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ABSTRACT

In interests of autonomous and unmanned operation of seagoing vessels by both commercial

entities and the United States Government, significant research has been conducted for safe

navigation and cybersecurity. This research has contributed to the reduction of required on-

board personnel. However, research directed toward reducing required underway personnel

ensuring reliable operation of shipboard machinery systems is limited. Machinery reliability

has become a primary restriction for unmanned and autonomous operation. Due to complex-

ities driven by plant machinery size and inter-connectivity of systems, traditional methods

for improved reliability such as redundancy and component design for high reliability are

insufficient to provide necessary reliability for achieving unmanned and autonomous opera-

tion of vessel machinery plants over desired duration of deployment. Given the inability to

address component faults and failures, a need exists to focus research efforts on operational

resilience, or the ability to continue operation in fault prone and present environments.

To improve operational resilience, this work proposes use of Artificial Intelligence (AI)

to perform prognostics and diagnostics on plant machinery systems to understand state of

health and predict vessel operational availability. With knowledge of system capabilities until

failure, fault mitigation techniques may be employed. These techniques include modification

to mission operations or more complex applications such as control based fault mitigation to

maintain operational capabilities. Heretofore, research for ship machinery system prognostics

and diagnostics have been focused at component and subsystems levels to acquire input

data from hardware. Applications of prognostics and diagnostics at the system level are

prevalent in literature in instances with input data obtained from software simulation models

of hardware systems. Due to the lack of hardware based failure data, prognostics and

diagnostics of ship machinery plants is largely unexplored. In this work, a laboratory scale

ship machinery plant (MLSMP) is designed, constructed and leveraged to obtain lacking run

to failure (RTF) data. The MLSMP consisted of a cooling system, fuel system, emulated

diesel generator sets, energy storage system, electrical system, mission system, propulsion

system, and real time control and data acquisition system. The MLSMP was used to obtain

100 RTF profiles for common faults and failures of machinery systems and illustrate three

potential control mitigation strategies for the fault prone environment.
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The constructed dataset served as input data to explore potential AI models, including the

selected Long Short-term Memory (LSTM) Recurrent Neural Network (RNN) model. These

models aimed to detect individual system failures and predict when a system would fail to

support operational mission demands, which are utilized to create a multi-model prediction

algorithm for the MLSMP. The developed plant-level algorithm is tested and evaluated

using the 100 RTF profiles to demonstrate successes and predict accuracy concerning input

parameter selection. The LSTM model performed well in the diagnostic and prognostic

tasks for the cooling system. The models performed well for the more complex fuel system,

although errors increased as system complexity increased.

Efforts under this PhD research provide a significant step towards the operation of un-

manned and autonomous operation of ship machinery plants. These efforts include the con-

struction of a laboratory based ship machinery plant, obtaining run to failure data for the

laboratory based plant, constructing and evaluating an LSTM driven multi-model framework

for prognostics and diagnostics of the MLSMP, and showcasing the potential for unconven-

tional control methods to maintain operational availability in the presence of machinery

system faults.
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CHAPTER 1

Introduction

Autonomous and unmanned operation of marine surface vessels is of significant interest to

both commercial entities and the United States Government. Benefits driving the desire

for autonomous and unmanned operation include a reduction in operational cost, improved

safety, reduced emissions, and expansion of platform mission capabilities. Current research

for autonomous and unmanned vessel operation has primarily focused on safe navigation

and cybersecurity to enable the reduction of onboard personal. However, the importance of

machinery plants capable of reliable operation in the absence of human intervention has re-

ceived limited attention and remains a largely unexplored area [4]. Vessel machinery plants

consist of several interconnected and interdependent systems to achieve the functionality

required to support mission demands (propulsion loads, hotel loads, communication, etc.).

Components within these systems degrade throughout their service life and many compo-

nents requiring frequent preventative and corrective maintenance within a single deployment

period by onboard personnel.

Due to the complexity driven by plant machinery size and inter-connectivity of systems,

traditional methods for improved reliability such as redundancy and component design for

high reliability, are insufficient in providing the necessary reliability to achieve unmanned

and autonomous operation of vessel machinery plants over the desired long duration of de-

ployment. Provided with the inability to remove component faults and failures, this work

proposes a focus on operational resilience, or the ability to continue operation in a fault prone

and present environment. To improve operational resilience, in the interest of unmanned and

autonomous operations, this work proposes the use of artificial intelligence (AI), with the se-

lection of a long short-term memory (LSTM) Recurrent Neural Network (RNN), to perform

prognostics and diagnostics on plant machinery systems to understand and predict vessel

operational availability. Provided with knowledge of system capability until failure, fault

mitigation techniques can be employed. Basic techniques may include modifying mission

operations or adjusting deployment periods to allow for preventative and corrective mainte-
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nance. Advanced techniques may include the use of adaptive real time control of machinery

plant systems to mitigate faults and maintain operational capabilities.

Efforts under this PhD research provide a significant step towards the operation of un-

manned and autonomous operation of ship machinery plants. These efforts include the

construction of a laboratory based ship machinery plant, obtaining run to failure data for

the laboratory based plant, constructing and evaluating an LSTM driven multi-model frame-

work for prognostics and diagnostics of the laboratory based machinery plant, and showcasing

the potential for unconventional control methods to maintain operational availability in the

presence of machinery system faults. The background and motivation for these efforts are

defined further in the subsequent chapter, followed by an overview of the research process

and an overview of the key contributions.

1.1 Background Work and Motivation

Using stochastic reliability assessment methods previous studies [4–6] have quantified the

shortcomings of ship machinery systems for successful operation in the unmanned and au-

tonomous environment. The assessments provide clear evidence that traditional manned

machinery systems are unable to reliably operate without human support over a long mis-

sion duration. In effort to close this knowledge gap Olson [7] used a stochastic Monte-Carlo

simulation to evaluate varied machinery system architectures with modifications inspired by

systems with ultra-high reliability in other domains. However the unique marine environ-

ment with high system complexity (size and interconnectivity) and long operational periods

(weeks to months) did not allow modifications to system architectures to meet the demands

of the marine operating environment. Additionally, Olson [7] studied long-duration mission

performance in the face of machinery system failures. Olson [7] postulated a mission profile

and conducted Monte-Carlo simulations to determine the probability that the ship could

accomplish one or all of its assigned missions. A primary limitation of this work was the

binary nature of the failures. A component did not consider the actual and typical degrada-

tion in performance but was classified as either ‘healthy’ or ‘failed’. This rigid classification

did not allow for the potential of active fault mitigation in a partially failed or failed system.

These limitations require the need to better understand the degradation profile of common

faults and failures within machinery plants and potential control mitigation strategies for

machinery operation in the presence of common faults.

Given the inability to remove failures in design for this environment, successful unmanned

operations will hinge on the ability to detect system faults, degradation in plant performance

and predict the future operational availability of the machinery plant. Provided with accurate
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knowledge of the current and future state of machinery plant health, mitigation techniques

can be employed to avoid catastrophic plant failures caused by a degradation in component

and system health. This is a different approach to that of the aviation or space domains where

ultra-high reliability equipment or multiple redundant systems are utilized to eliminate fault

impacts on performance altogether. The approach being proposed in this research is to allow

individual component faults to occur and to manage the consequences of their occurrence

either through redundant systems or through mission limitations.

To understand the current condition monitoring or health monitoring efforts by the United

States Navy, a primary entity heavily pursuing autonomous and unmanned vessels, a review

of their ICAS system was conducted. The ICAS system is the primary condition monitoring

system utilized by the United States Navy [8]. The purpose of ICAS is to provide infor-

mation about the current health of system components in effort to shift from preventative

maintenance conducted based on a calendar schedule to condition based maintenance con-

ducted on an as needed based on the current health of the given system or component. The

program is successful in avoiding common critical failures through the usage of rule based

restrictions and warnings [9, 10]. However, given the complexity and diversity of all systems

onboard these vessels the ICAS system does not provide the ability to predict future failures

and does cannot sufficiently support an autonomous system.

Non-intrusive load monitoring (NILM) provides a potential path to implement the neces-

sary prognostic capabilities needed for the autonomous and unmanned environment. NILM

utilizes a single non-intrusive current and voltage sensor placed on a single transmission line

feeding a distribution panel, which supports many varying loads. This data can be disaggre-

gated and analyzed in time to provide notification of potential system faults or abnormalities

[11]. In recent years there has been several successful applications of NILM to the marine

domain. Examples include, detection of mechanical coupling failure [11], ventilation sys-

tem faults [12], and grey water system faults [13]. Additionally, real world deployment has

been shown successful on a United States Coast Guard Cutter [14]. While these examples

provide a clear proof of concept for NILM, all required an extensive amount of research

for every individual application and shows limited promise for repeatability across similar

systems. Given the complexity and diversity of surface vessel systems using NILM across all

machinery systems becomes infeasible.

Applications of prognostics in other domains have recently leveraged AI, enabling a more

flexible framework across various components and systems [15]. On hardware systems, prog-

nostics has been primarily limited to the component level applications. Component level

applications include transformer fault detection [16] and machine bearing RUL predictions

[17]. At the system level, simple hardware systems explore the use of AI for optimal op-
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erational state prediction as a first step towards understanding system level interactions

through the use of data driven methods. An example is the use of a wind turbine hard-

ware testbed to predict optimal operating state [18] using a Convolutional Neural Network

(CNN) driven approach. Leveraging data from software models of hardware systems, further

advancements in prediction algorithms have been made when compared to applications on

physical hardware systems. An example of a software system model is NASA’s gas turbine

model [19], which generates run to failure (RTF) data for a range of common failure modes.

This example model has become widely utilized as input data for testing data driven fault

diagnostics and failure prediction algorithms [20, 21]. These applications of prognostics for

both real world systems and model systems are contingent on rich datasets, and for real

world systems pose a constant bottleneck [22].

In effort to reduce the amount of required real world data needed, a digital model can

be tied to a physical system to create a digital twin (DT). The “digital twin” is popular

in current academic research and provides some potential to expand the time horizon of

current prognostic methods and account for the complexity of the interdependent marine

systems. The digital twin provides a model replicating a physical system, which can be

leveraged for usages including prediction of the response to a system given an unexpected

event prior to the occurrence of the event. Using physics based models, digital twins have

been constructed and updated by optimal decision trees to track structural damage for a

12ft unmanned aerial vehicle [23]. Additional examples of digital twin technology within

the marine domain include condition monitoring for failure avoidance [24–26]. Furthermore,

a recent literature review found applications of digital twin across several domains which

show [27] initial implementation for maintenance optimization. Model integration and a

formal maintenance framework based on model outputs, however, form two key barriers

of digital twin for maintenance optimization [28]. As shown in recent research, a “digital

twin” approach requires extensive knowledge of all system parameters, system operating

profiles and an extensive model to be constructed. Given these requirements the “digital

twin” is restricted by the time and design intensive efforts required to serve as an enabler of

unmanned and autonomous and machinery system operation in the marine environment.

In this work the limitations of software based data or data from a single hardware system is

resolved by the use of data from a laboratory scale ship machinery plant. The laboratory scale

ship machinery plant emulates dynamics and cross couplings between systems within the

plant that is seen on current ocean going ship machinery plants with additional functionality

to inject and operate the plant to failure through virtual linkages. These virtual linkages

enable fault and failure injection and system coupling that are not physically provided,

allowing the repetitive injection of faults and failures without damaging physical hardware.
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1.2 Research Overview

Data driven applications, such as AI, for prognostic and diagnostic tasks use large input

datasets to train, validate and test potential models. To provide the necessary dataset a

notional laboratory-scale ship machinery plant or MLSMP is proposed, designed, and con-

structed. The MLSMP provides hardware and software based system to system connections

to enable the injection of common faults and failures with increasing severity in time until

the plant fails. Failures are defined as a point where the MLSMP is unable to provide the

necessary functionality for a desired operation (mission and propulsion load). The software

based linkages enable the injection of faults until failure, without physical damage to com-

ponents, providing an environment to record repetitive run to failure profiles. The MLSMP

provides a second key capability to explore potential fault mitigation techniques in the lab-

oratory environment. Three exemplary simulations are provided to showcase this capability.

A simple diagnostic and prognostic task was completed for a singular subsystem within the

cooling system to confirm initial feasibility prior to plant level applications. To explore the

application of AI for detection of common faults and prediction of future plant operational

availability for the MLSMP a large dataset with common run to failure profiles was required.

A software model of the MLSMP was constructed and integrated with a model of clogging

from literature. The model simulated a distribution of clogs and leaks for the cooling and

fuel systems, providing control points to repeat the distributed run to failure profiles in

hardware. A dataset of 100 run to failure (RTF) profiles, for the MLSMP was obtained by

simulating the software control points on the hardware machinery plant through a real time

automated control code. Each run to failure profile consists of up to 10 sequence-points,

where each sequence point contains three unique sets of data at three set loading points for

the propulsion and mission systems. The constructed dataset was used as input data to

explore potential AI models and select a long short-term memory (LSTM) Recurrent Neural

Network (RNN) driven model for the detection of individual system faults and the prediction

of when an individual system would no longer provide the necessary functionality to support

the necessary operational mission demands on the respective system. The applications of

diagnostics and prognostics are used to form a multi-model diagnostic and prognostic pre-

diction algorithm for the MLSMP. The formed plant level algorithm is tested and evaluated

through the 100 RTF profiles to showcase the algorithms successes and prediction accuracy

with respect to input parameter selection.
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1.3 Research Contribution

In this PhD research, a novel laboratory scale ship machinery plant is designed, constructed

and leveraged for acquisition of a run to failure dataset and as a simulation space to explore

the potential of unconventional real time control methods for fault mitigation and avoidance.

The run to failure dataset contains 100 failure profiles with common faults and failures

injected into the laboratory systems, indicative of common faults and failures seen in real

world applications. An LSTM driven multi-model diagnostic and prognostic framework is

formed and tested using the collected laboratory scale run to failure dataset. The primary

contributions of this research can be summarized as follows:

1. A laboratory scale ship machinery plant (MLSMP) was designed, constructed and

validated with the necessary physical and virtual system interconnections to accurately

represent plant dynamics and common faults of machinery plants found on vessels in the

real world. The lab based plant, contains unique virtual linkages, in addition to physical

system to system linkages, to enable to injection of common faults and failures within

the machinery plant. The injected of faults and failures into the physical hardware

plant provided the novel ability to increase the severity of the desired faults until plant

failure occurs, without causing physical damage to the components or systems within

the laboratory enabling the ability to collect repetitive run to failure datasets. The

MLSMP provides a second capability to explore alternative fault mitigation techniques

through real time system control. Hardware simulations of the MLSMP provide insight

into the potential to improve operational resilience in an unmanned ship machinery

environment environment through unconventional control mitigation techniques.

2. A run to failure (RTF) dataset was modeled in software and simulated in hardware

through an automated process to build an archive of 100 RTF profiles to serve as input

data for the exploration of data-driven diagnostic and prognostic algorithms and their

ability to detect common faults and to predict when the vessel machinery plant will be

unable to support a given operational profile. The RTF model incorporated common

faults and failures for the cooling and fuel systems, clogs and leaks, and leveraged

an existing model of real world clogs from literature to build a software model which

simulated the buildup of particles on filters in time for the cooling system and fuel high

and low pressure systems.

3. Unconventional control mitigation techniques are explored through a group of plant

level hardware simulations using the MLSMP. This process illustrates the potential of

real time control to improve operational resilience in a fault prone environment.
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4. A multi-model LSTM driven framework is developed and evaluated for the ability to

perform prognostic and diagnostic tasks to determine the current state of health for the

MLSMP and predict future plant operational availability over a deployment period,

until failure. The novel multi-model LSTM driven framework, evaluated using failure

data from the MLSMP, provides a step forward in improving operational resilience for

unmanned and autonomous vessels in a laboratory environment.
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CHAPTER 2

Novel Multiphysics Laboratory Ship

Machinery Plant

2.1 Introduction

A novel multi-physics physical hardware system has been built to obtain failure data for

machinery systems to address the existing knowledge gap that currently prevents successful

operation of marine machinery systems in absence of human intervention. The laboratory

systems are consistent with standard commercial architectures and incorporate systems with

high criticality and risk associated with failures. The fluid systems are linked with the

electrical system providing real-world interactions between multi-physics systems, similar to

what is found aboard modern ships. The fuel system is linked using software to the electrical

generation system to provide real time dynamic response of the generation system based on

the rail pressure of the fuel system. In a similar manner, the cooling system receives a

software link to emulate the losses for all systems within the machinery plant. Both Fuel

and cooling systems are physically linked to the electrical system through as their supply

pumps draw power from the electrical system. These links provide multiple back-and-forth

interactions between the various systems similar to what would occur in an actual shipboard

environment. This selection provides a hardware system capable of emulating real world ship

operation and trigger common failures over time, to record system data, which will serve

as necessary inputs into machine learning models and the larger prognostics framework.

The following sections of this chapter detail the constructed physical systems within the

laboratory followed by a final section showcasing the laboratory system capabilities through

exemplary hardware simulations. A high level overview of the eight sections within this

chapter is provided in the following paragraph.

The first section, Section 2.2, of this chapter discusses the electrical power distribution

system within the laboratory. The section details the main input connection to utility

power and the distribution panels within the laboratory that are representative of ship
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switchboards and a singular commercial panel for energy distribution to power our emulated

diesel generators and energy storage system which are discussed in the second section of

this chapter, Section 2.3. The following two sections, Section 2.4 and Section 2.5 define

the cooling and fuel systems within the laboratory machinery plant, which are necessary

support systems for the energy generation systems and large machinery plant loads. The

large machinery plant loads consist of a two propulsion systems discussed in Section 2.6 and

two mission systems discussed in Section 2.7. The machinery plant is controlled through

an embedded control system that has the ability to both control the plant in real time and

acquire data, this system is discussed in Section 2.8. The final section, Section 2.10, of this

chapter showcases the capabilities of the laboratory scale ship machinery plant through two

exemplary simulations. The final multi-physics hardware system defined throughout this

chapter is referred to as the University of Michigan laboratory-scale ship machinery plant or

(MLSMP).

2.2 Electric Power Distribution

The laboratory electrical system architecture is consistent with architectures found on most

fully electric commercial ships and is shown in Figure 2.1.
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Figure 2.1: Electrical One Line Diagram

As shown above in Figure 2.1, the electrical grid within the laboratory consists of 5 main

distribution panels: a commercial panel, main switchboard 1 and 2 (MSB1 and MSB2),

and secondary switchboard 1 and 2 (SSB1 and SSB2). The commercial panel is powered

through a single, three phase 480 Vac 50A utility connection. The utility connection is

first isolated using a delta-wye isolation transformer prior to connection to the commercial

panel. The commercial panel which is not part of the emulated shipboard system, is used

to provide power to drive the three emulated generator sets (defined in Subsection 2.3.2),

shore connections to MSB2 and to the inverters allow operation without the generator sets

online and enable charging of the energy storage system. MSB1 and MSB2 serve as the

main ship switchboards providing power to three phase loads and power through delta-wye

transformers to the secondary switchboards. The secondary switchboards (SSB1 and SSB2)

provide service to single phase loads that consist primarily of the fuel and cooling pumps.

MSB1 is connected to the energy storage system and emulated generator set 1. MSB2 is

connected to emulated generator set 2 and 3. A visual overview of as built MSB1 and MSB2

is shown below in Figure 2.2.
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Figure 2.2: Main Switchboard 1 and 2

As shown above in Figure 2.2 the main switchboards contain a three phase distribution

system with breakers and controllable relays. The switchboards also contain current and

voltage sensors along with harmonic filters and EMI filters. A similar construction is used

for the secondary switchboards and is shown below in Figure 2.3.

Figure 2.3: Secondary Switchboards 1 and 2

The sensor signals from all four switchboards and the relay control outputs are integrated

through the embedded control system discussed in Section 2.8. The electrical system signals

are summarized below in Table 2.1.
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Table 2.1: Electrical System Signal List

Component Signal Units

Utility Input 3 Phase (A,B,C) - Voltage Vac RMS

Utility Input 3 Phase (A,B,C) - Amps A RMS

Utility Input Neutral A RMS

Utility Input Ground A RMS

MSB1 3 Phase (A,B,C) - Voltage Vac RMS

MSB1 3 Phase (A,B,C) - Voltage Vac waveform

MSB2 3 Phase (A,B,C) - Voltage Vac RMS

MSB2 3 Phase (A,B,C) - Voltage Vac waveform

SSB1 3 Phase (A,B,C) - Voltage Vac RMS

SSB1 3 Phase (A,B,C) - Voltage Vac waveform

SSB2 3 Phase (A,B,C) - Voltage Vac RMS

SSB2 3 Phase (A,B,C) - Voltage Vac waveform

Electrical Relay SSB1 to SSB2 I/O

Electrical Relay Shore Tie I/O

Electrical Relay Main Input I/O

Electrical Relay Resistive Load 1 I/O

Electrical Relay Resistive Load 2 I/O

Electrical Relay MSB1 to SSB1 I/O

Electrical Relay MSB2 to SSB2 I/O

Electrical Relay MSB1 to MSB2 I/O

2.3 Emulated Generator Sets and Energy Storage

2.3.1 Overview

Four energy sources have been constructed within the laboratory to provide connections to

MSB1 and MSB2 representative of power profiles onboard real world all electric AC ships.

The systems consist of three emulated generator sets and a battery-based energy storage

system. Two emulated generator sets are connected to MSB2 and provide the ability to

operate in parallel or as a sole power source. The energy storage system and emulated

generator set 1 are connected to MSB1 and provide the ability to power the switchboard in

multiple configurations. The configuration details of the emulated diesel generator sets and

energy storage systems are provide below in the following two subsections.
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2.3.2 Emulated Generator Sets

The laboratory contains three emulated generator sets, which can simulate the dynamics of

any diesel engine or gas turbine engine onboard real world vessels. To emulate the desired

combustion engine or gas turbine, the physical hardware system is coupled with a real time

controller to produce the desired system dynamics. The physical system uses a variable

frequency drive (VFD) to drive an induction machine, which is coupled to a three phase

synchronous alternator providing power to the main switchboards. The VFD receives an

input from a SISO (single input single output) open loop controller running in real time,

which models the desired dynamics (gas turbine or diesel engine). The control loop uses the

applied load torque provided from the VFD as the control input to update the generator

frequency command in real time with respect to changes in system load. This approach

followed past modeling approaches found in [29–34]. The open loop controller is shown

visually in Figure 2.4 with parameters defined below in Table 2.2.
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Figure 2.4: Diesel Generator Emulation Control

13



Table 2.2: Diesel Generator Emulation Control

Parameter Definition

Igen Generator Current Demand (A)

J Engine Inertia (kg-m2)

K1 Generator Current Load to Engine Torque Conversion Factor (Nm/A)

Kσ Controller Proportional Gain for Diesel Response Dynamics (Nm)

τL Torque Load from Generator (Nm)

T(e,min) Engine Torque Lower Bound (Nm)

T(e,max) Engine Torque Limit (Nm)

δlm Limit for Integrated Error (-)

τld Time Constant for Engine Response Dynamics (s)

τlg Time Constant for Engine Response Dynamics (s)

ωeng Engine Speed (Rad/sec)

ωeng Engine Set Speed (Rad/sec)

ωerr Difference Between Engine Set Speed and Current Speed (Rad/sec)

The open loop controller shown in Figure 2.4 accounts for the transient response of real

world gas turbines or diesel generators that arise as a results of generator inertia, fuel system

dynamics and generator control systems. A visual of the system response to a step in load

for both the constructed MATLAB Simulink model and the actual hardware system is shown

below in Figure 2.5.
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Figure 2.5: Diesel Generator Model and Hardware Example Response

As shown above in 2.5 the hardware system is able to closely match the dynamic profile
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in the event of a step on and off in system loading of 40 % of generator nameplate capacity.

