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ABSTRACT

The mechanical impedance of the human lower-limb joints during locomotion encodes

our understanding of how the human feedback system stabilizes the body and is a key

component of several strategies for translating this behavior to robots, to powered

prosthetic limbs, and to people empowered by exoskeletons. Knowledge of how this

property varies in lower limb joint is sparse, with the amount of information available

decreasing as you move up the kinematic chain from the ankle to the hip. This

work looks to broaden the knowledge base of how knee impedance is modulated,

particularly during the process of ambulation. This work first provides an overview

of the lower limb joint impedance literature, and from this overview, produces three

aims to address current gaps in the knowledge base. The first aim validates the use of

methods for impedance estimation. The second aim characterizes a device that can

be used to estimate impedance, and utilizes that device to estimate knee impedance

in a pilot study. The third aim produces estimates of knee impedance during walking

for a group of abled bodied participants. Finally, this work discusses the implications

of the work produced on the fields of human system identification, wearable robotics,

and rehabilitation, concluding with recommendations for future work.

xvii



CHAPTER I

Introduction

1.1 Motivation

Careful regulation of lower limb joint mechanics is a necessity for the completion of ac-

tivities of daily life (ADL’s). These mechanics—collectively known as joint mechanical

impedance—govern the body’s instantaneous response to disturbances and regulate

energy storage and exchange during movement [1, 2, 3]. Previous studies have shown

the human ability to regulate joint impedance, both consciously and subconsciously,

to adapt to unexpected changes during dynamic tasks [4, 5, 6]. The characterization

of lower limb joint impedance has significant implications for studying and improving

locomotion, including insights into human motor control, treatment of neuromotor

pathologies, and the development and control of biomimetic assistive technologies [7].

1.2 Background

Knowledge of joint mechanical impedance has many application areas spanning basic

science, robotics, and rehabilitation. Mechanical impedance governs the exchange

of energy between joints in the body which allows us to complete ADL’s like walk-

ing, running, and jumping [2]. There even exists the theory that the body uses the

impedance to control our central nervous system [4]. The impedance parameters of
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the body also govern how we respond to disturbances while we’re doing those ADL’s.

Examples include our ability to respond to slips, trips, and falls when the environ-

ment does not behave like we expect [8]. Impedance also is useful in the development

and control of assistive devices for people who’s ability to complete ADL’s has been

impaired or lost. A common strategy in the control of prosthetics and orthotics

is using biological, or biologically motivated, impedance values to control these de-

vices [7, 9, 10, 11]. Impedance control is a valuable tool for these devices because it

combines the benefits of two other common control strategies, torque and position

control. It also provides the user with the ability to adapt to environments that may

change rapidly or unexpectedly. Knowledge of how the body changes its impedance

is also used as a design requirement for prosthetic devices [12, 13, 14]. Knowledge of

impedance values translates to output torque and power requirements for prosthetic

actuators. This is a major guiding factor the design of wearable devices that must to

balance factors such as weight, power density, form factor, and performance.

Having a quantitative framework to describe joint mechanical impedance is cru-

cial for interpretation of the results from impedance experiments. Joint mechanical

impedance is defined as the relationship between an input position, or one of its

derivatives, and an output torque [15]. The inverse of a linear mechanical impedance

is admittance, where torque is the input and position, or one of its derivatives, is the

output. The measurement of human joint mechanical impedance mandates three acts

must occur: the joint in question must be perturbed, the torque about the perturbed

joint must be measured, and the position displacement, or one of its derivatives, of the

joint during the perturbation must be measured. While mathematically, estimates

of impedance and admittance are inverse rendering the input of torque or position

inconsequential, it is important to note that functionally, the noise on the input signal

will effect the estimates of impedance. Restated differently, this means that whether

the input is position or torque will have an effect on the estimates. Position inputs
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are better for obtaining estimates at high frequencies while torque inputs provide bet-

ter system estimates at low frequencies. There are multiple mechanisms that effect

joint impedance, of which some of the most notable are: the inertial dynamics of the

limb attached to the joint of interest, the external torque applied to the joint, the

viscoelastic properties of the joint, the dynamics of the muscles that span the joint,

the muscular reflexes, and the bilateral use of the muscles that span the joint of in-

terest [1]. Modeling all of these components can be challenging, resulting in multiple

approaches to mathematically describe this behavior.

When mathematically describing the impedance of a joint, the most thorough way to

model a system is to use a nonparametric model. When using nonlinear nonparamet-

ric models for impedance estimation, a common assumption is that the system being

identified is linear and displays time invariant behavior. Under this assumption mul-

tiple models have been formed. [1, 16]. Linear nonparametric models can be crafted

in the frequency or time domains. Many frequency response nonparametric models

take the form of 1.1 where τ(jω) is the Fourier transform of torque, H(jω) is the

impedance frequency response, and θ(jω) is the Fourier transform of displacement.

A frequency response estimate of the impedance transfer function can be obtained

by looking at the relationship of the auto spectral density of the displacement signal,

Φθθ, and the cross spectral density of the torque and displacement signals, Φτθ, (1.2).

τ(jω) = H(jω)θ(jω) (1.1)

Ĥ(jω) =
Φτθ

Φθθ

(1.2)

In the time domain, the nonparametic model of impedance is obtained from the
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impulse response function or IRF. An IRF conveys how a dynamic system responds

to an input impulse. The impedance IRF demonstrates how a system, h(τ), responds

to an input position, θ(t − τ), and yields an output torque, T (t) (1.3). To produce

an estimate of the impedance transfer function in the time domain, ĥ(τ), one uses

the Weiner-Hopf relationship which relates the autocorrelation of the displacement

signal, rθθ, and the cross correlations of the torque and displacement signals rTθ (1.4)

[17, 16].

T (t) =

∞∫
−∞

h(τ)θ(t− τ)dτ (1.3)

rTθ(τ) =

∞∫
−∞

ĥ(τ)rθθ(t− τ)dτ (1.4)

While nonparametric impedance models have the benefit of more accurately repre-

senting system behavior, less complicated parametric models can exploit their sim-

plicity for superior real-time implementation on robotic systems. Another benefit of

parametric models is that they can be contrived in such a way that the model has

physical relevance. An example of this is the commonly used parametric model for

human joint impedance, a second order dynamical system with an input position, θ,

output torque, T (t), stiffness constant, K, damping value, B, and inertia, I (1.5).

This model of impedance has been shown to accurately describe greater than 97% of

the variance of an impedance IRF for a human ankle joint [1].

T (t) = Kθ +Bθ̇ + Iθ̈ (1.5)

The circumstances under which impedance is measurable can be distilled down to
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two options: static and dynamic conditions. Joint impedance has been characterized

under static conditions far more often than dynamic conditions. In the lower limbs,

static studies have been conducted at the hip, knee, and ankle. At the hip, some

static studies have been conducted [18, 11]. At the knee, static impedance character-

ization work started in the 70’s and persisted to the late 90’s [19, 20, 21, 22]. The

ankle has been the most characterized lower limb joint with multiple studies being

performed by numerous researchers [1, 23, 24, 25, 26, 27]. Dynamic joint impedance

studies are typically more involved, and therefore have been explored far less. There

are few recorded dynamic impedance studies for the hip and knee [28, 29, 30, 16].

Similarly to the static case, the ankle is the most studied joint in the case of dynamic

impedance measurements. Of these dynamic ankle studies, one subset of experiments

worth noting are those occurring during locomotion. Locomotion tasks are commonly

explored because of the breadth of ADL’s that involve locomotion.

How dynamic impedance changes during locomotive tasks has been studied at all

lower limb joints, but with varying degrees of depth. A few studies have captured

snapshots of how impedance varies at the hip and knee [30, 16], however the only

lower limb joint where impedance has been fully characterized is the ankle [31, 32].

Knowledge of how impedance varies dynamically is important and should not be seen

as an academic exercise. Ludvig et al. have shown that at the knee, impedance

measured during dynamic motion is lower than impedance measured during static

positions [29]. This result reinforces the need to characterize joint impedance under

dynamic conditions; serving as a reminder to the field that there is still much to learn

about lower limb impedance and, particularly at the knee and hip, creating many

opportunities for research.

One of these open research questions is how does one capture and record the infor-

mation necessary to estimate impedance during active tasks. Literature shows the
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Figure 1.1: Cartoon of a dynomometer setup taken from Ludvig et al.

current devices capable of meeting these requirements can take many forms. Some of

the first devices used to identify dynamic impedance were seated dynomometer setups

[29, 33]. In these configurations, users are attached to the dynomometer through an

attachment that permits the joint of interest to rotate freely. One of the drawbacks of

this type of system, is that the subjects are not able to do active tasks, like walking,

because they are attached to the dynomometer which cannot move.

A system that overcomes the motion constraint imposed by the dynomometer and

permits dynamic impedance information recording is the recessed force platform

[34, 35, 36, 37]. Recessed force platforms are commonly operated in concert with

a displacement measurement system, like motion capture or an electrogoniometer, to

gather impedance information. Fortunately, these systems do not constrain the user’s

motion like dynomometer systems do. Unfortunately, a draw back of these systems

is that the foot must be in contact with the platform to apply a perturbation. This

means for portions of activities where the user is not on the ground, like jumping for

example, these device cannot be used. These devices also require the user to walk on

them in specific ways which can lead to abnormal motion.

A way to overcome the foot contact constraint of the recessed force platform is to use

6



Figure 1.2: Recessed force platforms used in perturbation experiments. Left shows a
device used by Russell et al. of a dual recessed platform used for perturbation studies
conducted during walking and running. Right shows a 3D model of the Perturberator
robot recessed force platform taken from Elliott Rouse’s work

a pulling system [38, 16]. These systems use off board cables and motors to apply a

linear force to a user. A benefit to these systems is that they can apply perturbations

to users regardless of if the joint of interest is grounded or not. Regretfully, these

systems generally require a model to convert the linear force to a torque about the

joint. During this process there can be unmodeled system dynamics, like cable slack

for example, which make the force experienced by the user different than expected,

affecting results.

A versatile device that can bypass many of issues is the exoskeleton. Exoskeletons can

provide the benefit of minimally effecting human motion while allowing perturbations

to be directly applied to the joint of interest, avoiding the need for a translational

model. Previous studies have used exoskeletons to estimate joint impedance during

various points in the gait cycle for the knee and ankle [25, 39, 30]. While these studies

exist, no one has yet to quantify, if and how, impedance varies throughout the entire

gait cycle at the knee.
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Figure 1.3: Pulling system perturbation devices. Left shows Huang et al. using pulling
system for perturbing the hip. Right shows Kooji et al. pulling system for combined
hip and knee perturbations

1.3 Specific Aims

This work addresses the gap in knowledge of, if and how, mechanical impedance

varies at the knee joint during locomotion through the original usage of existing

methods and technologies. This work utilizes an existing method for impedance

estimation and demonstrates an improvement upon the method’s previously reported

error measurements. This work also applies this method to exoskeleton systems for

the first time. This work provides the first reported knee impedance values during the

stance phase of walking. It also provides new insights on how knee impedance varies

during the swing phase of walking by providing data at points that have never been

recorded before. Finally, this thesis provides the first account of using a modular,

back-drivable, exoskeleton for human system identification by using this device in

a completely novel configuration. This work accomplishes these feats through the

completion of three targeted project aims.
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Figure 1.4: Exoskeleton systems used for perturbation application and impedance es-
timation. Left is the MIT Anklebot used by Lee and Hogan. Right is the ETH Knee
Perturberator used by Tucker et al.

