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ABSTRACT

Black holes have emerged as crucial conceptual laboratories for testing ideas towards the de-

velopment of a quantum theory of gravity, as key black hole properties have been formulated

in dual quantum terms using the proposed AdS/CFT correspondence. Supersymmetric black

holes in AdS in particular have a rich description on both the gravitational and field-theoretic

sides of this duality. In this thesis, we will be studying the stability as well as the space-

time structure of these black holes, and will be probing close to and away from the critical

parameters at which these black holes become supersymmetric. There is a lack of a general

understanding of generically non-supersymmetric black holes, and the goal of this thesis will

be to expand with further quantitative explorations and systematize our understanding in

that area.

The first part of this thesis will be a survey of Kerr-Newman-AdS5 black hole thermody-

namics, away from and approaching the supersymmetric (BPS) regime. We use that limiting

process to define thermodynamics directly on the BPS surface, and are able to parametrize

these BPS thermodynamics in terms of a new fugacity. We then find that the free energy

in this formulation can be directly mapped to the HHZ free energy obtained from the dual

field theory.

The second part of this thesis consists of an in-depth analysis of the black hole solution to

N = 2 gauged supergravity, in particular the radial profile of its fields from the near-horizon

region all the way to asymptotic infinity. We develop the necessary radial flow equations

with the help of the N = 2 supersymmetric variations, as well as charge conservation laws

based on a nontrivial adaptation of the Noether-Wald procedure in gauged supergravity. We

are then able to characterize the radial flow of the black hole solution in great detail. Lastly,

we connect the near-horizon limit of this flow to the entropy extremization formalism, and

give a full description of the supersymmetric extrema of the theory.

ix



CHAPTER 1

Introduction

1.1 Motivation

Our current understanding of modern physics relies crucially on the two frameworks of

general relativity and quantum mechanics. The former is relevant for understanding physics

at distant scales and large masses. In contrast, the latter’s explanatory success lies at the level

of microscopic scales, at the level of the smallest and fundamental constituents of matter.

Reconciling these two frameworks with distinct domains of applicability into one consistent

physical theory, namely quantum gravity, becomes a necessary follow-up, especially with the

knowledge that objects exist involving physical characteristics drawing from both of these

domains.

Black holes satisfy this description, as they represent regions of spacetime with both

large mass and geometrical curvature and small length scales when compared to the scales

of similarly massive but more commonplace gravitational systems. Various developments

have been made in the field of general relativity since the first formulation of what we now

call black holes, to classify black hole solutions conforming to various boundary conditions,

spacetime structure, and matter content. In order for a quantum theory of gravity to account

for these black holes with such a range in macroscopic properties, it is crucial to develop a

quantum understanding that reproduces these properties in terms of underlying microscopic

degrees of freedom. Across this range of black holes, charged and rotating black holes in

particular present qualitatively interesting gravitational properties, which we would like to

better understand through this quantum gravity formulation.

Furthermore, this formulation has been more reliably analyzed for supersymmetric black

holes, that is the subset of black holes whose microscopic properties are determined by the

theory of supersymmetry. The task remains to fully incorporate black holes with properties
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that are either generically non-supersymmetric or close to supersymmetric. The goal of this

thesis is to shed light on this range of black holes, in particular by exploring the role of

rotation in determining special gravitational features for both supersymmetric and near-

supersymmetric black holes, as well as the microscopic features that underpin them.

1.2 Background

In this section, we will review the background of ideas needed for our modern understand-

ing of black holes, the interplay between their macroscopic and microscopic features, and the

formulation of this interplay through the modern ideas of supersymmetry and holography.

1.2.1 Properties of black holes:

Black holes are solutions to Einstein’s field equations that are characterized by an event hori-

zon, a causal boundary between spacetime events on either side of the surface. A simple ex-

ample of a black hole would be the Schwarzschild solution, discovered by Karl Schwarzschild

in 1916 [1] as the spherically symmetric, static, and asymptotically-free vacuum solution to

Einstein’s equations. In four dimensions, a Schwarzschild black hole of mass M is expressed

by the following line element1:

ds2 = −
(

1 − 2GM

r

)
dt2 +

(
1 − 2GM

r

)−1

dr2 + r2dΩ2
2 . (1.1)

G here refers to the four-dimensional Newton’s constant of gravitation, while t and r refer to

the time and radial coordinates that match their respective Minkowski definitions at infinity.

dΩ2
2 is the two-dimensional case of the general dΩ2

d−2, which refers to the (d−2)-dimensional

spherical line element for spacetimes with d > 2.

Dispensing with the vacuum assumption leads to the Reissner–Nordström (RN) family of

charged black holes, now accompanied by an electromagnetic field A:

ds2 = −
(

1 − 2GM

r
+
Q2

r2

)
dt2 +

(
1 − 2GM

r
+
Q2

r2

)−1

dr2 + r2dΩ2
2 ,

A =
Q

r
dt ,

(1.2)

for electrically-charged black holes with charge Q and mass M . This can be generalized to

incorporate angular momentum as well, after relaxing the symmetry properties by swapping

1In this thesis, we will be operating in units where ℏ = c = kB = 1
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spherical symmetry for more general axisymmetry, yielding a Kerr-Newman (KN) solution

parametrized by M , Q and now angular momentum J = Ma:

ds2 = −∆

ρ2
(
dt− a sin2 θdφ

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2
(
(r2 + a2)dφ− adt

)2
,

A =
Qr

ρ2
dt− aQr sin2 θ

ρ2
dφ ,

ρ2 = r2 + a2 cos2 θ , ∆ = r2 − 2GMr + a2 +Q2 .

(1.3)

For given Q and J , the existence of an event horizon such that gtt = 0 requires the mass M

to be bounded above by a minimum value:

M2 ≥ Q2 +
J2

M2
. (1.4)

A black hole with the minimum possible mass given its macroscopic parameters Q, J , etc.,

is defined as an extremal black hole. These will be the black holes we focus on in this thesis

as they present various properties of interest. One immediate geometrical property is the

new symmetry that extremal black holes develop near their horizon: scale invariance. In

general, black holes like the ones introduced above (1.3) present isometries based on time-

translation and rotational invariance, understood correspondingly in terms of the conserved

mass M and angular momentum J . The added symmetry near the horizon takes the form

of a long “throat” in the t and r directions that is invariant under rescalings of both of

these coordinates, specifically described by a two-dimensional Anti-de Sitter space (AdS) –

negative cosmological constant – space [2]. In general, the (d + 1)-dimensional (globally)

AdSd+1 space with length scale L is defined with the line element:

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + dΩ2
d−2 . (1.5)

We will return to these general AdSd+1 spacetimes later in this introduction, as they will be

important for establishing further ideas explored in this thesis.

1.2.2 Black hole thermodynamics:

In addition to their near-horizon geometry, extremal black holes are noteworthy for another

reason, namely for the nontrivial way in which they feature in the key framework of black

hole thermodynamics. To motivate this framework, we note that along with macroscopic

parameters (M,Q, J), black holes are also characterized by accompanying potentials such

as an electrical potential Φ and an angular velocity Ω. If we then study the surface gravity

3



κ at the horizon of a black hole, we note that it is related to the parameters (M,J,Q) and

conjugate potentials (Ω,Φ) in the following way:

dM =
κ

8π
dA+ ΩdJ + ΦdQ , (1.6)

where A is the area of the horizon. Understanding M to be the black hole mass-energy, this

relation becomes suggestive of a first law of thermodynamics formulated in terms of black

hole quantities, if κ and A can be linked to a black hole-related definition of temperature and

entropy respectively. In fact, the proposal of Jacob Bekenstein in 1972, followed by Stephen

Hawking’s further study in 1974, aim at precisely this idea, formulated in terms of laws of

black hole thermodynamics:

• The zeroth law: The surface gravity κ is constant over the horizon of a stationary black

hole.

• The first law: The change in the energy dM of a stationary black hole is related to the

change in the area dA, angular momentum dJ , and electric charge dQ following the

relation (1.6).

• The second law: The change in the horizon area is non-decreasing over time.

The black hole then is associated with a Hawking temperature TH and Bekenstein-Hawking

entropy SBH:

TH =
κ

2π
, (1.7)

SBH =
A

4G
. (1.8)

Now returning to extremal black holes, it turns out that extremality is equivalent precisely

to:

TH = 0 . (1.9)

Extending the analogy of the laws of thermodynamics to black holes fails when dealing

with the third law of thermodynamics: the behavior of the entropy S when the temperature

T → 0 (or Planck-Nernst law). Extremal black holes can have vanishing temperatures

(1.9) while also having a finite associated Bekenstein-Hawking entropy SBH . In fact, there

also already exist known ordinary and non-gravitational quantum systems that violate the

Planck-Nernst statement of the third law [3, 4]. Furthermore, the formal similarities between

the classical and black hole laws of thermodynamics, as well as the crucial distinctions

that arise out of a specifically quantum treatment (such as the entropy and temperature

4



definitions (1.7)-(1.8)), point out the nontrivial task of a full understanding of black holes

via the formalism of quantum gravity.

1.2.3 Black hole microstates and AdS/CFT:

In fact, one of the first challenges in making sense of the thermodynamical characterization of

black holes becomes how to interpret the Bekenstein-Hawking entropy SBH (1.8) as reflective

of a count of W underlying microstates:

S = kB logW , (1.10)

where kB was temporarily re-introduced for clarity. Interpreting the Bekenstein-Hawking

entropy in analogy to an entropy associated with classical microstates W , ties to the more

general task of interest of interpreting a gravitational system (say a black hole) in terms of

an auxiliary, or dual, microscopic system. This proposed duality is termed gauge/gravity

duality, as it maps a gravity theory to a gauge theory (meaning a non-gravitational theory of

fields), or alternatively, a strongly-coupled theory to a weakly-coupled one [5]. The research

program associated with this key idea has been notable, with a range of developments in

quantum field theory, gravitational physics and condensed matter [6, 7, 8, 9, 10, 11].

The more specific formulation of this duality relates a theory of quantum gravity defined

on an AdS spacetime in (d + 1)-dimensions, and a Conformal Field Theory (CFT) in d-

dimensions. A conformal field theory is a field theory that is invariant under conformal

coordinate transformations, i.e. transformations that leave local angles invariant. This

AdS/CFT duality has been proposed in its canonical iteration by Maldacena in 1997 [12],

between type IIB string theory in AdS5 × S5 (gravity) and N = 4 Supersymmetric Yang-

Mills (SYM) theory in four dimensions (field theory). This mapping between a theory and

a lower-dimensional one is also termed holography, in analogy to the optical holograms that

represent three-dimensional images on a two-dimensional surface.

The quantitative statement of the AdS/CFT duality in Maldacena’s example is a corre-

spondence between the parameters on both sides of the duality, namely the string coupling

gs and the AdS length scale L/
√
α′ (rescaled by the string length scale) on the gravitational

side, and N the rank of the gauge group of the field theory and the Yang-Mills coupling gYM

on the field theory side:

2πgs = g2YM ,(
L√
α′

)4

= 2g2YMN .
(1.11)
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This statement is an example of the broader concept of an AdS-CFT dictionary : a map-

ping between parameters and variables between a gravitational theory and the conjectured

dual field theory. Such an approach has yielded interesting developments and quantita-

tive matches beyond the scope of quantum field theories and black hole physics, towards

condensed-matter areas such as hydrodynamics, quantum chromodynamics, and nonequilib-

rium statistical mechanics [13].

The aforementioned duality and accompanying dictionary are also manifest at a more fun-

damental level, in terms of the fundamental features of the two theories on either side. First,

we note that the two theories share common symmetries and isometries: in the Maldacena

example, the boundary of the AdS5 spacetime has by definition SO(4, 2) as its symmetry

group, whereas the N = 4 SYM field theory features SO(2, 4) ∼ SU(2, 2) via its conformal

(scale- and Poincaré-invariant) symmetry group [6, 7, 14]. Then, we note that the two theo-

ries can be mapped into each other via an operator-state correspondence between operators

in the field theory, and bulk fields evaluated close to the AdS boundary. In fact, considering

for instance a scalar field ϕ in a (d+ 1)-dimensional gravitational theory, the correspondence

prescribes an associated operator in the dual theory with a scaling dimension directly related

to the field’s mass. Close to the AdS boundary, the scalar wave equation for the field ϕ has

two independent solutions that drop off as zd−∆ and z∆ where the boundary is at z → 0.

This scaling dimension ∆ is related to the scalar mass m2 via:

∆ =
d

2
+

√
d2

4
+m2L2 , (1.12)

where L is the radius associated with the AdSd+1 boundary. Relations similar to (1.12) exist

for the remaining bosonic and fermionic fields of the supersymmetric field theory of interest.

1.2.4 Black holes and supersymmetry:

We can see from this setup that supersymmetry features heavily when conveying the central

ideas behind the AdS/CFT duality and constructing its emblematic representatives. Su-

persymmetry is generally understood as the nontrivial extension of the Poincaré spacetime

with its distinct incorporation of both bosonic (commuting) and fermionic (anticommuting)

generators [15], thus implying symmetry transformations that map bosons to fermionic part-

ners, and vice-versa. The generators in question include the familiar Poincaré translations

and Lorentz boosts, as well as additional bosonic generators relating to the conformal group

(scale and special conformal transformations) and fermionic supersymmetric generators (su-

percharges and R-symmetry generators). If these generators are allowed to vary as functions
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of spacetime, diffeomorphisms are involved and thus gravity has to be properly incorporated

along with supersymmetry; this yields a theory of supergravity, with gravitons becoming

part of the theory, along with gravitini, their spin-3
2

fermionic partners.

The basic ideas behind supersymmetry and supergravity are important for setting up the

theories on both sides of the AdS/CFT duality: ten-dimensional supergravity as a low-energy

limit to type IIB string theory on the gravitational side, and N = 4 SYM on the field theory

side. Furthermore, gravitational solutions to the low-energy theory (small α′) are related

by the dictionary (1.11) to large N in the dual field theory side. Returning to one of the

earliest applications for the duality, reconstructing the Bekenstein-Hawking entropy (1.8)

from underlying microstates on the microscopic/field theoretic side, we are led to study the

specific subset of supersymmetric black holes, which can preserve a fraction of the symmetries

of the broader supergravity theory: they will prove to be the central objects of inquiry in this

thesis. These are BPS black holes, named after the Bogomol’nyi–Prasad–Sommerfield (BPS)

bound that the energy of dual states in the N = 4 SYM saturate.

In the gravitational picture, BPS black holes in d + 1 dimensions are rotating and

electrically-charged black holes, similar to the KN black holes introduced in (1.3) except

for the crucial difference of an AdSd+1 background. BPS black holes in 5D in particular

are characterized by three electric charges Q1,2,3 and two angular momenta Ji=a,b. These

conserved quantities, in addition to the black hole mass-energy M , reflect conserved quan-

tum numbers on the other side of the duality, as encountered earlier in the prototypical

Maldacena example. The four-dimensional N = 4 SYM theory is defined through a thermal

partition function on the space S1 × S3, with M mapping to the energy eigenvalue of the

CFT Hamiltonian, the three QI to the 3 Cartans of the SU(4) R-symmetry characteristic

of N = 4 supersymmetry, and the two Ji to the two commuting isometries of S3 [16]. As

macroscopic parameters describing the black hole solution, QI and Ji are conjugate to the

electric potentials ΦI and angular velocities ωi. These can be related to the microscopic

parameters ∆I and ωi respectively, corresponding to the chemical potentials in the dual field

theory. Supersymmetry requires that these parameters lead to zero temperature, as well as

satisfy the following nonlinear charge relation:

Q1Q2Q3+
π

4G5

JaJb =

(
π

4G5g2
+Q1 +Q2 +Q3

)(
Q1Q2 +Q2Q3 +Q1Q3 −

π

4G5g
(Ja + Jb)

)
(1.13)

where g = L−1 corresponds to the inverse AdS radius, and G5 to the five-dimensional Newton

constant.

From the gravitational calculation, we find the Bekenstein-Hawking entropy for these

7



black holes:

S = 2π

√
g2 (Q1Q2 +Q2Q3 +Q1Q3) −

π

4G5g3
(J1 + J2) . (1.14)

This can be re-expressed to emphasize the scaling of the entropy (1.14) as a function of N

using the dictionary π
4G5g3

= 1
2
N2:

S = 2π

√
g2 (Q1Q2 +Q2Q3 +Q1Q3) −

1

2
N2(J1 + J2) . (1.15)

Knowing that each of the QI and Ji scales as N2 for large N , this implies an entropy of the

order of N2 [17]. The AdS/CFT expectation would be to retrieve that entropy on the field

theoretic side. BPS black holes in particular have the property that their dual description

can be described and counted irrespective of the coupling strength, which is crucial when the

CFT is easiest to understand in the weak coupling regime as opposed to the gravitational

description that is defined as a strong coupling regime (with its radius of curvature L much

greater than the string length scale
√
α′). There have been many nontrivial developments in

this supersymmetric calculation, specifically via the technology of the superconformal index

[18, 19, 20, 21, 22, 23, 24] in N = 4 SYM theory, with the output being the CFT free energy

in terms of chemical potentials (∆I , ωi) and expectedly the entropy in terms of the charges

and momenta QI and Ji (1.15). The main test for this perspective has been the ability to

recover the O(N2) scaling of the resulting entropy S, which has proven unfeasible unless the

aforementioned chemical potential were taken to be complex despite their direct mapping to

real -valued gravitational parameters ΦI and ωi [25, 26, 27].

In both their gravitational description and their dual field theoretic description, supersym-

metric black holes have proven to be key objects of study towards a quantum understanding

of gravity. One additional property to point out is that they are stable objects, as they are

protected under supersymmetry by virtue of being dual to protected BPS states. This is not

the case for non-BPS black holes, in particular either non-extremal or whose charges and

angular momenta do not satisfy a charge relation like (1.13). An interesting task becomes

to quantify the distance from this state of stability, whether nonBPS black holes can be

made stable or conversely, how to destabilize a BPS black hole. One approach comes from

black hole thermodynamics: the perturbation from stability is defined in the grand canonical

ensemble, where the temperature T and the potentials ΦI and Ωi are allowed to vary, from

their BPS values T = 0, Φ∗
I = 1, and Ω∗

i = g, and defines the motivation for the work in

Chapter 2.

In addition to the macroscopic parameters and the black hole thermodynamics, the space-

time geometry is another interesting gravitational feature of black holes. We noted earlier
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that extremal black holes in general develop an AdS2 profile with an enhanced scale invari-

ance. For some supersymmetric black holes, in fact, the entire radial geometry, from the

near-horizon region to asymptotic infinity, can offer an enhanced flow structure, with a note-

worthy holographic interpretation in terms of the renormalization group flow in the CFT.

As part of this flow, the dynamical scalar fields associated with these black hole solutions

attract to the same values at the horizon regardless of their starting values at radial infin-

ity. With these special properties, the Einstein-Maxwell-AdS action, which accepts these

-generically- charged black holes as gravitational solutions, greatly simplifies in the near-

horizon region, resulting in a direct way to compute the Bekenstein-Hawking entropy. The

catch is that this perspective and associated simplifications have only been developed for

supersymmetric black holes arising from ungauged supergravity, which among other aspects

stipulates asymptotically-free black holes. Defining such a radial flow for BPS black holes

from gauged supergravity towards a potential generalization of the attraction mechanism is

the motivation for the work in Chapter 3.

1.3 Overview

This thesis is based on my work with my doctoral advisor Prof. Finn Larsen during my

PhD at the University of Michigan, along with collaborators Marina David, Zhihan Liu, and

Yangwenxiao Zeng. It spans across two chapters:

• Chapter 2: This chapter is based on my work with Prof. Larsen and collaborators

Zhihan Liu and Dr. Yangwenxiao Zeng [28]. In this work, we start by reviewing the

thermodynamics of generically nonBPS Kerr-Newman-AdS5 black holes, and examine

the role of each of rotation and electric charge in determining the phase diagram and

thus thermodynamic stability, in particular as the black hole parameters approach

their BPS values. We then develop a formalism of BPS thermodynamics, where these

parameters are now at their critical BPS value. The result is a theory of variables along

the BPS surface with an underlying continuous parametrization that we interpret as

a novel fugacity. The rescaled BPS free energy, complemented with the analytical

continuation of this new fugacity is then related to the Hosseini–Hristov–Zaffaroni

(HHZ) complexified free energy function [29].

• Chapter 3: This chapter is based on my work with Prof. Larsen and collaborator

Dr. Marina David [30]. In this work, we proceed with a dimensional reduction of

the N = 2 gauged supergravity action from 5D to 2D, and formulate the associated

radial conservation laws with particular attention to the subtleties of gauge invariance
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in the presence of a Chern-Simons term in the action. In addition, we similarly di-

mensionally reduce the N = 2 supersymmetric variations, and combine them with

the conservation laws into a system of radial BPS flow equations. We then integrate

these equations, both from the horizon outwards, and from radial infinity inwards, and

discuss the matching of these two approaches. We also connect the near-horizon flow

equations with the near-horizon entropy function, and consider a complexification of

these equations that maps to the HHZ potential.

1.4 Summary and Outlook

In summary, the work of this thesis corroborates the centrality of BPS black holes in prob-

ing various questions pertaining to AdS black hole thermodynamics, gauged supergravity,

and the entropy function formalism. We have provided systematic reviews of previously only

partially or separately addressed formalisms underpinning these topics, such as full Kerr-

Newman-AdS thermodynamics for nonBPS black holes, and very special geometry as an

upgrade to the usual STU treatment of gauged supergravity. We have also formulated novel

concepts and quantities expanding on the relevant literature, such as defining thermody-

namical variables and phase diagrams approaching and on the BPS surface, our generalized

attractor flow in gauged supergravity, as well as our complexifications of thermodynamic

potentials and of the near-horizon geometry and matter fields in BPS black hole spacetimes.

These developments also offer many follow-up questions of interest, in particular to shed

light on the physical meaning of the rescaled thermodynamic potentials and additional fu-

gacities on the BPS surface, in particular as identifications with dual quantities on the N = 4

SYM side become apparent. Additionally, concerning the attractor flow in gauged super-

gravity, the full integration of the radial flow equations between the near-horizon and infinity

recalls the holographic account of the QFT flow between the IR and UV as a radial flow,

especially motivated for radial boundaries of the AdS variety. Deepening the understanding

of this radial flow, as well as further parsing the suggestive complex structure behind the

near-horizon variables, would strengthen the separate ideas underpinning such an attractor

formalism in gauged supergravity.

Lastly, we would like to motivate a different but related approach to probing BPS black

holes, that also ties in to ideas from black hole thermodynamics, holography and (gauged)

supergravity. Namely, we draw from the field of stability studies for BPS, or more generally

extremal, black hole solutions by coupling them to a charged scalar field and studying the
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resulting combined configuration for any field instabilities. This setup can be formulated as

a subset of matter fields of the underlying supergravity theory, chosen specifically to sat-

isfy self-contained and consistent field equations, also termed a consistent truncation. The

prototypical example for this has been termed the holographic superconductor, in reference

to the second-order phase transition that the combined black hole+charged scalar system

undergoes as a function of temperature, and its corresponding formulation in terms of cor-

relators of operators in the dual CFT. This example has been subsequently enriched as part

of the study of the stability of extremal AdS black holes by incorporating rotation as well,

thus connecting to well-established studies of rotational instability and superradiance. As

part of ongoing (unpublished) research work, we would be exploring this connection between

superconductive (alternatively, superfluid) and superradiant instabilities of extremal AdS

spacetimes by probing fluctuations of an extremal Kerr-Newman-AdS spacetime that span

the spectrum of particles from five-dimensional gauged supergravity, enriching a literature

on the subject that has focused on a particularly technically-tractable consistent truncation

to only three gauge fields and five scalars to parametrize the black hole background and

perturbations thereof.
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CHAPTER 2

The Phase Diagram of BPS Black Holes in

AdS5

2.1 General Thermodynamics of AdS5 Black Holes

In this section we study the thermodynamics of AdS5 black holes for the case with equal

charges (QI = Q) but general non-equal angular momenta Ja,b.

Taking Schwarzschild-AdS as a benchmark, the phase diagram deforms smoothly as elec-

tric potential and angular velocities are added. Angular momentum proves more destabilizing

than charge.

2.1.1 Black Hole Thermodynamics

The Kerr-Newman AdS5 family of black holes is characterized by four conserved charges

(M,Q, Ja, Jb). These physical charges are parameterized by 4 variables (m, q, a, b) through

[31]:

M =
π

4G5

m(3 − a2g2 − b2g2 − a2b2g4) + 2qabg2(2 − a2g2 − b2g2)

(1 − a2g2)2(1 − b2g2)2
, (2.1)

Q =
π

4G5

q

(1 − a2g2)(1 − b2g2)
, (2.2)

Ja =
π

4G5

2ma+ qb(1 + a2g2)

(1 − a2g2)2(1 − b2g2)
, (2.3)

Jb =
π

4G5

2mb+ qa(1 + b2g2)

(1 − a2g2)(1 − b2g2)2
. (2.4)

We will assume that all the conserved charges are nonnegative. Their scale is set by the

dimensionless parameter
πℓ35
4G5

=
1

2
N2 ,
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where N refers to the dual SU(N) gauge group of N = 4 SYM. The only other dimensionful

parameter entering the thermodynamic formulae is the AdS5 scale ℓ5 that is equivalent to

the coupling of gauged supergravity g = ℓ−1
5 . Henceforth we set ℓ5 = 1 (and so g = 1), to

avoid clutter, but the AdS5 scale is easily restored. For example, M,Q are inverse lengths,

a, b are lengths, and q,m are lengths squared.

The event horizon is at the coordinate location r+, a combination of parameters that is

ubiquitous in thermodynamic formulae for AdS black holes. It is determined as the largest

root of the horizon equation

∆r(r) =
(r2 + a2)(r2 + b2)(1 + r2) + q2 + 2abq

r2
− 2m = 0 . (2.5)

With r+ given implicitly through this equation, the black hole temperature is

T =
r4+[1 + (2r2+ + a2 + b2)] − (ab+ q)2

2πr+[(r2+ + a2)(r2+ + b2) + abq]
, (2.6)

and the electric potential and angular velocities are

Φ =
3qr2+

(r2+ + a2)(r2+ + b2) + abq
, (2.7)

Ωa =
a(r2+ + b2)(1 + r2+) + bq

(r2+ + a2)(r2+ + b2) + abq
, (2.8)

Ωb =
b(r2+ + a2)(1 + r2+) + aq

(r2+ + a2)(r2+ + b2) + abq
. (2.9)

The linchpin for thermodynamics is, of course, the black hole entropy computed from the

area law:

S = 2π · 1

2
N2 ·

(r2+ + a2)(r2+ + b2) + abq

(1 − a2)(1 − b2)r+
, (2.10)

The conserved charges (2.1-2.4) and the thermodynamic potentials (2.6-2.10), with the

subsidiary condition (2.5) that determines r+ implicitly, completely determine the thermo-

dynamics of Kerr-Newman AdS5 black holes. The nonlinearities evident in these parametric

equations contain a great deal of physics.

The black hole mass M is bounded from below by the BPS mass

MBPS = Φ∗Q+ Ω∗
aJa + Ω∗

bJb ,

where Φ∗ = 3 and Ω∗
a = Ω∗

b = 1. In this section we consider generic variables, a detailed
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study of BPS thermodynamics follows later. However, we will find that the critical values

of the potentials, denoted by stars, play a central role also away from the BPS limit. In

particular, we consider only Ωa,b ≤ Ω∗
a,b = 1, because the “overspinning” black holes with

larger Ωa,b values are classically unstable due to superradiance [32].

2.1.2 The Grand Canonical Ensemble

In this subsection we study the phase diagram in the grand canonical ensemble, i.e. as a

function of temperature T , electric potential Φ, and angular velocities Ωa,b. These potentials

correspond to periodicities of the (Euclidean) time, the gauge function and two azimuthal

angles, respectively. Therefore, the grand canonical ensemble is the natural description in the

path integral formalism where asymptotic boundary conditions are specified as geometrical

data.

The Gibbs free energy is given by

G = M − TS − ΦQ− ΩaJa − ΩbJb . (2.11)

The extensive variables M , Q, Ja,b, S are presented in (2.1-2.4, 2.10). After trading m for

r+ through the horizon equation (2.5) they become functions of the parameters (r+, q, a, b).

We can explicitly eliminate q in favor of the potential Φ

q =
Φ(r2+ + a2)(r2+ + b2)

3r2+ − abΦ
, (2.12)

by inverting (2.7). However, the parameters (r+, a, b) must remain as implicit functions of

the potentials T , Φ and Ωa,b because it is impractical to solve (2.6, 2.8-2.9). Roughly, but

not precisely, the horizon location r+ is a proxy for the temperature T , and the rotation

parameters a, b represent rotation velocities Ωa,b.

After the elimination of the parameter q, the angular velocities become

1 − Ωa =
1 − a

r2+ + a2

[
r2+ − r2∗ + b(1 + a)(1 − 1

3
Φ)

]
, (2.13)

1 − Ωb =
1 − b

r2+ + b2

[
r2+ − r2∗ + a(1 + b)(1 − 1

3
Φ)

]
. (2.14)

These formulae are completely general, albeit presented in a manner that anticipate a special

role for the BPS horizon position r2∗ =
√
a+ b+ ab and the critical values of the potentials
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Ω∗
a = Ω∗

b = 1, Φ∗ = 3. In a similar spirit, we can present the general temperature as

T =
r+(r2+ + a+ b− ab)

2π (r2+ − ab)

(
1 − Ωa

1 − a
+

1 − Ωb

1 − b

)
− r+

6π

(3 + Φ − 3a− 3b) r2+ + (a2 + b2 + a2b+ ab2)Φ − ab(Φ − 3)

(r2+ − ab)(3r2+ − abΦ)
(Φ − 3) .

(2.15)

In this form it is manifest that the temperature vanishes when the potentials take their

critical values. We are not able to explicitly invert the three equations (2.13-2.15) any

further but, taken together, they relate the physical potentials (T,Ωa,Ωb) to the parameters

(r+, a, b) for a given Φ.

After elimination of the parameter q in favor of the electric potential Φ, Gibbs’ free energy

G becomes:

G = − N2

4

(r2+ + a2)(r2+ + b2)(r2+ + a+ b− ab)(r2+ − r2∗)

(1 − a2)(1 − b2)(r2+ − ab)2

−
N2
(
r2+ + a2

) (
r2+ + b2

)
(Φ − 3)

12(1 − a2)(1 − b2) (r2+ − ab)
2

(3r2+ − abΦ)
2

[
(r2+ − ab)2(9r2+ + 3r2+Φ − 2abΦ2)

−3(a+ b)2r2+(3r2+ + r2+Φ − 2abΦ)
]
.

(2.16)

Again, we have pulled out factors that make it manifest that the expression vanishes when

the potentials take their critical values.

In the following subsections we study the phase diagram for various ranges or special

values of Φ, with any Ω, and for two exceptional values of Ω, for any Φ. When combined,

these special cases map out the entire phase diagram.

2.1.2.1 Angular Velocity Ω with Electric Potential Φ = 0

If, in addition to taking the electric potential Φ = 0, we also consider vanishing angular

velocities Ωa,b = 0, we are left with the Schwarzschild-AdS black hole. In this case the phase

diagram, reproduced in Figure 2.1, is extremely well-known [33]. Some of its features are:

• There is a strictly positive lower bound on the black hole temperature T ≥ Tmin.

• For each temperature T ≥ Tmin there are two branches of solutions. Black holes on

the upper one are “small” in units of the AdS5 radius. They are qualitatively similar

to asymptotically flat black holes. The “large” black holes on the lower branch are

influenced significantly by the AdS5 background.

• A thermal AdS phase has the same boundary conditions at infinity as the black holes
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Figure 2.1: AdS-Schwarzschild phase diagram (Φ = 0, Ωa,b = 0). The cusp is at the minimal

temperature Tmin =
√
2
π

, and the maximal free energy Gmax = N2

16
. The large black hole

branch meets the thermal AdS phase at the Hawking-Page temperature THP = 3
2π

.

but vanishing free energy. It dominates when the temperature is below the Hawking-

Page temperature THP [34], where the large black hole also has zero free energy. The

large black holes are thermodynamically preferred only when they have temperature

T ≥ THP.