The ability to emulate a real world diesel or gas turbine generator set through the use

of an embedded control system, VFD, induction machine and synchronous three phase al-

ternator provides the capability to model in hardware any physical generator system. This

configuration also provides ability to model in hardware common faults and failures for en-

ergy generation systems and the subsequent plant level response without a damaging the

physical hardware system. The losses of a diesel generator set are also emulated in the ma-

chinery plant by placing the corresponding waste heat losses into the cooling system through

a virtual linkage discussed in Section 2.4. A summary of the signals hardware I/O signals for

emulated diesel generator set 1 is shown below in Table 2.3. The signals shown for generator

set 1 are identical for generator set 2 and generator set 3.

Table 2.3: Emulated Generator Set 1 Signal Summary

Component Signal Units

3 Phase Alternator 3 Phase (A,B,C) - Voltage Vac RMS

3 Phase Alternator 3 Phase (A,B,C) - Amps A RMS

3 Phase Alternator 3 Phase (A,B,C) - Voltage Vac waveform

3 Phase Alternator 3 Phase (A,B,C) - Amps A waveform

VFD Load Torque Applied % of Max Torque

VFD Start / Stop I/O

Relay Gen1 to Bus I/O

AVR Voltage Setpoint Vac RMS

2.3.3 Energy Storage and Inverter System

The energy storage system shown visually in Figure 2.6 consists of three commercial inverter

and charger units connected to MSB1 in a wye convention and programmed to operate as

a three phase system. The three units have a common DC link to a 24V, 400 AH battery

bank. The battery bank is capable of providing 9.6 kWh of power and an instantaneous

output of 9 kVA. The energy storage system is programmed with four main operation modes

defined below.

• Mode 1 (UPS): The energy storage system is on standby and instantaneously (within

20ms) takes over supply of the connected loads in the event generator 1 is disconnected

or power quality is out of tolerance.
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• Mode 2 (UPS and Assist): In addition to the functionality of Mode 1, Mode 2 provides

power assist to the connected loads in parallel to generator 1 for load cases greater

than 90 % of generator capacity and for sharp changes in load.

• Mode 3 (charge only): Allows the energy storage system to recharge through connection

to the utility panel, without output to MSB1 or connection to generator 1.

• Mode 4 (charge % support): This mode provides the functionality of Mode 2 with an

additional ability for the energy storage system to charge from the connected generator

as needed to maintain the battery bank state of charge.

The four configuration modes for the energy storage system provide flexible functionality

for a large variety of machinery plant simulations and are referred to in subsequent sections

and chapters of this thesis.

A summary of the signals hardware I/O signals for the energy storage system is provided

in Table 2.4.

Table 2.4: Energy Storage Signal Summary

Component Signal Units

Battery Bank DC Current A DC

Battery Bank Temperature Deg C

Battery Bank Voltage Vdc

Inverter 3 Phase (A,B,C) - Voltage Vac RMS

Inverter 3 Phase (A,B,C) - Amps A RMS

Inverter 3 Phase (A,B,C) - Voltage Vac waveform

Inverter 3 Phase (A,B,C) - Amps A waveform

Inverter Relay Inverter to Bus I/O

2.3.4 Visual Summary

A visual of the emulated generator sets and energy storage system within the laboratory is

shown below in Figure 2.6.
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Figure 2.6: Emulated Diesel Generator Sets and Energy Storage

As shown above in Figure 2.6, the three emulated diesel generator sets are located below

the table and are powered by VFDs mounted to the wall in the upper left hand side of the

image. The energy storage chargers and inverters are wall mounted in the upper right hand

side of the image, with connection to the battery bank located in the black boxes on the

right hand side of the image.

The energy storage and emulated generators are connected through virtual links in real

time to support cooling and fuel systems. This coupling provides the ability to inject common

fuel and cooling system faults and observe the subsequent electric plant response. The cooling

and fuel support systems are defined in the next two sections of this chapter.

2.4 Cooling System

2.4.1 Overview

The cooling system represents the necessary support system that would exist in an all electric

ship machinery plant to provide waste heat dissipation for water cooled systems and their
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losses. A few examples of water cooled equipment onboard a real would ship machinery plant

include: propulsion system drives, diesel generator sets, air compressors, air conditioning

plants, and gas turbines. The cooling system in the laboratory setting, consists of two

parallel flow paths which can be configured as a dual-redundant system. The cooling system

diagram is shown below in Figure 2.7.

Figure 2.7: Cooling System - Diagram

The two parallel flow paths are serviced by two centrifugal pumps, where service pump 1 is

connected to SSB1 for power providing flow to flow path 1 and service pump 2 is connected

to SSB2 for power providing flow to flow path 2. Each flow path draws from a “ocean”

water tank and discharges the waste water into a “used” water tank. Both flow paths have a

proportional valve which provides the ability to place variable restrictions to flow in real time,

representative of real world cooling system clogs. Each flow path also contains a controllable

valve to inject a binary leak into the system.

The cooling system dissipates waste heat generated by two three phase restive heaters
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that are each individually controlled with a variable frequency drive. The real time input

of waste heat into the cooling system is emulated through a virtual control system linkage

defined in Subsection 2.4.3. The embedded control system takes into account loading on the

generator, propulsion systems, and mission systems. The respective waste heat loss, given

real time plant loading is injected into the cooling system using a three phase restive water

heater and a variable frequency drive for control of the injected waste heat. A list of signals

for the cooling system is provided below in Table 2.5.

Table 2.5: Cooling System Signals and Controls

Variable Path Parameter

P1-1 1 Pressure before clogs and leaks

P1-2 2 Pressure before clogs and leaks

P2-1 2 Pressure after clogs and leaks

P2-2 2 Pressure after clogs and leaks

T1-1 1 Inlet temperature to heater1

T1-2 1 Outlet temperature to heater1

T2-1 2 Inlet temperature to heater2

T2-2 2 Outlet temperature to heater2

T-Ocean - Ocean tank temperature

T-Waste - Waste tank temperature

PV1-1 1 Proportional valve for clog simulation

PV2-1 2 Proportional valve for clog simulation

L1 1 Controllable ball valve for Leak simulation

L2 2 Controllable ball valve for Leak simulation

CT1 1 Current transducer on pump 1

CT2 2 Current transducer for pump 2

As shown in Table 2.5 the cooling system and its’ two parallel flow paths has rich group of

input and output signals to enable virtual linkages between other plant systems and enable

data acquisition for prognostic implementation. The injection of cooling system faults (leaks

and clogs) and the emulated waste heat is further defined in the following two sections

followed by a summary of the cooling system capabilities.
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2.4.2 Fault Injection

To inject common faults and failure onboard real world vessels a proportional valve and

controllable ball valve were added to both flow paths within the cooling system. The ball

valve provides the ability inject binary leaks (leak or no leak). The leak size is set by a manual

ball valve prior to the controllable valve. This set point is constant throughout all work in this

thesis. The injection of leaks can be triggered through two main modes: Manually through

the user HMI or at a desired time during a simulation through a spreadsheet containing

timed control system commands.

Two proportional valves are used to inject clogs into both flow paths. The proportional

valves can be controlled as a linear function of cross sectional area from fully open to closed.

The control to the valves can be sent in three modes: a manual mode set by the user through

the HMI interface, a constant mode read from a loaded spreadsheet, or in a dynamic mode

with parameters set in a loaded spreadsheet. The three modes enable the ability to run

large simulation batches at a constant clog rate or a dynamically changing clog rate and also

provides the ability for a user to simply set the clog through the user HMI.

2.4.3 Emulated Waste Heat

To provide a virtual linkage for waste heat based on plant load, the heater control command

is provided as a percentage of maximum system losses. The waste heat for both systems is a

function of the generator load (% load torque), energy storage output (kW), mission system

power consumption (kW), and propulsion system power consumption (kW) in time. The

respective component losses for each heater is shown below in Equation 2.1 and Equation

2.2 with variables defined in Table 2.6.

H1load(%) = f(G1Torque, G2Torque, EkW , P1kW ,M1kW ) (2.1)

H2load(%) = f(G3Torque, P2kW ,M2kW ) (2.2)
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Table 2.6: Waste Heat Emulation

Variable Parameter Unit

G1Torque Generator 1 Drive Torque % of max

G2Torque Generator 2 Drive Torque % of max

G3Torque Generator 3 Drive Torque % of max

G1kW Generator 1 Output kW

G2kW Generator 2 Output kW

G3kW Generator 3 Output kW

EkW Energy Storage Input and Output kW

P1kW Propulsion System 1 - power consumption kW

P2kW Propulsion System 2 - power consumption kW

P1kW−max Propulsion System 1 - max power consumption kW

P2kW−max Propulsion System 2 -max power consumption kW

M1kW Mission System 1 - power consumption kW

M2kW Mission System 2 - power consumption kW

The waste heat losses for the propulsion and generator systems leverage lookup tables.

The lookup tables take input of percentage load and provide the respective percentage of

losses given plant loading. The lookup tables have been developed from real world propulsion

and generator set load to loss curves. The waste heat losses for the mission system are

assumed to be constant, with 80% of the total load rejected to heat (20 % efficient). The

energy storage system losses are assumed to be a constant 10 % rejection to waste heat for

any energy used to charge or discharge the system. These constant percentages could be

changed, or a load vs. loss profile could be inserted in their place. The calculation for waste

heat loss is further defined in the equations below where Lgen defines the lookup table for

generator losses and Lprop defines the lookup table for propulsion system losses.

H1load(%) =
1

C1
∗ (Lgen(G1Torque) ∗G1kW + Lgen(G2Torque) ∗G2kW + EkW ∗ 0.10

+ Lprop(
P1kW

P1kW−max

) ∗ P1kW +M1kW ∗ 0.80) (2.3)

21



H2load(%) =
1

C2
∗ (Lgen(G3Torque) ∗G3kW + Lprop(

P2kW
P2kW−max

) ∗ P2kW +M2kW ∗ 0.80)

(2.4)

The two equations shown above leverage constant terms C1 and C2 to scale the calculated

waste losses. The constant term C1 and C2 represent the respective maximum system losses

to convert the waste heat into a value between 0 to 100 representing the percentage of waste

heat losses. A summary of the I/O signals for the control of waste heat is provided for heater

1 below in Table 2.7 and is identical for heater 2.

Table 2.7: Waste Heat System 1 Signals

Component Signal Units

Heater VFD Input Current Amps RMS

Heater VFD Enable I/O

Heater VFD Waste Heat Command (%) of max

Heater VFD Relay to SSB1 I/O

2.4.4 Summary

The cooling system provides a virtual link between the dynamic plant load and required waste

heat dissipation, has the ability to inject common real world faults (clogs and leaks) as well

as the functionality to impose limitations on other systems within the laboratory given as a

result of overheating. These capabilities provide the ability to accurately represent common

faults and failures in time for a shipboard cooling system and the subsequent effect on plant

level functionality. A visual of the as built cooling system configuration is shown below in

Figure 2.8
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Figure 2.8: Cooling System - Visual

2.5 Fuel System

2.5.1 Introduction

The fuel system is interconnected through a virtual linkage to the available emulated diesel

generator torque in real time, which provides the ability to limit available generator torque

based on fuel system conditions. The fuel system consists of two parallel flow paths, each

containing a low pressure supply system and a high pressure injection system. The fuel

system simulates fuel flow using water as the fluid to represent fuel. The fuel system diagram

is shown below in Figure 2.9.
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Figure 2.9: Fuel System - Diagram

The two flow paths are identical, each containing a low pressure system powered by a

centrifugal pump that simulates the ship’s fuel service system and a high pressure system

driven by a positive displacement pump which simulates the on-engine portion of the fuel

system. The fuel system circulates water through both parallel loops drawing and returning

from a common 35 gallon tank. For work in this thesis the fuel system has been constructed

and controlled to model diesel engine dynamics; however, the fuel system control can be

modified to model various combustion engines or gas turbines. The signals for control and

data acquisition on the two fuel systems are shown below in Table 2.8.
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Table 2.8: Fuel System Signals and Controls

Variable Path Parameter

P1-1 LP1 Pressure before clogs and leaks

P1-2 LP2 Pressure before clogs and leaks

P2-1 LP2 Pressure after clogs and leaks

P2-2 LP2 Pressure after clogs and leaks

P1-3 HP1 High pressure rail

P2-3 HP2 High pressure rail

PV1-1 LP1 Proportional valve for clog simulation

PV2-1 LP2 Proportional valve for clog simulation

PV1-2 HP1 Proportional valve for clog simulation

PV2-2 HP2 Proportional valve for clog simulation

PV1-3 HP1 Proportional valve for HP control and leak simulation

PV2-3 HP2 Proportional valve for HP control and leak simulation

L1 1 Controllable ball valve for Leak simulation

L2 2 Controllable ball valve for Leak simulation

SV1-1 1 Fuel Injection solenoid valve

SV2-1 2 Fuel Injection solenoid valve

CT1-1 1 Current transducer on LP pump

CT2-1 2 Current transducer on LP pump

CT1-2 1 Current transducer on HP pump

CT2-2 2 Current transducer on HP pump

As shown above in Table 2.8, the fuel system and its’ two parallel flow paths has rich

group of input and output signals to enable virtual linkages between other plant systems and

enable data acquisition for prognostic implementation. The injection of fuel system faults

(leaks and clogs) and the fuel injection system is further defined in the following two sections

followed by a summary of the fuel system capabilities.

2.5.2 Fault Injection

To inject common faults and failure onboard real world vessels a proportional valve and

controllable ball valve were added to both low pressure flow paths within the fuel system.

The ball valve provides the ability to inject binary leaks (leak or no leak). The leak size is set

by a manual ball valve prior to the controllable valve. This set point is constant throughout

all work in this thesis. The injection of leaks can be triggered through two main modes:
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Manually through the user HMI or through a loaded spreadsheet at a given desired time

during a simulation.

Four proportional valves are used to inject clogs into both low pressure flow paths and

both high pressure rails. The proportional valves can be controlled as a linear function of

cross sectional area from fully open to closed. The control to the valves can be sent in

three modes: Manual mode set by the user through the HMI interface, a constant mode

read from a pre-loaded spreadsheet, or in a dynamic mode with parameters set in a pre-

loaded spreadsheet. The three modes enable the ability to run large simulation batches at

a constant clog rate or a dynamically changing clog rate and also provides the ability for a

user to simply set the clog through the user HMI.

The high pressure system leverage two additional proportional valves to provide a high

pressure relief, allowing for control of rail pressure. The set point of these valves can be

offset to inject a leak into the high pressure rail. Leaks into both high pressure rail systems

can be injected in the three modes defined for the proportional clog valves.

2.5.3 Fuel Injection Control

The modeling and hardware integration for the fuel injection system was part of work funded

in conjunction with this dissertation and is further described in [1]. This section provides a

summary of the modeling and hardware integration for the fuel injection system leveraged

throughout hardware simulation work as part of this PhD dissertation and is work lead by

Almquist [1].

The circuit used to control the solenoid injection valve is provided an analog input from

the embedded control system proportional to fuel injection percent as a function of wide

open throttle (WOT). The circuit leveraged two semiconductors to create the pulse timing

indicative of the notional diesel engine and buffer the necessary power to drive the solenoid

at the computer amplitude in accordance to the real time power demand of the virtually

linked diesel generator set. The control circuit schematic is shown in Figure 2.10
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Figure 2.10: Fuel Injection Control Circuit [1]

The control system command from the main control system to the hardware circuit can

be linked to any of the three emulated diesel generators within the laboratory. This linkage

provides the throttle setting as a function of the real time load for the VFD driving the

synchronous alternator. A summary of the injection control signals is provided below in

Table 2.9.

Table 2.9: Injection Control Signals - LabVIEW to Embedded Hardware

Component Signal Units

Injector 1 Control Injection Command V DC

Injector 1 Injection Pulse V DC

Injector 2 Control Injection Command V DC

Injector 2 Control Injection Pulse V DC

In the event a fault is injected into the fuel system and rail pressure is degraded, the

fuel system controller attempts to adjust the throttle setting to account for the resultant

degradation in fuel injected. The adjustment of throttle position with respect to rail pressure

and demanded fuel is shown below in Figure 2.11. This representation is provided for a rail
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pressure of 145 PSI and below. The normal Operating rail pressure is set at 145 to 150 PSI.
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Figure 2.11: Fuel System - Injector Control Map Modified from [1]

The yellow section of Figure 2.11 represents saturation of the fuel injection command

at (WOT) where demanded fuel is not achieved. The insufficient fuel flow through the

emulated fuel injection system occurs where rail pressure is low due to a system fault (clog

and leaks) and generator loading is high. To integrate response of a fuel system fault on

the virtually linked generator, a torque limit is placed into the control loop for the emulated

diesel generator set. The torque limit is set as a function of rail pressure to limit available

toque to the synchronous alternator based on the fuel system dynamics. This virtual cross

linkage provides the ability to inject real world faults and failures for the fuel system and

model the subsequent generator set and plant level response.

2.5.4 Summary

The fuel system provides two virtual links between the emulated diesel generators to simulate

the fuel flow and injection dynamics for a notional diesel engine and the subsequent generator

response. The fuel fuel dynamics are controlled by the real time loading of the emulated

generator based on the torque demanded by the linked synchronous alternator. The fuel

system injection flow is observed as a function of rail pressure and through a second virtual

linkage, a torque limit is placed on the generator when the error in fuel injection (error =

actual - demanded flow) is negative. This virtual linkage provides the ability to inject real

world faults and failures for the fuel system and model the subsequent plant level response.

A visual of the as built fuel system configuration is shown below in Figure 2.12.

28



Figure 2.12: Fuel System - Visual

2.6 Propulsion

The machinery plant has two main propulsion systems, propulsion system 1 and 2, attached

to MSB1 and MSB2 respectively. The the two propulsion systems consist of a variable

frequency drive which powers a three phase induction motor that is used to drive a separately
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excited wound field DC machine acting as a generator. The VFDs and induction machine

are representative of a notional all electric ship propulsion system. The wound field DC

machine is used to produce a load on the induction machine representative of a notional cubic

speed to power load profile. To create the desired load profile, the DC machine armature is

connected to a constant resistor load and the field is externally excited by a controllable DC

power supply programmed as a function of speed. The electrical one line diagram for this

configuration is shown below in Figure 2.13.
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Figure 2.13: Propulsion DC Load Machine - Wiring Diagram

The field winding with resistance (Rf ) and inductance (If ) are externally excited by the

controllable DC power supply. The DC power supply receives an analog input from the

embedded control system, in real time as a function of commanded propulsion speed. The

armature with internal resistance (Ra) and inductance (La) are connected to a resistive load

bank (RLoad) that has a fixed resistance. Given the configuration hardware system and the

desired cubic speed to power load profile a control equation was derived.

The control equation was derived assuming steady state conditions and linear DC machine

losses without the presence of excitation field losses, given the external field power supply was

powered by the building. Using these assumptions, the following equations were leveraged

to produce a cubic power load profile across the resistance heater with respect to propulsion

shaft rotational rate.

Pload =
Va

2

R
(2.5)

Given the desire for Pload to increase as a cubic function of speed, the output voltage, Va

must increase linearly with respect to shaft speed. The output voltage can be as shown in
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Equation 2.6.

Va = RaIa +
Np

2
MafIfωr (2.6)

Where Va is a function of machine constants, (number of poles Np and field inductance

Maf ), and current through the excitation field If . The field current can be controlled through

variation of the input field voltage as shown below.

If =
Vf

Rf

(2.7)

Therefore the load power becomes:

Pload =
(RaIa +

Np

2
Maf

Vf

Rf
ωr)

2

RLoad

(2.8)

By dropping constant terms and considering the armature losses to be negligible as com-

pared to the load, the power by the dc machine reduces to a function of field voltage, Vf ,

and shaft rotational frequency, ωr, as shown below.

Pload = C1V
2
f ω

2
r (2.9)

By exciting Vf as function of the square root of ωr a cubic speed to power curve is

achieved. Using this relationship, the numerical constant corresponding with voltage can be

determined using experimental testing and known parameters provided in Tables 2.10 below.

Table 2.10: DC Machine Specifications

Parameter Value Unit

Poles 2 -

Field Voltage 100 VDC

Armature Voltage 180 VDC

Armature Current 14.7 ADC

Rotational Rate 1750 RPM

Provided it is desired to produce the maximum load toque at the maximum rotational

rate of 60Hz for the machine, the DC machine operates in an under load capacity at all

loading points below maximum speed. Given the desired quadratic loading structure the

field excitation limit was experimentally determined by operating the DC machine at 60Hz

and increasing the field voltage until a capacity constraint was met, defined in Table 2.10.
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The limitation for the DC machine was maximum current output, which was achieved at an

excitation of 90 VDC. Given this limitation the finalized control equation was formed.

VCommand = 9 ∗
√
ωr√

ωr−max

(2.10)

The control command shown above in equation 2.10 is a function of commanded propul-

sion speed ωr, maximum speed ωr−max and accounts for the necessary scaling for the analog

control signal of 0-10 Vdc to DC power supply output of 0-100v DC.

Leveraging the electrical configuration shown in Figure 2.13 and control Equation 2.10

the systems produce the desired quadratic loading profile shown visually below in Figure

2.14.
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Figure 2.14: Propulsion Speed to Power

As shown above in Figure 2.14, The demanded load from the propulsion system is in-

significant from 0-30Hz, from 30Hz to a full speed ahead of 60Hz, the system load increases

by a magnitude of 6. The two subplots within Figure 2.14 represent the individual propul-

sion systems 1 and 2 and their respective speed to power curves. Propulsion system 1 has a

more efficient variable frequency drive as compared to propulsion system 2. The variation in

variable frequency drives is represented by the larger AC power draw for propulsion system

2 shown in Figure 2.14b as compared to the AC input power draw of propulsion system 1

shown in Figure 2.14a. The remainder of the system (3 phase induction motor, DC field
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would machine, excitation system, and resistive load banks) are identical for both system 1

and system 2. The identical loads between the two systems is illustrated through the near

identical DC load curves for systems 1 and 2 shown in Figure 2.14.