1.3.1 Aim 1: Validate Methods For Estimating Joint Mechanical Impedance

Using An Exoskeleton

Aim 1 presents the validation of methods for estimating knee joint mechanical impedance

during locomotion using a torque-controllable knee exoskeleton. In this aim, I utilize

an exoskeleton to apply torque perturbations to different spring mass systems and

measure the resultant position displacements. The displacement and torque informa-

tion, measured by the exoskeleton, is used to estimate the stiffness and inertia value

of the spring mass systems. This aim provides the foundation of the methods that

will be later used to estimate the joint mechanical impedance of the knee.
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1.3.2 Aim 2: Characterize The System Identification Abilities Of AWear-

able Robotic Device For Human System Identification

Aim 2 is the characterization of a quasi-direct drive actuator. In this aim, I first

create a model to estimate the torque output of the actuator using state information

from the actuator. Then I use this torque model, as well as encoder information

from the actuator, to estimate the stiffness of a mechanical system under static and

dynamic conditions. After characterizing the stiffness estimating capabilities of the

actuator, I incorporate the device in to a knee exoskeleton module, conduct a pertur-

bation experiment on two individuals, and estimate the mechanical impedance of the

participants from the experimental data. This aim produces a device that is capable

of estimating knee joint impedance.

1.3.3 Aim 3: Estimate Human Knee Joint Mechanical Impedance During

Walking

Aim 3 is the estimation of knee impedance using an exoskeleton as a perturbation

device. I leverage the estimation techniques used in aim 1 and the device characterized

in aim 2, to estimate the knee joint mechanical impedance of 10 able-bodied subjects

during treadmill walking. Knee impedance is estimated at multiple points of the

subjects gait cycle, encompassing both the stance and swing phases of gait. The work

in this aim, presents the first experimentally obtained estimates of knee impedance

during the stance phase of gait. This aim also produces impedance estimates for

previously unidentified portions of the swing phase of gait.

To inform the reader how these scientific strides were made, this dissertation highlights

the validation of the methods used for impedance estimation in chapter two. Chapter

three addresses aim 2, by demonstrating the work done to characterize an actuator’s

system identification abilities. In chapter four, this work then applies chapter two’s
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estimation methods to human subjects, using the device presented in chapter three,

yielding knee impedance estimates during six phases of gait. This work is concluded in

chapter five by summarizing the findings of chapters two, three, and four; pontificating

about how these results can impact future research for academic, commercial, and

clinical endeavors.
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CHAPTER II

Validation of Methods for Estimation of Knee

Joint Mechanical Impedance During Locomotion

Using a Torque-Controllable Knee Exoskeleton

2.1 Introduction

Careful regulation of dynamic properties of the knee is integral for successful human

locomotion. Knowledge of how these dynamic properties are modulated is essential to

understanding how humans achieve stable gait as muscles spanning this joint provide

critical support to the body and decelerate the limb during stance, deliver power to

accelerate the trunk [40], and absorb energy at the end of the swing [41]. One of these

properties, known as joint impedance, governs the body’s instantaneous response to

disturbances and regulates energy exchange at joints during movement [1]. Studies

have demonstrated that humans regulate joint impedance subconsciously to adapt

to unexpected changes during dynamic tasks [4, 5]. A thorough characterization of

knee impedance has significant implications for studying and improving locomotion.

Examples of these implications are insights into human motor control, treatment of

neuromotor pathologies, and development of biomimetic assistive devices.

While knee impedance has been extensively studied under certain conditions, a holis-
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tic understanding of this property still evades the field. The impedance of the knee

has been characterized during postural tasks and noted to vary with joint angle

and muscle activation level [1, 42]. Several studies have demonstrated that joint

impedance during dynamic tasks is different from postural ones [43, 44, 45]. While

some studies have generated model-based estimates of knee impedance during move-

ment [46, 47, 48] or characterized the torque-angle relationship of the knee during

gait [49] (which is different from the stiffness of the knee [50]), no one has validated

these results experimentally.

Measurement of joint impedance requires the application of an external perturba-

tion. There are two perturbation paradigms available to this end: applying a torque

perturbation and measuring the resulting change in position, or perturbing the joint

position and observing the developed torque response [1]. There exist a number of

exoskeletons designed to perturb the knee during locomotion [51, 52, 53, 54]. These

exoskeletons employ a range of perturbation paradigms including flexion/extension

locking [51], knee flexion torque assistance [52], and angular positional perturbations

[53, 54]. However, these exoskeletons cannot provide perturbations bidirectionally,

with certain exceptions such as Tucker et. al. Further, none of these devices have

been used to quantify knee impedance in static or dynamic conditions.

Estimation of joint impedance from experimental data is typically attained using lin-

ear techniques. Linear techniques commonly describe joint impedance in terms of an

nonparametric impulse response function or a parameterized second-order system con-

sisting of stiffness, damping, and inertia [1]. The parametric version of impedance can

be obtained using linear time invariant (LTI) or linear time variant (LTV) methods.

Previous work used a parametric approach to characterize the dynamic impedance of

the ankle over the entire gait cycle, employing both LTI and LTV methods [2, 39, 32].

[39] utilized a wearable ankle device to provide controlled torque perturbations to the
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ankle directly during the swing phase and extracted impedance parameters using

LTV methods. [2, 32] took a different approach, leveraging an instrumented walkway

to apply angular perturbations to the ankle indirectly during the stance phase and

obtaining impedance parameters through LTI data analysis.

The contribution of this paper is validating the novel combination of experimental and

analytical methods for estimating mechanical impedance with a torque-controllable

knee exoskeleton. We propose using a torque perturbation paradigm with an unteth-

ered, wearable knee exoskeleton that can apply torques bidirectionally. We will use

LTI methods to estimate the mechanical impedance of known mass spring systems.

We postulate the benefits of this approach are multi-faceted. LTI methods are sim-

pler to perform than LTV, an untethered and wearable device allows data collection

during all portions of the gait cycle across multiple types of terrain, and bidirectional

perturbations permit exploration impedance during flexion and extension. We will

demonstrate the efficacy of our methods and device through characterization of the

exoskeleton’s torque bandwidth and intrinsic impedance properties and validation of

the system identification capabilities of the device through use of the proposed pertur-

bation paradigm. Implementation these methods with this device and analysis of the

results will provide a framework for future methods towards the goal of characterizing

the impedance of the human knee during locomotion.

2.2 Methods

2.2.1 Torque-Controllable Exoskeleton

We propose the use of a torque-controllable exoskeleton developed by Shepherd et al.;

a full description of the device is found in [55].Briefly, a brushless dc motor (EC30,

Maxon Motor, Sachseln, Switzerland) drives a 2.5 mm lead ball screw (Thomson In-

dustries, Inc., Radford VA, USA) after a 2:1 belt drive (2.1). A two-force member
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connects the ball nut to a cantilever fiberglass beam (Gordon Composites, Mon-

trose, CO, USA). This fiberglass beam functions as a series elastic element between

the transmission and the output, with a translational stiffness of 274 N/mm to a

perpendicular load. Two submicron resolution optical encoders (ATOM; Renishaw,

Wotton-under-Edge, Gloucestershire, UK) placed before and after the spring in the

drive train measure the angular deflection of the spring. This angular deflection is

used to generate an estimate of measured torque (2.2). Torque control of the ex-

oskeleton is implemented on a python-based Raspberry Pi microcontroller (model:

Raspberry Pi 3 Model B, Raspberry Pi Foundation, Cambridge, UK).

Figure 2.1: Diagram of the Neurobionics torque-controllable exoskeleton. The fiber-
glass spring serves as the series elastic element in the actuator, connecting the trans-
mission to the output shaft.

2.2.2 Characterization of Exoskeleton Bandwidth and Intrinsic Impedance

We characterized the system’s bandwidth and intrinsic impedance to validate the

use of the exoskeleton as an impedance measurement tool. To determine system
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Figure 2.2: Block diagram of exoskeleton torque calculation. Deflection of the fiber-
glass spring is calculated as the difference between the position estimated by the linear
encoder and the position measured by the rotary encoder. This deflection is multiplied
by the position-dependent stiffness of the fiberglass spring to provide an estimate of
the torque applied by the exoskeleton.

bandwidth, two Gaussian white noise signals with amplitudes of 20 and 40 Nm,

low-pass filtered using a third-order Butterworth filter with a cut-off frequency of

40Hz, were provided to the exoskeleton. We measured the system’s output torque

(τ) and applied the spa function in matlab (MathWorks, Natick, Massachusetts) to

determine the system’s bandwidth. To characterize the intrinsic impedance of the

device, we applied a time domain-based parametric system identification technique.

A reference position trajectory in the form of a Gaussian white noise signal was low-

pass filtered using a third-order Butterworth filter with a cut-off frequency of 20 Hz.

The filtered signal was provided to the device for three 30-second trials, during which

actuator output position (θ(t)) and measured torque (τ) were collected at a sample

rate of 1 kHz. Following data collection, a least-squares regression implemented in

matlab was used to resolve stiffness (K), damping (B), and inertia (J) estimates

from output position and measured torque using the relation in 2.1.

τ = Jθ̈(t) +Bθ̇(t) +Kθ(t) (2.1)
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Following estimation of the parameters in 2.1, a second-order impedance model was

generated to compare the frequency response of the measurements to that of the

model.

2.2.3 Dynamic Estimation of Mechanical Impedance

The exoskeleton’s system identification capabilities and the proposed methodology

for estimating dynamic mechanical impedance were validated by perturbing a set of

known mass-spring systems. We matched two inertias (I1 = 0.0364±4.97x10−5 kgm2,

I2 = 0.0700±2.04x10−4 kgm2) to two springs (k1 = 168±14.3 Nm/rad, k2 = 273±13.9

Nm/rad) to test four spring-mass combinations. The mass-spring combinations tested

are referred to as cases 1-4 hereafter, where case 1 is k1 matched with the I1, case 2

is k2 matched with I1, case 3 is k1 matched with I2, and case 4 is k2 matched with I2.

During benchtop tests, the tested inertia was rigidly attached to the output shaft and

the tested spring was suspended between the output shaft and a fixed stand 2.4). We

chose inertia values that correspond to one half (I1) and one (I2) times the inertia of

the human shank and foot [56]. We chose spring stiffness values that span the range

of human knee stiffness values in literature [42].

Figure 2.3: Diagram of the perturbation response extraction technique. The response
to the reference trajectory subtracted from the response to the perturbation-augmented
reference trajectory yields the response to the perturbations alone.

Each mass-spring combination case was matched to one of five reference torque tra-

jectories, ψA-E, seen in (2.2),(2.3),(2.4),(2.5),(2.6). Each sine wave takes the form

of Asin (ωt) + B where A is amplitude in Nm, ω is the frequency in Hz, t is the
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time in seconds, and B is the torque offset is in Nm. The tested frequencies were

chosen to encompass the known frequency of able-bodied human gait [57], previous

dynamic impedance experiments [2], and the frequency of pathological gait [58, 59].

