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ABSTRACT

The world needs to transition to sustainable energy as quickly as possible. A cornerstone of

this transition is a fully electrified transportation sector which will require the production

of automotive-grade lithium-ion batteries at a massive scale. Among the many challenges

of battery production, the battery formation step, the last step in battery manufacturing, is

both paramount and problematic. It is paramount since all batteries undergo the formation

process to build a resilient solid electrolyte interphase (SEI) and to screen for defects. It

is problematic because the formation process is expensive to operate, is a major source of

factory energy demand, requires larger factory footprints, and takes an order of magnitude

longer than nearly every other manufacturing step. Despite the centrality of the formation

process in battery manufacturing, steps taken to optimize formation protocols remain ad

hoc in the absence of fundamental design principles and physical models.

In this thesis, we develop models and methods to enable advances in battery formation

protocol design, battery manufacturing process control, and battery lifetime prediction. The

work begins by introducing a physics-based electrochemical model of the battery forma-

tion process which, for the first time, bridges the gap between the electrochemistry of SEI

formation and full-cell performance metrics. We demonstrate that the model can predict

emergent system properties such as SEI passivation and cell aging. Using the model, we

also verified that faster formation protocols are achievable without compromising battery

lifetime. Next, we take a data-driven approach to studying the battery formation process

through the lens of scalable diagnostic features, or “electrochemical fingerprints.” We show

that these diagnostic features can be used to improve battery manufacturing process control

and for predicting the impact of formation protocols on battery lifetime immediately after

manufacturing. However, great care is needed to ensure reproducible data collection. Fi-

nally, the thesis ends by investigating the question of “how much variability is too much,” i.e.

how much process control is really in battery manufacturing? We demonstrate that, when

dissimilar battery cells are cycled in a parallel configuration, the degradation trajectory of

individual cells may converge, suggesting that some amount of variability in cell properties

at the beginning of life may be tolerated.
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CHAPTER 1

Introduction

1.1 Context

1.1.1 The Transition to Full Vehicle Electrification

The transition to electric vehicles (EV) is a cornerstone to achieving a net-zero emissions

future. A core enabling technology is industrial-scale battery manufacturing which supplies

the automotive-grade lithium-ion batteries at the heart of all EVs. Enabled by this steady

supply of batteries, EVs accounted for more than 10% of new passenger vehicles sold globally

in 2022, a number expected to rise to 20% by 2025 and 59% by 2035 [1].

The rapid shift towards EVs has required battery cell manufacturers to expand production

capacity at an unprecedented rate. In 2022 alone, cell manufacturers expanded production

capacity by more than 600 GWh globally – the equivalent to producing up to 91 million

individual battery cells per day1. This trajectory will only increase through to 2030 as

countries race to fully electrify their fleet, with global demand for lithium-ion batteries

projected to exceed 3,000 GWh by 2030 [2] (Figure 1.1). Recent U.S. industrial policies

such as the Inflation Reduction Act (IRA) have also spurred a race to “onshore” battery

factories. In 2022 alone, U.S. companies collectively announced plans to open more than 17

battery “gigafactories” across multiple states including Michigan, North Carolina, Georgia,

and Tennessee, with the promise to create over 50,000 domestic jobs as part of a new “battery

belt” [1, 3].

1.1.2 Manufacturing Scale-Up Challenges

The journey to open and operate battery factories rapidly is fraught with challenges. The

battery manufacturing process requires cleanliness levels rivaling the semiconductor industry,

yet the battery manufacturing industry lacks a mature, systematic understanding of process

1Assumes production of 21700 form factor cylindrical cells with a nominal energy of 18 Wh.
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Figure 1.1: Global demand for lithium-ion batteries to quadruple by 2030 [2]. Passenger
transportation accounts for the majority of demand. CAGR: compound annual growth rate.
Sources: Avicenne, Fraunhofer, IHS Markit, interviews with market participants, Roland
Berger.

control factors owing to the industry’s nascency and the inherent complexity of lithium-ion

battery electro-mechanochemistry. As a result, slow feedback cycles and insufficient in-

line inspection systems cause new battery factories to experience scrap rates of 30% during

line commissioning, a number that does not improve beyond 10% even under steady-state

conditions [1].

Among the many steps in manufacturing a battery, the battery formation process is

among the most challenging. As the very last step in battery manufacturing, the formation

process plays an outsize role in determining the longevity of batteries. The formation process

is also one of the most energy-intensive and operationally expensive steps in manufacturing.

Finally, the formation process also introduces logistical challenges since the formation step

is an order of magnitude slower than the next slowest manufacturing step. These difficulties

motivate the development of improved tools and methods for developing better formation

processes.

1.2 Thesis Outline

In this thesis, we develop physics-based data-driven models and diagnostic tools to enable

advances in battery formation protocol design, manufacturing process control, and battery

lifetime prediction. A visual guide to the organization of this thesis is shown in Figure 1.2.
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Figure 1.2: Visual thesis outline

Chapter 2 first provides an introduction to the core concepts that this thesis builds

upon. Topics covered include the battery manufacturing process with an emphasis on the

formation process, the electrochemistry of solid electrolyte interphase (SEI) formation, and

the challenges and opportunities of extracting voltage-based diagnostic features at the end

of the battery manufacturing line.

The rest of the thesis is divided into three parts. In Part I: Modeling, we focus on

developing the mathematical foundations for simulating the behavior of battery formation.

Chapter 3 proposes a reduced-order model for the solid electrolyte interphase (SEI) growth

process during the early stages of lithium-ion battery formation cycling and aging. This

model enables dynamical simulations of the battery formation process in the context of

a full cell, the first of its kind. Chapter 4 then explores how the formation model can

be applied to various future applications including simulating faster formation protocols,

designing optimal formation protocols, simulating cycle life, degradation model parameter

identification, and designing diagnostic features.

In Part II: Data, we take a data-driven approach to analyzing electrochemical data for

applications in manufacturing process control and lifetime prediction. Chapter 5 presents

methods for collecting and analyzing full cell voltage data towards developing physically

interpretable diagnostic features with applications for battery manufacturing process control

and lifetime prediction. Chapter 6 details the usage of one particular voltage-based feature

collected immediately after battery formation, the low-SOC resistance, to predict the future

lifetime trajectories of batteries. This chapter highlights the opportunity to use battery

manufacturing data to enable lifetime prediction without needing cycle life test data.
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In Part III: Variability, we propose analytical and simulation methods to understand

the implications of cell manufacturing variability on the lifetime of battery systems. Chapter

7 focuses on studying the collective dynamics of battery cells connected in parallel, a common

configuration in battery packs. We show that, when battery cells with dissimilar capacities

are connected and cycled in parallel, the capacities of the individual cell may sometimes

converge.

Chapter 8 concludes the thesis by re-summarizing the main contributions and providing

a roadmap for future research based on this work.
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CHAPTER 2

Background

2.1 Introduction

This chapter reviews the core concepts upon which this thesis is built. We set the stage by

first reviewing the battery manufacturing process with an emphasis on manufacturing scale-

up challenges. We then review the critical role that battery formation plays as the last step in

manufacturing including recent efforts by the academic community to understand the limits

of faster formation protocols. We end by reviewing the relevant literature on mathematical

models and non-destructive methods to understand and diagnose battery health.

2.2 Battery Manufacturing and Formation

2.2.1 Of Battery Makers and Cookie Bakers

A pedagogical introduction to the lithium-ion battery manufacturing process might often

evoke the process of baking a cookie (Figure 2.1. This analogy is in some ways appropri-

ate since there are indeed many similarities between the steps involved with each process.

Consider the language used to describe the electrode manufacturing steps: mixing, baking,

coating, cutting, and so on. But here is where the similarities end.

The biggest difference between battery-making and cookie-baking is perhaps in the en-

vironmental and cleanliness requirements. Take, for example, the fact that cookies can be

made under the ambient conditions of a kitchen. If a piece of hair gets into a batch of dough

during mixing, the cookie will still be edible, albeit with a tinge of hair taste, and only if

you were paying close attention. Comparatively, in battery manufacturing, the materials

being handled, including the cathode active material (CAM) and the electrolyte, are usually

highly moisture-sensitive, requiring material handlers to work in de-humidified rooms while

dressing up in full-body “bunny suits” to prevent the transfer of moisture from their breaths
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Figure 2.1: Of battery makers and cookie bakers. (A) An electrode slurry paste after
being mixed using a planetary mixer. (B) Chocolate cookie dough being mixed using a
KitchenAid® stand mixer.

onto the material. Cookie-bakers should be glad they don’t have to wear bunny suits to

make the cookies taste good. Also, in battery manufacturing, any bit of material impurities,

including metal contamination, introduced at any stage of the battery manufacturing process

could lead to eventual internal shorts and battery fires which pose a public safety hazard

and represent an existential threat to the viability of those in the business of making and

selling batteries and battery products.

Here is a final analogy to underscore the vast difference between making batteries and

baking cookies: with cookies, you can perform quality control by sampling a cookie, i.e.

by taking a bite of it. However, with batteries, not only is it inedible, but you may have

great difficulties with taking the SOH measured from a freshly-made battery and using it to

predict the lifetime of a battery a decade later1.

2.2.2 Manufacturing Steps

Details of the battery manufacturing steps have been previously reviewed by many

[4, 5, 6, 7, 8]. Here, we review the key manufacturing steps which are conventionally orga-

nized into three steps: (1) electrode manufacturing, (2) cell assembly, and (3) cell finishing

(see Figure 2.2A). A quick note on terminology: in battery manufacturing, it is common to

use the words ‘cathode’ and ‘anode’ as shorthands for the positive and negative electrodes,

respectively. This thesis will follow this convention for describing battery manufacturing

processes. However, in later chapters that deal with electrochemical models, we revert to

using the language of positive and negative electrodes to follow the convention of the elec-

1Electric vehicle battery powertrain warranties typically span 8 years and grid storage applications are
typically operated for 20 years or longer.
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trochemical community.

Figure 2.2: Battery manufacturing process overview.

2.2.2.1 Electrode Manufacturing

In electrode manufacturing, active material powders are first mixed in a solvent along with

binder materials in a process called electrode slurry mixing. The solvent can either be an

organic compound such as n-methylpyrrolidone (NMP) or be aqueous (water-based). The

binder material is mixed in a small quantity, typically less than 5 wt%, to improve electronic

conduction between the active particles and to achieve favorable mechanical properties for

the subsequent manufacturing steps. In the cathode, polyvinylidene fluoride (PVDF) typ-

ically acts as the binder with NMP as the solvent. In the anode, sytrene butadiene rub-

ber (SBR) and carboxymethyl cellulose (CMC) are popular aqueous binders. A well-mixed

slurry achieves uniformity and dispersion of the active materials.

After slurry mixing, the active material slurry is coated onto the current collector substrate

in a process called electrode coating. Aluminum serves as the current collector for the

cathode while copper serves as the current collector for the anode. In electrode coating, the

electrode slurry is poured into a slot die which continuously transfers the slurry onto a roll

of current collector as the current collector is fed through. The process of transferring the
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slurry onto the current collector is carefully controlled to achieve a target loading2 while

maximizing film uniformity.

Following electrode coating, the coated current collectors are fed through a series of ovens

in a process called electrode drying. This step is essential for evaporating the solvents

used to make the slurry. This step is noteworthy for its energy usage and factory footprint:

large ovens, often operating at high temperatures, are necessary for electrode drying. The

solvents may also be toxic, as is the case with NMP, which motivates the development of

solvent recovery systems or, more recently, the usage of solve-free processes [9]. We also note

that the electrode coating and drying process is sometimes repeated twice since the current

collectors must be coated on both sides. To do this, the spool of single-side coated collector

is fed back to the electrode coater to repeat the coating process for the non-coated side.

After the coated electrodes are dried, the next step of electrode manufacturing is elec-

trode calendaring [10, 11]3, an essential step to ensuring the final cell achieves the desired

energy density target. Calendaring involves applying high pressures to the electrode films

to achieve the desired film thickness and porosity. The pressure must be applied uniformly

and continuously to the coated electrode sheet, a challenging engineering problem. A typical

calendaring process involves continuously feeding the coated electrodes through roll presses.

At this stage, the calendared electrodes are finished but need to be cut down to size

in preparation for assembly. For high-volume battery manufacturing, this step is called

electrode slitting and involves the usage of rotary blades to cut the electrode sheets down

to the correct width. For lower-volume manufacturing, i.e. for stacked pouch cell designs,

this step is sometimes called electrode punching which refers to the usage of punch presses

to cut the electrode stock material down to the proper dimensions.

At the end of electrode slitting, the rolls of electrode material are ready to be brought

into the assembly process where the materials are combined to build the battery cell. Note

that most battery factories have two electrode manufacturing lines running in parallel: one

for the anode and one for the cathode. These lines are kept separate from each other to

avoid cross-contamination. The processing steps for each step may also differ. For example,

graphite-based anode slurries are typically made using an aqueous solvent, while NMC-based

cathode slurries typically require an organic solvent, i.e. NMP, which could require solvent

recovery processes to be set up in the cathode line.

2Loading may be quantified by the grams of material per unit centimeter, for example.
3Not to be confused with battery “calendar aging” which is the process of storing finished cells at a preset

state of charge (SOC) and temperature to age the cell.
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2.2.2.2 Cell Assembly

The cell assembly process can look very different depending on the manufacturer, the cell

form factor (e.g. cylindrical, pouch, prismatic, etc.), and the level of automation. In a

typical cylindrical cell assembly process, rolls of cathode, anode, and separator material are

loaded on a machine called the winding machine which rolls the material together [12, 13].

This process is often called electrode winding. While conceptually simple, the winding

process in practice requires a high degree of precision to make defect-free battery cells. In

high-volume production, process parameters that need to be controlled may include winding

tension, geometric alignment of each layer, and the absence of defects. Failure to meet quality

specifications set out by the manufacturer can cause the wound material to be rejected and

discarded.

For stacked pouch cell designs, the counterpart to electrode winding is called electrode

stacking. This process is analogous to electrode winding, but instead of winding the active

material layers together, individual layers of electrodes are stacked together while the sepa-

rator layer is fed and interleaved between each active layer. This configuration is sometimes

referred to as a “z-fold stacked” design.

Another important step of cell assembly is tab welding which involves joining one or more

tabs to the cathode and anode current collectors. These tabs form electrical pathways from

the current collectors to the external-facing battery cell terminals. Proper placement and

joining of the tabs are essential for ensuring low cell resistance. Popular welding techniques

used include ultrasonic welding, resistance welding, and laser welding [14]4. The tab welding

process may occur as part of the winding/stacking process or afterward.

After tab welding, the roll/stack of active material layers needs to be inserted into an

enclosure. We can refer to this process as enclosure insertion for short. For cylindrical

cell formats, the enclosure is a cylindrical can typically made of stainless steel. For pouch

cells, the enclosure may be a laminated polymer sheet. In this processing step, precise

alignment of the components is essential to avoid internal shorts during cell operation.

At this stage, the active material layers are ready to be soaked with electrolyte in a step

called electrolyte filling. Here, it is helpful to think of the active material layers as a porous

sponge. The uncompressed separator, typically made of polypropylene, is usually 50% porous

while the cathode and anode layers are usually 20%-30% porous. In the electrolyte filling

step, a nozzle dispenses a pre-set quantity of electrolyte into the enclosure. The electrolyte

usually consists of a salt, such as lithium hexafluorophosphate (LiPF6) which is dissolved in

4Note that an analogous process happens in battery module and pack manufacturing in which the positive
and negative terminals of individual battery cells are joined together in series and parallel. The material
joining these battery cells together is also confusingly called current collectors.
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an organic solvent that can comprise several different components, the most typical include

ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). Often,

a small quantity of electrolyte additive such as fluoroethylene carbonate (FEC) or vinylene

carbonate (VC) is added to improve the passivation of the thin film that is formed between

the anode and the electrolyte which we will discuss later. The electrolyte is uptaken by the

active material layers via a combination of capillary action and the application of vacuum

suction.

The electrolyte is essential for enabling the conduction of lithium ions between the elec-

trodes. All parts of the active layers, including the separators, must be fully wetted to

ensure full electrochemical utilization of the active materials. The manufacturing challenge

of electrolyte filling is thus to efficiently fill all of the pore space of the active layers. Surface

properties of each active layer, such as the surface tension with the electrolyte, or “wetta-

bility,” become essential design parameters for optimal wetting. Recent developments to

improve the electrolyte filling process include applying external voltages to induce electric

fields inside the active material layers which in turn boost wetting [15].

The last step of cell assembly is enclosure sealing. The now-wetted cell needs to be her-

metically sealed to prevent the electrolyte and gaseous reaction byproducts during battery

operation from escaping the battery cell. The seal also prevents moisture from the atmo-

sphere from entering the cell which is a source of contamination that decreases cell lifetime.

The specific steps to enclosure sealing vary by form factor.

2.2.2.3 Cell Finishing

At the end of the cell assembly process, the work of mechanically assembling the cell is

complete. However, the cell is not yet ready to be used until a sequence of “finishing” steps,

including formation cycling and aging, are completed. We’ll briefly review these steps now.

After the electrode active layers come into contact with the electrolyte during the elec-

trolyte filling step, the full cell voltage starts at ca. 0V and needs to be pre-charged, or

“tap charged.” The goal of this step is to apply a small amount of charge to the cell to

raise the voltage to above ca. 1.5V. This step is needed since the anode (negative electrode)

is initially at sufficiently high potential vs. Li/Li+ that the copper current collector may

oxidize, releasing copper ions into the electrolyte [16]. Charging the cell above ca. 1.5V

decreases the negative electrode potential vs Li/Li+ below the oxidation potential of copper

which mitigates potential issues with copper dissolution. Completion of the pre-charge step

ensures that the cells can be stored for longer periods (e.g. days to weeks) to await the

formation steps. Longer storage periods are sometimes necessitated due to factory logistics,

e.g. if the formation process is bottle-necked, or are intentionally set to give time for the
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electrolyte to fully wet the pores of the electrodes.

After pre-charge, cells undergo formation cycling. During formation cycling, the cell

is externally charged for the very first time to create the SEI at the negative electrode-

electrolyte interface [17, 18, 19, 20, 21, 22]. The formation cycling process consists of a

sequence of charge and discharge events. A good formation protocol forms a passivating SEI

layer which limits further SEI growth over the battery’s life. Formation cycling protocols

are often proprietary; no industry standards exist.

Formation cycling is followed by formation aging, during which the battery cells are

stored at high temperatures and high SOCs for days to weeks to continue the SEI growth

process and screen for quality defects [5]. The specific conditions for formation aging, includ-

ing SOC, temperature, and duration, are also dependent on the manufacturer. Note that

the term “formation aging” will be used exclusively to refer to the aging process occurring

in battery manufacturing, not to be confused with “calendar aging” or “aging tests” which

are usually conducted outside of the

At the end of formation aging, the finished cells undergo end-of-line quality inspection.

The specific measurements performed at the end of the line vary by manufacturer but will

often include measurements of open circuit voltage (OCV) and internal resistance [4].

Note that some variants of the cell finishing process may also include a degassing step in

which gaseous reaction byproducts that are formed during formation cycling and formation

aging steps are ejected out of the cells.

2.3 Formation Challenges

The formation process brings many challenges that make it more difficult to build and operate

battery factories. First, the formation process is costly. The formation equipment, which

consists of cell cyclers and automation equipment to load and unload cells from the cyclers, is

costly to build and operate. Nelson et al. estimated the cost of formation and aging to be ca.

32% of total manufacturing costs, including equipment depreciation, cost of labor, and plant

floor space [23]. Second, material handling for formation is difficult because of the long dwell

time of cells in formation, which can take up to 1.5 to 3 weeks according to Heimes et al.

[4]. While the cells are undergoing formation cycling and aging, more cells are continuously

made in cell assembly. These cells must be retained in a buffer zone in the factory to wait for

the cells undergoing formation cycling to complete. Lastly, the formation process is energy-

intensive. The formation cyclers, of course, need energy to charge the cells. The formation

aging process also requires bringing large rooms in the factory up to elevated temperatures

and maintaining this temperature continuously. Altogether, the formation process accounts
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for ca. 27% of factory energy consumption [24]5. Battery manufacturing energy consumption

has recently come to attention as another source of load on the electricity infrastructure and

represents yet another source of greenhouse gas emissions. Degen et al. estimated that

today’s manufacturing technology consumes 20 to 40 kWh of energy for every 1 kWh of cell

production, depending on the cathode material [24].

2.4 Formation Protocols

With conventional formation processes being so time, capital, and energy-intensive, bat-

tery manufacturers are motivated to develop faster formation protocols that can help lower

manufacturing costs without compromising battery performance, lifetime, and safety.

Faster formation protocols have been demonstrated to be possible. In 2004, Lee et al.

proposed a fast formation protocol on lithium cobalt oxide — graphite cells [25]. They

demonstrated that formation cycle time can be halved without without affecting the cycle

efficiency or cycle life of the batteries. In 2017, An et al. then introduced an “ultra-fast

formation protocol” [21, 22] which decreased the formation time by a factor of three compared

to a baseline protocol. These authors designed the fast formation protocol to prioritize

spending time at higher SOCs which is believed to result in a denser, more passivating

SEI [26]. When tested on multi-layer pouch cells, the fast formation protocol showed similar

beginning-of-life and cycling characteristics compared to the baseline protocol. In 2019, Rago

et al. then demonstrated that the same fast formation protocol was usable for cells containing

Si-graphite composite anodes which also showed similar cycling performance compared to

the control [27]. In 2021, Ryan et al. independently verified that formation charge rates as

high as 2C were feasible without compromising long-term cycle life performance [28]. The

cells that underwent 2C charging showed lower initial discharge capacity suggesting more

lithium was consumed during the formation cycle. For these cells, the authors found visible

lithium plating during a tear-down study following formation. Yet, despite the presence of

lithium plating, the cells showed similar thermal abuse behavior as measured via accelerated

rate calorimetry (ARC).

The existing literature on formation protocols has thus solidified the notion that for-

mation protocols can be made faster without compromising battery lifetime and safety. A

logical question follows: “What is the optimal formation protocol for a given cell system?”

Answering this question requires a more principled understanding of the electrochemistry of

SEI growth which is at the heart of the formation process.

5This number can be calculated using the raw data files from Degen et al. [24] assuming NMC811
chemistry
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2.5 The Solid Electrolyte Interphase

2.5.1 Chemistry

The term “solid-electrolyte interphase” (SEI) was first coined by Peled in 1979 to describe

a thin surface layer that spontaneously forms between alkali earth metals and an organic

electrolyte [29]6. The usage of the word “interphase” highlights that the interface is formed

between a solid phase (the electrode) and a liquid phase (the electrolyte). The simplest

analogy for an SEI could be the spontaneous surface reaction of aluminum with atmospheric

oxygen to form aluminum oxide:

4Al + 3O2 → Al2O3. (2.1)

This reaction creates a thin, insulating (or passivating) film on any aluminum metal exposed

to air, explaining aluminum’s favorable anti-corrosion properties7. Similarly, in a lithium-ion

battery, a reaction also occurs at the negative electrode (anode) and electrolyte interphase.

A simplified reaction scheme this reaction is given by:

S + ne− + nLi+ → SEI ↓ +P ↑, (2.2)

where S stands in for some component of the battery liquid electrolyte, usually a solvent

molecule, SEI is the reaction product, a solid, P is a reaction byproduct, often a gas, and n

is the number of participating electrons.

Equation 2.2, though over-simplified, already underscores some key details of SEI for-

mation. First, it depletes the inventory of lithium in the cell. In a full cell, this lithium

originates in the positive electrode active material during synthesis and is conserved since

the full cell is a closed system8. Second, any number of electrolyte components can partici-

pate in SEI-forming reactions, either in parallel, in series, or both, making reaction dynamics

difficult to characterize and model [30, 19]. The complexity of the electrolyte blend, which

includes a lithium salt (e.g. LiPF6), various solvent species (e.g. DMC, DEC, EC), and

electrolyte additive species (e.g. VC, FEC), is necessitated by the fact that the electrolyte

system needs to solve for several performance characteristics simultaneously: it must achieve

6Peled originally referred to these systems as “nonaqueous systems” but the battery community today
would simply call this “electrolyte” for short with the understanding that most common liquid electrolyte
batteries require an organic electrolyte.

7It is also why, when you are trying to use a multimeter to measure the resistance of aluminum, you have
to “dig” a little with the probes to get past the insulating oxide later and get a good reading.

8Solvated lithium ions in the electrolyte are not considered to be part of the inventory of cyclable lithium
since ions cannot be added to the pool of cyclable lithium without violating charge conservation.
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good SEI passivation while maintaining favorable ionic conductivity at a wide range of op-

erating temperatures, it must have favorable thermal runaway characteristics, and it must

be affordable for mass-production [31, 32, 19, 33, 34].

Finally, the SEI film, being highly reactive, is also difficult to study experimentally. It

was only within the last several years that advanced materials characterization methods have

enabled researchers to glean into the SEI-forming process [35, 36, 37, 38].

2.5.2 Models

The complexity of the SEI formation process has not impeded attempts by researchers to

model the SEI formation process using a number of methods (Figure 2.3). These methods

include atomistic-scale simulations [39], continuum-based methods [40, 18, 41, 42, 43, 44, 45],

multi-scale methods [30], equivalent-circuit models [46], and reduced-order methods [47, 48,

49, 50, 51, 52, 53]. All of these methods can be roughly understood as falling under the

categories shown in Figure 2.3.

Figure 2.3: Comparison of different SEI modeling approaches. These approaches include
atomistic approaches leveraging density functional theory (DFT), molecular dynamics (MD)
and kinetic Monte Carlo (kMC) methods, continuum-level formulations (including reduced-
order models), and models compatible with the engineering design of full cell systems. Images
for the various plot elements have been adapted from Abbott et al. [54], Ploehn et al. [41]
and Wu et al. [36].

We now pay particular attention to reduced-order continuum models from which the work

from Chapter 3 is based. These reduced-order models typically represent the SEI with one
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spatial dimension and describe the SEI formation process using “classical” electrochemical

processes including the usage of Butler-Volmer kinetics to describe the charge transfer process

and Fick’s law for modeling solvent diffusion. In particular, Ramadass et al. [55] proposed

a kinetically-controlled reaction scheme while Ploehn et al. [41] suggested that solvent

diffusion through the existing SEI layer must be a rate-limiting step. Later, Safari et al. [48]

combined the two limiting mechanisms in what was referred to as “mixed mode control.”

More recently, Yang et al. implemented SEI reaction dynamics in the context of a single

particle model (SPM) and also included lithium metal deposition, or lithium plating, as a

competing reaction pathway [56].

Figure 2.4, adapted from the work of Yang et al. [56] and Pinson et al. [18], summarizes

the canonical reaction pathways that Chapter 3 will develop. The figure highlights the

charging process in which neutral lithium de-inserts, or deintercalates, from the positive

electrode, releasing an electron in the process to be collected by the current collector:

LiM→ LiyM+ (1− y)Li+ + (1− y)e− (Positive, charging) (2.3)

where M stands in for a metal host structure and y is the lithium mole fraction, or stoichiom-

etry, inside the host structure. This half-cell reaction occurring at the positive electrode must

be balanced by a complimentary half-cell reaction at the negative electrode to preserve charge

neutrality in the electrolyte. The desired reaction pathway, indicated by path 2, involves the

insertion, or intercalation, of atomic lithium into the graphite host material:

xLi+ + xe− + C6 → LixC6 (Negative, charging) (2.4)

where C stands for carbon and x is the lithium stoichiometry in graphite. However, two

other competing pathways can also occur: SEI growth (pathway 1) and lithium metal depo-

sition (pathway 3). The dynamics of SEI growth forms the subject of Chapter 3. Lithium

metal deposition is understood to occur when the negative electrode surface potential drops

below 0V vs Li/Li+9. The lithium metal deposition process is included in this diagram for

completeness but will not be further studied as part of this thesis.

Figure 2.4 was finally designed to highlight an element of SEI modeling that has thus

far been missing from most literature, which is the treatment of the lithium-ion battery full

cell as a closed system. Such a treatment is necessary to understand the dynamics of the

full cell which makes up the battery formation process. In a full cell, the total inventory

9This common assumption has been recently challenged by compelling experimental results suggesting
that lithium surface concentration, not surface potential, is the main thermodynamic driving factor for
lithium metal deposition on the surface of graphite [57].
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of cyclable lithium is finite and is determined by the capacity of lithium in the positive

electrode. Modeling the exchange of cyclable lithium between the electrodes alongside the

SEI reaction dynamics will thus enable a more complete perspective of the battery formation

process as we will demonstrate in Chapter 3.

Figure 2.4: Principles of lithium-ion battery operation: SEI perspective. Three reaction
pathways are shown: (1) Lithium reacting with a solvent to form new SEI, (2) Lithium
intercalating into the graphite electrode, and (3) Lithium metal deposition at the surface of
the negative electrode.

2.6 Diagnostic Features

Voltage and current data from the battery formation process can be continuously and auto-

matically collected, stored, and analyzed to develop smarter manufacturing process specifi-

cations or tolerances, ensuring that all cells leaving the factory have a guarantee on perfor-

mance, lifetime, and safety [5]. Using voltage-based measurements is also appealing from a

manufacturing standpoint since they can be measured using existing formation cyclers. This

data may be directly collected as part of the formation protocol or immediately after the

formation protocol completes but before the cells are taken off of the formation cyclers [58].
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Thus, collecting voltage-based data bears no additional capital costs to a factory. Since the

number of formation cyclers grows with the production volume, the voltage-based metrics

will also naturally scale as factory throughput increases.

When full cell voltage data is carefully collected and analyzed, they can be used to derive

physically-interpretable, electrochemical diagnostic features that provide insights into the

thermodynamic and kinetic properties of the cell. A slow-rate (C/20) full-cell voltage curve

can, for example, be analyzed using incremental capacity analysis (ICA) [59] or differential

voltage (dV/dQ) analysis [60, 61] to understand thermodynamic quantities such as active

material losses and lithium inventory losses. The data can be collected immediately after

the formation cycles are complete. Unlike cell dissections and electrode harvesting, voltage-

based analysis is non-destructive. The same cell that is analyzed in manufacturing can thus

be tracked throughout its remaining life, either through accelerated cycle life testing in a lab

or through fleet telemetry of real-world usage inside of an EV. The ability to establish an

electrochemical “fingerprint” on the pristine cells immediately after manufacturing can help

improve lifetime prediction models as we will demonstrate in Chapter 6.

Currently, battery factories may not be taking full advantage of voltage-based measure-

ments at the end of line, partly owing to difficulties in data interpretation. Resolving the

complex electrochemical details using full-cell voltage data alone is inherently challenging

since these measurements reflect a combination of thermodynamic and kinetic factors orig-

inating from nearly every cell component and their interactions with each other. These

inherent difficulties are compounded by a general lack of clear literature guidance on best

practices for collecting and analyzing voltage data. As a result, commonly reported elec-

trochemical metrics derived from voltage data, such as modeled electrode capacities from

dV/dQ analysis often differ in both data collection and analysis methods, limiting their in-

terpretability and reproducibility. Without careful data collection and interpretation, man-

ufacturing tolerances may be set too tightly, increasing reject rates and lowering production

throughput, or too loosely, which may increase production throughput in the short term

but lead to lifetime and safety issues after years of usage in the field. The nuances of data

collection and interpretation are further discussed as part of Chapter 5.

We note that voltage-based electrochemical features do not replace the need for more

advanced end-of-line metrology methods in the factory, including X-ray [62, 63] and ultra-

sonic imaging [64, 65], which may be necessary for catching non-electrochemical related cell

defects. Rather, the voltage-based features complement root-cause analyses by providing

crucial measures of the system such as the as-manufactured electrode capacities, cyclable

lithium inventory, and negative-to-positive ratio (NPR).
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CHAPTER 3

Electrochemical Model of Battery Formation

3.1 Abstract

This chapter1 proposes a physics-based electrochemical model for the SEI growth process

during the early stages of lithium-ion battery formation cycling and formation aging. By

combining a full-cell model that tracks half-cell equilibrium potentials, a zero-dimensional

model of SEI growth kinetics, and a semi-empirical description of cell thickness expansion,

the resulting model replicated experimental trends measured on a 2.5 Ah pouch cell, including

the calculated first-cycle efficiency, measured cell thickness changes, and electrolyte reduction

peaks during the first charge dQ/dV signal. This chapter also introduces an SEI growth

boosting formalism that enables a unified description of SEI growth during both cycling and

aging. This feature can enable future applications for modeling path-dependent aging over a

cell’s life. The model further provides a homogenized representation of multiple SEI reactions

enabling the study of both solvent and additive consumption during formation. This work

bridges the gap between electrochemical descriptions of SEI growth and applications towards

improving industrial battery manufacturing process control where battery formation is an

essential but time-consuming final step. We envision that the formation model can be used

to predict the impact of formation protocols and electrolyte systems on SEI passivation and

resulting battery lifetime.

3.2 A Phenomenological Basis for Formation Modeling

Despite the microscopic complexities of SEI growth, the battery formation process for

commercial-scale cells yields electrochemical signals that can be directly measured using

1This chapter has been adapted from the following work: [66] Andrew Weng, Everardo Olide, Iaroslav
Kovalchuk, Jason B Siegel, and Anna Stefanopoulou. Modeling battery formation: SEI growth boosting,
multi-species reactions, and irreversible expansion. Journal of the Electrochemical Society 170(9): 090523,
2023
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standard equipment during formation cycling. Figure 3.1 shows example data collected on

a 2.5 Ah pouch cell (Panel B) that underwent three formation charge-discharge cycles, fol-

lowed by reference performance test (RPT)s, followed by formation aging (see Section 3.4.1

for more experimental details). This dataset can be directly used to calculate the coulombic

efficiency (CE), according to:

CEi =
Qd,i

Qc,i

, (3.1)

where Qd,i and Qc,i are the discharge and charge capacities of the ith cycle, calculated via

current integration. The CE of the first cycle, also known as the first cycle efficiency (FCE), is

characteristically lower than the CE for all subsequent cycles owing to the rapid consumption

of lithium during the first charge cycle to form the SEI.

Figure 3.1: Experimentally-measurable signals from battery formation and battery aging.
(A) Electrochemical (voltage and current) signal is shown in black. These signals are obtain-
able directly from the equipment used for battery formation cycling. Cell thickness expansion
is shown in red. (B) Example image of the multi-layer stacked pouch cells similar to the one
used for this work. (C) An expansion fixture instrumented with a linear displacement sensor
enabling real-time cell thickness expansion during the formation process.

For pouch cell form factors, thickness expansion can also be directly measured using a

sensor fixture shown in Figure 3.1C [67, 68, 69]. The measurements suggest that total cell

expansion can be attributed to two distinct sources. The first source is due to changes in the

lithium content (or stoichiometry) in the positive and negative electrode particles. During

lithiation, the particles swell, and during delithiation, the particles contract. Since this

process is reversible, we will refer to this source as “reversible expansion.” The reversible
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expansion tracks closely to the measured cell voltage, or SOC, which determines the lithium

content in either electrode. The second source of expansion can be noticed from theminimum

expansion at the end of every discharge cycle. This expansion appears to always increase

over cycles. We will thus refer to this expansion source as “irreversible expansion” [34, 68].

The irreversible expansion is attributed to the growth of the SEI layer during formation

and aging. Consistent with the CE data, the irreversible expansion is high during the first

cycle, but then slows down over the next two cycles. During formation aging, the irreversible

expansion rate appears to decrease, indicating a possibly slower SEI growth process compared

to cycling.

3.3 Main Contributions

This work presents a semi-empirical modeling framework describing the SEI growth process

during battery formation cycling and formation aging. The model builds on established

electrochemical descriptions of SEI growth which uses Butler-Volmer kinetics to describe

the SEI-forming solvent reduction process [55, 70, 48, 71] and linearized Fick’s law to de-

scribe solvent diffusion [41, 72, 18, 49]. To model cell expansion, a semi-empirical approach

is taken which draws from existing literature [73, 74, 67, 75, 76, 77], but separates the re-

versible and irreversible expansion contributions to the total expansion. Since we aim to

develop a reduced-order description of SEI growth that can be deployed in a battery man-

ufacturing context, our modeling approach does not explicitly consider spatial variations

in the SEI layer [40, 78, 79, 80] or competing reaction pathways [30]. However, as will

be demonstrated, a reduced-order, zero-dimensional model can accurately capture macro-

scopic, observed trends during both formation cycling and formation aging shown in Figure

3.1, including CE, expansion, and first cycle dQ/dV peaks indicating electrolyte reduction

processes.

