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ABSTRACT

Machine learning and artificial intelligence can be used in improving patient care by providing

important insights from the data generated throughout the duration of a patient’s stay.

Routinely collected data, such as electrocardiogram and electronic health record data, are two

such examples of data that are frequently recorded in hospital settings. Electrocardiogram,

specifically, is a noninvasive and continuously updated measure of a patient’s cardiac electric

activity, and as such, has the potential to provide a real-time view of a patient’s current

status.

This research is composed of four projects. In the first, we propose a system of signal

processing for both heart rate variability and electrodermal activity to detect poor sleep

quality of people with fibromyalgia, using a wearable device. In the second, we introduce

a framework of processing signals using both Taut String and tensor decomposition to (1)

extract meaningful features from input signals and (2) reduce the feature space to only

the most pertinent information, while maintaining structural information from the input

signals. This framework is applied to three cohorts of patients from Michigan Medicine,

with each cohort increasing in heterogeneity. The physiological signals and electronic health

record information collected from the patients in each cohort were used to predict adverse

outcomes post-surgery. This study serves as validation to previous work on post-cardiac

surgery, as well as generalizing the methodology outwards to other types of surgery. The

third project uses the framework developed in the second for patients in the intensive care

unit at risk to develop sepsis. The goal is, using continuous electrocardiogram, arterial line,

and/or electronic health record data, to predict which patients are at more risk to develop

poor outcomes related to sepsis. The fourth project expands upon the third by incorporating

the learning using privileged information paradigm into the same sepsis prognosis design.

Together, the four projects discussed in this thesis contribute to dynamic trajectory pre-

diction using signal processing in different health contexts. These studies demonstrate that

further study of electrocardiogram data’s utility in clinical decision support systems is war-

ranted.

xii



CHAPTER I

Introduction

1.1 Motivation

This work is motivated by a desire to incorporate the continuous nature of physiological

signals into the prediction of health-related outcomes. A patient’s status is dynamic during

their care, and as such, prognostic methods should take this dynamism into account. The

research efforts of this thesis have applications in signal processing and predicting the onset

of adverse outcomes, with the ultimate goal of improving patient care. This includes the de-

velopment of methods that leverage structural information included in tensor representations

of physiological signals.

Signals like Electrocardiogram (ECG), which are both noninvasive and routinely collected

in hospital settings, provide an opportunity for improving disease prognosis through the

development of Clinical Decision Support System (CDSS)s that can use these continuous

signals to create constantly updating views of a patient’s current health status and risk

for adverse outcomes. Used alongside Electronic Health Record (EHR) data and expert

clinical knowledge, these CDSSs are expected to enhance the quality of care in the emergency

room and in the Intensive Care Unit (ICU), where healthcare professionals often experience

burnout [52].

1.2 Background

1.2.1 Electronic Health Record Data

Information from the EHR has previously been used to detect, monitor, or predict health

outcomes [65, 79, 47, 45, 70]. EHR data can include static variables such as a patient’s sex,

age or comorbidities, or dynamic variables such as vital signs or lab values. EHR data is

invaluable for determining a patient’s status, but it is limited by time.

1



Discrete variables such as lab values require time for collection and processing. Similarly,

variables that are updated over time such as fluid output or vital signs may be updated

sporadically, or at inconsistent time intervals. In contrast, recordings generated from elec-

trocardiography, blood pressure monitoring, or pulse oximetry, are collected continuously in

real time with electronic monitoring devices.

1.2.2 Taut String

Taut String (TS) is a method of creating a piecewise linear approximation of a given signal

using an input parameter, ϵ. Several chapters in this thesis make use of TS for signal

processing.

Given a discrete signal f = (f1, f2, . . . , fn), we define the first-order finite difference as

diff(f) = (f2 − f1, . . . , fn − fn−1). (1.1)

We use the parameter ϵ > 0 to create the piecewise linear function g, the TS estimate of

f , such that the max norm of (f − g) is ≤ ϵ and the Euclidean norm of diff(g) is minimal,

defined below as

∥f − g∥∞ = max
i

{∥fi − gi∥} ≤ ϵ (1.2)

and

∥diff(g)∥2 =

√√√√n−1∑
i=1

(xi+1 − xi)2, (1.3)

respectively.

Next, diff∗ is defined as

diff∗(y1, y2, . . . , yn−1) = (−y1, y1 − y2, . . . , yn−2 − yn−1, yn−1). (1.4)

Here, diff∗ : Rn−1 → Rn is dual to diff : Rn → Rn−1. The function g also minimizes

∥diff∗diff∥1 = ∥g2 − g1∥+
n−1∑
i=2

∥gi−1 − 2gi + gi+1∥+ ∥gn − gn−1∥. (1.5)

One can visualize the function g as a string pulled tightly between f+ϵ and f−ϵ. Generally,

the resulting piecewise linear function is a smoother line than f . Figure 1.1 shows a sample

TS estimate of ECG with ϵ = 0.3050.

2



Figure 1.1: TS Approximation of ECG Signal.

The grey waveforms are the margins for TS, f+ϵ and f−ϵ, the blue line is the TS estimation.

3



1.2.3 Tensor Reduction With Canonical Polyadic Decomposition

Because Machine Learning (ML) methods can be influenced by the number of features pre-

sented to them, we sometimes opt to use feature reduction methods to reduce the feature

space of a dataset. If the data is formatted as a tensor, Canonical Polyadic / Parallel Fac-

tors (CP) decomposition is one method of feature reduction [35]. This allows the underlying

tensor structure to be preserved in the reduced feature space.

In this work, we use CP decomposition to obtain the factor matrices of an input tensor,

T . A CP decomposition breaks the initial tensor down into a sum of rank-1 tensors, so it

can be considered an extension of singular value decomposition to a higher order. In the

chapters using CP decomposition, T has four modes, and thus the CP decomposition results

in four factor matrices: (A,B,C,D). Therefore, given a tensor T = Rn1×n2×n3×n4 and rank

r, the CP decomposition produces the tensor

T̂ =
r∑

i=1

ai ⊗ bi ⊗ ci ⊗ di (1.6)

where ⊗ denotes the Kronecker product, and ∥T − T̂∥ is minimized, where the Frobenius

norm of a tensor ∥·∥ is defined as

∥T∥ =

√ ∑
i1,...,im

(ti1...im)
2, (1.7)

where ti1...im is the (i1, . . . , im) entry of T .

The multiplication of vectors ai, . . . di yields a component rank-1 tensor. The vec-

tors ai, . . . , ar ∈ Rn1 , and so on, can be combined to form factor matrices, such as

A = [a1, . . . , ar] ∈ Rn1×r, and similarly for B,C,D. In this manner, each mode of the

original tensor T can be approximated by the product of these factor matrices, such as:

T(1) ≈ A (D ⊙ C ⊙B)⊤ (1.8)

where ⊙ denotes the Khatri-Rao product, and T(1) is the matricization of T along its first

mode.

We use the Alternating Least Squares (ALS) heuristic method to solve the CP decompo-

sition, as solving for the CP decomposition is known to be NP-hard [27]. Canonical-Parallel

Factors Decomposition using Alternating Least Squares (CP-ALS) is an iterative algorithm

to find the best approximation of T for a given rank r using randomly generated starting

factors [35]. Rank is selected as appropriate for the application in each chapter. After solving

for T̂ , we reserve the necessary factor matrices for feature extraction. For example, if the

4



factor matrices A − D represent the modes ϵ, feature, time, patient, we reserve A and C to

compute the feature matrix for a given patient.

When performing CP-ALS we use a fit score defined as

fit = 1− ∥T − T̂∥
∥T∥

(1.9)

to determine how well the reduced tensor approximated the original. This process is repeated

as appropriate, with the selected reduction being the one with the highest fit after a specified

number of iterations, or the first reduction with fit score equal to one, whichever occurred

first.

In the relevant chapters that use CP-ALS for feature reduction, CP-ALS is first applied

to the training data, and the appropriate factor matrices retained to be able to solve for a

patient’s feature matrix.

With this process completed, for any given individual’s third-order tensor T , a reduced

set of features was extracted using the factor matrices computed from the training data. The

feature vectors bT,1, . . . , bT,r were computed via a least squares problem, where

∥T −
r∑

i=1

ai ⊗ bi ⊗ cT,i∥ (1.10)

was minimal. After computing the individual vectors, they were concatenated to create BT ,

a feature matrix with a reduced set of features compared to matricization T(2) of the original

tensor T along the feature mode.

1.3 Outline of Thesis

In this work, I developed and applied various signal processing methods to integrate ECG

into the prediction of different health outcomes. This thesis is an interdisciplinary research

effort that includes the domains of signal processing, ML, tensor methods, and healthcare.

In Chapter II, I present a signal processing method for analyzing ambulatory recordings

of people with and without fibromyalgia. I propose a method of analyzing the electrodermal

activity and heart rate variability recorded from a wrist sensor to compare against user-

reported sleep quality, with the goal of using these processed signals to be used as a more

objective measure of sleep quality or “restfulness”.

In Chapter III, I describe a multimodal approach, using signal processing of ECG and

other physiological signals, in addition to EHR data, collected from a post-surgery cohort

to predict adverse outcomes. The methods of Taut String and Dual Tree Complex Wavelet

5



Packet Transform are used to generate tensors and extract signal features, and different

tensor processing methods are introduced for feature reduction.

Chapter IV builds upon the Taut String and tensor methods of Chapter III, but applied

now to a cohort of patients in the ICU at risk for developing poor outcomes related to sepsis.

Chapter V uses learning using privileged information as a different method of predicting

poor outcomes related to sepsis, as an extension of the analyses performed in Chapter IV.

Chapter VI provides a conclusion to the research performed in this thesis. Also addressed

is the future direction of incorporating signal processing and tensor methods into CDSSs

and healthcare settings.
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CHAPTER II

Processing Signals from a Wrist Sensor to
Predict Poor Sleep Quality

2.1 Introduction

Fibromyalgia is a medical condition characterized by chronic, widespread pain. The mean 
prevalence of fibromyalgia globally is 2.7%, and when broken down by sex, is 4.2% in women 
and 1.4% in men, giving a female-to-male ratio of 3:1 [56]. Besides pain, fibromyalgia is 
also associated with cognitive dysfunction [36], fatigue, and disturbed sleep [57]. More than 
85% of people with fibromyalgia can experience symptoms of fatigue or disturbed sleep [57], 
which negatively impacts quality of life [72, 71].

One way to measure sleep quality is for patients to report it themselves. One such 
self-reported measure is the Patient-Reported Outcomes Measurement Information System 
(PROMIS) [10]. Self-reported scores can give insight to an individual’s condition, but may 
not generalize across individuals, or even necessarily correspond to objective measures of 
sleep, such as polysomnography, or sleep studies. Specifically i n fibromyalgia, unrefreshing 
sleep can be caused by autonomic nervous system imbalance, which can be recorded unob-
trusively through ambulatory measures of Heart Rate Variability (HRV) and Electrodermal 
Activity (EDA) [73, 60], creating another method of more objectively modeling quality of 
sleep.

The Empatica E4 wristband (Empatica, Milano, Italy) is a sensor worn on the wrist 
that provides raw Blood Volume Pulse (BVP), EDA, temperature, heart rate, and 3-axis 
accelerometer signals [17]. Shaped like a watch, the E4 provides an unobtrusive and direct 
way to obtain these continuous signals over time. Other studies have previously investigated 
the utility of wrist sensors in assessing sleep quality. Sabeti et al. [60] used the E4 to 
assess different l evels o f f atigue a nd f eeling r efreshed u sing f eatures f rom t he BVP, EDA, 
temperature, and accelerometer signals, and Sano et al. [61] compared EDA data collected 
from a wrist sensor across different stages of sleep.
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Acknowledging the limitations of wearable technology, the goal of this research was to

determine the instances in which sleep quality had been negatively affected in fibromyalgia

using ambulatory recordings of HRV, which was estimated using BVP data. In addition to

BVP, we also calculated features from EDA data and tested their utility in the assessment of

sleep quality. This furthers the pursuit of developing an automated system of sleep quality

assessment. To aid in achieving this goal, we used Learning Using Concave and Convex

Kernels (LUCCK) [60] and Support Vector Machine (SVM) [14] as classification methods.

This study was originally published in the 2020 proceedings of the IEEE Engineering in

Medicine and Biology Society Conference [1].

2.2 Methods

2.2.1 Dataset

The University of Michigan Medical Institutional Review Board approved the protocol prior

to the initiation of any study activities. Volunteers provided written informed consent prior

to being enrolled. We used a dataset consisting of 74 observations, or nights of sleep, across

26 unique individuals, with each having 1-6 observations. Each participant reported the

night’s sleep quality on a scale of 0-10. The observations in the fibromyalgia group had a

self-reported sleep score of ≤ 2, indicating poor sleep, and those in the control group had

a self-reported sleep score of ≥ 8, indicating restful sleep. These observations included 13

individuals in the control group, and 13 individuals in the fibromyalgia group. The average

age in the control group was 44.9 years, with a Standard Deviation (SD) of 16.2, and 41.9

years in the fibromyalgia group, with SD of 13.1. Each observation contained BVP, EDA,

temperature, and accelerometer signals captured by the E4 wristband, but for this project,

we focused only on BVP and EDA data for feature extraction.