The case-trajectory combinations are referred to hereafter by the mass-spring combi-

nation (case numbers: 1-4) followed by the trajectory type (A-E) (1A, 3D, etc.).

ψA = 5 sin (1.4t) + 32 (2.2)

ψB = 5 sin (0.8t) + 32 (2.3)

ψC = 5 sin (2.0t) + 32 (2.4)

ψD = 6 sin (1.4t) + 32 (2.5)

ψE =
1

2
[5 sin (1.4t) + 6 sin (2.0t)] + 40 (2.6)

During testing, two forms of the five reference torque trajectories were supplied to

the exoskeleton: the first form was the sine wave described above and the second

form was the sine wave augmented with eight perturbations. The perturbations had

a magnitude of seven Nm and their profiles consisted of a ramp of 75 ms, a 100 ms hold,

and a negative 75 ms ramp to return to the torque trajectory. These perturbations

were placed at 10%, 40%, 60%, or 90% of the sine wave corresponding to the middle

of the loading phase, mid-terminal stance, toe-off, and the transition from mid to

terminal swing phase of the gait cycle respectively. This perturbation paradigm has

been used previously for validation of methods for estimating ankle stiffness using a

robotic device [39]. We conducted seven trials at each reference trajectory, during

which the output shaft position and torque from were measured at a sample rate of

900 Hz.
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Perturbations were extracted by subtracting the exoskeleton’s response to the non-

perturbed sine wave from its response to the perturbed sine wave (2.3) [60]. Following

extraction, isolated perturbations were segmented and analyzed in a 100-ms window

following the onset of the perturbation. A least-squares algorithm was applied to fit a

second-order impedance model to the data according to 2.1. Accuracy of stiffness and

inertia estimates were assessed by comparing model-estimated values to the known

mass-spring values and were quantified using percent error.

2.2.4 Statistical Analysis of Stiffness and Inertia Estimates

The statistical measures of variance accounted for (VAF) and analysis of variance

(ANOVA) were performed on the estimates of stiffness and inertia. VAF is used to

show how a model predicts the variance of measured data. 2.7 shows the equation for

VAF where Test(t) is the estimated torque calculated from the estimated impedance

parameters as a function of time and Tmeas(t) is the torque measured from the ex-

oskeleton as a function of time.

V AF = [1−
∑

(T est(t)− Tmeas(t))
2∑

Tmeas(t)2
] ∗ 100 (2.7)

Four one-way ANOVAs were conducted on each case-trajectory combination to elu-

cidate the effect of perturbation type (i.e: whether the perturbation was a positive

or negative torque perturbation) and perturbation direction (i.e: if the perturbation

was in the same or opposite direction of the underlying trajectory) on stiffness and

inertia estimates. ANOVAs were performed using matlab and the p-values of case-

trajectory combinations that did not show significance are reported in the results.
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Table 2.1: Average percent error and standard deviation of stiffness (K) estimates
for each trajectory

K Table Trajectory A Trajectory B Trajectory C Trajectory D Trajectory E
K1 3.73± 0.51 −2.54± 2.37 −5.14± 1.32 −2.44± 0.01 −1.27± 0.99
K2 −0.28± 0.51 −0.49± 1.20 −12.70± 1.83 −0.16± 0.83 −0.94± 4.25

Table 2.2: Average percent error and standard deviation of inertia (I) estimates for
each trajectory

I Table Trajectory A Trajectory B Trajectory C Trajectory D Trajectory E
I1 −1.80± 6.34 −11.5± 4.63 −30.2± 19.8 −11.0± 8.87 −19.6± 2.00
I2 −12.9± 3.16 −9.32± 5.45 −22.7± 16.2 −7.31± 0.22 −15.1± 12.3

2.3 Results

2.3.1 Characterization of Exoskeleton Bandwidth and Intrinsic Impedance

The system bandwidth was found to be 26.8 Hz for the 20 Nm noise signal and

17.2 Hz for the 40 Nm noise signal (2.5). The average intrinsic stiffness, damping,

and inertial components of the exoskeleton were found to be 0.388± 0.194 Nm/rad,

0.163± 0.0130 Nms/rad, and 0.00100± 2.65x10−5 kgm2 respectively. These intrinsic

impedance values were subtracted from the measured external impedance values to

yield the estimated external impedance values reported.

2.3.2 Dynamic Estimation of Mechanical Impedance

Averaged stiffness, damping, and inertia estimates for the five reference trajectories

have been shown in 2.6. On average, errors for the stiffness estimates were −2.15 ±

3.49% for k1 and −2.51± 5.73% for k2. Average errors for the inertia estimates were

−15.2±10.91% for I1 and −13.1±5.91% for I2. A Percent error breakdown of stiffness

and inertia estimates by trajectory are in 2.12.2.
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2.3.3 Statistical Analysis of Stiffness and Inertia Estimates

The VAF values for all case-trajectory combinations were above 99.9% with the ex-

ception of 4B, which had a VAF of 95%. The one way ANOVA results for most

case-trajectory combinations produced a p-value under 0.05, showing that pertur-

bation direction, perturbation type, or both had a statistically significant effect on

stiffness and inertia estimates. Perturbation type was found to be a statistically

significant factor for all stiffness estimates. The case-trajectory combinations where

perturbation type was not statistically significant were 1C (p = 0.835) and 2E (p =

0.754) for inertia estimates. Perturbation direction was found to be a statistically

significant factor for affecting impedance estimates with most combinations. The ex-

ceptions to this were 4C (p = 0.469) and 4D (p = 0.190) for stiffness estimates and

1A (p = 0.826), 2A (p = 0.056), and 4E (p = 0.384) for inertia estimates.

2.4 Discussion

The objective of this letter was to investigate the system identification capabilities of

a torque-controlled knee exoskeleton for future applications of characterizing human

knee impedance. Our methods included characterization of system bandwidth and

intrinsic impedance and implementation of perturbation-based system identification

techniques to estimate the mechanical impedance of external mass-spring systems.

We chose system parameters that could best emulate human locomotion in a bench

top setting. We were encouraged by our results. The system’s minimum bandwidth,

17.6 Hz, was found to be significantly higher than what we would need to study

human locomotion. The intrinsic impedance was found to be low in comparison to the

tested systems. Estimated external impedance results were particularly encouraging:

stiffness estimate errors were under 3% and inertia estimate errors ranged from ∼13-

15%.
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2.4.1 Stiffness and Inertia Estimates

The average stiffness and inertia estimates with our device are better than or equiv-

alent to the state of the art. The average stiffness errors for the two tested springs

(2.15% and 2.51%) were lower than the reported average stiffness errors of other sys-

tems designed for determining dynamic lower limb impedance (5% [2] and 15% for

13 of 18 trials [54]). The average inertia estimate errors from our system (15.2% and

13.1%) were comparable to those reported by Tucker et al. (15% for 16 of 18 trials

[54]).

For most of the tested trajectories, we noted better estimates of stiffness and inertia

at higher values of these parameters. The exceptions to this trend were the inertia

estimates for trajectory A and stiffness estimates for trajectory C. Overall, impedance

estimates were likely better at higher values because higher impedance more closely

mimics the conditions under which the system was tuned: the system’s torque con-

troller was tuned by locking the output of the exoskeleton, which is analogous to

attaching an infinite stiffness and large inertia to the exoskeleton.

Our stiffness estimates had a lower percent error than our inertia estimates. Stiffness

estimates had both, lower maximum and minimum errors than the inertia estimates

as well as tighter standard deviations. Segmenting measured torque according to 2.1

offers insight into why this might be: the kθ component of torque is larger than the

Jθ̈ component. Alternatively, a larger error in estimating J error could be attributed

to the numerical method used to determined velocity and acceleration, which tends

to lose fidelity with higher order derivatives.

2.4.2 Statistical Analysis

Statistical analysis shows that the parameter estimates accurately model torque be-

havior and how perturbations are administered has an effect on impedance estimates.
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VAF was high in all cases which was expected, because the second order relation-

ship of mass-spring systems to torque is both well known and characterized. The

ANOVAs indicate that how perturbations are applied matters. Over 91% of the

ANOVAs showed that pertrubation type or direction has a statistically significant

effect on the estimation of impedance parameters. A statistically significant effect

was found 95% of the time for ANOVAs exploring perturbation type and 87.5% of

the time for ANOVAs exploring direction. Further analysis showed when comparing

the stiffness estimates of perturbations in the direction of the underlying trajectory

to those that were not, we found that perturbations in the same direction as the tra-

jectory were larger 75% of the time. Surprisingly, when comparing stiffness estimates

based on perturbation type (positive or negative), positive perturbations only yielded

larger estimates 55% of the time. We saw the opposite trends for inertia estimates

with same direction perturbations and positive perturbations being larger 36.3% and

40% of the time respectively. This is expected because the system has no damper,

resulting in an adversarial relationship between stiffness and inertia.

2.4.3 Experimental Implications

The results revealed that the frequency of the applied reference trajectory affects

the quality of the resulting impedance estimate. Trajectories A, B, and D had fre-

quencies ranging from 0.8-1.4 Hz, which fall under slow walking or pathological gait

[58, 59, 2, 39]. Trajectories C and E had frequencies ranging from 1.7-2.0 Hz, which

fall under able-bodied human gait [57]. We found that impedance estimates from

trajectories at lower frequencies were more accurate, with lower stiffness and inertia

estimate errors and damping estimates closer to zero. These results indicate that

tight control of human gait frequency will be critical for quality data collection. We

don’t believe testing at slower gait speeds will negatively impact our results as previ-

ous work characterizing human joint impedance during locomotion, collected data at
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gait frequencies much lower than the frequency of able-bodied human gait [32, 2, 39].

Our results have informed us about how we should conduct human experiments and

how accurate we can expect the results to be. The data shows us that we should run

experiments at lower frequencies to achieve the highest accuracy. Data also shows

us that we can be confident in our estimates of stiffness and damping due to the low

percent error readings. We know that measurements of dynamic stiffness are lower

than their postural counterparts and so we believe that case 2 results may be like

what we expect to see during human testing. Finally, these experiments have shown

us that our estimates will likely be underestimates but we may be able to counteract

this phenomenon by using perturbations in the same direction as the underlying

trajectory for stiffness or perturbations in the opposite direction as the underlying

trajectory for inertia estimates.

2.4.4 Limitations

Some limitations of this study must be considered. The bench top setup did not

include an explicit damper and validation of the system identification capabilities of

the device were limited to measures of stiffness and inertia. We did, however, report

a damping estimate in our results. The average damping estimates were close to zero,

which is an encouraging result for both, the device, and the system identification

technique. Furthermore, estimates from 95% of the testing conditions had a standard

deviation at least 1.4 times larger than the mean, indicating that the reading was

dominated by noise. This illustrates the potential of this device to accurately measure

human knee damping values in future studies. Another limitation to consider is that

impedance estimates tended to fall below the true values. Inertia values revealed a

notable skew towards underestimation of true values: inertia estimates for 100% of

tested trajectories and 95% of the case-trajectory combinations were underestimates

of the true value. Examining stiffness estimates by trajectory revealed that 80%
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of the estimates fell below the true value. Examining stiffness estimates by case and

trajectory, however, revealed that only 35% of the estimates fell below true values. We

conclude that while inertia estimates were skewed towards underestimation, stiffness

estimates were not strongly skewed in a single direction. Underestimation could be

attributed to inherent variation in the torque applied by the exoskeleton: in a prior

study characterizing the exoskeleton, output torque varied by up to ∼10%. This may

arise from inaccuracies in the beam spring stiffness equation or from nonlinearities of

the beam spring that are not captured by the linear model we have used. Overall, the

accuracy of impedance estimates reported here, particularly for stiffness and damping,

indicate that this issue can be overcome.

