted yet. Here we found that we could decode muscle 

activations during this individuated finger task with similar accuracy as decoding kinematics.  

Predicting muscle activation also led to the poorest offline generalization. The off-context 

predictions of muscle activation had both a large unaccounted for magnitude change and a lower 

correlation. We observed that neural features change by a relatively small magnitude (Figures 2-

7B and 2-7C) whereas the muscle activation changes by large amounts (Figures 2-2D and 2-2E), 

resulting in linear models failing to predict a large enough scaling for off-context muscle 

activation. This observation matches studies of wrist movements where predicting muscle 

activation also did not generalize well (Naufel et al., 2019). The lower correlation was partially 

driven by muscle activation patterns not observed in normal context training data, such as 

increased co-contracting flexor and extensor muscles during flexion trials to modulate stiffness 

when springs were present, as seen in Figure 2-3A where the predicted EDC activation does not 

increase for flexion in the spring condition. With a better model, it might be possible to pick out 

the relationship between neural activity and muscle activations. Determining for example that the 

intention is to activate EDC more, whether that is to co-contract with FDP or to extend the fingers 

may not matter as long as the intention can be accurately decoded. Based on these results, it’s 

likely that linear models are not able to pick out this relationship. Additionally, some prediction 

generalization error can be associated with the muscle activations being a higher dimensional 

variable than kinematics, with evidence that motor cortex can selectively activate or inactivate 
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specific muscles (Schieber et al., 2009). In this study there was no effort to estimate lower 

dimensional muscle synergies that may be underlying the observed muscle activations, but it is 

possible that cortical activity would relate more linearly to muscle synergies than to individual 

muscle activations. 

An alternative BMI design approach to decoding movements is to use task-specific features 

to augment decoder models (Schroeder et al., 2022). The context shifts studied here represent a 

small and discrete subset of the shifts found in activities of daily living, however they relate to 

continuous musculoskeletal properties that are shifting with the context, that is muscle length, co-

contraction, or muscle activation magnitude. Identifying a feature in neural activity that accounts 

for the change in muscle activation across contexts would assist in decoder generalization. For 

example, the context-dependent neural activity that strongly correlated with muscle activations in 

new contexts (Figure 2-8C) could provide a feature for accounting for the scaling change while 

predicting muscle activation or allow models to modulate force or muscle activation while 

producing the same kinematics. More work is needed to understand if a neural feature like this 

would remain stable in different cognitive contexts, for example grasping or freely moving fingers 

as opposed to doing this virtual target acquisition task. 

Nonlinear models could also improve predictions of intended muscle activation or 

kinematics from neural activity. Complex models are becoming more widely used in order to better 

model the relationship between motor cortex and intended movements (Glaser et al., 2020; 

Schwemmer et al., 2018; Sussillo et al., 2012; Willett et al., 2021). While a general concern for 

these nonlinear models is that they will overfit to the training data and not generalize well, given 

the correct training data they also may be able to identify less obvious trends that will distinguish 

between contexts and allow for better predictions. For example, Naufel et al. (2019) was able to 
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predict muscle activations in multiple wrist tasks after training an LSTM decoder on data from all 

of the tasks. This indicates that there may be enough information in our BMI features to distinguish 

between the different tasks. Our dPCA results indicate that around 24% of neural variance can be 

accounted for by context specific activity (Figure 2-8B), so it is likely that a neural network would 

be able to take advantage of that information to make predictions in multiple contexts. More work 

will be needed to characterize how much training data these nonlinear models need in order to 

generalize to all the contexts experienced during activities of daily living. 

2.4 Methods 

All procedures were approved by the University of Michigan Institutional Animal Care 

and Use Committee. 

2.4.1 Implants 

We implanted two male rhesus macaques (Monkey N age 8–9, Monkey W age 8–9) with 

Utah microelectrode arrays (Blackrock Neurotech, Salt Lake City, UT, USA) in the hand area of 

precentral gyrus, as described previously (Irwin et al., 2017; Nason et al., 2021; Vaskov et al., 

2018). Two monkeys were chosen to ensure results are consistent between subjects. Monkey N 

was implanted with two 64-channel arrays in right hemisphere primary motor cortex and Monkey 

W was also implanted with two 96-channel arrays in right hemisphere primary motor cortex. 

Channels from both of Monkey N’s motor cortex arrays and from Monkey W’s lateral motor cortex 

array were used in this study, for a total of 96 channels from each monkey for analysis. The number 

of channels simultaneously recorded was limited to 96 due to the available recording hardware. 

Monkey N was between 511 and 1168 days post-cortical implant and Monkey W was between 

254 and 411 days post-cortical implant during data collection. 
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Monkey N was also implanted with chronic bipolar intramuscular EMG recording 

electrodes (Synapse Biomedical, Inc, Oberlin, OH, USA) in a separate surgery as described 

previously (Nason et al., 2021). The list of muscles targeted along with their function are included 

in Table 2-2. Briefly, muscles were accessed via dorsal and ventral incisions on the left forearm 

and specific muscles were surgically identified with the assistance of intraoperative stimulation. 

Bipolar electrodes were inserted and sutured into the muscle belly near the point of innervation 

and then tunneled over the elbow and shoulder to an interscapular exit site. The percutaneous 

electrodes were connected to a 16-channel PermaLoc connector. Monkey N was between 120 and 

496 days post-EMG electrode implant for all EMG data collected. 

Table 2-2 List of muscles targeted during surgery with their associated function. 

2.4.2 Feature Extraction 

(TCFR and SBP) were recorded in real time during experiments using the Cerebus neural 

signal processor (Blackrock Neurotech). Threshold crossings were acquired by configuring the 

Cerebus to threshold each channel at –4.5 times the signal root-mean-square. For each threshold 

crossing, spike snippets were sent to a computer running xPC Target version 2012b (Mathworks) 

Muscle Function 

Extensor Indicis Proprius (EIP) Index Finger Extensor 

Flexor Digitorum Profundus, targeting MRS (FDP) Finger Flexor 

Extensor Digitorum Communis (EDC) Finger Extensor 

Extensor Carpi Radialis Brevis (ECRB) Wrist Extensor 

Flexor Carpi Ulnaris (FCU) Wrist Flexor/Adductor 

Flexor Carpi Radialis (FCR) Wrist Flexor 

Flexor Digitorum Profundus, targeting index, 

proximal and distal sites (FDPip, FDPid) 
Index Finger Flexor 



 65

which saved the channel and time for each threshold crossing. SBP is an estimate of power in the 

300–1000 Hz frequency band and was acquired by configuring the Cerebus to bandpass filter the 

raw signals to 300–1000 Hz using the Digital Filter Editor feature in the Central Software Suite 

version 6.5.4 (Blackrock Neurotech), then sample at 2 kHz. The filtered 2 kHz recording was then 

sent to the computer running xPC Target, which rectified and summed the samples on each channel 

received in each 1 ms iteration and counted the quantity of samples received each 1 ms so that 

SBP could later be averaged within longer time bins. Both the threshold crossings and SBP were 

saved by xPC synchronized with other real-time experimental information. Artifacts were removed 

for TCFR by removing threshold crossing times if 20 or more channels had threshold crossings in 

the same millisecond. Features were binned into non-overlapping bins of length 32 ms for online 

and offline decoding, or bins with a length of 20 ms for calculating tuning and comparing features 

across trials. SBP is summed for every 1 ms in the time bin and then divided by the total number 

of raw 2 kHz samples in the bin. For TCFR the spike counts are summed within a bin and then 

divided by the bin size to get a threshold crossing rate. 

EMG from Monkey N’s eight bipolar electrodes was recorded for later offline 

synchronization. The percutaneous PermaLoc connector was connected to a CerePlex Direct 

(CPD) via a 64-channel splitter box and CerePlex A (Blackrock Neurotech) which converted the 

signals to the digital domain with unity gain. The CPD was configured to record 16 channels of 

raw signal at 10 kHz and for each bipolar pair the electrode implanted further inside the muscle 

was software referenced to the second electrode. These eight bipolar referenced channels are used 

in analyses. To synchronize EMG offline, we used the Sync Pulse functionality in Central to create 

unique pulses that were recorded by both the Cerebus and CPD and could later be used to align 

the Cerebus and CPD recordings. For offline analysis, muscle activations are estimated from the 
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10 kHz EMG recording by filtering with a second-order Butterworth bandpass filter between 100 

and 500 Hz and then taking the mean absolute value of the filtered signal during every binning 

period. 

2.4.3 Experimental Setup 

During experiments the monkeys performed a virtual finger task while motor cortex 

activity and optionally arm muscle activity were recorded as described. Similar to previously 

described experiments (Irwin et al., 2017; Nason et al., 2021; Vaskov et al., 2018), we used xPC 

Target to coordinate the experiment in real time. The xPC Target computer acquired and stored 

task parameters and neural features in real time, coordinated target presentation, acquired finger 

positions from the flex sensors on each finger group (FS-L-0073-103-ST, Spectra Symbol, Salt 

Lake City, UT, USA), and sent finger positions and target locations to a computer simulating 

movements of a virtual monkey hand (MusculoSkeletal Modeling Software) (Davoodi et al., 

2007). For online experiments, the xPC Target computer also binned threshold crossings and SBP 

in customizable bin sizes and evaluated the decoder model to predict finger positions in real time 

using an RFKF (see details below). 

2.4.4 Behavioral Task 

Monkeys N and W were trained to acquire virtual targets by moving their physical fingers 

in a manipulandum to control virtual fingers on a screen in front of them. All sessions took place 

in a shielded chamber with the monkey’s head fixed and arms restrained at their side with elbows 

bent 90 degrees and hands resting on a table in front of them. The left hand was placed in a 

manipulandum described previously (Nason et al., 2021), with openings separating the index 

finger and the MRS finger group (Figure 2-1C). The monkeys were trained to move the index 
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finger independently of the MRS finger group (Figure 2-1B), that is 2-DOF, although in some 

trials they moved both finger groups as 1-DOF. Each trial began with spherical targets appearing 

for each active finger group with each target occupying 15% of the full range of motion of the 

fingers. In the 1-DOF task the target was presented to the index finger. 

Target presentation followed a center-out-and-back pattern with every other target 

presented at a center position, equivalent to 50% on a scale from 0% (full extension) to 100% (full 

flexion). Additionally, center was presented after any failed trial. The non-center targets were 

randomly selected from a set of targets. For 2-DOF the targets included any combination of index 

flexion, rest, or extension, and MRS flexion, rest, or extension, with a randomly chosen magnitude 

of 20%, 30%, or 40% of the full movement range. The split movements (index flexion with MRS 

extension or vice versa) did not have a 40% movement magnitude because the monkeys had 

difficulty splitting the finger groups that far. The 1-DOF movements were also center-out with the 

fingers flexing or extending either 40% from rest or a randomly chosen magnitude of 20%, 30%, 

or 40% from rest depending on the session, the former generally being used for tuning analyses 

and offline comparisons and the latter being used for online experiments. In each trial the monkey 

had to hold their fingers within the target(s) for 750 ms. During online decoding experiments, the 

same center-out-and-back target presentation order was used but the hold time was reduced to 500 

ms. In one session used in offline analysis and four online sessions, the hold time was 2 ms longer 

than expected due to a minor bug. In two online experiments with the manipulandum context 

changing BMI task, targets were presented in a random order instead of center-out. In this target 

presentation, a target separation up to 50% of the movement range and a center position were 

randomly generated and one target for each finger group was presented at the generated target 

separation from each other, equidistant from the generated center position. 
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Task context was altered through four potential task alterations. One alteration was the 

addition of torsional springs to both finger groups (180 degree deflection angle, 0.028 in or 0.04 

in wire diameter, Gardner Spring Inc, Tulsa, OK, USA), referred to as the ‘spring context’. The 

second alteration was the rotation of the manipulandum by 23 degrees in the flexion direction, 

referred to as the ‘wrist context’. A third alteration was introduced by attaching rubber bands from 

the back of the manipulandum to the door for each finger group, thereby resisting flexion, referred 

to as the ‘rubber band context’. A last alteration was addition of torsional springs and the rotation 

of the manipulandum by 23 degrees at the same time, referred to as the ‘both context’. Trials 

performed with one of these alterations are referred to as ‘off-context’ trials, while trials performed 

without alterations are referred to as ‘normal’ trials. As the index finger alone is much weaker than 

the MRS finger group, the index finger used a smaller spring when applicable. The added springs 

increased the force required for full flexion by 9.5 N (for MRS) and 3.3 N (for index), while the 

rubber bands increased the force required for full flexion by 16.5 N. The rubber band context was 

only done by Monkey N and in a 1-DOF task due to task difficulty. For reference, full flexion 

required approximately 1.3 N of force without the springs or bands. 

2.4.5 Comparison of Kinematics and Muscle Activation Between Contexts 

Three representative sessions for both Monkey N and Monkey W, 1 day for each context 

– spring or wrist – were used to compare kinematics across contexts. During data collection, 

normal trials and off-context trials were interleaved by alternating context type every 175–350 

trials in order to control for changes in behavior over time. During these representative days, there 

was an average of 1134 normal trials and 1118 off-context trials per day for Monkey N and 526 

normal trials and 504 off-context trials per day for Monkey W. To compute how finger velocity 

changed between normal trials and off-context trials, the peak velocity of finger movements was 
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found for every trial. For every trial, the recorded finger flexions were downsampled to 20 ms and 

filtered with a second-order Savitzky-Golay FIR filter. Finger velocity was estimated from the 

downsampled and filtered finger positions and maximum finger speeds were found. The peak 

movement time was taken at the time of the largest peak in speed after trial start. Trials were then 

split by context and target direction (flexion vs. extension), and a two-sample t-test was used to 

compare peak speeds and compute a 99% confidence interval, once for flexion targets and again 

for extension targets. Comparisons were made only between trials to the same target, leaving about 

281 trials per group and 129 trials per group for each comparison for Monkey N and Monkey W, 

respectively. 

