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Abstract

This dissertation focuses on developing a fall-tolerant framework for bipedal robots,

aiming to enhance their ability to navigate challenging situations by effectively assessing,

adapting, and responding to uncertainties and disturbances. Bipedal robots, with their

unique capability to navigate diverse terrains and restore mobility, are ideal for assisting

in critical and day-to-day tasks. However, their real-world deployment is limited due

to factors like high-dimensional complex dynamics and a smaller support polygon,

making it difficult to achieve stable motion, especially in the face of disturbances and

uncertainties.

To address these limitations, the dissertation develops robust controllers and reliable

fall prediction algorithms. Feedback controllers have been used in the literature to

ensure robustness against disturbances and uncertainties. However, the infeasibility of

accounting for all disturbances and uncertainties during real-world operations makes

falls inevitable. Falls are undesirable as they can prevent a robot from completing

its task, result in damage to the surrounding area, or lead to injuries. Therefore, the

dissertation emphasizes the importance of implementing robust controllers and employing

methods to predict falls.

This research begins by introducing a systematic method to design control objec-

tives for highly constrained systems and concludes by presenting a 1D convolutional

neural network fall prediction algorithm capable of not only predicting falls but also

estimating the time to react. The effectiveness of the control objectives is demonstrated

through robust, comfortable closed-loop sit-to-stand motions for a fully actuated lower-

xix



limb exoskeleton, Atalante. The performance of the proposed fall prediction algorithms

is evaluated in simulation using a planar-four link robot based on Atalante and in

hardware and simulation for the bipedal robot Digit.
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Chapter 1

Introduction

1.1 Motivation

The distinct morphology of bipedal robots gives them the unique capability to navi-

gate diverse terrains, from unstructured environments to human-centric spaces, thereby

making them ideal candidates for assisting in daily tasks and critical situations. For

example, by acting in parallel with the user’s limbs and augmenting their joint torques,

lower-limb exoskeletons can help users to stand up and ambulate [5]. However, de-

spite their unique capability, the real-world deployment of bipedal robots is limited.

Their high-dimensional, hybrid nature, combined with their smaller support polygon–

compared to robots with more legs–and occasional stringent constraints, complicates

the achievement of stable motion, particularly when confronted with disturbances and

uncertainties.

Disturbances and uncertainties can lead to faults, which are defined as unforeseen

deviations in one or more operational variables [6]. If left unaddressed, faults can

evolve into critical faults, which lead to falls. Falls are undesirable because they

can prevent the robot from completing its task, result in irreparable damage to the

surrounding environment, and lead to operator and bystander injuries.

A solution is the implementation of a fall-tolerant framework that combines vari-

ous algorithms to equip the robot with the capabilities to assess, adapt, and respond

effectively to uncertainties and disturbances, thereby minimizing the risks and conse-
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quences of falling. For instance, a well-designed controller can counteract the effects

of disturbances and uncertainties. However, it is infeasible to anticipate every potential

disturbance and uncertainty that may be encountered during real-world operations. This

unpredictability makes the occurrence of falls inevitable. Therefore, it is imperative

to implement fall prediction and recovery algorithms alongside robust controllers. Fall

prediction algorithms aim to predict the occurrence of falls with ample lead time,

defined as the difference in time between the prediction of a fall and its occurrence.

The minimum amount of lead time needed depends on the chosen recovery algorithm,

and the robot’s dynamics as discussed in [7–10]. The recovery algorithms aim to

execute reflexive motions to prevent the fall from happening or make the “landing”

less dangerous.

1.2 Objectives and Contributions

This dissertation contributes to a fall-tolerant framework for bipedal robots by devel-

oping robust controllers and reliable fall prediction algorithms. Given the dissertation’s

focus on bipedal robots, the fall prediction algorithms developed and discussed are

only for bipedal robots and not for other applications, such as elderly fall prediction.

This is due to the disparity in available measurements [11–15].

The effectiveness of the robust controllers is demonstrated through comfortable sit-

to-stand motions for the fully-actuated lower limb exoskeleton Atalante designed by

Wandercraft [1], which can withstand a class of physically motivated disturbances.

Lower-limb exoskeletons provide people who suffer from lower limb impairments with

an opportunity to stand up and ambulate. Sit-to-stand is a crucial task for lower-limb

exoskeletons as it allows the user to transfer to the exoskeleton from a wheelchair

without assistance and can be a precursor to walking. Furthermore, various studies

have shown that allowing a user to stand and ambulate has positive psychological

and physical benefits [16–19]. Achieving a safe sit-to-stand motion for the exoskeleton
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+ user system (exo-system) can be challenging because of the need to balance user

comfort while respecting hardware bounds and being robust to changes in the user

characteristics and the user’s environment. This dissertation successfully achieves safe

sit-to-stand motions using constrained optimization to generate two types of dynamic

sit-to-stand motions based on hybrid systems. The methods proposed for the sit-to-stand

motions in this dissertation can be easily applied to other exoskeletons or bipedal

robots. The contributions of these methods in comparison to literature [20–33] are as

follows:

• Modeling the exo-system

– This dissertation: Modeling the sit-to-stand motion using the full 3D exo-

system.

– Literature: Existing literature captures only the sagittal plane portion of the

sit-to-stand motion, making it challenging to ensure hardware bounds are met

in the frontal and transverse planes.

• Generating the sit-to-stand motions

– This dissertation: An analysis of two dynamic sit-to-stand motions, each ideal

for rejecting specific perturbations.

– Literature: Generated dynamic motions are for a simplified model of the

exo-system and mostly match only one of the two motions developed in

this dissertation.

• Executing the motions

– This dissertation: A novel and systematic way of choosing the control objec-

tives for highly constrained systems such that they are independent of the

contact constraints.
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– Literature: No such method exists in the literature to the author’s best

knowledge.

• Robustness tests

– This dissertation: Use of physically motivated robustness tests to analyze

the two sit-to-stand motions. From these tests, one can assess the range

of variations in which the exoskeleton can operate. These ranges can be

used to inform new hardware design or to further robustify the controller.

Note that the highly non-linear nature of the sit-to-stand problem makes it

infeasible to analytically implement stability methods.

– Literature: Robustness tests do not cover the user or their affordances.

The performance of the fall prediction algorithms introduced in this dissertation are

evaluated in simulation using a planar-four link robot based on Atalante, and both in

hardware and simulation for the bipedal robot Digit designed by Agility Robotics [2].

As designing a recovery controller is beyond this dissertation’s scope, a lead time of

0.2s, which is the lead time required by reflexive algorithms such as [9] and [34], is

used as the minimum required lead time. Early fall prediction is a challenging task

due to the masking effects of controllers (through their disturbance attenuation actions),

the direct relationship between lead time and false positive rates, and the temporal

behavior of the faults/underlying factors. As such, this dissertation begins by developing

fall prediction algorithms for a planar four-link robot based on Atalante for the task

of standing, thereby simplifying the problem while providing a means to scale up to

more complex robots and more dynamic motions. The success of these algorithms lead

to the development of a fall prediction algorithm capable of detecting critical faults

and approximating lead time for the bipedal robot Digit during the task of standing

both in simulation and hardware. The proposed algorithm can be easily applied to

other full-sized 3D bipedal robots. In comparison to the literature [7–10, 34–50], the
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contributions of the fall prediction algorithms in this dissertation are as follows:

• Prediction of falls

– This dissertation:

* Successful implementation of a fall prediction algorithm capable of pre-

dicting falls arising from multiple critical faults, both in simulation and

on hardware for a full-sized bipedal robot.

* Multi-classification-based algorithms capable of detecting multiple critical

faults while providing sufficient lead time for corrective motions for the

planar four-link robot.

* Development and comparison of physics-based and data-based algorithms

capable of detecting multiple critical faults for the planar four-link robot.

– Literature: Addresses falls arising from only one type of fault.

• Prediction of lead time

– This dissertation: Development of a robust method to estimate the lead time.

– Literature: No such method exists in literature to the author’s best knowl-

edge.

• Open-source dataset

– This dissertation: Open-source dataset of a full-sized 3D bipedal robot

comprised of simulation and hardware trajectories with various critical and

non-critical faults. The dataset is available here: https://github.com/

UMich-BipedLab/Digit_Fall_Prediction_Dataset

– Literature: No such dataset exists to the author’s best knowledge.
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1.3 Outline

The dissertation is structured as follows: Chapter 2 provides the necessary back-

ground information to understand the rest of this document, including a description

of the robot platforms used. Chapter 3 covers the work on feedback control design

for a lower-limb exoskeleton. Chapter 4 builds on Chapter 3 by implementing closed-

loop sit-to-stand motions in two simulators that consider contact dynamics. Chapter

5 discusses the design of data-based and model-based fall prediction algorithms for

a planar four-link robot. Chapter 6 introduces a data-based fall prediction algorithm

for a full-dimensional bipedal robot that can predict the time left to recover while

minimizing false positive rates. Chapter 7 further analyzes the fall prediction algorithm

introduced in Chapter 6 by applying it online both in hardware and simulation. Fi-

nally, Chapter 8 concludes this dissertation by summarizing the previous chapters and

discussing future work.

6



Chapter 2

Background

This chapter goes over the background knowledge needed to understand the ideas

presented in this dissertation.

2.1 Modeling the Robot

Bipedal robots can be viewed as kinematic trees, where each link is connected to

another through a joint. Every joint in the kinematic tree connects no more than two

links. There are various types of joints, each resulting in different degrees of freedom.

For instance, a revolute joint that only allows rotation about the joint axis and hence

only has one degree of freedom or a spherical joint that allows rotation about all

three spatial axes. The revolute and spherical joints introduce 5 and 3 constraints,

respectively, for the motion of a limb in R3.

The overall degrees of freedom of a robot can be calculated using Grübler’s for-

mula:

do f ≥ m(N −1)−
J

∑
i=1

ci, (2.1)

where N −1 is the total number of links minus the ground (the ground is typically

counted as a link), J is the number of joints, and c is the number of constraints

imposed by a joint. If the joint constraints are independent, Grübler’s formula is

a strict equality. Otherwise, Grübler’s formula only provides a lower bound on the

degrees of freedom [51].
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2.1.1 Equations of Motion

The dynamic model of a robot can be derived using either the Euler-Lagrange

or the Newton-Euler method. Assuming that the only external forces acting on the

robot are gravity, motor torques, and contact wrenches, both the Euler-Lagrange and

Newton-Euler methods result in the same second-order differential equation

D(q)q̈+C(q, q̇)q̇+G(q) = Bu, (2.2)

where q is the vector of generalized coordinates, u is the torque input vector, and D,

C, G, and B are the inertia, Coriolis, gravity, and torque distribution matrices/vectors,

respectively. B can be thought of as the Jacobian mapping the control inputs to the

generalized coordinates. G appears on the left-hand side even though it’s an external

force because it’s a conserved force. The inertia matrix, D, is symmetric and positive

definite. The generalized coordinates are defined as the minimum number of coordinates

needed to describe the robot’s configuration. Given that the links of the robot are

assumed to be rigid, the generalized coordinates are typically taken as the joint angles.

Given the Lagrangian L ,

L (q, q̇) = KE(q, q̇)−PE(q), (2.3)

where KE is the kinetic energy, and PE is the potential energy, the equation of

motion formulated using Euler-Lagrange is expressed as

F =
d
dt

∂L

∂ q̇
− ∂L

∂q
(2.4)

where F =

 f

τ

 is the generalized wrench composed of the generalized forces ( f ) and

torques (τ). Equation (2.4) can be rewritten in the form (2.2) using the following
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equations (for simplicity, we have dropped the arguments of each term):

KE =
1
2

q̇⊺Dq̇

G =
∂PE
∂q

Cq̇ = (
∂

∂q
Dq̇)q̇− 1

2
(

∂

∂q
Dq̇)⊺q̇.

For more information on the Lagrangian derivation, please see [51–54].

The Newton-Euler formulation derives the equations of motion based on Newton’s

second law expressed in terms of linear and angular momentum and builds on the

dynamics of a rigid body. More details of the derivation can be found in [51, 54].

In comparison to the Newton-Euler method, the Lagrange method is simpler to derive

for complex systems, while the Newton-Euler method is more computationally efficient

for complex systems. Additionally, the Newton-Euler method is not constrained by the

assumption that the configuration of the system can be described by generalized coor-

dinates, whereas the method of Lagrange can only be used after a set of generalized

coordinates has been chosen.

The equations of motion can be derived either using a pinned or floating base

representation of the robot. A pinned base model assumes that at least one point on

the robot is fixed with respect to the world frame, whereas in a floating base model,

the robot is not attached to any point in the world frame. The base of the robot can

be any of the robot’s links and is typically taken as the foot for the pinned base

model and the torso for the floating base model. Equation (2.2) displays the equations

of motion using a pinned base. When the floating base is chosen, the robot becomes

an open chain. As a result, contact forces, such as the ground reaction forces, become

external forces, and the generalized coordinates are extended to include the position

and orientation coordinates of the robot’s base. We rewrite the dynamic equation using
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the floating base as follows:

De(qe)q̈e +C(qe, q̇e)q̇e +G(qe) = Beu+ JT (qe)Γ (2.5)

where qe is the extended vector of generalized coordinates, De, Ce, and Ge are the

extended inertia, Coriolis, and gravity matrices/vector, respectively, Be is the extended

torque distribution matrix, J is the Jacobian mapping the contact wrenches to the

generalized coordinates, and Γ is the contact wrench.

Unlike (2.2), (2.5) has two unknowns, q̈e and Γ. As a result, another equation is

needed to solve for both unknowns. This second equation, (2.6), is referred to as the

contact acceleration constraint, and it ensures that the contact constraints are met,

J(qe)q̈e + J̇(qe, q̇e)q̇e = 0. (2.6)

Equations (2.2) and (2.6) together make up the equations of motion for a floating

base.

2.1.2 Hybrid System

A robot interacting with the world around it can be described as a hybrid system.

Hybrid systems consist of both continuous and discrete states. The discrete states can

also be thought of as locations, domains, or phases. Each domain is a set in which

the continuous dynamics evolve. Transitions occur either because the dynamics in a

domain no longer describe the system due to events such as a loss of contact or

because it’s simpler to model the system as a collection of simpler systems. For

instance, when walking, a model of a 3D bipedal robot consists of three continuous

domains: a right stance, a left stance, and a double support domain (which is typically

assumed to be instantaneous). The transition from the right stance domain to the left

stance domain occurs when the left foot leaves the ground and the right gains contact.
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The transition of a walking robot from a left to right stance can be described as a

loss of contact with the left foot and a contact gain with the right foot. The states

in the transition are discrete states that take values in a countable or finite set. The

continuous states take values in Rn.

Hybrid systems can be represented by directed graphs and described using various

models, such as the hybrid automaton and the transition system. However, in this

overview, we will focus on hybrid automatons. A hybrid automaton H is a tuple

(Q,X , f , Init, Inv,E,G,R) where:

• Q: finite set of discrete states, locations, domains, or phase

• X ⊆ Rn: set of continuous states

• f : Q×X → Rn: vector field that describes how each of the continuous states

changes over time

• Init ⊂ Q×X : set of initial states

• Inv : Q → 2X : conditions that have to be met to be in a particular domain

• E ⊆ Q×Q: set of edges that describes the transition relation between continuous

domains

• G : E → 2X : guard condition that determines when to transition between domains

• R : E ×X → 2x: reset map that maps states accordingly after a transition

Other definitions of hybrid automatons can be found in the literature to account for

various modeling conditions [55, 56].

2.2 Generating the Motion: Optimization

There are numerous ways to generate trajectories for the nominal or desired motion,

such as basing the motion on previously recorded human movement, using hand-crafted
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trajectories, or generating trajectories through optimization. This section will focus on

obtaining trajectories through parameter optimization.

The optimization problem consists of a cost function and constraints. As seen in

Equation (2.7), the cost function is comprised of both a running cost L and terminal

cost term F .

J :=
∫ t f

t0
L dt +F (2.7)

The constraints can either be inequality or equality constraints and can be used to

ensure the feasibility of the derived motion. For a bipedal robot’s derived trajectory to

be feasible, it has to satisfy, at minimum, the equations of motions and the hardware

bounds, such as joint limits. If it’s desired for one or both of the feet to be in

contact with the ground, additional constraints such as the friction cone constraints and

the zero moment point (ZMP) can be utilized to further ensure dynamic feasibility.

For more information on optimization see [57–59]

2.3 Feedback Control

The objective of a feedback or closed-loop controller is to track the desired motion

(a.k.a. reference), reject disturbances, ensure robustness against uncertainties, and maintain

the stability of the controlled system. This objective is accomplished by constantly

monitoring the system’s outputs, comparing them to the desired values, and adjusting

the control input or signal accordingly.

A feedback control loop for bipedal robots can be represented in block-diagram

form, as depicted in Figure 2.1. The loop comprises the robot (plant), a controller, a

sensor (state estimator), and a reference input, hd(t). The reference input specifies the

desired control objective or evolution of the robot’s states, while u denotes the control

input or motor torques. The measured value of the control objective is denoted as

h0(qm). The tracking error, y = hd(t)−h0(qm), quantifies the discrepancy between the
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Figure 2.1: Feedback Control Block Diagram

desired and measured control objectives. It is worth noting that if all the generalized

states can be measured and there are enough control inputs, then qm = q. [60, 61]

2.3.1 Virtual Constraints

Virtual constraints are kinematic relations among the generalized coordinates of a

robot that are enforced by a feedback controller rather than physical constraints. Despite

not being physically imposed, they serve as control objectives, defining the desired

motion that a legged robot should adhere to. Virtual constraints offer advantages over

physical constraints imposed by mechanical connections since they can be dynamically

reprogrammed without necessitating modifications to the physical links or the robot’s

environment [53]. Additionally, their capacity to impose intuitive control objectives such

as leg length and torso angle in addition to directly controlling actuated joints reduces

the complexity of control and allows for more intuitive and agile motions that can

readily adapt to unforeseen disturbances and uncertainties as demonstrated by [62–66].

We assume a virtual constraint of the form

y = h0(q)−hd(t), (2.8)

where h0(q) is a vector of variables to be “controlled” or “regulated’ and hd(t) is the

desired evolution. The control objective is y(t) = 0, and thus if q∗(t) is an optimal
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motion of the robot, we define

hd(t) := h0(q∗(t)).

2.3.2 Computed-torque control

The basic idea of computed-torque control, or input-output linearization, is to design

the control input u = Γ(x, t) such that

ÿ+Kd ẏ+Kpy = 0, (2.9)

where Kp > 0 and Kd > 0 are selected so that y converges sufficiently rapidly and

“smoothly” to zero [53, 67].

If hd(t) is at least twice differentiable, computing ÿ is done exactly as if one were

imposing a contact constraint,

ÿ = Jh(q)q̈+ J̇h(q, q̇)q̇− ḧd(t) (2.10)

where

Jh(q) :=
∂h0(q)

∂q

J̇h(q, q̇) :=

[
∂

∂q

(
∂h0(q)

∂q
q̇
)]

.

(2.11)

2.4 Stability Margins

One of the major challenges for bipedal robots is to avoid falls. Therefore, in line

with [68, 69], we define a bipedal robot as stable if and only if its current state

will not lead to a fall. There are several stability margins that are used to indicate

when a bipedal robot will fall. This section will briefly go over some of these

stability margins. For a more in-depth look at stability margins and safety regulation
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for bipedal robots, see [68–81]

2.4.1 Lyapunov Theorem

Lyapunov stability theorem requires one to find a continuously differentiable function

V that captures the system’s behavior. If V is positive definite and its derivative V̇

is negative semi-definite, the system is stable. However, finding a Lyapunov function

V for highly non-linear systems is challenging. For more information on Lyapunov

functions, see [67].

2.4.2 Control Barrier Funtions

When given an unsafe set Xu, such as all the states that lead a robot to fall,

one may seek a barrier function B to prove that the unsafe states are unreachable

from any state in the set X0. X0 contains all the initial states in which the robot

can start. A barrier function is defined as a continuously differentiable function that

is positive definite for all states in Xu and negative semi-definite for all states in

X0. Additionally, it has a negative semi-definite derivative. Similar to the Lyapunov

function, the barrier function can be challenging to find for highly non-linear systems.

See [82] for more information on control barrier functions.

2.4.3 Poincare Maps

If the system is periodic, the eigenvalues of a Poincare map’s Jacobian can be used

to determine the local exponential stability of the system. Given a state x ∈ Rn and a

surface S ∈ Rn−1 that is transverse to the trajectories of the robot (in other words, all

trajectories starting on S go through S), the Poincare map, P, is a mapping that maps

S to itself P : S → S. If all eigenvalues of the Poincare map’s Jacobian are contained

within the unit cycle, the periodic system is locally exponentially stable. Note that S

is typically taken as the switching surface for walking. The disadvantage of Poincare
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Maps is that it assumes periodicity and can thus only be used for periodic motions.

For more information on Poincare maps please see [83, 84]

2.4.4 Zero Moment Point, Center of Pressure, and Foot Rotation Index

The center of pressure is defined as the point where the net moment from the

contact wrenches is zero about the x and y-axis. If this point is inside the robot’s

support polygon, then the robot is safe. If the robot is in single support and the foot

is stationary, then the zero moment point, center of pressure, and the foot rotation

index are the same point. If the foot has rotational acceleration, the zero moment

point and the center of pressure are at the edge of the support polygon, while the

foot rotation index is outside the support polygon. Note that maintaining the ZMP

inside the support polygon is not a necessary or sufficient condition for the stability

of the robot. For instance, during non-flat-footed walking, the feet roll [68, 85, 86].

2.5 Fall Prediction

Falls in bipedal robots can often be traced back to faults, which are characterized

as unforeseen deviations in one or more operational variables. Based on their temporal

behavior, faults can be classified into three categories: abrupt, incipient, and intermittent.

Abrupt faults manifest as sudden or rapid changes, incipient faults evolve gradually

over time, and intermittent faults appear sporadically [6]. Each of these fault types

can arise during real-world operations. For example, abrupt faults might be triggered

by unexpected interactions with the environment (e.g., stepping in a hole), incipient

faults could stem from discrepancies in the model (e.g., poor trajectory tracking in the

operational space of the robot), and intermittent faults might emerge in unpredictable

environments laden with obstacles. We term the faults that precipitate a fall as critical

faults and the paths leading to a fall as unsafe or faulty trajectories. Figure 2.2

demonstrates the time dependency of the three faults.
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Figure 2.2: The time dependency of faults.

Figure 2.3: The states of a bipedal robot under the influence of faults.

In general, the states of a bipedal robot can be divided into three classes:

safe/balanced, falling, and fallen as shown in Figure 2.3. [8] The safe/balanced states

are states where it is possible for the robot to avoid falling while under the influence

of its nominal feedback controller. These states are, therefore, contained in a subset

of the viability kernel [9, 34, 69].

2.5.1 Anomaly Detection

The prediction of falls can be approached through the lens of anomaly detection.

Anomaly detection is the problem of identifying data points that significantly deviate

from expected patterns. In the context of fall prediction, these anomalous data points

are the unsafe or faulty states. It is worth noting that anomalies are referred to by
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various terms in the literature, such as outliers, and that anomaly detection is closely

related to novelty detection, which is the problem of identifying novel patterns. [87–90]

Anomaly detection algorithms can be classified into several categories, such as clas-

sification, feature extraction, and nearest-neighbor. Classification models learn a model

from labeled training data and classify a data point into a class based on the learned

model. These algorithms assume that the feature space learned can preserve the infor-

mation necessary to distinguish anomalies from normal classes. However, a disadvantage

of these algorithms is that they rely on accurately labeled data, which is not always

available.

On the other hand, feature extraction algorithms assume that normal data are better

represented in a lower dimensional space. The disadvantage of these methods is that

the learned feature representations can be suboptimal since the objective of these

algorithms is dimension reduction. Moreover, the feature representations can be biased

by anomalies in the data.

Nearest-neighbor-based algorithms, especially those based on density, assume that

normal data exist in highly dense spaces, whereas the neighborhood of anomalous data

is sparse. However, these methods tend to have high false positives if the normal

instances do not exist in dense enough neighborhoods [87, 90].

To overcome the disadvantages of individual categories such as those listed in the

previous paragraphs, anomaly detection algorithms can be comprised of various methods

and thus can belong to multiple categories. Examples of anomaly detection algorithms

are [91–94].

2.6 Robot Description

This section contains the descriptions of all the robots used throughout the disserta-

tion.
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2.6.1 Atalante

Atalante is a fully actuated hands-free lower-limb exoskeleton developed by Wander-

craft for patients with paraplegia [1]. Each leg has six actuated joints:

• Frontal Hip Joint

• Transverse Hip Joint

• Sagittal Hip Joint

• Sagittal Knee Joint

• Sagittal Ankle Joint

• Henke Ankle Joint.

Encoders are located on each actuated joint, and an inertial measurement unit is

located at the torso; see Figure 2.4. The adjustable thigh and shank links on Atalante

allow it to be worn by users ranging from 1.55 to 1.90 m and 50-90 kg. The

Henke axis on Atalante is defined as a 38o deviation from the horizontal axis of the

foot’s sagittal plane. There are four force sensors on the corner of each foot that

allow for the detection of ground reaction forces (GRF). The exoskeleton is attached

to the user via multiple straps on each leg and foot, and a belt/jacket set on the

torso [1]. Atalante has been certified for use in the European Union (CE Marking)

and is operational in various rehabilitation centers in France.

2.6.2 Four-Link Robot

The four-link robot, Figure 2.5, is a planar robot based on Wandercraft’s exoskeleton

Atalante [1]. The four links are joined by three actuated revolute joints called the

ankle, knee, and hip.
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Figure 2.4: Kinematics architecture of Atalante [1]

2.6.3 Digit

Developed by Agility Robotics, Digit is a state-of-the-art bipedal robot [2, 3]. While

it draws inspiration from Agility Robotic’s earlier model, Cassie, Digit distinguishes

itself with the addition of a torso and an integrated perception system. Possessing 30

degrees of freedom, Digit has 20 actuated joints. Weighing in at 48kg, its lower limb

design is inspired by a Cassowary bird, leading to the unique nomenclature where

what would typically be termed “feet” are actually “toes”; we will use the latter

terminology. The kinematic architecture of Digit is illustrated in Figure 2.6.