2.4.5 Ramifications of Human Experiments

With validation of the system identification capabilities of the device and the proposed

methodology, we now have a reliable tool that can be used to further rehabilitative

practices, prosthetic design, and robotic control. With a device that can determine

knee impedance values for physically impaired and able-bodied individuals alike, we

can use impedance as a metric for rehabilitation. Knowing how an individual’s joint

impedance varies after a medical intervention or rehabilitative session can be a tool

for bench marking patient progress. Knowledge of how impedance varies can also

be used for intelligent design of passive or quasi-passive prosthetic devices. Work

presented in [12] shows how biological data can be used to design quasi-passive devices

that perform comparably to their powered counterparts but show notable savings in

weight and complexity. Using a similar approach with knee impedance data could

prove beneficial in informing design requirements for the next generation of passive

or quasi-passive knee prostheses. Finally, task-based knowledge of knee impedance

provides opportunities for new control methodologies. Using our approach, we can

definitively replicate the impedance of human joints on these powered devices and
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compare their performance to other control laws. Experiments like this can inform

the merit of exploring biological impedance for robotic control and could lead to more

intuitive control and higher device adoption.
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Figure 2.4: Diagram of the experimental setup. Labeled components are the actuator
and its axis of rotation, the spring and the inertia.

27



Figure 2.5: Plot of the actuator’s torque bandwidth at 20 and 40 Nm. Bandwidth was
determined by measuring the system’s torque response to a filtered Gaussian white
noise (FGWN) signal with a cutoff frequency of 30 Hz.

Figure 2.6: Plot of average estimated stiffness, damping, and inertia values for all
case-trajectory combinations. The ideal stiffness, damping, and inertia values are
shown in gray. The experimental estimates of these values from tested trajectories
are shown in shaded color, with the lightest color corresponding to Trajectory A and
the darkest color corresponding to Trajectory E. Standard deviations are symmetric
about the mean value.
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CHAPTER III

Characterization of a Quasi-Direct Drive Knee

Perturberator For Human System Identification

3.1 Introduction

Understanding the mechanical impedance of human joints is necessary for a compre-

hensive understanding of movement. Mechanical impedance dictates how the body

responds to disturbances and governs the exchange of energy between limbs during

activities [61]. Mechanical impedance, in this context, refers to the relationship be-

tween an input flow or its derivative, i.e. position or velocity, and output an effort,

like torque or force [15, 62, 63]. Knowledge of impedance has been used to create

innovations in many subject areas, such as robotic control, mechanical design, and

rehabilitation ([64, 65, 66].

Joint impedance is studied under static or dynamic conditions and while impedance

in static conditions is well researched, knowledge of how impedance behaves in dy-

namic domains is not as plentiful. In the lower limbs, static impedance research has

been conducted at all three major joints (hip, knee, and ankle) under a myriad of

conditions, forming the foundation for most of the impedance research ongoing to-

day [18, 11, 67, 23, 24, 25, 26, 27, 19, 20, 21, 22]. More recently, it has been shown
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that there is a notable difference between joint impedance estimates obtained under

static and dynamic conditions, leading to more studies under dynamic conditions

[29]. Most of these dynamic studies have been conducted at the ankle, and out of

these studies an interesting trend has emerged: studying impedance during common

tasks [28, 29, 30, 16, 68, 69, 66]. Studying impedance during these common tasks

provide insights into our execution of everyday activities such as walking or running,

offering a more accurate depiction of how our joints function during these motions

and thereby contributing to a more comprehensive understanding of human move-

ment [29, 68, 69, 34, 35, 16].Equivalently important to the context in which we study

impedance, is ensuring we possess devices that can capture the requisite information

for impedance estimation during these dynamic tasks.

Exoskeletons serve as versatile tools for assessing mechanical impedance due to their

adaptability in introducing perturbations during both the stance and swing phases of

human movement [68, 70, 71]. This modality is critical for measuring joint mechanical

impedance, as perturbation application to the joint of interest must occur for proper

identification the closed loop system [67]. When employing an exoskeleton for system

identification, it is essential to select a system that exerts minimal influence on the

wearer’s natural gait. Achieving this goal involves opting for actuation mechanisms

with low weight, compact transmissions, and low interaction torques at the output.

The integration of quasi-direct drive (QDD) actuators has emerged as an effective

strategy for actuators that not only reduce mass, but also generate low interaction

output torques efficiently [72]. The adaptability of these devices for general purposes

is promising, however the efficacy QDD’s as human system identification tools is

unclear.

In this paper, we implement a QDD actuator as a system identification tool for

quantifying the mechanical impedance of the knee joint during walking. First, a novel
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Figure 3.1: Experimental test bench used for torque model testing and validation as
well as static and dynamic mechanical system identification experiments.

model for estimating torque exerted by the actuator is formulated using motor state

information. We then investigate this model’s torque measurement accuracy through

a testing sequence where the model results are compared to a ground truth torque

sensor measurement. Subsequently, the device’s ability to identify the stiffness of a

mechanical system is described under both static and dynamic conditions. Lastly,

we conduct a perturbation experiment on two human subjects for the purpose of

estimating knee joint mechanical impedance during walking. The reported values

provide new mechanical impedance information during the swing phase of gait, as

well as the first insight into the mechanical impedance of the knee joint during the

stance phase of walking. This work not only helps establish the ability for QDD

actuators to measure system dynamic properties, but also demonstrates how the

actuator can be integrated into future exoskeleton systems for the purpose of human

impedance identification.

3.2 Methods

In order to assess the actuator’s capacity for estimating mechanical impedance pa-

rameters, we conducted experimental procedures on a bench top testbed featuring a

torque motor and a torque sensor coupled to rotary springs 3.1. The testbed consisted

of a motor on the left side that operated in current control, denoted the torque motor
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(9:1 ActPack, Dephy Inc, Boxborough, MA). The torque motor was coupled to a

torque sensor (TRS605, Futek, Irvine CA) which was fixed to two 150 Nm/rad rotary

springs in parallel from [73]. The rotary springs were connected to a transmission

(50:1 PL2090-050, Boston Gear, Boston MA), the input of which was mounted to a

motor that operated in position control, denoted the position motor. To determine

if the actuator was capable of performing system identification adequately, we first

needed to validate the system’s ability to estimate torque.

3.2.1 Identification of Open-Loop Actuator Torque Model

We conducted a test that commanded a series of constant velocities from the position

motor and constant torques from the torque motor to fit the parameters within a

model to estimate motor torque. The torque and speed test was conducted with the

torque side motor holding seven different levels of torque that ranged from -10 to 10

Nm while the position side motor proceeded through six different velocities ranging

from negative five to positive five rad/s. The resulting torque side motor data was fit

to three different torque models using least squares regression. Model 3.1 estimates

torque, τ , using a bias term, ϕ, the motor’s transmission ratio, gr, a torque constant,

kt, and q-axis motor current, Iq. Model 3.2 used a traditional motor equation to

estimate output motor torque, using a bias term, the motor’s transmission ratio,

torque constant, q-axis motor current, the motor’s viscous loss, b, and the motor’s

rotor inertia, J . The torque estimation model we proposed can be seen in 3.3 where

the output torque is characterized by the bias in the torque sensor, the gear ratio of

the motor, the torque constant of the motor, the q-axis current drawn by the motor,

the motor’s coulomb friction, fc, the motor’s velocity, θ̇, the gear friction in the motor,

fg, the rotor inertia of the motor, and the motor’s acceleration, θ̈. J for model 3.3

was extracted from previous work involving this actuator [72]. The RMS error of

each model was calculated and used to determine model efficacy. The model with the
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lowest RMS error, would be validated through further experimentation.

τ = ϕ+ grktIq (3.1)

τ = ϕ+ grktIq − b(θ̇)− Jθ̈ (3.2)

τ = ϕ+ grktIq − fcsign(θ̇)− fg|Iq|sign(θ̇)− Jθ̈ (3.3)

We wanted to investigate the torque tracking accuracy of the model with the lowest

RMS error in the presence of disturbances. To perform this task, we had the torque

motor produce a series combination of chirp signals with various amplitudes. To

provide a disturbance for the torque motor, we had the position motor produce a

series combination of chirp signals as well. The torque series combination of chirp

signals consisted of four chirp signals. The first chirp had an amplitude of five Nm,

followed by seven Nm, 10 Nm, and finally zero Nm. Each chirp signal started at a

frequency of one Hz and increased to 10 Hz. Each torque chirp lasted for a duration

of 10 seconds, making the duration of the series combination of signals 40 seconds.

The position series combination of signals consisted of one chirp signal that repeated

four times. The position chirp started at a frequency of 10.1 Hz and an amplitude of

five degrees. This signal decreased in frequency and amplitude to 1.1 Hz and three

degrees, respectively. Each position chirp lasted for a duration of 10 seconds, making

the duration of the series combination of signals 40 seconds. The torque and position

series combination chirp signal were started simultaneously, and ran concurrently.

To acquire a measure of torque tracking accuracy, we calculated torque using the

minimum error model and compared those values to the readings from the testbed
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torque sensor using RMS error as a metric.

3.2.2 Impedance Identification of Test bench System Under Static Con-

ditions

Following determination of the torque model with the lowest RMS error, we con-

ducted an experiment to quantify the actuator’s ability to identify the stiffness of a

mechanical system in a static configuration. To this end, we performed a test where

the torque side motor sinusoidally commanded a range of -10 to 10 Nm six times in

60 seconds while the position output was locked. The torque side motor’s encoder

was used to measure the deflection of the mechanical system. A ground truth torque

was measured from the torque sensor 3.1. From the torque and motor position data,

the true stiffness of the system was estimated. The estimated system stiffness was

calculated using the torque model and motor position data. The stiffness estimates

were compared to the ground truth measurements using percent difference.