A summary of the signals for propulsion system 1 is provided below in Table 2.11.

Table 2.11: Propulsion System 1 Signals

Component Signal Units

VFD Phase A - Current A RMS

VFD Speed Command Hz

VFD Relay I/o

VFD Enable forward I/o

VFD Enable rev I/o

DC Machine Load Current A DC

DC Machine Load Voltage V DC

Field Power Supply Relay I/o

Field Power Supply Voltage Command V DC

The signals for propulsion system 1 shown above in Table 2.11 are identical for propulsion

system 2. A visual of the as built propulsion systems are shown below in Figure 2.15.

Figure 2.15: Propulsion Systems - as Built

Propulsion systems 1 and 2 provide the ability to place loads representative of real world

all electric propulsion systems on the laboratory scale main switchboards and place corre-
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sponding waste heat losses into the cooling system through a virtual linkage discussed in

Section 2.4.

2.7 Mission System

The mission system consists of controllable three phase rectifiers (DC power supplies) and

controllable DC resistive load banks (load banks). The DC power supplies are controlled as

a function of maximum output voltage and maximum output current through the embedded

control system. The DC load banks can be programmed in two modes. Mode 1 provides the

ability to trigger pre-configured load profiles. Mode 2 provides the ability to commanded any

desire load in amps DC within the limitations of the load bank capacities. The machinery

plant contains two mission systems with capacities defined in Table 2.12.

Table 2.12: Mission System Specifications

System Parameter Value Unit

1 and 2 Power supply max output voltage 100 VDC

1 and 2 Power supply max current output 50 ADC

1 Load bank power 2.6 Kw

2 Load bank power 5.2 Kw

1 System max load 2.6 Kw

2 System max load 5.0 Kw

Mission system 1 has a maximum of 2.6 kW, limited by the programmable DC load bank

and mission system 2 has a maximum DC power dissipation of 5.0 kW limited by the DC

power supply. A list of the signals for mission system 1 is provided below in Table 2.13.

Table 2.13: Mission System 1 - Signals

Component Signal Units

DC Power Supply Voltage setpoint A DC

DC Power Supply Current Limit A DC

DC Load Program Trigger I/O

DC Load Current Command A DC

The signals listed above in Table 2.13 for mission system 1 are repeated and identical for

mission system 2.
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Leveraging the mission system an example of a step load and pulse load with the subse-

quent generator dynamic response is show below in Figure 2.16 and Figure 2.17 respectively.
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Figure 2.16: Example Mission Profiles and Generator Response - Step Load

As shown above in Figure 2.16, a commanded step from 0 to 1 kW DC to the mission

system produced a slightly rounded square pulse drawn by the DC load bank (shown in

blue). The DC power supply draw a lags the response of the DC load and has a rounded

step increase from 0 to 1.15 kW as shown in red. The delay is a result of buffering from

the internal DC power supply capacity and the difference in total load from 1 to 1.15 kW

is a result of the internal losses for the mission system DC power supply. Shown in yellow

depicts the total change in load on the generator supplying the load bank. The transient

response in generator frequency and voltage is representative of the dynamics seen onboard

real world vessels [35].

Similar to the output shown above in Figure 2.16, the response of the generator as a result

of a pulse load is shown below in Figure 2.17 for a commanded pulse of 1 second on, one

second off at 0.5 kW.
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Figure 2.17: Example Mission Profiles and Generator Response - Pulse Load

As shown above in Figure 2.17, the first subplot of the figure depicts the jagged square

shape of the power drawn by the DC load bank (shown in blue) followed by the response in

power draw for the AC to DC power supply (in yellow) and generator output power (shown

in red). Similar to the step load a rounded pulse in power is observed on the AC bus due to

the internal buffering of the AC to DC power supply. The transient response for generator

frequency and voltage are shown in the subsequent two subplots.

The integration of two sets of programmable load banks and AC to DC power supplies,

configured to represent two shipboard mission systems, connected to both MSB1 and MSB2

allows for emulation of a wide variety of dynamic loads. The mission systems can emulate real

world loads such as Electromagnetic Railguns, Electromagnetic Aircraft Launching System

and Laser Weapon Systems. The ability to place any desired dynamic electrical load onboard

both switchboards provides a large breath of hardware simulation capabilities.

Mission systems 1 and 2 provide the ability to place loads representative of real world all

electric propulsion systems on the laboratory scale main switchboards and place correspond-

ing waste heat losses into the cooling system through a virtual linkage discussed in Section

2.4.
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2.8 NI Control and Data Acquisition System

2.8.1 Overview

The Multiphysics laboratory ship machinery plant leverages a National Instruments (NI)

based control system for plant control and data acquisition coupled with a host PC for

supervisory control inputs. An example page from the Host PC control system is shown

below in Figure 2.18.

Figure 2.18: Control System - Host PC Interface

The integrated Hardware and software for control and data acquisition are further de-

scribed in the subsequent three subsections. The first subsection defines the integrated NI

hardware, followed by a discussion of the software control. The third and final subsection

provides a summary of the embedded control system.

2.8.2 Integrated NI Hardware

The NI system consists of two CompactRIO’s controllers, (cRIO-9045) with the following

specifications: 1.30 GHz Dual-Core CPU, 2 GB DRAM , 4 GB Storage, Kintex-7 70T

FPGA, and a 8-Slot chassis. Each of the 8 slots on both CompactRIOs are populated with

I/O modules specified below in Table 2.14.
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Table 2.14: CompactRIO Control Modules

CRIO Module Slot Module Module Type I/o Channels Sample Rate

1 1 9208 mA input 16 500 S/s

1 2 9208 mA input 16 500 S/s

1 3 9208 mA input 16 500 S/s

1 4 9264 Voltage output 16 25 Ks/s/ch

1 5 9205 Voltage input 32 250 kS/s

1 6 9485 Relay 8 -

1 7 9485 Relay 8 -

1 8 9485 Relay 8 -

2 1 9220 Voltage Input 16 100 kS/s/ch

2 2 9264 Voltage output 16 25 Ks/s/ch

2 3 9208 mA input 16 500 S/s

2 4 9215 Voltage input 4 100 kS/s/ch

2 5 9485 Relay 8 -

2 6 9215 Voltage input 4 100 kS/s/ch

2 7 9485 Relay 8 -

2 8 9264 Voltage output 16 25 Ks/s/ch

The integrated modules, listed in Table 2.14 are leveraged for control and data acquisition.

All I/O signals across each chassis are recorded, when triggered, at sample rates defined in

Table 2.15 below.

Table 2.15: CompactRIO Sample Rates

CRIO Module Type Sample Rate Units

1 Voltage input 2500 Hz

1 mA input 30 Hz

2 Voltage input 2000 Hz

2 mA input 30 Hz

The two compactRIOS communicate to a host PC over a local Ethernet link. A visually

summary of the physical hardware within the control system is show below in Figure 2.19.

38



Figure 2.19: Control System - Diagram

The coupled integration of the control and data acquisition within one hardware system

enables a large bandwidth of signals that can be acquired, continuously at high sample

rates. This novel ability to save all laboratory signals provide an significant advantage for

machine learning and AI integration when compared to the limitations of traditional systems

containing a separate data acquisition device system and control system.

2.8.3 LabVIEW

2.8.4 Introduction

A LabVIEW software based control architecture was constructed using the two controllers

and total of 208 I/O signals ports to provide the necessary machinery plant controls and

virtual links between machinery plant systems.

2.8.5 Control Architecture

The embedded LabVIEW control software system optimizes CPU bandwidth and memory

across both CRIOS and the host PC to enable real time control and data acquisition of the

hardware machinery plant. The allocation of embedded resources is shown visually below in

Figure 2.20.
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Figure 2.20: LabVIEW Software Control Process

As shown above in Figure 2.20, the software control structure consists of five core Lab-

VIEW Virtual Instruments or VIs across the three devices. The processes executed within

each VI are defined in the following three paragraphs grouped by device (Host PC, CRIO1

and CRIO2).

Host PC: The host PC contains a single VI containing six core process loops. A user

interface or UI Loop is used to receive high level commands from a human user through the

HMI interface and update high level plant values for the HMI display. The UI loop enables

efficient buffering between the human user and other core processes within the host PC VI.

A network communication loop is used to efficiently buffer values between the host PC and

two CRIOS for real time communication over a local Ethernet TCP/IP connection. The

four control loops contain various control functions for hardware system to system virtual

connections that can afford the latency in control loop interaction to analog signal updates

caused by the Ethernet communication time and CRIO real time to FPGA latency. Examples

of these processes include: control mode selection and generator torque limits.

CRIO1: The embedded controller contains a real time VI and a FPGA VI. The real time

VI is leveraged for communication with the host PC, communication with the FPGA VI and

control loops 1 and 2. The Network communication loop follows the same process defined

for the host PC. The FPGA communication loop buffers data from the FPGA loop for data

acquisition, which is written to the local hard drive, and all control and HMI signals. This
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buffer between the FPGA PCI bus and real time loop is necessary due to the variation in

FPGA loop timing and the real time VI loop timing. The two control loops within CRIO1

contain various real time control processes such as: waste heat dynamics and fuel system

dynamics. The FPGA VI contains two loops for data acquisition and control. The FPGA

loops operate at varied sample rates defined in Table 2.15, where loop 1 contains the high

sample rate signals and loop two contains the low sample rate signals. Both FPGA loops

use a FIFO to stream data for acquisition to the real time VI. The FPGA loops contain

additional controls that are best suited for FPGA logic. Examples of integrated FPGA logic

include: breaker restrictions to avoid connection of unparalleled busses, pulse conversion to

flow rate, propulsion system ramp rates and field control, and additional safety controls.

CRIO2: Follows the same architecture as CRIO1, with varied control processes within

the real time and FPGA control loops. Examples of control processes within the real time

loop on CRIO2 include: Generator frequency response dynamics, generator toque limits,

generator voltage control and mission system control. Examples of control processes within

the FPGA loop on CRIO2 include: Mission system rate limits, generator paralleling logic

and control and additional safety controls.

2.8.6 Interface Control Modes

The HMI interface allows the user to select six different control modes for modification of

high level plant controls in time. These modes are defined below:

1. HMI Based Control: This is the default control mode for the laboratory system. The

user is able to manual adjust all desired high level plant controls through the Human

Machinery Interface. In this mode, data is not recorded by default, however the user

can record data using the HMI interface.

2. Mission Profile Control: This mode enables propulsion and mission system set points

to be controlled by a modifiable CSV file located on the host PC, instead of through

the HMI interface. In this mode, data is not recorded by default, however the user can

record data using the HMI interface.

3. Mission Profile Group Control: This mode uses a modifiable CSV file located on the

host PC to control the mission and propulsion system for a group of operational set

points, each for a period of time seconds within the CSV file. In this mode, data is not

recorded by default, however the user can record data using the HMI interface.

4. Mission Profile Group and Fault Injection: This mode allows fuel and cooling system

faults to be injected at preset simulation times through an a CSV file located on the
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host PC. In this mode operational parameters are also read in the same manner as

mode 3. In this mode a simulation length and a full simulation length is defined and

data is recorded for the length of the simulation.

5. TCP IP Control: Using this mode HMI control and indicators can be selected for

control and observation from a remote device through a local Ethernet connection to

an external device. The mode uses a group of registers with preset values that can

be update over a TCP IP link to the local Ethernet network. This mode provides

the ability for external devices to both read real time system parameters and control

desired system set points. In this mode, data is not recorded by default, however the

user can record data using the HMI interface.

6. Run to failure Control: This control mode provides the ability to inject and increase

fault severity slowly until system failure occurs. A CSV file that contains all possible

fault controls must be pre populated with the desired number of runs. Each run is a

discrete set point for all fault triggers. For each run, the controller iterates across all

operational points in the same manner mode 3 and records steady state data at each

operational set point across every N number of runs.

The selection of the six control mode options is made on the side, permanent panel of the

host HMI through a drop down menu. The selection of the available control modes is shown

visually below in Figure 2.21.

Figure 2.21: HMI Control Modes
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Through the integration of preset control modes users can efficiently operate the labora-

tory ship machinery plant for a wide breadth of experimental simulations and data acquisi-

tion.

2.8.7 Summary

The embedded control system provides a singular system for data acquisition and control of

systems and their interdependencies within the MLSMP. The system allows users to leverage

programmed control modes to modify high level system controls through an HMI. The system

leverages two real time controllers, a host PC and over 200 analog channels for control and

data acquisition. The control architecture effectively leverages resources at the FPGA, real

time and host PC levels to efficiently complete the necessary control and data acquisition

tasks in real time.

2.9 Post Processing of Acquired Data

The LabVIEW control and data acquisition system defined in Section 2.8.4 enables data

acquisition for a single user initiated record instance and for the acquisition of data from an

automated LabVIEW control process which records several instances over a desired simula-

tion. The automated LabVIEW control process is defined in detail in Chapter 4. In both

acquisition processes, raw data from CRIO 1, CRIO 2, and the Host PC is written to CSV

files, which requires a post processing code to scale the raw data into usable engineering

units. To do so, two post processing codes are constructed and leveraged throughout work

in this dissertation. The final version of the processing code was made by Manohar under

work completed in PhD dissertation [36] and publication [37].

The processing codes performed three core functions and were identical for both versions.

The processing codes scaled the raw output signals to place signals in engineering units (flow,

pressure, etc.) for each signal acquired. The processing codes scaled the signal time vector

to have simulation start time of 0 seconds, instead of the current clock time of the FPGA

acquisition device. Finally the codes provided the average value of each signal for the given

simulation run. The two versions differed in the type of hardware simulation conducted.

Processing code A was formed to process a single simulation record instance. Version B

was designed to process Failure Profiles (s), define in detail in Chapter 4, where a failure

profile consisted of up to 10 runs and each run contained three record instances. Each record

instance corresponded to an operational profile, also defined in Chapter 4. The file structure,

and user commands are defined as in the following two subsections.
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2.9.1 User Interaction

The user commands to use the two versions of code are as follows:

Version A: The user will call the python script PostProcess SingleSimulation V1.py

using the command window with the following input string.

[PostProcess SingleSimulation V1.py FilePath datasetNum]. The file path will

lead to the location of the desired folder to process. The required contents of the folder are

defined in a following section.

Version B: The user will call the python script PostProcess FailureProfile V1.py

using the command window with the following input string, [

PostProcess FailureProfile V1.py FailureProfileStart FailureProfileEnd Dataset X],

where FailureProfileStart is the first failure profile to process and FailureProfileEnd is the

last failure profile to process. Dataset X is the dataset the failure profiles are located within.

The path for this version will be preset within the code itself for ease of use on the local lab

computer.

2.9.2 File Structure

Both instances of the python code are located on top level of the file structure on the host

PC. The location the top level of this path is used in when using version A and written into

the code itself when using version B. Both versions of the code use the same top-level folder,

as shown below.

Figure 2.22: Base Folder for Data Processing

The main folder contains the files shown above with a single sub-folder. The sub-folder

contains both datasets, as shown below.

44



Figure 2.23: Datasets A and B for Data Processing

The sub-folder shown above contains two Datasets, Dataset A provides an example of

the substructure for processing code Version A and Dataset B provides an example of the

substructure for processing code version B.

The file structure for using version A of the code is shown below in Figure 2.24.

Figure 2.24: Version A Base File Structure

An example of the raw files is provided below in Figure 2.25.
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Figure 2.25: Version A Required Files

Using version the Raw Data folder would exist with the files shown above and the

Proc Data folder would be generated along with the AvgValues run x.csv file.

Using version B of the post processing code, the following folder structure shown in Figure

2.26 is required prior to calling the function in python.

Figure 2.26: Dataset B Base Folder

The Raw Data folder requires populated Failure Profiles as shown below in Figure 2.27.
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Figure 2.27: Dataset B - Input Data Folders

Where each file folder contains all recorded files for a given profile. After calling the

processing code, processed time series data is generated and archived alongside average value

data for each record instance. An overview of the average value data is provided followed by

an overview of the time series data.

For each failure profile, as shown below in Figure 2.28, average value data is provided for

each of the three operational profiles (record instances) as shown in Figure 2.29.

Figure 2.28: Dataset B - Output Average Value Data Folders
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Figure 2.29: Dataset B - Output Average Value Data Files

In a similar process for each Failure profile, process data is stored by Failure profile, then

sequence point, then operational profile. The failure profiles are shown below in Figure 2.30.

Figure 2.30: Dataset B - Output Time Series Data Failure Profiles

Each Failure profile contains the subsequent sequence points as shown below in Figure

2.31.

Figure 2.31: Dataset B - Output Time Series Data Failure Profile Folders
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Each sequence point contains the subsequent operational profiles as shown below in Figure

2.31.

Figure 2.32: Dataset B - Output Time Series Data Operational Profile Folders

Each operational profile contains the subsequent operational profiles as shown below in

Figure 2.31.

Figure 2.33: Dataset B - Output Time Series Files

2.9.3 Summary

The processing code with versions A and B enables the efficient and uniform post processing

and achieving of hardware simulation data for work throughout this dissertation and future

laboratory use.
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2.10 Exemplary Multi-Physics Simulations

To showcase the capabilities of the novel multi-physics physical hardware plant and illustrate

potential fault mitigation techniques, three example hardware simulations are conducted.

The three simulations adopt and apply common fault mitigation techniques in an uncon-

ventional manner. The three common techniques are inspired by the following adoptions in

other domains and are as follows:

• Load shedding: A well established mitigation technique for overloading of systems and

optimization of load shedding for ship applications is prevalent in current research

[38–41].

• Droop control: Traditionally used to balance power output in parallel generator appli-

cations. This well established principle has been implemented for renewable inverter

applications to improve active power sharing in paralleled two-stage PV inverter sys-

tems improving overall system resilience [42].

• Energy storage: Has been well studied in current research for topics including mit-

igation of overloading at peak load, improvement of fuel economy and system fault

mitigation [43, 44].

The first simulation showcases the injection of a cooling system leak and the subsequent

plant response. Using a load shedding technique, the control system reduces the plant load

to mitigate an overheating fault in the cooling system. The second simulation showcases

injection of a fuel system fault and the subsequent multi-system response with the use of

a sole generator and energy storage. The third simulation leverages a parallel generator

configuration with the injection of a cooling system fault. A load sharing technique is

implored to mitigate an overheating fault.

2.10.1 Fault Injection - Load Shedding

This simulation was presented at [2] and is provided in this subsection to form a complete

document of work completed in fulfillment of this PhD.

This simulation uses the notional mission scenario with time variant propulsion and mis-

sion loads, depicted in Figure 2.34.
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Figure 2.34: Mission Scenario from [2]

Using the mission scenario depicted in Figure 2.34. The cooling system began in a full

health condition at the start of the simulation. Shortly after the simulation started, a leak

was injected into the cooling system. The injected leak is shown in Figure 2.35, where a

sharp drop in system flow rate is observed. A rise in temperature is also observed across

the cooling system flow path, however the nominal change in heat rise does not exceed the

system limit. A small change in pump current is also experience at the injection of a cooling

system leak as shown in Figure 2.35, this response indicates potential for leak detection using

pump current as a input signal.
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Figure 2.35: Cooling System Fault Injection with Load Shedding from [2]

As the mission scenario continues the high propulsion load in conjunction with the high

mission system load causes an increase in thermal rise across the cooling system which

exceeds the thermal limit of the cooling system as shown in Figure 2.36.
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Figure 2.36: Cooling System Fault Mitigation with Load Shedding from [2]

To mitigate this fault the propulsion load is reduced allowing the mission system to

continue at its desired load and reducing the thermal rise across the cooling system within

the system limits as shown in Figure 2.36 above.

2.10.2 Fault Injection with Energy Storage

A high pressure fuel system leak is injected at the start of this simulation. The fuel leak

cause an insufficient amount of flow through the injector. The error in fuel flow (demanded

fuel vs. actual) placed a virtual limit on the generator output torque. The limit imposed

on the emulated generator set results in a drop in generator frequency resulting in the

generator tripping offline. As the generator began to lose stability the energy storage system
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supplemented the energy demanded by the loads. When the generator was unable to produce

sufficient capacity to remain online and tripped, the energy storage system became the sole

source. This dynamic response is shown visually below in Figure 2.37.
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Figure 2.37: Plant Response - Generator Fuel System Failure with Energy Storage Backup

2.10.3 Fault Injection with Paralleled Generators

This simulation was conducted to predict the laboratory plant machinery systems ability

to operate in parallel and simulate, in hardware the effect and recovery of a fault in one of

the two supporting cooling systems. The hardware simulation began with generators 2 and

3 online, both providing 50% of the total plant load. The ship machinery plant had both

propulsion units online at a rate of 30Hz and the mission system with a load of 1 kW each
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for the duration of the simulation. Resistive loads 1 and 2 were also online as well as both

fuel and cooling systems. Fuel system 1 supported generator 2 and fuel system 2 supported

generator 3. Cooling system 1 supported losses from propulsion and mission system 1 as well

as generator 2. Similarly, Cooling system 2 supported losses from propulsion and mission

system 2 as well as generator 3.

At the start of the simulation all systems were in full health with no faults or failures

injected. Once the simulation started, a clog was injected into the cooling system 1. The

clog reduced flow across waste heater 1, which subsequently caused the temperature to rise

over the overheating threshold. To combat the system overheating, a load with high losses

(mission system) or the generator output would have to be reduced. Given the ability to

load share the generator load from generator set 2 was reduced by 40 %, causing generator

3 load to increase by 40 %. The shift of power output between generator 2 and 3, reduced

the required waste heat dissipation for the faulted cooling system, causing the temperature

across the heater to reduce back within safe operating levels. This is shown visually in Figure

2.38 below.
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Figure 2.38: Plant Response - Cooling System Fault with Parallel Generators

As shown above in Figure 2.38, by shifting 40 % of the load from generator 2 to generator 3

all system loads were able to remain online and system overheating was effectively mitigated.

It is also noted that heater 2 showed an increase in temperature across the heater due to the

increase load on generator 3 and subsequent system losses.

As shown through this exemplary simulation, the laboratory scale ship machinery plant

has the ability operate with generators in parallel, shift load sharing and emulate effects of

support system faults such as clogging and their effect on the overall machinery plant.

2.10.4 Summary

This section showcased the capabilities of the novel multi-physics physical hardware plant

and illustrate potential fault mitigation techniques through three exemplary simulations.