20



Figure 2.5: Four Link Robot

Figure 2.6: Kinematics architecture of the Digit robot by Agility Robotics, [2]. Image
Credit: Grant Gibson [3].
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Chapter 3

Feedback Control Design for Robust Comfortable Sit-to-Stand Motions of 3D

Lower-limb Exoskeletons

3.1 Introduction

This chapter contributes to the implementation of robust controllers by introducing a

systematic way of choosing control objectives such that they are not in conflict with

contact constraints. This methodology is applied to the task of standing up from a

sitting position using Atalante, a fully-actuated lower limb exoskeleton. The work that

is presented in this chapter was previously published in [95] with Jessy W. Grizzle

as a co-author.

3.1.1 Motivation

Lower-limb exoskeletons are assisting patients with mobility impairments, such as the

elderly or people with paraplegia. Mobility restoration is achieved by the exoskeleton

acting in parallel with the user’s limbs and augmenting their joint torques [5]. This

external assistance is allowing patients to carry out day-to-day activities that would be

otherwise difficult to achieve in a wheelchair autonomously. Various studies have shown

that allowing a user to stand and ambulate has positive psychological and physical

benefits [16–19].

Lower-limb exoskeletons can be active or passive, stationary or non-stationary, and

crutch-assisted or hands-free (aka, crutchless). Furthermore, the assistance provided by
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the exoskeleton can be in the form of assist-as-needed or complete assistance. Assist-

as-needed exoskeletons require the user to have some mobility in their lower limbs.

Most if not all of the lower-limb exoskeletons on the market require the user to have

good control over their upper body [96–99].

To enable a user to make the transition from a wheelchair to a lower-limb ex-

oskeleton without any outside assistance, the exoskeleton needs to start from a sitting

position. As a result, it’s imperative to develop proper trajectories and algorithms that

will enable the exoskeleton to stand up in a robust manner. In this study, robustness

will be interpreted as (i) insensitivity to variations in user mass and inertia properties,

(ii) operability over a range of chair heights, (iii) functions for a range of patient

spasticity, and (iv) the ability to handle variations in the torque provided by the

powertrain of the exoskeleton.

3.1.2 Literature Review

It is convenient to divide algorithms for sit-to-stand into three main parts: A)

modeling the exoskeleton + human system (exo-system), B) generating the motion, and

C) executing the motion.

The model of the exo-system can be based either on an approximation of its full

dynamics or on a significantly simplified representation. Arguing that the sit-to-stand

motion occurs mostly in the sagittal plane, the literature mostly models the exo-system

as a planar 3-link inverted pendulum consisting of either the shank, thigh and HAT

(head, arm, and trunk) [20–24, 28] or the shank, thigh, HAT, and feet [25–33]. The

underlying assumptions for these simplifications are joint symmetry, feet fixed on the

ground, and no movement of the neck and head relative to the torso.

While these low degree-of-freedom models simplify the sit-to-stand problem, they

typically prevent the assessment of the full capabilities of the exoskeleton. Furthermore,

it may not be possible to explicitly apply some design constraints and thus one cannot
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truly ensure that real hardware requirements are respected. This work will therefore

use a high degree-of-freedom 3D model of the exoskeleton and will, for instance, be

able to assess the effect of asymmetry in patient spasticity.

When formulating a sit-to-stand controller design, it is very important to determine

whether the exoskeleton will be providing complete assistance or only assistance as

needed. Trajectory tracking is generally employed to achieve standing motions for

complete assistance, whereas, with assistance as needed, it may be required to first

estimate the user’s intent and then complement the user’s effort [25, 29, 100, 101]. This

dissertation focuses on complete assistance.

Numerous approaches to generating trajectories for tracking have been followed

in the literature, such as basing the motion on previously recorded human move-

ment [102–105], using hand-crafted trajectories [20, 27, 29, 106, 107], or trajectories gen-

erated through optimization or dynamic movement primitives. Generating trajectories

based on human motion is applicable only if the exo-system does not have signifi-

cantly different kinematic and mass properties in comparison to a human. Hand-crafted

trajectories are applicable when only a few joint trajectories are needed, such as with

simplified models; of course, they may not take full advantage of the exoskeleton’s

capabilities. The use of dynamic movement primitives [24] or optimization methods

such as the minimum jerk criterion [26, 106], constrained optimization [108, 109], or

genetic algorithms [23, 110], have been employed to address the disadvantages of other

methods. For instance, a constrained optimization problem can ensure that a designed

sit-to-stand motion explicitly accounts for torque bounds. In addition, Zero moment

point (ZMP) or Center of Pressure (CoP) bounds can be included to ensure that the

generated trajectory is feasible [29, 103, 107, 111] in terms of foot roll.

This dissertation will use constrained trajectory optimization on a high degree-of-

freedom model and nonlinear control for implementing the trajectories. The complexity

of the resultant trajectory design problem will be addressed through a recent tool,

24



Fast Robotics Optimization and Simulation Toolbox (FROST) [112]. The challenges of

the nonlinear control of an over actuated highly constrained motion will be addressed

through computed-torque control and a quadratic program (QP) [113–119] for torque

distribution while respecting constraints.

Most exoskeletons are not able to support a sit-to-stand motion without outside

assistance. In fact, to the authors’ best knowledge there are only two hands-free

exoskeletons on the market: REX [120], and Atalante [1]. This dissertation focuses

on Atalante because a detailed model has been generously shared with the authors.

Moreover, because Atalante has been explicitly designed for dynamic walking [63], it

is interesting to seek dynamic standing trajectories that can be achieved with minimal

user assistance, and no other assistance, or even no user assistance at all. A static

sit-to-stand motion requires intermediate poses to be stable throughout the motion, while

dynamic motion refers to a continuous trajectory, which, like a dynamic walking gait,

does not guarantee stability at intermediate points of time. Even though the “inherent

stability” of a static motion appears to be more desirable than a dynamic motion,

the severe constraints required by the trajectory are often incompatible with hardware

limitations (e.g., joint torque limits). External force from the user, either by pushing

downward on the arms of a chair, crutches, or FES [22], have been used to achieve

assisted sit-to-stand motions. Allowing for the user to apply an external force can

enhance stability of the motion as well as user confidence in the motion.

Counting on an external force, however, comes at the cost of adding complexity to

the design of the control system. This dissertation will assess the effects of imperfect

application of the user’s force and will seek to limit the force demands on the user.

To robustly perform the sit-to-stand motion, it is important that the chosen controller

can track a desired trajectory in the presence of disturbances. There are several

controllers that have been used in literature such as the computed-torque or input-

output feedback linearization controller [20, 23, 32, 100], sliding mode controller [27],
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fuzzy controller [121], proportional-integral-derivative based controller [29, 103, 105, 122],

impedance controller [24], and LQR [20, 107].

3.1.3 Contributions

The objective of the present work is to design user-assisted feedback-stabilized

dynamic sit-to-stand trajectories for the exoskeleton Atalante, shown in Figure 2.4, using

its full dynamic model. This is a challenging design problem due to the complexity

of the dynamical system and considerations such as user comfort and safety-critical

constraints.

To address this challenge, innovations must be made in the three areas identified in

Section 3.1.2, namely modeling the exo-system, generating the motion, and, executing

the motion. Our contributions include:

1. Modeling the Exo-System

• Our Contributions: Modeling the sit-to-stand motion using the full 3D exo-

system.

• Literature: Only the sagittal plane portion of the sit-to-stand motion is cap-

tured, which leaves out the torque requirements on actuators in the frontal

and transverse planes.

2. Generating the Motion

• Our Contributions: An analysis of two types of dynamic sit-to-stand motions,

chair-to-stand and chair-to-crouch-to-stand, based on hybrid system models and

constrained optimization. The two motions are similar when the exo-system

is sitting in the chair but differ when the exo-system is off the chair.

The chair-to-stand motion simultaneously extends the joints and shifts the

CoM forward, while the CoM is first shifted forward and then the joints
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extended in chair-to-crouch-to-stand. The chair-to-stand motion is symmetrical

and consists of motion mainly in the sagittal plane.

• Literature: The motions are generated for a simplified model of the exo-

system. While both quasi-static and dynamic motions are studied, the dy-

namic motions are most similar to chair-to-stand.

3. Executing the Motion

Control Objectives:

• Our Contributions: We provide a novel and systematic way of choosing the

control objectives for highly constrained systems in such a way that the

objectives are not in conflict with the contact constraints. Since the resulting

closed-loop system is underdetermined (aka, over actuated) and must sat-

isfy real-time constraints on joint limits, torque bounds, and ground reaction

forces, we combine quadratic programming with input-output linearization (QP

I/O) to (robustly) achieve the sit-to-stand motion and to safely come to a

stop.

• Literature: To the best of our knowledge, there currently isn’t a way of sys-

tematically choosing control objectives for highly constrained systems. When

we use the control objectives in [20, 23, 25–27, 29, 32, 104, 123] and a QP-

enhanced input-output linearizing controller from [20,29], we find that a 0.02

m increase in chair height results in foot contact violations of over 100 N.

Robustness Tests

• Our Contributions: Physically motivated perturbation tests that help us analyze

and compare the two sit-to-stand motions. In our tests, we subject our

controller to the following perturbations: different users in the exoskeleton,

different chair heights, zero user force, spasticity in the knee joints, and
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asymmetric motor torque outputs. From these tests we are able to assess

ranges of variations in which the exoskeleton can operate. These ranges can

be used to inform new hardware design or to further robustify the controller.

The main results from the tests are:

– It is possible to achieve unassisted sit-to-stand motions that meet user

comfort constraints. However, we forgo this approach because the inclu-

sion of user force gives the user confidence.

– The chair-to-stand motion is better at handling changes in the chair

height.

– The chair-to-crouch-to-stand motion is better at rejecting perturbations that

result in asymmetry such as spasticity in the knee joints, and asymmetric

torque outputs

– Both motions are equally capable of handling different users in the

exoskeleton.

• Literature: The robustness tests do not cover the user or their affordances.

Our method outlined in the contributions above, can be easily applied to other

exoskeletons or humanoids. For instance, our novel way of choosing control objectives

can be applied in [124] to choose objectives that are not in conflict with contact

constraints in the double support phase. Additionally, our formulation for incorporating

the user force can be extended to other motions with multiple contact points.

3.1.4 Assumptions used throughout the chapter

For clarity, we list in one place the assumptions used throughout the chapter.

The reasons behind individual assumptions are treated as they appear in the chapter.

Assumptions made while generating the exo-system model:

• rigid links
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• rigid drivetrain

• the user does not generate a moment (in the body frame) when applying forces

to the arms of the chair

• at least 10 cm of space between the front of the chair and the back of the

feet

Assumptions made when generating the optimal motion:

• a friction coefficient of 0.9 between each foot and the ground

• a friction coefficient of 0.5 between the exoskeleton and the chair

• a torsional friction coefficient of 100 between each foot and the ground

Assumptions made in the execution of the motion:

• after using the exoskeleton several times under the supervision of a trained oper-

ator, the user will learn to provide the nominal force predicted by optimization

• the controller must be robust to mismatches in the applied user force

3.1.5 Overview: Chapter Organization

We begin by discussing the dynamic model and the hybrid system problem formula-

tion in Section 3.2. We then utilize this information to form a constrained optimization

problem in Section 3.3. In Section 3.4, we introduce our method for systematically

choosing control objectives. With the control objectives and constrained optimization

problem defined, we generate the sit-to-stand motions and present them in Section 3.5.

Next, we design our controllers and prove their stability in Section 3.6. Finally, we

analyze the robustness of the controllers in Section 3.7, compare our choice of control

objectives to the literature in Section 3.8, and discuss our conclusions in Section 3.9.
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3.2 Dynamic Model and Problem Formulation

In this section, we summarize our modeling approach. More specifically, we in-

troduce two hybrid systems models along with a floating-base Lagragian model and

stability constraints to ensure feasible sit-to-stand motions.

3.2.1 Dynamic Model

The floating base model of the exoskeleton has 18 degrees of freedom: the usual

six degrees of freedom for position and rotation in 3D-space, plus the six degrees

of freedom for each leg. The links are assumed to be rigid and the drivetrain from

each motor to the corresponding joint is assumed to be rigid as well. Motor inertia

and gearing are reflected to the associated link using standard methods [125]. In this

study, the user is modeled by including additional mass and inertia rigidly attached to

the exoskeleton’s torso and legs and hence the exo-system has the same number of

degrees of freedom as the exoskeleton.

The overall floating-base Lagragian model takes the form

D(q)q̈+C(q, q̇)q̇+G(q) = Bu+ JT (q)Γ+ J⊤extζ (3.1)

J(q)q̈+ J̇(q, q̇)q̇ = 0, (3.2)

where q is the vector of generalized coordinates, u is the torque input vector, D,

C, and G are the inertia, Coriolis, and gravity matrices/vector, respectively, B is

the torque distribution matrix, J is the Jacobian mapping the contact wrenches to

the generalized coordinates, Γ is the contact wrench associated with the exoskeleton’s

contact with the floor and the seat of the chair, ζ is the force provided by the

user, and Jext is the jacobian that maps the provided user force to the generalized

coordinates. Equation (3.2) gives the lagrange multipliers (Γ) that are necessary to

enforce the contact constraints. Note that (3.1) and (3.2) are similar to the equations
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presented in Chapter 6 of Murray et al [54].

The generalized coordinates are taken as

q =



torso X

torso Y

torso Z

torso yaw

torso pitch

torso roll

left henke ankle

left sagittal ankle

left sagittal knee

left sagittal hip

left transverse hip

left frontal hip

right frontal hip

right transverse hip

right sagittal hip

right sagittal knee

right henke ankle



, (3.3)

where the first six elements are the components of the special Euclidean group, SE(3),

with respect to a fixed (world) frame, and the next 12 are body coordinates represent-

ing the relative angles of the joints comprising the two legs; each of these joints is

actuated.

The assistive force from the user is defined to act at the top of the torso in the

torso’s body coordinate frame with components in the x, y, and z axes. It is assumed

that there is no net moment generated by the user.
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3.2.2 Hybrid models

We first discuss the chair-to-stand motion, which is based on a hybrid system model

with two domains, the sitting domain and the standing domain. A specific reference

point on the exoskeleton, called the sitting-point, is used to establish the point of

application of the contact wrench from the seat. The contact with the seat is modeled

as a point contact and thus the contact wrench from the seat of the chair consists

only of the contact force. The sitting domain has three contact points (chair, right

foot, and left foot) while the standing domain has two (right foot and left foot). The

standing domain is entered when the exoskeleton is no longer in contact with the

seat.

Equations (3.1) and (3.2) define the dynamics for both domains with

J = Jstand :=

Jright
f oot

Jle f t
f oot

 (3.4)

in the standing domain, and

J = Jsit :=

Jstand

Jchair

 (3.5)

in the sitting domain, where Jright
f oot , Jle f t

f oot , and Jchair are the geometric contact constraint

jacobians for the right foot, left foot, and chair respectively. The guard function that

triggers the transition between the two domains is defined as follows

Fz
chair = 0 (3.6)

where Fz
chair is the vertical component of the force from the seat. Since there is

no impact during the transition from the sitting domain to the standing domain, the

reset map is an identity matrix. The hybrid model for chair-to-stand is depicted in

32



Figure 3.1.

Sitting
Domain

Standing
DomainFz

chair = 0

Figure 3.1: The directed acyclic graph for the chair-to-stand hybrid system model

We next discuss a dynamic chair-to-stand motion similar to the quasi-static motion

used in the literature, where the CoM is first shifted over the feet and then the joints

are extended [20, 23]. In this case, the standing domain is divided into two separate

domains governed by the same equations of motions, standing shift and standing extend.

Note that the transition between the sitting domain and the stand shift domain is

equivalent to the transition between the sitting and standing domain in the chair-

to-stand hybrid model. The transition from standing shift to standing extend occurs

after the ZMP is in the feet polygon; see Figure 3.3b. The reset map during this

transition is the identity. We will refer to this hybrid model as chair-to-crouch-to-stand.

The hybrid model for chair-to-crouch-to-stand is given in Figure 3.2. The motions

derived from the chair-to-stand and chair-to-crouch-to-stand hybrid system models are

later compared for user comfort.

Sitting
Domain

Standing
Shift

Domain

Standing
Extend
DomainFz

chair = 0 ZMP ∈ SPf eet

Figure 3.2: The directed acyclic graph for the chair-to-crouch-to-stand hybrid system
model

3.2.3 Contact Forces and Moments

In all domains, constraints are imposed on contact forces and moments. For example,

the vertical components of all contact forces must be non-negative, and in the sitting
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domain, there must be a minimum amount of weight supported by the feet so that

the legs can contribute to a lifting motion, viz

Fz
chair ≥ 0 (3.7)

Fz
f eet ≥ 0.3mtotalg, (3.8)

where Fz
f eet is the total vertical component of the ground reaction force.

To avoid sliding and yawing, a linear friction cone

|Fx
• | ≤µ•

Fz
•√
2

(3.9)

|Fy
• | ≤µ•

Fz
•√
2

(3.10)

and torsional friction constraints are used in all domains

|Mz
f eet | ≤ γ f eetFz

f eet (3.11)

where Fx
• , Fy

• and Fz
• denote the components of the contact forces associated with

the chair or the feet, µ• is an assumed friction coefficient for the chair or feet, γ f eet

is a torsional friction coefficient for the feet, and Mz
f eet and Fz

f eet are the moments

about and forces along the z-axis for the feet.

To prevent the feet from rolling or pitching, the ZMP1 [85, 86] must lie strictly

within the appropriate support polygon (SP). When a user force exists or there is

contact with the chair, the support polygon is given by the convex hull of the feet

of the exoskeleton and those of the chair. Here, there is assumed to be at least 10

cm of open space between the front of the chair and the back of the feet. When

there is neither an applied user force nor contact with the chair, the support polygon

1The ZMP definition that we use here actually corresponds to the CoP; it is known that the ZMP and CoP are
coincident if the contact forces are applied on horizontal surfaces. And even if not, one can define a virtual surface and
obtain a pseudo ZMP-CoP definition [86]
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is given by the convex hull of the feet. We will refer to the support polygon of the

feet and the chair as SPboth. The support polygon of the feet will be called SPf eet .

An example of the two support polygons that will used in this work are depicted in

Figure 3.3.

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) Sitting & Standing Domain

−0.2 −0.15 −0.1 −5 ·10−2 0 5 ·10−2 0.1 0.15 0.2 0.25 0.3

−5 ·10−2

0

5 ·10−2

0.1

0.15

0.2

0.25

0.3

0.35

(b) Standing Domain: no contact with the chair

Figure 3.3: An example of the support polygons that will be used. The brown rect-
angle is the chair while the blue rectangles are the feet. Even though the chair
is depicted as being wider than the feet in (a), the width of the feet is not pre-
determined; it will be solved for via optimization. The bold black line in (a) and
(b) encompasses the support polygon of the chair and the feet, and just the feet
respectively. The chair is set to be 10 cm behind the feet.

To calculate the ZMP, the external wrenches (ground reaction, applied user force,

and chair) are converted to the spatial frame using their respective adjoint matrices

[51, 54]. Once everything is expressed in the spatial frame, the ZMP, denoted P∗, can

then be calculated as the point on the ground about which the x and y total moment

equals zero [85, 86]. The total moment τ = [τx,τy,τz]⊤ is given by

τ :=
N

∑
i=1

(Pi −P∗)×Fz
i +Mtotal, (3.12)

where

• N is the number of active contact points
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• Mtotal = [Mx
total, My

total, Mz
total]

⊤ is the sum of all external moments

• Pi = [Px
i , Py

i , Pz
i ]
⊤, is the point of application of the i-th contact force Fi

• P∗ = [Px
∗ , Py

∗ , Pz
∗ ]
⊤ is the unique point on the ground resulting in τ = [0,0,τz]⊤.

That is, at P∗ the moment is acting about an axis normal to the ground plane.

We note that (3.12) simplifies to (3.13) and (3.14) if ∀ i, Pi is located at the

origin (which is the case for us), yielding

Px
∗ =

−My
total

Fz
total

(3.13)

Py
∗ =

Mx
total

Fz
total

, (3.14)

where Fz
total is the sum of all the vertical components of the contact forces.

3.3 Motion Generation through Constrained Optimization

Motion generation is posed as a constrained optimization problem for the full-

dimensional floating-base hybrid models described in Section 3.2.2. State trajectories,

motor torques, and external wrenches are computed with the open-source package

FROST [112]. FROST also provides for computing the terms in the Lagrangian model

given in (3.1) and (3.2), from the universal robot description file (URDF) of the

exoskeleton and user.

Once the cost function, unilateral (i.e., inequality) constraints, and holonomic (i.e,

equality) constraints are posed, FROST transcribes this data and the dynamic model

into a direct collocation problem with analytic derivatives and solves it with IPOPT.

Computation times for the native MATLAB implementation of FROST are discussed

in [112]. There is a C++ companion, called C-FROST, that provides for parallel

executions and more [126].
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3.3.1 Cost Function

The cost function, J(x,u), consists of a running cost, L(x,u), and a final cost that

can depend on the domain, terminal cost Fi(x), and the duration of the domain, ti,

J(x,u) :=
∫ t f

t0
L(x(t),u(t),ζ (t))dt + ∑

domains
Fi(x(ti)).

While FROST allows a different running cost to be specified for each hybrid domain,

this flexibility was not used. For both the chair-to-crouch-to-stand and chair-to-stand

motions, the running cost is

Lsit(x,u) := k1||u||22 + k2||ζ ||22 + k3(θ̇)
2 + k4(θ̈)

2, (3.15)

where θ denotes the torso pitch angle and k is a weighting vector with components

ki. The squared Euclidean norms of u and ζ are present to reduce motor effort and

user effort, respectively. The inclusion of torso angular velocity and acceleration is for

tuning user comfort.

The terminal costs are all zero with one exception: in the chair-to-crouch-to-stand

motion, the terminal cost of the standing shift domain (the second domain in chair-to-

crouch-to-stand) is the difference between the final and initial knee angles,

F2(x(t2)) = k5||qKnee(t0)−qKnee(t f )||22, (3.16)

where qKnee is the vector of the knee angles and k5 is a weight. The final cost en-

courages a solution that “rolls” the exo-system from the chair to a crouching position,

without extending the legs.
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3.3.2 Summary of Physical Constraints for Dynamic Feasibility and User Comfort

In addition to implementing ZMP and friction constraints for dynamic feasibility as

discussed in Section 3.2.3, additional constraints are implemented to ensure that the

desired optimal motion can be realized. These additional constraints ensure feasibility

of the motion in terms of user comfort and hardware limitations, while meeting

design specifications. A summary of the constraints is provided here; a more detailed

description, including tables with the numerical values of the constraints, can be found

in Appendix A.

Anticipating that the feedback controller will need robustness margins, for both

motions, the ZMP is constrained to be within a strict subset of SPboth and SPf eet

when the exo-system is in contact with the chair, and no longer in contact with the

chair, respectively. The state bounds for the actuated joints are set to be stricter than

the hardware bounds to ensure user safety and comfort. Optimization is allowed to

use the maximum torque value a motor can output for each actuated joint except the

ankle, which is set to a smaller nominal value. These design choices are possible

because the real-time quadratic program used in the control implementation is effective

at managing torque limits; see Section 3.6.

Both motions are designed to start and end in statically stable positions with zero

user force. Therefore, to guarantee a feasible final pose for both motions, the ZMP

needs to be within SPf eet at the end of the motion. Since the ZMP and CoM are

coincident at the end of the motion when the exo-system is static, it is sufficient to

constrain the final CoM to be within SPf eet . The chair-to-stand motion is constrained to

be symmetric while the chair-to-crouch-to-stand motion is not. Therefore, to encourage

the optimizer to find a chair-to-crouch-to-stand motion with the CoM near the middle

of the feet at the end of the motion, the CoM is constrained to be in a smaller

polygon between the feet.
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3.4 Designing Control Objectives for a Highly Constrained System

The primary objective here is to introduce a new method for designing control

objectives for systems that are highly constrained, such as a full assist exoskeleton

in a chair-to-stand or chair-to-crouch-to-stand motion. For a computed-torque controller,

we show how to select control objectives h0(q) that are “orthogonal” to the system’s

contact constraints and “aligned” with the torque distribution matrix, B. The meaning

of the terms “orthogonal” and “aligned” will be clarified in the text.

3.4.1 Virtual Constraints and computed-torque Control

We pose our control objectives in the form of virtual constraints, which are relations

on the state variables of the robot’s model that are achieved through the action of

actuators and feedback control instead of physical contact forces and moments. They

are called virtual because they can be re-programmed on the fly without modifying

any physical connections among the links of the robot or its environment. If it is

known in advance that virtual constraints will be used, FROST allows them to be

designed in parallel with the optimal motion for the mechanism.

We assume a virtual constraint of the form

y = h0(q)−hd(t), (3.17)

where h0(q) is a vector of variables to be “controlled” or “regulated’ and hd(t) is the

desired evolution. The control objective is y(t) = 0, and thus if q∗(t) is an optimal

motion of the robot, we define

hd(t) := h0(q∗(t)).

The basic idea of computed-torque control, or input-output linearization, is to design
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the control input u = Γ(x, t) such that

ÿ+Kd ẏ+Kpy = 0, (3.18)

where Kp > 0 and Kd > 0 are selected so that y converges sufficiently rapidly and

“smoothly” to zero.

If hd(t) is at least twice differentiable, computing ÿ is done exactly as if one were

imposing a contact constraint,

ÿ = Jh(q)q̈+ J̇h(q, q̇)q̇− ḧd(t) (3.19)

where

Jh(q) :=
∂h0(q)

∂q

J̇h(q, q̇) :=

[
∂

∂q

(
∂h0(q)

∂q
q̇
)]

.