Our model introduces three extensions to the existing literature on zero-dimensional SEI

growth models. First, we introduce a semi-empirical model of macroscopic thickness expan-

sion of the battery, accounting for both the reversible expansion due to lithium intercalation

reactions as well as the irreversible expansion due to SEI growth (see Section 3.5.6). Second,

we introduce a mathematical formalism to describe “boosted SEI growth” during charging

(see Section 3.5.7). This model extension unifies the description of SEI growth and cell ex-

pansion during cycling, which is fast, and during calendar aging, which is slow. Finally, we

introduce a homogenized, multi-species representation of the SEI growth process, enabling

the prediction of volume-averaged SEI film properties under multiple reacting species (see

Section 3.5.8). This model extension enables a description of solvent consumption and addi-
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tive consumption as two parallel and coupled processes which combine to create a composite

SEI film with a volume-averaged film diffusivity.

The formation model we develop resolves the dynamics of lithium consumption and cell

expansion during formation cycling and formation aging. The same model can be applied

to track lithium inventory loss over the remaining life of the cell, including during cyclic

aging and calendar aging. By explicitly considering multiple electrolyte reduction reactions

during the first cycle, the model also provides a pathway for future studies on how formation

protocols influence SEI passivation properties [26] and their consequences on battery lifetime.

3.4 Experimental Methods

Figure 3.1 summarizes the experimental data collected for this work. This dataset defines

a basic set of macroscopic observations that the formation model will seek to capture. The

experiment consists of three parts: (1) formation cycling, (2) RPTs, and (3) formation aging

at 100% SOC. The proceeding sections describe the cell build process in relation to the

formation cycling and formation aging experiments shown in Figure 3.1A.

3.4.1 Cell Build

Experimental data was collected on a 2.5Ah, multi-layer stacked pouch cell (Figure 3.1B).

The cell was built on a prototype cell manufacturing line using a process similar to the one

outlined in Weng et al. [58]. The cell consisted of a single-crystal Ni0.6Mn0.2Co0.2 (NMC622)

positive electrode (Targray) and a graphite negative electrode (Superior SLC, 1520-T), based

on the available stock. A standard electrolyte formulation was used (SoulBrain PuriEL

R&D 326), which consisted of EC and ethyl methyl carbonate (EMC) in a 3:7 weight ratio,

1.0M LiPF6 and 2 wt% VC additive. The cell stack consisted of 7 double-sided positive

electrode layers and 8 double-sided negative electrode layers, resulting in 14 active unit cells

along the pouch cell thickness direction. The positive electrode formulation consisted of

NMC622:C65:PVDF (94:3:3), where C65 and PVDF are binder materials. The negative

electrode consisted of graphite:CMC:SBR (97:1.5:1.5), where CMC and SBR are binder

materials. Positive (negative) electrode single-sided loadings were 17.2 (9.7) mg/cm2 and

with porosity targets of 30% (20%). The negative-to-positive capacity ratio was targeted to

be 1.1.
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3.4.2 Electrolyte Filling and Cell Fixture

After electrolyte filling and enclosure sealing, cells were loaded in a custom-built pressure

fixture shown in Figure 3.1C. The pressure fixture was developed based on work by Mohtat

et al. [67]. The fixture applied 5 psi of compression via a spring-loaded plate. To minimize

copper dissolution at high negative electrode potentials immediately after electrolyte filling

[81], the cell was tap-charged to 2.8V at a C/3 charge rate. The cell was subsequently left

overnight to ensure the electrodes were completely wetted before formation charging.

3.4.3 Formation Cycling and Formation Aging

Formation cycling was conducted while the cell/fixture assembly was placed in a

temperature-controlled oven set to 45◦C. The fixture maintained a pressure of 5 psi through-

out formation cycling and formation aging. For formation cycling, the cell was charged and

discharged using an Arbin BT2000 system.

The formation protocol consisted of three back-to-back constant current (CC) charge-

discharge cycles at a rate of C/10. Each charge terminated when the cell reached 4.2V,

followed by a constant voltage (CV) hold step with a C/20 current cut-off. Each discharge

terminated when the cell reached 3.0V without CV holding. No rest periods were included

between each charge and discharge.

Formation cycling was followed by RPT, which included a pulse charge-discharge sequence

for calculating cell resistances and C/20 charge-discharge voltage curves for dV/dQ analysis

[58]. The details and contents of the RPT are not immediately relevant to this work, but

the RPT data has been presented here to preserve data continuity with the subsequent

experimental step.

After the RPT, the cell was charged to 100% SOC to undergo formation aging at 45◦C.

The goal of this step was to ensure SEI passivation and to screen for quality defects [5]. This

aging step lasted for 14 days. After aging, the cell was finally discharged. Note that Figure

3.1A only shows the first 10 days of the 14-day aging protocol for brevity.

3.4.4 Expansion Measurements

Thickness expansion of the cell was measured using a linear displacement sensor (Keyence

GT2 series) mounted to the fixture (Figure 3.1C). Expansion data was logged in real-time us-

ing a data acquisition system (LabVIEW) throughout the entire experiment. The expansion

data was combined with the electrical signals during post-processing.
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3.5 Model Derivation

3.5.1 Model Assumptions

Figure 3.2 shows the canonical reaction pathways for SEI formation [18, 82] assumed for this

work. The general SEI reaction is represented by:

nLi+ + ne− + S → SEI ↓ +P ↑, (3.2)

where S represents a solvent molecule, n is the number of participating electrons, ‘SEI’

stands for the newly-formed solid reduction product, and P denotes some reaction byproduct,

usually a gas [83]. Candidate solvent molecules include EC and DEC. Note that S can also

represent electrolyte additives such as VC.

Figure 3.2: Consolidated SEI reaction pathways during charging, discharging, and rest. S:
solvent molecule, e.g. ethylene carbonate (EC) or vinylene carbonate (VC). SEI*: newly
SEI formed at the electrode-SEI interface. Li+: solvated lithium ions from the electrolyte.
Li0: neutral lithium intercalated into the negative electrode.

To build a model of SEI growth during both formation cycling and formation aging,

SEI reaction pathways occurring during full cell charging, discharging, and rest, need to be

consolidated. Doing so enables the same modeling framework to simulate both cycling and

calendar aging after formation completes. The reaction formulation we chose, summarized

by Attia et al. [82], considers two distinct SEI reaction modes, termed ‘electrochemical’ SEI

growth, which occurs in the presence of external current (i.e. during charge and discharge),

and ‘chemical’ SEI growth, which always occurs. Both SEI growth mechanisms share the

same general reaction scheme described by Eq. 3.2, but only differ by the source of lithium.
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In ‘electrochemical’ SEI growth, the external current drives solvated lithium ions from the

electrolyte towards the reaction interface. In ‘chemical’ SEI growth, intercalated lithium

from the negative electrode migrates to the reaction interface. These reaction modes will be

unified by the model formulation presented in Section 3.5.4.

Further general modeling assumptions are listed below:

• Reaction interface. The SEI-forming reaction takes place exclusively at the electrode-

SEI interphase [18].

• Rate-limiting mechanisms. The SEI reaction rate is determined by two processes:

(1) interfacial reaction kinetics according to Butler-Volmer kinetics, and (2) diffusion-

limited solvent transport through a porous SEI. No other rate-limiting mechanisms

such as electron conduction [78] are considered.

• Idealized degradation. SEI reaction at the negative electrode is the only source of

full cell capacity loss. Considerations for other degradation modes, such as thermal

SEI decomposition [82], lithium plating [28], active material degradation (e.g. cath-

ode phase transformations [84], particle cracking [85], binder delamination [86]), and

positive electrode side-reactions [87, 88], are left for future work.

• Irreversibility. SEI reactions are irreversible.

• No gas formation. Gas-forming reaction dynamics [83] are ignored and left for future

work.

• No cross-talk. Cross-reactions between different electrolyte components are left as

future model extensions.

3.5.2 Electrode Potentials and Lithium Stoichiometries

A reduced-order full-cell model was used as a starting point for this work, shown in Figure

3.3. In this model, the negative electrode equilibrium surface potential, U−, provides the

thermodynamic basis for SEI-forming reactions. However, U− is not directly controllable or

observable during the formation process in commercial devices. Rather, the terminal voltage,

Vt, is observed and controlled. A practical model of battery formation therefore requires a

description of Vt, written as:

Vt = U+(θ+)− U−(θ−) + η+ + η−, (3.3)
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where U+ is the positive electrode equilibrium surface potential, θ+ and θ− are the lithium

stoichiometries at the electrode surfaces, and η+ and η− are electrode overpotentials. U−

and U+ are described by empirical functions such as the ones shown in Figure 3.3B. The

lithium stoichiometries are defined by:

θ+ = css,p/c
max
s,p (3.4)

θ− = css,n/c
max
s,n , (3.5)

where css,p (c
s
s,n) is the lithium concentration at the surface of the positive (negative) electrode,

and cmax
s,p (cmax

s,n ) is the maximum lithium concentration of the positive (negative) electrode.

Finding the lithium surface concentrations will typically require solving the spherical diffu-

sion equation [89]. Here, we simplify the representation by assuming that the current density

is sufficiently low such that the solid-phase concentration gradient is approximately zero,

hence css,i ≈ cavgs,i . Hence, the lithium stoichiometries can be directly updated via Coulomb

counting the intercalation current:

dθ+(t)

dt
= −Iapp(t)

Q+
(3.6)

dθ−(t)

dt
= +

Iint(t)

Q− , (3.7)

where θ+ and θ− are the average lithium stoichiometries, Q+ and Q− are the total electrode

capacities corresponding to cmax
s,p and cmax

s,n , respectively, Iapp is the applied current into the

full cell, and Iint is the intercalation current at the negative electrode. We take the convention

that Iapp > 0 when the cell is charged. Similarly, Iint > 0 corresponds to lithium intercalation

into the negative electrode. At the positive electrode, the intercalation current and the

applied current are equal since our model assumed no side reactions at the positive electrode.

At the negative electrode, the applied current is split between the intercalation current and

the SEI reaction current, and only the intercalation current contributes to updating the

lithium stoichiometry in the negative electrode. Overall, Eqs. 3.6 and 3.7 amount to a

zero-dimensional, ‘dual-tank’ representation of lithium stoichiometries at each electrode,

providing a basis for tracking reaction potentials and expansions at each electrode (Figure

3.3B).
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Figure 3.3: Zero-dimensional ‘dual-tank’ formation modeling framework. (A) Model compo-
nents and key state variables. At each electrode i = (+,−), the lithium stoichiometry θ± is
tracked and used to update the electrode equilibrium surface potentials U± and volumetric
expansions ν±. Electrode surface overpotentials are represented by R-RC elements which
capture both charge-transfer and solid-state diffusion dynamics. The total applied current
density japp passes through the positive electrode. However, at the negative electrode, the
current is split between the intercalation current density jint and the SEI current density
jsei. SEI build-up leads to SEI thickness growth, denoted by δsei. (B) Electrode equilibrium
potential functions and volumetric expansion functions assumed for this work, adapted from
Mohtat et al. [67]. The markers indicate the initial conditions (I.C.s) corresponding to the
state of the cell before formation begins.
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3.5.3 Electrode Overpotentials

The electrode surface overpotentials are governed by charge-transfer kinetics at the electrode-

electrolyte interface and solid-state diffusion dynamics. Our work reduces the overpotential

dynamics using a first-order representation as follows:

η±(t) = R±
ctIapp(t) +R±

difI
±
dif(t), (3.8)

where the superscript indicates the positive (+) or negative (−) electrode, η± is the over-

potential, R±
ct is a lumped resistance term that includes both series and charge-transfer re-

sistance, R±
dif represents solid-state diffusion resistance, and I±dif follows first-order dynamics

given by [90]:
dI±dif(t)

dt
= − 1

τ±dif
I±dif(t) +

1

τ±dif
Iapp(t), (3.9)

where τ±dif is the diffusion time constant. Note that Eqs. 3.8 and 3.9 are identical to the

equations for an R-RC equivalent circuit model.

The negative electrode reaction potential, η−, will play a role in determining the SEI

reaction kinetics at the negative electrode-electrolyte interphase, which will be detailed in

the next section.

3.5.4 SEI Reaction Kinetics

Since our experimental data uses EC as a solvent, we will describe our representation of

SEI reaction kinetics in the context of EC reduction for convenience. However, it is to be

understood that the formulation described here can apply to any SEI reaction that follows

Eq. 3.2. A canonical EC reduction reaction pathway proceeds according to [91, 92]:

2EC + 2e− + 2Li+ → LEDC ↓ +C2H4 ↑, (3.10)

where LEDC is lithium ethylene dicarbonate, the solid reaction product considered to be

the SEI [93], and C2H4 is ethylene gas. The SEI reaction current density is assumed to take

a Tafel-like form [48]:

jsei = nFkseic
s
EC exp

(
−αnF

RT
ηsei

)
, (3.11)

where ksei is the reaction rate constant, csEC is the concentration of solvent molecules at the

reaction surface, α is the symmetry factor, and ηsei is the SEI reaction overpotential. n

is the number of electrons involved in the reaction. For the EC reaction, n = 2. In the
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Doyle-Fuller-Newman model, ηsei is determined by [94, 47]:

ηsei = ϕs,n − ϕe − Usei − jappRseiδsei, (3.12)

where ϕs,n is the electrode surface potential, ϕe is the electrolyte potential, Usei is the SEI

reaction potential, Rsei is the SEI resistivity, and δsei is the SEI thickness. Note that ϕs,n and

ϕe do not explicitly appear in our formulation due to our simplified model representation.

To then define η− in our system, we notice that [94, 47]:

η− = ϕs,n − ϕe − U−(θ−)− jappRseiδsei, (3.13)

which can be substituted into Eq. 3.12 to yield:

ηsei = η− + U−(θ−)− Usei. (3.14)

Eq. 3.14 is now directly solvable, since η− is provided for by Eq. 3.8. Note that this

representation of ηsei does not explicitly represent the SEI resistivity Rsei. However, this is

easily remedied by lumping Rsei into R−
ct in Eq. 3.8.

Solvent transport limitations through the SEI is modeled using a linearized Fick’s law

which takes the form [95, 47]:

Dsei
csEC − c0EC

δsei
=

jsei
nF

, (3.15)

where Dsei is the effective diffusivity of the SEI and c0EC is the concentration of solvent

molecules in the bulk electrolyte phase. Reniers et al. combined Eqs. 3.11 and 3.15 into

a more explicit representation of the reaction and diffusion-limited processes by eliminating

csEC from the equations, yielding [72, 96]:

jsei =
−c0EC

1/(nFksei exp(−αnFηsei/RT )) + δsei/(DseinF )
. (3.16)

We further rewrite Eq. 3.16 in terms of two limiting currents:

1

jsei
=

1

j̃rxn
+

1

j̃dif
, (3.17)
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with:

j̃rxn ≜ nFkseic
0
EC exp

(
−αnF

RT
ηsei

)
(3.18)

j̃dif ≜
nFDseic

0
EC

δsei
. (3.19)

Eq. 3.18 represents the reaction-limited SEI current in the absence of diffusion limitations

(csEC = c0EC) while Eq. 3.19 represents the diffusion-limited SEI current in the absence of

reaction limitations (csEC = 0). Eq. 3.17 thus highlights that the SEI current is the harmonic

mean of two limiting currents. The slower of the two processes limits the overall flow of SEI

current.

The SEI current density can be converted to total SEI current by:

Isei = a−A−L−jsei, (3.20)

where a− is the specific surface area (i.e. surface-to-area volume ratio) of the negative elec-

trode, A− is the geometric area of the negative electrode, and L− is the geometric thickness

of the negative electrode. The SEI current can then be directly integrated to yield the total

capacity of lithium lost to SEI-forming reactions:

Qsei =

∫
Isei(t)dt. (3.21)

Current conservation can finally be used to solve for the total lithium intercalation current:

Iint = Iapp − Isei. (3.22)

Eq 3.22 unifies the SEI reactions during charging, discharging, and resting, according to the

reaction scheme proposed in Figure 3.2. During charging, Iapp is positive and is split between

Iint and Isei which are both positive. During discharging, Iapp and Iint are both negative, but

Isei remains positive since the SEI reaction is irreversible. During rest, Iapp = 0 so Iint = −Isei,
consistent with the scheme that lithium deintercalation from the negative electrode drives

the SEI reaction during rest. In all cases, Eqs. 3.17 and 3.22 provide a consistent framework

for capture the SEI reaction dynamics.
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3.5.5 Solvent Consumption

As SEI grows, solvent molecules are consumed according to Eq. 3.2, decreasing the bulk

solvent concentration. The solvent consumption process can be described by:

dc0EC
dt

=
a−jsei
nF

. (3.23)

As solvent is consumed, jsei is further decreased according to Eq. 3.16. The solvent depletion

process is thus self-limiting.

3.5.6 Expansion Modeling

The goals of developing an expansion model are three-fold. First, an expansion model enables

the prediction of macroscopic expansion trends during formation cycling and formation aging

seen in Figure 3.1, which could then be extended to predict expansion over the remaining

lifetime of the cell. Second, the predicted expansion dynamics can lead to deeper insights into

the formation process since SEI growth and irreversible cell expansion are linked. Finally,

an expansion model fit to experimental expansion data enables a richer dataset for model

parameterization.

This work proposes a phenomenological representation of the total cell thickness expan-

sion, ∆tot, of the form:

∆tot(t) = ∆sei(t) + ∆rev(t). (3.24)

The first term in Eq. 3.24 represents the irreversible cell thickness expansion due to SEI film

growth and is given by:

∆sei(t) =
NlayersL

−

R−(1 + ν−(θ−(t))/3)
δsei(t), (3.25)

where δsei is SEI film thickness at a negative electrode particle, L− is the geometric length of

the negative electrode, and Nlayers is the number of active layers in the stacked configuration.

R− is the radius of a single negative electrode particle and ν− is the reversible expansion

function of the negative electrode (see Figure 3.3B). Eq. 3.25 is derived in Section 3.10.

The SEI film thickness, δsei, evolves due to the accumulation of SEI current according to

Safari et al. [48]:
dδsei
dt

= Vsei
jsei
nF

. (3.26)

Vsei is the SEI molar volume in m3/mol, defined by Vsei ≜ Ms/ρs, where Ms is the SEI

molecular weight and ρs is the SEI density.
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The second term in Eq. 3.24 represents the reversible expansion of the positive and

negative electrodes, given by:

∆rev(t) = Nlayers ·
(
L+

3
ν+(θ+(t)) +

L−

3
ν−(θ−(t))

)
, (3.27)

where ν+ and ν− are the volumetric expansion functions for each electrode, shown in Figure

3.3B. The reversible volumetric expansion functions are due to lithium intercalation-induced

swelling of the electrodes. Graphite, for example, expands up to 12% volumetrically during

lithiation [97]. Layered oxide materials also expand and contract, but the total expansion

depends on the range of lithium stoichiometries reachable within the full cell voltage window

[98]. The expansion functions ν+ and ν− are typically quantified by measuring unit cell lattice

parameter changes during lithiation and delithiation via in-situ X-ray diffraction [97, 98].

The prefactor terms convert the microscopic volumetric expansions to macroscopic thickness

expansions and are derived in Section 3.10.

Further expansion modeling assumptions and clarifications are given as follows:

• Expansion and compression of the inactive layers, including the separators, current

collectors, and pouch cell enclosure, are ignored.

• Electrode particles are spherical.

• The expansion functions ν+(θ+) and ν−(θ−) remain invariant over the formation and

aging process.

• Expansion and contraction in the electrode planar direction are ignored.

3.5.7 Boosted SEI Growth Rate During Charging

We next introduce a concept called “SEI growth boosting.” The boosting refers to enhanced

SEI growth rate during cell charging which has been previously explored in the context

of degradation modeling [73, 74, 99]. This effect is especially important to consider during

formation cycling, during which the electrodes are experiencing the largest change in lithium

stoichiometry. This stoichiometry change creates more particle-level strains which expose

new reaction surfaces, boosting the SEI growth rate [99, 74]. As we will later show in Section

3.7.3, this model extension was necessary for unifying the observed macroscopic formation

trends during both formation cycling and formation aging as shown in Figure 3.1.

Figure 3.4 illustrates the boosted SEI growth mechanism. Panel A describes a graphite

particle that starts at the fully delithiated state. As the full cell is charged, the graphite
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lithiates and expands. Ideally, the SEI elastically deforms to accommodate the particle

swelling. However, if the SEI film is brittle, then parts of the SEI film may fracture, exposing

fresh electrode surfaces to new electrolyte [74], shown in Figure 3.4A. Reacting molecules

near these newly-exposed electrode surfaces will see more facile reaction kinetics since no

pre-existing SEI film is present to limit the diffusion of reacting molecules to the reaction

surface. The overall SEI current density will thus be temporarily boosted.

Figure 3.4: Schematic of the SEI growth boosting mechanism. (A) During lithiation (charg-
ing), SEI growth rate is boosted due to SEI fracture as the negative electrode particles
expand. During resting and delithiation (discharging), the SEI growth rate is de-boosted to
the nominal rate as the SEI film ‘self-heals.’ (B) Boosting dynamics is represented by B(t)
which modifies the effective SEI diffusivity Dsei. Elyte: electrolyte.

Next, we consider the case of delithiation and resting. During resting, new SEI is formed

to fill in the fresh electrode surfaces. As the SEI thickness in these regions approaches

the volume-averaged thickness, the overall SEI reaction rate is restored to the rate before

boosting. During delithiation, the SEI is assumed to remain in contact with the graphite

particles which are contracting, so no new electrode surfaces are exposed. Note that this

assumption may be violated by systems having high volumetric expansions such as silicon
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[100] which we leave for future work to explore. Overall, during resting and discharging, we

assume that boosting no longer occurs and the SEI growth rate is gradually restored to the

original rate before boosting.

This work interprets the SEI growth boosting process as a modification to the effective SEI

diffusivity, Dsei. In this interpretation, newly exposed electrode surfaces are represented as

increases in the local SEI porosity which in turn increas the volume-averaged SEI porosity ε.

Changes in the volume-averaged porosity are represented by the effective diffusivity according

to [101, 102]:

Dsei(t) = Dsei,0
ε(t)

τ
, (3.28)

whereDsei is the effective diffusivity that we have been using for this work, Dsei,0 is a reference

diffusivity, ε is the volume-averaged SEI film porosity, and τ is the tortuosity. Note that this

expression can be further simplified using the Bruggeman relation τ = ε−0.5 [94].

To describe the dynamics of the porosity evolution, we define an empirical “boost factor”

B(t) which modifies the effective SEI diffusivity according to:

Dsei,boosted(t) = Dsei,0(1 +B(t)), (3.29)

where Dsei,boosted is the boosted SEI diffusivity. We assume that the dynamics of boosting

is described by some unknown function f(B(t)) which is driven by the negative electrode

expansion rate:

f(B(t)) = γ
dν−(θ−(t))

dt
, (3.30)

where ν− is the negative electrode volume expansion function and γ is an input sensitivity

parameter. A first-order Taylor expansion of f(B(t)) leads to our proposed state equation

describing SEI growth boosting:

τ
dB(t)

dt
+B(t) = γ

dν−(θ−(t))

dt
. (3.31)

In this equation, τ is the time constant for the first-order dynamics. This equation can be

further separated for boosting during lithiation and “de-boosting” during delithiation and

rest, with separate time constants describing each process:{
τ↑

dB(t)
dt

+B(t) = γ dν−(θ−(t))
dt

Iapp > 0 (Boost)

τ↓
dB(t)
dt

+B(t) = 0 Iapp ≤ 0 (De-boost).
(3.32)

During charging, the boosting time constant τ↑ describes how quickly the effective diffusivity

increases in response to newly-created reaction surfaces for SEI growth. During discharging
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and resting, the de-boosting time constant τ↓ describes the rate of “self-healing” as the

freshly-created surfaces fill up with new SEI and the effective diffusivity approaches its

original value, Dsei,0.

3.5.8 Homogenized Multi-Species SEI Reaction Model

So far, our description of SEI growth reaction kinetics applied to the case of a single reacting

species to form a single-component SEI solid product. However, the SEI growth process

in commercially-relevant systems involves the simultaneous reaction of multiple electrolyte

components including solvent and additive components. We therefore extend our model

to describe the case of multiple reacting species, using Figure 3.5 as a guide. This model

extension enables a reduced-order representation of multiple, parallel SEI reactions. We

will later demonstrate the usage of this model to represent the reaction of two electrolyte

components, a solvent species (EC) as well as an additive species (VC), during the first

formation charge cycle (see Section 3.7.1).

This model extension treats each SEI reaction as being governed by its own set of rate

parameters (e.g. Usei, Dsei, ksei, ...). However, the reactions kinetics become coupled since

all reacting species must diffuse through the same set of solid SEI products to reach the

reaction interface. Moreover, at the reaction interface, the charge-transfer reaction kinetics

also become coupled since the chemical state of the electrode is described by U−, a singule

value that evolves as a function of the total integrated SEI reaction current. A mathematical

treatment is as follows.

Each SEI reaction proceeds according to Eq. 3.2 and is assumed to occur in parallel. The

total SEI reaction current density thus takes the form:

jsei =
∑
r

jsei,r (3.33)

=
∑
r

(
1

j̃rxn,r
+

1

j̃dif,r

)−1

, (3.34)

where r = {EC,VC, ...} represents the different electrolyte species that are reduced to form

their respective SEI solid products, and the expansion of the right-hand side is due to Eq.

3.17.

The reaction-limited current density for the rth species is:

j̃rxn,r = nrFkrc
0
r exp

(
−αrnrF

RT

(
η− + U−(θ−)− Usei,r

))
. (3.35)

34



Figure 3.5: Homogenized representation of multi-species SEI reaction kinetics. (A) Het-
erogeneous representation. (B) Homogenized representation. Variables with bars indicate
volume-averaged (homogenized) quantities. In the homogenized representation, SEI reac-
tions occur in parallel but the reaction kinetics are coupled through a homogenized medium
represented by homogenized diffusivities for each reacting species, r, D̄sei,r, and the total
SEI thickness. In the heterogeneous case, there are (nr × nr) diffusivities, where nr is the
number of reacting species. In the homogeneous case, the number of diffusivities is reduced
to only nr elements.

Each reaction is thus governed by independent rate parameters {kr, cr, Usei,r, nr}. However, a
coupling is introduced through U−(θ−) which changes as a function of the total SEI current.

To model the diffusion-limited current densities, the diffusion parameters in Eq. 3.15

require reinterpretation, since each reacting species r must now diffuse through a solid SEI

layer consisting of multiple solid reaction products. Here, we update our interpretation of

the effective diffusivity to consider both the reacting molecule and its environment:

Dsei,rl : reacting molecule r through solid product l. (3.36)

With nr reacting molecules and nl resulting solid products, we assume that nr = nl according

to Eq. 3.2, and therefore, DSEI,rl is a matrix of size (nr × nr). To simplify the model, we

introduce the notion of average diffusivities for each reacting species, according to:

1

D̄sei,r

=
∑
l

µl

Dsei,rl

, (3.37)

where D̄sei,r is the average diffusivity of reacting species r through a homogenized solid

medium consisting of l solid products. µl = ml/
∑

l ml are weights based on the mass of

each solid product ml. In this representation, each reacting species r is assigned its own
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diffusivity which describes the diffusivity of species r through a homogenized environment

consisting of nl solid products. The model thus carries only nr number of D̄sei,r. The

diffusion-limited SEI current density can then be written as:

j̃dif,r =
D̄sei,rc

0
rnrF

δsei
. (3.38)

The thickness of each SEI layer grows independently according to:

dδsei,r
dt

= Vsei,r
jsei,r
nrF

. (3.39)

The total SEI thickness is taken to be the sum of each individual thickness:

δsei =
∑
r

δsei,r. (3.40)

In this representation, the thickness of each SEI is defined in a volume-averaged sense without

making a distinction on the spatial arrangement of the SEI layers. The model thus remains

zero-dimensional.

In summary, the multi-species SEI reaction model treats the solid SEI product as a

zero-dimensional, homogenized medium with volume-averaged properties. While each SEI

reaction is described by independent sets of rate parameters, the reactions become coupled

since each reacting molecule must diffuse through the same medium and react at the same

electrode surface. The homogenization approach taken for this work enables the prediction

of non-trivial SEI formation dynamics involving multiple electrolyte components, as will be

detailed in Section 3.7.

3.6 Model Implementation

Equations from Table 3.1 were numerically integrated using a forward difference scheme.

The simulation was run with a timestep of ∆t = 10 seconds. Each charge and discharge

cycle takes less than 1 second to complete execution on a 2.6 GHz 6-Core Intel Core i7

processor. All code was written in Python and is publicly available2. The code is written

to be modular and extensible, drawing from the design of other battery simulation software

suites [103, 104].

The simulation framework also supports constant voltage (i.e. potentiostatic) operation

mode. During this charging mode, Eq. 4.11 is inverted to update the current for a given

2github.com/wengandrew/formation-modeling
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target voltage. The reduced-order representation of cell overpotentials allows for a closed-

form solution of the form:

ICV =
Vt − U+ + U− −

∑
i R

±
difI

±
dif exp (− ∆t

τ±dif
)∑

i

(
R±

ct +R±
dif(1− exp (− ∆t

τ±dif
))
) , (3.41)

where τ±dif ≜ R±
difCdif,i.

Parameterization. Model parameters used for this work are summarized in Tables 3.2

and 3.3. Model parameters were either calculated based on the cell build parameters, taken

from literature, fit to the experimental data, or assumed. Since parameter identification was

not a focus of this work, the parameters chosen for this work may not be optimal. A more

detailed investigation of parameter identification and output sensitivity analysis will be left

for future work.

SEI components. While the formation model supports simulating an arbitrary number of

SEI-reacting species, we focus on studying a model system consisting of two SEI components:

ethylene carbonate (EC) and vinylene carbonate (VC). These two components represent a

subset of the experimentally-tested electrolyte (3:7 EC:DEC with 2 wt% VC, see Section

3.4.1). Both EC and VC are also well-studied in literature, with established reaction path-

ways and some known model parameters [105, 35, 106, 26]. VC, in particular, is present in

a small quantity (2 wt%) as an electrolyte additive and is known to be consumed during

the formation process to help stabilize the SEI film [107, 108, 109, 110]. VC, which reduces

at ca. 1.35V [105], is also markedly higher than EC, which reduces at ca. 0.8V [35], and

is thus expected to reduce first. VC thus provides a contrasting electrolyte component to

understand both the capabilities and limitations of the model’s ability to capture first-cycle

reaction dynamics with multiple SEI components. EC and VC starting concentrations were

calculated to match the experimental values. The EC reaction is given by Eq. 3.10. The

VC reaction is given by [111]:

2VC + 2e− + 2Li+ → LVDC ↓ +C2H4 ↑, (3.42)

where LVDC is lithium vinylene dicarbonate, the VC-derived SEI layer. Like EC and other

solvents, multiple reaction pathways are possible, and each reaction may occur in multiple

stages [111]. However, for this work, we simplify the representation by considering only Eq.

3.42 as the VC reaction scheme.

Electrode capacities. Electrode capacities Q+ and Q− were initialized using a differential

voltage fitting procedure outlined in Weng et al. [112]. This method uses a C/20 charge

voltage curve to extract information about electrode-specific capacities. The voltage curve
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used for this analysis was taken at the end of the two-week formation aging step. This work

assumes that the electrode capacities remain invariant throughout the formation process, i.e.

no loss of active material. This assumption can be revisited as part of future work.

Initial conditions. Special attention was made to set the initial cell state prior to formation

cycling. Before the formation cycles, we assumed that the negative electrode was fully

delithiated (θ− = 0) and the positive electrode was fully lithiated (θ+ = 1). The measured

cell terminal voltage before formation was then used to constrain the set of possible half-cell

potentials, according to:

Vt|t=0 = U+(θ− = 1)|t=0 − U−(θ+ = 0)|t=0. (3.43)

For the cell under study, the full cell terminal voltage Vt was measured to be 635mV before

formation charging began. To identify the initial potentials of the positive and negative elec-

trodes before formation, half-cells with lithium metal counter-electrodes were built. Half-cell

potentials were measured immediately after electrolyte fill and assembly. The negative elec-

trode (graphite) half-cells were measured to have potentials of {2.939, 2.925, 0.770, 1.698}V
vs Li/Li+, and the positive electrode (NMC622) half-cells were measured to have potentials

of {1.814, 2.813}V vs Li/Li+. The wide range of measured potentials measured suggest that

more work is necessary to verify the initial half-cell potentials which we leave as future work.

For this work, we picked U−(θ− = 0) = 2.00V and U+(θ+ = 1) = 2.65V , which satisfies Eq.

3.43.

Half-cell potentials. Half-cell near-equilibrium potential functions U− and U+ were

adapted from Mohtat et al. [67]. These curves were linearly extrapolated to satisfy the

boundary condition given in Eq. 3.43. These functions are plotted in Figure 3.3B.

Expansion functions. Volumetric expansion functions for the positive and negative elec-

trodes were taken from Mohtat et al. [67] and shown in Figure 3.3B. For the simulations, a

simplified version of Eq. 3.24 was implemented assuming constant and fitted prefactors, i.e.:

∆tot = c0δsei + c1ν
+(θ+) + c2ν

−(θ−). (3.44)

A future iteration of this work will implement Eq. 3.24 directly by tuning L−, L+, and R−,

creating additional constraints used for model parameter tuning.
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Table 3.1: Summary of formation model equations

Electrodes
dθ+(t)

dt
= −Iapp(t)

Q+

dθ−(t)

dt
= +

Iint(t)

Q− (3.6, 3.7)

Vt = U+(θ+)− U−(θ−) + η+ + η− (3.3)

η±(t) = R±
ctIapp(t) +R±

difI
±
dif(t) i ∈ (n, p) (3.8)

dI±dif(t)

dt
= − 1

τ±dif
I±dif(t) +

1

τ±dif
Iapp(t) (3.9)

SEI (EC only) Iint = Iapp − a−A−L−jsei (3.20, 3.22)

jsei =

(
1

j̃rxn
+

1

j̃dif

)−1

(3.17)

j̃rxn = nFkseic
0
EC exp

(
−αnF

RT

(
η− + U−(θ−)− Usei

))
(3.18)

j̃dif =
nFDseic

0
EC

δsei
(3.19)

Solvent
dc0EC
dt

= −a−jsei
nF

(3.23)

Expansion ∆tot = c0δsei + c1ν
+(θ+) + c2ν

−(θ−) (simplified) (3.44)

dδsei
dt

= Vsei
jsei
nF

(3.26)

Boosting DSEI,boosted = DSEI,0(1 +B) (3.29)

τ↑
dB

dt
+B = γ

dν−

dt
Charging (boost) (3.32)

τ↓
dB

dt
+B = 0 Discharging and rest (de-boost) (3.32)

Multi-Species jsei =
∑
r

jsei,r =
∑
r

(
1

j̃rxn,r
+

1

j̃dif,r

)−1

(3.33)

j̃rxn,r = nrFkrc
0
r exp

(
−αrnrF

RT

(
η− + U−(θ−)− Usei,r

))
(3.35)

j̃dif,r =
D̄sei,rc

0
rnrF

δsei
(3.38)

D̄sei,r =

(∑
l

µl

Dsei,rl

)−1

(3.37)

δsei =
∑
r

δsei,r (3.40)
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Table 3.2: Variables, parameters, and initial conditions, part 1. Asterisks (*) indicate values computed during simulation
run-time. “I.C.” indicates an initial condition. Double asteriks (**) indicate that values were modified from the literature
values.

Symbol Definition Value 1 Value 2 Units Ref.

SEI Properties A B
r SEI reacting species EC VC - -
l SEI solid product from species r LEDC LVDC - -
Usei,r SEI reaction potential 0.8 1.35 V Refs. [35, 105]
jsei,r SEI reaction current density * * A/m2 Eq. 3.16
c0r Bulk-phase concentration 4541 304.4 mol/m3 Ref. [48] / Calculated
kr Reaction rate constant 3.0× 10−17 7.0× 10−19 m/s Fitted
Ds,rA′ Effective diffusivity of r in solid l = A′ 4.2× 10−20 4.2× 10−20 m2/s Fitted
Ds,rB′ Effective diffusivity of r in solid l = B′ 6.6× 10−18 6.6× 10−18 m2/s Fitted
Qsei,r SEI capacity of the rth species * * A s Eq. 3.21
Vsei,r SEI molar volume 9.585× 10−5 5.810× 10−5 m3/mol Ref. [48]
τ↑ SEI growth boosting time constant 10 10 mins Fitted
τ↓ SEI growth de-boosting time constant 100 100 mins Fitted
γ SEI boosting input sensitivity factor 2.4× 107 2.4× 107 s/m Fitted

Electrode Potentials pos. neg.
U± electrode potential vs Li/Li+ 2.635 (I.C.) 2.000 (I.C.) V Fitted
θ± electrode lithium stoichiometry 1.0 (I.C.) 0.0 (I.C.) - Ref. [67]**
Q± electrode maximum capacity 2.95 3.14 Ah Based on [112]
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Table 3.3: Variables, parameters, and initial conditions, part 2. Asterisks (*) indicate values computed during simulation
run-time. “I.C.” indicates an initial condition. Double asteriks (**) indicate that values were modified from the literature
values.