56



The three simulations adopted common control strategies inspired from literature to im-

prove operational resilience in the presence of a system fault. This section provides insight

into the potential to mitigate faults and maintain operational availability using real time con-

trol. Plant health, both its current state and predicted future state are essential inputs to

build future control based, fault mitigation techniques. These example simulations provide

motivation for to explore plant level prognostics and diagnostics.

2.11 Summary Laboratory Ship Machinery Plant

This chapter provided a detailed overview of the laboratory scale ship machinery plant

(MLSMP) that was designed, constructed and validated with the necessary physical and

virtual system interconnections to accurately represent plant dynamics and common faults

of machinery plants found on vessels in the real world. The MLSMP leverages physical

and control based system to system linkages to enable the injection of common faults and

operation of the MLSMP to failure without damaging the physical hardware within the

laboratory. The MLSMP provides the capability to simulate in hardware run to failure

profiles for common faults and failures of machinery plants and explore potential to improve

operational resilience in an unmanned ship machinery environment environment through

unconventional control mitigation techniques. A Visual overview of the laboratory scale

machinery plant is shown below in Figure 2.39.

Figure 2.39: Visual Overview of the Novel Laboratory Scale Ship Machinery Plant

57



CHAPTER 3

Initial Application of Artificial Intelligence

for Cooling System Health Prediction

This chapter is provided largely as a direct quotation from work presented at the Intelligent

Ships Symposium in May of 2023 [45] (denoted by material indented in this chapter). The

inclusion of content as a block quote provides a singular document of work completed as

part of this PhD. A brief overview of this work and its relevance in this dissertation is

first provided prior to the direct quotation of four sections, Sections 3.1- 3.3. A summary is

provided following the direct quotation of work from [45]. Small modifications to the original

content have been made to avoid duplication of the already defined in Chapter 2 relating to

the University of Michigan laboratory-scale ship machinery plant or MLSMP.

As a first step in the application of Artificial Intelligence (AI) to the MLSMP, temperature

and current data from the laboratory cooling system (defined in Chapter 2 ) were selected

as inputs to AI driven algorithms for fault detection and the prediction of current system

capability, given a randomized and degraded state of health. The cooling system was selected

due to the common system faults of clogs and leaks. Both types of faults, clogs and leaks,

were injected in the cooling system to produce varying states of system health and result in a

reduction of cooling capability. The presence of a leak in a flow path on its own can be easily

detected through various sensor readings; indicated by a drop in pressure on the outlet of

the system pump, an increase in overall flow out of the system pump, and a change in pump

electrical draw. However, in conjunction with an unknown state of flow path clogging in

time leaks become difficult to detect as both faults (clogs and leaks) affect system dynamics

and are interdependent to each other [46]. As a result, the cooling system leveraged for

this paper provides a complex system with interdependent faults that cause degradation in

system capability. To address the detection of a fault (i.e, a leak) and predict the current

cooling system capacity given an unknown and degraded state, two applications of AI are

used. The first application uses pump current as input data to explore a k-nearest neighbors

(KNN) algorithm to detect a cooling system leak in the presence of an unknown state of
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system clogging. The second application of AI explores the use of a long short-term memory

(LSTM) recurrent neural network (RNNs) to project temperature rise within the cooling

system for a step increase in loading from 20 % to 100 % thermal load.

3.1 Input Data Collection

To obtain datasets for the two AI applications of prognostics in this paper the cooling

system waste heat control was preprogrammed for two unique waste heat profiles as

a percentage of max emulated waste heat. Profile A simulated and injected a step-in

waste heat loading from 10 % to 20 %, simulating a small step increase in plant loading,

for example turning on a mission radar system. Profile B simulated and injected the

full amount of waste heat (100 %), simulating the machinery plant at 100 % load,

which relates to the generators at max output caused by high mission system loading

and propulsion system loading. The two waste heat profiles and the respective system

loading are shown in Figure 3.1
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Figure 3.1: Mission Profiles

The two waste heat profiles A and B were injected into the cooling system through the

use of heater 1, as defined in Chapter 2.

Service pump 1, illustrated in Figure 2.7, was placed online to provide flow through

heater 1, dissipating the injected heat from profile A and B. To produce a rich dataset,

containing random states of system health, with a varied and degraded ability to

remove waste heat, a set of 100 randomized fault conditions were constructed, defined

as runs. For each simulation run the state of health is degraded through the injection of
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a randomized combination of leaks and clogs. For leaks a binary position of Leak/No

leak was generated. For clogs a randomized value 0-80 % is generated in discrete

integer values i.e. (0 %, 1 %, 2 %), these values correspond to a proportional globe

valve position. For each run, two cases are recorded, using waste heat profile A and

B. Case A, uses profile A and places the heater at steady state with 10 % loading and

records a step response to 20 % loading. Case B places the heater at 100 % loading

and records the steady state behavior. For all 100 unique states of health and each of

the two loading cases the temperature across the heater (T12−T11) and AC RMS line

current to pump 1 was recorded. The data was then processed to produce input data

for the two prognostics AI applications. The temperature delta across the heater for

both cases A & B were combined by concatenating temperature data from case B onto

the end of case A. These two cases were combined to leverage a times series prediction

network, attempting to predict case B given case A (i.e., predict the temperature rise

at max load given a small step change in loading caused by the mission radar system

being placed online). Additionally, for each run the dynamics of the fluid flow and

load on the pump were considered constant, so an average value of pump current was

obtained for each of the 100 runs. Figure 3.2 provides 4 (of 100) temperature responses

for case A and case B and Table 3.1 provides the average pump current draw for these

4 runs.
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Figure 3.2: Example Runs (Case A and B)
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The four exemplary outputs depict responses near the four unique boundary cases,

where the state of health is: near the max boundary of clogging without a leak (Run

5), near the max boundary of clogging with a leak (Run 16), near the min boundary

of clogging with a leak (Run 43), and near the min boundary of clogging without a

leak (69). The corresponding average pump current draw across case A and case B is

provided below in Table 3.1.

Table 3.1: Example Runs - Average Current

Run Number Clog (%) Leak Status Current (Amps)

5 80 No Leak 10.91

16 72 Leak 10.53

43 1 Leak 9.55

69 0 No Leak 10.23

The 100 unique current values in amps correlating to each of the 100 randomized states

of health will be used as the first set of input data for the application of leak detection

in the subsequent section.

A histogram of the temperature rise for profile A and B is provided below in Figure 3.3.
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Figure 3.3: Distribution of Temperature Rise for Profile A and Profile B

As shown in Figure 3.3a a notional rise in temperature is experienced across all data

points in the lightly loaded condition. A similar distribution is provided in Figure 3.3b for
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the temperature rise in profile B. Figure 3.3 illustrates the correlated distribution between

the rise in temperature for different profiles under the same condition of system health.

The 100 run profiles of combined temperature data for case A and case B will serve as

the second set of input data for the prediction of temperature rise in the subsequent

Section 3.2.2

3.2 Application of Machine Learning

Utilizing the two input datasets defined in the previous section, a set of KNN classifiers

were applied to predict leak status and utilizing temperature data as an input into

a LSTM model, the temperature delta at max loading was predicted from the step

temperature data.

3.2.1 KNN classifier for Leak Detection

To detect a system, a cubic and cosine KNN classifier were selected for evaluation.

These classifiers were selected due to the unknown, complex, and interdependent re-

lationship between pump current and leak status in the presence of clogging. For

classifiers the 100 instances were broken down into two sets, a test dataset, and a train

dataset. The training dataset consisted of 80 randomly selected runs from the set of

100 and the remaining 20 were held back for a testing dataset. The training parameters

selected are listed below in the following Table 3.2.

Table 3.2: KNN Classifier - Training Parameters

Parameter KNN Cubic KNN - Cosine

Distance Metric Minkowski (Cubic) Cosine

Distance Weight Equal Equal

Number of Neighbors 10 10

Standardize data True True

3.2.2 LSTM RNN for Temperature Prediction

To predict the maximum temperature rise given the response to a step in known

loading from 10 % to 20 % an LSTM was applied. The LSTM model utilized the

100 temperature profiles as inputs, shown in Figure 3.4, where 10 of the cases were
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randomly selected and reserved for a testing dataset and the remaining 90 profiles were

utilized as the training dataset.
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Figure 3.4: Training and Testing Dataset - LSTM

As illustrated in Figure 3.4, left sequence padding was applied to the dataset prior to

training and testing. Left padding was selected to place a higher prediction weight on

the final output value, as we are only interested in the final temperature achieved and

not the ability to model the details of the step in temperature. The Adam optimizer

was selected for training the LSTM due to its’ favorable ability to handle nonstationary

objects with noisy and sparse gradient spaces [47]. Commonly, input data is normalized

to avoid gradient clipping, leading to the LSTM prediction value jumping to the highest

or end value, however in this application this behavior is favorable as we are only

interested in the final temperature value prediction, so the data was not normalized.

To train the network the full input profile was used for the 80 cases. Once trained, the

model was evaluated on the test data. To test the model, only the first 175 seconds

of data was fed as the input and the next single timestep value was predicted. Since

the model parameters were tuned to place prediction weight on the final steady state
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temperature the predicted value was expected to be near the actual final temperature.

To evaluate accuracy the predicted value was compared to the average steady state

temperature for the 100 percent loading case. The parameters used are summarized in

Table 3.3 and MATLAB was leveraged to implement the testing and training process

[48].

Table 3.3: LSTM Parameters

Parameter Value

Max Epochs 200

Shuffle Data Every Epoch

Training option Adam

Sequence Padding Left

LSTM layers 128

Prediction input data 500 steps or t = 175 (S)

Prediction length 1 step

3.3 Results and Discussion

For the detection of system leaks given an unknown state of system health, caused

by clogging and leaking, a Cosine and Cubic KNN classifiers were leveraged, and

their accuracy was compared. The Cubic KNN classifier has an overall test prediction

accuracy of 90 %. The Cosine KNN classifier had an overall accuracy of 95 %, proving

to be 5 % more accurate than the Cubic KNN classifier. The confusion matrix for the

Cosine KNN classifier is shown in Figure 3.5.
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As depicted in Figure 3.5, given the cases when a leak was present the classifier missed

1 true instance resulting in an 8.3 % error. In the cases where a leak was not present

for the true class, the classifier predicted no leak 100 % of the time. Across the training

data, the cosine KNN classifier predicted the true system state 95 % of the time, given

only pump current as an input to the model. This high prediction accuracy using a

simple Cosine KNN model provides promise for the flexibility, ease of implementation

and high accuracy of fault detection for machinery systems using AI driven prognostics.

The LTSM model predicted the final temperature rise with an overall error of only

0.8729 % given the dynamic change in load from a heater loading of 10 % to 20 % when

tested on the test data. The input LSTM data (Input), actual profile data (Response),

LSTM prediction (predicted value), and the average true value used for comparison

(Actual Value) for each of the 10 test cases are shown in Figure 3.6.
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Figure 3.6: LSTM Test Predictions

The model was effective in the prediction of final temperature, however the model was

unable to provide an accurate time for the final temperature. The first prediction value for

the model provided the final temperature value. The model output was truncated after the

first predicted value as shown as a singular point (predicted value) in red in Figure 3.6. The
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final value used as the true point of comparison is illustrated in yellow. The yellow point is

compared against the predicted point to quantify the model error. The numerical values for

the prediction results shown visually in Figure 3.6 are provided below in Table 3.4.

Table 3.4: LSTM Prediction Test Results

Test Case Predicted Value True Value Error(%)

1 6.30 6.45 2.51

2 5.63 5.73 1.91

3 2.74 2.76 0.61

4 2.69 2.71 0.74

5 6.24 6.39 2.48

6 3.01 3.01 0.04

7 2.97 2.97 0.09

8 3.03 3.03 0.02

9 3.96 3.96 0.17

10 3.36 3.35 0.16

As illustrated in Table 3.4 and Figure 3.6 for the 10 test cases the final temperature rise

was predicted with an overall error of only 0.8729 %.

3.4 Summary

Work from [45] demonstrated the ability to detect a common cooling system fault (i.e., a

leak) in the presence of an unknown system state of health caused by clogging. In addition

this work demonstrated the ability to leverage the response of the cooling system to a known

change in loading, to predict the temperature rise at full load, providing knowledge of the

systems capacity given a degraded state of system health. The ability to both detect faults

and predict the current system capacity using simple AI driven algorithms provides insight

into the potential ability of AI driven algorithms to provide better prognostic system health

predictions at the plant level. Work in Chapters 4-5 expands off this work by applying AI

driven algorithms across the plant machinery systems to predict overall mission capabilities

in time given the degrading state of health of the plant.
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CHAPTER 4

Acquisition of Laboratory Ship Machinery

Plant Run to Failure Data

4.1 Introduction and Overview of Experiments

The MLSMP, defined in Chapter 2, was leveraged to create 100 run to failure (RTF) profiles

that modeled a notional ship machinery plant. The failure profiles injected common faults

into the cooling and fuel systems, which caused a degradation in system performance until

both the cooling and fuel system failed. Data was collected over a period of 10 sequence-

points or until both the fuel and cooling systems had failed. Each sequence-point represented

a discrete state of health for the plant machinery systems. On each sequence-point, steady

state data was recorded for three different operational profiles. The 100 failure profiles were

configured using a constructed software model of the fuel and cooling system in conjunction

with a clog model from literature [3]. The model and resultant control outputs is discussed

in the following section, section 4.2. The three operating profiles for each discrete sequence-

point are defined in section 4.3. Using the configured failure profiles and operational profiles

a test procedure was built to record the 100 run to failure profiles, which is defined in

Section 4.4. Section 4.5, defined the acquired data, and pre-processing conducted to remove

sensor signal noise, errors in hardware system data acquisition, and data trimming to fit the

required run to failure format for AI implementation. The final section, Section 4.6, provides

a summary and key takeaways for the acquisition of laboratory ship machinery plant run to

failure profiles. A summary of terms is provided below in Table 4.1.
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Table 4.1: Key Terms

Operational Profile: A set of operational loads that represents a steady load on the

plant (i.e mission load, propulsion load, etc.). This work leverages three operational

profiles (a-c) defined in detail in Section 4.3

Mission scenario: A sequence of the three operational profiles that that represent a

notional ship mission.

Sequence-Point: A discrete state of health for the machinery plant with support

systems having a discrete level of clog restriction and a state of leak or no leak. For

each point the mission scenario is conducted. Three 10 second steady state windows of

data is recorded for each point. One of the three windows is within each of the three

operational profiles (a-c).

Run to failure (RTF) profile: A sequence of up to 10 points where each successive

point contains a further degraded in state of plant health while one or more operational

profile can be achieved.

Failure: The instance where any support system can no longer provide sufficient func-

tionality to achieve a given operational profile.

Mission Profile: The mission profile is completed for each discrete point of health

within the sequence.

4.2 Software Modeling

4.2.1 Overview

To accurately simulate in hardware the dynamics of clogs and leaks onboard ocean going

vessels, software models of the hardware fuel and cooling systems within the MLSMP were

developed in MatLAB Simulink. The software models integrated an adopted clog model

developed by [3] into the constructed cooling and fuel system models. The functional diagram

for each of the base configurations leveraged in the cooling and fuel system models is shown

below in Figure 4.1.
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Figure 4.1: Software Model Overview

The functional diagram shown above in Figure 4.1 was leveraged as a single instance for

the cooling system, given the singular and identical flow paths for systems 1 and 2. The fuel

system contains two flow paths; a low pressure and high pressure flow path requiring two

individual instances of the base model to represent the high pressure and low pressure fuel

systems, respectively.

The variable Q1 represents flow as a function of hardware system model dynamics and

filter clogging dynamics. The variable x1 represents the particle content which varies with

respect to time. The particle buildup is a summation of flow rate times the particle content

or
∑

Q1x1. The drop in pressure due to filter dynamics is represented by ∆p. The base

configuration shown in Figure 4.1 for the three variant models leverage identical governing

equations for each of the three models. Parameters within the model vary with respect to

each of the three flow paths. A detailed discussion of the clog model is provided in the

following subsection. Leveraging the clog model, the constructed Simulink models for the

fuel and cooling systems are defined in Subsection 4.2.3.

4.2.2 Clog Model

To accurately model filter clogging for the cooling and fuel system a filter clog model devel-

oped by [3] was leveraged. The clog model and adaptations made for use in this thesis is

defined in this subsection. The original model provides the drop in pressure across a filter

based on constant flow, a fixed particle size distribution, and a fixed percent of particles

suspended in flow. The representative filter and cake buildup for the model is shown below

in Figure 4.2.
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Figure 4.2: Schematic representing cake build up on a filter medium from [3].

As shown above in Figure 4.2, the particles suspended in flow build up as filter cake and

compact against the filter septum. The buildup of filter cake as a result of the particles in

suspension produces a drop in pressure across the filter. The model from literature solves

for pressure drop across the filter using Equation 4.1 with parameters defined in Table 4.2.

∆P =
150Vsµ(1− e)2L

Dp
2ϵ3

+
1.75(1− ϵ)ρVs

2L

ϵ3Dp

(4.1)

Table 4.2: Clog Simulation Variables

Variable Parameter

∆P Pressure drop

L Total height of the bed (or cake)

Vs Superficial (empty-tower) velocity

µ Viscosity of the fluid

ϵ Porosity of the bed (or cake)

Dp Diameter of the spherical particle

ρ Density of liquid
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To solve for the total height of the bed L the following equation is used.

L =
ln (l1

∑
Qx

Af
)

l2
(4.2)

Where
∑

Qx represents the cumulative particle volume retained on the filter with Qx

representing a constant produce of flow rate and particles in suspension. The variable Af

represents the filtration area. Parameters l1 and l2 are optimized through experimental

fitting conduced in literature [3]. To solve for the ϵ, the following equation is used.

ϵ = 1− e
p1

∑
Qx

Vf

p2
(4.3)

The optimized parameter values for Equations 4.2 and 4.3 are defined below in Table 4.3.

Table 4.3: Optimized Parameters From Literature

Parameter Value

l1 4e+7

l2 899

p1 1.2346

p2 9.1464

This base model provided by [3] in equations 4.1 - 4.3, was modified to incorporate a vari-

able input of flow rate and particle density in time to align with the dynamics of the physical

hardware systems and particle distributions in fuel and cooling fluids onboard ships. To do so∑
Qx was replaced with a time variant variables Q1(t) and x1(t) to produce

∑
Q1(t) ∗ x1(t)

where, Q1(t) the time variant value for flow across the filter given the hardware system model

dynamics. x1(t) represents the time variant profile for particle density representative of fuel

and cooling system particle profiles, defined further in the following subsection.

4.2.3 Software Simulation Models

The adopted clog model defined in the previous subsection, was integrated with software

models of the hardware fuel and cooling systems within the MLSMP. For both the fuel and

cooling hardware systems, experimental testing was conducted to map flow and pressure

as a function of leak status (leak and no leak conditions) and proportional valve percent

restriction. This calibration data was acquired by operating each system at steady state for
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each discrete position of the proportional valve, commanded in volts DC, with and without a

system leak. Using the hardware data, functions were created for each flow path to calculate

flow and proportional valve set point (VDC) as a function of ∆p across the emulated filter

(proportional valve) as defined in Chapter 2. The constructed software models for each flow

path was integrated with the adopted clog model which produced three variants of the base

model shown visually in Figure 4.1. The three models were configured into two Simulink

files for run time simulations. The two files represent each fluid system, cooling and fuel.

The cooling file is used for cooling system 1 and 2. Experimental data for cooling systems 1

and 2 produced near identical flow to pressure curves, with a varied commanded voltage to

pressure curve between systems 1 and 2. Given the software simulations are only dependent

on flow and pressure, and the output of command voltage is provided for future hardware

system control, a single Simulink simulation file was sufficient to model both flow paths for

the cooling system and incorporate two output command voltage signals for each of the two

cooling systems. All hardware system dynamics for the fuel systems 1 and 2 with respect to

varied proportional valve restriction and leaks were identical. As a result fuel system 1 and

2 (combines the LP and HP models) are contained in a singular Simulink simulation file. A

visual of the fuel and cooling system files are shown below in Figure 4.4 and Figure 4.3.
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∆𝑝𝑝
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Figure 4.3: Cooling System Simulink Model
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Figure 4.4: Fuel System Simulink Model

The filter dynamics block leveraged the modified Equations 4.1- 4.3 and received input

of
∑

Q1(t) ∗ x1(t) and output of ∆p into each of the hardware system model blocks which

provided an output of control voltage for the proportional valve, flow Q1(t) and the converted

value for system pressure given the system dynamics and drop in pressure across the modeled

filter. The output of Q1(t) was used as feedback into the particle profile. The particle profile

produced a time variant value for x1(t) multiplied by flow.

4.2.4 Base Failure Profiles

Using the software simulation models, defined in the past subsection a base run to failure

simulation was constructed for both the fuel and cooling systems independently of each other.

The Simulink simulation length was set a a maximum duration of 10 sequence-points or until

a defined failure limit for the given system (fuel or cooling) met. The cooling system failure

limit was set at a flow of less than 15 percent of the nominal valve, or 1 liter per minute.

The cooling system limit was determined by the minimum flow rate required to dissipate the

no load system waste heat rejection without overheating. The fuel system failure limit was

defined as a function of pressure for the low and high pressure systems where the fuel system

would fail if the pressure of the low pressure path dropped below 5 PSI or the pressure of

the high pressure path dropped below 80 PSI. The fuel system limits were determined by

the necessary system pressures to produce the necessary fuel flow out of the injector system

for the no load plant operation point. A summary of the system limits is provided below in

Table 4.4.
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Table 4.4: Fuel and Cooling System Limits

System Value Unit

Fuel LP 5 PSI

Fuel HP 80 PSI

Cooling 1 LPM

To configure the base run to failure simulation for the fuel and cooling systems, a mean

particle content with zero variance was determined through a convergence simulation for both

systems without any leak injection. The finalized mean value for the fuel and cooling particle

content produced a an emulated clog which met individual system limits on sequence-point

9. This base failure configuration is shown below Figure 4.5 for the cooling system and

Figure 4.6 for the fuel system.
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Figure 4.5: Software Simulation of Base Cooling System Failure Profile

As shown above in Figure 4.5, cooling systems 1 and 2 use the same simulation model,

however constructed control output for the two proportional valves vary, this variation is a

result of two different proportional valves used for clog emulation in system 1 as was used in

system 2. The varied curves are produced through two lookup tables for command voltage

based on system pressure.
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Figure 4.6: Software Simulation of Base Fuel System Failure Profile

Figure 4.6, depicts the base failure profile for both fuel systems. The differences between

fuel system 1 and 2 were insignificant allowing both fuel systems to receive the same command

voltage for the proportional vales within both fuel systems. The fuel system fails on sequence-

point 9 due to restrictions in the LP fuel system. The LP fuel system is the primary source

of failures for the fuel systems in the real world, where high pressure fuel system failures are

far less common [49].