2.2.2 Feature Extraction

Each individual in the study pressed a button on the E4 wristband to record daily sleep

and wake times. Upon reviewing the data, some accelerometer samples showed movement

after the marked sleep time, indicating the individual was still awake. For these samples, we

marked a sleep time which occurred after the accelerometer signal showed reduced movement,

indicating the individual had fallen asleep.
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2.2.2.1 BVP Data

The BVP signal was passed through an eighth-order Butterworth bandpass filter, with cutoff

frequencies 0.08 and 3 Hz, to remove noise, then separated into non-overlapping 5-minute

windows. The formula for a Butterworth filter is:

|H(jω)| = 1√
1 +

(
ω
ωc

)2m
,

where |H(jω)| is the transfer function at the angular frequency ω, ωc is the cutoff frequency

as an angular value, and m is the number of elements in the filter.

A total of 46 BVP features were extracted for each window of signal. Features included

select Kubios features [69], the number of peaks, and measurements related to the identified

peaks. The full list of features is included in Table A.1.

2.2.2.2 EDA Data

We created approximations of the phasic and tonic components of the EDA signal [68], and

extracted features from each of these approximations. To approximate the tonic component,

we applied a third-order low-pass Butterworth filter with cutoff frequency 0.04 Hz to the

EDA signal. To approximate the phasic component, we generated a 3-level filter bank using

a Haar wavelet, generating 8 output samples from the EDA signal. An illustration of the

filter bank is provided in Figure 2.1, showing how the input signal was high- and low-pass

filtered at each level to yield the output coefficients.

Input

H

L

H

L

H

L

H

L

H

L

H

L

H

L

Figure 2.1: Illustration of Filter Bank Structure

Both the phasic and tonic components were separated into non-overlapping 5-minute

windows. The features extracted are listed in Table A.1, where there are 58 EDA features

for every 5 minutes of signal.
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Feature extraction led to a total of 104 features for each window. For each observation,

the 5-minute window features were separated into 3 blocks: the first 90 minutes of sleep, the

last 90 minutes, and the remaining time in between. The mean, SD, kurtosis, and skewness

were calculated for all features within the blocks, yielding a total of 1,248 features (552 BVP,

696 EDA). The formulae used for kurtosis and skewness are defined below, where n is the

number of observations.

Kurtosis =
1
n

∑n
i=1 (zi − z̄)4(

1
n

∑n
i=1 (zi − z̄)2

)2
Skewness =

1
n

∑n
i=1(zi − z̄)3(√

1
n

∑n
i=1(zi − z̄)2

)3

2.2.3 Feature Reduction and Model Development

Before performing any feature reduction steps, the data were randomly divided into a train-

ing set of 20 individuals (10 fibromyalgia, 10 control) and a test set of 6 individuals (3

fibromyalgia, 3 control). Individuals did not overlap between the training and test sets.

We used a two-step process to reduce the number of features in the training set. First,

we removed features with redundant information. We tested if the absolute value of the

difference between two features was greater than 1e-12 for all observations, and if so, removed

one of the features. Second, we used Principal Component Analysis (PCA). We trained the

model using the number of Principal Component (PC)s required to reach a specific amount

of variance explained. Upon introduction of validation or testing data to the model, we

removed any features that were marked as duplicates in the training set, and extracted PCs

using the coefficients that were calculated from the training set.

The classification step relied on the LUCCK method [60]. One advantage of LUCCK is

that it allows for large deviations in features with a moderate penalty. It is possible that the

signals in our dataset suffered measurement errors due to movement, loss of contact between

the wristband and wrist, or other problems, and LUCCK would provide more flexibility in

these cases. A broad overview of LUCCK is provided in Figure 2.2.

LUCCK functions as follows: suppose the feature space is comprised of real-valued vectors

x ∈ Rn. The similarity function Q : Rn → R measures how close x lies to the origin and

10



Test observation x

Class C0 Class C1

x belongs to C0 x belongs to C1

R0 > R1
True False

Figure 2.2: Basic Schematic of Learning Using Concave and Convex Kernels

satisfies the properties:

1. Q(x) > 0 for all x ∈ Rn

2. Q(x) = Q(−x) for all x ∈ Rn

3. Q(λx) > Q(x) if x ∈ Rn is nonzero and |λ| < 1.

The value Q(x− y) then provides a measure of the closeness between vectors x and y, which

can then be used for classification. The function

Q(x) =
n∏

i=1

(1 + λix
2
i )

−θi

for some parameters λi, θi > 0 is used [60], as it can behave similarly to a Cauchy distribution.

This allows the function to be less sensitive to errors in individual features.

In this dataset, there are two classes: C0, the control group, and C1, the fibromyalgia

group. The test vector x can be classified into class Ck, where k is chosen to maximize the

function

R(x, Y ) =
∑
y∈Y

Q(x− y),

where Y is the set of training samples in Ck.

Three models were trained using the LUCCK method: one with EDA features, one with

BVP features, and one with BVP features coupled with EDA features (BVP+EDA). To

serve as a baseline for comparison to the LUCCK method, we also trained three SVM [14]

models using the three datasets. SVM constructs the optimal separating hyperplane between
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the two classes, which is formulated as:

min
w,b,ξ

1

2
∥w∥2 + C

N∑
j

ξj

with the constraints

yi(w · ψ(xj) + b) ≥ 1− ξj, j = 1, ..., N

ξ ≥ 0,

where b is the bias term, w is the weight vector, ξj functions as a slack variable, C is the

penalty parameter, and ψ(x) indicates a mapping of x to a different space [14]. These allow

for soft-margin decision boundaries, as fibromyalgia and control observations are not linearly

separable.

We implemented a voting system to create final predictions against the test set. The

training data was split into 5 folds. When creating training folds, the underrepresented

group was oversampled so that the number of observations from each group would be equal.

Multiple observations from the same individual were kept in the same fold to prevent data

leakage. In each iteration, 4 folds were used to train the model, the fifth fold was used to

tune hyperparameters, and the model with selected hyperparameters was run against the

test set, producing one set of votes per iteration. The votes from the 5 models were collected

and the median used to determine final predictions.

The process of generating partitions into training/test sets, training 5 models, and creating

final predictions was repeated 100 times, yielding means and standard deviations of the

results.

2.3 Results

The results from the models trained with BVP, EDA, and BVP+EDA data are provided

in Tables 2.1, 2.2, and 2.3, respectively. The mean is provided, with SD in parentheses.

Results include F1 score, Sensitivity, Specificity, and Area Under the Receiver Operating

Characteristic Curve (AUROC). Here, F1 score is defined as:

F1 =

(
2

Precision−1 +Recall−1

)
,
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Precision =
true positive

predicted positive

Recall =
true positive

actual condition positive

Table 2.1: BVP Data Only

Variance Explained 60% 65% 70%
LUCCK

AUROC 0.66 (0.12) 0.65 (0.12) 0.64 (0.12)
F1 0.62 (0.13) 0.62 (0.12) 0.60 (0.13)

Sensitivity 0.83 (0.16) 0.83 (0.16) 0.81 (0.18)
Specificity 0.49 (0.24) 0.48 (0.23) 0.46 (0.22)

SVM
AUROC 0.65 (0.15) 0.64 (0.15) 0.62 (0.15)

F1 0.60 (0.18) 0.59 (0.17) 0.56 (0.18)
Sensitivity 0.73 (0.23) 0.70 (0.23) 0.67 (0.24)
Specificity 0.58 (0.26) 0.58 (0.26) 0.58 (0.25)

Table 2.2: EDA Data Only

Variance Explained 60% 65% 70%
LUCCK

AUROC 0.52 (0.14) 0.51 (0.13) 0.53 (0.13)
F1 0.33 (0.21) 0.33 (0.20) 0.34 (0.21)

Sensitivity 0.31 (0.23) 0.30 (0.21) 0.30 (0.22)
Specificity 0.73 (0.20) 0.73 (0.20) 0.75 (0.20)

SVM
AUROC 0.53 (0.16) 0.54 (0.15) 0.55 (0.15)

F1 0.43 (0.20) 0.44 (0.19) 0.46 (0.19)
Sensitivity 0.478 (0.25) 0.49 (0.25) 0.49 (0.23)
Specificity 0.58 (0.22) 0.59 (0.21) 0.61 (0.22)

2.4 Discussion

Aligning with the goals of our research, using BVP data with LUCCK and SVM achieved

mean AUROC > 0.65 across different partitions of training/testing data. The performance

of the LUCCK method are comparable with SVM, with LUCCK generally achieving lower

SDs in the performance metrics than SVM on the BVP dataset.
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Table 2.3: BVP and EDA Data

Variance Explained 60% 65% 70%
LUCCK

AUROC 0.61 (0.15) 0.60 (0.15) 0.60 (0.14)
F1 0.51 (0.19) 0.50 (0.20) 0.50 (0.19)

Sensitivity 0.55 (0.26) 0.54 (0.26) 0.54 (0.26)
Specificity 0.67 (0.25) 0.67 (0.24) 0.67 (0.23)

SVM
AUROC 0.60 (0.17) 0.61 (0.16) 0.61 (0.16)

F1 0.55 (0.18) 0.55 (0.17) 0.55 (0.18)
Sensitivity 0.64 (0.24) 0.65 (0.24) 0.64 (0.26)
Specificity 0.57 (0.27) 0.56 (0.26) 0.58 (0.26)

Features from EDA data alone are unable to achieve the same level of AUROC as BVP

data, although with LUCCK, specificity is higher in the EDA dataset. Incorporating EDA

data with BVP data does not improve performance compared to using only BVP data,

indicating that in this study, EDA data is not as informative as BVP data for aligning the

sleep quality score with physiological signals.

BVP data collected during sleep time may be informative due to the lack of noise and

movement that are present during waking hours. In contrast, activity in the EDA signal

during sleep time may reflect changes in body temperature and the resulting sweat if the

wrist is heated under blankets. EDA signal may instead be more informative during waking

hours, when the environment is not as warm and controlled, but this will require further

study to confirm.

In future work, in addition to studying the time that the patient was known to be asleep,

data could also be processed from the individual’s sleep onset latency. This is the period of

time between when the individual intends to go to sleep (button press) and when sleep is

actually obtained (determined by accelerometer data), as greater sleep onset latency could

lead to the individual reporting poorer sleep quality.
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CHAPTER III

A Multimodal Approach to Predict Adverse

Events After Surgery

3.1 Introduction

Monitoring devices in the ICU produce a wealth of data, but the vast amount of information 
produced, in addition to false alarms, alarm fatigue, and cognitive biases, can negatively 
affect patient care [3, 30, 3 1]. As such, there is a  growing need for predictive models and ef-
fective CDSSs that can identify only the relevant data from multiple sources to give pertinent 
information to healthcare providers.

Previous work has incorporated EHR data into ML to create predictive models, as EHR 
data are both noninvasive and routinely collected. Some examples of previous studies include 
predicting coronary artery disease [78], computing survival risk scores [50], and predicting 
mortality or 30-day readmission [2, 25, 67].

Other research focuses on the utility of physiological signals. Several models [32, 63, 43] 
used features from HRV to predict mortality or vascular events. Belle et al. [6] showed that 
HRV and ECG features could better predict hemodynamic stability compared to standard 
biomarkers used in hemodynamic assessment. Others [26, 42, 40] took a multimodal ap-
proach, using ECG, HRV, Arterial Blood Pressure (ABP) waveform from an arterial line, 
Pulse Plethysmography (PPG) waveform from a pulse oximeter, and EHR data to predict 
hemodynamic decompensation. This study builds from Hernandez et al.’s work in [26], 
focusing on hemodynamic decompensation events post-surgery. This study focused on post-
surgery patients in the ICU. Patients who undergo cardiovascular surgery are at risk of 
hemodynamic decompensation [48], which can include arrhythmia (e.g., atrial fibrillation), 
hypotension, or pulmonary edema. To build from the previous work, we extended this pre-
diction model to other post-surgical cohorts of increasing heterogeneity. We used multimodal 
features from physiological signals and EHR data to create ML models that predict hemo-
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dynamic decompensation after surgery in surgical ICU patients. This study was originally

published in Scientific Reports [33].

3.2 Methods

3.2.1 Dataset

The dataset included features extracted from TS estimates of ECG, ABP, PPG, and HRV,

Dual-Tree Complex Wavelet Packet Transform (DTCWPT) features extracted from the TS

estimation of ECG waveform, and features extracted from EHR data from three postopera-

tive cohorts of surgical patients. The TS and DTCWPT methods of feature extraction are

described in further detail in the Signal Processing for Feature Extraction section, and the

list of EHR data features is included in Section 3.2.3.

3.2.1.1 Patient Cohorts

All retrospective patient data was obtained from Michign Medicine. The three cohorts of

surgical patients had increasing heterogeneity. Cohort 1 consisted of patients recovering from

elective cardiac surgery, Cohort 2 major vascular surgeries, and Cohort 3 acute conditions

that required urgent and/or major non-cardiac surgery. Examples of surgeries in Cohort

1 included coronary artery bypass grafting, cardiac valve repair/replacement, and thoracic

aortic procedures; abdominal aortic aneurysm surgeries (both open repairs and endovascu-

lar stenting) and major vascular bypass procedures (e.g., aortofemoral bypass, axillofemoral

bypass, and femoral-popliteal artery bypass) for Cohort 2; major abdominal surgeries (e.g.,

exploratory laparotomies), orthopedic surgeries (e.g., total hip replacements for hip frac-

tures), and neurosurgeries (e.g., craniotomies and spinal fusions) for Cohort 3.

