
Enhancing Ride-Pooling Operations: Algorithms, Heuristics and
Simulation-Based Approaches

by

Alexander Sundt

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Civil Engineering)

in the University of Michigan
2024

Doctoral Committee:

Professor Yafeng Yin, Chair
Professor Xiuli Chao
Professor Henry Liu
Associate Professor Neda Masoud

Alexander Sundt

asundt@umich.edu

ORCID iD: 0000-0003-0334-5963

© Alexander Sundt 2024

DEDICATION

To Mom, Dad, Christina and Mandy

ii

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor, Dr. Yafeng Yin, for his guidance and

mentorship throughout all five years. I am sincerely grateful for his patience and under-

standing during many obstacles, and his encouragement and help in pushing through are

likely the sole reason I completed this PhD. I truly admire his commitment to and genuine

care for his students and for being such an incredible role model both professionally and

personally.

I am deeply grateful to my committee members Dr. Henry Liu, Dr. Neda Masoud, and

Dr. Xiuli Chao for their teaching and insight during my studies. I enjoyed learning from you

all and really appreciate your willingness to answer questions and offer suggestions. Professor

Masoud especially was a great mentor, advisor, and leader during my time on the board of

the Michigan Transportation Student Organization (MiTSO) and I thank her greatly for her

support.

I would especially like to thank my co-author and collaborator Dr. Qi Luo, the driving

force behind Chapter 4 and his contributions in Chapter 3, and other collaborators Mehrdad

Shahabi and John Vincent for their assistance, feedback, and support (on Chapters 2, 3, and

4) done for Ford Mobility. Their help pushed this research along and made it far better than

I could do alone.

I owe a massive thank you to all of my professors and mentors from undergraduate and

graduate school, including but not limited to Professors Jerry Lynch, Alexandre Bayen,

Robert Harley, Scott Moura, and Dr. Alex Keimer. Your mentorship and incredible teaching

led me to discover my own passions in civil engineering, transportation, and research that

led me on this path and you helped me to develop incredibly useful skills that continue to

benefit me in my academic and professional career.

I am deeply grateful to the friends I have made through Dr. Yin and the LIMOS lab.

Zhengtian Xu, Daniel Vignon, Xiaotong Sun, Zhibin Chen, Tianming Liu, Zhichen Liu,

Minghui Wu, Moji Abdolmaleki, Tara Radvand, Sina Bahrami, Tian Mi, Guoyang Qin,

Manzi Li, and others: your questions and research have been both inspiring and extremely

helpful in expanding my interests and deepening my knowledge. I treasure the light-hearted

discussions we’ve had outside of research too, they brought joy to many days during my

PhD.

iii

To my MiTSO board members and other University of Michigan friends: Xingmin Wang,

Zhen Yang, Xintao Yan, Yiyang Wang, Amir Tafreshian, Zachary Jerome, Lily Craighead,

Ethan Zhang, Jisoon Lim, Iason Liagkas, Haowei Sun, Yan Zhao: You made my time at

Michigan full of memories I will cherish. I’m proud of the work we accomplished with

MiTSO and I’m glad to see it thriving and expanding its reach even farther. I hope to stay

in touch so I can continue to be impressed by what you all accomplish.

Special thanks as well to the Center for Connected and Automated Transportation

(CCAT) and especially Debbie and Calvin for their support of MiTSO, and for creating

opportunities and financial support for transportation students like myself.

I would not be finishing this degree today except for my dear friends, whose support and

company has kept me sane and entertained over the many years of college and grad school.

Thank you Annie Shi, Amanda Zeng, Dennis Bradford, Ben Pridonoff, Mitch Deans, Zac

Johnson, Maggie Yeh, Kiera Nissen, Henry Hammel, Alexis Flores, Bhavna Gopal, and so

many more that I’ve been able to share time and memories with. Your friendships have

brought light, humor, and empathy to these 5 years and I only hope that I can continue to

repay in kind.

Last but not least, I am forever grateful to my loving parents and family who have always

supported and encouraged me to pursue my passions and education. Mom, Dad, Christina:

thank you for your unwavering love and for always being willing to listen and understand.

The work described in this thesis was partly supported by research grants from the Ford

Motor Company, CCAT, the National Science Foundation, Rackham Graduate School and

the University of Michigan.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF APPENDICES . xi

LIST OF ACRONYMS . xii

ABSTRACT . xiv

CHAPTER

1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Challenges . 3
1.3 Contributions and Outline . 4

2 Mobility Profiles for Community-Based Ridesharing 5

2.1 Introduction . 5
2.2 Literature Review . 6
2.3 Data and Construction of Mobility Profile 7

2.3.1 Trajectory Mining: Inferring Work and Home Locations 9
2.3.2 Departure Time Distributions . 10

2.4 Dynamic Time Warping . 11
2.4.1 Dynamic Time Warping (DTW) Modifications 13
2.4.2 Binning and Distribution . 15

2.5 Data Driven Matching . 16
2.5.1 Mathematical Formulation for Matching Problem 16
2.5.2 Robust Data Driven for Matching Problem 17
2.5.3 Selecting Values for γ . 18
2.5.4 Results . 19

2.6 Conclusion . 20

3 Heuristics for Customer-focused Ride-pooling Assignment 21

v

3.1 Introduction . 21
3.1.1 Main Contributions . 22

3.2 Literature Review . 23
3.3 Performance Measures of Ride-pooling Systems 25
3.4 Ride-pooling Assignment Heuristics . 27

3.4.1 Preliminaries: Benchmark Ride-pooling Methods 27
3.4.2 Restricted Subgraph Method: a Customer-Focused Heuristic 30

3.5 Numerical Simulation on Real-World Data 33
3.5.1 Simulation Environment . 33
3.5.2 Data Description . 34
3.5.3 Results and Discussion . 35
3.5.4 System Metrics . 36
3.5.5 Customer Metrics . 38
3.5.6 Statistical Test Results for Heuristics 41
3.5.7 Results Takeaways . 41

3.6 Conclusion . 43

4 Efficient Algorithms for Stochastic Ride-pooling Assignment with Mixed
Fleets . 44

4.1 Introduction . 44
4.1.1 Main Results and Contribution . 47
4.1.2 Organization and General Notation 49

4.2 Literature Review . 49
4.3 Problem Description . 52

4.3.1 Basic Setting . 52
4.3.2 Reduction to Sample-Average Estimate 56
4.3.3 Hardness and Properties of SRAMF 58

4.4 Approximation Algorithms for SRAMF . 60
4.4.1 Local Search Algorithm for Mid-Capacity SRAMF 60
4.4.2 Max-Min Online Algorithm for High-Capacity SRAMF 66
4.4.3 Extensions to SRAMF under Partition Constraints 71

4.5 Numerical Experiments . 71
4.5.1 Data Description and Experiment Setup 71
4.5.2 Numerical Results for Mid-Capacity SRAMF 76
4.5.3 Sensitivity analysis. 79
4.5.4 Numerical Results for High-Capacity SRAMF 79

4.6 Conclusion . 85

5 Conclusions and Future Research . 87

5.1 Research Summary and Findings . 87
5.1.1 Customer Preferences and Comfort (Chapters 2 and 3) 87
5.1.2 Performance Metrics and Optimality (Chapters 3 and 4) 88
5.1.3 Scalability to Large-Scale Real-Time Operations (Chapters 3 and 4) 88

5.2 Directions for Future Work . 89
5.2.1 Variance Across Cities . 89

vi

5.2.2 Time Period Length and Rolling Horizon 89
5.2.3 Integration with Pricing Models . 90
5.2.4 Transit System Coordination . 90

APPENDICES . 91

BIBLIOGRAPHY . 105

vii

LIST OF FIGURES

FIGURE

2.1 Density of trips in Beijing in the Microsoft Geolife dataset, with emphasis on the
amount of similar routine trips among users . 8

2.2 Trips in dataset plotted in space and time. Many trips are clustered around the
same area at common times, allowing for pooling to be a feasible option. 9

2.3 Plotted location history for one user in the Geolife dataset, with lighter colors
indicating a higher density of location points. Note that work and home locations
are clearly identifiable based on density and clustering of GPS points, as well as
the most preferred route. 10

2.4 Departure time distribution for one user’s commuting trips 11
2.5 Example of DTW minimum cost warping path for two time-series. Reproduced

from Mueen and Keogh (2016) . 12
2.6 DTW with Sakoe-Chiba band constraint. Reproduced from Mueen and Keogh

(2016) . 14
2.7 Similar trajectories from two users found by DTW to have low distance cost . . 15
2.8 Two pairs of user trajectory history matched by the presented Robust Data

Driven Optimization (RDDO) framework. User #30 was matched with user #1
and user #3 was matched with #35. Trips in similar areas are highlighted by
the blue circles. 19

3.1 Target occupancy heuristic . 29
3.2 Counterexamples for benchmark heuristics; oi − di, i = 1, 2, . . . are origins and

destinations of trip requests on a network, and edge values are travel costs. M
is an arbitrarily large positive number. 30

3.3 Restricted subgraph heuristic . 31
3.4 Visualization of the agent-based ridesourcing simulation in Manhattan, New York 35
3.5 Summary of results for system metrics . 37
3.6 Summary of results for customer metrics . 39
3.7 P-value of pairwise t-test. The smaller value indicates that the difference of sys-

tem throughput using two algorithms is significant. The colorbar is in logarithm
scale. 42

4.1 Example of ride-pooling with automated vehicles (AVs) and conventional
(human-driven) vehicles (CVs). The first-stage decision involves repositioning
AVs in dedicated regions; the second-stage decision is to solve a Generalized
Assignment Problem (GAP). 46

viii

4.2 The illustration of Stochastic Ride-pooling Assignment with Mixed Fleets
(SRAMF) procedure per step. SB = {sB1 , sB2 } is the basis set (e.g., CVs) and
SA = {sA1 , sA2 } is the augmented set (e.g., AVs). Figure 4.2a represents the algo-
rithm’s input, including the current locations of SA and SB, and obtains demand
forecast. Figure 4.2b constructs a shareability graph for each scenario, where
each trip is a clique containing one vehicle and multiple matchable requests. Fig-
ure 4.2c solves the SRAMF problem by approximation algorithms, in which one
or more ride requests are assigned to a selected vehicle in each scenario ξ. Figure
4.2d implements the computed decisions and updates the system state. 54

4.3 Road-map for the performance analysis on SRAMF algorithms; the approxi-
mation ratios on arrows refer to the results in this chapter; SO is the optimal
selection of vehicles and SR is the section of vehicles generated by approximation
algorithms. 56

4.4 An example for non-submodularity of function v∗(SR). 59
4.5 Illustration of mapping ∆d(e, f) with E(ξ) = {e1, e2, e3}. 63
4.6 Mid-capacity mixed autonomy traffic experiment in Manhattan, NYC. 74
4.7 Optimal trip assignment and routes in the mid-capacity scenario. 78
4.8 Impact of K on computation time and optimality gap in the mid-capacity sce-

nario. 80
4.9 High-capacity mixed autonomy traffic experiment in Manhattan, NYC. 81
4.10 Optimal trip assignment and routes in mixed autonomy, high-capacity SRAMF. 82
4.11 Impact of input distribution on computation time and optimality gap. 84

A.1 Diagram of relationships between classes in ride-pooling simulator 92

B.1 Topological relationship between cliques of matchable requests. In this example,
(2,3,4) is not a valid combination of requests because the (2,4) combination was
not valid. 99

ix

LIST OF TABLES

TABLE

3.1 Summary of heuristic evaluation metrics . 26
3.2 Summary of heuristics compared in numerical experiments 33
3.3 Summary of simulation scenarios . 36
3.4 Summary of customer metric results, in minutes, for varying demand levels . . 40

4.1 Parameters in numerical experiments . 74
4.2 Summary of Numerical Results for Mid-Capacity SRAMF 77
4.3 Summary of Numerical Results for High-Capacity SRAMF 83
4.4 Impact of vehicle capacity on computation time and optimality gap 84
4.5 Impact of sample size on computation time and optimality gap 85

B.1 Summary of notation and acronyms . 95

x

LIST OF APPENDICES

AAppendix for Chapter 3 . 91

BAppendices for Chapter 4 . 95

xi

LIST OF ACRONYMS

AV automated vehicle

CV conventional (human-driven) vehicle

CAV connected and automated vehicle

DTW Dynamic Time Warping

GAP Generalized Assignment Problem

GPS Global Positioning System

IP integer program

KNN k-Nearest Neighbor

LCSS Longest Common Subsequence

LP linear program

LSLPR Local-Search LP-Relaxation

MIP mixed-integer program

MMO max-min online

MoD mobility-on-demand

NYC New York City

O/D origin-destination

OSM OpenStreetMap

RDDO Robust Data Driven Optimization

RL reinforcement learning

SAA sample-average approximation

SRAMF Stochastic Ride-pooling Assignment with Mixed Fleets

xii

TNC transportation network company

TSP Travelling Salesman Problem

VMT vehicle miles traveled

VRP Vehicle Routing Problem

xiii

ABSTRACT

The massive growth of ride-hailing and mobility-on-demand (MoD) platforms like Uber,

Lyft, and DiDi, and advances in connected and automated vehicle (CAV) technology over

the past decade have brought promising alternatives to car ownership within reach for many

city residents. However, these services come with potentially severe negative effects on cities,

such as increasing congestion and emissions due to empty miles. A useful tool to reduce these

drawbacks is the introduction and promotion of ride-pooling, which accommodates multiple

passenger requests in a single trip. Adopting ride-pooling on a real-time city-wide scale

though has significant challenges including customer preferences, computational complexity,

and demand uncertainty, all of which affect the benefits of the service. This dissertation

aims to examine and address these issues in the context of ride-pooling operations.

The success of ride-pooling platforms hinges on whether customers will accept it over other

alternatives; without enough demand, the system loses the efficiency of multiple customers

per vehicle. To this end, we propose a community-based ride-sharing scheme where a system

operator recommends travelers with similar travel patterns in order to address concerns about

delay and safety while promoting a shared-vehicle environment. By leveraging trajectory

data from routing apps, smartphones and CAVs, we can gather information about consumer

preferences and construct a mobility profile for them. We modify a traditional Dynamic Time

Warping (DTW) algorithm to compare trajectories in users’ profiles and use the resulting

measures as a basis for offline recommendation matching. We demonstrate this framework

on data from the Microsoft Geolife Dataset.

Most ride-pooling platforms operate in a real-time environment, rather than offline, so

it is important to consider operational challenges as well as those presented by demand.

Most notably, solving a matching problem to not only pair riders but also assign groups of

requests to vehicles is incredibly complex and time-consuming at scale. In the remaining

sections of the dissertation, we introduce and analyze methods that are designed to be op-

erable for a large-scale city. First, we develop a set of heuristic methods for ride-to-ride and

ride-to-vehicle assignment that improves the customers’ ride-pooling experience. In order to

evaluate how changes in these methods and platform decisions affect all aspects of the system

including customer waiting time and delay, we propose a family of metrics for evaluating

xiv

ride-pooling performance. We show that the proposed heuristics for the ride-pooling assign-

ment are scalable and easily implementable methods and can be substitutes for centralized

optimization in many scenarios, with only minor sacrifices in platform performance.

Second, while heuristics can achieve good performance in many scenarios, they provide

no guarantees on performance in the worst cases. To address this, we formulate a joint

vehicle repositioning and ride-pooling assignment problem as a two-stage stochastic integer

program and expand it to the dual- or multi-source scenario in which the service provider

can use different fleets of vehicles. Two approximation algorithms are proposed that provide

competitive bounds on worst case performance. We then evaluate these approximation

algorithms on real-world data using a simulator, demonstrating that these algorithms can

parallelize computations and achieve solutions with small optimality gaps (typically within

1%).

The algorithms, frameworks, and takeaways presented in this dissertation were derived

and evaluated for ride-pooling specifically, but many are generalizable to other shared mo-

bility and multi-modal use cases.

xv

CHAPTER 1

Introduction

1.1 Background and Motivation

With increasing concerns about climate change and our effect on the environment, encour-

aging carpooling and ride-sharing to shift away from single-occupancy vehicles is a necessary

step in reducing carbon emissions and congestion on roadways. Recent studies in on-demand

ride-pooling systems have shown a massive potential for ride-sharing leading to reduced

vehicle miles traveled (VMT) and emissions in cities (Alonso-Mora et al. 2017b, Santi et al.

2014, Simonetto et al. 2019). The adoption of connected and autonomous vehicles can also

help with reducing emissions via electrification and by smoothing traffic flow. However the

benefit of CAVs largely depends on how and by who they are adopted (Kopelias et al. 2020).

A model in which most people own a personal CAV can likely increase VMT and energy

usage, by encouraging more and longer trips and even empty trips with no one in the car.

On the other hand, a model with primarily on-demand shared rides features many more

benefits and reductions in energy use (Greenblatt and Shaheen 2015). Thus it is imperative

to pursue a modal shift toward carpooling and ride-sharing.

Though carpooling has been promoted many times throughout the past decades, an oft-

cited reason for why participation has been limited is hesitancy about giving up the freedom

of a personal vehicle (Greenblatt and Shaheen 2015). With the recent growth of trans-

portation network companies like Uber and Lyft and the ease of requesting a ride on these

platforms, this is less of a worry. The recently observed drop in car ownership means that

relying on these services is not only feasible but also more accepted. However some notable

barriers still remain to mass adoption of these services. Cost of these platforms can be

an issue, and though sharing is cheaper, users are worried about safety when sharing rides

with strangers. Thus, it may still be preferable for users to engage in a more traditional

carpooling scenario, where passengers typically know each other well and costs are split

among them long term. This, however, is limited by whether compatible carpools exist in

1

a passenger’s social network. In this dissertation we introduce a framework for introducing

travelers to others with similar mobility history, with the goal of expanding their network

and encouraging pooling.

Unfortunately for many users, carpooling won’t work for some of their trips due to inflex-

ible timing or specific use cases. However we now have on-demand ride-sourcing as an option

to fill in these gaps. The ridesourcing industry has recently grown tremendously due to the

rise of transportation network companies (TNCs) such as Uber, Lyft, and DiDi Chuxing.

Already serving billions of passenger trips per year, this industry has the potential to reshape

cities, reduce the need for parking, and fortify the transportation ecosystem Wang and Yang

(2019), Tafreshian et al. (2020). On-demand mobility services offered by TNCs also improve

accessibility for those living in transit deserts with limited mobility choices.

While ridesourcing has revolutionized the ground passenger transportation market, it has

also come with undesirable consequences. The increase in ridesourcing trips has drawn riders

from public transit and increased the congestion in urban areas Henao and Marshall (2019),

Hall et al. (2018), Luo et al. (2019). In San Francisco alone, the County Transportation

Authority (SFCTA) found that TNCs were responsible for more than half of the 60 % in-

crease in traffic congestion between 2010 and 2016 Hawkins (2019). The negative congestion

externality of ridesourcing is primarily due to the increase in vehicular traffic demand. The

convenience and flexibility of these services have both induced travel and encouraged a modal

shift. The shift increases vehicular traffic demand if the original modes of transportation

are non-motorized such as walking or biking. It also yields additional traffic demand if the

original modes have higher occupancy, such as public transit and private driving. Compared

to these modes, the average occupancy of ridesourcing vehicles is much lower because of the

massive amount of empty miles traveled in the system. These are distances that ridesourcing

vehicles travel when searching for or picking up a request, and would not happen if the trip

was made in a personal vehicle. In summary, ridesourcing services have yielded an increase

in VMT, causing congestion on city streets. The inefficient operations of these ridesourcing

platforms can have severe environmental impacts due to increased energy consumption and

emissions.

The potential for vast growth in the ridesourcing industry must be managed efficiently

without slowing cities’ traffic to a halt. Both planners and the services themselves have

considered strategies to govern this. Transportation authorities may implement external

regulations, such as capping the number of TNC vehicles or congestion pricing to stimulate

behavioral changes in the ridesourcing market Luo et al. (2019), Erhardt et al. (2019). TNCs,

internally motivated to enhance system performance by reducing the empty miles Braverman

et al. (2019), have also implemented tactical policies, such as introducing meeting points so

2

that passengers can walk and shorten the pickup distance Stiglic et al. (2015). In addition,

encouraging shared rides (termed as “ride-pooling”) when possible is another effective way

for TNCs to increase the utilization of ridesourcing vehicles. It can also help these systems be

more financially stable, allowing the platform to charge cheaper fares, pay drivers more, and

increase profit by serving more demand. However, the benefit of ride-pooling is dependent

on a number of factors, including using efficient assignment and routing algorithms. In each

assignment, we need to allocate multiple rides with compatible routes to one available vehicle

and the assigned vehicle needs to determine the best route to pick up and drop off these

rides. Thus, it is critical to study how to use ride-pooling services to efficiently offset the

excess VMT and limit the negative externalities of conventional ridesourcing services. This

dissertation examines the effect of various operational decisions on ride-sourcing systems,

including matching algorithms and heuristics, and relocation choices.

1.2 Challenges

There are a number of challenges that carpooling and ride-pooling must overcome in order

to be sustainable and profitable in the long term and widely accepted by the population.

This dissertation aims to address the following:

• Passenger comfort: In order to encourage travelers to pool their rides with others

and solidify a modal change in the future, their major concerns must be addressed.

These typically consist of safety concerns about sharing with strangers, flexibility, and

cost. We tackle these in a number of ways. By recommending other users with similar

trajectory history, we expand users’ social networks in ways they may be more com-

fortable with. Additionally, we cover metrics and heuristics that emphasize customer

satisfaction and limit delays.

• Scalability of algorithms: When operating in real-time on a city scale, any proposed

algorithm must be able to be handle thousands of requests per minute, leading to as

many as 800,000 trips served per day in NYC for example. Many current optimization-

based methods in the literature are too complex or too intensive to operate on such a

large scale with short turnaround windows. We focus our methods on heuristics and

approximation algorithms that scale better and achieve near optimal performance.

• Stochastic nature of demand: Due to the real-time nature of many ride-hailing

platforms, it is uncertain where the next demand will exactly come from. This not

only affects the decision of where to locate vehicles for low pick-up times, but also

3

how to pair trips for sharing. By determining fleet repositioning that maximizes the

chances of pooling and makes the most use out of the available supply, we can po-

tentially serve more demand than otherwise and reduce pick-up times. We develop

algorithms that choose repositioning locations based on sampled future demand and

provide performance guarantees for them.

1.3 Contributions and Outline

The rest of this dissertation is organized as follows. Chapter 2 focuses on the offline carpool

matching problem, with the goal of helping travelers expand their social network to facil-

itate car-pooling groups. Using DTW, we measure differences in users’ trajectories while

accounting for traffic delays and time constraints. We then present a RDDO framework for

using this historical trajectory information to find suggestions for pre-arranged ride-sharing

partners.

In Chapter 3 we study the online vehicle-trip assignment problem commonly solved in ride-

hailing systems like Uber and Lyft. We discuss various metrics for measuring the performace

of these systems specifically in the case of ride-pooling, with respect to both customer and

platform goals. A number of scalable heuristic methods are presented, tested, and compared

using an agent-based simulator developed for this purpose.

Chapter 4 provides a combination of this online matching setting with fleet relocation,

aiming to solve both the trip-vehicle assignment and relocation problem for stochastic de-

mand. In order to make the problem more general, we also introduce the concept of mixed

fleets. This allows us to handle autonomous and human-driven vehicle fleets, as well as

luxury and standard fleets. More importantly, we use this setting to develop approximation

algorithms with provable performance guarantees with respect to optimal.

With the exception of Chapter 2, algorithms and heuristics in this dissertation are tested

on NYC taxicab data to demonstrate performance and scalability. Finally, Chapter 5 con-

cludes this dissertation.

4

CHAPTER 2

Mobility Profiles for Community-Based

Ridesharing

2.1 Introduction

With the rise and adoption of CAVs, car manufacturers and TNCs potentially have access

to a plethora of new data. This data can reveal new insights into consumers’ travel habits

and help design new services. It can also be a really important tool for communities and

companies to encourage carpooling and ride-sharing. Instead of simple origin-destination

(O/D) information from traditional travel surveys, we can instead extract a time-sampled

trajectory of users’ routes, which is needed because users may not always prefer the shortest

route from origin to destination. This could be due to other obligations along the route, such

as dropping children off at school and picking up a coffee, or personal preference, like driving

on local roads instead of a rush hour highway. Whatever the reason, accommodating these

preferences is important when trying to encourage users to switch to carpooling instead of

personal vehicles. The more the suggestions take into account these preferences, the more

comfortable users will be with the service and more willing to change their travel mode.

Additionally, shared autonomous vehicles specifically allow for the combination of trips

in ways that are not possible with traditional carpooling. Currently, the traveler that owns

the vehicle is the most important trip, and other travelers that want to carpool with them

must be picked up en route to the destination and dropped off either at the same desti-

nation as the driver or at a destination along the route. However with the introduction of

autonomous vehicles, similar to the model of TNCs we have seen introduced in cities, this

second requirement is no longer the case. Since the vehicles will be owned by the service or

driven autonomously, it is possible to combine trips that overlap. The traveler who is picked

up first can now be dropped off at any time, including before passengers who were picked

up later. This allows for more efficient use of the vehicle.

5

However, we lack a comprehensive framework to take full advantage of this new data and

sharing potential. This chapter presents a RDDO framework for using historical trajectory

information to find suggestions for pre-arranged ride-sharing partners.

First, we construct a mobility profile for users based on their historical trajectory infor-

mation. In order to compare these mobility patterns, we use a modified DTW algorithm to

generate a distribution of distances between trajectories. This serves as a proxy for trip sim-

ilarity: the shorter the distance between trajectories, the more similar the trips are in terms

of route and departure time. This distribution is then used as a basis for a robust matching

framework where matching is attempted based on a likelihood constraint for similarity.

We test the DTW algorithm on trajectories from the Microsoft GeoLife dataset, as well

as perform robust matching on a small test case of 5 users.

The rest of this chapter is organized as follows: We first review previous literature in

this area and discuss how it is lacking for this scenario. We then briefly describe our vision

for a mobility profile and show how trajectory data can be used to fill out this profile.

Next we introduce the dynamic time warping algorithm and modifications for comparing

users historical trajectories, with examples of performance. Finally we formulate the robust

matching model for matching ridesharing partners.

2.2 Literature Review

As mentioned earlier, traditional carpooling has been researched and promoted in the past

with varying degrees of success. With the rise of TNCs making living without a car more

accessible, and hesitancy about sharing with strangers still lingering, community-based car-

pooling seems well positioned for growth. Efficient matching for carpooling, however, needs

location histories.

The availability of trajectory data from mobile phones spurred a lot of research in this

direction. Importantly, it was shown that the vast majority of individuals typically follow

a routine from day to day, and thus their trajectories and locations are not at all random

(González et al. 2008). Location history data has been shown to be tremendously useful in

predicting future behavior. Song et al. (2010) showed that it is possible to predict a user’s

location with 93% probability given their history.

While this research with mobile phone data is illuminating, mobile phone data can also be

noisy, especially since data points often consist of simply which tower the phone is connected

to. This may not even always be the closest tower. Additionally, the data can lack granularity

especially with respect to route preference data, as multiple streets may lead to a connection

to the same cell tower. Connected and automated vehicles have the potential to provide much

6

more accurate and granular data, especially since most modern vehicles come equipped with

on board Global Positioning System (GPS) units. This data will not only be much more

accurate with respect to routes traveled, but also with respect to trip start and end, as now

it is no longer necessary to infer that from cell phone activity behavior, the car simply shuts

off or starts when the trip starts.

There has been a plethora of research on trajectory clustering using all varieties of meth-

ods including euclidean distance, Longest Common Subsequence (LCSS), k-Nearest Neigh-

bor (KNN), etc. (Zheng 2015). However trajectory clustering typically focuses on a goal

classification or identification of future trajectories, rather than comparison for matching.

Recent research has focused heavily on on-line matching for TNC scenarios (Santi et al.

2014, Alonso-Mora et al. 2017b, Simonetto et al. 2019). While useful, these methods overlook

the usefulness of historical data in predicting specific users trips. Additionally, some users

are still hesitant to share vehicles with random strangers. This chapter emphasizes long-term

pairings for commuter trips based on similar route preference to alleviate these fears. This

can be further developed into a social network feature where users can find and befriend

people based on similar activities and route locations. For example, if a user takes their

child to school in the morning before traveling to work, they may find via this platform

that their trip is similar another school parent who works nearby to them, expanding social

networks and allowing users to become more familiar with potential carpooling partners.