The base failure profiles shown in Figure 4.5, and Figure 4.6 were used to define the mean
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values for particle size in time. To construct the 100 run to failure profiles a randomized

distribution was applied to each clog models particle content. The construction of the 100

run to failure profiles is defined further in the following subsection.

4.2.5 Software Batch Simulations for Failure Profiles

Using the two constructed Simulink files and base failure profiles, a code was constructed to

produce 100 failure profiles for the fuel and cooling systems. The code produced 100 CSV

control files compatible with the LabVIEW csv. control mode defined in Section 2.8. The

100 failure profiles leveraged the base run to failure profile defined in Subsection 4.2.3 and

integrated a distribution of particle content for each of the three filter models within the three

modeled flow paths (cooling system, fuel system low pressure and fuel system high pressure).

In addition to the injection of clogs, for each run to failure profile there was a 10 percent

chance of a leak being injected for a given failure profile within the first 1-4 sequence-points

for all flow paths (cooling system, fuel system low pressure and fuel system high pressure).

Particle profile distribution was implemented using Equation 4.4 with variables defined in

Table 4.5 for each of three clog models.

x1 = xa + IF (tsim > tstep & rclogstep > pclogstep, xb) (4.4)

Where xa and xb are both time variant particle profiles with a Gaussian distribution. xa

represents the base continuous particle profile and xb represents a potential step in particle

density triggered if tsim is greater than tstep and rclogstep is greater than pclogstep. Where tstep

is a random value between 0 and 4 sequence-points, rclogstep is a random number generated

between 0 and 1 and pclogstep is one minus the desired probability for step increase in particle

density. The mean value (µ) and distribution (σ) are defined for each of the clog models

below in the following Table 4.2.
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Table 4.5: Failure Simulation Parameters - Mean and Variance

Variable Value - xa Value - xb

σcooling 2 1

σFuel−LP 2 1

σFuel−HP 2 0

µCooling 0.058 ∗ (1± P1) 0.04

µFuel−LP 0.03 ∗ (1± P2) 0.02

µFuel−HP 0.04 ∗ (1± P3) 0

pclogstep−cooling - 0.3

pclogstep−FuelLP - 0.2

pclogstep−FuelHP - 0.0

The Gaussian distribution seed time was set to update four times an hour over the software

simulation run. The variables R1−R3 represent a randomized value generated prior to each

simulation to modify the mean particle content from the base value. The randomized values

are listed below in Table 4.6.

Table 4.6: Failure Simulation Parameters - Randomization

Parameter Range

R1 ±.30%

R2 ±.40%

R3 ±.60%

For each simulation run, a 10% chance of leak leak injection exists for each of the three

flow paths (cooling, fuel LP, fuel HP). The status for each system (leak or no Leak) and each

failure profile is random with a 10 % probability of occurrence per system per failure profile.

If a leak exists for a given failure profile a random sequence-point is selected to inject the

leak between 2-4.

Using the random injection of leaks and distribution of particles causing clogs for the fuel

and cooling system 100 failure profiles were constructed. A visual of the distributed profiles

for the cooling and fuel systems are shown below in Figure 4.7 and Figure 4.8.
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Figure 4.7: Run to Failure Profiles - All - Cooling

As shown above in Figure 4.7 the cooling failure has a mean failure sequence-point of 9

with a minimum failure sequence-point of 6 and a maximum exceeding the 10 sequence-point

simulation limit. The sharp changes in flow are indicative of leaks injected into the systems.

The drop from max voltage of about 8vDC command to the proportion valve to 0 vDC

represents the system returning to full health from failure and corresponds to the drop in

pressure shifting from its’ maximum value to zero. This is a result of the cooling system

being returned to full health (no restrictions or leaks) after failure while the fuel system
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continues to run to failure for the given profile. This process is conducted to record both

system run to failure profiles and avoid holding the failed system at an operational point

that places additional strain on the physical hardware within the system.
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Figure 4.8: Run to Failure Profiles - All - Fuel

As shown above in Figure 4.8 the fuel system also has a mean failure of 9 sequence-points

with a minimum failure sequence-point of 6 and a maximum exceeding the 10 sequence-point

simulation limit.

Using the 100 constructed run to failure profiles shown visually above in Figure 4.7 and
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Figure 4.8 on each sequence-point, discrete state of system health, data for operation of three

unique operational profiles was recorded. The three operational profiles are defined in the

following subsection.

4.3 Design of Operational Profiles

Over the up to 10 sequence-point run to failure profile or until both the fuel and cooling

systems reached their failure limit, three operational profiles were simulated in hardware at

steady state and data was recorded for a period of 10 seconds. The three operational profiles

are defined below in Table 4.7.

Table 4.7: Simulated Ship Operational Profiles

Operation Profile Mission Load Propulsion Rate MCR Waste Energy

A 0% 20 Hz 47% 42%

B 100% 30 Hz 97% 100%

C 0% 60 Hz 82% 67%

As shown above in Table 4.7 the three operational profiles (A-C) placed varied demands

on the cooling and fuel system through differing propulsion and mission system loads. Op-

erational profile B, operated the mission system at 100 percent of its’ capacity and the

propulsion system in a low speed, low load condition. Operational profile B had the maxi-

mum waste heat rejection due to the highly inefficient electrical mission system loads placing

the emulated waste heat at 100 percent capacity with the generator system at 97 percent

of its’ mean continuous power rating (MCR). Operational profile C, placed the propulsion

system at full speed ahead (60 Hz) without any mission loads online. Operational C had a

MCR of 82 percent and a waste heat of 62 percent. Operational profile C depicts a 15 percent

drop in MCR with a 38 percent drop in waste heat rejection as compared to profile B. The

nonlinear reduction in waste heat rejection is a result of the more efficient propulsion system

load replacing the highly inefficient mission system load. Operational profile A, provides a

low load condition with a propulsion speed of 20 Hz and no mission load online. A summary

of the operational system commands for the three operational profiles is provided in Table

4.8.
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Table 4.8: Simulated Ship Operational Control Inputs

Operation Profile Mission Load Propulsion Rate Waste Energy

A 0A DC 20 Hz 42%

B 23A DC 30 Hz 100%

C 0A DC 60 Hz 67%

The three operational profiles place a wide variation of demands on the cooling and fuel

system. Given a degraded state for the cooling system the cooling system will be unable to

provided sufficient flow to reject the waste heat created by profile B followed by profile C and

finally unable to support the low load condition, profile A, without overheating. Similarly,

given a degrading state for the fuel system, the fuel system may be able to provide sufficient

fuel delivery to power profile A but insufficient to meet the demands of profile B and C.

4.4 Test Procedure

A test procedure was constructed using the 100 modeled run to failure profiles and three

operational profiles constructed in the past two sections of this chapter. The test procedure

defined in this subsection, and used to record the hardware run to failure data, was formed

to minimize the potential for external effects and noise on the acquisition of hardware data.

The procedure is as follows.

• Follow the reference MEL userguide V1 .docx document and complete the following

tasks:

– Turn the NI control system on.

– Turn the LabVIEW software system on.

– Prior to starting the application, define the desired failure profile in the box

indicated by the red box shown below in Figure 4.9.
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Figure 4.9: Run To Failure Hardware Test Procedure - Profile Selection

– Start the application

– Turn the external DC CT sensors on

– Turn the load banks on and place in Constant Current mode

– Turn the energy storage system on and place the input as Generator 1

– Locate the main utility panel and place only the following three breakers online:

Main Input, Generator 1, and Generator 3

– Turn on the 480V AC power supply

• Configure the electrical grid as shown below in Figure 4.10, using the numbering con-

vention shown in the figure as the order to close breakers and start the propulsion

systems:
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Figure 4.10: Run To Failure Hardware Test Procedure - Breaker Configuration

• Enable The cooling system heaters as shown below Figure 4.11
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Figure 4.11: Run To Failure Hardware Test Procedure - Cooling Configuration

• Select the Auto-run control mode as shown below

Figure 4.12: Run To Failure Hardware Test Procedure - Run Configuration

• Define the first run as 1 and second run as 10, shown above near the blue arrow.
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• Click “Begin” , the automation process is now in process, please standby and ensure

the system is operating without any faults present.

• Once the run completes, indicated by the “simulation running” light turning off and

system audible alarm is present, place the control mode back to HMI, open all breakers

closed and enable switches pressed then click end program

• Transfer the data from each CRIO (1and2) and the Host PC to the corresponding

prognostics profile folder, and example is shown below, followed by the necessary file

paths.

Figure 4.13: Run To Failure Hardware Test Procedure - File Transfer

File Paths:

– CRIO1: http://169.254.9.175/files/u

– CRIO2: http://169.254.106.208/files/u

– Host PC Data: C:/Users/Marin/Documents/Output Variables

– Data Repository: C:/Users/Marin/Dropbox (University of Michigan )/MEL

Data Repository/Dataset Repository/Dataset 15/Raw Data

• Once all files are transferred for the given failure profile, delete the original files from

CRIO1 CRIO2 and the Host PC.

• Update the failure profile to continue data acquisition or follow the shutdown proce-

dures to complete your data acquisition session.

This process was followed for the 100 run to failure simulations in hardware to ensure

consistency across the 100 failure profiles and reduced unwanted patterns and noise in data

caused from inconsistencies hardware simulations.
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4.5 Acquired Laboratory Data

4.5.1 Overview

Using the test procedure defined in the previous subsection, 100 run to failure profiles were

recorded using the MLSMP. An example of a singular run to failure profile (Profile 20) and

the high level system outputs is provided below in Figure 4.14 for the cooling system and

Figure 4.15 for the fuel system.
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Figure 4.14: RUL Profile 20 - Processed - Cooling

As shown above in Figure 4.14, the cooling system flow drops below 1 LPM triggering

a system failure on sequence-point 6 as a result of a clog injected into the system. The

temperature profiles shown in the top row of subplots represents the temperature rise across
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the heaters which are used to inject the waste heat proportional to the current system losses.

The temperature profile rises across the run to failure profile and exceeds an arbitrary thermal

limit of 3 degrees Celsius for operational profiles B and C, however the system is able to stay

within the thermal limit until sequence-point 6 for operational profile A. The clog profile

causes a rise in pressure across the pump depicted in the bottom subplot of Figure 4.14

and a rise in pump current, shown in the third row of subplots for Figure 4.14. The fuel

system continues to operate until it fails on sequence-point 8 as shown below in Figure 4.15,

while cooling system data is limited to 6 sequence-points due to its failure of all operational

profiles on sequence-point 6.
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Figure 4.15: RUL Profile 20 - Processed - Fuel

As depicted above in Figure 4.15, the fuel system low pressure system fails on sequence-

point 8, due to a clog injected in the system for both fuel systems 1 and 2. The failure

limit is met on sequence-point 8, when the rail pressure drops below the system limit of

5 PSI. The system limit trips the fuel system offline failing the fuel system for all three

operational profiles on sequence-point 8. The pressure after the clog for the low pressure

flow paths gracefully degrades and is shown visually in the second subplot of Figure 4.15.

The restriction causes a drop in flow for the service flow paths shown in the 6th row of the
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subplot.

Figure 4.15 and Figure 4.14 represent an example of the hardware system run to failure

dynamics for the fuel and cooling systems. 99 additional hardware simulation were conducted

to produce the data set of 100 run to failure profiles. The additional profiles contain varied

distributions of clogs and leaks for the fuel and cooling systems. An example of a leak for

the cooling system is shown below in Figure 4.16 and for the fuel system in Figure 4.17 and

Figure 4.18.
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Figure 4.16: RUL Profile 14 - Processed - Cooling - Leak

As shown above in Figure 4.16, a leak in the cooling system was injected between sequence-

point 3 and sequence-point 4, which caused a sharp drop in flow between sequence-point 3

and sequence-point 4. The leak is considered a system failure, causing the cooling system to
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fail on sequence-point 4, however data was recorded until the failure limit in flow was met

on sequence-point 8. For all profiles with leaks, data was recorded until the failure limit in

flow was met. The extra data allows miss predictions for leaks to be better quantified, which

is described further in chapter 5. The fuel system contained two possibilities for leaks, a low

pressure leak shown in Figure 4.17 and a high pressure leak shown in Figure 4.18.
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Figure 4.17: RUL Profile 12 - Processed - Fuel - Leak LP

The injection of a low pressure leak into the fuel system (shown above in Figure 4.17)
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causes a sharp degradation in system pressure, which normally would trip the system offline,

however the system is continues to operate until either the HP fuel system or cooling system

fails. Similar to the cooling system leak process, the additional data is collected for the

fuel system to improve the error metrics in leak detection, which is described further in the

following chapter, Chapter 5.
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Figure 4.18: RUL Profile 35- Processed - Fuel - Leak HP

The injection of a High pressure leak into the fuel system (shown above in Figure 4.18)
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causes a sharp degradation in system pressure, which normally would trip the system offline,

however the system is continues to operate until either the LP fuel system or cooling system

fails. Similar to the cooling system leak process and LP fuel system leak process, the ad-

ditional data is collected for the fuel system to improve the error metrics in leak detection,

which is described further in the following chapter, Chapter 5.

The 100 failure profiles are injected with clogs and leaks leveraging the distributed failure

profiles defined in Subsection 4.2.5. The previous 5 figures and text provide examples of the

possible faults for the fuel and cooling system. The 100 failure profiles have a total individual

file count of over 16,000 files. This large file count required a post processing code for data

scaling and a data repository constructed prior to recording hardware data to ensure data

was properly stored and scaled. These processes are discussed in the following subsection.

Using the post processed data, further processing was conducted unique to the prognostics

and run to failure work, which is defined in Subsection 4.5.3.

4.5.2 Initial Post Processing and Data Repository

The total individual file count for all 100 run to failure simulations was estimated to be

about 16,200 files. This estimation was determined by:

Filecount = (Failure Profiles)∗(Daysavg)∗(fileseachrun)∗(Operational Profiles) (4.5)

Where 100 failure profiles simulated in hardware each containing an average of 9 sequence-

points. For each of the ∼ 9 sequence-points, three operational profiles were simulated in

hardware and recorded. Each of the three operational profiles produce 7 unique output

files (due to the varied sample rates within the laboratory). Provided the large estimation

for total output files, a post processing code and a structure for the data repository was

constructed prior to hardware simulations.

To effectively store this data a nested file structure was constructed where a singular RUL

Dataset folder contained 5 sub folders; raw data, processed data, average value data, figures,

control, and detailed processed data folders. The raw data, processed data and average value

data folders are leveraged for saving the original hardware data and initial processing. The

detailed process and figures folder are discussed in the following subsection of this chapter.

The control folder contains the 100 run to failure fault injection profiles csv files used for

hardware system fault injection and the operational profile csv used for hardware operational

profile control.

The raw data folder contains a sub folder for each of the 100 run to failure profiles. Each

94



sub folder contains the 7 raw output files from a given run to failure hardware simulation

profile. The initial processing code was used to load data from each failure profile, scale the

data from raw output signal valves to engineering values (flow, pressure, voltage, current,

etc.), shift the time vector to start at 0 seconds instead of the original clock time for the

embedded controller, and produce average values for all signals across each record window.

The scaled and time corrected data is stored in the processed data folder. The average value

data is concatenated into three individual files for each failure profile, representative of the

three operational profiles. Additional information about the post processing code is provided

in subsection 2.9.

4.5.3 Failure Profile Processing

Using the processed time series data from the past subsection, the data was then scaled,

trimmed and data acquisition errors were mitigated.

In the hardware acquisition of each run to failure profile, when a system failed prior to

another, it was returned to the full health position (absent of clogs or leaks) and remained

online until the second system failed, terminating the simulation, An example of this is

shown visually below in Figures 4.19 and 4.20.
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Figure 4.19: Failure Profile 4 - Data Trimming -Not Trimmed - Cooling

As shown above in Figure 4.19 the cooling system reaches the flow failure limit on

sequence-point 7. Instead of tripping offline, the system is returned to full health and re-

mained online until the fuel system failed on the following sequence-point. The fuel system

failure is shown below in Figure 4.20 followed by the trimmed cooling system profile shown

in Figure 4.21.
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Figure 4.20: Failure Profile 4 - Data Trimming - Fuel

As shown above in Figure 4.20, the LP fuel system limit is met on sequence-point 8,

terminating the simulation. Data for the system which fails first, which in this case is the

cooling system, is trimmed to its’ actual failure sequence-point shown visually in Figure

4.21. The fuel system data did not required any trimming as the simulation terminated

when the fuel system failure limit was met. The cooling system however, required removal of

the return to steady state data on sequence-point 8, which is shown visually below in Figure

4.21.
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Figure 4.21: Data Trimming - Trimmed - Cooling

As shown above in Figure 4.21, the cooling data was trimmed to 7 sequence-points from

the original duration of 8 sequence-points shown in Figure 4.19.

In addition to trimming profiles, profiles with DAQ errors were corrected for the cooling

and fuel systems. The correction method varied for each system. An example of a DAQ

error for the cooling system is shown visually below in Figure 4.22.

98



0 2 4 6 8 10
Sequence-Point

0

2

4

6

8

D
eg

 C

Temperature Rise  - System 1

Profile A
Profile B
Profile C

0 2 4 6 8 10
Sequence-Point

0

2

4

6

8

D
eg

 C

Temperature Rise - System 2 

Profile A
Profile B
Profile C

0 2 4 6 8 10
Sequence-Point

0

2

4

6

8

F
lo

w

Flow - System 1

Profile A
Profile B
Profile C
Expected
Trained Limit

0 2 4 6 8 10
Sequence-Point

0

2

4

6

8

F
lo

w

Flow  - System 2

Profile A
Profile B
Profile C
Expected
Trained Limit

0 2 4 6 8 10
Sequence-Point

4.5

5

5.5

A
m

ps
 (

A
)

Current  - Pump 1

Profile A
Profile B
Profile C

0 2 4 6 8 10
Sequence-Point

4.5

5

5.5

A
m

ps
 (

A
)

Current  - Pump 2

Profile A
Profile B
Profile C

0 2 4 6 8 10
Sequence-Point

0

5

10

D
el

ta
 P

S
I

Pressure-1

Profile A
Profile B
Profile C

0 2 4 6 8 10
Sequence-Point

0

5

10

D
el

ta
 P

S
I

Pressure-2

Profile A
Profile B
Profile C

Figure 4.22: Failure Profile 26 - Cooling System - Example DAQ Error

As shown above in Figure 4.22 the change in temperature across the heater for profile B in

systems 1 and 2 is below 0.5 ◦C and visually inconsistent with the other temperature profile

patterns. These anomalies exist in voltage based acquisition signals for both the cooling and

fuel system in less than 10 % of the profiles. The root cause for the error in temperature

delta across the heater was a result of high Electromagnetic interference (EMI) within the

laboratory. The EMI caused the DAQ module to exceed module safeguards placing the

module in a protection mode, invalidating the data. Given the small data set size of 100

profiles, it was desired to correct for these errors instead of simply throw the profiles out.

An example of a corrected profile is shown below in Figure 4.23 where the original profile is

shown in Figure 4.22.
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Figure 4.23: Failure Profile 26 - Cooling System - Example DAQ Correction

To do so the following signal limits were used defined below in table 4.9.

Table 4.9: Cooling System - Signal Limits

Signal Upper Limit Lower Limit Units

Temperature Delta 0 10 ◦C

Using limits defined in table 4.9, if a signal was out of tolerance the previous value replaced

the invalid value. The logic was effective as data acquisition errors never occurred for two

consecutive runs.

The Fuel systems leveraged a voting system to remove inconsistencies in the fuel system

data due to data acquisition errors. A voting system was selected and integrated as a result
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of the near identical values for a given run across all three operational profiles. This process

was not considered for the cooling system as data varied for a given run across the three

operational profiles. A visual of the voting system process is shown below in Figure 4.24.

1 2 3 4 5 6 7 8 9 10

Sequence-Point

50

100

150

P
S

I

System 1 - High Pressure Rail
Profile Vote
Profile A
Profile B
Profile C
Expected
Failure - A
Failure - B
Failure - C

1 2 3 4 5 6 7 8 9 10

Sequence-Point

50

100

150

P
S

I

System 2 - High Pressure Rail
Profile Vote
Profile A
Profile B
Profile C
Expected
Failure - A
Failure - B
Failure - C

1 2 3 4 5 6 7 8 9 10

Sequence-Point

0

10

20

30

P
S

I

System 1 - Low Pressure Rail

Profile Vote
Profile A
Profile B
Profile C
Expected
Failure
Leak

1 2 3 4 5 6 7 8 9 10

Sequence-Point

0

10

20

30

P
S

I

System 2 - Low Pressure Rail

Profile Vote
Profile A
Profile B
Profile C
Expected
Failure
Leak

1 2 3 4 5 6 7 8 9 10

Sequence-Point

2

2.5

3

A

System 1 - Low Pressure Pumps

Profile Vote
Profile A
Profile B
Profile C

1 2 3 4 5 6 7 8 9 10

Sequence-Point

2

2.5

3

A
System 2 - Low Pressure Pumps

Profile Vote
Profile A
Profile B
Profile C

1 2 3 4 5 6 7 8 9 10

Sequence-Point

4

4.5

5

A

System 1 - High Pressure Pumps

Profile Vote
Profile A
Profile B
Profile C

1 2 3 4 5 6 7 8 9 10

Sequence-Point

4

4.5

5

A

System 2 - High Pressure Pumps

Profile Vote
Profile A
Profile B
Profile C

1 2 3 4 5 6 7 8 9 10

Sequence-Point

6

8

10

12

F
lo

w
 (

LP
M

)

System 1 - Service Flow

Profile Vote
Profile A
Profile B
Profile C

1 2 3 4 5 6 7 8 9 10

Sequence-Point

6

8

10

12

F
lo

w
 (

LP
M

)

System 2 - Service Flow

Profile Vote
Profile A
Profile B
Profile C

Figure 4.24: Failure Profile 72 - Fuel System - Voting System

Shown above in Figure 4.24, the circular points represent the selected data from the voting

system. The for each run and each signal the voting system compares the values for profiles

A-C. The voting system uses profile A as the base value, if profile A matches (where a match

is defined as a value within a 1 ± % tolerance of Profile A) profile B or Profile C, the valve for
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profile A is selected. However, if profile A does not match profile B or Profile C, then profile

B and C are checked for a match, if profile B and C match, profile B is selected. However if

profile B and C do not match then there is no agreement between 2 of the three profiles and

an error is flagged. In the acquired data an agreement between 2 of the 3 operational profiles

for a given run and signal for the cooling system was always achieved. By implementing a

voting system, the fuel system data was reduced down to a singular average of the three

operational profiles and data acquisition errors were eliminated for the fuel system.