Symbol Definition Value 1 Value 2 Units Ref.

Electrode Overpotentials pos. neg.
η± electrode over-potential vs Li/Li+ * * V Eq. 3.8
I±dif electrode diffusion current (through R±

ct) * * A Eq. 3.9
R±

ct electrode charge-transfer resistance 0.01 0.01 Ω Assumed
R±

dif electrode diffusion resistance 0.001 0.001 Ω Assumed
Cdif,i electrode diffusion capacitance 7.6× 104 7.6× 104 F Assumed
τ±dif electrode diffusion time constant * * s Assumed

Electrode Geometry and Expansion pos. neg.
as,i electrode specific surface area (3εi/Ri) - 1.05× 105 1/m Assumed
Ai electrode geometric area - 0.097566 m2 Calculated
Li electrode geometric length - 80 µm Assumed
c0 expansion fitting coefficient - 127 - Fitted
c1 expansion fitting coefficient - 0.00045 - Fitted
c2 expansion fitting coefficient - 0.00045 - Fitted
∆tot macroscopic pouch cell thickness expansion - - m Eq. 3.24
νi electrode particle volumetric expansion * * % Ref. [67]
δsei SEI thickness expansion - 5× 10−9 (I.C.) m Eq. 3.26
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3.7 Model Behavior

The formation model was simulated by inputting the current profile from Figure 3.1. The

results highlight some of the key characteristics of a two-component SEI growth mechanism

involving the sequential reduction of VC followed by EC. The observed results underscore the

coupled nature of SEI formation dynamics, including the interplay between cell expansion

and boosted SEI growth, as well as the interplay between reaction dynamics involving multi-

ple SEI components. The same results introduced here will also set the stage for comparison

against experimental data which will be discussed in Section 3.8.

3.7.1 SEI Growth Dynamics During First Charge

Figure 3.6 highlights key model outputs before and during the first formation charge. The

simulation begins with the cell at rest before any external charge is applied. At this stage, the

positive electrode is completely lithiated (θ+ = 1) and the negative electrode is completely

delithiated (θ− = 0). Negligible SEI growth occurs during this stage since the negative

electrode potential of 2.0V vs Li/Li+ exceeds the reaction potentials of both VC and EC

(Panel A, marker 1). After 30 minutes, an external current of C/10 (0.25A) is applied

to begin the formation charge process (Panel B). Within minutes, the negative electrode

potential drops below the VC reaction potential of 1.35V and VC begins to reduce (marker

2). This reaction current reaches a peak within minutes and falls back down. Next, as the

negative electrode becomes more lithiated, the negative electrode potential falls below the

EC reaction potential of 0.80V and EC begins reducing (marker 3). Similar to VC, the

reaction current for VC also soon reaches a peak, but then gradually decreases.

The buildup of VC and EC-derived SEI products during the initial stages of formation

contributes to the macroscopically-observed cell thickness expansion (Panel C). The pre-

dicted total expansion is a result of both the irreversible expansion due to SEI growth and

the reversible expansion due to lithium intercalation/deintercalation in the electrodes. The

model predicts that SEI growth plays a dominant role in determining the total cell expansion

during the first cycle.

During the first charge cycle, the negative electrode expands, activating the SEI growth

boosting mechanism which increases the effective SEI diffusivity (see Section 3.5.7). Since

the negative electrode expansion increases monotonically during the charge cycle, boosting

persists throughout the cycle. Note that, at mid-SOCs, the expansion rate for the lithiated

graphite is lowered (marker 4) which decreases the boost magnitude according to Eq. 3.32.

The EC reduction current decreases accordingly (marker 5). The boosting mechanism will

be explored in more detail in Section 3.7.3.
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Figure 3.6: SEI reaction and full cell expansion dynamics during the first formation charge.
(A) Full cell voltage, electrode potentials, and SEI reaction potentials. (B) Applied current
and SEI reaction currents. (C) Full cell thickness expansion, including both reversible ex-
pansion from electrode intercalation and irreversible expansion from SEI components. (1)
Negligible SEI growth occurs before the first charge cycle due to reaction limitations. (2) VC
reduces first, followed by (3) EC reduction. (4) Expansion rate of lithiated graphite slows
down at mid-SOCs, causing a (5) decrease in the EC reduction current as a result of the SEI
growth boosting/de-boosting mechanism.
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3.7.2 Exploring the Limiting Current

Figure 3.7 explores the limiting SEI current during the initial stages of formation. Before

any external current is applied, the SEI currents are reaction-limited since the negative

electrode, at 2.0V vs Li/Li+, is above the reaction potential for both VC (1.35V) and EC

(0.8V) (marker 1 in both Figures 3.6 and 3.7), so Eq. 3.11 would predict very small current

densities. However, after the external current is applied, the negative electrode potential

decreases rapidly due to the steepness of the negative electrode equilibrium potential function

U−. This decreases the SEI reaction overpotential (Eq. 3.14) towards more negative values,

increasing the overall SEI current (Eq. 3.11). This process explains why the initial surge

in SEI current coincides with the rapid decrease in the negative electrode potential (marker

2 in both Figures 3.6 and 3.7). The reacting species with the higher reaction potential will

tend to react first, as was the case with VC and EC in this model system.

3.7.2.1 Transition from Reaction-Limited to Diffusion-Limited SEI Growth

After the initial surge in SEI current, the SEI currents reach a peak and then begin to

decrease. This can be observed for both the VC and EC reactions (marker 3 in Figure 3.7).

We attribute this SEI current decay to the transition from a reaction-limited regime to a

diffusion-limited regime. During this transition, the reaction-limited current continues to

increase as the negative electrode potential continues to decrease. However, simultaneously,

the diffusion-limited current decreases as the SEI film thickness increases according to Eq.

3.26. This film thickness increase limits the concentration of reacting molecules at the

electrode surface. Eventually, the diffusion-limited current drops below the reaction-limited

current. After this point, further increases in the reaction kinetics are no longer fully realized

and the total reaction current begins to follow the diffusion-limited current (Eq. 3.19). The

diffusion-limited current continues to decrease as the SEI film builds, limiting the overall

SEI reaction rate.

3.7.2.2 Multi-Species Diffusive Coupling and Boosted SEI Growth

After 1.2 hours, the VC reaction current density experiences another drop (marker 4 in Figure

3.7). This drop is due to the coupling between the EC and VC diffusivities introduced by

the multi-species reaction model (see Section 3.5.8). As EC begins to react, the EC-derived

film begins to grow. For this simulation, the effective diffusivity of the EC-derived film was

assumed to be two orders of magnitude lower than that of the VC-derived film (see Table

3.2). After the EC reaction begins, the effective diffusivity of VC through the SEI, which

now consists of both the VC and EC-derived films, is pulled towards the lower diffusivity of
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Figure 3.7: Reaction-diffusion and solvent consumption dynamics during formation charge.
(A) Applied current and SEI reaction currents. (B) Breakdown of limiting current for EC
and (C) VC. (D) Bulk solvent concentration. (1) Negligible SEI growth occurs before the
first charge due to reaction limitations. (2) The EC and VC reduction processes are both ini-
tially reaction-limited. (3) Transition from reaction-limited to diffusion-limited regimes. (4)
Decrease in VC reaction current density due to the coupling between EC and VC diffusivities
introduced by the multi-species reaction model. (5) Surge in diffusion-limited current due
to the effect of boosted SEI growth. (6) VC consumption rate plateaus due to the decrease
in VC reaction current density.
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the EC-derived film, causing the VC reaction rate to be further slowed.

The effect of the boosted SEI growth mechanism is again observed in Figure 3.7B,C.

The diffusion-limited currents here do not monotonically decrease as would be predicted

by Fick’s law. Rather, the diffusion-limit current initially surges when external current

is applied (marker 5). This surge is explained by the negative electrode expansion which

modifies the SEI diffusivity according to Eqs. 3.29 and 3.31. The diffusion-limited current

decreases shortly thereafter as the SEI film thickness begins to increase. See Section 3.7.3

for a further discussion on SEI boosting.

3.7.2.3 Solvent Consumption

Figure 3.7D plots bulk concentrations for EC and VC. Solvent and additive consumption

occur due to SEI growth according to Eq. 3.23. The initial concentration of VC is much

lower than that of EC (304 mol/m3 versus 4541 mol/m3) since VC is an electrolyte additive.

VC is consumed rapidly during the initial stages of the first charge cycle. However, VC

consumption appears to plateau afterwards (marker 6). This plateau coincides with the

start of EC reduction, which depresses the VC reduction rate due to the diffusive coupling

as previously explained. Hence, the VC concentration does not drop completely to zero

during formation charge due to diffusion limitations. The model thus predicts the presence

of trace amounts of electrolyte additives after formation cycling is completed.

3.7.3 Understanding SEI Growth Boosting

Figure 3.8 highlights the impact of boosting on the SEI growth rate. For this simulation,

the cell was first charged at C/10 to 100% SOC, rested for 40 hours, then discharged at

C/10 (Panel A). This pattern was then repeated. During each charge and discharge cycle,

the negative electrode expands and contracts (Panel B). The negative electrode volumet-

ric expansion rate, dν−/dt, provides a non-linear input which activates the boosted SEI

mechanism (see Section 3.5.7).

Panel C plots B(t) along with γ(dν−/dt). During charging, B(t) and γ(dν−/dt) track

closely with each other since we have assumed a small value for the boosting time con-

stant, with τ↑ = 10 mins. The step transitions (marker 1) are due to the piecewise-linear

construction of the negative electrode expansion function, ν−, consisting of three regions:

steep, shallow, and steep, corresponding to low, medium, and high lithium stoichiometries,

respectively (see Figure 3.3B). The SEI thickness growth rate tracks these different regions

accordingly, initially starting fast, then slowing down, and then becoming fast again (Panel

D).
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Figure 3.8: Demonstration of SEI growth rate boosting and de-boosting. (A) Full cell voltage
and electrode potentials. (B) Positive and negative electrode volumetric expansion functions.
(C) Boost function B(t) plotted against the boosting input term γ(dν−/dt). (D) Comparison
of SEI thickness growth rates on cycling versus calendar aging. (1) Step transitions in the
boost function due to the piecewise-linear construction of the negative electrode expansion
function. (2) Negative electrode contracts slightly during rest since lithium continues to
deintercalate from the negative electrode to form the SEI. (3) The de-boosting process is
assumed to be much slower than the boosting process for this work. (4) No boosting occurs
during discharge due to the assumption that the SEI maintains physical contact with the
negative electrode particles so no new reaction surfaces are exposed.
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During rest, γ(dν−/dt) approaches zero, but it is not exactly zero, since lithium continues

to deintercalate from the negative electrode to form SEI during rest, causing the negative

electrode to contract slightly (marker 2). Overall, the magnitude of dν−/dt during resting

remains small. B(t), however, takes hours to decay from its boosted state since we assumed

that the de-boosting process is much slower than the boosting process, with τ↓ = 100 mins

(marker 3).

As the rest step transitions into a discharge step, γ(dν−/dt) inverts sign, but B(t) contin-

ues to exponentially decay towards zero (marker 4). Physically, this behavior represents the

assumption that, as the negative electrode particles contract, the SEI maintains physical con-

tact with the particle and no new reaction surfaces are exposed. As the previously-exposed

negative electrode surfaces rebuild SEI, the SEI effective diffusivities return to their nominal

values prior to boosting.

Panel D highlights the effect of boosted SEI growth on SEI thickness expansion. During

charging, the SEI build-up is accelerated. However, during resting and discharging, the

SEI growth rate slows down, corresponding to a steady-state diffusion regime. During the

subsequent charge, this steady-state regime is interrupted as the SEI growth rate is boosted

again by the charging process.

3.8 Comparison to Experiment

A main goal of this work was to develop a model capable of capturing macroscopic trends

observed in experimental formation data. Here, we demonstrate that our formation model

achieves this goal for a range of metrics, including full cell voltages, cell thickness expansions,

coulombic efficiencies, and first cycle dQ/dV.

3.8.1 Full Cell Voltage

Figure 3.9A compares the modeled versus measured full cell voltage during and after the

formation cycles. Model-predicted positive and negative electrode potentials vs Li/Li+ are

also shown for reference. The simulation was run using the parameters described in Section

3.6 and with a current input that matches the experimental data. The result shows that the

formation model outputs generally match the observed voltage trends over the course of the

formation charge-discharge cycles and during the subsequent formation aging step.

However, despite the general agreement between model and experiment, several model

mismatches can be observed. First, the cell voltage was under-predicted during the three

formation discharge steps. This may be because the half-cell equilibrium potential functions
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Figure 3.9: Model comparison against experimental data. The dataset consists of three for-
mation charge-discharge cycles, a reference performance test (RPT) sequence, and formation
aging at 100% SOC. (A) Full cell voltage. (B) Thickness expansion.

[67] were based on charge curves and thus do not account for hysteresis effects [113, 114, 115].

The half-cell equilibrium potential functions were also inherited from a previous work [67]

which had similar but not identical positive and negative electrode compositions. Next,

the voltage rebound at 0% SOC was not predicted by the model. This model mismatch is

attributed to the fact that our overpotential model uses a cell resistance does not vary with

SOC, yet it is well-known that cell resistance increases significantly at lower SOCs owing to

kinetic limitations in the NMC positive electrode [58, 116, 117, 118].
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3.8.2 Full Cell Expansion

Figure 3.9B compares the modeled versus measured full-cell thickness expansion during and

after the formation cycles. The model-predicted irreversible expansion due to SEI growth is

also shown as a green dashed line. The model captures macroscopic trends in both irreversible

and reversible full-cell expansion, across formation cycles and subsequent formation calendar

aging. Consistent with the experiment, the model correctly predicts that the irreversible

expansion slows down during the formation aging step. This result was achieved by using

the boosted SEI growth formulation which accelerates the SEI growth process during cycling

(see Section 3.5.7).

As with the voltage data, some model mismatches persist. First, the model over-predicts

the electrode contraction at mid-SOCs during discharging steps. The origin of this mismatch

is unclear, but we hypothesize that the graphite expansion function may also be subject to

charge-discharge asymmetry. In this work, the expansion functions were parameterized on

charge, not discharge [67], so the model would not be able to capture this hysteresis effect.

Another model mismatch occurs during the formation aging step. While the model correctly

captures the slope of the expansion data, the model ‘over-boosted’ the SEI growth rate, and

thus the total expansion, during the C/2 charge leading up to the formation aging step.

This result suggests that the first-order representation of the boosting mechanism given by

Eq. 3.32 may be insufficient to capture the dynamics of boosting at all C-rates. Thus, while

the SEI growth boosting mechanism represented in this work remains a reasonable starting

point to capture expansion differences between cycling and calendar aging, there remains

room to improve the representation of higher-order dynamical effects such as the effect of

cycling C-rates.

We finally note that active material loss mechanisms are not currently represented in

the model, which could contribute to another source of model error. As the electrodes lose

active material, e.g. due to loss of electronic conduction pathways, or due to material phase

transformations, the lost active material will no longer participate in reversible expansion,

decreasing the overall observed reversible expansion. Finally, similar to the equilibrium

potential functions, the volumetric expansion functions ν− and ν+ are also inherited from

literature [67] and may not be exact, contributing to yet another possible source for model

error.

3.8.3 Formation Coulombic Efficiencies

Figure 3.10 compares the modeled versus measured FCE during the first formation cycle

as well as the CE of the subsequent two cycles, defined by Eq. 3.1. The formation model

50



predicted the FCE within 1 percentage point of the measured result. However, the model

underestimated the CE of the next two cycles. The model mismatches here are attributed

to suboptimal parameter tuning which can be improved with further optimization.

Overall, the formation model not only predicted that the FCE is much lower than the

CE of subsequent cycles, but the model also gave an intuitive explanation for why this is

necessarily the case: the first charge cycle is the only cycle that sees reaction-limited SEI

growth. After the first charge cycle, the SEI reaction becomes diffusion-limited, slowing

down the SEI reaction rate for all subsequent cycles (see Section 3.7.2.1).

Figure 3.10: Modeled vs. measured Coulombic efficiency (CE). First cycle efficiency (FCE)
is defined as the CE of the first formation charge cycle.

3.8.4 Formation Charge dQ/dV

Figure 3.11A compares the model vs. measured full cell dQ/dV curve during the first

formation charge. The plot represents the incremental capacity accumulated by the cell

at each increment of full cell voltage. This plot is experimentally observable, with the

measured result plotted as a dashed line. This plot is commonly studied in electrolyte

development studies since peaks in dQ/dV during the initial formation charge cycle can

often be attributed to SEI-forming electrolyte reduction processes. However, care is usually

needed in interpreting the data since the dQ/dV peaks can also be due to shifts in the

solid-phase potentials as the positive electrode is delithiated and the negative electrode is
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lithiated.

In the experimental data, a dQ/dV peak was observed at approx. 2.8V (marker 1).

The formation model attributed this peak to the reduction of the VC additive. The model

predicted the position of this reduction peak and also qualitatively captured the peak shape.

The model additionally predicted a second, broad peak, corresponding to EC reduction

(marker 2). However, the EC peak was not observed in the experimental data. This model

mismatch may be due to differences in the electrolyte composition: the experimental data was

obtained with an electrolyte comprising both EC and DEC, but the model only represented

EC.

Figure 3.11: Modeled vs. measured dQ/dV trace during the formation charge. (A) dQ/dV
vs V , where V is the full cell voltage. (B) dQ/dU− vs U−, where U− is the negative electrode
equilibrium potential.

3.9 Discussion: Mechanistic Insights

The formation model developed in this work provides a quantitative understanding of what

makes the first formation charge process different from all subsequent cycles in lithium-

ion battery systems. This understanding holds important practical implications as well as

mechanistic insights, which we discuss in this section.
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3.9.1 What is Special About the First Formation Charge?

Minimal SEI growth before formation charge. The formation model predicts that SEI growth

does not begin until the cell is externally charged for the first time. Before the charge step,

the SEI formation process is suppressed according to Eq. 3.11 since the negative electrode

potential, at ca. 2.0V, is above the reaction potentials for the reacting molecules studied for

this work (0.8V for EC and 1.35V for VC). This observation has some practical implications:

since SEI formation only begins when the cell is charged, the duration elapsed between

electrolyte filling and the first formation charge cycle may be discounted as a potential

source of variability in SEI properties and subsequent cell performance. Note, however,

that copper dissolution at high negative electrode potentials, which may occur during the

time between electrolyte filling and formation charge [119, 120], creates a separate source of

variability that warrants further study using the formation model.

Reaction-limited SEI growth occurs exclusively during formation charge. The first cycle

efficiency (FCE) during formation is typically between 80% to 90% and can vary as a function

of the electrolyte system [121], negative electrode type [121], and formation protocol [119].

The FCE is thus much lower than subsequent measures of CE which typically exceeds 99%.

This result was experimentally replicated in our formation dataset and was also predicted by

our formation model, see Figure 3.10. The formation model provides a simple explanation to

why the FCE is low compared to the CE of subsequent cycles: the first formation charge is the

only time the SEI growth process is reaction-limited. After the first charge cycle, SEI growth

becomes diffusion-limited (see Figure 3.7). Intuitively, the SEI film is the thinnest during the

first formation charge, making solvent diffusion facile. During the first formation charge, a

sufficient amount of SEI is built up and the SEI reaction becomes self-limiting due to diffusion

limitations. For the remaining life of the battery, the SEI reaction remains diffusion-limited.

This result suggests that the effective SEI diffusivity, Dsei, is a key parameter describing the

passivation of the SEI over a battery’s life. A low effective SEI diffusivity is thus essential

for creating a long-lasting battery. By contrast, the SEI kinetic rate parameter, ksei, appears

to only play a role in determining the SEI formation dynamics during the first charge cycle.

The model predicts that ksei becomes inconsequential to the SEI growth rate during later

formation cycles and for the rest of the cell’s life.

Extended lithium stoichiometric ranges and electrode surface potentials. Figure 3.12 shows

how the lithium stoichiometries in each electrode evolve during and after the formation cy-

cles (Panel A), along with their corresponding electrode potentials (Panel B). Before the first

formation charge, the negative electrode is completely empty of lithium (θ− = 0) and the

positive electrode is completely full of lithium (θ+ = 1), shown in red circles. After forma-

tion completes, neither electrode will be able to access these initial lithium stoichiometries
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and their corresponding electrode potentials. Notably, the maximum accessible lithium stoi-

chiometry in the positive electrode continues to decrease over the RPT and formation aging

(Panel A inset) due to the irreversible consumption of lithium from the positive electrode

to form the SEI. By the end of the formation aging step, the maximum positive electrode

stoichiometry has decreased from 1.0 to ca. 0.8 (blue triangles). Meanwhile, the minimum

negative electrode potential has also increased from 0.0 to ca. 0.018. In both electrodes,

these permanent shifts in the accessible lithium stoichiometry range also restrict the range

of electrode potentials observable after formation completes (Panel B). The negative elec-

trode starts at 2.0V vs Li/Li+ before formation, but by the time the first formation charge

completes, the negative electrode will never see potentials above 0.7V vs Li/Li+. These re-

strictions in electrode potentials may not bear much consequence to the overall SEI reaction

rate over life, since the SEI reactions will be primarily driven by diffusion limitations as ex-

plained in Section 3.7.2.1. However, this result does explain why copper dissolution, which

occurs at high negative electrode potentials, is a concern during the formation process but

is less of a concern over the remainder of a battery’s life.

Figure 3.12: Lithium stoichiometry and electrode potential maps over formation cycling,
RPT, and formation aging. (A) Positive and negative electrode lithium stoichiometries.
Inset: expanded view of the lithium stoichiometries at the end of each discharge cycle. (B)
Positive and negative electrode equilibrium potentials. Red circle: state of the system before
formation. Triangles: state of the system after formation completes and the cell is discharged.
Green triangle: prediction from dV/dQ fitting method on C/20 charge voltage data taken
at the end of the formation process, adapted from Weng et al. [112].
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3.9.2 Reinterpreting dQ/dV Peaks for SEI Reaction Studies

Returning to Figure 3.11, Panel B shows a dQ/dV plot where the differential capacity is

plotted against the differential negative electrode equilibrium potential U−. This result

is discussed briefly now to gain further insight into the rate-limiting mechanisms during

formation charge. A key observation here is that the position of the reduction peaks for

both EC and VC do not indicate their respective reaction potentials, as is often assumed

in previous literature studies. Rather, there is a delay between the reaction potentials and

the respective reduction peaks. For example, the VC reaction potential is at 1.35V, yet

the observed dQ/dV peak does not occur until the negative electrode has dropped below

0.8V. Similarly, the EC reaction potential is at 0.8V, but its corresponding dQ/dV peak

occurs below 0.4V. This delay suggests that the dQ/dV peaks do not indicate the reaction

potentials; rather, the peak indicates the transition from the reaction-limited to the diffusion-

limited regime, which occurs sometime after the negative electrode potential falls below the

reaction potential (see Figure 3.7. This result partly explains why literature reports of SEI

reaction potentials, Usei, can vary widely.

3.9.3 Analyzing Rate-Liming Regimes

The transition from reaction-limited SEI growth to diffusion-limited SEI growth appears to

be a key characteristic of the first formation charge cycle. Due to its importance, we briefly

discuss some analytical approaches to further characterizing this transition to promote future

investigations in this area.

We define a dimensionless number, Bu, as:

Bu ≜
j̃rxn

j̃dif
, (3.45)

Bu characterizes the ratio of SEI current carried by the reaction versus the diffusive process.

When Bu ≪ 1, the SEI current is reaction-limited, and when Bu ≫ 1, the SEI current is

diffusion-limited. Bu can be found by substituting Eqs. 3.18 and 3.19 into Eq. 3.45, yielding:

Bu =
krxn
kdif

, (3.46)
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where:

krxn ≜ ksei exp

(
−αF

RT
ηsei

)
(3.47)

kdif ≜
Dsei

δsei
. (3.48)

krxn is the apparent reaction-limited rate parameter which depends on both the pure rate

constant ksei as well as the reaction over-potential ηsei = f(U−, Usei). kdif is the apparent

diffusion-limited rate parameter which accounts for both the effective diffusivity as well as

the film thickness. These rate parameters clarify that the rate-limiting process depends on

both internal material properties, such as ksei and Dsei, as well as external factors such as

U− and δsei.

3.9.4 Implications of SEI Growth Boosting

The boosted SEI growth mechanism and its mathematical representation were key develop-

ments enabling the model to capture experimental trends during both formation cycling and

formation aging (see Sections 3.5.7, 3.7.3). Here, we further clarify the modeling assumptions

and physical implications of the SEI boosting mechanism, highlighting its role in enabling

the formation model to be extended toward general-purpose cycle life and calendar aging

simulations.

Necessity. A key insight from this work was that a boosted SEI growth mechanism during

charging was necessary to capture the macroscopic trends in capacity fade and cell expansion

during formation cycling and formation aging. Without the boosted SEI mechanism, the

model could only fit formation cycling and formation aging using separate parameter sets, but

not both using the same parameter set. Specifically, without boosting, SEI diffusivities that

explained the voltage and expansion data during formation cycling led to unrealistically high

degradation rates during formation aging. Conversely, an SEI diffusivities that explained

the voltage and expansion data during formation aging was too small to explain the cell

expansion trend during formation cycling. When the boosted SEI growth mechanism was

introduced, both formation cycling and formation aging were explained by the same set of

SEI diffusivities (see Figure 3.9). Introducing the boosted SEI mechanism thus enabled a

unified representation of SEI growth rates across cycling and storage.

Reaction rate asymmetry. The boosted SEI growth mechanism also introduces a source

of reaction rate asymmetry: SEI growth is predicted to occur more quickly during charg-

ing (negative electrode lithiation) compared to discharging (negative electrode delithiation).

This result is consistent with experimental results from Attia and Das [106, 45]. The boost-
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ing mechanism frames the reaction rate asymmetry as a particle stress-driven phenomenon

whereby reaction rates are boosted only when the SEI expansion but not when it shrinks.

Boosting thus provides a unified description of the apparent SEI reaction rate asymmetry

described in earlier works.

Capacity fade does not trend with the square root of time. Attia et al. [82] reported

that experimental data on lithium-ion battery degradation often did not strictly follow a
√
t relationship, as would be expected with diffusion-limited SEI growth. The boosted SEI

growth mechanism provides a quantitative description of why the
√
t relationship is violated,

and more specifically, why the exponent is often more than 0.5. During charging, the boosting

mechanism enhances the SEI reaction rate, taking the system out of the steady-state diffusion

regime. The
√
t dependence can thus be viewed as a limiting case where the boost factor γ

is zero.

Model representation. In our model, the SEI growth boosting process was represented as a

modification to the effective diffusivity Dsei. In reality, the effective reaction rate parameter

ksei could also be boosted since the reaction surface area could increase during SEI cracking.

However, in the model, increasing ksei will have little impact on the SEI growth rate beyond

the initial formation charge cycle since the SEI growth process becomes diffusion-limited

by the end of the first cycle (see Figure 3.7). Overall, our treatment of SEI growth boost-

ing remains phenomenological: the model captures the macroscopic trends in voltage and

expansion without elucidating the mechanistic details of the SEI boosting process. Such

mechanistic details would be more appropriate to address using higher-fidelity models.

3.10 Conclusions

This chapter develops a reduced-order electrochemical model of the formation cycling and

formation aging process for lithium-ion batteries. The model supports simulating an arbi-

trary number of electrolyte components that react at the negative electrode surface to form

a composite SEI film with volume-averaged properties. The model also tracks electrode-

level lithium stoichiometries and potentials, enabling the tracking of SEI current densities

as a function of full-cell voltages. The model further couples an electrode expansion model

which accounts for both reversible and irreversible expansion. We finally introduce an SEI

growth boosting mechanism that enabled a unified description of SEI growth during both

formation cycling and formation calendar aging. We demonstrated that the formation model

qualitatively matched experimental formation data, including cell voltages, cell expansion,

coulombic efficiencies (including first cycle efficiency, or FCE), and the dQ/dV curve during

the first charge cycle which indicated the reduction of the VC electrolyte additive.
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The formation model clarified why the first formation charge cycle is special. First, SEI

growth does not begin until an external current is applied to the cell. Second, the SEI growth

process is reaction-limited during the first formation charge but becomes diffusion-limited

for the remaining life of the cell. Third, during the first formation charge, each electrode

sees an extended range of lithium stoichiometries and electrode surface potentials which will

never be accessed again for the remaining life of the cell.

We envision that the formation model can be leveraged to improve formation protocol

design, electrolyte engineering, cell lifetime simulations, and physics model parameter iden-

tification. In a battery manufacturing context, our model could see potential applications

as a physics-based digital twin of the formation process.

Overall, the proposed modeling framework enables practical pathways for bridging the

electrochemistry of battery formation to macroscopic variables related to battery perfor-

mance, safety and lifetime.
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Chapter 3: Supplemental Sections

Reversible Expansion Derivation

The reversible expansion of a battery cell originates from lithium intercalation-induced elec-

trode swelling. Here, we derive the scaling law to convert between the lattice expansion

of the electrode host structures and the macroscopic expansion of a battery cell. Unit cell

lattice parameters can be converted into a net volume change ν± according to:

ν± =
dV ±

V ± , (3.49)

where V ± is the volume of a unit cell in the positive or negative electrode. To relate the

experimental data ν± to the macroscopically observed cell thickness change, we first define

the volume-averaged number of particles along the total length of the electrodes, N̄p, as:

N̄p ≜
L±

R± (3.50)

where L± is the total electrode thickness and R± is the radius of a single electrode particle

which is assumed to be spherical. A key assumption we make is that N̄p remains constant

as the particles expand and contract, and hence:

N̄p =
dL±

dR± , (3.51)

where dL± is the incremental total thickness change of the electrodes and dR± is the corre-

sponding electrode particle radius change. Combining Eqs 3.50 and 3.51 yields the scaling

law to convert from microscopic expansion to macroscopic expansion.

dL± =
L±

R±dR
±. (3.52)

The last step is to convert ν± to radial expansion, dR±, by assuming a spherical particle, in

which case:

dR± =
R±

3
ν±, (3.53)

where we have substituted the equation of a sphere for V ± and its differential form dV ± =

4π(R±)2dR±. We can now substitute Eq. 3.53 into Eq. 3.52 to arrive at:

dL± ≜ ∆± =
L±

3
ν±. (3.54)
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Irreversible Expansion Equation Derivation

Irreversible expansion of battery cells is attributed primarily to growth of the SEI. We

derive here the scaling law to convert from microscale SEI expansion to macroscale total cell

thickness expansion. Assuming constant particle density, we have that:

ρs = dmsei/dVsei, (3.55)

where msei is the SEI mass accumulated in kg and ρs is the SEI density in kg/m3, and Vsei is

the SEI volume in m3. SEI mass accumulation is proportional to total charge accumulated,

Qsei, according to:

dmsei =
Ms

nF
dQsei, (3.56)

where Ms is the molar mass and Qsei =
∫
Iseidt is the charge accumulated to form SEI. It

follows that:

dVsei = Vsei
dQsei

nF
. (3.57)

We can then use 3.56 and 3.57 to derive an expression for the SEI thickness on the negative

electrode particles:

δsei =
dVsei

N− · 4π(R−)2
(3.58)

=
1

N− · 4π(R−)2
Vsei

dQsei

nF
(3.59)

where N− is the number of negative electrode particles. Differentiating both sides and

substituting Isei = dQsei/dt and jsei = Isei/(N
− · 4π(R−)2) yields:

dδsei
dt

= Vsei
jsei
nF

. (3.60)

Eq. 3.52 can finally be used to convert the SEI thickness growth into a macroscopic expan-

sion:

dLSEI ≜ ∆SEI =
L−

R− + dR− δsei (3.61)

=
L−

R−(1 + ν−/3)
δsei, (3.62)

where we have assumed that the SEI grows on the negative electrode particle with a radius

R− + dR−.
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CHAPTER 4

Formation Model Applications

4.1 Introduction

This chapter explores how the formation model introduced in Chapter 3 can be applied

towards a variety of future applications in designing better formation protocols, improving

battery factory process control capabilities, and improving battery lifetime prediction.

In the first application, we demonstrate that the formation model can be applied to

predict the dynamics of a faster formation protocol. We show that the formation model

can reproduce experimental data on the fast formation protocol, including voltage and cell

thickness expansion, within reasonable accuracy. We then compare and contrast the first

cycle charge dynamics between the fast formation protocol vs. a baseline control protocol,

demonstrating that faster formation protocols can lead to higher lithium consumption during

the formation cycles but ultimately lead to a more passivating SEI that may be better for

cycle life.

In the second application, we extend the usage of the formation model to directly sim-

ulate cycle life. In doing so, we demonstrate that the formation model can serve as a

general-purpose lifetime simulation tool, one which can support future understanding of

how formation parameters can affect lifetime. By comparing the simulated cycle life of cells

formed using both a fast formation protocol and a baseline formation protocol, we show

that the fast formation protocol showed a marginally lower degradation rate owing to a low-

ered homogenized SEI diffusivity. The formation model finally predicted that fast formation

may help delay the onset of electrolyte additive knees, a novel prediction arising from the

multi-species reaction representation SEI growth afforded by the model.

In the third application, we pose the formation protocol optimization problem as an

optimal control problem, highlighting the promise of using model-based control approaches

that leverage formation as a potential tool for minimizing beginning-of-life cell variability.

We first re-summarize the model equations in compact form. We next write down the optimal
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control problem which treats the formation model and the model parameters as nonlinear

constraints. We then develop a block diagram representation of the formation model to

clarify the various interactions between the model sub-components. We finally develop a

state-space realization of the model that further elucidates the mathematical structure of

the system of equations.

In the fourth application, we view the formation model through the lens of parameter

identification. We highlight that the formation model can lend itself towards improved

identifiability of crucial cell degradation parameters such asDsei. The formation model, when

applied to experimental formation data, can potentially improve the accuracy of lifetime

model parameterization without needing the typical parameter tuning process involving aged

data. Toward this goal, we first provide a parameter sensitivity study to understand which

model parameters have the greatest effect on the modeled outputs such as SEI thickness and

SEI reaction current density.

In the fifth and final application, we utilize the formation model to rationalize physical

connections between beginning-of-life diagnostic features. In doing so, we demonstrate that

the formation model can help provide physical interpretations behind data-driven features.

These diagnostic features are later used in Chapter 6 for applications in lifetime prediction.

We present a case study here where the formation model is used to rationalize how the full

cell resistance measured at low SOCs, or RLS, is an indicator for the amount of lithium

consumed during formation, or Qsei. The physical connection we develop here will be further

expanded upon in Chapter 6.

4.2 Application 1: Modeling Fast Formation

Here, we test the ability of the formation model developed in Chapter 3 to predict the system

behavior of new formation protocols. We will focus on a particular case study of simulating

a faster formation protocol proposed by An et al. [122]. This formation protocol will be later

used as the basis for studying lifetime prediction applications in Chapter 6. For now, we

focus on understanding whether the model can replicate experimental voltage and expansion

data. We will also develop an understanding of the model-predicted first cycle dynamics as

it relates to SEI passivation.

4.2.1 Methods

The formation model and model parameters used here are identical to those presented in

Chapter 3. To review, the model was parameterized using a “baseline formation” protocol
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which consisted of back-to-back C/10 charge/discharge cycles. The comparison of modeled

vs. measured output for the baseline formation protocol was already presented in Chapter

3 and is reproduced in Figure 4.1(A,B) for convenience.

Experimental data on the fast formation protocol, which consisted of a rapid 1C charge to

3.9V followed by back-to-back shallow cycles at high SOCs (see Section 6.3.2), was collected

on another pouch cell from the same batch of cells used in the work from Chapter 3. By

choosing a cell from the same batch of cells as the baseline formation cell, cell design param-

eters including electrode capacities and electrolyte properties were kept constant across the

experiments and the simulated result.

To simulate the fast formation protocol, the current input from the fast formation protocol

was directly inputted into the formation model without modifying any of the model param-

eters. The simulation time spanned the formation cycles, the RPT following the formation

cycle (to mirror the test protocol sequence of the baseline formation protocol), followed by

a formation aging step which consisted of high-SOC storage for 2 weeks.

4.2.2 Results and Discussion

4.2.2.1 Model vs. Experiment

The model-predicted cell voltage and thickness expansion profiles are compared against the

experimentally measured values in Figure 4.1(C,D). The modeled full cell voltage trace during

formation qualitatively matched the experimentally measured values (Panel C). This result is

perhaps surprising considering that the formation model was constructed using a ‘dual-tank’

representation which ignored solid-phase lithium concentration gradients that are bound to

increase with increasing applied currents. Whereas the baseline formation protocol used

a C/10 rate, the fast formation protocol used 1C. The model vs. experiment comparison

suggests that, for the pouch cell design used for this study (see Table 6.1), the 1C rate does

not induce high enough solid-phase lithium concentration gradients to render the full cell

terminal voltage predictions inaccurate.