The Hawking-Page transition is particularly interesting because it can also be interpreted as

the confinement/deconfinement transition in QCD-like theories [35, 36, 37, 16] living on the

boundary via the AdS/CFT correspondence[38, 33, 39].

As the angular velocities Ωa,b are turned on and increased, with the electric potential kept

at Φ = 0, the qualitative features of the AdS-Schwarzschild phase diagram are preserved.

Naturally, there are quantitative changes:

• For any given T , on either branch, the angular velocities lower the free energy. This

follows from the first law that gives ∂Ωa,b
G = −Ja,b < 0.

• The transition temperature THP decreases as either angular velocity increases, as it

must because the large black hole branch is lowered.

• The minimal black hole temperature Tmin also decreases as either angular velocity

increases. The maximal free energy, attained at the cusp, increases. Thus the cusp

travels “towards North-West” when angular velocity increases.

• In the limit where the angular velocities Ωa,b → 1 the height of the cusp diverges

Gmax → ∞ but its temperature approaches a finite (nonzero) limit Tmin → 1
2π

. In
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the strict limit Ωa = Ωb = 1 the “large” branch disappears altogether. This limit is

detailed in subsection 2.1.2.6.

The existence of an absolute minimum for the temperature for any angular velocities and

the increase in maximal free energy both suggest that, everything else being equal, rotation

tends to destabilize the black hole.

When Φ = 0, the two angular velocities are “decoupled” in that

Ωa =
a(1 + r2+)

r2+ + a2
, (2.17)

is a function only of r+ and a, but not b. The formula for Ωb is analogous.

The free energy (2.16) also simplifies greatly when Φ = 0:

G = −N
2

4

(
r2+ − 1

) (
r2+ + a2

) (
r2+ + b2

)
r2+ (1 − a2) (1 − b2)

. (2.18)

The Hawking-Page transition, where G = 0, corresponds to the horizon parameter r+ = 1.

With this value we can invert (2.17) (and its analogue for Ωb) and find a (b) as a function of

Ωa (Ωb). These expressions, along with r+ = 1, give a simple formula for the Hawking-Page

transition temperature

T =
Φ=0

r4+
(
2r2+ + a2 + b2 + 1

)
− a2b2

2πr+ (r2+ + a2) (r2+ + b2)
=
HP

1 +
√

1 − Ω2
a +

√
1 − Ω2

b

2π
. (2.19)

It is a decreasing function of the two angular velocities independently, as expected. It

interpolates between the AdS-Schwarzschild value THP = 3
2π

when there is no rotation, and

approaches the finite value THP = 1
2π

towards Ωa = Ωb = 1. where G diverges. We discuss

the subtle limiting case in subsection 2.1.2.6.

The phase diagram for vanishing potential Φ = 0 and a sample of angular velocities is

presented in Figure 2.2.

There have been suggestions that the “thermal gas in AdS” that competes with the black

hole phase may not exist, except for AdS-Schwarzschild. The free energy is evaluated by

a gravitational path integral with asymptotic boundary conditions that are satisfied by a

black hole, but also compatible with a bulk spacetime that has no black hole. The latter has

G = 0 (up to a Casimir term) and, whatever its precise physical nature, it must be taken

into account. It is on this basis that we will consider black holes with G > 0 unstable, also

for spacetimes with angular velocity and/or electric potential.
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Figure 2.2: Gibbs’ free energy G as function of the temperature T . The electric poten-
tial vanishes Φ = 0 and the angular velocities increase from right to left as Ωa = Ωb =
0, 0.5, 0.75, 0.95. The cusp moves “North-West” as angular velocities increase, staying
above the minimum temperature Tmin = 1

2π
≈ 0.16 even in the limit Ωa = Ωb → 1.

2.1.2.2 Subcritical Electric Potential: 0 < Φ < 3

Starting from vanishing electric potential Φ, but arbitrary angular velocities (below their

critical values Ω∗
a = Ω∗

b = 1), we now consider increasing the electric potential toward

its critical value Φ∗ = 3. The phase diagram remains qualitatively similar to the AdS-

Schwarzschild case as the electric potential increases, but quantitative features are modified.

Some of these changes are similar to an increase in angular velocity at fixed electric potential:

• The free energy at a given temperature decreases, on both the small and the large

black hole branches. This follows from the thermodynamic relation ∂ΦG = −Q.

• The transition temperature THP decreases, as it must because the entire large black

hole branch is lowered. The minimal temperature, attained at the cusp where the two

branches meet, also decreases.

However, despite these similarities, increasing electric potential differs significantly from

increasing angular velocity:

• The free energy at the cusp Gmax decreases with increasing electric potential.

• The transition temperature THP (and so the minimal temperature Tmin < THP) de-

creases with no minimum nonzero value as the electric potential approaches the critical

value Φ = Φ∗.

Both of these features indicate that increased potential Φ stabilizes the black hole. The

phase diagram with electric potential in the range 0 < Φ < 3 is presented in Figure 2.3.
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Figure 2.3: Gibbs’ free energy G as function of the temperature T . The electric potential
Φ = 1.5 is in the range 0 < Φ < 3 and the angular velocities increase from right to left as
Ωa = Ωb = 0, 0.5, 0.75, 0.95. For a given Ωa,b, the free energy and the temperature are
both smaller than for Φ = 0 (compare with Figure 2.2.)

2.1.2.3 Critical Electric Potential Φ = Φ∗ = 3

When Φ increases to the critical value Φ∗ = 3, the phase diagram changes qualitatively.

The expressions for potentials

T |Φ=3 =
r+(2r2+ + a2 + b2)

(
r2+ + a+ b− ab

)
2π(r2+ + a2)(r2+ + b2)(r2+ − ab)

(r2+ − r2∗) , (2.20)

1 − Ωa|Φ=3 =
1 − a

r2+ + a2
(r2+ − r2∗) , (2.21)

1 − Ωb|Φ=3 =
1 − b

r2+ + b2
(r2+ − r2∗) , (2.22)

and for Gibbs free energy

G|Φ=3 = −
N2(r2+ + a2)(r2+ + b2)

(
r2+ + a+ b− ab

)
4(1 − a2)(1 − b2)(r2+ − ab)2

(r2+ − r2∗) , (2.23)

simplify somewhat. As in earlier formulae, r∗ =
√
a+ b+ ab is the horizon location for BPS

black holes with parameters (a, b).

The equations show that, when Φ = Φ∗ = 3, the requirement of positive temperature

T ≥ 0 is equivalent to r+ ≥ r∗. Therefore, taking Φ = Φ∗ = 3 automatically prevents

overspinning (it keeps Ωa,b ≤ 1) and it also ensures non-positive free energy G ≤ 0. Because

of these inequalities, the phase diagram simplifies greatly when Φ = Φ∗. There is no small

black hole branch, no matter what the temperature and angular velocities are. In particular,

there is no “cusp” where two branches meet. Additionally, since black hole states have
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non-positive free energy, the thermal AdS gas with G = 0 is never preferred.

When any of the bounds noted in the previous paragraph are saturated, we have r2+ = r2∗

and so they all become equalities. Moreover, in this case the black hole is BPS. In other

words, the following are equivalent:

• Φ = Φ∗ and any of T = 0, Ωa = 1, Ωb = 1, G = 0.

• Φ = Φ∗ and all of T = 0, Ωa = 1, Ωb = 1, G = 0.

• The black hole is supersymmetric, i.e. the mass is exactly the BPS mass: M = MBPS =

Φ∗Q+ Ω∗
aJa + Ω∗

bJb.

The formulae (2.20-2.22) suggest a specific approach to the BPS limit: simply fix the

parameters a, b and tune black hole parameters so that r2+ − r2∗ = ϵ → 0. This corresponds

to physical potentials approaching the BPS limit linearly as

T |Φ=3 =
(2 + a+ b)

√
a+ b+ ab

π(1 + a)(1 + b)(a+ b)
ϵ , (2.24)

1 − Ωa|Φ=3 =
1 − a

(1 + a)(a+ b)
ϵ , (2.25)

1 − Ωb|Φ=3 =
1 − b

(1 + b)(a+ b)
ϵ , (2.26)

with Gibbs free energy (2.16) also approaching zero linearly

G|Φ=3 = −1

2
N2 a+ b

(1 − a)(1 − b)
ϵ . (2.27)

When implementing the BPS limit in this way it is manifest that G, T, 1 − Ωa,b all reach

0 simultaneously, with specified relative rate. In section 2.2 we will identify this approach

with the BPS limit itself.

The somewhat formal statements on the BPS limit in the previous paragraphs fail to

reflect all physical aspects. Therefore, we now consider the physical realization of thermody-

namics already discussed for Φ < 3: start with high temperature and then cool the system all

the way to T = 0, while keeping the physical angular velocities Ωa,b fixed. Figure 2.4 shows

the resulting free energy G as function of temperature T , for various values of Ωa = Ωb.

To implement the physical thermodynamics underlying Figure 2.4 we would lower the

parameter r+, a proxy for temperature, and simultaneously lower the parameters a, b, in

order that the left hand sides of (2.21-2.22) remain constant. The approach to the BPS

limit, described in (2.24-2.26), is different because it keeps the parameters a, b fixed. The

distinction is dramatic because Figure 2.4 depicts a smooth approach to T = G = 0 for
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Figure 2.4: The free energy G as function of temperature T for Φ = Φ∗ = 3. The angular
velocity Ωa = Ωb = 0, 0.5, 0.75, 0.95 from right to left. The curves approach the origin
G = T = 0 without reaching it. The special case Ωa = Ωb = 1 is not a curve, it is the single
point G = T = 0.

various Ωa,b, in apparent contradiction with the statement that vanishing temperature T = 0

is possible only when Ωa = Ωb = 1 identically.

To resolve the tension, it is sufficient to consider the regime r2+ ≫ a2, b2, ab where formulae

simplify so that:

T =
r4+ − (a+ b)2

πr3+
,

1 − Ωa

1 − a
=

1 − Ωb

1 − b
= 1 − a+ b

r2+
,

G = −1

2
N2 r4+ − (a+ b)2

(1 − a2)(1 − b2)
. (2.28)

We further take a, b ≪ 1 so r2+ ∼ a + b (which easily satisfies r2+ ≫ a2, b2, ab) in a manner

where the rotational velocities can take any value Ωa,b = a+b
r2+

, as long as Ωa = Ωb. Then

T =
1

π
r+(1 − Ω2) , (2.29)

and the free energy becomes:

G = −1

2
N2 π4

(1 − Ω2)3
T 4 . (2.30)

These formulae are not the most general, but they exhibit important features clearly.

The BPS limit (2.24-2.26) lowers r+ so r2+ − r2∗ = ϵ → 0. In this case (2.29-2.30) are
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realized by G, T , 1−Ω2 all approaching zero at the same rate, while r+ is near the constant

r∗.

The low temperature limit with the angular velocity Ω fixed is also described by the

simplified free energy (2.30) but, due to (2.29), the strict limit T → 0 requires r2+ → 0 (with

a, b → 0 such that Ωa,b = a+b
r2+

is fixed). The limiting geometry with r+ = 0 is singular, so it

is not actually a solution. It is a “small” black hole, not just in the AdS/CFT vernacular,

where the term refers to black hole size that is much smaller than the AdS-scale r+ ≪ ℓ5,

but in the sense that unknown higher derivative curvature corrections dominate the classical

“solution”. Therefore, the BPS limit is well-controlled only if it is taken as specified in

(2.24-2.26).

The free energy (2.30) is reminiscent of the high temperature regime r+ ≫ 1. In this limit

the rotational velocities Ωa = a, Ωb = b , the temperature (2.20) simplifies to T = r+
π

and

the free energy (2.28) becomes

G = −1

2
N2 π4

(1 − Ω2
a)(1 − Ω2

b)
T 4 . (2.31)

This formula shares with the low temperature expression (2.30) the power T 4 that is char-

acteristic of CFT’s in four dimensions. However, factors of 1 − Ω2 differ. Taking derivative

with respect to temperature , we obtain the expression of the (minus) entropy

S =
1

2
N2 4π4

(1 − Ω2
a)(1 − Ω2

b)
T 3. (2.32)

A similar formula was presented in [40]. The high temperature regime is dual to the conformal

fluid [41, 42].

2.1.2.4 Super-critical Electric Potential Φ > 3

When Φ increases above the critical value Φ∗ = 3 all black holes acquire strictly negative free

energy. Therefore, they are thermodynamically preferred to thermal AdS5. The free energy

decreases monotonically as Φ increases further. Moreover, it decreases further as the angular

velocities increase with fixed Φ and T . All these trends follow straightforwardly from the

thermodynamic relations ∂ΦG = −Q and ∂Ωa,b
G = −Ja,b. They are illustrated in Figure 2.5.

To be more specific, we consider the case Ωa = Ωb ≡ Ω, corresponding to a = b. Then we

can invert the angular velocity (2.13) and solve for r2+

r2+ =
a(3(1 − aΩ) + Φ(1 − a2))

3(Ω − a)
, (2.33)
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Figure 2.5: The free energy G when Φ = 3.5. The angular velocities Ωa = Ωb =
0, 0.5, 0.75, 0.9 increase from right to left.

and the temperature (2.15) becomes

T =
a(3 + Φ − 6Ω2) − (Φ − 3)Ω

6πa(1 − aΩ)
r+ . (2.34)

The nontrivial solution for extremality (T = 0)

a =
(Φ − 3)Ω

3 + Φ − 6Ω2
, (2.35)

yields the free energy (2.16) in terms of Φ and Ωa = Ωb = Ω at extremality:

Gext = −
N2
(
1
3
Φ − 1

)2
16(1 − Ω2)2

[
3

(
1

3
Φ + 1

)2

− 4Ω2

(
1 +

2

3
Φ

)]
. (2.36)

This analytical formula gives the strictly negative free energy at T = 0 for any Φ > 3. In

the nonrotating limit Ω → 0 (further discussed in the following subsection) the formula is

regular, so non-rotating black holes in AdS5 are stable when the electric potential is large.

This result applies also in the flat space limit where it is significant for studies of the weak

gravity conjecture (WGC) [43, 44].

We are particularly interested in the BPS limit which requires Ω = 1. When Φ > 3 the

free energy is singular for this value: the physical range of the angular velocity Ω is [0, 1),

so Ω can be arbitrarily close to the critical value Ω∗ = 1, but it cannot reach it. However,

the square bracket in (2.36) vanishes when both Ω = 1 and Φ = 3. Therefore, in the limit

Φ → 3, the singularity at Ω = 1 is suppressed by three powers of 1
3
Φ − 1. This shows that

the free energy vanishes G→ 0 when Ω → 1 and Φ → 3 at identical “speed”.
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The reason that the angular velocities Ωa,b can be arbitrarily close to their critical values

Ω∗
a,b = 1, but cannot reach it, is that the conserved charges M,Q, Ja,b must be finite: they

can be arbitrarily large, but they cannot diverge. This in turn requires a, b ∈ [0, 1), neither

of these parameters can be exactly equal to one.

To see this, first consider the temperature (2.15) near a = 1 and/or b = 1:

T =
a=1−ϵa,b=1−ϵb

r+

(
r2+ − (2

3
Φ + 1) − 1

18
(Φ2 − 9)

)
π
(
r2+ − Φ

3

) + O(ϵa, ϵb) . (2.37)

Non-negativity of the temperature in this regime shows r2+ ≥ (2
3
Φ + 1) > 0. Therefore, since

ϵa,b can be small but not strictly zero, the angular velocities (2.13) and (2.14)

1 − Ωa =
a=1−ϵa,b=1−ϵb

(
r2+ − (2

3
Φ + 1)

)
(1 + r2+)

ϵa + O(ϵ2) , (2.38)

1 − Ωb =
a=1−ϵa,b=1−ϵb

(
r2+ − (2

3
Φ + 1)

)
(1 + r2+)

ϵb + O(ϵ2) . (2.39)

can be arbitrarily close, but not equal to, the critical values Ω∗
a,b = 1. In other words, when

Φ > 3 either of the limits Ωa → 1 or Ωb → 1 takes all the quantum numbers M,Q, Ja,b → ∞

2.1.2.5 Nonrotating Black Holes: Ω = 0

In this subsection we turn off rotation by setting a = b = 0 and focus on the effect of

the electric potential Φ. This case was well developed early on [45, 46] so it serves as an

important benchmark for the effects of rotation. Here we will review and compare this case

with our previous discussions.

For zero angular velocity Ωa = Ωb = 0, the temperature (2.15) and the free energy (2.16)

reduce to [45]

T =
2g2r2+ + 1 −

(
1
3
Φ
)2

2πr+
, (2.40)

G = − N2

4
r2+

(
g2r2+ +

(
1

3
Φ

)2

− 1

)
. (2.41)

For given (T,Φ), the first equation yields 2, 1, or 0 solutions for r+; and then the second

equation gives the applicable values of the free energy G(T,Φ). It is presented in Figure 2.6.

The AdS-Schwarzschild black hole, reviewed in the beginning of subsection 2.1.2.1 and

plotted in Figure 2.1, is the curve to the right. Increasing electric potential Φ lowers both

the minimal temperature Tmin and the maximal free energy Gmax. These effects make the
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Figure 2.6: The free energy for non-rotating black holes Ω = 0. The electric potential Φ
increases from right to left. There is a qualitative transition from AdS-Schwarzschild type
at Φ < Φ∗ = 3 to the high potential regime Φ ≥ Φ∗ = 3.

black hole more stable.

There is a qualitative change as the potential increases from the regime Φ < 3 to Φ ≥ 3.

The lower range of potential Φ < 3 is “AdS-Schwarzschild-type”, it has two black hole

branches that are joined at a cusp where the temperature reaches its minimum Tmin and

the free energy its maximum Gmax. The higher range of potential Φ ≥ 3 has just a ”large”

black hole branch. Therefore, this range corresponds to particularly stable black holes, as

identified by the weak gravity conjecture.

The earlier parts of this subsection considered the effect of rotation on various ranges of

Φ. In particular, each curve in Figure 2.6 is the same as first curve shown in Figures 2.2-2.5.

The results of those earlier subsections showed that angular velocities strictly below maximal

0 ≤ Ωa,b < 1 do not change the phase diagrams qualitatively. For Φ < 3, angular velocity

lowers the temperature Tmin but the free energy Gmax increases. For Φ > 3 rotational velocity

lowers the free energy of the large black hole branch, the only one there is. The case where

the electric potential is exactly critical Φ = Φ∗ = 3 is subtle, as discussed in subsection

2.1.2.3.

Black hole thermodynamics is much simpler in the absence of rotation so more formulae

can be made explicit. In this case, we can invert (2.40) and solve for the coordinate location

of the horizon r+:

r+ =

√
2g2(Φ2 − 9) + (3πT )2 + 3πT

6g2
. (2.42)

We picked the positive root. Then (2.41) gives the free energy:

G = − N2

864g6

(√
2g2 (Φ2 − 9) + (3πT )2 + 3πT

)2 (
πT
(√

2g2 (Φ2 − 9) + (3πT )2 + 3πT
)

+g2
(
Φ2 − 9

))
.

(2.43)

25



We restored the AdS5 length scale g = ℓ−1
5 in order to facilitate comparison to the flat space

limit g → 0. When Φ < Φ∗ = 3, the argument of the square roots may become negative so,

as we have elaborated on extensively, there is a minimal temperature. For Φ > Φ∗ = 3, the

case discussed in the previous subsection, there is a lower bound r+ > 1
6
ℓ5
√

2(Φ2 − 9) and

the free energy is strictly negative in the limit.

It is instructive to take Φ = Φ∗ = 3 from the outset and then take T → 0 with the AdS

scale ℓ5 → ∞ such that the product Tℓ5 = ∆ is fixed. In this limit the coordinate horizon

r+ = πTℓ25 = π∆ℓ5 , (2.44)

diverges. In this limit ℓ5 → ∞ the underlying black hole geometry is not ”small”, the

position of the coordinate horizon r+ approaches a finite limit, and here this corresponds

to finite spatial extent. Indeed, the underlying ”large” black hole geometry reduces to the

asymptotically flat Reissner-Nordström black hole.

The low temperature regime with no rotation also makes contact with a large body of

recent literature that studies universal features shared with the SYK model (some entry

points to the literature [47, 48]). In this context general thermodynamic arguments show

that the approach to extremality is quadratic in temperature [49, 50] and it is interesting

that the coefficient of the quadratic temperature dependence can be computed directly in

the extremal (T = 0) geometry [51, 52]. Here the low-temperature limit of the free energy

(2.43) is linear in the temperature

G = −N
2 (Φ2 − 9)

2

432g2
− N2(Φ2 − 9)

3
2

54
√

2g3
πT − N2 (Φ2 − 9)

24g4
(πT )2 + . . . (2.45)

for a given Φ > Φ∗ = 3, There is an apparent tension, but it is resolved because our study

is in the grand canonical ensemble (fixed potentials), while the quadratic behavior pertains

to the canonical ensemble (fixed charges).

2.1.2.6 Maximal Rotational Velocity: Ω = 1

It is instructive to consider black holes with maximal horizon velocities Ωa = Ωb = 1 for any

temperature T and electric potential Φ. This example shows that generally such spins are

destabilizing, but the BPS case is an exception.

The general expressions for Ωa,b (2.13-2.14) give the horizon position

r2+ = r2∗ − b(1 + a)(1 − 1

3
Φ) . (2.46)
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It also gives the analogous expression with a ↔ b so, for consistency, the rotational param-

eters must be identical a = b. The general formula for temperature (2.6) becomes

T = 1
2π

(1 − 1
3
Φ)
√

(1 + 1
3
Φ)a−1 + 1

3
Φ . (2.47)

Since the temperature is nonnegative T ≥ 0, we must demand Φ ≤ 3. This agrees with the

analysis in subsection 2.1.2.4: the rotational velocities can not reach their maximal values

Ωa,b = 1 when Φ > 3.

In most of the examples we consider, the horizon location r+ is larger than the corre-

sponding BPS radius r∗, at the same values of a, b. One might wonder if this is a physical

condition. For example, it could be that black holes that are excited above the BPS limit

must be bigger because they have more entropy. On the other hand, the parameter r+ is not

a physical variable, nor are a, b, so this comparison cannot be taken too seriously. Indeed,

according to (2.46), black holes with Ω = 1 give a counterexample because they have r+ < r∗.

The temperature T given in (2.47) is a monotonically decreasing function of the parameter

a. Since black holes with finite charges must have a < 1, the temperature is bounded from

below by the value at a = 1:

Tmin =
1

2π
(1 − 1

3
Φ)

√
1 +

2

3
Φ . (2.48)

The inequality a < 1 is strict, a = 1 is not possible, so the lower bound T ≥ Tmin can be

saturated only when Φ = 3. In fact, when Φ = 3, the minimal temperature Tmin = 0 is not

just a bound, (2.47) shows it is the only possible temperature. That the temperature must

vanish in this case is precisely as expected, because when Φ = 3, Ωa,b = 1 all potentials

are critical and so the black hole is BPS M = MBPS. Here we focus on the interesting

discontinuity between Φ → 3− and Φ = 3.

For maximal rotational velocities Ωa,b = 1 and any generic potential 0 ≤ Φ < 3, all

temperatures T > Tmin are possible. Gibbs’ free energy (2.11) becomes:

G =
1

2
N2a(3 − Φ)(Φ + 3)2

54(1 − a)

=
1

4
N2

(
1 − 1

9
Φ2
)3

(2πT )2 − (1 + 2
3
Φ)(1 − 1

3
Φ)2

.

(2.49)

In the second expression the rotational parameter a was eliminated by taking advantage of

(2.47). This free energy, plotted in Figure 2.7, is positive definite, so the corresponding black

holes are always “small”. The minimal temperature Tmin given in (2.48) is such that the
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Figure 2.7: Free energy as function of temperature when Ωa,b = 1 and Φ ̸= 3. There are
only “small” black holes. They all have G > 0 and negative specific heat (G decreases with
temperature). The curves represent Φ = 0, 1, 2 (from right to left). The vertical asymptote
indicating the minimal temperature is shown only for Φ = 2, to reduce clutter. As Φ increases
to Φ → 3− the minimal temperature decreases to Tmin = 0. The BPS limit where Φ = 3
exactly is not a curve, it is just the origin where T = 0 and G = 0.

denominator is positive for all temperatures T > Tmin and vanishes in the limit T → Tmin.

Therefore, the free energy diverges in this limit.

The challenges faced by the approach to the BPS limit T = 0, Φ = 3 are stark when

Ωa,b = 1 is set from the outset:

• There is a minimal temperature Tmin. However, it decreases monotonically as a function

of the potential Φ, from Tmin = 1
2π

when Φ = 0 to Tmin → 0 as Φ → 3−.

• The free energy diverges if, for a given potential, the temperature T is lowered to Tmin.

However, the “height” of the divergence is set by (1 − 1
3
Φ)3.

• By increasing Φ → 3− and lowering T simultaneously, the free energy can vanish in

the limit, after all. However, the free energy necessarily approaches zero from above

G→ 0+.

The “safest” approach to the BPS limit are from the large black hole branch G → 0−. It

requires taking electric potential Φ = Φ∗ = 3 first, or at least approaching it from above

Φ → 3+, and only then tuning other parameters.
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2.2 Thermodynamics of Supersymmetric Black Holes

In this section we study the thermodynamics of black holes that are strictly supersymmetric.

We consider general aspects, as well as their realization by black holes in AdS5. As an

instructive example, we develop new details on a “benchmark” case that was discussed

previously. The following section 2.3 studies more general cases.

2.2.1 General Structure of BPS Thermodynamics

Suppose we have a general free energy1

G = G(T,Φ,Ω) = M − TS − ΦQ− ΩJ , (2.50)

and want to study the states that satisfy the BPS mass relation

M = Φ∗Q+ Ω∗J , (2.51)

where Φ∗ and Ω∗ are given numbers that depend on the system we consider. The general

free energy (2.50) satisfies the first law

dG = −SdT −QdΦ − JdΩ ,

so it yields the mass

M = G+ TS + ΦQ+ ΩJ = (1 − T∂T − Φ∂Φ − Ω∂Ω)G .

The BPS mass relation (2.51) is satisfied if and only if[
1 − T∂TG− (Φ − Φ∗)∂Φ − (Ω − Ω∗)∂Ω

]
G = 0 .

This is the condition that the free energy is homogeneous of degree 1 in the variables T,Φ−
Φ∗,Ω − Ω∗.

Considering any G that is homogeneous of degree 1, we define the BPS free energy

W (Φ′,Ω′) =
G

T
= −S − Φ′Q− Ω′J . (2.52)

1In this subsection we refer to a single electric potential Φ and a single angular velocity Ω, to keep
terminology simple. However, one or both kinds of potentials can have multiple components, corresponding
to several independent charges and/or angular momenta.
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The second form used the BPS mass relation (2.51) and introduced primed potentials

Φ′ =
Φ − Φ∗

T
,

Ω′ =
Ω − Ω∗

T
. (2.53)

The function W inherits a homogeneity property from G and, because we have divided by

T , it is in fact precisely homogeneous in the variables T,Φ − Φ∗,Ω − Ω∗, it has “weight”

zero. Therefore, it is possible to interpret it as a function of the ratios Φ′,Ω′, as we have

indicated in our notation for W . In the BPS limit we necessarily have temperature T → 0

so these “primed” variables can be identified as derivatives with respect to the temperature,

evaluated at T = 0. An alternative but equivalent interpretation is that the BPS surface is

a projective manifold defined by ratios of thermodynamic variables. Furthermore, viewing

the BPS surface as a continuous manifold allows for a generalization beyond previous studies

[53] which treated it as a point instead characterized by Φ−Φ∗ = 0 and Ω−Ω∗ = 0, followed

by taking T → 0.

The BPS free energy W satisfies the first law

dW = −QdΦ′ − JdΩ′ , (2.54)

so

Q = −∂W
∂Φ′ , J = −∂W

∂Ω′ . (2.55)

It yields the entropy

S = (−1 + Φ′∂Φ′ + Ω′∂Ω′)W . (2.56)

However, the BPS mass has been “integrated out” of the BPS thermodynamics, it is not

encoded in W and only follows from Q and J via the BPS mass relation (2.51).

In statistical mechanics, the BPS free energy W arises when introducing a BPS partition

function as a trace over all BPS states

ZBPS = TrBPS

[
eΦ

′Q+Ω′J
]
, (2.57)

with no explicit reference to mass. Then the BPS free energy W = − lnZBPS [53].
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2.2.2 Parameters for BPS Black Holes in AdS5

In this paper we primarily study AdS5 black holes with a single charge and two independent

angular momenta. We want to make the general considerations in the preceding subsection

explicit in this specific case.

The BPS condition, first given in [31], in our convention reads

M = 3Q+ Ja + Jb . (2.58)

Comparing with the generic formula (2.51) we have

Φ∗ = 3 , (2.59)

and, for a = b, Ω∗ = 2. In the general case where a ̸= b there are two independent rotational

velocities Ωa,b with BPS values

Ω∗
a = Ω∗

b = 1 . (2.60)

The general parametric expressions for the black hole quantum numbers (M,Q, Ja,b) in

(2.1 - 2.4) give the mass excess above the BPS bound

M − 3Q− (Ja + Jb) =
1

2
N2 3 + (a+ b) − ab

(1 − a)(1 + a)2(1 − b)(1 + b)2

(
m− q(1 + a+ b)

)
. (2.61)

The prefactor on the right hand side is manifestly positive for all a, b ∈ [0, 1[, so the BPS

formula (2.58) yields the condition on the parameters (m, q, a, b):

m = q(1 + a+ b) . (2.62)

We can therefore consider m a dependent variable and parameterize the BPS black holes by

(q, a, b).

Even when the parameter m satisfies (2.62), the equation (2.5) for the coordinate location

of the event horizon is a cubic equation in r2. Instead of proceeding by brute force, it is

useful to recall that BPS black holes are extremal and so we expect a double root. With this

clue, and the BPS condition (2.62), it is manageable to find the solution

r2∗ = a+ b+ ab , (2.63)

for a specific value of the parameter q:

q∗ = (1 + a)(1 + b)(a+ b) . (2.64)
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Whichever way this solution for particular values of m, q was arrived at, we can, for any

m, q, recast the cubic equation (2.5) satisfied by the horizon location r2 as

(r2 − r2∗)2r2 +
(

(q − q∗) − (r2 − r2∗)(1 + a+ b)
)2

+ 2r2(m− q(1 + a+ b)) = 0 . (2.65)

When the BPS condition (2.62) is satisfied this expression is the sum of two squares so, for

BPS black holes, it is manifest that a real solution exists only for q = q∗ and for this value

of q there is indeed a double root when r2 = r2∗. We will refer to the starred variables as the

BPS values.

Whenm satisfies the BPS condition (2.62) and q takes its BPS value (2.64), the parametric

formulae (2.1 - 2.4) for the physical variables (M,Q, Ja,b) simplify to:

M∗ =
1

2
N2 (a+ b)(3 − a2 + ab− b2 − ab(a+ b))

(1 − a)2(1 − b)2
, (2.66)

Q∗ =
1

2
N2 a+ b

(1 − a)(1 − b)
, (2.67)

J∗
a =

1

2
N2 (a+ b)(2a+ b+ ab)

(1 − a)2(1 − b)
, (2.68)

J∗
b =

1

2
N2 (a+ b)(a+ 2b+ ab)

(1 − a)(1 − b)2
. (2.69)

The potential Φ and the angular velocities Ωa,b given in (2.7 - 2.9) reduce to the BPS values

(2.59-2.60), as they should. The entropy S (2.10) simplifies to:

S∗ = 2π
1

2
N2 (a+ b)

√
a+ b+ ab

(1 − a)(1 − b)
. (2.70)

As we have stressed, once we impose the BPS mass formula (2.58), black holes exist only

when the parameters q, a, b satisfy the relation (2.64). Thus the BPS mass cannot be reached

for all black hole variables (Q, Ja, Jb). Rather, according to (2.67), (2.68) and (2.69), the

conserved charges must satisfy the constraint(
Q∗3 +

1

2
N2J∗

aJ
∗
b

)
−
(

3Q∗ +
1

2
N2

)(
3Q∗2 − 1

2
N2(J∗

a + J∗
b )

)
= 0 . (2.71)

It is surprising that there is this condition on the charges.
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2.2.3 The BPS Free Energy

Usually, a good starting point for the study of thermodynamics is the free energy G, an

extensive function of the intensive thermodynamic potentials T,Φ,Ωa,b. However, for BPS

black holes the free energy vanishes identically G = 0 and the “variables” it would ordinarily

be a “function” of are fixed at T = 0,Φ∗ = 3, and Ω∗
a,b = 1.