3.2.3 Characterization & Impedance Identification of Test bench System

Under Dynamic Conditions

In addition to characterizing the stiffness of the mechanical system in static condi-

tions, a separate experiment was used to estimate the stiffness in dynamic conditions,

that would more closely mimic testing during human locomotion. To identify the

stiffness of the mechanical system under dynamic conditions, we performed an inde-

pendent characterization of the system that we will refer to as the IDP test moving

forward. For this characterization, the position side motor followed the trajectory

3sin(πx/5) + sin(10πx) degrees, while the torque side motor commanded the fol-

lowing torque trajectory 10sin(πx/5) Nm for 60 seconds. We filtered the data at a

frequency of
√
5 Hz to remove the high frequency behavior in the resultant signals

and regressed the data to determine the dynamic system stiffness.
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To evaluate the actuator’s ability to estimate mechanical impedance under conditions

akin to human experiments, a perturbation experiment was performed under dynamic

conditions. The position side motor in the perturbation experiment followed the knee

position trajectory from a reference dataset at a speed of 1 m/s [74]. The torque side

motor enacted two conditions. First condition was the no perturbation condition

(NPC) where the torque side motor followed a zero torque reference signal. The

second condition was the applied perturbation condition (APC). During this condition,

the torque motor would cyclically track a zero torque reference signal for 2.75 seconds

and then apply a 250 ms perturbation. The perturbation consisted of a 75 ms ramp

up from zero to seven Nm, a 150 ms hold at seven Nm, and then a 75 ms ramp

down from seven to zero Nm. The perturbations applied alternated between being

applied in the positive and negative torque directions, with 20 perturbations being

applied in total. The NPC condition occurred for 60 seconds. Promptly after the

NPC condition, the APC condition occurred for 60 seconds. The torques applied and

position traversed by the torque side motor for both the NPC and APC cases were

sectioned into individual ”gait cycles.” Once the torque and positions from each gait

cycle were segmented, the torque and position trajectories from the NPC case were

subtracted from the APC case to isolate the system’s impedance response. After

the isolated system responses where found, system identification methods were used

to determine the system stiffness. This stiffness was compared to the independently

determined stiffness of the system. From this comparison percent error was calculated.

3.2.4 Human Impedance Estimation Pilot Experiment

An altered version of the methods previously stated for impedance estimation during

dynamic conditions were applied on N=2 able-bodied subjects (gender: 1 female/-

male, mean age: 23 ±0.00, mean mass: 72.58 ±9.08 kg). Prior to data collection,

subjects gave informed consent to a protocol approved by the University of Michigan
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Institutional Review Board. Each subject underwent two walking conditions while

wearing a knee exoskeleton; an exoskeleton no perturbation condition (E-NPC) and

an exoskeleton applied perturbation condition (E-APC) 3.2. All conditions occurred

on a treadmill at a speed of 1.2 m/s. The E-NPC condition was conducted for approx-

imately 60 gait cycles, while the participants walked as the exoskeleton tracked a zero

torque reference trajectory about the knee joint. During the E-APC condition, partic-

ipants received perturbations at six time points within the gait cycle, while between

perturbations, the exoskeleton tracked a zero torque reference trajectory. These time

points correspond to the loading response, mid-stance, terminal stance, pre-swing,

initial swing, and mid-swing phases of gait outlined in [75]. There were 50 perturba-

tions applied at each time point in the direction of knee flexion. Perturbation onset

occurred at the time point that corresponded to 50% completion of a specific phase

of gait. Each perturbation was a 17 Nm torque hold, applied for 250 ms. Subjects

were randomly perturbed every three to seven gait cycles. Torque information was

calculated offline using model 3.3. The joint position information was collected us-

ing an electrogoniometer across the knee joint (MLTS700, AD Instruments, Colorado

Springs CO). Mechanical impedance parameters were determined using similar sys-

tem identification methods to previous work [76]. For the E-NPC and E-APC cases,

the torque and position information from each individual gait cycle was segmented.

For the E-NPC case, all torque and position information from individual gait cycles

were averaged to produce a mean torque and position trajectory. All E-APC gait

cycles where a perturbation occurred were sorted by the timing point at which the

perturbation occurred. The average gait cycle torque and position information from

the E-NPC case was subtracted from each E-APC gait cycle to remove the underlying

torque and position that result from walking, thereby isolating the perturbation and

response. The isolated torque and position perturbations were then used with least

squares identification to determine stiffness (K), damping (B), and inertial (J) values
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that parameterize second-order mechanical impedance models. Reported impedance

parameters K and B were normalized by subject weight and all parameters (K,B, J)

were averaged. The Variance Accounted For (VAF) resulting from each subject’s re-

gressed impedance parameters was quantified. VAF provides a measure of how well

the model fit the experimental data.

3.3 Results

3.3.1 Identification of Open-Loop Actuator Torque Model

The model parameters estimated from the multi-regime torque-speed test yielded

similar results for shared parameters, such as ϕ and kt, but had different RMS errors.

The regressed parameters and RMS error for each model are in table 3.1. Model

3.3 was used to estimate torque for subsequent experiments because it provided the

lowest RMS error. The RMS error from the chirp validation test was 0.33 Nm with

model 3.3.

Table 3.1: Torque-Speed Model Parameters and RMS Torque Errors

Model Type Parameters RMS Torque Error (Nm)
1 ϕ = -0.58, gr = 9, kt = 0.11 0.88
2 ϕ = -0.57, gr = 9, kt = 0.11, b =

37e-4, J = 0.22
0.44

3 ϕ = -0.58, gr = 9, kt = 0.11, fc
= 0.38, fg = 0.09, J = 92e-4

0.38

3.3.2 Impedance Identification of Test bench System Under Static Con-

ditions

Under static conditions, the estimation approach was able to accurately identify the

stiffness of the included spring. Estimation of the stiffness coefficient yielded a sub

one percent error. When compared to an independently-determined ground truth

value, our estimation approach determined the stiffness within 0.81%.
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3.3.3 Characterization & Impedance Identification of Test bench System

Under Dynamic Conditions

Our estimation method correctly identified the stiffness of the benchtop system with

approximately 5% error. The IDP test performed to identify the system stiffness un-

der dynamic conditions yielded a result of 146.39 Nm/rad. The perturbation experi-

ment conducted to identify the system stiffness under dynamic conditions produced

an average error of 5.29% when compared to the independently identified stiffness

coefficient. The perturbations in the positive direction yielded an estimated stiffness

of 145.13± 2.45 and the perturbations in the negative direction yielded an estimated

stiffness of 162.57± 2.96.

3.3.4 Human Impedance Estimation

Knee stiffness, damping, and inertia show their own unique trends as the gait cycle

progresses, with stiffness being highest at the beginning of gait, damping being rel-

atively level, and inertia being the highest during the middle of the gait cycle. The

individual and average impedance estimates of the two human participants are shown

in 3.7. Average stiffness results ranged from 2.99 to 0.11 Nm/rad/kg, average damp-

ing results ranged from 0.06 to 0.04 Nms/rad/kg, and average inertia results ranged

from 0.05 to 0.01 kgm2. The average VAF’s for each subject across all timing points

were 97.83% and 84.84% for subjects 1 & 2 respectively. The average VAF for both

subjects was 91.3%.

3.4 Discussion

Through a collection of experiments, we explored the utility of using a compact,

quasi-direct drive actuator for estimating the mechanical impedance of mechanical

and biological systems. We first investigated the ability to model the actuator torque
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using motor state information. We then validated this model’s performance by per-

forming a torque tracking test where we found the error of this model to be less than

0.5 Nm. Next, we used the best performing torque model to estimate the stiffness of

a mechanical system under static and dynamic conditions. Finally, we applied tech-

niques similar to those used to estimate the mechanical properties, to estimate the

mechanical impedance of the knee joint for two human participants during walking.

With this work, we provide new insight into the properties of the human knee during

the stance and swing phases of walking.

Device characterization show that our actuator performs at a level equivalent to or

superior than other state of the art perturbation devices. Our torque modeling error

of 0.33 Nm is commiserate with the results of the MIT Anklebot which reported a

sub one Nm torque tracking error [77]. Our stiffness estimates are on par with values

reported from other work. For devices that apply perturbations in the sagittal plane,

literature shows that these devices can estimate stiffness within errors ranging from

1.68% to 15% [34, 78, 30]. The device with the lowest stiffness estimate error we found

in literature came from Ficanha’s work. This study displayed an error of 0.15% from

perturbations applied in the frontal plane [78]. All of the estimates from literature

were performed under static or quasi static testing conditions. Our stiffness estimate

error of 0.81% under static testing conditions is a strong result when compared to

the field. Furthermore, our stiffness estimate error of 5.29% under dynamic testing

conditions is a quality result amongst the results from other static studies, which

undergo less complex dynamics.

Exoskeletons as perturbation devices provide alternate perturbation opportunities

and drawbacks not afforded by recessed platform perturberators. One of the bene-

fits of using an exoskeleton is that one can perturb participants during swing phase

which cannot be accomplished with a recessed platform. Swing phase is integral com-
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ponent of gait and knowledge of how impedance varies during this time can have

major repercussions for robotic control, particularly in the field of prosthetics [10].

Using exoskeletons as perturbation devices opens the possibility of testing a new set

of timing points that were previously neglected by recessed platforms. However, an

additional consideration when using exoskeletons for impedance estimation during

swing, is the effect the device has on user gait. If the device is too heavy or has high

output impedance, the underlying biomechanics can be notably effected, calling into

question the validity of the results. Another benefit of exoskeletons is the increased

number of perturbations that can be applied, when compared to recessed platforms,

given the same duration of time. Exoskeletons provide the ability to perturb multiple

times during a single gait cycle which can lead to quicker experiments or more dense

data sets for experimenters. Lastly, exoskeletons provide the ability to apply torque

directly at the joint of interest, while platforms must use an inverse model to calcu-

late the torque at that joint. Due to variations in foot placement during platform

experiments, inverse models may experience inconsistent center of rotation calcula-

tions which impacts the estimation of torque and impedance at the joint of interest

[34]. While exoskeletons do not experience this issue, problems can arise with torque

transmission to the joint because of poor interface connections or human soft tissue.

Taking these factors into consideration when performing perturbation experiments is

important, and likely some combination of both approaches will yield the best results.

The stance phase knee impedance estimates in this paper are, to our knowledge, the

first of their kind, and our swing phase estimates provide new data points, not yet

seen in literature. During the loading response, mid, and terminal stance phases, we

see stiffness and damping exhibiting antagonist behaviors with stiffness decreasing

as damping increases. This behavior mimics a pattern seen at the ankle in previous

literature [61, 69]. During this period of gait, we also see inertia increasing. During

the initial and mid swing phases, our stiffness estimates lie in the range of previously
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reported values and our inertia estimates closely align with previously reported data

[16, 30]. Our damping estimates, however, are much larger than those reported in

literature. For one the two studies that previously report this information, we believe

this is because their time window for analysis is much longer than ours (275 ms

compared to our 100 ms). This much longer time window allows reflexes to have a

large impact on the total impedance of the joint which could explain the difference

[79]. The other paper uses the same time analysis window as us, however their average

VAF value is ∼ 72% which is lower than ours at ∼ 91%. We believe the difference in

model fits may explain this discrepancy between damping estimates.