The modeled cell thickness expansion during formation also qualitatively matched the

experimental trend within some error (Panel C). However, the model underestimated the

thickness expansion during the very first charge by ca. 8% and overestimated the thickness

expansion at the end of fast formation by ca. 6%. The presence of these errors suggests

that further refinements to the expansion equations (see Section 3.5.6) may be necessary

to accurately predict thickness expansion under high C-rates. These errors will become

important to consider when relying on the model to predict SEI properties such as SEI

density. Further model refinements to improve model accuracy are left as future work.
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Figure 4.1: Model vs. experiment: comparison of different formation protocols. (A-B)
Voltage and cell thickness expansion during the baseline formation protocol (from Figure
3.9). Formation cycling was followed by an RPT and formation aging. (C-D) Voltage and
cell thickness expansion during the fast formation protocol. The model was tuned using data
from the baseline formation protocol and ran directly on the fast formation current profile
input without re-tuning.

4.2.2.2 First Cycle Charge Dynamics

We next turn to understanding the first cycle charge dynamics of fast formation. A central

curiosity we focus on is the effect of the initial charge cycle on the passivation properties of

the SEI. A pertinent question to ask here is: “how does the design of the initial formation

charge cycle affect SEI passivation?”

The fast formation model supports the exploration of this question by enabling simulation

of multiple lithium-consuming reactions to form the SEI (Section 3.5.8) which we briefly

review here. The model treats each reaction as occurring in parallel, i.e.:

jsei =
∑
l

jsei,l (4.1)

where jsei is the total SEI reaction current and jsei,l is the current from the SEI reaction
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involving the lth electrolyte component according to the generalized reaction scheme:

Elytel + nLi+ + ne− → SEIl, (4.2)

where n is the number of participating electrons. While each reaction occurs in parallel, the

reactions remain coupled via a shared homogenized diffusivity term according to:

D̄sei(t) =

(
1

Qsei(t)

∑
l

Qsei,l(t)

Dsei,l

)−1

(4.3)

where Dsei,l is the diffusivity of the lth SEI, Qsei,l is the capacity of lithium lost to form the

lth SEI, and Qsei(t) =
∑

l Qsei,l(t) is the total capacity of SEI formed. The diffusivity of

each SEI component is thus weighted by the quantity of that SEI formed. Intuitively, each

electrolyte component must pass through all formed SEI layers to react at the surface of the

electrode/electrolyte interface, and thus the presence of each SEI layer affects the diffusion

of all subsequent SEI-forming electrolyte species.

The formation model implemented two electrolyte components, l = {EC,VC}, where EC
is the main electrolyte solvent and VC is an electrolyte additive. The relevant electrolyte and

SEI properties of this system were given in Table 3.2 and re-summarized in Table 4.1. Of

particular note is the difference in SEI diffusivities, Dsei: EC has a lower diffusivity compared

to VC, implying that the more the composite SEI film is comprised on EC, the lower the

homogenized diffusivity of the composite film will be. (The effect of homogenized diffusivity

on cell lifetime will be further discussed in Section 4.3.)

Property EC VC Unit Source

n 2 2 - Refs. [48], [32]
c0 4541.0 304.4 mol/m3 Calculated
Usei 0.8 1.35 V vs Li/Li+ Refs. [35], [105]
Dsei 4.2× 10−20 6.6× 10−18 m2/s Fitted

Table 4.1: Summary of electrolyte and SEI properties

We now follow the progression of the EC and VC reactions during the first charge cycle for

both the baseline formation and the fast formation protocols, shown in Figure 4.2. In both

simulations, the cell was rested for 30 mins and then began to charge. The baseline formation

protocol used a C/10 charge while the fast formation used a 1C charge (Panel A). In both

formation protocols, VC reacted first due to the higher reaction potential (Panel B). As the

charge cycle proceeds, a transition occurs: as the negative electrode potential drops below the
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EC reaction potential and EC begins to reduce. As EC begins to reduce, the homogenized

SEI diffusivity is decreased since the EC-derived SEI product has a lower diffusivity compared

to the VC-derived SEI product. The decrease in SEI diffusivity suppresses further reaction of

VC. In the baseline formation protocol, this transition event occurred after ca. 40 minutes.

However, in the fast formation, this transition occurs within 3 minutes of starting the charge

owing to the ten-fold increase in charge C-rate. As a result, the fast formation protocol

produced an SEI film that is compositionally more skewed towards EC (Panel C). Since

EC has a lower SEI diffusivity than VC, the overall homogenized SEI diffusivity of the fast

formation cell is thus lower compared to the baseline formation cell.

Finally, we note that the fast formation cell also produced a greater quantity of SEI

during the first charge cycle: after 1.5 hours, the fast formation protocol produced 162

mAh of SEI capacity whereas the baseline formation protocol produced only 110 mAh. We

attribute the increased production of SEI during fast formation to the higher C-rate used

which plays a dual role. First, the higher C-rate increases the reaction overpotential at the

negative electrode surface driving up the reaction rate during the reaction-limited regime of

SEI formation (see Section 3.7.2.1). Second, the higher C-rate increases the effect of the SEI

boosting mechanism driven by an increased rate of negative electrode expansion (3.5.7).

The effect of the formation protocol on the homogenized SEI diffusivity, D̄sei, is further

illustrated in Figure 4.3, which plots D̄sei as a function of the fractional composition of EC

in the SEI according to Equation 4.3. During the first charge cycle, D̄sei takes on the value

of the VC diffusivity since VC reacts first. As the negative potential drops below the EC

reaction potential, the SEI film becomes a mixture of both EC and VC reaction products.

Since the diffusivity of EC is lower than that of VC, D̄sei decreases as more of the EC

reaction product is formed. After 1.5 hours, the fast formation protocol resulted in a lower

D̄sei (marker 2) compared to the baseline formation protocol (marker 1), indicating a more

passivating SEI.

In summary, the formation model predicts that fast formation will result in a more pas-

sivating SEI, that is, an SEI that has a lower homogenized SEI diffusivity by the end of the

formation protocol. The lowered SEI diffusivity implies that fast formation may result in

a cell that has better cycle life compared to the baseline formation protocol. To test this

theory, we turn to the next section where we apply the formation model for simulating cycle

life.
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Figure 4.2: Fast formation first charge dynamics. The figure compares baseline formation
(A-C) and fast formation (D-F). First row: full cell potentials and half-cell potentials. VC
and EC reaction potentials are shown in dashed lines. Second row: applied currents plotted
alongside SEI reaction currents. Third row: SEI capacity integrated from the SEI reaction
currents.

4.3 Application 2: Lifetime Simulation

We next leverage the formation model to simulate cell cycle life. Using the formation model

to directly simulate aging confers several advantages. First, the formation model provides

a consistent representation of an essential degradation process, SEI growth, during the for-

mation process and over the remainder of a cell’s life. The resulting simulation therefore

bridges the gap between a critical battery manufacturing process step (the formation pro-

cess) and the resulting cell lifetime. Note that additional degradation mechanisms beyond

SEI growth, such as active material losses, can be incorporated into the formation modeling

framework, which we leave as future work. For this work, we stay focused on the SEI growth

process which is generally understood to be the dominant degradation mechanism in many
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Figure 4.3: Effect of formation protocol on D̄sei. After 1.5 hrs of the first charge, fast
formation has a lower D̄sei (blue marker 2) compared to baseline formation (red marker 1),
indicating a more passivating SEI.

commercial lithium-ion systems and under typical use cases [123, 58].

Second, the formation model captures path-dependent aging by supporting simulations

of arbitrary current profiles. The model also unifies the representation of cycling and cal-

endar life aging via the boosted SEI growth mechanism. With this mechanism, the boost

sensitivity factor, γ (Eq. 3.32), can be viewed as a ‘cycling loss sensitivity’ factor. As γ

approaches zero, no SEI growth boosting occurs during cycling and the diffusion process

remains under steady-state. Under this condition, the cell experiences only calendar aging

losses. Such a scenario could describe ‘power cells’ having high electrode porosities and low

energy densities. Meanwhile, as γ increases, the SEI growth process during cycling becomes

boosted, so the cell becomes more sensitive to damage during cycling. Such a scenario could

describe ‘energy cells’ having low electrode porosities and high energy densities. With the

boosting mechanism, dynamical changes to the aging profile, including transitions between

cycling and aging conditions, are naturally represented by the model.

Finally, the formation model, being a zero-dimensional model, is fast to run, making it

suitable for lifetime simulations which often involve simulating hundreds to thousands of

cycles. The existing implementation of the formation model, which uses a 5-second timestep
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and a simple forward Euler integration scheme, simulating 300 cycles is accomplished within

90 seconds of runtime. With further numerical optimizations, such as using built-in ordinary

differential equations (ODE) solvers or using adaptive time steps [124], the simulation speed

can be further decreased, enabling the possibility of on-board implementations in a battery

management system (BMS) context.

4.3.1 Methods

Previously, our simulations spanned the formation cycling and formation aging steps only.

The simulations were halted at the end of the formation aging step. Now, we will modify the

simulations to include the simulation of additional cycles after the formation cycling steps

are completed to represent an accelerated cycle life test protocol. Note that we have omitted

the 2-week formation aging step in these simulations for brevity. Both the fast formation

protocol and baseline formation protocol simulations are extended in this manner.

The cycling protocol we chose to simulate is a 1C/1C charge-discharge cycle, a protocol

that will later be revisited experimentally as part of Chapter 6. For each cell simulated, a

variable rest time was inserted as part of the RPT following formation so that both cells

would begin the cycling test at the same time (Figure 4.4A). For the cycle life portion of the

simulations, no modifications to the formation model or the model parameters were made.

Note that the model parameters were tuned using formation cycling and formation aging

data only. No cycle life data was involved in the parameter tuning process.

Since the only degradation mechanism represented in the model is lithium lost to form

the SEI, the full cell discharge capacity fade rate can be simply understood as:

Qd(t) = Qd,0 −Qsei(t) (4.4)

where Qd(t) is the full cell discharge capacity at time t, Qd,0 is the maximum possible

capacity, and Qsei(t) is the lithium lost to the SEI at time t. Notably, the domain of t now

includes formation cycling, formation aging, and subsequent cycling. Qd,0 is identical for

a given cell design, so the focus of the study is to understand differences in Qsei(t) due to

differences in formation protocols.

4.3.2 Results and Discussion

4.3.2.1 Lithium Consumption During Formation

Figure 4.4B compares the Qsei trajectory between the two formation protocols. The cell

that underwent fast formation lost more lithium to form the SEI during the initial forma-
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tion cycle. By the time both formation protocols were completed, the cell that underwent

fast formation lost 342.2 mAh of capacity to form the SEI, whereas the cell that under-

went baseline formation lost 330.8 mAh. Fast formation thus increased Qsei by ca. 11 mAh

according to the model. To preview a comparison against experimental results, the experi-

ments reported in Chapter 6 suggested that fast formation increased Qsei by 23 mAh. Thus,

the model-predicted Qsei agreed with the qualitative trend shown in the experimental data,

though some numerical differences persist.

4.3.2.2 Qsei Crossover

A key observation in the modeled Qsei trend is highlighted by an asterisk (*) in Figure 4.1B

which shows a crossover point in the Qsei between the two cells. After this point, the Qsei for

the fast formation cell becomes lower than that of the baseline formation cell. A zoomed-in

plot of this transition point, shown in Figure 4.10, shows this cross-over point clearly. After

more than 300 cycles, the Qsei for the fast formation cell continues to lag behind that of the

baseline formation cell, shown in Figure 4.11.

To explain the presence of the Qsei crossover point, we next study the trajectory of the

homogenized SEI diffusivity D̄sei which indicates SEI passivation as previously discussed in

Section 4.2.2.2. Figure 4.4C verifies that the fast formation protocol yielded a lower D̄sei

throughout the formation steps. By plotting D̄sei against Qsei (inset), we verify that the fast

formation protocol results in lowered D̄sei for any given amount of lithium consumption; that

is, the SEI formed by fast formation grows more slowly at any point along the degradation

trajectory.

In summary, the formation model predicted that the fast formation protocol consumed

more lithium during formation cycling compared to the baseline formation protocol. The

increased lithium consumption resulted in a lower initial cell discharge capacity for the cell

that underwent fast formation. However, the rate of growth of Qsei for this cell was also

comparatively lower, implying a slower degradation rate. As we will show later in Chapter

6, these results are consistent with the experimentally measured trends in battery, that fast

formation protocol not only did not hurt lifetime, but it slightly improved it.

4.3.2.3 Electrolyte Additive Consumption and Knees

Revisiting Figure 4.4B, we notice that, while the fast formation protocol resulted in a nu-

merically lower value of Qsei compared to the baseline formation protocol after five cycles,

this difference becomes marginal over extended cycles. This trend is explained by the fact

that, for both formation protocols, the homogenized diffusivity D̄sei (Panel C) converges
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Figure 4.4: Combined formation and cycle life simulations: effect of formation protocol.
Baseline formation is shown in black and fast formation is shown in red. (A) Voltage traces
during and after formation. (B) Capacity of lithium lost to form the SEI. Asterisk (*)
shows the cross-over point in SEI capacity which occurs after the fifth cycle after formation
completes. (C) Evolution of the homogenized SEI diffusivity D̄SEI. Inset: D̄SEI plotted
against Qsei.
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towards the diffusivity of the EC-derived film as EC continues to reduce to create more SEI.

We extended the simulation to 300 cycles to confirm that the initial differences in Qsei and

D̄sei get smaller throughout the cycles, see Figure 4.11. We further plotted the simulated

cycle-by-cycle discharge capacity, shown in Figure 4.5A, which confirms that the simulated

discharge capacities between fast formation and baseline formation are trivial.

Thus, while fast formation decreased the rate of growth of Qsei over the simulated cycles,

this decrease is not likely to be large enough to explain the differences in cycle life reported

in Chapter 6 where fast formation has been reported to improve cycle life by 25 to 50%.

Another mechanism beyond differences in D̄sei is thus needed to explain the experimentally

observed phenomenon of fast formation improving cycle life.

Here, we re-examine the outputs of the formation model to propose an alternative expla-

nation related to electrolyte additive depletion. Turning to Figure 4.4B, we observe that the

fast formation cell had markedly higher VC concentration throughout the cycle life test, by

about 25%. Meanwhile, the concentration of EC for both the fast formation and baseline

formation cells stayed nearly the same (Panel C). Fast formation is thus predicted to sup-

press the consumption of VC during the initial formation cycle. The fast formation protocol

achieves this by more quickly decreasing the negative electrode potential to begin the EC

reaction. The EC reaction suppresses further reactions with VC by making a more passi-

vating SEI, i.e. decreasing the value of D̄sei,r. The baseline formation protocol spends a

comparatively longer time cycling through the VC reaction regime and thus consumes more

VC during formation.

Electrolyte additive depletion has been reported to have a disproportionate effect on

lifetime considering their relatively low quantity compared to the solvent. Small quantities

of electrolyte additives have been reported to delay the occurrence of the knee, see for

example Ma et al. [125] and Li et al. [126]. It has also been experimentally demonstrated

that the depletion of certain electrolyte additives, such as fluroethylene carbonate (FEC),

can directly lead to a knee [127, 128, 129]. The formation model predicted that the additive

in our system, VC, depleted more quickly from baseline formation than from fast formation.

This model prediction could indicate that fast formation may be capable of delaying knee

based on depletion of the VC additive. Note that the formation model does not yet account

for the explicit dynamics of knee mechanisms, which we leave as future work.

In summary, a careful interrogation of the formation model outputs yielded a novel hy-

pothesis explaining why fast formation can result in cells having longer cycle life: the fast

formation cell suppressed the consumption of the VC additive during the formation cycle,

leaving more VC remaining in the system during cycling which delayed the eventual ad-

ditive consumption knee. This hypothesis will be further verified using experimental data
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Figure 4.5: Model-predicted discharge capacity and VC/EC concentrations over cycle num-
ber. (A) Model-predicted discharge capacity. (B) VC additive concentration. (C) EC solvent
concentration.

from Chapter 6. We will see in the experimental data that the degradation rate of all cells

are nearly identical until the occurrence of the knee, but cells that underwent fast formation

had a delayed onset of the knee, suggesting that the main effect of the formation protocol is
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to influence the occurrence of the knee.

4.4 Application 3: Optimal Control

We now discuss how the formation model can be adapted towards future applications in

optimal control of formation protocols. A control-oriented approach provides a rigorous

framework for guaranteeing the optimality of a formation protocol given a design target,

such as optimizing for formation time, cell lifetime, or both. A control-oriented approach

also enables the design of controllers enabling real-time control of formation protocols that

can adapt to changes in measured outputs. For example, a controller may be designed

to adaptively change the formation protocol based on the measured output capacity. In

doing so, the distribution of capacities may be further tightened. In another application, a

controller can take upstream factory process parameters, such as electrode loadings, as an

input, to adaptively change the formation protocol to maintain certain output targets such

as cell energies.

While the bulk of the work in formation protocol optimal control remains to be done, we

devote this section to setting up some mathematical preliminaries to encourage more future

work in this direction.

4.4.1 Model Equations

We now re-summarize the main model equations from Chapter 3 for convenience. The

formation model consists of four components: (1) electrode lithiation and overpotential

dynamics, (2) multi-species SEI growth, (3) cell-level expansion, and (4) SEI growth boosting

during charging. A representation of the model is shown in Fig. 3.3 which highlights the

physical interpretation in Panel A and the non-linear input functions in Panel B. Symbols

are defined in Tables 3.2 and 3.3. Here, we summarize the governing equations in compact

form. For a complete derivation and discussion of the origin of these equations, see Ref.

[130].

The electrode lithiation dynamics are represented by a “dual-tank” model which tracks

average solid-phase lithium concentrations θ± without considering concentration gradients

(Eqs. 4.5, 4.6). This reduced order representation is reasonable for current rates typically

used in battery formation which are less than C/5. At the positive electrode, the applied

current Iapp is used to update the lithium concentration. However, at the negative elec-

trode, some of the applied current goes into SEI-forming reactions (Eq. 4.7) and only the

intercalation current Iint contributes to increasing the solid-phase lithium concentration. Ini-
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tial conditions for the system correspond to a fully lithiated positive electrode and a fully

delithiated negative electrode (Fig. 3.3B).

dθ+(t)

dt
= −Iapp

Q+
I.C. : θ+|t=0 = 1 (4.5)

dθ−(t)

dt
= +

Iint
Q− I.C. : θ−|t=0 = 0 (4.6)

Iint(t) = Iapp(t)− Isei(t) (4.7)

We take the convention that I < 0 represents charging.

The electrode surface overpotential dynamics are approximated using first-order dynamics

(Eqs. 4.8,4.9) which is equivalent to an R-RC circuit model. Here, the series resistance

R±
ct encapsulates charge-transfer reactions at the electrode-electrolyte interface while the

resistance associated with the RC pair R±
dif approximates solid-state diffusion effects. As

with the lithiation dynamics, the negative electrode overpotential dynamics reference Iint

instead of Iapp.

η±(t) = R±
ctI(t) +R±

difI
±
dif(t) (4.8)

dI±dif(t)

dt
= − 1

τ±dif
I±dif(t) +

1

τ±dif
I(t) (4.9)

I(t) ≜

{
Iapp(t) (Pos. electrode)

Iint(t) (Neg. electrode)
(4.10)

The measured cell terminal voltage Vt can then be calculated from the cell equilibrium (i.e.

OCV) potentials U± and the cell overpotentials η± according to

Vt(t) = U+(θ+(t))− U−(θ−(t)) + η+(t) + η−(t). (4.11)

The multi-species SEI growth equations capture reaction-diffusion dynamics of multiple

SEI reduction reactions occurring in parallel. The total cell SEI reaction current is obtained

from the particle-level reaction current density using a geometric pre-factor (Eq. 4.12).

Isei(t) = a−A−L−jsei(t) (4.12)

The model represents each reacting molecule as participating in independent reactions ac-

cording to the general reaction scheme:

S + ne− + nLi+ → SEI ↓ +P ↑ (4.13)
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where n is the number of electrons participating in the reaction, S is the reacting molecule,

SEI is the solid reduction product, and P is a reaction byproduct, usually a gas. In this

representation, each reacting molecule must diffuse through a homogenized SEI medium with

volume-averaged properties to arrive at the negative electrode surface where the reaction

takes place [130]. The total SEI reaction current density jsei is thus the sum of current

densities of each individual reaction r (Eq. 4.14), given by:

jsei(t) =
∑
r

jsei,r(t) (4.14)

The reaction dynamics for each reaction are described by two limiting currents (Eq. 4.15).

The first limiting current corresponds to kinetic limitations which follow Tafel kinetics as-

suming the SEI reaction is irreversible (Eq. 4.16). The limiting current corresponds to

diffusion limitations which are governed by Fick’s law (Eq. 4.18) [131].

1

jsei,r(t)
=

1

j̃rxn,r(t)
+

1

j̃dif,r(t)
(4.15)

j̃rxn,r(t) = nrFc0rkr exp

(
−αrnrF

RT
ηsei,r(t)

)
(4.16)

ηsei,r(t) = η−(t) + U−(θ−(t))− Usei,r (4.17)

j̃dif,r(t) =
nrFc0rD̄sei,r

δsei(t)
(4.18)

The cell-level thickness equations convert particle-level expansion to electrode-level ex-

pansion via scaling laws [131, 130]. The model makes a distinction between cell thickness

growth due to SEI growth (Eq. 3.25) versus reversible, intercalation-induced expansion of

the electrodes (Eq. 4.23).

dδsei,r(t)

dt
= Vsei,r

jsei,r(t)

nrF
(4.19)

δsei(t) =
∑
r

δsei,r(t) (4.20)

∆tot(t) = ∆sei(t) + ∆rev(t) (4.21)

∆sei(t) =
NL−

R−(1 + ν−(θ−(t))/3)
δsei(t) (4.22)

∆rev(t) = N

(
L+

3
ν+(θ+(t)) +

L−

3
ν−(θ−(t))

)
(4.23)

Note that the SEI thickness δsei,r can be re-expressed by substituting Eq. (3.35) into Eq.
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(4.19) to yield:

δsei,r(t)
dδsei,r(t)

dt
+

D̄sei,r

krϕr(t)

dδsei,r(t)

dt
= φD̄sei,r (4.24)

with

ϕr ≜ exp

(
−αrnrFηsei,r(t)

RT

)
(4.25)

φ ≜
Vsei,r

c0rn
2F 2

. (4.26)

The boosted SEI growth mechanism models the fracturing of the SEI during charge which

exposes fresh electrode surfaces and temporarily increases the SEI growth rate. Introducing

this mechanism enables the model to predict SEI growth rates during both formation cycling

and formation aging using a unified set of equations [130]. SEI growth boosting is captured

by treating the SEI diffusivity D̄sei,r as a time-dependent quantity that increases (i.e. gets

“boosted”) during charging but is then restored to a baseline value during discharging and

resting. A first-order representation of the boosting dynamics B(t) is used, given by:

fB =

{
τ↑

dB(t)
dt

+B(t) = γ dν−(θ−(t))
dt

Iapp < 0

τ↓
dB(t)
dt

+B(t) = 0 (o.w.)
(4.27)

This equation shows that the negative electrode expansion rate dν−

dt
acts as the boosting input

during charging. γ can be interpreted as a boost sensitivity factor: cells with high values

of γ will be boosted more during charge. Notice the usage of asymmetric time constants

on charge (τ↑), representing SEI fracturing, versus discharge and rest (τ↓), representing SEI

healing [130]. The boosting dynamics is then used to modify the SEI effective diffusivity

D̄sei,r from Eq. (4.18) according to:

D̄boosted
sei,r (t) = D̄sei,r(1 +B(t)). (4.28)

4.4.2 The Optimal Control Problem

An optimal formation protocol will yield an SEI that minimizes both the amount of lithium

consumed during formation and the SEI reaction rate at the end of the formation process.

With more lithium consumed, less lithium is available for reversible cycling so the initial

cell capacity is lowered, an undesirable result. For the SEI reaction current density, a lower

reaction current at the end of the formation process indicates a well-passivated SEI which

minimizes the rate of further side reactions over life.

With the formation model, we can represent the amount of lithium consumed during
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formation by the SEI thickness δsei and the SEI reaction rate by the SEI reaction current

density jsei. The SEI thickness is a valid metric for lithium consumption since, in the model,

the SEI thickness is proportional to the total quantity of lithium consumed during formation.

We can thus define a vector of terminal states:

z = [δsei,f , jsei,f ]
T (4.29)

with:

δsei,f ≜ δsei(t = tf ) (4.30)

jsei,f ≜ jsei(t = tf , θ
− = θf , Iapp = 0). (4.31)

These states represent the SEI thickness and SEI reaction current density evaluated at the

end of the formation process. θf is a reference stoichiometry chosen to evaluate jsei. In

designing formation protocols, we will seek to simultaneously minimize δsei,f and jsei,f .

We will assume for now that we have an observer for z. We can then pose a constrained

optimization problem that seeks to find an input current profile u(t) that minimizes a cost

function J according to:

min
u(t)

J = zTSz (4.32)

s.t. ẋ(t) = h(x(t), u(t)) for t ∈ [0, tf ] (4.33)

x(0) = x0 (4.34)

x(t) ∈ X for t ∈ [0, tf ] (4.35)

u(t) ∈ U for t ∈ [0, tf ] (4.36)

In this system of equations, S ∈ R2×2 is a matrix of weights, Eq. (4.34) gives the initial

conditions, and Eqs. (4.35,4.36) are physical constraints imposed on the states and input,

where X and U represent the range of permissible states and inputs, respectively (for ex-

ample, the lithium stoichiometries θ± are restricted to the range [0, 1]). Note that the cost

function only includes the terminal cost since our focus is to optimize the SEI quality at the

end of formation.

Solving the optimal control problem posed in Eq. 4.32 will require further mathematical

developments which we leave for future work. Specifically, the formation model as-is consists

of a set of coupled, nonlinear ODEs. Further simplifications to the model may be necessary

to find closed-form solutions to Eq. 4.32. Alternatively, nonlinear optimization methods

may be considered. In either case, further mathematical analysis of the system is warranted.
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Towards this end, we next present some perspectives on how the formation model can be

adapted towards solving an optimal control problem.

4.4.3 Block Diagram Representation

The formation model exhibits a high degree of coupling between the various model sub-

components. These interactions are clarified using a simplified block diagram shown in Fig.

4.6. In particular, the SEI current density jsei modifies the electrode lithiation dynamics by

decreasing the current used to update the negative electrode lithium stoichiometry (Eq. 4.6).

jsei is also the main input into the thickness expansion sub-model since jsei is integrated to

give the SEI thickness δsei (Eq. 4.19). The negative electrode volume expansion function ν−

creates another source of coupling. The negative electrode lithium stoichiometry θ− updates

ν− which in turn updates both the reversible ∆rev and irreversible ∆sei thickness expansion

(Eqs. 4.22,4.23) as well as the SEI growth boosting dynamics (Eqs. 4.28,3.32). Finally, jsei

and δsei also contribute to the growth of the negative electrode interfacial charge transfer

resistance R−
ct according to:

R−
ct(t) =

jsei(t)δsei(t)

κsei

(4.37)

where κsei is the SEI conductivity in units of [Sm−1]. This dependency was omitted from the

model formulation in this work to simplify the discussion.

4.4.4 State Space Realization

Optimal control applications benefit from a well-formulated state-space realization of the

system dynamics. Here, we propose one such realization. For simplicity, we have assumed a

single-component SEI reaction scheme. The system can be written as:

ẋ = Ax+ Ff(x, u) + Bu (4.38)

y = Cx+ Gg(x, u) +Du, (4.39)

with

x = [θ+, θ−, τ+dif , τ
−
dif , δsei, B]⊤ (4.40)

y = [Vt,∆tot]
⊤ (4.41)

u = Iapp (4.42)
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Figure 4.6: Simplified block diagram of the formation model. (A) Electrode lithiation dynam-
ics via a “dual-tank” representation (B) Electrode overpotential dynamics. (C) Multi-species
SEI reaction dynamics, including the SEI growth boosting mechanism. (D) Cell reversible
and irreversible thickness expansion of the SEI growth and expansion model.
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and

A =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 − 1
τ+dif

0 0 0

0 0 0 − 1
τ−dif

0 0

0 0 0 0 0 0

0 0 0 0 0 0


B =



− 1
Q+

1
Q−

1
τ+dif
1

τ−dif

0

0


(4.43)

C =

[
0 0 R+

ct R−
ct 0 0

0 0 0 0 0 0

]
D =

[
R+

ct +R−
ct

0

]
(4.44)

F = diag([0,−a−A−L−

Q− , 0, 0,
Vsei

nrF
, 1]) (4.45)

G = diag([0, N ]). (4.46)

The functions f(x, u) and g(x, u) encode the non-linear components of the system dynamics

and are given by:

f(x, u) = [0, f2, 0, 0, f2, f6]
⊤ (4.47)

g(x, u) = [g1, g2]
⊤ (4.48)

where

f2 ≜ jsei =

[
x5

ϕ1(1 + x6)
+

1

ϕ2 exp(ϕ3[R
−
ctu+R−

difI
−
dif + U−(x2)− Usei])

]−1

(4.49)

f6 = −
x6

τ̄(u)
+

[
γ(u− ϕ4f2)

τ̄(u)Q−
dν−

dθ−

∣∣∣∣
θ−

sgn(u) + 1

2

]
(4.50)

τ̄(u) =
τ↑ − τ↓

2
· sgn(u) + τ↑ + τ↓

2
(4.51)

ϕ1 = Dseic
0nF (4.52)

ϕ2 = nFkc0 (4.53)

ϕ3 = −
αnF

RT
(4.54)

ϕ4 = a−A−L− (4.55)
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and

g1 = U+(x1)− U−(x2) (4.56)

g2 =
L−

R−(1 + ν−(x2))
x5 +

L+

3
ν+(x1) +

L−

3
ν−(x2). (4.57)

Note that f2 ≜ jsei and f6 is derived from Eq. (3.32).

4.5 Application 4: Parameter Identification

Physics-based battery degradation models are typically calibrated against cycling and calen-

dar aging data. See, for example, work by Reniers et al. [104]. These experimental datasets

are collected on cells after formation has already been completed. Our work introduces an

opportunity to leverage a new dataset, formation cycling and formation aging,to improve

model parameter identification. The degradation parameters from the formation model (e.g.

Usei, Dsei, ksei) may be directly transferable to other modeling contexts such as the Single

Particle Model [132, 133] and the full Doyle-Fuller-Newman (or P2D) model [94, 134]. The

experimental formation data provides additional, physically-relevant features, such as volt-

age traces during formation cycling and formation aging (Figure 3.3), the FCE (Figure 3.10)

and the first charge dQ/dV (Figure 3.12), which all serve to constraint the set of possible

degradation model parameters. Additionally, macroscopic expansion measurements can also

be used to tune electrode parameters such as particle sizes and electrode dimensions (Eq.

3.24) as well as SEI properties such as SEI molar volume (Eq. 3.26).

We briefly introduce a parameter identification framework to motivate future work in this

area. We define a vector of model parameters to identify as:

p = [Dsei, Usei, ksei, γ, ...]
T . (4.58)

The parameter identification problem is then:

argmin
p

=

∫ tf

0

ỹ(τ)TQỹ(τ)dτ (4.59)

s.t. Eqs. (4.33)− (4.36).

where y ≜ [Vt,∆tot]
T , ỹ ≜ y − ŷ represents the model output error, and Q ∈ R2×2 contains

weights. Eq. (4.33) represents the system dynamics from Eqs. (4.5-4.27).

An expected obstacle for model parameter identification relates to the problem of pa-
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rameter uniqueness, or parameter identifiability. Even with our reduced-order SEI growth

representation, each electrolyte component is described by at least 4 intensive material prop-

erties: Dsei, Usei, ksei, and Vsei. While the presence of expansion measurements is expected to

improve the identifiability of some parameters, it may still not be enough to identify all of

the parameters. More ex-situ characterization may thus be generally needed to reduce the

number of model parameters that need tuning. A suggested next step for this work is to first

understand model parameter sensitivity, i.e. to answer the question of “which model param-

eters have the greatest impact on observed cell characteristics such as FCE, initial capacity,

and degradation rates?” The next section thus introduces a simple parameter sensitivity

study to highlight how this question could be answered.

4.5.1 Parameter Sensitivity

The formation model clarified how SEI passivation during formation depends on both elec-

trolyte properties (e.g. electrolyte composition, additive amount, diffusivities, reaction po-

tentials, rate constants) and the formation protocol (e.g. time spent at different negative

electrode surface potentials, the negative electrode expansion rate). Identifying which of

these parameters more strongly influence cell characteristics (e.g. FCE, initial cell capacity,

long-term degradation rates) can help inform both electrolyte design and formation protocol

design. One particular question that may be answered is: “how much influence does the

formation protocol have on determining initial cell characteristics?”

We thus explore the sensitivity of the predicted SEI properties z (Eq. 4.29) on the model

parameters p. We note that p consists of both material properties (Dsei, Usei, ksei, γ), which

may be tunable through materials engineering, and a use case variable (C-rate) which can

be controlled through the formation protocol. For each model parameter, we repeated the

‘baseline formation’ protocol simulation which consisted of three C/10 back-to-back charge

and discharge cycles [130], each time varying the sensitivities about a nominal operating

point given in Table 4.2. To simplify the analysis, we considered only a single-component

SEI reaction. The range of values explored for each parameter represent physically-feasible

ranges and are also given in Table 4.2.

The results of the sensitivity analysis, shown in Figure 4.7, highlight the fact that the

SEI properties are relatively insensitive to choices of Usei, ksei, and C-rate. The insensitivity

to C-rate is particularly relevant for manufacturing applications since it implies that faster

formation protocols could be developed without affecting the quality of the SEI. The insen-

sitivity to Usei and ksei is explained by the fact that these parameters only affect the SEI

reaction process before the system transitions from a kinetically-limited to a diffusion-limited
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Table 4.2: Index used for the parameter sensitivity study

Variable Units Min Nominal Max
−1 0 +1

Usei V 0.5 1.8 3.1
Dsei m2 s−1 10−22 10−21 10−20

ksei m s−1 10−19 10−17 10−15

γ s 106 3.2× 106 107

C-Rate s−1 C/20 C/8 C/5

regime (Figure 3.6B, markers 2 and 3); however, since the system becomes diffusion-limited

within the first hour of the formation charge, the main driver for SEI reactions is not the ki-

netic parameters, but rather the ability for reacting molecules to diffuse to the surface of the

negative electrode for reactions. Indeed, we see that the SEI properties are highly sensitive

to the SEI diffusivity Dsei, with higher values leading to both a thicker film δsei,f as well as

a more rapid reaction rate at the end of formation jsei,f , both of which are associated with

a poor-quality, non-passivating SEI. This result reinforces a recurring motif of this work: to

form a well-passivated SEI, the electrolyte-electrode system should seek to minimize Dsei.

Finally, we see that increasing the boost sensitivity factor γ leads to an SEI film that is

thicker but minimizes further SEI reactions. A system with a higher boost sensitivity factor

corresponds to an SEI that more easily breaks apart due to the reversible expansion of the

negative electrode. The model predicts that such a system would form a thicker SEI film

due to the boosted SEI growth rate during charging. The thicker SEI film then suppresses

further SEI reactions, leading to a lower SEI current density at the end of formation.

4.6 Application 5: Interpreting Diagnostic Features

In this last section of this chapter, we discuss how the formation model can be used to

elucidate physical connections between beginning-of-life diagnostic features. These diagnos-

tic features will be the basis for Part II of this thesis focusing on data-driven methods for

battery formation diagnostics and lifetime prediction. We focus here on studying the con-

nection between two metrics: the low-SOC resistance, or RLS, and the quantity of lithium

consumed during formation, or Qsei. The low-SOC resistance will become central to a dis-

cussion around lifetime prediction in Chapter 6. As a preview of the in-depth discussion to

come, we will leverage the formation model to demonstrate that RLS can act as an indicator
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Figure 4.7: Parameter sensitivity analysis. (A) Sensitivity of the final SEI thickness δsei,f on
the input parameters. (B) Sensitivity of the final SEI reaction current density jsei,f on the
input parameters. The x-axis values are defined by Table 4.2.

for the quantity of lithium consumed during formation.

4.6.1 Methods

The formation model was initialized in the usual way, with θ−|t=0 = 0 and θ+|t=0 = 1

representing the lithiation state of each electrode before formation begins. We simulated the

baseline formation protocol which consisted of three back-to-back charge-discharge cycles at

the C/10 rate. The simulation outputs provided time-resolved trajectories of the internal

states θ−(t), θ+(t), and Qsei(t). The lithiation states θ−(t) and θ+(t) are mapped to a shared

capacity basis according to the following affine basis transformation:

q+(t) = Q+(1− θ+(t)) (4.60)

q−(t) = Q−θ−(t) +Qsei(t) (4.61)

where q± are the capacity of the electrodes in the shared capacity basis, Qsei(t) is the modeled

capacity of lithium lost to form the SEI, and Q± are the electrode capacities. With the

capacity basis resolved, the half-cell electrode potentials can be calculated at every point in

q by starting with the functions U+(θ+) and U−(θ−) shown in Figure 3.3B and mapping
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the stoichiometries to q according to Equation 4.60. The full cell potential Vfull is finally

computed as the difference between U+(q) and U−(q).