(3.20)

In the case of contact constraints, the term J(q)D−1(q)J⊤(q) is square and invertible

if, and only if, J(q) has full row rank. For virtual constraints, the analogous term,

Jh(q)D−1(q)B, may not be square, and even if Jh(q) is full row rank, Jh(q)D−1(q)B

may be rank deficient. Hence, one must choose carefully the controlled variables,

h0(q), so that there indeed exists u satisfying (3.18). This is addressed next for

highly constrained motions such as chair-to-stand and chair-to-crouch-to-stand.

3.4.2 Contact Interaction Matrix

Placing the contact and virtual constraints together, and dropping the arguments for

compactness of notation, yields

 c̈

ÿ

=

 JD−1(Cq̇+G− J⊤extζ )

J̇hq̇− JhD−1(Cq̇+G− J⊤extζ )

+I

Γ

u

 , (3.21)
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where the matrix

I (q) :=


J(q)D−1(q)J⊤(q) J(q)D−1(q)B

Jh(q)D−1(q)J⊤(q) Jh(q)D−1(q)B

 (3.22)

captures the coupling or interaction of the contact wrenches and the motor torques in

achieving the contact and virtual constraints. Hence, we call it the constraint interaction

matrix.

Setting c̈ = 0 to impose the contact constraint and ÿ = ÿd −Kd ẏ−Kpy to impose the

virtual constraints, we have

I

Γ

u

=

 JD−1(Cq̇+G− J⊤extζ )

JhD−1(Cq̇+G− J⊤extζ )− J̇hq̇+ ÿd −Kd ẏ−Kpy

 . (3.23)

Equation (3.23) allows us to understand how the motor torques and contact wrenches

interact along trajectories of the exo-system. An interesting question is how to select

the virtual constraints so that they “do not fight” the contact constraints.

3.4.3 Design Philosophy for the Virtual Constraints

The blocks of I are generalized inner products with positive-definite weight matrix

D−1(q). Fix q = q0, a point along a designed motion, and write

J̄ := J(q0)
(
D(q0)

)−1/2 nh ×m (3.24)

B̄⊤ := B⊤ (
D(q0)

)−1/2 nu ×m (3.25)

J̄h := Jh(q0)
(
D(q0)

)−1/2 nv ×m (3.26)

where nh, nu, nv, and m are the number of contact constraints, actuators, virtual

constraints, and generalized coordinates respectively; note that B̄ =
(
D(q0)

)−1/2 B. With
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these definitions, the constraint interaction matrix becomes

I (q0) =

 J̄ J̄⊤ J̄ B̄

J̄h J̄⊤ J̄h B̄

 . (3.27)

The elements forming the top row of A are fixed by the dynamic model and the

contact constraints. We propose to design the Jacobian matrix J̄h arising from the

virtual constraints so that J̄h is orthogonal to J̄ and the rows of J̄h B̄ are linearly

independent. The reasoning is that (a) if the virtual constraints are orthogonal to the

contact constraints, then the controller is not acting in the directions of the contact

conditions, and (b) if the rows of J̄h B̄ are linearly independent, then there exists u

such that (3.18) is satisfied. On the other hand, if the columns of J̄h B̄ are linearly

dependent, then u is not unique and a means of choosing u needs to be provided.

The linear dependence of the rows of J̄h B̄ arises from the highly constrained nature

of a standing motion. In Section 3.6, this aspect of imposing the virtual constraints

will be addressed.

In some situations, it would also be beneficial to select virtual constraints that

actively fight against undesired contact constraints while respecting desired contact con-

straints. For instance, in the sitting domain the exo-system is actively trying to break

the contact with the chair without slipping in the chair. Therefore, the desired contact

constraints in the sitting domain are the feet on the ground and the contact with the

chair in the transverse plane. The undesired contact constraint is the chair contact

constraint in the z-axis. The question then becomes how to design virtual constraints

that respect wanted contact constraints while fighting unwanted contact constraints.

3.4.4 Designing the Virtual Constraints using QR Factorization

In this section, we provide guidelines on how to obtain virtual constraints using

QR factorization based on the philosophy presented in Section 3.4.3 . Note that our
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analysis in this section is dependent on a fixed point q.

3.4.4.1 Non-sitting Domains

Here, J is given by (3.4). Performing a QR-factorization of [J̄⊤ B̄] yields

[
J̄⊤ B̄

]
= QR

=

[
Q1 Q2

]R11 R12

R21 R22

 ,

(3.28)

where the orthonormal matrix Q and the upper triangular matrix R have been parti-

tioned conformally with the size of J̄⊤. Then, because R is upper triangular, R21 = 0

and thus we have

J̄⊤ = Q1R11 (3.29)

B̄ = Q1R12 +Q2R22 (3.30)

Hence, a choice of J̄h that is orthogonal to J̄ and full row rank is

J̄h := Q⊤
2 .

Indeed, with this choice,

A(q0) =

J̄ J̄⊤ J̄ B̄

0 R22

=

R⊤
11R11 R⊤

11R12

0 R22

 . (3.31)

The (row) rank of R22 gives the number of virtual constraints that can be used in

the controller design.
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3.4.4.2 Sitting Domain: Actively Fighting Against Constraints

In the sitting domain, the exo-system’s motion is actively seeking to break contact

with the chair by driving the vertical force from the chair to zero. It is desirable

that control actions do not promote sliding in the chair, while aiding in lifting from

the chair. The virtual constraints should therefore be designed as orthogonal to the

x and y components of Jchair, the seat Jacobian, but not to its vertical component.

We start our analysis by first noting the similarities between the contact and virtual

constraint definitions as described in (3.32)

Contact Constraint

c = c0 − cd

ċ = Jq̇

c̈ = Jq̈+ J̇q̇

Virtual Constraint

y = h0 −hd

ẏ = Jhq̇− ḣd

ÿ = Jhq̈+ J̇hq̇− ḧd

(3.32)

where c0 and cd are the current and desired positions of the contact respectively, and

J := ∂c0
∂q . We assume cd is a constant, and hence c̈d = 0. As previously demonstrated

in Section 3.2.1 and 3.4.1, the contact and virtual constraints, are both implemented at

the acceleration level and are achieved when y ≡ 0 and c ≡ 0. In particular, a contact

constraint is not identically satisfied when either c ̸= 0, ċ ̸= 0, or c̈ ̸= 0. Similarly, a

virtual constraint is not identically satisfied when either y ̸= 0, ẏ ̸= 0, or ÿ ̸= 0. When

the virtual constraints are not satisfied, we use control action to mitigate the error.

In a similar manner, we can use control action to induce c̈ ̸= 0, thereby fighting the

contact constraint. In our case, we want to fight against the vertical component of the

chair contact constraint to achieve c0 > cd , which gives c̈ > 0.

Therefore, to achieve virtual constraints that are orthogonal to all the contact con-

straints except for the vertical component of the chair constraint, we modify (3.28)
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to [
J̄⊤r J̄⊤v B̄

]
= QR

=

[
Q1 Q2 Q3

]


R11 R12 R13

R21 R22 R23

R31 R32 R33

 ,

where J̄⊤r and J̄⊤v are the Jacobian matrices of the contact constraints we want to be

orthogonal to and non-orthogonal to respectively. Similar to before, R21 = 0, R31 = 0

and R32 = 0. Note that Q2 is in the span of J̄⊤v . Since at the fixed point q, Q2 is

a constant matrix, we can now define

ċ = Q⊤
2 q̇ (3.33)

c̈ = Q⊤
2 q̈ (3.34)

The first step for designing control actions that are not only non-orthogonal to the

vertical component of the chair constraint but also actively fight against it, is to design

Jh such that it’s orthogonal to J̄⊤r and aligned with B̄. Note that choosing Jh = QT
3 as

was done previously does not work here because nv will be less than the difference

between the DoF of the unconstrained system and the DoF of the constrained system.

To properly design Jh, an optimization problem is necessary. The formulation of this

optimization problem can be found in Section 3.4.5. Once Jh is found, all that is

left to do is to get rid of the undesired contact constraint from the controller and

introduce Q⊤
2 q̈ > 0 as a constraint in the QP when one decides to start “fighting” the

contact constraint. We note that since our controller is tracking an optimal trajectory

that achieves the sit-to-stand motion, it is sufficient to have control actions that are

non-orthogonal to the vertical component of the chair constraint.
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3.4.5 From Jacobians to Functions

In this section, we show how to design functions h0(q) whose Jacobians approxi-

mately satisfy
∂h0(q)

∂q
D−1(q)J⊤(q) = 0

∂h0(q)
∂q

D−1(q)B =: M(q) (well conditioned).
(3.35)

To do this, we propose to include linear and quadratic terms in h0(q), namely,

h0(q) := H0q+
n

∑
i=1

i

∑
j=1

Hi j qiq j, (3.36)

and to select the coefficients to minimize

H∗ = argmin
H

1
N

N

∑
i=1

∣∣∣∣∣∣ Jh(q)D−1(q)J⊤(q)
∣∣∣
q=q(ti)

∣∣∣∣∣∣2
2

(3.37)

subject to

λmin

[
M(q)M(q)⊤

]
q=q(ti)

≥ 1 (3.38)

λmax

[
M(q)M(q)⊤

]
q=q(ti)

≤ κ
2. (3.39)

Here, H is the collection of coefficients in (3.36) and q(ti) are points along a

designed motion of the exo-system. The constraint (3.38) is necessary to avoid H∗ = 0

as a solution to the objective function (3.37), while the tuning parameter κ > 1

bounds the condition number of M(q); see (3.22).

Remarks:

1. For non-sitting domains, the contact Jacobian, J, in (3.37) is given by Jstand in

(3.4).
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2. For the sitting domain, the contact Jacobian in (3.37) is taken as J⊤ =[
(Jstand)

⊤,(Jx
chair)

⊤,(Jy
chair)

⊤
]
, while the z-component is added to M(q) in (3.35),

(3.38), and (3.39) per

M(q) :=


Jz

chair(q)D
−1(q)B

∂h0(q)
∂q D−1(q)B

 .

If feasible, the constrained optimization problem posed in this manner will return

three virtual constraints that are (approximately) orthogonal to the foot constraints

and the horizontal components of the chair constraint, but not to the vertical

component of the chair constraint. Hence, the controls may assist in driving

the chair’s vertical force to zero for transitioning to the next domain. Moreover,

through the choice of M, the three virtual constraints will be independent of all

15 contact constraints.

3. The function h0(q) in (3.36) can be multiplied on the left by an orthonormal

matrix without changing2 the values in (3.37), (3.38), and (3.39).

3.5 Optimization for Nominal Sit-to-Stand and Sit-to-Crouch Behaviors

This section presents the results of performing optimization to design the chair-to-

stand and chair-to-crouch-to-stand behaviors, using the cost functions and constraints

described in Section 3.3 and the control objectives presented in Section 3.4. The

optimal motions are derived using:

• A user who is 1.73 m tall and weighs 73 kg, for a total weight of the

exo-system of 147.4 kg.

• A chair height of 0.6 m.

• A friction coefficient of the chair of 0.5. This value was chosen by using the

2The cost is quadratic and the eigenvalues of a matrix are invariant under similarity transformations.
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friction coefficient of leather and oak for guidance [127]. Even though a friction

coefficient of 0.5 is probably smaller than the friction coefficient of an average

chair, by using a smaller friction coefficient, we encode robustness to slipping in

the optimal trajectory.

• A friction coefficient of the feet of 0.9.

The virtual constraints imposed during the optimization are derived from the opti-

mization problem posed in (3.37) - (3.39). However, because there is relatively little

joint displacement in the sitting domain of the chair-to-stand motion, a linear virtual

constraint is used. To find the corresponding (constant) matrix, we

1. solve (3.37) - (3.39) for H∗,

2. replace H with H∗ in (3.36) and solve for h0(q) at all the time steps in

the trajectory (note that H0(q) is the first m columns of H∗, and that Hi j is

evaluated from the remaining columns),

3. iteratively evaluate the condition number of (3.22) with Jh = h0(q) throughout the

entire motion, and

4. choose the h that induces the minimum condition number

It should be noted that for both optimal motions, there is an interplay between

the torso pitch acceleration, the user force, and the motor torques. This interplay

comes about from (a) the inverse relationship of motor torque and user force: the

more the user contributes by pushing with their arms, the less the motors need to

contribute; and (b) taking advantage of the exo-system’s dynamics (e.g., generating

forward momentum through rapid torso pitch displacement) reduces the demands on

motor torque and user force. We also note that the figures referenced in this section

have been grouped by motion type, but are discussed in order of relevance.
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3.5.1 User Comfort

To ascertain user comfort3, in terms of pitch acceleration, we use maximum and

minimum torso pitch acceleration values (Max : 494deg
s2 , and Min : −660deg

s2 ) reported as

comfortable by the nominal user. The torso pitch acceleration for both motions, in all

domains, is below these thresholds. During the sitting domain, for both chair-to-stand

and chair-to-crouch-to-stand, the support of the exo-system transitions from the chair,

user, and the feet—with the chair initially supporting the majority of the weight—to

the feet and the user. Figure 3.5 and Figure 3.10 depict the chair and feet GRF

for chair-to-stand and chair-to-crouch-to-stand respectively. Figures 3.6 and 3.11 show

that the user force is always below 25.5 N in each hand, in all domains, for both

motions.

3.5.2 Chair-to-stand

The optimal chair-to-stand trajectory respects left-right symmetry for the majority of

the motion. The majority of the joint displacement occurs in the sagittal knee and

hips, though all of the actuated sagittal joints do contribute. The joint and torque

trajectories shown in Figure 3.7 and Figure 3.8, respectively, respect the constraints

imposed in the optimization; the henke and sagittal ankle both hit their optimization

lower bounds during the motion. The entire chair-to-stand motion takes four seconds to

complete, with the majority of the time spent in the standing domain (three seconds).

The ZMP, shown in Figure 3.4, stays well within the support polygon throughout the

entire motion, and is contained in the support polygon of the feet at the end of

the motion. With an absolute maximum torso pitch acceleration of 58.6236 deg
s2 and

maximum norm of the user force of 16.6 N for each hand, the chair-to-stand motion

is comfortable for the user. Figure 3.6 depicts the spatial user force.

3To evaluate user comfort, we use the pitch acceleration of the torso and the user force. These indexes were chosen
based on a previous experiment done by one of the authors, Mungai.
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3.5.3 Chair-to-crouch-to-stand

In contrast to the chair-to-stand trajectory, the chair-to-crouch-to-stand trajectory was

allowed to be asymmetric; see Appendix. A. Chair-to-crouch-to-stand has a longer

duration at approximately six seconds. Furthermore, all of the motor joints (not just

those in the sagittal plane) contribute a significant amount to the trajectory. Similar

to chair-to-stand the joint and torque trajectories for chair-to-crouch-to-stand respect

the optimization and hardware bounds. The left frontal hip and sagittal ankles both

hit their optimization bounds. The sagittal ankle, left henke ankle, and transverse hip

motors hit their respective motor torque bounds imposed in the optimization. However,

as previously mentioned, this can be rectified by increasing the user force. The

torque, and joint profiles are depicted in Figure 3.12 and Figure 3.13. The asymmetry

observed in the joint and torque profiles result in the ZMP, shown in Figure 3.9,

being off centered in the support polygon. The ZMP motion along the y-axis observed

in the standing extend domain is a result of the CoM constraint implemented at the

end of the domain. The maximum norm of the user force per hand (see Figure 3.11)

and absolute maximum torso pitch acceleration for the entire motion are 25.37 N and

106.2 deg
s2 respectively. Even though the absolute maximum torso pitch acceleration

for the entire chair-to-crouch-to-stand motion is larger than that of chair-to-stand, the

chair-to-crouch-to-stand motion is still comfortable for a user.

3.6 Torque Distribution for Over-actuated Systems

Along the nominal (feasible) motions determined through optimization, the conditions

in (3.23) for the contact and virtual constraints are satisfied, as well as the design

constraints given in Tables A.3, A.4, A.5, and A.6 of Appendix A. To enable the

exoskeleton to safely perform a stand up motion and come to a stop, even in off-

nominal conditions, two controllers of similar architecture are designed and implemented.
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Figure 3.4: Chair-to-Stand: The evolution of the ZMP (red circles) from the user being
in contact with the chair to letting go. The brown rectangle and the blue rectangles
are the chair and feet respectively. The bold black line encompasses the support poly-
gon of the chair and the feet, while the cyan rectangle depicts the support polygon,
SPboth_opt , that is used in optimization. The green rectangle represents SPf eet_opt ; it is
the target location for the ZMP at the end of the standing domain when the user is
no longer in contact with the chair.
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(a) Right Foot Vertical GRF
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(b) Chair Vertical Force

Figure 3.5: Chair-to-Stand: The optimal vertical contact forces show a smooth transfer
of weight from the chair to the feet. The left foot vertical GRF is omitted because
it is similar to the right foot vertical GRF. The blue and yellow lines are for the
sitting and standing domain respectively.
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(a) Spatial User Force- X
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(b) Spatial User Force- Z

Figure 3.6: Chair-to-Stand: The optimal spatial force the user needs to provide with
both arms along the x and z axes. The user force along the y axis is omitted
because it is zero throughout the motion. The blue and yellow lines are for the
sitting and standing domain respectively. The maximum spatial user force required for
the entire motion along the x and z axes are small, since they amount to about
3 kg and 1.6 kg respectively.

The first controller that tracks the desired virtual constraints obtained from an optimal

trajectory during the initial stages of standing was partially designed in Section 3.4.1

and will be completed here; it will be be called the standing up controller, or SU for

short. The second controller is active in the final stage of standing and is designed

to achieve a constant set-point. This controller has not been discussed yet. It will be

called the standing in place controller, or SP for short. We will refer to the final

stage of standing where the SP controller is active as the stopping domain.

A key issue for each of these two controllers is that due to the large number of

contact constraints, the system of equations (3.23) is underdetermined for the motor

torques and is hence an over-actuated system. This will be addressed through a

real-time quadratic program (QP), as in [116–119]

3.6.1 Design of the SU Controller

Our objective is to select at each time instance, t, the motor torques u(t) of

minimum norm such that:
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(b) Left Henke Ankle
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(c) Left Sagittal Hip
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(d) Left Sagittal Knee
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(e) Left Transverse Hip
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(f) Left Frontal Hip

Figure 3.7: Chair-to-Stand: The optimal joint trajectories show that the joints respect
the optimization and hardware constraints throughout the entire motion. The right joint
trajectories are omitted because the chair-to-stand motion is symmetric. The blue and
yellow lines are for the sitting and standing domain respectively, while the red and
dashed orange line depict the hardware and optimization bounds respectively.
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(a) Left Sagittal Ankle
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(b) Left Henke Ankle
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(c) Left Sagittal Hip
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(d) Left Sagittal Knee
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(e) Left Transverse Hip
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(f) Left Frontal Hip

Figure 3.8: Chair-to-Stand: The optimal torque trajectories show that the motor torque
bounds are respected throughout the entire motion. The right torque trajectories are
omitted because the chair-to-stand motion is symmetric. The blue and yellow lines
are for the sitting and standing domain respectively, while the red line depicts the
maximum torque bounds. For the ankle torques, we also include the nominal torque
bounds, represented by the dashed orange lines, since those are the bounds used in
optimization.
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(b) Standing Shift Domain
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(c) Standing Extend Domain

Figure 3.9: Chair-to-Crouch-to-Stand: The evolution of the ZMP (red circles) from
the user being in contact with the chair to letting go. The brown rectangle and the
blue rectangles are the chair and feet respectively. The bold black line encompasses
the support polygon of the chair and the feet, while the cyan rectangle depicts the
support polygon, SPboth_opt , that is used in optimization. The green rectangle represents
SPf eet_opt ; it is the target location for the ZMP at the end of the standing shift
domain and throughout the standing extend domain. We note that the user force is
zero at the end of the standing shift domain and for the entirety of the standing
extend domain.
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(a) Right Foot Vertical GRF
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(b) Left Foot Vertical GRF
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(c) Chair Vertical Force

Figure 3.10: Chair-to-Crouch-to-Stand: The optimal vertical contact forces show a smooth
transfer of weight from the chair to the feet. The blue, yellow, and light blue lines
are for the sitting, standing shift, and standing extend domains respectively.
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(a) Spatial User Force- X
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(b) Spatial User Force- Z

Figure 3.11: Chair-to-Crouch-to-Stand: The optimal spatial force the user needs to
provide with both arms along the x and z axes. The user force along the y axis is
omitted because it is zero throughout the motion. The blue, yellow, and light blue
lines are for the sitting, standing shift, and standing extend domains respectively. The
maximum spatial user force required for the entire motion along the x and z axes
are small, since they amount to about 4.4 kg and 2.7 kg respectively.

(a) ÿ+Kd ẏ+Kpy = 0, and thus disturbances to the nominal motion are attenuated;

and

(b) the user force, ζ (t), that is required to satisfy the contact constraints and the

above virtual constraints remains as close as possible to the nominal force, ζ ∗(t),

that was determined in optimization, even in off-nominal conditions.

The motivation in (b) is that we do not want the controller relying on the user to

make corrections to the trajectory. On the other hand, if torque or joint constraints

limit the controller’s ability to meet all of the contact constraints, we want the user to

be able to contribute, but only if absolutely necessary. To meet the above objectives,

we rewrite (3.23) in terms of motor torques u and user force ζ as

Aeq

u

ζ

= beq, (3.40)
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 60

20

40

60

80

100

120

Time (s)

A
ng

le
(d

eg
)

(b) Right Sagittal Knee
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(c) Left Sagittal Ankle
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(d) Right Sagittal Ankle
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(e) Left Sagittal Hip
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(f) Right Sagittal Hip

Figure 3.12: Chair-to-Crouch-to-Stand: The optimal joint trajectories show that the joints
respect the optimization and hardware constraints throughout the entire motion. The
blue, yellow, and light blue lines are for the sitting and standing shift and standing
extend domains respectively, while the red and dashed orange line depict the hardware
and optimization bounds respectively.
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(g) Left Henke Ankle
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(h) Right Henke Ankle
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(i) Left Transverse Hip
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(j) Right Transverse Hip
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Figure 3.12: Chair-to-Crouch-to-Stand: The optimal joint trajectories (Cont.)
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(b) Right Sagittal Knee
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(c) Left Sagittal Ankle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−200

−150

−100

−50

0

50

100

150

200

Time (s)

To
rq

ue
(N

m
)

(d) Right Sagittal Ankle
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(e) Left Sagittal Hip
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(f) Right Sagittal Hip

Figure 3.13: Chair-to-Crouch-to-Stand: The optimal torque trajectories show that the
motor torque bounds are respected throughout the entire motion. The blue, yellow,
and light blue lines are for the sitting, standing shift, and standing extend domains
respectively while the red line depicts the maximum torque bounds. For the ankle
torques, we also include the nominal torque bounds, represented by the dashed orange
lines, since those are the bounds used in optimization.
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(h) Right Henke Ankle
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Figure 3.13: Chair-to-Crouch-to-Stand: The optimal torque trajectories (Cont.)
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where,

Aeq =

[
JhD−1(I− J⊺χJD−1)B JhD−1(I− J⊺χJD−1)J⊺ext

]
beq =−JhD−1[(I− J⊺χJD−1)(Fv)− J⊺χ J̇q̇]− J̇hq̇+Y

χ = (JD−1J⊺)−1

Fv =−Cq̇−G

Y = ÿd −Kd ẏ−Kpy.

At time t̄, let u∗(t̄) and ζ ∗(t̄) be the control signal and user force along the

optimal trajectory. The applied control signal and “estimated user force” for the SU

controller will be determined by the following QP,

u(t̄)

ζ (t̄)

 := argmin
u∈R12,ζ∈R3

||u−u∗(t̄)||22 +α||ζ −ζ
∗(t̄)||22

subject to

Aeq(q(t̄))

u

ζ

 = beq(q(t̄), q̇(t̄))

{Px
∗ ,P

y
∗} ⊆ SP

Fz
• ≥ 0

|Fx
• | ≤ µ

Fz
•√
2

|Fy
• | ≤ µ

Fz
•√
2

|Mz
◦| ≤ γFz

◦

ulb ≤ u ≤ uub

(3.41)

The inclusion of ||ζ −ζ ∗||22 in the cost ensures feasibility of the constraints in (3.41),

while a large value of α > 0 encourages solutions where the user force ζ “assumed

by the controller” remains close to its designed value. Of course, the user of the

exoskeleton has no knowledge of this calculation and will assist in the standing process
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“as best as they can”. We choose to implement the user force in this manner because

we assume that by using the exoskeleton several times the user will eventually learn

to provide the external force needed at the “right” time. In other words, after several

attempts the user provided assistance should be close to the optimal value assumed by

the controller. To better mimic the user force from the user, one can take advantage

of the various learning algorithms to design a controller for the user force which

interacts with QP I/O control; Aroche et al. [20] approximated the user force using

an iterative learning control. Robustness of the control actions to varying user force

will be checked in the results section. To ensure that the solutions of the QP are

feasible even in the presence of perturbations, the ZMP is constrained to be within

the appropriate support polygon. We first define SP as the compact set of all the

points in the desired support polygon. We then require Px
∗ and Py

∗ to be inside the

set SP at all times; this is done by using half planes.

3.6.2 Design of the SP Controller

The set-point for the SP controller regulates the variables

yd =



CoMX

CoMY

qleft
knee+qright

knee
2

qleft
knee−qright

knee
2

θ

ψ



(3.42)

to constant values. Here, ψ is the torso yaw angle, (qleft
knee +qright

knee)/2 is directly related to

the average height of the hips, and (qleft
knee −qright

knee)/2 sets the relative height of each hip.
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The SP controller is expressed as a QP in the form

u(t̄)

ζ (t̄)

 := argmin
u∈R12,ζ∈R3

||u||22 +α||ζ ||22

subject to

Aeq(q(t̄))

u

ζ

 = b̃eq(q(t̄), q̇(t̄))

{Px
∗ ,P

y
∗} ⊆ SPf eet

Fz
• ≥ 0

|Fx
• | ≤ µ

Fz
•√
2

|Fy
• | ≤ µ

Fz
•√
2

|Mz
◦| ≤ γFz

◦

ulb ≤ u ≤ uub

qlb ≤ q(t +1) ≤ qub

(3.43)

Remarks: The SP controller is similar to the SU controller except for the addition

of an integral term for the average knee angle virtual constraint and state bound con-

straints for the exo-system’s position, q. These additional constraints guarantee that the

exoskeleton stops at the desired height without violating any joint bounds. The bounds

for q could have been implemented in the SU controller as well, however, since the

SU controller tracks the optimal trajectory via virtual constraints, these constraints were

inactive along the nominal trajectory. Note that since the SP controller tracks a set

point, u∗(t̄) = 0 and ζ ∗(t̄) = 0.