The same sessions for Monkey N used to compare kinematics were also used to compare 

muscle activations. The recorded EMG was filtered and the mean absolute value was taken in 20 

ms bins as described previously. Binned muscle activations were then smoothed with a 100 ms 

Gaussian kernel. One value was obtained for every trial by taking the average muscle activation 

in a 420 ms window around peak movement, including 10 bins before peak movement, the bin that 

included peak movement, and 10 bins after peak movement. These muscle activation values were 

grouped by context and target, then compared with a two-sample t-test. 

2.4.6 Computation of Neural Tuning and Context Modulation 

During five representative experiments for each monkey, three that tested the spring 

context and two that tested the wrist context, we calculated the number of channels that were 

significantly modulated by any finger movement and the number of channels with a change in 

activity between normal trials and off-context trials. During these sessions, the monkeys performed 

the task with all fingers moving together (1-DOF), in a center-out task as described, to targets at 

either plus or minus 40% from center. Trials that were unsuccessful and trials following 
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unsuccessful trials were removed. Unsuccessful trials were rare, often only occurring on the first 

or last trial of a block of trials. There was an average of 1072 normal trials and 747 off-context 

trials for Monkey N and 544 normal trials and 387 off-context trials for Monkey W were used 

during these sessions. 

Channel tuning and context modulation was calculated with both the SBP features and 

TCFR features. On each day, features and kinematics were averaged into non-overlapping 20 ms 

bins, data from normal trials and off-context trials were concatenated together, and the SBP and 

TCFR were each normalized to zero mean and unit standard deviation. An optimal lag was 

calculated for each channel by maximizing the L2-norm of regression coefficients between a 

feature and finger position and velocity. Features at that optimal lag were then regressed with 

finger position and velocity one at a time with an added effect for context following these 

equations: 

𝑋 = [𝑥 𝑐𝑥 ] 

 

𝑌 = 𝐵 + 𝑋 𝑊  

where 𝑥  is the T x 1 vector of channel SBP or TCFR for channel n, c is an indicator variable that 

equals one if that sample was during an off-context trial or zero otherwise, Y is a T x 2 matrix 

containing finger position and velocity for each bin in T, B is the trained linear offset, and Wn is 

the 2 x 2 matrix of trained weights relating channel n’s activity to finger position and velocity. A 

channel was called tuned if the regression coefficient between the neural feature and either finger 

position or velocity, i.e. w1,1 or w1,2, were significantly different from zero, via a t-test on the 

regression coefficient (p < 0.001). A channel was also called context modulated if either coefficient 

in the second row of Wn, which includes the effect of context, was significantly different from 
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zero, also via a t-test (p < 0.001), indicating a different slope relating neural activity and kinematics 

between normal trials and off-context trials.  

To quantify the change in neural activity between contexts as in Figure 2-7, we used one 

representative session for Monkey N in which trials were done in the normal, spring, wrist, and 

rubber band contexts. An additional two representative sessions for Monkey W were used, one 

session comparing normal and spring trials and another session comparing normal and wrist trials, 

both performed with 1-DOF movements and with targets to 40% flexion or extension from rest 

only. Tuned channels were calculated as previously described using the SBP feature. For every 

trial, the SBP was binned into 20 ms bins and then smoothed with a 100 ms Gaussian kernel. Then 

the average activity in a window spanning 200 ms before and 200 ms after the bin containing peak 

movement was calculated for each tuned channel. The trials were then split by context and by 

target, and the trial SBP values were compared between contexts with a two-sample t-test. 

2.4.7 Offline Predictions 

Data from nine sessions with Monkey N, three for each context (springs, wrist, and both), 

were used for offline muscle activation and kinematic predictions, and three sessions for Monkey 

W, one for each context, were used for offline kinematic predictions. During these sessions, both 

monkeys performed the 2-DOF center-out task. Blocks of normal trials and off-context trials were 

interleaved by alternating context in order to control for changes in neural activity over time. Trials 

that were unsuccessful were removed before analysis. There was an average of 803 normal trials 

and 470 off-context trials for Monkey N and 737 normal trials and 329 off-context trials for 

Monkey W. To account for changes in monkey motivation, sessions chosen were those with 

consistent prediction accuracy between early and late normal trials within a session. These sessions 
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spanned 165 days starting 792 days post-cortical array implant and 120 days post-EMG electrode 

implant for Monkey N, and 63 days starting 285 days post-cortical array implant for Monkey W. 

In each session, SBP and muscle activations or kinematics were binned into 32 ms bins 

and features were concatenated across trials of the same context. The SBP channels were masked 

to those with an average TCFR greater than 1 Hz across a session and 12 bins of history from each 

of these channels were used as additional features. Ridge regression relating SBP to muscle 

activations or kinematics was trained on normal trials and then tested on both normal trials and 

off-context trials with 10-fold cross-validation. To do this, the normal trials were split into 10 folds 

with an equivalent number of bins in each fold, a model was trained on nine folds, and then tested 

on the left-out fold as well as on data from off-context trials. We used two metrics to evaluate 

prediction accuracy. First we used the Pearson correlation coefficient between the predicted and 

measured muscle activations or kinematics to establish how well the predictions are linearly 

correlated with measurements. The second metric was MSE normalized by the variance of the 

measured data (MSE). Normalizing by the variance allows for better comparison across test 

datasets as they may have different variances. In this formulation, the MSE is the fraction of 

unexplained variance or one minus the variance accounted for or coefficient of determination used 

in previous studies (Fagg et al., 2009; Naufel et al., 2019). Values greater than one indicate that 

the predictions are introducing variance compared to the worst possible least-squares predictor, 

that is predicting the mean. 

2.4.8 Online Decoding 

We used either a KF or an RFKF (Gilja, Nuyujukian, Chestek, Cunningham, Yu, Fan, 

Churchland, et al., 2012) to predict intended finger movements for all BMI experiments, as done 

previously (Irwin et al., 2017; Nason et al., 2021; Vaskov et al., 2018). We performed two types 
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of online experiments. In the first experiments, an RFKF was trained on normal trials and then 

used during trials with context changes in the manipulandum or without any additions to the 

manipulandum. To train the model, monkeys first performed at least 300 trials of center-out 

manipulandum control with 750 ms hold time. Using these trials, we trained a position/velocity 

KF which the monkeys used online for at least 200 trials, with a 32 ms update rate and a 500 ms 

hold time. To use the KF, virtual finger position was updated by integrating the predicted velocity 

in the current time step to update the previous step’s finger position. An RFKF was then trained, 

as done previously (Nason et al., 2021), by rotating incorrect velocities during online control with 

the KF to be toward the intended target represented in a two-dimensional space, setting finger 

velocity equal to zero when in the correct target, and then retraining regression coefficient 

matrices. The RFKF was used online for blocks of 100–200 trials with different context changes 

applied to the manipulandum, alternating between normal trials and other contexts. Multiple 

contexts could be tested in one session during these experiments by switching out the context 

manipulations present in the manipulandum. 

In the second set of online experiments, two KFs were trained in one session and then used 

alternatingly in online control without any changes present in the manipulandum. During these 

sessions, the monkeys first performed at least 300 trials of center-out manipulandum control, 

followed by another 300 or more trials of center-out manipulandum control with a context change 

present. One model was trained using each set of trials. The monkeys then used these models in 

online control for sets of 100–200 trials, and then the models were alternated. Hold times and 

update rates were kept consistent between types of experiments and sessions. 

2.4.9 Online Performance Measures 
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We estimated online performance with acquisition time, time to target, orbiting time, and 

path efficiency. Acquisition time was measured as the total time from target presentation to the 

end of the trial minus the hold time, therefore ending with the target being successfully acquired. 

Time to target was taken as the time from target presentation to the first time where all fingers 

with targets were in their targets. Orbiting time was then calculated as the time from all fingers 

first reaching their targets to the end of the trial minus the hold time. Trials where the fingers 

reached the targets and never left therefore had an orbiting time of 0 ms. Failed trials were excluded 

when comparing online performance between context but not for evaluating the monkeys 

adaptation within the first five trials. Path efficiency was calculated as the ratio of the shortest 

distance between the fingers’ starting positions and the target positions projected onto a two-

dimensional space, to the length of the path traveled by the fingers. 

2.4.10 Online Neural Activity Patterns 

To visualize neural activity during online trials, the normal offline training trials used to 

train the KF were used to train a new linear readout between neural activity and finger velocities. 

Neural activity from these trials was binned in 50 ms intervals, then neural activity in the current 

bin and the five most recent bins were regressed with the finger velocities during these trials to 

obtain one set of weights for that session. This model was then used to predict velocities from 

neural activity during the online trials. The predictions at the time point in the trial with the peak 

online velocity toward the target during the online trial were taken as the online neural activity 

patterns. To compare neural activity patterns across multiple targets in multiple sessions, the neural 

activity patterns for each trial were projected onto the target direction for each trial to obtain one 

‘pushing magnitude’, or the velocity magnitude that they were pushing toward the target direction. 

Pushing magnitudes were collected for each trial, separated for flexion trials (IF, MF, IF+MF), 
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extension trials (IE, ME, IE+ME), and split trials (IF+ME, IE+MF), and then the pushing 

magnitudes for each set of trials were compared between normal trials and off-context trials using 

a two-sample t-test. 

2.4.11 Dimensionality Reduction 

To investigate changes in population neural activity due to changes in context, two sessions 

of 1-DOF center-out trials with targets of 40% flexion or extension from rest were used for each 

monkey. For Monkey N, both sessions included trials where the task was performed in the normal, 

spring, rubber band, and wrist contexts. For Monkey W, one session included trials in the normal 

and spring contexts, and the other session included trials in the normal and wrist contexts. SBP 

was binned into 20 ms bins, masked to only include channels with TCFR greater than 1 Hz, and 

then for each trial a time frame 400 ms before to 740 ms after the bin containing peak movement 

was taken from each trial. The neural activity for trials within a single context was concatenated 

and averaged across trials with the same context and target forming an N × T × D data structure 

for each context, where N is the number of channels, T is the number of bins per trial used, and D 

is the number of targets. Neural data was then concatenated across targets to form an N × (T*D) 

matrix and then we used PCA to calculate a manifold for each context, keeping the top 16 

components for Monkey N and eight components for Monkey W, which explained 86% of 

variance on average. Principal angles were found between the manifolds following methods used 

previously (Bjorck & Golub, 1973; Gallego et al., 2018). These principal angles are the minimal 

angles required to align the manifolds and serve as a measure for how well aligned two manifolds 

are. As a control, two sets of 50 trials were taken from the normal trials and used to calculate two 

manifolds in the same way. The principal angles between these manifolds were then calculated. 
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The sampling and angle calculations were repeated 100 times to obtain a control distribution of 

principal angles. 

We also calculated one manifold spanning trials from all contexts tested in one session. 

This was done using dPCA (Kobak et al., 2016). This approach finds a single neural manifold that 

reduces the dimensionality of the data while maintaining a linear readout that can reconstruct the 

mean neural activation associated with manually chosen behavioral variables. In this instance, the 

behavioral parameters chosen were target, that is either flexion or extension, and which context 

the task was done in. MATLAB code for calculating dPCA components was downloaded from 

http://github.com/machenslab/dPCA, SBP was binned into 20 ms bins, masked to include only 

channels with TCFR greater than 1 Hz, and then concatenated into an N × C × D × T × n data 

structure where N, D, and T follow the same structure as the PCA calculations, n is the number of 

trials per condition, and C is the number of contexts tested in that session. SBP was averaged over 

the number of trials, n, to form the peristimulus-time-histograms for each target and context 

combination, after which dPCA components were calculated. Neural variance of a behavioral 

parameter was obtained by calculating the variance within the marginalization of neural data based 

on each behavioral parameter and taking the ratio of the total variance in a marginalization to the 

total variance in the neural data. 
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Chapter 3 Functional Electrical Stimulation and Brain-Machine Interfaces for 

Simultaneous Control of Wrist and Finger Flexion 

A subset of these results were presented as a poster at the 2023 Simian Collective Meeting 

3.1 Introduction 

Spinal cord injuries (SCI) impact a person’s ability to perform activities of daily living and 

negatively impact quality of life, especially when hand function is affected. Almost 60% of SCI 

cases in the US are partial or complete injuries at the cervical level which typically decreases hand 

and or arm function (National Spinal Cord Injury Statistical Center, 2023). Restoration of hand 

function is a top priority for people with spinal cord injuries to improve quality of life (Anderson, 

2004; Collinger, Boninger, et al., 2013). Functional electrical stimulation (FES) can restore hand 

movements after severe spinal cord injuries by electrically activating a person’s own muscles. 

Stimulating electrodes are typically placed either at the nerves proximal to the muscles (epineural 

or intrafascicular) or at the muscles themselves. FES has been used to restore hand movements 

since the 1980s (Keith et al., 1989) and movements such as lateral and palmar grasps have been 

restored in more than 220 users with the Freehand System (Peckham et al., 2001) which was 

commercially available in the 2000s. 

For restoring natural hand control, it is necessary to continuously control many degrees-

of-freedom (DOF) in the hand simultaneously. The hand and wrist together have about 27 DOF 

(ElKoura & Singh, 2003). While some estimates of the dimensionality of functional hand 

movements have explained hand movements with as few as six synergies (Santello et al., 1998), 
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there is also evidence that many of the lower-variance synergies in the hand are important for 

natural movements (Yan et al., 2020). Intramuscular FES is a promising approach for restoring the 

many DOF required for dexterous hand movements. Whereas intrafascicular or nerve cuff 

stimulation can create functional grasps by evoking synergistic movements (Coste et al., 2022; 

Tigra et al., 2020), intramuscular FES allows targeting specific muscles or even portions of a 

muscle innervated by a single peripheral branch (neuromuscular compartments) (English et al., 

1993). Stimulation at this most distal point more easily evokes selective movements at the expense 

of requiring more electrodes to cover all of the target muscles. Additionally, stimulation can be 

modulated to evoke different sized movements (Grandjean & Mortimer, 1986; Gruner & Mason, 

1989; Singh et al., 2000), leading to graded control in many DOF. 