The general structure of BPS thermodynamics discussed in subsection 2.2.1 addresses

this obstacle. A free energy G that is homogeneous of degree one in T , Φ − Φ∗, Ωa,b − Ω∗
a,b

depends on variables that nominally depart from their BPS values, but the homogeneity

property shows that the mass is exactly the BPS mass. Therefore, a free energy of this form

describes thermodynamics intrinsic to the BPS surface.

2.2.3.1 Derivation of the BPS Free Energy

In the AdS5 example we focus on, the explicit free energy G (2.16) of a general AdS5 black

hole depends on the electric potential Φ, as it should, but it is also a function of the parame-

ters r+, a, b, rather than T , Ωa,b. Conveniently, the expression for G given in (2.16) vanishes

when, in addition to Φ = 3, the auxiliary horizon position r2+ take the BPS value r2∗ given

in (2.63). At linear order in both r2+ − r2∗ and Φ − 3 we have

G = −N
2

2

a+ b

(1 − a)(1 − b)
(r2+ − r2∗) − N2

6

(a+ b)(1 − a− b− ab)

(1 − a)(1 − b)
(Φ − 3) .

The combination r2+−r2∗ has a geometrical interpretation in terms of horizon position, but it

is not a traditional thermodynamic potential. It is related to the angular velocities through

the two equations (2.13-2.14) which are straightforward to expand at linear order in Φ−Φ∗,

Ωa,b − Ω∗
a,b. The result

r2+ − r2∗ = −(a+ b)(1 + a)

2(1 − a)
(Ωa − 1) − (a+ b)(1 + b)

2(1 − b)
(Ωb − 1) +

a+ b+ 2ab

6
(Φ − 3) , (2.72)

leads to the free energy

G = −N
2

12

(a+ b)(2 − a− b)

(1 − a)(1 − b)
(Φ−3)+

N2

4

(a+ b)2(1 + a)

(1 − a)2(1 − b)
(Ωa−1)+

N2

4

(a+ b)2(1 + b)

(1 − a)(1 − b)2
(Ωb−1) .

(2.73)

Moreover, the condition that the two equations (2.13-2.14) give identical values for r2+ − r2∗

yields the constraint on the potentials

(a+ b)(1 + a)

1 − a
(Ωa − 1) − (a+ b)(1 + b)

1 − b
(Ωb − 1) +

1

3
(a− b)(Φ − 3) = 0 . (2.74)
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The formula for temperature (2.15), also expanded at linear order in Φ − Φ∗, Ωa,b − Ω∗
a,b,

imposes a second constraint on the potentials

T = −
√
a+ b+ ab

π(1 − a)
(Ωa − 1) −

√
a+ b+ ab

π(1 − b)
(Ωb − 1) −

√
a+ b+ ab

3π(a+ b)
(Φ − 3) . (2.75)

We can interpret the two constraints (2.74-2.75) together, as definitions of the auxiliary

parameters a, b. Since both constraints are invariant under simultaneous linear scaling of

T,Φ−Φ∗, Ωa,b−Ω∗
a,b, the a, b defined implicitly this way are homogeneous functions of these

potentials.

The free energy (2.73) transforms linearly under simultaneous linear scaling of T,Φ−Φ∗,

Ωa,b − Ω∗
a,b so, as a function of these variables, it is homogeneous of degree one. According

to the discussion in subsection 2.2.1, it follows that it describes BPS black holes. To reach

this conclusion it is important that the parameters a, b are invariant under such rescalings.

To avoid possible confusion, we reiterate the reasoning. The free energy (2.73) and the

constraints (2.74-2.75) were all derived by expanding to linear order in Φ − Φ∗, Ωa,b − Ω∗
a,b.

That could leave the impression that they are approximations that are valid near the BPS

limit but in fact they describe the BPS black holes themselves, as these equations contain

no information beyond BPS. Once a free energy is presented as a homogeneous function, the

additional step of taking the limit T → 0 is possible, but not required, doing so corresponds

to a choice of coordinates in projective geometry.

To understand how this is possible, consider the mass excess over the BPS mass (2.61),

rewritten using (2.65, 2.72):

M −M∗ =
N2

2

(3 + a+ b− ab)(a+ b)2

4(1 − a)(1 − b)(1 + 3a+ 3b+ a2 + 3ab+ b2)

(
(2πT )2 + φ2

)
, (2.76)

where

φ = (Φ − Φ∗) − (Ωa − Ω∗
a) − (Ωb − Ω∗

b) = Φ − Ωa − Ωb − 1 . (2.77)

This mass excess M −M∗ is quadratic in the small variables and so the black hole is BPS

because the equality M = M∗ holds at linear order.2

The BPS energy W (2.52) that is intrinsic to the BPS surface is computed from (2.73)

2The quadratic correction in (2.76) is not important in this chapter but it is interesting in its own right
[49, 50, 54, 55, 17, 56, 57, 58]. It is described in effective quantum field theory by the Schwarzian theory
[47, 59, 60, 61, 62].
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by dividing with T :

W =
G

T
=

1

2
N2

(
−(a+ b)(2 − a− b)

6(1 − a)(1 − b)
Φ′ +

(a+ b)2(1 + a)

2(1 − a)2(1 − b)
Ω′
a +

(a+ b)2(1 + b)

2(1 − a)(1 − b)2
Ω′
b

)
.

(2.78)

The primed potentials

Φ′ =
Φ − 3

T
Ω′
a,b =

Ωa,b − 1

T
, (2.79)

were previously introduced in the general BPS formalism through (2.53). Depending on

the point of view, they are either coordinates in the projective geometry defining the BPS

surface or, via the limiting procedure, thermal derivatives evaluated at T = 0.

The parameters a and b are complicated functions of Φ′, Ω′
a and Ω′

b defined by the con-

straints (2.74-2.75) recast in the form:

−
√
a+ b+ ab

1 − a
Ω′
a −

√
a+ b+ ab

1 − b
Ω′
b −

√
a+ b+ ab

3(a+ b)
Φ′ = π , (2.80)

(a+ b)(1 + a)

1 − a
Ω′
a −

(a+ b)(1 + b)

1 − b
Ω′
b +

a− b

3
Φ′ = 0 . (2.81)

Differentiation of the BPS free energy W (2.78) with respect to the primed potentials must

give the conserved charges through the thermodynamic relations (2.55). When computing the

derivatives, note that, in addition to the explicit dependence of W on the primed potentials,

there is implicit dependence through a, b that is given by (2.80-2.81). It is a consistency

check on the various formulae that the black hole charges computed this way do in fact

agree with (2.67-2.69).

2.2.3.2 Simplifications of the Constraints

In general, it is impractical to solve the constraints (2.80-2.81) and give a, b as explicit

functions of the potentials Ω′
a,b and Φ′. However, we can do so in the regime where 1− a ∼

1 − b ∼ ϵ is small and positive. This is a version of the Cardy-like limit [63, 64].

In this limit, the constraint (2.81) shows that the Φ′ term is dominated by the large Ω′
a,b

terms. We can partially address this by tuning Ω′
a ∼ Ω′

b ∼ ϵ but, because a, b are both near

unity we have (a − b) ∼ ϵ, and so it is insufficient that the Ω′
a,b terms are order unity, they

must nearly cancel. Thus:
Ω′
a

1 − a
=

Ω′
b

1 − b
, (2.82)

up to terms of order ϵ. With this equality, and using a ∼ b ∼ 1 extensively, the other
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constraint (2.80) then yields

Ω′
a

1 − a
=

Ω′
b

1 − b
=

Φ′ + 2π
√

3

12
. (2.83)

This equation is equivalent to presenting a, b as explicit functions of the BPS potentials

Φ′,Ω′
a,b, as we wanted to do. With this result it is straightforward to also express the BPS

free energy W in (2.78) as function of these variables:

WCardy = −N2

432

(Φ′ + 2π
√

3)3

Ω′
aΩ

′
b

. (2.84)

This is expression is completely explicit, but it applies only in the Cardy-like limit.

A complementary approach to the awkward constraints (2.80-2.81) that define a, b as func-

tions of the primed potentials is to implement them using Lagrange multipliers. Introducing

two multipliers Λ1,2, we have:

W =
1

2
N2

[
−(a+ b)(2 − (a+ b))

6(1 − a)(1 − b)
Φ′ +

(a+ b)2(1 + a)

2(1 − a)2(1 − b)
Ω′
a +

(a+ b)2(1 + b)

2(1 − a)(1 − b)2
Ω′
b

]
+ Λ1

(
−
√
a+ b+ ab

1 − a
Ω′
a −

√
a+ b+ ab

1 − b
Ω′
b −

√
a+ b+ ab

3(a+ b)
Φ′ − π

)
+ Λ2

(
(a+ b)(1 + a)

1 − a
Ω′
a −

(a+ b)(1 + b)

1 − b
Ω′
b +

a− b

3
Φ′
)
.

(2.85)

Extremization with respect to a, b give conditions that are solved when:

Λ1 =
1

2
N22(a+ b)

√
a+ b+ ab

(1 − a)(1 − b)
, (2.86)

Λ2 =
1

2
N2 −(a− b)

2(1 − a)(1 − b)
, (2.87)

without imposing any additional relation on Φ′ and Ω′
a,b. Substituting these equations into

(2.85), we find:

Wext = −1

2
N2
[2π(a+ b)

√
a+ b+ ab

(1 − a)(1 − b)
− (a+ b)(2a+ b+ ab)

(1 − a)2(1 − b)
Ω′
a

− (a+ b)(a+ 2b+ ab)

(1 − a)(1 − b)2
Ω′
b −

a+ b

(1 − a)(1 − b)
Φ′
]
.

(2.88)

Importantly, in this equation a, b are auxiliary variables: Wext is defined only after extrem-

izing a, b with primed potentials kept fixed.
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At this point differentiation with respect to the primed potentials is trivial, there is no

need to take implicit dependence via a, b into account, because these auxiliary variables are

anyway evaluated at their extremum. Thus, in (2.88) the coefficient of each BPS potential

Φ′, Ω′
a,b must reproduce its conjugate conserved charge (2.67, 2.68,2.69), as indeed it does.

Additionally, the BPS black hole entropy can be computed from the BPS potential through

the formula (2.56), which amounts to extracting the independent-of-primed potentials con-

stant in the BPS free energy Wext given in (2.88). It agrees with the BPS entropy (2.10), as

it should.

The free energy (2.88) is thus completely general, unlike the expression (2.84) in the

Cardy-limit no assumptions were made on the parameters. The drawback is that, in this

formalism, a, b must be extremized over, and the resulting conditions are precisely the con-

straints (2.80-2.81).

2.2.3.3 Thermodynamics of BPS Black Holes

In our study of BPS thermodynamics, we will facilitate comparisons with the literature by

trading the BPS electric potential Φ′ for

φ′ = Φ′ − Ω′
a − Ω′

b , (2.89)

which is the obvious BPS analogue of (2.77). The constraints (2.74-2.75) for the angular

BPS potentials then become:

Ω′
a = − 1 − a

1 + 3a+ 3b+ a2 + 3ab+ b2

[
π(a+ 2b+ 2ab+ b2)√

a+ b+ ab
+

1 + a

2
φ′
]
, (2.90)

Ω′
b = − 1 − b

1 + 3a+ 3b+ a2 + 3ab+ b2

[
π(2a+ b+ 2ab+ a2)√

a+ b+ ab
+

1 + b

2
φ′
]
. (2.91)

For reference, we also record the inverse formula that converts from φ′ back to the electric

BPS potential Φ′:

Φ′ = − 3(a+ b)

1 + 3a+ 3b+ a2 + 3ab+ b2

[
π(1 − ab)√
a+ b+ ab

− (2 + a+ b)

2
φ′
]
. (2.92)

In the new variables that eliminate Φ′, the free BPS energy (2.88) becomes:

W

N2
=

π(a+ b)2 [1 − 2a− 2b− a2 − 5ab− b2 − a2b− ab2]

2(1 − a)(1 − b) (1 + 3a+ 3b+ a2 + 3ab+ b2)
√
a+ b+ ab

− (a+ b)2(3 + a+ b− ab)

4(1 − a)(1 − b) (1 + 3a+ 3b+ a2 + 3ab+ b2)
φ′ .

(2.93)
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Even though BPS thermodynamics applies only at strictly vanishing temperature T = 0, it

is meaningful to construct phase diagrams that depend on the BPS potentials, in a formalism

similar to that explored in [65] with its BPS quantum statistical relation, now generalized for

purposes of studying the thermodynamic stability of the phases described by W . In order

to interpret them, it is useful to introduce the “BPS temperature”

τ ≡ − 2

Ω′
a + Ω′

b

=
4 (1 + 3a+ 3b+ a2 + 3ab+ b2)
6π(a+b)(1−ab)√

a+b+ab
+ (2 − a2 − b2)φ′

, (2.94)

that shares some properties with the usual physical temperature. For example, it is positive

because physical black holes have 1 − Ωi ≥ 0 and so the primed potentials Ω′
i introduced

in (2.79) are negative. Also, for small and fixed 1 − Ωi, the effective temperature τ is

proportional to the physical temperature T , again by (2.79). Finally, it generalizes the

analogous definition in [66, 63].

In the preceding, and in our entire study of the phase diagram for BPS black holes, we

have opted to use (a, b, φ′) as the variables for all thermodynamic quantities. The a, b arise

as conventional parameters for presenting the underlying BPS black hole geometry, they do

not have a meaning directly in thermodynamics. When we write them, we refer to them as

the functions of Ω′
i and φ′ that are defined implicitly by the constraints (2.80-2.81) which

cannot be tractably inverted, except in specific cases like the Cardy-like limit where we have

the explicit relation (2.83).

2.2.4 The BPS Phase Diagram: a Benchmark Case

In this subsection we review the special case where angular momenta are equal (a = b) and

φ′ = 0 [53, 66, 63]. It will serve as an important benchmark for our study of the general

black holes in section 2.3.

The BPS temperature (2.94) simplifies when a = b and φ′ = 0:

τ =
1 + 5a

3π(1 − a)

√
1 +

2

a
. (2.95)

This expression diverges at a = 0 and a = 1. It has a local minimum when the parameter

a = acusp = 3
√
3−4
11

≈ 0.109 and τ = τcusp ≈ 0.809. It is plotted in Figure 2.8.

The free energy (2.93) when a = b and φ′ = 0 is:

W

N2
=

2πa
3
2 (1 − 5a− 2a2)

(1 − a)2 (1 + 5a)
√

2 + a
. (2.96)
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Figure 2.8: The BPS temperature τ as function of the rotation parameter a when a = b
and φ′ = 0. The local minimum determines the position of the cusp in the phase diagram.
The divergences at a = 0 and a = 1 correspond to the large-τ extremes of the “small” and
“large” black hole branches, respectively.

The expression yields W = 0 for a = 0 and increases for small and positive a. The BPS

temperature τ → ∞ as a → 0+ so in the limit of small parameter a the BPS free energy

W → 0+ for large τ . As a increases to the value acusp where the temperature is at its

minimum τcusp, the free energy increases monotonically to Wcusp/N
2 = 11π

27
√

273+158
√
3
≈ 0.055.

The range 0 < a < acusp maps out the “small” black hole branch of the BPS phase diagram.

As a increases above acusp, the free energy decreases from Wcusp. It crosses W = 0 at

aHP =
√
33−5
4

≈ 0.186 which corresponds to the BPS temperature τHP = 0.863. Finally,

in the limit a → 1−, the free energy diverges W → −∞ along with the BPS temperature

τ → ∞. The range where acusp < a < 1 is the “large” BPS black hole branch. We plot the

BPS phase diagram in Figure 2.9

The phase diagram of the BPS black hole is remarkably similar to that of AdS-

Schwarzschild, reviewed in subsection 2.1.2.1 [66]. In other words, Figure 2.9 is reminiscent

of Figure 2.1. In line with this analogy, we denoted the point where the BPS free energy

crosses W ≡ 0 by the subscript ”HP” that refers to the Hawking-Page transition. However,

the notion of thermal AdS is not trivial in the BPS context. It presupposes the existence of

a non-interacting gas of BPS particles for any τ , corresponding to a general value of the BPS

potential for angular momentum Ω′. This hypothetical phase would always have W = 0 and

be preferred for the τ ’s where the BPS black hole has W > 0. The equilibrium conditions

between such states of matter have not yet been established so we consider the “BPS gas”

conjectural.
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Figure 2.9: BPS free energy W/N2 vs. BPS temperature τ . This phase diagram displays an
upper (small black hole) branch and a lower (large black hole) branch. The two branches
coincide at the cusp (τcusp,Wcusp/N

2) ≈ (0.809, 0.055). The large black hole branch domi-
nates over the BPS gas with W = 0 (red line) for τ > τHP ≈ 0.863.

The striking qualitative agreement between the AdS-BPS and AdS-Schwarzschild phase

diagrams hides a more detailed distinction between their asymptotic behaviours.

Starting with the Schwarzschild-AdS spacetime, the Gibbs free energy G and the temper-

ature T computed from the parameters (2.1 - 2.6) with a = b = 0

G =
N2r2+(1 − r2+)

4
, (2.97)

T =
1 + 2r2+

2πr+
, (2.98)

give the rescaled free energy W = G/T :

W

N2
=
π

2

r3+(1 − r2+)

1 + 2r2+
. (2.99)

This allows us to extract the asymptotic behaviors of the two branches by focussing on the

extreme regimes r+ ≪ 1 and r+ ≫ 1.

For very small black holes r+ ≪ 1, T diverges as ∼ r−1
+ and W vanishes as ∼ r3+ so:

W ∼ T−3 as T → ∞ . (2.100)

This is equivalent to M ∼ T−2 for asymptotically flat 5D Schwarzschild black holes. In

contrast, for very large black holes r+ → ∞, T diverges as r+ and W diverges as −r3+ so

then:

W ∼ −T 3 as T → ∞ . (2.101)

as expected for a conformal fluid in the dual CFT4.

Turning now to the BPS black holes, we use equations (2.95-2.96). For very small BPS
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black holes a→ 0+, τ diverges ∼ a−1/2 and W vanishes as ∼ a3/2 so:

W ∼ τ−3 as τ → ∞ . (2.102)

When a→ 1− instead, τ diverges as ∼ (1 − a)−1 and W diverges as ∼ −(1 − a)−2 so:

W ∼ −τ 2 as τ → ∞ . (2.103)

Our results show that the asymptotic behaviors (2.100, 2.102) for very small black holes

agree but the analogues (2.101, 2.103) for large black holes do not. Thus the qualitative

identification between τ and T is not precise.

2.2.5 The HHZ Free Energy

The HHZ free energy has been central to recent progress on the microscopic understanding

of BPS black holes in AdS [67, 68, 69, 29, 65, 63, 27, 26, 70]. It was originally motivated by

analysis of the near-horizon geometry of supersymmetric black holes rather than conventional

black hole thermodynamics. In this subsection we address this gap in the literature.

2.2.5.1 Extremization of the HHZ Free Energy

The HHZ free energy is a function of the HHZ potentials ∆ and ωa,b that are conjugate to

the conserved charges Q and Ja,b:
3

H(∆, ωa,b) = −N
2

2

∆3

ωaωb
. (2.104)

Unlike the free energy that is familiar from undergraduate studies, the HHZ free energy

is complex and the potentials it depends on are complex as well. The latter satisfy the

constraint

3∆ − ωa − ωb = 2πi , (2.105)

so they are genuinely complex numbers [29, 70].

In order to extremize the free energy (2.104) over its arguments ∆, ωa,b, while taking into

account the constraint (2.105), it is convenient to Legendre transform to an ensemble with

3Our reference to the HHZ free energy generalizes the original research [29]. In particular, we allow
general, non-equal angular momenta Ja,b.
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fixed charges Q, Ja,b. To do so, we introduce the entropy function:

S(∆, ωa,b, Q, Ja,b) = −N
2

2

∆3

ωaωb
− 3∆Q− ωaJa − ωbJb − Λ(3∆ − ωa − ωb − 2πi) , (2.106)

where Λ is a Lagrange multiplier. Extremization over the potentials then gives:

∂S

∂∆
= 0 =⇒ − N2

2

3∆2

ωaωb
− 3(Q+ Λ) = 0 , (2.107)

∂S

∂ωi
= 0 =⇒ N2

2ωi

∆3

ωaωb
− (Ji − Λ) = 0 . (2.108)

When these conditions are satisfied, the entropy at the extremum S∗ is related to the La-

grange multiplier Λ through

S∗ = 2πiΛ , (2.109)

and Λ is determined by the black hole charges Q, Ja,b via the cubic equation:

Λ3 + (3Q+
N2

2
)︸ ︷︷ ︸

A

Λ2 +

(
3Q2 − N2

2
(Ja + Jb)

)
︸ ︷︷ ︸

B

Λ + (Q3 +
N2

2
JaJb)︸ ︷︷ ︸

C

= 0 . (2.110)

The HHZ prescription invokes reality and positivity of the entropy, so that Λ must be a purely

imaginary number with negative imaginary part. This is possible only if the cubic polynomial

factorizes as (Λ2 +B)(Λ +A). It follows that the coefficients of the cubic polynomial satisfy

the relation:

AB − C = (3Q+
N2

2
)

(
3Q2 − N2

2
(Ja + Jb)

)
− (Q3 +

N2

2
JaJb) = 0 , (2.111)

and also that the root with negative purely imaginary part is:

Λ = −i
√
B = −i

√
3Q2 − N2

2
(Ja + Jb) . (2.112)

Inserting this value for Λ in (2.109), and expressing Q and Ja,b in terms of a and b using

their values from (2.67-2.69), we match the BPS black hole entropy S∗ (2.70). Moreover, the

condition (2.111) is precisely the constraint on black hole charges (2.71).

The HHZ procedure thus gives the correct functions of charges, but we stress that we

introduced the HHZ free energy H (2.115) as a function of the HHZ potentials (∆, ωa,b)

without committing to an associated spacetime interpretation: we derived the black hole

entropy via a formal extremization procedure. Some authors simply identify the HHZ for-
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malism with “gravitational thermodynamics”, and consider it the target for microscopic

CFT considerations. However, the HHZ variables are genuinely complex so their relation to

spacetime physics is not clear a priori. We therefore distinguish “boundary CFT” (the HHZ

free energy) and “bulk interpretation” (black hole thermodynamics) carefully.

The values of the potentials ∆ and ωi (with i = a, b) that extremize the HHZ free energy

follow from (2.107-2.108) as:

∆ = 2πi(Q+ Λ)−1

(
1

Ja − Λ
+

1

Jb − Λ
+

3

Q+ Λ

)−1

, (2.113)

ωi = −2πi(Ji − Λ)−1

(
1

Ja − Λ
+

1

Jb − Λ
+

3

Q+ Λ

)−1

. (2.114)

with the understanding that the Lagrange multiplier Λ = Λ(Q, Ja,b) is given by (2.112).

Because of the constraint (2.105), they yield the on-shell value of the HHZ free energy

(2.104)

H = −N
2

2

1

ωaωb

(
2πi+ ωa + ωb

3

)3

. (2.115)

The values of the potentials ∆, ωi (2.113-2.114) and the entropy S (2.109) at the extremum

are all given in terms of the charges Q, Ji. This is a natural form to present the result of

the extremization, and the one that is most appropriate for comparison with microscopic

considerations. However, it is awkward that all these expressions are defined only modulo

the constraint on the charges (2.111).

The gravitational thermodynamics of BPS black holes expresses the corresponding phys-

ical quantities in terms of the parameters (a, b), in a form that automatically solves the

constraint on the charges. In particular, the BPS values of the charge Q∗ (2.67) and angular

momenta J∗
i (2.68-2.69) satisfy the constraint and give equations for ωi (analogous to similar

complexified treatments of these chemical potentials [65]) 4):

ωa =
−π(1 − a)

a2 + b2 + 3(a+ b+ ab) + 1

(
a+ 2b+ b2 + 2ab√

a+ b+ ab
+ i(1 + a)

)
, (2.116)

ωb =
−π(1 − b)

a2 + b2 + 3(a+ b+ ab) + 1

(
b+ 2a+ a2 + 2ab√

a+ b+ ab
+ i(1 + b)

)
. (2.117)

We do not explicitly write the corresponding expression for the electric potential ∆ =

∆(a, b) because it follows from the simple linear relation (2.105). It is worth mentioning

that the expressions for ωa,b and ∆ are arrived at by complexifying the chemical potentials

4These expressions become identical to ω∗
1 and ω∗

2 in (3.27) [65] when the branch of the complexified q
with +ir+ in (3.3) there is picked instead.
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through the complex Lagrange multiplier Λ (2.112), without the need to complexify the

gravitational solution itself as in previous such studies [65].

The on-shell value of the HHZ potential H (2.115) can be similarly expressed in terms of

a and b:

H(a, b) =
N2

2

−π(a+ b)2(1 − 2a− 2b− a2 − 5ab− b2 − a2b− ab2)

(1 − a)(1 − b)
√
a+ b+ ab(a2 + b2 + 3(a+ b+ ab) + 1)

+
N2

2

π(a+ b)2(3 − ab+ a+ b)

2(1 − a)(1 − b)(a2 + b2 + 3(a+ b+ ab) + 1)
i .

(2.118)

Even though the potentials ωa,b in (2.116-2.117) and the HHZ potential (2.118) are func-

tions of the parameters a, b that were introduced in the context of gravitational solutions, we

stress that these formulae are entirely equivalent to (2.113-2.115) which we consider function

of charges. The only difference is that the constraint on charges was solved. As a bonus, the

potentials that extremize the HHZ free energy are now written in a form that is convenient

for comparison with gravitational thermodynamics.

2.2.5.2 Comparing the HHZ Results with Black Hole Thermodynamics

We now reconsider the conventional thermodynamics of BPS black holes that depends on

manifestly real spacetime potentials Φ′,Ω′
a,b and the BPS free energy W (2.93) that is also

real. Our gravitational considerations presented results in terms of auxiliary variables (a, b)

that are related to black hole charges and an additional physical potential φ′ = Φ′−Ω′
a−Ω′

b

introduced in (2.89). In these variables, the BPS free energy W defined in (2.78) becomes

(2.93):

W

N2
=

π(a+ b)2 (1 − 2a− 2b− a2 − 5ab− b2 − a2b− ab2)

2(1 − a)(1 − b) (1 + 3a+ 3b+ a2 + 3ab+ b2)
√
a+ b+ ab

− (a+ b)2(3 + a+ b− ab)

4(1 − a)(1 − b) (1 + 3a+ 3b+ a2 + 3ab+ b2)
φ′ ,

(2.119)

and the BPS angular velocities defined in (2.79) are:

Ω′
a = − 1 − a

2(1 + 3a+ 3b+ a2 + 3ab+ b2)

[
2π(a+ 2b+ 2ab+ b2)√

a+ b+ ab
+ (1 + a)φ′

]
, (2.120)

Ω′
b = − 1 − b

2(1 + 3a+ 3b+ a2 + 3ab+ b2)

[
2π(2a+ b+ 2ab+ a2)√

a+ b+ ab
+ (1 + b)φ′

]
. (2.121)
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The BPS electric potential Φ′ defined in (2.79) is not an independent variable because it is

given through Φ′ = Ω′
a + Ω′

b + φ′.

We expect that the spacetime free energy W (2.93) must be related to the HHZ free energy

H (2.118). Similarly, the spacetime angular velocities Ω′
a,b (2.90-2.91) should be related to

the HHZ variables ωa,b (2.116-2.117), since they are both conjugate to angular momenta

Ja,b. There are indeed striking similarities between the expressions but there are also key

differences. As we have stressed already, the HHZ variables are complex while black hole

thermodynamics is manifestly real. Moreover, the thermodynamic formulae depend on one

more variable φ′5.

There are several options that address these differences, at least formally. The most

conservative is to assign φ′ a specific value that is imaginary. Indeed, for φ′ = 2πi we have:

H(a, b) = −W (a, b, φ′ = 2πi) , (2.122)

for the free energy and

ωi(a, b) = Ω′
i(a, b, φ

′ = 2πi) , 3∆(a, b) = Φ′(a, b, φ′ = 2πi) , (2.123)

for the potentials. Moreover, the definition of φ′ reduces precisely to the HHZ constraint

(2.105) when φ′ = 2πi.

This procedure is well motivated. The general BPS partition function reduces to the

superconformal index precisely for φ′ = 2πi because φ′ is integral (half-integral) for bosons

(fermions), and so this value of the potential is equivalent to inserting (−)F . Therefore, for

this value of φ′, comparisons between weak and strong coupling in the CFT is justified, with

the latter dual to the semiclassical gravity description. According to this line of reasoning,

black hole thermodynamics for any real value of φ′ corresponds to strongly coupled field

theory that is unlikely to be accounted for by computations in weakly coupled CFT.

A distinct procedure, also common in the literature [71, 72, 66, 63, 17, 73], is to identify

only the real parts of the HHZ free energy and potentials as physical, and compare them with

black hole thermodynamics only for the special value φ′ = 0. Indeed, for the free energy, we

find the identity:

ReH(a, b) = −W (a, b, φ′ = 0) =
N2

2

−π(a+ b)2(1 − 2a− 2b− a2 − 5ab− b2 − a2b− ab2)

(1 − a)(1 − b)
√
a+ b+ ab(a2 + b2 + 3(a+ b+ ab) + 1)

.

(2.124)

Sometimes authors even refer to the quantity Re H(a, b) (expressed in terms of the HHZ

5We also note that this additional variable is related to the u in [65] through φ′ = −2πu.
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variables ∆ and ωa,b) as the free energy F , rather than the full complex expression [66, 63,

17, 73]. The analogous comparison between the real part of the complex chemical potentials

is also successful:

Re ωa =
−π(1 − a)(a+ 2b+ b2 + 2ab)

(a2 + b2 + 3(a+ b+ ab) + 1)
√
a+ b+ ab

= Ω′
a(a, b, φ

′ = 0) ,

Re ωb =
−π(1 − b)(2a+ b+ a2 + 2ab)

(a2 + b2 + 3(a+ b+ ab) + 1)
√
a+ b+ ab

= Ω′
b(a, b, φ

′ = 0) .

(2.125)

The focus on the real part of the potential is heuristic, but it is striking that it “works”, in that

it yields identities between somewhat elaborate functions. Within the rigorous framework

of the superconformal index, these agreements are coincidental.

The feature that allows both procedures to work is that the free energy is linear in φ′.

The analogous feature in the AdS3/CFT2 correspondence has an appealing physical inter-

pretation: the BPS black hole cannot be identified with a specific BPS state, it is an average

over all chiral primaries [74]. It would be interesting to develop an analogous interpretation

in the AdS5/CFT4 correspondence.

2.2.5.3 HHZ free Energy and Black Hole Thermodynamics: the Phase Diagram

Choi et al. [63] showed that a phase diagram determined from the HHZ free energy (2.104)

shares important aspects of the AdS-Schwarzschild black thermodynamics, including the

Hawking-Page phase transition and its characteristic “cusp” [45, 33, 75, 76]. This is in-

teresting, because it suggests that the confinement/deconfinement transition in QCD-like

theories [35, 36, 38, 37, 16] can be analyzed while preserving supersymmetry, possibly with

a great deal of precision. However, it is not obvious that results derived from the HHZ free

energy agree with traditional thermodynamics, derived from black hole geometry. In this

subsection we verify that they do in fact agree.