3.6.3 Stability Analysis of the Two Standing Controllers

The overall controller for each motion is hybrid, consisting of (short-duration) tran-

sient phases of trajectory tracking that guide the exo-system from the chair to a
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transition point where a standing controller, SP, takes over and must assure steady-state

stability. Here, we analyze the local exponential stability of the standing controller’s

equilibrium point, which we denote by xeq.

For each of the chair-to-stand and chair-to-crouch-to-stand motions, the Jacobian

linearization of the closed-loop floating base model about xeq is estimated using sym-

metric differences. So that the contact constraints are respected, perturbations are only

applied in the null space of the contact Jacobians. The control algorithm automatically

computes corrections4 to the nominal control signal when the perturbations are applied

to the equilibrium point, xeq. The resulting matrix is then orthogonally projected to

the null space of the contact Jacobians, giving us a square matrix Alin corresponding

to the Jacobian of the reduced-order model one would obtain if the contact constraints

were eliminated. For both sit-to-stand motions, chair-to-stand and chair-to-crouch-to-stand,

the eigenvalues of Alin have negative real parts. Therefore, from Theorem 4.6 and 4.7

in Khalil [67], we conclude that xeq is a locally exponentially stable equilibrium point.

The above analysis shows that a quadratic Lyapunov function exists for the equi-

librium point, and hence there is an accompanying open set that forms a domain of

convergence for xeq. The feedback controller for the transient domains, SU, is based

on trajectory tracking via the I/O linearizing controller and a QP. The I/O linearizing

controller is differentiable and hence locally Lipschitz continuous. The QPs are feasible

for the nominal motions and have positive definite costs and differentiable constraints.

Hence, they are locally Lipschitz continuous as well. Therefore, there exists an open

set about the nominal starting point for which all initial conditions are steered to the

domain of attraction of the standing controller. This completes the stability analysis.

Remark: It is well known that performing the above analysis would provide very

conservative estimates of the domain of attraction. One could attempt to use other

methods such as reachability analysis or barrier functions, however, with the current

4Analytically computing the Jacobian of the floating-base dynamical model would have been straightforward.
However, doing so would have been less straightforward for the QP-based controller.
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techniques available it is not feasible to analytically calculate the range of operability

for high-order nonlinear systems. Therefore, to circumvent these obstacles, we find the

range of operability of the proposed closed-loop system using robustness tests.

3.6.4 Nominal Simulation of the Two Standing Controllers

Here we present the nominal closed-loop standing behaviors for both chair-to-stand

and chair-to-crouch-to-stand of the exo-system under the action of the SU and SP

controllers during nominal conditions. The simulation is performed using the ideal

simulator in FROST. 5 The SU controller is able to maintain low tracking error and

the SP controller is able to achieve the desired set point values. The error plots for

chair-to-crouch-to-stand and chair-to-stand can be found in Figure 3.14 and Figure 3.15

respectively.

5FROST uses Matlab’s ode45 to simulate the dynamics of the given hybrid system.
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Figure 3.14: Chair-to-Crouch-to-Stand closed-loop nominal tracking error plots for the
standing up (SU) and standing in place controllers (SP). The tracking error of the
virtual constraints (yi) in (a)-(c) are dimensionless. The error of the positions, and
angles of the virtual constraints displayed in (d) are measured in meters and radians.
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Figure 3.15: Chair-to-Stand closed-loop nominal tracking error plots for the standing
up (SU) and standing in place controllers (SP). The tracking error of the virtual
constraints (yi) in (a)-(c) are dimensionless. The error of the positions, and angles of
the virtual constraints displayed in (d) are measured in meters and radians.
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3.7 Robustness Tests

This section assesses the ability of the two closed-loop behaviors to tolerate a

range of perturbations. The perturbations are: (1) different users in the exoskeleton

(this perturbation can be thought of as a weight and height perturbation. Weight is the

primary perturbation we will focus on.), (2) variations to chair height (both higher and

lower than the nominal chair height), (3) zero user force which creates a discrepancy

between the external force the controller expects and the one that’s provided, (4)

spasticity in the knee joints, and (5) asymmetric motor torque outputs which will help

us understand a controller’s sensitivity to asymmetry.

These robustness tests will help us ascertain differences in the two types of standing

motions. They will also help us determine how many nominal trajectories one may

need in a gait library to expand the controllers’ range of operability. To make

the controllers more impervious to perturbations and for ease of implementation, the

controller and simulation architecture are modified slightly. These modifications are

discussed in detail in Appendix B.

For the reader’s convenience, we recall the following values:

• Nominal Chair Height: 0.6 m

• Nominal User Weight: 73 kg

• Nominal µchair: 0.5

• Nominal µ f eet : 0.9

• Atalante’s designed user range: 1.55−1.90 m and 50−90 kg

3.7.1 Criteria for Success and Summary of the Results

The criteria that we use to determine the success of the standing motions under

perturbations are: (1) tracking and steady state error of the SU and SP controllers
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respectively, (2) torso pitch acceleration, (3) user force expected by the controller, (4)

ZMP constraint violation, (5) friction constraint violations (we will consider even small

violations of the feet friction constraints to be a failure), (6) joint angle limit violation,

and (7) motor limit violation. The tracking and steady state error allows us to confirm

whether or not the desired standing motion has been achieved by the controller. A

relatively low torso pitch acceleration and required user force ensure user comfort. The

maximum (494deg
s2 ) and minimum (−660deg

s2 ) torso pitch acceleration thresholds used for

optimization are utilized here as well. The ZMP and friction constraints, and joint

angle and motor limits ensure the feasibility of the motion in terms of stability and

hardware limitations. Note that the friction constraint consists of both the friction cone

and torsional friction constraint, and that the joint angle limits are only explicitly

implemented in the SP controller. The friction cone constraint is calculated using

|F◦
• |−µ

Fz
•√
2
≤ 0, where F◦

• denotes the components of the contact forces along the x

or y axis that are associated with the feet or chair.

With these criteria in mind, the results that we will show indicate that both motions

are equally capable at handling weight variations and user force disparities. However,

the chair-to-crouch-to-stand motion is better at handling asymmetric motions and spas-

ticity, while the chair-to-stand motion can handle a broader range of chair heights.

Under all of the perturbations, the closed-loop trajectories of both motions respect the

ZMP and motor limit constraints. A large friction coefficient between the chair and

the exo-system can be used to increase the robustness of the motions against torque

asymmetry, spasticity, and variations to the user characteristics. The data that led to

these conclusions is presented in the following subsections.

3.7.2 User Characteristics

URDFs were generated for additional users to test the sensitivity of the motions to

weight and height. The weight and height of these additional users can be found in
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Table 3.1. Note that our analysis will focus on the weight of the user. The various

users in the exoskeleton result in various plant models. To enforce this perturbation,

we introduce a discrepancy in the plant model used for simulation, while the controller

is always based on the nominal model.

Table 3.1: The height and weight of the various users used to study the closed-loop
behavior of the chair-to-stand and chair-to-crouch-to-stand motions

Name Weight (kg) Height (m)

User 1 54 1.62

User 2 68 1.8

Nominal 73 1.73

User 3 90 1.8

The results for both motions exhibit no joint angle violations. However, both

motions violate the friction cone constraint in the sitting domain for some users. This

violation occurs, even though the friction constraints are explicitly implemented in the

controllers, because of the model error. With the nominal value of µchair = 0.5, chair-to-

stand has a friction constraint violation for User 1 and User 3. Chair-to-crouch-to-stand

on the other hand, has friction constraint violations for all the non-nominal users. For

User 1, the feet and chair friction constraints are violated for chair-to-stand, while

only the chair friction constraint is violated for chair-to-crouch-to-stand. Due to the

large chair friction cone constraint violations during chair-to-crouch-to-stand and feet

friction cone constraint violation during chair-to-stand (see Table 3.2, Figure 3.16, and

Figure 3.17), the SU controller is unable to successfully get the lightest user (User 1)

to stand up. Even though there are other users for which the friction constraint is

violated, we only consider User 1 a failed case because the violations for the other
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users are only observed for the chair and are fairly small. In fact, these friction

constraint violations can be mitigated by the user exerting the necessary additional

force or by using a chair with a higher friction coefficient. For instance, by setting

µchair = 0.6 and µchair = 0.7 for User 3, we are able to stop the exo-system from

slipping in the chair for chair-to-stand and chair-to-crouch-to-stand respectively.

With User 1 out, the maximum torso pitch acceleration for chair-to-stand occurs

for User 3 during the standing domain and is 120 deg
s2 . The maximum torso pitch

acceleration for chair-to-crouch-to-stand is 174 deg
s2 and it is observed for User 2

during the standing shift domain. Even though the chair-to-stand motion has a lower

maximum torso pitch acceleration, the results from both motions should be comfortable

for the user. As a result, we can conclude that the performance of both motions is

equal in terms of torso pitch acceleration. The torso pitch acceleration profiles can be

found in Figure 3.18 and Figure 3.19. The tracking and steady state errors for both

controllers for both motions are small. The resulting user force from the chair-to-stand

motion is close to the nominal values. The user force for chair-to-crouch-to-stand is

similar to the nominal value except for User 3 whose results require an additional

user force norm of 12 N during the standing shift domain; see Figure 3.20.

The SU and SP controllers are unable to perform a successful standing motion for

users who weigh significantly less than the nominal user. The range of users that can

stand up successfully is the same for both controllers, 68 kg to 90 kg. Note that

90 kg is the heaviest user that Atalante can handle. Therefore, we can conclude that

both motions perform equally with various plant models. A summary of the results

can be found in Table 3.2.

3.7.3 Varying Chair Height

Simulations for chair heights ranging from 0.45 to 0.75 m are run for both motions.

The trajectories resulting from the chair-to-stand motion violate the upper bound of the
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Table 3.2: User Characteristics: A comparison of the closed-loop chair-to-crouch-to-stand
and chair-to-stand trajectories obtained from the SU and SP controllers for different
users in the exoskeleton. The characteristics of the users are described in Table 3.1.
The user force displayed in the table is the total force the user needs to provide
using both arms. For all the values of interest, except for the steady state error of
SP, the Domain/Virtual constraint gives the domain where the maximum value occurs.
For the steady state error of SP, the virtual constraints where the maximum error
occurs are instead given in the Domain/Virtual constraint. The errors are displayed as
maximum position and angle errors. Recall that the first three components of (3.42)
are positions and the rest are angles.

Chair-to-stand Chair-to-crouch-to-stand

Name Violated
Domain/
Virtual

constraint
Max value Nominal value Violated

Domain/
Virt Constr Max value Nominal value

Joint
constraint

(deg)
× × × × × × × ×

Friction
constraint

(N)
chair Sitting

52.5
(for User 1) × Feet

Chair Sitting
Feet:13.5

Chair:14.2
(for User 1)

×

Torso pitch
acceleration

(deg
s2 )

× Standing
extend

174.3
(for User 2) 106.1 × Sitting

-144.6
(for User 1) 58.7

User force
norm
(N)

× Standing
shift

62
(for User 3) 50.7 × Standing

35.5
(for User 3) 33.1

Tracking
error SU × Standing

extend
0.01

(for User 3) ∼ 0 × Standing
0.01

(for User 3 ) ∼ 0

Steady state
error SP

× Pos : all ∼ 0 m ∼ 0 m × Pos : all ∼ 0 m ∼ 0 m

× Angle : yd(4)
0.02 rad

(for User 3) ∼ 0 rad × Angle : yd(4)
0.02 rad

(for User 3) ∼ 0 rad
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Figure 3.16: User characteristics for Chair-to-Crouch-to-Stand: The chair friction cone
constraints during the SITTING domain for different users in the exoskeleton. The
characteristics of the users are described in Table 3.1. The results are calculated using
|F◦

• |−µ
Fz
•√
2
≤ 0, where F◦

• denotes the components of the contact forces along the x
or y axis that are associated with the feet or chair. Therefore, a value above zero
violates the friction constraint.

sagittal knee and hip joints for chair heights below 0.47 m; the maximum constraint

violation occurs at 0.45 m and is 4.6 deg. The trajectories obtained from the chair-

to-crouch-to-stand motion violate the sagittal ankle joint upper bound at chair heights

greater than 0.67 m; the maximum constraint violation is observed at 0.75 m and is

8.6 deg. Therefore, the range of operability for the chair-to-stand and chair-to-crouch-

to-stand motions based on joint bounds is 0.47-0.75 m and 0.45-0.67 m, respectively.

Even though the chair-to-crouch-to-stand motion has a lower ranger than the chair-to-

stand motion, the 2 cm difference is small enough to consider the two motions as

having the same lower range. The trajectories for the joints whose limits are violated

can be found in Figure 3.21 and Figure 3.22. Note that to conserve space only the

respective left joint trajectories are plotted for the symmetric chair-to-stand motion. We

continue our analysis using only the results within each motion’s range of operability

based on joint angle constraints.

The friction constraint is respected for both motions while the required user force

for both motions remains close to the nominal value. For both motions, the results
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(a) Chair X-axis Friction Cone Constraint
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(b) Chair Y-axis Friction Cone Constraint
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(c) Right Foot X-axis Friction Cone Constraint
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(d) Left Foot X-axis Friction Cone Constraint

Figure 3.17: User characteristics for Chair-to-Stand: The chair and feet friction cone
constraints during the SITTING domain for different users in the exoskeleton. The
characteristics of the users are described in Table 3.1. The results are calculated using
|F◦

• |−µ
Fz
•√
2
≤ 0, where F◦

• denotes the components of the contact forces along the x
or y axis that are associated with the feet or chair. Therefore, a value above zero
violates the friction constraint.
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(a) Sitting Pitch Acceleration
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(b) Standing Shift Pitch Acceleration
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(c) Standing Extend Pitch Acceleration

Figure 3.18: User characteristics for Chair-to-Crouch-to-Stand: The torso pitch accel-
eration during the SITTING, STANDING SHIFT, and STANDING EXTEND domains for
different users in the exoskeleton. The characteristics of the users are described in
Table 3.1. The jump in acceleration observed between the plots is caused by the
transition between domains.
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(a) Sitting Pitch Acceleration
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(b) Standing Pitch Acceleration

Figure 3.19: User characteristics for Chair-to-Stand: The torso pitch acceleration during
the SITTING and STANDING domains for different users in the exoskeleton. The
characteristics of the users are described in Table 3.1. The jump in acceleration
observed between the two plots is caused by the transition between the two domains.
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(a) Chair-to-Crouch-to-Stand Standing Shift User
Force
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(b) Chair-to-Stand Standing User Force

Figure 3.20: User characteristics for Chair-to-Crouch-to-Stand and Chair-to-Stand: The
user force during the STANDING SHIFT and STANDING domains for different users
in the exoskeleton. The characteristics of the users are described in Table 3.1. The
depicted user force is the combined force the user would have to apply with both
hands.
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for the torso pitch acceleration from the various chair heights exhibit a mirror like

pattern across the x axis with respect to the nominal pitch acceleration values in the

sitting domain. The chair-to-stand motion has similar maximum torso pitch acceleration

values for its lowest (0.47 m) and highest (0.75 m) chair height. This maximum value

occurs in the sitting domain and is 223.8 deg
s2 and −231 deg

s2 . The maximum torso

pitch acceleration values for chair-to-crouch-to-stand for the lowest and highest chair

values occur in the sitting and standing shift domain and are 147.8 deg
s2 and 120 deg

s2 .

The torso pitch acceleration profiles for the sitting and standing shift domains can

be found in Figure 3.23 and Figure 3.24. The torso pitch acceleration values are

within the threshold and the tracking and steady state errors are essentially zero for

both motions. Therefore, we can conclude that the chair-to-stand motion is better at

handling chair height variations than the chair-to-crouch-to-stand motion. More detailed

information on the resulting motions can be found in Table 3.3.

3.7.4 Zero User Force

To test the SU and SP controllers’ sensitivity to the user force provided, we run

a simulation where the user provides no assistance despite the controllers expecting

one. The results, which can be found in Table 3.4, show that the controllers are able

to achieve both motions with zero user force throughout the entire trajectory. With

no state bound and friction constraint violations, minimal tracking error, and absolute

maximimum torso pitch acceleration values of 60.3 deg
s2 and 128.4 deg

s2 for chair-to-

stand and chair-to-crouch-to-stand respectively, the resulting trajectories for both motions

are successful. Therefore, we can conclude that the controllers are not sensitive to

the user force and that they are able to compensate for misalignments in the user

provided assistance.
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Table 3.3: Various Chair Heights: A comparison of the closed-loop chair-to-crouch-to-
stand and chair-to-stand trajectories obtained from the SU and SP controllers for chair
heights ranging from 0.45-0.75m. Recall that the nominal chair height is 0.6m. The
user force displayed in the table is the total force the user needs to provide using
both arms.For all the values of interest, except for the steady state error of SP, the
Domain/Virtual constraint gives the domain where the maximum value occurs. For the
steady state error of SP, the virtual constraints where the maximum error occurs are
instead given in the Domain/Virtual constraint column. The errors are displayed as
maximum position and angle errors. Recall that the first two components of (3.42) are
positions and the rest are angles.

Chair-to-crouch-to-stand Chair-to-stand

Name Violated
Domain/
Virtual

constraint
Max value Nominal value Violated

Domain/
Virtual

constraint
Max value Nominal Value

Joint
constraint

(deg)
0.68 - 0.75m

Sitting
Standing

shift

8.6
(at 0.75m) × 0.48-0.45

Sit
Standing

4.6
(at 0.45m) ×

Friction
constraint

(N)
× × × × × × × ×

Pitch
Acceleration

(deg
s2 )

× Sit
147.8

(at 0.45m) 106.1 × Sit
-230.9

(at 0.75m) 58.7

User force
(N) × Standing

shift
56.5

(at 0.67m) 50.7N × Standing
33.4

(at 0.75m) 33.1

Tracking
error
SU

× All ∼ 0 ∼ 0 × All ∼ 0 ∼ 0

Steady state
error SP

× Pos : All ∼ 0 m ∼ 0 m × Pos : All ∼ 0 m ∼ 0 m
× Angle : All ∼ 0 rad ∼ 0 rad × Angle : All ∼ 0 rad ∼ 0 rad
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(a) Sitting Left Sag. Ankle
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(b) Standing Shift Left Sag. Ankle
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(c) Sitting Right Sag. Ankle
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(d) Standing Shift Right Sag. Ankle

Figure 3.21: Varying Chair Height for Chair-to-Crouch-to-Stand: The sagittal ankle joint
during the SITTING and STANDING SHIFT domains for chair heights ranging from
0.45-0.75m. The trajectory resulting from the nominal chair height (0.6m) is depicted
by the thick green line, while the black solid lines represent the lower and upper
bounds.
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(a) Sitting Left Sag. Knee
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(b) Standing Left Sag. Knee
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(c) Sitting Left Sag. Hip
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(d) Standing Left Sag. Hip

Figure 3.22: Varying Chair Height for Chair-to-Stand: The left sagittal knee and hip
joints during SITTING and STANDING domains for chair heights ranging from 0.45-
0.75m. The trajectory resulting from the nominal chair height (0.6m) is depicted by
the thick green, while the black solid lines represent the lower and upper bounds.
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(a) Sitting Pitch Acceleration
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(b) Standing Shift Pitch Acceleration

Figure 3.23: Various Chair Height for Chair-to-Crouch-to-Stand: The torso pitch accel-
eration during the SITTING and STANDING SHIFT domains for chair heights ranging
from 0.45-0.75m. The trajectory resulting from the nominal chair height (0.6m) is
depicted by the thick green line. The jump in acceleration observed between the two
plots is caused by the transition between the sit and SS domains.
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Figure 3.24: Various Chair Height for Chair-to-Stand: The torso pitch acceleration during
the SITTING domain for chair heights ranging from 0.45-0.75m. The trajectory resulting
from the nominal chair height (0.6m) is depicted by the thick green line.

Table 3.4: Zero User Force: A comparison of the closed-loop chair-to-crouch-to-stand
and chair-to-stand trajectories obtained from the SU and SP controllers when the user
provided no assistance.For all the values of interest, except for the steady state error
of SP, the Domain/Virtual constraint gives the domain where the maximum value
occurs. For the steady state error of SP, the virtual constraints where the maximum
error occurs are instead given in the Domain/Virtual constraint column. The errors are
displayed as maximum position and angle errors. Recall that the first three components
of (3.42) are positions and the rest are angles.

Chair-to-crouch-to-stand Chair-to-stand

Name Violated
Domain/
Virtual

constraint
Max value Nominal value Violated

Domain/
Virtual

constraint
Max value Nominal value

Joint
constraint

(deg)
× × × × × × × ×

Friction
constraint

(N)
× × × × × × × ×

Pitch
acceleration

(deg
s2 )

× Standing
shift 128.4 106.1 × Stand 60.3 33.1

Tracking
error
SU

× Standing
extend 0.002 ∼ 0 × Stand 0.004 ∼ 0

Steady state
error SP

× Pos : All ∼ 0 m ∼ 0 m × Pos : All ∼ 0 m ∼ 0 m
× Angle : All ∼ 0 rad ∼ 0 rad × Angle :All ∼ 0 rad ∼ 0 rad
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3.7.5 User Spasticity

We apply a 15 Nm flexion on individual knee angles and in pairs to simulate

spasticity. The value of 15 Nm is chosen based on the study by Franzoi et al [128]

where the maximum torque flexion observed for SCI at 60 deg
s was 8 NM. Since

the maximum knee velocity for both motions does not exceed 60 deg
s (31.5 deg

s and

30.7 deg
s for the nominal simulation results during chair-to-crouch-to-stand and chair-to-

stand respectively), 15 Nm is more than sufficient for testing. For both motions, there

are no joint angle and ZMP constraint violations, and the tracking and steady state

errors are small. Additionally, the user force for both motions is near the nominal

value. See Table 3.5 for more details.

Both motions, however, do exhibit friction cone constraint violations. When the

15 Nm is applied to the right knee and both knees the chair-to-crouch-to-stand motion

exhibits chair slipping along the x axis in the sitting domain. This slipping, however,

as was discussed before, can be alleviated by using a chair with a higher friction

coefficient. The maximum value of the friction constraint violation is 20.7 N, and

19.7 N when the spasticity occurs in the right and both knees respectively. No

friction bound constraint violations are observed when spasticity occurs in the left knee.

For chair-to-stand the left foot slips for all the spasticity tests. The highest friction

constraint violation for the left foot slipping are 0.16 N, 55.3 N, and 59.8 N for

spasticity on the right knee, left knee, and both knees respectively. Therefore, since

the constraint violation is quite large for the left and both knees we consider the

chair-to-stand motion to have failed the spasticity test for both of these situations. The

friction cone constraint can be found in Figure 3.18 and Figure 3.19.

We continue our analysis looking at just the chair-to-stand results from spasticity

on the right knee and chair-to-crouch-to-stand on the right, left, and both knees. The
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(a) Chair X-axis Friction Cone Constraint
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(b) Chair Y-axis Friction Cone Constraint

Figure 3.25: Spasticity for Chair-to-Crouch-to-Stand: The chair friction cone constraints
during the SITTING domain for spasticity induced in the left, right, and both sagittal
knees. The results are calculated using |F◦

• |−µ
Fz
•√
2
≤ 0, where F◦

• denotes the compo-
nents of the contact forces along the x or y axis that are associated with the feet
or chair. Therefore, a value above zero violates the friction constraint.

maximum torso pitch acceleration observed for both motions, −242.72 deg
s2 , occurs

during the standing extend domain of chair-to-crouch-to-stand for spasticity on both

knees and is well below our threshold for user comfort. We can now conclude that

the chair-to-crouch-to-stand motion deals with spasticity better than chair-to-stand can.

3.7.6 Asymmetric Motor Torque

To mimic asymmetry in motor torque, a 15% motor deficiency is introduced in

the right sagittal knee, right sagittal knee and hip, and all the right motors. For

both motions, there is no joint angle constraint violation. The maximum torso pitch

acceleration for both motions, 139.7.4 deg
s2 for chair-to-crouch-to-stand and 64.2 deg

s2 for

chair-to-stand, occur with the asymmetry in all the right motors. Since these values

are below our threshold, and the resulting user force for both motions is close to

the nominal value, both motions should be comfortable for the user. The tracking and

steady state error for both motions are small.
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Table 3.5: User Spasticity:A comparison of the closed-loop chair-to-crouch-to-stand and
chair-to-stand trajectories obtained from the SU and SP controllers when spasticity is
induced in the right knee, left knee, and both knees. The user force displayed in
the table is the total force the user needs to provide using both arms. For all the
values of interest, except for the steady state error of SP, the Domain/Virtual constraint
gives the domain where the maximum value occurs. For the steady state error of
SP, the virtual constraints where the maximum error occurs are instead given in the
Domain/Virtual constraint column. The errors are displayed as maximum position and
angle errors. Recall that the first three components of (3.42) are positions and the
rest are angles.