4.6.2 Results

The resulting calculations yield a plot of the alignment between positive and negative elec-

trode voltage curves along a shared capacity basis (more on this in Chapter 5). Since the

formation model provides time-resolved trajectories of the internal states, this voltage align-

ment plot can be updated at every discrete time interval throughout the simulation. Viewing

the plots in succession provides an animation revealing the dynamics of half-cell potential

curve shifts during the formation process. Figure 4.8 shows two snapshots from this anima-

tion towards the start (Panel A) and end (Panel B) of the baseline formation simulation.

The asterisk (*) shows the growth in Qsei throughout the formation protocol which creates

the irreversible offset between the positive and negative electrode stoichiometries.

Figure 4.8: Verifying the connection between Qsei and RLS using the formation model. Snap-
shots of the formation model simulation near the beginning of formation (A) compared to
the near the end of formation (B). Top row: full cell and half cell potential curves. Markers
indicate the present state of the cell. Bottom row: corresponding full cell and half-cell re-
sistance curves generated using the method from Section 6.3.6. RLS indicates the low-SOC
resistance, in this case measured at 0% SOC, which decreases from 91.1mΩ to 25.6mΩ.

The bottom row of Figure 4.8 shows the corresponding half-cell resistance curves for the

graphite/nickel manganese cobalt (NMC) system. These curves were constructed based on
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a method that will be later introduced as part of Chapter 6, Section 6.3.6. Briefly, at low-

SOCs, the high measured full cell resistance is attributed to kinetic limitations in the positive

electrode layered oxide material.

The simulations show that RLS decreased from 91.1 mΩ to 25.6 mΩ between the two

snapshots in time. The source of this decrease stems from the resistance “shoulder” in

the positive electrode at low SOCs: comparing between the two frames, we see that, as

Qsei increases, the positive electrode curves shift towards the left relative to the negative

electrode. The resulting measured resistance at 0% SOC from the perspective of the full cell

is then decreased. The decrease in RLS thus arises from the shifting electrode alignment due

to lithium consumed to form the SEI. Put another way, as lithium is consumed to form the

SEI, the positive electrode becomes less lithiated at 0% SOC since lithium was irreversibly

consumed to form the SEI; as the positive electrode becomes less lithiated, the electrode is

less kinetically limited; finally, this improvement in electrode kinetics is then reflected in the

measured full cell resistance at 0% SOC. The decrease in RLS is thus a reflection of changes

in the maximum positive electrode lithiation due to the lithium consumed to form the SEI.

Figure 4.9: Model-predicted correlation between RLS and Qsei. The curve was generated
by simulating the baseline formation and fast formation protocols. The correlation holds
irrespective of the formation protocol.

To emphasize this connection between RLS and Qsei, the model-predicted RLS and Qsei

throughout the baseline formation cycle are plotted against each other in Figure 4.9. We have

additionally simulated the fast formation protocol, which expectedly shows the same trend,

87



since the relationship between RLS and Qsei is determined purely by the relative position of

the equilibrium curves.

The mechanistic insight we describe here is consistent with the discussion to come in

Chapter 6, Section 6.5.1.4. Through this example, we demonstrate how the formation model

can be used to elucidate physical connections between different diagnostic features that can

then lend themselves toward applications for lifetime prediction.

4.7 Conclusions

This chapter previewed five different applications of the formation model towards improving

the design of formation protocols, improving factory process control, improving lifetime

prediction, and understanding the mechanisms behind why fast formation could be better

for battery lifetime. Ultimately, realizing any of these applications in practice will require

further developments which is beyond the scope of this thesis. However, we hope that

the contents of this chapter have provided a clear snapshot of the potential utility of the

formation model towards these various applications, motivating future work in the relevant

areas.
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Chapter 4: Supplemental Figures

Figure 4.10: Combined formation and cycle life simulations: zoomed in. Baseline formation
is shown in black. Fast formation is shown in red. (A) Voltage traces during and after
formation. (B) Capacity of lithium lost to form the SEI. Asterisk (*) shows the cross-
over point in SEI capacity which occurs after the 5th cycle after formation completes. (C)
Evolution of the homogenized SEI diffusivity. (D) Evolution of EC and VC concentrations
(secondary y-axis).
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Figure 4.11: Combined formation and cycle life simulations: zoomed out. Baseline formation
is shown in black. Fast formation is shown in red. (A) Voltage traces during and after
formation. (B) Capacity of lithium lost to form the SEI. Asterisk (*) shows the cross-
over point in SEI capacity which occurs after the 5th cycle after formation completes. (C)
Evolution of the homogenized SEI diffusivity. (D) Evolution of EC and VC concentrations
(secondary y-axis).
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CHAPTER 5

Voltage-Based Diagnostic Features

5.1 Abstract

Voltage-based battery data are ubiquitous and essential in battery manufacturing diagnos-

tics: they enable “electrochemical fingerprinting” of batteries at the end of line and are nat-

urally scalable since the voltage data can be collected automatically as part of the battery

formation process. Yet, despite their prevalence, interpretations of voltage-based signals are

often ambiguous and require expert judgment. Difficulties stem from inconsistent guidelines

for data collection and a lack of standardized methods for collecting and analyzing voltage-

based data. In this chapter1, we revisit methods for collecting and analyzing voltage-based

features through the lens of method reproducibility and interpretability in a battery man-

ufacturing context. The features we cover in this work include thermodynamic features

derived from the DVA (or dV/dQ) method and resistance features derived from hybrid pulse

power characterization (HPPC). We further extend the DVA method by clarifying the “in-

accessible lithium problem” and propose new derived features directly relevant to setting

manufacturing specifications including lithium consumed during formation and the practi-

cal N:P ratio. We summarize experimental and analysis considerations required to enable

repeatable data reporting. We finally highlight a case study in which the DVA method is

applied to quantify differences in internal cell states between two batches of cells built on

the same manufacturing line. This work highlights both the opportunities and challenges of

developing voltage-based diagnostic features in a battery manufacturing context.

1This chapter has been adapted from the following work: [112] Andrew Weng, Jason B. Siegel, and Anna
Stefanopoulou. Differential voltage analysis for battery manufacturing process control. Frontiers in Energy
Research, 11, 2023
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5.2 Introduction

5.2.1 The Forecast for Tomorrow: More Battery Factory Data

The proliferation of battery factories worldwide is creating exponential growth in battery

manufacturing data. To place the scale of this data in context, consider a battery factory

that supplies enough cells to produce one electric vehicle per minute, a production rate that

has already been realized in industry [135]. Since the number of cells needed for each electric

vehicle is on the order of hundreds for pouch cells and thousands for cylindrical cells, the cell

production rate would need to exceed ca. 100 cells per minute for pouch cells and ca. 1,000

cells per minute for cylindrical cells. Every cell produced will generate voltage and current

time-series data as part of the formation process, the last step of battery manufacturing.

5.2.2 Opportunities

Voltage and current data from the battery formation process can be continuously collected,

stored, and analyzed to be used as process specifications (i.e. tolerances) with the goal of

ensuring that all cells leaving the factory have a guarantee on battery performance, lifetime,

and safety [5]. Using voltage-based measurements is appealing for manufacturing automation

since they can be measured using existing formation hardware. Collecting voltage-based data

thus bears no additional costs to a factory.

When voltage data is carefully collected and analyzed, they can be used to derive

physically-interpretable, electrochemical features that provide insights into the thermody-

namic and kinetic properties of the cell. For example, a slow-rate charge voltage curve can

be analyzed using incremental capacity analysis (ICA) [59] or voltage fitting (dV/dQ) anal-

ysis [61] to understand thermodynamic cell properties such as active material losses and

lithium inventory losses. The data can be collected and analysed within the time frame of

a charge cycle (e.g. 20 hours) with shorter times being possible. Moreover, unlike cell dis-

sections and electrode harvesting, the voltage-based analysis is non-destructive so the same

cell that is analyzed can then go on to be used in consumer products. Another example of

a voltage-based feature is resistance calculated from current data. Resistance can be used

as a quality check on cells, where outliers could be used to used as a basis to reject cells

suspected of defects. With careful data collection and analysis, resistance features can also

lend insights into material properties at the cell component level.
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5.2.3 Challenges

Caution is needed when setting manufacturing specifications based on voltage-based data.

Without careful data collection and interpretation, manufacturing specifications may be set

unnecessarily tightly, resulting in high cell reject rates, decreased production throughput, and

increased factory waste. However, if the same specifications are set too loosely, variation in

cell-to-cell properties, such as energies and resistances, may increase, which may lead to

performance and reliability issues. Ultimately, manufacturing specifications must be set

based on an understanding of long-term consequences to performance, lifetime, safety, and

reliability. The voltage-based features can afford the understanding of these long-term effects

but only if they are carefully designed and interpreted.

Currently, factories are not taking full advantage of voltage-based features to set manufac-

turing specifications because they are difficult to interpret. All full-cell voltage measurements

reflect a combination of thermodynamic factors originating from the two electrodes, as well

as kinetic factors from nearly every cell component, including the electrodes, electrolyte,

tabs, binders, current collectors, etc. Resolving the complex electrochemical details using

full-cell voltage data alone is hence inherently challenging. The difficulties of data interpre-

tation are compounded by a lack of clear literature guidance on best practices for collecting

and analyzing voltage data. As a result, commonly reported features derived from voltage

data, such as modeled electrode capacities (from dV/dQ or ICA) and resistances often dif-

fer in both data collection and data analysis methods, limiting their interpretability and

reproducibility.

5.2.4 Main Contributions

The goal of this work is thus to guide experimental and modeling considerations needed to

enable reproducible voltage-based battery manufacturing diagnostics. To accomplish this,

we revisit two of the most popular voltage-based analysis techniques through the lens of

battery manufacturing and reproducible data analysis. Section 5.3 discusses a method to

analyze near-equilibrium full-cell voltage curves to obtain electrode-level parameters through

DVA (or dV/dQ) analysis. Section 5.4 discusses a method to obtain direct current resistance

at multiple states of charge, pulse durations, and temperatures through the HPPC method.

For each of the presented methods, we detail the experimental and analysis considerations to

improve data reproducibility and interpretability. Section 5.5 finally provides a case study

in which the DVA method is leveraged to gain insight into differences between two batches

of cells built in the same manufacturing line. This case study highlights the promise of

using DVA to non-destructively quantify variability in cell internal states at the end of the
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manufacturing process.

The methods for defining diagnostic features outlined in this chapter set the foundation for

future applications in manufacturing process control and battery lifetime prediction (Figure

5.1).

Figure 5.1: Voltage-based battery manufacturing diagnostic features. These features can be
measured automatically and immediately after cells complete formation cycling and before
leaving the factory. The features can be used for closed-loop feedback for real-time process
control and battery lifetime prediction. The main groups of voltage-based features we cover
in this work are thermodynamic features from voltage fitting (dV/dQ) (Section 5.3) and
kinetic (resistance) features from HPPC (Section 5.4).

5.3 Differential Voltage Analysis

Near-equilibrium (i.e. slow-rate) full cell voltage curves have been widely used to understand

dominant cell degradation modes such as loss of active material (LAM) and loss of lithium

inventory (LLI) [136, 137, 138, 139]. The appeal of these techniques is easy to appreciate: full

cell data is easier and faster to collect than materials-level characterization data which often

requires cell tear-down and electrode harvesting. Such types of analyses have been introduced
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under different names, including DVA, dV /dQ analysis [136, 140], ICA [137, 141, 59], open-

circuit voltage models [138, 142, 143], and voltage-fitting analysis [61]. While all of these

methods rely on full cell voltage curve data, their data analysis approaches are different.

In DVA, the voltage is differentiated with respect to capacity and plotted against capacity.

The resulting data reveals peaks and troughs that can be attributed to either the positive or

negative electrode. In ICA, the capacity is differentiated with respect to voltage and plotted

against voltage. The features observed from ICA are no longer linearly separable, but through

careful data interpretation, distinct degradation modes can still be inferred [59]. Other

variations of differential analysis have also been recently introduced which leverage signals

such as expansion [144] and pressure [145], but since these methods require measurements

beyond full voltage, they are omitted from present consideration.

In a battery manufacturing context, a quantitative and reproducible voltage-based anal-

ysis method is needed. The method must be quantitative to resolve minute differences in

manufacturing process parameters which could have large, long-term consequences to battery

performance, lifetime, and safety. The method must also be reproducible to scale. However,

since current methods for extracting the electrode-level parameters vary from author to

author, comparing results across different papers is complicated. Notably, some authors

use full cell data alone, assigning features of interest and graphically inferring degradation

metrics such as lithium inventory and electrode capacity losses [146], while others leverage

half-cell “reference curves” [147] to build a model of the full cell voltage as a function of the

electrode-level parameters [138, 142].

In this section, we develop an automated and scalable method for extracting electrochem-

ical features from voltage curves. The method expands upon the mathematical foundations

of DVA introduced by Lee et al. [61] by reformulating the model equations to account for

the “inaccessible lithium problem,” an essential step towards connecting the model outputs

to electrode-level parameters such as active material loadings. We further provide formal

definitions of novel cell design parameters, including the practical NP ratio and the lithium

consumed to formation, which can be directly extracted from the modified method. We

finally outline experimental considerations for collecting full cell and half cell data to enable

the modified DVA method to be reproducibly automated at scale.

5.3.1 Base Model Formulation: A Review

The differential voltage model seeks to decompose the full cell near-equilibrium (i.e. open

circuit) voltage curve into its constituent half-cell positive and negative potential curves vs

Li/Li+. The half-cell curves, also sometimes called “reference curves” [147], then provide
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information about the thermodynamic states of the cell, including positive and negative

electrode capacities, positive and negative electrode lithium stoichiometries as a function of

the full cell SOC, and the capacity of cyclable lithium inventory.

We now proceed with reviewing the quantitative treatment of DVA using Figure 5.2 as a

visual guide. The derivation presented here is a summary of work from Lee et al. [61].

The fundamental state equation of the model is an assertion of voltage conservation

between the half-cell near-equilibrium potentials and the full-cell near-equilibrium potential

given by:

Vfull(q) = U+(y)− U−(x), (5.1)

where Vfull is the full cell near-equilibrium (i.e. open-circuit) voltage and U+ and U− are the

positive and negative electrode near-equilibrium potential curves versus Li/Li+, respectively.

q is a vector of capacities in the full cell domain and is related to the cell SOC, z ∈ [0, 1], by

the relation:

z =
q

Qfull

, (5.2)

where Qfull is the measured capacity of the full cell. x ∈ [0, 1] and y ∈ [0, 1] are vectors

of lithium stoichiometries in the negative and positive electrodes, respectively. Note that x

and y are identical to the variables θ− and θ+ in Chapter 3, but have been renamed in this

chapter for notational convenience. The lithium stoichiometries are governed by the half-cell

reactions:

xLi+ + xe− + C6 → LixC6 (Negative, charging) (5.3)

LiM→ LiyM+ (1− y)Li+ + (1− y)e− (Positive, charging), (5.4)

where the first reaction represents the intercalation of lithium into graphite, and the second

reaction describes the release of lithium from any intercalation positive electrode such as

(NMC), nickel cobalt aluminum (NCA), iron phosphate, etc.

Equation 5.1 assumes that both electrodes are at near-equilibrium, meaning that the

current densities used to acquire the curves are sufficiently small so that over-potential

contributions can be neglected. Note that while some authors attempt to use Vfull to extract

kinetic information such as resistance increase [137], we focus our analysis on extracting only

thermodynamic quantities to limit the number of modeled output parameters and improve

solution uniqueness. To ensure negligible kinetic effects, Vfull(q) must be collected at a

sufficiently slow rate (see Section 5.3.4.1). The reference half-cell curves U+(y) and U−(x)

may be obtained experimentally, e.g. via coin cell testing (see Section 5.3.4.2).

The terms in Equation 5.1 can be mapped to a common, full capacity basis q. Charge
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Figure 5.2: Concept DVA method concept illustration. (A) The full cell near-equilibrium
(‘open circuit’) voltage curve Vfull (black) plotted alongside the corresponding positive elec-
trode (blue) and negative electrode (red) near-equilibrium potential curves U+ and U−. (B)
The corresponding differential voltage (dV /dQ) curves which illustrate how full cell dV d/Q
peaks can be attributed to features from the positive and negative electrodes.

conservation requires that this mapping be affine (linear plus an offset). We can therefore

define the following basis transformation equations:

x(q) = x0 +
q

Qn

(5.5)

y(q) = y0 −
q

Qp

, (5.6)

where Qn and Qp are the total negative and positive electrode capacities, respectively,

and (x0, y0) are the negative and positive electrode stoichiometries in the fully discharged

state. These equations are derived under the boundary condition that q = 0 corresponds
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to the fully discharged state, with (x, y) = (x0, y0). Equations (5.5, 5.6) can be inverted to

obtain:

q(x) = Qn(x− x0) (5.7)

q(y) = Qp(y0 − y), (5.8)

which can be used to map lithium stoichiometries to the shared capacity basis. Note that,

under this construction, q is allowed to take on negative values. For example, when x = 0,

q = −Qnx0 < 0, according to Equation 5.7. Negative q values can be interpreted as “virtual

capacities,” that is, capacity present in the electrodes but is inaccessible from the perspective

of the full cell due to the full cell minimum voltage constraint.

We can also define a complementary set of variables describing the lithium stoichiometries

in the fully-charged state, (x100, y100), which can be written as:

x100 = x0 +
Qfull

Qn

(5.9)

y100 = y0 −
Qfull

Qp

. (5.10)

Qfull is a known quantity from the full cell data and is not considered to be a modeled

parameter. Hence, (x100, y100) are not independent model parameters.

In summary, knowledge of four parameters:

θ = {Qn, Qp, x0, y0} (5.11)

provides a complete description of the model from Equation (5.1). These parameters bear

physical meaning, since (Qn, Qp) are related to the total electrode capacities and (x0, y0)

predict lithium stoichiometry-dependent electrode potentials. These model parameters can

then be used to derive additional electrochemical features relevant to battery manufacturing

diagnostics, as will be described in Section 5.3.3.

Note that the choice of model parameters are not unique. For example {Qn, Qp, x100, y100}
is an equally valid set of parameters. For the remainder of this work, we will continue to use

the {Qn, Qp, x0, y0} basis with the recognition that the model can always be reformulated

using another set of four basis states using Equations (5.9,5.10).

The goal of the model is then to identify a unique combination of model parameters θ

that provides the best fit against the measured voltage data. The optimization problem can
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be solved by implementing an error function:

E(q : θ = U+

(
y0 −

q(y)

Qp

)
− U−

(
x0 +

q(x)

Qn

)
︸ ︷︷ ︸

Vfull(q)

−Vmeas(q), (5.12)

where Vmeas(q) is the experimentally-measured full cell voltage curve and the domain of q

is now restricted to the full-cell domain spanning (0, Qfull). The model returns an optimal

parameter-set which minimizes an error function of the form:

θopt = argmin
Θ

∑
q

(
λ|E(q : θ)|2 + (1− λ)

∣∣∣∣dE(q : θ)dq

∣∣∣∣2
)
. (5.13)

The first term inside the summation is the voltage error and the second term represents the

differential voltage error. λ ∈ [0, 1] is a weight parameter, i.e. when λ = 1, the contribution

from the differential voltage signal is ignored. The optimization problem can be solved using

standard non-linear least-squares solvers which are available in most scientific programming

languages such as Python or Matlab. Note that, in Figure 5.2, plotted full cell voltage data

corresponds to the modeled data and the measured voltage data was omitted for graphi-

cal clarity. A real-world comparison of measured versus modeled full-cell voltages is later

presented in Figure 5.10.

Variations of the optimization method exist in the literature. For example, Lee et al.

[61] set λ = 1 and implemented additional constraints based on full cell voltage limits, i.e.

Vmax = U+(y100) − U−(x100) and Vmin = U+(y0) − U−(x0). With this approach, the model-

predicted full cell capacity is guaranteed to match the measured value. However, solution

convergence becomes more challenging in the presence of these additional constraints which

could make the solution space ill-conditioned. Dahn et al. [148] included the differential

voltage (dV/dQ) curves in the error function to assign preferential weight to the phase

transition features (Figure 5.2B) and to negate the effects of impedance mismatch between

the full cell and coin cell form factors. However, these dV/dQ methods reported previously

are generally not fully automated, often requiring manually adjusting model parameters

through graphical user interfaces [148] and evaluating goodness-of-fit by visually inspecting

peak alignments. Overall, a “one-size-fits-all“ optimization scheme is not known to exist yet.

The specific details of the optimization may therefore need to be tuned to perform optimally

for a given system.
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5.3.2 The Inaccessible Lithium Problem

So far, we have laid the groundwork for the DVA method. We next outline a fundamen-

tal challenge with interpreting and reproducing model outputs known as the “inaccessible

lithium problem.” This issue was alluded to by Truchot et al. [149] and recently expanded

upon by Lu et al. [150]. We will first describe how this issue affects the interpretation of the

model outputs in a manufacturing context. We then propose corrections to the DVA model

equations which clarify the interpretation of the model outputs.

The inaccessible lithium problem is summarized as follows. The model state equation

assumes that U+ and U− are defined for the entire range of lithium stoichiometries spanning

y ∈ [0, 1] and x ∈ [0, 1], respectively. Yet, half-cell potential curves are generally experimen-

tally unattainable over the entire range of stoichiometries. For example, for layered oxide

positive electrode systems such as NMC, full delithiation would render the host material

thermodynamically unstable, impacting the reversibility of lithium intercalation reaction.

Full lithiation of the layered oxide particles is also experimentally challenging due to massive

kinetic limitations towards the fully lithiated state [151]. These kinetic limitations explain

why it is so difficult to “fully discharge” a positive electrode half cell; even when discharging

at small C-rates, the potential tends to rebound above 3V vs Li/Li+ after resting.

Near-equilibrium potential data on layered-oxide positive electrodes can only be feasibly

obtained within a restricted stoichiometry window, which is determined by the voltage limits

of coin cell data collection. Defining ymin and ymax as the minimum and maximum observable

lithium stoichiometry in the positive electrode, it must be the case that ymin > 0 and

ymax < 1. An analogous situation applies to the graphite negative electrode, with xmin > 0

and xmax < 1, though the resulting errors from assuming xmin ≈ 0 and xmax ≈ 1 are generally

understood to be more benign since lithium transport in graphite is generally more facile.

To proceed with the analysis, practitioners must either implicitly or explicitly assume

that the tested range of potentials (e.g. 3.0V to 4.3V for layered oxide positive electrodes)

correspond to the full range of lithium stoichiometries, i.e.:

(xmin, xmax, ymin, ymax) ≈ (0, 1, 0, 1), (5.14)

and proceed with the analysis method as described in Section 5.3. However, this simplifica-

tion will lead to errors in the model outputs.

5.3.2.1 Error Analysis: A Case Study

To demonstrate the magnitude of model estimation errors caused by the inaccessible lithium

problem, we study two cell batches made on the same manufacturing line and made using the
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same active materials (Ni0.33Mn0.33Co0.33 positive electrode and graphite negative electrode),

but were made two years apart and differed in cell design parameters, including electrode

loading targets and number of layers. Cells from the first batch, from Mohtat et al. [152],

had nominal capacities of 5.0 Ah and were built in 2018 (n = 21). Cells from the second

batch, from Weng et al. [58], had nominal capacities of 2.37 Ah and were built in 2020

(n = 40). For these cells, we restricted the cell population to those having full cell data

collected at room temperature (RT) (n = 20) to match the measurement conditions from

Mohtat et al. [152]. A table comparing relevant design parameters is given in Table 5.1. We

will refer to these two datasets as Mohtat2021 and Weng2021, respectively.

With these two datasets, we can compare the positive and negative electrode capacities

calculated using DVA to the true electrode capacities, which can be calculated by combining

the theoretical capacities with the cell design parameters, according to:

Q = m · f · nfaces · A ·Qtheor, (5.15)

where Q is the electrode capacity in Ah, m is the electrode areal loading target in g/cm2, f is

the mass fraction of active material in the electrode, nfaces is the number of active electrode

faces, A is the electrode area per face, excluding overhanging regions, in cm2, and Qtheor is

the theoretical capacity of the material in Ah/g.

The resulting calculations, summarized in Table 5.1, show that the estimated positive

electrode capacity is only 54% to 55% of the true positive electrode capacity, while the

estimated negative electrode capacity is 87% to 89% of the true negative electrode capacity.

This result was demonstrated on both the Mohtat2021 and Weng2021 datasets, suggesting

some level of generality. The gross underestimation of positive electrode capacity can be

primarily attributed to the fact that the layered oxide Ni0.33Mn0.33Co0.33 positive electrode

material used in these works retains significant lithium inventory even above the coin cell

upper cut-off potential of 4.3V vs Li/Li+, and consequently, ymin ≫ 0.

This case study suggests that ignoring the inaccessible lithium problem (Equation 5.14)

will likely lead to inaccurate reporting of true electrode capacities and stoichiometries, es-

pecially for layered oxide positive electrode materials such as NMC. As a result, the model-

predicted electrode capacities may not be directly usable for calculating electrode loadings

using Equation 5.15. Unfortunately, the inaccessible lithium problem is a fundamental lim-

itation of the coin cell data collection process used to initialize Vpos and Vneg in the model.
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Positive Electrode Negative Electrode
Source Mohtat2021 Weng2021 Mohtat2021 Weng2021

Material NMC111 NMC111 Graphite Graphite
Number of active faces 28 14 28 14

Area per face (cm2) 79.20 79.20 79.56 79.56
Loading, single-side (mg cm−2) 18.50 17.23 8.55 7.85
Theoretical capacity (mAh g−1) 279.5 279.5 372 372

Active material fraction 0.94 0.94 0.95 0.97
Total capacity (Ah) 10.78 5.02 6.73 3.16

(A) Q (mAh cm−2) 4.86 4.53 3.02 2.83

(B) Q̃ (mAh cm−2) 2.66 2.46 2.70 2.46

% of Q observed (Q̃/Q) 55% 54% 89% 87%

Table 5.1: Cell design comparison between the cells from Mohtat et al. and Weng et al. The
comparison includes electrode theoretical areal capacities (A) versus practical areal capacities
derived from DVA (B). The capacities predicted by the differential voltage analysis are lower
than the theoretical values due to the ‘inaccessible lithium problem’ [150].

5.3.2.2 Model Revision: Enter the ‘Tilde’ Variables

Knowing that the inaccessible lithium problem can lead to large errors in the model outputs

(x, y,Qn, Qp), we reformulate the model by defining ‘tilde’ variables (x̃, ỹ, Q̃n, Q̃p), to

represent estimated parameters. The state equation can then be re-written as:

Vfull(q) = U+(ỹ)− U−(x̃), (5.16)

where:

x̃(q) = x̃0 +
q

Q̃n

(5.17)

ỹ(q) = ỹ0 −
q

Q̃p

. (5.18)

This modified system is identical to the original system but recognizes the fact that the

modeled lithium stoichiometries and electrode capacities may, in general, be different from

the true values which are not observable due to the limitations in coin cell data collection

for U+ and U−.

The estimated parameters can then be related to the true parameters by the following

102



relations:

Q̃p = Qp(ymax − ymin) (5.19)

Q̃n = Qn(xmax − xmin) (5.20)

ỹ0 − ỹ100 =
y0 − y100

ymax − ymin

(5.21)

x̃0 − x̃100 =
x0 − x100

xmax − xmin

. (5.22)

This system of equations has more unknowns than equations, highlighting the difficulty in re-

covering the true parameters from the model alone. Ideally, the true lithium stoichiometries

may be experimentally measured, e.g. via inductively coupled plasma optical emission spec-

troscopy (ICP-OES) [153]. True capacities may also be calculated using information about

the electrode design (Equation 5.15). Without more measurements, further assumptions are

needed to fully resolve the estimated model parameters, e.g. x̃100 ≈ x100 and ỹ0 ≈ y0.

Despite the data interpretation challenges introduced by the inaccessible lithium prob-

lem, we highlight several applications of the model outputs that remain unaffected by this

problem. First, calculations of differences in electrode capacities are not affected. This is

because the error terms in Equations 5.19 and 5.20 cancel when taking ratios of capacities.

This fact explains why literature reports of losses of active material (LAM) and our analysis

of electrode capacity loading differences from Section 5.5.0.1 are still valid even though the

inaccessible lithium problem may render absolute values of Qn and Qp inaccurate. Second,

the inaccessible lithium problem also does not impact the process of searching for an optimal

set of model parameters (Equation 5.12) since the domain for optimization is strictly only

within the full cell capacity window, i.e. q ∈ (0, Qfull). Missing data beyond the limits of the

observable full cell voltage data is therefore inconsequential to the optimization.

In summary, the inaccessible lithium problem effectively introduces an optional post-

processing step in which the model output parameters may be converted into true parameters

using Equations 5.19, 5.20, 5.21 and 5.22. This final step would require additional input

not provided for by the differential voltage model. Yet, even without knowing the true

model parameters, the estimated model outputs remain useful for estimating differences in

parameters such as electrode capacities. The main contribution of the model extension,

including the introduction of the tilde variables, is thus to clarify that the model outputs

must be interpreted as estimates of the true values due to the limitations in constructing U+

and U− from data.
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5.3.3 Derived Electrochemical Features

We are now ready to introduce several additional electrochemical features relevant to battery

manufacturing process control: the lithium consumed during formation (Q̃SEI) the practical

negative-to-positive ratio (NPRpractical) and the total cyclable lithium inventory (QLi). These

features can be calculated directly from the optimized parameters of the modified model

θ̃opt = {Q̃n, Q̃p, x̃0, ỹ0}. In light of the previous discussion on the “inaccessible lithium

problem”, we make a distinction between estimated model parameters, denoted with tildes,

and true model parameters. To aid understanding, expressions in the following sections will

be given for both true values and estimated values, where appropriate. Figure 5.3 summarizes

the revised parameters as defined by the augmented DVA model.

5.3.3.1 Lithium Consumed During Formation

The capacity of lithium consumed during formation, Q̃SEI, is analogous to the first cycle

Coulombic efficiency metric [119], defined as ratio of discharge and charge capacity during

formation. However, unlike Coulombic efficiency, which requires slow-rate charge-discharge

cycles to calculate, Q̃SEI provides a consistent measure of lithium consumption even when the

formation protocol consists of complex charge-discharge cycles involving multiple C-rates and

partial SOC windows, as is the case with modern formation protocols [21, 22]. Conveniently,

since Q̃SEI can be obtained through the analysis of voltage data after formation completes,

this metric enables the recovery of information about lithium consumed during formation

even if formation data is missing.

We define the estimated capacity of lost lithium inventory due to formation, Q̃SEI, as:

Q̃SEI = q(xmin)− q(ymax) (5.23)

= q(x̃ = 1)− q(ỹ = 0) (5.24)

This formula can be understood by considering that, before formation, the positive electrode

stoichiometry is at its highest value, ymax, since all of the cyclable lithium has not yet left

the positive electrode. For the same reason, the negative electrode stoichiometry is at its

lowest value, xmin. After formation completes, the lithium lost to the SEI will not return

to the positive electrode during discharge, causing the highest possible stoichiometry value

in the positive electrode to decrease by q(xmin) − q(ymax). Equation 5.23 can alternatively

be interpreted as the capacity of unoccupied lithium sites in the positive electrode when the

negative electrode is fully delithiated.

We note that the calculation assumes that the positive electrode voltage curve and ca-
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Figure 5.3: Augmented DVA model output for manufacturing process control. The aug-
mented model accounts for the “inaccessible lithium problem.” (A) The full cell near-
equilibrium (‘open circuit’) voltage curve Vfull (black) plotted alongside the corresponding
positive electrode (blue) and negative electrode (red) near-equilibrium potential curves U+

and U−. Parameters with tildes indicate estimated model parameters due to the inaccessible
lithium problem (Section 5.3.2). Gray lines and variables indicate true model parameters
that cannot be ascertained using the native model. (B) The corresponding differential volt-
age (dV /dQ) curves which illustrate how full cell dV d/Q peaks can be attributed to features
from the positive and negative electrodes.

pacity are unchanged during formation. Previous studies have shown that this assumption

may not be true [84], which would introduce another error contribution to this calculation

which warrants further studies. From a manufacturing standpoint, if the positive electrode

system is known to be the same from batch-to-batch, then Q̃SEI may still be used to detect

differences in the SEI formation process.
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5.3.3.2 Re-Interpreting the Negative to Positive Ratio

The negative to positive ratio (NPR) is a common term used in battery design and generally

refers to the ratio of negative to positive electrode capacities. The optimization of NPR

is sometimes referred to as ‘capacity balancing’ [154], not to be confused with the process

of balancing series-connected cells. Conventional wisdom suggests that the NPR must be

greater than one to prevent over-lithiation of the negative electrode during charging. Increas-

ing NPR also implies less utilization of the negative electrode, which could be advantageous

in silicon-containing systems where volume expansion is a major contributor to cycle life

degradation [155]. However, increasing the NPR requires putting more negative electrode

active material into the cell without increasing usable energy content which decreases the

cell energy density. Adding more negative electrode loading could also increase the surface

area for SEI reactions which could be detrimental to calendar life. The NPR is therefore a

critical cell design metric that should be optimized and tracked during manufacturing.

In this section, we first review the most commonly-held definition of the NPR and identify

some conceptual gaps preventing a clear interpretation of this metric. We then propose a

revised, more practical definition of the NPR which enables a more physically-grounded

assessment of the lithium plating risk.

Issues With Conventional Definitions of NPR. To begin, consider a common defi-

nition of the NPR based on areal loadings and theoretical electrode capacities:

NPRtheor =
mnQn,theor

mpQp,theor

. (5.25)

In this equation, mn and mp are the electrode active material mass loadings in grams, and

Qn,theor and Qp,theor are the theoretical capacities in units of mAh/g. Applying this formula to

the example Ni0.33Mn0.33Co0.33|graphite systems from Mohtat2021 [152] and Weng2021 [58]

yields calculated NPR values of 0.62 and 0.63, respectively (Table 5.1). This result would

suggest that these cell designs have undersized negative electrode capacities and are at risk

for lithium plating. However, this calculation assumes that all of the theoretical capacity of

the Ni0.33Mn0.33Co0.33 positive electrode (279.5mAh/g) can be utilized, which is false due to

the inaccessible lithium problem (Section 5.3.2). This definition of NPR, while theoretically

valid, is therefore not practically useful in a manufacturing context.

Repeating the calculation but using the estimated values Q̃n and Q̃p to define:

NPRconventional =
Q̃n

Q̃p

(5.26)
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leads to yet another definition of NPR found in literature. This definition partly excludes

the inaccessible lithium in the positive electrode since Q̃p and Q̃n are bounded by observable

potentials in the coin cell data used to construct U+ and U−, respectively. However, this

definition remains ambiguous because the calculated value of NPR will change based on

the choice of potential ranges chosen for the half-cell reference potential curves which can

vary across different datasets. NPR definitions based on (Q̃n, Q̃p) therefore do not guarantee

reproducibility across different authors and datasets.

Definition of Practical NPR. Here, we develop a practically relevant and consistent

definition of the NPR, which we call the “Practical NPR.” We first return to the original

motivation of comparing relative loadings of positive and negative electrode capacities from

a cell design perspective, which is to determine whether the negative electrode will become

over-lithiated when the cell is fully charged to 100% SOC. A sensible boundary condition is

to set the NPR equal to unity if the negative electrode is completely lithiated when the full

cell is at 100% SOC (i.e. x100 = 1). An NPR greater than 1 would then indicate that there

exists some excess negative electrode capacity at 100% SOC, which can serve as a margin to

protect against lithium plating during charge.

Under this construction, we realize that a practical NPR definition must then be depen-

dent on two factors: the voltage at which 100% SOC is defined, and how much lithium was

consumed during formation. The voltage at which 100% SOC is defined becomes relevant

since higher voltages require more utilization of both the positive and the negative electrodes,

thereby decreasing the excess negative electrode capacity. How much lithium was consumed

during formation becomes relevant because more lithium consumed during formation de-

creases the negative electrode lithium stoichiometry in the fully charged state, x100, which

effectively increases the negative electrode excess capacity. Since SEI formation continues

over the life of the cell, x100 will continue to decrease, which will effectively increase the

negative electrode excess capacity over life. Loss of negative active material, on the other

hand, could have the opposite effect by shrinking the negative electrode curve [137].

Overall, a practical NPR definition cannot be a static metric, but one that changes after

formation and over the life of a cell based on the competition between different degradation

modes such as lithium inventory loss and active material loss.