The extremization conditions on the entropy function (2.107,2.108) give:

J +Q = −2N2

27

(ω + πi)2(ω − 2πi)

ω3
, (2.126)

after taking ωa = ωb and eliminating Λ. Choi et al. [63] follow the “heuristic” procedure

yielding (2.124-2.125) so they demand that J,Q are positive and real. This requirement

relates the real and imaginary parts of ω = ωR + iωI as:

ω2
R =

3ω2
I (π + ωI)

π − 3ωI
. (2.127)
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Figure 2.10: The free energy F vs. the BPS temperature τ . This phase diagram was derived
from the HHZ potential using the “heuristic” method.

The heuristic procedure interprets ωR = Re ω as the physical potential Ω′ through (2.125)

and the condition that Ω′ < 0 determines phases so:

τ = −ω−1
R = −ω−1

I

√
π − 3ωI

3(π + ωI)
, (2.128)

and constrains the imaginary part so −π < ωI < 0. Further, the heuristic procedure posits

that it is the real part of the HHZ energy (2.104) that is physical. Since ∆ is related to

ω = ωR + iωI through the constraint (2.105) we then find

F = −N
2

2
Re

∆3

ω2
= −N

2

2
Re

(
(2πi+ 2ω)3

27ω2

)
(2.129)

= −N
2

18

π3 − 9πω2
I − 8ω3

I

ω2
I

√
π + ωI

3(π − 3ωI)
. (2.130)

The variable ωI is related to the BPS temperature τ through (2.128) so this equation gives

the free energy F as function of the BPS temperature τ which we plot in Figure 2.10.

From visual inspection it seems clear that Figure 2.10 is precisely the same as its analogue

in Figure 2.9 that applies to black holes with parameters a = b and φ′ = 0. However, they

were arrived at very differently: the former by extremizing the HHZ potential (2.104) (and

imposing various reality conditions), the latter from the standard thermodynamic interpre-

tation of BPS black hole geometry.

The analytical comparison is also quite nontrivial. The BPS free energy W derived from

gravity is a function of the BPS temperature τ , with both W and τ given in terms of the

auxiliary parameter a in (2.95,2.96), and reproduced here for convenience:

W =
N2

2

4πa2(1 − 5a− 2a2)

(1 − a)2(1 + 5a)
√
a(a+ 2)

, (2.131)

τ = −ω−1
R = − 3πa(1 − a)

(1 + 5a)
√
a(a+ 2)

. (2.132)
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It must be compared with the real part of the HHZ free energy F (2.129) that is a function

of ωI , the imaginary part of the complexified rotational velocity ω = ωR + iωI , which serves

as an auxiliary parameter that is related to τ = −ω−1
R through (2.128).

As suspected, there is in fact an identification of auxiliary parameters that transforms all

the analytical formulae into one another:

ωI = −π 1 − a

1 + 5a
. (2.133)

We stress that, given the nonlinear nature of the formulae involved, this agreement was far

from preordained. Its success is a sensitive test of the HHZ potential (2.104).

2.3 Thermodynamics of BPS Black Holes: Detailed

Study

In this section we study the phase diagram of general BPS black holes. The benchmark BPS

black hole introduced in subsection 2.2.4 has equal angular velocities Ω′
a = Ω′

b and electric

potential Φ′ tuned so φ′ = 0. We now explore generic values of the three independent

potentials and explain their significance.

2.3.1 Primed Potentials and Their Conjugate Charges

The general BPS black holes we consider in this section are parametrized by the three primed

potentials Ω′
a, Ω′

b, and Φ′. The primes remind us that their definitions (2.79) relate them

to the corresponding non-BPS potentials Ωa,b and Φ via a thermal derivative. The primed

potentials are the variables that the BPS free energy W

W = −S − Ω′
aJa − Ω′

bJb − Φ′Q , (2.134)

defined in (2.52) depends on. In particular, its derivatives read off from the first law of BPS

black hole thermodynamics

dW = −JadΩ′
a − JbdΩ′

b −QdΦ′ , (2.135)

yield the black hole charges. Alternative ensembles that are functions of some or all of the

charges, rather than their conjugate potentials, can be obtained as usual, by appropriate

Legendre transforms.
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As we discussed in subsection 2.2.3.3, the interpretation of the phase diagram is simplified

by introducing a different basis for the potentials. The BPS temperature τ (2.94) is an

analogue of the physical temperature. The modified potential φ′ (2.89) is a proxy for the

electric field that is defined so the benchmark case, studied in the literature and reviewed in

subsection 2.2.4, corresponds to φ′ = 0. To complete a well-defined transformation from the

three potentials Ω′
a,b,Φ

′ we introduce a third potential:

µ = Ω′
a − Ω′

b , (2.136)

that is sensitive to departures from two equal angular momenta. The combinations of charges

that are conjugate to the potentials (τ, φ′, µ) follow from the first law of BPS black hole

thermodynamics in the form

dW = − 1

τ 2
(Ja + Jb + 2Q)dτ −Qdφ′ − 1

2
(Ja − Jb)dµ . (2.137)

For completeness, we also record the inverse transform from the variables we employ to

discuss the phase diagram to the original physical BPS potentials:

Φ′ = −2

τ
+ φ′ , (2.138)

Ω′
a = −1

τ
+
µ

2
, (2.139)

Ω′
b = −1

τ
− µ

2
, (2.140)

that are conjugate the physical charges Q, Ja, Jb.

The changes of variables above are routine, at the face of it: BPS black holes are character-

ized by three charges {Q, Ja, Jb} which, in the grand canonical ensemble, correspond to three

BPS potentials {Φ′,Ω′
a,Ω

′
b}. When presenting explicit phase diagrams we further change the

basis among the potentials to {τ, φ′, µ}, in order to clarify physical interpretations and con-

nections to the literature. However, straightforward as these transformations appear, they

do not incorporate the fact that all BPS black holes satisfy the constraint between charges

(2.71). Mathematically, this means the Legendre transform, from the microcanonical to the

canonical ensemble, is singular.

Our physical interpretation of this peculiar feature, discussed at length in the introduction,

is that all classical BPS black holes correspond to thermal equilibrium along the direction in

parameter space that corresponds to the BPS potential φ′. The formula for the mass excess

M −M∗ (2.76) offers a perspective. BPS black holes M = M∗ must have zero temperature

T = 0 as well as the potential φ = 0 but the BPS condition does not specify the “slope”
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φ′ = φ/T when the approach is realized as a physical limit where φ → 0 and T → 0

simultaneously. This ratio is physical: any supersymmetry implies M −M∗ = 0 but, once a

given supercharge has been committed to, others that differ by a phase φ′ are inconsistent

with the “preferred” supersymmetry. 6

The equilibrium condition along the φ′ direction was understood in AdS3, where it cor-

responds to black holes necessarily taking on the R-charge that is the average of all chiral

primaries, in contrast to the index that is independent of the charges of these states [78, 74].

It is important to elucidate the analogous mechanism in AdS5 so, in the following subsec-

tions, we treat φ′ as an independent thermodynamic variable. In particular, we do not take

φ′ = 0 a priori because, even if some argument were to establish φ′ = 0 as the equilibrium

value, we would still need to show that the constraint among charges emerges as a derivative

with respect to this variable.

2.3.2 The Physical Range of φ′ and µ

The BPS free energy W was defined in subsection 2.2.1 as a function of the BPS potentials

Φ′,Ω′
a,b but, as have discussed above (and in subsection 2.2.3.3), the variables (τ, µ, φ′) are

preferable. Unfortunately, in practice the free energy and the various potentials are known

only in parametric forms, as functions of (a, b, φ′). For example, the BPS temperature τ was

presented in (2.94) and (2.120-2.121) similarly give

µ =
a− b

2(1 + 3a+ 3b+ a2 + 3ab+ b2)

[
2π(1 + 2a+ 2b+ ab)√

a+ b+ ab
+ (a+ b)φ′

]
. (2.141)

We need to determine the physical regime of the various parameters. The rotational

velocities are bounded by the speed of light Ωi ≤ 1 which, via the definition of primed

potentials (2.79), corresponds to Ω′
i < 0. This in turn implies that τ introduced in (2.94) is

strictly positive τ > 0 so

−φ′ ≤ 6π(a+ b)(1 − ab)

(2 − a2 − b2)
√
a+ b+ ab

. (2.142)

Additionally, we require 0 ≤ a, b < 1, in order that the underlying black hole solutions exist

as regular geometries.

The positive temperature condition in the form (2.142) is satisfied for all φ′ ≥ 0 but it is

6Slowly varying fluctuations of φ′ can be identified with the scalar that carries R-symmetry charge in the
N = 2 Schwarzian theory describing excitations in the near geometry of the BPS black hole[77, 56, 57, 62]
(and references therein).
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Figure 2.11: The chemical potential µ as a function of the black hole parameters a and b,
for φ′ = 0. The maximum is achieved at (a, b) = (1, 0). We plot only a ≥ b, the mirror for
a ≤ b (the grey area) follows from antisymmetry of µ(a, b) under a↔ b.

nontrivial for φ′ < 0. For a = b, it reduces to

−φ′ ≤
a=b

6π

√
a

2 + a
< 2

√
3π .

The middle formula is a monotonically increasing function of a and the second inequality

would be saturated for a = 1. Therefore, for equal angular momenta a = b, the BPS potential

φ′ is bounded from below by φ′
− = −2

√
3π < φ′

For given a + b, the function on the right hand side of (2.142) increases monotonically

as function of (a − b)2. Therefore, the lower bound on φ′ is relaxed when the two angular

momenta are unequal. Its global minimum φ′
min = −6π corresponds to (a, b) = (1, 0) or

(a, b) = (0, 1).

We want to similarly analyze the physical range of µ (2.141), the BPS potential that

measures the departure from angular momenta of a and b type being equal. Because of the

antisymmetry between a and b we have µ ≡ 0 along the line a = b and it is sufficient to

study a ≥ b. When φ′ = 0 we find that µ increases monotonically with a − b when a + b

is fixed. The maximal value µmax = 3π
5
≈ 1.88 is reached when (a, b) = (1, 0). We plot the

BPS potential µ in Figure 2.11.

2.3.3 BPS Black Holes with General φ′ and Equal Angular Mo-

menta

In this subsection we study the significance of the potential φ′. We take equal angular

momenta, i.e. a = b (and so Ω′
a = Ω′

b = Ω′) which corresponds to µ ≡ 0.
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The BPS free energy (2.93) reduces to

W

N2
=

2a

(1 − a)2(1 + 5a)

π(1 − 5a− 2a2)√
1 + 2

a

− a(3 − a)φ′

2

 , (2.143)

and the BPS “temperature” τ (2.94) becomes

τ ≡ −Ω′−1 =
1 + 5a

1 − a

1
3π√
1+ 2

a

+ φ′

2

. (2.144)

We will discuss the dependence of W on τ for each sign of φ′ in turn.

2.3.3.1 φ′ ≤ 0

We first consider the BPS temperature (2.144). For large black holes τ diverges at a = 1

and, as a get smaller, it decreases to a minimal temperature τcusp that is attained at acusp.

This is qualitatively similar to the benchmark case φ′ = 0 that was discussed in subsection

2.2.4 (with τ(a) plotted in figure 2.8).

The temperature increases again when a decreases below acusp, as expected for small black

holes. However, when φ′ < 0, the denominator in the second factor of τ given in (2.144)

reaches zero at some positive value

amin =
2φ′2

36π2 − φ′2 , (2.145)

and then the temperature diverges. Thus, when φ′ ≤ 0, the parameter a is limited to the

range 1 > a > amin.

The parameter value amin increases monotonically when the absolute value |φ′| increases.

The physical range 1 > a > amin shrinks to zero if it reaches amin = 1 and then no underlying

black hole geometry would exist. Therefore, the corresponding value of the potential φ′

φ′
− = −2

√
3π , (2.146)

constitutes a lower limit φ′ ≥ φ′
−.

The finite range of a changes the BPS free energy W (2.143) qualitatively: at the high

temperature end of the small black hole branch (as a→ a+min), it does not approach 0 but a

finite positive value

Wasym/N
2 =

4φ′3

9(12π2 − φ′2)
. (2.147)
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Figure 2.12: The BPS free energy W as function of the BPS temperature τ . The two
angular momenta are equal (µ = 0) and φ′ = 0,−π,−3π

2
,−2π, from left to right. There

are two branches in the phase diagram that meet in a cusp. Small black holes (the upper
branch) asymptote to a positive BPS free energy Wasym (2.147) at large temperature when
φ′ < 0.

Also, for the ”big” black hole branch, we have an asymptotic relation

W/N2 ∼ −(φ′ + 2
√

3π)3

432
τ 2. (2.148)

When φ′ = 0, it is in agreement with our benchmark case in subsection 2.2.4.

The phase diagram for various values of φ′ ≤ 0 is presented in Figure 2.12.

The minimal temperature for a given φ′ is attained at acusp determined by ∂aτ = 0 which

leads to:

φ′ =
π(1 − 8acusp − 11a2cusp)

(2 + acusp)
√
acusp(2 + acusp)

. (2.149)

This equation is equivalent to a sextic in a that cannot be solved analytically in general. For

φ′ = 0, the condition (2.149) reduces to a quadratic equation with the solution acusp = 3
√
3−4
11

,

in agreement with the result in subsection 2.2.4. We also note that acusp = 1 is a solution at

the lower bound φ′ = φ′
− given in (2.146). The BPS temperature τ and BPS free energy W

both diverge as a → 1− so this shows that, as the lower bound is approached φ′ → φ′
−, the

cusp moves to the far upper right corner in Figure 2.12 and no physical black hole remain

in the strict limit.

Generally, the right hand side of (2.149) is a monotonic function so, as |φ′| increases from

zero to its maximum |φ′
−|, acusp increases monotonically through [3

√
3−4
11

, 1[. The BPS free

energy (2.143) at the cusp moves as

dWcusp

da
= (∂aW )φ′ + (∂φ′W )a ∂aφ

′ =
πa (3 + 14a− 5a2)√

a(2 + a)(2 + a)2(1 − a)2

∣∣∣∣∣
acusp

> 0 , (2.150)

with ∂aφ
′ evaluated from (2.149), so it increases monotonically as well. The BPS temperature

(2.144) at the cusp increases monotonically entirely through its dependence on φ′ because it

is a minimum ∂aτ = 0. Taken together, these arguments establish analytically that the cusp
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moves monotonically up and to the right when |φ′| increases. These trends are also visible

in Figure 2.12.

We can analyze the Hawking-Page temperature similarly. The condition that the free

energy W = 0 yields the algebraic relation for aHP:

φ′ =
2π(1 − 5aHP − 2a2HP)

(3 − aHP)
√
aHP(2 + aHP)

. (2.151)

The derivative of this expression

∂aHP
φ′ = − 6π(1 + aHP)2(1 + 3aHP)

(3 − aHP)2(aHP(2 + aHP))3/2
, (2.152)

is negative in the entire range 0 ≤ a ≤ 1. Therefore, the parameter aHP at the Hawking-Page

transition depends monotonically on φ′. The corresponding temperature (2.144) moves as

dτHP

da
= (∂aτ)φ′ + (∂φ′τ)a ∂aφ

′ =
3(1 + 3a)

π(1 − a)3
√
a(2 + a)

∣∣∣∣∣
aHP

> 0 , (2.153)

so the Hawking-Page temperature τHP is a monotonically increasing function of |φ′|. This

dependence is also apparent in Figure 2.12.

It is instructive to compare the phase diagram for φ′ in the range (−2π
√

3, 0) with the

benchmark case φ′ = 0 discussed in subsection 2.2.4:

• At a given BPS temperature τ the potential |φ′| increases the BPS free energy W on

both branches.

• The characteristic temperatures τHP and τcusp both increase with |φ′|.

Both effects suggest an instability. Conversely, increased φ′ (decreased |φ′|) stabilises the

BPS black hole. This is reminiscent of how an electric potential modifies the AdS-Reissner-

Nordström black hole, discussed in subsection 2.1.2.2.

2.3.3.2 φ′ ≥ 0

When φ′ > 0, the denominator in the second factor of τ (2.144) is strictly positive for all

a ∈ [0, 1). Therefore, unlike when the potential φ′ < 0, the entire range a ∈ (0, 1) of the

parameter a is physical. At the lower end of the range a = 0 the free energy W = 0 and the

temperature is

τmax =
2

φ′ . (2.154)
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Figure 2.13: The free energy W
N2 as function of BPS temperature τ for various φ′ ≥ 0. The

values of φ′ = 0, 1, 2, 4 increase from right to left. The small black holes (the upper branch)
have W = 0 at their maximal temperature τmax (2.154) which is τmax = 1

2
, 1 for φ′ = 4, 2.

The large black hole branch is qualitatively similar to its analogue for φ′ < 0 in Figure 2.12.

This is the maximal temperature on the small black hole branch, a novel feature of the φ′ > 0

regime. In the strict limit a = 0 the geometry underlying the thermodynamic formulae

reverts to pure AdS5, it is not a black hole, so τmax is a bound, it cannot be reached. The

bound on the temperature (2.154) is lowered when the potential φ′ increases. The range of

allowed temperatures on the small black hole branch shrinks and, in the limit φ′ → ∞, it

disappears altogether. In this limit the large black hole branch starts at (W, τ) = (0, 0) and

there is no small black hole branch. This limit is similar to the special case Φ = Φ∗ = 3 of

ordinary (non-BPS) AdS-Reissner-Nordström black holes that was discussed in subsection

2.1.2.3.

The large black hole branch is not modified qualitatively from the benchmark case φ′ = 0

discussed in subsection 2.2.4, or more generally the case φ′ ≤ 0 developed earlier in this

subsection. The phase diagram for various values of φ′ ≥ 0 is plotted in Figure 2.13.

The figure indicates that, as we increase φ′ starting from zero, the coordinates of the cusp

τcusp, Wcusp both decrease, as does the Hawking-Page temperature τHP where the large black

hole branch crosses W = 0. To verify these features analytically, we note that the parameter

acusp, corresponding to the minimal temperature, is given by (2.149) for either sign of φ′. It

takes the value acusp = 3
√
3−4
11

when φ′ = 0 and decreases monotonically when φ′ increases

to positive values. The result follows because, for and φ′, the temperature τ (2.144) has

positive derivative ∂φ′τ > 0 and the motion (2.150) of the free energy W . The estimate

(2.153) similarly establishes that τHP decreases as φ′ become larger.

In summary, the evolution of the cusp, the Hawking-Page temperature, and the asymp-

totic behavior of the large black hole branch at high temperature, are all smooth for φ′ in the

entire range (φ′
−,∞). For these features the value φ′ = 0 plays no special role. In contrast,

the asymptotic behavior on the small black hole branch depends sensitively on the sign of

φ′: for φ′ ≤ 0, the temperature τ → ∞ is reached with an asymptotic value Wasym (2.147) of

the free energy that is strictly positive except that it vanishes when φ′ = 0. For φ′ ≥ 0, the
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temperature is bounded by τmax (2.154) that is finite, except that it diverges when φ′ = 0.

2.3.4 BPS Black Holes with Unequal Angular Momenta

In this paper we have presented nearly all formulae for general parameters a, b but most

examples focus on the “equal angular momenta” case a = b. This is also the case that has

been most studied in the literature, by far. In this subsection we elucidate the significance

of “unequal angular momenta” a ̸= b by taking the chemical potential µ ̸= 0.

We will keep φ′ = 0 so the Gibbs energy W (2.93) simplifies to

W

N2
=

π(a+ b)2 [1 − 2a− 2b− a2 − 5ab− b2 − a2b− ab2]

2(1 − a)(1 − b) (1 + 3a+ 3b+ a2 + 3ab+ b2)
√
a+ b+ ab

, (2.155)

and the BPS potentials (2.94) and (2.141) read

τ =
2 (1 + 3a+ 3b+ a2 + 3ab+ b2)

3π(a+ b)(1 − ab)

√
a+ b+ ab , (2.156)

µ = π
a− b

1 + 3a+ 3b+ a2 + 3ab+ b2
1 + 2a+ 2b+ ab√

a+ b+ ab
. (2.157)

Because of the antisymmetry of µ under the exchange a ↔ b, it is sufficient to analyze

µ ≥ 0. The phase diagram is shown in Figure 2.14. From the plot, for µ that is positive

and small, the phase diagram evolves perturbatively from the benchmark case φ′ = µ = 0

discussed in subsection 2.2.4 with some changes that appear smoothly:

• A maximal temperature of the small black hole branch develops that decreases when

µ increases. The upper branch shrinks.

• For any given τ , on either branch, the BPS potential µ > 0 lowers the free energy.

This is expected because, when a > b (2.68-2.69) give Ja > Jb, so the first law of BPS

thermodynamics (2.137) yields: ∂µW = −1
2
(Ja − Jb) < 0.

• The Hawking-Page transition temperature τHP also decreases as µ get larger, because

both black hole branches are lowered.

• The maximal free energy Wcusp increases with µ, but the minimal BPS temperature

τcusp decreases. Thus the cusp travels ”towards North-West” as µ increases.

Our interpretation of these features is that increasing µ is destabilising: it takes a lower

temperature to achieve W > 0 and so render the black holes unstable, and positive µ allows a

higher maximal free energy Wcusp, indicating stronger instability. This is a BPS analogue of
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Figure 2.14: The BPS free energyW vs. the BPS temperature τ for select values of the poten-
tial µ ≥ 0 that parametrizes the asymmetry between angular momenta. µ = 0, 0.8, 1.26, 1.6
from right to left. For small µ, the phase diagram exhibits the familiar lower (large) and
upper (small) black hole branches that meet in a cusp. For the small black hole branch,
there is a maximal BPS temperature that decreases as function of µ and reaches the cusp
at some µ = µcrit. The maximal value of W also increases with µ ≤ µcrit but then decreases
for µ > µcrit.

our finding in subsection 2.1.2.1 that, for non-BPS black holes, angular velocities destabilise

the AdS Reissner-Nordström black holes.

The preceding comments only apply when the chemical potential µ is sufficiently small.

From Figure 2.14 we see that when µ exceeds a certain critical value µcrit ≈ 1.26 the small

black hole branch disappears altogether, for such potentials only the “large” black hole

solution exists. The evolution when µ is larger than this critical value has the following

features:

• For any given τ , increased µ lowers the BPS free energy.

• As µ increases, the minimal temperature τcusp increases as well but the maximal free

energy Wcusp decreases.

• The motion of the ”cusp” shows that the values τmin and Wmax evaluated at the cusp

with µ = µcrit are the global minimum for the temperature and maximum for the BPS

free energy, respectively.

• The Hawking-Page transition temperature τHP (where W = 0) generally decreases as

the entire large black hole branch is lowered. However, when the chemical potential

is sufficiently large, above µ ≈ 1.5, the entire large black hole branch is below W = 0

and the transition disappears altogether.
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• As discussed in subsection 2.3.2, the parameter µ satisfies an absolute upper bound

µmax = 3π
5
≈ 1.885 when φ′ = 0. As µ→ µmax, (2.141) shows that a→ 1 and b = 0 so

the BPS free energy (2.93) W → −∞. In the strict limit these is no underlying black

hole solution.

Here, we observe another effect of perturbing µ when µ is sufficiently large. Our interpre-

tation is that for large µ, it is stabilising: the entire black hole would lie below W = 0 and

thus render the black holes stable, and increasing µ lowers the maximal free energy Wcusp

indicating the stability. Since our discussion for non-BPS black holes is concentrated in the

equal angular momenta case, we do not have an analogous case of it.

2.3.5 Extreme Rotational Asymmetry: Ω′
b = 0

As an extreme example of asymmetry between the two angular momenta, we consider the

special case Ω′
b ≡ 0. In this case (2.91) gives

φ′ = −2π (2a+ b+ a2 + 2ab)

(1 + b)
√
a+ b+ ab

. (2.158)

It follows that φ′ must be negative. Formally, we can also achieve Ω′
b = 0 by taking b = 1,

but then the free energy W (2.93) diverges, so we dismiss this possibility as an unphysical

limit.

When Ω′
b = 0 the BPS temperature (2.94) and the BPS free energy (2.93) simplify

τ = − 2

Ω′
a

= − 2

µ
=

2(1 + b)
√
a+ b+ ab

π(1 − a)(b− a)
,

W =
π(1 + a)(a+ b)2

2(1 − a)(1 + b)
√
a+ b+ ab

.

(2.159)

We see that W is positive definite. The phase diagram of τ and W for various fixed φ′ is

presented in Figure 2.15. There are several features:

• For any given −2
√

3π < φ′ < 0, the BPS free energy W decreases monotonically with

τ .

• The lower bound τmin decreases in the range −2
√

3π < φ′ < −π and increases when

−π < φ′ < 0. It reaches its global minimum τmin = 4
π

at φ′ = −π.

• W displays vertical asymptotes at τmin as long as b can approach each 1 (allowed for

−2π
√

3 < φ′ < −π), whereas for φ′ > −π, W reaches an upper bound but with no

asymptote (such as the φ′ = −3
4
π curve in Figure 2.15).

58



Figure 2.15: W vs. τ when Ω′
b = 0 with φ′ = −3

2
π, −π and −3

4
π (upper to lower respectively).

There are only ”small” black holes: they all have W > 0 and negative specific heat. For any
given φ′, there is a minimal BPS temperature which corresponds to the maximal BPS free
energy.

• τ diverges when a approaches b from below, leading to an asymptotic value for W at

large τ : 2φ′2

9(φ′2−12π2)
.

In summary, the large black hole branch disappears entirely when Ω′
b = 0, there are only

small black holes. This is reminiscent of the general (not BPS) black holes with Ω = 1,

discussed in subsection 2.1.2.6. One aspect of the special case Ω′
b = 0 is that it corresponds

to “maximal asymmetry”, there is a BPS potential for rotation along the “a” direction,

but none along “b”. However, a more illuminating perspective is that the definition of the

“primed” potentials (2.79) shows that when the BPS potential Ω′
b = 0, the physical rotational

velocity Ωb = 1 reaches the speed of light. From this point of view the close analogy with

the Ω = 1 non-BPS black holes is expected.

2.4 Discussion

In this chapter, we studied the thermodynamics of AdS black holes via analysing their phase

diagrams. Compared with previous studies [45, 46], this work has a particular emphasis on

the role of rotation. We pointed out that rotation tends to destabilise a black hole in the

sense that rotation increases the maximal free energy.

We also developed BPS thermodynamics systematically and, in many explicit examples,

we pointed out that the phase diagram of the BPS black hole exhibits the similar ”cusp”

structure as the well-known AdS Schwarzschild black hole phase diagram. We emphasised
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the role of an important fugacity, φ′, that preserves BPS saturation. This fugacity φ′ has

been set to zero in the BPS limit in previous discussion [63, 18], and paid little attention.

We illustrated how φ′ brings qualitative change of the phase diagram. Besides, we studied

the case where the BPS black holes carry two unequal angular momenta, and discovered a

qualitative change of the phase diagram.

However, there are many open questions. For example, we introduced a notion of temper-

ature for BPS black holes in (2.94) as a generalisation to the work by Choi et al. in [26]. It is

for sure that one should be able to obtain a deeper understanding on this BPS temperature.

Another important question is the physical meaning of W = 0. Is this phase transition true

or, instead, an illusion. We look forward to pursue these and related questions in future

research work.
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CHAPTER 3

The Attractor Flow for AdS5 Black Holes in

N = 2 Gauged Supergravity

3.1 The Effective 2D Lagrangian

In this section we introduce the action of N = 2 5D supergravity with coupling to nV vector

multiplets and gauging by Fayet–Iliopoulos couplings, as well as its dimensional reduction to

a 2D theory. This also serves to define conventions and notation. For additional details on

real special geometry and supersymmetry we refer to Appendices A.2 and A.3, respectively.

3.1.1 The 5D theory

We study five dimensional N = 2 gauged supergravity with bosonic action

S =
1

16πG5

∫
M

L5 +
1

8πG5

∫
∂M

d4x
√
|h|TrK , (3.1)

where the 5D Lagrangian density is given by

L5 = (−R5 − 2V ) ⋆5 1 −GIJF
I
5 ∧ ⋆5F J

5 +GIJdX
I ∧ ⋆5dXJ − 1

6
cIJKF

I
5 ∧ F J

5 ∧ AK5 . (3.2)

We have included the subscript 5 to emphasize that we are in five dimensions and the five

dimensional Hodge dual is given by ⋆5. The Gibbons-Hawking-York boundary term must

be included to have a well-defined variation of the action (3.1) and is given by the trace

of the second fundamental form K which is integrated over the induced metric h on the

boundary. Other conventions and notations regarding differential forms and the Hodge dual

are in Appendix A.1.

The field content includes the field strengths F I
5 = dAI5 where I = 1, . . . , n and the scalars
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XI , correspond to n− 1 physical scalars, constrained via the following relation

1

6
cIJKX

IXJXK = 1 . (3.3)

The scalar potential is given by

V = −cIJKξIξJXK = −ξIξJ
(
XIXJ − 1

2
GIJ

)
, (3.4)

where ξI are the real Fayet–Iliopoulos parameters. The scalars with lowered index

XI = 2GIJX
J , (3.5)

obey the analogous constraint

1

6
cIJKXIXJXK = 1 , (3.6)

when closure relation (A.11) is satisfied. For further details on definitions, conventions and

identities, we refer the reader to Appendix A.2.

Alternatively, the scalar potential can be expressed as

V = −
(

2

3
W 2 − 1

2
GIJDIWDJW

)
, (3.7)

where the superpotential W is

W = ξIX
I , (3.8)

and the Kähler covariant derivative DI takes the constraint (3.6) into acount. Using this

form of the potential V , the condition for a supersymmetric minimum becomes

DIW = ξI −
1

3
XI(ξ ·X) =

min
0 . (3.9)

According to this equation, the asymptotic values of the scalars XI,∞ must be parallel to

ξI , in the sense of real special geometry vectors, and the constraint (3.6) determines the

proportionality constant between the two:

XI,∞ =

(
1

6
cJKLξJξKξL

)−1/3

ξI . (3.10)
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The value of the potential V at the minimum must be related to the AdS5 length scale ℓ

and the cosmological constant in the usual manner

V∞ = −cIJKξIξJXK,∞ ≡ −6ℓ−2 . (3.11)

This gives the constraint

1

6
cIJKξIξJξK = ℓ−3 , (3.12)

on the FI-parameters ξI and the simple relation for the asymptotic values of the scalars

XI,∞ = ℓξI . (3.13)

Thus the nV + 1 independent FI-parameters ξI determine the asymptotic values XI
∞ of the

nV scalars, as well as the AdS5 scale ℓ.

For contrast, recall that in ungauged supergravity, the scalar fields are moduli as they

experience no potential. Then their asymptotic values XI,∞ far from the black hole are

set arbitrarily by boundary conditions, which is related to the fact that the spacetime is

asymptotically flat. The fact that the value of the scalars XI at the horizon is independent

of the asymptotic values XI,∞ is the attractor mechanism for BPS black holes in ungauged

supergravity.

As we have seen, the present context is very different in that the asymptotic values of

the scalars are set by the theory through the FI-parameters ξI , rather than by boundary

conditions. This is a generic feature of gauged supergravity, theories with asymptotically AdS

vacuum. It precludes an attractor mechanism that is analogous to the one in asymptotically

flat space. We will discuss this point in more depth in section 3.3 when we study the linear

flow equations derived from supersymmetry.