Chair-to-crouch-to-stand Chair-to-stand

Name Violated
Domain/

Virt Constr Max Value Nominal Value Violated
Domain/

Virt Constr Max Value Nominal Value

Joint
constraint

(deg)
× × × × × × × ×

Friction
constraint

(N)
Chair Sitting

Chair x : 20.7
(for right knee)

No violation
(for left knee)

Chair x : 19.7
(for both knees)

× Feet
Chair Sitting

Chair x : 28.7
left foot x : 0.16

(for right knee)

left foot x : 55.76
right Foot x : 0.34

(for left knee)

Left foot : 59.8
Chair : 37.4

(for both knees)

×

Pitch
acceleration

(deg
s2 )

× Standing
extend

-204.1
(for right knee)

117.9
(for left knee)

-242.7
(for both knees)

106.1 × Standing
Stopping

Stand : 202
(right knee)

Stand : 53.7
(for left knee)

Stopping : 145
(for both knees)

58.7

User force
(N) × Standing

shift
50.8

(for All) 50.7N × Standing
33.2

(for All) 33.1

Tracking
error
SU

× Standing
extend

0.02
(for left knee) ∼ 0 × Standing

0.01
(for right knee) ∼ 0

Steady state
error SP

× Pos : yd(1)
0.001 m

(for left knee) ∼ 0 m × Pos : yd(1)
0.001 m

(for left knee) ∼ 0 m

× Angle : yd(6)
0.06 rad

(for both knees) ∼ 0 rad × Angle : yd(6)
0.05 rad

(for both knees) ∼ 0 rad
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(a) Chair X-axis Friction Cone Constraint
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(b) Sit Chair Y-axis Friction Cone Constraint
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(c) Left Foot X-axis Friction Cone Constraint
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(d) Left Foot Y-axis Friction Cone Constraint

Figure 3.26: Spasticity for Chair-to-Stand: The chair and left foot friction cone con-
straints during the SITTING domain for spasticity induced in the left, right, and both
knees. The results are calculated using |F◦

• |−µ
Fz
•√
2
≤ 0, where F◦

• denotes the compo-
nents of the contact forces along the x or y axis that are associated with the feet
or chair. Therefore, a value above zero violates the friction constraint.
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Slipping is observed in the right foot and the chair along the x axis when the

torque reduction is applied on the right knee motor for chair-to-stand. The right

foot friction constraint violation of 14 N is significant enough for us to consider the

chair-to-stand motion to have failed for motor asymmetry in the right knee. The chair-

to-stand motion also violates the friction cone constraint of the chair when asymmetry

occurs in all motors. However, the chair friction constraint violation is small. When

the asymmetry occurs both in the right sagittal knee and hip, the chair-to-stand motion

does not violate the friction constraint. In comparison, the chair-to-crouch-to-stand mo-

tion exhibits no friction constraint violations when there’s torque reduction in the right

sagittal knee, and right sagittal knee and hip. Chair-to-crouch-to-stand, however, does

experience slipping in the chair along the x and y axis when the torque reduction is

present in all right motors. The maximum value of the chair friction cone constraint

violation is 42.2 N. Even though the violation of the friction cone constraint of the

chair can be eliminated by using a chair with higher friction coefficient and by the

user exerting the necessary force, a violation of 42.2 N is significant enough for us

to consider the chair-to-crouch-to-stand motion to have failed the robustness test when

the motor deficiency occurs on all right motors.

Due to the fact that it’s highly unlikely to have asymmetry occur in all motors

simultaneously, we can conclude, if we remove the results for asymmetry in all motors,

that the chair-to-crouch-to-stand motion is better at handling torque asymmetry. For

more details, see Table 3.6, Figure 3.27, and Figure 3.28.

3.8 Comparing Our Controller’s Performance to the Literature

In this section, we compare the SU controller of Section 3.6 to related work in

the literature. We seek to highlight the utility of the design philosophy in Section
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Table 3.6: A comparison of the closed-loop chair-to-crouch-to-stand and chair-to-stand
trajectories obtained from the SU and SP controllers for torque asymmetry in the
sagittal (sag.) knee motor, sagittal knee and hip motors, and all the motors.Even
though asymmetry in all motors is unlikely, it is an interesting case to study. The
user force displayed in the table is the total force the user needs to provide using
both arms. For all the values of interest, except for the steady state error of SP,
the Domain/Virtual constraint gives the domain where the maximum value occurs. For
the steady state error of SP, the virtual constraints where the maximum error occurs
are instead given in the Domain/Virtual constraint column. The errors are displayed as
maximum position and angle errors. Recall that the first three components of (3.42)
are positions and the rest are angles.

Chair-to-crouch-to-stand Chair-to-stand

Name Violated
Domain/
Virtual

constraint
Max value Nominal value Violated

Domain/
Virtual

constraint
Max value Nominal value

Joint
constraint

(deg)
× × × × × × × ×

Friction
constraint

(N)
Chair Sitting

No violation
(for sag.

knee)

No violation
(for sag.

knee & hip)

Chair x:16.7
Chair y:42.2

(for all
sag. motors)

× Right foot
Chair Sitting

Right foot x : 14.5
Chair x : 3.47
Chair y : 0.15

(for sag.
knee)

No violation
(for sag.

knee & Hip)

Chair : 6.5
(for all

sag. motors)

×

Pitch
acceleration

(deg
s2 )

× Standing
shift

76.5
(for sag.

Knee)

-103.34
(for sag.

knee & hip)

139.7
(for all

sag. motors)

106.1 × Standing

53.68
(for sag.

knee)

54.55
(for sag.

knee & hip)

64.2
(for all

sag. motors)

58.7

User force
(N) × Standing

shift

50.7
(for all

tests)
50.7N × Standing

33.4
(for all

sag. motors)
33.1

Tracking
error
SU

× Standing
extend

0.02
(for all

sag. motors)
∼ 0 × Sitting

0.01
(for sag.

knee & Hip)
∼ 0

Steady state
error SP

× Pos :All ∼ 0 m ∼ 0 m × Pos : All ∼ 0 m ∼ 0 m

× Angle : yd(6)
0.02 rad
(for sag.

knee & hip)
∼ 0 rad × Angle : yd(6)

0.01 rad
(for sag.

knee & hip)
∼ 0 rad
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(a) Chair X-axis Friction Cone Constraint
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(b) Chair Y-axis Friction Cone Constraint

Figure 3.27: Asymmetric Torque for Chair-to-Crouch-to-Stand: The chair friction cone
constraints during the SITTING domain for torque asymmetry in the sagittal knee motor,
sagittal knee and hip motors, and all the motors. The results are calculated using
|F◦

• |−µ
Fz
•√
2
≤ 0, where F◦

• denotes the components of the contact forces along the x
or y axis that are associated with the feet or chair. Therefore, a value above zero
violates the friction constraint.

3.4.3, where control objectives were selected to have minimal conflict with the contact

constraints of the exo-system, while ensuring that the actuators of the exoskeleton are

effectively6 used to implement the constraints. The comparison will be done with

respect to perturbations in the chair height and the user mass-inertia parameters. We

selected these two perturbations because they are likely to be encountered in practice.

The nominal values used here are the same as those used in Section 3.7.

The controller objectives in the literature consist of a combination of the exo-

system’s CoM and the (relative) joint angles of the exoskeleton. Moreover, they are

applied to planar models. To account for the full 3D setting of our work, we selected

6We refer to the condition number constraint on our design process.
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(a) Chair X-axis Friction Cone Constraint
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(b) Chair Y-axis Friction Cone Constraint
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(c) Left Foot X-axis Friction Cone Constraint
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(d) Left Foot Y-axis Friction Cone Constraint

Figure 3.28: Asymmetric Torque for Chair-to-Stand: The chair and left foot friction
cone constraints during the SITTING domain for torque asymmetry in the sagittal knee
motor, sagittal knee and hip motors, and all the motors. The results are calculated
using |F◦

• |−µ
Fz
•√
2
≤ 0, where F◦

• denotes the components of the contact forces along
the x or y axis that are associated with the feet or chair. Therefore, a value above
zero violates the friction constraint.
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two sets of control objectives from [20, 23, 25–27, 29, 32, 104, 123], as follows,

ylit1 =



CoMX

CoMY

ψ

CoMZ

qleft
knee−qright

knee
2

qleft
sag.ankle+qright

sag.ankle
2



ylit2 =



θ

ϕ

ψ

qleft
knee+qright

knee
2

qleft
knee−qright

knee
2

qleft
sag.ankle+qright

sag.ankle
2



(3.44)

Here θ , ϕ , and ψ are the torso pitch, roll, and yaw angle respectively.

To implement control objectives in (3.44) we design a QP nput-output linearizing

controller based on [20, 29]. The QP minimizes the error between the nominal and

applied motor torques, and the nominal and applied user force, similar to our SU

controller. The QP also implements the dynamic constraints and torque bounds. We

will refer to the two control objectives and the QP-based controller from the literature

as the baseline control objectives and the baseline controller, respectively.

For both sit-to-stand motions, our control objectives are better at respecting the

contact constraints and they result in lower torso pitch acceleration. We conjecture that

the latter is because our control objectives are more effective at deploying the motor

torques due to the bound on the condition number. The lower torso pitch acceleration

augments user comfort. For brevity, we only present the data for chair-to-stand that

led us to these conclusions. All control objectives function correctly under nominal

conditions. At a chair height of 0.62 m, that is 0.02 m above the nominal value

of 0.60 m, ylit1 results in a force violation at the feet of 134 N, ylit2 results in a

violation of 174 N, while our constraints (under the same baseline QP-IO controller as

used for ylit−1 and ylit−2), results in a violation7 of 8 N. When the user model is

7To be clear, our objectives experience no violations when we use the QP formulated in Section 3.6.

91



perturbed, the baseline control objectives are unable to achieve the sit-to-stand motion

with any of the users due to large friction constraint violations. Our control objectives,

however, are able to successfully achieve the sit-to-stand motion with User 3, with a

maximum torso pitch acceleration of only 69.8 deg
s2 , which is less than 20% of the

allowed upper bound.

We conclude that the baseline QP-IO controller and control objectives are neither

robust to variations in chair height nor to users lighter than the nominal user. There-

fore, in comparison to the baseline controller, our controller, SU, is able to reject

more perturbations.

3.9 Conclusion

We have designed and analyzed two motions, chair-to-stand and chair-to-crouch-to-

stand, for the exoskeleton Atalante, that successfully performed fully assisted sit-to-stand

motions even in the presence of perturbations. Constrained optimization, performed

using FROST, was utilized to ensure that the open-loop behavior of the two motions

were feasible. Feasibility was defined in terms of user comfort, dynamic feasibility,

and hardware limitations. We derived the dynamic equations using the full dynamic

model of the exoskeleton, and incorporated the user force in the equations of mo-

tion. The equations of motion for both the, chair-to-stand and chair-to-crouch-to-stand

motions were highly constrained, due to the various contact points, and therefore un-

derdetermined with respect to the motor torques. To address this, we developed, for a

computed-torque controller, a novel way of systematically designing virtual constraints so

that they “do not fight” the contact constraints for highly constrained systems. Along

the way, we also introduced a formulation that allowed the control actions to “fight”

against a specific contact constraint to induce a domain transition while respecting

other desired contact constraints.

To analyze and compare the closed-loop behavior of the two motions, we designed
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two QP-based computed-torque controllers and conducted physically motivated robustness

tests. The choice of a QP-based controller allowed to select the vector of motor

torques of smallest norm that satisfied the control objectives, as expressed by a set of

virtual constraints. Our results indicated that both motions can equally handle variations

to user characteristics and user force disparities. In fact, our analysis showed that

it is possible to successfully stand up with no user force under both motions. The

chair-to-crouch-to-stand motion, however, was more well equipped to handle asymmetric

perturbations, while the chair-to-stand excelled at handling variations to the chair height.

To improve the operational range of either motion, for perturbations that result in

incorrect contact forces, a chair with a high friction coefficient could be specified or

the motion could be redesigned for the new environmental conditions.

To check the effectiveness of our method, we compared our control objectives and

sit-to-stand controller to those found in the literature. From our analysis, we found

that our control objectives were better at respecting contact constraints and resulted

in motions that required less torso pitch acceleration. Additionally, our sit-to-stand

controller was better equipped at handling perturbations.

Even though the methods presented in this chapter are illustrated using the sit-

to-stand motion and for Atalante, our methodology can easily be adopted for other

motions with multiple contact points and other exoskeletons or humanoids.
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Chapter 4

Accounting for Contact Dynamics in Robust Comfortable Sit-to-Stand

Motions of 3D Lower-limb Exoskeletons

4.1 Introduction

In the previous chapter, we focused on designing and analyzing two motions, namely

chair-to-stand and chair-to-crouch-to-stand, for the exoskeleton Atalante. These motions

were successfully able to perform fully assisted sit-to-stand movements. Due to the

highly constrained nature of the equations of motion, we introduced a method to

systematically design virtual constraints for highly constrained systems. To achieve the

sit-to-stand motions and safely come to a stop in a standing position, we designed two

quadratic program-based computed-torque controllers. Lastly, we analyzed the closed-loop

behaviors of the two sit-to-stand motions under the two controllers using physically

motivated robustness tests. The analysis, however, was done on closed-loop motions

derived in the FROST simulator, which does not consider contact dynamics and, there-

fore, does not simulate real-world conditions. Recall that FROST is the open-source

package utilized to generate the trajectories of the two sit-to-stand motions.

Therefore, to emulate the real-world conditions the exoskeleton would operate in,

we continue the analysis of the closed-loop sit-to-stand motions with two simulators

MuJoCo [129] [130] and Jiminy [131] that do take contact dynamics into account.

This chapter will go over the preliminary closed-loop chair-to-stand motions obtained

from the two simulators. Unfortunately, due to the Atalante robot breaking, we were
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unable to conduct any hardware tests. The work presented here is a collaboration with

Prof. Ayonga Hereid and Ph.D. candidate Victor Paredes at The Ohio State University.

4.2 Problem Description

In line with Chapter 3, we use the floating base equations of motion described by

(3.1) and (3.2), the generalized coordinates listed in (3.3) and the same definition for

the assistive force from the user. Recall that the user force is defined to act at the

top of the torso in the torso’s body coordinate frame, and it is assumed that there

is no net moment generated by the user. The chair-to-stand motion, as described in

Section 3.2.2, consists of two domains, the sitting domain and the standing domain.

For this motion, the center of mass is simultaneously shifted forward and extended.

In contrast to Chapter 3, where the exoskeleton user weighed 73kg with a height

of 1.73m, this chapter uses a mannequin with a weight of 61.5kg and only an upper

body. Thanks to the change in users, the nominal chair-to-stand trajectory derived in

the previous chapter may no longer be optimal. Therefore, the controller needs to

account for the user discrepancy and the ground contact dynamics while tracking the

nominal chair-to-stand trajectory. The total weight of the exoskeleton and the mannequin

combined is 135.92kg. The chair height is set to 0.6m, and the friction coefficient

for both the chair and feet is set to 0.9. Additionally, the torsional friction for the

feet is set to 900.

4.3 Controller

Due to the underdetermined nature of the equations of motion for the sit-to-stand

motion, as detailed in Chapter 3, we design a quadratic program-based computed-

torque controller. Like the SU controller described in Section 3.6.1, the objective of

the controller here is, given a user force for each time instance, t, to select motor

torques of minimal norm such that disturbances to the nominal motion are attenuated.
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To avoid inverting the inertial matrix and, thus, numerical instabilities, we reformulate

the equations of motion as follows:

D −B −J⊺

J 0 0


︸ ︷︷ ︸

Ãeq


q̈

u

Γ

=

−C−G+ J⊤extζ

−J̇q̇


︸ ︷︷ ︸

b̃eq

(4.1)

where D, B, C, and G are the inertia, torque distribution, Coriolis, and gravity

matrices/vectors, respectively. J and Jext are jacobians that map the contact wrenches,

Γ, and the user force, ζ , to the generalized coordinates, q, respectively. u is the

motor torques. Given this formulation, the optimization variables for the controller

are the acceleration of the generalized coordinates, the motor torques, and the contact

wrenches. Note that the user force is given as an external input, using the force

profile derived in Chapter 3 and depicted in Figure 3.6, as we do not want the

controller to rely on the user making corrections to the trajectory. As discussed in

Chapter 3, we assume that the user will learn to provide the external force needed

at the "right" time.

To account for the infinite number of solutions that are characteristic of under-

determined equations, the controller is set to track the nominal motor torques and

contact wrenches derived from the optimization in Chapter 3. Lastly, similar to the SU

controller, the equations of motions, (4.1), ZMP, torque bounds, and friction constraints

are included as constraints to ensure feasibility. The controller is expressed as a QP

in the form:
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q̈(t)

u(t)

Γ(t)

 := argmin
q̈∈R18,u∈R12,Γ∈R15 or 12

αq̈||q̈||22 +αu||u−u∗(t)||22 +αΓ||Γ−Γ
∗(t)||22

subject to

Ãeq(q(t))

u

ζ

 = b̃eq(q(t), q̇(t))

{Px
∗ ,P

y
∗} ⊆ SP

Fz
• ≥ 0

|Fx
• | ≤ µ

Fz
•√
2

|Fy
• | ≤ µ

Fz
•√
2

|Mz
◦| ≤ γFz

◦

ulb ≤ u ≤ uub

(4.2)

where Fx
• , Fy

• and Fz
• denote the components of the contact forces associated with

the chair or the feet, µ• is an assumed friction coefficient for the chair or feet, γ

is a torsional friction coefficient, and Mz
• and Fz

• are the moments about and forces

along the z-axis for the feet. Px
∗ and Py

∗ are the x and y components of the ZMP,

while SP is the support polygon defined as described Section 3.2.3. αq̈, αu and αΓ

are the weights for the optimization variables. Recall that the size of the contact

wrenches will be 15 and 12 for the sitting and standing domains, respectively.

4.4 Results

This section assesses the preliminary resulting closed-loop behaviors of the chair-to-

stand motion in the MuJoCo and Jiminy simulator. To account for any perturbations

that might occur at the start of the simulation as a function of the simulators, such
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as the robot dropping into position, a PD controller is used for the first four seconds

to stabilize the exoskeleton.

4.4.1 Jiminy

It was challenging to transition from the sitting to the standing domain in Jiminy

with a non-zero ankle torque due to how the ground contact is modeled. For instance,

when the PD controller applied a constant 90Nm torque to the sagittal ankle during

the sitting domain, the feet pitched. To prevent the feet from rolling or pitching, we

add 80kg to the mass of the sagittal and henke ankles. With this assistance, the

exo+mannequin system successfully completes the chair-to-stand motion as depicted in

Figure 4.1.

The resulting closed-loop motion respects the joint and torque bounds and closely

tracks the nominal torque trajectories. Figures 4.2 and 4.3 show the resulting joint

and torque trajectories, respectively. Additionally, the resulting ZMP closely follows the

nominal ZMP as depicted in Figure 4.5. The tracking error has a maximum value of

about 0.7, as depicted in Figure 4.4. However, considering the closed-loop motion’s

tracking of the nominal torque and ZMP, the discrepancy in the users, and the fact

that the virtual constraints are dimensionless, we can conclude that a value of 0.7 is

acceptable.

4.4.2 MuJoCo

The additional ankle mass we had to apply in Jiminy led us to switch to MuJoCo.

The preliminary closed-loop motion in MuJoCo successfully stands up with no extra

ankle weight, as shown in Figure 4.6. Similar to the motion in Jiminy, this motion

closely follows the nominal torque trajectory and respects joint and torque bounds.

However, in the standing domain that begins at 5 seconds, the sagittal ankle is at its

bounds, and the torque profiles oscillate. Gaining tuning can potentially mitigate these

98



(a) Base X (b) Base Z

(c) Snapshots of the exo+mannequin system standing

Figure 4.1: Jiminy: The x and z trajectories of the base and the snapshots of the
exo+mannequin system show the system standing up. The y trajectory is not included
as the motion mainly occurs in the sagittal plane. Note that the snapshots depict legs,
but the mannequin has no legs.
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(a) Left Sagittal Knee (b) Right Sagittal Knee

(c) Left Sagittal Ankle (d) Right Sagittal Ankle

(e) Left Sagittal Hip (f) Right Sagittal Hip

Figure 4.2: Jiminy: The chair-to-stand closed-loop trajectories show that the joints
respect the joint constraints. Recall that a PD controller is used for the first 4
seconds. The red dashed lines depict the bounds while the black dashed line indicates
the end of the PD controller.
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(g) Left Henke Ankle (h) Right Henke Ankle

(i) Left Transverse Hip (j) Right Transverse Hip

(k) Left Frontal Hip (l) Right Frontal Hip

Figure 4.2: Jiminy: The chair-to-stand closed-loop joint trajectories(Cont.)
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(a) Left Sagittal Knee (b) Right Sagittal Knee

(c) Left Sagittal Ankle (d) Right Sagittal Ankle

(e) Left Sagittal Hip (f) Right Sagittal Hip

Figure 4.3: Jiminy: The chair-to-stand closed-loop trajectories show that the resulting
torques respect the torque bounds and closely track the nominal torque trajectories
throughout the entire motion. Recall that a PD controller is used for the first 4
seconds. The red dashed lines depict the bounds while the black dashed line indicates
the end of the PD controller.
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(g) Left Henke Ankle (h) Right Henke Ankle

(i) Left Transverse Hip (j) Right Transverse Hip

(k) Left Frontal Hip (l) Right Frontal Hip

Figure 4.3: Jiminy: The chair-to-stand closed-loop torque trajectories (Cont.)
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(a) Sitting Tracking Error (b) Standing Tracking Error

Figure 4.4: Jiminy: Chair-to-standclosed-loop nominal tracking error plots. The virtual
constraints (yi) are dimensionless.

(a) ZMP X (b) ZMP Y

Figure 4.5: Jiminy: The resulting ZMP trajectory in comparison to the nominal ZMP
trajectory. The red dashed lines are the bounds of the ZMP support polygon.
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oscillations and the sagittal ankles operating at their bounds. The joint and torque

trajectories are illustrated in Figure 4.7 and Figure 4.8, respectively.

The tracking error is illustrated in Figure 4.9, and similar to the tracking error

observed in Jiminy, the maximum value is approximately 0.85. Following our analysis

in the previous section, we can conclude that this value is acceptable. Furthermore, it

is possible to reduce the tracking error through gain tuning.

Despite not tracking the nominal profile in the x-axis, the ZMP profile remains

within the bounds of the support polygon, as demonstrated in Figure 4.10. However,

when transitioning from sitting to standing, the feet slide roughly 0.03m in the x

direction despite the friction cone constraints being met. Figure 4.11 depicts the friction

cone constraints. The sliding phenomenon can, therefore, be attributed to integration

drift in the contact constraint. In the next paragraph, we will discuss how to mitigate

this drift.

Recall that a contact constraint is defined as follows:

c = c0 − cd

ċ = Jq̇

c̈ = Jq̈+ J̇q̇

where c0 and cd are the current and desired positions of the contact respectively

and J := ∂c0
∂q . We assume cd is a constant, and hence c̈d = 0. As discussed in Section

3.2.1, the contact is implemented at the acceleration level and achieved when c ≡ 0.

J := ∂c0
∂q . In particular, a contact constraint is not identically satisfied when either c ̸= 0,

ċ ̸= 0, or c̈ ̸= 0. Therefore, we correct the accumulated error in c and ċ by defining

the acceleration of the contact constraint as:
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(a) Base X (b) Base Z

(c) Snapshots of the exo+mannequin system standing

Figure 4.6: MuJoCo: The x and z trajectories of the base and the snapshots of the
exo+mannequin system show the system standing up. The y trajectory is not included
as it the motion mainly occurs in the sagittal plane. Note that the snapshots depict
legs, but the mannequin has no legs.

Jq̈+ J̇q̇ =−Kc−Dċ (4.3)

where K and D are coefficients that are selected such that c = 0.

4.5 Conclusion

This chapter extended our analysis from Chapter 3 by simulating closed-loop motions

in the MuJoCo and Jiminy simulators which incorporate contact dynamics. The simula-

tions in this chapter involved a switch in the nominal user to a mannequin, differing

from our previous approach. Unfortunately, hardware tests could not be conducted due

to Atalante breaking.

We developed a quadratic-program-based computed torque controller similar to the
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(a) Left Sagittal Knee (b) Right Sagittal Knee

(c) Left Sagittal Ankle (d) Right Sagittal Ankle

(e) Left Sagittal Hip (f) Right Sagittal Hip

Figure 4.7: MuJoCo: The chair-to-stand closed-loop trajectories show that the joints
respect the joint constraints. Recall that a PD controller is used for the first 4
seconds. The red dashed lines depict the bounds while the black dashed line indicates
the end of the PD controller.

107



(g) Left Henke Ankle (h) Right Henke Ankle

(i) Left Transverse Hip (j) Right Transverse Hip

(k) Left Frontal Hip (l) Right Frontal Hip

Figure 4.7: MuJoCo: The chair-to-stand closed-loop joint trajectories(Cont.)
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(a) Left Sagittal Knee (b) Right Sagittal Knee

(c) Left Sagittal Ankle (d) Right Sagittal Ankle

(e) Left Sagittal Hip (f) Right Sagittal Hip

Figure 4.8: MuJoCo: The chair-to-stand closed-loop trajectories show that the resulting
torques respect the torque bounds and closely track the nominal torque trajectories
throughout the entire motion. Recall that a PD controller is used for the first 4
seconds. The red dashed lines depict the bounds while the black dashed line indicates
the end of the PD controller.
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(g) Left Henke Ankle (h) Right Henke Ankle

(i) Left Transverse Hip (j) Right Transverse Hip

(k) Left Frontal Hip (l) Right Frontal Hip

Figure 4.8: MuJoCo: The chair-to-stand closed-loop torque trajectories (Cont.)
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(a) Sitting Tracking Error (b) Standing Tracking Error

Figure 4.9: MuJoCo: Chair-to-standclosed-loop nominal tracking error plots. The virtual
constraints (yi) are dimensionless.

(a) ZMP X (b) ZMP Y

Figure 4.10: MuJoCo: The resulting ZMP trajectory in comparison to the nominal
ZMP trajectory. The red dashed lines are the bounds of the ZMP support polygon.
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(a) Sitting X-axis Friction Constraint (b) Sitting Y-axis Friction Constraint

(c) Standing X-axis Friction Constraint (d) Standing Y-axis Friction Constraint

Figure 4.11: MuJoCo: The chair and feet friction cone constraints
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SU controller to track the nominal chair-to-stand trajectory outlined in Chapter 3.