3.2.1.2 Adverse Events

Seven adverse events associated with hemodynamic decompensation were included in this

study: low cardiac index, sustained low mean arterial pressure, epinephrine bolus, inotropic

therapy initiated, inotropic therapy escalated by ≥100%, vasopressor therapy initiated, and

vasopressor therapy escalated by≥100%. We also included two additional adverse events that

may not necessarily result from hemodynamic decompensation, but are clinically significant

enough to warrant detection by an algorithm: re-intubation and mortality, as an algorithm

missing these two events while detecting other decompensation events would be clinically

less meaningful. The exact definitions, details, and rationale for inclusion of these events as

agreed by our clinical team are available in Hernandez et al. [26].
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3.2.2 Signal Processing for Feature Extraction

We divided 15-minute ECG, ABP, and PPG signals into five non-overlapping tumbling

windows three minutes in length. We created four prediction windows of different lengths:

30 minutes, 1 hour, 2 hours, and 4 hours.

3.2.2.1 Data Preprocessing

To remove artifacts, each ECG tumbling window was preprocessed using a second order

Butterworth bandpass filter with cutoff frequencies of 0.5 Hz and 40 Hz. Similarly, each

ABP window was preprocessed with a third order Butterworth bandpass filter with cutoff

frequencies 1.25 Hz and 25 Hz, and each PPG window with a third order Butterworth

bandpass filter with cutoff frequencies 1.75 Hz and 10 Hz.

3.2.2.2 Heart Rate Variability

We identified peaks within the filtered ECG signal using the peak detection method defined

in Hernandez et al.[26]. We computed the difference in time between subsequent peaks to

produce HRV.

3.2.2.3 Taut String

Previous work has used TS to capture hemodynamic instability in ECG [26, 6], and we use

these same TS features in our method with varying values for ϵ. The definition of TS is

provided in Section 1.2.2.

We applied TS to each tumbling window of ECG, HRV, ABP, and PPG signals with

different ϵ values. A summary of TS estimations performed and the number of features

extracted are listed in Tables 3.1 and 3.2. The features extracted from PPG and ABP were:

number of peaks, the minimum, maximum, mean, median, and SD of time between sequential

systolic peaks, time between a systolic peak and its subsequent diastolic reading, relative

amplitude between systolic peaks, and relative amplitude between a systolic peak and its

subsequent diastolic reading. The features extracted from ECG and HRV were: number

of line segments, number of inflection segments, total variation of noise, total variation of

denoised signal, power of noise, and power of denoised signal.

3.2.2.4 Dual-Tree Complex Wavelet Packet Transform

DTCWPT [5] has previously been used in an ECG context [26]. More detail is available in

Bayram et al. [5], but briefly: at each level k, DTCWPT uses a high- and low-pass perfect
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Table 3.1: Epsilon Values for Each Feature Type

Feature Type ϵ Values
ECG 0.0100, 0.1575, 0.3050, 0.4525, 0.6000
HRV 0.0010, 0.0258, 0.0505, 0.0753, 0.1000

DTCWPT 0.0100, 0.1575, 0.3050, 0.4525, 0.6000
ABP 0.1000, 0.7000, 1.3000, 1.9000, 2.5000
PPG 1.0000, 8.7500, 16.5000, 24.2500, 32.0000

Table 3.2: Features Extracted per Epsilon Value

Feature Type Number of Features Extracted
ECG 6
HRV 6

DTCWPT 152
ABP 21
PPG 21

reconstruction wavelet filter bank to decompose the previous level’s subbands. Increasing k

yields increased frequency resolution, but at computational expense. We select k = 2 in this

study.

The filter banks of k are selected such that the first filter bank’s discrete Hilbert transform

is the frequency response of each branch of the second filter bank. This allows for approximate

shift-invariance. If Ψ is the wavelet for low-pass filter h0(n) and high-pass filter h1(n), and

Ψ′ or H{Ψ} is its Hilbert pair, then the z-transforms of the two filters, H0 and H1, are

related by

H1(e
jw) = −ejdwH∗

0 (e
j(w−d))

when the wavelet basis is orthonormal. H1 and H ′
1 have the relationship

H ′
1 = −j · signum(w)ej0.5wH1(e

jw),

Table 3.3: Tensors Formed for Each Feature Type

Feature Type Tensor Dimensions
ECG 5× 6× 5
HRV 5× 6× 5

DTCWPT 5× 152× 5
ABP 5× 21× 5
PPG 5× 21× 5
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where d is an odd integer and ∥w∥ < π.

Following this, if H(k)(ejw) is the equivalent response at level k, then:

H(k)(ejw) = H1(e
j2(k−1)w)

k−2∏
m=0

H0(e
j2mw)

and the equivalent response of the second filter bank’s corresponding branch is

H ′(k)(ejw) = −ej0.5wH{H(k)(ejw)}

according to [5].

3.2.3 Electronic Health Records

EHR data was available for each subject in addition to physiological signals. It included static

information, including age, race, and comorbidities, as well as temporal information, such

as lab results and medications administered. The features that required different levels of

representation through one-hot encoding are presented in Tables 3.4 and 3.5 and also further

explained in Hernandez et al.[26]. For completeness, the temporal EHR information for each

tumbling window was carried over from the most recent record. Lab values were represented

as the encoded values “Low”, “Normal”, “High”, or “Critical”, defined in the reference range

in Table 3.4. Cardiovascular Infusions were encoded as “None Given”, “Normal Dosage”,

and “Elevated Dosage”. Thresholds for “Normal” and “Elevated” are given in Table 3.5.

3.2.4 Tensor Formation and Reduction

Taking into account all values of ϵ from TS estimation, the filter banks of DTCWPT, and the

five tumbling windows, a total of 5,150 features were extracted from ECG, HRV, ABP, and

PPG signals. To reduce the feature space of this data and maintain structural information,

we relied on tensor decomposition.

First, we formatted the data into a tensor. As seen in Table 3.3, each type of signal features

had the structure of five tumbling windows and five values of ϵ, with varying numbers of

features. We standardized the features within each tumbling window and ϵ value using mean

and SD of each ϵ-window-feature entry from the training set. These training set values were

later used to standardize the ϵ-window-feature entries from the test set.

Once the tensors of a feature type have been created for all subjects in the training

set, they were stacked along a new fourth mode, generating a tensor of size (ϵ × feature ×
window × Ntrain), where Ntrain was the number of individuals in the training set. This
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Lab Value Reference Range Critical Unit
Creatinine Female: 0.5-1.0

Male: 0.7-1.3
> 2.0 mg/dL

Glucose 70-180 < 40 mg/dL
Hematocrit Female: 36-48

Male: 40-50
< 21 %

Hemoglobin Female: 12-16
Male: 13.5-17

< 7 g/dl

International
Normalized Ratio

0.9-1.2 > 2.0

Lactate Arterial: 0.5-1.6
Venous: 0.5-2.2

> 4.0 mmol/L

Platelet Count 150-400 < 50 109/L
Potassium 3.5-5.0 > 6.0 mmol/L
Sodium 136-146 > 155 mmol/L
White Blood Cell
Count

4-10 > 20 109/L

Table 3.4: Lab Values and their Reference Ranges

Cardiovascular Infusion Escalation Threshold
Dobutamine 2.0 µg/kg/min
Dopamine 2.5 µg/kg/min
Epinephrine 0.02 µg/kg/min
Isoproterenol 2.0 µg/kg/min
Milrinone 0.25 µg/kg/min
Norepinephrine 0.1 µg/kg/min
Vasopressin 2.0 µg/kg/min

Table 3.5: Cardiovascular Infusions and their Reference Ranges

was repeated for tensors of each feature type. We performed Higher Order Singular Value

Decomposition (HOSVD) [74, 75, 16] using Tensor Toolbox [4] to reduce the DTCWPT,

ABP, and PPG tensors to their core tensors, GDTCWPT, GABP, GPPG, and reserved their

respective transformation matrices (UDTCWPT, UABP, UPPG).

Next, we stacked all fourth order tensors from the different feature types along the feature

mode (second mode) to create a new tensor T . We then performed CP-ALS to reduce the

feature space, defined in Section 1.2.3. We set rank r = 4 as in Hernandez et al.[26]. After

solving for T̂ , we reserved factor matrices A and C for feature extraction.

Now having the transformation matrices from HOSVD and the factor matrices from CP-

ALS, we could compute the core tensor of any DTCWPT, ABP, or PPG tensor in the test
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set. We perform the following to compute features for each individual j in the test set:

Using the transformation matrices from HOSVD (UDTCWPT, UABP, UPPG), core tensors were

computed for DTCWPT, ABP, and PPG. Next, all of j’s tensors were stacked along mode 2

to build the new tensor Sj. Lastly, the factor matrices A and C from T ’s CP decomposition

were used to solve for B via least squares by minimizing

∥Sj −B(C ⊙ A)⊺∥.

The optimal solution was calculated as

B = S(2)(C ⊙ A)(A⊺A ∗ C⊺C)†,

where S(2) was the mode-2 slice of tensor Sj, ⊙ was the Khatri-Rao product, and † was the

Moore-Penrose pseudoinverse [35].

3.2.5 Machine Learning

The ML models were created to predict an occurrence of the nine adverse events detailed in

Section 3.2.1.2 in prediction windows 0.5, 1, 2, and 4 hours before the event. The training

set consisted of Cohort 1 while the test set was either Cohort 2 or 3 exclusively. Given that

clinicians may want to detect more cases with adverse outcomes at the risk of somewhat

increased false positives, we balanced the training set to have a ratio of 0.35 to 0.65 between

positive and negative cases by undersampling negative cases. No such adjustment was per-

formed for the test sets. Patients without complete signals in the analysis windows (e.g.,

ECG signals with missing R peaks or periods of no signal) were excluded. The respective

sample size for each prediction window is available in Tables 3.6 - 3.8.

Model training consisted of 3-fold cross-validation (CV) of Cohort 1 data to select optimal

hyperparameters for each model using a validation set. Models were then trained on all three

folds with the selected hyperparameters in Cohort 1, and tested against Cohort 2 and Cohort

3 data. This process was repeated 101 times, with shuffling of data across CV folds, for each

model to obtain the mean AUROC.

Naive Bayes (NB) models with normal distribution were trained with no hyperparameter

tuning, serving as the simplest baseline models.

Random Forest (RF) models [9] were trained with varying numbers of trees (50, 75, or

100), minimum leaf size (1, 5, 10, 15, or 20), percentage of features to include for maximum

number of splits (25%, 50%, 75%, 100%), split criterion (Gini impurity or cross entropy),

and number of predictors to sample (10-100 in increments of 10) using grid search to select
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hyperparameters.

SVMs [14] were trained with a linear kernel via sequential minimal optimization. Grid

search was used to determine the optimal box constraint C and scaling parameter γ, where

C ∈ [10−7, 1012] and γ ∈ [10−12, 1012] consisted of logarithmically-spaced values.

LUCCK, defined in 2.2.3, was trained with λ values in a range from 0.01-0.1 in increments

of 0.01, and θ values in a range from 0.1-1.0 in increments of 0.1. We selected for λ and θ

via grid search.

3.3 Results

The AUROCs of each ML model are presented in Tables 3.6 - 3.8. The tables present means

and SD of AUROC for models trained on the Cohort 1 (Cardiac Surgery) and tested on

Cohorts 2 (Vascular Surgery) and 3 (Acute Non-cardiac Surgery). The n in each row of

Tables 3.6 through 3.8 represents the number of deterioration events (i.e., the sample size).

The best performance in each prediction window is boldfaced.

3.3.1 Cohort 1 - Training with Cardiac Surgery Cohort

During training with Cohort 1, the RF models exhibited the highest AUROCs between 0.93

and 0.94 across all gaps, followed by SVM (0.90-0.91) and LUCCK (0.89-0.91). The NB

models achieved the lowest performance (0.83-0.85).

3.3.2 Cohort 2 - Testing with Vascular Surgery Cohort

The RF models achieved the highest AUROCs on testing with Cohort 2. The LUCCKmodels

performed marginally better on Cohort 2 compared to the training set, achieving AUROCs

similar to those of RF. The NB and SVM models also achieved AUROCs comparable with

those obtained on the training set, with the NB models on 2- and 4-hour windows actually

achieving higher AUROCs than their respective training sets. The NB and SVM models

demonstrated higher SDs compared to the LUCCK and RF models.