There have been a couple papers relevant to this work. Ying et al. (2010) proposed a

social network recommendation system for finding users with similar semantic trajectories.

However these semantic trajectories exclusively consisted of activity patterns, rather than

route similarity. Lee and Liang (2011) approached the problem with a similar idea as this

chapter, recommending carpool partners based on similar routes, but used complex trajectory

processing combined with a longest common prefix subsequence (LCPS) method due to noisy

cell phone data. Additionally, none of these papers considered travelers’ multiple different

trajectories over their history in the matching.

2.3 Data and Construction of Mobility Profile

The data used in this chapter comes from the Microsoft Geolife Dataset Xie et al. (2009).

Consisting of trajectory history data for 178 people over the course of 4 years, most in

and around Beijing, this is one of the only large scale trajectory history datasets publicly

available. Participants were asked to carry gps-loggers and phones, which recorded location

for most trajectories every 5 seconds. This dataset contains trajectory data for a wide range

of movements and activities, including many modes of transport. Figure 2.1 shows the trip

7

density in Beijing and the potential for trip sharing among users’ frequent trips.

Figure 2.1: Density of trips in Beijing in the Microsoft Geolife dataset, with emphasis on
the amount of similar routine trips among users

Figure 2.2 shows the distribution of trips in the data set both spatially and temporally.

Note that there is a fair amount of potential for shared trips but that many happen over

vastly different time periods. Thus it is important to take that into account when comparing

trajectories for compatibility.

In this chapter we focus mainly on commuting trips between work and home, as these are

the most frequent and predictable trips by travelers and are easiest to replace with carpooling

rides. Given the data, we are able to construct a mobility profile with this information and

filter for a trajectory history for trips from home to work or work to home. This mobility

profile can be expanded to include information like preferred mode of transportation, and

most visited places. This profile can also be merged with other sources of data, including

activity check-in data from networks like Facebook and Twitter. Other papers (Xie et al.

2009) have demonstrated using location history data for friend recommendations and travel

suggestions for new places to visit.

8

Figure 2.2: Trips in dataset plotted in space and time. Many trips are clustered around the
same area at common times, allowing for pooling to be a feasible option.

2.3.1 Trajectory Mining: Inferring Work and Home Locations

Using trajectory data mining techniques, such as stay-point detection and clustering, we can

easily identify users’ home and work locations. Stay-point detection (as well as monitoring

for dropped data points) is used to split up a continuous daily trajectory into trips and

stops. These stops can then be clustered and counted to reveal travel patterns. Home and

work locations are where users spend the most time, and these are often the 2 most visited

places. Due to privacy constraints, note that these are not a specific point or address, but

rather an area of small radius. Figure 2.3 shows a plot of all data points for one user in

the data set, with lighter colors representing higher density of points. The home and work

locations, as well as the most preferred route, can be easily identified using the density of

points. To distinguish between home and work, we examine the time of day spent in each

location, assuming the user spends the night at home. We then use these locations to look

specifically for trips between home and work in our analysis.

Other techniques for trajectory data mining are summarized in Zheng (2015), including

map-matching, noise filtering, and outlier detection. While these are useful tools when

analyzing trajectories, they require significantly more analysis and computation. We present

9

Figure 2.3: Plotted location history for one user in the Geolife dataset, with lighter colors
indicating a higher density of location points. Note that work and home locations are clearly
identifiable based on density and clustering of GPS points, as well as the most preferred
route.

our framework on data that has not been map matched or noise-reduced in anyway and note

that these techniques will only serve to improve the accuracy of the framework.

2.3.2 Departure Time Distributions

It is also important to understand the distribution of traveler departure times for trips of

interest in the data. Travelers prefer to leave around a certain time as dictated by trip

activity, whether it is a requirement at the destination or due to conditions on the route.

This is another aspect of user preference that is important to match in for users to be

comfortable with and willing to accept suggested matches and trips in a carpooling scenario.

Figure 2.4 displays the departure time variation for one user’s commuting trips between

home and work. A large portion of the trips in the data set occur at or near a university

in the northwestern portion of Beijing. If the participants in the study are students or

professors, this might explain a wider distribution in departure times than expected given

the nature of a changing class schedule each semester. Still, we observe the most common

departure times fall within a 30-40 minute window. around 8:10am.

10

Figure 2.4: Departure time distribution for one user’s commuting trips

2.4 Dynamic Time Warping

In order to compare mobility profiles for matching, we need to establish a method for com-

paring location history data. Dynamic Time Warping (DTW) is a dynamic programming

algorithm for comparing time-series Senin (2008), Mueen and Keogh (2016). Initially used

for speech recognition, DTW has been adapted and applied to many fields with time-series

data, including motion-detection and finance. Contrary to euclidean one-to-one matching,

where each time point is matched and compared to one other point corresponding in time,

DTW allows for ”warping”, where many points in a series can be matched to one point in

the other. In speech pattern matching, this is important to match the same word said fast

or slow. In our setting, this is also important because two people taking the same route

can have different travel times or speeds due to traffic or stoplights. A simple one-to-one

comparison would introduce larger distances at points where one vehicle had a green light

while the other had to stop, leading to an inaccurate comparison in route.

A warping path, w, is an assignment of points in one series to points in the other series.

The basic ”naive” dynamic time warping algorithm chooses a warping path that minimizes

overall cost. Let fc(i, j) be the cost function for two inidices, i series Q and j in series C. In

this case, cost between two points is the distance between them on earth’s surface, as each

point is a latitude/longitude coordinate. Let D(i, j) be the cumulative cost so far for the

minimum cost warping path matching all indices 0 to i in series Q to indices 0 to j in C.

Since all points must be included on

11

D(i, j) = fc(i, j) + min

D(i− 1, j)

D(i, j − 1)

D(i− 1, j − 1)

(1)

This is a recursive formula that can also be calculated iteratively through careful ordering

of the cumulative distance matrix. The boundary conditions for i = 0 and/or j = 0 are

D(i, j) = fc(i, j). The iterative algorithm is summarized below. For a more in depth

summary, see Mueen and Keogh (2016).

A visualization of the process can also be found in figure 2.5 from Mueen and Keogh

(2016). Note the ability of DTW to match many points to one, and find a warping path that

minimizes the overall cost (in this case, distance on the y-axis).

Figure 2.5: Example of DTW minimum cost warping path for two time-series. Reproduced
from Mueen and Keogh (2016)

It is worth noting that we chose the DTW method presented in this chapter based on

our desired behavior for a similarity function on the data we had. The benefits of DTW

over a euclidean distance function have been summarized above, but other distance metrics

can be used instead. A commonly proposed alternative for DTW is the Longest Common

Subsequence (LCSS) method, based on the dynamic programming edit distance algorithm.

While the LCSS method has potential benefits, like the ability to omit points from the

warping path which limits the effects of outliers and noise, the cost function is typically

limited to a constant based on a threshold value for distance. If the two points are within

the threshold distance, they can be matched (given a cost of 1), while those farther apart have

12

a cost of 0. The total cost of a warping path is then maximized, finding the longest matching

subsequence. While this has been used for trajectory clustering and can identify which parts

of a trajectory are similar, it doesn’t fully quantify the distance between the two trajectories

outside the threshold difference. In addition, choosing a threshold distance is difficult and

depends on the expected noise from the sensor. Instead, we address this method’s sensitivity

to noise by adjusting the histogram in the binning section of this report.

2.4.1 DTW Modifications

The naive DTW algorithm has a few notable shortcomings with respect to our scenario that

need to be addressed:

• Doesn’t consider timestamp associated with data point

• Doesn’t account for departure time preference/flexibility

• Enforced pairing of end points of trajectories

These three points are actually closely intertwined and can be solved with just minor

modifications. Naive DTW is mainly used for comparing the similarity of time-series in

terms of their measured values, not necessarily the timestamps when they occurred. DTW

is very good at identifying similar sequences, patterns, subsequences, etc., which is great if

one just wants to identify or cluster similar trajectories and routes. However, the temporal

aspect of these trajectories is also important when identifying ridesharing partners; the trips

have to be compatible and occur in the same timeframe so that either user isn’t delayed

too much. This isn’t as simple as comparing start and end times of the trip, as trips that

overlap or are subsets only need to align in time at the points where the trips match, which

can happen at any point in the middle of the trip, not necessarily at the start. Similarly, the

historical trajectories in the data set capture departure time preferences of the users, and

users would not necessarily be able to change their departure time by too much.

In order to address these two problems, we must first align the two trajectories with

respect to time of day. Assuming that some amount of the trajectories overlaps in time

(otherwise it is pointless to compare as the trajectories would be incompatible in a carpooling

scenario), we can add points to the starts and end of these trajectories at the same sampling

rate as the trajectories until both are the same length and start and end at the same time

of day. Points added to the start of a trajectory should have the same location as the initial

point of the original trajectory; points added to the end of a trajectory should be replicates

of the original end point. This is the equivalent of a trajectory where a traveler is waiting at

13

Figure 2.6: DTW with Sakoe-Chiba band constraint. Reproduced from Mueen and Keogh
(2016)

their origin before the trip or at their destination afterwards. Note that because these points

are replicas of start and end points, this does not affect the warping path of the original

trajectories when using naive DTW.

It then becomes an easy modification to solve the departure time and delay flexibility

problem using slope-limited dynamic time warping. This method limits the difference in

indices that can be paired by the warping path. It functions as an extra global constraint

limiting the space for the warping path so that trips cannot link up at points that are too

far apart in index. This is also called a Sakoe-Chiba band in literature (Mueen and Keogh

2016), visualized in Figure 2.6. Since the indices are now exactly aligned in time, restricting

the indices is equivalent to restricting the delay or difference in time between the trajectories.

The index difference r can be calculated based on the sampling frequency and the desired

departure time window. If the sampling frequency was once every five seconds and the

departure time window was ± 10 minutes, this would yield r = 120.

However due to the enforced pairing of end points, this can potentially increase the

distance returned due to having additional points that need to be paired. Although there

are methods in the literature for flexible starting and ending points, they do not mesh well

with the Sakoe-Chiba band introduced earlier. If we return a warping path from the DTW

14

Figure 2.7: Similar trajectories from two users found by DTW to have low distance cost

algorithm, instead of just a distance, we can actually recalculate the total cost based on the

start and end indices of the original trajectories. We use this value instead.

In summary, we propose and put into practice the following modifications for Dynamic

Time Warping (DTW). For each comparison, we first check that if the trajectories overlap

but do not start or end at the same time. If so we augment each trajectory with start points

or end points equivalent to the original start and end points until both are same length. We

then run DTW with a slope-limited constraint equal to departure time flexibility. From the

returned optimal warping path, we recalculate the actual distance based on assignments of

original (not augmented) trajectories.

An example set of trajectories returned using these methods is shown in Figure 2.7. These

are trajectories from 2 different users that were identified to have low distances to both other

trajectories from that user and to trajectories from the other user. Trips that are longer and

also trips that are shorter are shown to be included as low distance.

2.4.2 Binning and Distribution

Because we assume users will have generated a number of historical routes with variations

(not the same route each time), it is important to take all of these generated trajectories

into account. So DTW is run on all possible pairs when comparing two users’ trajectories,

generating a distribution of distances.

This distribution then needs to be binned in a histogram to input into the robust matching

formulation. This binning does not need to be regular; in fact it might be beneficial to use

smaller bins for short distances and large ones for longer, as above some distance we can

treat the trajectories as incompatible. The added granularity at smaller distances can help

distinguish between better matches.

The exact choice of bins should depend on the magnitude of the trajectory noise and

15

the network topology. For example, the grid street network of Manhattan means there are

possibly many ways to reach a destination. Since it is not significantly different if someone

travels the same route but two blocks over, it might but useful to consider binning based on

an average distance of 2 manhattan blocks. This will also need some trial and error to see

what parameters perform the best.

2.5 Data Driven Matching

The goal of this section is to provide a Robust Data Driven Optimization (RDDO) framework

to find the optimal ride matching partners which can be utilized in better planning for

ridesharing systems. Once the distance between every two user’s activities is determined,

an RDDO model with likelihood bounds is employed to find the best matching partners for

every two users. The model conservativeness and robustness can be controlled by tuning the

likelihood threshold parameter in the data-driven uncertainty set of RDDO models.

We first provide a general formulation for a matching problem followed by the discussions

on Robust Data Driven Optimization model for the matching problem and finally we propose

a distributed optimization approach for solving the RDDO model for large scale problems.

2.5.1 Mathematical Formulation for Matching Problem

In this section we introduce the general mathematical formulation of the matching problem.

Let C represent the set of all of the users, xij ∈ {0, 1}, i, j ∈ C be the set of binary variables:

if xij = 1 then user i is matched with user j, otherwise xij = 0. If two users are matched

a certain cost of cij is incurred. Finally the mathematical formulation for the matching

problem is presented as below:

min
xij

∑
i,j

cijxij (2)

s.t.
∑
i

xij = 1 ∀i ∈ C (3)∑
j

xij = 1 ∀j ∈ C (4)

xij ∈ 0, 1 ∀i, j ∈ C (5)

The goal of the matching problem above is to minimize the total matching costs (Equ. 1)

while ensuring each user is assigned to only one. According to the combinatorial optimiza-

tion literature the matching problem has a unimodular constraint structure therefore the

16

continuous relaxation of the binary constraints (4) and solving the resulting linear program

would yield the optimal solution.

2.5.2 Robust Data Driven for Matching Problem

This section proposes mathematical formulations for a data-driven optimization modeling

framework. To build the robust optimization model, we adopted a min-max perspective

which minimizes the distance between two uses with respect to worst-case realization of the

observed distances (Equ.5) which belongs to the data-driven uncertainty set. The uncertainty

set is constructed through the likelihood function of distances between two users activities

observed in multiple days.

Data Driven Uncertainty Set: The space where the uncertain parameter belongs to and

is defined as the likelihood robust distribution set where the observed samples achieve an

empirical likelihood level of γ. Mathematical equations for the uncertainty set is provided

in below:

D(γ) =
{
p = (p1ij, p

2
ij, . . . p

t
ij) |

∑
t

N t
ij log p

t
ij ≥ γ,

∑
t

ptij = 1
}

(6)

In the above equation ptij is the probability that the matching cost for user i and j

belongs to interval t with frequency of occurrence of N t
ij. Given the uncertainty set D(γ) the

Robust Data-Driven Matching Problem is introduced as the following nonlinear programming

formulation.

min
xij

∑
i,j

(
max
p∈D(γ)

∑
t

ptijc
t
ijxij

)
(7)

s.t.
∑
t

N t
ij log(p

t
ij) ≥ γ ∀i, j ∈ C (8)∑

t

ptij = 1 ∀i, j ∈ C (9)∑
i

xij = 1 ∀i ∈ C (10)∑
j

xij = 1 ∀j ∈ C (11)

xij ∈ {0, 1}, ptij ∈ {0, 1} ∀i, j ∈ C (12)

In the above formulation, Eq.(5), minimize the total matching cost while making sure the

worst-case distribution achieved form the observed data reaches a desired level of likelihood.

17

Wang et al. (2016) provided the details on how to convert the min-max optimization above to

an equivalent convex minimization which is readily solvable by the off-the-shelf commercial

optimization solvers. In order to write the reformulation, we need to provide a closed form

solution equation for inner maximization problem. We begin by writing the Lagrangian

function of the inner this problem with respect to p:

L(p, λ, µ) =
∑
i,j

(∑
t

ptijc
t
ijxij + λij

(
γ −

∑
t

N t
ij log(p

t
ij)
)
+ µij

(
1−

∑
t

ptij

))
(13)

Computing the KKT conditions for above equation and solving ∇L(p, λ, µ) = 0 would

yield the optimal value for ptij as below:

ptij =
λijN

t
ij

ctijxij − µij

(14)

Substituting the optimal value calculated for ptij (Eq. 12) into equation (11) would provide

an equivalent convex minimization reformulation for the problem.

min
xij ,λij ,µij

(
µij +

∑
ij

λij

(
γ +N −

∑
t

N t
ij log(N

t
ij)
)

−
∑
ij

Nλij log λij +
∑
ij

λij

∑
t

N t
ij log(µij − ctijxij)

) (15)

s.t.
∑
i

xij = 1 ∀i ∈ C (16)∑
j

xij = 1 ∀j ∈ C (17)

µij − ctijxij ≥ 0 ∀i, j, t ∈ C (18)

µij ≥ 0, λij ≥ 0 ∀i, j, t ∈ C (19)

xij ∈ {0, 1} ∀i, j ∈ C (20)

2.5.3 Selecting Values for γ

Considering α as the reliability factor and p = (p1ij, p
2
ij, . . . , p

t
ij) with ptij ≥ 0. The optimal

value for likelihood value is achieved through the following equation:

P (p ∈ D(γ)) = 1− α (21)

18

In the above equation P is the probability measure on p and the goal is to find a likelihood

value γ by which the probability of p belonging to the uncertainty set D(γ) is at least 1−α.

Wang et al. (2014) showed that γ is calculated according to the following equation:

γij =
∑
t=1

N t
ij log

(
N t

ij

N

)
− 1

2
χ2
t−1,1−α ∀i, j, t ∈ C (22)

Where χ2
t−1,1−α is the 1− α quantile of a χ2 distribution with t degrees of freedom.

2.5.4 Results

The algorithm and matching formulation were tested on a 5 person subset of the GeoLife

dataset, chosen for having a fairly large amount of trips during rush hour

Figure 2.8: Two pairs of user trajectory history matched by the presented RDDO framework.
User #30 was matched with user #1 and user #3 was matched with #35. Trips in similar
areas are highlighted by the blue circles.

As seen in figure 2.8, the matching provides reasonable assignments. Note that the trips

of users 1 and 30 line up often within the circled area, making them reliable candidates for

sharing rides. Although user 3 also shares some of these same trips, they are a much less

19

reliable match. Instead, they share some less common but still frequent enough trips in the

circled area on the right.

2.6 Conclusion

In this chapter we proposed a robust data-driven optimization framework to best use histor-

ical location and trajectory data to recommend community ride-sharing partners. In order

to build the model, first the raw trajectory data which represents user’s traces over time is

processed. Such data is a multi-day high frequency GPS trajectories, by which one’s fre-

quent activities are revealed. In particular, in this work a trajectory mining approach is

implemented which allows us to retrieve activities that happen frequently. Such information

includes, the potential location for home and work and also the information regarding the

recurrent trips for every user. With this information on hand a mobility profile for every

traveler is constructed which forms the basis to understand every user’s travel patterns. Fi-

nally, by comparing the mobility profiles of every two users the similarity of behavior between

users activities can be established. This similarity is computed via a pairwise dynamic time

warping algorithm with slope-constraints representing departure time flexibility. The pair-

wise comparison generates a distribution of distances, which is used to define an uncertainty

set in a robust matching formulation. We demonstrate that the proposed DTW comparison

and matching formulation captures efficient and useful carpooling assignments.

20

CHAPTER 3

Heuristics for Customer-focused Ride-pooling

Assignment

3.1 Introduction

The ridesourcing industry has recently grown tremendously due to the rise of transportation

network companies (TNCs) such as Uber, Lyft, and DiDi Chuxing. Already serving billions

of passenger trips per year, this industry has the potential to reshape cities, reduce the need

for parking, and fortify the transportation ecosystem Wang and Yang (2019), Tafreshian

et al. (2020). On-demand mobility services offered by TNCs also improve accessibility for

those living in transit deserts with limited mobility choices.

As mentioned previously, the benefits of ridesourcing are often outweighed by a host of

negative externalities, including increased emissions and VMT. Facilitating ride-pooling is a

useful method to offset these externalities and retain many benefits of ride-hailing. However

ride-pooling introduces numerous other problems including making operation more complex

at scale. It is well-known that the trip-vehicle assignment problem for ride-pooling is noto-

riously difficult, and most solutions involve computationally-heavy optimizations. Previous

papers have quantified the benefit of ride-pooling by solving large-scale multi-vehicle dial-a-

ride problems or approximate dynamic programming Santi et al. (2014), Alonso-Mora et al.

(2017a), Yu and Shen (2019), Simonetto et al. (2019). Note that some of these papers assume

an offline setting where trip requests are known in advance.

Solving ride-pooling assignment to global optimality for real-time operations is even more

challenging, if not impossible. More practical alternative approaches include online approx-

imation algorithms, reinforcement learning (RL), and heuristics (including metaheuristics).

Online approximation algorithms can provide provable guarantees on the computed solution

with respect to the optimum Ashlagi et al. (2018), Bei and Zhang (2018) in the assignment

of trip requests arriving incrementally over time. However, these settings are restricted to

21

certain instances and are unrealistic because existing studies focus on analyzing the perfor-

mance of these approximation algorithms in the worst case. These algorithms’ performance

on real-time spatial data from cities show various negative results. For example, (Tong et al.

2016) discovered that theoretically competitive algorithms might have worse average-case

performance than a simple greedy assignment algorithm. Reinforcement learning is a purely

data-driven approach Jindal et al. (2018) that has been used extensively in industry. Nev-

ertheless, reinforcement learning may suffer from lacking adequate real-world data in early

adoption and new areas (leading to poorly trained models) or may be lead to unpredictable

behavior in unforeseen scenarios. This work aims to examine potential rule-based heuristic

vehicle-trip assignment methods. These heuristic methods are not computationally intensive,

easily scalable, and prioritize sharing rides over single rides.

Evaluating heuristics for ride-pooling can be difficult and subjective due to the lack of well-

balanced performance measurements. Most heuristic methods in the prior work fall into the

“platform-focused” catalogue Pelzer et al. (2015), Tong et al. (2018). The objective is serving

the most trips in the fewest VMT. Nevertheless, implementing poorly designed heuristics

may significantly increase customers’ travel time compared with the conventional single-ride

service. The platform must then compensate the customers by offering a discount. This

work proposes a new “customer-focused” heuristic method to reduce the service degradation

due to ride-pooling. This method guarantees the detours from the customers’ trip plans are

restricted, hence called the restricted subgraph method. This novel heuristic method could

potentially achieve similar performance to optimization-based methods while simplifying

calculations.

3.1.1 Main Contributions

The main contributions of this chapter include:

1. Suggest a set of well-balanced performance measures for evaluating ride-pooling sys-

tems.

2. Propose a new, simple but effective heuristic and examine a family of heuristic meth-

ods for ride-to-ride and ride-to-vehicle assignment that improves the customers’ ride-

pooling experience.

3. Build a data-driven agent-based simulator upon which to evaluate and compare differ-

ent heuristics.

The remainder of the chapter is organized as follows. In Section 3.2, we review the rele-

vant literature on offline and real-time ride-pooling assignment algorithms. In Section 3.3,

22

we suggest a comprehensive set of metrics to evaluate the performance of ridesourcing assign-

ment methods. In Section 3.4, we propose a customer-focused heuristic based on evaluating

restricted subgraphs of trip requests. In Section 3.5, we describe how the numerical experi-

ments are conducted and discuss the numerical results. We draw the conclusion in Section

3.6.

3.2 Literature Review

There have been burgeoning studies to investigate the ride-pooling assignment problem. The

goal is to dispatch ride-hailing vehicles to enable customers to share rides with others going

in the same direction in order to offset travel costs with multiple passengers in the vehicle.

Much of the prior optimization-based work assumes that trip requests are known ahead

of time, and therefore the proposed approach is inherently offline. Others instead receive

knowledge of trip requests in batches and perform computationally demanding optimizations

to determine routes and matches. On the other hand, those for pure online implementation

with unknown demand were designed against the worst case. In contrast, this work seeks

to approach the middle ground for easily computable, real-time ride-pooling assignment

methods.

Previous studies assuming that the platform has partial or full knowledge of travel demand

focused on developing centralized, optimization-heavy approaches to improve the overall

system performance. The resulting benefit of ride-pooling is over-optimistic, as real-time

ridesourcing operations often do not know about future requests or have time to perform

intensive calculations. (Alonso-Mora et al. 2017a) has indicated the substantial potential of

high-capacity ride-pooling. This alternative on-demand transportation system can serve 98%

of the demand with 15% of the fleet size when using a fleet of small busses with a capacity

of 10 people. They used the idea of “shareability graphs” (vehicle-trip-request graphs) to

optimize among potential matches of multiple trips and vehicles. This approach requires

solving the Travelling Salesman Problem (TSP) repeatedly for each potential pairing of

trips to check if constraints regarding pick up time and delay are satisfied and then requires

solving an integer program to optimize the miles traveled. Both of these problems are

highly computationally intensive and can scale exponentially with the number of requests.

(Simonetto et al. 2019) improved the computational efficiency of the algorithm as a linear

assignment problem and distributing the computation to multiple platforms. The results

achieved a similar quality of service and ran up to four times faster than in the prior work.

Since the assignment algorithm’s performance varies significantly when the information about

the next demand is unknown, this stream of literature can be treated as an upper bound on

23

any assignment policies in real-time/online ride-pooling systems.

On the other hand, there is a growing body of approximation algorithm literature that

is derived from a worst-case analysis. These analyses are over-conservative because they

examine the performance of algorithms when requests arrive in an adversarial order, which

is designed to elicit poor results. Regarding the conventional single-ride vehicle assignment

(i.e., each vehicle is matched with one trip request), (Tong et al. 2016) revealed that a simple

greedy assignment algorithm, in which requests are matched on arrival to the closest driver,

outperformed randomized online matching algorithms such as the permutation algorithm

and the hierarchically separated tree algorithm. A potential reason is because those worst

cases are rare in practice. (Ashlagi et al. 2018) proposed a passenger-to-passenger matching

algorithm in ride-pooling assignment systems where each customer has either a constant

or a random deadline. Their algorithm, based on the adversarial arrival order assumption,

achieved 1/4-competitive for fixed deadline and 1/8-competitive when the demand process

is memoryless. (Azar et al. 2017) initiated the studies of online matching with delays. This

model captured the trade-off between the market thickness and information in the dynamic

matching systems. In the context of ride-pooling, the longer customers stay unmatched,

the higher probability that a better match can be found. For those works, ridesourcing

platforms may pose the same question as to the single-ride case – how do they perform on

the real-world spatial data? This chapter aims to cast light on this question.

Work in the area of real-time operation of ride-pooling systems has become more prevalent

in recent years. The vehicle-trip assignment problem in ridesourcing is a variation of the dial-

a-ride problem, i.e., designing efficient vehicle routes to serve the users’ pickup and delivery

requests between origins and destinations. Easily computable heuristic methods to solve the

vehicle-trip assignment in ridesourcing were examined by (Hyland and Mahmassani 2018).

This showed the potential of different methods of prioritization and matching, as well as

considering varying scenarios of driver statuses. However, (Hyland and Mahmassani 2018)

only examined the single-trip-per-ride case and did not consider the potential for pooling or

sharing. (Herminghaus 2019) analyzed the efficiency of ride-pooling by using a mean-field

approach in different urban settings. The ride-pooling market is characterized by aggregate

variables such as the distribution of demand, the average delay of ride-pooling, and the

traffic network structure. The model explained why mobility-on-demand is more competent

in dense urban areas and revealed a break-even point for its deployment in urban areas.

24

3.3 Performance Measures of Ride-pooling Systems

Designing real-time ride-pooling heuristics starts with a clear goal in mind, but a consistent

and objective measure of ride-pooling effectiveness is lacking in this avenue of research. The

following performance measures are widely used to guide the design and the operations of

ridesourcing services:

1. Maximize the utilization of ridesourcing vehicles Cramer and Krueger (2016).

2. Maximize average vehicle occupancy Di et al. (2017).

3. Maximize the platform’s throughput Masoud and Jayakrishnan (2017).

However, these measures do not fully reflect the saved vehicle miles traveled (VMT) due

to ride-pooling, which is the main benefit of its deployment. Utilization specifically does

not distinguish between time spent detouring (increased VMT) and time spent en-route

with multiple passengers (decreased VMT). Designing heuristics around these measures

alone may also lead to unintended consequences. For example, if an algorithm cherry-

picks short-haul trips, the system’s overall throughput can significantly outperform other

algorithms. Alternatively, if vehicles stay occupied when picking up new passengers, the

vehicle utilization will appear high. Passengers may not benefit from these resulting ride-

pooling algorithms due to being treated unequally or being forced on long detours and

increasing VMT. To better evaluate the performance of ride-pooling systems, we propose a

family of performance metrics summarized in Table 3.1.