During implementation in Jiminy, challenges emerged when transitioning from sitting to

standing due to the ankle torques causing the feet to roll or pitch. This problem was

resolved by adding mass to the ankles. The resulting closed-loop motion respected the

joint and torque bounds and closely tracked the nominal torque and ZMP trajectories.

Although a peak tracking error of 0.7 was observed, this value was deemed acceptable

considering user discrepancies, the controller’s tracking of the nominal ZMP and torque

trajectories, and the dimensionless virtual constraints.

Switching to MuJoCo due to the ankle mass adjustments in Jiminy, preliminary

closed-loop motions showed successful standing without added ankle weight. The re-

sulting motion closely followed nominal torque trajectories, adhered to joint and torque

bounds, respected friction cone constraints, and maintained ZMP within support polygon

bounds. However, a 0.03m sliding of the feet along the x-axis was noted. The sliding

was attributed to integration drift, and a solution was discussed. Oscillations in motor

torques, the sagittal ankles operating at their lower bounds, and a maximum tracking

error of 0.85 were observed in the standing domain but deemed improvable with gain

tuning. Note that the tracking error of 0.85 was also deemed acceptable, in line with

the Jiminy results.
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Chapter 5

Fall Prediction of a Planar Bipedal Robot

5.1 Introduction

This chapter develops and analyzes physics-based and data-based fall prediction

algorithms for the planar four-link robot. The core work presented in this chap-

ter was previously published in [132] and presented as a late-breaking abstract in

the poster session and the Robot Safety workshop during IROS 2023. The late-

breaking abstract can be found at the following link https://www.evamungai.com/

fall-prediction-planar-four-link. The co-author of [132] was Jessy W. Grizzle.

5.1.1 Motivation

As discussed in Chapter 1, the objective of a fall prediction algorithm is to detect

all critical faults in a timely and accurate manner. However, early fall prediction

is challenging due to the masking effects of controllers (through their disturbance

attenuation actions), the direct relationship between lead time and false positive rates,

and the temporal behavior of the faults. To simplify the fall prediction problem while

providing a pathway to scale up to more complex dynamic motions and robots, this

chapter explores the development of a fall prediction algorithm for the task of standing

with the planar four-link robot. As the task of interest is standing, we define a “fall’

as any link other than the feet coming in contact with the ground [68] or the feet

being off the ground.

114

https://www.evamungai.com/fall-prediction-planar-four-link
https://www.evamungai.com/fall-prediction-planar-four-link


5.1.2 Literature Review

A fall prediction algorithm has been implemented in the commercial bipedal robot,

Digit [2]. However, this does not appear to be the norm. The objective of most

bipedal fall prediction algorithms found in literature is to reliably and promptly detect

all abrupt faults. Incipient and intermittent faults have not been addressed in the

literature.

Fault detection reliability has been addressed using a combination of evaluation terms

from the confusion matrix, such as false positive and negative rates [7–9, 34–38, 47, 48].

Thresholds, based on factors such as the center of mass height, have been proposed to

minimize the percentage of false negative fault declarations in [8], while the output of

the fall prediction algorithm is monitored for a certain number of windows (Nmonitor)

to reduce the false positive rate in [8, 35, 133]. Lead time, defined as the difference

between the time of the actual fall and the predicted fall, is used to inform whether

or not sufficient time is left for the implementation of recovery/reflexive motions. It is

desirable to have a large lead time; however, maximizing lead time can increase false

positive rates.

Fall prediction algorithms can either rely on physics-based [39–41] or data-based

models [8, 9, 34, 35, 38, 47, 48]. Physics-based models can suffer from model inaccuracies,

while data-based models are limited by the amount of data available. For both physics-

based and data-based models, the objective is to obtain either a model of the nominal

(safe) states and/or of the faulty (unsafe) states. However, neither of these models is

straightforward to produce. In practice, it is infeasible to quantify all faults that can

lead to a fall, and the faulty states in any given trajectory are irregular and rare.

Both of these conditions make it nearly impossible to obtain an accurate model of

the anomalies. It is also challenging to obtain a model that accounts for all the safe

states of the robot. However, due to advances in the machine learning community,

data-based algorithms are becoming more common.
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Data-driven detection algorithms can be divided into two subsequent parts: feature

engineering and the method used for detection. Feature engineering consists of selecting

and transforming raw data into features that can differentiate between faulty and normal

states. Even though stability metrics are used to increase the robustness of controllers,

they individually do not provide sufficient conditions for falling [35]. A combination of

stability metrics from bipedal control theory, such as the angular momentum about the

center of mass (Lcom), and kinematic functions, such as the center of mass position

(pcom), are typically chosen as features [8, 9, 34, 35, 38, 47, 48].

Classification algorithms, such as that used by [8], attempt to learn a model from

labeled training data and then classify a data point into one of the classes based on

the learned model. A disadvantage of classification algorithms is that they can output

incorrect predictions if the input data is outside the training data parameters (outside

distribution). Nearest-neighbor-based algorithms, such as [133], assume that normal data

exist in highly dense spaces, whereas the neighborhood of anomalous data is sparse.

However, these algorithms can have high false positives if the normal instances do

not exist in sufficiently dense neighborhoods. Threshold-based algorithms, such as [35],

attempt to use a combination of features to derive a threshold that can be used to

separate faulty and normal states.

5.1.3 Objective of the Chapter

For the task of standing and for given upper bounds on the false positive and false

negative rates, our objective is to detect potential falls caused by either incipient,

abrupt or intermittent faults while maximizing the lead time, that is, the time from

fault declaration to the robot entering a fallen state. The objective is challenging due

to the crowding phenomenon [134, 135], masking effects of the controller as it tries

to mitigate deviations from steady state [6], the direct relationship between lead time

and false positive rate, and the sporadic nature of intermittent faults. The crowding
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phenomenon is the similarity between the normal and incipient faulty data which makes

it difficult to separate normal data from faulty data [134, 135].

We address this objective in two parts: first, the detection of critical abrupt and

incipient faults, and second, the detection of all three critical faults. To achieve the

first task, we design a nearest-neighbor, a physics-based, and a neural-network-based fall

prediction algorithm and compare their performance to an existing classification-based

detection algorithm. For the second task, we propose a multi-classification algorithm. A

threshold-based method was not chosen for any of the tasks because it is difficult to

find simple thresholds for systems as complex as bipedal robots.

5.1.4 Contributions

The major contributions of this chapter are as follows:

• An algorithm that maximizes lead time subject to bounds on false positive and

negative rates;

• A method of identifying trajectories associated with incipient or abrupt faults;

• A way to label the data based on lead time is proposed;

• A nearest-neighbor classification-based fall prediction algorithm that can detect

incipient and abrupt faults;

• A comparison of the proposed nearest-neighbor classification algorithm and an

existing classification algorithm;

• A multi-classification algorithm that can detect incipient, abrupt, and intermittent

faults; and

• A physics-based method that can detect abrupt and incipient faults
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5.2 Robot Description and Data Generation

In this section, we describe the robot model that is used for this study and how

the data are generated and prepared.

5.2.1 Equations of Motion and Simulation Environment

The equations of motion are given by (5.1) and (5.2)

D(q)q̈+C(q, q̇)q̇+G(q) = Bu+ JT (q)Γ (5.1)

J(q)q̈+ J̇(q, q̇)q̇ = 0, (5.2)

where q is the vector of generalized coordinates defined by (5.3), u is the torque

input vector, D, C, G, and B are the inertia, Coriolis, gravity, and torque distribution

matrices/vector, respectively, J is the Jacobian mapping the contact wrenches to the

generalized coordinates, and Γ is the contact wrench. The floating-base Lagragian model

is given by (5.1) while the contact/acceleration constraint is given by (5.2) [51, 54, 83].

q =



foot x

foot z

foot angle (θ f )

ankle angle (θa)

knee angle (θk)

hip angle (θh)


. (5.3)

A PD controller to maintain the robot in a standing position was designed and

implemented in MATLAB [136]. The PD controller seeks to keep the foot flat on the

ground while maintaining the center of mass (CoM) inside the support polygon. The

simulation environment uses MATLAB’s ODE45 function and compliant ground contact
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forces represented as a spring-damper.

5.2.2 Data Generation

Four hundred trajectories each are generated for abrupt and incipient faults, with

a sampling time of 0.03s and a disturbing force applied to the torso. To emulate

disturbances that might cause the robot to oscillate slightly while standing, a random

impulse force in the range of 0-159N and lasting for 0.075s is applied at time zero,

but only the data after 2 seconds is kept. The abrupt faults last for 0.075 seconds

with magnitudes ranging from 0-320N , while the incipient faults last for 1.0 seconds

and range from 0-46N. The ranges, based on previous experiments, are chosen such

that half the trajectories end in a fall (we’ll refer to these trajectories as faulty

trajectories), and half of the safe (non-falling) trajectories have a heel or toe lift.

Similar to [8], the force magnitudes are generated using a uniform distribution. The

abrupt force is applied at random between 2.5s and 3.5s, while the incipient fault is

applied at random between 2.0s and 3.5s. The application time for the incipient fault

is longer because, in order not to include an abrupt deviation in the robot’s nominal

states, only the data collected after the force is applied is kept.

Forty intermittent trajectories with a random mix of non-continuous incipient and

abrupt faults are also generated. Each intermittent trajectory contains two faults. The

time of application for each fault is determined by the fault type as described in the

previous paragraph. There is a 1s gap between the intervals of application for the

two forces.
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5.2.3 Data Pre-processing

The features are selected as

Lcop −Lcom

px
com

vx
com

(ptoe − pcom)
x

(pheel − ptoe)
xz

(Lcop +Lcom)∗ sgn(px
com − px

fmid
)


(5.4)

where vcom is the CoM velocity, ptoe, pheel , and p fmid are the position of the toe,

heel and middle of the foot, and Lcop is the angular momentum about the contact

point1. These features are chosen based on their correlation with the lead time and

other features commonly used in literature. The distance correlation coefficient is used

to evaluate the correlations as it is able to capture nonlinear relationships [137].

The features are split into training (60%), validation (20%), and testing (20%) sets

using scikit-learn’s [4] stratified train_test_split method and k-folds methods with the

number of folds set to 5. The stratified methods are chosen because they ensure that

each of the splits has the same distribution of normal and faulty data. Scikit-learn’s

min-max scaler is used to scale the data to a range of [0,1]. To ensure that only

transient data is kept for training, only the first 6s of trajectories that are deemed

normal are kept.

5.3 Fall Prediction Methods

As a baseline, we use the SVM-based classification algorithm of [4], while the

nearest-neighbor classification algorithm is based on the Ward minimum variance method

1The contact point is set to the rotation point (toe or heel) when the foot rotates, and the center of pressure otherwise.
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[138]. To prioritize recent data points over previous ones, both methods make use of

sliding windows. The number of data points in a window is referred to as Nwindow.

It is important to note that both methods are supervised algorithms.

5.3.1 SVM Classifier

The radial basis function is chosen as the kernel and the soft margin formulation

is implemented for the SVM classifier (SVM classification algorithm). The training data

for the classifier is defined as

D = {Xi,yi}n
i=1

where

n = number of windows across all training data

m = number of time steps in a window

xi j = features at time step j in window i

Xi =

[
xi1 xi2 · · · xim

]⊺
yi ∈

 −1 Xi ∈ faulty trajectory

1 Xi ∈ normal trajectory


5.3.2 Nearest-Neighbor Classification Algorithm

The selected nearest-neighbor classification algorithm determines distance using the

Ward minimum variance and a weighted Euclidean distance. Given two clusters A and

B, the Ward minimum variance method calculates the effort, EAB, it takes to join the

two clusters together, as determined by the sum of squared errors, specifically,

EAB = SSEAB −SSEA −SSEB, (5.5)
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where

SSEAB = (A∪B−µA∪B)
⊺R−1

A∪B(A∪B−µA∪B)

SSEA = (A−µA)
⊺R−1

A (A−µA)

SSEB = (B−µB)
⊺R−1

B (B−µB)

R = correlation coefficient matrix

µ = mean vector

In our application, cluster B contains the features at the current time step while

cluster A contains all the features in the previous time steps included in the window.

Given, that B is a single data point, the Ward minimum variance simplifies to

EAB = SSEAB −SSEA. (5.6)

The nearest-neighbor classification algorithm detects a potential fall if the effort

it takes to join the two clusters A and B is higher than a threshold determined

from the training data. The threshold is calculated offline as the maximum EAB value

for the safe data while R is determined using distance correlation. Note that the

underlying assumption for the nearest-neighbor classification algorithm is that cluster A

only contains safe data points.

5.3.3 Data Labeling

As one of our objectives is to maximize the lead time, we propose the use of

a training lead time to label windows in a trajectory. Training lead time is defined

as the difference between the time of the actual fall and the time when a sliding

window of a trajectory can be labeled as faulty. Therefore, training lead time is a
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subset of the maximum lead time that can be achieved in a faulty trajectory2. While

labeling all windows in a faulty trajectory as faulty would achieve the maximum lead

time, it would also increase the rate of false positives. For instance, given two faults

that are close in magnitude but where one results in a fall and the other is safe,

the safe trajectory could be mistaken as a faulty trajectory.

If a trajectory does not contain a fall, all windows derived from the trajectory are

labeled as 1. If a trajectory ends in a fall, all windows containing data points after

the desired training lead time are labeled as -1. Note that for an abrupt fault, the

training lead time is only defined after the push is introduced, and only the data

points before a fall are kept for the training data of both faults.

The desired training lead time is determined by a grid search algorithm that trains

the algorithm of interest using a range of training lead times from 0 to 2s and eval-

uates the results on the training and/or validation data. The training data is included

in the evaluation process for cases where the algorithm is allowed to make mistakes,

such as when using a soft margin in SVM. A training lead time of 2s would label

all the data points in a faulty trajectory as faulty 3.

5.3.4 Performance of Fall Prediction Methods

In this section, we analyze the performance of the proposed nearest-neighbor clas-

sification algorithm and the baseline SVM classifier. The algorithms are trained and

evaluated on testing data across all 5 folds using only abrupt trajectories, only incipi-

ent trajectories, and both trajectories together. The evaluation metrics are false positive

and negative rates, and the average lead time achieved. The desired false positive and

false negative rates are set to 0. The training lead time chosen is the maximum that

meets the given bounds on the false positive and false negative rates when evaluated

on the training and validation data. Based on previous experiments, we set the values

2In other words, the training lead time is less than or equal to the maximum lead time.
3All the faulty trajectories fall within 2s.
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of the remaining hyper-parameters as Nwindow = 10 and Nmonitor = 1.

From Table 5.1 and 5.2 we see that the nearest-neighbor and the SVM classification

algorithms perform similarly when trained and evaluated on the abrupt and incipient

faults separately. The nearest-neighbor classification algorithm achieves an average lead

time of 0.46s and 0.91s, respectively, for the abrupt and incipient faults, while the

SVM classification algorithm achieves an average lead time of 0.48s and 0.97s. Because

our sampling time is 0.03s, the difference in the performance of both algorithms is 1

and 2 data points for the abrupt and incipient fault, respectively. Figure 5.1 displays

the classification results for several trajectories.

When both faults are trained and evaluated together, the SVM classification algo-

rithm achieves an average lead time 0.15s higher compared to the nearest-neighbor

classification algorithm. In comparison to its average performance on the abrupt and

incipient fault, the SVM classification algorithm achieves an average lead time of 0.08s

less when trained on both faults together. Similarly, the nearest-neighbor classifica-

tion algorithm achieves an average lead time of 0.19s less. As a result, the SVM

classification algorithm outperforms the nearest-neighbor classification algorithm when

both faults are trained together. However, because both algorithms can achieve lead

times higher than the 0.2s, which is the lead time required by reflexive algorithms

such as [34] and [9], both algorithms are viable options. As the nearest-neighbor

classification algorithm learns the safe/good model, it should be used when faulty data

is sparse.

5.3.5 Categorizing Faults

A means to decrease the difference in performance for both algorithms when trained

on both faults together vs. separately is to implement a multi-class classification

problem. The labels for this multi-class classification can be identified as: abrupt fault

safe (AS), abrupt fault fall (AF), incipient fault safe (IS), and incipient fault fall
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(IF). Using these labels with the one-vs-one or one-vs-rest multi-class classification

techniques typically implemented [139], results in six and four detectors, respectively.

However, as one-vs-rest can result in ambiguities and class imbalances and using one-

vs-one can result in ambiguities and higher computational times, we seek a different

approach [139].

If the problem is decomposed into classifying trajectories first into the incipient

versus abrupt categories, and secondly, detecting falls (or not) within these categories

of trajectories, the number of detectors needed is only three: a detector for identifying

types of trajectories, a second for detecting falls in incipient trajectories, and a third

for detecting falls in abrupt trajectories. Furthermore, using this technique resolves the

ambiguity problem as the incipient vs. abrupt classifier can be used to determine the

operational space (abrupt vs incipient fault).

To achieve this, we propose using SVM to categorize the trajectories into incipient

vs abrupt. The training data for this SVM are taken as the joint velocities, and the

labels 1 and -1 are used for the incipient and abrupt faults, respectively. For the

training data, the windows in abrupt trajectories before a force is applied and windows

uniformly distributed throughout the incipient trajectories are labeled as incipient and

only the windows containing the force are labeled as abrupt. The remainder of the

pre-processing steps are similar to those in Section 5.2.3.

5.4 Multi-class Classification Prediction Method

The proposed multi-class classification fall prediction method, as shown in Figure

5.2, is comprised of three algorithms, one for detecting falls caused by abrupt faults

(abrupt fault detector), another for detecting falls caused by incipient faults (incipient

fault detector) and a third for identifying the type of fault (fault type identifier).

The fault type identifier is first trained and evaluated on the training data. Next,

the abrupt fault detector and incipient fault detector are trained using the relevant
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Table 5.1: A comparison of the nearest-neighbor classification algorithm’s performance
when trained with (1) just the abrupt fault, (2) just the incipient fault, and (3) both
faults together. Note that the false positive and negative rates are 0.

Abrupt Fault
Only

Incipient Fault
Only

Both Faults
Together

Fold
Average

Lead Time
Average

Lead Time
Average

Lead Time
1 0.48 0.93 0.49
2 0.46 0.91 0.49
3 0.44 0.9 0.51
4 0.43 0.89 0.51
5 0.5 0.89 0.51

Average 0.46 0.91 0.50

Table 5.2: A comparison of the SVM classification algorithm’s performance when
trained with (1) just the abrupt fault, (2) just the incipient fault, and (3) both faults
together. Note that the false positive and negative rates are 0.

Abrupt Fault
Only

Incipient Fault
Only

Both Faults
Together

Fold
Average

Lead Time
Average

Lead Time
Average

Lead Time
1 0.5 1.0 0.65
2 0.47 0.96 0.66
3 0.49 0.98 0.66
4 0.44 0.97 0.65
5 0.51 0.96 0.63

Average 0.48 0.97 0.65
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(a) Nearest-Neighbor Incipient Fault
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(b) SVM Incipient Fault
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(c) Nearest-Neighbor Abrupt Fault
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(d) SVM Abrupt Fault

Figure 5.1: Plots displaying the classification results of the nearest-neighbor and SVM
classification algorithms for several trajectories. The red solid line is the threshold for
the decision function. The dots are the last data point in a window. Positive and
negative values for the SVM decision function result in safe and faulty classifications,
respectively. On the other hand, values below and above the decision function threshold
are classified as safe and faulty for the nearest-neighbor classification algorithm.
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Figure 5.2: The proposed multi-classification algorithm

trajectories and the windows of trajectories misclassified by the fault type identifier.

The training lead time is determined similarly as in Section 5.3.4.

When detecting potential faults, we run all three algorithms in parallel. As we

initially assume that every trajectory has an incipient fault, the output of the incip-

ient fault detector is utilized by default. However, if the fault identifier classifies a

trajectory as containing an abrupt fault, we start using the output of the abrupt fault

detector. In other words, our null hypothesis is the incipient fault, while our alternative

hypothesis is the abrupt fault. As a result, a delay in the fault identifier only results

in a delay in the abrupt fault detector. When an abrupt fault is identified, the fault

identifier is no longer used to identify the fault type until it is reset. Inherent in our

implementation is that only one fault will be encountered per trajectory.

5.4.1 Results: Critical Abrupt and Incipient Faults

We train and evaluate the multi-class classification algorithm using the same pa-

rameters and metrics as described in Section 5.3.4. On average, across all folds,
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Table 5.3: Features derived from scikit-learn’s [4] sequential forward feature selection

Incipient Fault Features
Abrupt Fault

Features


knee angle
hip angle

vel hip angle
(Lcop +Lcom)∗ sgn(px

com − px
fmid

)





px
com

vx
com

px
com − px

heel
foot x

vel foot z
vel hip angle


when trained using the features in (5.4), the multi-class classification algorithm achieves

0.06s and 0.05s additional average lead time across all folds for the nearest-neighbor

and SVM classification algorithms, respectively. This results in an average lead time

difference of 0.13s and 0.03s across all folds for the nearest-neighbor and SVM classi-

fication algorithms in comparison to their average when trained with the incipient and

abrupt faults separately. Note that the SVM fault identifier has a delay of 0.07s or

3 data points, in detecting abrupt faults across all folds. The results are displayed in

Table 5.4 and 5.5.

Even though the multi-class classification algorithm achieved similar results to the

binary classification algorithm, an advantage over binary classification is that different

features can be used for each detector. Feature selection algorithms such as sequential

feature selection can be used to determine the optimal features. For instance, using

the features shown in Table 5.3 derived from scikit-learn’s [4] sequential forward

feature selection results in an average lead time increase of 0.1s over training a

binary classification with (5.4). However, to truly take advantage of the multi-class

classification algorithm more investigation into optimal feature selection is needed to

determine whether the additional average lead time gained can overcome the fault

identifier delay.

129



Table 5.4: A comparison of the maximum average lead time achieved by the binary
nearest-neighbor classification algorithm and the multi-class classification algorithm with
nearest-neighbor fault detectors for abrupt and incipient faults

Fold
Multi-class Classification

Average Lead Time
Binary Nearest-Neighbor

Average Lead Time
1 0.56 0.49
2 0.52 0.49
3 0.57 0.51
4 0.56 0.51
5 0.57 0.51

Average 0.56 0.5

Table 5.5: A comparison of the maximum average lead time achieved by the binary
SVM classifier and the multi-class classification algorithm with SVM fault detectors for
abrupt and incipient faults

Fold
Multi-class Classification

Average Lead Time
Binary Classification
Average Lead Time

1 0.7 0.65
2 0.73 0.66
3 0.70 0.66
4 0.70 0.65
5 0.67 0.63

Average 0.7 0.65
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5.4.2 Results: Critical Intermittent Faults

To evaluate the multi-classification fall prediction algorithm on intermittent faults,

we (1) modify the algorithm to allow it to go back and forth between the null

(incipient fault) and alternate hypothesis (abrupt fault), (2) train it using abrupt and

incipient data, and (3) test its performance on the intermittent fault data. Using the

features described in (5.4), we find that the algorithm successfully detects intermittent

faults with 0 false positive and false negative rates and an average lead time of 0.82s

across all folds. Given that the achieved average lead time exceeds the 0.2s threshold

required by reflexive algorithms such as [34], we can conclude that the proposed

multi-classification algorithm can successfully detect critical intermittent faults.

5.5 A Shift Towards Neural Networks: Critical Abrupt and Incipient Faults

Given the significant influence of the chosen features on the resulting lead time and

false positive rate as demonstrated in Section 5.4.1, we propose a shift to a neural

network-based fall prediction algorithm. We specifically choose a 1D convolutional

neural network (CNN) due to its equivariance to translation and its ability to recognize

local patterns when processing data with a grid-like topology. Note that the trajectory

of a bipedal robot can be retrieved by a 1D grid taking samples at fixed time [140].

5.5.1 Results

The 1D CNN model is implemented in Pytorch [141]. It has two 1D CNN layers,

a max pooling layer, a drop-out layer, and two fully connected layers. The binary

cross entropy with logits loss and ReLu activation functions are used. A regularization

function that uses the false positive and negative rates, and the lead time for the

validation and training trajectories is implemented.

Using the features displayed in (5.4), the resulting neural network achieves an
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average lead time of 0.74s when both faults are trained together. This is two data

points faster than the multi-classification algorithm with the SVM fault detector and

separate features for the abrupt and incipient faults (Table 5.3 lists the features). The

CNN model likely achieves similar results to the multi-classification algorithm because

the fall prediction problem posed in Chapter 5 for the four-link robot is simple. The

results are displayed in Table 5.6.

When the features are increased by including variables such as the states and their

velocities as displayed in (5.7), the CNN model trained with both abrupt and incipient

faults together attains an average lead time of 0.77s. This is 0.03s and 0.07s faster

than the results attained by the CNN model using the features in (5.4) and the

multi-classification algorithm, respectively. The results are displayed in Table 5.6.



Lcop

Lcom

pcom

pcop

vx
com

(ptoe − pcom)
x

(pheel − ptoe)
xz

(Lcop +Lcom)∗ sgn(px
com − px

fmid
)

q

q̇



(5.7)

5.6 Physics-Based Fall Prediction: Critical Abrupt and Incipient Faults

Data-based methods such as the multi-classification and 1D CNN-based fall prediction

algorithms can perform poorly when evaluated on out-of-distribution data. As a result,
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Table 5.6: A comparison of the maximum average lead time achieved by the 1D
CNN algorithm trained with abrupt and incipient faults, and using the features in (5.4)
the features in (5.7).

Fold
Features

from (5.4)
Features

from (5.7)
1 0.72 0.74
2 0.66 0.75
3 0.67 0.71
4 0.88 0.87
5 0.77 0.76

Average 0.74 0.77

we investigate the use of a physics-based method. The proposed physics-based fall

prediction algorithm is based on the contact interaction matrix introduced in Section

3.4.2. Recall that the contact matrix is defined as follows:

I (q) :=


J(q)D−1(q)J⊤(q) J(q)D−1(q)B

Jh(q)D−1(q)J⊤(q) Jh(q)D−1(q)B


where Jh and J are the control objective and contact wrench Jacobians respectively,

B and D are the torque distribution and inertia matrices and q is the generalized

coordinates. I captures the interaction of contact wrenches and motor torques in

achieving contact constraints and control objectives [95].