3.4.1 Limitations & Future Work

The results of this work are shaped by key assumptions and limitations of the ex-

perimental setup. One key assumption made in this work is that the joint undergoes

linear time invariant behavior during our time analysis window. The other is that

knee joint impedance exhibits second order behavior. Previous literature has shown

that representing human joints as second order, linear time invariant systems can

account for more than 97% of model variance, providing us confidence in our assump-

tions [67]. Two limitations of this work are the sample size of the human experiment

and a dearth of knowledge of the exoskeleton’s effect on subject gait. We only tested

two subjects in this work, which does not allow us to confidently make any statisti-

cal claims our impedance estimates. Any continuation of this work, should include

an increased number of subjects in an effort to study a more globally representative

sample of people and to confidently make statistical claims about their impedance

estimates. Future work should also investigate the effect that wearing an exoskele-

ton has on participant’s gait. During our experiment, the participant gait visually

appeared similar. However, more thorough inspection of participant’s biomechanics

should be performed to provide a increased understanding of the applicability of these
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results to typical abled-bodied gait.
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Figure 3.2: Labeled figure of the exoskeleton used for human experiments. The torque
side motor is labeled ”actuator” in the figure.
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Figure 3.3: Visualization of the performance of the three regressed torque models in
comparison to a torque sensor. Colored legend shows the speed regime that each torque
test is performed at.
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Figure 3.4: Torque chirp validation test showing torque tracking of our model (model
3.3) vs the torque sensor at four different torque values.

Figure 3.5: Static system stiffness identification test. A 10 Nm amplitude sine wave
was commanded by the torque side motor while the position output was locked in place.
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Figure 3.6: Dynamic system stiffness identification result showing the difference in
estimated stiffness from the perturbation experiment and the independent dithering
test dynamic characterization.
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Figure 3.7: Knee impedance estimates from two subjects during walking. Subject data
is offset for clarity. Subjects were perturbed at six phases of the gait cycle and knee
joint impedance was estimated at these points. Top shows stiffness normalized by
mass, middle shows damping normalized by mass, and bottom shows inertia.
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CHAPTER IV

Estimation of Human Knee Joint Impedance

During Walking

4.1 Introduction

Comprehending how mechanical impedance is exhibited by human joints is essential

to gain a holistic insight into human motion. Mechanical impedance determines how

the body reacts to perturbations and regulates the transfer of energy between limbs

during various activities [61]. Mechanical impedance is defined as the relationship

between an input position or velocity and an output force or torque [15, 62, 63].

Knowledge of impedance has led to breakthroughs in diverse domains, such as robotic

control, mechanical design, and rehabilitation [64, 65, 66].

The human body regulates impedance based on environmental and situational fac-

tors. While impedance has been extensively researched under static conditions, our

understanding of how impedance behaves in dynamic situations is relatively limited.

For the lower limbs, a multitude of research has been conducted at major joints like

the hip, knee, and ankle during static conditions, forming the basis of most current

impedance knowledge [18, 11, 67, 23, 24, 25, 26, 27, 19, 20, 21, 22]. Recent studies

have highlighted significant differences in joint impedance estimates during static and
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dynamic conditions, prompting a shift towards more dynamic studies [29]. Amongst

the dynamic studies, a trend in examining impedance during everyday tasks like

walking or running can be seen [28, 29, 30, 16, 68, 69, 66, 80]. Analyzing impedance

during these tasks offers valuable insights into how our joints function during dy-

namic actions, contributing to a more accurate understanding of human movement

[29, 68, 69, 34, 35, 16]. Equally important as the context of impedance study is the

need for devices capable of capturing essential information for impedance estimation

during these dynamic actions.

To measure joint impedance there must exist a device that can apply perturbations

to a subject without inhibiting their motion, and there must exist some tool for

measuring the displacement of the joint and the torque about the joint as a result

of the perturbation [67]. There are multiple types of devices that meet this criteria,

and choosing which device to utilize will affect what aspects of impedance can be

captured. One system that permits impedance estimation during dynamic tasks is

the recessed force platform [34, 35, 36, 37]. Recessed force platforms are commonly

operated in concert with a displacement measurement system, such as motion capture

or an electrogoniometer, to gather impedance information. A caveat of recessed

platforms is that the participant’s foot must be in contact with the platform to

apply a perturbation. This results in an inability to estimate impedance during

activities, or segments of activities, when the subject is not contacting the ground,

such as the swing phase of walking. An approach that addresses the foot contact

limitations of recessed force platforms, is the utilization of a traction system [38,

16]. These traction systems employ external cables and motor-driven mechanisms to

exert a linear force upon the subject. An advantage of these systems is their ability

to administer perturbations to users regardless of if the target joint is in contact

with the ground. However, a notable drawback of these systems are their complex

system dynamics. Issues such as bowden cable bending or cable slack, can result in
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discrepancies between the expected and actual forces experienced by the user.

Exoskeletons are versatile devices that show promise as effective tools for evaluating

mechanical impedance. They enable the introduction of perturbations during both

the stance and swing phases of human movement and have the capacity to apply

torque directly to the joint of interest [68, 70, 71]. When utilizing an exoskeleton

for system identification, it is imperative to select a system that minimally interferes

with the wearer’s natural gait. This necessitates choosing actuation mechanisms

characterized by low weight, compact transmissions, and low output impedance. The

integration of quasi-direct drive (QDD) technology into exoskeletons has emerged as a

promising approach for reducing actuator mass and generating low output impedance

[72].

The two most prevalent impedance estimation methods in the literature are exper-

imental and model based. The experimental approaches utilize a device to perturb

subjects and measure the kinetics of their response. At the knee, there are two doc-

umented approaches that use experimental perturbation methods. One is Kooij’s

work that estimated hip and knee impedance during the initial, mid, and terminal

swing phases of gait with a pulling traction perturbation device [16]. The other is

Tucker’s work which estimated knee impedance during 20% and 30% of swing with

an exoskeleton perturbation system [30]. The current state of the art works for model

based estimates of knee impedance during walking consists of two studies. The first

work comes from Pfeifer where they estimated knee stiffness during walking using an

EMG based approach and the second is Sartori’s work where they estimated ankle

and knee stiffness during fast walking and running using a musculo-skeletal model

[81, 48]. Both works use surface EMG, Ground Reaction Force (GRF) data, and

motion capture information as the inputs for their model based approaches. In both

studies, there is no perturbation applied to the subjects. Instead, these works rely
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on lower limb EMG and inverse dynamics to estimate stiffness. The current liter-

ature lacks experimentally obtained knee impedance values during stance phase as

well as experimental validation of the aforementioned model based approaches. The

knowledge of knee impedance during swing phase is also sparse, with only two studies

existing and among those two studies, notably different time horizons for impedance

estimation.

In this study, we estimate the impedance parameters of the human knee joint in both

the stance and swing phases of walking, during several points of the gait cycle. We

provide a succinct overview of the reconfiguration of an exoskeleton to optimize its

utility for human system identification. Subsequently, we conduct a perturbation

experiment involving 10 participants on a treadmill and estimate their knee joint

impedance during walking. Following impedance estimation, we conduct a compre-

hensive analysis of the results by employing various statistical metrics. This analysis

investigates multiple topics such as the influence of the exoskeleton on user gait,

the model fit of estimated impedance parameters, and significant factors affecting

impedance estimation. Finally, we contextualize these findings within existing liter-

ature and contemplate the implications of our results for the biomimetic control of

wearable robots.

4.2 Methods

4.2.1 Exo Design

For this experiment, we utilized an exoskeleton with a QDD actuator as our perturba-

tion device. The Modular Backdrivable Lower-limb Unloading Exoskeleton (MBLUE)

has shown strong torque estimation abilities and low output impedance which is im-

portant for human system identification experiments [72]. However, the original ver-

sion of this exoskeleton was not designed to perform perturbation experiments, so we
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redesigned multiple aspects of the device to make it suitable for our research purposes.

To minimize the effects of exoskeleton weight on user leg dynamics, we relocated the

battery and microcontroller off the device, decreasing device weight (4B, Raspberry

Pi Foundation, Cambridge, UK). We also implemented a waist mounted suspension

system to counteract the device’s weight and prevent sliding. Through pilot testing,

we found that there was a discrepancy in motion between the exoskeleton’s encoder

and the human joint due to biological compliance. To ensure measurement of true

joint displacement, we used an electrogoniometer (MLTS700, AD Instruments, Col-

orado Springs, CO) to measure joint motion. We removed the medial component of

the exoskeleton to ensure correct placement of the goniometer across the subject’s

knee joint.

We found the removal of the medial side of the exoskeleton introduced torsional

loading to the leg when perturbations were applied. This torsion created motion that

was incorrectly identified by the goniometer as joint motion. To fix this, we changed

the attachment points from the side of the leg to the front and back of the leg

through the introduction of L brackets. These L brackets served to mitigate rotation

by applying forces to the front and back of the leg, generating a pure torque around

the knee in the sagittal plane. These brackets also incorporated adjustable slots that

permitted the exoskeleton attachments points to be angled, allowing the device to

conform to the user’s anatomy. To ensure that subjects donning our exoskeleton had

unfettered motion, we removed the original shoe suspension mechanism. We found

that the shoe suspension adversely impacted ankle kinematics during walking and

with the inclusion of our waist mounted suspension system there was no need for

another suspension system. Removal of the shoe suspension also eliminated the need

for specialized footwear, previously required for knee only version of MBLUE.
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Figure 4.1: Labeled figure of the exoskeleton utilized with human experimental partic-
ipants

4.2.2 Experimental Setup

We performed perturbation experiments with an exoskeleton on a diverse group of

participants. Our study had N=10 able-bodied participants (4 female, mean age:

27.8 ±5.12 years, mean mass: 73.39 ±9.72 kg, mean height: 170.18 ±12.19 cm).

Prior to data collection, subjects gave informed consent to a protocol approved by

the University of Michigan Institutional Review Board (ID: HUM00154646). Each

subject underwent three walking conditions, two of which occurred while wearing a

knee exoskeleton; a non-exoskeleton walking condition (NWC), an exoskeleton walk-

ing condition with no perturbations (ENP), and an exoskeleton walking condition

where perturbations were applied to the participant (EWP). The NWC condition was

conducted to obtain a baseline for participant biomechanics without the exoskeleton.

The ENP case was used to obtain a measure of the underlying mechanics displayed by
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the subjects while wearing the perturbation device. Finally, the EWP condition was

used to apply perturbations to participants for impedance estimation. All conditions

occurred on a treadmill moving at a speed of 1.2 m/s. The NWC condition consisted

of the subject walking without donning the exoskeleton for approximately 60 gait cy-

cles. The ENP condition was also conducted for approximately 60 gait cycles. During

the ENP condition, participants walked on the treadmill as the exoskeleton tracked

a zero torque reference trajectory.