 Clinical trials with FES have focused on restoring specific grasps like the palmar or lateral 

grasps (Kilgore et al., 2018; Losanno et al., 2023). These studies have generally used prescribed 

stimulation or tasks that don’t require graded control of grasping. An alternative to restoring 

discrete grasps is to restore graded control of multiple joints and let the user intuitively form the 

grasps. To do this, it will be important to understand how well we can achieve graded control of 

multiple DOF at the same time. Here we focus on simultaneous wrist flexion and finger flexion, 

which would enable grasping in different postures. Wrist posture plays an important role in grasp 

strength and grasp size (O’Driscoll et al., 1992). Studies have demonstrated continuous control of 

grasping, i.e. all fingers opening and closing, using intramuscular FES (Ajiboye et al., 2017; 

Nason-Tomaszewski et al., 2023). However, controlling multiple DOF continuously, such as both 

grasping and wrist flexion, has not been explored. While we can selectively activate muscles with 

intramuscular stimulation, joints in the hand and wrist are biomechanically linked. Many muscles 

that control the fingers cross through the wrist resulting in finger-related muscles with lengths, and 



 80

thus activation forces, that vary with wrist posture. Additionally, muscles can attach across 

multiple joints. For example, finger flexors cross the wrist and MCP joints so that their activation 

causes moments at both joints. This biomechanical linking increases the complexity of the control 

problem.  

With respect to controlling continuous movements in multiple-DOF, intracortical brain-

machine interfaces (BMI) are promising because they don’t require residual movements and can 

provide an intuitive control signal. BMIs read out intended movements from cortical activity that 

can be used to control FES. Similar to intramuscular FES, BMIs have been used to decode 

continuous finger movements (Ajiboye et al., 2017; Nason et al., 2021) and wrist movements 

(Ajiboye et al., 2017). However, controlling multiple-DOF at the same time has been explored 

much less. Ajiboye et al. showed that they could decode the hand and elbow simultaneously 

(Ajiboye et al., 2017), and Nason et al. decoded multiple finger groups. However, simultaneously 

decoding continuous wrist and finger movements has not been demonstrated. Changes in wrist 

posture introduce errors to finger movement predictions, but users can re-aim to acquire targets 

with the BMI (Mender et al., 2023). This suggests a BMI that continuously controls wrist and 

finger flexion can produce a command signal to control FES. 

 Here we evaluate how well we can continuously control movements of the wrist and hand 

using intramuscular FES and standard control methods previously used in brain-controlled FES 

(Ajiboye et al., 2017; Nason-Tomaszewski et al., 2023). First we characterize the movements 

evoked in the wrist or fingers by stimulating muscles for each DOF independently. Then we show 

that by combining stimulation for both DOF we can evoke a large range of finger and wrist 

movements that is impacted by fatigue and an interaction between the two DOF. We can use these 

patterns to control stimulation and move the wrist and fingers simultaneously to continuously 
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acquire targets throughout the range of motion. We then test a BMI for predicting intended wrist 

and finger movements in real-time. We show that a linear 2-DOF BMI works well despite the lack 

of independent DOF. While the BMI stops working well after blocking sensory afferents, 

performance can be recovered by retraining the model. 

3.2 Methods 

All procedures were approved by the University of Michigan Animal Care and Use 

Committee. 

3.2.1 Implants 

 We implanted two male Rhesus Macaques (Monkey N and Monkey R) with chronic bipolar 

intramuscular electrodes (Synapse Biomedical, Inc, Oberlin, OH, USA). Muscles were accessed 

via dorsal and ventral incisions on the left forearm, as described previously (Mender et al., 2023; 

Nason-Tomaszewski et al., 2023; Nason et al., 2021). In Monkey N, specific muscles were 

surgically identified and implant locations were selected based on intraoperative stimulation. With 

Monkey R, specific muscles were surgically identified and nerve entry points to the muscles were 

identified. Nerve entry points were targeted for implants and hand function was confirmed with 

intraoperative stimulation. Bipolar electrodes were inserted and sutured into the muscle belly at 

the target location and then tunneled to an interscapular exit site. Monkey N was implanted with 8 

bipolar electrodes and Monkey R was implanted with 16 bipolar electrodes. Muscles targeted and 

evoked movements from intraoperative stimulation are described in Table 3-1. Electrodes are 

labeled based on the muscle that they are implanted in and their expected function. Monkey N had 

been previously implanted (22 months prior to FES electrode implant) with two 64 channel Utah 

microelectrode arrays (Blackrock Neurotech, Salt Lake City, UT, USA) in the right hemisphere 



 82

primary motor cortex. Arrays targeted the hand area of precentral gyrus, as described previously 

(Nason et al., 2021). Notably, these arrays were implanted 1577 days before the first BMI 

experiments presented here.  

Table 3-1 Implant locations and expected function for each electrode 

Monkey R Electrodes Expected Function 
Flexor Digitorum Superficialis (FDS) All finger flexion 

Flexor Digitorum Profundus, Ulnar Site (FDPr) Ring finger flexion 

Flexor Digitorum Profundus Radial Site (FDPi) Index finger flexion 

Flexor Digitorum Profundus Ulnar Site (FDPrs) Ring and small finger flexion 

Flexor Carpi Radialis Proximal Site (FCRp) Wrist flexion 

Flexor Carpi Radialis Distal Site (FCRd) Wrist flexion 

Flexor Carpi Ulnaris Proximal Site (FCUp) Wrist flexion and adduction 

Flexor Carpi Ulnaris Distal Site (FCUd) Wrist flexion and adduction 

Extensor Digitorum Communis Ulnar Site (EDCrs) Ring and small finger extension 

Extensor Digitorum Communis Radial Site (EDCi) Index finger extension 

Extensor Digitorum Communis Middle Site (EDCmrs) Middle, ring, and small finger extension 

Extensor Digitorum Communis Proximal Site (EDCim) Index and middle finger extension 

Extensor Indicis Proprius (EIP) Index finger extension 

Extensor Carpi Radialis Brevis Proximal Site (ECRBp) Wrist extension 

Extensor Carpi Radialis Brevis Distal Site (ECRBd) Wrist extension 

Extensor Carpi Ulnaris (ECU) Wrist ulnar deviation 

Monkey N Electrodes Expected Function 
Extensor Indicis Proprius (EIP) Index finger extension 

Flexor Digitorum Profundus, targeting MRS (FDP) Middle, ring, and small finger flexion 

Extensor Digitorum Communis (EDC) All finger extension 

Extensor Carpi Radialis Brevis (ECRB) Wrist extension 

Flexor Carpi Ulnaris (FCU) Wrist flexion and adduction 

Flexor Carpi Radialis (FCR) Wrist flexion 

Flexor Digitorum Profundus radial proximal site (FDPip) Index finger flexion 

Flexor Digitorum Profundus radial distal site (FDPid) Index finger flexion 

3.2.2 Experiment Overview 

 Both monkeys performed a virtual target acquisition task, moving their hands while finger 

and wrist posture were tracked with either a custom manipulandum and potentiometer, or with flex 

sensors (FS-L-0073-103-ST, Spectra Symbol, Salt Lake City, UT, USA) taped to the hand.  
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Figure 3-1 Experimental setup.  
(A) Illustration of the three different types of closed-loop experiments performed, namely hand control, BMI control, 
and FES target control. (B) Design of the custom manipulandum used to measure finger groups (index and middle-
ring-small grouped) and wrist angles during hand control and BMI experiments. Angles were measured with through-
hole potentiometers at the axis of rotation. (C) Taped on flex sensors as used during closed-loop FES experiments. 
(D) Example angle measurements using markers identified with DLC. (E) Stimulation pattern for finger movements. 
Stimulation is controlled by specifying a desired finger flexion and the pattern acts as a look up table for stimulation 
parameters. Note that stimulation patterns were designed to acquire the extrema of the desired finger flexions and have 
smooth changes in pulse width rather than achieving intermediate desired finger flexions. (F) Stimulation pattern for 
wrist movements. 

Monkey N did this task with hand control, BMI control, and target-guided FES control, whereas 

Monkey R only did this task with target-guided FES control. Figure 3-1A illustrates the control 

flow for hand control, BMI control, and FES target control. In hand control, the monkey’s hand 

moved the manipulandum to control the virtual hand. In FES target control, the monkey’s hand 

again moved the manipulandum to control the virtual hand, however the hand was temporarily 

paralyzed and moved due to stimulation. In BMI control, the monkey’s movement intentions 

decoded from neural activity moved the virtual hand. We used xPC Target to coordinate the 

experiment in real time, storing task parameters, neural data, and hand kinematics while 
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coordinating target presentation, executing the decoder model to predict finger and wrist positions, 

and sending stimulation commands to the networked neuroprosthesis (NNP) (Smith et al., 2005) 

(Nason-Tomaszewski et al., 2023). The NNP system then stimulated through the implanted 

electrodes. Both monkeys also underwent open-loop stimulation, in which electrodes were used 

for stimulation and hand movements were recorded with video but not displayed on the screen in 

front of the monkey. Open-loop stimulation was controlled either by the experimenter to test the 

range of the movements evoked with stimulation patterns (as in Figures 3-2 and 3-3), or by xPC 

to sample stimulation from the patterns (as in Figure 3-4).  

3.2.3 Neural Features 

 Motor-related spiking band power (SBP) (Nason et al., 2020) was recorded from 96 

channels of Monkey N’s Utah arrays in primary motor cortex. 96 channels were used due to 

available recording hardware. Briefly, we configured the Cerebus Neural Signal Processor 

(Blackrock Neurotech) to sample signals at 2000 Hz and band-pass filter the recorded signals 

between 300-1000 Hz. Continuous data was sent to the xPC computer which calculated the 

summed absolute value of neural data on each channel in each 1 ms iteration. For decoding, neural 

features were aggregated in non-overlapping 32 ms bins by calculating the mean absolute value of 

the neural feature on each channel. This mean absolute value of 300-1000 Hz bandpass filtered 

neural data on each channel is referred to as SBP. When decoding intended movements, neural 

channels were masked to only use channels that were not saturated with noise and that contained 

morphological spikes during the experiment or in the recent past. 
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3.2.4 Measuring Joint Angles 

Joint angles were ultimately measured with four different methods. In both hand control 

and closed-loop FES experiments, joint angles were recorded as calibrated sensor values ranging 

from 0, fully extended, to 1, fully flexed. Sensors were calibrated to either a comfortable range of 

movement during hand control or to the range of movement over which FES patterns moved the 

hand during FES experiments. In hand control prior to BMI experiments, the monkeys moved their 

hand in a custom manipulandum (Figure 3-1B) while finger (all fingers grouped together) and 

wrist posture were tracked with potentiometers in the manipulandum (RH24PC, P3 America, 

Leander, TX, USA). The potentiometers connected to an Arduino Uno (Arduino, Somerville, MA, 

USA), which digitized the analog voltages and sent serial input to the xPC system. In closed loop 

FES experiments, due to the nerve block inactivating finger intrinsic muscles, the hand lacked 

rigidity and would slip out of the manipulandum during extension. Instead, flex sensors (FS-L-

0073-103-ST, Spectra Symbol, Salt Lake City, UT, USA) were taped to the hand (Figure 3-1C). 

These flex sensors connected to a custom analog to digital converter circuit which sent serial input 

to the xPC system.  

During open-loop experiments, such as testing stimulation patterns, movements were video 

recorded using a Canon Eos Rebel T3 SLR camera (Canon, Melville, NY). To ensure consistent 

video, the camera was mounted on a tripod and angled such that the forearm just proximal to the 

wrist was at the edge of the frame. The monkey’s forearm was braced by an experimenter to keep 

the hand off the table and moving within the plane of the recorded video. Deeplabcut (DLC) 

models (Mathis et al., 2018; Nath et al., 2019) were trained to extract hand poses from the video. 

Briefly, 20 frames were extracted from up to three videos in an experiment. Frames were manually 

labeled using the DLC API and then the network model was trained. This work used the provided 
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ResNet-50 model and initiated network training with the provided pre-trained weights. Seven 

points were labeled in each frame: the forearm, wrist, back of the hand, index metacarpophalangeal 

(MCP) joint, index proximal interphalangeal (PIP) joint, and index distal interphalangeal (DIP) 

joint. Due to inconsistencies in recorded video each day, this process was done for each experiment 

where continuous joint angles were extracted. After evaluating models on videos, frames were 

filtered out if model certainty was not above 95% for at least two of the labels in the frame used 

to calculate angles. Wrist and index MCP angles were extracted from DLC labels using a custom 

MATLAB script. An example frame with wrist and MCP angles labeled is shown in Figure 3-1D. 

The wrist angle was defined as the angle between a vector from the forearm to the wrist label and 

a vector from the wrist label to the MCP label. Due to commonly occurring obstructions of the 

forearm marker (i.e. the edge of the frame, the arm restraint, or the experimenters), the edge of the 

frame at the forearm was used instead of the forearm marker (Figure 3-1D). The point was chosen 

such that the vector from the forearm to the wrist was perpendicular to the edge of the frame. The 

index MCP angle was defined as the angle between a vector from the wrist label to the MCP label 

and a vector from the MCP label to the PIP label. Extracted angles were then smoothed with a 

Gaussian-weighted moving average filter with a 0.5 second window.  

In open-loop tests where continuous joint angles were not needed, single frames were 

extracted from videos and joint angles were measured using ImageJ (version 2.35). Wrist, MCP, 

and PIP joints were marked and angles were measured using the same vectors as when extracting 

angles from DLC. In some instances, where points were obfuscated, angles were also measured 

using vectors parallel to the back of the hand or the back of the finger. This angle was then averaged 

with an angle measured using an estimate of the joint markers.  
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3.2.5 FES Stimulation 

 Intramuscular electrodes were connected to a NNP evaluation system for stimulation. This 

system contained the same circuitry as the NNP used in humans (Clinical Trial NCT02329652) 

however was in a form more conductive to experimentation. The NNP system consisted of one 

power module and three pulse generator boards, each with four output channels. The return 

electrode of each bipolar pair connected to the same pulse generator board were electrically tied 

together to make one common return for each pulse generator board. During FES experiments, 8 

of 12 output channels were used at a time and the remaining 4 outputs were used as LED indicators. 