Below we elaborate on the system throughput and system efficiency, as other performance

metrics in Table 3.1 are self-explanatory and easily measured. For a study period, say, three

hours, we discretize it into smaller time intervals of, e.g., five minutes each. At a given time

interval τ , we let Vτ denote the set of in-service vehicles at the interval and Kv
τ denote the

set of trips delivered by vehicle v ∈ Vτ during the time window [τ, τ +∆τ] where ∆τ is the

length of the moving window, e.g., 10 minutes.

We first introduce system throughput, which is defined as the number of passengers deliv-

ered to their destinations per unit of time. If real-time passenger dropoff data are available,

as is the case in simulations in this chapter, the throughput Qτ can be simply measured

by the number of passengers dropped off within the window [τ, τ + ∆τ] divided by ∆τ .

Otherwise, it can be approximated by the ratio between the total number of passengers on

board and the average in-vehicle time of passengers. As per Little’s law, this approximation

is exact if the system is in a steady state. Let Oτ denote the average occupancy of vehicles

in Vτ . Mathematically, the throughput can be computed as follows:

25

Table 3.1: Summary of heuristic evaluation metrics

Evaluation metrics Definition

Platform
performance
metrics

System throughput
Number of passengers delivered to their
destinations per unit of time

System efficiency
Average passenger-hours served
per unit labor hour

Time-based
vehicle occupancy

Time-averaged number of passengers on board

Distance-based
vehicle occupancy

Distance-averaged number of passengers on board

Customer
performance
metrics

Matching time
Average time between when a trip request is
sent and a driver is dispatched to the trip

Pickup time
Average time between when a driver
is dispatched and the customer is picked up

Detour time
Average difference of in-vehicle time using
ride-pooling relative to that of using
single-ride service

Qτ =
|Vτ |Oτ∑

v∈Vτ

∑
k∈Kτ

v
tin-vehk /

∑
v∈V |Kτ

v |
, (1)

where tin-vehk is the in-vehicle trip time experienced by the passenger trip k ∈ Kτ
v served by

vehicle v ∈ Vτ and | · | represents the size of a set. In the equation, the numerator is the

total number of passengers on board while the denominator computes the average in-vehicle

trip time.

System throughput, as defined above, is a good performance measure of the productivity

or output of a ridesourcing system. However, it does not reflect the resource, i.e., labor

hours, utilized to produce such an output. This is important in a ride-pooling scenario to

quantify how much benefit is derived from sharing rides. More importantly, throughput does

not reflect the length of the trips served. As previously mentioned, a matching algorithm

that maximizes system throughout will tend to cherry-pick to serve short-haul trips. To

address these two issues, we propose a system efficiency metric. The adjusted productivity

or output at time interval τ will be the sum of the lengths of all trips (measured by their travel

times if being served by single-ride service) delivered during the time window [τ, τ + ∆τ].

Mathematically, the system efficiency is defined as follows:

26

Eτ =

∑
v∈Vτ

∑
k∈Kτ

v
tk

V τ ·∆τ
, (2)

where V τ is the average number of in-service vehicles in [τ, τ+∆τ], and thus the denominator

assesses the total labor input. Eτ indicates the system outcome produced per unit of labor

hours through ride-pooling. Note that for systems without ride-pooling, this metric reduces

to the well-known system utilization metric, i.e., the percent time-in-service vehicles being

occupied.

Note that Qτ and Eτ , as defined, yield time-varying metrics of how a ride-pooing system

performs during a study period. For the whole period, we report the averages of these time-

varying metrics over all time intervals. Later we conduct statistical tests to determine how

significant differences in these averages are over many simulation runs.

3.4 Ride-pooling Assignment Heuristics

In this section, we first introduce several basic versions of ride-pooling assignment meth-

ods widely adopted in industry and from literature. Note that most of these methods are

platform-focused so customers may experience substantial degradation of service quality

due to waiting and detour. Thus, we propose a novel customer-focused heuristic called the

restricted subgraph matching method.

3.4.1 Preliminaries: Benchmark Ride-pooling Methods

We present three mainstream ride-pooling heuristics adopted in the industry or from the

existing literature Yang et al. (2020).

Origin-destination (O/D) grouping or path clustering is a similarity-based algorithm that

combines trips for ride-pooling based on the proximity of their origins and destinations. The

advantage of the grouping method is that this type of trip similarity is an intuitive indicator

for shareable rides without excessive detour time. Thus, a ride-hailing vehicle can serve

matched trip requests by solving a shortest-path problem. On the other hand, two potential

disadvantages emerge. First, ride-pooling efficiency is highly dependent on the thickness

and homogeneity of the pooling market. If the market is not thick enough, the pooling

will likely fail. Otherwise, passengers have to experience much longer matching time to be

successfully pooled. Second, the system needs to determine sequences of pickup and dropoff

after collecting all trip requests. The option for vehicles to accommodate new demand once

27

their route is determined is ruled out, missing potential compatible requests in the future.

A second class of heuristic is occupancy-based.

Algorithm 1: Target Occupancy Matching

Data: Passenger queue P , target occupancy target, idle drivers Vidle, occupied

drivers Vocc, and acceptable matching radius r

Result: Assignments of passengers to en-route or idle vehicles

for p ∈ P do

v∗ ← ∅ ;
for v ∈ Vocc do

if occupancy(v) < target and dist(po, v) < r then

v∗ = v ;

assign(p,v∗);

end

if v∗ = ∅ and |Vidle| > 0 then

v∗ ← argminv∈Vidle
dist(po, v);

assign(p,v∗)

end

end

The target occupancy heuristic aims to maintain a certain number of passengers per vehicle

by alternating pickups and dropoffs. The main idea of the target occupancy heuristic is

demonstrated in Figure 3.1. As requests are received, they are assigned to the nearest

vehicle whose occupancy is below the target. This heuristic should benefit the ridesourcing

platform, as it is a greedy algorithm that attempts to maximize the utilization of vehicles.

However, since this simplified target occupancy heuristic does not consider requests and

vehicle destinations, customers might experience substantial trip delays. To address this

issue, we limit the assignment to vehicles within a certain matching radius. The geometric

matching radius is effective for limiting both the delay for passengers currently in the vehicle

and the pickup time for the assigned request. It is widely used in the ridesourcing industry

Yang et al. (2020), Zha et al. (2018).

The final class of the ride-pooling method is bipartite matching or assignment regarding

batched requests and vehicles. This method first constructs a bipartite graph in which

available drivers (empty cars or cars with vacant seats) and trip requests sit on two sides,

respectively. Since ride-pooling allows multiple requests to be assigned to the same vehicle,

the system is solving a general assignment problem to minimize the total pickup time (or

maximize the value of assignments). Efficient approximation algorithms Williamson and

28

Figure 3.1: Target occupancy heuristic

Shmoys (2011) can solve the large-scale bipartite matching (conventional) or assignment

(ride-pooling) problem. The batch size is controlled by how frequently such a bipartite

matching is conducted. The advantage of this approach is achieving the local optimum for

the metrics of interest, in this case total system pickup time, while matching as many requests

as possible. However, bipartite matching or assignment may cause additional waiting costs

if the batch size of matching is extensive, and the detours for requests depend the method

is used to determine trip compatibility.

The following counterexamples show how these these heuristics can be arbitrarily bad in

specific networks.

We assume that all trip requests are revealed at time 0 and the platform operator controls

one vehicle with capacity of two to fulfill these demand. The objective is to minimize the total

cost of transporting passengers. In the first counterexample, the operator adopting the O-D

grouping algorithm will assign the vehicle to an arbitrary trip to collect a total cost of −M ,

while the obvious optimal path is traveling a sequence of o1 → d1 → o2 → d2 → · · · → dN

with the total cost of N(1−M)−1. The optimality ratio is an unbounded N . In the second

counterexample, the operator adopting the target occupancy algorithm (with a target of 2)

will choose the path o1 → o2 → d1 → d2 with a total cost of M + 2. A better path is

o1 → d1 → o2 → d1 → d2 with a total cost of 4. The optimality ratio is (M + 2)/4, which is

also unbounded when we drive M →∞. Note that in the second counterexample, the first

passenger experience extreme detour from the use of target occupancy algorithm. These

29

(a) O-D grouping (b) Target occupancy

Figure 3.2: Counterexamples for benchmark heuristics; oi − di, i = 1, 2, . . . are origins and
destinations of trip requests on a network, and edge values are travel costs. M is an arbitrarily
large positive number.

examples motivate us to develop a family of customer-focused algorithms in what follows.

3.4.2 Restricted Subgraph Method: a Customer-Focused Heuris-

tic

This section proposes a new customer-focused heuristic built upon the concept of a restricted

subgraph. For each request received and each vehicle in transit, a matchable subgraph is

created for the driver and the customer, respectively. For a vehicle with passengers, each

of these subgraphs contains nodes that can be reached along its route within a reasonable

delay; Similarly, for a customer seeking a ride-pool, their restricted subgraph contains nodes

within an acceptable delay from their initial route.

The matchable node in a subgraph is defined as follows. A request going from node A

to node C can reach node B if the sum of the travel time from A to B and the travel time

from B to C is less than the original travel time from A to C plus an allowable delay δ as a

function of the original travel time δ(ttAC), i.e., ttAB + ttBC ≤ ttAC + δ(ttAC).

The allowable delay function can be simple constants or reflect more complex, operational

considerations. In our numerical results, we have chosen δ(ttAC) =
√
ttAC , as this implies

that the acceptable detour time grows with the length of the original trip, but also that

for longer trips this delay should not grow at the same rate. For example, a 5-minute

detour might be acceptable for a 10-minute trip, but a 30-minute detour would unlikely be

30

Figure 3.3: Restricted subgraph heuristic

acceptable for an hour-long trip.

As can be seen in Figure 3.3, constructing this restricted subgraph allows for a concise

way of determining whether trips are compatible for pooling. This figure shows that the red

origin falls inside the blue trip’s subgraph, meaning the red trip can be picked up without too

much delay for blue. Similarly, the blue destination falls within the red subgraph, suggesting

that the blue trip can be dropped off without too much delay for red. If either trip did not

satisfy these subgraph constraints (e.g., the yellow triangle on the map), it would be too far

out of the way to yield a reasonable ride-pooling assignment.

Given the travel time (ttAC) from A to C, this method considers all nodes within an ellipse

of a certain focal distance from the origin and destination. This restricted subgraph method

is easy to implement because the node-to-node distances can be pre-calculated. A similar

method has been used to assign peer-to-peer carsharing Masoud and Jayakrishnan (2017) and

check the detour propensity for ride-pooling in the mean-field setting Herminghaus (2019).

31

Algorithm 2: Restricted Subgraph Matching

Data: Passenger queue P with passenger origin po and destination pd, idle drivers

Vidle, occupied drivers Vocc en-route to destination vd, and subgraphs Gi for

passengers and occupied drivers

Result: Assignments of passengers to en-route or idle vehicles

for p ∈ P do

v∗ ← ∅ ;
for v ∈ Vocc do

if po ∈ Gv then

if vd ∈ Gp then /* Trips overlap */

assign(p, v);

v∗ ← v;

Break ;

else if pd ∈ Gv and dist(pd, vd) < dist(po, vd) then

assign(p, v) ; /* Passenger trip is a */

v∗ ← v ; /* subset of vehicle trip */

Break;

end

end

end

if v∗ == ∅ and |Vidle| > 0 then /* p can be assigned */

vi ← argminv∈Vidle
dist(po, vo) ; /* to idle vehicle */

assign(p,vi);

Vidle ← Vidle \ vi ; /* Remove vehicle from idle set */

Vocc ← Vocc ∪ v∗;

else

Vocc ← Vocc \ v∗ ; /* Remove vehicle from en-route set */

end

end

Once the subgraphs are created, finding matches is a simple membership test. If a passen-

ger, p, can share with a vehicle, v, carrying a different passenger en route to their destination,

it must first be true that the vehicle can pick up p without delaying v too much. So p’s origin,

po, must be in v’s subgraph, Gv. Additionally, one of the two following cases must be true:

p’s destination, pd, must be in Gv OR v’s destination, vd must be in p’s subgraph, Gp. The

first case corresponds to the scenario where passenger p’s trip is a subset of the vehicle’s trip,

32

which means p will be picked up and dropped off before it reaches its original destination.

The second case corresponds to when the two trips overlap. After passenger p is picked

up, the vehicle will travel to its original destination, drop that passenger off, and travel to

passenger p’s destination. In our experiments with real-world spatial data, this proposed

heuristic has performed well in maximizing the systems’ throughput while keeping detours

small.

In addition to the restricted subgraph heuristics, all the other pooling methods tested in

this chapter are summarized in Table 3.2.

Table 3.2: Summary of heuristics compared in numerical experiments

Heuristics Description Pros Cons

Customer-
focused
Heuristics

Restricted subgraph

Matching with
earliest arrival
passengers in
subgraph

Easy-to-
implement

Large pickup
time

Restricted subgraph
greedy method

Matching with
the nearest driver
in subgraph

Small pick-up
time

Long detour
time in the
worst case

Bipartite
Matching to
minimize delays

Obtain minimum
total pick-up
time

Incur waiting
cost

Platform-
focused
Heuristics

Target occupancy
with radius
Yang et al. (2018)

Maintain occ. by
adding rides in
matching radius

Similar to
industrial
practice

Potential long
trip time

Target occupancy
with one-sided
subgraph

Combination of
target and sub-
graph heuristics

Trade-off between
pick-up and in-
vehicle time

−−

Baseline

Path clustering
O/D grouping
Hong et al. (2017)

Matching
similar trips by
O/D location

Near-optimal for
offline assignment

Unsuitable for
real-time
assignment

Single-ride
Schreieck et al. (2016)

−− −− No ride-pooling

3.5 Numerical Simulation on Real-World Data

3.5.1 Simulation Environment

In order to compare the performance of these heuristics and evaluate their ability to pool

requests, we develop an agent-based simulation environment based on a real-world taxicab

dataset. Figure A.1 is a sketch of the architecture of the simulator. At each timestep,

33

all agents in the simulation are updated, and new trip requests are collected or generated.

Drivers are updated first, during which they drop-off or pickup customers if appropriate.

Next, waiting customers are updated and determine whether they leave the queue based

on their threshold waiting time. Similarly, idle drivers can move randomly or based on

given information about supply and demand. Finally, the platform is updated with all the

new requests and driver statuses at every matching interval. The platform then performs

a new matching assignment and updates customers and drivers with the results. Detailed

statistics on miles traveled, driver status and occupancy, and waiting times are updated at

each timestep.

This object-oriented simulation environment is designed to be flexible and allows for

varied driver, customer, and platform behaviors. In this chapter, we assume idle drivers

cruise randomly throughout the network when unassigned. However, other behaviors such

as navigating towards areas of high demand or platform repositioning are also supported.

Additionally, this chapter only places constraints on customer matching waiting time behav-

ior and does not investigate different customer pickup waiting time behavior, but this is also

supported. The flexibility of this environment (in Python 3.7) allows for potential testing of

a multitude of different scenarios with minimal changes. Further information on the capa-

bilities of the simulation and information on its development can be found in Appendix A.

The testing of the various heuristics in this chapter is done simply by changing the platform

matching function and the randomly sampled demand. Other tests can be done by changing

the network, number of drivers, or other parameters easily.

3.5.2 Data Description

The data used for the simulation are drawn from multiple sources:

1. Trip request data: the NYC Taxicab data set available from the NYC Taxi and Limou-

sine Commission Dias et al. (2019).

2. Speed data: average street speed data from the Uber movement project Aryandoust

et al. (2019).

3. Street network data and subgraph network representation: OpenStreetMap (OSM)

road network is converted to a graph in Networkx.

The NYC taxicab data consists of pickup and dropoff latitude and longitude locations for

every taxi ride in NYC for 2011-2014. Data from 2013 was used specifically as it is widely

used in other papers Alonso-Mora et al. (2017a), Simonetto et al. (2019) and it is the most

recent NYC data containing latitude and longitude coordinates instead of more general zone

34

Figure 3.4: Visualization of the agent-based ridesourcing simulation in Manhattan, New
York

information. In addition, the data contain fare and distance information for the trip, which

are not used in the simulation. Since this chapter considers low capacity matching for a

ridesourcing service, we assume each request to be two or fewer people per request (as is

commonly required in TNC pooling services). All heuristics in this chapter support larger

request sizes. However, a capacity constraint check would need to be added to make sure

that vehicle capacities would not be violated in the matching assignment.

Network average travel times are obtained from the Uber Movement speeds dataset,

averaged over 2017-2019 for all links, and synced with the underlying subgraph. Links

without any information are given average speeds according to their OSM road type (i.e.,

highway, primary, residential).

3.5.3 Results and Discussion

In order to compare multiple heuristics by statistical tests, we need to specify how to ran-

domly sample supply and demand in the simulator.

We define a scenario as a sampled supply and demand profile and an initial condition for

ride-pooling. In each scenario, the demand is randomly sampled from the NYC taxicab data

from May 6th, 2013, 7:30 to 9:00 am. In each test, the fleet size is set to 500 vehicles with

35

Table 3.3: Summary of simulation scenarios

Percentage
of demand

of scenarios
per heuristic

of
vehicles

Demand-supply
balance

7% 10 500 over-supply
10% 10 500 nearly-balanced
12% 10 500 under-supply

random initial locations in the road network, and the simulation is run for a warm-up period

from 7:30 to 8:00 am. The timestep for updates is every five seconds. The matching interval

is also set to five seconds for all heuristics except bipartite and group methods, which use

a one-minute interval. Additionally, the target occupancy in the relevant heuristic is two

requests per vehicle, and the restricted subgraph methods use an allowable delay function

as described earlier. All groups of heuristics are examined with the same initial conditions,

but the system evolves differently once trip assignments are made.

Table 3.3 summarizes the different scenarios run in simulation. Three different demand

cases are examined by sampling the demand at 7%, 10%, and 12% of the total Manhattan

demand over the simulation period. Because the fleet size remains constant, these demand

levels represent oversupply (enough vehicles to serve all trips with one request per vehicle),

nearly balanced (most strategies can manage the demand), and severe under-supply (where

many customers leave before being served, regardless of matching strategy), respectively.

In order to directly compare performance across heuristics, we run ten simulations at each

demand level. In each run, a new set of requests are sampled from the taxicab dataset, and

new initial vehicle positions are generated. The demand and initial positions are kept the

same across the various heuristics so that the runs could be statistically compared.

In accordance with the proposed performance measures, we report the comparisons of

heuristics by system and customer metrics.

3.5.4 System Metrics

We examine the system performance metrics of these methods in closer detail in those three

scenarios. These metrics are plotted for comparison in the radar charts in Figure 3.5.

In the oversupply scenario (7% demand), because all requests can be served without ride-

pooling, the single ride and greedy restricted subgraph methods outperform the others in

both throughput and system efficiency, with no significant difference between them. As seen

in Figure 3.5a, there is a less than 5% difference between the throughput of other methods

except for the target occupancy method. The target occupancy method performs quite

36

(a) Oversupply (7% demand) (b) Nearly-balanced (10% demand)

(c) Under-supply (12% demand)

Figure 3.5: Summary of results for system metrics

37

poorly while maintaining high occupancy because it may cause long detours by forcing rides

to share and low throughput.

In the nearly-balanced scenario (10% demand), a much larger variation can be observed

between the methods. Origin-destination (O/D) grouping and bipartite methods, due to

their longer matching window or centralized optimization, outperform the other methods

in throughput by about 10% (200 requests per hour). However, this is a trade-off with the

additional matching time incurred. Shorter matching windows yield lower overall throughput

due to less time to group or consider requests for optimality. It is also important to note that

the performance of the O/D grouping method is highly dependent on the spatial distribution

of demand. It is very effective only when many requests share similar origins and destinations.

As vehicle supply becomes exceptionally constrained in the 12% demand scenario, the

advantage of the restricted subgraph method and its extensions becomes clearer. Though

statistically significant, the O/D grouping platform’s average throughput is only ten requests

per hour more (or less than 1%). Meanwhile, the subgraph method depends less on the dis-

tribution of demand and has a lower matching time. In most cases, we observe a correlation

between throughput and efficiency, as higher efficiency serves more customers with the avail-

able labor supply. However, we note that the target occupancy is a consistent exception

to this, as it achieves comparable efficiency to some other methods by getting people into

vehicles as quickly as possible, but often suffers in throughput due to long detours. This

result demonstrates the danger of comparing performance based on only one metric.

3.5.5 Customer Metrics

While throughput and efficiency are essential to the platform and regulators, they do not

have a direct impact on customers. Thus it is also important to examine metrics that affect

customers’ experience. There is a clear trade-off between customer satisfaction and platform

goals: longer matching time intervals for holding and optimizing requests produce larger

throughput and more efficient matches but at the cost of customers’ matching time. We

also see the effects of different strategy choices. For example, the target occupancy method

achieves low pickup times in general due to its matching radius requirement. However, it also

experiences long delays because the trip assignments do not take destinations into account.

In the oversupply scenario (7% demand) in Table 3.4, the matching time is significantly

increased for the bipartite matching and O/D grouping algorithms, as they employ a longer

matching interval. This is disadvantageous to the consumers because they are forced to wait

longer in uncertainty (i.e., they do not know when they will be matched), with often more

extended pickup or trip times. We also see that the greedy restricted subgraph algorithm

38

Figure 3.6: Summary of results for customer metrics

39

Table 3.4: Summary of customer metric results, in minutes, for varying demand levels

Over-supply case with 7% demand

Platform
Average

matching time
Average

pickup time
Average
trip time

Average total
wait time

Average
delay time

Single ride 0.07 2.75 7.55 2.82 0.74
Target occupancy

with radius
0.07 2.78 18.60 2.85 11.64

Restricted subgraph
greedy method

0.07 2.69 7.61 2.76 0.80

Res. sub bipartite
matching (1 min)

0.75 2.57 9.13 3.32 2.35

O/D grouping (1 min) 0.75 3.73 7.66 4.48 0.82

Nearly-balanced case with 10% demand

Single ride 0.52 8.05 7.51 8.56 0.74
Target occupancy

with radius
0.25 3.59 19.70 3.84 12.77

Restricted subgraph
greedy method

0.58 7.51 8.01 8.09 1.34

Res. sub bipartite
matching (1 min)

0.90 3.74 9.88 4.64 3.16

O/D grouping (1 min) 0.86 6.09 7.64 6.95 0.83

Under-supply case with 12% demand

Single ride 0.52 7.96 7.49 8.48 0.74
Target occupancy

with radius
0.82 3.79 21.64 4.60 14.72

Restricted subgraph
greedy method

0.76 7.40 8.18 8.17 1.53

Res. sub bipartite
matching (1 min)

1.24 3.43 10.92 4.68 4.30

O/D grouping (1 min) 1.01 8.06 7.66 9.07 0.83

40

reduces the pickup time as intended in this case.

In the nearly-balanced scenario (10% demand) in Table 3.4, we see a significant reduction

in pickup time using either the target occupancy and the bipartite matching method com-

pared to the other platforms. This reduction comes at the cost of increased matching time,

which customers might place a great value on, given the uncertainty of whether they will be

assigned a vehicle at all.

Finally, the waiting and delay times increase further as supply is more constrained and

more requests are served in the 12% demand scenario. In Table 3.4, we see the same trends

in average matching time and pickup time, as well as increased trip delays in the target

occupancy and bipartite methods. As more demand is trying to be served by the same

amount of vehicles, the increased throughput comes with forcing longer delays. We present

the restricted subgraph methods as a balance in these trade-offs between the platform’s

goals and customers’ satisfaction, though TNCs and planners can determine what is best for

specific scenarios by weighing more important metrics.

3.5.6 Statistical Test Results for Heuristics

We perform a pairwise t-test to compare throughput performance based on ten simulation

runs at each demand level. The null hypothesis, h0, is that the methods do not significantly

differ in the system throughput. The throughput and p-values for the 12% demand scenario

comparisons are reported in Figure 3.7. We only present the 12% demand statistical com-

parison here for brevity. The tests show statistical significance in most demand levels in all

pairs except between the restricted subgraph method and the greedy restricted subgraph,

which only have a statistically significant difference in the 7% demand scenario. It is im-

portant to note that, while these differences are often statistically significant, they are not

always practically significant. As mentioned earlier, in some cases, the difference between

O/D grouping and restricted subgraph methods is less than one percent.

3.5.7 Results Takeaways

In general, our results show that:

• The restricted subgraph method performs significantly better than the target occu-

pancy method, a method practiced in industry, in all cases due to increased throughput

and limited detour time.

• The performance of the origin-destination (O/D) grouping method, another one prac-

ticed in industry, depends on tuned parameters (e.g., the size of matching zones and the

41

Figure 3.7: P-value of pairwise t-test. The smaller value indicates that the difference of
system throughput using two algorithms is significant. The colorbar is in logarithm scale.

42

length of matching window). In under-supply scenarios with a long matching window,

the restricted subgraph is on par with the throughput produced by the O/D grouping

method while having shorter average matching times. In under-supply cases but with

shorter matching windows, the restricted subgraph method achieves about 3% better

throughput without needing adjustment. The only parameter in the subgraph method

is the delay function dictated by perceived customer preference.

• The restricted subgraph method performs typically within 10% of the throughput of the

bipartite matching method in under-supply, with lower matching times and lower trip

times. Bipartite matching aiming to improve the matching reward inversely stretches

people to the limits of their delays. Besides, the computing challenge for the near-

optimal bipartite optimization grows exponentially in dense areas.

• Greediness in trip assignments improves the fleet utilization in oversupply scenarios by

reducing average pickup times.

In summary, the simulation results demonstrate that the proposed restricted subgraph

heuristic can well balance the interests of platforms and passengers. It limits their trip

delay and improves their experience without compromising the system’s productivity and

efficiency.

3.6 Conclusion

In order for the ridesourcing industry to continue to grow, it must acknowledge and work

to limit the impact it has on traffic congestion in dense urban areas. An important aspect

of this will be the use and encouragement of ride-pooling to serve the same number of trips

with fewer vehicles and fewer miles travelled. The restrict subgraph heuristic for ride-pooling

assignment proposed in this work is a robust and easily implementable method as a substitute

for the centralized optimization methods. It can achieve modest performance when facing a

severe scalability issue in dense urban areas.

Future investigations are necessary to address the theoretical foundation of the ride-

pooling heuristic methods. In addition, further development on a ride-pooling metaheuris-

tic, i.e., a procedure to select suitable heuristics, is a promising direction. As seen in the

numerical results, conditioning on the supply-demand relationship in ridesourcing platforms,

the discussed heuristics and baseline single-ride algorithms all have their advantages and dis-

advantages. Developing a data-driven method that automatically chooses the appropriate

methods is a meaningful supplement to the literature.

43

CHAPTER 4

Efficient Algorithms for Stochastic

Ride-pooling Assignment with Mixed Fleets

4.1 Introduction

Ride-pooling assignment aims to dynamically determine the efficient dispatching of vehi-

cles to handle multiple ride requests in a single ride in mobility-on-demand (MoD) systems.

It generalizes various fleet management problems in applications ranging from ride-hailing

(Santi et al. 2014) to microtransit (Li et al. 2021) and shared autonomous vehicles (Lokhand-

wala and Cai 2018). Efficient ride-pooling assignment algorithms can enhance the profitabil-

ity of MoD services and increase the system throughput, i.e., the number of completed

customer trips per unit of time (Ke et al. 2021). While consumers may experience trip

delays due to detours, they are compensated by splitting the fare with co-riders. More im-

portantly, ride-pooling can decrease dead-heading trips that contribute to excessive energy

use and greenhouse gas emissions of MoD platforms (Markov et al. 2021).

One of the MoD platform’s central tasks is to achieve a dynamic balance between sup-

ply (available vehicles) and demand (pending ride requests). However, this balance is often

unattainable due to supply shortages, such as a lack of freelance drivers during peak hours

(Guda and Subramanian 2019), the inefficacy of empty-car cruising and searching for cus-

tomers (Braverman et al. 2019), and drivers’ perception errors regarding the supply-demand

imbalance (Dong et al. 2021). Contrariwise, the heterogeneity of travel demand and driver

types, as well as advancements in vehicle automation, have introduced the notion of “mixed

fleet” into MoD platforms, which is illustrated by the following examples:

Example 1: transportation network companies (TNCs) such as Uber and Didi Chuxing

cater to diverse market segments by offering various service options. UberX is a standard

service operated by freelancers, while Uber Black and Didi Chauffeur are premium services

driven by professional drivers. Typically, the platform pairs users with their requested service

class. However, when the standard class is in short supply, it may be advantageous for the

44

platform to reposition premium vehicles to high-demand areas in order to fulfill standard-

class ride requests and minimize cancellations.