3.3.3 Cohort 3 - Testing with Acute Non-cardiac Surgery Cohort

With Cohort 3, the overall performance was lower across all models. The RF models achieved

the highest performance, with the models on 0.5- and 1-hour windows achieving AUROCs

greater than 0.8. LUCCK maintained mean AUROCs between 0.74 and 0.77 across models

on all windows, while the SVM’s AUROCs fluctuated to a larger extent, between 0.67 and

22



Table 3.6: Mean AUROC and SD of Cohort 1 - Cardiac Surgery Cohort (Training Set)

Prediction LUCCK RF NB SVM
Window
(hrs) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

0.5 (n = 423) 0.90 (0.01) 0.94 (0.01) 0.83 (0.02) 0.91 (0.01)
1 (n = 466) 0.89 (0.01) 0.93 (0.01) 0.84 (0.02) 0.91 (0.01)
2 (n = 426) 0.89 (0.01) 0.93 (0.01) 0.83 (0.02) 0.90 (0.01)
4 (n = 414) 0.91 (0.01) 0.93 (0.01) 0.85 (0.02) 0.91 (0.01)

Table 3.7: Mean AUROC and SD of Cohort 2 - Vascular Surgery Cohort (Test Set A)

Prediction LUCCK RF NB SVM
Window
(hrs) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

0.5 (n = 66) 0.94 (0.02) 0.94 (0.01) 0.82 (0.06) 0.91 (0.08)
1 (n = 60) 0.94 (0.02) 0.94 (0.01) 0.83 (0.07) 0.91 (0.06)
2 (n = 64) 0.92 (0.01) 0.94 (0.02) 0.88 (0.04) 0.92 (0.04)
4 (n = 63) 0.90 (0.02) 0.92 (0.02) 0.87 (0.03) 0.90 (0.06)

Table 3.8: Mean AUROC and SD of Cohort 3 - Acute Non-Cardiac Surgery Cohort (Test
Set B)

Prediction LUCCK RF NB SVM
Window
(hrs) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

0.5 (n = 21) 0.75 (0.13) 0.82 (0.15) 0.42 (0.03) 0.80 (0.15)
1 (n = 20) 0.75 (0.12) 0.82 (0.10) 0.51 (0.09) 0.67 (0.16)
2 (n = 16) 0.74 (0.08) 0.72 (0.16) 0.79 (0.07) 0.81 (0.16)
4 (n = 12) 0.77 (0.09) 0.77 (0.15) 0.63 (0.10) 0.74 (0.14)
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0.81. The NB models declined to the greatest extent, exhibiting an AUROC as low as 0.42

on the 0.5-hour window.

3.4 Discussion

In this study of postoperative deterioration events among three successively heterogeneous

cohorts of surgical patients, the incidence rates of a patient-level deterioration event were

16-19%, 19-28%, and 75-90%, respectively, although for Cohort 1, we adjusted the rate of

positive cases to 35% during training. The best performing models for each cohort yielded

AUROCs of 0.94, 0.94 and 0.82, respectively, all for 0.5-hour prediction windows. Our study

serves as a proof-of-concept that EHR data and physiologic waveform data may be combined

to improve the early detection of postoperative deterioration events, even when trained on

one surgical cohort and applied to other cohorts.

The predictive performance is well maintained throughout all prediction windows during

training with Cohort 1; the RF models achieved the highest performance. With Cohort 2,

likely due to smaller sample size, the SDs of AUROCs of the models tended to be higher

than those of the training set. Nonetheless, these models achieved performance comparable

to that achieved on the training set, with some models (especially LUCCK) even exceeding

the mean AUROCs achieved in training. Overall, the models trained on Cohort 1 generalized

extremely well to the Cohort 2.

When the models were tested on Cohort 3, the acute non-cardiac surgery cohort, the

performance of all models declined. This is likely due to the paucity of samples in Cohort

3; the SDs of the AUROCs are also much larger than their counterparts in Cohorts 1 and 2.

The NB models suffered most from the performance decline, with models on 0.5- and 1-hour

prediction windows performing near or worse than random guessing. Given the simplicity

of the NB models, it is not surprising that they fail to generalize to a small dataset from a

different surgical cohort.

On the other hand, the other three models maintained an acceptable performance for

most prediction windows despite the paucity of data. The RF models achieved the highest

AUROC with the 0.5- and 1-hour prediction windows at 0.82. The AUROC declined for the

2-hour prediction window to 0.72 but recovered to 0.77 at the 4-hour prediction window.

The SVM model displayed even more fluctuation, with the highest AUROC of 0.81 on the

2-hour prediction window and lowest AUROC of 0.67 on the 1-hour prediction window.

The LUCCK models maintained the most consistent range of performance, between 0.74

and 0.77 across all prediction windows, with generally smaller SDs than RF and SVM.

LUCCK also did not experience a steep decline that the RF and SVM models showed in
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the 1- and 2-hour prediction windows, respectively. It should also be noted that LUCCK’s

generalization with Cohort 2 was the best among the four models, showing the largest

increase in performance from training when tested on Cohort 2. Such findings are consistent

with previous reports indicating that the LUCCK models are capable of demonstrating

more robust and generalizable performance, especially when the number of samples is small

[60, 26], which is often the case with clinical data.

A few predictive scoring systems for assessing mortality risks in the ICU patients have been

developed in clinical settings. The APACHE II scoring system, which utilizes 12 physiological

measurements, age, and previous health conditions from 5,030 ICU patients in 13 hospitals

to create a logistic regression model to predict hospital death, reported an AUROC of 0.863

[34].

The SAPS II scoring system, which utilizes 12 physiological variables, age, type of admis-

sion, and three underlying disease variables to create a logistic regression model predicting

the hospital mortality based on 12,997 ICU patients from 12 countries, reported an AUROC

of 0.88 on the developmental dataset and 0.86 on the validation dataset [38].

The evaluation of Sequential Organ Failure Assessment (SOFA) scoring system, [21] which

utilizes physiological variables from various organ systems to assign a score between 0-24,

demonstrated the highest AUROC of 0.90 based on 352 patients when using the highest

SOFA score taken during the entire ICU stay.

Our study differs from these studies in two major aspects: 1) We have included features

derived from several digital signal processing techniques performed on the physiological wave-

form data, and 2) our models are trained to predict other clinical deterioration events besides

mortality, given that the ultimate form of these models is intended for real-time clinical mon-

itoring in a CDSS. Despite being trained on just a few hundred cases, our best-performing

models can achieve AUROCs between 0.90 and 0.94 for all prediction windows on Cohort 2.

Although Cohort 3’s best performing models achieve a maximum AUROC of 0.82, we ex-

pect that such performance can be improved upon including additional quality physiological

waveform data, given the largest sample size in this Cohort was 21.

Monitoring patients in the ICU for cardiovascular adverse events and complications is a

crucial component of postoperative critical care. Early warning systems for patients pre-

dicted to be at risk of major cardiovascular complications in advance of clinicians’ attention

can enable potentially life-saving interventions to be pursued before deterioration onset and

significantly improve clinical outcomes. However, because different surgical procedures imply

different underlying patient pathologies, along with varying levels of invasiveness and resul-

tant derangements to organ systems, a CDSS for predicting postoperative adverse outcomes

may be challenged by inadequate generalizability across a variety of surgical populations. In

25



this study, we test the hypothesis that models trained on one surgical cohort may be success-

fully applied to other cohorts that underwent different surgical procedures, by training them

on the cardiac surgery cohort and testing them on vascular and acute non-cardiac surgery

cohorts. The results obtained in this work suggest such generalizability and serve as a pro-

totype for a CDSS where the ML models trained in one surgical cohort can be successfully

applied to others.

Additionally, one should consider ensembles of different ML models in implementation of

a CDSS, since no model definitively stands out as the best model in all cases. For example, in

Cohort 3, RF has the highest performance of 0.82 in the 0.5- and 1-hour prediction windows,

SVM of 0.81 in the 2-hour window, and LUCCK of 0.77 (which is equal to that of RF but

with a smaller SD) in the 4-hour window.

As for limitations, sufficient data for training were only available for Cohort 1, allowing

us only to train the models on Cohort 1 and test on Cohorts 2 and 3, but not vice versa.

Adjusting the positive/negative case ratio to increase sensitivity may result in more false

positives. Also, all cases in this study were from a single quaternary care center. The care

processes and patient populations at other facilities can be substantially different. Another

limitation is the few negative cases in Cohort 3, resulting in very high incidence rates of

adverse events that are unlikely to be encountered in actual clinical settings. In future

work, more non-cardiac surgical cases from other surgical care facilities would be needed to

further increase the generalizability and robustness of these models. Also, our results must

be interpreted with caution given that they were based on all surgical cohorts and may not

necessarily extrapolate to non-surgical cohorts.

3.5 Conclusion

In this study, we utilized digital signal processing techniques such as TS estimation and

DTCWPT to generate features from physiological waveforms. A novel tensor dimension

reduction algorithm successfully reduced the feature space while still demonstrating trans-

latable performance across different surgical cohorts. Four different types of ML models were

trained on a cardiac surgery cohort and tested on different surgery cohorts. The RF models

perform the best in terms of the AUROC, but LUCCK models maintain the most consistent

range of performance, especially when the sample sizes are small. Our study suggests that

ML models trained on a combination of waveform and EHR data of one group of surgical

cases to predict life-threatening cardiovascular complications have potential to be success-

fully applied to other types of surgical cases, opening doors to the clinical decision support

system enabling early detection of such events and timely interventions to improve clinical
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outcomes on a wide variety of surgical cases.
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CHAPTER IV

A Multimodal Approach to Predict

Trajectory of Sepsis in the ICU

4.1 Introduction

Sepsis is a syndrome induced by an existing infection in the body that produces life-
threatening organ dysfunction in a chain reaction. The clinical criteria for sepsis include 
suspected or documented infection and an increase in two or more Sequential Organ Failure 
Assessment (SOFA) points. Septic shock, a more severe subset, consists of substantially 
increased abnormalities [65] and higher risk of mortality [51]. It is imperative to risk-stratify 
patients early during treatment in order to appropriately direct critical, but potentially lim-

ited, resources and therapies.
Sepsis’ heterogeneity complicates its diagnosis and prognosis. Its current definition, based 

on SOFA score, requires measurement or collection of variables which may not be immedi-

ately available. The Quick Sequential Organ Failure Assessment (qSOFA) is a screening 
tool that can be performed at the bedside. It consists of three criteria - Glasgow Coma 
Scale (GCS) of < 15 (indicating mental status change), respiratory rate ≥ 22 breaths per 
minute, and systolic Blood Pressure (BP) ≤ 100 mmHg - where two of the three must be 
met [65]. It includes the poorly characterized variable mental status change, but it is a bet-
ter predictor of organ dysfunction than systemic inflammatory r esponse s yndrome (SIRS), 
which is less sensitive [8, 64]. SIRS is the body’s response to a stressor such as inflammation, 
trauma, surgery, or infection, while sepsis is specifically a  response to infection; many septic 
patients have SIRS, but not all patients who meet SIRS criteria have an infection or expe-
rience septic organ failure. In comparison to qSOFA, SIRS has four criteria, three of which 
must be met to positively identify SIRS. These are: respiratory rate > 20 breaths per minute 
or partial pressure of CO2 < 32 mmHg; heart rate > 90 beats per minute; white blood cell 
count > 12,000/microliter or < 4,000/microliter or bands > 10%; and temperature >38◦C
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or < 36◦C [12]. For each of these scoring systems, factors such as comorbidities, medication,

and age may confound the phenotype in different patient groups.

A sepsis detection system that is too strict or time-consuming can delay necessary care to

patients, and criteria that are too broad can lead to over-treatment or inappropriate use of

limited resources. For example, false positive sepsis prognoses can lead to patients receiving

unnecessary care and antibiotics, which contribute to antibiotic resistance and emergence of

“superbugs” [76, 54, 13]. Similarly, qSOFA is not recommended as a single screening tool for

diagnosis of sepsis [18], but it can be used as a method of predicting prolonged ICU stay or

in-hospital mortality [64]. Predicting the trajectory of a patient with suspected infection may

be a more efficient use of resources than detecting existing sepsis, and therefore trajectory

prediction is the focus of this study.

Many models for detecting, monitoring, or predicting outcomes related to sepsis depend on

EHR data, including SOFA score [65], EPIC’s sepsis model [79], and others [47, 45, 70]. While

useful for determining a patient’s status, EHR data are limited by time. Lab values require

time for collection and processing, and continuous variables may be updated less than hourly

or at irregular intervals. In contrast, physiological readings, such as those generated from

electrocardiography, blood pressure monitoring, or pulse oximetry, are collected continuously

and at regular intervals. Our study examines the use of continuous physiological signals,

namely ECG and ABP, in outcome prediction related to sepsis.

Previous works have used ECG signal information in the study of risk for sepsis and sepsis

progression [7, 44, 46]. The advantage that continuous monitoring devices like ECG offer

over EHR data is real-time, continuous assessment of a patient’s status. In addition, ECG

is routinely collected in the ICU, and is minimally invasive. In our analysis, we also include

ABP, as both SOFA and qSOFA use BP to assess the status of a patient’s cardiovascular

system status [65].

Given the complexity and heterogeneity of sepsis, it is necessary to incorporate multiple

variables into a trajectory prediction method. Modeling data as a tensor provides the ability

to observe changes in different variables with respect to time and to one another. The

prognosis and severity assessment of sepsis rely on a large amount of heterogeneous data,

including body temperature, arterial blood pressure, blood culture tests, and molecular

assays. Treatment of sepsis does not rely on any individual variable, but on all of these

measurements, which vary as a function of time. Because no individual feature is sufficient,

integrating data across time and incorporating structure is necessary for improved sepsis

prognosis, and therefore can better inform care decisions.