The equations of motion EΦ, where Φ is any field in the theory corresponding to the

Lagrangian density (3.2), are the Einstein equation

Eg = RAB − 1
2
gABR +GIJ

(
F I
5,ACF

J,C
5,B − 1

4
gABF

I
5,CDF

J,CD
5

)
−GIJ

(
∇AX

I∇BX
J − 1

2
gAB∇CX

I∇CXJ
)
− gABV = 0 ,

(3.14)
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and the matter equations for the Maxwell field AI5 and the constrained scalars XI

EA = d
(
GIJ ⋆ F

J
5

)
+ 1

4
cIJKF

J
5 ∧ FK

5 = 0, (3.15)

EXI = −d ⋆ dXI + 1
3
XIX

Jd ⋆ dXJ + 2cJKLξKξL
(
2
3
XIXJ − cIJMX

M
)
⋆ 1 +

(
XJX

LcIKL

−1
2
cIJK − 2

3
XIXJXK + 1

6
XIcJKNX

N
)

(F J
5 ∧ ⋆FK

5 − dXJ ∧ ⋆dXK) = 0 .

(3.16)

3.1.2 The effective 2D theory

We do not study all solutions to the 5D theory (3.1), just stationary black holes. Then it

is sufficient to consider a reduction to 2D — and eventually to 1D. We impose the metric

ansatz1

ds25 = ds22 − e−U1dΩ2
2 − e−U2(σ3 + a0)2 , (3.17)

with ds22 a general 2D metric and the 1-form ansatz for the gauge potential

AI5 = aI + bI(σ3 + a0) . (3.18)

In our conventions, the left invariant 1-forms

σ1 = sinϕ dθ − cosϕ sin θ dψ ,

σ2 = cosϕ dθ + sinϕ sin θ dψ ,

σ3 = dϕ+ cos θ dψ ,

(3.19)

parametrize SU(2) with

0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 4π , 0 ≤ ψ ≤ 2π . (3.20)

The ansatz (3.17) suggests the vielbein

e0 = e0µdx
µ , e1 = e1µdx

µ , e2 = e−
1
2
U1σ1 ,

e3 = e−
1
2
U1σ2 , e4 = e−

1
2
U2(σ3 + a0) .

(3.21)

We use Greek indices to denote the curved coordinates t and R in 2D. For extremal near-

horizon geometries, the 2D coordinates describe the AdS2 throat of the solution. The di-

mensional reduction via (3.17) and (3.18) of the 5D Lagrangian (3.2) introduces the scalar

1In our conventions the metric has a mostly negative signature.
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fields U1, U2 and bI , along with the 1-forms a0, aI . All these fields depend only on the 2D

coordinates.

The effective 2D Lagrangian density that follows from (3.2) is given by

L2 =
π

G5

e−U1− 1
2
U2

{
(−R2 + 2eU1 − 1

2
e2U1−U2) ⋆ 1 − 1

2
dU1 ∧ ⋆d (U1 + 2U2)

−1
2
e−U2da0 ∧ ⋆da0 − 2V −GIJ

(
(daI + bIda0) ∧ ⋆(daJ + bJda0) + e2U1bIbJ ⋆ 1

+ eU2dbI ∧ ⋆dbJ − dXI ∧ ⋆dXJ
)

+ 1
3
eU1+

1
2
U2cIJK

(
3
2
bIbJdaK + bIbJbKda0

)}
+

π

G5

d
(

(e−U1− 1
2
U2 ⋆ d(2U1 + U2)) − 1

6
bIbJaK

)
.

(3.22)

We denote the Ricci scalar of the reduced 2D metric R2 and the Hodge dual is now in 2D.

The overall exponential factor e−U1− 1
2
U2 comes from the 5D metric on a deformed S3. The

first line in (3.22) is due to the reduction of the 5D Ricci scalar, which introduces additional

kinetic and potential terms associated to the scalars U1 and U2, as well as for the 1-form

a0 in the beginning of the second line. The terms preceded by GIJ are the reduction of the

Maxwell field which yield kinetic terms for the 1-forms a0, aI and the scalars bI , and the

reduction of the kinetic term of XI . The remainder of the third line of (3.22) is the Chern-

Simons term. Finally, in the last line, there is a total derivative that is inconsequential for

the equations of motion but is required in order that L2 (3.22) is the dimensional reduction of

the 5D Lagrangian (3.2). The latter does not include the Gibbons-Hawking-York boundary

term, the extrinsic curvature that appears separately in (3.1).

Boundary terms present an important subtlety that we will return to repeatedly in our

study. The Chern-Simons term in the 5D Lagrangian (3.2) is not manifestly gauge invari-

ant, but it transforms to a total derivative under a gauge variation. Gauge invariance could

be restored by introducing a total derivative in the action. Such a term does not change

the equations of motion but the resulting theory is not covariant in 5D, so there is a ten-

sion between important principles. The bulk part of the 2D Lagrangian (3.22) is not only

covariant, it is also manifestly gauge invariant: aI appears only as the field strength daI .

Manifest gauge invariance also applies to a0 which encodes 5D rotational invariance. These

are benefits of reducing to 2D.

From the dimensionally reduced Lagrangian density (3.22), we can derive the equations

of motion for the fields U1, U2, a
0, aI and bI . The solutions to these 2D equations of motion
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are solutions of the 5D theory. The field equations for the 2D scalar fields are given by

EU1 = d(e−U1− 1
2
U2 ⋆ (dU1 + dU2)) + e−U1− 1

2
U2{
(
R2 + 2V − 1

2
e2U1−U2

)
⋆ 1

+ 1
2
dU1 ∧ ⋆(dU1 + 2dU2) + 1

2
e−U2da0 ∧ ⋆da0 +GIJ

(
(bIda0 + daI) ∧ ⋆(bJda0 + daJ)

−e2U1bIbJ ⋆ 1 + eU2dbI ∧ ⋆dbJ − dXI ∧ ⋆dXJ
)
} = 0 ,

(3.23)

EU2 = d(e−U1− 1
2
U2 ⋆ dU1) + 1

2
e−U1− 1

2
U2{
(
R2 + 2V − 2eU1 + 3

2
e2U1−U2

)
⋆ 1

+ 1
2
dU1 ∧ ⋆(dU1 + 2dU2) + 3

2
e−U2da0 ∧ ⋆da0 +GIJ

(
(bIda0 + daI) ∧ ⋆(bJda0 + daJ)

+e2U1bIbJ ⋆ 1 − eU2dbI ∧ ⋆dbJ − dXI ∧ ⋆dXJ
)
} = 0 ,

(3.24)

EbI = 2d(e−U1+
1
2
U2GIJ ⋆ db

J) − 2e−U1− 1
2
U2GIJda

0 ∧ ⋆(bJda0 + daJ) − 2GIJe
U1− 1

2
U2bJ ⋆ 1

+ cIJKb
JdaK + cIJKb

JbKda0 = 0 ,

(3.25)

and the 1-forms satisfy

Ea0 = −d(e−U1− 3
2
U2 ⋆ da0) − 2d(GIJb

Ie−U1− 1
2
U2 ⋆ (bJda0 + daJ)) + 1

3
cIJKd(bIbJbK) = 0 ,

EaI = −2d
(
e−U1− 1

2
U2GIJ ⋆

(
bJda0 + daJ

))
+ 1

2
cIJKd

(
bJbK

)
= 0 .

(3.26)

3.1.3 An effective 1D theory

We conclude the section by reducing the 2D reduced Lagrangian (3.22) to a one-dimensional

radial effective theory where all of the functions that appear in the effective Lagrangian

(3.22) are set to be exclusively radial functions, with respect to the radial coordinate R. In

this additional reduction we pick a diagonal gauge for the 2d line element of (3.17):

ds22 = e2ρdt2 − e2σdR2 . (3.27)

The operators d and ⋆ acting on the fields in the Lagrangian (3.22) simplify with this ansatz.

For example, the 2D Ricci scalar becomes

R2 = 2e−ρ−σ∂R(e−σ∂Re
ρ) . (3.28)
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Second derivatives are awkward so it is advantageous to rewrite this term as

eρ+σ−U1− 1
2
U2R2 = 2∂R

(
eρ−σ−U1− 1

2
U2∂Rρ

)
+ eρ+σ−U1− 1

2
U2(e−2σ∂Rρ)∂R (2U1 + U2) . (3.29)

The first term is a total derivative, an additional boundary term. To examine the total

boundary contribution, we consider a constant radial slice at infinity. As we are now reducing

to 1D, the boundary terms must be evaluated at the bounds for the time coordinate. This is

trivial since there is no explicit time dependence. After dimensional reduction, the Gibbons-

Hawking-York term in (3.1) corresponds to the total derivative

LGHY =
2π

G5

∂R

(
eρ−σ−U1− 1

2
U2∂R(ρ− U1 − 1

2
U2)
)
. (3.30)

The total derivative term in (3.29), the Gibbons-Hawking-York term (3.30), and the bound-

ary terms in the last line of (3.22) after dimensional reduction to 1D, precisely cancel. This

leaves only the contribution arising from the Chern-Simons term

Lbdry = −1

6

π

G5

d
(
cIJKb

IbJaKt
)
. (3.31)

This remaining boundary term in (3.31) is crucial as it will affect the conserved charges

we seek to compute. We will comment on this in depth in the subsequent section 3.2. In

summary, the 1D Lagrangian density takes the form

L1 =
π

G5

eρ+σ−U1− 1
2
U2
[
−e−2σ(∂Rρ)∂R (2U1 + U2) − 1

2
e−2σ(∂RU1)(∂RU1 + 2∂RU2)

−GIJe
−2σ
(
∂RX

I∂RX
J − eU2∂Rb

I∂Rb
J
)

+ 1
2
e−U2−2ρ−2σ(∂Ra

0
t )

2

+GIJe
−2ρ−2σ(∂Ra

I
t + bI∂Ra

0
t )(∂Ra

J
t + bJ∂Ra

0
t ) − 2V + 2eU1 − 1

2
e2U1−U2

−GIJe
2U1bIbJ

]
+

π

G5

1

3
cIJK

[
−3

2
bIbJ∂Ra

K
t − bIbJbK∂Ra

0
t

]
.

(3.32)

Having established the effective Lagrangian in 2D (3.22) and 1D (3.32), we proceed in the

next subsection with construction of the Noether-Wald surface charges in our theory.

3.2 Noether-Wald surface charges

In this section, we review the Noether-Wald procedure for computing the conserved charge

due to a general symmetry [79, 80]. We specifically consider an isometry generated by a

Killing vector and a gauge symmetry in the presence of Chern-Simon terms. In each case,

we express the conserved charge as a flux integral that is the same for any surface surrounding
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the black hole.

3.2.1 The Noether-Wald surface charge: general formulae

We consider a theory in D dimensions described by a Lagrangian L that is presented as a

D-form. The Lagrangian depends on fields Φi that include both the metric gµν and matter

fields, as well as the derivatives of these fields.

A symmetry ζ is such that the variation of L with respect to ζ is a closed form (locally),

i.e. d acting on a D − 1 form Jζ :

L →
ζ

L + δL = L + dJζ . (3.33)

The variation of the Lagrangian due to any change in the fields is given by2

δL = δΦi
∂L
∂Φi

+ (∂µδΦi)
δL

δ∂µΦi

= δΦi

[
∂L
∂Φi

− ∂µ

(
δL

δ∂µΦi

)]
+ ∂µ

(
δΦi

δL
δ∂µΦi

)
.

(3.34)

The usual variational principle determines the equations of motion EΦ as the vanishing of the

expression in the square bracket. The remaining term, by definition, is the total derivative

of the presymplectic potential

Θµ ≡ δΦi
δL

δ∂µΦi

. (3.35)

In our informal notation, the left hand side of this equation is indistinguishable from a vector.

However, the Lagrangian is a D-form and the δ-type “derivative” removes an entire 1-form.

Therefore, the presymplectic potential Θ becomes a D − 1 form, with indices obtained by

contracting the volume form with the vector that is normal to the boundary. A more precise

version of (3.34) reads

δL = δΦi

[
∂L
∂Φi

− ∂µ

(
δL

δ∂µΦi

)]
+ dΘ[Φi, δΦi] . (3.36)

Comparing this formula for a general variation with its analogue (3.33) for a symmetry

2In practice, when we solve for the Einstein equations, we will consider a variation of the metric and will
not directly use (3.34).
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establishes dJζ = dΘ and so the D − 1 form

Jζ = Jζ − Θ[Φi, δΦi] (3.37)

is closed when the equations of motion EΦ are imposed. This identifies the familiar conserved

Noether current associated to the symmetry ζ. The corresponding Noether charge is

Qζ,Noether =

∫
Σ

Jζ , (3.38)

where Σ is a Cauchy surface on the background manifold. Conservation amounts to this

charge being the same on all Cauchy surfaces. Conceptually, the total charge is the same at

all times. That is the point of conservation in a truly dynamical setting, but it is not terribly

interesting in a stationary black hole spacetime which is, by definition, independent of time.

For black holes it is important that, given the closed (D − 1) form Jζ , there exists a

(D − 2)-form Qζ such that

Jζ ∼= dQζ . (3.39)

The Qζ is the Noether-Wald surface charge. It amounts to a conserved flux in the sense

of Gauss’ law: integration of the flux over any surface enclosing the source gives the same

result.

The surface charge Qζ is more subtle than the conserved charge integrated over an entire

Cauchy surface. The semi-equality ∼= reminds us that generally the closed form Jζ is only

d of something locally so, in general, the charge Qζ , is only defined up to d of some D − 3

form. Therefore, it does not necessarily satisfy Gauss’ law.

One way around this is to evaluate the surface charge at infinity. For example, the presence

of a Chern-Simons term can be interpreted physically as a charge density that obstructs

flux conservation but this contribution is subleading at infinity and will not contribute to

Qζ,Noether.

Alternatively, following [81, 82, 83, 84, 85], we can modify our definition of the surface

charge by adding a D− 2 form to Qζ . This new surface charge satisfies a Gauss law and can

be integrated at any given surface Σ.

A third approach [86], is the one taken in this paper. It is to compute the surface charges

in a dimensionally reduced 2D theory.

Moreover, we integrate by parts such that in the process of dimensional reduction to 2D,

we ensure gauge invariance. We will carry this procedure out in section 3.2.4. Therefore, in

this case, Qζ will satisfy a Gauss law.
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The procedure for computing the conserved charges is extremely general. In the following,

we make the abstract procedure explicit for two particular symmetries: isometries generated

by a spacetime Killing vector ξ and gauge symmetries λ in the presence of Chern-Simons

terms.

3.2.2 Killing vector fields

A Killing vector ξ generates a spacetime isometry. It transforms the Lagrangian as

δξL = LξL . (3.40)

Here Lξ is the Lie derivative along the Killing vector ξ.

The Lie derivative acting on a general form ω is given by Cartan’s magic formula

Lξω = d(iξω) + iξdω . (3.41)

Since L is a D-form it must be closed dL = 0 and then the Lie derivative becomes

δξL = LξL = d(iξL) + iξ(dL) = d(ξ · L) , (3.42)

where · denotes the contraction of ξ with the first index of L. Comparing (3.42) with (3.33),

we identify

Jξ = ξ · L , (3.43)

up to a closed form that is unimportant in our application. Thus, for a Killing vector ξ, the

Noether current (3.37) becomes

Jξ = ξ · L − Θ[Φ,LξΦ] . (3.44)

The computations show that this current (D − 1) form is closed on-shell. In other words, it

is conserved when the equations of motion are satisfied.

3.2.3 Incorporating gauge invariance

We now consider a gauge invariant Lagrangian and compute the conserved current as defined

in (3.37) for the conserved charges of the theory, whether derived from spacetime isometries

or gauge invariance.
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The relevant gauge invariant Lagrangian is the one defined in (3.1) without the Chern-

Simons term. In other words, we consider the Lagrangian density

L5,pot = − 1

16πG5

√
g5 (R5 + 2V ) ,

L5,kin =
1

16πG5

√
g5

(
−1

2
GIJF

I
5,ABF

J,AB
5 +GIJ∇AXI∇AX

J

)
.

(3.45)

We use early capital Latin indices A,B, . . . to denote 5D coordinates. The Lagrangian

L5,kin + L5,pot is manifestly gauge invariant

δα(L5,pot + L5,kin) = 0 , (3.46)

As detailed in the previous subsection, there is a conserved charge for any Killing vector

that generates a spacetime isometry. According to (3.42), the Lagrangian L5,kin + L5,pot

transforms as

δξ(L5,pot + L5,kin) = ∇A

(
ξA(L5,pot + L5,kin)

)
. (3.47)

The presymplectic potential (3.35) for L5,pot is

ΘA,5
ξ,pot =

1

16πG5

√
g5
(
∇B∇AξB + ∇B∇BξA − 2∇A∇Bξ

B
)

=
1

16πG5

√
g5
(
∇B

(
∇BξA −∇AξB

)
+ 2RABξB

)
,

(3.48)

where in the second line, we have used the commutator relation for two covariant derivatives.

In addition, the presymplectic potential for the kinetic terms L5,kin is

ΘA,5
α,ξ,kin =

1

16πG5

√
g5GIJ

(
2F I,AB

5

(
ξCF J

5,CB + ∇B

(
ξCAJ5,C + αJ5

)))
, (3.49)

where we have used the variation

δAIA,5 = δξA
I
5,A + δαA

I
5,A = ξBF I

5,BA + ∇A

(
ξBAI5,B

)
+ ∇Aα

I . (3.50)

Inserting the variations (3.46) and (3.47) and the presympletic potentials given in (3.48) and
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(3.49) into the current density (3.37), we find

JAα,ξ =
1

16πG5

√
g5

[
−∇B

(
∇BξA −∇AξB

)
− 2∇B

(
GIJF

I,AB(ξCAJC + αJ)
)

−2ξBEBg − 2EAJ,A5
(ξCAJC + αJ)

]
,

(3.51)

where the second line is proportional to the equations of motion EBg and EAJ,A5
and vanish

on-shell giving

JAα,ξ = − 1

16πG5

√
g5∇B

[ (
∇BξA −∇AξB

)
+ 2

(
GIJF

I,AB(ξCAJC + αJ)
) ]
. (3.52)

The Noether-Wald surface charges of the theory can now be read off from the current (3.52).

To find the conserved charges, we integrate over a surface Σ enclosing the source and we find

Qα = − 1

8πG5

∫
Σ

dΣAB
√
g5GIJF

I,ABαJ ,

Qξ = − 1

16πG5

∫
Σ

dΣAB
√
g5
[(
∇BξA −∇AξB

)
+ 2GIJF

I,ABξCAJC
]
.

(3.53)

3.2.4 Chern-Simons Terms

The charge Qξ that corresponds to angular momentum depends explicitly on the gauge field

AJ whereas the electric charges Qα depend on the field strength. When Chern-Simons terms

are taken into account, Qα also depends on the gauge field AJ . This gauge dependence

renders the value of the charges ambiguous.

To address the situation, we dimensionally reduce the theory (3.1) to 2D, as was done in

subsection 3.1.2 and express the resulting action as a covariant theory in 2D [86]. As part of

the process, we must ensure that the field strength does not have a nonzero flux through the

squashed sphere. This can be achieved by adding total derivatives before the dimensional

reduction to remove the derivatives acting on the gauge potentials and gauge fields that act

nontrivally through the squashed sphere.

We now show how this can be done. Let us consider the Lagrangian (3.45) along with

the five-dimensional Chern-Simons term of the form

L5,CS = − 1

16πG5

1

6
cIJKF

I
5 ∧ F J

5 ∧ AK5 . (3.54)

We are interested in transforming (3.54) by the inclusion of total derivatives such that the

potential term associated to the electric charge is manifestly gauge invariant. Note this
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procedure is not covariant in 5D and therefore we explicitly break covariance along the way.

However, because of the dimensional reduction, the 2D Lagrangian still remains covariant.

We consider the ansatz in (3.17) such that the potential and gauge fields are of the form

AI5 = AI5,Adx
A = AI5,µdx

µ + AI5,adx
a ,

F I
5 =

1

2
F I
5,AB dx

A ∧ dxB =
1

2
F I
5,µνdx

µ ∧ dxν + F I
5,µadx

µ ∧ dxa +
1

2
F I
5,abdx

a ∧ dxb ,
(3.55)

where lowercase Latin indices denote the indices on the compact space and as before, the

Greek indices correspond to the 2D space. Expanding out the Chern-Simons term in compo-

nent form using (3.55), there are two types of terms, having the following structure of indices:

F I
µνF

J
bcA

K
a and F I

µaF
J
bcA

K
ν . Only for the second expression we must transfer the derivative

such that in the process of dimensional reduction, we find it to be gauge invariant in the 2D

theory. This means the integration by parts of this term takes the form

cIJKϵ
µabcνF I

µaF
J
bcA

K
ν = 2cIJKϵ

µabcν
(
∂µ(AKν A

I
aF

J
bc) − (∂µA

K
ν )(AIaF

J
bc)
)
, (3.56)

and the presymplectic potential is found to be

ΘA,5
α,ξ,CS =

1

16πG5

√
g5

[
1

6
cIJK

(
ϵABCDEF I

BCA
J
D

(
ξFFK

FE + ∇E(ξFAKF ) + ∇Eα
K
))]

− 1

8πG5

√
g5
[
cIJKϵ

AabcνAIaF
J
bc∇να

K
]
,

(3.57)

where the last term is the contribution of (3.56) coming from adding a total derivative. To

investigate the current and the Noether-Wald surface charges, we proceed to dimensionally

reduce over the squashed S3 where covariance over the 2D spacetime is still maintained.

The 5D rotational isometries in φ and ψ take on a different role in the 2D perspective.

Moreover, we find that they become 2D gauge transformations of a0 and aI coming from the

dimensionally reduced potential AI (3.18).

3.2.5 The 2D conserved charges

The 2D Lagrangian (3.22) inherits some symmetries from the 5D theory (3.2), including

gauge symmetry associated with the 5D gauge potential AI and rotational isometries as-

sociated to the Killing vectors ∂ϕ and ∂ψ. In the 2D theory, all symmetries become gauge

symmetries and have associated charges. We denote the 2D charge originally coming from

the 5D rotational isometries J and the 2D charges originally coming from the 5D gauge trans-

formations QI . These 2D gauge transformations are associated to a0 and aI as they come
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from the dimensionally reduced potential AI (3.18). Therefore, we consider the following

symmetries

δλa
0 = dλ, δχa

I = dχI , (3.58)

with total corresponding conserved current

Jλ,χ = Jλ + Jχ =
∑
i=λ,χ

(Ji − Θi) , (3.59)

where Jλ and Jχ are the currents corresponding to λ and χ, respectively, and the second

equality is given by (3.37). The effective 2D Lagrangian (3.22) is manifestly gauge invariant

and the variations with respect to each symmetry (3.58) yield

δλL2 = dJλ = 0 , δχL2 = dJχ = − π

G5

1

6
cIJKd

(
bIbJdχK

)
. (3.60)

The presymplectic potentials given in (3.36) become

Θλ = − π

G5

e−U1− 1
2
U2
[
e−U2 ⋆ da0 + 2GIJb

I ⋆
(
bJda0 + daJ

)]
dλ+

π

G5

1

3
cIJKb

IbJbKdλ ,

(3.61)

Θχ = − π

G5

e−U1− 1
2
U2
[
2GIJdχ

I ∧ ⋆
(
bJda0 + daJ

)]
+

π

G5

1

3
cIJKb

IbJdχK . (3.62)

We used the symmetries (3.58) and included the additional total derivative term (3.56).

Using the equations of motion (3.26), the on-shell current (3.59) can be recast in the form

of (3.39):

Jλ,χ ∼=
π

G5

d

[
λ

(
e−U1− 1

2
U2
[
e−U2 ⋆ da0 + 2GIJb

I ⋆
(
bJda0 + daJ

)]
− 1

3
cIJKb

IbJbK
)

+χI
(

2e−U1− 1
2
U2GIJ ⋆

(
bJda0 + daJ

)
− 1

2
cIJKb

JbK
)]

.

(3.63)

The conserved charges J and QI can be directly read off from (3.63) and we find

J =
π

G5

[
e−U1− 1

2
U2
[
e−U2 ⋆ da0 + 2GIJb

I ⋆
(
bJda0 + daJ

)]
− 1

3
cIJKb

IbJbK
]
,

QI =
π

G5

[
2e−U1− 1

2
U2GIJ ⋆

(
bJda0 + daJ

)
− 1

2
cIJKb

JbK
]
.

(3.64)
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From now on, we use the rescaled charges

J̃ ≡ 4G5

π
J , Q̃ ≡ 4G5

π
QI . (3.65)

The charges and the current are indeed conserved including the charge associated to aI since

we demanded gauge invariance at the level of the Lagrangian in (3.22). This added a total

derivative that shifted the charge but did not affect the equations of motion. Moreover, the

charges computed in 2D are proportional to those computed in 5D. In the 1D reduction

(3.32), the charges take the following form

J̃ = 4

(
e−U1− 3

2
U2−ρ−σ

(
∂Ra

0
t + 2GIJe

U2bI
(
∂Ra

J
t + bJ∂Ra

0
t

))
− 1

3
cIJKb

IbJbK
)
,

Q̃I = 4

(
2e−U1− 1

2
U2−ρ−σGIJ

(
∂Ra

J
t + bJ∂Ra

0
t

)
− 1

2
cIJKb

JbK
)
.

(3.66)

These formulae are essential for the radial flow in the black hole background. A very rough

reading is that each of the conserved charges J̃ and Q̃I are radial derivatives of their conjugate

potentials a0t , a
I
t , as in elementary electrodynamics. With this näıve starting point, the overall

factors depending on U1, U2, ρ and σ serve to take on the non-flat spacetime into account and

GIJ incorporates special geometry as required by symmetry. All remaining terms depend on

bI and take rotation into account in a manner that combines kinematics (rotation “looks”

like a force) and electrodynamics (electric and magnetic fields mix in a moving frame). These

effects defy simple physical interpretations.

From our point of view, the formulae (3.66) for the charges J̃ and Q̃I are complicated

functions of various fields, each of which are themselves nontrivial functions of the radial

coordinate. Our construction shows that symmetry guarantees that these combinations

must be independent of the radial position, within the framework of our ansatz.

In the following section we study the conditions that supersymmetric AdS5 black holes

must satisfy. The vanishing of the supersymmetry variations of the theory for a subset

of the supersymmetries always imposes first-order radial differential equations on the joint

geometry/matter configuration. We refer to these first order equations as flow equations.

They are very constraining but, as usual for first order equations imposed by supersymmetry,

they are not sufficient to determine the solution. The raison d’être of this entire section is

that the additional data needed, sometimes referred to as the integrability conditions, is

furnished by the conserved charges.
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3.3 The flow equations

In this section we derive the first order flow equations for AdS5 black holes. They follow

from preservation of supersymmetry, complemented by conservation of the charges. We study

the flow equations using two perturbative expansions: one starting at the near-horizon and

one starting at the asymptotic boundary. Enforcing the conservation of charges at both

the horizon and at the asymptotic boundary allows us to make contact between the two

expansions.

3.3.1 Supersymmetry conditions

We study bosonic backgrounds that preserve some supersymmetry [87, 88, 89]. Thus there

exists a supersymmetric spinor ϵα for which the gravitino and the dilatino variations vanish.

This condition amounts to

0 =

[
GIJ

(
1

2
γABF J

AB − γA∇AX
J

)
ϵα − ξIϵ

αβϵβ
]
∂iX

I , (3.67)

0 =

[
(∂A − 1

4
ωBCA γBC) +

1

24
(γ BC
A − 4δ B

A γC)XIF
I
BC

]
ϵα +

1

6
ξI(3A

I
A −XIγA)ϵαβϵβ , (3.68)

where ϵα (α = 1, 2) are symplectic Majorana spinors. In the following, we recast these

variations as radial flow equations.

For the analysis of supersymmetry, it is convenient to split the 5D spacetime geometry

into (1 + 4) dimensions as

ds25 = f 2(dt+ wσ3)
2 − f−1ds24 , (3.69)

ds24 = g−1
m dR2 +

1

4
R2(σ2

1 + σ2
2 + gmσ

2
3) . (3.70)

This form highlights the 4D base space ds24 which is automatically Kähler. This can be

shown by picking the flat vielbein

e1 = g−1/2
m dR , e2 =

1

2
Rσ1 , e3 =

1

2
Rσ2 , e4 =

1

2
Rg1/2m σ3 , (3.71)

which gives the manifestly closed Kähler 2-form

J (1) = ϵ(e1 ∧ e4 − e2 ∧ e3) . (3.72)

The symbol ϵ = ±1 denotes the orientation of the base manifold. It should not be confused

with the supersymmetry parameter ϵα.
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The (1 + 4) split of the 5D gauge potential AI defined in (3.18) can be expressed as

AI = fY I(dt+ wσ3) + uIσ3 . (3.73)

In the rest of the paper, as well as in Appendix A.3, we use lowercase Latin letters for the

four spatial indices.

3.3.2 Dictionary between the (1 + 4) and the (2 + 3) splits

We can relate the (1 + 4) split introduced in the previous subsection to simplify the super-

symmetric variations (3.67) and (3.68), to the (2 + 3) split (3.17) and (3.18) that was used

earlier to perform the reduction from 5D to 2D. The 5D geometry (3.17) with the diagonal

gauge (3.27) for the 2D line element is

ds25 = e2ρdt2 − e2σdR2 − e−U1(σ2
1 + σ2

2) − e−U2(σ3 + a0)2 . (3.74)

By identifying the metric components of (3.69) and (3.74), we find the dictionary of variables

in the (2 + 3) split of the 5D line element ds25, expressed in terms of the variables in the

(1 + 4) split

e−U1 =
1

4
R2f−1 , e−U2 =

1

4
R2gmf

−1 − f 2w2 , bI = fY Iw + uI ,

e2σ = f−1g−1
m , a0t =

−f 2w
1
4
R2gmf−1 − f 2w2

, e2ρ = f 2 − f 4w2

(1
4
R2gmf−1 − f 2w2)2

.

(3.75)

In this section we primarily use the (1 + 4) variables fXI , uI , w and gm, along with the

conserved charges QI and J .

As noted in the previous subsection, the 4D base of the (1+4) split (3.69) is automatically

Kähler. In the variables of the (2 + 3) split in (3.75), the Kähler condition amounts to the

relation

eσ+ρ−U2/2 =
1

2
R , (3.76)

between ρ, σ, and U2. This is explained further in Appendix A.3.1.

77



3.3.3 The attractor flow equations

The preserved supersymmetries are defined by the projections on the spinors ϵα

γ0ϵα = ϵα , (3.77)

1

4
J (1)
mnγ

mnϵα = −ϵαβϵβ . (3.78)

The J
(1)
mn are components of the Kähler form J (1) (3.72), and the spatial gamma matrices γm

satisfy the usual Clifford algebra. The details on the simplification of the equations (3.67)

and (3.68) are presented in Appendix A.3. The result is the following differential conditions

on the variables fXI , uI , w and gm

0 = GIJ

(
∂R(fY I) − ∂R(fXI)

)
∂iX

J , (3.79)

0 =

(
∂R2 +

1

R2

)
uI − 1

2
ϵf−1cIJKXJξK , (3.80)

0 =

(
∂R2 − 1

R2

)
w +

1

2
f−1XI

(
∂R2 − 1

R2

)
uI , (3.81)

0 = −ϵR2(∂R2gm) + 2ϵ(1 − gm) + 2ξIu
I . (3.82)

The variation (3.79) allows for the electric potential fY I in (3.73) to be identified with the

scalar field fXI , and thus

AI = fXI(dt+ wσ3) + uIσ3 . (3.83)

This sets the variables aI , a0 and bI in the decomposition (3.18) to

aI + bIa0 = fXIdt , bI = fXIw + uI , (3.84)

with a0 = a0tdt given in (3.75).

In the limit of ungauged supergravity, fXI is a harmonic function. Then, the identifica-

tion of XI = Y I means that the corresponding electric potential is also a harmonic function.