Example 2: A mixed-autonomy platform operates both fully automated vehicles (AVs)

owned by the platform and conventional (human-driven) vehicles (CVs) driven by human

freelancers to provide on-demand transit services (see Figure 4.1). When selecting the type

of vehicle to dispatch, the operator must consider that (1) customers may prefer to be served

by an AV or a CV, depending on their level of trust in automation (Lavieri and Bhat 2019),

and (2) the accessible areas and operational costs of AVs and CVs for transporting customers

may differ (Shladover 2018, Chen et al. 2017a).

While these examples have distinct contexts, they can be generalized as the following

Stochastic Ride-pooling Assignment with Mixed Fleets (SRAMF) (SRAMF) problem. The

mixed fleets consist of “basis supply” vehicles and “augmented supply” vehicles. Basis sup-

ply refers to vehicles operated by freelance drivers who employ self-interested strategies when

searching for customers, serve most customers in a decentralized manner, and presumably

produce friction in balancing supply and demand (Dong et al. 2023). Augmented supply

refers to vehicles (such as AVs) that follow the platform’s centralized repositioning policies.

Due to the different characteristics of supply sources, the platform faces a tradeoff between

cost and control when matching ride requests with available vehicles. For a given level of

demand, assigning nearby basis supply vehicles will incur lower operational costs than assign-

ing augmented set vehicles. For example, the platform must pay salaries to full-time drivers

in the augmented supply in Example 1 and costly maintenance costs for AVs in Example 2,

which will be incorporated into the cost of serving each ride request. On the other hand,

the platform may only have the authority to proactively reposition and reassign augmented

supply vehicles to complement unsatisfied demand. As such, the platform’s decision involves

whether and where to reposition augmented supply vehicles, which primarily depends on the

consequent assignment between available basis and augmented supply vehicles with realized

ride requests.

Two unique operational challenges arise due to the diversification of vehicle fleets on MoD

platforms. First, operating MoD with mixed fleets face inherent uncertainties in the sequen-

tial vehicle repositioning and ride-pooling assignment processes as follows. In the first-stage

vehicle repositioning decisions, the platform forecasts future demand and repositions selected

premium service vehicles (Example 1) or AVs (Example 2) to specific locations in order to

accommodate unmet demands for the basis supply. In the second-stage ride-pooling assign-

ment decisions, the platform assigns realized ride requests to available vehicles, including

basis and augmented supply, to maximize the total value of assignments. The uncertainties

between the vehicle repositioning and assignment stages can be categorized as supply-based

45

or demand-based factors. Supply-based uncertainty concerns whether or not basis-supply

drivers stay active in future periods. Demand-based uncertainty includes the origins and

destinations of upcoming ride requests, the number of passengers per order, customers’ un-

known preferred vehicle type, and their value of time. Since falsely repositioned vehicles will

result in a supply-demand mismatch in the future, joint repositioning and assignment will

cause complicated tradeoffs in MoD operations.

Second, previous aggregate vehicle repositioning models are not implementable for vehicle-

level operation in MoD systems. The SRAMF problem differs from the large body of mixed-

fleet planning literature (Karamanis et al. 2021, Guo et al. 2021) that used an aggregate

matching model in region-to-region repositioning flow computations. Focusing on vehicle-

level operations under uncertainty will cause significantly more computational burden than

the aggregate setting. This scalability issue intensifies as the platform uses high-capacity aug-

mented supply vehicles to compensate for their high operational costs, such as on-demand

transit services (Hasan and Van Hentenryck 2021). With expanded vehicle capacity, the

number of candidate pickup and dropoff routes can grow exponentially. These unique tech-

nical challenges of joint repositioning and assignment decisions motivate the development of

effective and efficient SRAMF algorithms in this study.

Figure 4.1: Example of ride-pooling with AVs and CVs. The first-stage decision involves
repositioning AVs in dedicated regions; the second-stage decision is to solve a Generalized
Assignment Problem (GAP).

This study expands the deterministic ride-pooling assignment of homogeneous vehicle

fleets in Santi et al. (2014) and Alonso-Mora et al. (2017b) to a stochastic setting in a non-

trivial way. The scalable framework addresses the computational challenge of the second-

stage problem in SRAMF by separating the vehicle routing and trip-to-vehicle assignment

into two sequential steps based on the notion of “shareability graphs”. Specifically, given ride

requests and available vehicles in each time interval, Alonso-Mora et al. (2017b) proposed

a procedure that guaranteed anytime optimality, i.e., the resulting ride-pooling assignments

46

attain the same solutions as the integrated vehicle routing and trip assignment formulation

(see Appendix B.2.1). The procedure is summarized as follows:

1. First, the algorithm constructs a shareability graph that represents the matchable

relationship between all ride requests (demand) and available vehicles (supply) (see

Figure 4.2) and computes the value associated with each matching.

2. Next, the algorithm maximizes the total matching value by solving a Generalized

Assignment Problem (GAP) on the shareability graph.

3. Finally, the shareability graph is updated by deleting occupied vehicles and assigned

demand and substituting them with incoming requests and available vehicles.

The SRAMF problem can be formulated as a two-stage stochastic integer program. Incor-

porating repositioning decisions into the deterministic ride-pooling assignment is difficult due

to the relationship between these consecutive steps. Since the vehicle repositioning decision

must select augmented supply vehicles by repositioning them from the augmented supply set

(a set of candidate locations) before the realization of demand, convoluted tradeoffs must be

made between the first- and second-stage decisions. If the platform underestimates demand

and selects fewer vehicles, it cannot meet all future requests. If the platform overestimates

demand and selects more vehicles than needed, it must pay extra operational costs. In addi-

tion, due to various sources of uncertainties stated above, the size of the shareability graph

grows rapidly with the number of scenarios sampled. As a result, solving GAP in SRAMF

using exact methods becomes inefficient or even infeasible.

4.1.1 Main Results and Contribution

The primary objective of this study is to develop approximation algorithms for solving large-

scale SRAMF problems. We focus on the expected value maximization setting for several

reasons. First, real-world concerns emphasize the need to enhance MoD systems’ throughput

and profitability (Ashlagi et al. 2018, Simonetto et al. 2019). Second, devising approxima-

tion algorithms for maximizing Generalized Assignment Problems (GAPs) tends to be more

challenging than minimizing GAPs (Fleischer et al. 2006). The objective function of SRAMF

can incorporate various attributes, such as trip fares, pickup times, and ride-pooling pref-

erences. The primary performance metric for the proposed algorithms is the tightness of

approximation ratios, offering a provable performance guarantee in worst-case scenarios.

To summarize our work, let p denote the mixed fleets’ largest vehicular capacity plus one.

Our main results are as follows:

47

1. The SRAMF problem is proved to be NP-hard for any finite number of scenarios, and its

objective lacks attractive submodular properties. These characteristics necessitate the

development of new approximation algorithms to exploit the computational advantages

of shareability graphs.

2. Our analysis provides provable worst-case performance guarantees as follows:

(a) For mid-capacity vehicles, we develop a local-search linear-program-relaxation

(LSLPR) algorithm, with an approximation ratio of 1
p2
. Mid-capacity vehicles

carrying up to four passengers simultaneously are suitable for applications in

Example 1.

(b) For high-capacity vehicles, we develop a max-min online (MMO) algorithm, with

an approximation ratio of e−1
(2e+o(1))p ln p

. High-capacity vehicles carrying more than

four requests are suitable for automated transit services in Example 2.

(c) These approximation ratios are close to the best possible bounds: no polynomial-

time algorithm can achieve a ratio better than O(ln p
p
) under standard complexity

assumptions.

Our methods rely on a linear relaxation of the second-stage GAP and carefully bound

the integrality gap of the relaxation in each scenario. Additionally, this analysis explains

the sources of computational intractability of SRAMF and recognizes the significance of

considering uncertainties per assignment.

This study contributes to the literature on MoD system operations as follows:

1. Propose a two-stage stochastic integer program for SRAMF and propose approxima-

tion algorithms with satisfactory performance guarantees. These easy-to-implement

algorithms can facilitate fleet operations on MoD platforms and guarantee their per-

formance in the face of uncertainties with provable bounds.

2. Derive a general estimator for marginal values of trip-to-vehicle matchings. The

primary analytical barrier for the design of approximation algorithms for SRAMF is to

evaluate the expected value of repositioning additional vehicles to serve future demand

in a specific area. Our proof bounds this value and is of independent interest to relevant

literature, e.g., fleet sizing in MoD systems (Benjaafar et al. 2021).

3. Provide analytical solutions for fractional hypergraph matchings. Our analysis for

the MMO algorithm derives a closed-form solution for the dual problem of fractional

hypergraph matchings to accelerate enumerations. This closed-form solution can be

transferred to other decomposition-based ride-pooling assignment methods.

48

We conducted comparative studies to illustrate the computational efficiency and opti-

mality gaps of our developed algorithms using real-world taxicab trip data (TLC 2021).

Numerical results showed our algorithms to be almost as competitive as exact methods

(mixed-integer program (MIP)), indicating that the derived worst-case approximation ratios

are conservative. This framework can incorporate various demand forecasts (Yang et al.

2020) and use state-dependent matching intervals (Qin et al. 2021a). Moreover, our results

extend to mixed fleets of more than two vehicle types.

4.1.2 Organization and General Notation

The remainder of the chapter is organized as follows. We first review the related literature

in Section 4.2. Section 4.3 formulates the SRAMF problem and shows its hardness. Section

4.4 proposes two approximation algorithms that achieve nearly tight approximation ratios.

We test the effectiveness of these approximation algorithms using real-world and simulated

data in Section 4.5 and draw conclusions in Section 4.6.

The following notation is used throughout this work. The notation := stands for “defined

as”. For any integer n, we let [n] := {1, 2, . . . , n}. We use v(·) as the actual value function and

v̂(·) as the approximate or estimated value function. P stands for the class of questions for

which some algorithm can provide an answer in polynomial time, and NP stands for those

with nondeterministic polynomial time algorithms. For any set S, |S| is its cardinality.

Given two sets A and B, A+ B or A ∪ B represents the union of A and B; A− B or A\B
represents modifying A by removing the elements belonging to B. A ∼ B represents that

set A intersects with B, i.e., A ∩ B ̸= ∅. i.i.d. stands for “independent and identically

distributed”. Other notation and acronyms used in this chapter are summarized in Table

B.1 in Appendix B.1.

4.2 Literature Review

We refer to ride-pooling (also called ride-splitting/carsharing rides) in the broad context and

focus on operations-level decisions. Solving the optimal ride-pooling assignment is challeng-

ing because the number of possible shared trips grows exponentially in the vehicle capacity

and matching intervals. The following review covers the recent development of computational

methods for ride-pooling applications with different objectives of maximizing the utilization

of vehicles or reducing the negative externalities related to deadhead miles.

Decomposition and approximate dynamic programming approaches. Com-

pared to the substantial body of literature for matching supply and demand without the

49

ride-pooling option (Wang and Yang 2019), there are only a few attempts to solve the

ride-pooling assignment problem at the vehicle level by combining heuristic and decompo-

sition methods (Yu and Shen 2019, Herminghaus 2019, Sundt et al. 2021). Although these

heuristics achieved satisfying performance in numerical experiments, they cannot balance

computational efficiency and accuracy with theoretical guarantees. The trip planning for

ride-pooling is more tractable with fixed travel patterns, such as providing services for daily

commuting. Hasan et al. (2020) proposed a commute trip-sharing algorithm that maxi-

mized total shared rides for a set of commute trips satisfying various time-window, capacity,

pairing, ride duration, and driver constraints.

Another stream of papers emphasized the importance of non-myopic policies in MoD

systems, as supply and demand dynamics are influenced by prior decisions. Unfortunately,

due to the computational complexity, most nonmyopic ride-pooling assignment policies are

restricted to aggregate models and compute optimal flows between regions. Shah et al.

(2020) developed an approximate dynamic programming method to learn from the IP-based

assignment and approximate the value function by neural networks. We refer readers to a

comprehensive review Qin et al. (2021b) of reinforcement learning (RL) methods for ride-

sharing assignments and other sequential decisions.

Deterministic ride-pooling assignment for shareability graphs. To tackle those

unprecedented computational challenges in MoD systems, Santi et al. (2014) quantified the

tradeoff between social benefits and passenger discomfort from ride-pooling by introducing

the concept of “shareability networks”. They found that the total empty-car travel time was

reduced by 40% in the offline setting (i.e., with ex-post demand profiles) or 32% when demand

is revealed en route. This work suffers a limitation in vehicle capacity as the matching-based

algorithm can only handle up to three-passenger shared rides. Alonso-Mora et al. (2017b)

expanded the framework to up to ten riders per vehicle. The high-capacity ride-pooling trip

assignment is solved by decomposing the shareability graph into trip sets and vehicle sets

and then solving the optimal assignments by a large-scale integer program (IP). As the

vehicle capacities increase, the moderate size of the shared vehicle fleet (2, 000 vehicles with

capacities of four rides in their case studies) can serve most travel demands with short wait-

ing times and trip delays. Simonetto et al. (2019) improved this approach’s computational

efficiency by formulating the master problem as a linear assignment problem. The resulting

large-scale assignment on shareability networks is calculated in a distributed manner. How-

ever, despite the easy implementation of these methods, they lack theoretical performance

guarantees.

Approximation algorithms for maximization GAP. Approximation algorithms can

find near-optimal assignments with provable guarantees on the quality of returned solutions.

50

Since the ride-pooling assignment problem is a variant of GAP (Öncan 2007), we list the

significant results here. Shmoys and Tardos (1993) and Chekuri and Khanna (2005) obtained

polynomial-time 1
2
-approximation algorithms. Fleischer et al. (2006) obtained an linear

program (LP)-rounding based (1− 1
e
)-approximation algorithm and a local-search based 1

2
-

approximation algorithm. Previous studies have explored GAP algorithms for both instant

and batched dispatching settings. Instant dispatching assigns requests to available vehicles

upon arrival. Lowalekar et al. (2020) developed approximation algorithms for online vehicle

dispatch systems. Their setting with i.i.d. demand assumptions are markedly different

from the current work. Batched dispatching utilizes GAP on a hypergraph to search for

locally optimal assignments. Mori and Samaranayake (2021) developed 1
e
-approximation

LP-rounding algorithms for the deterministic request-trip-vehicle assignment problem. In

contrast, the current work considers a stochastic setting in which sequential repositioning and

assignment decisions jointly determined the objective in SRAMF. As a batched dispatching

algorithm, this stochastic formulation can be applied to arbitrary demand distributions.

Shared mobility with mixed fleets. Mixed-fleet ridesharing systems are emerging

research topics in literature. The first stream of research is motivated by MoD platforms’

transition to a blended workforce of permanent employees and freelance workers. Dong and

Ibrahim (2020) investigated the staffing problem in which a ride-hailing platform determined

the number of fore-hire drivers considering its impact on other flexible workers. Dong et al.

(2021) justified the dual-source strategy for mitigating the demand uncertainty in ride-hailing

systems and designed optimal contracts to coordinate the mixed workforce. Castro et al.

(2020) modeled the ridesharing market as matching queues where drivers had different flex-

ibility levels. They proposed a robust throughput-maximizing capacity reservation policy

against the unknown driver engagement function.

The introduction of automation in MoD systems in the foreseeable future motivates a

second stream of mixed-fleet research. Lokhandwala and Cai (2018) used agent-based simu-

lations to evaluate the impact of heterogeneous preferences and revealed that the transition

to a mixed fleet would reduce the total number of vehicles, focus on areas of dense demands,

and lower the overall service levels in the suburban regions. Wei et al. (2020) studied the

equilibrium of a mixed autonomy network in which AVs are fully controlled by the platform

and CVs are operated by individual drivers. The optimal pricing for the mixed service is for-

mulated as a convex program. Li et al. (2022) proposed a traffic network equilibrium model

with mixed autonomy based on two-player games and proved the existence of a speed policy

that guarantees Pareto-efficient equilibria. Xie et al. (2023) developed an actor-critic learn-

ing approach for mixed-autonomy fleet management considering bounded rational drivers.

In contrast, this work is one of the first attempts to develop algorithms for mixed-autonomy

51

operations at the vehicle level.

4.3 Problem Description

4.3.1 Basic Setting

This section introduces the formulation of the SRAMF problem as a two-stage stochastic

integer program and shows its NP-hardness. These technical challenges motivate the design

of new approximation algorithms in the remainder of this work.

4.3.1.1 Preliminaries: constructing a shareability graph of mixed fleets.

Ride-pooling assignment is conducted on a shareability graph, represented by a hypergraph

G = {S,D,E}. The vertices of the hypergraph are S∪D, where S denotes supply (available

vehicles) and D denotes demand (ride requests). Each hyperedge/clique e ∈ E consists of

one vehicle and a subset of ride requests. In conventional assignments, each vehicle can

serve only one ride request at a time, so G reduces to a bipartite graph. In the ride-pooling

setting, each hyperedge e ∈ E can contain any number of ride requests within the vehicle’s

capacity. Other constraints, such as the upper bounds for detour times, are considered when

constructing the shareability graph (we refer readers to the discussion of shareability graphs

in Appendix B.2.). The platform continuously updates such a hypergraph following the

procedure outlined in Section 4.1.1. Appendix B.2 also describes a sequence of matching

rules that can construct a hierarchical tree of matchable requests, significantly reducing the

computational burden of dial-a-ride problems.

This generic model covers most MoD applications described in Section 4.1. The mixed-

fleet supply contains a set SA of locations to reposition augmented vehicles and a set of basis

vehicles SB. We assume that each augmented vehicle can reposition to any of the locations

SA and serve nearby ride requests covered by their incident hyperedges. Let S = SA ∪ SB,

|SA| = nA, and |SB| = nB. In order to keep notation simple, we will refer to the “locations

to reposition augmented vehicles” SA simply as the augmented supply/vehicles. We denote

p = 1 + maxi∈SA∪SB
{Ci} where Ci is the capacity of vehicle i. Without loss of generality,

we let the cost of using vehicles in SB be 0 and the cost of each vehicle in SA be normalized

to 1. This will be extended to a more general setting of partition constraints in Section

4.4.3. The varying setup costs of SA and SB can be justified by the additional operations

expenditure of repositioning centralized-controlled vehicles in the augmented set SA, such

as the annualized extra salary paid to full-time drivers in Example 1. Each hyperedge

e = {i, J}i∈S,J⊆D corresponds to a potential trip where vehicle i serves ride requests in J .

52

The MoD platform will implement SRAMF algorithms using the online procedure outlined

below. The platform first predicts available vehicles in SB and ride requests D per batch,

then constructs a shareability graph according to the procedure outlined in Appendix B.2.1.

After calculating the value of each hyperedge ve, the platform solves a two-stage stochastic

integer program to determine the optimal centralized repositioning policy for vehicles in SA.

The platform then observes actual demand and vehicle locations and updates the shareability

graph. The remainder of this section formally defines the SRAMF problem and highlights

its unique technical challenges.

4.3.1.2 Formulation of SRAMF.

Before actual ride requests are sent, the platform chooses a subset SR ⊂ SA of (at most)

K locations to reposition vehicles from the augmented supply. After requests are revealed,

the platform can assign ride requests only to vehicles in SR ∪ SB and collect instantaneous

rewards (profits) from completing these trips, i.e., reassignment is not allowed.

The sequential decisions for the SRAMF problem are as follows:

1. In the first stage, for each augmented vehicle i ∈ SA, yi = 1 denotes that an augmented

vehicle is allocated to location i for future assignment and yi = 0 denotes not selected.

Let SR := {i ∈ [nA] : yi = 1} ⊆ SA denote a set of selected augmented vehicles. All

basis supply vehicles are included, as they impose no additional setup cost, and the

available supply in the second stage is SR ∪ SB. The first-stage decision space is

Y ∈ {0, 1}nA+nB .

2. In the second stage, a scenario ξ reveals a set of actual ride requests D(ξ) and their

associated hyperedges E(ξ). The scenario ξ is assumed to follow a random distribution

F (ξ) with support on Ξ, which incorporates a demand forecast model. Each hyperedge

e ∈ E(ξ) includes a vehicle i from either basis or augmented supply and a subset of

requests J ⊂ D(ξ). {wj}j∈J denotes the numbers of passengers in each ride request j.

The total number of passengers in a set of ride requests J must satisfy
∑

j∈J wj ≤ Ci

where Ci is the capacity of vehicle i. The hyperedge value of emay include the following

elements:

(a) The profit uj gained from serving the ride request j.

(b) A trip t = {j1, j2, · · · : jk ∈ J} represents a sequence of picking up ride requests in

J . The associated travel cost c(i, t) assumes that the vehicle i follows the shortest

pick-up trip to minimize customers’ waiting times.

53

(a) (b)

(c) (d)

Figure 4.2: The illustration of SRAMF procedure per step. SB = {sB1 , sB2 } is the basis set
(e.g., CVs) and SA = {sA1 , sA2 } is the augmented set (e.g., AVs). Figure 4.2a represents
the algorithm’s input, including the current locations of SA and SB, and obtains demand
forecast. Figure 4.2b constructs a shareability graph for each scenario, where each trip is a
clique containing one vehicle and multiple matchable requests. Figure 4.2c solves the SRAMF
problem by approximation algorithms, in which one or more ride requests are assigned to
a selected vehicle in each scenario ξ. Figure 4.2d implements the computed decisions and
updates the system state.

(c) Each request j gains additional utility ũij if matched with their preferred vehicle

type.

The hyperedge value for e ∈ E(ξ) collected from a potential assignment is given by

ve =
∑
j∈J

uj +
∑
j∈J

ũij − c(i, t) ≥ 0. (1)

The hyperedge value captures various sources of uncertainties between vehicle reposi-

tioning and trip assignment stages. uj considers the uncertain number of ride requests

and their origin and destination; wj and the set J considers the unknown number of

passengers in each ride request; ũij considers the customers’ uncertain preference for

vehicle types. Finally, due to fluctuating traffic conditions and different vehicle technol-

54

ogy (e.g., CVs and AVs), c(i, t) represents that pickup times are uncertain. However,

in the second stage (after the scenario ξ is observed), all hyperedge values are known

precisely. It is worth mentioning that the calculation of hyperedge values can be in-

tegrated with advanced value function approximation techniques. For example, Tang

et al. (2019) calculated the associated hyperedge value as a reward signal derived from

a reinforcement-learning-based estimator.

3. The platform assigns ride requests to each available vehicle by determining xe ∈ {0, 1}
for all e ∈ E(ξ). The second-stage assignment decision is equivalent to choosing a set

of hyperedges in which every pair of hyperedges is disjoint. This condition guarantees

that each vehicle and each ride request can be included no more than once in the final

assignment per scenario. An assignment is only feasible between the chosen supply

SR ∪ SB (denoted as e ∼ SR ∪ SB) and realized demand D(ξ) in each scenario.

The optimal value of assignments in scenario ξ is calculated by Q : Y × Ξ → R. Given

a scenario, the second-stage decisions are trip assignments denoted by x = {xe}e∈E(ξ). Our

objective is to maximize the expected total value.

The SRAMF problem can be formulated as a two-stage stochastic integer program:

maximize
y

E[Q(y, ξ)] (2)

s.t.
∑
i∈SA

yi ≤ K (budget) (2a)

yi ∈ {0, 1} ∀i ∈ SA (2b)

yi = 1 ∀i ∈ SB, (2c)

and the second-stage problem is given by

Q(y, ξ) = maximize
x

∑
e∈E(ξ)

vexe (3)

s.t.
∑

e∈E(ξ):j∈e

xe ≤ 1 ∀j ∈ D(ξ) (assignment I) (3a)

∑
e∈E(ξ):i∈e

xe ≤ yi ∀i ∈ SB ∪ SA (assignment II) (3b)

xe ∈ {0, 1} ∀e ∈ E(ξ). (3c)

In the first-stage problem (2), K is the maximum number of locations for repositioning

augmented supply vehicles. In the second-stage problem (3), the constraints (3a) and (3b)

guarantee that each supply and demand is matched at most once and the vehicles selected

55

in SR ∪ SB are matchable. In other words, unassigned vehicles and ride requests in the

hypermatching x will either renege or postpone to the next batch. The second-stage GAP

is a p-set packing problem with p representing the maximum size of hyperedges, which is

known to be NP-hard (Füredi et al. 1993) and Chan and Lau (2012).

4.3.1.3 Road-map for proving SRAMF approximation algorithms.

Figure 4.3 provides an overview of the performance analysis of two proposed approximation

algorithms and their approximation ratios, respectively. We start with reducing the objective

of (2) to the sample-average estimate in Section 4.3.2. We then show the hardness of the

SRAMF problem in Section 4.3.3. Since the GAP problem (3) is NP-hard, our approximation

algorithms rely heavily on the “fractional assignment” technique that relaxes the integrality

constraints in (3) as a polynomial-time solvable linear program. Two different approximation

algorithms, Local-Search LP-Relaxation (LSLPR) and max-min online (MMO), are discussed

in detail in Section 4.4.1 and Section 4.4.2, respectively.

Figure 4.3: Road-map for the performance analysis on SRAMF algorithms; the approxi-
mation ratios on arrows refer to the results in this chapter; SO is the optimal selection of
vehicles and SR is the section of vehicles generated by approximation algorithms.

4.3.2 Reduction to Sample-Average Estimate

The sample-average approximation (SAA) method is commonly used to solve two-stage

stochastic integer programs. It draws N scenarios {ξℓ}Nℓ=1 from a scenario-generating oracle

(e.g., demand forecasting and vehicle simulation models) and approximates the expected

objective function by a sample-average estimate E[Q(y, ξ)] ≈ 1
N

∑N
ℓ=1Q(y, ξℓ).

To simplify the analysis of Problem (2), we reduce the objective function E(Q(y, ξ)) to

finite-sample proximity. The main analysis is conditional on N mutually disjoint sets of

ride requests D(ξ) and hyperedges E(ξ). Since the second-stage assignment ensures unique

56

matchings per scenario, we can make multiple disjoint copies when an identical ride request

appears in multiple scenarios. The consistency and shrinking bias of the sample-average

estimate are well-studied in literature, hence the proof of SAA is detailed in Appendix B.3.1

for completeness. Altogether, the optimal value of any approximation algorithm converges

to E[Q(y, ξ)] as the number of scenarios N →∞.

This study’s focus is therefore developing algorithms to solve the SRAMF problem in (2)

with the sample-average estimate. As mentioned earlier, we will work with an LP relaxation

of (3) as the original p-set packing problem is NP-hard. For any subset SR ⊆ SA and scenario

ξ, define v̂(SR, ξ) to be the optimal value of the following LP:

maximize
x

∑
e∈E(ξ)

vexe (4)

s.t.
∑

e∈E(ξ):j∈e

xe ≤ 1 ∀j ∈ D(ξ) (4a)

∑
e∈E(ξ):i∈e

xe ≤ 1 ∀i ∈ SA ∪ SB (4b)

xe = 0 ∀e ∼ SA \ SR (4c)

xe ≥ 0 ∀e ∈ E(ξ). (4d)

Solutions to the LP relaxation of (3) are called fractional assignments. v(SR, ξ) denotes

the optimal value of exact solutions to (3), given a set of selected augmented supply SR.

Furthermore, we define two objective functions related to the sample average estimate:

• The objective value using the exact GAP in (3) for each scenario is given by

v∗(SR) =
1

N

∑
ℓ∈[N]

v(SR, ξℓ). (5)

• The objective value using the LP-relaxation of (4) is given by

v̂(SR) =
1

N

∑
ℓ∈[N]

v̂(SR, ξℓ). (6)

Fractional assignments of the p-set packing problem enjoy the following properties: (1)

The integrality gap between the exact solution and LP relaxation is at most p times (Arkin

and Hassin 1998). (2) a greedy algorithm selecting hyperedges e in decreasing order of their

values ve while maintaining feasibility achieves a 1
p
-approximation to the LP value. We

restate them in the following theorem:

57

Theorem 1. For any SR ⊆ SA, we have v∗(SR) ≤ v̂(SR) ≤ p · v∗(SR); furthermore, the

greedy algorithm obtains a solution of value at least 1
p
· v̂(SR).