All stimulation was current controlled and delivered at 32 ms inter-pulse intervals with either 5 

mA or 10 mA amplitudes. Stimulation used charge-balanced biphasic pulses. The cathodic pulse 

was a square pulse and the subsequent anodic pulse had an exponential shape, falling from an 

initial anodic pulse back to zero, serving to balance charge and prevent anodic activation. 

Stimulation intensity was modulated by changing the width of the initial cathodic pulse, varying 

between 0 and 255 microseconds. Pulse width modulation was used due to the history of successful 

upper limb stimulation with it (Kilgore et al., 1989) and the potential to evoke the same movements 

with a lower amount of delivered charge (Crago et al., 1980). 

 Stimulation patterns were manually designed using anatomical knowledge and results from 

single electrode stimulation characterization experiments. During the characterization 

experiments, for each monkey, the median, radial, and ulnar nerves of the monkey’s arm were 

blocked with a lidocaine epinephrine mix. Then, video was obtained while each electrode was 

stimulated at a range of pulse widths at either 5 mA or 10 mA pulse amplitudes. Some electrodes 

were tested at both 5 mA and 10 mA to determine if one resulted in more graded contractions. 

Video was used to determine pulse widths and amplitudes for use in stimulation patterns. Initial 
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patterns were made by setting the pulse width at maximal commands to the pulse width that evoked 

the largest movement in the desired DOF without evoking movements in additional DOF and the 

pulse width at the 50 percent command to the pulse width that caused the first movement in the 

desired DOF. The patterns then smoothly transitioned pulse widths between these two points. At 

the beginning of experiments, these established stimulation patterns were tested and then adjusted 

if necessary, typically by changing the amount of overlap for flexor and extensor muscle 

activations or by increasing or decreasing maximal pulse widths. As a result, patterns typically 

changed with each experiment. Example stimulation patterns for Monkey R can be found in 

Figures 3-1E and 3-1F.  

3.2.6 Nerve Block 

In order to achieve temporary hand and wrist paralysis, we performed an ultrasound guided 

nerve block of the median, radial, and ulnar nerves just proximal to the elbow prior to stimulation. 

First, lidocaine (2%) was injected subcutaneously near the planned injection sites to help prevent 

discomfort from injections. Then a solution of lidocaine (2%) and epinephrine (1:100 000) was 

injected into the perineural space surrounding the nerve under ultrasound guidance. In later 

experiments, the lidocaine dosing was reduced to 1% without a noticeable change in the efficacy 

of nerve block. Typical blocks involved injecting 1 mL to 1.5 mL around each of the three nerves. 

This blocked hand function for sufficient time to perform FES tests (about 2 hours) without re-

dosing. Block effectiveness was first tested with a grasping task where we observed their motor 

capabilities while they attempted to grasp offered treats. Block effectiveness was further tested 

throughout experiments by inserting catch trials where stimulation was turned off and the monkey 

was allowed to attempt acquiring targets, thus earning juice, on their own.  
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3.2.7 Open-Loop FES Experiments 

 In order to investigate the range of movements that could be evoked in each DOF with 

FES, predetermined stimulation commands were sent, and then evoked movements were recorded 

on video. Joint angles were extracted later using DeepLabCut or ImageJ. Multiple types of datasets 

were recorded on these days, often on separate days due to fatigue. These included testing 

stimulation at multiple points along individual patterns, testing stimulation on the finger pattern 

with a constant wrist muscle activation maintaining a wrist posture, and testing stimulation at 

random points along both patterns. Stimulation at random points on the patterns was coordinated 

using xPC. The xPC selected random targets along the whole range of flexion for each DOF but 

did not present them on the screen. Instead, stimulation at the point in the patterns expected to 

reach that target were delivered and the evoked movements were recorded.  

3.2.8 Closed-Loop FES Experiments 

 To investigate graded control of FES in 2-DOF, FES was used to move the monkey’s 

fingers and wrist to acquire virtual targets. Wrist and finger angles were acquired with flex sensors 

taped to the back of the wrist and to the back of the index finger. At the beginning of the 

experiment, the monkey’s wrist and hand were temporarily paralyzed using an ultrasound guided 

nerve block of the median, radial, and ulnar nerves. Before closed-loop tests began, stimulation 

patterns for both the wrist and the fingers were tested to ensure that they moved the desired joint 

through a large range of motion. If needed, patterns were adjusted to produce better movements 

and then retested. Flex sensor measurements were calibrated so that the virtual hand was fully 

flexed or extended at approximately the range of motion available from stimulation. Target 

amounts of flexion for both the wrist and the fingers were selected and then targets were presented 

on the screen. Target sizes were 22.5% and 24.9% of the movement range for the fingers and wrist 
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respectively. For a trial to be successful, both the fingers and the wrist had to remain in their 

respective targets for 500 ms. Trials resulted in failure if this took longer than 10 seconds. The 

stimulation was controlled with a simple algorithm that, every 32 ms, checked if the fingers and 

the wrist were in their targets, and if not would update the stimulation pulse width for the joint not 

in the target using the stimulation patterns by moving 1 command value (out of 255) on the 

corresponding joints pattern in the direction of stimulation needed to get to the target (i.e. flexion 

or extension).  

3.2.9 BMI Experiments 

To investigate whether Monkey N could use a BMI to control 2-DOF virtual wrist and 

finger movements before and after temporary paralysis, we implemented a position/velocity ReFit 

Kalman Filter (RKF) similar to what we have previously published with two finger-groups 

(Mender et al., 2023; Nason et al., 2021). To train the decoder, first Monkey N completed at least 

300 trials with hand control, in the adapted finger and wrist manipulandum (Figure 3-1B). Then a 

position/velocity Kalman filter (KF) was trained using the hand control data and used in BMI 

control for at least 200 trials. This KF BMI control data was then used as training data for the RKF 

model. The RKF model was then used in BMI control for at least 150 trials to get an initial 

performance, after which the nerve block was performed. Once hand function was confirmed to 

be lost, the same RKF model was used in BMI control again for at least 150 trials. One more RKF 

model (Re-ReFIT model, ReRKF) was then trained using these post-nerve block RKF BMI control 

trials. The ReRKF model was then tested in BMI control for 130 or more trials. 

Targets were presented in a center-out fashion requiring flexing or extending the fingers 

and or wrist, for a total of 8 movement combinations and to 3 different magnitudes of movement 

from center. The subsequent trial then required moving back to center, additionally the trial after 
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a failed trial required moving back to center. Targets presented were 16.9 to 18.8% of the 

movement range for the finger target and 18.7 to 20.8% of the movement range for the wrist target. 

Targets had to be held for 500 ms in BMI control and 750 ms in hand control. In one run of hand 

control trials the target hold time was mistakenly set to 500 ms instead of 750 ms. Trials were 

considered failed if targets were not reached and held within 10 seconds.  

3.2.10 BMI Decoder Training 

 Decoder training matches training for a KF for two finger groups (Nason et al., 2021) but 

with updated parameters to use the wrist instead of a second finger group. The KF and RKF assume 

a kinematic state with one position and velocity for each degree of freedom. For the 2D finger and 

wrist task, there is one position and velocity for the wrist and one position and velocity for the 

fingers: 
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Where 𝑥  is the kinematic state at time t,  𝑃  and 𝑉  are position and velocity for the index finger, 

and 𝑃  and 𝑉  are position and velocity for the wrist. Note that the fingers were grouped together 

in visualizations by giving the rest of the fingers the same kinematics as the index finger. The KF 

updated the kinematic state at 32 ms intervals by combining a prediction of the state given the 

previous state (𝑥 | ) with a state update gained from comparing the measured neural activity 

with the neural activity that was expected to be observed in this time step: 

𝑥 | = 𝐴𝑥  

𝑥 = 𝑥 | + 𝐾 (𝑦 − 𝐶𝑥 | )  



 92

where A is the kinematic trajectory model, C is the neural observation model, 𝐾  is the Kalman 

gain and 𝑦  is the measured neural SBP data for all active channels. The C matrix was computed 

by regression of kinematics to neural features. The A matrix contains scalars weighing how much 

each kinematic state variable contributes to the update of the kinematic state. This was trained by 

regression of the state at time t-1 to the state at time t, however the A matrix was constrained to 

have positions only updated by velocities, as expected of physical trajectories. To do this, the A 

matrix was given by: 
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 The RKF and ReRKF models followed the same KF algorithm but used retrained model 

parameters. To train these models, the predicted velocities from the BMI trials used as training 

data were augmented by identifying timesteps with velocities in a direction away from the target 

and rotating the velocities to point towards the correct 2D target vector, but not rescaling the vector. 

This matches the assumption that the monkey intended to be moving towards the target during the 

online trials. New model parameters were then trained using the augmented velocities. During use 

of the RKF and ReRKF models, there was no further modification of the velocities.  

3.2.11 Performance Metrics 

 We measured performance during FES closed-loop trials and BMI trials with success rate 

and acquisition time. In BMI control, trials were excluded if they were not entirely closed-loop 

(e.g. the first and last trial), or if a different target presentation style was used. Similarly, FES trials 

were excluded if stimulation was not turned on for the entire trial. FES trials were also excluded 

if both DOF started in their target, or if the taped-on flex sensors were noted as being out of place 
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and giving erroneous readings. Success rate was then measured as the ratio of successful FES or 

BMI trials to the number of valid FES or BMI trials. Acquisition time was measured as the time 

required to complete the trial, minus the hold time and was only measured for valid successful 

trials. In BMI trials, we also calculated an orbiting time, that is the time between first reaching 

both targets simultaneously, and successfully holding the targets, minus the hold time. Orbiting 

time was measured for all valid and successful BMI trials with a non-zero orbiting time. 

3.3 Results 

3.3.1 Coordinating Electrode Stimulation with Patterns 

In order to restore dexterous hand movements, it is necessary to continuously control multiple 

DOF in the hand. A benefit of intramuscular stimulation is that stimulation on individual electrodes 

is expected to activate portions of individual muscles and therefore evoke more selective 

movements which can then be combined into functional movements. We first ask how well we 

can control individual DOF in the wrist and fingers using coordinated stimulation of multiple 

intramuscular FES electrodes. Two monkeys were implanted with bipolar intramuscular electrodes 

(Synapse Biomedical, Oberlin, OH). Monkey N was implanted with 8 bipolar leads targeting 6 

different muscles, while Monkey R was implanted with 16 bipolar leads targeting 8 muscles. 

During the implantation for Monkey R, nerve entry points were specifically targeted to improve 

selectivity of evoked movements due to stimulation.  

Following the conventional FES control methods (Kilgore et al., 1989), a stimulation pattern 

was defined for each DOF. Patterns were established using initial single electrode stimulation 

results and trial and error as described in the Methods, then minimally adjusted on each day. 

Figures 3-1E and 3-1F shows example finger and wrist patterns respectively for Monkey R. We 

first tested how well we could control one DOF at a time. During experimental sessions, we 
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measured step responses in evoked finger and wrist movements to stimulation at different points 

along the patterns. Figures 3-2A and 3-2C show example movements using the wrist pattern and 

the finger pattern respectively for one session with Monkey R. Qualitatively, the wrist pattern 

successfully moves the wrist through a large range of motion but sometimes recruits finger 

movements at the most flexed or extended commands where stimulation to wrist flexor or extensor 

muscles is high. Similarly, the finger pattern successfully moves the fingers through a large range 

of motion, however, it substantially moves the wrist as well.  

To quantify the movements, we measured the joint flexion angles for the wrist joint and 

the index MCP joint during each evoked movement. More positive angles correspond to more 

extended joints with 180 degrees indicating straight extension and 90 degrees representing 

perpendicular flexion. Figures 3-2B and 3-2D illustrate example measurements for one session 

testing the wrist and finger pattern respectively. On three days for each monkey, we tested the 

range of evoked movement in finger and wrist joints for each pattern at the beginning of 

experiments (Figures 3-2E and 3-2F). The finger patterns moved the fingers through a large range 

for both monkeys, averaging 85 degrees for Monkey N and 91.4 degrees for Monkey R. The wrist 

patterns moved the wrist through an average of a 97 degree and 55.5 degree range for Monkey N 

and Monkey R respectively. Both patterns consistently moved both the wrist and fingers but the 

movements were significantly larger in the intended joint for that pattern. Across both monkeys, 

finger pattern evoked finger movement ranges were 36.5% larger than wrist movement ranges 

(p<0.05, one-sided paired t-test, n=6), whereas wrist pattern evoked wrist movement ranges were 

326.5% larger than finger movement ranges (p<0.01, one-sided paired t-test, n=6). Additionally, 

wrist patterns evoked a 69.3% smaller range of finger movements compared to the finger patterns 

(p<1e-4, one-sided paired t-test, n=6), while wrist and finger patterns evoked the same range of 
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wrist movements (p>0.05, two-sided paired t-test, n=6). This indicates that stimulating wrist 

muscles in the wrist patterns more selectively evoked movements in the intended joint compared 

to stimulating the extrinsic hand muscles in the finger patterns. 

 

Figure 3-2 Range of movement using stimulation parameters independently.  
(A) Example evoked movements from testing the wrist stimulation pattern on one example day with Monkey R 64 
days after implant. (B) Measured wrist (left) and index MCP (right) angles from testing the wrist stimulation pattern 
on one day with Monkey R. Open squares indicate the resting position before the stimulation was stepped to the 
stimulation for the respective command. (C-D) Same as (A-B) but with stimulation from the finger pattern. (E-F) The 
range of evoked movements in the MCP joint (blue) and wrist joint (yellow) using the wrist pattern and finger pattern 
for Monkey R (E) and Monkey N (F) respectively. Open circles indicate measurements from different experiments 
where patterns were tested.  
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One concern with using these patterns is that they describe control of each DOF independently 

however they generally evoke movements both in the fingers and the wrist. We next asked what 

movements we would be able to elicit using these two patterns simultaneously. We first tested four 

specific postures, open or closed fingers with the wrist flexed or extended. These were tested by 

holding the wrist pattern constant at flexion or extension and then varying the finger pattern to 

move the fingers into the desired postures. Figure 3-3A and 3-3B show example movements during 

these tests for Monkey R and Monkey N respectively. This was done on two days for each monkey. 