We may expect the same functional dependence in the case of gauged supergravity.3

In the context of a black hole, solutions to the supersymmetry conditions (3.79-3.82) are

specified in part by the conserved charges of the theory. The charges in J̃ and Q̃I in (3.66)

are expressed in terms of the (2 + 3) variables U1, U2, b
I , a0t , a

I
t but we can recast them in

terms of (1 + 4) variables f, uI , w, gm using the dictionary for the geometry (3.75) and the

3There are nV + 1 potentials Y I and nV scalars XI so there is freedom to adjust a single integration
constant that we do not exploit. It is unclear to us if this freedom is physically significant.
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potential (3.84). We can also remove most of the derivatives in the equations (3.66) for the

charges J̃ and Q̃I using the radial equations for the variables uI , w and gm (3.80-3.82). Our

final expressions of the charges, which we use for the remainder of the section are given by

J̃ = Q̃Iu
I +

2

3
cIJKu

IuJuK −R2gm

(
f−1X · u+ 2w − 1

2
ϵR2f−3ξ · fX

)
+ 2R2w(1 + ϵξ · u) ,

Q̃I = −2cIJKu
JuK − 2ϵwR2ξI − gmR

4∂R2(f−1XI) .

(3.85)

The second of these equations is a first order differential equation for f−1XI . Together with

the three radial differential equations (3.80-3.82) for the variables uI , gm and w, we find the

four equations (
∂R2 +

1

R2

)
uI =

1

2
ϵcIJK(f−1XJ)ξK , (3.86a)(

∂R2 +
2

R2

)
gm =

2

R2
+

2

R2
ϵξIu

I , (3.86b)(
∂R2 − 1

R2

)
w = −1

2
f−1XI

(
∂R2 − 1

R2

)
uI , (3.86c)

R4∂R2(f−1XI) = − 1

gm

(
Q̃I + 2cIJKu

JuK + 2ϵwR2ξI

)
. (3.86d)

We refer to the set of first order differential equations (3.86a-3.86d) as the attractor flow

equations for black hole solutions to the theory (3.1).

3.3.4 Solution of the attractor flow equations

The attractor flow equations (3.86a-3.86d) are first order differential equations. In this

subsection we discuss the boundary conditions needed to specify their solutions completely.

This turns out to be surprisingly subtle. We then solve the equations using perturbative

expansions.

3.3.4.1 Boundary conditions

The attractor flow equations (3.86a-3.86d) are first order differential equations with ξI and

Q̃I as given parameters. As such the superficial expectation is that the specification of

all the unknown functions uI , gm, w, f
−1XI at any coordinate R2 yields the corresponding

derivatives at that position. Further iterations should then be sufficient to reconstruct the

entire radial dependence, at least in principle. We seek to implement this strategy starting
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from either asymptotically AdS5, or from the horizon. We consider each in turn.

For a solution to be asymptotically AdS5, the metric ansatz (3.69) requires the leading

order behavior f → R0, gm → R2, and w → R2 as R → ∞. With these boundary conditions

for f , gm, and w, (3.86a) and (3.86d) yield uI → cIJKξJξKR
2 and XI → ξI · R0 for the

matter fields as R → ∞.

Alternatively, we can impose boundary conditions at the horizon of the black hole. There,

the near-horizon geometry has a manifest AdS2 factor of the form

ds22 = R4dt2 − dR2

R2
, (3.87)

and so gm → R0, f → R2, and w → R−2. With these leading asymptotics, the attractor

flow equations (3.86a) and (3.86d) determine uI → R0 and XI → R0 near the horizon.

Staying with our superficial expectation, we would start from either asymptotically AdS5

or from the AdS2 horizon. Mathematically, it could be a concern that the differential equa-

tions are coupled and non-linear, because then the expansions might fail to converge. This

situation is most likely incompatible with a black hole solution that is regular throughout

the entire flow from asymptotically AdS5 to the AdS2 horizon, or vice versa. Nonlinearity

does not appear to pose a conceptual challenge.

In order to study the unknown functions uI , gm, w and f−1XI around a regular point, we

multiply by an appropriate factor of R2. Near the horizon we consider R2uI , R2gm, R
2w, and

R2f−1XI . At infinity, we expand the functions R−2uI , R−2gm, R
−2w and R−2f−1XI . After

such rescalings the left hand sides of each of the attractor flow equations (3.86a-3.86d) will

take the form (
∂R2 +

α + β

R2

)
P = R−2β

(
∂R2 +

α

R2

)
(R2βP ), (3.88)

for some field P and some integers α and β that can either be positive or negative. The

challenge we will encounter repeatedly is that, when P ∼ R−2(α+β), this expression vanishes.

We refer to this situation as a zero-mode of the perturbative expansion. What it means is

that an attractor flow equation does not reveal a derivative, contrary to expectation. Instead,

it yields a constraint between the unknown functions on the right hand side of the equation

in question. This constraint will be nonlinear and, in general, difficult to implement. In

other words, the initial value problem, at both the horizon and at asymptotic infinity, turns

out to be unexpectedly complicated.

In the following subsections we develop this general theme explicitly, first starting from

the horizon, and then from asymptotic infinity. We subsequently merge the two perturbative
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R → ∞ R → 0
gm R2 R0

f R0 R2

w R2 R−2

uI R2 R0

XI R0 R0

Table 3.1: Asymptotics of the various functions

expansions to seek a global understanding.

3.3.4.2 Perturbative solution starting from the horizon

To satisfy the regularity conditions at the horizon, we take β = 1 in (3.88) and rewrite the

attractor flow equations (3.86a-3.86d) as

∂R2(R2uI) =
1

2
ϵcIJK(R2f−1XJ)ξK , (3.89a)(

∂R2 +
1

R2

)
(R2gm) = 2 +

2

R2
ϵξI(R

2uI) , (3.89b)(
∂R2 − 2

R2

)
(R2w) = −1

2
R−2(R2f−1XI)

(
∂R2 − 2

R2

)
(R2uI) , (3.89c)(

∂R2 − 1

R2

)
(R2f−1XI) = −R−2g−1

m

(
Q̃I + 2R−4cIJK(R2uJ)(R2uK) + 2ϵ(R2w)ξI

)
.

(3.89d)

We then expand the unknown functions near the horizon. Since the radial dependence is of

the form R2n where n is some integer, the expansion can be written as

R2uI =
∞∑
n=1

uI(n)R
2n , (3.90a)

R2gm =
∞∑
n=1

gm,(n)R
2n , (3.90b)

R2w =
∞∑
n=0

w(n)R
2n , (3.90c)

R2f−1XI =
∞∑
n=0

xI,(n)R
2n . (3.90d)

With the asymptotic structure of Table 3.1, the expansions for R2uI and R2gm do not

start with a constant term. Moreover, with the horizon expansions above, the differential

81



operators on the left hand sides of (3.89c) and (3.89d) are such that the coefficients w(2)

and x(1) drop out. These coefficients are the zero-modes that make the initial value problem

more complicated. There are no analogous zero-modes for uI and gm.

To study the structure of the attractor equations (3.89a-3.89d), we temporarily treat the

unknown scalar field f−1XI as a given function of the radial coordinate R. Then the linear

flow equation (3.89a), which is sourced by f−1XI , yields all the coefficients uI(n) in terms of

xI,(n). At this point we know both of the functions f−1XI and uI and then the attractor

flow equation (3.89b) similarly yields the series coefficients gm,(n) in terms of xI,(n). Given

all of f−1XI , u
I , and gm, it would seem straightforward to exploit (3.89c) and find all the

coefficients w(n) in terms of xI,(n). This mostly works, but the zero-mode w(2) can not be

determined this way. That is the obstacle where, as advertized, the derivatives are such that

an expansion coefficient simply drops out.

The final flow equation (3.89d), due to the conserved charge QI (3.85), is crucial for

the complete story. Assuming for a moment that the zero mode w(2) is given as an initial

condition, along with the entire function f−1XI , this equation determines the expansion

parameters xI,(n) in terms of the xI,(n) themselves, and so the entire system would appear

to be solved. However, this last equation also has a zero mode xI,(1) which cannot be

determined by the iterative procedure. In short, a careful analysis must be considered and

accordingly, this is what we proceed to do now: we solve the expansion coefficients order by

order, following the procedure we have outlined.

First, inserting the expansions (3.90a) and (3.90d) into the flow equations (3.89a), we find

∞∑
n=1

nuI(n)R
2n−2 =

ϵ

2

∞∑
n=0

cIJKξKxJ,(n)R
2n . (3.91)

Comparing each order in R2 leads to a relation between the coefficients uI(n) and xI,(n):

uI(n) =
ϵ

2n
cIJKξKxJ,(n−1) , n ≥ 1 . (3.92)

We insert this result in the flow equation (3.89b) for the expansion of gm (3.90b) and find

∞∑
n=1

(n+ 1)gm,(n)R
2n−2 = 2 +

∞∑
n=1

1

n
cIJKξIξJxK,(n−1)R

2n−2 . (3.93)

Thus all expansion coeficients of gm can be expressed in terms of the xI,(n):

gm,(n) =
1

n+ 1

(
2δn,1 +

1

n
cIJKξIξJxK,(n−1)

)
, n ≥ 1 . (3.94)
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The steps we have taken so far leads us to express the functions uI and gm solely in terms

of f−1XI . This was expected from the general discussion.

We then start with (3.89c) and use the expansions (3.90a-3.90d) to obtain

∞∑
n=0

(n− 2)w(n)R
2n−2 = −1

2

∞∑
n=0

(
n∑
k=0

(n− 1 − k)xI,(k)u
I
(n+1−k)

)
R2n−2 . (3.95)

Comparing powers of R2 we find

(n− 2)w(n) = − ϵ

4

n∑
k=0

n− 1 − k

n+ 1 − k
cIJKξIxJ,(k)xK,(n−k) . (3.96)

We see explicitly that the differential equation (3.89c) fails to express the zero mode w(2) in

the expansion (3.90c) in terms of other data. However, the right hand side of (3.96) still

reveals important information at n = 2 since it imposes a constraint on the xI,(n) expansion

coefficients

0 =
ϵ

3
cIJKxI,(0)xJ,(2)ξK . (3.97)

Thus determination of w(2) is replaced by a constraint on the functions f−1XI which we have

considered given so far.

To make further progress it remains to study the constants of motion due to the conser-

vation (3.85) of electric charge and angular momentum. The electric charge (3.89d) yields

−
∞∑
n=1

n∑
k=1

(n− 1 − k)gm,(k)xI,(n−k)R
2n−2

= Q̃I + 2cIJK

∞∑
n=1

n∑
k=1

uJ(k)u
K
(n+1−k)R

2n−2 + 2ϵξI

∞∑
n=0

w(n)R
2n .

(3.98)

Comparing each power of R2 we find the sequence of relations

−
n+1∑
k=1

(n− k)gm,(k)xI,(n−k+1) = Q̃Iδn,0 + 2cIJK

n+1∑
k=1

uJ(k)u
K
(n+2−k) + 2ϵξIw(n) , (3.99)

where it is understood in this relation that the coefficients gm,(k), u
I
(k), and w(k ̸=2) depend on

the xI,(k) through (3.92), (3.94), and (3.96). Thus the relations (3.99) constrain the given

functions f−1XI significantly. Unfortunately, these constraints are nonlinear and difficult to
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solve.

For the constant order in the R2 expansion, we take n = 0 in (3.99) and find the electric

charge

Q̃I = xI,(0)
(
1 + 1

2
cJKLxJ,(0)ξKξL

)
− 1

2
cIJKc

JMLcKNP ξMξNxL,(0)xP,(0)

+ 1
4
ξIc

LMNxL,(0)xM,(0)ξN .
(3.100)

The charges Q̃I depend only on the scalar fields at the horizon xI,(0) and the FI-parameters

ξI . In fact, if positivity conditions are imposed on the xI,(0), the xI,(0) in (3.100) can be

inverted in terms of the Q̃I , allowing to replace the pair of inputs (ξI , xI,(0)) by the pair

(ξI , Q̃I). This fits nicely with the understanding of the physical inputs and charges that go

in defining the radial flow at every radial hypersurface.

To rewrite (3.100) in a more canonical form, we simplify the second term involving a

triple product of cIJK by contracting (A.11) with ξMξQxL,(0)xP,(0). This gives

Q̃I = xI,(0) −
1

2
ξI

(
1

2
cJKLxJ,(0)xK,(0)ξL

)
+

1

2
cIJK

(
1

2
cJNOξNξO

)
cKLMxL,(0)xM,(0) . (3.101)

This expression makes contact with the form of the charge given in [89].4 The improvement

in our work is that we introduce the charge independently of the radial coordinate so it

can be computed at any hypersurface we choose, which — in this case — is the black hole

horizon.

Before analyzing the consequences of electric charge conservation (3.99) for n ≥ 1, we

consider the analogous equations due to conservation of the black hole angular momentum

J (3.85). As the first line of (3.85) involves the scalar field XI , we must recast it in terms

of the scalar field with a lowered index, as our expansion (3.90d) dictates. Utilizing (A.14),

we have

f−3fXI =
1

2
cIJK(f−1XJ)(f−1XK) . (3.103)

4The equation agrees with QI given in (3.53) of [89] with the following map between notations:

qI =
1

3
xI,(0), X̄I =

1

3
ℓξI , X̄I =

1

2
ℓ2cIJKξJξK , Qthere =

π

4G
Q̃here . (3.102)
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Introducing the near-horizon expansions (3.90a-3.90d) we find

J̃δn,0 = Q̃Iu
I
(n+1) +

2

3
cIJK

n+1∑
k=1

k∑
ℓ=1

uI(ℓ)u
J
(k+1−ℓ)u

K
(n+2−k) −

n∑
k=0

n−k∑
ℓ=0

gm,(k+1)xI,(ℓ)u
I
(n+1−ℓ−k)

− 2
n∑
k=0

gm,(k+1)w(n−k) +
ϵ

4
cIJKξI

n∑
k=0

n−k∑
ℓ=0

gm,(k+1)xJ,(ℓ)xK,(n−k−ℓ)

+ 2w(n) + 2ϵξI

n∑
k=0

w(k)u
I
(n−k+1) .

(3.104)

As before, it is understood that gm,(k), u
I
(k), and w(k) depends on the xI,(k) according to

(3.92), (3.94) and (3.96), and here we also need the explicit form of Q̃I (3.101). Thus

angular momentum conservation gives another infinite set of relations between the xI,(k).

Unfortunately, they are even more nonlinear than their analogues for conservation of electric

charge.

For n = 0 (3.104) gives the angular momentum expressed in terms of xI(0) and ξI

J̃ =
ϵ

4
cIJKxI,(0)xJ,(0)ξK − ϵ

4
cIJKcLMNξIξNξKxJ,(0)xL,(0)xM,(0)

+ ϵcIJKc
ILMcJNOcKPQ

(
1
8
xL,(0)xP,(0)xQ,(0)ξNξOξM + 1

12
xN,(0)xP,(0)ξMξOξQ

)
,

(3.105)

where we have used the value of Q̃I given in (3.101). To make contact with the form of the

angular momentum in [89], we rewrite the formula as5

J̃ =
ϵ

4
cIJKxI,(0)xJ,(0)ξK +

1

36

(
cIJKξIξJξK

) (
cLMNxL,(0)xM,(0)xN,(0)

)
. (3.107)

Again, we are able to express the final result for the conserved charge entirely in terms of

near horizon data. Moreover, since Q̃I and J̃ depend on the same integration constants

xI,(0), the charges are indeed not independent of each other.

We now turn to the n = 1 component of (3.99), i.e., electric charge conservation at order

R2 away from the horizon. It amounts to

gm,(2)xI,(0) = 4cIJKu
J
(1)u

K
(2) + 2ϵξIw(1) . (3.108)

5This agrees with the angular momentum reported in (3.50) of [89] with the following map between
conventions:

qI =
1

3
xI,(0) , X̄I =

1

3
ℓξI , Jthere =

π

4G
J̃here . (3.106)
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The absence of xI,(1) in this equation is due to the zero-mode in (3.90d). However, a constraint

on the xI,(1) will follow, in analogy with the zero-mode w(2) giving the condition (3.97). The

values of gm,(2), u
I
(1), u

I
(2), and w(1) from (3.92), (3.94) and (3.96) give the vector relation[

1

6
cJKLξKξLxI,(0) −

1

2
cIKMc

JLMcKNP ξLξNxP,(0) +
1

2
cJKLξKxL,(0)ξI

]
xJ,(1) = 0 . (3.109)

We see that xI,(1) is constrained even though it is a zero-mode of the differential operator.

Using the cubic condition on the cIJK (A.12), we can show that the matrix in square brackets

has the null vector

xI,(1) = ℓξI . (3.110)

It is unique, at least for generic structure constants cIJK and generic charges, which are

parametrized by xI,(0). The constraint (3.109) does not determine the overall normalization.

However, the scale of the radial coordinate R2 is arbitrary from the near horizon point of

view, so the choice (3.110) involves no loss of generality.

The n = 2 component of (3.99) gives another vector-valued relation

T JI xJ,(2) = 2ϵ
(
w(2) +

ϵ

2ℓ

)
ξI , (3.111)

where we have simplified using (3.110) and

T JI = −
(

1 +
1

2
cKLMξKξLxM,(0)

)
δJI +

1

12
cJKLξKξLxI,(0) −

1

3
cIKLc

KMJcLNP ξMξNxP,(0) .

(3.112)

The matrix T JI is invertible so, given the inputs ξI , xI,(0), w(2), the coefficient xJ,(2) is com-

pletely determined by (3.111). However, the value of xJ,(2) computed this way fails to satisfy

the previously established constraint (3.97). This apparent contradiction can be avoided

only if

xI,(2) = 0 . (3.113)

Because the left hand side of (3.111) vanishes, the right side requires

w(2) = − ϵ

2ℓ
. (3.114)

At this point, we can finally consider generic components of the electric charge conserva-

tion (3.99), i.e. the infinite set of equations n ≥ 3. The coefficients w(n≥3) can be eliminated

using (3.96) for w(n). The uI(n) and gm,(n) are similarly traded for xI,(n), this time using (3.92)
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and (3.94). For all n ≥ 3 this gives

−
n∑
k=0

n− 1 − k

k + 2

(
2δ0,k +

1

k + 1
cJKLξJξKxL,(k)

)
xI,(n−k)

=
1

2
cIJKc

JLMcKNP ξLξN

n∑
k=0

1

(k + 1)(n− k + 1)
xM,(k)xP,(n−k)

− 1

2(n− 2)
ξI

n∑
k=0

n− 1 − k

n+ 1 − k
cJKLξJxK,(k)xL,(n−k) .

(3.115)

This messy expression can be reorganized as a recurrence relation giving xI,(n) in terms of

the preceding xI,(0≤k≤n−1):[
−n− 1

2

(
2 + cKLMξKξLxM,(0)

)
δJI +

1

(n+ 1)(n+ 2)
cJKLξKξLxI,(0)

− 1

n+ 1
cIKLc

KMJcLPQξMξPxQ,(0) −
1

(n− 2)(n+ 1)
cJKLξKxL,(0)ξI

]
xJ,(n)

=
n−1∑
k=1

[
(n− 1 − k)

(k + 1)(k + 2)
cJKLξJξKxL,(k)xI,(n−k) +

1

2
cIJKc

JLMcKNP ξLξNxM,(k)xP,(n−k)

− 1

2(n− 2)
ξI
n− 1 − k

n+ 1 − k
cJKLξJxK,(k)xL,(n−k)

]
.

(3.116)

The left hand side can be inverted, at least for some specific models of cIJK , such as the STU

model (cIJK = |ϵIJK | for I, J,K running from 1 to 3). In such cases the recurrence relation

(3.116) determines all higher-order xI,(n≥3) in terms of the coefficients xI,(0), xI,(1) and xI,(2)

as well as the FI-parameters ξI . In fact, the constraints (3.110) and (3.113) from low n

will be sufficient to show that the series truncates at n = 2. This is discussed in subsection

3.3.4.4.

At this point we have exhausted the information that comes from the conservation of

electric charge Q̃I charge in (3.99). We did not yet study the J̃ conservation relations

(3.104). As noted already, the constant order n = 0 determines the angular momentum

from a near horizon perspective. We have worked out the first few orders n ≥ 1 and found

either redundant relations, involving already known coefficients such as xI,(0), ξI and xI,(1),

or relations that tie together higher order xI,(k≥2) with lower-order ones. We do not foresee

any further constraints due to the J̃ relations.

In summary, starting from the near horizon region, we have exploited supersymmetry

and found the entire black hole solution. The fields uI , gm, w and f−1XI are reported in

(3.92), (3.94), (3.96) and (3.111). Additionally, we computed the electric charges Q̃I and
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the angular momenta in terms of the horizon values of the scalars xI,(0), and the subleading

coefficients xI,(1) which, according to (3.110), coincide with the FI-parameters ξI .

3.3.4.3 Perturbative solution starting from asymptotic AdS

We now adapt the approach from the previous subsection and expand the unknown functions

uI , gm, w and f−1XI at large R, near the asymptotic AdS5 boundary.

Given the asymptotic behaviors listed in Table 3.1, regularity requires taking β = −1 in

(3.88). We then recast the flow equations (3.86a–3.86d) as(
∂R2 +

2

R2

)
(R−2uI) =

1

2
ϵcIJK(R−2f−1XJ)ξK , (3.117a)(

∂R2 +
3

R2

)
(R−2gm) =

2

R4
+

2

R2
ϵξI(R

−2uI) . (3.117b)

∂R2(R−2w) = −1

2
R2(R−2f−1XI)∂R2(R−2uI) , (3.117c)(

∂R2 +
1

R2

)
(R−2f−1XI) = − R−8

(R−2gm)

(
Q̃I + 2cIJKR

4(R−2uJ)(R−2uK)

+2ϵR4(R−2w)ξI
)
.

(3.117d)

We define the perturbative expansions at infinity as

R−2uI =
∞∑
n=0

ūI(n)R
−2n , (3.118a)

R−2gm =
∞∑
n=0

ḡm,(n)R
−2n , (3.118b)

R−2w =
∞∑
n=0

w̄(n)R
−2n , (3.118c)

R−2f−1XI =
∞∑
n=1

x̄I,(n)R
−2n . (3.118d)

The bar distinguishes the expansion coefficients at the asymptotically AdS5 boundary from

their analogues at the horizon.

As before, we initially specify the entire series x̄I,(n). Additionally, examination of (3.117a–

3.117d) shows that ūI(2), ḡm,(3), w̄(0), and x̄I,(1) do not appear on the left hand sides of the

equations. These are the zero modes that we also regard as inputs, at least provisionally.

Among the zero-modes, we can determine x̄I,(1) from the outset because they give the asymp-
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totic values of the scalars

x̄I,(1) = ℓξI , (3.119)

as we found in (3.13), by extremizing the potential of gauged supergravity.

We now proceed to solve for the expansion coefficients of each variable, order by order.

Starting with the uI flow equation (3.86a), and using the expansions (3.118a) and (3.118d),

we find

∞∑
n=0

(2 − n)ūI(n)R
−2n−2 =

1

2
ϵcIJKξJ

∞∑
n=1

x̄K,(n+1)R
−2n−2 . (3.120)

Comparing inverse powers of R2, we find ūI(n) for n ̸= 2:

(2 − n)ūI(n) =
1

2
ϵcIJKξJ x̄K,(n+1) , n ≥ 0 . (3.121)

The zero mode ūI(2) drops out of the equation. Instead, we find a vectorial constraint on

xI,(3)

cIJKξJ x̄K,(3) = 0 . (3.122)

It has the obvious solution

x̄I,(3) = 0 , (3.123)

for all values of I. This solution is unique if the matrix cIJKξJ is non-singular. In (A.27),

we show that it is indeed invertible

(cIJKξJ)−1 =
1

2
ℓ3
(
cIJKc

JLMξLξM − ξIξK
)
. (3.124)

Next, we consider the gm flow equation (3.86b). The expansions (3.118a) and (3.118b) give

∞∑
n=0

(3 − n)ḡm,(n)R
−2n−2 = 2R−4 + 2ϵξI

∞∑
n=0

ūI(n)R
−2n−2 . (3.125)

The expansion coefficients ḡm,(n) — with the exception of the zero mode gm,(3) — can be

expressed in terms of xI,(n) and the zero mode uI(2) as

(3 − n)ḡm,(n) =

{
2δ1,n + 1

2−nc
IJKξIξJ x̄K,(n+1) n ̸= 2,

2ϵξI ū
I
(2) n = 2 .

(3.126)
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In compensation for not determining ḡm,(3), we find the constraint ξI ū
I
(3) = 0. Rewriting this

constraint using (3.121) gives a projection on xI,(4)

cIJKξIξJ x̄K,(4) = 0 . (3.127)

This constraint is a real special geometry scalar, unlike the vector-valued condition (3.122).

It will nevertheless prove useful when simplifying results at large R.

We now turn to the nonlinear flow equation for w (3.86c). After using the expansions

(3.118a), (3.118c) and (3.118d), we find

∞∑
n=1

(n− 1)w̄(n−1)R
−2n = −1

2

∞∑
n=0

n∑
k=1

(n− k)x̄I,(k)ū
I
(n−k)R

−2n , (3.128)

and so

(n− 1)w̄(n−1) = −1

2

n∑
k=1

(n− k)x̄I,(k)ū
I
(n−k) , n ≥ 1 . (3.129)

For n = 1, the left hand side vanishes, so the zero-mode w̄(0) is undetermined. The right

hand side also vanishes for n = 1 so in this case the equation with a zero-mode offers no

additional information. We omit the n = 1 case and rewrite (3.129) to

w̄(n) = − 1

2n

n∑
k=1

(n+ 1 − k)x̄I,(k)ū
I
(n+1−k) , n ≥ 1 . (3.130)

We have refrained from eliminating ūI(k) in favor of x̄I,(n) via (3.121) because, generally, the

equation involves the zero mode ūI(2) which cannot be removed this way.

The final flow equation (3.117d) was derived by combining supersymmetry with conser-

vation of electric charge. Using the expansions (3.118a–3.118d), we find

R−4

∞∑
n=0

n∑
k=0

ḡm,(k)(n− k)x̄I,(n+1−k)R
−2n

= R−4Q̃Iδn,2 + 2cIJKR
−4

∞∑
n=0

n∑
k=0

ūJ(k)ū
K
(n−k)R

−2n + 2ϵξIR
−4

∞∑
n=0

w̄(n)R
−2n .

(3.131)

For all n ≥ 0, this gives

n∑
k=0

ḡm,(k)(n− k)x̄I,(n+1−k) = Q̃Iδn,2 + 2cIJK

n∑
k=0

ūJ(k)ū
K
(n−k) + 2ϵξIw̄(n) . (3.132)

Again, we have chosen to maintain (3.132) as implicit functions of x̄I,(n) due to the presence
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of the zero modes.

It is worth examining the first few orders of (3.132) in detail. The n = 0 component of

(3.132) gives

ξIw̄(0) = −ϵcIJK ūJ(0)ūK(0) = − ϵ

16
cIJKc

JLMcKNP x̄L,(1)ξM x̄N,(1)ξP = − ϵ

2ℓ
ξI , (3.133)

where we have used (3.119). Thus, it provides the value of the zero mode w(0)

w̄(0) = − ϵ

2ℓ
. (3.134)

At the next order, the n = 1 component of (3.132) is redundant as it just confirms the value

for w̄(1) already obtained from (3.130).

The n = 2 component of (3.132) is particularly important, because it relates the electric

charge to the expansion parameters at infinity

Q̃I = x̄I,(2) −
1

2
ξI

(
1

2
cJKLx̄J,(2)x̄K,(2)ξL

)
+

1

2
cIJK

(
1

2
cJNOξNξO

)
cKLM x̄L,(2)x̄M,(2)

+ ϵℓ
(
ξIξJ − cIJKc

KLMξLξM
)
ūJ(2) ,

(3.135)

where we imposed (3.119) and (3.123) and recast the charge in a form similar to (3.101).

Since the electric charge is conserved, the expression (3.135) for Q̃I , written in terms of

the expansion parameters at infinity, must be equal to its analogue (3.101) obtained from

expansion near the horizon.

We have established that Q̃I at infinity has been determined with the only inputs necessary

being the coefficients x̄I,(2), ξI and ūI(2). We now move on to the components of (3.132) for

n ≥ 3, to establish the recursion relation for the coefficients at infinity.

For n = 3, (3.132) simplifies after eliminating the gm, uI and w coefficients using (3.121),

(3.126) and (3.130) to

4ℓ−2x̄I,(4) + 2ϵ

(
x̄I,(2)ξJ +

1

3
ξI x̄J,(2) − cIJKc

KLMξLx̄m,(2)

)
ūJ(2) = 0 . (3.136)

This relation indicates that x̄I,(4) is described only with the help of x̄I,(2), ξI and ūI(2).

Furthermore, we note that for n ≥ 4, the simplification of (3.132) yields a generalization
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of (3.136)

(n− 1)2

n− 2
ℓ−2x̄I,(n+1)

= −(n− 1)
(
1 + 1

2
(c · ξξx̄(2))

)
x̄I,(n) − 2ϵ(n− 2)ξJ ū

J
(2)x̄I,(n−1) − (n− 3)ḡm,(3)x̄I,(n−2)

−
n∑
k=4

n− k

(k − 2)(k − 3)
(c · ξξx̄(k+1))x̄I,(n+1−k) + 4cIJK ū

J
(2)ū

K
(n−2)

+ 2cIJKc
JLMcKNP ξLξN

n−1∑′

k=1

x̄M,(k+1)x̄P,(n−k+1)

4(k − 2)(n− k − 2)
+ ξI

n∑′

k=2

n+ 1 − k

n− 1 − k

(c · ξx̄(k)x̄(n−k+2))

2n
,

(3.137)

where the apostrophes on the summation symbols indicate that we exclude the terms in the

sum with vanishing denominators. We have imposed the value of x̄I,(1) as given in (3.119)

and products of the form c · xyz indicate special geometry contractions under cJKL of the

form cJKLxJyKzL. The expression (3.137) has been expanded to distinguish contributions

coming from x̄I,(n+1), given by the left hand side of (3.137), and x̄I,(2≤k≤n), given by the

right hand side of the equality in (3.137). It becomes clear that a given x̄I,(n+1) depends

only on the expansion parameters x̄I,(1), x̄I,(2), . . . , x̄I,(n). By recursion, i.e. applying (3.137)

repeatedly, we can now determine all x̄I,(4≤k≤n) in terms of of x̄I,(2), ξI , ū
I
(2) and ḡm,(3).

Lastly, we analyse the conservation of angular momentum J̃ by expanding the first equa-

tion in (3.85) at infinity, making sure to rescale the functions uI , gm, w and f−1XI appro-

priately

J̃ = R2QI(R
−2uI) + 2

3
R6cIJK(R−2uI)(R−2uJ)(R−2uK) −R8(R−2gm)

(
2R−2(R−2w)

+(R−2f−1X) · (R−2u) − 1
2
ϵR−2f−3ξ · fX)

)
+ 2R4(R−2w)(1 + ϵR2ξ · (R−2u)) .

(3.138)

This can be expanded like (3.104) in terms of the expansions at infinity (3.118a-3.118b),

leading to a relation for the component of R−2n. At constant order (n = 0), we obtain

J̃ =
ϵ

4
cIJK x̄I,(2)x̄J,(2)ξK +

1

36

(
cIJKξIξJξK

) (
cLMN x̄L,(2)x̄M,(2)x̄N,(2)

)
+
ϵ

ℓ
ḡm,(3)

+ ℓ

(
1

2
ξIc

JKLξJξK x̄L,(2) + ξI +
5

3
ℓ−3x̄I,(2)

)
ūI(2) ,

(3.139)

where we have imposed (3.119) and (3.123). This expression at most depends on the inputs

x̄I,(2), ξI , ḡm,(3) and ūI(2). All higher order powers of the J̃ relation at infinity in (3.138)

are redundant because they yield relations between the coefficients that have already been
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established.

In summary, we have studied the first order equations (3.117a-3.117d) due to supersym-

metry and conservation of electric charge, by expanding perturbatively near infinity. Given

the asymptotic values of the scalars fields (3.119), as well as the conserved charges Q̃I , J̃

defined by fall-off conditions at infinity, the simplest outcome would have been for supersym-

metry to determine the entire black hole geometry. Our finding is much more complicated:

all physical fields can be expressed as a perturbative series with expansion parameters that

depend not only on ξI and x̄I,(2) but also the zero-modes ūI(2) and ḡm,(3).