Given the above realizations, we now formally define the Practical NPR as:

NPRpractical = 1 +
Q̃n,excess

Qfull

, (5.27)
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where

Q̃n,excess = q(xmax)− q(x100) (5.28)

= q(x̃ = 1)− q(x̃100) (5.29)

represents the measured excess capacity in the negative electrode when the cell is fully

charged. The Practical NPR correctly accounts for the sensitivity to the full cell upper

cutoff voltage window, where increasing voltage windows lead to decreasing NPRs (i.e. less

protection against lithium plating). The definition is also sensitive to changes in the elec-

trode stoichiometries (x100) over life, and is therefore able to account for the increase in the

Practical NPR over life as lithium loss shifts x100 to lower values over life.

Applying the Practical NPR definition to the dataset from Weng2021 and Mohtat2021

yields values of 1.14 and 1.24. This calculation shows that, after formation, the Mohtat2021

cells have more negative electrode excess capacity than the Weng2021 cells. The difference

between the calculated practical NPRs can be attributed to more lithium consumed during

formation for the Mohtat2021 cells (Section 5.5.1) which increased the negative excess ca-

pacity (Section 5.5.2). By contrast, none of the other definitions of NPR could distinguish

this fact since those definitions did not consider the lithium lost during formation.

A summary comparison of different NPR calculation methodologies is provided in Table

5.2.

Definition NPRtheor NPRconventional NPRprac

Equation
mnQn,theor

mpQp,theor

Q̃n

Q̃p
1 + Q̃n,excess

Qfull

Ref. Eq. 5.25 Eq. 5.26 Eq. 5.27

Excludes inaccessible lithium? N Y Y
Considers effect of lithium lost to SEI? N N Y

Mohtat et al. [152] 0.62 1.02 ± 0.009 1.14 ± 0.009
Weng et al. [58] 0.63 1.00 ± 0.014 1.24 ± 0.013

Table 5.2: Comparison of various definitions of the negative to positive ratio
(NPR). Numerical values show mean ± standard deviation. Values were calculated based
on differential voltage analysis results performed on the datasets from Mohtat et al. [152]
and Weng et al. [58].
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5.3.3.3 Total Cyclable Lithium Inventory

The total cyclable lithium inventory in the system is imperative to track over life, since

lithium inventory depletion is a primary reason for capacity loss in standard lithium-ion

batteries [138, 59]. Lee et al. [61] proposed that the total cyclable lithium inventory can be

accounted for from the equation:

Q̃Li = x̃0Q̃n + ỹ0Q̃p, (5.30)

where the first term captures the lithium trapped in the negative electrode due to the full

cell minimum voltage constraint. Meanwhile, the second term includes both the cyclable

lithium within the full cell operating voltage window and the inventory of lithium above the

full cell maximum voltage. To gain a deeper intuition into Equation (5.30), we can rewrite

the same equation on the basis of the shared capacity vector q as:

Q̃Li = [q(ymin)− q(y100)]︸ ︷︷ ︸
V >Vmax

+ [q(y100)− q(y0)]︸ ︷︷ ︸
Cyclable

+ [q(y0)− q(xmin)]︸ ︷︷ ︸
V <Vmin

(5.31)

= q(ymin)− q(xmin). (5.32)

Equation 5.31 shows that the total lithium inventory consists of three components: the

lithium available in the positive electrode above the full cell upper cut-off voltage (first

term), the lithium available within the full cell voltage window (second term), and the

lithium available in the negative electrode below the full cell lower cut-off voltage (third

term). Note that if xmin ≈ 0 is assumed, then the third term drops out and QLi becomes

simply a statement of the total lithium inventory remaining in the positive electrode after

discounting for lithium lost to the SEI. By combining Equations (5.23) and (5.32), it can be

verified that

Q̃p = Q̃Li + Q̃SEI, (5.33)

which clarifies the fact that all of the lithium inventory in the system originates from the

positive electrode.

5.3.3.4 From Absolute Capacities to Capacity Losses

The DVA method may be repeated on full cell voltage datasets collected over the course of

a cycle life or calendar aging test for the aged cell system. Taking {Q̃′
n, Q̃

′
p, Q̃

′
Li} to be model

outputs from the aged cell, the following familiar quantities can be defined [156]:
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LAMNE = 1− Q̃′
n

Q̃n

(5.34)

LAMPE = 1−
Q̃′

p

Q̃p

(5.35)

LLI = 1− Q̃′
Li

Q̃Li

, (5.36)

where LAMPE is the loss of active material in the positive electrode, LAMNE is the

loss of active material in the negative electrode, and LLI is the loss of lithium inventory.

Conveniently, these equations are equally valid for both true model parameters (e.g. Q)

and observed model parameters (e.g. Q̃), and therefore, the ‘inaccessible lithium problem’

introduced in Section 5.3.2 does not affect the numerical outcome of the study of capacity

losses over the lifetime of a cell.

Finally, we note that the definition of lithium inventory loss given by Equation 5.36

does not provide any information on where the lithium is physically lost. It is generally

understood that a primary pathway for lithium loss is through electrolyte reactions at the

negative electrode to form the SEI. However, lithium can also be irreversibly trapped in the

negative and positive electrodes due to electrical isolation of particles, which could occur

either due to physical fracturing of active material particles [157, 158, 159] or islanding

of entire particles due to loss of adhesion to the binder material [160]. A more general

expression for the loss of lithium inventory can be expressed as the sum of lithium trapped

in each component:

LLI = LLIpos + LLIneg + LLISEI + LLIplating. (5.37)

In this equation, the first two terms represent lithium trapped inside lithiated but

electrically-isolated positive and negative electrode particles, the third term represents the

lithium trapped in the negative electrode SEI [156], and the last term represents dead lithium

lost to lithium plating [56]. It is important to recognize that differential voltage analysis can-

not be used to decomposeQLi or LLI into their constituent parts. Differential voltage analysis

thus only reveals the quantity of lithium lost without providing information about where the

lithium was lost. This limitation is fundamental to the technique, since different breakdowns

of QLi yield identical voltage features [138]. More advanced, materials-level characterization,

will be needed to fully understand the sources of lithium loss.
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5.3.4 Data Collection Considerations

Collecting high-quality lab data is a starting point for ensuring that the differential voltage

analysis results are reproducible. We therefore dedicate this section to discussing basic

experimental considerations to enable reproducible differential voltage analysis for a given

cell chemistry, using Figures 5.4 and 5.5 as guides.

5.3.4.1 Obtaining Full-Cell Near-Equilibrium Potential Curves

Differential voltage analysis requires the cell voltage curves to be collected at near-equilibrium

conditions so that kinetic effects may be ignored. Without an assumption of near-

equilibrium, Equation 5.1 would require additional terms to capture overpotential effects,

complicating the analysis. A natural question that follows is “at what C-rate does the volt-

age data needed to be collected at to constitute near-equilibrium conditions?” This question

is especially salient in battery manufacturing contexts, where the speed of diagnostic tests

need to be as fast as possible.

In work by previous authors, C-rates ranging between C/20 and C/30 are most commonly

used to obtain voltage curves at near-equilibrium conditions. For example, Dubarry et

al. [161] used C/25 curves for both differential voltage analysis and incremental capacity

analysis, Lu et al. [150] used C/30 curves, and Keil et al. [162] used a fixed current value

which translated into C-rates ranging between ∼C/10 and ∼C/30, depending on the cell

type.

Using our own datasets, we studied the effect of C-rate on the shape of the voltage and

differential voltage curves in Figure 5.4. Panel A shows an example charge dataset collected

on an Ni0.6Mn0.2Co0.2|graphite system, with C-rates ranging between 1C and C/100. The

result shows that the C/20 charge rate achieves a capacity of 2.50Ah, which is within 1% of

the capacity of 2.52Ah measured at C/100. The corresponding differential voltage curves,

shown in Panel C, shows that the C/20 rate provides peak features that are closely aligned

with the near-equilibrium limit at C/100. (Note that, in this panel, each line is offset by an

arbitrary constant α for clarity.) Therefore, in our dataset, C/20 appeared to be a reasonable

C-rate to capture a near-equilibrium condition.

While C-rates ranging between C/20 and C/30 appear to provide viable input datasets

for past work, this result may not always be true for all cell types in manufacturing. No-

tably, cells having higher energy densities may experience more kinetic limitations, and cells

having larger form factors could experience more electrode-level lithium concentration het-

erogeneities. In both cases, even slower C-rates may be required to resolve the features in the

differential voltage plots. Work by Mohtat et al. [67] further suggested that the performance
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of voltage fitting methods deteriorates at higher C-rates due to peak smearing. Overall,

more work is needed to quantify the effect of C-rate on the analysis outputs as well as the

generalizability of C-rate setpoints across different cell chemistries and cell designs.

The directionality of charge must also be considered. Figure 5.4(B,D) show that the

voltage and dV/dQ features on discharge are, similar, but not identical, to those on charge.

At C/100, the low-SOC peaks, which correspond to graphite features, appear to have sharper

peaks on discharge. An additional peak also appears in the discharge data, which can be

attributed to the graphite 2L staging reaction (see Figure 5.5C). Practically speaking, the

presence of the charge-discharge asymmetry suggests that the differential analysis outputs

may be different depending on whether the charge or discharge curves are used. The extent

of these differences should be further studied, which we leave as future work.

Figure 5.4: Full cell data collection example for DVA. (A, C) Full-cell constant-current
charge curves collected at C-rates ranging between 1C and C/100 and their corresponding
differential voltage curves. (B, D) The same curves, but collected on discharge. Q0 is the
nominal cell capacity (2.5 Ah). An arbitrary offset α has been added to each dV/dQ curve
for clarity.
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5.3.4.2 Obtaining Half-Cell Near-Equilibrium Potential Curves

Electrode near-equilibrium potential curves can either be obtained experimentally from

scratch using coin cell testing [163, 164] or downloaded from open-access databases such

as LiionDB [165]. In either case, due caution is necessary for several reasons.

First, the majority of datasets report half-cell potentials versus lithium stoichiometries,

but since there is no common voltage range setting, different half-cell datasets will lead to

different modeled outputs for electrode capacities and stoichiometries (see Section 5.3.2).

Second, the experimental procedures used to obtain the curves may differ, with some

authors using continuous currents, while other authors obtaining ‘quasi-static’, or ‘pseudo-

OCV’ curves, by combining data collected after some voltage period at each SOC, similar

to the galvanostatic intermittent titration (GITT) technique [166]. While the latter method

could theoretically provide a more accurate near-equilibrium potential curve, fewer data

points are typically collected to ensure the test finishes within a reasonable time. As a

result, some characteristic features related to phase transitions in the negative electrode

(Figure 5.4C) may be lost [167].

A third reason for exercising caution when using half-cell data obtained from literature is

that the current direction is sometimes not reported, yet current direction materially impacts

the features seen in the voltage curves. Figure 5.5 shows that the current direction influences

the voltage (and differential voltage) features for both a graphite negative electrode (Panels

A,C) and an Ni0.33Mn0.33Co0.33 positive electrode (Panels B,D). At the negative electrode, a

hysteresis gap between the lithiation and the delithiation curves exists, which persists across

consecutive charge-discharge cycles. The characteristic differential voltage feature occurring

at ∼2.3 Ah, corresponding to the stage 2 transition, is sharper and higher in magnitude in

the lithiation direction. The staging reactions 2 through 4 are also distinctly different. In

particular, the staging reaction 2L appears sharper on lithiation and the stage 4L reaction

appears sharper on delithiation [167].

At the positive electrode, a large kinetic limitation is observed at the end of the lithiation

curve, causing the lithiation capacity to be measurably lower than the delithiation curve

across multiple cycles. The observation of poor kinetics during lithiation of the positive

electrode has been experimentally confirmed by Kasnatscheew et al. [153] and thoroughly

discussed in Phattarasupakun et al. [151]. Overall, charge-discharge asymmetry exists at the

material level for both the positive and the negative electrodes. For high-fidelity differential

voltage analysis, the current direction used to obtain the electrode potential curves should

be aligned against what is used for the full cell. Doing so will improve the model’s ability to

fully describe the full cell voltage curve using the electrode potential curves.
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Figure 5.5: Half cell data collection example for DVA. (A,C) Graphite|lithium half-cell
lithiation and delithiation curves and their corresponding different voltage curves. (B,D)
Ni0.33Mn0.33Co0.33|lithium half-cell lithiation and delithiation curves and their corresponding
differential voltage curves. All data is measured at C/50. To indicate reproducibility, data
from two consecutive charge-discharge curves have been provided (except for the graphite
delithiation curve). The direction corresponding to full cell charging is indicated by a red
arrow.

5.3.4.3 Data Logging Frequency and Data Smoothing

The data logging rate and filtering method will affect the smoothness of the collected voltage

curves and its derivatives. It is generally recommended to over-sample than under-sample

to minimize data loss. Noise in the over-sampled data can be overcome by post-processing

the data using filtering methods. A common approach is to use a Savitzky-Golay filter

[168] which is included as part of most scientific programming languages. Note, however,

that the process of selecting filtering parameters, such as window size and polynomial order,

may introduce distortions in the data, decreasing the reproducibility of modeled results

[169, 150, 170]. To improve model reproducibility, more studies are needed to understand

the degree to which data filtering strategies impact model outputs, which we leave as future
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work.

5.3.5 Comments on Factory Deployment

Here, we summarize how a battery manufacturer might deploy the differential voltage analy-

sis method in the battery factory for online process control and quality control applications.

We also highlight the remaining knowledge gaps that may prevent deployment today which

warrant further research.

Enabling the differential voltage analysis in manufacturing requires both half-cell and

full-cell data collection. The half-cell data only needs to be collected once. The data, once

vetted, can be stored as part of the model input parameters and be re-used to analyze all

full cell data belonging to the same family of positive and negative electrode material sets,

e.g. across multiple cell batches and production lines.

The largest barrier to method deployment is then in the acquisition of the full cell near-

equilibrium data. As discussed previously, current methods for differential voltage analysis

generally require around 20 hours in order to collect the full cell voltage trace. If the

measurement method is to be deployed on every cell coming out of formation, then the

production throughput will decrease. Considering that the industry trend is to decrease

formation times [22], any additional process that will make the total time on test longer may

be untenable.

To improve the adoption of the method, we propose several pathways. First, rather than

collecting the full cell voltage data after formation, the voltage data during the formation

process itself may be processed for differential voltage analysis. To our knowledge, this

method has yet been reported in academic literature, and is the subject of future work.

Second, a study should be conducted to understand the influence of higher C-rates on the

modeled parameters. Historically, some of the challenges with differential voltage analysis

arose in the analysis of aged cells, where the effective current density increases as the cell

capacity decreases. For example, at 50% capacity retention, a “C/20” charge step would only

take approximately 10 hours to complete since the C-rate is defined with respect to the nom-

inal (pristine) cell capacity. In battery manufacturing, we are only concerned with studying

the electrochemical state of the pristine cells without consideration for aging. Hence, the

C-rates traditionally thought to be necessary to enable differential voltage analysis may be

too conservative in a manufacturing context. A future study of the influence of C-rate on the

modeled electrochemical parameters will provide some necessary guidance in this direction.

Finally, not every cell may need to be fingerprinted. For example, retaining and measur-

ing several dozen cells (out of hundreds of thousands built per day) could provide enough
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statistical information to track day-to-day changes in electrochemical process parameters.

These measurements can still be made on formation equipment, and would only require a

small, dedicated number of formation cyclers to be withheld for this purpose. This parti-

tioning method can also encourage the adoption of more advanced characterization methods

such as computed tomography (CT) [171, 172, 173], ultrasound imaging [64, 65], and strain

measurements [144]. Measuring all of these parameters on the same cell could enable a more

complete perspective on the cell’s electrochemical and mechanical state, enabling deeper

insights.

5.4 Resistance Measurement with HPPC

Battery resistance, also sometimes referred to as internal resistance or impedance, plays a

vital role in battery manufacturing quality control since resistance differences can be at-

tributed to intrinsic cell variability [174], tab weld quality [14], electrolyte wetting [175],

internal short circuits [176], and battery lifetime [58]. Unlike measurements of capacity and

energy, resistance measurements can be measured ‘locally’ at some fixed SOC reference point.

The measurements are also fast, with measurement times ranging between 1 millisecond to

1 minute. Finally, the measurement can be obtained using resistance probes which are more

portable and less expensive than full battery testers.

Many popular methods for measuring cell resistance exists. Perhaps the most lightweight

method involves measuring an alternating current internal resistance (ACR) using a fixed-

frequency sinusoidal current input, typically set to 1kHz [177]. Another popular method,

known as the Hybrid Pulse Power Characterization (HPPC) method [178], involves applying

one or more constant-current pulse charges or discharges, each lasting on the order of seconds,

and computing the direct current resistance (DCR) using Ohm’s law. Yet another popular

method for measuring cell resistances is through electrochemical impedance spectroscopy

(EIS), which enables the separation of different kinetic processes based on their time-scales

[179]. Note that, while the EIS method provides a rich dataset for exploration, data ac-

quisition times and equipment costs are both typically higher than direct current methods,

making them less readily deployed in mass production settings. Overall, the multiplicity of

available measurement methods makes cell resistance a particularly difficult metric to repro-

duce and compare across different authors and datasets. In general, conditions for measuring

resistance are fixed within a single study, but vary greatly across different studies.

This section illustrates the issue of resistance measurement reproducibility by comparing

the resistance measured using the HPPC method and at different testing conditions. The

data is collected using an expanded HPPC test protocol which includes multiple pulse def-
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initions. As we will demonstrate, the numerical value of resistance is highly dependent on

experimental factors including SOC, temperature, and pulse conditions, highlighting that

care is needed to the reporting of the resistance value reproducible. We end this section by

recommending considerations for test design and data reporting to improve the reproducibil-

ity of reports of resistance.

5.4.1 Experimental

Figure 5.6 shows an extended version of an HPPC test that was run to probe the sensitivity

of calculated resistance values across a range of experimental conditions. The test was run

on a 2.5 Ah Ni0.6Mn0.2Co0.2//graphite cell under a 5 psi load and at a temperature setpoint

of 45◦C. The voltage and current trace of the entire test protocol is shown in Panels A and

D. The test began by resetting the SOC to 0% by discharging to 3.0V and performing a CV

hold until C/50. The pulse sequence pattern shown in Panels B and E was then repeated

across multiple SOCs. Each pulse sequence is preceded by a C/4 charge to increment the

SOC by 2.5% (indicated by * in Panels B and E). The pulse sequence consists of 30-second

pulses, each followed by a rest period. The pulse sequence is {+C/20, -C/20, +C/5, -C/5,

+C/2, -C/2, +1C, -1C, +2C, -2C}, where negative C-rates indicate discharges, and positive

C-rates indicate charges. The rest duration between each pulse was set to 2 hours for SOCs

below 10%, and 30 minutes for the remaining SOCs. During each pulse, the voltage window

was expanded to the range (2.0 V and 4.22 V). If the voltage during any pulse exceeds the

voltage bounds, then the schedule advances to the next step. The test terminates when 4.2V

is reached during an SOC-incrementing step.

The instantaneous resistance for any particular pulse is then given by Ohm’s law (Panels

C and F):

R[z]SOC,[t]sec =
V[z]SOC − V[t]sec

I
, (5.38)

where V[t]sec is the instantaneous measured voltage after t seconds, I is the constant-current

input, and V[z]SOC is the rest voltage corresponding to z SOC before the pulse begins. The

SOC for every pulse within a pulse sequence (Panel B) is calculated by integrating the current

from all of the preceding SOC-incrementing steps divided by the total capacity from all of

the SOC-incrementing steps. Every pulse within a pulse sequence is assigned the same SOC

value.
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Figure 5.6: Resistance features computed from HPPC. (A) Voltage versus time of the entire
HPPC test. (B) Magnification of one pulse sequence, which begins with a charge step to
increment the SOC (*), followed by a pulse sequence. (C) Magnification of a single pulse,
which starts at near-equilibrium conditions and ends with a rest. (D-F) Corresponding
current profiles.

5.4.2 Test Conditions that Affect Measured Resistance

Equation 5.38 highlights the fact that resistance, while simple to calculate, is a function of

many factors. Fundamentally, the measured resistance is a macroscopic representation of

multiple, concurrent electrical and electrochemical phenomena, spanning multiple materials,

interfaces, and timescales. These different phenomena can be better understood by treating

the numerator of Equation 5.38 as an overpotential η which can be further broken down as

[180]:

η = ηOhmic + ηdiffusion + ηcharge−transfer + ηnon−cell. (5.39)

The Ohmic overpotential is due to the ionic conductivity of the electrolyte, the electronic

conductivity of the active materials, and the electronic conductivity of the current collectors.

Contact resistances due to internal interfaces (i.e. between the current collectors and the
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active materials) and external interfaces (i.e. due to tab welding [14] can also be lumped into

the Ohmic overpotential term. The diffusion overpotential is due to the solid-phase diffusion

of lithium inside each electrode. The charge-transfer overpotential is due to the activation

energy of exchanging electrons and ions at the electrolyte-electrode interface. Finally, the

non-cell overpotential is due to contact resistances and cable resistances between the cell

tabs and the measurement equipment. Note that the non-cell overpotential is also a form of

Ohmic overpotential, but we separate this term in the equation since the physical origin is

different.

Equation 5.39 can be used as a starting point to rationalize why resistances measured from

HPPC depend on so many factors, including SOC (Section 5.4.2.1), temperature (Section

5.4.2.5), pulse current magnitude (Section 5.4.2.4), pulse current duration (Section 5.4.2.3),

and pulse current direction (Section 5.4.2.2). The following sections discuss each factor in

detail, referring to Figure 5.7 as a guide.

5.4.2.1 SOC Dependence

Figure 5.7(A,B) shows that the measured resistance can vary by more than 100% depending

on the measurement SOC. For this particular system, the sharp rise in resistance at SOCs

below 10% is attributed to kinetic limitations in the layered oxide cathode [158]. Resistances

at mid-range SOCs can also have inflection points. In these cells, a resistance peak appears

at ca. 50% SOC, which becomes more prominent with increasing pulse current duration.

This resistance peak is due to the Stage 2 solid-solution regime of the graphite negative

electrode [181].

The SOC-dependence of resistance has traditionally been attributed to some combination

of the charge-transfer and diffusion processes occurring at either electrode. Indeed, Butler-

Volmer kinetics, which describes the charge-transfer process, incorporates a dependence on

the lithium concentration as part of the exchange current density prefactor [182]:

j = k0c
1−α
e (cs,max − cs,e)

1−αcαs,e

(
exp

(
(1− α)F

RT
η

)
− exp

(
−αF

RT
η

))
, (5.40)

where j is the reaction flux, the terms inside the exponentials describe the overpotential-

dependence of the forward and backward reactions, and the exponential prefactor terms

together describe the exchange current density. cs,max is the theoretical maximum allowable

lithium concentration in the solid phase, cs,e is the surface concentration of lithium, and k0

is the reaction rate constant.

Solid-phase diffusion coefficients have also been experimentally confirmed to be dependent

on lithium concentration [165]. Notably, Verma et al. [183] measured lithium diffusion
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Figure 5.7: HPPC sensitivity studies for an example Ni0.6Mn0.2Co0.2|graphite pouch cell.
Panels A-D show resistances calculated at 30 seconds, 3 seconds, and 50 milliseconds, and
for both charge (red) and discharge (blue) pulses. (A,B) Impact of pulse current magnitude
on calculated resistance values. (C-D) Cross-section of the same dataset taken at at 10% and
50% SOC. (E-F) Impact of temperature on resistances calculated on 3-second, C/3 discharge
pulses. Dotted lines in Panel F show Arrhenius fits to the measured data.

coefficients that are one order of magnitude lower as the lithium stoichiometry approached

unity.

Ohmic and contact resistances are typically considered to be independent of SOC since

the materials giving rise to these resistances (e.g. current collectors, tabs, binder, electrolyte)

are assumed to be invariant to changes in solid-phase lithium concentrations which determine

SOC. However, this assertion may not be completely true considering that lithation-induced

strains in the electrodes could increase the contact pressure, thereby decreasing the contact

resistances. For NMC—graphite systems, the total volumetric expansion is maximal at high

SOCs [152], suggesting that the contact resistance could be lowest at highest SOCs. Such a

result would be consistent with the findings reported in Figure 5.7, but it is impossible to

deconvolute the effect of charge-transfer and diffusion from the effect of contact resistance
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from this dataset alone.

The functional form of the SOC-dependence of resistance cannot be easily generalized

across different cathode/anode systems, even within the same class of materials. For example,

systems comprising an Ni0.33Mn0.33Co0.33 cathode appear to have a flatter resistance profile at

intermediate SOCs [58]. Lithium iron phosphate (LFP) systems also typically see an abrupt

resistance rise towards 100% SOC, which is attributed to the appearance of the FePO4 phase

as the material becomes fully delithiated [184]. In contrast, sharp resistance rises at high

SOCs are usually not observed in NMC systems which have excess lithium inventory in the

positive electrode in the fully-charged state.

A more complete and physical description of the SOC-dependence of resistance would

require resolving the full cell SOC in terms of positive and negative electrode stoichiometries.

This can be accomplished using the voltage fitting framework introduced in Section 5.3, and

in particular, using the basis transformations defined by Equations 5.5 and 5.6, where q =

zQfull. Exploring the full cell resistance through the lens of electrode-specific stoichiometries

marks a new pathway to identify electrode-specific contributions to full cell resistance. Due

caution will be needed to develop proper baseline resistance curves for the positive and

negative electrodes, which we leave for future work.

5.4.2.2 Resistance Gap: Charge-Discharge Resistance Asymmetry

Resistances measured from HPPC may differ depending on whether the resistances are cal-

culated from charge versus discharge pulses, leading to a ‘resistance gap’, as shown in Panels

C and D. Panel C shows that, at 5% SOC, resistances calculated during a discharge pulse

are higher than that calculated on a charge pulse. The resistance gap increases as the pulse

current magnitude increases. The gap persists at higher SOCs and for C-rates greater than

C/2 (Panels B and D). At C-rates below C/2, the gap is within the measurement noise and

is no longer observable.

The presence of the resistance gap has been observed by previous authors [185, 177] and

raises some fundamental questions about the nature of resistance measurement using the

HPPC method. Does the resistance gap have a physical origin, or is it some artefact of the

HPPC test design? Even more broadly, how can voltage polarization dynamics be accurately

modeled if resistances vary on charge and discharge? While fully addressing these questions

is beyond the scope of this present work, we will provide a brief discussion to prompt further

investigations in this area.

In our design of the HPPC pulse sequence, every discharge pulse was designed to start at

the same nominal initial voltage V0 as shown in Figure 5.6B. This result was achieved since

the capacity moved during the discharge pulse is recovered exactly by the subsequent charge
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pulse. However, in this design, each charge pulse must necessarily start at a lower V0, and

hence a lower SOC, compared to the discharge pulses. The decrease in SOC is calculated

by:

∆zerror = Crate × tpulse, (5.41)

where the C-rate is given in units of hrs−1 and tpulse is the pulse duration in units of hours.

For example, applying this formula to the 2C, 30-second charge pulses would yield an SOC

decrement of 1.67% from the target value. Surprisingly, applying this SOC correction factor

to the results from Figure 5.7 would widen the resistance gap between charge and discharge,

not close it. Therefore, the SOC misalignment due to the test design cannot explain the

presence of the observed charge-discharge asymmetry.

We note two distinct, physical sources of charge-discharge asymmetry: ‘thermodynamic’

voltage hysteresis and asymmetric charge-transfer kinetics. ‘Thermodynamic’ voltage hys-

teresis refers to the presence of a ‘zero-current gap’ between the charge and discharge OCV

curve, which suggests that the same measured equilibrium potential corresponds to two dif-

ferent chemical states [114]. Asymmetric charge-transfer kinetics generally refers to reaction

mechanisms with differing rate constants depending on the direction of the reaction. Expla-

nations for this charge-transfer asymmetry have been ascribed to lithium-ion solvation and

desolvation kinetics at the electrode-electrolyte interface [186]. We hypothesize that both

thermodynamic and kinetic factors could be contributing to the observed charge-discharge

resistance asymmetry.

5.4.2.3 Pulse Durations: How Long is Too Long?

The extended HPPC test design shown in Figure 5.6 used 30-second pulses at all of the

tested C-rates. At this time-scale, Ohmic and charge-transfer processes are easily captured

since both processes occur at timescales less than one second [186]. Extending the pulse

duration further to 30 seconds enables the measured resistance to capture diffusion-related

processes occurring at lower frequencies. A 30-second pulse is reasonable for capturing all

of the different kinetic phenomena as outlined in Equation 5.39. Note that resistances at

intermediate pulse durations can always be recovered by re-processing the data. For example,

Figure 5.7 illustrates the resistances calculated at 50 milliseconds and 3 seconds from the

same dataset.

A natural question to ask in designing an HPPC test is: how long should each pulse be?

We discuss here both the advantages and disadvantages of longer pulse durations. First, we

note that pulse durations longer than 3 seconds appear to be necessary for capturing certain

kinetic phenomena. For example, Figure 5.7(A,B) show that resistances calculated from a
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3-second pulse cannot capture the graphite staging peak at 50% SOC, suggesting that this

resistance contribution from the graphite could be related to a slow diffusion process rather

than a charge-transfer limitation.

Since the goal of the HPPC test is to provide resistance values localized to a fixed SOC

set-point, we suggest that an upper limit be set on the maximum pulse duration so that the

cell SOC does not change appreciably throughout the pulse, according to Equation 5.41. For

example, if we desire no more than 1% SOC movement during a 1C pulse, then the maximum

allowable pulse duration is 36 seconds. Exceeding this pulse duration will complicate the

interpretation of the measured resistance since the underlying cell state cannot be assumed

to be static throughout the pulse duration.

5.4.2.4 Pulse Current Magnitude Affects Measured Resistance

Smaller resistances are measured at higher current magnitudes under most pulse conditions.

For example, Figure 5.7(A,B) shows that, at 30% SOC, a C/2 charge pulse yields a resis-

tance of 46.5mΩ, but the same resistance measured on a 2C discharge pulse is 5% lower,

at 44.1mΩ. Similar trends hold across most other pulse durations and SOCs. This phe-

nomenon is attributable to the fact that, at higher current densities, the charge-transfer

activation overpotential increases more slowly according to Butler-Volmer Kinetics [187].

Two exceptions break the general trend of lower measured resistances at higher current

magnitudes: at low SOCs and for pulse currents lower than C/2. At low SOCs, resistances

calculated from charge pulses continue to decrease as the C-rate is increased, but the trend

is reversed on discharge, with higher pulse C-rates resulting in higher measured resistances.

We attribute this to the fact that, at low SOCs, small increases in the cathode lithium

concentration due to the pulse discharges will lead to significant decreases in the lithium

diffusion coefficients [183]. At lower C-rates, the measured resistance values are noisier (see

Figure S2), and measured resistance differences in this regime are within the signal-to-noise.

5.4.2.5 Temperature Dependence

Temperature sensitivity of battery parameters is perhaps the most often overlooked sensi-

tivity in battery literature. Lack of temperature control is especially concerning for resis-

tance measurements since resistances are highly temperature-dependent [188]. Nearly every

lithium transport process in cells exhibits a non-trivial temperature dependence, includ-

ing the electrode-electrolyte charge-transfer process [189, 190], bulk-phase lithium diffusion

kinetics [56], and lithium transport through the electrolyte [191].

Figure 5.7(E,F) shows that, for our cells under study, the resistance at all measured
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SOCs increase five-fold from 45◦C to -10◦C. In Panel F, we fit an Arrhenius law to the data

according to:

R(T ) = A exp

(
− Ea

RT

)
, (5.42)

where A and Ea are fitting parameters, R is the universal gas constant, and T is the measured

temperature in Kelvin. The fits show good agreement with the data, with R2 > 0.98 in

all cases. An Arrhenius plot is provided in Figure S3 for reference. The Arrhenius plot

suggests that, if the data points at -10◦C are further excluded, then the R2 values improve

to 1.000 at all measured SOCs, which suggests that a single activation energy is sufficient for

describing the temperature-dependence between 0◦C and 45◦C. For temperatures lower than

0◦C, another activation energy may be needed to capture additional temperature-dependent

factors.

A practical consideration for experimental design is: “how much temperature variation

is allowable?” An answer can be provided by calculating the local slope of the temperature

sensitivity around the target operating temperature Tref :

dR

dT

∣∣∣∣
T=Tref

=
AEa

RT 2
ref

exp

(
− Ea

RTref

)
. (5.43)

For example, for a target operating temperature of Tref = 25◦C and at 90% SOC, the

temperature sensitivity is -2.3mΩ/◦C, or equivalently, every 1◦C of temperature error will

result in 2.3mΩ of resistance error.

5.4.2.6 Data Logging Frequency

From a manufacturing diagnostic perspective, it is highly desirable to separate the non-

electrochemical (i.e. Ohmic) from the electrochemical (i.e. charge-transfer and diffusion)

contributions to the total measured cell resistance. Separating the resistance contributions

can help identify the origin of resistance differences. For example, manufacturing defects

due to mechanical issues such as poor tab welding could be caught by studying differences

in the Ohmic resistance, which is measured at high frequencies. Meanwhile, differences in

the electrode material processing may affect the charge-transfer or diffusion process, which

could show up in the longer time-scale resistances.

To accurately ascertain the Ohmic resistance from the HPPC data, the data acquisi-

tion frequency should be as high as possible so that the instantaneous voltage drop can be

separated from the charge-transfer process. Since the charge-transfer process occurs on a

timescale ranging between 1Hz and 1kHz [179], a measurement of true Ohmic resistance

should be collected at frequencies higher than 1kHz. In our HPPC measurements presented

124



in Figure 5.7, 20 Hz (50 ms) was the highest measurement frequency practically achievable

on a conventional Arbin BT-2000 battery testing system. Above this frequency, data could

not be logged consistently.

5.4.3 Towards More Reproducible Resistance Measurements

The preceding section illustrated that a simple, point measurement of resistance cannot be

precisely reproduced unless at least five factors are known: the state of charge before the

pulse, whether the pulse was taken on charge or discharge, the magnitude of the pulse, the

duration at which resistance was calculated, and the temperature of the pulse. For mea-

surements of Ohmic resistance, the sample logging frequency also becomes imperative. All

of these sensitivities (with the exception of data logging frequency) reflect physical realities

of lithium transport dynamics across multiple materials and multiple interfaces; these sen-

sitivities cannot be suppressed through experimental design. A comparison of the relative

importance of each sensitivity is provided in Table 5.3. We note that the sensitivities re-

ported here are applicable to the cells we studied, which are Ni0.6Mn0.2Co0.2|graphite cells.

Other cell chemistries, with different electrode choices or electrolyte formulations, may show

different trends.

Ref. Sensitivity Condition From To ∆R (mΩ) ∆R (%)

5.4.2.1 State of charge 1 30% SOC 90% SOC 37.9 → 34.2 +9.8%
5.4.2.2 Current direction 1 discharge charge 37.9 → 38.4 +1.3%
5.4.2.3 Pulse duration 1 3 sec. 30 sec. 37.9 → 45.0 +18.7%
5.4.2.4 Current magnitude 1 0.5 C 2.0 C 37.9 → 36.5 -3.7%
5.4.2.5 Temperature 2 25◦C 30◦C 72.2 → 60.8 -15.7%

Condition 1: 30% SOC, discharge, 0.5C, 3 second, 45◦C: 37.9mΩ
Condition 2: 30% SOC, discharge, 0.33C, 3 second, 25◦C: 72.2mΩ

Table 5.3: Experimental factors affecting measured resistance from HPPC. Results show
measurements taken on Ni0.6Mn0.2Co0.2|graphite pouch cells. For each sensitivity, the resis-
tance difference is reported for a reference pulse condition.

Given that measured resistance values depend on so many different experimental factors,

the battery manufacturer will need to take precautions to enable reproducible resistance

measurements. A first step is to standardize the resistance measurement method itself. An

explicit, step-by-step protocol is needed to specify the pre-conditioning steps to arrive at a

target SOC. Next, pulse parameters, including pulse direction, magnitude, duration, need

to be fully specified and recorded. Finally, the temperature must be measured.
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With all of these metadata recorded and databased, manufacturers are better positioned

to determine whether measured resistance differences reflect physical differences in the man-

ufacturing process or cell lifetimes, or are due to differences in the measurement method. The

availability of the metadata can also enable manufacturers to implement error-compensation

models. For example, if temperature data is collected, then it can be used to calculate

a temperature correction factor based on a pre-determined Arrhenius-based temperature

calibration curve, much like the one presented in Figure 5.7F.

5.5 A Manufacturing Case Study

Here, we showcase an example of how the DVAmethod can be used for continuous monitoring

of cell electrochemical features at the end of the manufacturing process. We highlight the

various electrochemical metrics, or features, that can be extracted using the method and

their significance for manufacturing process control.