Figure 3-3C and 3-3D illustrate the range of movement on each day for Monkey R and Monkey N 

respectively, by plotting the measured angles for each movement as a corner of the quadrilateral, 

resulting in one quadrilateral for each day. Measured angles were normalized by the range of 

movement that individual patterns moved the joints to on that day. For example, a wrist extension 

of 1 is the angle that the wrist pattern extended the wrist to on that day and a finger extension of 0 

is the angle that the finger pattern flexed the fingers to on that day. With this normalization, a 2-

DOF range of motion that matched the joint angles given by individual patterns would make a 

quadrilateral with an area of 1. When testing these four postures, the average area of the range of 

movements was 0.91 (std = 0.38). Both monkeys had one day with an area greater than 1 and one 

day with an area less than 1.  

There are two effects due to biomechanical coupling that we expect to limit the range of 

movements available in 2-DOF stimulation. One is active coupling from the extrinsic finger 

muscles exerting a torque on the wrist when activated. The second is passive coupling where 

changes in wrist posture change the tendon length of extrinsic finger muscles making finger flexion 

or extension easier. We asked how large of an effect both of these types of biomechanical coupling 
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Figure 3-3 Range of movement using two-patterns simultaneously 
(A) Example stimulated movements opening or closing the fingers with simultaneous stimulation holding the wrist in 
flexion (top) or extension (bottom). Results for Monkey R. (B) Same as (A) but for Monkey N. (C) Measured finger 
and wrist angles when opening and closing the fingers with the wrist held fully extended or fully flexed. Angles for 
postures on the same day are connected to make one quadrilateral. All four postures were tested on two days. Colored 
points correspond to the frames in (A). Extensions are calibrated to the range of movements available from stimulation 
with the corresponding pattern for that DOF. The grey box is a unit square corresponding to the calibration. (D) Same 
as (C) but for Monkey N. (E) Change in wrist extension (fraction of normalized range of movement) when the fingers 
are stimulated to flexion with stimulation holding the wrist either flexed or extended. (F) Change in finger extension 
(fraction of normalized range of movement) when the wrist is being held extended as opposed to being held flexed. 
Results include both when the fingers are open or closed. 

had on our example movements. Figure 3-3E presents the change in wrist extension in movements 

with the fingers moving from extended to flexed while maintaining the same wrist posture. Flexing 

the fingers significantly flexed the wrist with a median change in wrist extension of -12.5% of the 

range (p=0.027). Figure 3-3F presents the change in finger extension when the fingers were at 

flexion or extension with the wrist extended as opposed to flexed. The fingers tended to be more 

flexed at wrist extension with a median change of -13.3% of the range, but there was a lot of 

variability between movements and the trend was not significant across all movements.  
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 While these movement areas represent the edges of the range of movement, they didn’t 

sample many combinations of the finger and wrist patterns together because the wrist pattern was 

held constant during the finger movements. We next asked what range of motion we could get by 

sampling along both patterns. To test this, we stepped stimulation between random points along 

the two patterns every three seconds and measured the resulting index MCP and wrist joint angles. 

This was done on two days for each monkey and then results were pooled for each monkey. Figure 

3-4A and 3-4B illustrate the range of the resulting movements for each monkey. The enclosed area 

indicates a boundary on the measured movements in each joint with the red boundary indicating 

trials in the first three minutes (approximately 60 trials) and the black boundary indicating later 

trials in the last three minutes. Experiments were 8.37 and 7.95 minutes long for Monkey R and 

6.15 and 9.92 minutes long for Monkey N. We observed initial movements through a large portion 

of the finger and wrist movement space for both monkeys that diminished over time, presumably 

due to fatigue. In the first three minutes, Monkey R’s movement range area was 1.42 and Monkey 

N’s movement range area was 0.84. Figure 3-4C presents the change in movement range area for 

each day, split by monkey. In the last three minutes, Monkey R’s movement area was 48.1% 

smaller and Monkey N’s movement area was 76.7% smaller than movements in the first three 

minutes. This fatigue effect was largest for wrist extension for both monkeys. We calculated the 

centroid for the movement area on each day and calculated how far (the fraction of the normalized 

range of movement) it moved between the first three minutes and last three minutes (Figure 3-4D). 

Across monkeys and days, the centroid shifts away from wrist extension by an average of 17.0% 

of the movement range. The centroids did not consistently shift away from or toward finger 

extension. 
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Figure 3-4 Movement range using graded stimulation on both patterns. 
(A) (Top) Example frames from video of 2-DOF stimulation in Monkey R with markers estimated using DLC. 
(Bottom) Boundaries drawn containing measurements of each finger extension and wrist extension from video frames 
when stimulation was being administered in the first 3 minutes (red) or last 3 minutes (black). The frames at the 
highest and lowest 1% of measurements in each DOF are excluded. Angles are calibrated to the range of movements 
available from stimulation in the respective pattern. Grey box is a unit square corresponding to the calibration. (B) 
Same as (A) but with Monkey N. (C) Change in bounded area between the first 3 minutes and last 3 minutes using 
two experiments per monkey. (D) Change in centroid location of the bounded areas between the first 3 minutes and 
last 3 minutes, pooled across the 4 experiments in the 2 monkeys.  

3.3.2 Continuous control of 2-DOF FES 

With a large range of 2-DOF wrist and finger movements available using FES, we also will want 

to continuously control this stimulation to reach specific postures throughout the available range 

of movement. To test this, we used a virtual finger and wrist target acquisition task in which we 

presented targets on a screen and then used FES to control the monkey’s nerve-blocked hand to 

acquire those targets as described in the Methods. Wrist and finger angles were measured with flex 



 100

sensors calibrated at the beginning of experiments to the range of movement available from the 

stimulation. Figure 3-5A shows finger and wrist extension as well as targets presented during an 

example run of FES trials for Monkey R, illustrating the fingers and wrist moving simultaneously 

to separate targets. This control strategy was moderately successful at acquiring targets throughout 

the range of movement, however, trials commonly failed at the edge of the range of movement, or 

by not being able to maintain wrist posture while moving the fingers. In an effort to maximize 

performance, we tested the ability to reach targets in a reduced range of movement consisting of 

the middle 50% of the range of movement for each joint. We repeated this FES control in four 

experiments, two for each monkey. Figures 3-5B and 3-5C show the probability of trial success 

given target locations, pooled across both days for each monkey. Both monkeys had some 

difficulty extending the wrist while the fingers flexed (50% success for Monkey R and 33.3% 

success for Monkey N in the most extreme wrist extension, finger flexion area) and Monkey R 

also had some difficulty extending fingers. However, in each experiment we obtained greater than 

84% success using this reduced range of targets (Figure 3-5D). Figure 3-5E shows the acquisition 

time for each trial grouped by experiment and the dashed line indicates a representative acquisition 

time from Monkey N doing the task able bodied with the manipulandum (average from BMI 

experiment hand control). While success rates were high, acquisition times were much slower than 

able bodied control. Ultimately, this continuous control shows that we have fine enough control 

of FES to reach precise postures within a reduced range of motion.  
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Figure 3-5 Closed-Loop control of two-DOF FES 
(A) Example finger and wrist extension (top) and FES commands (bottom) from closed-loop FES control. Blue and 
yellow patches indicate targets; a green border indicates success while a red border indicates failure. Representative 
images of the virtual hand are included to illustrate the target movement at that time. (B) Probability of closed-loop 
FES trial success by target location, pooled across two experiments for Monkey R. (C) Same as (B) but for Monkey 
N. (D) Success rate for closed-loop FES in each session. MN=Monkey N, MR=Monkey R. (E) Acquisition times for 
successful trials using FES. Red bars and numbers above each column indicate the median acquisition time for that 
session. Dashed line indicates an example acquisition time from Monkey N using hand control.  

3.3.3 BMI Control of Virtual Finger and Wrist Movements 

Pattern based FES control simplifies the command signals down to one signal for each 

degree of freedom. This type of control is analogous to BMI control in which independent DOF 

are read out from the neural activity. We asked how well we can generate a command signal from 

brain activity to ultimately control this 2-DOF FES aimed at restoring finger and wrist flexion 

movements. We trained a monkey to do a 2-DOF finger and wrist task, moving their fingers 

grouped together in a manipulandum and flexing or extending their wrist in order to acquire targets 

on the screen in front of them. We then trained a ReFIT Kalman filter model (RKF) following the 
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procedure we have used previously (Mender et al., 2023; Nason et al., 2021) enabling the monkey 

to control the virtual hand with only their activity from implanted Utah arrays (Figure 3-1A, BMI 

control). While these experiments were done in the Monkey N (also described above) they were 

separated in time from FES due to brain signal quality. Monkey N was able to achieve high levels 

of success simultaneously controlling the wrist and finger flexion with a BMI. Figure 3-6A shows 

example decoded finger and wrist flexion from a real-time BMI session with Monkey N using the 

RKF model. The monkey acquired targets with 97% success with a median acquisition time of 

 

Figure 3-6 Two-DOF BMI control of virtual wrist and fingers 
(A) Example decoded finger and wrist extension from a closed-loop BMI experiment. Green target boundary indicates 
trial success, and red target boundary indicates failure. (B) Box plot illustrating the distributions of acquisition time 
for all 3 sessions with RKF control in blue and hand control in black. Red bars indicate median, the box includes the 
25th to 75th percentiles, and whiskers indicate the full range. * indicate significant difference between RKF and hand 
control (p<0.05 two-sample t-test). (C) Box plot of the distribution of orbit times for all three sessions, following the 
format in (B). (D) Success rate using hand control (black) or BMI control (blue) during each session.  
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1.0s during this session. We tested 2-DOF BMI control of the wrist and finger DOF on three 

experimental days. Performance was measured with acquisition time, orbit time, and success rate 

(Figures 3-6B to 3-6D). Performance with the RKF model was comparable to that of using the 

hand to control the manipulandum with only sessions 1 and 3 showing increases in median 

acquisition time (391 ms and 489 ms respectively, p<1e-4 two-sample t-test), and increases in 

median orbiting time (311.5 ms and 89.5 ms respectively, p<0.05 two-sample t-test). Due to the 

good performance we concluded that there is enough information in our array recording in hand 

area to decode command signals for two-DOF in real time with a linear Kalman filter.  

For translational purposes, it will be important to decode intended movements in a patient 

with spinal cord injury whereas our monkey model is able-bodied. To this end, we tested whether 

the trained Kalman filter could still decode two-DOF of intended movements in a real-time BMI 

task after the same nerve block used in FES experiments, which eliminates movement and 

proprioception similar to a spinal cord injury. The order of BMI tests relative to the nerve block  

are illustrated in Figure 3-7A. First, a RKF model was trained and tested prior to the nerve block. 

Then the nerve block was performed and the same RKF model was tested again. Figure 3-7B and 

3-7D show average acquisition time and success rate respectively during each set of trials in one 

example session. While using the same RKF model after nerve block, the RKF performance 

decreased, acquisition time increased from 994 ms to 1707 ms, and success rate decreased from 

98% to 93%. Interestingly, some performance could be regained through an extra retraining step 

with the ReFIT method using the successful trials from BMI control after nerve block. In the 

example session, using the retrained RKF improved acquisition time to 1035 ms and success rate 

to 96.9%. We repeated the BMI task in three nerve block experiments. When testing the same RKF 

before and after nerve block, BMI performance consistently decreased after the nerve block. 



 104

Acquisition time increased on all three days (p<7e-4) with an average increase in acquisition time 

of 586.3 ms, meanwhile success rate decreased on days 1 and 2 (p<0.04 chi-squared test) by an 

average of 9.1%. Retraining the Kalman filter using ReFIT on BMI trials after the nerve block 

successfully regained performance in all three experiments, significantly improving acquisition 

time on days 1 and 2 (P<7e-4, two sample t-test) by an average of 695 ms, and improving success 

rate on days 1 and 3 by an average of 10.4% success. Performance after retraining was not 

significantly different from the RKF before nerve block for days 1 and 2, while day 3 had a higher 

 

Figure 3-7 Recovering BMI performance after nerve block. 
(A) Illustration of the model training process with respect to the nerve block. (B) Acquisition times during an example 
session. ReRKF is the decoder that was trained in a second ReFIT step after nerve block. Red lines and numbers near 
the top of each column indicate the median acquisition time for that set of trials. (C) Median acquisition time during 
3 experiments where an RKF was tested before and after nerve block and then compared to the ReRKF. (D) Success 
rates during an example session. (E) Success rate during the 3 experiments where RKF was tested before and after 
nerve block and compared to ReRKF.  
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success rate (7.8% success, p=0.017 chi-squared test) but slower acquisition time (609ms, p=7e-4 

two-sample t-test). Ultimately this shows that using a linear Kalman filter we can decode intended 

movements in 2-DOF after nerve block despite the loss of sensory information. 

3.4 Discussion 

 Intramuscular FES is promising for restoring dexterous hand movements due to its ability 

to selectively activate portions of muscles and evoke selective movements. With more movements 

available, stimulating with multiple electrodes can cover a larger basis of hand movements. Here 

we characterize how well we can combine stimulation on two biomechanically linked DOF, that 

is the wrist and the fingers, simultaneously. We found that stimulation successfully evokes a large 

range of movements, similar in size to what would be expected from stimulating each DOF 

independently. However, the range is significantly impacted by interactions between evoked 

movements from stimulation on both patterns. For example, stimulating extrinsic finger muscles 

caused large wrist movements that limited the full 2-DOF range. Still, commanding stimulation 

for each DOF independently resulted in greater than 80% success when using the stimulation to 

reach target joint angles in the middle of the movement range.  