These reductions narrow down the main task of bounding the approximation ratio of

v̂(SR). In particular, we will focus on the SRAMF problem with fractional assignments:

max
SR⊆SA:|SR|≤K

v̂(SR). (7)

If we obtain an α-approximation algorithm for (7), then combine it with Theorem 1, we

would obtain an α
p
-approximation algorithm for SRAMF (with integral assignments). Also,

observe that the objective in (7) is monotone non-decreasing in the selected vehicle set SR.

So, any maximal solution (including the optimal solution) selects exactly K vehicles in the

repositioning decision. Before jumping into the design of approximation algorithms, the

following section elaborates on some technical challenges.

4.3.3 Hardness and Properties of SRAMF

We show that solving SRAMF is computationally challenging due to the following reasons:

(1) Proposition 1 shows that the second-stage assignment problem is NP-hard. Hence,

computing the exact assignment for any SR is costly. (2) Proposition 2 shows that v̂(SR)

is not submodular, preventing the use of efficient submodular maximization algorithms.

These facts motivate the development of new approximation algorithms in Section 4.4 to

exploit the specific structure of the SRAMF problem.

Proposition 1. There is no algorithm for SRAMF (even with N = 1 scenario) with an

approximation ratio better than O(ln p
p
), unless P = NP .

Proof. Proof for the hardness of SRAMF : We reduce from the p-dimensional matching

problem, defined as follows. There is a hypergraph H with vertices V partitioned into p

parts {Vr}pr=1, and hyperedges E. Each hyperedge contains exactly one vertex from each

part (so each hyperedge’s size is p). The goal is to find a collection F of disjoint hyperedges

that have maximum cardinality |F |.
Given any p-dimensional matching as above, we generate the following SRAMF instance.

The augmented vehicles are SA = V1 and the basis vehicles are SB = ∅. There is N = 1

scenario with ride requests V2∪ . . . Vp and hyperedges E (each of value 1). Each vehicle has a

capacity of p−1 and each ride request has one or more passengers. Note that each hyperedge

contains precisely one vehicle, as required in SRAMF. The bound K = |SA| so the optimal

first stage solution is clearly SR = SA (select all locations for augmented vehicles). Now, the

58

SRAMF problem instance reduces to its second stage problem (3), which involves selecting

a maximum cardinality subset of disjoint hyperedges. This is precisely the p-dimensional

matching problem.

It follows that if there is any α-approximation algorithm for SRAMF with N = 1 scenario

then there is an α-approximation algorithm for p-dimensional matching. Finally, Hazan

et al. (2006) proved that it is NP-hard to approximate p-dimensional matching better than

an O(ln p
p
) factor (unless P = NP). The proposition now follows. □

This intractability is the reason that we work with the fractional assignment problem

(7). A natural approach for budgeted maximization problems such as (7) is to prove

that the objective function is submodular, in which case one can directly use the (1 − 1
e
)-

approximation algorithm by (Nemhauser et al. 1978). However, we show a negative re-

sult about the submodularity of v∗(SR) as well as v̂(SR), which precludes the use of such

an approach. Recall that a set function f : 2Ω → R+ on groundset Ω is submodular if

f(U ∪ {i})− f(U) ≥ f(W ∪ {i})− f(W) for all U ⊆ W ⊆ Ω and i ∈ Ω \W .

Proposition 2. v∗(SR) and v̂(SR) are not submodular functions.

Proof. Proof: Recall that the ground set for both functions v∗ and v̂ is Ω := SA the set

of augmented vehicles. We provide an SRAMF instance with N = 1 scenario where these

functions are not submodular. Consider a shareability graph with |SA| = 3, SB = ∅ and

three ride requests {d1, d2, d3}. Let p = 3, i.e., each vehicle can carry at most two requests.

The set of hyperedges is

{(sA1 , d1), (sA1 , d2, d3), (sA2 , d2), (sA3 , d3)}.

See also Figure 4.4. The value of each hyperedge reduces to the number of ride requests it

covers.

Figure 4.4: An example for non-submodularity of function v∗(SR).

59

Let subsets U = {sA1 } and W = {sA1 , sA2 }. Also, let i = sA3 . Clearly, v∗(U) = 2 (serving

d2, d3), v
∗(W) = 2 (serving d1, d2 or d2, d3), v

∗(U ∪ {i}) = 2 (serving d1, d3 or d2, d3), and

v∗(W ∪ {i}) = 3. Therefore, we have:

v∗(W ∪ {i})− v∗(W) = 1 > 0 = v∗(U ∪ {i})− v∗(U),

which implies the set function v∗ is not submodular. It is easy to check that the LP value

function v̂ = v∗ for this instance, so function v̂ is also not submodular. □

4.4 Approximation Algorithms for SRAMF

This section provides two different approximation algorithms for SRAMF. Both the algo-

rithms focus on solving the fractional assignment problem (7), and achieve approximation

ratios 1
p
and ≈ e−1

2e·ln p
, respectively. Combined with Theorem 1, these imply approximation

algorithms for SRAMF with an additional factor of 1
p
.

4.4.1 Local Search Algorithm for Mid-Capacity SRAMF

The Mid-Capacity SRAMF models the current ride-hailing market, in which each vehicle

can deliver two to four ride requests simultaneously. In this section, we propose an Local-

Search LP-Relaxation (LSLPR) algorithm that obtains 1
p
-approximation for the fractional

assignment problem (7).

4.4.1.1 Overview of the LSLPR algorithm.

Let ϵ > 0 be an arbitrarily small parameter to serve as the algorithm’s stopping criterion.

The outline of the LSLPR algorithm is as follows:

1. Start from any solution SR ⊆ SA with |SR| = K.

2. Consider all alternative solutions SR′ = SR−{i}+ {i′} where i ∈ SR and i′ /∈ SR after

swapping one vehicle and evaluate the corresponding LP value v̂(SR′).

3. Change the current solution SR to SR′ if the objective value improves significantly, i.e.,

v̂(SR′) > (1 + ϵ) · v̂(SR).

4. Stop if such a significant local swap does not exist.

Formally, let k index the iterations. Let Sk
R denote the current solution in iteration k.

The following subroutine implements a single iteration.

60

Algorithm 3: Local swap subroutine.

for i ∈ Sk
R and i′ ∈ SA\Sk

R do

obtain v̂(Sk
R − i+ i′) by solving the fractional assignment problem;

end

let (c, c′) be the pair that maximizes v̂(Sk
R − i+ i′) over i ∈ Sk

R and i′ ∈ SA\Sk
R;

if v̂∗(Sk
R − c+ c′) > (1 + ϵ) · v̂(Sk

R) then

set Sk+1
R ← Sk

R − c+ c′ and continue with k ← k + 1

;

else

halt local search and output Sk
R;

end

In a broad sense, the local swap subroutine does not necessarily enumerate all pairs (i, i′)

to search for the optimal (c, c′). A more efficient alternative is terminating each iteration at

the first pair of i ∈ SR and i′ ∈ SA\SR that increases the objective by more than ϵ · v̂(Sk
R).

The complete LSLPR algorithm is as follows:

Algorithm 4: The LSLPR algorithm for mid-capacity SRAMF

Data: Augmented supply SA, basis supply SB, scenarios {ξℓ}Nℓ=1 and ϵ > 0.

Result: Near-optimal SR ⊂ SA and the corresponding trip assignment.

Initialization: Set k = 1 and randomly select K vehicles from SA as S1
R;

while k ≤ kmax do

Run the local swap subroutine in Algorithm 1;

Obtain the final trip assignment with SR = Skmax
R using the greedy algorithm

(Theorem 1).

end

Algorithm 4 obtains the final selection of vehicles Skmax
R where the maximal number of

iterations kmax will be derived below. In the final step, the algorithm obtains an integral

assignment for each scenario instead of the fractional assignments. To this end, we can use

the greedy algorithm (see Theorem 1) to select the assignment for each scenario, which is

guaranteed to have an objective value at least 1
p
times the fractional assignment. In Section

4.4.1.2, we first analyze the approximation ratio and then the computational complexity of

LSLPR.

61

4.4.1.2 Analysis of the LSLPR algorithm.

Recall that SR is the solution obtained by our algorithm and |SR| = K. Let SO denote the

optimal solution: we assume (without loss of generality) |SO| = K. Note that SO is a fixed

subset only used in the analysis. Also, let xxx = ⟨xxxξ⟩ and zzz = ⟨zzzξ⟩ denote the optimal LP

solutions to v̂(SR) and v̂(SO), respectively.

It will be convenient to consider the overall hypergraph on vertices SA∪SB∪(∪ξD(ξ)) and

hyperedges ∪ξE(ξ). As the objective v̂(·) is additive over the scenarios ξ, we may assume, by

duplicating demands and hyperedges (if necessary), that demands D(ξ) and hyperedges E(ξ)

are disjoint across scenarios ξ. Recall that xxxξ (and zzzξ) has a decision variable corresponding

to each hyperedge in E(ξ). For each demand d ∈ ∪ξD(ξ), let Hd denote the hyperedges

incident to it. For each vehicle i ∈ SA ∪SB and scenario ξ, let Ei,ξ denote the hyperedges in

E(ξ) containing i. So, Fi := ∪ξEi,ξ is the set of hyperedges incident to vehicle i.

For any demand d, the following lemma sets up a mapping between the hyperedges

(incident to d) used in the solutions xxx and zzz. For the analysis, we add a dummy hyperedge

⊥ incident to d so that the assignment constraints in the LP solutions xxx and zzz are binding

at d. So,
∑

e∈Hd
xe + x⊥ = 1 and

∑
f∈Hd

zf + z⊥ = 1. Let H ′
d := Hd ∪ {⊥} denote the

hyperedges incident to d.

Lemma 1. For any demand d, there exists a decomposition mapping ∆d : H ′
d × H ′

d → R
satisfying the following conditions:

1. ∆d(e, f) ≥ 0 for all e, f ∈ H ′
d;

2.
∑

e∈H′
d
∆d(e, f) = zf for all f ∈ H ′

d;

3.
∑

f∈H′
d
∆d(e, f) = xe for all e ∈ H ′

d.

Figure 4.5 illustrates this mapping. Appendix B.3 includes the definition of ∆d(e, f)

and the proof of Lemma 1. Note that
∑

e∈H′
d

∑
f∈H′

d
∆d(e, f) = 1 for any demand d. For

any subset F ∈ H ′
d, we use the shorthand ∆d(e, F) :=

∑
f∈F ∆d(e, f) and ∆d(F, e) :=∑

f∈F ∆d(f, e).

Here is an outline of the remaining analysis. Let L denote a bijection between SR (LSLPR

algorithm’s solution) and SO (optimal solution), consisting of pairs (i1, i2) where i1 ∈ SR

and i2 ∈ SO. We also ensure that L contains the pairs (i, i) for all vehicles i ∈ SR ∩ SO.

Note that there is such a bijection because |SR| = K = |SO|. We first consider a swap

SR − {i1} + {i2} where (i1, i2) ∈ L, and lower bound the objective increase. Note that the

approximate local optimality of SR implies that the objective increase is at most ϵ · v̂(SR).

Then, we add the inequalities corresponding to the objective increase for the swaps in L and

obtain the approximation ratio.

62

Figure 4.5: Illustration of mapping ∆d(e, f) with E(ξ) = {e1, e2, e3}.

Analysis of a single swap (i1, i2). Consider any i1 ∈ SR and i2 ∈ SO. We now lower

bound v̂(SR−{i1}+{i2})− v̂(SR). Recall that for any subset S, v̂(S) = 1
N

∑
ξ v̂(S, ξ) where

v̂(S, ξ) is the LP value for scenario ξ. So, we have

v̂(SR − {i1}+ {i2})− v̂(SR) =
1

N

∑
ξ

(v̂(SR − {i1}+ {i2}, ξ)− v̂(SR, ξ)) .

We now focus on a single scenario ξ and lower bound v̂(SR − {i1} + {i2}, ξ) − v̂(SR, ξ).

x̄xxξ represents a feasible solution for fractional assignment v̂(SR−{i1}+ {i2}, ξ). Recall that
xxxξ denotes the optimal solution for LP v̂(SR, ξ). So, we can then bound:

v̂(SR − {i1}+ {i2}, ξ)− v̂(SR, ξ) ≥ vvv⊺x̄xxξ − vvv⊺xxxξ, (8)

where vvv is the vector of hyperedge values for E(ξ). As we focus on a single scenario ξ, we

drop ξ from the notation whenever it is clear.

We are now ready to construct the new fractional assignment x̄xx. Define:

1. x̄e = 0 for all e ∈ Fi1 . This corresponds to dropping vehicle i1 from SR.

2. x̄e = ze for all e ∈ Fi2 . This corresponds to adding vehicle i2 to SR.

3. x̄e = xe −maxd∈e∆d(e, Fi2 ∩Hd) for all e ∈ E(ξ) \ Fi1 \ Fi2 .

If i1 = i2, then we drop case 1 above. The third case above is needed to make space for

the hyperedges incident to the new vehicle i2 (which is increased in case 2). The following

two lemmas prove the feasibility of this solution x̄xx and bound its objective value. Below,

we assume that i1 ̸= i2 (the proof for i1 = i2 is nearly the same, in fact even simpler). So,

i1 ∈ SR \ SO and i2 ∈ SO \ SR.

63

Lemma 2. x̄xx is a feasible solution for v̂(SR − {i1}+ {i2}).

Proof. Proof for Lemma 2:

We show the feasibility by checking all constraints in (4). Note that x̄e = 0 for all

hyperedges e incident to a vehicle in SA \ (SR − {i1}+ {i2}).
Constraint x̄xx ≥ 0. It suffices to check this for hyperedges e ∈ E \ Fi1 \ Fi2 . Note that

x̄e = xe −max
d∈e

∆d(e, Fi2 ∩Hd) = min
d∈e

(xe −∆d(e, Fi2 ∩Hd)) ≥ 0,

where the inequality uses Lemma 1 (condition 3), i.e., xe = ∆d(e,H
′
d) ≥ ∆d(e, Fi2 ∩Hd).

Constraint (4a): By definition of x̄xx, for any demand d, we have:∑
e∈Hd

x̄e ≤
∑

e∈Hd∩Fi2

ze +
∑

e∈Hd\Fi1
\Fi2

[xe −∆d(e, Fi2 ∩Hd)]

≤
∑

e∈Hd∩Fi2

ze +
∑
e∈H′

d

[xe −∆d(e, Fi2 ∩Hd)] (9)

=
∑

e∈Hd∩Fi2

ze +
∑
e∈H′

d

xe −
∑
e∈H′

d

∆d(e, Fi2 ∩Hd)

=
∑

e∈Hd∩Fi2

ze +
∑
e∈H′

d

xe −
∑

f∈Fi2
∩Hd

∆d(H
′
d, f)

=
∑
e∈H′

d

xe = 1. (10)

Above, (9) uses xe ≥ ∆d(e, Fi2 ∩ Hd) by Lemma 1, and the first equality in (10) uses

zf = ∆d(H
′
d, f) by Lemma 1 (condition 2).

Constraint (4b): The augmented vehicle set can be divided into three groups.

1. Vehicle i1:
∑

e∈Fi1
x̄e = 0.

2. Vehicle i2:
∑

e∈Fi2
x̄e =

∑
e∈Fi2

ze ≤ 1 by definition.

3. Vehicles j ̸= i1, i2:
∑

e∈Fj
x̄e ≤

∑
e∈Fj

xe ≤ 1. Here, we used the definition of x̄e and

∆d(·, ·) ≥ 0 by Lemma 1 (condition 1).

Therefore, x̄xx is a feasible fractional assignment solution. □

Lemma 3. The increase in the objective is:∑
e∈E(ξ)

ve(x̄
ξ
e − xξ

e) ≥
∑

e∈Fi2
∩E(ξ)

vez
ξ
e −

∑
f∈Fi1

∩E(ξ)

vfx
ξ
f −

∑
e∈E(ξ)

ve
∑
d∈e

∆d(e, Fi2 ∩Hd).

64

Proof. Proof for Lemma 3: By definition of x̄xx,

x̄e − xe =

ze if e ∈ Fi2

−xe if e ∈ Fi1

−maxd∈e∆d(e, Fi2 ∩Hd) otherwise

.

Above, we used that xe = 0 for all e ∈ Fi2 as i2 ∈ SA\SR. So, we have∑
e∈E(ξ)

ve(x̄e − xe) ≥
∑

e∈Fi2
∩E(ξ)

veze −
∑

f∈Fi1
∩E(ξ)

vfxf −
∑

e∈E(ξ)

vemax
d∈e

∆d(e, Fi2 ∩Hd)

≥
∑

e∈Fi2
∩E(ξ)

veze −
∑

f∈Fi1
∩E(ξ)

vfxf −
∑

e∈E(ξ)

ve
∑
d∈e

∆d(e, Fi2 ∩Hd).

□

Combining Lemmas 2 and 3, and adding over scenarios ξ, we obtain:

Lemma 4. For any pair (i1, i2) ∈ L, we have

v̂(SR − {i1}+ {i2})− v̂(SR) ≥
∑
e∈Fi2

veze −
∑
f∈Fi1

vfxf −
∑
e∈E

ve
∑
d∈e

∆d(e, Fi2 ∩Hd).

Combining all the swaps. Recall that L is a bijection between SR and SO, so |L| = K.

Moreover, using the local-search termination condition, there is no swap that improves the

objective of the final solution SR by more than ϵ · v̂(SR). Hence,

Kϵ · v̂(SR) ≥
∑

(i1,i2)∈L

[v̂(SR − {i1}+ {i2})− v̂(SR)]

≥
∑

(i1,i2)∈L

∑
e∈Fi2

veze −
∑
f∈Fi1

vfxf −
∑
e∈E

ve
∑
d∈e

∆d(e, Fi2 ∩Hd)

 (11)

=
∑
i2∈SO

∑
e∈Fi2

veze −
∑
i1∈SR

∑
f∈Fi1

vfxf −
∑
i2∈SO

∑
e∈E

ve
∑
d∈e

∆d(e, Fi2 ∩Hd)

≥
∑
i2∈SO

∑
e∈Fi2

veze −
∑
i1∈SR

∑
f∈Fi1

vfxf −
∑
e∈E

ve
∑
d∈e

∆d(e,Hd) (12)

≥
∑
i2∈SO

∑
e∈Fi2

veze −
∑
i1∈SR

∑
f∈Fi1

vfxf −
∑
e∈E

ve
∑
d∈e

xe (13)

=vT z − vTx−
∑
e∈E

|{d ∈ e}|vexe

≥vT z − vTx− (p− 1)vTx = vT z − p · vTx = v̂(SO)− p · v̂(SR). (14)

65

Above, (11) is by Lemma 4, (12) uses that {Fi2}i2∈SO
are disjoint, (13) uses Lemma 1, and

the inequality in (14) uses that each hyperedge has at most p− 1 demands.

Setting ϵ = 1
pK2 , it follows that v̂(SR) ≥ 1

p+o(1)
· v̂(SO). Combined with Theorem 1, we

obtain v∗(SR) ≥ 1
p
· v̂(SR) ≥ 1

p2+o(p)
· v̂(SO). Hence,

Theorem 2. The LSLPR algorithm for SRAMF is a 1
p2
-approximation algorithm.

Time complexity of the LSLPR algorithm. Note that each iteration of Algorithm 3

involves considering K(nA −K) potential swaps and recall that nA = |SA|. For each swap,

we need to evaluate v̂, which can be done using any polynomial time LP algorithm such as

the ellipsoid method (Bertsimas and Tsitsiklis 1997). So, the time taken in each iteration is

polynomial.

We now bound the number of local search iterations. In each iteration, the objective

value increases by a factor of at least 1 + ϵ. So, after k iterations,

v̂(Sk+1
R) ≥ (1 + ϵ)kv̂(S1

R).

Clearly, the assignment associated with the initial solution S0
R has a lower bound v̂(S0

R) ≥
1
N
· vmin where vmin = mine:ve>0 ve is the minimum value over all hyperedges. Recall that

hyperedges with nonpositive values are not considered in any assignment. The maximum

objective of any solution is at most (nA + nB) · vmax where |SA| = nA, |SB| = nB and

vmax = maxe ve is the maximum value over all hyperedges. Hence,

(nA + nB) · vmax ≥ v̂(Sk+1
R) ≥ (1 + ϵ)k · 1

N
vmin,

which implies that the maximum number of iterations

kmax ≤ log1+ϵ

(
N(nA + nB)vmax

vmin

)
= O

(
1

ϵ
log

N(nA + nB)vmax

vmin

)
.

Using ϵ = 1
pK2 , it follows that the number of iterations is polynomial.

The last step of Algorithm 4 implements the greedy p-set packing algorithm for each

scenario, which also takes polynomial time. It follows that LSLPR solves the SRAMF

problem in polynomial time regarding parameters p, K, N , |E|, nA, and nB.

4.4.2 Max-Min Online Algorithm for High-Capacity SRAMF

The LSLPR algorithm is capable of assigning rides in shared mobility applications using mid-

capacity vehicles. When the maximal capacity of vehicles in MoD is large (e.g., the maximum

66

capacity of MoD transit service is ten in (Alonso-Mora et al. 2017b)), the 1
p2
-approximation

ratio is disadvantageous. We propose an alternative method for high-capacity SRAMF. The

main idea of the max-min online (MMO) algorithm is to use LP-duality to reformulate v̂

as a covering linear program. Then, the max-min optimization in Feige et al. (2007) can

further improve the approximation ratio. This framework requires two technical properties

(monotonicity and online competitiveness), which are satisfied in the SRAMF problem. We

will prove that the MMO algorithm obtains an approximation ratio of (1− 1
e
) 1
2p ln p

.

Using LP-duality and the definition of v̂(SR) (see the derivation in Appendix B.3.3), we

can reformulate:

v̂(SR) = minimize
u

∑
ξ

∑
g∈G

ug,ξ (15)

s.t.
∑
g∈e

ug,ξ ≥
ve
N
, ∀e ∈ Fi,ξ, ∀ξ, ∀i ∈ SR ∪ SB

uuu ≥ 0.

Here, G = SA∪SB∪(∪ξD(ξ)) is a combined groundset consisting of all vehicles and demands

from all scenarios. For any vehicle i and scenario ξ, set Fi,ξ ⊆ E(ξ) denotes all the hyperedges

incident to i in scenario ξ.

We can scale the covering constraints to normalize the right-hand-side to 1 and rewrite the

constraints as
∑

g∈e
N
ve
ug,ξ ≥ 1. Note that the row sparsity of this constraint matrix (i.e., the

maximum number of non-zero entries in any constraint) is maxe∈E |e| = p and ve > 0 for all

hyperedges. Let ccce be the row of constraint coefficients for any hyperedge e ∈ E = ∪ξE(ξ),

i.e.,

ce(g, ξ) =

N
ve

if g ∈ e and e ∈ E(ξ)

0 otherwise
.

Then, the SRAMF problem with fractional assignments maxSR⊆SA:|SR|≤K v̂(SR) can be

treated as the following max-min problem:

max
SR⊆SA:|SR|≤K

min
u
{1⊺uuu | ccc⊺euuu ≥ 1, ∀e ∈ Fi, ∀i ∈ SR ∪ SB; uuu ≥ 0}, (16)

where Fi = ∪ξFi,ξ for each vehicle i. For the remainder, t = 1, 2, . . . indexes steps of the

online algorithm.

The main result is:

Theorem 3. There is a e−1
(2e+o(1)) ln p

-approximation algorithm for (16).

67

Before proving this result, we introduce two important properties.

Definition 1. (Competitive online property) An α-competitive online algorithm for the cov-

ering problem (15) takes as input any sequence (i1, i2, . . . , it, . . .) of vehicles from SA and

maintains a non-decreasing solution uuu such that the following hold for all steps t.

• uuu satisfies constraints ccc⊺euuu ≥ 1 for e ∈ Fi, for all vehicles i ∈ {i1, i2, . . . , it}, and

• uuu is an α-approximate solution, i.e., the objective 111⊺uuu ≤ α · v̂({i1, i2, . . . , it}).

Note that the online algorithm may only increase variables uuu in each step t.

Definition 2. (Monotone property) For any uuu ≥ 0 and S ⊆ SA, let

Aug∗(S|uuu) := {min
www≥0

111⊺www : ccc⊺e(uuu+www) ≥ 1, ∀e ∈ Fi, ∀i ∈ S ∪ SB}.

The covering problem (15) is said to be monotone if for any uuu ≥ uuu′ ≥ 0 (coordinate wise)

and any S ⊆ SA, Aug
∗(S|uuu) ≤ Aug∗(S|uuu′).

These properties were used by Feige et al. (2007) to show the following result.

Theorem 4. (Feige et al. 2007) If the covering problem (15) satisfies the monotone and

α-competitive online properties, there is a e−1
e·α -approximation for the max-min problem in

(16).

Our max-min problem indeed satisfies both these properties.

Lemma 5. The covering problem (15) has an α = O(ln p) competitive online algorithm.

Moreover, when p is large, the factor α = (2 + o(1)) ln p.

Proof. Proof: Recall that (15) is a covering LP with row-sparsity p. Moreover, in the online

setting, constraints to (15) arrive over time. So, this is an instance of online covering LPs,

for which an O(ln p)-competitive algorithm is known (Gupta and Nagarajan 2014). See also

Buchbinder et al. (2014) for simpler proof. Moreover, one can optimize the constant factor

in Buchbinder et al. (2014) to get α = (2 + o(1)) ln p.

We note that these previous papers work with the online model when only one covering

constraint arrives in each step. Although Lemma 5 involves multiple covering constraints Fi

arriving in each step, this complexity can easily be reduced to the prior setting as follows.

We introduce the constraints in Fi one-by-one in any order. The algorithms in (Gupta and

Nagarajan 2014, Buchbinder et al. 2014) can therefore be used directly. □

Lemma 6. The covering problem (15) is monotone.

68

Proof. Proof: Consider any uuu ≥ uuu′ ≥ 0 and any S ⊂ SA. Let www′ ≥ 0 denote an optimal

solution to Aug∗(SR|uuu′). As all constraint-coefficients ccce ≥ 0, it follows that ccc⊺e(uuu + www′) ≥
ccc⊺e(uuu

′ +www′) ≥ 1 for all e ∈ Fi and i ∈ S ∪ SB. Hence, www
′ is also a feasible for the constraints

in Aug∗(S|uuu). Therefore, Aug∗(S|uuu) ≤ 111⊺www′ = Aug∗(S|uuu′), which proves the monotonicity.

□

Combining Lemmas 5 and 6 with Theorem 4, we obtain Theorem 3. We note that our

Ω(1
ln p

) approximation ratio is nearly the best possible for the max-min problem (16), as the

problem is hard to approximate to a factor better than O(ln ln p
ln p

); see Feige et al. (2007).

We now describe the complete algorithm for SRAMF below. This is a combination of the

online LP algorithm from Buchbinder et al. (2014) and the max-min algorithm from Feige

et al. (2007). For any ordered subset S of vehicles, let v̂ON(S) denote the objective value

of the online algorithm for (15) after adding constraints corresponding to the vehicles in S

(in that order). Algorithm 5 describes the updates performed by the online algorithm when

a vehicle i is added.

Algorithm 5: Updating subroutine in Max-Min Online algorithm

For a given i ∈ SA ∪ SB, perform the following updates;

for e ∈ Fi =
⋃

ξ Fi,ξ do

let {u−
g,ξ}g∈e be the values of variables in hyperedge e and Γ−

e =
∑

g∈e u
−
g,ξ;

if Γ−
e < ve

N
then

update ug,ξ ←
(
u−
g,ξ +

ve
N
δ
)
· 1 + |e| · δ

N
ve
Γ−
e + |e| · δ

− ve
N
δ, for all g ∈ e.

end

end

Proof. Proof for the updating subroutine in MMO algorithm: Consider the updates when

vehicle i is added. Consider any scenario ξ and hyperedge e ∈ Fi,ξ: the corresponding

covering constraint is cTe u = N
ve

∑
g∈e ug,ξ ≥ 1. Let τ be a continuous variable denoting time

and δ > 0 be a constant. The online LP algorithm in (Buchbinder et al. 2014) raises variables

ug,ξ in a continuous manner as follows:

∂ug,ξ

∂τ
=

N

ve
ug,ξ + δ, ∀g ∈ e, (17)

69

until the constraint is satisfied. Letting Γe =
∑

g∈e ug,ξ, we have

∂Γe

∂τ
=

N

ve

∑
g∈e

ug,ξ + |e| · δ =
N

ve
Γe + |e| · δ.