During the EWP condition, participants were perturbed at six time points within

the gait cycle. During non-perturbation times, the exoskeleton minimized output

impedance as participants walked on the treadmill. The six timing points where

perturbation onset transpired were at 7%, 21.5%, 40.5%, 56%, 68.5%, and 81% of

the participant’s gait cycle. These timing points were in the middle of the loading

response (LRE), mid-stance (MST), terminal stance (TST), pre-swing (PSW), initial

swing (ISW), and mid-swing (MSW) phases of gait from [75]. Subject perturbations

were applied in the direction of knee flexion. At each time point, 50 perturbations

occurred. Every perturbation took the form of a 17 Nm torque hold and was applied

for 250 ms. Perturbations were randomly applied to subjects in intervals of three to

seven gait cycles. Torque perturbation information was determined offline with (4.1)

where where the output torque, τ , is characterized by the gear ratio of the motor, gr,

the torque constant of the motor, kt, the q-axis current drawn by the motor, Iq, the

motor’s coulomb friction, fc, the motor’s velocity, θ̇, the gear friction in the motor,

fg, the rotor inertia of the motor, J , and the motor’s acceleration, θ̈. All position and

torque data were filtered in MATLAB (R2019b, Mathworks Inc., Natick, MA) using

a fourth order butterworth filter with a cutoff frequency of 20 Hz:

τ = grktIq − (fc + fg|Iq|)sign(θ̇)− Jθ̈. (4.1)
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4.2.3 Human Impedance Estimation

To estimate impedance parameters, we performed regression on the experimentally

obtained data after removing any underlying dynamics. For both the EWP and ENP

cases, torque and position data from individual gait cycles were segmented based

on heel strike data collected from a footswitch (LEMO, B&L Engineering, Santa

Ana, CA). In the ENP case, the torque and position data from individual gait cycles

were averaged to create a representative mean torque and position trajectory. For

the EWP cases where perturbations were introduced, gait cycles were categorized

based on perturbation onset timing. Each grouping of perturbed gait cycles was

bootstrapped using the methods from [61]. The average torque and position data

from the ENP case were subtracted from each bootstrapped EWP gait cycle group,

removing the underlying dynamics of human walking and retaining solely the joint

response to the perturbation. The isolated torque and position perturbations were

then fed into a bounded least squares regression to estimate stiffness, K, damping, B,

and inertial, J , impedance parameters. We normalized K and B by subject weight

and reported the average value of all parameters, K,B, J , at each timing point.

4.2.4 Statistical Analysis

We employed several statistical techniques to analyze our experimental results. Vari-

ance Accounted For (VAF) was utilized to assess the how well the estimated impedance

parameters fit to a second order linear model (4.2).

τ = Kθ +Bθ̇ + Jθ̈ (4.2)

Additionally, a two-way Analysis of Variance (ANOVA) was conducted on a general

linear model, with each model corresponding to an impedance parameter as the de-

pendent variable as seen in (4.3). The linear model included the fixed independent
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variable called timing point, tp, and the random independent variable called subject,

(1|subject). A Bonferroni correction was used for all post-hoc comparisons and the

significance level for all tests was set to α = 0.05.

(K,B, J) ∼ 1 + tp+ (1|subject) (4.3)

The study also employed the use of Statistical Parametric Mapping (SPM) to assess

the impact of wearing the exoskeleton on user biomechanics. SPM incorporates ran-

dom field theory to compare spatiotemporal trajectories and determine if they are

statically different [82]. In our case, we used SPM to perform a paired, two-tailed

t-test on the mean position trajectories generated from the NWC and ENP cases. All

1D SPM analyses were implemented using the open-source 1D SPM code (v M.0.4.11,

www.spm1d.org) in MATLAB. Significance was set at α = 0.05.

To investigate the differences between knee quasi stiffness and our stiffness estimates,

an unpaired t-test was performed on the two groups. The data to calculate quasi

stiffness was taken from Winter’s data and compared to impedance estimates made at

the same points in the gait cycle [83]. A percent difference calculation was performed

to further elucidate the differences between quasi-stiffness and impedance.

4.3 Results

4.3.1 Effects of Exoskeleton Hardware on Walking Gait

Subject gait was not affected by donning the exoskeleton during the experiment.

Figure 4.2 shows the average position and torque trajectory of a representative subject

during the ENP condition. SPM analysis showed that the NWC and ENP walking

trials were not statistically significantly different, accepting the null hypothesis, as

the t-statistic trajectory always fell within t-value threshold of t = ±4.299 (Figure
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Figure 4.2: Individual and mean position and torque trajectories of subject 9 during
the ENP case.

4.3).

4.3.2 Knee Impedance throughout Gait Cycle

4.3.2.1 Population Averages

Stiffness values showed the most variation amongst the three types of impedance

estimates with damping and inertia values remaining more consistent over the length

of the gait cycle. Individual subject and average stiffness, damping, and inertia values

are in tables 4.1,4.2, and 4.3 respectively. Average stiffness values ranged from 2.13

to 0.31 Nm/rad/kg, showing the highest stiffness value during the loading response

phase of gait. Average damping showed linearly increasing behavior during stance

phase and ranged from 0.053 to 0.030 Nms/rad/kg. Average inertia demonstrated

oscillatory constant between most timing points, ranging from 0.040 to 0.023 kgm2.

The average VAF across all subjects and timing points was 90.62 ± 4.32%. A table
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Figure 4.3: The SPM test statistic trajectory indicating if the mean position trajecto-
ries from the NWC and ENP cases are statistically significantly different. The dashed
blue line representing the t-value threshold as determined by an SPM two-tailed t-test.
The null hypothesis is rejected at α = 0.05 if the test statistic trajectory (thick black
line) crosses the threshold
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Table 4.1: Table of individual and average subject stiffness. Stiffness has units of
Nm/rad/kg.

Timing Points
Subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg
LRE 1.88 1.76 4.23 1.72 2.12e-

14
1.58 0.54 6.59 1.78 1.23 2.13

MST 0.76 0.60 0.17 0.09 0.21 0.24 0.71 1.79 0.78 0.82 0.62
TST 1.52 0.72 1.31 2.03 1.00 1.08e-

4
0.82 2.26 0.60 1.21 1.15

PSW 1.91 1.19 0.40 1.36 0.97 0.97 1.14 2.71 0.97 0.02 1.16
ISW 0.75 0.17 0.26 0.30 0.00820.048 0.13 4.88e-

12
0.78 0.70 0.31

MSW 0.68 0.22 2.04e-
5

0.00420.62 0.43 0.51 0.54 0.69 0.11 0.38

Table 4.2: Table of individual and average subject damping. Damping has units of
Nms/rad/kg.

Timing Points
Subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg
LRE 0.024 0.074 1.07e-

11
0.073 0.073 0.047 0.064 1.68e-

11
0.023 0.00820.039

MST 0.055 0.046 0.076 0.060 0.057 0.040 0.043 3.65e-
12

0.031 0.011 0.042

TST 0.051 0.060 0.058 0.081 0.028 0.096 0.074 0.019 0.066 4.30e-
4

0.053

PSW 0.011 0.038 0.040 0.042 0.026 0.014 0.028 0.00680.018 0.072 0.030
ISW 0.031 0.063 0.053 0.053 0.056 0.032 0.020 0.028 0.020 0.026 0.038
MSW 0.035 0.042 0.043 0.049 0.015 0.015 0.014 0.025 0.014 0.034 0.029

of all VAFs can be seen in table 4.4.

4.3.2.2 Factors Influencing Knee Impedance

Timing point and subject were found to be important factors that influenced impedance

estimates. The ANOVA results for all linear models found timing point and subject to

be significant (p < 0.001). Analyzing the stiffness linear model showed timing points

1 and 2 to be significantly different from all other timing points. Timing points 3

and 4 were found to be similar to each other and timing points 5 and 6 were found
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Table 4.3: Table of individual and average subject inertia. Inertia has units of kgm2

and is the combined inertia of the device and joint.

Timing Points
Subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg
LRE 0.018 0.014 0.00150.011 0.068 0.051 0.047 0.030 0.021 0.00800.027
MST 0.00330.010 0.027 0.14 0.031 0.065 0.033 0.047 0.00550.00260.036
TST 1.99e-

10
0.030 0.065 0.14 0.029 0.060 0.00850.017 0.00810.00810.024

PSW 0.024 0.030 0.070 0.039 0.051 0.050 0.022 0.052 0.032 0.032 0.040
ISW 0.019 0.032 0.030 0.023 0.032 0.043 0.069 0.030 0.018 0.038 0.033
MSW 5.02e-

11
0.011 0.024 0.016 0.053 0.029 0.040 0.030 0.013 0.011 0.023

Table 4.4: Table of individual and average subject VAF’s. All entries are percentages.

Timing Points
Subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg
LRE 97.51 97.82 93.68 92.93 45.20 75.79 94.38 84.48 96.95 99.65 87.84
MST 96.75 98.28 93.46 98.96 92.48 94.50 90.76 86.50 98.22 99.30 94.92
TST 96.56 96.68 98.62 96.78 93.18 93.02 99.24 96.02 99.24 99.83 96.92
PSW 93.54 98.37 64.90 88.72 91.20 94.02 94.38 64.04 95.19 93.37 87.77
ISW 91.36 98.79 78.31 78.45 80.97 91.69 66.85 96.03 93.30 86.82 86.26
MSW 85.41 97.03 80.08 92.99 87.95 91.83 90.76 84.19 94.07 95.90 90.02

to be similar to each other. The damping linear model showed timing point 3 to be

different than all other points. Timing points 4 & 6 were found to be similar to each

other. The damping values at timing points 1, 2, and 5 were found to be similar.

Inertia estimates showed more complex relationships between timing points. Timing

point 4 was found to be different from all other timing points. Timing points 2 and

5 were not significantly different. Interestingly timing point 3 was similar to points 1

and 6 but timing points 1& 6 were not similar.

4.3.2.3 Comparison to Quasi Stiffness

Percent different calculations made quasi stiffness appear notably different from stiff-

ness but further statistical analysis showed the results to be similar. Quasi-stiffness

was not found to not be statistically different from stiffness in this study (p = 0.3374).
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Figure 4.4: Average knee impedance estimates from all subjects during walking. Sub-
jects were perturbed at six phases of the gait cycle and knee joint impedance was
estimated at these points. Top shows stiffness normalized by mass, middle shows
damping normalized by mass, and bottom shows inertia. Quasi stiffness as well as
other experimental impedance results are shown as well. Quasi stiffness data is offset
from stiffness estimates for clarity.

A visual comparison of quasi stiffness and stiffness can be made from figure 4.4. The

percent difference of quasi-stiffness with respect to stiffness was 3.44%, 51.85%, -

214.24%, -54.61%, -77.72%, -112.67% for 7%, 21.5%, 40.5%, 56%, 68.5%, and 81% of

the participant’s gait cycle respectively.

4.4 Discussion

This study investigated knee impedance modulation throughout the gait cycle by

using an exoskeleton to perturb and collect data on multiple subjects during a walking

experiment. We applied a 17 Nm torque perturbation to our participants at 6 unique

points of their gait cycle. Then, we extracted the position and torque information from

this perturbation and used it in a least squares regression to estimate the stiffness,
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damping, and inertia properties of the subjects during gait. A myriad of statistical

analyses were performed on the data collected and we found that our device does

not have a statistically significant effect on the knee biomechanics of those who wear

it. We also found that the point of the gait cycle where we perturb people as well

as the individual who is being perturbed has a significant effect on the estimate of

impedance. Our last major finding was that the quasi stiffness values of the knee

closely match our stiffness estimates for most of the gait cycle.

We found that our stiffness and inertia estimates matched results from other knee

perturbation studies closely but our damping estimates did not. All of our damping

estimates were higher than the corresponding literature and there are a few possi-

bilities as to why this is so. In the case of Kooij’s work, we believe the discrepancy

in magnitude is a result of different time windows for analysis. Kooij uses a much

longer analysis window at 275 ms than ours which is 100 ms. This much longer time

window permits the torque generated from reflexes to be much larger, and therefore

have a larger effect on the impedance estimates at the joint [79]. The difference in

magnitude from Tucker’s work may be the result of unaccounted for dynamics in

their model. While Tucker’s work uses a 100 ms time analysis window like this work,

their average VAF across all timing points and subjects was ∼72%. This VAF is low

for human impedance studies and may imply that their model parameters were not

strong predictors of data variance. Our VAF across all subjects and timing points

was ∼91%, showing a much stronger model fit. We believe the difference in model fits

can explain the magnitude discrepancies between the two sets of damping estimates.