Controlling the degree of flexion on independent DOF is analogous to BMI control in 

which independent joint angles are decoded from neural activity (Ajiboye et al., 2017; Nason-

Tomaszewski et al., 2023). Previous works have decoded finger movements (Nason et al., 2021; 

Vaskov et al., 2018), or decoded wrist movements (Ajiboye et al., 2017). However, finger-related 

muscle activations change when moving the fingers in different wrist postures (Beringer et al., 

2020), and this has an impact on neural activity and finger movement prediction accuracy (Mender 

et al., 2023). Here we show that Utah microelectrode arrays implanted in finger area of primary 

motor cortex of one animal can decode simultaneous finger flexion and wrist flexion. To our 



 106

knowledge, this is the first work showing continuous decoding of simultaneous finger and wrist 

movements. The success of this approach may be linked to the adaptable approach of the BMI 

decoding, which allows users to re-aim their intended control to successfully acquire targets 

(Golub et al., 2018b; Jarosiewicz et al., 2008; Mender et al., 2023). 

Retraining BMI decoders with methods like ReFIT (Gilja, Nuyujukian, Chestek, 

Cunningham, Yu, Fan, Ryu, et al., 2012) is likely integral to improving online performance in 

clinical applications. For example, in our nerve block model of hand and wrist paralysis, we found 

that blocking motor output and sensory afferents significantly worsened decoder performance. 

These results suggest that motor cortex activity changed significantly after a change in sensory 

afferents, similar to what has been described previously (Nason-Tomaszewski et al., 2023). When 

we retrained the model using augmented training data, performance was restored to near pre-block 

levels. In clinical applications, these BMI methods will be applied to people with spinal cord 

injuries in which there are little sensory afferents and little to no motor output with which to train 

models. In these applications, training an initial model is difficult, but is generally achieved by 

relying on training data from attempting or observing the task. Retraining can then result in an 

accurate model for online use as long as there is some form of initial BMI control. 

Throughout these experiments muscle fatigue has been a limiting factor. In intramuscular 

FES, fatigue is caused by a few factors. Large motor units that fatigue quickly are recruited before 

smaller fatigue resistant fibers, a phenomenon known as reverse recruitment. Fibers are also 

recruited at relatively high rates. In normal recruitment, fiber activations are offset and a fused 

contraction is formed by many overlapping twitches offset in time. In FES, all of the fibers are 

activated at once, so a fused contraction must be created by stimulating at a higher rate. Here, 

significant fatigue was observed in some muscles after as few as three minutes of stimulation. 
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More work is needed to identify stimulation paradigms that can alleviate fatigue. One promising 

route is through implanting electrodes in multiple motor points along the same muscles. 

Theoretically, this will activate different subsets of muscle fibers (Gruner & Mason, 1989) and 

stimulation can then be offset sequentially to lower the rate that any one subset of muscle fibers is 

activated and thus reduce fatigue (Peckham et al., 1970; Thomsen & Veltink, 1997).  

Future work can aim to account for interactions between the DOF being controlled, both 

with respect to decoding accuracy and FES control. Ultimately, brain-controlled FES involves 

decoding an intended movement and a translation from intended movement to the stimulation 

parameters required to perform the movement. To predict intended movements, nonlinear methods 

such as neural networks have been increasingly successful in BMI applications (Glaser et al., 2020; 

Willsey et al., 2022). Importantly, these methods can model interactions between DOF, so given 

enough training data, more accurate decoders can be trained. Alternatively, feature engineering 

can be used to improve the decoding accuracy for specific approaches (Mender et al., 2023; 

Schroeder et al., 2022). With regards to stimulation protocols, optimization algorithms such as 

Bayesian optimization have shown promise in efficiently tuning stimulation parameters to evoke 

functional movements in FES (Bonizzato et al., 2023; Losanno et al., 2021). These algorithms 

optimize an objective function related to the movement using stimulation on each electrode as an 

input, which deviates from current control methods where one electrode contributes to movements 

in one DOF. Integrating optimization algorithms with BMI control hasn’t been attempted yet, and 

will likely involve designing optimization functions that work with specific BMI control 

modalities.  
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Chapter 4 Targeting Nerve Entry Points for Selective FES 

This chapter includes my contributions to a collaborative project establishing the surgical 

method described below and testing the efficacy of this method. A subset of these results were 

presented as a poster at the 2023 Simian Collective Meeting. A subset of these results were also 

presented by a neurosurgeon collaborator, Dr. Ayobami Ward, at the 2023 Society for 

Neuroscience Annual Meeting, and also by a plastic surgeon collaborator, Dr. Nishant Ganesh 

Kumar, at the 2024 American Society for Peripheral Nerve Annual Meeting 

4.1 Introduction 

Functional electrical stimulation (FES) can restore functional movements after spinal cord 

injury by stimulating intact muscles. Improved hand function in particular is important to 

improving quality of life for people with tetraplegia (Anderson, 2004; Collinger, Boninger, et al., 

2013). Clinical FES devices have been able to restore specific grasps such as palmar and lateral 

grasps (Losanno et al., 2023; Peckham et al., 2001), doing so in over 250 patients. The hand 

however is a complex biomechanical system with 27 degrees-of-freedom (ElKoura & Singh, 2003) 

and over 30 muscles. These clinical devices so far are a long way from truly restoring dexterous 

hand movements. While much of the variance in hand movements can be explained by a few low-

dimensional synergistic movements (Ingram et al., 2008; Santello et al., 2016; Yan et al., 2020), 

there is still important task dependent information in lower variance dimensions (Todorov & 

Ghahramani, 2004; Yan et al., 2020). Therefore, to restore natural dexterous hand control, we 

would need a stimulation paradigm that can restore many degrees-of-freedom.  
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Stimulating the nerve or the muscle shows promise in being able to restore fine movements 

in the hand (Badi et al., 2021; Kilgore et al., 2018; Losanno et al., 2023), however nerve stimulation 

tends to activate synergistic movements (Badi et al., 2021), which may limit the available hand 

movements. Intramuscular electrodes are well suited for selectively activating muscles because 

they can be placed directly in the muscle belly. Multiple electrodes can also be placed into the 

muscle belly in order to target different sections of the muscle. Most muscles can be subdivided 

into neuromuscular compartments, groupings of muscle fibers innervated by one peripheral nerve 

branch (English et al., 1993). These compartments can also have specific functions especially in 

the hand. For example, different compartments of flexor digitorum profundus will activate tension 

on different fingers (Schieber et al., 2001). Notably, there are not individual extrinsic finger 

muscles for each finger. Instead, motor units are activated together within compartments more so 

than between compartments, which contributes to individual finger control (Keen & Fuglevand, 

2004; Mcisaac & Fuglevand, 2007; Reilly et al., 2004). As such, stimulating different 

compartments of extrinsic finger muscles may be necessary to improve individual finger 

movements. We aim to improve the selectivity of intramuscular FES by targeting the nerve entry 

points into muscles. Due to the spatial pattern of activation in intramuscular stimulation, it is 

expected that stimulation on electrodes at the nerve entry point would selectively activate muscle 

fibers in the neuromuscular compartment in which the electrode is implanted (Grandjean & 

Mortimer, 1986; Singh et al., 2000).  

It has yet to be shown that we can target these nerve entry points intraoperatively and that 

we can stimulate them chronically to achieve selective movements in the hand. Here we show a 

proof of concept implantation in non-human primate of 16 electrodes targeting nerve entry points 

of 9 unique muscles in the forearm. We compare this to an FES implant using the standard 
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approach targeting each muscle belly once. After implantation, targeting nerve entry points led to 

stimulation on individual electrodes that selectively evoked movements on more individual 

fingers, more subgroups of fingers, and also the wrist.  

4.2 Methods 

4.2.1 Implants 

Prior to surgery, ex-vivo exploration was used to determine a surgical plan. We performed 

an extensive anatomic dissection of one ex-vivo monkey arm, identifying flexor muscles, extensor 

muscles, and main nerve branches as they entered their respective targets. We identified multiple 

nerve entry points in each muscle, ranging up to 6 in flexor digitorum profundus, aligning with 

previous anatomic studies (Liu et al., 1996). We also found that entry points tended to be in more 

proximal locations of the target muscle belly, and relatively spread out (typically greater than 2 

cm), indicating that one volar and one dorsal incision would allow access to the entry points of 

flexor muscle and extensor muscles respectively, and that there was enough space between points 

for individual nerve entry points to be targeted by single electrodes. While the exact number and 

distribution of nerve entry points varies by subject (Liu et al., 1996), this ex vivo procedure assisted 

in orienting the surgeons to the procedure and in developing a surgical plan. 

Two monkeys, Monkey R and Monkey N, were implanted with chronic bipolar 

intramuscular electrodes (Synapse Biomedical, Inc., Oberlin, OH, USA). Monkey R was 

implanted after the ex vivo planning procedure and multiple nerve entry points were targeted per 

muscle. Monkey N was implanted about 2 years’ prior with a similar surgical technique but only 

targeting one electrode per muscle. During the implantation procedure, a radial-volar incision was 

used to access flexor muscles of the deep and superficial compartments of the forearm, and a 

dorsal-ulnar incision was used to access the extensor muscles. Target muscles were identified 
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using anatomical landmarks and nerve entry points were identified. In Monkey N, intraoperative 

stimulation of the muscle was performed to isolate finger and wrist-related movements, then 

 

Figure 4-1 Ex Vivo surgical planning and intraoperative stimulation 
(A)  Example picture from the ex vivo exploration. Pins are placed where two nerve entry points were identified. An 
electrode is shown at one nerve entry point for scale. (B) Example intraoperative stimulation of the FDPrs electrode 
with Monkey R. Stimulation on this electrode intraoperatively evoked flexion on the small and ring fingers. Red 
arrows point to the small finger which is slightly flexed in the bottom image relative to the top. (C) Example 
intraoperative stimulation of the EDCim electrode with Monkey R. Stimulation on this electrode intraoperatively 
evoked extensions of the index and middle fingers. Red arrows point to the index and middle fingers which are slightly 
extended in the bottom image relative to the top. 
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electrodes were secured intramuscularly with suture in close proximity to a nerve entry point. In 

one muscle belly, better isolation of intended finger movement was identified by stimulation more 

distal from the nerve entry point and an additional electrode was implanted at that location. 

Through this method, 8 electrodes were placed on 7 muscles for Monkey N (Table 4-1). In Monkey 

R, nerve entry points were identified on the target muscle and electrodes were placed in close 

proximity. Intraoperative stimulation was then used to confirm finger or wrist related function by 

Table 4-1 List of electrode targets and movements achieved by intraoperative stimulation 

Monkey R Electrodes Intraoperative Stimulation Result 
Flexor Digitorum Superficialis (FDS) Middle finger flexion 

Flexor Digitorum Profundus, Ulnar Site (FDPr) Ring finger flexion 

Flexor Digitorum Profundus Radial Site (FDPi) Index finger flexion 

Flexor Digitorum Profundus Ulnar Site (FDPrs) Ring and small finger flexion 

Flexor Carpi Radialis Proximal Site (FCRp) Wrist flexion 

Flexor Carpi Radialis Distal Site (FCRd) Wrist flexion 

Flexor Carpi Ulnaris Proximal Site (FCUp) Wrist flexion and adduction 

Flexor Carpi Ulnaris Distal Site (FCUd) Wrist flexion and adduction 

Extensor Digitorum Communis Ulnar Site (EDCrs) Ring and small finger extension 

Extensor Digitorum Communis Radial Site (EDCi) Index finger extension 

Extensor Digitorum Communis Middle Site (EDCmrs) Middle, ring, and small finger extension 

Extensor Digitorum Communis Proximal Site (EDCim) Index and middle finger extension 

Extensor Indicis Proprius (EIP) Index finger extension 

Extensor Carpi Radialis Brevis Proximal Site (ECRBp) Wrist extension 

Extensor Carpi Radialis Brevis Distal Site (ECRBd) Wrist extension 

Extensor Carpi Ulnaris (ECU) Wrist ulnar deviation 

Monkey N Electrodes Intraoperative Stimulation Results 
Extensor Indicis Proprius (EIP) Index finger extension 

Flexor Digitorum Profundus, MRS muscle belly (FDP) Middle, ring, and small finger flexion 

Extensor Digitorum Communis (EDC) All finger extension 

Extensor Carpi Radialis Brevis (ECRB) Wrist extension 

Flexor Carpi Ulnaris (FCU) Wrist flexion and adduction 

Flexor Carpi Radialis (FCR) Wrist flexion 
Flexor Digitorum Profundus, index muscle belly proximal 
site (FDPip) 

Index finger flexion 

Flexor Digitorum Profundus, index muscle belly distal site 
(FDPid) 

Index finger flexion 
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evoking finger or wrist twitches in the expected direction, before securing the electrode 

intramuscularly (Figures 4-1B and 4-1C). With this approach, 16 electrodes were placed on 8 

muscles (Table 4-1). Electrodes were then tunneled proximally over the upper arm and to an 

interscapular incision where tunneled wires connected to the standard PermaLocTM connector. 

4.2.2 FES System  

Intramuscular electrodes were connected to a networked neuroprosthesis evaluation system 

(NNP) (Smith et al., 2005), similar to the system used in humans (NCT02329652) however in a 

form designed for experimentation rather than implantation. The NNP system consisted of one 

power module and three pulse generator boards, each containing four output channels and one 

return channel. In intraoperative stimulation, one stimulation output was used. The cathode 

electrode was connected to the stimulation output which was inserted near the nerve entry point, 

the anode electrode was placed in contact with the muscle belly approximately 1cm away and 

connected to the current return of the power module. For chronic stimulation, four output channels 

were used, connected to the cathode of four bipolar electrodes. The return electrodes of the four 

electrodes were tied together to one common return on the pulse generator. All stimulation was 

current controlled, charge-balanced biphasic pulses, delivered at 32 ms inter-pulse intervals, with 

5 or 10 mA amplitudes and 1 to 255 microsecond pulse widths. Stimulation intensity was 

modulated by changing the pulse width of the leading cathodic pulse between 0 and 255 

microseconds, and the amplitude of the pulse to either 5 or 10 mA.  