Figure 5.8 shows the general analysis workflow and lists the electrochemical features

extracted by the model. In this example, full cell voltage data (Vfull) was collected on

every manufactured cell after the formation cycling was completed (Section 5.3.4.1). Each

dataset was analyzed using the differential voltage analysis model (Section 5.3). The model

consisted of two pre-computed functions, U+ and U−, representing the positive and negative

electrode near-equilibrium reference potential curves, respectively (Section 5.3.4.2). The

same functions were used to analyze data from both Mohtat2021 and Weng2021, since the

batches shared the same positive and negative electrode chemistries.

Returning to the Weng2021 and Mohtat2021 datasets introduced in Section 5.3.2.1, we

apply the differential voltage model to extract positive and negative electrode capacities (Q̃p,

Q̃n), the capacity of lithium available for cycling (Q̃Li), the capacity of lithium lost to the

SEI (Q̃SEI), electrode lithium stoichiometries when the full cell is discharged (x̃0, ỹ0), and cell

design information including the practical negative-to-positive capacity ratio (NPRpractical)

and the excess negative electrode capacity (Q̃n,excess). The ‘tildes’ on each variable name

indicate that they are estimates which may be different from the true parameters as described

in 5.3.2. These extracted features can then be analyzed to determine whether machine

parameter adjustments are needed in upstream manufacturing processes such as those in

electrode coating or in electrolyte fill (E-fill).

Figure 5.9 show an example data visualization of the analysis outputs. Panel A uses

box-and-whisker plots to compare compares several example metrics derived from the differ-

ential voltage analysis, including Q̃p, Q̃n, Q̃SEI, and NPRpractical. The full-cell C/20 discharge

capacity, Qfull, is also provided for reference. Since the Mohtat2021 and Weng2021 cells used
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Figure 5.8: Differential voltage analysis (DVA) for coordinating manufacturing process con-
trol. The provided table describes the voltage-based electrochemical features derived from
the method, including applications in manufacturing and test design considerations.

different numbers of electrode sheets, all of the capacity values reported here have been nor-

malized to the respective electrode areas, enabling a head-to-head comparison. An example

model fitting result is also provided in 5.10.

The following sections discusse how to interpret each group of features in the context of

manufacturing process control.
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Figure 5.9: Leveraging DVA to non-destructively identify electrochemical differences between
two cell batches at the end of the manufacturing line. Data spans two separate datasets from
Weng2021 [58] (n = 20) and Mohtat2021 [152] (n = 21). Cells from both datasets share the
same chemistry (Ni0.33Mn0.33Co0.33|graphite), but were made in two separate batches and
vary in cell design parameters. (A) Box-and-whisker plots comparing data from the two
batches, where each marker shows modeled outputs on each individual cell. (B) correlation
plots of the metrics, where diagonal elements show histograms comparing individual metrics
across the two different batches.
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5.5.0.1 Monitoring Electrode Capacities and Loadings

Figure 5.9A shows extracted values of positive and negative electrode capacities, Q̃n, and

Q̃p, for every cell in this study. In a manufacturing context, the availability of data on

Q̃n and Q̃p on every batch of cells in production, without needing cell dissections, can help

to identify deviations from electrode loading set-points, e.g. due to electrode processing

variations. These electrode-level variations would be difficult to detect by relying on full cell

capacity check data alone, since capacity variability at the electrode level may not manifest

in full cell capacity checks (Section 5.5.3).

We also found that the Mohtat2021 cells had, on average, 16% higher positive electrode

areal capacity and 17% higher negative electrode areal capacity compared to the Weng2021

cells. However, according to the cell design parameters (Table 5.1), Mohtat2021 cells should

have only 7% higher positive electrode areal capacity and 9% higher negative electrode areal

capacity based on differences in the active material loading targets. The gap between the

targeted and modeled capacities suggests that the as-built cells did not match their target

loadings, and that electrode coating process parameters may need to be adjusted.

5.5.1 Monitoring Lithium Consumed During Formation

Figure 5.9A also compares the amount of lithium consumed during formation, Q̃SEI, for

all cells in this study. For the Mohtat2021 cells, the mean value was measured to be 0.35

mAh/cm2, while the Weng2021 cells measured 0.12 mAh/cm2. Mohtat2021 cells thus lost

nearly three times more lithium during formation than compared to the Weng2021 cells.

This result can be verified graphically by inspecting the voltage curve alignments from the

fitting results which shows that the positive electrode is less lithiated at 0% SOC, reflecting

the fact that extra lithium was irreversibly consumed to form the SEI and cannot return

to the positive electrode on discharge. The increase in lithium consumption rate during

the formation of the Mohtat2021 cells suggests a poorer quality of electrolyte or a less

passivating negative electrode formulation. Note that both cell builds shared the same

formation protocol, so differences in lithium consumption cannot be attributed to differences

in the formation protocol. This example highlights a scenario in which the electrolyte filling

process parameters may need to be inspected, or the quality of the electrolyte itself may

need to be verified.

The increased lithium consumption in the Mohtat2021 cells also helps to explain why,

although the Mohtat2021 cells had 16% higher positive electrode areal mass loading than

the Weng2021 cells, the full cell capacities of the Mohtat2021 cells were only 3% higher on

average. Thus, although the Mohtat2021 cells were designed with higher areal capacities
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than the Weng2021 cells, most of the benefits to full cell capacity were lost due the increased

lithium consumption rate during formation.

5.5.2 Measuring Margin to Lithium Plating Using the Practical

NP Ratio

Since the Mohtat2021 cells had consumed more lithium during formation compared to the

Weng2021 cells, the Mohtat2021 negative electrodes will also be less lithiated when the full

cell is charged to 100% SOC. The Mohtat2021 cells will therefore have a wider margin of

negative electrode capacity before the negative electrode is fully lithiated and lithium plating

begins to occur, a result that can be visually seen in Figure 5.10. Thus, Mohtat2021 cells

are expected to be less prone to lithium plating compared to the Weng2021 cells.

Figure 5.10: Comparison of DVA output between the Mohtat2021 and Weng2021 datasets.
(A,B) voltage and differential voltage curves from Weng2021. (C,D) Voltage and differential
voltage curves from Mohtat21. The asterik (*) highlights that the Mohtat2021 cell consumed
more lithium during formation compared to the Weng2021 cells.

A metric that quantifies the capacity margin before lithium plating occurs is the negative

to positive ratio (NPR). The differential voltage analysis provides such a metric, known as

the practical NPR, or NPRpractical, which we developed in Section 5.3.3.2. The NPRpractical

for Mohtat2021 cells was measured to be 1.24, compared to 1.14 for the Weng2021 cells,

confirming that the Mohtat2021 cells have a higher negative electrode capacity margin to

protect against lithium plating. For the Weng2021 cells to achieve the same NPRpractical as
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the Mohtat2021 cells, either the positive electrode loading target would need to decrease, or

the negative electrode loading target would need to increase.

5.5.3 Electrode Manufacturing Variability

Turning to Figure 5.9B, we next show how the differential voltage analysis outputs can be

used to identify differences in electrode manufacturing variability from batch to batch. We

immediately see that Mohtat2021 cells showed higher variability in the full cell capacity. The

histograms of Q̃n and Q̃p reveal that the origin of the higher full cell capacity variability stems

from the positive electrode loading, not the negative electrode loading. In fact, the negative

electrode loading for Weng2021 cells had higher variability compared to the Mohtat2021

cells, yet this increased variability did not manifest in the full cell capacity. This result

is expected considering the fact that the practical NP ratio of all cells are greater than 1,

and hence, variations in the negative electrode capacities will mainly manifest in the excess

negative electrode capacity rather than the full cell capacity. Thus, to decrease the full cell

capacity variability in the Mohtat2021 cells, the manufacturer should focus on tightening

the variability in the cathode manufacturing process, not the anode manufacturing process.

5.5.4 Parameter Correlations

Figure 5.9B finally presents correlation plots between every individual output variable of the

differential voltage analysis model. One application of studying correlations is to understand

which electrode-level parameters correlate to full cell capacity and hence directly impacts

measurable cell performance. The correlation matrix reveals that, within each batch of

cells, the positive electrode capacity correlates to full cell capacity. However, the correlation

breaks when comparing across different batches of cells since the Mohtat2021 consumed more

lithium during formation (Section 5.5.1). This result highlights the reality that multiple cell

manufacturing factors, including electrode loadings, lithium consumption during formation,

and the negative electrode excess capacity, all play a role in determining the full cell capacity.

Achieving a certain full cell capacity outcome therefore requires coordinated control across

multiple manufacturing processes.

In summary, this section highlighted the utility of applying the differential voltage anal-

ysis method to extract electrochemical metrics at the end of the cell manufacturing line.

These metrics can then be directly used to adjust process upstream manufacturing process

parameters such as those in electrolyte manufacturing or electrolyte filling. All of the data

presented in this section were directly outputted from the differential voltage method with-

out needing any electrode-level degradation analysis. Since the method can run on data
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collected during battery formation, no additional work is necessary to extend the analysis

to new cells coming off the manufacturing line, making the method highly scalable.

5.6 Conclusion

This chapter clarified how differential voltage analysis (DVA) can be used to extract cell

thermodynamic diagnostic signals from slow-rate voltage curves. We also highlighted how

the hybrid pulse power characterization (HPPC) method can be used to extract resistance

signatures on a full cell.

For DVA, we highlighted opportunities for method automation towards applications in

battery manufacturing process control. With this method, key electrochemical parameters,

such as positive and negative electrode capacities, lithium lost to form the SEI, and negative

to positive ratios, can be quantified non-destructively. We further applied the method to

a battery manufacturing dataset to gain insight into the sources and consequences of man-

ufacturing variability. In our example, we found that the source of variability in full cell

capacity for one batch of cells is due to variations in positive electrode loadings. We also

detected a three-fold difference in the amount of lithium consumed to form the SEI between

two different cell batches, a conclusion we were able to make without observing any data

from the formation cycles or using any destructive analytical methods.

To facilitate the adoption of the DVA method in manufacturing, we detailed the mathe-

matical formalism required to implement the method as well as the input data requirements.

We extended the base model formulation to explicitly account for model parameter errors due

to the inaccessible lithium problem. Using the reformulated model, we defined an expanded

set of electrochemical features which included the lithium consumed during formation, the

practical NP ratio, the excess negative electrode capacity, and the total cyclable lithium.

When combined, these features provide a “fingerprint” of the electrochemical state of the

pristine cell which can then be used to adjust parameters in various manufacturing steps

including electrode manufacturing and the formation process.

Besides clarifying the methods for diagnostic feature extraction, this work also recognized

the importance of obtaining high-quality experimental data, including both full cell and

half-cell data, to enable reproducible results. We identified several basic data collection

considerations, including the C-rate, current direction (charge versus discharge), and data

smoothing method, as being potential factors affecting model output reproducibility.

With improved awareness of the nuances involved with model construction, model output

interpretation, and data collection, the battery community can be better positioned to deploy

the DVA and HPPC methods in factories, driving continuous improvement to the battery
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manufacturing process.
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CHAPTER 6

Predicting the Impact of Formation Protocols

on Battery Lifetime

6.1 Abstract

Increasing the speed of battery formation can significantly lower lithium-ion battery man-

ufacturing costs. However, adopting faster formation protocols in practical manufacturing

settings is challenging due to a lack of inexpensive, rapid diagnostic signals that can in-

form possible impacts on long-term battery lifetime. In this chapter1, we identify the cell

resistance measured at low states of charge as an early-life diagnostic feature for screening

new formation protocols. We show that this signal correlates to cycle life and improves the

accuracy of data-driven battery lifetime prediction models. The signal is obtainable at the

end of the manufacturing line, takes seconds to acquire, and does not require specialized test

equipment. We explore a physical connection between this resistance signal and the quantity

of lithium consumed during formation, suggesting that the signal may be broadly applica-

ble for evaluating any manufacturing process change that could impact the total lithium

consumed during formation.

6.2 Introduction

With the increasing demand for electric vehicles, global lithium-ion battery manufactur-

ing capacity is quickly approaching the terawatt-hour scale [192, 193, 194]. A key step

in battery manufacturing is formation/aging, which has been estimated to account for

up to 30% of total manufacturing costs [195, 196, 197, 8, 198]. The formation/aging

1This chapter has been adapted from the following work: [58] Andrew Weng, Peyman Mohtat, Peter M
Attia, Valentin Sulzer, Suhak Lee, Greg Less, and Anna G Stefanopoulou. Predicting the impact of formation
protocols on battery lifetime immediately after manufacturing. Joule 5(11):2971-92, 2021
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process involves charging and discharging hundreds of thousands of cells in environmen-

tally controlled chambers, an expensive process that takes days to weeks to complete but

is necessary to improve battery performance and lifetime [199, 200, 201, 202, 203, 204].

Given the high cost burden, manufacturers are incentivized to develop new formation pro-

cesses that decrease the total time consumed by formation/aging. A variety of fast forma-

tion strategies have been studied in academic literature, which employ some combination

of rapid charge-discharge cycles, restricted voltage windows, and optimized temperature

[200, 21, 205, 206, 207, 208, 209, 210, 28, 211, 212, 213, 25]. Recent studies have shown that

formation time can be decreased while preserving battery lifetime [205, 213, 28], although

conclusions remain tenuous due to the limited sample sizes typically used.

In real manufacturing settings, a ‘one size fits all’ formation protocol is unlikely to exist

since cell designs with different electrolytes, electrodes, and active materials influence im-

portant formation factors such as charging capability, electrode wettability, and SEI reaction

pathways. However, cycle life testing often takes months or years to complete, posing a sig-

nificant barrier to the adoption of new, potentially cost-saving formation protocols. While

characterization techniques such as volume change detection [214, 215, 216], impedance spec-

troscopy [217, 21], acoustic spectroscopy [218, 219, 220, 65] and X-ray tomography [221, 222]

have been proposed for use in manufacturing settings, these methods can be costly to imple-

ment since the metrology will need to be deployed at scale in the battery factory. Diagnostic

features that rely only on current-voltage signals that can be obtained using already available

cycling equipment [223] and are thus highly attractive.

In this work, we show that the cell resistance at low states of charge can be used to screen

new formation protocols and predict battery lifetime. Our work shows that this signal,

measured at the beginning of life, is a stronger predictor of battery lifetime than conventional

signals such as Coulombic efficiency. This metric can be measured within seconds and can be

integrated directly into the battery manufacturing process with no additional capital costs.

This low-SOC resistance metric can thus be deployed in practical manufacturing settings

to accelerate the evaluation of new formation protocols. We further demonstrate that the

low-SOC resistance decreases as the quantity of lithium lost to the SEI during formation

increases. With this physical insight, we propose that this metric, in principle, also be used

to diagnose the impact of any manufacturing process that alters the total lithium consumed

during formation.
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6.3 Methods

In this section, we outline the build process for the cells used in this study, the forma-

tion protocols used, the cycle life test protocols, and the analysis methods used to extract

beginning-of-life and end-of-life diagnostic features as well as perform statistical analysis.

Forty NMC/graphite pouch cells with a nominal capacity of 2.36Ah were built for this

study (Table 6.1). Half of the cells underwent a fast formation protocol, and the remaining

cells underwent a baseline formation protocol (see Section 6.3.2. Cells were further subdi-

vided into ‘room temperature’ and ‘45°C’ aging groups for cycle life testing. The cycling

profile was identical for all cells: 1C charge to 4.2V with a CV hold to 10 mA and 1C

discharge to 3.0V. Periodic RPTs [224] were inserted throughout the cycle life test, which

includes slow (C/20) charge and discharge curves as well as a HPPC sequence [178] used to

extract the cell internal resistance as a function of SOC.

Dimensions 72 mm x 110 mm
Stack (pos/neg) 7/8

Positive Chemistry NMC111
Composition NMC111 : C65 : PVDF
Ratio 94 : 3 : 3
Loading (double-sided) 34.45 mg/cm2

Collector thickness 12 um

Negative Chemistry Graphite
Composition MAG-E3 : CMC : SBR
Ratio 97 : 1.5 : 1.5
Loading (double-sided) 15.7 mg/cm2

Collector thickness 10 um

Electrolyte Salt 1.0 M LiPF6

Solvent EC : EMC
(3 : 7)

Additive 2 wt% VC, 4g/Ah
Mass 10.55 g

Separator Supplier Entek
Thickness 12 um

Table 6.1: Cell design parameters

Our experimental design (Figure 6.1a) used larger sample sizes (n = 10 per group) com-

pared with those typically reported in the literature which often uses three cells or fewer per

group. The increased sample size enables a more statistically rigorous analysis of the impact
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of different formation protocols on cell characteristics at the beginning and the end of life.

Figure 6.1: Experimental design. (a) Distribution of cells across two formation protocols and
two aging temperatures. The aging test consists of 1C charge/discharge cycles between 3.0V
and 4.2V, with RPTs inserted periodically into the test. (b, c) Voltage and current versus
time profiles for (b) fast formation and (c) baseline formation. Green lines show diagnostic
steps inserted into the formation protocols for this study only. The diagnostic cycles are
not considered to be part of the formation protocol. Ignoring the diagnostic cycles, the fast
formation protocol lasts 14 hours and the baseline formation protocol lasts 56 hours.

6.3.1 Cell Build Process

The pouch cell architecture is summarized in Figure 6.2.

The cathode was comprised of 94:3:3 NMC 111 (TODA North America), C65 conductive

additive (Timcal), and PVDF (Kureha 7208). The slurry was mixed in a step-wise manner,

starting with a dry solids homogenization, wetting with NMP, and then the addition of the

PVDF resin. The slurry was allowed to mix overnight under static vacuum with agitation

from both the double helix blades (30 rpm) and the high-speed disperser blade (1600 rpm).

The final slurry was gravity-filtered through a 125 µm paint filter before being coated on

a roll-to-roll coating machine (Creative & Innovative Systems). The electrode was coated

using the reverse comma method at 2 m/min. The final double-sided loading was 34.45

mg/cm2.

The anode was comprised of 97:0:(1.5/1.5) graphite (Hitachi MAG-E3), no conductive

additive, and equal parts CMC (proprietary) and SBR (Zeon BM-451B). The graphite and

pre-dispersed CMC were mixed before further let-down with de-ionized water and overnight

dispersion under static vacuum and double helix blade agitation (40 rpm). Before coating,

the SBR was added and mixed in with helical blade agitation for 15 minutes under active
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Figure 6.2: Pouch cell architecture. Left: cell stack definition. Right: unit cell definition.
The same cell architecture is used for all cells in this study.

vacuum. The final slurry was gravity-filtered through a 125 µm paint filter before being

coated on a roll-to-roll coating machine (Creative & Innovative Systems). The electrode was

coated using the reverse comma technique at 1.5 m/min. The final double-sided loading was

15.7 mg/cm2.

Both anode and cathode were calendared at room temperature to approximately 30%

porosity before being transferred to a -40°C dew point dry room for final cell assembly

and electrolyte filling. The cells, comprising 7 cathodes and 8 anodes, were z-fold stacked,

ultrasonically welded, and sealed into formed pouch material (mPlus). The assembled cells

were placed in a vacuum oven at 50°C overnight to fully dry prior to electrolyte addition.

Approximately 10.5 g of electrolyte (1.0M LiPF6 in 3:7 EC:EMC v/v + 2wt% VC from

Soulbrain) was manually added to each cell before the initial vacuum seal (50 Torr, 5 sec).

The total mass of all components of the battery is 56.6 ± 0.3g.

The now-wetted cells were each placed under compression between fiberglass plates held

in place using spring-loaded bolts. The compression fixtures are designed to allow the gas

pouch to protrude and freely expand in the event of gas generation during formation. All

cells were allowed to wet for 24 hours before beginning the formation process.

After formation, the cells were removed from the pressure fixtures, returned to the -40°C
dew point dry room, and degassed. The degassing process was completed in an “mPlus”

degassing machine, automatically piercing the gas pouch, drawing out any generated gas

during the final vacuum seal (50 Torr, 5 sec), and then placing the final seal on the cell.

Cells are manually trimmed to their final dimensions before being returned to their pressure
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fixtures.

6.3.2 Formation Protocols

Two formation protocols were implemented: a fast formation protocol previously reported

by Wood et al. [205, 21] which completes within 14 hours (Figure 6.1b) and a baseline

formation protocol (Figure 6.1c) which completes in 56 hours.

The fast formation protocol maximizes the time spent at low negative electrode potentials

to promote the creation of a more passivating SEI [21, 225, 226, 227]. In this protocol, the

cell is brought to 3.9V using a 1C (2.36Ah) charge, followed by five consecutive charge-

discharge cycles between 3.9V and 4.2V at C/5, and finally ending on a 1C discharge to

2.5V. Each charge step terminates on a CV hold until the current falls below C/100. A C/10

charge-discharge cycle was appended at the end of the test to measure the post-formation

cell discharge capacity. A 6-hour step was included in between the C/10 charge-discharge

steps to monitor the voltage decay. The formation sequence takes 14 hours to complete after

excluding time taken for diagnostic steps.

A baseline formation protocol was also implemented which serves as the control for com-

paring against the performance of fast formation. This protocol consists of three consecutive

C/10 charge-discharge cycles between 3.0V and 4.2V. A 6-hour rest was also added between

the final C/10 charge-discharge step to monitor the voltage decay signal. The total formation

time was 56 hours after excluding the diagnostic steps. Formation was conducted at room

temperature for all cells and across both formation protocols.

All formation cycling was conducted on a Maccor Series 4000 cycler (0-5V, 30µA - 1A,

auto-ranging). Following formation, one cell (#9) was excluded from this study due to tab

weld issues. Consequently, the sample count for the ‘baseline formation, 45°C’ cycling group

was decreased to 9. The remaining groups had sample counts of 10.

The mean cell energy measured at a 1C discharge rate from 4.2V to 3.0V at room tem-

perature is 8.13 Wh. Full cell level volumetric stack energy density is estimated to be 365

Wh/L based on a volume of 69mm x 101mm x 71 mm x 3.2 mm, and the gravimetric stack

energy density is estimated to be 144 Wh/kg based on a total cell mass of 56.6g.

6.3.3 Cycle Life Testing

Following the completion of formation cycling, cells were placed in spring-loaded compression

fixtures to maintain a uniform stack pressure. Half of the cells from each formation protocol

were placed in a thermal chamber (Espec) with a measured temperature of 44.2±0.1°C. The
remaining cells were left at room temperature and were exposed to varying temperatures
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throughout the day (24.5± 0.6°C). Long-term cycle life testing was conducted on a Maccor

Series 4000 cycler (0-5V, 10A, auto-ranging). The cycle life test protocol was identical

for all cells and consisted of 1C (2.37A), CC charge to 4.2V with a CV hold to 10mA

and 1C discharges to 3.0V. At every 50 to 100 cycles, the test was interrupted so that

a Reference Performance Test (RPT) could be performed [224]. The RPT consists of a

C/3 charge-discharge cycle, a C/20 charge-discharge cycle, followed by the Hybrid Pulse

Power Characterization (HPPC) protocol [178]. The HPPC test is used to extract 10-second

discharge resistance (R10s) as a function of SOC (Figure B.6). Every cell was cycled until the

discharge capacity was less than 1.18 Ah, corresponding to less than 50% capacity remaining.

The total test time varied between 3 to 4 months and the total cycles achieved ranged between

400 and 600 cycles. Cycle test metrics are shown in Figures B.1, B.2, B.3, B.4.

6.3.4 Statistical Significance Testing

The standard Student’s t-test for two samples was used throughout this study to check if

differences in measured outcomes between the two different formation protocols were statis-

tically significant. The p-value was used to quantify the level of marginal significance within

the statistical hypothesis test and represents the probability that the null hypothesis is true.

A p-value less than 0.05 was used to reject the null hypothesis that the population means are

equal. All measured outcomes were assumed to be normally distributed. Box-and-whisker

plots are also used throughout the paper to summarize distributions of outcomes. Boxes

denote the inter-quartile range (IQR) and whiskers show the minimum and maximum values

in the set. No outlier detection methods are employed here due to the small sample sizes

(n < 10). Finally, the Pearson correlation coefficient, −1 ≤ ρ ≤ 1, was used to determine

the significance of correlations between initial state variables and lifetime output variables.

|ρ| > 0.5 is taken to indicate a statistically meaningful correlation.

6.3.5 Predictive Lifetime Model

Due to the small number of data points available, the model prediction results are sensitive

to which cells are chosen for validation. Therefore, we used nested cross-validation [228] to

evaluate the regularized linear regression model on all the data without over-fitting. The

nested cross-validation algorithm is as follows: first, we separated the data into 20% ‘valida-

tion’ and 80% ‘train/test’. Then, we performed four-fold cross-validation on the ‘train/test’

data to find the optimal regularization strength for Ridge regression, α∗, using grid search.

Finally, we trained the Ridge regression algorithm with regularization strength α∗, using all

of the train/test data, and evaluated the error on the validation data. We repeated this
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process for 1000 random train-test/validation splits and reported the mean and standard

deviation of the mean percent error for each run,

MPE[%] =
1

N

N∑
k=1

ypredk − ytruek

ytruek

. (6.1)

Each run can select a different optimal regularization strength α∗.

6.3.6 Electrode Stoichiometry Model

To construct the stoichiometry model shown in Figure 6.8a, a full cell near-equilibrium

potential curve was first extracted using the C/20 charge cycle from the RPT. A randomly-

selected cell from the 45°C cycling group was selected for this data extraction. Positive

and negative electrode near-equilibrium potential curves were adapted from Mohtat et al.

[216]. The electrode-specific utilization windows are determined by fitting the positive and

negative electrode potential curves to match the full cell curve by solving a least squares

optimization problem as outlined in Lee et al. [61]. The resulting positive and negative

electrode alignment minimized the squared error of the modeled versus the measured full

cell voltage. The fast formation curve equilibrium potential curve was constructed by shifting

the positive electrode curve horizontally and re-computing the full cell voltage curve.

The full cell resistance curves in Figure 6.8(c) sourced data from the HPPC sequence as

part of the same RPT used to obtain the equilibrium potential curve shown in Figure 6.8(a).

A cubic spline fit was used to create smooth resistance curves. (A model generated using a

linear fit instead is provided in Figure B.20). To break down the resistance contribution into

‘positive resistance’ and ‘negative + other resistances’, a baseline reference resistance Rref

was first defined as the minimum measured full cell resistance below 1Ah. The ‘negative +

other resistances‘ was then assigned a value of (1− fpos) ·Rref . The remaining resistance was

then assigned to the positive electrode. fpos was set to 0.7 to model a generic NMC/graphite

system [229, 21, 230].

6.3.7 Voltage Fitting Algorithm

Methods for estimating electrode-specific state-of-health metrics using half-cell reference

curves have been previously reported [136, 231, 137]. Here, we applied an automated voltage

fitting approach based on work by Lee et al. [61] to extract electrode capacity losses LAMPE

and LAMNE, as well as lithium inventory loss (LLI) for both fresh and aged cells. The input

data consisted of C/20 charge curves measured at each RPT. An example set of C/20 charge

curves over age is shown in Figure B.14.
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The method to extract electrode-specific state of health indicators LLI, LAMPE and

LAMNE is adapted from [61]. Positive and negative near-equilibrium potential curves were

adapted from Mohtat et al. [216]. The positive and negative electrode potential curves are

obtained during delithiation and lithiation, respectively, which correspond to charging in

the full cell. The curves were obtained at the C/20 rate and serve as proxies for the true

equilibrium potential curves. The same equilibrium potential curves were used to model

data at both test temperatures.

To prevent over-fitting, the positive electrode stoichiometry at 100% SOC (y100) was

fixed to 0.03 at every instance for this analysis. Fixing this value yielded smoother and

more physical degradation trajectories over cycle life. Figure B.15 shows an example of

voltage fitting results for a single cell. The degradation metrics, including LLI and LAM

were computed in the usual manner (see Lee et al. [61] for more details).

6.3.8 Hybrid Power Pulse Characterization of Half Cells

Coin cell half cells were built with lithium iron phosphate (LFP), NMC111, and graphite as

the working electrode and lithium metal as the counter electrode. The NMC material used

was identical to that used in the pouch cells for the formation experiments (TODA North

America). The graphite material used differed from the ones used in the pouch cells. The

coin cell construction consisted of 2032 form factor components including a wavespring and

spacer. The electrolyte used was 1M LiPF6 with EC/EMC. The lithium counter electrode

was 16 mm in diameter, the separator was 19 mm in diameter, and the working electrodes

were 14mm in diameter. Working electrodes were measured to be approximately 60 µm thick

and the lithium counter-electrodes were approximately 750 µm thick. Working electrodes

were single-side coated. Calculated theoretical capacities for the NMC111, LFP, and graphite

cells were 2.0 mAh, 2.9 mAh, and 4.6 mAh, respectively.

The Hybrid Pulse Power Characterization (HPPC) protocol was adapted for the coin

cells. Potential ranges were modified depending on the working electrode. The currents used

in the pulses were also scaled down to 0.4 mA for all cells (Figure B.17). The measured

resistance drop includes a large Ohmic contribution due to the presence of the lithium metal

counter electrode. However, since this counter electrode was present in all cells, differences in

measured, SOC-dependent resistances between the different cells remain meaningful. All coin

cells were pre-conditioned using at least three slow charge-discharge cycles before starting

the HPPC sequence.
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6.4 Results

Figure 6.3: Cycle life test results. (a,c) Discharge capacity for individual cells measured
during the 1C/1C aging test at (a) room temperature and (c) 45°C. Gaps in the curves
correspond to the embedded RPT cycles. (b,d) End-of-life capacity retention distributions,
defined as when the cell discharge capacity reaches 70% of initial capacity. ‘***’ - statistically
significant with p-value < 0.001.

6.4.1 Fast Formation Cells Had Longer Cycle Life

Fast formation cells had higher average lifetimes than the baseline formation cells under

the cycle life test, as shown in Figure 6.3. The degradation rate of fast formation cells ini-

tially track the baseline formation cells closely under both temperatures tested (Panels a, c).

However, after 250 cycles, all cells begin to lose capacity rapidly. The fast formation cells

sustained over 100 cycles longer before reaching the end of life, defined as when cells reach

70% of their initial measured capacity (Panels b, d). This result is highly statistically signifi-

cant (p-value < 0.001). The general result that fast formation improved lifetime performance

holds across multiple performance metrics, including Coulombic efficiency (Figure B.2) and

voltage efficiency (Figure B.3), as well as when plotted against equivalent cycles (Figure
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B.5). Together, these results support the growing body of evidence that well-designed fast

formation protocols can improve cycle life [21, 28, 232].

6.4.2 Finding Diagnostic Signals at the Beginning of Life

Given the demonstrated impact of formation protocol on battery cycle life, we turn to inves-

tigating methods to quantify the impact of fast formation on the initial cell state. Differences

in the initial cell state (e.g. lithium consumed during formation) may offer clues as to how

fast formation could have improved cycle life. We focused our work on studying signals

directly obtainable from full cell current-voltage data, which offer the lowest barrier-to-entry

for deployment in real manufacturing settings.

6.4.2.1 Conventional Metrics of Formation Efficiency

Figures 6.4(a-c) show standard measures of formation efficiency extracted from the formation

cycling data. The discharge capacity, Qd, was measured at the end of each formation protocol

during a C/10 discharge step from 4.2V to 3.0V. Qd corresponds to the capacity of cyclable

lithium excluding the contribution from lithium irreversibly lost to the SEI during formation.

Fast formation decreased Qd by 0.3%, a small but statistically significant difference (p =

0.01). The charge capacity, Qc, was taken during the initial charge cycle, and includes both

the capacity of cyclable lithium as well as the capacity of lithium lost irreversibly to the

SEI. The quantity of lithium inventory lost to the SEI can be calculated as QSEI = Qc −Qd

(Panel b). Note that while the two formation protocols differed in the initial charging rate,

Qc remains a fair comparison metric since both charge protocols ended on a potentiostatic

hold at 4.2V until the current dropped below C/100. Fast formation increased QSEI by

23 mAh (p = 0.03). Finally, we also included another common evaluation metric, the

formation Coulombic efficiency, defined as CEf = Qd/Qc (panel c), which shows that fast

formation decreased CEf by 0.8% (p = 0.02). Measured values are summarized in Table

6.2. Together, the results show that fast formation marginally increased the amount of

lithium consumed during formation. A p-value of less than 0.05 in all cases indicate that

the measured differences, while small, are statistically significant to a least a 95% confidence

level.

6.4.2.2 Low-SOC Resistance

Following formation, the cell internal resistance was measured using the Hybrid Power Pulse

Characterization (HPPC) technique [178] prior to the start of the cycle life test. During this

test, a series of 10-second, 1C discharge pulses were applied to the cell at varying SOCs,
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and the resistance is calculated using Ohm’s law (Figure B.6). The 10-second resistance,

R10s, was plotted against SOC for all cells cycled at 45°C (Figure 6.4d). R10s generally

remained flat at mid-to high SOCs. The peak at 55% SOC corresponds to the stage 2 solid-

solution regime of the graphite negative electrode [181]. R10s rose sharply below 10% SOC.

Focusing on the low-SOC region (Figure 6.4e), we observed that R10s measured at 4% and

8% SOC were lower for fast formation cells compared to that of baseline formation cells.

This result was highly statistically significant, with a p-value less than 0.001 (Figure 6.4f).

A similar result held when R10s was measured at room temperature (Figure B.7). At mid

to high SOCs, differences in R10s between fast formation and baseline formation cells were

generally not statistically significant (Figure B.7). Thus, differences in resistance between

the two formation protocols appeared uniquely at low SOCs. All initial cell state metrics

are summarized as part of Table 6.2.

Metric Unit Temp. Baseline Fast ∆ (abs) ∆ (%) p-value
Formation Formation

Qd mAh Room 2370 (11) 2362 (7) -8 -0.3% 0.01
QSEI (Qc −Qd) mAh Room 346 (27) 369 (35) +23 +6.6% 0.03

CEf % Room 87.3 (0.9) 86.5 (1.1) -0.8 -0.9% 0.02
R10s,5%SOC (RLS) mΩ Room 139.7 (2.9) 130.0 (2.3) -9.7 -6.9% <0.001
R10s,5%SOC (RLS) mΩ 45°C 48.7 (1.6) 43.8 (1.1) -4.9 -10.0% <0.001

R10s,90%SOC mΩ Room 23.6 (0.1) 23.9 (1.0) +0.3 +1.3% 0.28
R10s,90%SOC mΩ 45°C 14.5 (0.4) 14.9 (0.5) +0.4 +2.8% 0.10

Table 6.2: Comparison of initial cell state metrics. Values are reported as mean (standard
deviation). Qd, QSEI, and CEf are extracted directly from the formation test protocol. R10s

metrics are extracted from the initial reference performance test at the beginning of the cycle
life test profile.

To study the robustness of the low-SOC resistance signal, we varied the SOC set-point

between 4% and 10% and also computed the resistance under 1-second and 5-second pulse

durations. In all cases, the resistance metric provided a high degree of contrast between the

two different formation protocols (Figures B.8 and B.9). The lowest SOC measured in our

dataset was 4% SOC.

The remainder of the paper will focus on the resistance measured at 5% SOC and with

a 10-second pulse duration. From hereon, this metric will be referred to as the ‘low-SOC

resistance’, RLS.
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Figure 6.4: Diagnostic signals for differences in the initial cell state. (a) Final discharge ca-
pacity, (b) capacity of lithium inventory lost during formation, and (c) formation Coulombic
efficiency, measured from the formation protocol. (d) 10-second resistance obtained from the
Hybrid Pulse Power Characterization test prior to the start of the cycle life test. (e) Magni-
fication of the 10-second resistance at low SOCs. (f) Distribution of 10-second resistance at
5% SOC comparing between the two formation protocols. (d-f) are sourced from the initial
reference performance test from the 45°C cycle life test (see Figure B.7 for the results at
room temperature cycle life test). ‘*’ - statistically significant with p-value < 0.05. ‘***’ -
statistically significant with p-value < 0.001.

6.4.3 RLS as a Diagnostic Signal: A Data-Driven Perspective

6.4.3.1 RLS Correlates to Cycle Life

To evaluate the merit of low-SOC resistance (RLS) as a diagnostic feature, we explored

the correlations between the initial cell metrics (Figure 6.4) and the cycle life, defined as

cycles to 70% of the initial capacity. The results are shown in Figure 6.5. Out of all metrics

studied, RLS was the only signal with a meaningful correlation to cycle life, with a correlation

coefficient of ρ = −0.84. Other metrics such as Qd and CEf were poorly correlated to cycle

life (|ρ| < 0.5). We attribute the weakness of these correlations to the poor signal-to-noise

inherent in cell capacity measurements in the absence of high-precision cycling [140, 233],

a topic we explore in detail later. The resistance measured at high SOCs also did not
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correlate to cycle life. From these results, we observe that the low-SOC signal uniquely

holds information related to cycle life. These results have been reproduced for different end-

of-life definitions ranging between 50% and 80% (Figures B.11, B.12), as well as for charge

pulses (Figure B.13).