In this study, we use ECG and ABP signals to predict an increase in an individual’s

qSOFA score, where a qSOFA of ≥ 2 indicates poor outcomes related to sepsis. The results
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of signal-trained models are then compared to models trained using both signals and EHR

data. This is to (1) predict which individuals are at risk to decompensate to septic shock,

experience future organ failure, or other complications related to sepsis, rather than focusing

on a sepsis diagnosis, and (2) assess the usefulness of continuous physiological signals in the

event that EHR data are unavailable.

What differentiates this study from previous work is three-fold: first, that the models

developed in this work are focused on risk to decompensate rather than on a diagnosis

of sepsis; second, that physiological signals such as ECG and ABP are continuous and

therefore can provide near real-time views of a patient’s status; third, that the signals are

further processed with tensor methods. The results of this research have been submitted to

Scientific Reports.

4.2 Methods

A schematic of the methods used in this paper is presented in Fig.4.1.

4.2.1 Dataset

The retrospective dataset consisted of 1,803 unique individuals age ≥ 18 years with 3,516

unique encounters between 2013-2018 at Michigan Medicine. Individuals’ characteristics are

presented in Appendix Section B. The inclusion criteria selected for inpatient encounters

with: ECG lead II waveforms at least 15 minutes in length and ICD 9/10 codes for pneumo-

nia, cellulitis, or Urinary Tract Infection (UTI), excluding UTIs associated with catheters.

Exclusion criteria included positive HIV status, solid organ or bone marrow transplant, and

ongoing chemotherapy. These criteria created a dataset that did not specifically select for

sepsis diagnosis, but instead focused on patients with an infection who were at risk to develop

sepsis and septic shock. This dataset was selected from a Michigan Medicine biobank, whose

data collection was approved by the institutional review board of University of Michigan.

Informed consent was waived, as this was a retrospective study of previously collected and

de-identified data, without direct involvement of human subjects and therefore no chance of

physical harm or discomfort to the individuals being studied.

This larger dataset was reduced by selecting for individuals who had EHR, ECG, and

ABP data available. Because poor signal quality can result in false alarms [22], the ECG

signal was reviewed automatically using Pan-Tompkins to identify QRS complexes [49, 62].

Upon collecting 10-minute signals for feature extraction, signals determined to be 50% or

more noise were discarded.
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Figure 4.1: Schematic

Change in qSOFA score was used to assign positive and negative classes for machine

learning. Given an individual who meets one of the criteria for qSOFA, the model predicts

whether the score will increase to≥ 2, which Sepsis-3 deems as “likely to have poor outcomes”

[65]. This increase in qSOFA is considered the positive outcome in a learning context, because

the patient meets at least 2 qSOFA criteria as defined by Sepsis-3 after the prediction gap.

Thus, the negative outcome is qSOFA < 2 after the prediction gap.

We tested prediction gaps of six and twelve hours. For a six-hour gap, there were 199

negative and 59 positive cases. For a twelve-hour gap, there were 189 negative and 37 positive

cases.

4.2.2 Signal Processing

For every sample, we collected the 10 minutes of signal occurring directly before the predic-

tion gap for processing. This 10-minute signal was divided into 2 5-minute windows, and
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then preprocessed according the relevant sections below.

4.2.2.1 Arterial Line Data

ABP signals were sampled at 120 Hz. We applied a third order Butterworth bandpass

filter with cutoff frequencies 1.25 and 25 Hz to remove artifacts. The BP Annotate software

package [37] annotated the signal. Following previous methodology, [41, 26, 33], we extracted

the same 21 features from the annotated signal as in Section 3.2.2.3: number of peaks, as well

as the minimum, maximum, mean, median, and standard deviation (SD) of time between

sequential systolic peaks, time between a systolic peak and its subsequent diastolic reading,

relative amplitude between systolic peaks, and relative amplitude between a systolic peak

and its subsequent diastolic reading.

4.2.2.2 Electrocardiogram Data

ECG data consisted of four leads and signals were sampled at 240 Hz. We used lead II of the

ECG, following previously established methods [6]. A second order Butterworth bandpass

filter with the cutoff frequencies 0.5 and 40 Hz removed noise and artifacts.

4.2.2.3 Taut String

We calculated peak-based and statistical features from the TS estimation [15] of the ECG

waveform. Such features have previously been used to detect hemodynamic instability [6]

and predict hemodynamic decompensation [26, 33]. More detail on the TS algorithm is

provided in Section 1.2.2.

As in Chapter 3.2, TS estimation was applied to the filtered ECG signal using the pre-

viously selected five values of ϵ, and the same six features were computed from each TS

estimate of a 5-minute window and value of ϵ, leading to the creation of a tensor of size

2× 5× 6 for each signal, where the modes of the tensor were window, ϵ, feature.

4.2.3 Electronic Health Record Data

Rather than use a one-hot encoding as in Section 3.2.3, we assigned an ordinal encoding to

labs and cardiovascular infusions ranging from 0-4 or 0-3, respectively. A score of 1 indicates

less severity and a score of 3 or 4, more severity. If a lab value had been recorded before

the time of interest, this value was carried forward. We assigned a score of 0 to represent a

missing value with no previous recordings. Tables 3.4 and 3.5 provide the reference ranges

for lab values and cardiovascular infusions, respectively. Vital signs and urine output were
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included, but not given an ordinal encoding. If vital signs or urine output were not reported

in the time of interest, we carried forward the most recent known value.

We added a retrospective component for lab values, cardiovascular infusions, and vital

signs where, in addition to the 10 minutes occurring before the prediction gap, we include

four look-back periods. For the prediction gap of 6 hours, these look-back periods were

increments of 4 hours; for the prediction gap of 12 hours, they are increments of 8 hours.

4.2.4 Feature Reduction with Tensor Methods

For each 10-minute ECG signal, 60 features were computed and arranged as a tensor of

size 2 × 5 × 6. For each 10-minute ABP signal, 42 features were arranged as a tensor of

size 2 × 1 × 21, where the second mode, TS parameter ϵ, was inflated to create a uniform

presentation to the tensor reduction algorithms. Rather than treating this information as 60

or 42 feature vectors, we preserved the underlying tensor structure by using a tensor-based

dimensionality reduction method, inspired by previous work [26, 33] and described in further

detail in Section 1.2.3.

First, each tensor’s underlying structure was determined. All 2 × 5 × 6 ECG-feature

tensors in the training set were stacked along the fourth mode, generating a new tensor of

size 2×5×6×N , where N was the number of observations in the training set. Similarly, all

2×1×21 ABP-feature tensors were stacked along the fourth mode to generate a new tensor

of size 2× 1× 21×N . Tensor Toolbox’s [4] CP-ALS [35] was used to obtain the underlying

structure of the tensors.

The dataset was divided into a 75/25 split 100 times, and tensor reduction was performed

on each of those splits. CP-ALS was run using rank values of 1-4, and the fitting process

was repeated 15 times.

After applying CP-ALS to the training data, the resulting factor matrices A and B were

retained, which related to the modes of the original tensor that were not the feature mode

(C) or the patient encounter mode (D).

With this process completed, for any given individual’s third-order tensor T , a reduced

set of features was extracted using the factor matrices computed from the training data. The

feature vectors cT,1, . . . , cT,r were computed via a least squares problem, where

∥T −
r∑

i=1

ai ⊗ bi ⊗ cT,i∥

is minimal. After computing the individual vectors, they were concatenated to create CT , a

feature matrix with a reduced set of features compared to matricization T(3) of the original
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tensor T along the third mode.

4.2.5 Machine Learning

When constructing training and test datasets, 75/25 splits were created based on individuals

so that no individual would overlap between the training and test sets.

After extracting features, the three types of learning models used for training were linear

SVMs [14], RF [9], and LUCCK [60]. We selected a linear kernel for SVM in this experiment

because linear kernels tend to be less susceptible to overfitting when many features are present

[24] (such as in the case when no tensor reduction is used), and a linear kernel is both faster

to train and more easily interpretable than a nonlinear kernel [29]. Additionally, datasets

with many features can become linearly separable, making the linear kernel a good option

both in terms of its transparency as well as its faster training time [11]. We opted not to test

deep learning models because we wanted to offer transparency to the end user of the model

and to patients who would receive care, as deep learning models are known for operating as

a ”black box”; a patient would trust a clinician who understands the ”explainable” machine

learning method that they use to assist in their decision-making (referred to as the AI-user

dyad) [20].

For all methods, the training phase consisted of Three-Fold Cross-Validation (3FCV) on

a 75/25 split of the data, where the test set was held and not used for training. The test set

was presented to the three models generated from 3FCV to produce three sets of prediction

scores. We computed the final prediction scores for the test set by taking the median of the

three prediction scores, thus creating a voting system. This process was repeated 100 times

to obtain mean and SD of model performance.

A grid search selected optimal hyperparameters for each model using the validation fold

in 3FCV. For RF, these hyperparameters included: number of trees, minimum leaf size,

fraction of maximum number of splits, and number of predictors to sample. For SVM, grid

search selected the best box constraint C. Sequential minimal optimization [19] was used for

the optimization routine. For LUCCK, grid search selected optimal Λ and Θ parameters.

All grid searches used F1 score as the value to optimize.

Different signal feature based models were tested using tensor reduction. The first, using

only ECG data and presented in Figure 4.2, was the most restricted model, assuming that

both EHR and ABP data were unavailable. This would apply to patients recently admitted,

who would not have lab values or other EHR data available, and is also minimally invasive

compared to having an arterial line in place. Next was a model trained on both ECG and

ABP features, presented in Figure 4.3, which was tested to determine if the more invasive
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Table 4.1: ECG-Only Models, 6-hour gap

Model Rank F1 Score Recall Specificity AUROC

1 0.47 (0.08) 0.63 (0.12) 0.69 (0.10) 0.61 (0.09)
2 0.48 (0.07) 0.68 (0.11) 0.66 (0.09) 0.64 (0.08)

LUCCK 3 0.48 (0.07) 0.67 (0.11) 0.67 (0.08) 0.64 (0.08)
4 0.48 (0.07) 0.69 (0.12) 0.67 (0.09) 0.65 (0.07)

None 0.43 (0.06) 0.66 (0.13) 0.60 (0.11) 0.60 (0.07)

1 0.46 (0.06) 0.66 (0.12) 0.64 (0.11) 0.64 (0.06)
2 0.47 (0.05) 0.71 (0.09) 0.63 (0.10) 0.66 (0.06)

RF 3 0.47 (0.06) 0.69 (0.11) 0.64 (0.09) 0.66 (0.06)
4 0.48 (0.06) 0.72 (0.10) 0.64 (0.09) 0.67 (0.06)

None 0.41 (0.06) 0.64 (0.12) 0.57 (0.11) 0.57 (0.08)

1 0.37 (0.08) 0.50 (0.15) 0.66 (0.15) 0.49 (0.10)
2 0.38 (0.08) 0.52 (0.14) 0.64 (0.15) 0.50 (0.10)

SVM 3 0.38 (0.08) 0.52 (0.14) 0.66 (0.11) 0.50 (0.10)
4 0.38 (0.09) 0.53 (0.16) 0.64 (0.12) 0.50 (0.11)

None 0.44 (0.07) 0.64 (0.12) 0.63 (0.14) 0.62 (0.09)

arteial line improved performance compared to only using ECG data. Lastly, a model trained

on signal features alongside EHR data was built, presented in Figure 4.4.

4.3 Results

RF, LUCCK, and SVM were trained on tensor-reduced ECG features, presented in Table

4.2. We compared these models to those trained on tensor-reduced ECG features and ABP

features, presented in Table 4.3. These figures display the mean F1 Score and AUROC over

100 iterations, with error bars indicating one SD. The x-axis indicates the rank selected for

CP-ALS, with the rightmost columns, separated with a dashed line, representing the case

where no tensor decomposition was applied.

Figure 4.4 shows the results of models trained on both the tensor-reduced signal features

and EHR data.