4.6 Summary

Using the MLSMP, defined in Chapter 2, 100 run to failure (RTF) profiles were in this

Chapter. The failure profiles injected common faults into the cooling and fuel systems,

which caused a degradation in system performance until both the cooling and fuel system

failed. Data was collected over a period of 10 sequence-points or until both the fuel and

cooling systems had failed using the MLSMP. The 100 failure profiles that were recorded in

hardware were configured using a constructed software model of the fuel and cooling system

in conjunction with a clog model from literature [3]. The RTF dataset constructed within

this Chapter provides the necessary inputs to explore the application of Artificial Intelligence

for diagnostics and prognostics of the RTF profiles constructed within this chapter.
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CHAPTER 5

Forecasting Plant Level Capability

5.1 Introduction

This chapter explores the applicability of Artificial Intelligence (AI),with the selection of a

long short-term memory (LSTM) Recurrent Neural Network (RNN), to perform diagnostics

and prognostics on the Michigan Laboratory-scale Ship Machinery Plant (MLSMP) through

a multi-layer framework. Using the run to failure (RTF) profiles constructed throughout

Chapter 4, a multi-step processes is proposed to form the final multi-layer framework. The

diagnostic task will attempt to detect leaks in the supporting plant systems (cooling and

fuel). The prognostic task will focus on the prediction of growing clogs in the fuel and

cooling system and their future impact on overall plant capabilities in the future. The

proposed process to build this novel multi-layer prediction framework is shown in Figure 5.1.
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Figure 5.1: Proposed Exploration Process for Plant level Prognostics

The process developed a flexible dataset using indices to enable the ability to efficiently

select variations in input parameters including: input signals, plant selection, and operational

profile selection, and test, train and validation data partitions. Provided the finalized dataset,

initial signal analysis was performed to determine the potential correlation between faults

and failures (clogs and leaks) and input signals, providing a initial selection of dataset indices

to explore potential AI algorithms for the diagnostic and prognostic tasks. AI algorithms are

first explored, selected and evaluated across a range of input data at the system level(for each

individual system) for the diagnostic and then for prognostic task. Leveraging the initial

diagnostic and prognostic work, a plant level algorithm is formed to enable the diagnosis

of current plant state for leaks within the fuel and cooling systems (leak vs. no leak) and

predict the ability to complete varying operational profiles in the future given a degrading

state of system health. An overview of content found in each of the subsequent sections is
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provided in the following paragraph.

Section 5.2 first defines the plant configuration and its respective failure distributions

used throughout work in this Chapter. Section 5.3 begins the proposed exploration process

illustrated in Figure 5.1 and discusses the conducted data processing. Data processing was

conducted to provide necessary indices to extract varied combinations of desired data within

the larger run to failure dataset. Using the formed dataset from Section 5.3, the following

Section 5.4 reviewed the variance of each input signal with respect to failure sequence-point

and leak state to provide initial insight into signal selection which informed the initial data

selection for the exploration of AI methods. Section 5.5 reviews common AI based algorithms

for Diagnostic applications to determine if a leak is present in the cooling or fuel system.

Section 5.6 uses input data without the presence of a leak and applies an Long short-term

memory (LSTM) based model to forecast potential limitations to future plant operational

capability as a result of degradation in the cooling and fuel system. Section 5.6 focuses on

the individual system (cooling or fuel) to forecast if the given system will degrade operational

availability (ability to complete operational profiles A-C) in the future, given its current and

trending degradation in system health. Section 5.7 combines system level diagnostic and

prognostic algorithms into a common framework to diagnose the current state of the plants

health and predict operation availability for operational profiles (A-C) in time. Section 5.8

provides a summary of the insight gained throughout this chapter, in efforts to close the

knowledge gap for unmanned system operation.

5.2 Notional Machinery Plant and Failure Profiles

5.2.1 Overview

This section is divided into two key elements, an overview of the plant configuration used

for work throughout this chapter and an overview of the faults and run to failure profiles.

5.2.2 Plant Configuration

The hardware plant was configured with MSB1 and MSB2 each powered from a single

generator and uncoupled from each other. The mission and support loads placed on both

busses were identical as well as the faults injected into the respective support systems. The

isolation between the two sides of the power plant provides two near identical run to failure

profiles on near identical hardware. The portion of the machinery plant with MSB1 and

its respective loads and source (generator 1) is defined as plant 1 and the portion of the
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machinery plant with MSB2 and its’ respective loads and source (generator 3) is defined as

plant 2. The two plants within the MLSMP are shown visually below in Figure 5.2.

Figure 5.2: Overview - Plant 1 and Plant 2

5.2.3 Failure Distribution

The 100 RTF profiles are defined in detail in Chapter 4 and are summarized in this Subsection

prior to their use throughout this Chapter. The RTF profiles were conducted over a period of

up to 10 sequence-points with each sequence-point recording a 10 second steady state window

of data from three operational profiles. For each run to failure profile, there was a probability

for failure through through clogs and leaks injected into the fuel and cooling systems. Leaks

in both the fuel and cooling system were had a probability of occurrence during sequence-

point 2-4 of operation. If a leak occurred in any system, the given RTF profile was considered

failed prior to the prediction of clogging in the fuel and cooling system. While the injection

of system leaks were small and did not affect system (cooling or fuel) performance, the
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leaks were defined as a failure due to the spilling fuel or raw water that would occur in the

engine room in the event of a leak. Randomly distributed clogs were injected into the fuel

and cooling system (detailed in Chapter 4), these clogs began on sequence-point one and

did not cause a degradation in system capability until sequence-point 6-10. The constructed

failure profiles were designed to leverage system information up to sequence-point 5, with the

flexibility to use data from sequence-points 4-6, and predicted the plant level capability by

defining the failure sequence-point for each of the three operational profiles in a given RTF

profile. The cooling system failure sequence-point was dependent on the plant losses and

thus the plant loading or operational profile. The cooling system experienced a reduction

in capability due to decreased cooling capacity as clogs in the system built over time. For

example, the cooling system may not have sufficient ability to cool the waste heat for a high

load situation (operation B) but has the capacity to cool the system for a low load operation

(operation A). The fuel system failure sequence-point was independent of operational loading.

Fuel system clogs built slowly in the low and high pressure systems but system capacity was

not affected until the clog exceeded the capability of the pumps causing the rail pressure to

sharply decrease, reducing fuel injection ability below the necessary threshold for all three

operational profiles. The distribution of these failures across the 100 RTF profiles is defined

below in Table 5.1.

Table 5.1: Distribution of Actual Dataset Failure Modes

System Clog (Profile Count) Leak (Profile Count)

Cooling 11 18

Fuel 27 11

Fuel and Cooling 30 3

Total 68 32

Table 5.1 provides the breakdown of failure modes and their respective system origin.

Failures are broken down by system origin and failure type. The leak category defines

failure profiles where a leak is present in the cooling system, fuel system or both the cooling

and fuel system. Leaks occur between sequence points 1 and 4 and are defined as a plant

level failure for the given profile. For the 68 profiles without a leak clogging in the fuel and

cooling system cause the given profile to eventually fail. The 11 failure profiles that make up

clogging in the cooling system are unable to perform any operations (a-c) due to overheating

prior to the fuel system affecting plant level performance. The 27 failure profiles that make

up clogging in the fuel system cause the plant to fail due to the insufficient functionality of

the fuel system prior to any degradation in operational performance for the cooling system.
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The fuel and cooling category for clogging represents the failure profiles where a degradation

in cooling system operational availability is present or the cooling system has the capacity for

1-2 operational profiles but not three, and prior to the inability to perform any operational

profiles as a result of cooling system degradation, the fuel system degradation causes a plant

level failure.

The multiple failure modes and their respective injection distributions for the 100 RTF

profiles provide a range of failure sequence-points for operational profiles A-C, which is

depicted in Figure 5.3.
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Figure 5.3: Dataset Failure Distribution

Figure 5.3 illustrated the distribution of system and plant level failures for the three

operational profiles through three bar charts. The top bar chart depicts the fuel system

failure for the 100 RTF failure profiles providing the sequence-point the system fuel system

produces a plant level failure. The middle bar chart illustrates the sequence-point the cooling

system is unable to provide the necessary capability to dissipated the waste heat produced

by the respective operational profile. The final bar chart illustrates the failure sequence-

point for each operational profile provided the state of health for both the cooling and fuel

systems.

108



5.2.4 Summary

The 100 RTF profiles generated with simulated failures from literature and injected into

the MLSMP discussed in detail in Chapter 4 are leveraged as input data for fault detection

and prediction of plant capacity in time provided the injection of common fuel and cooling

system faults and failures. The MLSMP is operated as two identical and isolated sub-

plants with identical equipment, operational loads and fault injection across the 100 RTF

profiles. For the work in this Chapter, the MLSMP and the two identical sub-plants are

referred to as plant 1 and plant 2. Both plants (1 and 2) simulate in hardware 100 RTF

profiles each consistent of up to 10 sequence-points of operation, with each sequence-point

recording 10 seconds of steady state data for three operational profiles (A-C). For each of

the 100 RTF profiles there is a randomized and independent probability of a leak in the

fuel high pressure and low pressure systems as well as the cooling system. In addition to

leaks there is a randomly distributed and independent clog, which increases across the RTF

profile for the cooling system and fuel high pressure and low pressure systems. The multiple

modes of failure and system degradation for the cooling and fuel system produce complex

and interdependent interactions within the machinery plant, affecting overall operational

performance until plant failure.

5.3 Input Data and Data Prepossessing

5.3.1 Overview

This section defines the processing and finalized input data, with respective indices leveraged

throughout this chapter for the detection of system leaks and prediction of plant capacity in

time. Using the 100 RTF profiles defined in Chapter 4 and the defined MLSMP configuration

and failure distribution defined in Section 5.2 laboratory data from the 100 RTF profiles was

processed to produce input data for AI framework exploration. Indices were created to allow

selection of desired operational profile(s), desired plant subsystems (plant 1 and plant 2),

desired signals and features, and desired allocation for partitioning data into test, train and

validation groups. The first Subsection of this section discusses signal and feature selection,

followed by the second Subsection, which defines the partitioning of data into test, train and

validation. The final selection summarizes the formed input data and indices.
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5.3.2 Signal and Feature Extraction

The discussion of signal selection and feature extraction in the subsequent paragraphs of

this subsection are with respect to each individual plant (plant 1 and plant 2). Steady state,

average value data was first extracted and used to form a singular value for each of the

desired signals for a given failure profile, sequence-point and operational profile. The input

signals are listed below in Table 5.2.

Table 5.2: Input Signals - Average Value Data

Signal Name System Unit

Heater Inlet Temperature Cooling ◦C

Heater Outlet Temperature Cooling ◦C

Flow Cooling LPM

Pump Current Cooling ARMS

Pressure 1 Cooling PSI

Pressure 2 Cooling PSI

Flow - LP Fuel LPM

Flow - HP Rail Fuel LPM

Flow - HP Relief Fuel LPM

Pressure - LP Fuel PSI

Pressure - HP Fuel PSI

Pump Current - LP Fuel ARMS

Pump Current - HP Fuel ARMS

The 13 signals listed above are identical for cooling system 1 and 2, producing a total of 23

selected signals of average value data. For both sides of the plant cooling system heater input

and output signals were used to form a singular input signal representing heater temperature

delta. Similarly, the pressure signals before and after the clog for both cooling systems were

used to form a singular input signal for pressure delta across the restriction. The average

value signals were indexed into three groups (signal groups: 1-3) to enable trade off studies

between input signal and prediction accuracy. The average value input signals and their

respective indices are provided below in Table 5.3.
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Table 5.3: Input Data - Average Value Signals

Signal Name System Unit Signal Group(s)

Heater Temperature Delta Cooling ◦C 1

Flow Cooling LPM 1

Pump Current Cooling ARMS 1,2,3

Pressure Delta Cooling PSI 1,2

Flow - LP Fuel LPM 1

Flow - HP Rail Fuel LPM 1

Flow - HP Relief Fuel LPM 1

Pressure - LP Fuel PSI 1,2

Pressure - HP Fuel PSI 1,2

Pump Current - LP Fuel ARMS 1,2,3

Pump Current - HP Fuel ARMS 1,2,3

In addition to the average value signals defined above, power spectrum data was also col-

lected and grouped to enable trade off studies between input signal and prediction accuracy.

The four main components of interest for extracting power spectrum data are defined in

Table 5.4.

Table 5.4: Desired Load and source power spectrum data

System Component

Fuel Pump LP

Fuel Pump HP

Cooling Pump

Energy Generator Ph A,B,C

Data for both plant 1 and plant 2 is extracted for the desired loads and sources listed

above in Table 5.4 using signals defined below in Table 5.5.
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Table 5.5: Input Data - Waveform Signals

Signal System Unit

Pump Current Cooling A

Pump Current LP Fuel A

Pump Current HP Fuel A

Gen Phase A Current Genset A

Gen Phase B Current Genset A

Gen Phase C Current Genset A

Bus Voltage Phase A MSB V

Bus Voltage Phase B MSB V

Bus Voltage Phase C MSB V

Bus Voltage Phase A SSB V

Bus Voltage Phase B SSB V

Bus Voltage Phase C SSB V

The signals defined above in Table 5.5 are used as inputs to extract power spectrum

harmonics for each of the four devices listed in Table 5.4. For each device the magnitude

and frequency for carrier frequency and 5 largest harmonic frequencies are extracted and

saved as input data. An example of the extracted data is provided below in Figure 5.4.
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Figure 5.4: Power Spectrum Data

Figure 5.4 provides an example of a single extraction of power spectrum data for cooling

pump 1 in failure profile 20, sequence-point 4 and operational profile 1. The power spectrum

data was indexed into three groups (signal groups: 0,1,2) to enable trade off studies between
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input signal and prediction accuracy. The power spectrum data input signals and their

respective indices are provided below in Table 5.6.

Table 5.6: Power Spectrum Data Indices

System Component index

Fuel Pump LP 1,2

Fuel Pump HP 1,2

Cooling Pump 1,2

Energy Generator Ph A,B,C 2

5.3.3 Selection of Test and Train, Validation data

Given the 100 run to failure profiles defined in Chapter 4, and desired signals defined in the

previous subsection, test and train datasets were constructed to serve as input data to explore

prediction algorithms and accuracy through the prediction framework. The partitioning of

test, train and validation data was done by the individual RTF profiles and their respective

indices 1-100.

Given the limitation on dataset size, due to the time intensive process of collecting real

hardware run to failure profile data, a resampling process was necessary and implemented

to help reduce over fitting. The resampling process selected test, train and validation data

50 times, producing 50 varying selections of the 100 RTF profiles for the selection of test

train and validation data. The first 20 samples are applied for the individual system level

diagnostic and prognostic task and the full 50 samples are used for the final plant level

framework.

Three test and train datasets were constructed with variation is percentage of validation,

test and train data. The varied allocations for test, train and validation data for each of the

three datasets are defined below in Table 5.7.

Table 5.7: Partitions of Test, Train and Validation Data

Partition Train Validation Test

Partition A 0.8 0.1 0.1

Partition B 0.6 0.2 0.2

Partition C 0.8 0.15 0.15

The variations in test, train and validation provide selection options dependent on the

required data allocations for a potential AI model. Partition A will serve as the primary
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partition with partition B-C reserved for future work if required.

In summary, for each of the three unique partitions of test, train and validation data,

the selection of test, train and validation data was repeated 50 times to produce 50 varying

selections of the 100 failure runs for the selection of test train and validation data. Training

set 1 served as the base selection and training set 2 and 3 were constructed in the event

selected algorithms would required a larger set of validation and test data.

5.3.4 Summary of Input Data

Leveraging the RTF data defined in Chapter 4, 50 signals were extracted across the two

sub-portions of the MLSMP (plant 1 and plant 2).The following data indices were formed

to allow selection of input data for plant level predictions.

Table 5.8: RTF Dataset Indices

Parameter Range

Prediction sequence-point 4-6

Plant 1 - 2

Operational Profile 1-3

Avg. Value Signal Options 1-3

Cooling Diagnostic Data 0-1

Power Spectrum Data 0-2

Partition (test,train,val) 1-3

RTF Profiles W or W/O Leaks

The Prediction sequence-point represents how many sequence-points of input data is

used for diagnostic and prognostics. The selection of plant determines data and response

information is selected from plant 1 or plant 2. The operational profile corresponds to the

three variations in system loading defined further in Chapter 4. The Avg. value signal

options determine which of the three average value signal data groups was used for input

data, as defined in Table 5.3. The selection of cooling diagnostic data determines if data from

the chosen operational profile (A,B or C) is used, selection of index 0, or data from all three

operational profiles is used, selection of index 1. The selection of partition (test,train,val) 1

is used as the default selection for the division of test, train, and validation data percentages.

Partition values 1 and 2 are reserved in the event larger portions of train and validation data

are required by a given AI algorithm. Power Spectrum Data values of 0-3 correspond to

varying groups of input data in 1-3 and a value of 0 excludes all power spectrum data from
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use as an input. Finally, RTF Profiles can be selected to include all 100 profiles or only

profiles without leaks.

5.4 Initial Signal Evaluation

5.4.1 Overview

Using the formed dataset from Section 5.3, data was first analyzed for its initial applica-

bility for the diagnosis of leaks and forecasting of plant level operational availability. This

preliminary analysis served as a baseline for signal exploration to provided an initial set of

input parameters to evaluate potential AI based algorithms in the subsequent Sections of

this Chapter. The analysis was limited to two metrics and is not exhaustive, however all

potential input signals were reviewed for their potential applicability in leak detection and

failure prediction. This analysis focused on two metrics for each signal of interest. The two

metrics are defined as follows:

• Metric 1 (Leak Detection): The change in each signal value between each sequence-

point for sequence-points 1-5 was computed across all 100 RTF profiles and operational

profiles (A-C). The minimum and maximum value for each instance was recorded in

conjunction with the class label (Leak / No Leak) for the given RTF profile.

• Metric 2 (Prognostics): The difference in signal value between sequence-point 1 and

sequence-point 5 was computed across the 100 RTF profiles not containing leaks and

their respective operational profiles (A-C). The value and the corresponding failure

sequence-point for the given RTF profile and operational profile was recorded as an

entry alongside the numerical value for each signal.

Figure 5.5 and Figure 5.6 showcase the simplistic process used to evaluate signals for their

initial potential as predictors for both leak detection and failure sequence-point forecasting.

This process was repeated for all indexed signals in the constructed dataset defined in Section

5.3. Both Figure 5.5 and Figure 5.6 use data from plant 2 and operational profile C to

compare signal viability for the average value signal of cooling pump current and the power

spectrum (5th Harmonic) data for the corresponding pump. Figure 5.5 illustrates signal

viability for cooling system leak diagnosis and Figure 5.6 illustrates signal viability for failure

sequence-point prediction.
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Figure 5.5: Example Signal Analysis for Diagnostic Predictor Evaluation (Cooling System,
Plant 2 and Operational Profile C)

As depicted in Figure 5.5a a clear correlation exists between the cooling system leak state

(leak vs. no leak) and the minimum and maximum change in average value pump current

between each sequence-point for the cooling system in plant 2 on operational profile c. This

relationship was formed using analysis Metric 1 and provides initial promise that changes in

sequence data for pump current is a strong predictor of leak state.

The process was followed to analyze the extracted (5th Harmonic) power spectrum data

from the line current and voltage for the cooling system pump in plant 2 on operational profile

C. The result is depicted in Figure 5.5b and illustrates weak to no correlation between leak

state and changes in sequence data for extracted (5th Harmonic) power spectrum data.
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Figure 5.6: Example Signal Analysis for Prognostic Predictor Evaluation (Cooling system,
Plant 2 and Operational Profile C)

Figure 5.6 provides the visual correlation between average value pump current and (5th

Harmonic) power spectrum data and their respective change in value between sequence-

point 1 and sequence-point 5 and its’ correlation to cooling system failure sequence-point for

operational profile C on plant 2. Figure 5.6a depicts a potential correlation between change in

average value pump current from sequence-point 1 to sequence-point 5 and failure sequence-

point. However, Figure 5.6a shows little to no correlation between the 5th Harmonic power

spectrum data and the cooling system failure.

A second example of the simplistic evaluation process for the FFT pump data is shown

below in Figure 5.7 and Figure 5.8. In both these figures, power spectrum data from the

line current and voltage for the cooling system pump in plant 2 on operational profile C was

used. The two subplots for the following two figures analyze the first and third harmonics.

Figure 5.7 illustrates this analysis for leak detection and Figure 5.8 illustrates this process

for prediction sequence-point.
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Figure 5.7: Example Signal Analysis for Diagnostic Predictor Evaluation (Cooling System,
Plant 2 and Operational Profile C)

As shown in Figure 5.8a a grouping pattern appears for the first harmonic with respect

to the leak no leak classification. However this pattern is not as strong of a correlation as

was depicted in Figure 5.5a. The third harmonic shown in Figure 5.7b shows a reduced

correlation with respect to the first, but slightly tighter than the 5th harmonic.

Following this process Figure 5.8 reviews the potential of the first and third harmonic for

failure sequence-point prediciton.
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Figure 5.8: Example Signal Analysis for Prognostic Predictor Evaluation (Cooling system,
Plant 2 and Operational Profile C)
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As depicted in Figure 5.8 the two plots show little to no correlation between failure

sequence-point and the 1st and third harmonics. The two metrics were applied across all

potential signals to visually determine their applicability for the diagnostic and prognostic

tasks. The following Subsection provides a summary of the correlations between signals and

future and current plant state.

5.4.2 Summary

Leveraging the simplistic analysis method defined and showcased in the previous subsection.

The two methods were applied to all indexed signals within the formed dataset. A simple

visual inspection was used to select and rank predictor signals. These efforts were necessary

due to the large state space of possible combinations for input signals and parameters. The

down selection of signals enabled a feasible starting point to evaluate AI algorithms, with

the selection of a long short-term memory (LSTM) Recurrent Neural Network (RNN), for

leak detection and failure prediction. The key findings are summarized as follows and are

grouped by index parameters redefined in Table 5.9:

• (Operational Profile (A-C) and Plant (1 or 2)): Little to no variation in signal cor-

relation as a predictor of failure sequence-point or diagnoses of leak state was found

between a singular signal across operational profiles (A-C) and between the two plants

(plant 1 and plant 2). Given the uniformity between the two plants, and operational

profiles (A-C) with respect to an individual signals correlation to current or future

state of health, the variation of signal correlation between the possible input signals

can be jointly summarized for both plants and all operational profiles.