3.3.4.4 Summary and discussion of perturbative solutions

The study in the subsection so far focused on technical details. This was needed because

the interplay between supersymmetry, boundary conditions, and conserved charges proved

to be rather intricate. We now conclude the subsection with a summary of the final results

and discussion of their interpretation.

The black hole solution is parametrized primarily by the matter fields: scalar fields f−1XI ,

with the prefactor f such that the combination f−1XI is unconstrained by real special

geometry, and the magnetic potentials uI . Because of supersymmetry, the electric potentials

fY I can be identified with the scalar fields fXI , see (A.74). Given the matter fields, f−1XI

and uI , as well as supersymmetry, the geometry is specified by a Kähler base that depends

on the function gm, and a fibre encoding rotation through the potential w. All unknown

functions f−1XI , uI , gm and w can depend only on a single radial coordinate R2 and they

must satisfy specified first order differential equations (3.86a-3.86d).

Supersymmetry is never sufficient to specify an entire solution, because it is first order,

and there is always an integrability condition that is of second order. Taking into account

the Noether-Wald procedure, we find a second order constraint that satisfies a Gauss’ law

that was subject to detailed discussion in section 3.2. With this augmentation, the first order

differential equations form a complete system. Angular momentum, with its conservation

law also discussed in section 3.2, yields nothing new, except for a formula giving the angular

momentum in terms of the same parameters that define the electric charge in the near-horizon

expansion. In the case of the asymptotic infinity expansion, the electric charge depends on

one of the zero modes ūI(2) in addition to x̄I,(2), ξI whereas the angular momentum depends

on both the zero modes ḡm,(3) and ūI(2) as well as x̄I,(2) and ξI .

Consistent boundary conditions for the differential equations can be specified at any

radius, in principle. They must depend, at the very least, on the FI-coupling constants

ξI and the electric charges QI . We find that, when starting from the black hole horizon,

this data is sufficient. Because of supersymmetry, these parameters specify the entire near
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horizon geometry, including the squashing of the horizon due to angular momentum. This

explains why the electric charge and the angular momentum are only described with the use

of the leading xI,(0) term in f−1XI , but any further subleading information about any of the

fields uI , gm or w requires subleading contributions away from the horizon, with derivative

information of the f−1XI expansion (3.90d) supplied by the xI,(1) coefficients.

The linchpin for establishing this claim about the near horizon expansion is the scalar

field. In the series expansion for R2f−1XI , we have the constant at the horizon xI,(0) and then

at O(R2), we have xI,(1). For the third expansion coefficent, we find xI,(2) = 0 (3.113). With

this starting point, the recursion relation (3.116) shows that all xI,(k≥2) actually vanish. The

fact that the scalar field f−1XI truncates after the first two terms is the near horizon version

of the fact that f−1XI is a harmonic function, as is familiar from ungauged supergratity.

When analyzing the supersymmetry conditions we provisionally considered f−1XI an

input that all other variables were expressed in terms of. The truncation xI,(k≥2) = 0 has

the immediate effect of truncating uI(n≥3) = gm,(n≥3) = w(n≥3) = 0. The expansions at the

horizon (3.90a-3.90d) simplify and we find

R2uI =
ϵ

2
cIJKξJxK,(0)R

2 +
ϵℓ

4
cIJKξJξKR

4 , (3.140a)

R2gm =

(
1 +

1

2
cIJKξIξJxK,(0)

)
R2 +

1

ℓ2
R4 , (3.140b)

R2w = − ϵ

8
cIJKξIxJ,(0)xK,(0) −

ϵℓ

4
cIJKξIξJxK,(0)R

2 − ϵ

2ℓ
R4 , (3.140c)

R2f−1XI = xI,(0) + ℓξIR
2. (3.140d)

These expressions exactly match the well-known Gutowski-Reall solution [89], with the ap-

propriate identifications of notation6. The electric charge Q̃I (3.101) and the angular mo-

mentum J̃ (3.105) computed in the near horizon expansion similarly agree with the familiar

results.

The analogous analysis starting from asymptotic AdS5 turned out to be less straight-

forward. Recalling that coefficients starting from infinity are denoted by barred expansion

coefficients, we find that, when shooting in (going from infinity towards the horizon), we

must not only specify ξI and x̄I,(2), but also ūI,(2) and ḡm,(3). The harmonic function we es-

tablished at the horizon reproduces the Gutowski-Reall solution and has features in common

6uI , gm, w and f−1XI match U I , g, w and f−1XI respectively in [89] via:

qI =
1

3
x̄I,(2) , X̄I =

1

3
ℓξI . (3.141)
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with their very familiar analogues in ungauged supergravity. At infinity, it corresponds to

xI,(0) = x̄I,(2) , ūI(2) = ḡm,(3) = 0 . (3.142)

With these special values, the recursion relation (3.137) simplifies greatly

(n− 1)2

n− 2
ℓ−2x̄I,(n+1)

= −(n− 1)
(
1 + 1

2
(c · ξξx̄(2))

)
x̄I,(n) −

n∑
k=4

n− k

(k − 2)(k − 3)
(c · ξξx̄(k+1))x̄I,(n+1−k)

+ 2cIJKc
JLMcKNP ξLξN

n−1∑′

k=1

x̄M,(k+1)x̄P,(n−k+1)

4(k − 2)(n− k − 2)
+ ξI

n∑′

k=2

n+ 1 − k

n− 1 − k

(c · ξx̄(k)x̄(n−k+2))

2n
.

(3.143)

Since we already know x̄I,(3) = 0 from (3.123), and vanishing ūI(2) leads to vanishing x̄I,(4) as

well via (3.127), it is not difficult to show that the expansion coefficients x̄I,(k≥3) all vanish.

Thus the perturbative series for x̄I,(n) truncates after two terms, as expected for a harmonic

function. The identification (3.142) identifies the subleading coefficient in the harmonic

function at infinity with the leading one at the horizon, and vice versa.

While (3.142) are the default, it is interesting that asymptotic boundary conditions with

nonzero ūI,(2), ḡm,(3) are consistent with supersymmetry. It has been argued that there

may be missing solutions in certain supergravity theories that may not satisfy the canonical

nonlinear charge constraint, see for example [90, 91, 92, 93]. Since the value of the conserved

charges do not take the canonical form, one way wonder if those parameters are somehow

related to these missing solutions.

From this point of view, the possibility of ūI,(2), ḡm,(3) perturbing asymptotic AdS5 might

be desirable. In the following, we discuss this possibility.

First, recall that the electric charge Q̃I and the angular momentum J̃ are conserved

charges, which means that they are the same whether evaluated at infinity or the horizon.

Identifying (3.101) with (3.135) we find

xI,(0) −
1

2
ξI

(
1

2
cJKLxJ,(0)xK,(0)ξL

)
+

1

2
cIJK

(
1

2
cJNOξNξO

)
cKLMxL,(0)xM,(0)

= x̄I,(2) −
1

2
ξI

(
1

2
cJKLx̄J,(2)x̄K,(2)ξL

)
+

1

2
cIJK

(
1

2
cJNOξNξO

)
cKLM x̄L,(2)x̄M,(2)

+ ϵℓ
(
ξIξJ − cIJKc

KLMξLξM
)
ūJ(2) ,

(3.144)
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from matching Q̃I , and similarly (3.107) with (3.139) give

ϵ

4
cIJKxI,(0)xJ,(0)ξK +

1

36

(
cIJKξIξJξK

) (
cLMNxL,(0)xM,(0)xN,(0)

)
=
ϵ

4
cIJK x̄I,(2)x̄J,(2)ξK +

1

36

(
cIJKξIξJξK

) (
cLMN x̄L,(2)x̄M,(2)x̄N,(2)

)
+
ϵ

ℓ
ḡm,(3) + ℓ

(
1

2
ξIc

JKLξJξK x̄L,(2) + ξI +
5

3
ℓ−3x̄I,(2)

)
ūI(2) ,

(3.145)

from matching J̃ . These conservation laws are consistent with a UV solution specified by

xI,(0) (and the FI-couplings ξI) that flows to an IR configuration with x̄I,(2) that may not even

remotely agree with (3.142). This consideration suggests that supersymmetry and charge

conservation do little to constrain the IR limit of the flow.

However, there is a different source of intuition. If the perturbative series of f−1XI from

infinity did not truncate after exactly two terms, the third term would diverge at the horizon

R2 → 0, rather than approaching a constant. Other fields excited at the same order would

similarly suggest a singularity. It could happen that, taking into account successive powers

R−2k to all orders, there would be a finite limit R2 → 0, after all, but determining by explicit

computation whether this possibility is realized for any ūI,(2), ḡm,(3) is technically challenging.

From a different perspective, since the conserved charges from the near-horizon expansion

do satisfy the typical charge constraint, the possibly new black hole solutions that do not

seem to satisfy the typical charge constraint at infinity, would not flow to the expected near-

horizon extremal AdS2 geometry, which implies that these solutions may not be black holes

after all.

Moreover, a change in the electric potential fY I → fY I + βI with βI constant is trivial

as it does not change the electromagnetic field strength. However, with the vielbein we

have picked, such a shift must be accompanied by uI → uI − wβI . Because w includes

a term w ∼ R−2 at large R, such a gauge transformation has the ability to remove ūI(2).

This mechanism shows the ūI(2) are allowed, in principle, but also that they are not physical

deformations. Indeed, these coefficients diverge at the horizon, so they correspond to a

singular gauge which is ill-advised.

3.4 Entropy Extremization

In this section, we consider the near-horizon limit of the Legendre transform of the radial

Lagrangian (3.32), leading to a near-horizon entropy function. Extremizing this entropy

function with respect to the near-horizon variables leads to an expression for the entropy in

terms of the aforementioned charges.
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3.4.1 Near-horizon setup

First, we consider the near-horizon of the line element ds22 (3.27), where we recall that e2ρ

and e2σ can be expressed in terms of the variables f , gm, and w as in (3.75). At the horizon

R → 0, these variables have known near-horizon behaviors according to Table 3.1. Thus,

the near-horizon limit of (3.27) becomes

ds22,nh = v

(
R4

ℓ22
dt2 − dR2

R2

)
, (3.146)

with v and ℓ2 defined based on the R → 0 behavior of e2ρ and e2σ:

e2σ
∣∣
nh

≡ v

R2
, e2ρ

∣∣
nh

≡ v

ℓ22
R4 . (3.147)

Furthermore, v
1
2 and ℓ

1
3
2 are near-horizon length scales defining the 2D (t, R) part of the line

element (3.74)

ds25,nh = v

(
R4

ℓ22
dt2 − dR2

R2

)
− e−U1(σ2

1 + σ2
2) − e−U2(σ3 + a0)2 . (3.148)

The role of the variable ℓ2 is elucidated by noting the near-horizon limit of the Kähler

condition (3.76):

ℓ2 = 2ve−
1
2
U2 . (3.149)

This relation will be used to eliminate ℓ2 in the rest of the near-horizon analysis.

Having reviewed the near-horizon 2D line element, and in anticipation of applying the

entropy function formalism [94, 95, 96, 86, 97, 98, 99, 100, 101] to the Lagrangian density in

(3.32), we use the following coordinate transformation

dt→ 1

2
ℓ2dt ,

dR → 1

2R
dR ,

(3.150)

to bring the coordinates (t, R) in (3.146) to the canonical AdS2 form

ds22,nh =
v

4

(
R2dt2 − dR2

R2

)
, (3.151)

where now it is clear that v
1
2 is related to the AdS2 length scale.

The coordinate transformation (3.150) will have the effect of rescaling the Lagrangian
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2-form L2 = L1dt ∧ dR (3.22) by a factor

L2 →
ℓ2
4R

L2 . (3.152)

With the prescription of defining the entropy function through omitting the dt∧ dR volume

form from the dimensionally-reduced action, we anticipate dividing the density L1 by a factor

of 4R
ℓ2

.

Combining the near-horizon behaviors of e2ρ and e2ρ studied above with the dictionary

definitions (3.75), e−U1 , e−U2 and bI can be shown to be constants to leading order in the

near-horizon limit based on the leading-order behaviors of f , gm and w consistent with the

small R asymptotics in Table 3.1.

Concerning the matter fields, the electric fields aI and a0 in (3.18) become in the near-

horizon limit

aI
∣∣
nh

≡ eIR2

2v
e

1
2
U2dt, a0

∣∣
nh

≡ −e
0R2

2v
e

1
2
U2dt . (3.153)

The total 1D Lagrangian density (3.32) then becomes

L1,nh =
π

2G5

e−U1− 1
2
U2

4R

ℓ2
v

[
1

v2
e−U2(e0)2 − 4

v
+ eU1 − 1

4
e2U1−U2 − 1

2
GIJe

2U1bIbJ

+
2

v2
GIJ(eI − bIe0)(eJ − bJe0) − V

]
− π

2G5

4R

ℓ2

1

2
cIJKb

IbJ(eK − 2

3
e0bK) .

(3.154)

Apart from an overall prefactor in the integration measure, every other appearance of ℓ2 has

been re-expressed in terms of v and U2 by using (3.149). The 4R
ℓ2

factor has been factored

out of the volume element, and we follow the prescription made earlier to exactly cancel it

out with the ℓ2
4R

factor from (3.152) in order to obtain the Lagrangian density suitable for

the entropy function. We also note the presence of the Chern-Simons boundary terms in

(3.154) that are crucial for calculating the near-horizon charges.

We now obtain a near-horizon Lagrangian (3.154) that is a function of the variables v,

U1, U2, e
I , e0, and bI . We will next derive the charges QI and J from L1,nh, with the goal

of Legendre transforming the Lagrangian into an entropy function S that can be ultimately

extremized towards a function purely of the charges S = S(QI , J).

We note from the earlier Noether procedure (3.64) that QI and J were obtained in terms of

radially dependent variables. In terms of the near-horizon limit of the electric fields (3.153),
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this becomes

QI =
π

G5

[
e−U1− 1

2
U2

4

v
GIJ(eJ − bJe0) − 1

2
cIJKb

JbK
]
, (3.155)

J =
π

G5

[
−2

v
e−U1− 3

2
U2e0 +

4

v
e−U1− 1

2
U2GIJb

I(eJ − bJe0) − 1

3
cIJKb

IbJbK
]
. (3.156)

This introduces the charges QI and J as conjugates to the electric fields eI and e0, allowing

for the inversion

eI − bIe0 =
v

16
eU1+

1
2
U2GIJ

(
Q̃J + 2cJKLb

KbL
)
, (3.157)

e0 = −v
8
eU1+

3
2
U2

(
J̃ − Q̃Ib

I − 2

3
cIJKb

IbJbK
)

, (3.158)

where now the rescaled Q̃I and J̃ (3.65) have been used. The near-horizon entropy function

can now be defined as a Legendre transform of the Lagrangian density (3.154) with fixed

charges

S = 2π

(
eI
∂L1,nh

∂eI
+ e0

∂L1,nh

∂e0
− L1,nh

)
, (3.159)

which, after eliminating the electric fields through (3.157) and (3.158), yields

S =
4π2

G5

e−U1− 1
2
U2

[
1 +

v

4

(
1

4
e2U1−U2 − eU1 +

1

64
e2U1+2U2

(
J̃ − Q̃Ib

I − 2

3
cIJKb

IbJbK
)2

+V +
1

128
e2U1+U2GIJ

(
Q̃I + 2cIKLb

KbL
)(

Q̃J + 2cJMNb
MbN

)
+

1

2
e2U1GIJb

IbJ
)]

.

(3.160)

This entropy function depends on the physical variables v, U1, U2, b
I , XI describing the near

horizon geometry and matter fields, with the conserved charges Q̃I , J̃ appearing as fixed

parameters. At its extremum, it yields the physical variables and the black hole entropy as

a function of the charges.

3.4.2 Extremization of the Entropy Function

It is exceedingly simple to extremize with respect to v which appears only as a Lagrange

multiplier in front of the large round bracket that comprises nearly all of (3.160). This leaves

the extremized value of S:

S =
4π2

G5

e−U1− 1
2
U2 . (3.161)

99



This is exactly the black hole entropy computed via the area law for a horizon defined by

the volume 3-form e−U1− 1
2
U2σ1∧σ2∧σ3 with the angular ranges specified in (3.20). However,

the explicit dependence of U1 and U2 on the charges remains to be determined. For this we

must extremize with respect to the remaining variables

∂U1S = ∂U2S = ∂bIS = DIS = 0 . (3.162)

Here DI is the Kähler-covariantized derivative with respect to the scalars XI . It is defined

such that XIDI = 0, which is the correct way to vary the scalars while also implementing

the constraint (A.9). The conditions (3.162) give

0 =V − eU1 +
1

4
e2U1−U2 +

1

64
e2U1+2U2M2 +GIJ 1

128
e2U1+U2KIKJ +

1

2
GIJe

2U1bIbJ , (3.163)

0 = − 4 − vV +
v

4
e2U1−U2 +

v

64
e2U1+2U2M2 +GIJ v

128
e2U1+U2KIKJ +

v

2
GIJe

2U1bIbJ ,

(3.164)

0 = − 2 − v

2
V +

v

2
eU1 − 3v

8
e2U1−U2 +

3v

128
e2U1+2U2M2 +GIJ v

256
e2U1+U2KIKJ

− v

4
GIJe

2U1bIbJ , (3.165)

0 =vDIV +
v

128
e2U1+U2(DIG

JK)KJKK +
v

2
e2U1(DIGJK)bJbK , (3.166)

0 =
1

32
eU2
(
−eU2KIM +2GJKcIJNb

NKK

)
+GIJb

J , (3.167)

where M and KI are shorthand for

M ≡ J̃ − Q̃Ib
I − 2

3
cIJKb

IbJbK , KI ≡ Q̃I + 2cIJKb
JbK . (3.168)

Additionally, DI acts on the scalars XJ following7

DIX
J = δJI − 1

3
XIX

J . (3.170)

Ideally we seek the most general extremum that solves (3.163-3.167) that is consistent with

our ansatz (3.148). However, the extremization equations are highly nonlinear in the vari-

ables of interest (v, U1, U2, X
I , bI). Therefore, in the following we specialize and find all

supersymmetric solutions.

7This can be generalized to other quantities via the product rule on DI , for instance,

DIXJ =
1

2
cJKLDI(X

KXL) = cIJKXK − 2

3
XIXJ . (3.169)
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Near-horizon supersymmetric conditions

It is straightforward to take the near-horizon limit of the supersymmetry conditions (3.80-

3.82), along with the identification XI = Y I (A.74). After inverting eI and e0 in terms of Q̃I

and J̃ , following (3.157) and (3.158)), we obtain the following near-horizon supersymmetric

relations

0 = Q̃I + 2cIJKb
JbK − 4e−U2XI , (3.171)

0 = J̃ − Q̃Ib
I − 2

3
cIJKb

IbJbK − 4e−U1−U2(ξ ·X) , (3.172)

0 = bI − e−U1
(
XI(ξ ·X) −GIJξJ

)
, (3.173)

0 = eU1 − 4

v
− 2V . (3.174)

We also need the near-horizon version of the Kähler condition (3.76). We can trade the

variables ρ and σ describing the 2D geometry for f and gm following (3.75) and eliminate

a0t that results in favor of the charges through (3.158). These steps lead to

4

v
− (ξ ·X)2 = e2U1−U2 . (3.175)

We have verified that when the five supersymmetric relations (3.171-3.175) are satisfied,

then the five S extremization equations (3.163-3.167) are satisfied as well. The details of

this computation are not instructive so we omit them. The reverse logic would be that

all extremal solutions within the scope of our ansatz are supersymmetric. This we have

not shown, and it is indeed not true, i.e. there are no known nonextremal supersymmetric

Lorentzian black holes. Thus the specialization to supersymmetric solutions addresses a

genuine subset of the extremal black holes.

In the remainder of this subsection we solve the supersymmetry relations (3.171-3.175)

explicitly and find all variables as functions of the charges QI and J .

3.4.2.1 Solving for the entropy and the charge constraint

The supersymmetry conditions (3.171-3.175) are all algebraic, but they are far from triv-

ial. Straightforward contractions, followed by taking simple linear combinations, give scalar
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identities

X · b = e−U1ξ ·X ,

Q̃ · b =
3

2
J̃ − 8e−U1−U2ξ ·X ,

ξ · b = eU1−U2 − 1 , (3.176)

which will prove useful later. Our strategy will be to exploit identities like these to find

simple combinations of variables that can be expressed entirely in terms of the charges QI , J

and the couplings ξI . Combinations of those will in turn give explicit formulae for physical

variables.

In this spirit, we expand Q̃JQ̃K using the square of (3.171), and then simplify the terms

that are products of b’s using (3.172). We obtain

1

2
cIJKQ̃JQ̃K = 32e−2U1−U2cIJKξJξK + 16e−U1−U2XI − 2J̃bI . (3.177)

Contracting (3.177) with ξI , the first term on the right becomes proportional to e−2U1−U2 ,

which is related to the black hole entropy through S (3.161). There will also be a term (ξ ·X)

that we can eliminate with the help of

J̃ = 8e−2U1(ξ ·X) +
32

3
e−3U1cIJKξIξJξK , (3.178)

which is a simplification of (3.172) with Q̃I and bI eliminated using (3.171) and (3.173),

respectively. These steps give

1

6
cIJKξIξJξK

(
S
2π

)2

=
1

2
cIJKξIQJQK − π

4G5

2J , (3.179)

which amounts to an explicit formula for the black hole entropy as function of the conserved

charges

S = 2π

√
1

2
cIJKℓ3ξIQJQK −N2J . (3.180)

This is in full agreement with the entropy of supersymmetric extremal AdS5 black holes

[65, 102, 63]. We have expressed the entropy using the untilded charges QI and J (3.65) and

traded G5 for N2 using πℓ3

4G5
= 1

2
N2 and applied 1

6
cIJKξIξJξK = ℓ−3 from (3.12) to explicitly

show all the dimensionful quantities.

Continuing with the strategy of evaluating natural combinations of the conserved charges,

we evaluate the cubic invariant of the charges cIJKQ̃IQ̃JQ̃K by taking the cube of Q̃I from
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(3.171), with the resulting contractions of XI and bI such as cIJKX
IbJbK and XIb

I simplified

using the bI relation (3.173) as well as (3.174) and (3.175) for the terms quadratic in ξ. This

yields

cIJKQ̃IQ̃JQ̃K = 6e−U1−2U2 +
1

8
J̃cIJKb

IbJbK . (3.181)

Alternatively, we can arrive at the cubic product of electric charges by contracting (3.177)

with QI from (3.171), giving

1
64
cIJKQ̃IQ̃JQ̃K

= 4e−U1−2U2 + 2e−2U1−U2 + e−2U1−U2cIJKQ̃IξJξK − 1
4
e−U1−U2 J̃(ξ ·X) + 1

8
J̃cIJKb

IbJbK .

(3.182)

Comparing (3.181) and (3.182), we find the identity

1

2
cIJKQ̃IξJξK + 1 = eU1

(
e−U2 +

1

8
J̃ ξ ·X

)
. (3.183)

It is useful because it gives access to a useful combination of U1, U2, and ξ ·X. Indeed, we

can simplify the cube of the electric charge in the form (3.181) using the b identity (3.173),

and then (3.178) to eliminate (ξ ·X), to give

1

6
cIJKQ̃IQ̃JQ̃K + J̃2 = 64e−U1−U2

(
e−U2 +

1

8
J̃ ξ ·X

)
. (3.184)

The right-hand side of this equation differs from that of (3.183) only by a factor proportional

e−2U1−U2 which is the square of the geometric measure on the black hole horizon. As such,

it is related to the black hole entropy S both through the area law (3.161) and as a function

of charges (3.180). Collecting these relations, and reintroducing QI and J (3.65) in order to

align with the conventional units for this result, we find(
1

6
cIJKQIQJQK +

π

4G5

J2

)
= ℓ3

(
1

2
cIJKξIξJQK +

π

4G5

)(
1

2
cIJKξIQJQK − π

2G5

J

)
.

(3.185)

This is the prototypical 5D nonlinear charge constraint [65, 102, 63]. However, the charge

constraint (3.185) does not make progress towards solving the supersymmetry equations nor

determining the near horizon solution in terms of conserved charges. Rather, it is a relation

between the conserved charges that, if taken at face value, all supersymmetric black holes

dual to N = 4 SYM must satisfy. This is extremely important and the continuing questions

regarding this constraint is one of the motivations for the detailed study reported in this

chapter.
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Even at this point of our discussion where we are deep into solving certain nonlinear equa-

tions, it is worth noting that that the black hole entropy (3.179) and the charge constraint

(3.185) can be combined into one complex-valued equation

1

6
cIJK

(
QI + i

S
2π
ξI

)(
QJ + i

S
2π
ξJ

)(
QK + i

S
2π
ξK

)
+

π

4G5

(
−J + i

S
2π

)2

= 0 .

(3.186)

The real part gives the constraint (3.185) and the imaginary part gives the formula for the

entropy (3.179). Complexified equations are natural in problems involving supersymmetry.

Also, (3.186) appears as the condition for a complex saddle point that provides an accounting

in N = 4 SYM for the entropy of black hole preserving 1/16 of the maximal supersymmetry

[65, 103, 63, 102].

3.4.2.2 Near-horizon variables as function of conserved charges

Having discussed the black hole entropy and the constraint on charges, we move on to

expressing all other aspects of the near-horizon geometry and the matter content in terms

of the fixed charges QI and J .

For the following computations, we make use of the expressions (3.171) and (3.172) for J

and QI simplified using the relation for bI in (3.173). We find

QI =
π

G5

e−2U1
[
XIe

2U1−U2 +XI(ξ ·X)2 − 2ξI(ξ ·X) − 4GIJc
JKLξKξL

]
, (3.187)

J =
16π

G5

e−3U1

[
1

8
eU1ξ ·X + ℓ−3

]
. (3.188)

Multiplying both sides of (3.183) by J , using the relation (3.188), we can solve for eU1 ξ ·X
in terms of the charges

1

8
ξ ·XeU1 =

J
(

1
2
cIJKQIξJξK + π

4G5

)
−
( S
2π

)2
ℓ−3

J2 +
( S
2π

)2 . (3.189)

This result ties a geometrical quantity — as it appears in the near-horizon Kähler relation

(3.175) — to the charges. It also has an additional immediate value as (3.188) relates it to

e−3U1 , giving

e−3U1 =
G5

16π

J2 +
( S
2π

)2
1
2
cIJKQIξJξK + π

4G5
+ Jℓ−3

. (3.190)

This expression sets the scale of the non-deformed S3 which has line element e−U1(σ2
1 +σ2

2 +
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σ2
3).

Due to the rotation of the black hole, the horizon geometry (3.74) is deformed away from

S3. We can quantify the deformation by computing eU1−U2 via e3U1 from (3.190) and e2U1+U2

from (3.161):

eU1−U2 =

4G5

π

(
1
2
cIJKQIξJξK + π

4G5
+ Jℓ−3

) ( S
2π

)2
J2 +

( S
2π

)2 . (3.191)

The only scalar near-horizon parameter that was not yet computed is the AdS2-volume v.

Due to the alternate near-horizon Kähler condition (3.175), the combination veU1 can be

expressed in terms of S, (ξ ·X)eU1 and e−3U1 . These three quantities were given as functions

of the conserved charges in (3.161), (3.189) and (3.190). After simplifications, we find

v

4
eU1 =

πℓ3

4G5

ℓ3
(

1
2
cIJKQIξJξK + π

4G5

)
+ J

ℓ6
(

1
2
cIJKQIξJξK + π

4G5

)2
+
( S
2π

)2 . (3.192)

This completes the explicit extremization of the entropy function for the scalar variables

which at this point have all been expressed in terms of conserved charges QI , J and FI-

couplings ξI .

We must similarly determine the vectors bI and XI at the extremum which may be

determined, in principle, by the input vectors ξI and Q̃I . However, the position of the vector

indices I do not match so the full real special geometry enters. We exploit only the vectorial

symmetry, and then, XI and bI must be linear combinations of three vectors: cIJKQ̃IQJ ,

cIJKQ̃IξJ , and cIJKξIξJ . One linear relation of this kind was given in (3.177). To find

another, we contract (3.177) with Q̃I and simplify using (3.182). This gives

Q̃ ·X = 8e−U2 + 4e−U1 . (3.193)

Combining this with (3.176) and (3.189), we have all four inner products of bI , XI , QI

and ξI . We already determined the scalar combinations cIJKξIξJQ̃K and cIJKξIQ̃JQ̃K from

(3.179) and (3.183), so we can establish the vectorial equation

1

2
cIJKQ̃JξK = bI +

1

8
J̃eU1XI . (3.194)
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Inversion of (3.177) and (3.194) give

bI =
4G5

π
· 1

2

cIJKξJQK

( S
2π

)2 − (1
2
cIJKQJQK − 1

2
cIJKξJξK

( S
2π

)2)
J

J2 +
( S
2π

)2 , (3.195)

and

XI = 4e−U1

JcIJKξJQK +
(

1
2
cIJKQJQK − 1

2
cIJKξJξK

( S
2π

)2)
J2 +

( S
2π

)2 , (3.196)

where, once we impose the value of e−U1 given in (3.190), XI is a function of the entropy

(3.180) and the charges of the black hole.

In summary, we have found that the near-horizon limit of the supersymmetric equations

implies that the near-horizon fields and variables of the geometry/matter ansatz are given

by the charges QI and J , through the relations (3.190-3.196), which themselves parametrize

a special extremum of the near-horizon entropy function (3.160), for general FI coupling ξI

and cIJK .

3.4.3 Complexification of the near-horizon variables

Each of the main results derived in the previous subsection are complicated formulae. How-

ever, they resemble one another and, in particular, it stands out that several expressions,

such as (3.195) and (3.196), share a common denominator. Indeed, there is an elegant way

to pair them into complexified near-horizon variables

ZI = bI − ie−
1
2
U2XI =

G5

π

cIJK(QJ + i S
2π
ξJ)(QK + i S

2π
ξK)

−J + i S
2π

. (3.197)

To the extent XI can be interpreted is an electric field it is indeed natural that its partner

is a magnetic field bI . In addition to the real part bI being given by (3.195), we recognize

in the imaginary part the combination of the factor e−U1− 1
2
U2 in the entropy S and XIeU1

given respectively by (3.180) and (3.196).

Some discussions of the AdS5 black hole geometry invoke from the outset principles that

are inherently complex, such as the Euclidean path integral or special geometry in four di-

mensions. This can give conceptual challenges so, in our discussion of entropy extremization,

complex variables such as (3.197) are introduced [29, 104] only for their apparent convenience.

To make precise connections with the literature, we now to reintroduce the electric fields eI

and e0 conjugate to the conserved charges Q̃I and J̃ . For e0 defined in (3.158), simplification
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using (3.172), gives an expression for e0 that depends on veU1 in (3.192), e−3U1 in (3.190), S
in (3.161), and (ξ ·X)eU1 in (3.189). Collecting formulae, we then find

e0 = −4π

S
πℓ3

4G5

Jℓ3
(

1
2
cIJKQIξJξK + π

4G5

)
−
( S
2π

)2
ℓ6
(

1
2
cIJKQIξJξK + π

4G5

)2
+
( S
2π

)2 . (3.198)

This expression for e0 combines nicely with (3.192) and gives the complex potential

1

2
e0 + i

v

4
eU1 =

πℓ3

4G5

(
2π

S

) −J + i S
2π

ℓ3
(

1
2
cIJKQIξJξK + π

4G5

)
+ i
( S
2π

) . (3.199)

Given e0 in (3.198) as well as (3.195) and (3.196), the electrical potentials dual to the vectorial

charges become (3.157):

eI =
2π

S

ℓ6
(

1
2
cIJKQJQK − 1

2
cIJKξJξK

( S
2π

)2)
(1
2
cIJKQIξJξK + π

4G5
) + ℓ3cIJKQJξK( S

2π
)2

ℓ6
(

1
2
cIJKQIξJξK + π

4G5

)2
+
( S
2π

)2 .