By integrating, it follows that the duration of this update is

T =

ˆ Γ+
e

Γ=Γ−
e

∂Γe

N
ve
Γe + |e| · δ

=
ve
N
· ln

(
N
ve
Γ+
e + |e| · δ

N
ve
Γ−
e + |e| · δ

)
=

ve
N
· ln

(
1 + |e| · δ

N
ve
Γ−
e + |e| · δ

)
.

Above Γ−
e and Γ+

e denote the values of Γe at the start and end of this update step; note

that Γ+
e = ve/N as the updates stop as soon as the constraint is satisfied. For each g ∈ e,

using (17),

T =

ˆ T

τ=0

∂ug,ξ

N
ve
ug,ξ + δ

=
ve
N
· ln

(
N
ve
u+
g,ξ + δ

N
ve
u−
g,ξ + δ

)
.

Again, u−
g,ξ and u+

g,ξ denote the values of ug,ξ at the start and end of this update step.

Combined with the above value for T , we get a closed-form expression for the new variable

values:
N

ve
u+
g,ξ + δ =

(
N

ve
u−
g,ξ + δ

)
· 1 + |e| · δ

N
ve
Γ−
e + |e| · δ

, ∀g ∈ e.

□

The complete MMO algorithm is described in Algorithm 6:

Algorithm 6: Max-Min online algorithm for SRAMF

Data: Augmented supply SA, basis supply SB, hypergraph G with E(ξ), and ϵ > 0.

Result: Near-optimal SR ⊂ SA and the corresponding trip assignment.

Initialization: SR ← ∅ and dual variables u← 0;

For each vehicle in SB (in any order), run Algorithm 5 to obtain v̂ON(SB)

for k = 1, . . . , K do

for i ∈ SA\SR do
Run the updating subroutine in Algorithm 5 and obtain v̂ON(SB + SR + {i}).

end

i∗ = argmaxi∈SA\SR
v̂ON(SB + SR + {i}) ;

SR ← SR + {i∗};
end

70

4.4.3 Extensions to SRAMF under Partition Constraints

We now consider a more general setting where the augmented set SA is partitioned into

M subsets SA(1), · · ·SA(m), · · · , SA(M) and the platform requires Km vehicles from each

subset.

Example 3: In the market segmentation of Example 1 described in Section 4.1, there

are M types of vehicles, so the cardinality constraint is further specified for each vehicle type

as partition constraints
∑

i∈SA(m) yi ≤ Km for all m ∈ [M].

Example 4: In the mixed autonomy application of Example 2, there are M separate AV

zones and the repositioning capacity requirement is proportional to the demand density in

each zone.
∑

i∈SA(m) yi ≤ Km is now a constraint for each AV zone m ∈ [M].

The original SRAMF problem (2) is now expanded to solve:

maximize
y

E[Q(y, ξ)] (18)

s.t.
∑

i∈SA(m)

yi ≤ Km ∀m ∈ [M] (18a)

yi ∈ {0, 1} ∀i ∈ SA. (18b)

We can extend our result to obtain:

Theorem 5. The MMO algorithm is a 1
(4+o(1))p log p

-approximation algorithm for SRAMF

with partition constraints.

The proof is identical to that of Theorem 3. The only difference is the use of the following

result for max-min covering under a partition constraint (instead of Theorem 4, which only

holds for a cardinality constraint).

Theorem 6. (Gupta et al. 2015) If the covering problem (15) satisfies the monotone and

α-competitive online properties, there is a 1
2α
-approximation for the max-min problem with

a partition (or matroid) constraint.

4.5 Numerical Experiments

4.5.1 Data Description and Experiment Setup

We evaluate the effectiveness of the proposed approximation algorithms in two hypothetical

mixed-fleet scenarios:

71

1. Setting 1 simulates mixed fleets of standard and premium vehicles in Example 1

and represents the mid-capacity SRAMF scenario. The MoD platform periodically

repositions premium vehicles of SA to serve ride requests when the future demand

exceeds the capacity of standard vehicles in SB. We consider the stochastic nature

of system dynamics as the probability of demand surges in some zones across the

city. The value of hyperedges in these zones increases when demand surges, rewarding

algorithms that successfully reposition in locations with high surge probability. The

main task is to reposition premium vehicles to accommodate predicted surge demand.

2. Setting 2 simulates the early deployment of AVs in Example 2 and represents the

high-capacity SRAMF scenario. Due to regulatory or technological restrictions, we

assume that automated MoD buses operate only within certain AV zones (Chen et al.

2017b) and deliver up to ten passengers per trip (Alonso-Mora et al. 2017b). The

main task is to periodically reposition K automated MoD buses in these AV zones to

accommodate future demand.

To demonstrate the value of employing a stochastic assignment framework, we consider

two benchmark models:

1. Benchmark 1: Stochastic assignment using IP solver solves SRAMF exactly using the

SAA approach in Section 4.3.2. This benchmark method and approximation algorithms

use the same set of samples to assess on a fair basis. The SAA approach is implemented

in a state-of-the-art IP solver (Gurobi 9.1).

2. Benchmark 2: Assignment with mean demand forecasts solves a deterministic ride-

pooling assignment problem based on the mean demand forecasts. This method solves

the joint vehicle repositioning and trip assignment problem using a one-shot approach

based on the mean hyperedge value and demand distribution F (ξ). The goal is to

address the significance of considering demand and supply uncertainties in SRAMF,

albeit at the expense of increased computing complexity.

Note that the objective values of Benchmark 2 and SRAMF are not comparable. The

following reconstruction procedure is therefore used in evaluations: (1) Select a set of aug-

mented supply SR based on the average scenario. (2) Generate a new set of test samples as

outlined in the SAA method. (3) Recompute the objective values for all algorithms using

identical test samples. This procedure can prevent the fallacy of cherry-picking in numerical

experiments and is described further in section 4.5.1.2.

72

4.5.1.1 Data description and preprocess.

We test the performance of these approximation algorithms in a simulated MoD system with

mixed fleets. The ride-pooling simulation follows a batch-to-batch procedure similar to that

employed in Alonso-Mora et al. (2017b), with a demand forecast module to maximize the

expected total value realized by serving travel demand.

Table 4.1 summarizes our experiment settings. The primary data inputs include:

1. Road networks: The road network in Manhattan, New York City (NYC) is obtained

from the OpenStreetMap (OSM) data. The average traveling time on each road seg-

ment is computed using the historical speed data in (Sundt et al. 2021). In Setting 1,

both vehicle types can serve any nearby ride requests made in Manhattan. To demon-

strate AVs’ early deployment in Setting 2, two AV zones are selected in the planning

phase (see Figure 4.9a). These zones are highly congested areas proposed for pedes-

trianization and could potentially be closed off to most vehicles besides MoD transit

services. Due to regulations for safety concerns, automated MoD buses only operate

within these AV zones (Chen et al. 2017b).

2. Supply: The basis set SB represents ride-hailing vehicles with a fixed capacity of two

that provides the standard service.

• In Setting 1, the augmented set SA represents a set of locations to which pre-

mium vehicles can be repositioned (see Figure 4.6). Full-time drivers provide

reservation-based service with these premium vehicles, which have a capacity of

three passengers (Ma et al. 2017). Thus, the MoD platform can allocate at mostK

idling premium vehicles to facilitate freelancing drivers who accommodate ad-hoc

demand surges for standard services (Dong et al. 2023).

• In Setting 2, the augmented set SA represents the initial parking locations from

which automated MoD buses are repositioned (see Figure 4.9). Each shuttle bus

in SA has a capacity of up to ten passengers and can operate only within AV

zones at the beginning of intervals. If each MoD bus can be repositioned only to

a particular subset of locations, we use the generalized setting in Section 4.4.3,

where Km represents the set of approachable locations for vehicle m. The same

approximation ratio holds for this extension.

3. Demand: We create a demand forecast model to sample ride requests from the NYC

Taxi and Limousine Commission trip data (TLC 2021). The forecast model utilizes

this dataset’s origin-destination, number of passengers, trip time, and fare information

to predict hyperedge values as accurately as possible (See Figure 4.9b).

73

4. Hyperedge values: The value of each hyperedge e is computed by (1). Each trip’s

pickup time follows the shortest path connecting all ride requests in the hyperedge e,

and customers’ preference over mixed fleets is randomly generated such that ve > 0.

5. Time intervals: We choose different matching intervals in Setting 1 and Setting 2 in

the batch-to-batch implementation. Setting 1 uses a one-minute interval to provide

convenient and responsive MoD services; Setting 2 uses a ten-minute interval to per-

mit repositioning between AV zones. Choosing the relatively large matching interval

(ten-minute) also illustrates the scalability of approximation algorithms, whereas Qin

et al. (2021a) showed that the optimal interval might depend on the supply-demand

relationship.

Table 4.1: Parameters in numerical experiments

Setting
Augmented Set

SA

Basis Set
SB Problem Statement

Demand-to-Supply
Ratio

Matching Interval
(minute)

Number of
Sample Scenarios

NCapacity
Location
#|SA|

K Capacity
Vehicle
|SB|

Setting 1 2 115 60 2 60
Mid-Capacity SRAMF
for Example 1
(standard-premium cars)

1.7− 2.0 1 10

Setting 2 10 30 5 2 115
High-Capacity SRAMF
for Example 2
(mixed autonomy)

35− 45 10 50

(a) Demand density (b) Surging demand ar-
eas

(c) SA and SB for Setting 1 in a given scenario

Figure 4.6: Mid-capacity mixed autonomy traffic experiment in Manhattan, NYC.

74

4.5.1.2 Assessment of algorithms in mixed-fleet simulations.

The objective of both settings established in Section 4.5.1 is to choose a subset of locations for

repositioning vehicles SA to maximize the total expected assignment value. Consequently,

the assessment of different benchmarks and proposed approximation algorithms consider

three metrics: total computational time (runtime in seconds), the expected assignment value

based on predicted demand samples (the objective value of the SRAMF problem defined in

(2)), and the average realized assignment value of the proposed locations given new demand

samples. In this section we describe these assessment methods and how they are calculated.

The numerical experiments conducted in this study generate a fixed number of scenarios,

each of which constructs a shareability graph using the process outlined in Appendix B.2

and creates all hyperedges with only positive values.

We measure runtime as the duration in seconds it takes an algorithm to produce the de-

sired output, a subset of augmented supply locations, given the inputs of a hyperedge graph

(including associated hyperedge values and the samples of predicted demand). In Bench-

mark 1, the SRAMF problem is solved to optimality using Gurobi 9.1, a highly optimized

MIP solver. The number of variables in Equation (2) equals the product of the number of

hyperedges and the sample size, which may increase exponentially in real-world applications.

Hence, we set a six-hour computation time limit for solving the SRAMF problem with any

method, mainly for the exact solver. Unlike in Benchmark 1, our proposed approximation

algorithms focus on solving the SRAMF problem by swapping vehicle locations or adding

them sequentially from the set SA, rather than solving the entire two-stage integer program

at once. As a result, a parallel-computing scheme can considerably reduce the total runtime

of approximation algorithms by evaluating multiple scenarios concurrently. We report two

computation times for these parallelized versions, one for the observed runtime (programmed

by Python 3.8 on our server) and another for the hypothetical runtime based on a maximum

number of threads. The maximal computing resource (max-thread) runtime limit means

that the algorithm can simultaneously evaluate all pairs of candidates in the active set of

LSLPR or the dual variables for all hyperedges in MMO. This limit includes additional time

for computations in series but excludes the overhead cost of creating processes. The number

of used threads for each experiment setting is provided in the footnotes of Tables 2 and 3.

Computation times are reported from performance on a server with an 18-core 3.1 GHz pro-

cessor and 192GB RAM. In some experiments, the overhead cost of parallelizing the MMO

algorithm in Python actually increases the overall computation time, so we report a simply

vectorized version. Given the inefficiency of the parallelizing process in Python, we believe

times closer to the parallel limit can still be achieved.

The computation times of generating demand forecasts and the corresponding shareability

75

graph are not reported, because this study focuses on reducing the computation time for a

given shareability graph (hypergraph) in the SRAMF problem. In practice, the construction

processes of these hypergraphs may include more sophisticated demand forecast models

(Geng et al. 2019), so their preprocessing times are not considered in the assessment. Note

that approximation algorithms can handle more extensive shareability graphs or require

significantly shorter computation time limits. However, measuring their optimality gaps

requires comparing objective values of approximation algorithms with that of benchmark

methods and downsampling from the original taxicab data. The end of this section appends

a separate set of experiments to demonstrate the scalability of approximation algorithms

with larger instances.

Additionally, we evaluate the performance of our algorithms by comparing the objective

value they achieve to that of the optimal IP solution, commonly known as the optimality

gap. Let the objective of the IP solver be OPT and the approximation algorithm’s solution

be ALG. The optimality gap is measured by (OPT − ALG)/OPT , and is reported as a

percentage.

Finally, to assess the value of incorporating stochasticity in ride-pooling matching, we

compare the average performances of these algorithms by dividing the dataset into training

and test samples. They are evaluated based on 10 new test samples drawn from the same

distribution F (ξ) as the training samples used for initializing the algorithms. Each algorithm

and benchmark returns a subset of augmented vehicle locations from the training samples,

which are optimally assigned to incoming demand in the next interval. For each test sample,

we calculate the optimal matching that can be achieved given the selected augmented supply

vehicles. The performance is calculated as a multiplier of the assignment value achieved by

Benchmark 1 within each realized sample, which are then averaged across all 10 test samples

to give the reported average test performance. Note that this multiplier can be greater than

one, as the IP solver often produces locations that are optimal for the training samples

but may not generalize well to the overall distribution. The IP solver may also reach the

computation time limit and find a suboptimal solution. Benchmark 2 was calculated by

solving a deterministic second-stage assignment problem (3) with average demand forecasts,

reducing it to a much easier-to-solve integer assignment program.

4.5.2 Numerical Results for Mid-Capacity SRAMF

Setting 1 uses large fleets of premium and standard vehicles to provide ride-pooling services

in tandem. The demand density, surging demand areas, and two sets SA, SB are shown in

Figure 4.6. We generate data for surging demand as follows: 1) Divide Manhattan, NYC,

76

into 12 regions (using NYC Community Districts (Data 2022)); 2) Create a probability

matrix of all regions to chart the occurrence of surging demand. For concision, we choose

three regions with high probabilities of surges (see Figure 4.6b); the remaining regions have

a low probability of surging demand. These regions were chosen to be outside of areas with

high demand at the time of prediction to test the quality of service with highly fluctuating

demand distributions. The surging magnitude is defined by the multiplier of sampling rates

of surging versus the non-surging cases from the actual trips from the NYC taxi dataset. 3)

Generate i.i.d. demand profile and build shareability graphs for each scenario. 4) Run all

algorithms on the same sample set, using benchmark models, and evaluate numerical results.

Since the shareability graph is constructed for each scenario, the computed optimal routes

in a sample scenario are shown in Figure 4.7. As can be seen, premium vehicles selected

from the augmented set SA pick up mainly customers in the surging demand areas. Since

the hyperedge values of these rides are likely to have a surge multiplier, the platform tends

to reposition more idling premium vehicles and switch them to serve standard requests.

The computational results for Setting 1 are summarized in Table 4.2.

Table 4.2: Summary of Numerical Results for Mid-Capacity SRAMF

(Base, surge)
demand

sample rate

Surge
prob.

#
samples

Benchmark 1 Benchmark 2 LSLPR MMO
IP runtime

(s)
Avg test
perf.

Runtime (s)
(36-thread)

Max-thread
runtime (s)

Opt gap
(%)

Avg test
perf.

Runtime (s)
(vectorized)

Max-thread
runtime (s)

Opt gap
(%)

Avg test
perf.

(0.4, 0.6)
0.3

10 1109 1.00 1818 19 0.10.10.1 1.15 41.1 0.260.260.26 3.1 1.14
20 4161 0.98 2682 28 0.60.60.6 1.14 52.8 0.350.350.35 3.1 1.13

0.5
10 1117 1.00 1178 12 0.20.20.2 1.19 43.8 0.260.260.26 2.7 1.14
20 4213 0.99 − 273 0.00.00.0 1.18 53.5 0.340.340.34 4.5 1.12

(0.5, 0.75)
0.3

10 1160 1.00 3742 39 0.10.10.1 1.21 48.7 0.280.280.28 2.6 1.18
20 4202 0.98 3893 41 0.20.20.2 1.19 56.1 0.410.410.41 5.2 1.14

0.5
10 1177 1.01 3090 33 0.10.10.1 1.25 43.0 0.290.290.29 8.5 1.16
20 4214 0.98 6365 67 0.00.00.0 1.22 58.3 0.420.420.42 10.4 1.12

- The maximum computation time is 3 hours; − denotes hitting the maximum runtime.

4.5.2.1 Computation times.

At small sample sizes, the IP’s runtime is fairly comparable to that of the LSLPR approx-

imation algorithm. Gurobi is a powerful and heavily optimized MIP solver, so this result

is unsurprising. MMO and LSLPR have a clear advantage at larger sample sizes because

they can utilize parallel computation resources. MMO is also the only algorithm to com-

plete within the time limit for this setting, although many LSLPR runs can also reach this

threshold with enough parallel threads.

The runtime of LSLPR varies widely as the swap order greatly affects the runtime. When

the value ϵ in the stopping criterion is small in cases analyzed by large-scale shareability

graph, long runtimes for approximation algorithms are occasionally observed. This is pri-

marily because the algorithm must evaluate many swaps to find one that improves the overall

77

(a) Standard vehicle
routes

(b) Premium vehicle routes

Figure 4.7: Optimal trip assignment and routes in the mid-capacity scenario.

objective value. If the algorithm randomly initializes with a competitive solution of SR, find-

ing another swap to improve the objective value becomes increasingly difficult. This can lead

to the algorithm’s evaluating a combinatorial number of swaps per iteration, but the quality

of such an approximation attains near optimality. One advantage of LSLPR is that it can

be stopped early and still return valid assignments without searching all swaps, which other

algorithms and benchmarks cannot do. We verify this hypothesis by the following obser-

vation: With ϵ = 0.1, Table 4.2 shows the very small optimality gaps this algorithm can

achieve. LSLPR becomes time-competitive in runtime for most instances (see Figure 4.8)

when ϵ increases to 0.2.

4.5.2.2 Optimality gaps.

Table 4.2 shows that the actual optimality gaps throughout the numerical experiments are

smaller than the theoretical bounds. The optimality gaps of LSLPR (<= 1%) are signifi-

cantly smaller than those of MMO (3%− 10%), which matches the theoretical analysis.

Regarding performance on the test samples, LSLPR and MMO vehicle selections con-

sistently achieve 12%-25% higher objective values than those of Benchmark 1 (IP solver).

This advantage is always slightly worse when more samples are used initially, demonstrating

that the benchmark is optimizing heavily to the specific training samples. This result does

not generalize to demand distributions as well as LSLPR or MMO. Although Benchmark 1

might outperform our algorithms on some test samples and obtain a larger objective value

78

with enough initial samples, the IP solver scales poorly in regard to the average runtime

(see Table 4.5). Additionally, the deterministic benchmark shows that disregarding demand

uncertainty entirely can cause a 15% − 22% loss of objective value in the worst case when

compared to values that LSLPR and MMO achieved. This is a significant difference consid-

ering that the future MoD market is a billion-dollar industry. Therefore, it is valuable to

implement SRAMF algorithms to proactively reposition vehicles as in ride-hailing literature

(Qin et al. 2021b) instead of solving the deterministic problem.

4.5.3 Sensitivity analysis.

To evaluate the impacts of this parameter on the computational efficiency, we test the com-

putation times and optimality gaps with varying K ∈ [10, 80]. The results in Figure 4.8

show that the computation times of approximation algorithms increase significantly with

K, which is a shortcoming of any local-search-based algorithm. The IP solver is relatively

unaffected by the change of parameters. However, the optimality gap of these approxima-

tion algorithms drops to nearly zero with the increasing budget, as the increased budget

has diminishing marginal value to the ride-pooling assignment (i.e., the market is saturated

already). Therefore, the platform can select a reasonably small budget for approximation

algorithms to have clear advantages over the exact solver.

4.5.4 Numerical Results for High-Capacity SRAMF

In Setting 2, the proposed algorithm computes near-optimal solutions for the mixed-

autonomy fleet, including repositioning automated MoD buses (AVs) among locations SA

(see Figure 4.9) and determining their pickup routes for demand samples.

The performance of the proposed approximation algorithm is evaluated under different

supply and demand distributions. The system is tested in both a relatively balanced demand

scenario as well as a massive under-supply scenario, with mean numbers of demand across

scenarios ranging from 250 to 4000, respectively, which are considerably larger in a stochastic

setting. Figure 4.10 shows that algorithms allocate four AVs to the high-demand-for-AV zone

and one AV to the low-demand-for-AV zone for such demand forecasts. Notice that these

decisions are complementary to CVs’ trip assignment decisions, as the latter fleets are still

the primary MoD service providers.

4.5.4.1 Computation times.

The reported computation time includes solving for the near-optimal vehicle selection and

exact assignment in each scenario. This comparison excludes the runtime required to gener-

79

(a) Computation times (b) Objective value

(c) Optimality gaps

Figure 4.8: Impact of K on computation time and optimality gap in the mid-capacity sce-
nario.

ate hypergraphs in order to emphasize the performance of algorithms in solving the SRAMF

problem. Recall that the size of the augmented set |SA| and the number of hyperedges (the

number of decision variables in each scenario) determine the size of the shareability graph.

Table 4.3 shows how the total runtime grows with the increasing size of the hypergraph. The

computation time of LSLPR and MMO algorithms are shown in Table 4.3.

The largest runtime per iteration is reported in Table 4.3, where the number of hyperedges

is the maximal number across all scenarios. Our results show that (a) The max-thread

MMO setting obtains near-optimal solutions to SRAMF with the smallest runtimes because

it evaluates all potential vehicles in SA \ SR in parallel. (b) The performance of LSLPR is

worse than MMO for high-capacity SRAMF, which matches our approximation ratio analyses

where the number of potential swaps grows exponentially. Nevertheless, its computation time

will always improve when additional resources are available.

80

(a) CVs’ and AVs’ ini-
tial locations in Set-
ting 2

(b) Request pickup locations in a sam-
pled experiment

(c) Sampled hyperedge value distributions in shareability
graphs

Figure 4.9: High-capacity mixed autonomy traffic experiment in Manhattan, NYC.

4.5.4.2 Optimality gaps.

Table 4.3 shows that optimality gaps of both algorithms grow slightly with the size of share-

ability graphs, but the overall performance of the proposed approximation algorithms is sat-

isfactory for various supply-demand ratios. The optimality gaps are below 2% throughout

tested instances, confirming that approximation ratios derived for the worst-case scenario,
1
p2

or e−1
(2e+o(1))p ln p

, are loose with the real-world trip data. In other words, the performance

degradation of these approximation algorithms is negligible when implementing them in

shared mobility systems.

81

(a) CV routes (b) AV routes

Figure 4.10: Optimal trip assignment and routes in mixed autonomy, high-capacity SRAMF.

4.5.4.3 Sensitivity analysis.

Three sensitivity analyses for the high-capacity SRAMF problem involve (a) distribution of

hyperedge values, (b) vehicle number and capacity, and (c) sample size. They test how the

performance of these approximation algorithms is affected based on changes in input data

and model assumptions. We discuss them individually in this section.

Hyperedge value distribution. The first set of sensitivity analyses aims to check al-

gorithms’ performance degrades with different supply and demand distributions. By re-

placing the empirical hyperedge values with randomly generated hyperedge values, this

analysis examines the robustness of these algorithms. Figure 4.11 shows the runtime and

optimality gaps with uniformly generated hyperedge values. Figure 4.9c represents that

customers’ level of trust in the AV technology dominates the hyperedge value such that

ve =
∑

j∈t uj +
∑

j∈t ũij − c(i, t) ≈
∑

j∈t ũij for each e ∈ E(ξ) and ũij follows a uniform

distribution.

The runtime of random hyperedge values is smaller than those of real-world data, and

the optimality gaps stay low across most instances. This is mainly because the empirical

hyperedge values are more concentrated around specific values (i.e., the average trip length).

Hence it is more difficult to reposition vehicles from the augmented set. In this case, the local-

search-based algorithms outperforms other algorithms with uniformly distributed values.

Vehicle capacity. In Stetting 2 numerical experiments, automated MoD buses (AVs)

82

Table 4.3: Summary of Numerical Results for High-Capacity SRAMF

Demand-
supply
ratio

SA, SB
Benchmark 1 LSLPR MMO

IP
runtime
(second)

LSLPR
runtime

(8-
thread)
(second)

LSLPR
runtime
(max-
thread)
(second)

Opt.
Gap

MMO
(8-

thread)
(second)

MMO
(max-
thread)
(second)

Opt.
Gap

1.78 10, 115 1177 384 20 0.2%0.2%0.2% 383838 161616 0.4%
1.78 15, 115 1332 383 191919 0.9% 515151 191919 0.8%0.8%0.8%
1.78 20, 115 1470 337 23 0.7%0.7%0.7% 585858 151515 0.8%
1.78 25, 115 1354 357 242424 0.9% 727272 26 0.8%0.8%0.8%
1.78 30, 115 1464 548 31 0.5%0.5%0.5% 828282 151515 0.9%
1.78 35, 115 1448 599 27 0.4%0.4%0.4% 979797 171717 1.0%
1.83 10, 115 1425 460 29 0.3% 484848 151515 0.1%0.1%0.1%
1.83 15, 115 1516 509 63 0.1% 606060 171717 0.0%0.0%0.0%
1.83 20, 115 1730 449 33 0.5% 777777 191919 0.3%0.3%0.3%
1.83 25, 115 1817 483 35 0.3%0.3%0.3% 919191 222222 0.7%
1.83 30, 115 2027 566 31 0.7%0.7%0.7% 104104104 212121 0.8%
1.83 35, 115 2373 565 44 0.5%0.5%0.5% 137137137 313131 1.2%
1.87 10, 115 1180 353 262626 0.7% 878787 65 0.3%0.3%0.3%
1.87 15, 115 1350 398 121212 0.5% 666666 34 0.1%0.1%0.1%
1.87 20, 115 1509 455 55 1.0% 787878 383838 0.1%0.1%0.1%
1.87 25, 115 1650 488 181818 1.0% 128128128 70 0.3%0.3%0.3%
1.87 30, 115 1690 536 35 1.0% 105105105 323232 0.3%0.3%0.3%
1.87 35, 115 1795 535 77 1.3% 141141141 424242 0.3%0.3%0.3%
1.93 10, 115 4468 1011 196 0.4% 121121121 636363 0.2%0.2%0.2%
1.93 15, 115 6411 1036 585858 0.5% 250250250 140 0.4%0.4%0.4%
1.93 20, 115 11243 1237 204 0.2%0.2%0.2% 224224224 727272 0.3%
1.93 25, 115 11820 1318 282828 0.4% 390390390 167 0.2%0.2%0.2%
1.93 30, 115 5432 1453 99 0.8% 397397397 868686 0.6%0.6%0.6%
1.93 35, 115 7038 1830 646464 0.6% 516516516 133 0.4%0.4%0.4%
2.02 10, 115 4348 998 505050 0.6%0.6%0.6% 226226226 182 1.0%
2.02 15, 115 5843 1792 157 0.2%0.2%0.2% 175175175 939393 1.0%
2.02 20, 115 9802 2177 210210210 0.2%0.2%0.2% 442442442 214 1.0%
2.02 25, 115 16787 3508 300 0.5%0.5%0.5% 609609609 201201201 0.9%
2.02 30, 115 22141 4143 198198198 0.6% 123412341234 477 0.4%0.4%0.4%
2.02 35, 115 20920 6327 161161161 0.4%0.4%0.4% 136213621362 487 0.5%

- The demand-supply ratio is the average ride requests over the total number of vehicles (K + |SB |); K = 5.

- The max-thread runtimes assume enough threads to evaluate all potential swaps or drivers at once:

- The total number of variables in Benchmark 1 (IP) ranges from 3× 106 to 1.2× 107.

provide mixed autonomy mass transport whose vehicle capacity is up to ten passengers.