• Power Spectrum Data: Little to no correlation was found between any harmonic am-

plitude or component data was extracted from and the current state for the cooling

and fuel systems or the failure sequence-point for the fuel and cooling systems. This

initial analysis removed the power spectrum data from initial consideration as input

for leak detection or the prediction of fuel or cooling system failures.

• Average Value Data: A strong correlation was found between the average value signals

and the current state for the cooling and fuel systems as well as the failure sequence-

point for the fuel and cooling systems. This initial analysis placed a high consideration

on varied combination of average value data as input data.

The three core findings defined above successfully reduce the state space for possible

input signal combinations to a manageable level with the remaining possible combinations
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to evaluate within the AI based diagnostic and prognostics framework listed below in Table

5.9.

Table 5.9: Data Indices - Initial Selection and Evaluation Range

Parameter Initial Selection Range

Prediction sequence-point 5 4-6

Plant 2 1-2

Operational profile 3 1-3

Cooling diagnostic data 1 1-2

Avg. value signals option 3 1-3

Partition (test,train,val) 1 1

RTF Profiles W & W/O Leaks W & W/O Leaks

Table 5.9 removes the power spectrum data from consideration for input data for work

in this chapter given the low correlation between the extracted harmonic points and system

failure sequence-point as well as leak status for the cooling and fuel systems. Provided the

minimal variation in correlation for a signal across operational profile (A-C), and plant (1

and 2) a fixed set of inputs was formed to explore varying AI based diagnostic and prognostic

algorithms, the selection of these parameters is listed in Table 5.9 under the column titled

“Initial Selection”. The parameter values listed in rightmost column titled “Range” represent

the full bandwidth of signal combinations that will be reintegrated after the selection of a

detection and prediction Algorithm to compare the effects on diagnostic and prognostic

accuracy.

5.5 System Level Diagnostics

5.5.1 Overview

Prior to the prediction of plant level capability it was critical to evaluate the current state

of health for the plant. Using the RTF dataset leveraged in this chapter, the current state

for the machinery plant contained a probability of a critical failure (leak) in the fuel and

cooling system. The injection of a leaks in the cooling or fuel system was independent to

one another with a randomly distributed probability of occurrence between sequence-point

2-4 of a given RTF profile. Data from sequence-point 1 to sequence-point (4-6) will be used

as input data to evaluate common AI algorithms for the detection of a leak in the cooling

and fuel systems. Throughout this section leak detection and the application of potential
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AI algorithms is done independently for both the cooling and fuel systems but identical

algorithms are considered for each system. The first subsection of this chapter proposes

and selects a potential AI algorithm building from initial work completed in Chapter 3. An

LSTM based model is chosen in Subsection 5.5.2 as a potential algorithms for the diagnostics

task. Initial feasibility of the LSTM model is confirmed in Subsection 5.5.3. The following

two Subsections 5.5.4-5.5.5 provide an exploration of varied input signals and the respective

diagnostic performance for the cooling and fuel system respectively. The final subsection

provides a summary of the key takeaways for system level diagnostics.

5.5.2 Algorithm Selection

Building from work completed in Chapter 3, common classification methods were first con-

sidered for the diagnostic task in the plant prediction framework. The considered classifiers

included: K-Nearest Neighbors (KNN), Decision Tree, Logistic Regression, and Support

Vector Machines. Initial efforts revealed little potential and many challenges for the use of

common classifiers in the diagnostic task. A critical shortcoming of common classification

method was the inability to receive sequence based data as input. Feature extraction was

attempted to circumvent this limitation, however these methods were unable to extract the

hidden correlations between profile to profile signal variation and variations in signals due

to changes of system state (no leak to leak). These challenges served as motivation to apply

an AI algorithm with the ability to receive sequence based input data to diagnose if a leak

was present or not for the fuel and cooling systems.

A long short-term memory (LSTM) neural network was selected and configured for this

task based on the algorithms prevalence in diagnostic applications from literature using time

series based input data. These applications used to perform diagnostic tasks include: Ab-

normality detection in nuclear power plants [50]-[51], Bearing fault diagnosis [52], unmanned

aerial vehicle (UAV) actuator failures [53], and high impedance faults in solar Photovoltaic

integrated power systems [54].

Data from sequence-points 1 to (4-6) for each RTF profile was used as the input predictor

time series data to provide the prediction response of whether or not a leak was present in

the given profile. The LSTM model was provided a numerical value of 0 or 1 for the response

value of each profile in the training dataset. The numerical value of 0 was used to define a

profile without a leak and the value of 1 was used to defined a profile with a leak. The LSTM

model parameters and configuration for the diagnostic task are defined below in Table 5.10.
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Table 5.10: LSTM Model Parameters for Diagnostics

Parameter Value

Normalization Zscore

Hidden Units 200

Output Mode Last

Fully Connected Layers 1

Max Epochs 500

Validation Data 10 %

Output Network best-validation-loss

Initial Learn Rate 0.005

Sequence Length shortest

Verbose false

Using the selected and defined LSTM model, a preliminary evaluation of its feasibility for

the diagnosis of system leaks is provided in the following Subsection.

5.5.3 LSTM Model - Initial Evaluation

Expanding work from Chapter 3 exposed clear limitations of traditional classification meth-

ods for state detection provided the input of sequence based data. An LSTM based algorithm

was used to attempt to improve the ability to detected the current state (leak no leak) for the

fuel and cooling system. A key benefit of this approach is the ability to take sequence based

input data and provide a response of an integer value correlated to a leak or no leak state.

To determine initial feasibility the initial initial indices for parameters defined in Table 5.9

are used.

Provided the defined input data for the fuel and cooling system predictions an LSTM

model was applied to diagnose the current state of the cooling and fuel systems independently.

The LSTM output produced a single value, where a value of 1 represents a leak and a value

of 0 represents no leak. Of the 100 RTF profiles, the model for this test used 80 % of the

profiles to train, 10 % for validation and 10 % for testing. The LSTM train, validation

and test process was repeated 20 times with random selections of test, train and validation

indices to provide a more accurate indication of true prediction performance given the small

dataset. The LSTM results for the test predictions are depicted in Figure 5.9a for the fuel

system and Figure 5.9b for the cooling system.
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Figure 5.9: System Diagnostics - Initial Results

A decision threshold of 0.5 was set to determine the class of leak or no leak based on the

prediction value. The threshold was chosen as an even division between the true state of

leak represented as an integer 1 and a true state of no leak represented as an integer 0. The

0.5 threshold was adopted for classifying the predicted state of leak or no leak, where a value

greater than 0.5 was a prediction of a leak and a value less than 0.5 was classified as no leak.

The initial prediction accuracy for the 0.5 cutoff threshold is defined below in Table 5.11.

Table 5.11: Initial Results for Leak Detection - LSTM

System Parameter Error

Cooling Total Error 2 %

Fuel Total Error 15 %

Cooling False Positive 0 %

Cooling False Negative 2 %

Fuel False Positive 3 %

Fuel False Negative 15%

As defined in Table 5.11 the LSTM model showed initial promise for cooling system and

fuel system leak detection with initial results showing a minimal error of 2 % for the cooling

system and an acceptable error of 15 % for the fuel system. The model and parameters

used for these initial findings in this subsection are leveraged in the following subsection to

evaluate diagnostic accuracy for a varying combinations of input data.

123



5.5.4 Cooling Leak Detection - LSTM Model Exploration

This Subsection expands the initial diagnostic work conducted in the prior subsection to

consider detection accuracy for leaks in the cooling system with varied input signals, plant

selections and operational profile selections. The evaluation ranges are defined below in

Table 5.12.

Table 5.12: Input Data - Cooling System - LSTM Exploration for Leak Detection

Parameter Value

Prediction sequence-point 4-6

Plant 1 & 2

Operational Profile 1-3

Cooling diagnostic data 1 and 2

Avg. value signals option 1-3

Partition (test,train,val) 1

RTF Profiles W Leaks

The evaluation state space defined in Table 5.12 contains 72 unique combinations of model

inputs, each evaluated combination is defined as a test. For the 72 tests total prediction error

was calculated and compared across all tests. Across the 72 tests the maximum total error

was 8.5 %. Across the 72 tests excluding cooling profiles leak data option 2, the use of

average value data from all three operational profiles instead of a singular profile, decreased

the maximum total prediction error to 5 %. The remaining 54 test cases and the correlation

to input signal and diagnostic accuracy is summarized below in Table 5.13
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Table 5.13: Results - Cooling System - LSTM Exploration for Leak Detection

Parameter Value Error

Avg. Value Signals Options 1 3.03%

Avg. Value Signals Options 2 1.47%

Avg. Value Signals Options 3 2.36%

Prediction sequence-point 4 2.80%

Prediction sequence-point 5 1.92%

Prediction sequence-point 6 2.14%

Plant 1 2.13%

Plant 2 2.45%

Operational Profile 1 2.28%

Operational Profile 2 2.45%

Operational Profile 3 2.14%

The resultant diagnostic accuracy defined in Table 5.13 provides insight into the correla-

tion between input parameters and diagnostic accuracy for cooling system leaks. The key

trends are as follows:

• Avg. Value Signals Options: Option 2, the use of only pump current and pressure,

provided the highest overall accuracy. Option 1, the use of all average value signals,

had the lowest overall accuracy. With option 3, the use of only electrical current data

providing the midpoint in diagnostic accuracy. These results show a strong correlation

between electrical pump current and pressure and overall diagnostic accuracy. Provid-

ing the model additional information reduced diagnostic accuracy and only relying on

pump current had a slightly worse performance than pump current and pressure.

• Prediction sequence-point: sequence-point 5 provided produced the least error, followed

by sequence-point 6 then sequence-point 4. These results show information before and

the sequence-point after the injection of a leak provide the best results and additional

sequence-points after increase error.

• Plant: Little variation was found between the two plants with plant 1 having slightly

less diagnostic error than plant 2.

• Operational Profile: Data from operational profile 3 provided the least error followed

by operational profile 2, then 1.
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The correlation between input parameters and diagnostic error shown in Table 5.13 align

with the input variables shown across the 10 test cases with the least amount of prediction

error shown in Table 5.14.

Table 5.14: Results - Cooling System - LSTM Exploration for Leak Detection (Top 10 cases)

Sequence-Point System OP Profile Signals FP(%) FN(%) Total(%)

5 1 3 2 0 0 0

5 1 1 2 0 0.5 0.5

6 1 1 2 0 0.5 0.5

5 2 3 2 0 1 1

5 2 2 2 0 1 1

5 1 2 2 0 1 1

6 1 3 2 0 1 1

6 1 3 1 0 1 1

5 2 1 2 0 1.5 1.5

5 1 3 1 0 1.5 1.5

The 52 test conducted confirmed the LSTM models ability to predict leaks within the

cooling system for the RTF dataset and provided insight into correlations between chosen

input parameters and leak detection accuracy.

The case with the largest error and least error are defined below in Table 5.15.

Table 5.15: Results - Cooling System - LSTM Exploration for Leak Detection (Best and
worst case)

Sequence-Point System OP Profile Signals FP (%) FN (%) Total (%)

5 1 3 2 0 0 0

6 1 All 1 7.5 1 8.5

5.5.5 Fuel Leak Detection - LSTM Model Exploration

This subsection expands the initial diagnostic work conducted in Subsection 5.5.3 to consider

detection accuracy for leaks in the fuel system with varied input signals, plant selections and

operational profile selections. This subsection follows the same process as the previous

subsection followed to evaluate detection accuracy in the cooling system. The evaluation

ranges are defined below in Table 5.16.
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Table 5.16: Input Data - Fuel System - LSTM Exploration for Leak Detection

Parameter Value

Prediction sequence-point 4-6

Plant 1 & 2

Average Value Signals Options 1-3

The evaluation state space defined in Table 5.16 contains 18 unique combinations of model

inputs, each evaluated combination is defined as a test. For the 18 tests total prediction error

was calculated and compared across all tests. The prediction results for the 18 test cases

and the correlation of input parameter selection to diagnostic accuracy is summarized below

in Table 5.17

Table 5.17: Results - Fuel System - LSTM Exploration for Leak Detection

Parameter Value Error

Average Value Signals Options 1 6.75%

Average Value Signals Options 2 7.33%

Average Value Signals Options 3 10.88%

Prediction sequence-point 4 9.17%

Prediction sequence-point 5 8.08%

Prediction sequence-point 6 7.67%

Plant 1 8.17%

Plant 2 8.45%

The resultant diagnostic accuracy defined in Table 5.13 provides insight into the correla-

tion between input parameters and diagnostic accuracy for fuel system leaks. The key trends

are as follows:

• Avg. Value Signals Options: Option 1, the use of all average value signals, had the

lowest overall error followed by option 2 then 3. Providing a clear trend that the

reduction in input data signals reduced increased overall error.

• Prediction sequence-point: sequence-point 6 provided produced the least error, followed

by sequence-point 5 then sequence-point 4 providing evidence that an increase in input

data improved results.

• Plant: Little variation was found between the two plants with plant 1 having slightly

less diagnostic error than plant 2.
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The correlation between input variables and diagnostic error shown in Table 5.17 align

with the input variables shown across the 10 test cases with the least amount of prediction

error shown in Table 5.18.

Table 5.18: Results - Fuel System - LSTM Exploration for Leak Detection (Top 10 cases)

Sequence-Point System Signals Fuel FP(%) Fuel FN(%) Fuel Total(%)

5 2 1 1 3.5 4.5

5 2 2 1.5 4.5 6

6 1 1 2 4 6

6 2 1 2 4.5 6.5

6 1 2 2 4.5 6.5

5 1 1 2.5 4.5 7

5 1 2 2 5.5 7.5

6 2 2 2 5.5 7.5

4 2 1 1 6.5 7.5

4 1 2 1.5 6 7.5

The 18 tests conducted confirmed the LSTM models ability to predict leaks within the

fuel system for the RTF dataset and provided insight into correlations between chosen input

parameters and leak detection accuracy.

The case with the largest error and least error are defined below in Table 5.19.

Table 5.19: Results - Fuel System - LSTM Exploration for Leak Detection (Best and worst
case)

Sequence-Point System Signals Fuel FP (%) Fuel FN (%) Fuel Total (%)

5 2 1 1 3.5 4.5

5 2 3 1.5 13.5 15

Table 5.19 illustrates that as the complexity of the system increases the selection of input

parameters plays a more critical role in the accuracy of the models response. This analysis

is formed from the increased in change in error between the best and worst cases for the

simpler cooling system to the more complex fuel system. Where the complexity is driven by

the increase from 1 to 2 flow paths between the cooling and fuel systems.
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5.5.6 Summary

An LSTM based approach to diagnose the current state of leak or no leak for the cooling and

fuel systems had less than a 10 % classification error for each individual system with respect

to their best performing input parameters. The LSTMs ability to use sequence input data

provided an improvement in prediction accuracy for the cooling and fuel system diagnostic

process.

5.6 System Level Prognostics

5.6.1 Overview

Machinery plant state of health experiences constant degradation in time with repair to im-

prove the system state of health both as preventative maintenance or corrective maintenance

as a result of failure. Provided the notional machinery plant used throughout this chapter

is not in a current failed state of health, determined through diagnostic work completed

in the previous section, and has some unknown degradation to system health which at the

current time has no effect on system performance, it is desired to predict the duration until

operational performance is effected. Provided an unknown and degrading state of clogging

for the cooling and fuel system it is desired to predict the failure sequence-point for each of

the three defined operational profiles, or the sequence-point the fuel and or cooling system

has insufficient capacity to support a given operational profile. Data from sequence-point 1

to sequence-point (4-6) will be used as input data to evaluate common AI algorithms and

their ability to predict system operational availability in time. This prediction of machinery

plant state of health in this section is done independently for the cooling and fuel systems.

The following Subsections in this Section follow a similar process to the past Section.

The first Subsection proposes and selects a potential AI algorithm building from initial work

completed in Chapter 3. An LSTM based classifier is chosen in Subsection 5.5.2 as a potential

algorithms for the prognostic task. Initial feasibility of the LSTM model is confirmed in

Subsection 5.5.3. The following two Subsections 5.5.4-5.5.5 provide an exploration of varied

input signals and the respective prognostic performance for the cooling and fuel system

respectively. The final Subsection provides a summary of the key takeaways for system level

prognostics.
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5.6.2 Algorithm Selection

Initial prognostic work attempted to build from work completed in Chapter 3. These initial

efforts attempted to use input data from sequence-points 1-5, to forecast the future values

of signals within the machinery plant that directly represent system health such as cooling

system heat rise and fuel system rail pressure. First an LSTM based model was used to

predict cooling system heat rise in one application and fuel system rail pressure in a second

application. However, these initial studies found that the LSTM model forecast capability

sharply degraded after the first sequence-point and little transfer of knowledge between signal

trends in one signal transferred to the future response of another signal. Trends in cooling

pump current had little effect on future changes in heat rise. These findings provided insight

that either the prediction method or process of inputs and outputs was not optimal or the

LSTM model did not fit the prediction method. To follow on, using the same input and

output data process, and following [55] a CNN was considered and evaluated in using the

same process. The CNN model results also provided little transfer of knowledge between

signal trends in one signal transferred to the future response of another signal. These two

unsuccessful applications of prognostics served as motivation to attempt a prediction process.

Provided the success of an LSTM model to diagnose the status of leak or no leak for the

fuel and cooling system, this model was evaluated for its potential in system prognostics. The

LSTM model used for leak detection is a variant of the past LSTM model attempted. The

new LSTM model leveraged input data from sequence-points 1-5, and instead of attempting

to predict a given signal as the response (i.e. cooling system heat rise or fuel system rail

pressure) the model provided a response of failure sequence-point. LSTM model parameters

are redefined below in Table 5.20.
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Table 5.20: LSTM Model Parameters - Prognostics

Parameter Value

Normalization Zscore

Hidden Units 200

Output Mode Last

Fully Connected Layers 1

Max Epochs 500

Validation Data 10 %

Output Network best-validation-loss

Initial Learn Rate 0.005

Sequence Length shortest

Verbose false

The following Subsection implements the proposed LSTM model for initial evaluation of

the models ability to perform prognostics on the cooling and fuel system.

5.6.3 LSTM - Initial Evaluation

Using the defined model parameters in Table 5.20 and input data defined in Table 5.9 the

LSTM model was implemented to predict the failure sequence-point of plant 2 in operational

profile 3. For the 100 RTF profiles, the model for this test used 80 % of the profiles to train,

10 % for validation and 10 % for testing. The LSTM train, validation and test process was

repeated 20 times with random selections of test, train and validation indices to provide a

more accurate indication of true prediction performance given the small dataset. The LSTM

results for the test predictions are depicted in Figure 5.10a for the cooling system and Figure

5.10b for the fuel system.
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Figure 5.10: Initial Prognostic Results

As shown in Figure 5.10 the dotted blue line represents a perfect actual vs. predicted

failure sequence-point, the surrounding light grey shared area on the graph provides a +- 0.5

sequence-point error band for the prediction results with respect to actual failure sequence-

point. Similarly, the dark grey band represents a +- 1 sequence-point prediction error.

The visual results shown in Figure 5.10 are quantified by the respective system RMSE

which was calculated across the 200 prediction and actual response values. The RMSE for

the fuel system was 1.01 sequence-points and for the cooling system was 0.94 sequence-points.

The RSME values and visual results for the initial test data confirmed the potential for an

LSTM based system level prediction algorithm. The following two subsections provide a

further exploration for the fuel and cooling system prognostic accuracy across the potential

signal and parameter combinations.

5.6.4 Cooling Prediction - LSTM Model Exploration

Building from the initial LSTM test, this section evaluates a total of 54 input combinations

exist for failure sequence-point prediction on the cooling system. The same model param-

eters, test-train-validation data partitions and iteration process is followed. The ranges of

parameters evaluated are listed below in Table 5.21
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Table 5.21: AI Prediction Input Data - Cooling

Parameter Range

Prediction sequence-point 4-6

Plant 1-2

Cooling Profiles Leak Data -

Operational Profile 1-3

Average Value Signals Options 1-3

Power Spectrum Data -

RTF Profiles Without Leaks

Using the input data combinations listed in Table 5.21 the RMSE value was computed for

200 test points in each of the 54 unique tests conducted. Using all 54 tests, the RMSE values

were averaged across tests filtered by each parameter to provide insight into input parameter

correlations to prediction accuracy. These values are provided below in Table 5.22.

Table 5.22: Cooling System Prognostic Results

Parameter Value RMSE

(sequence-points)

Average Value Signals Options 1 0.51

Average Value Signals Options 2 0.66

Average Value Signals Options 3 0.87

Prediction sequence-point 4 0.73

Prediction sequence-point 5 0.70

Prediction sequence-point 6 0.61

Plant 1 0.69

Plant 2 0.67

Operational Profile 1 0.54

Operational Profile 2 0.82

Operational Profile 3 0.68

The RMSE values provided in Table 5.22 show clear correlations in prediction accuracy

for all variables with exception to the selection of which plant was used. Plant 1 and plant

2 showed little variation in their prediction accuracy’s. The trends for the remaining inputs

are as follows:
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• Avg. Value Signals Options: Option 1, the use of all average value signals, had the

lowest overall error followed by option 2 then 3. Providing a clear trend that the

reduction in input data signals reduced increased overall error.

• Prediction sequence-point: sequence-point 6 provided produced the least error, followed

by sequence-point 5 then sequence-point 4 providing evidence that an increase in input

data improved results.

• Operational Profile: Operational profile 1, followed by operational profile 3 then 2

produced the least prediction error. This order was in order of low to high plant

loading.

These trends are confirmed through the input data found in the 10 (of 54) tests with

the lowest RMSE values. The 10 lowest RMSE values and their corresponding input data

parameters are defined below in Table 5.23.

Table 5.23: Results - Cooling System - LSTM Exploration for Prognostics

Sequence-Point System Profile Signal RMSE

(sequence-points)

6 2 1 1 0.32

5 2 1 1 0.36

6 1 1 1 0.40

6 2 2 1 0.43

6 2 3 1 0.43

6 1 3 1 0.45

4 2 1 1 0.46

5 2 3 1 0.46

6 2 1 2 0.48

5 2 2 1 0.49

The lowest RMSE test case is shown visually in Figure 5.11a and depicts a tight grouping

of data points within a +- 0.5 sequence-point band around the predicted value with respect

to the actual value. The second subplot 5.11b, illustrates the prediction case with the largest

error.
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Figure 5.11: Cooling System Failure Sequence-Point Prediction

As shown in Figure 5.11 the selection of input parameters is plays a critical role in the

accuracy of the prediction model.

5.6.5 Fuel Prediction - LSTM Model Exploration

The process followed in the previous Subsection to evaluate the cooling system is repeated

within this Subsection to evaluate the fuel system. A total of 18 input combinations exist

for failure sequence-point prediction on the fuel system. The ranges of parameters evaluated

are listed below in Table 5.24.