5.6.1 Method and Results

Given that the contact interaction matrix governs the relation between the contact

constraints, desired tasks (represented as virtual constraints for us), contact wrenches,

and motor torques, we hypothesize that if the robot starts to lose balance, the matrix

will be ill-conditioned. If this is the case, the contact interaction matrix can be

utilized to detect faults. To test this hypothesis, we employ an algorithm similar

to the nearest-neighbor classification algorithm proposed in Section 5.3. Instead of

133



Table 5.7: Results of the contact interaction matrix-based fall prediction algorithm with
just the abrupt fault.

Training
Data

Validation
Data

Testing
Data

Fold
Average

Lead
Time

False
Positive

Rate

Average
Lead
Time

False
Positive

Rate

Average
Lead
Time

False
Positive

Rate
1 0.42 0 0.48 0 0.37 0
2 0.43 0 0.43 0 0.38 0
3 0.40 0 0.51 0 0.40 0
4 0.44 0 0.34 0 0.46 0
5 0.41 0 0.37 0 0.49 0

Average 0.42 0 0.43 0.0 0.42 0

Table 5.8: Results of the contact interaction matrix-based fall prediction algorithm with
just the incipient Fault.

Training
Data

Validation
Data

Testing
Data

Fold
Average

Lead
Time

False
Positive

Rate

Average
Lead
Time

False
Positive

Rate

Average
Lead
Time

False
Positive

Rate
1 0.84 0 0.90 0 0.87 0
2 0.94 0 0.87 0 0.86 0
3 0.85 0 0.84 0 0.89 0
4 0.91 0 0.92 0.03 0.90 0
5 0.85 0 0.86 0 0.88 0

Average 0.88 0 0.88 0.01 0.88 0

using the Ward minimum variance method to calculate the threshold, we use the first

derivative of the conditioning number derived from the contact interaction matrix. The

same data used in Section 5.3 are used here. We, however, have not used windows.

The preliminary results for the abrupt and incipient faults displayed in Table 5.7 and

5.8 respectively show the promise of this method. Even though the false positive

rates are not zero for all the folds in the validation data for the incipient fault, the

threshold can be adjusted to result in a zero false positive rate for the validation data.

However, adjusting the threshold can result in a lower lead time.
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Table 5.9: The average lead times achieved by the binary contact-interaction-based and
SVM-based fall prediction algorithms

Fault Type
SVM

Average Lead Time
Contact-Interaction

Average Lead Time
Abrupt 0.48 (s) 0.42 (s)

Incipient 0.97 (s) 0.86 (s)

Next, we compare the performance of the proposed physics-based model on incipient

and abrupt test data to the SVM binary classification algorithm introduced in Chapter

5.3. The results are summarized in Table 5.9. For abrupt faults, both algorithms

achieve similar results. However, the SVM algorithm results in 0.09s higher lead time

for incipient faults. Despite being outperformed, the contact-interaction-based algorithm

is viable as it achieves lead times higher than 0.2s.

5.7 Conclusion

The objective of this chapter was to design a fall prediction algorithm for bipedal

robots that is capable of detecting all three critical faults while maximizing the lead

time and meeting the desired false positive and negative rates. To meet the desired

upper bound on the false positive and negative rates, we proposed using training lead

time, a subset of lead time, to label the windows in a trajectory. We successfully

implemented a nearest-neighbor fall prediction classification algorithm and analyzed and

compared its performance to an SVM classification-based algorithm. Using false positive

and negative rates and average lead time as metrics, we found that the nearest-neighbor

classification algorithm’s performance is comparable to the SVM classifier when trained

on abrupt and incipient faults separately. However, it detects falls on average 0.15s

(results to 5 data points given our sampling time) slower than the SVM classifier when

the faults are trained together. Given that the nearest-neighbor classification algorithm

still has an average lead time of 0.5s, we conclude that if a sufficient amount of

faulty data is unavailable, the nearest-neighbor classification algorithm can be used to

135



detect abrupt and incipient faults simultaneously.

Even though the SVM classification algorithm outperforms the nearest-neighbor clas-

sification algorithm, its leading time when trained on both faults together is slightly

lower than its average lead time from both faults separately. As a result, we inves-

tigate the use of a multi-class classification algorithm to reduce this difference. We

find that using the same features with the multi-class classification algorithm slightly

increases the average lead time. We briefly investigate using the multi-class classifica-

tion algorithm with different features for the incipient and abrupt faults, and conclude

that the multi-class classification algorithm shows promising results. However, more in-

vestigation is needed in feature selection and reduction in the delay time of the fault

identifier to truly assess the advantage of using a multi-class classification algorithm.

In addition to successfully detecting critical abrupt and incipient faults, the proposed

multi-classification algorithm can also detect critical intermittent faults. However, given

that the resulting lead time and false positive rates for the SVM multi-classification

algorithm are greatly impacted by user-selected features, we briefly explore the use of

a 1D CNN-based algorithm for fall prediction. We also present a physics-based fall

prediction algorithm and compare it with the binary classification SVM algorithm.
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Chapter 6

Offline Fall Prediction for Digit: The Standing Phase

6.1 Introduction

In the previous chapter, we successfully developed a multi-classification fall prediction

algorithm that was capable of detecting critical abrupt, incipient, and intermittent faults

for the planar four-link robot. Therefore, we now progress to the development of

a fall prediction algorithm for the bipedal robot Digit during the task of standing.

The proposed fall prediction algorithm will be evaluated offline in simulation and

hardware. The core work presented in this chapter has been previously published

in [142] and submitted for publication to ICRA 2024. The co-authors of [142] are

Gokul Prabhakaran and Jessy W. Grizzle.

6.1.1 Literature Review

Existing fall prediction algorithms for bipedal robots predominantly target the detec-

tion of critical abrupt faults. The primary method consists of establishing a threshold

that distinguishes these faults from regular data. Selecting a threshold is a delicate

task due to the impracticality of accounting for every potential critical fault and the

complexity of capturing (e.g., in a model) all the robot’s safe states. Additionally, the

presence of faulty states in the data is infrequent.

The overarching aim of fall prediction algorithms is to extend the lead time while

curtailing the false positive rate. Consequently, their performance is typically assessed
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Figure 6.1: The experimental setup that was used to collect hardware data with the
Digit robot [2].

based on these two metrics [143]. On the one hand, it’s important to note that

there’s an inherent positive correlation between lead time and false positive rate. On

the other hand, the impact of false negatives can be alleviated by setting thresholds

on kinematic signals, such as the height of the center of mass, as elaborated in [8].

The minimum lead time deemed acceptable varies depending on the specific robot and

the selected recovery algorithm.

In the realm of fall prediction, thresholds are derived from various sources: analyti-

cal models like [40, 42, 43, 144, 145], hand-crafted features as seen in [35, 38, 44, 45, 146],

or data-driven models such as [8–10, 36, 40, 46–50]. While analytical models offer a

structured approach, they can be hampered by model uncertainties and might not fully

encapsulate the robot’s full dynamics, especially if based on simplifying assumptions.

Simple thresholds are elusive for multifaceted systems like bipedal robots. On the other

hand, while data-driven models might necessitate extensive data and remain constrained
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to the data’s distribution, their popularity is on the rise, thanks to advancements in

machine learning and computational capabilities. Both shallow methods [8–10, 36, 46–48]

and deeper neural network-based approaches [49, 50] have found their place in the

literature.

6.1.2 Objective of the Chapter

Our goals are as follows:

1. Detect imminent falls caused by abrupt, incipient, and intermittent faults, ensuring

an adequate lead time for the standing task.

2. Optimize the trade-off between maximizing lead time and minimizing false positive

rates.

3. Accurately estimate the lead time.

The robot is deemed to have fallen if the height of its center of mass descends

below 0.12m. Drawing parallels with our prior research [132], we adopt 0.2s as the

minimum desired lead time, aligning with the requirements of reflexive algorithms such

as those in [9, 34]. Achieving this objective presents challenges, given the controller’s

masking effects, the crowding phenomenon induced by incipient faults [134], the direct

correlation between false positive rates and lead time, the sporadic nature of intermittent

faults, and the diminishing number of data points with increasing lead time.

To address these challenges, we propose a 1D convolutional neural network (CNN)-

driven fall prediction algorithm, enhanced with several components. Our choice of a

deep model is motivated by the significant impact of user-selected features on lead time

and false positive rates, as evidenced in our earlier work [132]. Furthermore, extracting

these features for complicated bipedal robots, like Digit, is non-trivial. Our choice

of a 1D CNN is underpinned by its equivariance to translation and proficiency in

discerning local patterns in data with a grid structure. It is noteworthy that a bipedal
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robot’s trajectory can be mapped onto a 1D grid, sampled at consistent (uniform)

intervals [140].

6.1.3 Contributions

We present several key contributions in this chapter:

• Introduction of an algorithm capable of detecting abrupt, incipient, and intermittent

faults in full-sized robots undertaking a standing task.

• Successful implementation of our fall prediction algorithm, both in simulation and

on hardware, tailored for a full-sized humanoid robot.

• Development of a robust method to estimate lead time.

6.2 Data Generation

This section describes our approach to generating data for the Digit robot. The

dataset, which includes both simulated trials and hardware tests, can be found at

https://github.com/UMich-BipedLab/Digit_Fall_Prediction_Dataset.

6.2.1 Simulation Data Generation

We employ Agility’s MuJoCo-based simulator in conjunction with a standing con-

troller. This controller is designed to maintain both the center of mass and the zero

moment point within the support polygon [3]. We generate 900 trajectories each for

abrupt and incipient faults, and 100 trajectories for intermittent faults. These faults

are simulated by applying forces of various magnitudes to the robot’s torso in the

x-direction (i.e., sagittal plane).

Abrupt faults are simulated using impulsive forces with a duration of 0.075s, ran-

domly uniformly distributed within a range of 0 - 414.8N. In the case of incipient

faults, their crowding effect is captured through trapezoidal force profiles [147] as
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Figure 6.2: The trapezoidal force profile that is used to introduce incipient faults.

depicted in Figure 6.2. These profiles have a slope of 480N
s over a varying duration

to result in a desired constant amplitude over a time duration of 1s; the resulting

force amplitudes of incipient faults are randomly uniformly distributed between 0 -

57.6N. The force ranges for both abrupt and incipient faults are calibrated to ensure

an equal distribution of falling and safe trajectories. Emulating the unpredictable nature

of intermittent faults, we apply two distinct forces. These forces are designed to mimic

either abrupt or incipient faults. The first force’s magnitude remains within the safe

range, while the second force’s magnitude can potentially lead to a fall or maintain

stability.

To simulate minor disturbances that might induce slight oscillations in the robot’s

standing posture, we introduce impulsive forces with a 0.075s duration, ranging from 0

- 202.4N, at the start of each trajectory. However, only data recorded one second after

the introduction of this perturbative force is retained 1. The abrupt and incipient faults

are subsequently introduced between 2 - 3.5s following this oscillatory perturbation for

all three faults. The time between the application periods for the two faults comprising

the intermittent fault is 2s.
1Note that only data collected after one second is retained in order to ensure that the robot oscillates slightly even

in the presence of perturbing forces towards the high end of the range. The choice of one second diverges from the
two-seconds selected in Chapter 5, due to the utilization of a different controller and robot platform.
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6.2.2 Hardware Data Generation

To prevent the Digit robot from getting damaged during data collection, the hardware

data generation is carried out with Digit attached to a gantry via a slack cable that

allows Digit to move about. Additionally, the motor power is “killed” when the robot

starts to fall, thereby allowing the gantry to catch it. Impulsive and trapezoidal forces

are introduced to the robot’s torso by pushing Digit with a pole as depicted in Figure

6.1. To emulate the trapezoidal forces that result in an incipient fault, the pole is first

rested on Digit before pushing. The approximate time of force application is obtained

by coordinating the push on the robot with a keyboard press.

Twenty-seven (27) safe and 13 unsafe trajectories are collected for abrupt faults,

while 26 safe and 15 unsafe trajectories are collected for incipient faults. Out of the

abrupt and incipient unsafe trajectories, six and ten trajectories, respectively, exhibited

trajectory profiles resembling those observed in simulations characterized by lower falling

forces. The remaining falling trajectories exhibited similarities to simulation profiles

featuring forces within the mid-range of the falling forces. Figure 6.1 depicts the

experimental setup of the hardware data.

6.2.3 Data Pre-processing

From the 1,800 simulation-generated trajectories for abrupt and incipient faults, 200

are reserved for testing. The remaining trajectories are divided into training (80%) and

validation sets. The testing set is further supplemented with intermittent fault data and

hardware data. We employ scikit-learn’s stratified train-test split method for segmenting

the simulation data and its min-max scaler to normalize the data within the range

[0,1]. It’s important to note that only transient data is utilized during training. The

initial feature values are subtracted from subsequent data points to adjust for any drift

in the hardware data. For both hardware and simulation, the features are transformed

to the world coordinate which is placed on the ground between the feet. Lastly,
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Figure 6.3: The number of data points vs. lead time.

sliding windows are utilized so as to prioritize the most recent data points.

6.3 Fall Prediction Method

The task of detecting critical faults and estimating lead time can be framed as

a regression problem where lead time serves as the predicted variable. Given our

definitions of lead time and critical faults, data points from unsafe trajectories prior to

a critical fault’s onset, along with all data points from safe trajectories, are assigned an

infinite lead time. Data points following the introduction of a critical fault have a lead

time within the range [0,H], where H > 0 represents the maximum prediction horizon

(i.e, maximum interval of time over which fault prediction is attempted). Predicting

a lead time less than H can thus indicate the presence of critical faults. However,

as illustrated in Figure 6.3, the quantity of data points diminishes exponentially with

increasing lead time, leading to an imbalanced regression problem [148–151].

While techniques like the Synthetic Minority Over-Sampling Technique for Regression

with Gaussian Noise [151] exist for addressing imbalanced regression data, the direct
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Figure 6.4: 1D CNN architecture of the fault detection network. It consists of a
single CNN layer with a max pooling layer followed by 2 fully connected layers.

correlation between lead time and false positive rate complicates achieving maximum

lead time with an acceptable false positive rate, as evidenced by studies like [8, 50].

Consequently, we reframe the problem into a combined classification and regression challenge.

Our proposed algorithm consists of three main components: a critical fault classifier, a

lead time classifier, and a lead time regressor. All three components share a 1D CNN

architecture, featuring a 1D CNN layer, a max pooling layer, and two fully connected

layers with the ReLu activation function. The 1D CNN architecture is depicted in

Figure 6.4.

The critical fault classifier’s objective is to predict critical faults while maximizing

lead time and minimizing false positives. The lead time classifier, on the other hand,

categorizes windows containing critical faults into three distinct ranges: [0,1], (1,2],

and (2,H]. Notably, the (2,H] range contains significantly fewer data points, as shown

in Figure 6.3. Finally, the lead time regressor predicts the lead time for windows that

have a critical fault and a lead time within the range [0,1].

The components of the algorithm interact sequentially. Initially, the critical fault

classifier processes a window of data points from the robot. If a critical fault is

detected, this window is then relayed to the lead time classifier, which categorizes
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Figure 6.5: The proposed fall prediction algorithm with three components: critical fault
classifier, lead time classifier and lead time regressor. The blue boxes depict the output
of the entire algorithm.

the window based on the predefined lead time intervals. If the categorized lead time

is within the [0,1] interval, the lead time regressor determines the exact predicted

lead time. For other intervals, the infimum lead time corresponding to that interval

is reported (e.g, 1 for the interval (1,2]). The entire workflow of the proposed fall

prediction algorithm is depicted in Figure 6.5.
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6.4 Critical Fault Classifier

The features for the critical fault classifier are defined as,



(pcom − pmidtoe)
xz

vxz
com

qsag chosen

q̇sag chosen


(6.1)

where pcom, vcom, and pmidtoe represent the position and velocity of the center of mass

and the midpoint of the two toes, respectively. The terms qsag chosen and q̇sag chosen

denote the torso, knee, hip, and toe pitch angles (in the sagittal plane).

The data for abrupt and incipient faults are structured as,

D = {Xi,yi}n
i=1,

where

n = number of windows across all training data

m = number of time steps in a window

xi j = features at time step j in window i

ti = time at time step i

tft = time the fault is introduced

Tsa f e = safe trajectories

Tunsa f e = unsafe trajectories

Xi =
[
xi1 xi2 · · · xim

]⊺

yi ∈



1
(
Xi ∈ Tunsa f e ∧ ti ≥ tft

)

0


Xi ∈ Tsa f e

∨

(Xi ∈ Tunsa f e ∧ ti < tft)

 .
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With the above labeling, achieving correct identification for all windows would yield

the maximum possible lead time. For intermittent data, the labeling approach remains

similar, but tft is the time of the first fault’s introduction.

The binary cross-entropy loss is employed for training. The classifier’s output, when

combined with this loss, produces logits. These logits can be transformed into probabili-

ties using the sigmoid function, allowing for flexibility in setting the desired probability

threshold for critical fault detection. For instance, a model with a 0.03 false positive

rate and a 1.7s lead time for abrupt and incipient faults can achieve a 0 false pos-

itive rate with a 1.61s lead time by adjusting the probability threshold from 0.5 to

0.9.

The model’s performance is evaluated at each epoch to optimize lead time and

minimize false positive rates. A model is saved only if it meets one of the following

criteria:

1. A reduction in the false positive rate of validation trajectories.

2. No change in the validation false positive rate, but an increase in validation lead

time, accompanied by a decrease in the training data’s false positive rate.

3. Both the validation and training false positive rates meet a predefined maximum

threshold.

It’s worth noting that the false positive rates used in the saving criteria pertain to

entire trajectories, not individual windows.

6.4.1 Training

We train on a subset of abrupt and incipient simulation trajectories as described in

Section 6.2.3. We use false positive rate, lead, and response time as our evaluation

criteria. Response time is defined as the difference in time between the detection of

the critical fault and its introduction. Given that the robot was not allowed to fall
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to the ground during hardware data collection, lead time is not defined for hardware.

Similarly, given that intermittent data has 2 disturbances, it is difficult to estimate the

response time.

6.4.2 Results

We evaluate on hardware trajectories, as well as on the intermittent and remaining

incipient and abrupt trajectories, as defined in Section 6.2.3. The critical fault classifier

is able to achieve 0 false positive rate for training and validation data when trained

for 4 epochs with 8 filters for the 1D CNN. When evaluated on testing data, the

model is able to achieve 0 false positive and negative rates for hardware, intermittent,

abrupt, and incipient fault data.

The resulting average lead times are 1.61s and 1.52s for intermittent and abrupt

plus incipient data, respectively. The classifier’s success in categorizing the intermittent

data can be attributed to the sliding window formulation, which allows the algorithm to

recognize local patterns. The resulting response time is 0.42s and 1.0s for the abrupt

and incipient simulation data, and hardware data, respectively. The 0.58s difference

in response time between the hardware and simulation data can be attributed to the

lower force profiles applied in the hardware. Furthermore, by applying lower force

profiles in simulation, it was observed that the robot’s behavior and response times

were similar to the ones observed in hardware data. This was characterized by the

robot’s slight oscillatory motion prior to falling. Given that the critical fault classifier

detects incipient, abrupt, and intermittent faults with a lead time greater than 0.2s, it

meets our objective of detecting critical faults with sufficient lead time. The results

are summarized in Table 6.1.

148



Table 6.1: Results of the critical fault classifier when trained on abrupt and incipient
simulation data and evaluated on (a) abrupt and incipient simulation data, (b) abrupt
and incipient hardware data, and (c) intermittent data. Trained for 4 epochs with 8
filters.

Platform Fault
Type

Lead
Time

(s)

Response
Time

(s)

False
Positive

Rate
Simulation Intermittent 1.61 N/A 0.0

Simulation
Abrupt and

Incipient 1.52 0.42 0.0

Hardware
Abrupt and

Incipient N/A 1.0 0.0

6.5 Lead Time Prediction

While the hardware data lacks a defined lead time, the similarity in response

time between the hardware and simulation data, as indicated in 6.1, suggests that the

hardware may have a lead time comparable to that of the simulation data. Nevertheless,

there is a critical need for lead time prediction.

Given the absence of a defined lead time for the hardware data, this section

evaluates the lead time algorithms using only simulation data. The subsequent section

will apply the complete fall prediction algorithm to both hardware and simulation

datasets.

The feature set for lead time prediction includes those from (6.1), complemented by

the hip, knee, and toe pitch torques, as well as the average position of the contact

point2.

6.5.1 Lead Time Classifier

In this section, we detail our approach to categorizing lead times for potential falls.

The categorization of lead times into three distinct intervals, [0,1], (1,2], and (2,H],

is treated as a multi-classification challenge. We employ the cross entropy loss for

2The contact point position defaults to the rotation point when the toes rotate and to the zero moment point otherwise.
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this purpose.

The method of data labeling is analogous to the one adopted for the critical

fault classifier. However, in this context, yi is adjusted to indicate the specific lead

time range to which a window is associated. A noteworthy aspect of our data is the

exponential decline in the number of data points as lead time increases; recall Fig. 6.3.

This implies that the amount of data available for the interval (2,H] is significantly

less than for the other intervals. As a result, achieving a high classification accuracy

for this range is not our primary objective, but rather, an anticipated challenge.

After training on abrupt and incipient simulation faults using 8 filters, evaluation

yields:

• The classifier achieves an accuracy of 1.0 for the interval [0,1];

• For the interval (1,2], the accuracy stands at 0.95; and

• The interval (2,H] sees a lower accuracy of 0.80, in line with our expectations.

6.5.2 Lead Time Regressor

In this section, we delve into the methodology and results associated with our lead

time regressor. The regressor is specifically trained on abrupt and incipient simulation

data that fall within the range of [0,1]. For the loss function, we employ the mean

squared error, which is particularly effective for regression problems as it emphasizes

larger errors over smaller ones.

Upon evaluation:

• The maximum difference between the predicted and actual lead times is 0.09s.

• The mean difference stands at 0.01s.

• The median difference is also 0.01s.
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Given the minimal prediction error, it’s evident that the lead time regressor performs

well at predicting lead times within the specified range of [0,1].

6.6 Overall Fall Prediction Method Results

In this section, we assess the performance of the fall prediction algorithm depicted

in Figure 6.5 using both hardware and simulation data. It should be noted that the

lead times and false positive rates presented in Table 6.1 relate to the entire fall

prediction algorithm, not only the critical fault classifier. Therefore, when the critical

fault classifier identifies a critical fault within the intervals of (1,2] and (2,H], the

actual lead time is taken as 1 and 2, respectively. This is done in order to obtain

a conservative approximation of the true lead time. The predicted lead time from the

bin classifier is derived similarly. When assessed on simulation data, the fall prediction

algorithm predicted an average lead time of 1.18s, with a slight difference of only

0.04s from the actual lead time of 1.14s.

Next, we evaluate the algorithm on the hardware data and the simulation data

trimmed at 0.95m, which is the minimum center of mass height Digit achieved dur-

ing experiments. The resulting lead time is 1.07s and 1.16s for the hardware and

simulation data, respectively. Given that the fall prediction algorithm outputs similar

lead times for the simulation data at 0.95m and the original fall height of 0.12m,

we can conclude that for the simulation data, the fall prediction algorithm identifies

critical faults at around 0.95m. In comparison to the simulation data trimmed at 0.95m

and the actual lead time for simulation, the predicted lead time for the hardware

data only differs by 0.09s and 0.07s, respectively. This minute difference demonstrates

the algorithm’s success in identifying and predicting lead time for both hardware and

simulation data. Table 6.2 summarizes the results of the fall prediction algorithm.
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Table 6.2: Results of the entire fall prediction algorithm when trained on abrupt and
incipient simulation data and evaluated on (a) abrupt and incipient simulation data, and
(b) abrupt and incipient hardware data.

Platform Fault
Type

Fall
Height

(m)

Predicted
Lead
Time

(s)

Actual
Lead
Time

(s)

Simulation
Abrupt and

Incipient 0.12 1.18 1.14

Simulation
Abrupt and

Incipient 0.95 1.16 N/A

Hardware
Abrupt and

Incipient 0.95 1.07 N/A

6.7 Conclusion

In conclusion, this chapter aimed to develop an effective fall prediction algorithm

for the bipedal robot Digit, considering abrupt, incipient, and intermittent faults while

accurately predicting lead time. While a regression approach faces challenges due

to data imbalance, we propose a comprehensive algorithm comprising a critical fault

classifier, lead time classifier, and lead time regressor.

Our evaluation, based on simulation and hardware data, demonstrates the effective-

ness of each component. The critical fault classifier achieves a 0 false positive rate,

detecting faults with a minimum lead time of 1.52s and a maximum response time of

0.42s for simulation data. When evaluated on hardware data, a 0.5s time discrepancy

in lead time was noted compared to simulation. This variance is attributed to differing

force profiles in hardware. The lead time classifier exhibits an accuracy of up to 1.0

for data-rich ranges, and the lead time regressor accurately predicts lead times within

a 0.09s difference in simulation data.

Assessing the entire algorithm, we observed a negligible 0.04s difference between

predicted and actual lead times in simulation. In hardware evaluation, where true

lead times were unknown, only a 0.07s difference in lead time was noted when
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compared to simulation. Given our algorithm’s performance across diverse datasets and

the successful prediction of fall events in bipedal robots, we can conclude that our

objective has been achieved. Future work involves implementing this algorithm online

on Digit.
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Chapter 7

Online Fall Prediction for Digit: The Standing Phase

7.1 Introduction

The previous chapter introduced a 1D CNN-based algorithm to predict falls in the

bipedal robot Digit while standing. This algorithm consisted of three parts: a critical

fault classifier, a lead time classifier, and a lead time regressor. The critical fault

classifier identifies faults related to falls, while the lead time classifier and regressor

work together to predict the lead time. The lead time classifier divides the lead time

into three intervals: [0,1], (1,2], and (2,H]. If the lead time is classified into the

[0,1] interval, the lead time regressor is used to calculate the lead time. Otherwise,

the lead time is considered as the infimum of the interval. Lead time is determined

this way due to the exponential decline of data points with respect to the lead time,

as shown in Figure 6.3, and as a way to obtain a conservative approximation.