4.4 Discussion

RF and LUCCK models performed similarly across different experiments, both performing

better than SVM when tensor reduction was applied to the dataset. RF’s strong performance

across different levels of feature reduction could be due to its bagging and bootstrapping

procedures, which work to prevent overfitting and ignore noise [55, 9]. In its introductory

paper, LUCCK was shown to perform well even when trained with few samples of signal
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Table 4.2: ECG-Only Models, 12-hour gap

Model Rank F1 Score Recall Specificity AUROC

1 0.47 (0.10) 0.69 (0.12) 0.74 (0.11) 0.69 (0.10)
2 0.47 (0.09) 0.69 (0.12) 0.75 (0.11) 0.68 (0.10)

LUCCK 3 0.49 (0.08) 0.72 (0.12) 0.76 (0.09) 0.71 (0.09)
4 0.49 (0.09) 0.73 (0.12) 0.75 (0.10) 0.72 (0.09)

None 0.41 (0.08) 0.67 (0.13) 0.69 (0.10) 0.65 (0.09)

1 0.43 (0.08) 0.69 (0.12) 0.70 (0.11) 0.68 (0.09)
2 0.44 (0.08) 0.70 (0.12) 0.71 (0.10) 0.69 (0.08)

RF 3 0.47 (0.08) 0.73 (0.11) 0.72 (0.09) 0.72 (0.08)
4 0.48 (0.09) 0.73 (0.12) 0.73 (0.09) 0.73 (0.08)

None 0.38 (0.07) 0.67 (0.12) 0.63 (0.12) 0.62 (0.09)

1 0.31 (0.10) 0.47 (0.16) 0.68 (0.15) 0.46 (0.12)
2 0.33 (0.09) 0.52 (0.16) 0.66 (0.16) 0.48 (0.13)

SVM 3 0.32 (0.09) 0.51 (0.16) 0.67 (0.14) 0.48 (0.11)
4 0.35 (0.10) 0.54 (0.17) 0.70 (0.12) 0.52 (0.13)

None 0.40 (0.08) 0.70 (0.14) 0.63 (0.13) 0.64 (0.10)

Table 4.3: Models Trained on ECG and Art Line, 6-hour gap

Model Rank F1 Score Recall Specificity AUROC

1 0.50 (0.07) 0.74 (0.11) 0.65 (0.12) 0.69 (0.08)
2 0.52 (0.07) 0.72 (0.10) 0.69 (0.10) 0.71 (0.07)

LUCCK 3 0.51 (0.06) 0.69 (0.10) 0.70 (0.08) 0.70 (0.06)
4 0.51 (0.06) 0.72 (0.10) 0.68 (0.09) 0.70 (0.06)

None 0.50 (0.06) 0.73 (0.11) 0.65 (0.10) 0.69 (0.07)

1 0.49 (0.06) 0.72 (0.12) 0.65 (0.11) 0.68 (0.07)
2 0.51 (0.06) 0.74 (0.10) 0.66 (0.09) 0.70 (0.06)

RF 3 0.51 (0.06) 0.73 (0.11) 0.67 (0.08) 0.70 (0.05)
4 0.52 (0.06) 0.75 (0.10) 0.67 (0.09) 0.71 (0.07)

None 0.49 (0.06) 0.71 (0.10) 0.66 (0.09) 0.69 (0.07)

1 0.42 (0.08) 0.61 (0.15) 0.63 (0.13) 0.58 (0.09)
2 0.41 (0.07) 0.61 (0.14) 0.61 (0.12) 0.57 (0.09)

SVM 3 0.43 (0.07) 0.64 (0.14) 0.61 (0.12) 0.58 (0.09)
4 0.42 (0.08) 0.64 (0.14) 0.60 (0.12) 0.58 (0.10)

None 0.47 (0.07) 0.70 (0.13) 0.64 (0.12) 0.63 (0.08)
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Table 4.4: Models Trained on ECG and Art Line, 12-hour gap

Model Rank F1 Score Recall Specificity AUROC

1 0.45 (0.08) 0.73 (0.14) 0.69 (0.14) 0.72 (0.08)
2 0.45 (0.07) 0.72 (0.13) 0.71 (0.11) 0.72 (0.07)

LUCCK 3 0.47 (0.07) 0.75 (0.11) 0.71 (0.10) 0.73 (0.07)
4 0.46 (0.08) 0.73 (0.13) 0.71 (0.11) 0.71 (0.08)

None 0.44 (0.06) 0.77 (0.12) 0.67 (0.10) 0.72 (0.06)

1 0.42 (0.08) 0.70 (0.13) 0.68 (0.12) 0.68 (0.09)
2 0.44 (0.07) 0.71 (0.12) 0.69 (0.10) 0.70 (0.08)

RF 3 0.47 (0.07) 0.74 (0.12) 0.72 (0.10) 0.72 (0.08)
4 0.48 (0.08) 0.75 (0.10) 0.72 (0.10) 0.74 (0.07)

None 0.44 (0.08) 0.76 (0.12) 0.67 (0.10) 0.72 (0.07)

1 0.32 (0.07) 0.57 (0.17) 0.61 (0.15) 0.49 (0.10)
2 0.32 (0.08) 0.57 (0.18) 0.62 (0.15) 0.51 (0.12)

SVM 3 0.33 (0.08) 0.57 (0.16) 0.61 (0.16) 0.51 (0.11)
4 0.33 (0.07) 0.54 (0.15) 0.61 (0.15) 0.51 (0.12)

None 0.36 (0.07) 0.65 (0.16) 0.61 (0.15) 0.56 (0.12)

Table 4.5: Models Trained on ECG, Art Line, and EHR Data, 6-hour gap

Model Rank F1 Score Recall Specificity AUROC
1 0.53 (0.06) 0.74 (0.11) 0.70 (0.09) 0.74 (0.07)
2 0.53 (0.06) 0.74 (0.10) 0.69 (0.09) 0.74 (0.07)

LUCCK 3 0.53 (0.07) 0.74 (0.10) 0.70 (0.09) 0.73 (0.07)
4 0.53 (0.07) 0.74 (0.11) 0.70 (0.08) 0.73 (0.07)

None 0.52 (0.06) 0.73 (0.10) 0.69 (0.08) 0.72 (0.07)
1 0.57 (0.07) 0.76 (0.09) 0.73 (0.09) 0.76 (0.06)
2 0.57 (0.06) 0.77 (0.08) 0.72 (0.08) 0.77 (0.06)

RF 3 0.58 (0.07) 0.77 (0.09) 0.74 (0.08) 0.77 (0.06)
4 0.58 (0.07) 0.78 (0.09) 0.73 (0.09) 0.77 (0.06)

None 0.53 (0.06) 0.76 (0.09) 0.69 (0.08) 0.74 (0.06)
1 0.49 (0.07) 0.70 (0.11) 0.67 (0.10) 0.67 (0.08)
2 0.45 (0.08) 0.66 (0.13) 0.63 (0.12) 0.62 (0.10)

SVM 3 0.44 (0.07) 0.65 (0.12) 0.63 (0.12) 0.60 (0.10)
4 0.43 (0.07) 0.63 (0.12) 0.63 (0.11) 0.58 (0.09)

None 0.52 (0.06) 0.74 (0.10) 0.69 (0.08) 0.72 (0.06)
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Table 4.6: Models Trained on ECG, Art Line, and EHR Data, 12-hour gap

Model Rank F1 Score Recall Specificity AUROC
1 0.57 (0.09) 0.82 (0.09) 0.78 (0.09) 0.82 (0.06)
2 0.56 (0.09) 0.80 (0.09) 0.79 (0.08) 0.82 (0.06)

LUCCK 3 0.55 (0.09) 0.81 (0.08) 0.78 (0.08) 0.82 (0.06)
4 0.56 (0.09) 0.83 (0.09) 0.78 (0.08) 0.83 (0.06)

None 0.55 (0.08) 0.81 (0.10) 0.78 (0.08) 0.80 (0.06)
1 0.58 (0.10) 0.82 (0.10) 0.79 (0.08) 0.84 (0.05)
2 0.57 (0.08) 0.80 (0.09) 0.80 (0.07) 0.84 (0.06)

RF 3 0.56 (0.08) 0.83 (0.10) 0.78 (0.07) 0.84 (0.05)
4 0.57 (0.09) 0.83 (0.09) 0.78 (0.09) 0.84 (0.06)

None 0.57 (0.09) 0.85 (0.09) 0.78 (0.09) 0.83 (0.06)
1 0.43 (0.09) 0.71 (0.14) 0.68 (0.09) 0.67 (0.10)
2 0.39 (0.10) 0.67 (0.15) 0.65 (0.13) 0.61 (0.13)

SVM 3 0.37 (0.09) 0.64 (0.16) 0.64 (0.12) 0.58 (0.13)
4 0.35 (0.09) 0.60 (0.15) 0.63 (0.15) 0.53 (0.11)

None 0.53 (0.09) 0.80 (0.10) 0.75 (0.09) 0.79 (0.07)

data, in part due to its similarity function, which allows for noise or large deviations in

some features to not overwhelm the model [60]. Although SVM is known to perform well

when few training samples are available [23], there are also cases where if the data is feature-

dense, linear SVM will perform as well as SVM trained with a nonlinear kernel [28], as a

large number of features can make a dataset linearly separable [11]. This may be why the

non-tensor-reduced datasets tended to have stronger performance than datasets with tensor

reduction for SVM.

For RF and LUCCK, both F1 Score and AUROC tended to increase when moving from

no tensor reduction to tensor reduction when using only ECG signal data. For example, for

LUCCK in the 6-hour dataset, mean F1 score increased from 0.43 to 0.48 with SD remaining

similar (0.06 to 0.07), while RF’s F1 score increased from 0.41 to 0.48 without a change in

SD. We observed a similar increase in mean AUROC for LUCCK (0.60 ± 0.07 to 0.65 ±
0.07) and RF (0.57 ± 0.08 to 0.67 ± 0.06) going from using no tensor reduction to using

CP-ALS with rank 4. SVM does not follow this trend, however, and tends to increase in

performance as more information is added to the model, with no tensor reduction performing

the best. We see a similar trend in the 12-hour dataset.

For 6-hour data, including the ABP features improved both mean F1 Score and mean

AUROC across different CP-ALS ranks, as can be seen comparing Figures 4.2 and 4.3. For

12-hour data, RF and LUCCK results are mixed across the different ranks, but including

both ABP and ECG data decreased SVM’s performance when no tensor reduction took
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place. When CP-ALS was used with ranks 1-3 to reduce the feature space for SVM, there

is an increase in performance in the ECG + ABP scenario; this suggests that SVM may not

be a reliable model for these scenarios.

Adding EHR data to the signal features, presented in Figure 4.4, further improves per-

formance for both the 6- and 12-hour datasets, across all three model types.

While the results of models trained on tensor-reduced signal features show consistent

mean AUROC ≥ 0.65 for both LUCCK and RF, it is noted that these experiments were

trained on data from only one hospital, the availability of signals led to a small sample

pool, and the datasets used do not feature strong racial and ethnic diversity. To ensure the

reproducibility and generalizability of these results, it will be necessary to perform similar

experiments on a larger and more diverse dataset in future iterations.

4.5 Conclusion

In this study, predictions of increase in qSOFA score were created using tensor-reduced signal

features and EHR data. It is possible to make a prediction of increase in qSOFA score using

ECG data alone (for RF, AUROC 0.67 ± 0.06; for LUCCK, 0.65 ± 0.07), and results can

be improved if tensor-reduced ABP features are added (for RF, AUROC 0.71 ± 0.07; for

LUCCK, 0.71 ± 0.07), but results are mixed when signal features are directly added without

tensor reduction (for RF, AUROC 0.69 ± 0.07; for LUCCK, 0.69 ± 0.07). This may be

because the models are overwhelmed with information, whereas tensor reduction improves

performance because only pertinent information is given and noise is removed.

The previous experiments simulate the scenario when EHR data are completely unavail-

able. When EHR data are available and CP-ALS is used to reduce the feature space of the

signal data, results can be further improved (for RF, AUROC 0.77 ± 0.06; for LUCCK,

0.73 ± 0.07). This indicates that ECG signal features, ABP signal features, and EHR data

features can all contribute to sepsis prognosis.

That said, we wish to draw attention to the first scenario, with signals information alone

used for model training. The advantage of a signal features-based model is that predictions

can be made in the ICU on a continuous basis in real-time; this model would not be limited

by the wait times or availability of EHR data variables. From a clinical standpoint, fur-

ther developing an ECG-only model would be advantageous as, (1) it is minimally invasive

compared to an ABP, and (2) it is possible to monitor ECG remotely outside the hospital.

Devices such as Holter monitors and Zio patches could be used so that a patient with ini-

tially low qSOFA could be monitored at home, with a 6-hour window to predict an increased

risk for poor outcomes. Six hours would be adequate time for warning and arrival to the
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emergency department to seek appropriate treatment.

We stress that, while it may not achieve F1 or AUROC scores as high as the model

including EHR data, our signal features-only model offers an advantage in that it is not prone

to issues such as availability or inaccuracies of EHR data. Furthermore, it is continuously

collected allowing for real-time evaluation and assessment. For future work, we recommend

(1) the combination of EHR, tensor-reduced ECG, and tensor-reduced ABP for use in the

hospital or ICU and (2) tensor-reduced ECG only for use in home monitoring.
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Figure 4.2: Models Trained with ECG
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Figure 4.3: Models Trained with ABP and ECG
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Figure 4.4: Models Trained with ABP, ECG, and EHR Data
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CHAPTER V

Predicting Sepsis Trajectory with Privileged

Information and Continuous Physiological

Signals

5.1 Introduction

Following from the previous Chapter, the work presented in this Chapter also focuses on 
identifying patients at risk to develop poor outcomes related to sepsis, using a qSOFA score 
of ≥ 2 to represent increased risk for poor outcomes. This chapter also builds upon the 
continuous nature of ECG by including Privileged Information (PI), which, in a machine 
learning context, means data that is available at the training stage but not at the validation 
or testing stages. Because the dataset used for model-training is retrospective, we can let our 
model view future events for the training cases, in order to improve predictions on the test 
set. Learning using PI is described further in Section 5.2.1.2. The results of this research 
have been submitted to MDPI Diagnostics.