4.2.3 Electrode Stimulation Characterization 

To ensure recorded movements were due to stimulation, chronic electrode characterization 

was done either with the monkeys under propofol anesthesia or with the monkeys arm temporarily 
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paralyzed via nerve block. For propofol anesthesia, an IV catheter was placed in the cephalic vein 

distal to the monkey’s right elbow (contralateral to electrodes). We then delivered a 2.5-3.0 mg/kg 

bolus of propofol to induce anesthesia and maintained light anesthesia with a constant rate infusion 

of propofol at 7.5 mg kg/h. Supplemental boluses of 0.2 mg/kg were used as needed to either 

induce anesthesia or maintain the desired level of anesthesia. For nerve blocks, the median, radial, 

and ulnar nerves were targeted just proximal to the elbow with ultrasound guidance. Then the 

monkeys arm was temporarily paralyzed with a solution of lidocaine (1% or 2%) and epinephrine 

(1:100000) injected into the space surrounding the nerve. Residual function was tested with a 

grasping task while offering enrichment.   

Following nerve block or induction, the NNP was connected to the PermaLoc connector. 

One electrode was stimulated at a time in a stepwise fashion, turning stimulation on for 1-3 seconds 

then back off before trying a new intensity. Various stimulation intensities were tested in order to 

identify the threshold stimulation to cause a movement and then the stimulation intensities required 

to cause a plateau in movement or movement of additional joints. Pulse widths varied from 1 to 

255 microseconds and amplitudes were either 5 mA or 10 mA. Each electrode was only stimulated 

at high enough intensities to determine that the recruited movement had plateaued, which typically 

occurred at less than 255 microsecond pulse widths. Video was recorded of evoked movements. 

To ensure consistent video, the camera was mounted on a tripod and angled such that the forearm 

just proximal to the wrist was at the edge of the frame. The monkeys forearm was braced by an 

experimenter to keep the hand off the table and moving within the plane of the recorded video. 

Joint angle measurements were later extracted from video frames. To measure angles, individual 

frames were selected from the video. Joints including the wrist, the metacarpaphalangeal (MCP) 

joint for index, middle and ring fingers, and the proximal interphalangeal (PIP) joint for index, 
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middle, and ring fingers, were marked. The angles for the wrist and index, middle, and ring MCP 

joints were measured in ImageJ (version 2.35). The wrist joint angle was measured as the angle 

between the vector from the forearm at the edge of the frame to the wrist marker (chosen to be 

perpendicular to the edge of the frame for consistency), and the vector from the wrist marker to 

the index MCP joint. The MCP joint angle for each finger was measured as the angle between the 

vector from the wrist marker to that finger’s MCP marker and the vector from that finger’s MCP 

marker to that finger’s PIP marker, in the plane of the image. In frame’s where there was an 

obstruction over a marker, a second measurement was made using vectors parallel to the back of 

the hand or parallel to the back of the finger. This second angle was then averaged together with 

an angle calculated from estimating the obstructed marker position. Note that the small finger’s 

MCP joint angle was not measured due to the top down camera angle leading to it nearly always 

being obscured.  

4.3 Results 

4.3.1 Chronic Implant Stimulation 

In order to investigate the ability to evoke selective movements with the chronic electrodes, 

we stimulated each electrode at different intensities. This was done 64 days post-operative for 

Monkey N and across two days, 27 and 41 days post-operative, for Monkey R. Figure 4-2A 

illustrates example movements captured from single electrode stimulation for Monkey R using the 

FDPim and EDCrs electrodes. For each electrode, we determined which finger movements they 

activated and in what order they evoked additional movements as stimulation increased. Figures 

4-2B and 4-2C show the order that movements were recruited in as stimulation intensity (pulse 

width) was increased. For Monkey R, 6 of 9 electrodes targeting finger muscles produced initial 

movements in one or two fingers, all 6 electrodes were among those that evoked selective finger 
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movements intraoperatively. Additionally, 6 of 7 electrodes targeting wrist muscles produced 

selective wrist movements initially, and 5 of those electrodes only evoked wrist movements even 

at high levels of stimulation. For Monkey N, 3 electrodes out of 5 targeting finger muscles evoked 

movements in one or two fingers, and 3 electrodes out of 3 targeting wrist muscles evoked selective 

movements in the wrist initially. 

We next asked how large the selective finger movements evoked by single electrodes were 

with Monkey R. Using the recorded video, we measured the wrist angle and MCP joint angle for 

index, middle, and ring-small grouped together during evoked movements. Figure 4-2D shows the 

 

Figure 4-2 Order of movements recruited by stimulation on individual electrodes.  
(A) Example movements evoked by single electrode stimulation. (B) Order that increasing stimulation intensity on 
Monkey R’s individual electrodes recruited movements on different joints. (*) indicate movements that were only a 
twitch. (C) Same as (B) but from Monkey N. (D) Size of selective movements evoked grouped by whether it occurred 
on 1, 2 or 3 finger groups, or the wrist. Movement sizes were averaged across the actively moving joints. Bars indicate 
average movement size. Marked twitches in (B) are not included in (D). 
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largest size of selective movements (from rest) on single electrodes before increasing stimulation 

began recruiting movements on other joints, grouped by whether the movements were of the wrist 

or one, two, or all three measured finger groups. Notably, on four electrodes, the initial movement 

of 1 or 2 fingers was only a twitch (i.e. less than 5 degrees and not measured here). Not including 

the four twitches, selective movements of one or two fingers averaged 20.0 degrees (std = 8.83), 

while movements of all three finger groups averaged 28.7 degrees (std=18.2). Average movement 

sizes were not significantly different due to the large variance (p=0.154, one-tailed two-sample t-

test). Pooling all of the movement sizes, only selective wrist and three finger group movements 

produced especially large movements (i.e. greater than one standard deviation above the mean).  

 When designing stimulation protocols, stimulation will be combined on multiple electrodes 

to evoke movements that are a combination of movements evoked from individual electrodes. To 

estimate the difference in functional movements that will be available with this approach, we next 

compared the unique movements evoked on individual electrodes (Table 4-2). Four finger muscles 

were targeted in Monkey R and three were targeted in Monkey N, the key difference being the 

number of electrodes. In Monkey R, we were able to evoke five unique combinations of finger 

flexions: index flexion into index-middle (IM) flexion at higher pulse widths, small flexion, 

middle-ring-small (MRS) flexion, and all finger flexion. We were also able to evoke five unique 

finger extensions: index extension, index extension into IM extension at higher pulse widths, ring-

small (RS) extension, MRS extension, and all finger extension. With Monkey N, we were able to 

evoke only two finger flexions: IM flexion which transitioned into all fingers at higher pulse 

widths. There were also only three unique finger extensions: an isolated index extension and then 

IM extension which transitioned into all finger extension at higher pulse widths.  
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Table 4-2 Unique finger movements evoked from stimulating single electrodes 

Monkey R Monkey N 
Flexion Extension Flexion Extension 

I I IM I 
S IM IMRS IM 

IM RS  IMRS 
MRS MRS   
IMRS IMRS   

I – Index, M – Middle, R – Ring, S – Small 

4.4 Discussion 

In this study we piloted an approach to intramuscular FES specifically targeting nerve entry 

points into muscles in order to increase the repertoire of selective finger movements while 

targeting the same extrinsic finger muscles. In postoperative stimulation, the finger movements 

evoked by individual electrodes followed what was found intraoperatively. Movements evoked on 

one or two fingers spread to nearby fingers as stimulation increased. As a result, most single finger 

movements were small twitches, and larger movements were evoked on two fingers or more. This 

follows what is expected from previous studies analyzing the function of neuromuscular 

compartments in extrinsic finger muscles (Schieber et al., 2001), namely that a single 

neuromuscular compartment will cause tension on one finger primarily that will be distributed to 

neighboring fingers. These results suggest that when combining stimulation on multiple electrodes, 

movement sizes that will be useful will often be with two or more fingers. Movements of individual 

fingers will likely have to make use of both agonist and antagonist muscles in order to hold fingers 

still while moving the finger of interest, similar to how extrinsic finger muscles naturally produce 

individual finger movements (Schieber, 1995). As targeting nerve entry points led to more unique 

finger movements, this approach provides more possible movement combinations. It is therefore 

more likely to be able to generate single finger movements and unique functional hand movements. 
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An additional application of this implant approach will be to implement fatigue reducing 

stimulation protocols. Stimulation of different nerve entry points primarily activate non-

overlapping groups of muscle fibers (Gruner & Mason, 1989). Stimulation can be designed to 

alternate stimulation on two electrodes and form a tetanic muscle activation by activating each 

group of muscle fibers at a reduced frequency. This approach has been shown to reduce fatigue in 

lower limb muscles (Peckham et al., 1970; Thomsen & Veltink, 1997). 

Future work will need to determine how to combine stimulation on these electrodes to get 

graded contractions of individual fingers or groups of fingers. A first step is identifying a space 

where movements combine. For example, it is likely that forces will combine more predictably 

than kinematics evoked by single electrode stimulation. A second step will be identifying 

algorithms to efficiently explore combinations of stimulation. When targeting nerve points in the 

upper limb, there are many targets. One estimate in monkeys includes an average of 50 nerve entry 

points across 19 forearm muscles (Liu et al., 1996). With more nerve entry points targeted with 

electrodes, it becomes experimentally unfeasible to test all combinations of stimulation. Recent 

studies have instead used Bayesian optimization to optimize stimulation parameters for FES with 

kinematic or EMG based objectives (Bonizzato et al., 2023; Losanno et al., 2021). Efficient 

algorithms will be necessary to identify useful combinations of stimulation on electrodes 

implanted with this method, thereby increasing the probability of achieving dexterous finger 

movements. 
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Chapter 5 Discussion 

5.1 Generalizable Decoding in Brain-Machine Interfaces 

The field of intracortical brain-machine interfaces has greatly expanded in the past two 

decades. Among other things, these interfaces have restored function to people with paralysis by 

allowing them to control computer cursors (Dekleva et al., 2021; Gilja et al., 2015; Simeral et al., 

2011), typing (Jarosiewicz et al., 2015; Pandarinath et al., 2017; Willett et al., 2021), generate 

speech (Metzger et al., 2023; Willett et al., 2023), control robotic arms (Flesher et al., 2021; 

Hochberg et al., 2012; Wodlinger et al., 2015), and restore function to their native arm (Ajiboye 

et al., 2017; Bouton et al., 2016; Herring et al., 2023). One factor slowing the clinical translation 

of these devices is the reliability of algorithms used to decode intended movements. Decoding 

algorithms can often fail to generalize to changes in a task when the underlying neural activity 

changes activation patterns. For example, BMI decoding efficacy decreases when grasping versus 

grasping during movements (Bouton et al., 2016; Dekleva et al., 2021), when swapping from 

native control to BMI control (Fan et al., 2014), and when changing the load on the wrist (Naufel 

et al., 2019). In Chapter 2, we similarly show that the accuracy of decoding intended finger 

movements decreases with changes to wrist posture or loading on the fingers. In natural hand 

control, changing wrist postures plays in role in grasp strength and grasping objects of different 

sizes (O’Driscoll et al., 1992). Our results suggest that when controlling FES with a BMI, decoder 

accuracy will be diminished when trying to grasp in different postures or loads on the fingers, 

especially if it is necessary to match the changes in muscle activations of the task.  
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Our results in Chapter 2 also indicate that a kinematic based decoder may generalize better 

than a muscle activation based decoder. We found large changes in muscle activations with the 

task changes but only small changes in neural activity. Additionally, the neural activity followed 

similar patterns of activations before and after task changes. Subsequently, a kinematic based BMI 

task, the NHP were still able to use the BMI decoder by re-aiming their control. Similarly, using a 

kinematic based decoder in Chapter 3, we were subsequently able to continuously control both 

wrist and finger movements in a virtual task. Taken together, our results suggest that the task 

changes shift the neural activity but in such a way that it is intuitive to re-aim intended movements 

when controlling a BMI. Therefore, kinematic based decoders may be a promising method for 

decoding in brain-controlled FES in a way that generalizes to different postures and loads. This 

approach would provide accurate predictions of intended movements, although it would not 

account for the change in mapping between intended movement and required muscle activation. 

An additional mechanism would be needed to modulate stimulation for the changes in muscle 

activation.  

Accounting for the changes in muscle activations with the BMI decoders will require 

different algorithms or algorithm training in order to make models that make accurate predictions 

of desired muscle activations across tasks. There have been a few approaches suggested to modify 

decoding algorithms to be more generalizable. One method is to essentially engineer features that 

generalize well within the task for which that decoder is intended. An extreme example of this was 

implemented for forward and backward self-motion. A state-machine decoder was designed using 

only high variance neural features related to movement onset, rotational dynamics, and directional 

tuning (Schroeder et al., 2022). Other examples have classified cursor clicking using transient 

responses to grasp onset and offset (Dekleva et al., 2021), improved kinematic predictions by 
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modeling the evolution on neural dynamics or states (Kao et al., 2015, 2017), and generalized 

muscle activation predictions across tasks by identifying a task-independent subspace (Gallego et 

al., 2018). Similarly, in Chapter 2, we show that by characterizing the neural data during the 

context changes, we could identify a neural feature that correlated with the required muscle 

activations in different tasks. This result could subsequently be used to modulate muscle activation 

predictions or FES parameters, triggering an increased stimulation intensity when performing a 

task that requires more muscle activation. Alternatively, this feature could be ignored when 

predicting kinematics in order to improve the accuracy of kinematic predictions between tasks.  