(3.200)

As preparation for the complexified version, we combine (3.195) and (3.196) as

v

2

(
bIeU1 +XIξ ·X

)
=
ℓ3cIJKQJξK

(
1
2
cLMNQLξMξN + π

4G5

)
− ℓ3

(
1
2
cIJKQJQK − 1

2
cIJKξJξK

( S
2π

)2)
ℓ6
(

1
2
cIJKQIξJξK + π

4G5

)2
+
( S
2π

)2 ,
(3.201)

where we have imposed v
4
eU1 in (3.192), e−U1 in (3.190), and (ξ ·X)eU1 in (3.189). We then

find the complex special geometry vector

eI + i
v

2

(
bIeU1 +XI(ξ ·X)

)
=

2π

S

1
2
cIJK(QJ + i S

2π
ξJ)(QK + i S

2π
ξK)

ℓ3(1
2
cLMNQLξMξN + π

4G5
) + i S

2π

. (3.202)

The complex potentials (3.199-3.202) appear commonly in the literature, albeit with the

normalization

ω

π
=
πℓ3

4G5

(
2π

S

) −J + i S
2π

ℓ3
(

1
2
cIJKQIξJξK + π

4G5

)
+ i
( S
2π

) =
1

2
e0 + i

v

4
eU1 , (3.203)
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and

∆I

π
=

2π

S

1
2
cIJKℓ3(QJ + i S

2π
ξJ)(QK + i S

2π
ξK)

ℓ3
(

1
2
cIJKQIξJξK + π

4G5

)
+ i
( S
2π

) = eI + i
v

2
(bIeU1 +XIξ ·X) . (3.204)

The real and imaginary parts of the complexified potentials ω and ∆I are related to one

another through

ξIe
I + e0 = 0 . (3.205)

and from the identities (3.173) and (3.175), we find

2ω + ξI∆
I = 2πi . (3.206)

This is our version of the well-known complex constraint that is imposed on the chemical

potentials conjugate to J and QI in analyses involving complex saddle points from the outset.

An important example is the Hosseini-Hristov-Zaffaroni (HHZ) extremization principle for

5D rotating BPS black holes [29, 65, 102, 63]. The complexified potentials ω and ∆I can be

exploited to simplify the Lagrangian density (3.154). The linchpin is the identity

1
6
cIJK∆I∆J∆K

ω2
=

(
2π2

S

)
(−J + iS

2π
)2

ℓ3
(

1
2
cIJKQIξJξK + π

4G5

)
+ i
( S
2π

) . (3.207)

It is established using the cube of (3.204), along with (A.12) to simplify the products of

cIJK , as well as the square of (3.203) and the complexified charge relation (3.186). The same

combination of terms appears when evaluating instead

∆IQI − 2ωJ = −
(
N2

2

)(
2π2

S

)
(−J + iS

2π
)2

ℓ3
(

1
2
cIJKQIξJξK + π

4G5

)
+ i
( S
2π

) + S , (3.208)

with the use of the definitions of ω and ∆I in (3.203) and (3.204) respectively, as well as the

complex relations (3.186) and (3.206), and exchanging G5 for N via πℓ3

4G5
= N2

2
. This allows

us to rewrite the black hole entropy S as

S = ∆IQI − 2ωJ +
N2

2

1
6
cIJK∆I∆J∆K

ω2
. (3.209)

Referring back to the real-valued entropy functional S as the Legendre transform of the

on-shell Lagrangian L1 (3.159), and noting that (eI , e0) constitute the real parts of (∆I , ω),
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we obtain the greatly simplified expression

2πL1,nh = −N
2

2
Re

( 1
6
cIJK∆I∆J∆K

ω2

)
. (3.210)

We have thus been able to reproduce the standard HHZ entropy function result [29], although

while remaining entirely in 5D (no reduction to 4D), with the help of the entropy function

formalism. The derivation of (3.209) also makes the Legendre transformation between the

entropy S and the complexified entropy function manifest.

3.5 Discussion

We have analysed the first order attractor flow equations derived from the vanishing of the

supersymmetric variations in D = 5 N = 2 gauged supergravity with FI-couplings to N = 2

vector multiplets. We focus on solutions with electric charges QI and one independent angu-

lar momentum J . In order to analyze the flow equations and find the conserved charges, we

first assume a perturbative expansion at either the near-horizon geometry or the asymptotic

boundary. As usual, the supersymmetry conditions are not sufficient to guarantee a solution

to the equation of motion, but we find that the conserved Noether-Wald surface charges fill

this gap. This leads to a self-contained set of first order differential equations.

To integrate these differential equations we need boundary conditions, or more generally

integration constants. In the present setting, this turns out to be somewhat complicated.

Generically, first order differential equations, even coupled ones, just need values at one

point to compute the derivative and then, by iteration, the complete solution follows.8 We

find that, whether starting from the black hole horizon or the asymptotic AdS5, solving the

first order equations is subtle. Supersymmetry conditions exhibit zero-modes which fail to

provide a derivative, as a first order differential equation is expected to do. On the positive

side, in these situations supersymmetry give relations between the first few coefficients near

a boundary.

After exploiting conserved charges extensively, the initial value problem simplifies. Indeed,

at the horizon, all fields must satisfy the entropy extremization principle, discussed in detail

in section 3.4. The relative simplicity of shooting out from the horizon can be construed as

black hole attractor behavior. The situation starting from asymptotic AdS is much more

involved, as detailed in subsection 3.3.4.

8Locality is among the major caveats. In principle, first order differential equation give derivatives, and
then the derivatives of the derivatives, and so on for the whole series. Generally, it is not easy to prove
convergence for a series obtained this way, but this obstacle, and other mathematical fine points, do not
appear significant at our level of analysis.
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We are far from the first to investigate the attractor flow for rotating AdS5 black holes.

Some notable works are [29, 104]. In our procedure, we have remained in five dimensions,

without dimensionally reducing to four dimensions, where the metric no longer contains a

fibration. Our approach is complementary, in that the role of rotation is highlighted. Ad-

ditionally, we have allowed for backgrounds that go beyond the omnipresent STU model.

Finally, we have also considered a complexification of the near-horizon variables that elu-

cidates some features of the theory from the near-horizon perspective. This includes the

well-known complex constraint on the chemical potentials.

Many open problems persist after our analysis of AdS5 rotating black holes. For example,

we derived the first order attractor flow equations from the supersymmetric variations of the

N = 2 gauged theory, but it would be instructive to also derive them from the Lagrangian.

After a suitable Legendre transform, the dimensionally reduced Lagrangian can be written

as a sum of squares, up to a total derivative. In minimizing the Lagrangian, each square

gives a condition that is equivalent to the vanishing of the supersymmetric variations. It

would be interesting to extract the flow equations from this method as it can also be more

directly related to the entropy extremization once the near-horizon limit is taken. We also

expect this now radial entropy function to greatly simplify once the fields and variables in

it are suitably complexified, such as was done at the near-horizon level. This would allow

for an understanding of the underlying complex structure of the rotating AdS5 black hole

spacetime without the customary reduction to 4D.

Higher derivative corrections in the context of AdS5 black holes have been studied by

[85, 105, 106, 107] and references therein, and it would be interesting to understand the

role of higher derivative corrections in the attractor flow. This is also interesting from the

entropy extremization point of view and allows us to probe higher derivative corrections to

the entropy from the near-horizon, which can be checked via holography. Finally, a similar

analysis can then be completed in other dimensions, including the rotating AdS black holes

in six and seven dimensions [108, 109]. The product of the scalar fields with one of the

parameters of the metric yields a harmonic function and we would expect that one can

solve the flow equations using a similar approach via a perturbative expansion. We hope to

comment on these ideas in the near future.

110



APPENDIX A

Conventions, Special Geometry, and Deriving

the Radial Flow

A.1 Conventions and notations

In this Appendix, we summarize the conventions and notations used in the various expres-

sions involving differential geometry as well as real special geometry.

We introduce components as

ξ = ξµ
∂

∂xµ
, ω =

1

r!
ωµ1...µr dxµ1 ∧ . . . ∧ dxµr . (A.1)

In this notation the interior product iξ of ω with respect to ξ is

iξω =
1

(r − 1)!
ξνωνµ2...µr dxµ2 ∧ . . . ∧ dxµr

=
1

r!

r∑
s=1

ξµsωµ1...µs...µr(−1)s−1 dxµ1 ∧ . . . ∧ d̂xµs ∧ . . . ∧ dxµr .
(A.2)

The wide hat indicates that dxµs is removed.

The Hodge dual is defined by

⋆r ( dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµr) =

√
|g|

(m− r)!
εµ1µ2...µrvr+1...vm dxvr+1 ∧ . . . ∧ dxvm , (A.3)

where the subscript r denotes the dimension of the spacetime and the totally antisymmetric
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tensor is

εµ1µ2...µm =


+1 if (µ1µ2 . . . µm) is an even permutation of (12 . . .m)

−1 if (µ1µ2 . . . µm) is an odd permutation of (12 . . .m)

0 otherwise.

. (A.4)

The indices on the totally antisymmetric symbol εµ1µ2...µm can be raised by the metric through

εµ1µ2...µm = gµ1v1gµ2v2 . . . gµmvmεv1v2...vm = g−1εµ1µ2...µm . (A.5)

The Hodge dual of the identity 1 gives the invariant volume element

⋆r1 =

√
|g|
m!

εµ1µ2...µm dxµ1 ∧ . . . ∧ dxµm =
√
|g|dx1 ∧ . . . ∧ dxm . (A.6)

We define the r-forms U and V as

U =
1

r!
Uµ1...µr dxµ1 ∧ . . . ∧ dxµr , V =

1

r!
Vµ1...µr dxµ1 ∧ . . . ∧ dxµr , (A.7)

such that

U ∧ ⋆rV = V ∧ ⋆rU =
1

r!
Uµ1...µrV

µ1...µr
√

|g|dx1 ∧ . . . ∧ dxm. (A.8)

A.2 Real special geometry

In this appendix we summarize the conventions and formulae needed for manipulations in

real special geometry. We study N = 2 theories with nV vector multiplets and nH = 0 hyper-

multiplets. The starting point is a collection of real 5D scalar fields XI with I = 0, 1, . . . , nV .

They are subject to the constraint

1

6
cIJKX

IXJXK = 1 , (A.9)

where the structure constants cIJK are real numbers, completely symmetric in I, J , and K,

that satisfy the closure relation

cIJKcJ ′(LMcPQ)K′δJJ
′
δKK

′
=

4

3
δI(LcMPQ) . (A.10)

The index I takes nV + 1 distinct values but, because of the constraint (A.9), there are nV

independent scalar fields, one for each N = 2 vector multiplet in 5D. Round brackets (· · · )
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indicate symmetrization of indices with weight one so, for example, cIJK = c(IJK).

Using the Euclidean metric to define cIJK with upper indices, meaning

cIJK = δII
′
δJJ

′
δKK

′
cI′J ′K′ , the closure relation (A.10) can be rewritten as

cIJKc
J(LMcPQ)K =

4

3
δ
(L
I c

MPQ) . (A.11)

We also note the following identities involving symmetrizations

cIJKc
J(LMcPQ)K =

1

3
cIJK

(
cJLMcPQK + cJLP cMQK + cJPMcLQK

)
, (A.12)

δ
(L
I c

MPQ) =
1

4

(
δLI c

MPQ + δMI c
LPQ + δPI c

LMQ + δQI c
LMP

)
. (A.13)

Given the scalars XI and cIJK as inputs, we define the scalar XI (with lower index) and the

metric on field space GIJ as

XI =
1

2
cIJKX

JXK ,

GIJ =
1

2

(
XIXJ − cIJKX

K
)
. (A.14)

In manipulations we often use the formulae

GIJX
J =

1

2
XI ,

XIX
I = 3 . (A.15)

The closure relation (A.11) then requires that the inverse matrix GIJ satisfies

cIJKXK = XIXJ − 1

2
GIJ . (A.16)

It follows that, just as GIJ lowers indices on XJ indices (up to a factor of 1
2
), the inverse

GIJ raises indices on XJ

GIJXJ = 2(XIXJ − cIJKXK)XJ = 2XI . (A.17)

We also note the identity

(cIJKXK)(cILMX
M) =

(
XIXJ − 1

2
GIJ

)
(XIXL − 2GIL) = δJL +XJXL . (A.18)

In the literature, it is common to summarize real special geometry through the cubic poly-
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nomial

V =
1

6
cIJKX

IXJXK . (A.19)

The constraint (A.9) is simply V = 1. Differentiating first and then imposing the constraint

V = 1, we find

VI ≡
∂V
∂XI

=
1

2
cIJKX

JXK = XI , (A.20)

VIJ ≡ ∂2V
∂XI∂XJ

= cIJKX
K , (A.21)

GIJ = −1

2

∂2 lnV
∂XI∂XJ

=
1

2
(VIVJ − VIJ) =

1

2

(
XIXJ − cIJKX

K
)
. (A.22)

The inverse VIJ of VIJ (meaning it satisfies VIJVJK = δIK) is given by

VIJ =
1

2
(XIXJ −GIJ) . (A.23)

The STU-model is an important example. In this special case nV = 2 and we shift the labels

so I = 1, 2, 3 (rather than I = 0, 1, 2). The only nonvanishing cIJK are c123 = 1 and all its

permutations. In our normalizations, the STU model has

X1X2X3 = 1 , X−1
I = XI , GIJ =

1

2
X2
I δIJ .

In these formulae there is no sum over I = 1, 2, 3. We add a special note about adapting the

formalism of real special geometry, this time adapted to ξI given by the constraint

1

6
cIJKξIξJξK = ℓ−3 . (A.24)

Following similar steps in terms of defining a raised version of the ξI , imposing consistency

with the raised cIJK through the condition (A.12), we can define the following

ξI =
1

2
cIJKξJξK ,

ξI =
1

2
ℓ3cIJKξ

JξK .
(A.25)

We then go on defining a version of the GIJ and GIJ for the ξI

G̃IJ = 2
(
ℓ3ξIξJ − cIJKξK

)
,

G̃IJ =
1

2
ℓ3
(
ξIξJ − cIJKξ

K
)
,

(A.26)
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which leads to the crucial inversion identity on the ξI :

1

2
ℓ3(cIKMc

MNP ξNξP − ξIξK)
(
cIJLξL

)
= δJK . (A.27)

A final comment: in this article, we take 5D supergravity as the starting point. For an

introduction to the geometric interpretation of the 5D fields and the formulae they satisfy

in terms of Calabi-Yau compactification of 11D supergravity, we refer to [110].

A.3 Supersymmetry conditions

In this appendix we establish the conditions that our ansatz (3.69) must satisfy in order to

preserve supersymmetry.

A.3.1 The Kähler condition on the base geometry

We want to establish the conditions on the variables in the 4D base geometry in (3.69) that

ensure that it is Kähler. For a given vielbein basis ea on the base ds24 = ηabe
aeb, such as

(3.71), the Kähler condition is

d(e1 ∧ e4 − e2 ∧ e3) = 0 . (A.28)

In the (1 + 4) split (3.69), the base space (3.70) is automatically Kähler as

(
g−1/2
m

) (
1
2
Rg1/2m dR ∧ σ3

)
− 1

4
R2σ1 ∧ σ2 = d

(
1
4
R2σ3

)
, (A.29)

which is automatically closed. We look instead to the (2 + 3) split in (3.74) to obtain a

nontrivial Kähler condition. For that, we rewrite (3.74) in the form ds25 = f 2(dt + ω)2 −
f−1ds24, and find the warp factor

f = (e2ρ − e−U2(a0t )
2)1/2 , (A.30)

the 1-form

ω = −f−2e−U2a0t σ3 , (A.31)

and the 4D base geometry

ds24 = fe2σdR2 +
1

4
R2(σ2

1 + σ2
2) + f−1e2ρ−U2σ2

3 . (A.32)
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To find the condition for which (A.32) is Kähler, we introduce the basis 1-forms

e1 = f 1/2eσdR , (A.33)

e2 =
1

2
Rσ1 , (A.34)

e3 =
1

2
Rσ2 , (A.35)

e4 = f−1/2eρ−U2/2σ3 . (A.36)

The Kähler 2-form J = e1 ∧ e4 − e2 ∧ e3 becomes

J = eσ+ρ−U2/2dR ∧ σ3 −
1

4
R2σ1 ∧ σ2 . (A.37)

The Kähler condition demands that J is closed

dJ = eσ+ρ−U2/2dR ∧ σ1 ∧ σ2 −
1

2
RdR ∧ σ1 ∧ σ2 = 0 . (A.38)

We therefore find

eσ+ρ−U2/2 =
1

2
R . (A.39)

This condition must be satisfied so that the general ansatz (3.74) can support supersymmetry.

The Kähler condition allow us to rewrite the base geometry (A.32) as

ds24 = fe2σdR2 +
1

4
R2(σ2

1 + σ2
2 + f−1e−2σσ2

3) . (A.40)

This form of the base geometry depends on a single function fe2σ.

A.3.2 Kähler potential

The Kähler condition (A.39) relates the 1-forms e1 and e4 in (3.71). If we define a radial

coordinate r such that

∂rR = f− 1
2 e−σ , (A.41)

the tetrad simplifies so

e1 = dr , (A.42)

e4 = ∂r
(
1
4
R2
)
σ3 . (A.43)
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with e2 and e3 unchanged. In these coordinates, the unique spin connections solving Cartan’s

equations dea + ωabe
b = 0 are

4ω2
1 =4 ω4

3 =
∂rR

R
e2 , (A.44)

4ω3
1 =4 ω2

4 =
∂rR

R
e3 , (A.45)

4ω4
1 =

(
∂rR

R
+
∂2rR

∂rR

)
e4 , (A.46)

4ω2
3 =

(
∂rR

R
− 2

R∂rR

)
e4 , (A.47)

where the 4 superscript distinguishes these 4D spin connections from the 5D spin connections

that will appear in later computations. The resulting curvature 2-forms Ra
b = dωab + ωacω

c
b

on the 4D base become

R2
1 = R4

3 =
∂2rR

R
(e1e2 + e3e4) , (A.48)

R3
1 = R2

4 =
∂2rR

R
(e1e3 − e2e4) , (A.49)

R4
1 =

(
∂3rR

∂rR
+ 3

∂2rR

R

)
e1e4 + 2

∂2rR

R
e3e2 , (A.50)

R2
3 = 2

∂2rR

R
e1e4 +

4

R2
((∂rR)2 − 1)e3e2 . (A.51)

The components of the Riemann curvature are read off from Ra
b = 1

2
Riema

bcde
ced. For a com-

plex manifold they are collected succinctly in the Kähler curvature 2-form with components

Rab = 1
2
RiemabcdJ

cd. In the context of our ansatz (3.70), we have

R14 = ϵ(Riem1423 − Riem1414) = ϵ

(
∂3rR

∂rR
+ 5

∂2rR

R

)
,

R23 = ϵ(Riem2323 − Riem1423) = −ϵ
(

2
∂2rR

R
+

4

R2
((∂rR)2 − 1)

)
, (A.52)

and so the Kähler curvature 2-form becomes

R =
1

2
ϵ
(
R∂3rR + 5∂rR∂

2
rR
)
drσ3 −

1

2
ϵ
(
R∂2rR + 2((∂rR)2 − 1

)
σ1σ2

= ϵd

(
(
1

2
R∂2rR + (∂rR)2 − 1)σ3

)
. (A.53)
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It is manifestly of the form R = dP where P = pσ3 with

p = ϵ

(
1

2
R∂2rR + (∂rR)2 − 1

)
= ϵ

(
1

4
R∂R(

1

f
e−2σ) +

1

f
e−2σ − 1

)
. (A.54)

The second equation follows by repeated use of (A.41). Since R is the exterior derivative of

something, it is clearly closed. Thus the base manifold is Kähler.

The final expression (A.54) depends on the single scalar function fe2σ that determines

the base geometry (A.40). It encapsulates everything about the curvature of the 4D base.

A.3.3 Supersymmetry conditions

The N = 2 supergravity theory we consider is, in particular, invariant under the fermionic

transformations of the gaugino and the gravitino

δλ =

[
GIJ

(
1

2
γµνF J

µν − γµ∇µX
J

)
ϵα − ξIϵ

αβϵβ
]
∂iX

I , (A.55)

δψαµ =

[
(∂µ −

1

4
ωνρµ γνρ) +

1

24
(γ νρ
µ − 4δ ν

µ γ
ρ)XIF

I
νρ

]
ϵα +

1

6
ξI(3A

I
µ −XIγµ)ϵαβϵβ , (A.56)

where ϵα (α = 1, 2) are symplectic Majorana spinors. For bosonic solutions to the theory that

respect at least some supersymmetry these variations vanish for the spinors ϵα that generate

the preserved supersymmetry. Supersymmetric black holes in AdS5 with finite horizon area

preserve the supersymmetry generated by the spinors ϵα that satisfy the projections

γ0ϵα = ϵα , (A.57)

1

4
J (1)
mnγ

mnϵα = −ϵαβϵβ . (A.58)

Each of these equations impose two projections on the spinor ϵα. All these projections

commute, so the resulting black holes preserve 2−4 = 1/16 of the maximal supersymmetry.

We seek to work out the conditions that set the supersymmetric variations (A.55) and

(A.56) to zero, satisfying the projections (A.57) and (A.58) imposed on purely bosonic

solutions. We use the matter ansatz and geometry in (3.18) and (3.69), respectively.

The gamma matrices are defined with respect to a flat 5D space and satisfy the Clifford

algebra

{γµ, γν} = 2ηµν , (A.59)
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with the flat 5D space defined in (3.69) via the following veilbein

E0 = f(dt+ wσ3) , (A.60)

Ei = f− 1
2 ei , (A.61)

where ei with spatial indices refers to the 4D veilbein introduced in (3.71). Furthermore, the

gamma matrices γµ following the projection (3.78) satisfy

− ϵ

2
(γ23 − γ14) = ϵϵαβϵβ , (A.62)

where γµν is the antisymmetrized product for a ̸= b, which means that after squaring (A.62)

we obtain

γ1234ϵα = ϵα , (A.63)

and thus

γ14ϵα = −γ23ϵα . (A.64)

This becomes relevant for evaluating inner products of components of 2-forms and γab as

well as their decomposition into self-dual and anti-self-dual terms.

A.3.3.1 The gaugino equation

Recall that the gaugino equation is given by (A.55), where the 5D 2-form F I = dAI can be

computed from (3.73)

F I = ∂R(fY I)e−σf−1E1 ∧E0 + 4f
(
fY I∂R2w + ∂R2uI

)
E1 ∧E4 − 4f

R2

(
fY Iw + uI

)
E2 ∧E3 .

(A.65)

The spatial F I
mn components can be rearranged into self-dual and anti-self-dual terms

F I = ∂R(fY I)e−σf−1E1 ∧ E0

+ 2f

(
fY I

(
∂R2 − 1

R2

)
w +

(
∂R2 − 1

R2

)
uI
)

(E1 ∧ E4 + E2 ∧ E3)

+ 2f

(
fY I

(
∂R2 +

1

R2

)
w +

(
∂R2 +

1

R2

)
uI
)

(E1 ∧ E4 − E2 ∧ E3) .

(A.66)

119



Since (γ14 + γ23)ϵα = 0 per (A.64), only the anti-self-dual components of F µν via F J
µνγ

µν

contributes to the gaugino variation. We thus simplify GIJ
1
2
γµνF J

µν to find

GIJ
1

2
γµνF J

µνϵ
α

= GIJ

[
∂R(fY I)e−σf−1γ10 + 2f

(
fY I

(
∂R2 + 1

R2

)
w +

(
∂R2 + 1

R2

)
uI
)

(γ14 − γ23)
]
ϵα .

(A.67)

We then move on to the second term of (A.55), noting that XI is only a function of R

GIJ(−γµ∇µX
J)ϵα = GIJ

(
−γ1e−σ∂RXJ

)
ϵα . (A.68)

Lastly, the third term of (A.55) becomes

−ξIϵαβϵβ = +ϵξIγ
23ϵα . (A.69)

Combining all three contributions, we obtain the following equations

GIJ

[
∂R(fY I) − f∂RX

I
]
∂iX

I = 0 , (A.70)[
4GIJf

((
∂R2 +

1

R2

)
uJ + fY J

(
∂R2 +

1

R2

)
w

)
+ ϵξI

]
∂iX

I = 0 . (A.71)

Since XI∂iX
I = 1

2
∂i(XIX

I) = 0, the f∂RX
J term can be rewritten as ∂R(fXJ) and thus we

obtain

GIJ

[
∂R(fY J) − ∂R(fXJ)

]
∂iX

I = 0 , (A.72)

This can be reexpressed by defining a vector δI = fY I − fXI , to imply that ∂Rδ
I is

orthogonal to ∂iX
I , and thus proportional to XI :

∂Rδ
I = kXI , (A.73)

for some constant k. We will focus on the special solution where δI vanishes, meaning

XI = Y I . (A.74)

Using this relation, we now move on to (A.71), the second gaugino variation result. It is a

projection of the vector quantity in the square brackets, along the direction of ∂iX
I . The

immediate consequence of it is that this quantity is proportional to XI . Rearranging terms,
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we obtain the ambiguous result(
∂R2 +

1

R2

)
uI =

1

2
ϵf−1cIJKXJξK +

1

2
f−1λXI , (A.75)

with λ a scalar coefficient that arises from the ambiguity in defining the quantity in square

brackets in (A.71) as orthogonal to ∂iX
I . Determining this quantity requires resorting to

further supersymmetry relations, which leads us to the vanishing of the gravitino variation

(A.56).

A.3.3.2 The gravitino equation

In order to simplify the vanishing of the gravitino equation (A.56), we need to establish the

components of the 5D spin connection that appears in the term −1
4
ωνρµ γνρϵ

α. Based on the

vielbein (A.60) and (A.61), we have

ω0
1 = f−1e−σ∂RfE

0 + 2f 2∂R2wE4 , ω0
2 = −2f 2w

R2
E3 ,

ω0
3 =

2f 2w

R2
E2 , ω0

4 = −2f 2∂R2wE1 ,

ω2
1 = 4ω2

1 −
1

2
f−1e−σ∂RfE

2 , ω3
1 = 4ω3

1 −
1

2
f−1e−σ∂RfE

3 ,

ω4
1 = 4ω4

1 −
1

2
f−1e−σ∂RfE

4 − 2f 2∂R2wE0 , ω2
3 = 4ω2

3 −
2f 2w

R2
E0 ,

ω3
4 = 4ω3

4 , ω4
2 = 4ω4

2 ,

(A.76)

where 4ωmn represents the 4D spin connections (A.44-A.47), and em are the 4D tetrad 1-

forms, which are related to the Eµ (A.60) and (A.61) via em = f 1/2Em. We now proceed to

evaluate the components of the gravitino variation (A.56), starting with µ = 0:(
∂0 −

1

4
ωνρ0 γνρ

)
ϵα =

(
∂0 + γ23f 2

(
∂R2 +

1

R2

)
w − 1

2
f−1e−σ∂Rfγ

1

)
ϵα , (A.77)

1

24
(γνρ0 − 4δν0γ

ρ)XIF
I
νρϵ

α =

(
−γ23f 2

[(
∂R2 +

1

R2

)
w +

1

3
f−1XI

(
∂R2 +

1

R2

)
uI
]

+
1

2
f−1e−σ∂Rfγ

1

)
ϵα ,

(A.78)

1

6
ξI(3A

I
0 −XIγ0)ϵ

αβϵβ = ϵ
1

3
ξIX

Iγ23ϵα , (A.79)

where AI0 stands for the component of the AI 1-form along the E0 flat veilbein, which

amounts to AI0 = f−1AIt = f−1(fXI) = XI . Thus, adding up the three contributions in

(A.77), (A.78) and (A.79), we note that the terms proportional to γ1 cancel out identically.
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What is left is terms proportional to the identity and to γ23, which when made to vanish

separately, lead to two results

∂0ϵ = 0 , (A.80)

fXI

(
∂R2 +

1

R2

)
uI − ϵξIX

I = 0 . (A.81)

This equation is another expression involving a projection of the quantity
(
∂R2 + 1

R2

)
uI .

Rather than a redundant relation, it can in fact be used to further constrain the ambiguity

in uI that arose from the projection in the gaugino variation (A.71). In fact, (A.75) and

(A.81) imply that

fXI

(
1

2
ϵf−1cIJKXJξK +

1

2
f−1λXI

)
− ϵξIX

I = 0 , (A.82)

which immediately means that λ = 0. The final result is given by(
∂R2 +

1

R2

)
uI =

1

2
ϵf−1cIJKXJξK . (A.83)

We now move on to the spatial components of (A.56). For µ = 1:(
∂1 −

1

4
ωνρ1 γνρ

)
ϵα =

(
∂1 + γ4f 2∂R2w

)
ϵα , (A.84)

1

24
(γνρ1 − 4δν1γ

ρ)XIF
I
νρϵ

α =

(
−γ4f 2

[(
2∂R2 − 1

R2

)
w +

1

3
f−1XI

(
2∂R2 − 1

R2

)
uI
]

−1

2
f−1e−σ∂Rfγ

1

)
ϵα

,

(A.85)

1

6
ξI(3A

I
1 −XIγ1)ϵ

αβϵβ =
1

6
ξIX

Iγ4ϵα =
1

6
fXI

(
∂R2 +

1

R2

)
uIγ4ϵα . (A.86)

Again, adding the contributions (A.84), (A.85) and (A.86), and separating out the terms

proportional to the identity, γ1 and γ4, we obtain(
∂R2 − 1

R2

)
w +

1

2
f−1XI

(
∂R2 − 1

R2

)
uI = 0 , (A.87)

as well as the spatial dependence of the spinor ϵ: ∂Rϵ = 1
2
f−1(∂Rf)ϵ, which leads to ϵ = ϵ0f

1/2

for some constant ϵ0. The µ = 2 and µ = 3 components of (A.56) yield the same condition

(A.87), which leaves us with µ = 4 that introduces an additional term due to the appearance
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of the 4D spin connection terms:(
∂4 −

1

4
ωνρ4 γνρ

)
ϵα =

(
∂4 − γ1f 2∂R2w − 1

4
f−1e−σ∂Rfγ

14 +
1

4
4ωmnγ

mn

)
ϵα , (A.88)

1

24
(γνρ4 − 4δν4γ

ρ)XIF
I
νρϵ

α =

(
γ1f 2

[
(2∂R2 − 1

R2
)w +

1

3
f−1XI(2∂R2 − 1

R2
)uI
]

+
1

4
f−1e−σ∂Rfγ

14

)
ϵα ,

(A.89)

1

6
ξI(3A

I
4 −XIγ4)ϵ

αβϵβ =

(
1

2
ϵξIu

Iγ23 − 1

6
fXI(∂R2 +

1

R2
)uIγ1

)
ϵα . (A.90)

Combining these terms leads to the condition (A.87) as well as the 4D relation(
1

4
4ωmnγ

mn +
1

2
ξIu

Iγ23
)
ϵα = 0 . (A.91)

Using the 4D spin connections (A.44-A.47), we find that 4ωmnγ
mnϵα = −2pγ23ϵα with p from

(A.54). We relate fe2σ to gm based on (3.75), and find that

p = ϵ

(
1

2
R2(∂R2gm) + gm − 1)

)
= ξIu

I . (A.92)

We can now gather the four main supersymmetry relations that were derived:

0 = GIJ

(
∂R(fY I) − ∂R(fXI)

)
∂iX

J , (A.93)

0 =

(
∂R2 +

1

R2

)
uI − 1

2
ϵf−1cIJKXJξK , (A.94)

0 =

(
∂R2 − 1

R2

)
w +

1

2
f−1XI

(
∂R2 − 1

R2

)
uI , (A.95)

0 = −ϵR2(∂R2gm) + 2ϵ(1 − gm) + 2ξIu
I . (A.96)
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