5.2 Methods

5.2.1 Machine Learning

The basic model used for ML was SVM [14]. For all models trained, we used a Gaussian 
kernel with the sequential minimal optimization [19] solver. A grid search selected a box 
constraint and kernel scale that resulted in the greatest AUROC value in the validation set. 
The process of model training was repeated 100 times. In each iteration, the dataset was 
divided into a training, validation, and test set based on patient, such that no patient in one 
set (training, test, or validation) could appear in another. The test set was withheld from 
model training. We recorded the mean and SD of F1 score, sensitivity, specificity, AUROC,
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and Area Under the Precision-Recall Curve (AUPRC) over the 100 iterations and report

them in Section 5.3.

5.2.1.1 Support Vector Machine

The model that we used to benchmark performance is the SVM with a Gaussian kernel. To

learn the decision rule y = f(x), it maps vectors of x ∈ X into vectors z ∈ Z and constructs

the optimal separating hyperplane between the two classes. The optimal separating hyper-

plane between the two classes is constructed by learning the decision rule f(z) = wz + b,

where w and b are parameters of the hyperplane (weight and bias, respectively), and SVM’s

objective function is:

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i

ξi

with the constraints

yi(w · zi + b) ≥ 1− ξi, i = 1, ..., n

ξ ≥ 0, C > 0

where (xi, yi) are a sample’s input and label pair, ξi functions as a slack variable and C is

the penalty parameter [14]. These allow for soft-margin decision boundaries when classes

are not linearly separable.

Here, t0 is the point where qSOFA is 1, and t6 is six hours later, where qSOFA either increases

to 2 or 3 (positive) or not (negative). The times t−4 to t−16 are lookback periods included in

the EHR data in the regular space. The brackets at time t0 show the ECG signal collected

in the regular space, x, and the brackets at time t6 show the ECG signal collected in the

privileged space, x∗.

Figure 5.1: Illustration of Timeline
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5.2.1.2 Learning Using Privileged Information

In this work, the regular space was information available at or before time t0, which was

when qSOFA was recorded as being equal to 1. Anything occurring after t0 was considered

the privileged space. An illustration is provided in Figure 5.1 to show where the regular

and privileged space for this particular experiment appeared on a timeline. Our method

of learning using PI in a medical context was built upon previous work [59, 39, 58]. The

features that we included as PI are described in Section 5.2.3.2. The method of SVM+ used

in [39] was a modified version of the SVM+ algorithm developed in [77], which in turn was

an extension of SVM [14].

As defined by Vapnik and Vashist [77], Learning Using Privileged Information (LUPI) is

a paradigm where, in the training stage, the teacher presents both training example x as

well as additional information x∗ to the learner:

x1, . . . , xn ∈ X and x∗1, . . . , x
∗
n ∈ X∗,

where n is the number of samples in the training set, and X and X∗ are different spaces.

Privileged information is not included in the test or validation sets. Vapnik and Vashist go

on to define the paradigm as: when given a set of triplets

(x1, x
∗
1, y1), . . . , (xn, x

∗
n, yn)

where

y ∈ −1, 1

is the classification created according to unknown probability measure P (x, x∗, y), find the

function

y = f(x, α∗), α ∈ Λ

that guarantees the smallest probability of incorrect classification.

Building on how SVM maps x ∈ X to z ∈ Z, SVM+ maps privileged information x∗ ∈ X∗

to z∗ ∈ Z∗. The objective function of SVM+ is:

min
w∗,b∗,w,b

1

2

(
∥w∥2 + γ∥w∗∥2

)
+ C

n∑
i

ξ (w∗, b∗, z∗i )
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such that

yi (w · zi + b) ≥ 1− ξ (w∗, b∗, z∗i ) ,

ξ (w∗, b∗, z∗i ) ≥ 0,

γ > 0

where ξ (w∗, b∗, z∗i ) = w∗ · z∗i + b∗ is the slack function for the privileged space, replacing

the slack variables ξi, and γ is a hyperparameter. From this, the hyperplane of SVM+ can

be tuned by PI, as privileged training samples x∗i can be used to regularize the loss from

training samples xi.

We used an implementation of SVM+ created by Li et al., which expanded upon SVM+’s

implementation, producing an efficient sequential minimal optimization algorithm to solve

the SVM+ problem [39].

5.2.2 Dataset

The data used in this study were from the same retrospective dataset created by the Uni-

versity of Michigan in Chapter IV, and used the same qSOFA score criteria to determine

positive and negative classes in a six-hour prediction window.

5.2.2.1 Cohort 1

To create this cohort from the full dataset, we selected for individuals with EHR, ECG, and

ABP data available 10 minutes before and up to t0, as well as 10 minutes before and up to

t6. In this study, EHR data included labs, medications, hourly fluid output, and vital signs.

Upon collecting 10-minute signals for feature extraction, signals determined to be 50% or

more noise were discarded.

With these conditions in place, the final dataset consisted of 106 instances of 105 patients,

with 59 positive cases and 47 negative cases. Due to the small size of the cohort, we opted

to use repeated train/test splits rather than 3-fold cross-validation as in Chapter IV. The

train/test split was 80/20, with a further 20% of the training set being reserved as a validation

set for the grid search.

5.2.2.2 Cohort 2

Due to the small size of cohort 1, we created cohort 2 with more relaxed criteria. Namely, we

only selected for individuals with EHR and ECG available in both the regular and privileged

space, and omitted the requirement for ABP data. This cohort 2 consisted of 453 instances
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of 434 unique individuals, with 144 positive cases and 309 negative cases. We used a similar

train/test split as in cohort 1. We created this second, larger cohort for two reasons: (1) to

see if ECG- and EHR-related results were consistent across both cohorts, and (2) as ABP

is typically only used for critically ill patients [53], we wanted to validate our findings on a

greater variety of patients with different statuses.

5.2.3 Signal Processing

For every sample, we collected the 10 minutes of ECG signal occurring directly before the

prediction gap for processing. This 10-minute signal was divided into 2 5-minute windows.

This constitutes the signal collected in the regular space. For signals collected in the privi-

leged space, we used the 10 minutes of ECG signal directly at the end of the prediction gap,

that is, a 10-minute period that ends at the event time, t6. As in Chapters III and IV, we

collected 10 minutes of ECG lead II for the analysis, filtered it with a Butterworth bandpass

filter, and divided into two five-minute windows.

5.2.3.1 Feature Extraction in the Regular Space

We calculated peak-based and statistical features from the TS approximation [15] of each

window of the 10-minute signal captured six hours before the increase of qSOFA. These TS

features have previously been used in previous work in healthcare contexts [6, 26, 33]. For

consistency with the study in the previous chapter, the same five ϵ values were used for TS

estimation and the same six features were extracted.

In addition to signal features, EHR data features were collected from both the 10 minutes

before t0 as well as four additional lookback periods at t−4, t−8, t−12, andt−16, in accordance

with those used in Chapter IV.

5.2.3.2 Feature Extraction in the Privileged Space

To generate features in the privileged space, ten minutes of ECG signal were extracted

starting from ten minutes before the event of interest up to the event (t6−10 minutes to t6).

The signal underwent the same Butterworth bandpass filter as the regular space ECG data.

Two different sets of features were computed from this period of time in the ECG signal.

First was a set of statistical summary features: mean, median, variance, kurtosis, skewness,

Shannon entropy, and the mean absolute value of the Fast Fourier Transform (FFT). These

were adapted from a set of features computed in [26]. This first set of features is referred to

as the set of SF-ECG privileged features, with “SF” standing for “statistical features”.
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To create the second set of features, we applied TS to this 10-minute signal from the

privileged space. Using the same ϵ values as from the regular space, we computed the number

of line segments, number of inflection segments, total variation of noise, total variation of

denoised signal, power of denoised signal, and power of noise over the 10-minute segment.

This second set of features is called the TS-ECG privileged features, with “TS” standing for

“Taut String”.

Lastly, one more set of features was computed from the privileged space: EHR data

features. These features were the same as those computed in the regular space, but did not

include the four sets of lookback features.

5.3 Results

The tables included here show results of SVM models and SVM+ models trained with

different types of privileged information. In each table, the PI Type “none” indicates a

basic SVM model with a Gaussian kernel. All other PI types use SVM+ to incorporate the

privileged information. The row with the greatest AUROC is shown in bold.

PI Type F1 Score Sensitivity Specificity AUROC AUPRC
None 0.71 (0.10) 0.71 (0.16) 0.65 (0.17) 0.65 (0.13) 0.66 (0.10)

TS-ECG 0.70 (0.11) 0.69 (0.16) 0.69 (0.14) 0.68 (0.12) 0.68 (0.10)
SF-ECG 0.70 (0.10) 0.68 (0.15) 0.68 (0.15) 0.65 (0.12) 0.67 (0.12)
EHR 0.70 (0.12) 0.70 (0.18) 0.66 (0.15) 0.65 (0.13) 0.66 (0.11)

Table 5.1: Taut String ECG in the Regular Space with Different Types of Privileged Infor-
mation Available in Cohort 1

PI Type F1 Score Sensitivity Specificity AUROC AUPRC
None 0.51 (0.06) 0.62 (0.10) 0.63 (0.10) 0.62 (0.07) 0.42 (0.07)

TS-ECG 0.48 (0.06) 0.60 (0.11) 0.59 (0.10) 0.58 (0.07) 0.39 (0.07)
SF-ECG 0.50 (0.06) 0.62 (0.10) 0.58 (0.10) 0.59 (0.07) 0.39 (0.06)
EHR 0.51 (0.07) 0.64 (0.10) 0.59 (0.09) 0.61 (0.08) 0.40 (0.08)

Table 5.2: Taut String ECG in the Regular Space with Different Types of Privileged Infor-
mation Available in Cohort 2

For models trained on cohort 1 with Taut String ECG data, shown in Table 5.1, using

SVM+ with additional Taut String ECG privileged information increased average AUROC

by 0.03 and average AUPRC by 0.02, with standard deviation remaining similar, compared

to the base SVM model. Cohort 2 does not show this increase with PI, but rather, yields the
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highest AUROC and F1 Score when no PI is added. Although cohort 2’s average F1 Score,

AUROC and AUPRC are lower than cohort 1’s, the standard deviation for each is smaller,

shown in Table 5.2.

PI Type F1 Score Sensitivity Specificity AUROC AUPRC
None 0.69 (0.09) 0.66 (0.13) 0.71 (0.14) 0.65 (0.11) 0.66 (0.10)

TS-ECG 0.69 (0.10) 0.67 (0.15) 0.70 (0.14) 0.64 (0.12) 0.65 (0.09)
SF-ECG 0.68 (0.10) 0.67 (0.15) 0.67 (0.14) 0.62 (0.12) 0.65 (0.10)
EHR 0.68 (0.11) 0.66 (0.16) 0.69 (0.16) 0.63 (0.13) 0.65 (0.10)

Table 5.3: Results of ECG and EHR in the Regular Space for Cohort 1

PI Type F1 Score Sensitivity Specificity AUROC AUPRC
None 0.60 (0.06) 0.70 (0.09) 0.69 (0.09) 0.72 (0.05) 0.54 (0.08)

TS-ECG 0.58 (0.05) 0.70 (0.09) 0.67 (0.08) 0.70 (0.06) 0.50 (0.08)
SF-ECG 0.58 (0.05) 0.69 (0.08) 0.68 (0.08) 0.71 (0.05) 0.51 (0.07)
EHR 0.59 (0.05) 0.70 (0.09) 0.69 (0.08) 0.72 (0.05) 0.53 (0.06)

Table 5.4: Results of ECG and EHR in the Regular Space for Cohort 2

Models trained on both TS and EHR are shown in Table 5.3 for cohort 1 and Table 5.4

for cohort 2. Neither model shows improvement upon adding PI. Cohort 1’s results show a

greater F1 Score and AUPRC compared to cohort 2’s results, but cohort 2 has an increased

AUROC, with smaller standard deviations across all values.

PI Type F1 Score Sensitivity Specificity AUROC AUPRC
None 0.59 (0.15) 0.59 (0.21) 0.61 (0.18) 0.51 (0.13) 0.55 (0.10)

TS-ECG 0.59 (0.13) 0.59 (0.19) 0.58 (0.17) 0.49 (0.12) 0.54 (0.09)
SF-ECG 0.62 (0.11) 0.61 (0.17) 0.60 (0.17) 0.51 (0.12) 0.56 (0.09)
EHR 0.62 (0.12) 0.59 (0.17) 0.64 (0.17) 0.54 (0.12) 0.58 (0.09)

Table 5.5: Results of EHR in the Regular Space for Cohort 1

For models trained on EHR data in cohort 1, shown in Table 5.5, adding privileged

EHR data increased mean F1 Score, AUROC, and AUPRC by 0.03 with standard deviation

decreasing in all cases. In cohort 2, adding PI did not improve performance. However,

AUROC is higher and with a smaller standard deviation compared to cohort 1, as shown in

Table 5.6.
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PI Type F1 Score Sensitivity Specificity AUROC AUPRC
None 0.59 (0.06) 0.68 (0.09) 0.71 (0.10) 0.71 (0.06) 0.55 (0.09)

TS-ECG 0.55 (0.06) 0.67 (0.10) 0.65 (0.09) 0.67 (0.07) 0.47 (0.07)
SF-ECG 0.56 (0.06) 0.68 (0.09) 0.66 (0.07) 0.68 (0.06) 0.49 (0.08)
EHR 0.57 (0.06) 0.66 (0.09) 0.68 (0.10) 0.68 (0.06) 0.51 (0.08)

Table 5.6: Results of EHR in the Regular Space for Cohort 2

5.4 Discussion and Conclusion

For the two cohorts in the previous sections, we found differing effects of adding PI to a

SVM model. In cohort 1, the smaller cohort which selected for patients more likely to be

critically ill, adding taut string privileged information was slightly beneficial when ECG

alone was being used as the regular space (AUROC 0.68±0.12 compared to 0.65±0.13). In

cohort 2, the larger and broader cohort, PI was not as informative to the models in any of

the presented scenarios.