CVs have a fixed capacity of three passengers. Recall that p bounds the vehicle capacity.

Table 4.4 shows how the vehicle capacity affects the approximation ratios. A surprising

observation is that the vehicle capacity is not the bottleneck of approximation algorithms’

performance throughout the experiments. In contrast, the IP benchmark’s computation time

increases significantly vehicle capacities. This is because the number of hyperedges plateaus

above a certain capacity due to the process of constructing shareability graphs outlined in

Section 4.5.1. In order for a high-capacity trip to exist, i.e., the corresponding hyperedge

value is positive, all subset trips must also exist. This requirement leads to a combinatorially

decreasing number of hyperedges with large trip sizes unless an even larger set of compatible

trips exist. Since the density of ride requests in the AV zones does not satisfy the existence

83

(a) Computation time comparison

(b) Optimality gap comparison

Figure 4.11: Impact of input distribution on computation time and optimality gap.

conditions for compatible trips, the optimality gaps of both approximation algorithms are

not evidently affected by the AV capacity.

Table 4.4: Impact of vehicle capacity on computation time and optimality gap

Number of
AV locations

AV capacity
CAV

Number of
hyperedges

Runtime of
IP (second)

Optimality
gap of LSLPR (%)

Optimality
gap of MMO (%)

35 2 8121 220 0.620.620.62 1.12

35 4 11396 288 0.800.800.80 0.88

35 6 12048 299 0.99 0.430.430.43

35 8 12068 298 1.00 0.030.030.03

35 10 12070 301 1.00 0.020.020.02

Sample size. The SAA method guaranteeing a uniform convergence to the optimal value

does not directly reveal how the sample size affects the total computation time of solving the

SRAMF problem. Table 4.5 summarizes the computational results of algorithms compared

84

with the same instances, which reports runtimes with finite and maximal computational

resources (i.e., number of threads for parallel computing).

Table 4.5: Impact of sample size on computation time and optimality gap

Number of
samples

Number of
AV locations

AV capacity
Avg number
of hyperedges

Runtime of
IP (second)

Runtime of
LSLPR
(second)

Optimality
gap (%)

10 20 5 3100 14 2 3.23

25 20 5 3100 104 5 1.63

50 20 5 3100 445 12 2.03

75 20 5 3100 907 15 2.01

100 20 5 3100 2088 25 0.91

150 20 5 3100 4076 38 3.15

200 20 5 3100 7485 109 1.01

The approximation algorithms address demand uncertainties in MoD platforms while

controlling the computational time to increase linearly with the sample size. Table 4.5

demonstrates that optimality gaps are small for all instances investigated. In light of the

important nature of stochastic demand and the movement of basis vehicles, our numerical

results suggest that MoD platforms should employ more computational resources to facilitate

approximation algorithms with large sample sizes in order to improve the platform’s average

profit and quality of service.

4.6 Conclusion

SRAMF utilizes a two-stage stochastic integer program to calculate joint vehicle reposition-

ing and assignment for large-scale MoD systems with mixed fleets. This research introduces

two approximation algorithms, LSLPR and MMO, which leverage the structure of shareabil-

ity graphs to assess potential matchings with increased supply. These algorithms efficiently

generate near-optimal solutions for maximizing the expected total value of ride-pooling as-

signments in a relatively short time. The main theoretical results provide provable guarantees

for their worst-case performance, as validated by extensive numerical experiments involving

mid-capacity and high-capacity vehicles. Our results illustrate the significant benefits of

integrating stochastic programming modules into the MoD vehicle dispatching processes to

improve system profitability and throughput.

To close this chapter, we point out several promising future research avenues to address

the following limitations. First, alternative pickups and dropoffs in trip planning are not

permitted, i.e., the total number of ride requests per hyperedge is less or equal to vehicle

85

capacity. Second, as the SRAMF problem only considers a two-stage uncertainty structure,

it is meaningful to extend this framework to a multi-stage setting with time-varying demand

forecasts and vehicle repositioning decisions that adapt to revealing scenarios. Constructing

hypergraphs with multi-stage demand forecasts will be a major computational bottleneck.

Hence, new representations for potential matchings must be developed to address computa-

tional issues. Third, penalties related to balking trips or carryover supply are not directly

considered in the current setting, whereas they can be incorporated into the hyperedge value

in Section 4.3.1. Finally, the current trip assignment does not consider cancellation and

re-assignment after dispatching vehicles to passengers. Considering these factors in practice

may improve the stability of ride-pooling algorithms.

86

CHAPTER 5

Conclusions and Future Research

5.1 Research Summary and Findings

The introduction of ride-hailing as a new option for mobility has led to rapid adoption and

sector growth in cities across the country. This new mode has brought a flexible, on-demand

transportation option at a more affordable price and met the needs of many people. Other

benefits arise too, including better mobility options for elderly or children and reduced car

dependency. We are only just beginning to understand the effects of these systems though,

as studies have recently shown them to also be responsible for increased congestion, vehicle

miles, and emissions. In order to mitigate these negative externalities, this dissertation

focuses on ride-pooling as a reasonable middle ground. But ride-pooling faces a number of

challenges to widespread adoption, which this dissertation aims to address. These challenges

roughly fall into three areas, which we discuss along with our contributions below.

5.1.1 Customer Preferences and Comfort (Chapters 2 and 3)

Ride-pooling, more than most other mobility options, requires enough demand density in

order to actually be able to find compatible. This means we must In Chapter 2, we present

the idea of a customer’s mobility profile. Our hypothesis is that such a profile would capture

underlying preferences about mobility choices such as origins and destinations, activities,

departure time, and route choice. By matching users with similar mobility profiles, they

would be more comfortable giving up single occupancy trips and more likely to accept pooling

options with those matches. We discuss and present elements of a customers mobility profile

based on their historical trajectories. Finally, as one example for how these could be used, we

propose a Robust Data Driven Optimization (RDDO) framework for matching users based

on this historical profile. Other recommendation engines are also possible using mobility

profiles.

87

We continue to prioritize passenger comfort in Chapter 3 by discussing a family of

customer-focused performance metrics that measure important factors such as waiting time

and delay. We also design and test some heuristics that explicitly limit delay so as to ensure

user satisfaction.

5.1.2 Performance Metrics and Optimality (Chapters 3 and 4)

We determined that many analyses of ride-pooling strategies lack a consistent performance

metric, and that some commonly used ones, like occupancy, do not capture the full story

alone. To this end, we developed a new metric for measuring system efficiency of ride-pooling

platforms and apply it to our heuristic testing. By factoring in passenger trip hours served

and total labor hours, we account for delay and penalize inefficient pooling matches. We

also demonstrate the importance of including multiple metrics alongside this, including the

customer-focused metrics mentioned above, as often they change in different ways and can

lead to additional insight.

While these metrics are important for comparing results in specific scenarios between pro-

posed methods, they do not help quantify the maximum or optimal theoretical performance

for the system. In Chapter 4 we address this by investigating approximation algorithms

in an online matching setting with short term fleet relocation. This setting also expands

the driver pool to multi-source, meaning the platform may use different classes or fleets

of drivers to serve different demand. We develop two approximation algorithms for mid-

and high-capacity vehicles and provide provable worst case guarantees on their performance.

These algorithms achieve approximation ratios close to the best possible bounds achievable

under these complexity assumptions.

5.1.3 Scalability to Large-Scale Real-Time Operations (Chapters

3 and 4)

A large focus of this dissertation has also been on developing methods that scale to large

cities and high demand. This is an especially tricky problem with ride-pooling as potential

matching trips often need to be evaluated by solving a time consuming Vehicle Routing

Problems (VRPs). We address this in chapter 3 by proposing simple rule-based heuristics

for evaluating matches. These can be evaluated quickly without the need for a lengthy VRP

or bipartite matching process, and achieve almost similar performance in some scenarios.

Similarly, the SRAMF problem setting presented in chapter 4 is proven to be NP-hard

and thus we have no way of solving it in polynomial time. The proposed approximation

88

algorithms provide polynomial time methods that outperform industrial grade Gurobi opti-

mization while achieving very small (often sub-1%) optimality gaps.

5.2 Directions for Future Work

We have provided some directions for future research at the end of each chapter but there

remain a number of more generally applicable and interesting areas to further explore. We

detail a few of them here.

5.2.1 Variance Across Cities

Cities across the world vary widely in size, street layout, and demand profile. Each of

these elements plays an important role in both the feasibility of ride-pooling and the specific

strategies that make a platform work.

For example the calculation of DTW distances in chapter 2 can be tuned based on a

threshold for what constitutes similar trajectories. This is affected by the noise of the GPS

readings (amplified if in an area of tall buildings or poor signal), as well as road geometry.

For example, if two trajectories travel on parallel roads in Manhattan, the distance in that

section will be at a minimum the block length times the number of observations.

Additionally, road geometry affects the size and ease of calculation of the restricted sub-

graph, among other parameters. A platform operating in a suburban area might need to

expand the pick-up radius or the allowable delay in order to find a suitable number of avail-

able drivers and compatible sharing trips. This however is a tradeoff with computation time

and customer satisfaction, and the optimal balance of these parameters will change with the

city layout.

5.2.2 Time Period Length and Rolling Horizon

In chapters 3 and 4, we batch requests and make assignments within a short time period. In

some scenarios, we observe that a longer time period yields better results (as is the case with

bipartite matching) at the cost of longer waiting times for customers and longer computation

times due to handling a larger batch of customers.

Especially in large-scale implementations, where computation power is precious, it is

important to understand where this balance lies. Additionally, it remains an open question

how to account for longer term demand forecasts when relocating and assigning vehicles.

Our work in Chapter 4 answers this question for short term demand forecasts, but this does

not take into account longer relocation times such as moving from suburbs to downtown.

89

5.2.3 Integration with Pricing Models

There has been much research separately into pricing models in ride-hailing systems as a

method of encouraging or suppressing demand. However at an operational level, this can be

integrated with platform matching and relocation as we have control of where drivers will

be in future time periods and can encourage demand based on O/D so as to better facilitate

ride-pooling and fleet utilization.

5.2.4 Transit System Coordination

It is also important to cooperate and work alongside public transit systems as they run

scheduled, higher-capacity trips that are important for relieving customer demand and offer

sometimes faster travel times due to dedicated infrastructure. It is critical to facilitate

transfers to and from this system and ride-hailing, as otherwise fleet capacity issues would

potentially lead to increased negative externalities in congestion and emissions. However

incorporating these systems into the models presented in this dissertation, especially with the

intent of determining performance guarantees, remains an open question. Coordinating with

local public transportation as well as other smaller micro-mobility solutions is an important

aspect of near-future mobility systems in cities.

90

APPENDIX A

Appendix for Chapter 3

A.1 Simulation Environment

The complex nature of real-time ride-hailing operations, with individual-level driver and

customer queuing and location decisions, is difficult to accurately capture in simplified mod-

els. Small differences in policies of route choice, assignment, or relocation can lead to large

differences in performance over longer periods of time. Tuning parameters such as pick-up

radius, delay, and batch time can also differ significantly for different cities due to properties

of demand distribution and street layout. Thus, in order to capture these behaviors and

effects, it is important to have a microscopic simulation platform that accurately represents

these real-time decisions and policy implementations.

To this end we have developed RideSim, a modular, object-oriented python environment

that encompasses all aspects of the ride-hailing and ride-pooling process. This environment

allowed us the ability to not only granularly define driver, customer, and platform behav-

iors but also easily swap between these different policies on the same dataset and random

seed. We are also able to measure important statistics on miles traveled, driver status and

occupancy, and waiting times at each timestep of the simulation environment.

A.1.1 Environment and Agent Classes

The simulation environment was coded based on three main agent classes: Driver Manager,

Customer Manager, and Platform. The environment interacts with these classes through

specific functions that are detailed below. Thanks to properties of object-oriented program-

ming, Python makes it easy to ”extend” these classes. Essentially, they serve as a blueprint,

allowing users to build more complex functionality into their own implementations, so long

as they retain the structure and main functions of the original base class. We provide ex-

amples below of extensions that can be constructed with only a few lines of code but can

define radically different behaviors. The modular nature of this environment makes it both

91

Figure A.1: Diagram of relationships between classes in ride-pooling simulator

extremely flexible and easy to test on, as well as potentially useful to a wide variety of

researchers in this field.

These classes are initialized by the user and then input to the simulation environment. The

simulation then updates them in order at each timestep as the simulation progresses through

time, and results are passed between classes. As the cycle progresses, metrics recorded by

the simulation environment are updated. This cycle can be seen in figure A.1.

A.1.1.1 Driver Manager Class

The Driver Manager class is created to handle the vehicle fleet. At a base level, this class

is mainly responsible for maintaining driver statuses, routing vehicles, triggering pickup

and dropoff of customers upon reaching destinations, and recording VMT and occupancy

metrics. The Driver Manager class updates important attributes of each driver that are often

called on by the platform or simulation. Chief among these are driver locations (both in

latitude/longitude coordinates and representations of road network locations), driver status

(offline, idle, en-route to pickup, or en-route to destination), occupancy, and specifically

which customers are in the vehicle. These attributes are updated both as the driver moves

92

along the road network, as well as with data from other classes (i.e. assignment of a customer

to a vehicle by the platform). The interaction from the simulation environment and Driver

Manager class are mainly handled via the following functions:

• initialize drivers: Responsible for initializing driver locations, statuses, parameters,

etc.

– Currently, this function creates a fleet of idle drivers and randomizes their loca-

tions within the service area. This could instead be rewritten to mimic a certain

starting distribution of vehicles and statuses.

• update drivers: Handles updating drivers for the next t second timestep, including

calling the functions for general and idle move

– In our code, this function only serves to call the general and idle move functions,

but can be extended to also consider worker shifts and determining whether a

driver will go offline or come online. We assume a fixed fleet size in our scenarios

so we have not demonstrated this implementation, but it would not be difficult

to achieve.

• general move: Moves en-route vehicles towards their destination by the given timestep

amount, handling route choice and network dynamics

– This function is fairly straightforward as the shortest path is chosen and the

vehicle is moved according to travel times on the links on that path. This is

made very easy by the useful features of OSMNX, a python library that helpfully

converts real-world OpenStreetMap (OSM) data into a NetworkX data structure.

The resulting data structure contains speed limits, distances, and road geometry,

and we have further augmented it with average speed data from Uber for our

specific network.

• idle move: Provides behavior for idle vehicles over the length of the update timestep

– At its most simple this function leaves vehicles where they are, essentially parked

while waiting for the next trip assignment. However that is not entirely accurate

to how real ride-hailing drivers operate, so we have also defined an extended class

where idle drivers roam, randomly choosing the next link to drive on at each

intersection.

93

As a demonstration of the ease-of-use and modularity of this code, swapping the idle

driver behavior from no movement to random link choice takes less than 20 lines of code

total. Modifying this to reflect likely turning probabilites at an intersection instead of a

uniform random distribution would be simply be a single line change to that already defined

class. Additionally, even smarter drivers can be created, though not used in the results of

this paper, that move toward areas of higher demand in order to have a higher likelihood of

being matched. This would require additional data from the platform or customer classes,

but is absolutely feasible in this framework.

The Driver Manager class can further disperse the behavior to instances of a Driver class,

but that is not required and often leads to detrimental computational performance of the

simulation. The updates are easiest handled in batches where they can be threaded and

parallelized. However the ability to further individualize the behavior is useful in scenarios

with many different classes of drivers or where drivers may be randomized with different

parameters.

A.1.1.2 Customer Manager Class

The Customer Manager class is created to generate and handle customer trip requests and

their waiting queue. This agent class is mainly responsible for keeping track of waiting time,

reneging, and trip time metrics. Based on the waiting time, a customer may choose to renege

(leave the queue) if they are not matched within a certain time window. In the simulation

results, a time window of five minutes was used.

A.1.1.3 Platform Class

The only class modified in each of the simulation runs is the Platform class. The Platform

class is responsible for matching the current waiting customers and drivers given their states.

The different heuristics given in chapter 3 were coded as different matching functions, which

were plugged in to create different platform classes.

94

APPENDIX B

Appendices for Chapter 4

B.1 Summary of Notation

Table B.1: Summary of notation and acronyms

Notation Description

SA, SB Augmented set and basis set of vehicles

ξ Randomly generated scenario

ℓ ∈ [N] Index for sampled scenarios and the total number of samples

D(ξ) Set of demand in scenario ξ

E(ξ) Set of hyperedges in scenario ξ

G
Shareability graph, a hypergraph consisting of

supply and demand vertices and hyperedges

e
Each hyperedge e = {i, J}i∈S,J⊆D is a potential trip

where vehicle i serves requests J

uj The expected profit of request j

ũij Utility gained from matching request j with preferred vehicle type i

c(i, t) Travel cost for vehicle i to serve trip t

α Approximation ratio

n Total number of vehicles such that |SA| = nA and |SB| = nB

K Maximum number of vehicles allowed from the augmented set

Ci Capacity of vehicle i ∈ SA ∪ SB

wi Number of passengers in request j

p Maximum capacity of hyperedge, p = maxi∈SA∪SB
{1 + Ci}

j Index for travel demand j ∈ D(ξ)

wj Size of travel demand j ∈ D(ξ)

95

Ei,ξ Set of hyperedges contains vertex i ∈ SB ∪ SR in scenario ξ

t Trip is a set of demand following the shortest pickup-and-then-dropoff order

ve Value of hyperedge e ∈ E(ξ)

nb(e) Neighboring hyperedges e′ ∈ E(ξ) intersecting with e

xe Decision variable for hyperedge e, xe ∈ {0, 1}
x̄e Decision variable for fractional assignment, xe ∈ [0, 1]

yi Decision variable for vehicle i ∈ [SA], yi ∈ {0, 1}
v∗(·) Optimal value of the exact GAP

Q(y, ξ) Optimal value of the assignment in scenario ξ

vmax Maximal hyperedge value for all e ∈ E

vmin Minimal hyperedge value for all e ∈ E such that ve > 0

I Independent set as a union of hyperedges satisfying the set-packing constraint

SO Optimal choice of vehicles for SRAMF SO ⊂ SA

SR Choice of vehicles from the algorithm SR ⊂ SA

L The bijection between SR and SO

v̂(·) The objective value of fractional assignment

zzz Optimal LP solutions to v̂(SO)

Fi Hyperedges intersect with vehicle i

Hd Hyperedges intersect with demand d

⊥ Dummy hyperedge in LSLPR

∆d(e, f) Decomposition mapping between hyperedge e and f

Ui1i2 Marginal value function with i1 ∈ SR and i2 ∈ SO

v̂ON Objective value of the online algorithm

ug,ξ Dual variable in the MMO algorithm for g ∈ e and scenario ξ

Γe Γe =
∑

g ug,ξ as the left side of dual constraints

ccce Row of cost coefficient in the dual covering problem with entry ce(g, ξ)

M The augmented set is partitioned into M subsets

ϵ Error tolerance (for stopping criteria)

δ
Error tolerance (for sample average approximation)

or constant in MMO update subroutine

OPT Optimal value of the SRAMF problem

ALG Objective value of solving SRAMF by approximation algorithms

96

B.2 Performance Analysis of Construction of Share-

ability Graphs

The main idea of recent ride-pooling assignment papers (Santi et al. 2014, Alonso-Mora

et al. 2017b, Simonetto et al. 2019) is to separate the problem into two parts: 1) construct-

ing the shareability graph and compatible requests and vehicles, and 2) optimally assigning

those trips to vehicles by solving GAP. This paper primarily focuses on algorithms and ap-

proximation bounds for the stochastic extension to the second part, but we acknowledge the

importance and difficulty of the first task and describe them in detail below for completeness.

B.2.1 Procedure for Constructing Shareability Graphs

D(ξ) is a set of all trip requests revealed in scenario ξ, and this section omits ξ when there

is no confusion because the hyperedges for scenarios are generated separately. We consider

a number of parameters to be given by the customer or externally dictated to the platform

(based on desired service parameters). These include, for each customer j, the maximum

waiting time, ωj, and allowable delay, rj.

• (Constraint I) Travel time from vehicle location to pick-up of customer j in order

must be less than ωj.

• (Constraint II) Travel time from origin to destination of customer j in order must be

less than rj.

Additionally, as defined in the setting, the hyperedge weight consists of three parts: value

of trip requests
∑

j uj, preference of the vehicle type ũsj, and travel cost of delivering all

trip requests in a single trip. We take a three-request clique (j1, j2, j3) as an example. Let

tk = {Oj1 , Oj2 , . . . , Dj2 , Dj3} be a specific ordered sequence of origins and destinations and

SP (tk) be the shortest path route connecting them. Let Te = ∪ktk. Note that this is slightly
less demanding than finding all feasible Hamiltonian paths if we enforce that in all trips, the

origins must be picked up before any destination is visited. Let c(s, e) = mintk∈Te v(tk) where

c(tk) is the cost of serving all requests following the shortest-path SP (tk). We define a set

function f(e) that takes a hyperedge consisting of a vehicle s and a potential combination

of trips, Te, as below:

f(e) =

0 if ∀tk ∈ Te, SP (tk) violates constraints I and II

c(s, e) otherwise
.

97

The bottleneck of computation time is still finding vehicle routes that satisfy the given

constraints by solving a constrained Vehicle Routing Problem (VRP) problem, which is NP-

hard. Therefore, all heuristic methods can only minimize this bottleneck as much as possible

by reducing the number of combinations to check at each step. For example, Ke et al. (2021)

suggested a reformulation for finding c(s, e) to avoid enumerating all possible paths.

We combine multiple heuristic methods in literature to construct the shareability graph.

First, we need to identify the valid single customer trips for a given vehicle s. Let Ds be

the demand that can be served by vehicle s in a single trip within the allowable pickup

time. We may further reduce the number of trips by planning on a spatiotemporal graph

and examining compatible trips’ cliques. By testing trips in order of increasing size and only

considering a trip if all subsets of trips (where one request is removed from the trip) are

feasible, we reduce the number of candidate trips by orders of magnitude. This heuristic

generates the shareability graph in Figure 3.1 in which a set of requests is tested for trip

compatibility only if every subset of that set of requests is also compatible.

Lemma 7. (Alonso-Mora et al. (2017b)) A trip associated with the hyperedge e is feasible

for vehicle s only if, for all j ∼ e, j ∈ Ds, hyperedges (subtrips) e′ = e\{j} are feasible.

The heuristic reduces the candidate hyperedge sets by leveraging the topological rela-

tionship between matchable trips of size k and k + 1 (see Figure B.1), without eliminating

potentially feasible trips. The hypergraph can then be constructed in order of increasing

capacity to minimize the number of request sets tested. Additionally, we adopt the following

rules to further reduce the number of candidate trips:

1. Since only hyperedges with nonnegative edge weights are of interest, we remove all the

trips from the candidate set subject to f(e) <= 0.

2. If a vehicle v is not feasible for trip tk at time τ , it will not be feasible for tk at any

time τ ′ > τ (Liu and Samaranayake 2020).

Let Ck(D) be the set of combinations of size k of the elements of the set D. This process

is summarized as follows:

98

Algorithm 7: Construction of Shareability Graph

Data: Vehicle locations and requests (request time, pick-up, drop-off, preferred

vehicle type, acceptable delay)

Result: Set of hyperedges, E, each containing a vehicle, s, and a set of compatible

requests for that vehicle to serve in one trip. Hyperedge values are ve for

all e ∈ E.

Initialize E = ∅
for s ∈ SA ∪ SB do

Identify candidate passengers

D1
s ← {e ∈ D | f((s, e)) > 0}

Add hyperedges of size one

Ek ←
⋃

e∈D1
s
(s, e)

for k = 2, . . . , c do

for Demand set d ∈ Ck(D
k−1
s) do

Add trips of size k if all subsets exist and value greater than 0

if (s, e′) ∈ Ek−1∀i ∈ Ck−1(d) and f((s, e′)) > 0 then
Ek ← Ek ∪ (s, d)

Dk
s ← Dk

s ∪ d

E =
⋃p−1

k=1Ek

Return hyperedges E and their values ve

Figure B.1: Topological relationship between cliques of matchable requests. In this example,
(2,3,4) is not a valid combination of requests because the (2,4) combination was not valid.

99

B.2.2 Performance and Complexity Analysis of the Hypergraph

Construction Procedure

B.2.2.1 Optimality analysis.

The two-step ride-pooling assignment that first constructs the hypergraph and then solves

GAP obtains the exact optimal solution of solving the joint VRP and enjoys the compu-

tational advantage for large fleets. Since this work focuses on stochastic assignment, the

optimality analysis does not consider the errors of computing hyperedge values. The fol-

lowing results from Alonso-Mora et al. (2017b) provide positive guarantees for returning a

feasible set of hyperedges in the shareability graph: without enumerating all trip combina-

tions:

1. v∗ from solving GAP on the shareability graph obtains the optimal value for ride-

pooling for an arbitrary batch of supply and demand.

2. The construction of the shareability graph is anytime optimal, i.e., given additional

computational resources, the set of hyperedges is only expanded to allow for improved

matching.

The second property guarantees using a capacity bound, the threshold of which is de-

rived below, as an early stopping criterion in generating the hypergraph will still provide

satisfactory results. Solving GAP on this reduced shareability graph can guarantee any-

time optimality such that the output is near-optimal for the original problem with high

probability.

B.2.2.2 Computational complexity analysis.

We consider a fixed sample of demand D and vehicles S in this section as the hyperedges of

each scenario can be generated in parallel. The realized demand has size |D| = d.

Lemma 8. In the worst case, where all demand is compatible and can be served by all

vehicles, the runtime is O(|S|dp−1).

While in the worst-case runtime is large, this scenario only arises when all trips are

compatible for ride-pooling, which is unlikely in practice. Therefore, we consider the Erdos-

Renyi model in which an arbitrary pair of demand is matchable (i.e., satisfy the conditions

above) with probability q. Empirical studies showed that q was often a small number (< 0.1)

over a large area (Ke et al. 2021).

Lemma 9 (Bollobás and Erdös (1976)). The expected number of cliques of size k is
(
d
k

)
q(

k
2).

100

For example, with d = 1000 and q = 0.1, the expected number of cliques of size 3 (each

vehicle deliver at most two requests in a single trip) is 500. Often we observe the size of

complete cliques of compatible trips to be less than 10, our maximum tested capacity, and

the total number of hyperedges is manageable.

Lemma 10 (Matula (1976)). As d→∞, the maximal clique size ρ takes on one of at most

two values around 2 log d
log1/q

with probability tending to one, i.e. with b = 1/q, ⌊2 logb d⌋ < ρ <

⌈2 logb d⌉.

Therefore, we only need to consider hyperedges with size less than p∗ = min{p, ρ + 1}
(i.e., the height of the cliques’ graph in Figure B.1). We have the following theorem for the

runtime of constructing shareability graphs.

Theorem 7. In the average case that the demand and supply profiles satisfying the random

geometric graph conditions, the runtime is O(|S|dp∗−1).

Proof. Proof: The expected number of hyperedges connected to vehicle s, Es,max, is bounded

by

Es,max =

(
d

1

)
12 +

(
d

2

)
22q + · · ·+

(
d

(p∗ − 1)

)
(p∗ − 1)2q(p

∗−2)

≤ ed+

(
ed

2

)2

22q + · · ·+
(

ed

p∗ − 1

)p∗−1

(p∗ − 1)2q(p
∗−2)

= ed+
1

q

[(
eqd

2

)2

22 + · · ·+
(

eqd

p∗ − 1

)p∗−1

(p∗ − 1)2

]
= O(dp

∗−1),

where e is the Euler’s number.

B.3 Supplementary Results for Approximation Algo-

rithms

B.3.1 Proof for Sample Average Approximation in SRAMF

Proof. Proof: We denote the optimal value of the SRAMF problem (2) as v∗ and the optimal

value of problem for the objective from Algorithm 4 as v̂(SO). Let δ be the upper bound of

the optimality gap v∗ − v̂(SO). We assume that E[Q(y, ξ)] = Ω(m−2) for any ξ where m is

a given constant. The main task is to show that:

1. E[v̂(SO)] = Ω(m2) with the sample size N = m4

δ2
.

101

2. Pr(v̂(SO) /∈ [(1− δ)v∗, (1 + δ)v∗]) ≤ exp(− δ2

2
E[v̂(SO)]).

LetD(ξ) < D for all ξ. For any selection of vehicles in SA denoted by y ∈ Y , E[Q(y, ξ)2] <

∞, because we can choose K vertices in SA with maximum number of D edges. The upper

bound of of hyperedge value vij is vmax. Thus we have E[Q(y, ξ)2] < K2|vmax|2D2 < ∞.