To validate the fall prediction algorithm, we introduced a new dataset on the

humanoid platform Digit by Agility Robotics. This dataset is comprised of both

simulated trials and hardware tests and can be accessed at https://github.com/

UMich-BipedLab/Digit_Fall_Prediction_Dataset. Our proposed algorithm success-

fully detected all three critical faults (incipient, abrupt, and intermittent) offline while

maximizing lead time, minimizing false positive rates, and predicting lead time. In

other words, our algorithm can notify us when we are outside the region of attraction

of the nominal controller.
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In this chapter, we continue the analysis of the algorithm by assessing its per-

formance online on simulated trials and hardware tests. The results show that the

algorithm successfully differentiates between critical and non-critical faults online, both

in hardware and simulation, thereby demonstrating that the assumptions made during

the design and training of the proposed fall prediction algorithm, such as the sim-

ulation data closely emulating the hardware data (the algorithm is only trained on

simulation data), are accurate. The same data pre-processing steps and fault descriptions

as detailed in Section 6.2 are followed.

7.2 Simulation

Building upon Chapter 6, we employ the use of Agility’s MuJoCo-based simulator

with a standing controller designed to maintain the center of mass and zero moment

point inside the support polygon [3]. We will refer to this controller as the nominal

controller. To demonstrate the effectiveness of our fall prediction algorithm when run

online, we run tests showcasing the Digit robot falling when a fall is predicted, but

a recovery controller is not activated. As in Chapter 6, the robot is considered to

have fallen when the center of mass is below 0.12m. We also show how the robot

stabilizes once the recovery controller is triggered for each of the three faults. We

have chosen to use Agility’s base controller as the recovery controller as implementing

a recovery controller is outside the scope of our work and because Agility’s base

controller already has a fall prevention strategy embedded in it. As a reminder, the

nominal controller can stabilize incipient faults up to a force of 28.8N and abrupt

faults up to a force of 207.4N. This was discussed in more detail in Section 6.2.

7.2.1 Results

When an abrupt fault of 250.0N is applied to the robot, the fall prediction algo-

rithm detects the critical abrupt fault with a response time and lead time of 0.03s
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Table 7.1: The 1D-CNN-based fall prediction algorithm’s results when evaluated online
in simulation with intermittent faults. The first fault is introduced at 9.5s while the
second fault is introduced at 11.5s.

First Fault Type Second Fault Type Predicted Lead Time Actual Lead Time
Abrupt
150 N

Abrupt
250 N 2 (s) 1.9 (s)

Abrupt
150 N

Incipient
35 N 1 (s) 1.18 (s)

Incipient
25 N

Abrupt
250 N 2 (s) 1.93 (s)

Incipient
25 N

Incipient
35 N 1 (s) 1 (s)

Average 1.5 (s) 1.5 (s)

and 2.06s, respectively. The predicted lead time is 2s. The algorithm’s response time

and lead time for a critical incipient fault of 30.0N are 1.64s and 1.65s, respectively,

while the predicted lead time is 1s. Figure 7.1 and 7.2 show how switching to the

recovery controller from the nominal controller helps the robot regain stability when

the critical abrupt and incipient faults are detected, respectively.

For intermittent faults, we run four tests for each fault pairing: (1) abrupt followed

by abrupt, (2) abrupt followed by incipient, (3) incipient followed by abrupt, and (4)

incipient followed by incipient. As outlined in Section 6.2, the first fault is selected

such that it remains within the safe range. The fall prediction algorithm detects critical

faults with an average lead time of 1.5s; the average predicted lead time is also

1.5s. See Table 7.1 for details. As with the abrupt and incipient faults, when the

fall prediction algorithm predicts a fall for all four intermittent tests, the robot regains

stability upon activating the recovery controller, while it falls otherwise. Figures 7.3,

7.4, 7.5, and7.6 illustrate this phenomenon.
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Figure 7.1: The 1D-CNN-based fall prediction algorithm’s results when evaluated online
in simulation with a critical abrupt fault of 250N. The critical fault is introduced at
30s.
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Figure 7.2: The 1D-CNN-based fall prediction algorithm’s results when evaluated online
in simulation with a critical incipient fault of 30N. The critical fault is introduced at
20s.
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Figure 7.3: The 1D-CNN-based fall prediction algorithm’s results when evaluated online
in simulation with an intermittent fault comprised of an abrupt fault of 150N followed
by a critical abrupt fault of 250N. The first fault is introduced at 9s and the second
at 11.5s.
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Figure 7.4: The 1D-CNN-based fall prediction algorithm’s results when evaluated online
in simulation with an intermittent fault comprised of an abrupt fault of 150N followed
by a critical incipient fault of 35N. The first fault is introduced at 9s and the second
at 11.5s.
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Figure 7.5: The 1D-CNN-based fall prediction algorithm’s results when evaluated online
in simulation with an intermittent fault comprised of an incipient fault of 25N followed
by a critical abrupt fault of 250N. The first fault is introduced at 9s and the second
at 11.5s.
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Figure 7.6: The 1D-CNN-based fall prediction algorithm’s results when evaluated online
in simulation with an intermittent fault comprised of an incipient fault of 25N followed
by a critical incipient fault of 35N. The first fault is introduced at 9s and the second
at 11.5s.
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7.3 Hardware

The same experimental setup described in Section 6.2.2 is utilized here. We demon-

strate the efficacy of our algorithm running online in hardware by showcasing its

ability to switch from the nominal controller to the recovery controller when a critical

fault is detected and to remain in the nominal controller when a non-critical fault is

introduced. Due to the complexity of replicating the same fault twice in hardware, we

refrain from executing tests that demonstrate the Digit robot falling when a fall is pre-

dicted, but the recovery controller isn’t activated, as was done in simulation. However,

given our experience collecting data for Chapter 6, we emulate the low and medium

force profiles inside and outside the region of attraction of the nominal controller

for abrupt and incipient faults. As intermittent faults are comprised of abrupt and

incipient faults and our algorithm uses windows, the algorithm’s capability to accurately

detect critical abrupt and incipient faults enables it to detect critical intermittent faults

as discussed in Chapter 6. Therefore, in line with Chapter 6, we limit the online

hardware tests to abrupt and incipient faults.

7.3.1 Results

From the hardware tests, we find that the fall prediction algorithm is capable of

distinguishing critical faults from non-critical faults with a predicted average lead time

of 1.14s. Note that this only has a 0.07s difference compared to the offline results

in Chapter 6. Figures 7.7, 7.8, 7.9, and 7.10 display the algorithm’s ability to switch

to the recovery controller only when a critical fault is detected. To emphasize the

switch between controllers, we display the cases where the recovery controller had to

take a step in order to stabilize the robot. In addition to successfully detecting critical

faults introduced by pushing the robot’s torso horizontally, the algorithm also detects

critical faults introduced by pushing the robot in various ways, such as the angled
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Figure 7.7: The 1D-CNN-based fall prediction algorithm correctly identifies a non-
critical incipient fault.

push displayed in Figure 7.11 and the leg push displayed in Figure 7.12. Note that

the algorithm is only trained on non-angled torso pushes, and the recovery controller

does not take a step for the critical fault introduced by a leg push.

7.4 Conclusion

In this chapter, an evaluation of the 1D-CNN-based fall prediction algorithm’s online

performance was conducted through simulated trials and hardware tests, complementing

the offline evaluations done in Chapter 6. Using Agility’s MuJoCo-based simulator, the

standing controller from [3] as the nominal controller, and Agility’s base controller

as the recovery controller, the simulation trials demonstrated the algorithm’s ability to

detect all three critical faults. Furthermore, they demonstrated that transitioning from the

nominal to the recovery controller was pivotal in stabilizing the robot once a critical

fault was detected. The online hardware experiments further demonstrated the algorithm’s

ability to differentiate critical and non-critical faults, with a predicted average lead time

that closely mirrored offline results. The 1D-CNN-based fall prediction algorithm’s

success, both online and offline in hardware and simulation, at detecting critical faults

and predicting lead time underscores the algorithm’s ability to approximate the region
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Figure 7.8: The 1D-CNN-based fall prediction algorithm identifies a critical incipient
fault, thereby triggering a switch to the recovery controller.

Figure 7.9: The 1D-CNN-based fall prediction algorithm identifies a critical abrupt fault,
thereby triggering a switch to the recovery controller.
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Figure 7.10: The 1D-CNN-based fall prediction algorithm correctly identifies a non-
critical abrupt fault.

Figure 7.11: The 1D-CNN-based fall prediction algorithm identifies a critical incipient
fault introduced by an angled push to the torso, thereby triggering a switch to the
recovery controller.
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Figure 7.12: The 1D-CNN-based fall prediction algorithm identifies a critical incipient
fault introduced by a leg push, thereby triggering a switch to the recovery controller.
Note that the recovery controller does not take a step to recover.

of attraction of the nominal controller and makes it a necessity for any fall-tolerant

framework of bipedal robots.
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Chapter 8

Conclusion and Future Work

The capability of bipedal robots to seamlessly navigate in human environments and

their ability to restore mobility demonstrates their potential to improve day to day

lives. However, their highly dimensional, hybrid, and, at times, highly constrained nature

makes it challenging to achieve stable motions, especially in the face of disturbances

and uncertainties. Disturbances and uncertainties can lead to faults, which can be a

precursor to a fall. As a result, the real-world deployment of bipedal robots is limited.

For bipedal robots to reach their potential and assist us, it’s imperative to imple-

ment a fall-tolerant framework that encompasses various algorithms, such as robust

control algorithms, reliable fall prediction algorithms, and recovery algorithms. Recall

that a fall-tolerant framework aims to equip the robot with the capabilities to assess,

adapt, and respond effectively to uncertainties and disturbances, thereby minimizing the

risks and consequences of falling. This dissertation has focused on developing and

implementing key components of such a framework, with contributions directed towards

the enhancement of robust controllers and the creation of dependable fall prediction

algorithms.

Chapters 3 and 4 contributed to the implementation of robust controllers by intro-

ducing a systematic method to design control objectives for highly constrained systems

such that they are independent of the contact constraints. The effectiveness of the

control objectives was demonstrated through robust, comfortable closed-loop sit-to-stand

motions for the exoskeleton Atalante. Unfortunately, due to the robot breaking, we
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were unable to conduct hardware experiments. Consequently, a pivotal next step for

this project is hardware implementation.

As explained in Chapter 3, our methodology is flexible enough to be applied to

other motions involving multiple contact points and different types of exoskeletons or

humanoids. Therefore, additional future work involves expanding our methodology to

other robot platforms and different motions, such as manipulation or walking with a

non-instantaneous double support domain.

In Chapters 5, 6, and 7, reliable fall prediction methods were developed and eval-

uated for a planar four-link robot and the bipedal robot Digit. These contributions

included physics-based and data-driven algorithms, culminating in a 1D-CNN-based fall

prediction model exhibiting high accuracy in simulation and hardware evaluations.

The findings from Chapter 5 underscored the importance of employing different

features for abrupt and incipient faults within the SVM multi-class classification algo-

rithm. Therefore, the next step for this work is further exploration into optimal feature

selection. This exploration should aim to ascertain whether the additional average lead

time gained from using different features for the faults can overcome fault identifier

delay.

Chapters 6 and 7 demonstrated the effectiveness of the proposed 1D-CNN-based

fall prediction algorithm in predicting critical faults for the bipedal robot Digit while

standing. However, critical faults can occur in various ways during real-world operations,

as mentioned in Section 2.5. Therefore, the next step for the 1D-CNN-based fall

prediction algorithm is to extend its application to more diverse environmental conditions

and dynamic motions such as walking.

The introduction of a physics-based method in Chapter 5 for detecting critical

abrupt and incipient faults presents another opportunity for future work. As discussed

in the chapter, data-based methods such as the 1D-CNN-based fall prediction algorithm

introduced in Chapter 6 and the SVM multi-class classification algorithm introduced in
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Chapter 5, can perform poorly when evaluated on out-of-distribution data. Therefore,

it is imperative to extend the proposed physics-based methodology to encompass the

detection of all three critical faults for a full-dimensional bipedal robot like Digit.

The projects undertaken in this dissertation focused on developing robust controllers

and reliable fall prediction algorithms separately. Yet, considering the comprehensive

fall prediction framework outlined in Chapter 1, which encompasses multiple algorithms

including recovery controllers, future research directions include the integration of the

proposed robust controller and fall prediction algorithm. Furthermore, expanding the

implementation scope to include other algorithms, such as recovery controllers and

high-level motion planners, stands as a pivotal endeavor to the full realization of a

fall-tolerant framework.

In conclusion, the work presented in this dissertation has greatly contributed to the

implementation of a fall-tolerant framework for bipedal robots. As a result, bipedal

robots are now one step closer to achieving their full potential and assisting us in

the real world.
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Appendix A

Description of the Physical Constraints for Dynamic Feasibility and User

Comfort

Here we present in full detail, the additional constraints that are implemented to

achieve the desired motions. For clarity, the constraints are divided into two categories,

boundary and path constraints. Boundary constraints are implemented only at the

beginning and end of a domain, while path constraints are present throughout the

entire domain.

A.1 Path Constraints

Anticipating that the feedback controller will need robustness margins, the ZMP is

constrained to be within SPboth_opt , a strict subset of SPboth, for the entire chair-to-

stand motion, and the sit and standing shift domains of chair-to-crouch-to-stand, as

illustrated in Figure 3.4 and Figure 3.9. Similarly, during the standing extend domain,

the ZMP is constrained to be within a smaller polygon, SPf eet_opt ⊂ SPf eet . We note

that there is no contact with the chair during the standing extend domain. Motor

torque bounds, joint bounds, and a minimum distance between the feet are introduced

to respect hardware bounds. The minimum distance between the feet prevents the

exoskeleton from colliding with itself. The torque and state bounds are implemented

in all domains while the distance between the feet constraint is only implemented in

the sitting domain. However, the distance between the feet established in the sitting
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Table A.1: Actuated joint limits used for optimization

Name
Lower Bound

(deg)
Upper Bound

(deg)
Henke Ankle Joint -12.3 12.3
Sagittal Ankle Joint -10.3 3.3
Sagittal Knee Joint 5.9 104.1
Sagitaal Hip Joint -109.1 9.1

Transverse Hip Joint -4.1 14.1
Frontal Hip Joint -4.1 11.1

Table A.2: Motor torque limits used for optimization

Name
Maximum Torque

(N)
Nominal Torque

(N)
Henke Ankle Joint 90 82
Sagittal Ankle Joint 192 184
Sagittal Knee Joint 219 124
Sagitaal Hip Joint 219 124

Transverse Hip Joint 180 124
Frontal Hip Joint 350 198

domain is maintained in all domains due to the feet contact constraint. The state

bounds for the actuated joints are set to be stricter than the hardware bounds to

ensure user safety and comfort. These joint limits can be found in Table A.1.

Optimization is allowed to use the maximum torque value a motor can output for

each actuated joint except the ankle, which is set to the smaller nominal value; see

Table A.2. These design choices are possible because the real-time quadratic program

used in the control implementation is effective at managing torque limits; see Section

3.6.

In order to generate realistic motions, the rate of change of the chair force component
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Table A.3: Equality path constraints for both the chair-to-stand and chair-to-crouch-to-
stand motions

Constraint Chair-to-stand Chair-to-crouch-to-stand

Name
Constraint

value Sitting Standing Sitting
Standing

shift
Standing
extend

Equal
knee angle

(deg)
0 ✓ ✓ ✓ ✓ ✓

User force
(N) 0 × × × × ✓

in the z direction (Ḟz
chair) is bounded. The bound for Ḟz

chair is defined as follows:

max(|Ḟz
chair|)≤

Fz
chair0

tsit
min

where tsit
min is the minimum desired duration of the sitting domain and Fz

chair0
is the

initial vertical force exerted by the chair. To achieve a symmetric motion, a torque

difference constraint between the right and left actuated joints is implemented only

for chair-to-stand. An equal knee angle and negative knee angle velocity constraints

are implemented to prevent the exoskeleton from swaying side to side and oscillating

up and down. A minimum knee angle constraint is implemented in all domains for

user comfort. As a design choice, the y component of the spatial user force is

constrained to zero for the entire motion. The lower and upper bounds for the x and

z components are set to zero and the total weight of the user (TWuser) respectively.

The path constraints are summarized in Table A.3 and Table A.4.
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Table A.4: Inequality path constraints for both the chair-to-stand and chair-to-crouch-to-
stand motions

Constraint Chair-to-stand Chair-to-crouch-to-stand

Name
Lower
bound

Upper
bound Sitting Standing Sitting

Standing
shift

Standing
extend

ZMP ∈ SPboth_opt × × ✓ ✓ ✓ ✓ ×
ZMP ∈ SPf eet_opt × × × × × × ✓

Joint bounds see Table A.1 see Table A.1 ✓ ✓ ✓ ✓ ✓

Motor torque
bounds

see Table A.2 see Table A.2 ✓ ✓ ✓ ✓ ✓

Distance
between

Feet
(m)

0.32 0.5 ✓ × ✓ × ×

Minimum
knee angle

(deg)
15 104.1 ✓ ✓ ✓ ✓ ✓

User force-
spatial frame

(N)

0
0
0


TWuser

0
TWuser

 ✓ ✓ ✓ ✓ ×

Knee angle
velocity

(deg
s )

−240 0 × ✓ × ✓ ✓

Torque
difference

(N)
-1 1 ✓ ✓ × × ×

Ḟz
chair
( kg

s )
chair-to-stand:-117.9

chair-to-crouch-to-stand:-90.7
chair-to-stand:117.9

chair-to-crouch-to-stand:90.7 ✓ × ✓ × ×
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A.2 Boundary Constraints

For the exoskeleton to start at the desired sitting pose, for both motions, the chair

height is set by constraining the initial sitting-point height. In addition, an initial

torso pitch and knee angle constraint are implemented. A final torso pitch, and knee

angle constraint are implemented at the final domains of both motions. The chair

is constrained to support at least 80% of the exo-system’s total weight (TW ) at the

beginning of the sitting domain in both motions.

The chair-to-stand and chair-to-crouch-to-stand motions are both constrained to start

and end in a statically stable position. The user force is set to zero at the beginning

of the sitting domain for both motions, and at the end of the stand and standing

shift domain for the chair-to-stand and chair-to-crouch-to-stand motions respectively.

Therefore, to guarantee a stable static final pose for chair-to-stand, the ZMP needs to

be within SPf eet at the end of the motion. However, since the ZMP and CoM are

coincident when the exo-system is static, it is sufficient to constrain the final CoM to

be within SPf eet ; we constrain the final CoM to be in SPf eet_opt . Even though at the

end of the standing shift domain the exo-system will have no contact with the chair

(the user force is constrained to be zero), it is not necessary to explicitly constrain

the ZMP or CoM to be inside SPf eet . This is because the event that triggers the

transition from the standing shift domain to the standing extend domain, ZMP ∈ SPf eet ,

is set up such that it constrains the ZMP to be in SPf eet_opt at the end of the

standing shift domain. To encourage the optimizer to find a chair-to-crouch-to-stand

motion with the CoM near the middle of the feet at the end, the CoM is constrained

to be in SPf eet_SS ⊂ SPf eet_opt . The boundary constraints are summarized in Table A.5

and Table A.6.
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Table A.5: Equality boundary constraints for both the chair-to-stand and chair-to-crouch-
to-stand motions

Constraint Chair-to-stand Chair-to-crouch-to-stand

Name
Constraint

value Sitting Standing Sitting Standing shift Standing extend

Initial

Exo-system
velocity

(deg
s )

0 ✓ × ✓ × ×

Exo-system
acceleration

(deg
s2 )

0 ✓ × ✓ × ×

User force
(N) 0 ✓ × ✓ × ×

Torso pitch
(deg) 0 ✓ × ✓ × ×

Final

Exo-system
velocity

(deg
s )

0 × ✓ × × ✓

Exo-system
acceleration

(deg
s2 )

0 × ✓ × × ✓

User force
(N) 0 × ✓ × ✓ ×

Table A.6: Inequality boundary constraints for both the chair-to-stand and chair-to-
crouch-to-stand motions

Constraint Chair-to-stand Chair-to-crouch-to-stand

Name
Lower
bound

Upper
bound Sitting Standing Sitting Standing shift Standing extend

Initial

Knee angle
(deg) 60 110 ✓ × ✓ × ×

Chair height
(m) 0.5 0.6 ✓ × ✓ × ×

Chair support
(kg) 0.8TW 2TW ✓ × ✓ × ×

Final

Knee angle
(deg) 0 15 × ✓ × × ✓

Torso pitch
(deg) 0 15 × ✓ × × ✓

CoM ∈ SPf eet_opt × × × ✓ × × ×
CoM ∈ SPf eet_SS × × × × × × ✓
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Appendix B

Enhancing Performance in Off-nominal Conditions

The domain definition for the chair-to-stand motion is modified so that it is com-

patible with the chair-to-crouch-to-stand motion, allowing a unified control architecture.

The hybrid closed-loop system is represented by a directed acyclic graph with four

domains as shown in Figure B.1: sitting, stand 1, stand 2, and stopping. For more

information on the domains see Section B.1. The SU and SP controllers act in the

sitting, stand 1, and stand 2; and stopping domains respectively.

The desired evolution of the virtual constraints for the SU controller, hd(t) are

represented using a Bezier polynomial [53, 152] of 5 th degree for the sitting domain

and 6 th degree for the stand 1 and stand 2 domains. The desired virtual constraints

are time based and are parametrized using

tbez =
t −min(t)

max(t)−min(t)
(B.1)

In order to start at the beginning of the desired virtual constraint profile even with

perturbations, (B.1) is modified such that tbez = 0 at the beginning of all domains

except the stand 2 domain during chair-to-stand; this will be discussed further in

Section B.1. To handle a variety of off nominal conditions, the Bezier coefficients at

the beginning of each domain are modified such that y(t0) = 0 while still maintaining

the same value for ẏ(t0). Additionally, if the number of iterations in the QP exceeds

an allowed maximum number of iterations, u∗ and ζ ∗ are replaced with the QP’s
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output and the QP is rerun with the modified objective function. For each motion,

the desired torque profile is the torque profile from optimization. It is passed to the

controller as a spline and is generated using Matlab’s curve fitting tool.

Sitting
Domain

Stand
1

Domain

Stand
2

Domain

Stopping
Domain

|Fchair| ≤ 0.12TW

& tbez = 1 ZMP ∈ SPf eet tbez ≤ 0.75

Figure B.1: hybrid system model for the two controllers

B.1 Control Domain Unification

The standing domain from the chair-to-stand optimization is split into three domains,

in a similar manner to how the chair-to-crouch-to-stand hybrid model was obtained in

Section 3.2.2, stand 1, stand 2, and stopping. This is done for three reasons: (a) to

allow both the chair-to-stand and chair-to-crouch-to-stand motions to be addressed with

the same simulation and control architecture, (b) to ensure the transition from stand

2 to stopping occurs after the ZMP is within the feet support polygon, and (c) to

allow the implementation of additional constraints and modifications to the equations of

motion towards the end of the motion that ensure the exo-system safely comes to a

stop (see Section 3.6.2). As the stand 1, stand 2, standing shift, and standing extend

domains are all governed by the same dynamic equations (the equations of motion

during the standing domain), they are all equivalent domains. Therefore, the stand 1

and stand 2 domains can be thought of as the standing shift and standing extend

domains respectively during chair-to-crouch-to-stand.

It is important to note that for chair-to-stand the SU controller tracks the same

virtual constraints during the stand 1 and stand 2 domains. However, for chair-to-

crouch-to-stand the SU controller tracks different virtual constraints. This difference

is caused by the original domain definition of the chair-to-stand and chair-to-crouch-

to-stand motions which result in 2 optimal virtual constraints for the chair-to-stand
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motion (for the sitting and standing domains) and 3 for the chair-to-crouch-to-stand

motion (for the sitting, standing shift, and standing extend domains). As a result, for

chair-to-crouch-to-stand the SU controller tracks the virtual constraints obtained from the

standing shift and standing extend domains during the stand 1 and stand 2 domains

respectively. On the other hand, for chair-to-stand the SU controller tracks the virtual

constraint obtained from the Standing domain during both the stand 1 and stand 2

domains. In fact, tbez is not reset to zero between the the stand 1 and stand 2

domains for the chair-to-stand motion. This allows the SU controller to seamlessly

continue tracking the virtual constraint profile in the stand 2 domain.

The transitions among the various domains in Figure B.1 are highlighted here.

• Sitting to stand 1: The transition from the sitting domain to the stand 1 domain

happens when the chair supports 25 percent or less of the total exo-system

weight and tbez = 1. In other words, the transition happens when the feet are

supporting most of the exo-system weight and when the SU controller reaches

the end of the desired virtual constraint trajectory. The chair forces can be

estimated from the ground reaction forces or measured directly.

• stand 1 to stand 2: The transition from the stand 1 domain to stand 2 domain

happens after the ZMP is within the feet support polygon.

• Control Action in the Subsequent Domains after stand 1: The ZMP is constrained by

the controller to be within the feet support polygon irrespective of whether the

user is in contact with the chair or not. In other words, the chair is ignored

in the calculation of the support polygon.

• stand 2 to Stand in Place: The transition from the stand 2 domain to the stopping

domain happens when tbez = 0.95. This ensures that the exo-system is still in

motion when the stopping domain begins.
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• Dynamics of stand 1 and stand 2: Since for the chair-to-stand motion the stand 1

and stand 2 domains track the same virtual constraints, and are governed by the

same dynamic equations, the transition to the stopping domain can be thought of

occuring after the ZMP is within the feet support polygon (and) when tbez ≤ 0.95.
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