Recent BMI applications have veered towards implementing increasingly impressive 

machine learning methods to improve accuracy and generalization rather than hand selecting 

features (Costello et al., 2023; Glaser et al., 2020; Temmar et al., 2024; Ye & Pandarinath, 2021). 

Neural networks can be trained to identify and utilize useful and noise-robust features. However, 

neural networks can only find patterns of activity for the neural activity included in the training 

datasets. For example, subsequent analyses on the context changes presented in Chapter 2 show 

that a neural network trained on multiple contexts can perform as well as a neural network tested 

within context. A neural network tested on an unseen contexts though tended to be overfit and 

generalized worse than linear decoders (Temmar et al., 2024). Nevertheless, neural networks have 

a high capacity for learning, especially as technologies improve leading to more input channels 

(Costello et al., 2023; Willett et al., 2023). Ultimately, they are a promising solution for 

generalizable decoding as long as there is access to training data with the relevant patterns of neural 

activity and behavior represented. 
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5.2 Restoration of Dexterous Hand Movements with FES 

In some regards, the dexterous hand movements available from BMIs have now outpaced 

what can be restored with FES. For example, in Chapter 3 we demonstrated continuous wrist and 

finger decoding and in Chapter 2 we demonstrated decoding for two finger groups in two wrist 

postures. Recent results have even extended BMI decoding to 4D finger movements (two finger 

groups and 2D thumb) (Willsey et al., 2024). With regards to FES, however, there have been no 

demonstrations of FES restoring graded control of individual finger groups, instead primarily 

restoring discrete grasps or single degree-of-freedom (DOF) movements. It is desirable to restore 

fine control of many DOFs in the hand instead. By controlling multiple DOFs, the user could form 

the same discrete grasps, and the control could also generalize to movements outside of the set of 

grasps, thereby improving the repertoire of restored movements. In chapter 3 we demonstrate 

graded control of two-DOFs in the hand, the wrist and fingers, for the first time. We were able to 

use a simple stimulation control scheme to reach targets throughout the available range of motion. 

In Chapter 4, we show evoked movements in individual fingers and in groups of fingers, 

illustrating a method to achieve movements in more fingers.  

 We also introduce considerations for restoring graded movements in multiple DOF of the 

hand at the same time. In Chapter 3, we show that the range of motion of evoked wrist and finger 

movements was impacted by interactions between evoked movements from stimulation targeting 

each DOF. For example, stimulation of extrinsic finger muscles causes a torque at the wrist that 

can pull the wrist out of the posture being held by stimulation of the wrist muscles. We expect that 

this effect will be present when extending to more DOF in the hand like individual fingers. In 

Chapter 4 we show a proof of concept selectively evoking movements in individual or groups of 

fingers. While stimulation could evoke small twitches on individual fingers, the larger movements 
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generally occurred on two or more fingers. This result matches studies examining the distribution 

of evoked tension over the five fingers due to activating individual neuromuscular compartments 

in FDP (Schieber et al., 2001). It seems unlikely that stimulation will be able to evoke individual 

finger movements large enough to be functional. Therefore, to evoke functional movements on 

individual fingers, it will be necessary to optimize stimulation to make use of the combined 

movements. Similar to the natural control of individual fingers (Schieber, 1995) individual finger 

movements will then be made by evoking agonist and antagonistic movements on different finger 

groups, with the net effect being to move one finger.  

Our results also emphasize that muscle fatigue is likely to have a large impact on the 

efficacy of FES to restore movements. In Chapter 3 we show that within minutes some muscles, 

generally wrist extensors, will have a significant reduction in the amount that they contract due to 

stimulation, resulting in a large reduction in the range of motion that we can evoke with 

stimulation. This was tested in a paradigm similar to how FES could be used in active applications 

at home, and the effect size was on the order of a 48 to 76% decrease in movement area. Fatigue 

is a phenomenon commonly reported in FES studies (Ajiboye et al., 2017; Ethier et al., 2012), 

however the impact on functional movements, and methods to reduce fatigue are often not 

emphasized. Ajiboye et al., for example, reported 15% of single joint movements and 12% of 

multi-joint movements were failed due to fatigue, primarily in the elbow and wrist, but didn’t 

include details related to how quickly it occurred or how large the reduction in movement was. 

There is evidence that fatigue can be reduced by sequentially stimulating different groups of 

muscle fibers at lower frequencies (Lou et al., 2017) or by stimulating on more electrodes to recruit 

more muscle fibers (Buckmire et al., 2018). Targeting nerve entry points for stimulation as 

described in Chapter 4 presents a promising implant approach where these methods to reduce 
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fatigue can be used. As these electrodes are targeting different nerve branches, they will activate 

largely separate groups of muscle fibers (Gruner & Mason, 1989; Singh et al., 2000). Therefore, 

sequential stimulation could activate alternating groups of muscle fibers and simultaneous 

stimulation could activate more of the muscle.  

5.3 Future Directions 

There are many potential next steps for this research. First, as Chapter 4 was a proof of 

concept, the procedure should be replicated in additional animals to show that this method is 

repeatable. After the proof of concept demonstration of selective finger movements in Chapter 4, 

this should be expanded to understand what DOF we can achieve graded movements for using this 

approach, what functional movements can then be generated, and an optimal number of implanted 

electrodes to achieve those movements. To assist in this, efficient algorithms are needed to better 

optimize stimulation protocols and achieve functional movements. When implanting multiple 

electrodes into each muscle, there can be dozens of electrodes in one arm alone. Current methods 

to determine stimulation protocols involve stimulating every electrode individually and then 

manually tuning a stimulation pattern based on how one expects the stimulated movements from 

multiple electrodes to combine (Ajiboye et al., 2017; Herring et al., 2023; Kilgore et al., 1989). 

More reliable and efficient methods to determine stimulation parameters could be informed by 

recorded muscle activations during natural movements (Hasse et al., 2022) or could use 

optimization methods (Bonizzato et al., 2023; Losanno et al., 2021) 

In addition, future work can optimize the full control system. The brain-controlled FES 

system has two parts, estimating intended movements with a BMI and then restoring movements 

with FES. Current methods make the FES commands proportional to the BMI output and rely on 

the user to modulate or re-aim their control in order to compensate when movements are incorrect. 



 128

For example, NHP can voluntarily increase the stimulation command with BMI in order to 

compensate for fatigue (Ethier et al., 2012). Similarly, in Chapter 2 we informed BMI development 

to assist in controlling FES. However, to reduce the cognitive load on the user and improve 

usability, a closed-loop control system could be used with the FES intself to drive the stimulation 

parameters to achieve the intended movement. There has been substantial work developing closed 

loop systems for controlling FES (Chaikho et al., 2022; Lynch & Popovic, 2008). Feedback can 

be acquired using kinematic or inertial sensors, recorded muscle activations, or even sensory neural 

recordings (Bruns et al., 2013; Hwang et al., 2024). A FES system with feedback control could 

potentially adapt to varying loads and compensate for fatigue. This could then be combined with 

robust BMI algorithms that provide the intended kinematics. 

Future FES systems could also combine multiple modalities of stimulation. Each 

stimulation approach to FES has different benefits related to the dexterity of restored movements 

and the potential for clinical translation. For example, peripheral nerve stimulation is able to 

efficiently generate larger movements with fewer electrodes, while intramuscular stimulation is 

able to recruit more selective movements but can require many electrodes. These approaches can 

be combined to restore more functional movements than peripheral nerve stimulation with less 

electrodes than intramuscular FES typically requires. For example, in the past 10 years, arm and 

hand movements have been restored using 36 intramuscular electrodes throughout the arm 

(Ajiboye et al., 2017), 9 nerve cuffs in the arm (Herring et al., 2023), or in the 2010s, two 

participants were implanted with nerve cuff electrodes to recruit arm movements and 

intramuscular electrodes to recruit hand and finger movements, for a total of 24 electrodes 

(Memberg et al., 2014). One could envision a future direction where multiple modalities of 
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stimulation are combined like this in order to improve the efficacy of the systems and move these 

devices closer to clinical translation (Shokur et al., 2021).  
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Appendix A: Supplement to Chapter 2 

Appendix Table A-1 Average prediction correlation when using a ridge regression model to predict muscle activations 
with the same or different test contexts. Results for Monkey N. 

  Monkey N 
Test Context FCR FDPid FDPip FDP FCU ECRB EIP EDC 

Normal 0.62 0.58 0.61 0.51 0.50 0.75 0.72 0.73 
Wrist 0.62 0.54 0.60 0.49 0.51 0.68 0.66 0.66 
Spring 0.65 0.62 0.61 0.60 0.71 0.71 0.71 0.75 
Wrist + Spring 0.69 0.57 0.61 0.49 0.66 0.64 0.63 0.68 
Wrist 0.59 0.49 0.57 0.43 0.47 0.65 0.63 0.59 
Spring 0.56 0.25 0.49 0.35 0.55 0.64 0.61 0.66 
Wrist + Spring 0.58 0.23 0.46 0.31 0.46 0.44 0.38 0.22 

 

 

 

 

Appendix Table A-2 Average prediction correlation when using a ridge regression model to predict kinematics with 
the same or different test contexts.   

  Monkey N Monkey W 

Test Context 
Index 

Position 
MRS 

Position 
Index 

Velocity 
MRS 

Velocity 
Index 

Position 
MRS 

Position 
Index 

Velocity 
MRS 

Velocity 
Normal 0.62 0.70 0.50 0.52 0.43 0.40 0.49 0.32 
Wrist 0.55 0.71 0.51 0.52 0.39 0.41 0.48 0.30 
Spring 0.69 0.73 0.46 0.58 0.59 0.34 0.51 0.44 
Wrist + 
Spring 0.63 0.71 0.48 0.53 0.43 0.44 0.44 0.39 

Wrist 0.51 0.66 0.49 0.48 0.37 0.38 0.49 0.28 
Spring 0.53 0.57 0.37 0.46 0.53 0.15 0.47 0.29 
Wrist + 
Spring 0.45 0.52 0.37 0.45 0.32 0.29 0.40 0.33 
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Appendix Table A-3 Average prediction mean-squared error (MSE) when using ridge regression models to predict 
muscle activations with the same or different test contexts. Results for Monkey N. 

MSE   Monkey N 
Training 
Context 

Test 
Context 

FCR FDPid FDPip FDP FCU ECRB EIP EDC 

Normal Normal 0.61 0.67 0.62 0.74 0.74 0.44 0.47 0.47 
Wrist Wrist 0.62 0.71 0.65 0.77 0.74 0.53 0.57 0.57 
Spring Spring 0.57 0.61 0.62 0.64 0.50 0.50 0.49 0.44 
Wrist + 
Spring 

Wrist + 
Spring 0.53 0.67 0.62 0.76 0.57 0.60 0.61 0.54 

Normal Wrist 0.70 0.87 0.78 0.95 0.88 0.83 0.84 1.00 
Normal Spring 0.89 1.89 1.26 2.78 1.18 1.14 1.26 0.68 

Normal 
Wrist + 
Spring 1.09 2.96 2.35 3.63 2.06 3.61 2.82 1.60 

 

 

 

 

Appendix Table A-4 Average prediction mean-squared error (MSE) when using ridge regression models to predict 
kinematics with the same or different test contexts. 

MSE   Monkey N Monkey W 
Training 
Context 

Test 
Context 

Index 
Position 

MRS 
Position 

Index 
Velocity 

MRS 
Velocity 

Index 
Position 

MRS 
Position 

Index 
Velocity 

MRS 
Velocity 

Normal Normal 0.61 0.50 0.75 0.73 0.81 0.84 0.76 0.90 
Wrist Wrist 0.69 0.50 0.74 0.73 0.85 0.84 0.78 0.92 
Spring Spring 0.53 0.46 0.79 0.67 0.65 0.89 0.75 0.81 
Wrist + 
Spring 

Wrist + 
Spring 0.60 0.49 0.78 0.72 0.82 0.81 0.82 0.86 

Normal Wrist 0.76 0.68 0.76 0.77 0.94 0.89 0.77 0.92 
Normal Spring 0.92 0.94 0.90 0.82 2.46 1.16 0.91 0.92 

Normal Wrist + 
Spring 1.45 0.92 0.88 1.00 1.67 1.09 1.00 0.90 
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.  

Appendix Figure A-1 The correlation between hand position and online decode during the trials for each online 
comparison in Figure 2-5B.  
Colors represent the type of context change (yellow – wrist, blue – springs, red – both wrist and springs), and shape 
indicates which monkey the session was with. Dotted line indicates equal hand-decode correlation in both types of 
trial 
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Appendix Figure A-2 Change in online ‘pushing’ magnitude during BMI with manipulandum context changed. 
Pushing magnitude is the predicted velocity along the target direction, with predictions made by a linear regression 
model. This was trained on normal trials offline and evaluated on neural data during online trials at the time point of 
peak movement. The change is between trials during normal online control and trials with a context changed added 
during online control. One dot indicates the two-sample t-score of this change calculated using all trials of one type 
(blue – flexion, red – extension, or black – split) in one session for Monkey N (top) or Monkey W (bottom). A change 
greater than 0 indicates a larger magnitude during the off-context trials, that is pushing harder. 
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Appendix Figure A-3 Correlation between the velocity predictions made with each Kalman filter used in the 
two-model brain-machine interface (BMI) experiments for Monkey N.  
Each Kalman filter was evaluated on all online trials in a session. One point indicates the correlation between these 
predictions with both Kalman filters used in one session. 
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Appendix Figure A-4 Change in ‘pushing’ magnitude during two-model BMI tasks. 
Pushing magnitude is the predicted velocity along the target direction, with predictions made by a linear regression 
model. This was trained on normal trials offline and evaluated on neural data during online trials at the time point of 
peak movement. The change is between trials during normal online control and trials with a context changed added 
during online control. One dot indicates the two-sample t-score of this change calculated using all trials of one type 
(blue – flexion, red – extension, or black – split) in one session for Monkey N (top) or Monkey W (bottom). A change 
greater than 0 indicates a larger magnitude during the off-context trials, that is pushing harder. White asterisks indicate 
significant changes. 
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