Without loss of generality, we draw the following observations from the standard stochastic

programming literature (Pagnoncelli et al. 2009):

1. v̂(SO)→ v∗ as N →∞;

2. E[v̂(SO)] ≥ v∗.

Since N samples are i.i.d., we can use the Chernoff bound on the measure:

Pr(v̂(SO) /∈ [(1− δ)v∗, (1 + δ)v∗]) ≤ exp(−δ2

2
E[v̂(SO)]).

Setting N = m4/δ2 and using the assumption that E[Q(y, ξ)] = Ω(m−2), by Jensen’s

inequality, we have:

δ2E[v̂(SO)] ≥ δ2N · E[Q(y, ξ)],

i.e., δ2 · E[v̂(SO)] = Ω(m2). We have

Pr
(
v̂(SO) /∈ [(1− δ)v∗, (1 + δ)v∗]

)
≤ exp(−Ω(m2)),

which achieves the second task as

Pr

(
(
1

2
− ϵ)v̂(SO) < (

1

2
− ϵ)(1− δ)v∗

)
+ Pr

(
(
1

2
− ϵ)v̂(SO) > (

1

2
− ϵ)(1 + δ)v∗

)
≤Pr

(
v̂(SR) < (

1

2
− ϵ)(1− δ)v∗

)
+ Pr

(
v̂(SR) > (

1

2
− ϵ)(1 + δ)v∗

)
≤ exp(−Ω(m2)).

The first inequality is because 1
p2
v̂(SO) ≤ v̂(SR) ≤ v̂(SO). This concludes the approximation

ratio for LSLPR algorithm for the stochastic counterpart of the ride-pooling problem. □

B.3.2 Proof for Lemma 1

We use a network flow formulation to prove the existence of the mapping ∆d : H
′
d×H ′

d → R+.

Consider a bipartite graph with nodes L = {ℓe : e ∈ H ′
d} and R = {rf : f ∈ H ′

d}, and arcs

L×R. There is an additional source node s, and arcs from s to each L-node and arcs from

102

each R-node to s. Every arc (i, j) in this network has a lower bound α(i, j) and an upper

bound β(i, j). The goal is to find a circulation z such that α(i, j) ≤ z(i, j) ≤ β(i, j) for all

arcs (i, j). Recall that a circulation is an assignment of non-negative values to the arcs of

the network so that the in-flow equals the out-flow at every node. The lower/upper bounds

are set as follows.

1. For each arc (i, j) ∈ L×R, we have α(i, j) = 0 and β(i, j) =∞.

2. For each arc (s, ℓe) where e ∈ H ′
d, we have α(s, ℓe) = β(s, ℓe) = xe.

3. For each arc (rf , s) where f ∈ H ′
d, we have α(rf , s) = β(rf , s) = zf .

Recall that xxx and zzz are the LP solutions corresponding to v̂(SR) and v̂(SO).

Given any circulation z, we define ∆d(e, f) = z(ℓe, rf) for all e, f ∈ H ′
d. Then, it is easy

to see that all 3 conditions in Lemma 4 are satisfied.

It just remains to prove the existence of some circulation. By Hoffman’s circulation

theorem (Hoffman 2003), there is a circulation if and only if

α
(
δ−(T)

)
≤ β

(
δ+(T)

)
, ∀T subset of nodes. (1)

Above, δ−(T) denotes all arcs from a node outside T to a node inside T ; similarly, δ+(T)

denotes all arcs from a node inside T to a node outside T . This condition can be verified

using the following cases:

• T ∩L ̸= ∅ and T ∩R ̸= R. In this case, there is some arc from L×R in δ+(T), so the

RHS in (1) is ∞, which is clearly satisfies the condition.

• T ∩ L = ∅. If source s ̸∈ T then α(δ−(T)) = 0; so (1) is clearly true. If source s ∈ T

then β(δ+(T)) ≥
∑

e∈H′
d
xe = 1 as all of L lies outside T , and clearly α(δ−(T)) ≤ 1; so

(1) holds.

• T ∩ R = R. If s ∈ T then α(δ−(T)) = 0; so (1) is clearly true. If source s ̸∈ T then

β(δ+(T)) ≥
∑

f∈H′
d
zf = 1 as all of R lies inside T , and clearly α(δ−(T)) ≤ 1; so (1)

holds.

103

B.3.3 Supplementary Results for MMO Algorithm

Recall that v̂(SR) =
∑

ξ v̂(SR, ξ) where v̂(SR, ξ) is defined as the LP in (4). So, we can write

v̂(SR) as the following LP:

v̂(SR) = maximize
x

1

N

∑
ξ

∑
e∈E(ξ)

vex
ξ
e (2)

s.t.
∑

e∈E(ξ):j∈e

xξ
e ≤ 1 ∀j ∈ D(ξ) ∀ξ

∑
e∈E(ξ):i∈e

xξ
e ≤ 1 ∀i ∈ SA ∪ SB ∀ξ

xξ
e = 0 ∀e ∼ SA \ SR ∀ξ

xξ
e ≥ 0 ∀e ∈ E(ξ) ∀ξ.

For any vehicle i and scenario ξ, set Fi,ξ ⊆ E(ξ) denotes all the hyperedges incident to i

in scenario ξ. Note that all variables xξ
e with e ∼ SA \ SR are set to zero. So, it suffices to

consider the LP with variables xξ
e for e ∈ Fi,ξ and i ∈ SB ∪ SR.

We now consider the dual of the above LP (which has the same optimal value by strong

duality). Let G = SA∪SB∪ (∪ξD(ξ)) denote a combined groundset consisting of all vehicles

and demands from all scenarios. The dual variables are ug,ξ for all g ∈ G and scenarios ξ.

The dual LP is:

v̂(SR) = minimize
u

∑
ξ

∑
g∈G

ug,ξ

s.t.
∑
g∈e

ug,ξ ≥
ve
N
, ∀e ∈ Fi,ξ, ∀ξ, ∀i ∈ SR ∪ SB

uuu ≥ 0.

104

BIBLIOGRAPHY

Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114(3):462–467, 2017a. ISSN 0027-8424. doi: 10.1073/pnas.
1611675114. URL https://www.pnas.org/content/114/3/462.

Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114(3):462–467, 2017b.

Esther M Arkin and Refael Hassin. On local search for weighted k-set packing. Mathematics of
Operations Research, 23(3):640–648, 1998.

Arsam Aryandoust, Oscar van Vliet, and Anthony Patt. City-scale car traffic and parking density
maps from uber movement travel time data. Scientific data, 6(1):1–18, 2019.

Itai Ashlagi, Maximilien Burq, Chinmoy Dutta, Patrick Jaillet, Amin Saberi, and Chris Sholley.
Maximum weight online matching with deadlines. arXiv preprint arXiv:1808.03526, 2018.

Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
551–563, 2017.

Xiaohui Bei and Shengyu Zhang. Algorithms for trip-vehicle assignment in ride-sharing. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Saif Benjaafar, Shining Wu, Hanlin Liu, and Einar Bjarki Gunnarsson. Dimensioning on-demand
vehicle sharing systems. Management Science, 2021.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena
scientific Belmont, MA, 1997.

Béla Bollobás and Paul Erdös. Cliques in random graphs. In Mathematical Proceedings of the
Cambridge Philosophical Society, volume 80(3), pages 419–427. Cambridge University Press,
1976.

Anton Braverman, Jim G Dai, Xin Liu, and Lei Ying. Empty-car routing in ridesharing systems.
Operations Research, 67(5):1437–1452, 2019.

Niv Buchbinder, Shahar Chen, Anupam Gupta, Viswanath Nagarajan, and Joseph Naor. Online
packing and covering framework with convex objectives. arXiv preprint arXiv:1412.8347, 2014.

Francisco Castro, Peter Frazier, Hongyao Ma, Hamid Nazerzadeh, and Chiwei Yan. Matching
queues, flexibility and incentives. arXiv preprint arXiv:2006.08863, 2020.

Yuk Hei Chan and Lap Chi Lau. On linear and semidefinite programming relaxations for hypergraph
matching. Mathematical programming, 135(1):123–148, 2012.

Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the multiple
knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

105

https://www.pnas.org/content/114/3/462

Danjue Chen, Soyoung Ahn, Madhav Chitturi, and David A Noyce. Towards vehicle automa-
tion: Roadway capacity formulation for traffic mixed with regular and automated vehicles.
Transportation research part B: methodological, 100:196–221, 2017a.

Zhibin Chen, Fang He, Yafeng Yin, and Yuchuan Du. Optimal design of autonomous vehicle
zones in transportation networks. Transportation Research Part B: Methodological, 99:44–61,
2017b.

Judd Cramer and Alan B Krueger. Disruptive change in the taxi business: The case of uber.
American Economic Review, 106(5):177–82, 2016.

NYC Open Data. Nyc community district data. https://data.cityofnewyork.us/

City-Government/Community-Districts/yfnk-k7r4, 2022. Accessed: 2021-11-02.

Xuan Di, Henry X Liu, Xuegang Ban, and Hai Yang. Ridesharing user equilibrium and its impli-
cations for high-occupancy toll lane pricing. Transportation Research Record, 2667(1):39–50,
2017.

Felipe F Dias, Patŕıcia S Lavieri, Taehooie Kim, Chandra R Bhat, and Ram M Pendyala. Fusing
multiple sources of data to understand ride-hailing use. Transportation Research Record, 2673
(6):214–224, 2019.

Jing Dong and Rouba Ibrahim. Managing supply in the on-demand economy: Flexible workers,
full-time employees, or both? Operations Research, 68(4):1238–1264, 2020.

Tingting Dong, Zhengtian Xu, Qi Luo, Yafeng Yin, Jian Wang, and Jieping Ye. Optimal con-
tract design for ride-sourcing services under dual sourcing. Transportation Research Part B:
Methodological, 146:289–313, 2021.

Tingting Dong, Xiaotong Sun, Qi Luo, Jian Wang, and Yafeng Yin. The dual effects of team
contest design on on-demand service work schedules. Service Science, 2023.

Gregory D Erhardt, Sneha Roy, Drew Cooper, Bhargava Sana, Mei Chen, and Joe Castiglione. Do
transportation network companies decrease or increase congestion? Science advances, 5(5):
eaau2670, 2019.

Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab Mirrokni. Robust combinatorial op-
timization with exponential scenarios. In International Conference on Integer Programming
and Combinatorial Optimization, pages 439–453. Springer, 2007.

Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight approximation
algorithms for maximum general assignment problems. In Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 611–620, 2006.

Zoltán Füredi, Jeff Kahn, and Paul D. Seymour. On the fractional matching polytope of a hyper-
graph. Combinatorica, 13(2):167–180, 1993.

Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, and Yan Liu. Spa-
tiotemporal multi-graph convolution network for ride-hailing demand forecasting. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):3656–3663, Jul. 2019. doi: 10.1609/
aaai.v33i01.33013656. URL https://ojs.aaai.org/index.php/AAAI/article/view/4247.

Marta C. González, César A. Hidalgo, and Albert-László Barabási. Understanding individual
human mobility patterns. Nature, 453(7196):779–782, 2008. doi: 10.1038/nature06958. URL
https://doi.org/10.1038/nature06958.

Jeffery B. Greenblatt and Susan Shaheen. Automated vehicles, on-demand mobility, and envi-
ronmental impacts. Current Sustainable/Renewable Energy Reports, 2(3):74–81, 2015. doi:
10.1007/s40518-015-0038-5. URL https://doi.org/10.1007/s40518-015-0038-5.

106

https://data.cityofnewyork.us/City-Government/Community-Districts/yfnk-k7r4
https://data.cityofnewyork.us/City-Government/Community-Districts/yfnk-k7r4
https://ojs.aaai.org/index.php/AAAI/article/view/4247
https://doi.org/10.1038/nature06958
https://doi.org/10.1007/s40518-015-0038-5

Harish Guda and Upender Subramanian. Your uber is arriving: Managing on-demand workers
through surge pricing, forecast communication, and worker incentives. Management Science,
65(5):1995–2014, 2019.

Xiaotong Guo, Nicholas S Caros, and Jinhua Zhao. Robust matching-integrated vehicle rebal-
ancing in ride-hailing system with uncertain demand. Transportation Research Part B:
Methodological, 150:161–189, 2021.

Anupam Gupta and Viswanath Nagarajan. Approximating sparse covering integer programs online.
Mathematics of Operations Research, 39(4):998–1011, 2014.

Anupam Gupta, Viswanath Nagarajan, and R Ravi. Robust and maxmin optimization under
matroid and knapsack uncertainty sets. ACM Transactions on Algorithms (TALG), 12(1):
1–21, 2015.

Jonathan D Hall, Craig Palsson, and Joseph Price. Is uber a substitute or complement for public
transit? Journal of Urban Economics, 108:36–50, 2018.

Mohd Hafiz Hasan and Pascal Van Hentenryck. The benefits of autonomous vehicles for community-
based trip sharing. Transportation Research Part C: Emerging Technologies, 124:102929, 2021.

Mohd Hafiz Hasan, Pascal Van Hentenryck, and Antoine Legrain. The commute trip-sharing
problem. Transportation Science, 54(6):1640–1675, 2020.

Andrew J. Hawkins. Uber and lyft are the ’biggest contributors’ to san francisco’s traffic congestion,
study says. The Verge, May 2019. URL https://www.theverge.com/2019/5/8/18535627/

uber-lyft-sf-traffic-congestion-increase-study.

Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-set packing.
Computational Complexity, 15(1):20–39, 2006.

Alejandro Henao and Wesley E Marshall. The impact of ride-hailing on vehicle miles traveled.
Transportation, 46(6):2173–2194, 2019.

Stephan Herminghaus. Mean field theory of demand responsive ride pooling systems.
Transportation Research Part A: Policy and Practice, 119:15–28, 2019.

Alan J Hoffman. Inequalities to extremal combinatorial analysis. In Selected Papers of Alan
Hoffman With Commentary, volume 10, page 244. World Scientific, 2003.

Zihan Hong, Ying Chen, Hani S Mahmassani, and Shuang Xu. Commuter ride-sharing using
topology-based vehicle trajectory clustering: Methodology, application and impact evaluation.
Transportation Research Part C: Emerging Technologies, 85:573–590, 2017.

Michael Hyland and Hani S. Mahmassani. Dynamic autonomous vehicle fleet operations:
Optimization-based strategies to assign avs to immediate traveler demand requests.
Transportation Research Part C: Emerging Technologies, 92:278 – 297, 2018. ISSN 0968-
090X. doi: https://doi.org/10.1016/j.trc.2018.05.003. URL http://www.sciencedirect.

com/science/article/pii/S0968090X18306028.

Ishan Jindal, Zhiwei Tony Qin, Xuewen Chen, Matthew Nokleby, and Jieping Ye. Optimizing
taxi carpool policies via reinforcement learning and spatio-temporal mining. In 2018 IEEE
International Conference on Big Data (Big Data), pages 1417–1426. IEEE, 2018.

Renos Karamanis, Eleftherios Anastasiadis, Marc Stettler, and Panagiotis Angeloudis. Vehicle
redistribution in ride-sourcing markets using convex minimum cost flows. IEEE Transactions
on Intelligent Transportation Systems, 2021.

Jintao Ke, Zhengfei Zheng, Hai Yang, and Jieping Ye. Data-driven analysis on matching probability,
routing distance and detour distance in ride-pooling services. Transportation Research Part
C: Emerging Technologies, 124:102922, 2021.

107

https://www.theverge.com/2019/5/8/18535627/uber-lyft-sf-traffic-congestion-increase-study
https://www.theverge.com/2019/5/8/18535627/uber-lyft-sf-traffic-congestion-increase-study
http://www.sciencedirect.com/science/article/pii/S0968090X18306028
http://www.sciencedirect.com/science/article/pii/S0968090X18306028

Pantelis Kopelias, Elissavet Demiridi, Konstantinos Vogiatzis, Alexandros Skabardonis, and Vas-
siliki Zafiropoulou. Connected & autonomous vehicles – environmental impacts – a re-
view. Science of The Total Environment, 712:135237, 2020. ISSN 0048-9697. doi: https:
//doi.org/10.1016/j.scitotenv.2019.135237. URL http://www.sciencedirect.com/science/

article/pii/S0048969719352295.

Patŕıcia S Lavieri and Chandra R Bhat. Modeling individuals’ willingness to share trips with
strangers in an autonomous vehicle future. Transportation research part A: policy and practice,
124:242–261, 2019.

DongWoo Lee and Steve H. L. Liang. Crowd-sourced carpool recommendation based on sim-
ple and efficient trajectory grouping. In Proceedings of the 4th ACM SIGSPATIAL
International Workshop on Computational Transportation Science, CTS ’11, page 12–17,
New York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450310345.
doi: 10.1145/2068984.2068987. URL https://doi.org/10.1145/2068984.2068987.

Jia Li, Di Chen, and Michael Zhang. Equilibrium modeling of mixed autonomy traffic flow based
on game theory. Transportation research part B: methodological, 166:110–127, 2022.

Shukai Li, Qi Luo, and Robert Cornelius Hampshire. Optimizing large on-demand transportation
systems through stochastic conic programming. European Journal of Operational Research,
295(2):427–442, 2021.

Yang Liu and Samitha Samaranayake. Proactive rebalancing and speed-up techniques for on-
demand high capacity ridesourcing services. IEEE Transactions on Intelligent Transportation
Systems, 2020.

Mustafa Lokhandwala and Hua Cai. Dynamic ride sharing using traditional taxis and shared au-
tonomous taxis: A case study of nyc. Transportation Research Part C: Emerging Technologies,
97:45–60, 2018.

Meghna Lowalekar, Pradeep Varakantham, and Patrick Jaillet. Competitive ratios for online multi-
capacity ridesharing. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pages 771–779, 2020.

Qi Luo, Zhiyuan Huang, and Henry Lam. Dynamic congestion pricing for ridesourcing traffic: a
simulation optimization approach. In Proceedings of Winter Simulation Conference, 2019.

Jiaqi Ma, Xiaopeng Li, Fang Zhou, and Wei Hao. Designing optimal autonomous vehicle sharing
and reservation systems: A linear programming approach. Transportation Research Part C:
Emerging Technologies, 84:124–141, 2017.

Iliya Markov, Rafael Guglielmetti, Marco Laumanns, Anna Fernández-Antoĺın, and Ravin de Souza.
Simulation-based design and analysis of on-demand mobility services. Transportation Research
Part A: Policy and Practice, 149:170–205, 2021.

Neda Masoud and R. Jayakrishnan. A real-time algorithm to solve the peer-to-peer ride-matching
problem in a flexible ridesharing system. Transportation Research Part B: Methodological,
106:218 – 236, 2017. ISSN 0191-2615. doi: https://doi.org/10.1016/j.trb.2017.10.006. URL
http://www.sciencedirect.com/science/article/pii/S0191261517301169.

David W Matula. The largest clique size in a random graph. Department of Computer Science,
Southern Methodist University Dallas, Texas . . . , 1976.

J. Carlos Mart́ınez Mori and Samitha Samaranayake. On the request-trip-vehicle assignment prob-
lem. In Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete
Algorithms (ACDA21), pages 228–239, 2021.

108

http://www.sciencedirect.com/science/article/pii/S0048969719352295
http://www.sciencedirect.com/science/article/pii/S0048969719352295
https://doi.org/10.1145/2068984.2068987
http://www.sciencedirect.com/science/article/pii/S0191261517301169

Abdullah Mueen and Eamonn Keogh. Extracting optimal performance from dynamic time warping.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 2129–2130, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2945383. URL https:

//doi.org/10.1145/2939672.2945383.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

Temel Öncan. A survey of the generalized assignment problem and its applications. INFOR:
Information Systems and Operational Research, 45(3):123–141, 2007.

Bernardo K Pagnoncelli, Shabbir Ahmed, and Alexander Shapiro. Sample average approxima-
tion method for chance constrained programming: theory and applications. Journal of
Optimization Theory and Applications, 142(2):399–416, 2009.

Dominik Pelzer, Jiajian Xiao, Daniel Zehe, Michael H Lees, Alois C Knoll, and Heiko Aydt. A
partition-based match making algorithm for dynamic ridesharing. IEEE Transactions on
Intelligent Transportation Systems, 16(5):2587–2598, 2015.

Guoyang Qin, Qi Luo, Yafeng Yin, Jian Sun, and Jieping Ye. Optimizing matching time intervals for
ride-hailing services using reinforcement learning. Transportation Research Part C: Emerging
Technologies, 129:103239, 2021a.

Zhiwei Qin, Hongtu Zhu, and Jieping Ye. Reinforcement learning for ridesharing: A survey. arXiv
preprint arXiv:2105.01099, 2021b.

Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H Strogatz, and Carlo
Ratti. Quantifying the benefits of vehicle pooling with shareability networks. Proceedings of
the National Academy of Sciences, 111(37):13290–13294, 2014.

Maximilian Schreieck, Hazem Safetli, Sajjad Ali Siddiqui, Christoph Pflügler, Manuel Wiesche, and
Helmut Krcmar. A matching algorithm for dynamic ridesharing. Transportation Research
Procedia, 19:272–285, 2016.

Pavel Senin. Dynamic time warping algorithm review. Information and Computer Science
Department University of Hawaii at Manoa Honolulu, USA, 855(1-23):40, 2008.

Sanket Shah, Meghna Lowalekar, and Pradeep Varakantham. Neural approximate dynamic pro-
gramming for on-demand ride-pooling. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(01):507–515, Apr. 2020. doi: 10.1609/aaai.v34i01.5388. URL https://ojs.

aaai.org/index.php/AAAI/article/view/5388.

Steven E Shladover. Connected and automated vehicle systems: Introduction and overview. Journal
of Intelligent Transportation Systems, 22(3):190–200, 2018.

David B Shmoys and Éva Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming, 62(1-3):461–474, 1993.

Andrea Simonetto, Julien Monteil, and Claudio Gambella. Real-time city-scale ridesharing via
linear assignment problems. Transportation Research Part C: Emerging Technologies, 101:
208–232, 2019.

Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits of predictability
in human mobility. Science, 327(5968):1018–1021, 2010. ISSN 0036-8075. doi: 10.1126/science.
1177170. URL https://science.sciencemag.org/content/327/5968/1018.

Mitja Stiglic, Niels Agatz, Martin Savelsbergh, and Mirko Gradisar. The benefits of meeting points
in ride-sharing systems. Transportation Research Part B: Methodological, 82:36–53, 2015.

109

https://doi.org/10.1145/2939672.2945383
https://doi.org/10.1145/2939672.2945383
https://ojs.aaai.org/index.php/AAAI/article/view/5388
https://ojs.aaai.org/index.php/AAAI/article/view/5388
https://science.sciencemag.org/content/327/5968/1018

Alexander Sundt, Qi Luo, John Vincent, Mehrdad Shahabi, and Yafeng Yin. Heuristics for
customer-focused ride-pooling assignment. arXiv preprint arXiv:2107.11318, 2021.

Amirmahdi Tafreshian, Neda Masoud, and Yafeng Yin. Frontiers in service science: Ride matching
for peer-to-peer ride sharing: A review and future directions. Service Science, 12(2-3):44–60,
2020.

Xiaocheng Tang, Zhiwei Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai Ma, Hongtu Zhu, and
Jieping Ye. A deep value-network based approach for multi-driver order dispatching. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1780–1790, 2019.

TLC. Nyc taxi and limousine commission trip record data. https://www1.nyc.gov/site/tlc/

about/tlc-trip-record-data.page, 2021. Accessed: 2021-05-02.

Yongxin Tong, Jieying She, Bolin Ding, Lei Chen, Tianyu Wo, and Ke Xu. Online minimum
matching in real-time spatial data: experiments and analysis. Proceedings of the VLDB
Endowment, 9(12):1053–1064, 2016.

Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. A unified approach to
route planning for shared mobility. Proceedings of the VLDB Endowment, 11(11):1633–1646,
2018.

Hai Wang and Hai Yang. Ridesourcing systems: A framework and review. Transportation Research
Part B: Methodological, 129:122–155, 2019.

Zizhuo Wang, Peter Glynn, and Yinyu Ye. Likelihood robust optimization for data-driven problems,
2014.

Zizhuo Wang, Peter W. Glynn, and Yinyu Ye. Likelihood robust optimization for data-
driven problems. Computational Management Science, 13(2):241–261, 2016. doi: 10.1007/
s10287-015-0240-3. URL https://doi.org/10.1007/s10287-015-0240-3.

Qinshuang Wei, Ramtin Pedarsani, and Samuel Coogan. Mixed autonomy in ride-sharing networks.
IEEE Transactions on Control of Network Systems, 7(4):1940–1950, 2020.

David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge
university press, 2011.

Jiaohong Xie, Yang Liu, and Nan Chen. Two-sided deep reinforcement learning for dynamic
mobility-on-demand management with mixed autonomy. Transportation Science, 2023.

X. Xie, W. Ma, Y. Chen, and Y. Zheng. Geolife2.0: A location-based social networking service. In
2013 IEEE 14th International Conference on Mobile Data Management, pages 357–358, Los
Alamitos, CA, USA, may 2009. IEEE Computer Society. doi: 10.1109/MDM.2009.50. URL
https://doi.ieeecomputersociety.org/10.1109/MDM.2009.50.

Hai Yang, Xiaoran Qin, and Jintao Ke. Modelling and optimizing the real-time matching processes
in a ride-sourcing market. In Transportation Systems in the Connected Era-Proceedings of
the 23rd International Conference of Hong Kong Society for Transportation Studies, HKSTS
2018, page 589, 2018.

Hai Yang, Xiaoran Qin, Jintao Ke, and Jieping Ye. Optimizing matching time interval and matching
radius in on-demand ride-sourcing markets. Transportation Research Part B: Methodological,
131:84–105, 2020.

Josh Jia-Ching Ying, Eric Hsueh-Chan Lu, Wang-Chien Lee, Tz-Chiao Weng, and Vincent S.
Tseng. Mining user similarity from semantic trajectories. In Proceedings of the 2nd
ACM SIGSPATIAL International Workshop on Location Based Social Networks, LBSN
’10, page 19–26, New York, NY, USA, 2010. Association for Computing Machinery. ISBN

110

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://doi.org/10.1007/s10287-015-0240-3
https://doi.ieeecomputersociety.org/10.1109/MDM.2009.50

9781450304344. doi: 10.1145/1867699.1867703. URL https://doi.org/10.1145/1867699.

1867703.

Xian Yu and Siqian Shen. An integrated decomposition and approximate dynamic programming ap-
proach for on-demand ride pooling. IEEE Transactions on Intelligent Transportation Systems,
2019.

Liteng Zha, Yafeng Yin, and Zhengtian Xu. Geometric matching and spatial pricing in ride-sourcing
markets. Transportation Research Part C: Emerging Technologies, 92:58–75, 2018.

Yu Zheng. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol., 6(3), May
2015. ISSN 2157-6904. doi: 10.1145/2743025. URL https://doi.org/10.1145/2743025.

111

https://doi.org/10.1145/1867699.1867703
https://doi.org/10.1145/1867699.1867703
https://doi.org/10.1145/2743025

	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Acronyms
	Abstract
	Introduction
	Background and Motivation
	Challenges
	Contributions and Outline

	Mobility Profiles for Community-Based Ridesharing
	Introduction
	Literature Review
	Data and Construction of Mobility Profile
	Dynamic Time Warping
	Data Driven Matching
	Conclusion

	Heuristics for Customer-focused Ride-pooling Assignment
	Introduction
	Literature Review
	Performance Measures of Ride-pooling Systems
	Ride-pooling Assignment Heuristics
	Numerical Simulation on Real-World Data
	Conclusion

	Efficient Algorithms for Stochastic Ride-pooling Assignment with Mixed Fleets
	Introduction
	Literature Review
	Problem Description
	Approximation Algorithms for SRAMF
	blackNumerical Experiments
	Conclusion

	Conclusions and Future Research
	Research Summary and Findings
	Directions for Future Work

	Appendices
	Appendix for Chapter 3
	Simulation Environment

	Appendices for Chapter 4
	Summary of blackNotation
	 blackPerformance Analysis of Construction of Shareability Graphs
	Supplementary Results for blackApproximation Algorithms

	Bibliography