The model based estimates of impedance followed similar trends as our data but had

notably different stiffness magnitudes (A.1). During stance phase, we found that the

trends of these modeling approaches follow the trends of our data with a high stiffness

during early stance then decrease in stiffness during mid stance and concluding with
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an increase in stiffness towards the end of stance. In swing, we saw an agreement in

the trends of the data, with a notable decrease in stiffness after toe off. However we

found the magnitude of stiffness estimates from the model based approaches to be

very different than ours in both stance and swing. The sections of gait where we saw

the largest difference in estimates were in early stance phase and during swing. We

did see similar magnitudes for estimates during mid stance. Sartori’s values matched

ours well in terminal stance but Pfeifer’s estimates were higher than our estimates.

During swing phase, we see Pfeifer’s estimates continuing to be larger than ours by a

factor of approximately two or three. We believe these differences may stem from a

lack of perturbations being used in the model based studies. Previous work has shown

that applying perturbations is crucial to accurately estimating impedance. Without

perturbations, the identification of the closed loop system will be heavily skewed by

the characteristics of the input’s noise [67]. Future studies using both model based

and experimental approaches on the same subjects should be done to further explore

the discrepancies between model based and experimental results.

Our knee impedance estimates demonstrated similar behavior as estimates of ankle

impedance with respect to quasi stiffness but the trends of the knee data are less

clear than the ankle. In stance at the both ankle and knee, we found that joint quasi

stiffness closely mimicked stiffness excluding for the toe off portion of gait. Literature

has shown quasi stiffness and impedance to be distinct entities, however this is the

second lower limb joint where this behavior has been reported [61, 69, 84]. The

similarities between the two quantities may be highlighting that while quasi-stiffness

and impedance have notable differences during volitional movements, during periods

where intrinsic joint properties dominate, quasi stiffness may be a good approximation

for impedance behavior. During swing phase, we found that the trends of low stiffness

and damping values mimic what is seen in the ankle literature [68]. However, during

mid to late stance the clear inverse relationship between stiffness and damping seen
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at the ankle is not mirrored at the knee [61, 69]. This could be a result of the knee

and ankle serving different purposes for gait. The ankle stores large amounts energy

and generate power during this during gait while the knee serves a stabilization and

energy exchange role [85].

These results have important implications on robotic biomimetic control, particularly

as it applies to the control of prosthetic devices. Multiple papers have used biologi-

cally inspired control laws on wearable robotic devices, with prosthetic knees being

a commonly utilized medium [9, 64, 86, 10, 87, 88]. In our analysis, we saw that

timing point and subject had significant effects on impedance estimates. We take

these results to demonstrate two points: first, that constant impedance control is not

sufficient for true biomimetic control, and second, that impedance controllers should

be tailored to the individual using the device. Studies have shown that people re-

port improved comfort and display better performance with personalized controllers

[89, 90, 91, 92, 93, 94]. Our results in combination with the literature, compel us to

recommend using individualized impedance controllers for best results. An example

of this could be using the results of this work as an initial guess for a biomimetic

impedance controller and then using a personalization method, such as human in the

loop (HILO) optimization, to fine tune a control law for a prosthetic device.

4.4.1 Limitations

In our analysis, certain assumptions were made to establish a framework for our study.

We considered the knee joint to be a second-order system and assumed linearity and

time-invariance (LTI) during our analysis window. Previous literature has shown that

representing human joints as second order, linear time invariant systems can account

for more than 97% of model variance, providing us confidence in our assumptions

[67].
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We experienced practical limitations during our study that prevented us from cap-

turing all eight phases of the gait cycle. We found that it was difficult to obtain

impedance estimates during the initial contact (ICO) and terminal swing (TSW)

phases of gait. ICO constitutes only 2% of the gait cycle which meant that the per-

turbation often extended into the LRE phase. One way to fix this issue may be to

use a shorter analysis window. However, a potential issue with using a smaller anal-

ysis window is the potential latency between perturbation application and measured

joint displacement. This issue can arise due to sub-optimal exoskeleton interfacing

or human soft tissue. Issues with data capture during TSW arose because the length

of the TSW phase showed high variability between gait cycles, sometimes being so

brief that perturbations encroached into the ICO phase. One potential solution to

this issue could be initiating perturbations earlier in the gait phase, at times such as

10% instead of 50%. The absence of data from these gait phases impedes our ability

to gain insights into the transition from swing to stance, and future studies should

look to remedy these issues.

Another limitation of this work is that it does not distinguish between the reflexive

and intrinsic components of joint impedance. While we believe that the impedance

results shown in this work are primarily reflective of the intrinsic behavior of the knee

joint, we acknowledge that reflex force generation can start at 40 ms, with max reflex

contributions occurring 60 ms after the 40 ms point [79, 95]. However, research shows

that reflex contributions are lower during locomotion [96, 29]. With our use of a 100

ms analysis window, we believe that the effect of the reflex contribution is less than

that of the response that is a result of the underlying knee musculature.
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CHAPTER V

Conclusions and Future Work

5.1 Summary of Work

In chapter two, I validated the system identification capabilities of a torque-controllable

knee exoskeleton and proposed a perturbation paradigm for the identification of the

impedance known mass-spring systems with the intention of extending this work to

estimate the mechanical impedance of the human knee during locomotion. The pro-

posed methods yielded stiffness estimate errors of ∼2-2.5% damping values centered

around zero and dominated by noise, and inertia estimate errors ranging from ∼13-

15%, which can likely be improved by other numerical methods. I also learned that

the analysis techniques tended to underestimate of impedance parameters and that

experimental factors such as the frequency of the underlying trajectory and type of

perturbation applied by the exoskeleton have an effect on the efficacy of the device’s

results. From the conclusions drawn from the data, I was confident that these meth-

ods could be utilized to accurately characterize human joint mechanical impedance

during locomotion in future studies.

In chapter three, I characterized a perturbation system that used a highly backdriv-

able quasi-direct-drive actuator and a carefully calibrated actuator torque model.

Bench top validation with known mechanical impedance human-substitutes, con-
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firmed the viability of this system as an impedance measurement tool. Identification

of the human substitute system under static conditions yielded an error of under

1% while identification under dynamic conditions produced error of ∼5%. A pilot

study with two subjects utilizing a custom knee-exoskeleton apparatus confirmed the

feasibility of this system for human walking experiments. This pilot study produced

the first experimentally estimated knee impedance values during the stance phase of

gait. Additionally, this study also produced impedance estimates during portions of

the swing phase of gait that have not been reported in the literature.

In chapter four, I investigated knee impedance modulation throughout the gait cycle

by using an exoskeleton to perturb and collect data on multiple subjects during a

walking experiment. I applied a 17 Nm torque perturbation to the participants at

six unique points of their gait cycle. I then used the position and torque information

gleaned from this experiment to perform a least squares regression. This regression

estimated the stiffness, damping, and inertia properties of the subjects during gait.

A myriad of statistical analyses were performed on the data collected producing three

major takeaways, First, I found that our device does not have a statistically significant

effect on the knee biomechanics of those who wear it. Second, the point of the gait

cycle where we perturb people as well as the individual who is being perturbed has

a significant effect on the estimate of impedance. Finally, the quasi stiffness values

of the knee closely match our impedance estimates of the knee for most of the gait

cycle.

5.2 Contributions

This work fills gaps found in the academic literature with research that has real world

applications. The work in this thesis validated the methods for impedance estimation

used in [2] using different inputs and a different system. Through the validation
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of these methods, I demonstrated improvements in the ability to estimate stiffness

by decreasing average stiffness estimation error from 5% to under 3%. By using

these methods on a different platform with different inputs, I also have demonstrated

the robustness of these methods for impedance estimation. I also produced a novel

configuration of a previously constructed exoskeleton, through mechanical redesign,

providing the first account of using this device for human system identification. I

have made significant contributions to the knee impedance literature, by producing

the first experimentally estimated values of knee impedance during the stance phase

of walking. I also produced estimates of impedance at points during the swing phase

of gait that have never been explored.

5.3 Future Work

A key objective of this work is to provide basic science information to further robotic

control and I would recommend creating a collection of impedance information under

various conditions, speeds, and environments to support that effort. One condition

that should be included in this collection of data is walking on angled terrains. Gath-

ering impedance data during walking on slopes of various angles can provide more

data to human based impedance controllers, increasing their robustness [97, 98, 99].

Another is walking in non laboratory settings. Walking in non laboratory controlled

situations has more variation than walking in treadmill situations due to a non con-

stant walking speed, amongst other factors [100]. If the timing based approach used

in this work may be too susceptible to the error that non laboratory walking produces,

using alternate methods for gait cycle tracking, like those in Best et al., should pro-

duce gait heel strike estimates that are more robust to non laboratory experimental

variance [101].

The completion of this work has made it clear that it takes considerable time and
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effort to produce quality experimental methods. I believe that refining model based

approaches with experimental data would be useful for precipitously decreasing the

time required to acquire impedance estimates. Chapter four discussed how model

based approaches typically over estimated knee impedance values. Conducting fu-

ture experiments that can simultaneously collect the data needed for model based

estimation as well as experimental impedance estimation will be paramount to this

end. Running these joint experiments is so important because it will produce baseline

estimates for the model based approaches to compare themselves to. I believe refining

these model based approaches will permit impedance experiments to scale better, not

requiring the large amounts of time necessary to design a perturbation device and

experiment with participants.

These data produced here now permits the use of a unified biomimetic impedance

controller for ankle and knee prosthesis. Typically people have used data fitting

methods on human data to create impedance control laws for prostheses [9, 64, 86,

10, 87, 88, 102]. With this data, people can now test biologically accurate impedance

control laws and investigate what effects this control strategy has on prosthesis users.

Measure that may be particularly useful to investigate are gait biomechanics, stabil-

ity, user preference, and external disturbance rejection. Exploring how biologically

accurate impedance control compares to data fitted impedance control laws with re-

spect to these metrics can demonstrate if there is a need for experimental impedance

studies.

Knowledge of knee impedance modulation may also provide utility in the rehabilita-

tion space. Work from Shorter showed that impedance changes with age and after

neurological disorder [103]. Using a combination of these data produced here and the

impedance information in the literature, I believe we can use impedance as a metric

to help inform rehabilitative practices. Some examples of this could include using
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exoskeletons with survivors of stroke to render age appropriate impedances at the

joint of interest, assessing impedance trajectories as people go through rehabilitative

treatments such as physical therapy.
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APPENDIX A

Knee Stiffness Comparisons
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Figure A.1: Knee stiffness estimates from this work with relation to other literature.
Tucker and Kooij reference studies that utilized experimental perturbation methods.
Sartori and Pfeifer reference works that used EMG model based approaches to estimate
stiffness.
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