For cohort 1, the TS-ECG SVM+ model with ECG as the regular space outperformed

EHR in the regular space and ECG and EHR in the regular space across F1 Score, AUROC,

and AUPRC. Cohort 2 had more positive influence from EHR data, where the models in-

cluding both ECG and EHR data in the regular space outperformed any variation of ECG

or EHR data alone in the regular space, regardless of adding PI. In both cohorts, ECG

information is strongly contributing to the model.

It is possible that the EHR data is more informative in the broader cohort as the patients

are more diverse; critically ill patients would be receiving similar antibiotic, vasopressor,

and other therapies, and therefore EHR data would be similar across all patients, whereas

a broader patient cohort may have different treatments being given to them, making EHR

data more distinctive between the more and less severe cases.

Cohort 1 was initially selected with the goal of also including arterial line features as

both regular space and privileged information features, however, neither of these features

significantly improved performance compared to the models only trained on ECG data.

It is also noted that in addition to the dataset being somewhat small, when constraints

based on signal availability are created, the dataset also loses racial and ethnic diversity,

with the vast majority of the cohort being made of white individuals, although distribution

of sex was roughly equal. Studies of sepsis prognosis using LUPI should be replicated on

both larger and more diverse cohorts outside of this one particular hospital, to ensure that

results are generalizable to a greater patient population.

Future trials could investigate different lengths of signal or windowing parameters, as well

51



as different designs of PI collection. For example, Sabeti et al. have used LUPI where PI

is only available for certain samples, using a ”learning using partially available privileged

information” paradigm [58, 59]. Additionally, different outcome variables, such as start of

mechanical ventilation, vasopressor administration, change of antibiotic dose, or others which

are clinically relevant, could be studied with a LUPI approach.
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CHAPTER VI

Concluding Remarks and Future Direction

Ongoing research into machine learning and artificial i ntelligence h ave b een c hanging the 
medical landscape, from clinical decision support, advances in radiology and image process-
ing, to novel drug design and re-purposing. These different fields all work toward the goal of 
improving the quality of care for patients, and alleviating burden for physicians and other 
caretakers.

In this thesis, I proposed different s cenarios f or u sing c ontinuously updating s ignals for 
use in different medical applications, either in an ambulatory (Chapter II) or hospital setting 
(Chapters III-V). This research also includes the use of different s ignal processing methods 
for ECG, HRV, and ABP, such as using TS, DTCWPT, filter banks, and using a multimodal 
approach to also incorporate EHR data. These different methods were tested and validated 
on data obtained from the University of Michigan.

In Chapter II, signal processing of EDA and HRV were used to predict poor sleep qual-
ity in fibromyalgia p atients c ompared t o n on-fibromyalgia co ntrols. In  Chapter II I, signal 
processing of ECG, ABP, other signals and EHR data were used in a multimodal approach 
to predict adverse events post-surgery. Chapters IV and V use signal processing of ECG as 
well as ABP and/or EHR data to predict increased risk of poor outcomes related to sepsis.

Much of the research performed in these analyses was limited by the availability of data. 
For example, both groups in Chapter II and cohort 3 of Chapter III were limited by the 
small number of individuals in each cohort.

In addition to small datasets, the availability of signal data across different individuals 
was a limitation. For instance, in Chapters IV and V, increase in qSOFA score was chosen 
as the outcome of interest, but other outcomes were investigated before selecting this choice. 
For example, we also explored the placing of the patient on mechanical ventilation, the 
patient beginning a course of antibiotics, or being given a vasopressor as potential outcomes. 
However, very few patients had ECG or other signal data available before the first event of 
interest; rather, in most cases, signals were only available once patients were already being 
given these treatments.
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In addition to the limitation of signal availability, we also lost patient diversity across the

cohorts. As can be seen in Appendices B and C, selecting for patients who have both (1)

signal data available at the desired time and (2) signal data deemed high enough quality or

noise-free enough for analysis, reduces the already limited racial and ethnic diversity of the

full dataset. It is worth investigating if the limited availability of these physiological signals

for non-white patient groups is due to unintended biases from equipment, such as how PPG

readings may be less accurate for Black patients [66], or potential biases from providers in

determining which patients should have these signals collected and monitored.

In future work, I would like to explore signals collected earlier in the patients’ treat-

ment, to be able to better view the changes in their physiological signals before starting

treatments which can affect the signals themselves. Similar to how Chapter III focuses on

generalizing the methodology used to predict adverse outcomes post cardiac surgery to more

heterogeneous cohorts, replicating these studies on other cohorts outside of the University

of Michigan hospital system would provide increased insight into the generalizability of the

methods proposed and increase patient diversity in the development of these models, es-

pecially for conditions as heterogeneous as sepsis. The limited availability of longitudinal

signal data, both in the retrospective biobank used in Chapters IV and V as well as public

datasets, is currently a limiting factor. Ambulatory devices, such as the wristband in Chap-

ter II or Holter monitors, provide opportunities for studying longitudinal signal data outside

of the hospital setting, and could be less expensive than initiating telemetry on many more

patients.

Further study of the utility of routinely collected, continuously updating, and noninvasive

ECG signals in the hospital setting should be pursued. Over all, this thesis is part of a

greater effort for developing clinical decision support systems for the ICU and other settings

where continuous status updates on patients are warranted. Using computationally efficient

methods such as taut string, and structure-preserving methods such as tensor decomposition,

serve to further this goal. The methods developed and tested in this thesis contribute to

improving prognosis for patients in an ambulatory setting for Chapter II, and in hospital

settings for the remaining chapters. Our long-term goal is to develop automated systems for

processing these continuous signals in real-time to aid caretakers in their decision-making

processes. The continuous nature of these signals makes them especially useful in providing

near real-time updates of a patient’s status. In addition to using continuous signals, their

mapping to individual patients can further be used in personalized care.

One future application of these methods is to move from the more population-focused

models to models tailored to the individual. For example, reinforcement learning can be

used to optimize these models on the patient level, with the individual’s EHR data and
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ECG signals continuously updating the model to better inform the model’s predictions.
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APPENDIX A

Features Extracted from BVP and EDA

This is the list of features extracted from BVP and EDA. The abbreviations used are Root

Mean Square (RMS), Very Low Frequency (VLF), Low Frequency (LF), and High Frequency

(HF).
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Table A.1: Table of Features for Each Five-Minute Window

Signal Feature List

BVP (Kubios Features)

Mean and SD of RR intervals,
Mean and SD of heart rate,
RMS of successive RR interval differences,
Count of successive RR interval differences > 50 milliseconds,
Area, Height, and Baseline width of RR histogram,
VLF, LF, and HF band peak frequencies,
Absolute VLF, LF, and HF power,
Relative VLF, LF, and HF power,
Normalized LF and HF power,
LF/HF power ratio,
Approximate entropy,
Sample entropy,
Poincaré plot short- and long-term variability

BVP (Additional Features)

Number of peaks,
Mean, Median, SD, Maximum, Minimum of:
Time between consecutive peaks,
Time between first and secondary peak in cycle,
Relative amplitude between consecutive primary peaks,
Relative amplitude between primary and secondary peaks

EDA

From tonic signal:
Mean,
Variance

From filter bank coefficients:
Mean,
Variance,
Maximum,
Kurtosis,
Skewness,
Area,
Shannon entropy
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APPENDIX B

Demographics of Michigan Medicine

Retrospective Dataset

A table of patient demographics from the Michigan Medicine retrospective dataset. The first

column lists characteristics, and the second column give the counts of each characteristic in

the full dataset. The third through sixth give counts of each characteristic for the positive

and negative outcomes in the 6- and 12-hour gap datasets. Note that the 6- and 12-hour

datasets are subsets of the total cohort of 1,803 patients who met the inclusion/exclusion

criteria.

Character-
istic

Full cohort
(N = 1803)

6 hours,
positive (N

= 59)

6 hours,
negative (N

= 199)

12 hours,
positive (N

= 37)

12 hours,
negative (N

= 189)
Age, Mean
(SD)

58.9 (17.9) 60.0 (16.8) 58.7 (16.9) 59.7 (17.0) 58.5 (16.9)

Race and
Ethnicity
Asian 20 1 2 0 2
Black or
African
American

198 9 14 4 14

Hispanic or
Latine

28 0 2 0 2

White 1520 48 175 32 166
Other 65 1 8 1 7

Sex
Female 866 26 91 16 84
Male 937 33 108 21 105

Table B.1: Characteristics of Patients from the Michigan Medicine Dataset
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APPENDIX C

Demographics of Second Michigan Medicine

Retrospective Dataset

Table C.1: Characteristics of Cohorts

Characteristic
Full Cohort Cohort 1 Cohort 2
(N = 1803) (N = 105) (N = 434)

Age, Mean (SD) 58.9 (17.9) 56.6 (17.2) 56.2 (18.9)
Sex, Female/Male 866/937 48/57 221/213
Race and Ethnicity
Asian 20 1 9
Black or

African-American
198 13 54

Hispanic or Latine 28 0 6
White 1520 88 352
Other 65 3 19

The first column lists patient characteristics, and the second gives counts of each charac-

teristic in the full dataset. The third and fourth columns give counts of each characteristic

for cohorts 1 and 2. Note that cohort 1 and cohort 2 are both subsets of the total cohort,

and cohort 1 is a subset of cohort 2.

59



BIBLIOGRAPHY

[1] Olivia Alge, S. M. Reza Soroushmehr, Jonathan Gryak, Anna Kratz, and Kayvan Na-
jarian. Predicting Poor Sleep Quality in Fibromyalgia with Wrist Sensors. In 2020
42nd Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), pages 4290–4293, Montreal, QC, Canada, July 2020. IEEE.

[2] Ruben Amarasingham, Ferdinand Velasco, Bin Xie, Christopher Clark, Ying Ma, Song
Zhang, Deepa Bhat, Brian Lucena, Marco Huesch, and Ethan A. Halm. Electronic
medical record-based multicondition models to predict the risk of 30 day readmission
or death among adult medicine patients: validation and comparison to existing models.
BMC Medical Informatics and Decision Making, 15(1):39, December 2015.

[3] Anthony C. Antonacci, Samuel P. Dechario, Caroline Antonacci, Gregg Husk, Vihas
Patel, Jeffrey Nicastro, Gene Coppa, and Mark Jarrett. Cognitive Bias Impact on
Management of Postoperative Complications, Medical Error, and Standard of Care.
Journal of Surgical Research, 258:47–53, February 2021.

[4] Brett W. Bader, Tamara G. Kolda, and others. Matlab Tensor Toolbox, August 2017.

[5] I. Bayram and I.W. Selesnick. On the Dual-Tree Complex Wavelet Packet and $M$-
Band Transforms. IEEE Transactions on Signal Processing, 56(6):2298–2310, June
2008.

[6] Ashwin Belle, Sardar Ansari, Maxwell Spadafore, Victor A. Convertino, Kevin R. Ward,
Harm Derksen, and Kayvan Najarian. A Signal Processing Approach for Detection of
Hemodynamic Instability before Decompensation. PloS One, 11(2):e0148544, 2016.

[7] Tony Berger, Jeffrey Green, Timothy Horeczko, Yolanda Hagar, Nidhi Garg, Alison
Suarez, Edward Panacek, and Nathan Shapiro. Shock Index and Early Recognition
of Sepsis in the Emergency Department: Pilot Study. Western Journal of Emergency
Medicine, 14(2):168–174, March 2013.

[8] Roger C. Bone, Robert A. Balk, Frank B. Cerra, R. Phillip Dellinger, Alan M. Fein,
William A. Knaus, Roland M.H. Schein, and William J. Sibbald. Definitions for Sepsis
and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest,
101(6):1644–1655, June 1992.

[9] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001.

60



[10] David Cella, William Riley, Arthur Stone, Nan Rothrock, Bryce Reeve, Susan Yount,
Dagmar Amtmann, Rita Bode, Daniel Buysse, Seung Choi, Karon Cook, Robert De-
vellis, Darren DeWalt, James F. Fries, Richard Gershon, Elizabeth A. Hahn, Jin-Shei
Lai, Paul Pilkonis, Dennis Revicki, Matthias Rose, Kevin Weinfurt, Ron Hays, and
PROMIS Cooperative Group. The Patient-Reported Outcomes Measurement Informa-
tion System (PROMIS) developed and tested its first wave of adult self-reported health
outcome item banks: 2005-2008. J Clin Epidemiol, 63(11):1179–1194, November 2010.

[11] Jair Cervantes, Farid Garcia-Lamont, Lisbeth Rodŕıguez-Mazahua, and Asdrubal
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