Table 5.24: AI Prediction Input Data - Cooling

Parameter Range

Prediction sequence-point 4-6

Plant 1-2

Cooling Profiles Leak Data -

Operational Profile -

Average Value Signals Options 1-3

Power Spectrum Data -

RTF Profiles Without Leaks

Using the input data combinations listed in Table 5.24 the RMSE value was computed for

200 test points in each of the 18 unique tests conducted. Using all 18 tests, the RMSE values
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were averaged across tests filtered by each parameter to provide insight into input parameter

correlations to prediction accuracy. These values are provided below in Table 5.25.

Table 5.25: Results - Fuel System - LSTM Exploration for Prognostics

Parameter Value RMSE

(sequence-points)

Average Value Signals Options 1 0.86

Average Value Signals Options 2 0.82

Average Value Signals Options 3 1.1

Prediction sequence-point 4 1.06

Prediction sequence-point 5 0.92

Prediction sequence-point 6 0.79

Plant 1 0.95

Plant 2 0.90

The RMSE values provided in Table 5.25 show clear correlations in prediction accuracy

for all variables with exception to the selection of which plant was used. Plant 1 and plant

2 showed little variation in their prediction accuracy’s. The trends for the remaining inputs

are as follows:

• Avg. Value Signals Options: Option 1, the use of all average value signals, had the

lowest overall error followed by option 2 then 3. Providing a clear trend that the

reduction in input data signals reduced increased overall error.

• Prediction sequence-point: sequence-point 6 provided produced the least error, followed

by sequence-point 5 then sequence-point 4 providing evidence that an increase in input

data improved results.

• Plant: plant 2 had a lower error than plant 1.

These trends are confirmed through the input data found in the 10 (of 54) tests with

the lowest RMSE values. The 10 lowest RMSE values and their corresponding input data

parameters are defined below in Table 5.26.
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Table 5.26: Results - Fuel System - LSTM Exploration for Prognostics

Sequence-Point System Signals RMSE

(sequence-points)

6 2 2 0.71

6 2 1 0.74

6 1 1 0.75

6 1 2 0.76

5 1 2 0.80

5 2 2 0.80

6 2 3 0.81

5 1 1 0.84

5 2 1 0.89

4 1 2 0.91

The lowest RMSE test case is shown visually in Figure 5.12a and depicts a tight grouping

of data points within a +- 0.5 sequence-point band around the predicted value with respect

to the actual value. Figure 5.12b depicts the parameter selection with the largest error.
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Figure 5.12: Fuel System Failure sequence-point Prediction

As shown in Figure 5.12 the selection of input parameters is plays a critical role in the

accuracy of the prediction model.
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5.6.6 Summary

An LSTM based approach to predict the future sequence-point of failure for the cooling

and fuel systems had less than a 1.10 RMSE value for each individual system, illustrating

the LSTM model applicability for the prognostic task in this work. The selection of input

parameters for both the cooling and fuel system models play a critical role in the accuracy

of the model.

5.7 Plant Level Prediction

5.7.1 Overview of Prediction framework

The plant prediction framework leveraged the four individual LSTM based algorithms built

in past Sections for leak detection within the fuel system, leak detection within the cooling

system, fuel system failure prediction and cooling system prediction of cooling capacity in

time. An overview of the plant framework is shown below in Figure 5.13.

Plant level Diagnostics and Prognostics 

Cooling System:

Plant level forecast of functional capability  in time 

Run To Failure Dataset (100 Failure Profiles) 

Data Selection

Signal Selection and 
Feature Extraction

Partitioning Test, Train 
and Validation Data  

Subdividing Data: Operational 
Profiles (a-c) and Plant (a & b )

Leak Detection

Time Series Prediction

Fuel System:

Leak Detection

Time Series Prediction

Figure 5.13: Overview - Prediction Framework

The multi-layer plant prediction framework depicted in Figure 5.13 used data without

leaks in the train and validation categories to build the prediction LSTM models. The
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diagnostic LSTM models were fed all train and validation in the training process. For the

test process, all data points were fed into the Algorithms for leak detection. If a leak was

detected for the cooling or fuel systems test profile was classified as a leak and considered

failed. If a leak was not detected for the cooling or fuel systems test profile was classified

as no leak and considered healthy. The healthy profiles were then passed to the cooling and

fuel prediction algorithms where each LSTM model predicted its’ respective systems failure

sequence-point for the given inputs and the minimum of the two predictions was used as the

output response.

5.7.2 Prediction Framework - Exploration

An initial test was performed to validate the feasibility of the grouped system level algorithms

to perform plant level diagnostics and prognostics. The input data leveraged the initial

indices defined Table 5.27 with model parameters remanding unchanged and listed for the

fuel and cooling diagnostic LSTM model in Table 5.20 and parameters for the prognostic

LSTM model listed in Table 5.10.

Table 5.27: Input Data - Plant Level Prognostics and Diagnostics

Parameter Initial Range

Prediction sequence-point 5 4-6

Plant 2 1-2

Cooling Profiles Leak Data 1 1

Operational Profile 3 1-3

Average Value Signals Options 3 1-3

Power Spectrum Data - -

RTF Profiles All All

Following a similar process used in the past Sections a 80 % of the profiles were used as

training data, 10 % for validation and 10 % for testing. The LSTM train, validation and test

process was repeated 50 times with random selections of test, train and validation indices to

provide a more accurate indication of true prediction performance given the small dataset.

The LSTM results for the initial test are shown below in Figure 5.14.
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Figure 5.14: Plant Level Prediction - Initial Results

As depicted in Figure 5.14, test response data for the 50 iterations was divided into leak,

no leak, and prediction sequence-point vs actual classes and placed in a confusion matrix for

visual representation. A cutoff of +-0.5 was used place response data into the correct classes.

The grid line in bold illustrates the division between leak classification for both systems and

the prediction of failure sequence-point for both systems.

The process was repeated across the 54 possible combinations of input parameters listed

in Table 5.10. The 54 input tests were first reviewed for low preforming predictors and

excluded data from average value signals option 3. After removing average value signals

option 3 the remaining parameters results were averaged across the test cases to evaluated

diagnostic and prediction accuracy as shown in Table 5.28.
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Table 5.28: Results - Plant Level Prognostics

Parameter Value Diagnostic Prognostic

Error(%) Error(RMSE)

sequence-point 4 9.87% 0.91

sequence-point 5 7.93% 0.70

sequence-point 6 7.35% 0.70

System 1 8.18% 0.74

System 2 8.59% 0.79

Operational Profile 1 8.35% 0.78

Operational Profile 2 8.53% 0.75

Operational Profile 3 8.27% 0.79

Avg. Value Signals Options 1 8.49% 0.79

Avg. Value Signals Options 2 8.28% 0.75

As defined in Table 5.28. The main driving factors in prediction error are as follows:

• Avg. Value Signals Options: Option 2 followed by Option 3 then Option 1 had the

lowest error for both the diagnostic and prognostic tasks.

• Prediction sequence-point: Sequence-point 6 produced the least error, followed by

sequence-point 5 then sequence-point 4 providing evidence that an increase in input

data improved results.

• Operational Profile: Operational profile 1 had the lowest leak detection error, however

operational profile 2 had the lowest overall prediction error.

The main driving factors are confirmed through the input parameters selected for the 10

best preforming tests and are listed below in Table 5.29.
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Table 5.29: Results - Plant Level Prognostics

Sequence- Plant Profile Signals Diagnostic Prognostic RMSE

Point Error (%) (in sequence-points)

6 1 2 1 6.0% 0.68

6 1 1 1 6.8% 0.79

6 1 3 1 7.0% 0.73

5 1 2 2 7.0% 0.77

5 2 2 1 7.2% 0.63

5 2 1 2 7.2% 0.68

6 1 3 2 7.2% 0.71

6 2 1 1 7.2% 0.74

6 1 1 2 7.4% 0.61

6 2 2 1 7.4% 0.70

Over the 54 unique test cases, the plant level prediction tests with the minimum and

maximum error are provided below in Table 5.30.

Table 5.30: Results - Plant Level Prognostics - Individual

Test Sequence- Plant Profile Signals Diagnostic Prognostic RMSE

Point Error (%) (sequence-points)

22 6 1 2 1 6.0% 0.68

30 6 2 1 3 13.4% 0.48

12 5 2 1 3 14.2% 0.62

47 4 2 1 2 10.4% 1.09

The prediction values shown in bold in Table 5.30 represent the lowest error test for leak

detection and prediction. The values shown in italicized represent the worst case for leak

classification and prediction. The cases are illustrated visually in Figures 5.15-5.18.
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Figure 5.15: Plant Level Prediction - Results - Least Error (Leak,Predict)

Figure 5.15 depicts the results for input parameters which produced the least error for the

diagnostic task at the plant level. The test case depicts a tight grouping for the prediction

of a leak in the plant around the true state shown in the top left corner of the graph, where

a leak is present in a support system and detected by the algorithm. Cases where a leak

is not present and the prediction of no leak is provided are depicted by the values outside

of the first row and column of the matrix. The error for the prediction of a leak within

the plant when no leak is present is shown in the first column. The first row represents the

prediction of no leak where a leak is present in the plant. The largest grouping for missed

predictions is the prediction of sequence-point 6, when the system already has the presence

of a fault (leak within the plant). These results illustrate a highly accurate prediction for

the diagnostic task at the plant level with only 6 % overall error and the largest source of

error caught by the prognostic task with a prediction of the following sequence-point being

the failure point.

The following Figure 5.16, showcases input parameters that resulted in the largest error

for the diagnostic task.
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Prediction Results - Test - 12
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Figure 5.16: Plant Level Prediction - Results - Largest Error (Leak,Predict)

As shown in Figure 5.16, input parameters have a significant effect on overall accuracy for

the diagnostic task and the distribution of error. The parameters which produced the largest

error for the diagnostic task were also less effective at predicting the first sequence-point for

cases when a diagnostic detection error was made.

Figure 5.17 depicts the results for input parameters which produced the least error for

the prognostic task at the plant level.
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Prediction Results - Test - 30
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Figure 5.17: Plant Level Prediction - Results - Least Error (Predict,Leak)

As shown in Figure 5.17 the optimal input parameters for prediction at the plant level

does not provide the highest accuracy for the diagnostic task. For the prognostic task, a

tight grouping is shown across for the true prediction of sequence-point, illustrated in blue

along the diagonal row and column set in the matrix. Prediction error is within a single

sequence-point for 99.4 % of the total prediction points.

Figure 5.17 depicts the results for input parameters which produced the largest error for

the prognostic task at the plant level.
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Figure 5.18: Plant Level Prediction - Results - Largest Error (Predict,Leak)

As shown in Figure 5.17 the input parameters that provided the least accurate prediction

of failure sequence-point also produced a larger percent outside of a single sequence-point in

prediction error, an increase from 0.6 % in the previous test case to 5 % of the prediction

points in this test case. These results showcase the importance of parameter selection in the

prognostics task.

5.7.3 Summary

The overall diagnostic and prognostic accuracy within the plant level prediction was heavily

driven by the worst performing individual systems. At the plant level error was marginally

1 % larger on average than the worst performing system (fuel) for the diagnostic task. At the

plant level the prognostic error was inline with that of the worst performing system (fuel)

for the prognostic task.

The process illustrated throughout this section chose to follow the same evaluation process

used in the past two sections in the evaluation of system level performance. Future work

should include the evaluation of varied input parameters for each algorithm within the multi-

layer framework to improve overall performance accuracy.
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5.8 Conclusion

This chapter showcased the application of an LSTM driven AI framework for diagnostics,

leak detection, and prognostics, failure sequence-point prediction, at the system and plant

level.

In the diagnostic task initial attempts for leak detection highlighted the a critical short-

coming of common classification methods and their inability to receive sequence based data

as input. This critical shortcoming was resolved through use of an LSTM based classifica-

tion model. The diagnostic task also showcased that system complexity had a large effect

on signal selection. The simpler cooling system performance was improved with less input

signals as compared to the more complex fuel system, which preferred additional input sig-

nals for optimal performance. The fuel system also illustrated that with increase in system

complexity leak detection error increased.

In the prognostic task for failure sequence-point prediction initial attempts highlighted the

limitations of LSTM and CNN time series prediction models and their inability to correlate

past values of several input signals with future values of the desired response signal in

time such as fuel rail pressure. These limitations were resolved using a LSTM sequence to

one model, which received sequence input data for several signals and provided a singular

numerical value as the response. Using this process the LSTM sequence to one model

effectively predicted failure sequence-point for the fuel and cooling systems. Similar to

the trends found for leak detection between the cooling and fuel systems the cooling system

outperformed the fuel system for prediction accuracy. Contrary to the leak detection process

both the fuel and cooling prediction algorithms had the best performance leveraging all

average value signals as inputs.

Using a multi-model framework the diagnostic and prognostic tasks were performed and

provided a the response of a “failed” state where a leak is present or provided a the predicted

sequence-point of failure. Using this multi-model approach the performance of the algorithm

was heavily driven by the worst performing system, in this case the fuel system. The multi-

model framework analysis also depicted a clear correlation between input parameters and

plant level leak detection and prediction accuracy. The selection of input parameters varied

for best performance in the diagnostic task as compared to the best performance for the

prognostics task, providing insight signal selection plays a critical role in model accuracy.

The final multi-model prediction framework evaluated the applicability of LSTM models

at the plant level and illustrated promising results. The two best performing models were

able to detect faults within the plant with a 95 % accuracy rate and predict the failure

sequence-point with a RMSE error of 0.48 sequence-points. These findings illustrate the
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potential of a multi-model approach to perform diagnostics and prognostics on complex, and

interdependent systems to provide an understanding of plant level health.
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CHAPTER 6

Conclusion and Future Work

6.1 Summary

This PhD research evaluated the performance of common Artificial Intelligence (AI) models,

with the selection of a long short-term memory (LSTM) Recurrent Neural Network (RNN),

in diagnosing and prognosticating tasks on a notional laboratory scale ship machinery plant

to diagnose potential failures within the plant and predict future operational capacity of the

plant until failure. This work was done to evaluate the potential for AI based models to im-

prove operational resilience in a fault prone environment. This work additionally showcases

the potential for fault mitigation through real time control, provided knowledge of plant

health, by providing examples of unconventional control methods for fault mitigation. This

research aims to improve the shortcomings of unmanned and autonomous vessels and asso-

ciated inabilities to maintain an operational machinery plant over long deployment periods

in absence of human intervention onboard the vessels.

To complete the objective of this PhD it was required to design and construct a notional

laboratory-scale ship machinery plant or MLSMP with the capability to injection common

faults and failures that with increasing severity can cause the machinery plant to fail without

causing physical damage to components within the MLSMP. This functionality was achieved

through novel software-based system to system connections in conjunction with physical

system to system linkages. The software-based linkages enable the injection of faults until

failure, without physical damage to components. The software-based linkages also provide

system to system interactions that would be present in an actual shipboard system but which

are not possible in the lab scale environment. For example, at this small lab scale, water

cooled equipment is not available whereas marine equipment is normally water cooled. This

environment provided an ability to record repetitive run to failure profiles and explore the

potential of control based fault mitigation techniques.

A group of three exemplary simulations using the MLSMP were designed and conducted
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to showcase the ability to simulate and evaluate potential control based fault mitigation

techniques using the MLSMP. The three simulations provide examples of unconventional

control mitigation techniques to improve operational resilience in a fault prone and present

environment.

A simple diagnostic and prognostic task was completed for a singular subsystem within the

cooling system to confirm initial feasibility prior to plant level applications. This application

explored the use of a long short-term memory (LSTM) recurrent neural network (RNN) to

predict future temperature rise and common classification methods to detect the presence

of system leaks. This initial study showcased the potential for AI driven methods,including

the selected LSTM model, in the diagnostics and prognostics of machinery plant systems.

To explore the application of AI, including the selected LSTM model, for detection of

common faults and prediction of future plant operational availability for the MLSMP, a

large dataset with common run to failure profiles was modeled, acquired and archived. A

software model of the MLSMP was constructed and integrated with a model of clogging from

literature. The model simulated a distribution of clogs and leaks for the cooling and fuel

systems, providing control points to repeat the distributed run to failure profiles in hardware.

A dataset of 100 run to failure profiles (RTF) for the MLSMP was obtained by simulating

the software control points on the hardware machinery plant through a real time automated

control code.

The constructed dataset was used as input data to explore potential AI models,including

the selected LSTM model, for the detection of individual system leaks and the prediction

of when an individual system would fail to provide necessary functionality to support the

required operational mission demands on the respective system. The applications of diag-

nostics and prognostics are used to form a multi-model diagnostic and prognostic prediction

algorithm for the MLSMP. The formed plant level algorithm is tested and evaluated through

the 100 RTF profiles to showcase the algorithms successes and prediction accuracy with

respect to input parameter selection.

6.2 Contributions

The contributions of this work can be summarized into four primary groups. An overview

of each of the four key groups and their specific contributions is provided below:

1. A laboratory scale ship machinery plant (MLSMP) was designed, constructed, and

validated with the necessary physical and virtual system interconnections to accurately

represent plant dynamics and common faults of machinery plants found on vessels in the real

world. The plant consisted of a cooling system, fuel system, emulated diesel generator sets,
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energy storage system, electrical system, mission system, propulsion system, and a real time

control and data acquisition system. The lab based plant contains unique virtual linkages,

in addition to physical system to system linkages, to enable injection of common faults and

failures within the machinery plant. The injection of faults and failures into the physical

hardware plant provided the novel ability to increase the severity of the desired faults until

plant failure, without causing physical damage to the components or systems within the

laboratory, thereby enabling the ability to collect repetitive run to failure datasets. The

MLSMP provides a second capability to explore alternative fault mitigation techniques

through real time system control.

2. A run to failure (RTF) dataset was modeled in software and simulated in hardware

through an automated process to build an archive of 100 RTF profiles to serve as input data

for the exploration of data-driven diagnostic and prognostic algorithms and their ability to

detect common faults, system leaks, and to predict when the vessel machinery plant will be

unable to support a given operational profile. The RTF model incorporated common faults

and failures for the cooling and fuel systems, clogs and leaks, and leveraged an existing

model of real world clogs from literature to build a software model which simulated the

buildup of particles on filters in time for the cooling system and fuel high and low pressure

systems.

3. A multi-model LSTM driven framework was developed and evaluated for the ability to

perform prognostic and diagnostic tasks to determine the current state of health for the

MLSMP and predict future plant operational availability over a deployment period, until

failure. The novel multi-model LSTM driven framework, evaluated using failure data from

the MLSMP, provides a step forward in improving operational resilience for unmanned and

autonomous vessels in a laboratory environment. Additional contributions under this group

are as follows:

• An initial application of AI, including common classifiers (decision trees, Logistic re-

gression, näıve bayes classifiers, support vector machines, and nearest neighbor classi-

fiers) and an LSTM time series prediction model, was applied to a subsystem within

the cooling system and demonstrated the ability to detect a common cooling system

fault (i.e., a leak) in the presence of an unknown system state of health caused by

clogging. In addition, this work demonstrated an ability to leverage the response of

the cooling system to a known change in loading, to predict the temperature rise at

full load, and to provide knowledge of the system’s capacity given a degraded state of

system health.

• A critical shortcoming of common classifiers and associated inability to receive sequence
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based data as input was resolved through use of an LSTM based classification model.

Although common classification models and feature extraction are commonly used

on model data in literature, these practices were unsuccessful when applied to the

MLSMP hardware data. This progression provided a clear depiction of the significance

of sequence based information for the diagnostic task in real world hardware signals.

• Initial attempts for prognostics highlighted the limitations of LSTM and CNN time

series prediction models and their inability to correlate past values of several input

signals with future values of a desired response signal in time. These limitations were

resolved using a LSTM sequence to one model, which received sequence input data

for several signals and provided a singular numerical value as the response. Using this

process the LSTM sequence to one model effectively predicted failure point for the fuel

and cooling systems.

• Through the formation of a multi-model plant level diagnostic and prognostic frame-

work, a clear correlation between input parameters and model response for both plant

level leak detection and failure point prediction was formed. The selection of input

parameters varied for best performance in the diagnostic task as compared to the

best performance for the prognostics task. These variations highlight the importance

of parameter selection for individual models or tasks as a critical driver to optimize

prediction accuracy in large and complex coupled systems.

4. Unconventional control mitigation techniques are explored through a group of plant

level hardware simulations using the MLSMP. This process illustrates the potential of real

time control to improve operational resilience in a fault prone environment. Additional

contributions under this group are as follows:

• Insight into the potential of energy storage for fault mitigation a critical mission oper-

ation.

• Application of an unconventional droop control strategy to mitigate support system

faults and maintain operational capacity, in effort to improve operational resilience.

• Application of an unconventional load shedding practice to mitigate support system

faults at a reduced operational capacity, in effort to improve operational resilience.

6.3 Recommendations for Future Work

The recommendations for future work are as follows:
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• Investigate the application of prognostics and diagnostics on continuous low fidelity

run to failure profiles for their performance in prognostic and diagnostic tasks. The

work completed as part of this dissertation used windows of data to enable the high

acquisition of data at a high sample rate, however, exploration showed that steady state

data was the primary indicator for diagnostic and prognostic applications. Steady state

data can be recorded continuously using a slower sample rate. A continuous run to

failure dataset would provide the ability to predict across a continuous domain not

limited by discrete sequence-points.

• Investigate alternative models and input signal processing methods for their applica-

tion in the diagnostic and prognostic task. Additional signals include further analysis

of power spectrum data and average power data. Alternative models include tradi-

tional statistics based data processing techniques, fuzzy classifiers, and variations in

model configuration including a single AI driven model to perform all prognostic and

diagnostic tasks through multiple model outputs. This work provided an initial ex-

traction of signals and proposed a potential AI driven model. This work however, did

not perform an exhaustive analysis on potential signals or models.

• Incorporation of additional failure modes for all systems within the laboratory scale

ship machinery plant. This work provided an initial study of failure modes limited to

common failures in the cooling and fuel systems. Failures to the electric plant, mission

systems, propulsion system, and control system are some examples of failure modes

not yet explored.

• Evaluate the potential of transfer learning by analyzing the performance of a model

trained and tested on different plants within the MLSMP as well as the use of a

digital twin to augment training data. This work compared prediction accuracy for

two identical plants however did not evaluate the potential of transfer learning.

• Implementation of real time diagnostics and prognostics in conjunction with control

mitigation strategies in the laboratory setting. This work illustrated the potential for

control based fault mitigation techniques with knowledge of system health but did not

incorporate a diagnostic or prognostic framework into a real time application for fault

mitigation. The diagnostics and prognostics completed in this dissertation were all

completed offline.

• Evaluation of other existing diagnostics and prognostics approaches in combination

with the methods studied in the present research.
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