Figure 6.5: Correlation between early-life diagnostic signals and cycle life. (a-d) Correlations
under room temperature cycling. (e-h) correlations under 45°C cycling. Cycle life is defined
as cycles to 70% of initial capacity. QSEI and CEf are taken directly from the formation
test. R10s,5%SOC (RLS) and R10s,90%SOC are measured at the beginning of the cycle life test
and thus share the same temperature as the cycle life test.

6.4.3.2 RLS Predicts Cycle Life

To understand if RLS can be used to improve battery lifetime prediction, we trained univariate

prediction models with regularized linear regression models inspired by Severson et al. [234].

The performance of the predictive models are summarized in Table 6.3. A dummy regressor,

which predicts the mean of the training set and requires no cycling data, was included as

a benchmark. For room temperature cycling, the model trained using RLS achieved the

lowest test error of 6.9% compared to 13.3% for the dummy regressor. A similar result held

under 45°C cycling. To compare, we also included the Var(∆Q100−10(V )) metric introduced

by Severson et al. [234], defined as the variance in the discharge capacity versus voltage

147



curve between cycle 10 and cycle 100. When applied to our dataset, this metric did not

yield a significant improvement over the dummy regressor. This result suggests that RLS is

a stronger predictor of battery lifetime than Var(∆Q100−10(V )).

We repeated this study with multivariate regularized linear regressions: one using the

three capacity-based features from formation (QSEI, CEf , and Qd) and another using the

previous three formation features plus RLS. Using only the features from formation, no

improvement over the dummy regressor was achieved. By including RLS in the feature set,

however, the test error was improved. Yet, the test error achieved did not exceed the test

error of the univariate model using RLS alone. This result suggests that the chosen set

of formation features does not provide useful information about cycle life beyond what is

provided by RLS. This result is counter-intuitive considering the important role that lithium

consumption plays in determining battery lifetime [199, 200, 201, 202, 203, 204], which should

be reflected in the formation features such as QSEI and CEf . We hypothesize that the reason

for the poor model performance using formation signals is not because these formation signals

lack physical meaning. Rather, due to the absence of high-precision cycling and temperature

control, the useful information within these signals may be masked by the noise in the data

(e.g. due to current integration errors, temperature variations over the course of 10+ hours

of formation, etc.) RLS appears to be able to overcome these limitations. We explore the

connection between RLS and the other formation metrics in detail later.

Model Data needed Room temp 45°C
Train Test Train Test

Dummy regressor none 13.3 (1.0) 14.4 (4.0) 14.0 (0.9) 15.1 (3.6)

RLS 3 cycles 6.9 (0.5) 8.0 (2.8) 6.5 (0.6) 7.4 (2.9)
QSEI formation 12.2 (1.2) 14.0 (4.6) 14.1 (0.8) 15.2 (4.4)
CEf formation 12.2 (1.2) 13.8 (4.5) 14.1 (0.7) 15.1 (4.3)
Qd formation 12.0 (1.2) 13.6 (5.0) 13.5 (0.8) 15.0 (4.0)
Var(∆Q100−10(V )) 100 cycles 11.6 (1.7) 14.4 (5.2) 10.3 (1.1) 11.5 (4.7)

QSEI + CEf + Qd formation 12.8 (1.3) 14.5 (5.1) 13.4 (1.1) 14.1 (4.0)
QSEI + CEf + Qd + RLS 3 cycles 7.2 (1.1) 9.4 (4.0) 6.5 (1.0) 7.4 (2.9)

Table 6.3: Training and testing errors for different lifetime prediction models. Values repre-
sent means (standard deviations). The dummy regressor model uses no features and simply
returns the mean of the training set, and hence is the baseline against which to judge the
performance of other features. All remaining models use a Ridge regression with nested
cross-validation to determine the optimal regularization strength (see Experimental Proce-
dures).

As defined in this work, the model trained using RLS required just three cycles of lifetime
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testing, i.e., one diagnostic cycle. (The two preceding cycles consisted of slow-rate charge-

discharge cycles as part of the reference performance test inserted at the beginning of the

cycle life test.) By comparison, Var(∆Q100−10(V )) requires 100 cycles of lifetime testing.

For future implementations, RLS can be incorporated directly into the formation protocol,

further decreasing the required measurement time. The total amount of data required to

exercise each predictive model is summarized in Table 6.3.

Overall, the correlation and prediction results suggest that RLS may be useful for advanc-

ing broad-scale efforts to improve cycle life prediction using small and readily-obtainable

datasets at the beginning of life. While the results are promising, they are also limited, since

only two types of formation protocols have been studied here. To understand the extent to

which RLS can generalize to other applications (e.g. chemistries, use cases, cell designs) and

to understand the relation between RLS and the other formation signals, the rest of the paper

will focus on providing a physical interpretation of RLS. A mechanistic understanding of RLS

will provide the necessary context required to evaluate the general scope of applicability and

limitations of the method.

6.5 Discussion

6.5.1 RLS as a Diagnostic Signal: A Mechanistic Perspective

Understanding the physical interpretation of diagnostic signals can help assess whether pre-

diction frameworks leveraging such signals can generalize to new systems. In principle,

different formation protocols, manufacturing process changes, and cell design changes could

all lead to changes in lithium consumption and active material losses during formation. To-

wards this end, we will first review the commonly accepted theory of SEI passivation and

showed how our observations of QSEI and CEf support this theory. Next, we will show that

our observations of RLS are consistent with this theory but provide a stronger and more

easily measurable signal compared to conventional measures.

6.5.1.1 Benefits of Fast Formation on Cycle Life

Lithium intercalation at negative electrode potentials higher than 0.25V-0.5V vs Li/Li+ is

generally associated with the formation of a porous, poorly-passivated SEI film [202, 227,

235, 236, 204]. Conversely, lithium intercalation at negative electrode potentials below 0.25V-

0.5V has been found to promote the formation of a more conductive and passivating SEI

film [232, 227]. Attia et al. [232] showed that the reduction of ethylene carbonate (EC)

at negative electrode potentials above 0.5V vs Li/Li+ is non-passivating. This negative
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electrode potential corresponds to a full cell voltage of below 3.5V, neglecting overpotential

contributions. Hence, an ideal formation protocol would minimize the time spent charging

below 3.5V while maximizing the time spent above 3.5V. The fast formation protocol we

tested [21] achieves this objective by rapidly charging the cell to above 3.9V at a 1C rate and

subsequently cycling the cell between 3.9V and 4.2V, thus decreasing the time associated

with the non-passivating EC reduction reaction. Focusing on the initial charge cycle, fast

formation cells spent only 2 minutes below 3.5V and 12.9 hours above 3.5V, while baseline

formation cells spent 30 minutes below 3.5V and 9.4 hours above 3.5V. Fast formation

decreased the time spent below 3.5V by 28 minutes. Fast formation resulted in a net increase

in total lithium consumed during formation, ∆QSEI, by 23 mAh (Table 6.2). This increase

is attributed to the additional lithium consumed to form the passivating SEI.

While fast formation cells consumed more lithium during formation and thus exhibited

lower CEf (or, equivalently, higher QSEI), these cells lasted longer on the cycle life test.

While a lower initial coulombic efficiency is conventionally associated with poor cycle life

performance [140, 237], the opposite was true in our study since the additional lithium

consumed during fast formation was associated with the creation of a more passivating SEI.

A more passivating SEI can, for example, lower the rate of electrolyte reduction reactions

associated with the formation of solid products that decrease the negative electrode porosity

which could subsequently increase the propensity for lithium plating during charge [238, 47].

A more passivating SEI could therefore play a role in delaying the ‘knee-point’ observed in

the cycle test data. Our result reinforces the notion that passivation of the SEI during the

first cycle plays an important role in determining battery cycle life.

6.5.1.2 Lithium Loss Dominates Overall Cell Capacity Loss Over Cycling

We performed a voltage fitting analysis [136, 140, 137, 231, 61] to confirm that the main

failure mode in our cells is the loss of lithium inventory (LLI) over cycle life (Figures 6.6, 6.7).

We found that LLI can fully account for the thermodynamic (i.e. C/20) cell capacity loss over

life. The knee-point in LLI over cycle life coincides with the knee-point in the capacity loss.

All cells also experienced an increase in the loss of active material in the negative electrode

(LAMNE) after the knee-point, which could indicate the occurrence of porosity decrease

and/or electrolyte depletion as a result of a less passivating SEI, as discussed previously.

The increased LAMNE after the knee-point was less prominent in the fast formation cells,

suggesting that the more passivating SEI generated from fast formation could be playing a

role in delaying the knee-point to improve lifetime. Finally, all cells experienced a knee-point

in the capacity fade rate irrespective of whether the discharge capacity is measured at higher

(C/3) or lower (C/20) C-rates (Figure B.16), indicating that kinetic limitations cannot fully
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account for the observed knee-point in the cycle life data. The origin of the capacity loss

therefore has a strong thermodynamic component which can be attributed to the loss of

lithium inventory. This analysis further supports the theory that consuming more lithium

at low negative electrode potentials during formation can create a passivating SEI that is

beneficial to cycle life [232].

Figure 6.6: Evolution of diagnostic signals throughout the 45°C cycle life test. All metrics
shown are calculated using data collected from the Reference Performance Tests (RPTs) run
throughout the cycle life test. Metrics include (a) 10-second resistance calculated at 4% SOC,
(b) 10-second resistance calculated at 100% SOC, (c) C/20 discharge capacity loss, (d) loss of
active material in the positive electrode, (e) loss of active material in the negative electrode,
and (f) loss of lithium inventory. Loss of active material and loss of lithium inventory are
calculated using the voltage fitting techniques reported by Lee et al. [61] (e.g. Figure B.15).
Thick lines show mean values averaged from each group of baseline and fast formation cells.
Thin lines show results from individual cells.

6.5.1.3 RLS is Attributed to Kinetic Limitations in the Positive Electrode

To explore possible physical connections between RLS and the impact of fast formation on

cycle life, we first develop a physical interpretation of the low-SOC resistance. We focus our
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Figure 6.7: Evolution of diagnostic signals throughout the room temperature cycle life test.
All metrics shown are calculated using data collected from the Reference Performance Tests
(RPTs) run throughout the cycle life test. Metrics include (a) 10-second resistance calculated
at 4% SOC, (b) 10-second resistance calculated at 100% SOC, (c) C/20 discharge capacity
loss, (d) loss of active material in the positive electrode, (e) loss of active material in the
negative electrode, and (f) loss of lithium inventory. Loss of active material and loss of
lithium inventory are calculated using the voltage fitting techniques reported by Lee et al.
[61] (e.g. Figure B.15). Thick lines show mean values averaged from each group of baseline
and fast formation cells. Thin lines show results from individual cells.

discussion on the resistance contributions from the positive and negative electrode. While

other cell components (e.g. current collectors, tabs, and electrolyte) also contribute to the

total cell resistance, they are not known to depend on SOC and hence cannot explain the

rising resistance measured at low SOCs.

Positive electrode diffusion limitations generally play a significant role in the low-SOC

cell resistance in NMC/graphite systems. The solid-state diffusion coefficient in NMC mate-

rials has been measured to decrease by more than one order of magnitude at high states of

lithiation [157], a phenomenon attributed to the depletion of divacancies needed to support

diffusion as the electrode becomes fully lithiated [158, 159]. Using half-cell HPPC mea-
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surements, we experimentally verified that the positive electrode dominates the low-SOC

resistance. In the coin cell form factor, the 10-second resistance of graphite/Li stayed be-

low 100mΩ as the graphite approached full delithiation, while the 10-second resistance of

NMC/Li exceeded 1000mΩ as the NMC approached full lithiation (Figure B.18). This find-

ing is consistent with previous empirical studies on NMC/graphite systems [239, 230, 229].

In particular, An et al. [239] used a three-electrode pouch cell configuration to show that,

for an NMC/graphite system, the positive electrode accounts for nearly all of the measured

full cell resistance at all SOCs.

Charge transfer kinetics at either electrode could also play a role at determining total

cell resistance. The charge transfer process at either electrode can be modeled using the

Butler-Volmer equation [240]:

j = k0c
1−α
e (cs,max − cs,e)

1−αcαs,e

(
exp

((1− α)F

RT
η
)
− exp

(
− αF

RT
η
))

. (6.2)

In this equation, j is the reaction flux, the exponential terms describe the overpotential

dependence of the forward and backward reactions, and the exponential prefactor terms

together describe the exchange current density. cs,max is the theoretical maximum allowable

lithium concentration in the solid phase, cs,e is the surface concentration of lithium, and k0

is the reaction rate constant. The exchange current density approaches zero as the electrode

becomes either fully lithiated or fully delithiated. Indeed, our coin cell data shows that as the

graphite negative electrode approaches full delithiation, the measured resistance rises steeply

(B.18i). However, the magnitude of this charge transfer effect remains small compared to

the contribution from the diffusion-limited NMC positive electrode (B.18h) at high states of

lithiation.

In summary, we attribute the low-SOC resistance to kinetic limitations in the positive

electrode. This result was experimentally verified using coin cell measurements of electrode

resistances and is consistent with literature findings [239, 230, 229]. The kinetic limitation

arises from a combination of diffusion and charge transfer limitations in the positive electrode.

For NMC/graphite systems, diffusion limitations (i.e. ‘kinetic hindrance’ [159]) is a major

component of the rapid rise in measured resistance at low SOCs.

6.5.1.4 Lithium Consumption Leads to an Apparent Decrease in RLS

Fast formation decreased the measured low-SOC resistance (RLS). From our previous anal-

ysis, fast formation also increased the lithium consumed during formation (QSEI) to create

a more passivating SEI. To explain the connection between these two quantities, we employ

a simple electrode stoichiometry model which describes both the thermodynamic potentials
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Figure 6.8: Electrode stoichiometry model illustrating the impact of lithium consumption
on low-SOC resistance. (a) Relative alignment of the positive and negative equilibrium po-
tential curves after baseline formation and fast formation. (b) Effect of increasing lithium
consumption (∆QSEI) on the measured discharge capacity. (c) The corresponding cell resis-
tance curves, where the measured full cell resistance (black lines) have been broken down
into positive electrode charge resistance (blue) and all other resistances (red). (d) The effect
of increasing ∆QSEI on the measured low-SOC resistance for varying SOC set-points. Bands
in (b,d) indicate estimates of the measurement error bound using conventional battery cy-
cling equipment, clarifying RLS’s improved accuracy in representing changes in QLLI when
compared to Qd (see Supplementary Materials).

and kinetic limitations of both electrodes. Figure 6.8a shows the relative alignment of the

positive and negative equilibrium potential curves after baseline formation and fast forma-

tion. The origin of the capacity axis corresponds to 0% SOC (3.0V) after baseline formation.

The gap between the positive and negative potential curve endpoints is attributed to the

lithium lost to the SEI during formation, or QSEI [137, 140]. By comparison, the curves prior

to formation do not have a gap, corresponding to QSEI = 0 (Figure B.19). We shift the pos-

itive electrode curve to the left by some amount ∆QSEI to emulate the impact of additional

lithium consumed during fast formation. Here, ∆QSEI has been set to an exaggerated value

of 100mAh for graphical clarity. An alternative graphic is provided in Figure B.20, which
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sets ∆QSEI = 23mAh to coincide with the measured difference between baseline formation

and fast formation.

Figure 6.8c shows the corresponding full cell 10-second resistance measured from the

HPPC test. The full cell resistance is partitioned to model a scenario in which the positive

electrode dominates the low-SOC resistance, consistent with previous findings. The resis-

tance curve of the positive electrode must also translate to the left by the same amount

∆QSEI due to the increased lithium consumed during fast formation. From the reference

frame of the full cell, the measured low-SOC resistance will decrease by ∆RLS. In this man-

ner, RLS can decrease without any real change in positive electrode kinetic properties. The

decrease in RLS reflects the shifting of the positive electrode stoichiometry window as lithium

is consumed.

Two additional observations support the connection between ∆QSEI and ∆RLS. First,

RLS appears to be positively correlated to CEf and negatively correlated to QSEI (Figure

B.10), a result which is consistent with theory and predicted by the electrode stoichiometry

model. The strengths of the correlations are generally weak, with correlation coefficients,

|ρ|, ranging between 0.2 and 0.5. We attribute the weakness of the correlations to the

poor signal-to-noise of the capacity measurements using typical battery cycling equipment,

which may compound at room temperature where the temperature is not strictly controlled

(Figure B.21). Second, we note that the resistance around 90% SOC is insensitive to small

changes in SOC, so changes in resistance at 90% SOC provides a measure of true resistance

changes rather than apparent changes due to electrode stoichiometry shifts (Figure 6.4d).

Fast formation did not significantly increase the resistance at 90% SOC (Figure B.7), so the

changes in RLS is not likely to be due to material changes in the cell resistance (e.g. due to

resistive surface films). This observation further supports the hypothesis that changes in RLS

are due to electrode stoichiometry window shifts in the presence of lithium consumption.

6.5.1.5 RLS Improves the Observability of Lithium Loss During Formation

Figure 6.8b shows that the sensitivity of the measured cell discharge capacity (∆Qd) to the

lithium consumed (∆QSEI) is 0.9 mAh/mAh. The error in measuring Qd is 20 mAh due

to current integration inaccuracies using ordinary cycling equipment. Hence, using Qd to

estimate QSEI leads to a measurement error of 22 mAh. Since the total difference in lithium

consumed between fast formation and baseline formation is 23mAh, measurement noise may

prevent ∆Qd from effectively resolving this difference. In our experiments, we relied on

large sample sizes (n = 10 per group) to resolve the small difference in lithium consumption

between the two formation protocols.

Figure 6.8d shows that the sensitivity of the low-SOC resistance (∆RLS) to ∆QSEI is 0.22

155



mΩ / mAh when measured at 5% SOC. The error in measuring RLS is 0.88 mΩ due to

the voltage and current precision for calculating resistance using Ohm’s law using ordinary

cycling equipment. Hence, using RLS measured at 5% SOC to estimate QSEI leads to a

measurement error of 4 mAh, a five-fold improvement over using Qd. Figure 6.8d further

shows that the sensitivity of RLS is improved at lower SOCs. For example, RLS measured at

2% SOC leads to a measurement error of 2.5 mAh. Any SOC set-point lower than 7% SOC

makes RLS a more precise measure of QSEI compared to Qd. See Supplementary Materials

for a detailed derivation of the measurement errors.

6.5.2 Generalizability

So far, we have explored the sensitivity of RLS to lithium lost during formation for an

NMC/graphite system. By understanding the benefits of fast formation [232], we rationalized

why RLS is predictive of cycle life for our system. Here, we discuss the application of RLS

towards understanding other degradation modes, chemistries, and use cases. This discussion

sets the stage for understanding how RLS may be incorporated into generalizable lifetime

prediction and diagnostic frameworks.

6.5.2.1 RLS Can Detect Active Material Losses

In principle, some small quantity of positive and negative active material could be lost

during formation, i.e. due to expansion and contraction of the electrodes during initial

lithiation and delithiation. In the positive electrode, lithiation-induced stresses can induce

particle fracturing in the metal oxide particles [241, 242, 243], leading to capacity loss. In

the negative electrode, while graphite cracking is unlikely to occur under most applications

[244], insufficient binder adhesion or electrolyte wetting [245] could create local islands of

isolated graphite particles, leading to active material loss.

We develop a simple mechanistic electrode stoichiometry model to examine the influence of

active material losses in both the positive and negative electrodes. Our model differentiates

between loss of active material in the lithiated phase versus the delithiated phase [137].

For the positive electrode, loss of active material in the delithiated phase is represented

by shrinking the positive electrode equilibrium potential curve with the point of minimum

stoichiometry fixed (i.e. shrinking from the bottom, Figure B.22a), while loss of active

material in the lithiated phase is represented by shrinking the positive electrode equilibrium

potential curve with the point of maximum stoichiometry fixed (i.e. shrinking from the top,

Figure B.22d). RLS was found to increase with loss of positive active material, but only

in the delithiated phase (Figures B.22b). By contrast, active material lost in the lithiated
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phase bears a negligible effect on RLS (Figures B.22d,e). This result can be understood

graphically by considering the influence of the positive curve shifts on the positive electrode

stoichiometry at low SOCs. In the case of loss of active material in the lithiated phase, the

positive electrode stoichiometry at low SOCs does not significantly change, whereas in the

delithiated case, the maximum positive electrode stoichiometry increases, causing RLS to

increase. Note that Qd has the opposite sensitivity: Qd is sensitive to loss of active material

in the lithiated state only. Hence, RLS and Qd complement each other in the study of positive

electrode active material loss mechanisms. A similar analysis can be done on the negative

electrode (Figure B.23).

Figure B.24 compares the sensitivity of RLS and Qd to the four different modeled cases of

active material losses. The results highlight that the measured value of RLS is determined by

multiple degradation factors, including both lithium inventory loss and active active material

losses. It would therefore be impractical to use RLS to identify any dominant degradation

mode without some a priori understanding of the system through additional characterization

and analysis. For diagnostic purposes, we recommend that RLS be used within the context

of a broader set of non-destructive techniques to enrich the understanding of degradation

mechanisms. From a data-driven prediction perspective, however, the sensitivity of RLS

to active material losses in addition to lithium inventory loss may make it a more robust

indicator for multiple degradation modes. In general, RLS may need to be coupled with other

signals to improve the observability of distinct degradation modes.

6.5.2.2 When is RLS Sensitive to Lithium Loss?

We have so far focused on an NMC111/graphite system where kinetic limitations in the

positive electrode dominates RLS, a result which holds for nickel-rich cathode chemistries

such as nickel cobalt aluminum (NCA) and higher nickel content NMC materials [159, 158].

In general, electrode design factors such as particle size [246] and surface modifications

[247] could impact the relative contribution of each electrode to RLS. To study how such

changes could modify the sensitivity of RLS to changes in QSEI, we performed a sensitivity

study using our electrode stoichiometry model by varying the proportion of the total cell

resistance attributed to the positive electrode. The results (Figures 6.9, B.25) show that

RLS becomes ineffective at quantifying QSEI if the positive electrode contributes to less than

50% of the total cell resistance at low SOCs. This result suggests that the utility of RLS as

a diagnostic signal for QSEI diminishes for systems where the positive electrode is not the

main contributor to RLS.
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Figure 6.9: Sensitivity of RLS to ∆QSEI: example 1. Sensitivity of low-SOC resistance
to ∆QSEI depends on the fractional contribution of the positive electrode to the total cell
resistance: Example 1. Sensitivity of the low-SOC resistance metric to ∆QSEI when (a,c)
positive electrode dominates the cell resistance and when (b,d) negative electrode dominates
the cell resistance. fpos is the fractional contribution of the positive electrode to the total
cell resistance.

6.5.2.3 When Can RLS Predict Cycle Life?

Our cycle life correlation study was presented in the context of the study of fast formation.

To understand whether RLS can predict cycle life for other use cases (i.e. chemistries and

aging conditions), we start by reviewing why RLS was predictive of cycle life for fast forma-

tion. Figure 6.10 outlines the connection between fast formation and cycle life. In brief, fast

formation spent more time above 3.5V, creating a higher quantity of SEI that is more pas-

sivating [232]. The passivating SEI improved cycle life by protecting the negative electrode

against side reactions over life. The low-SOC resistance, RLS, provided an estimate of the

amount of lithium consumption during formation, QSEI, and thus served as a proxy for both

the amount of passivating SEI formed and the cycle life of the cell. This physical description

rationalizes the predictive power of RLS within the context of the degradation pathway (fast
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formation) and chemistry (NMC/graphite) explored in this study.

Figure 6.10: Fast formation degradation pathway and connection to low-SOC resistance.
Inner box: the relationship between low-SOC resistance (RLS) and lithium consumed during
formation (QSEI) is general. Outer box: the relationship between low-SOC resistance (RLS)
and cycle life applies specifically to fast formation, where higher QSEI signaled the creation
of a more passivating SEI [232] which improved cycle life. The relationship between RLS and
cycle life may differ for other use cases.

To gain confidence that RLS can predict cycle life for other use cases, the relationship

between lithium loss (QSEI) and cycle life must first be understood. For our study, the

knowledge that increased QSEI signals a more passivating SEI was necessary for rationalizing

why higher QSEI after formation could be beneficial to cycle life. For other use cases, the

opposite may be true. For example, low first-cycle efficiencies for silicon-containing anodes

[248] or lithium metal anodes [249] generally indicate poor negative electrode passivation

which leads to poor cycle life. Under such use cases, RLS may still be predictive of cycle life,

but the relationship may become inverted.

6.5.3 Unique Properties of RLS

Here, we highlight several unique properties of using the low-SOC resistance (RLS) as an

early-life diagnostic signal. First, since the positive electrode kinetics becomes poorer as the

electrode becomes fully lithiated, the sensitivity of RLS to lithium loss (QSEI) improves as the

measurement SOC decreases (Figure 6.8d). The results from this study used RLS measured

at 5% SOC. For future work, the sensitivity to QSEI may be further improved by measuring

at even lower SOCs. Second, RLS can be used to extract information about QSEI within

seconds and therefore can be deployed in manufacturing settings without decreasing produc-

tion speed. By contrast, conventional measurements of QSEI relying on Coulomb counting

require full charge-discharge cycles during formation which could take hours to days to com-
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plete. Since measuring RLS does not require full cycles, RLS is also suitable for diagnosing

differences in lithium consumption between formation protocols with different charge and

discharge conditions. Finally, RLS becomes stronger the earlier in life it is measured. As

the cell ages, continual loss of lithium inventory will cause the highly sloped region of the

positive electrode resistance curve to become inaccessible during the normal full cell voltage

operating window. Typically, diagnostic features become less predictive of cycle life the ear-

lier in life the feature is sampled [234]. RLS is expected to have the opposite relationship:

the earlier in life RLS is sampled, the more sensitive it will be to changes in QSEI.

6.5.4 State of Health Beyond Cycle Life: Practical Considerations

Our discussion has so far focused on evaluating the merits of RLS for diagnosing cycle life.

However, in real manufacturing settings, cycle life is only one of many considerations for

adopting new formation protocols. Here, we introduce two such considerations: (1) impact

to gas buildup over life, and (2) impact to aging variability over life. In our analysis, RLS

could not be used to learn the impact of fast formation on gas buildup or aging variability.

Here, we give an overview of these observations.

6.5.4.1 Gas Buildup Over Life

Swollen cells in a battery pack can compromise pack integrity and pose safety hazards to first-

responders for electric vehicle fire accidents [250]. Understanding the impact of formation

protocols on cell swelling is therefore just as important as understanding the impact on cycle

life for practical purposes.

Fast formation caused a significant degree of swelling at the end of life for cells cycled at

45°C (Figures 6.11, B.26). At this temperature, 9 of 10 fast formation cells showed visible

signs of swelling, compared to only 2 of 10 for baseline formation. None of the cells cycled

at room temperature showed any appreciable degree of swelling. All swollen pouch cells

were compliant and compressible, indicating that gas was occupying the space inside the

pouch bags. Since the cells were de-gassed after formation, the gases present exclude the gas

generated during formation and represent only the accumulation of gas during the cycle life

test. The absence of gas during room temperature cycling indicates that the gas evolution

is thermally activated. More experimental work is needed to determine the origin of gas

evolution over cycle life due to fast formation. We provide speculation into the origin of gas

evolution as part of Appendix B.

Our study found no correlations between RLS and the gas amount as measured by pouch

thickness. We attribute the lack of correlation primarily to the fact that the cell age was
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Figure 6.11: Pouch cell swelling at the end of the cycle life test. (a) Example images of pouch
cells taken after aging showing varying degrees of swelling. (b-c) Comparison of pouch cell
thicknesses measured at the end of the cycle life test. (b) Cells cycled at room temperature.
(c) Cells cycled at 45°C. Cell thickness is measured using a manual caliper, which represents
the point of maximum deflection. ‘***’ - statistically significant with p-value < 0.001. ‘n.s.’
- not statistically significant.

not well-controlled at the time of the pouch thickness measurement: cells stopped cycling

anywhere between 0% and 50% capacity retention. Future studies will be needed to confirm

the relationship between RLS and gas build-up.

6.5.4.2 Aging Variability

Adopting a new formation protocol in practice also requires a close understanding of the

impact of new formation protocols on cell aging variability over life. Cells with non-uniform

capacity fade could take longer to balance in a pack and cause a deterioration of energy

available at the pack-level [251]. Pack imbalance issues could lead to consumer products

being retired earlier, compounding existing battery recycling challenges [252]. Non-uniform

cell degradation will also be more difficult to re-purpose into new modules [253, 254, 255],

creating higher barriers for pack reuse.

The inter-quartile range (IQR) of cycle life for fast formation cells was higher than that of

baseline formation cells (Figures 6.3b,d). The same result held under both room temperature

and 45°C cycling, as well as across different end-of-life definitions (Figure 6.12), suggesting

that fast formation increased aging variability. A key question is whether fast formation

created more heterogeneous aging behavior which caused the higher variability in aging, or if

the higher variability is due to the cells lasting longer. To answer this question, we employed

the modified signed-likelihood ratio test [256] to check for equality of the coefficients of

variation, defined as the ratio between the standard deviation and the mean cycle life. The

resulting p-values were greater than 0.05 in all cases. Therefore, with the available data,
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we cannot conclude that fast formation increased the variation in aging beyond the effect of

improving cycle life. While a relationship between formation protocol and aging variability

may still generally exist, this difference could not be determined with our sample sizes (n = 10

cells per group). This result motivates the continued usage of larger sample sizes for future

studies on the impact of formation protocol on aging variability.

Figure 6.12: Aging variability as a function of end-of-life definitions. (a,b) Cycles to end
of life under (a) room temperature and (b) 45°C cycling. Boxes show inter-quartile range
(IQR) and whiskers show the min and max values. (c,d) Inter-quartile range (IQR) divided
by median plotted as a function of end of life capacity definition for (a) room temperature
and (b) 45°C cycling.

6.5.5 Diagnostic Features Beyond RLS

This section briefly revisits other diagnostic features introduced in Chapter 5 as candidate

features for improving lifetime prediction models. These features are mostly collected via a

slow-rate C/20 charge curve taken as part of the initial RPT before the cells begin cycling.

The exceptions to this are the formation coulombic efficiency (CEf) and the voltage decay

(∆V (V )) which are collected directly from the formation data.

The results, shown in Figure 6.13, reveal that three additional features besides RLS are

correlated to cycles to 70%: the negative electrode capacity Qn, the practical negative-to-

positive ratio NPR, and the voltage decay metric ∆V measured during the high-SOC rest
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period as part of the formation protocols themselves. Thus, RLS is not the only feature

that can potentially predict cycle life. There are many others. While the interpretation of

these remaining metrics remain unclear, this result encourages the continued exploration of

using DVA and signals measured directly from formation (∆V ) to improve battery lifetime

prediction.

Figure 6.13: Diagnostic features beyond RLS. Results are shown for the 45°C data only. Qfull:
full cell capacity in Ah. Qn: negative electrode capacity. Qp: positive electrode capacity.
QLi: capacity of lithium lost to SEI. NPR: Practical negative-to-positive ratio. R10s,x%SOC

: 10-second resistance measured at x% SOC (when x = 5 then this metric is equivalent to
RLS). CEf : formation coulombic efficiency. ∆V : 6-hour voltage decay. The last two metrics
are measured during the formation protocols themselves.

We note that many of these trends disappear when inspecting the room-temperature

cycle life tests (data not shown). The cause of this is unclear, though we speculate that

the inadequate temperature control in the room-temperature test could be creating another

source of cell aging variability that is masking the correlations.

Finally, we inspect how the correlations between the diagnostic signals and cycle life

change as the diagnostic signals are measured later in life (see Figure 6.14). Whereas the

diagnostic features we studied so far have been collected at the very beginning of the cycle

life test, we now extract these features for aged RPTs (shown as asterisks in Figure 6.14),

employing the same methods outlined in Chapter 5.

We now focus on two specific diagnostic features that are shown to correlate to cycle life:
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Figure 6.14: Trends in RLS and Qn correlations as the cells age.

Qn and RLS. For Qn, the correlations remain present over intermediate cycle numbers below

200. However, once the knee occurs at cycle 262, the correlation disappears and inverts. At

this time the reason for the inversion is unclear. For RLS, we see that the correlation appears

at cycle 3, consistent with the reports from the rest of this paper. However, after only 50

cycles, the correlation vanishes only to reappear at the end of life, after the cell has taken

a knee. We attribute the disappearance of the signal over life to be due to the confounding

effect of cell impedance growth (e.g. due to SEI growth at the anode or surface film growth

at the cathode) which introduces another source of resistance variability. However, after the
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knee has occurred, the resistance of all cells uniformly increases and the resistance becomes

strongly correlated to the remaining capacity.

Overall, Figure 6.14 highlights the complicated dynamics of the correlations between

diagnostic features and cycle life which warrant further study.

6.6 Conclusion

In this chapter, we demonstrated that low-SOC resistance (RLS) correlates to cycle life

across two different battery formation protocols. As a predictive feature, RLS provided

higher prediction accuracy compared to conventional measures of formation quality such

as Coulombic efficiency as well as state-of-the art predictive features based on changes in

discharge voltage curves. RLS is measurable at the end of the manufacturing line using

ordinary battery test equipment and can be measured within seconds. Changes in RLS are

attributed to differences in the amount of lithium consumed to the SEI during formation,

where a decrease in RLS indicates that more lithium is consumed. The sensitivity of RLS to

lithium consumption is due to the presence of kinetic limitations in the positive electrode

causing the total cell resistance to increase at low SOCs. For this reason, RLS provides a

particularly strong signature in nickel-rich positive electrode systems where kinetic hindrance

plays a strong role in limiting lithium transport towards high states of lithiation. Since

the physical interpretation of RLS is general, RLS can be broadly applicable for screening

any manufacturing process that impact the amount of lithium consumed during battery

formation. As a whole, our results hold promise for decreasing lithium-ion battery formation

time and cost while improving lifetime, as well as identifying rapid diagnostic signals for

screening new manufacturing processes and cell designs based on cycle life.
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CHAPTER 7

Variability Propagation in Parallel-Connected

Systems

7.1 Abstract

This chapter1 proposes an analytical framework describing how initial capacity and resistance

variability in parallel-connected battery cells may inflict additional variability or reduce vari-

ability while the cells age. We derive closed-form equations for current and SOC imbalance

dynamics within a charge or discharge cycle. These dynamics are represented by a first-

order equivalent circuit model and validated against experimental data. To demonstrate

how current and SOC imbalance leads to cell degradation, we developed a successive update

scheme in which the inter-cycle imbalance dynamics update the intra-cycle degradation dy-

namics, and vice versa. Using this framework, we demonstrate that current imbalance can

cause convergent degradation trajectories, consistent with previous reports. However, we

also demonstrate that different degradation assumptions, such as those associated with SOC

imbalance, may cause divergent degradation. We finally highlight the role of different cell

chemistries, including different OCV function nonlinearities, on system behavior, and derive

analytical bounds on the SOC imbalance using Lyapunov analysis.

7.2 Introduction

The transition to sustainable energy and transportation will require building and operating

battery manufacturing factories at a gigawatt-hour scale. Among the many challenges with

rapidly opening new battery factories, the question of “how much manufacturing variability

1This chapter was adapted from the following work: [257] Andrew Weng, Hamidreza Mohavedi, Jason
B Siegel, and Anna G Stefanopoulou. Current imbalance in dissimilar parallel-connected batteries and the
fate of degradation variability. Journal of Dynamic Systems, Measurement, and Control, Jan 2024, 146(1):
011106
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is too much?” remains pertinent. The presence of variability in battery cell capacities and

resistances is widely known [258, 259, 260], the origins of which can be traced to manufac-

turing process variations affecting electrode-level thicknesses and loadings [261, 262, 112].

Beyond the manufacturing of new battery packs, efforts to remanufacture second-life bat-

tery packs from aged batteries will introduce even higher variability in cell capacities and

resistances [263, 264, 265]. Studying the effects of cell variability is thus a central question

concerning both the manufacturing of new battery cells and the remanufacturing of aged

battery packs.

When non-identical battery cells are connected in series and parallel to create a pack (see

Fig. 7.1), the system dynamics can no longer be fully understood by studying an individual

cell. In series-connected systems, for example, individual cells may be at different SOCs,

but the cell having the lowest capacity is generally understood to limit the overall system

capacity [266, 267, 268, 269, 270]. In parallel-connected systems, the currents passing through

individual cells could additionally differ due to mismatches in cell internal resistances and

current collection pathways. These current differences introduce another source of variability

in degradation pathways, with unclear consequences over the lifetime of a battery pack.

To further complicate matters, the current and SOC imbalance dynamics within parallel-

connected cells are less observable in practical battery systems where individual branch

currents may not be measured [271]. Finally, mathematical analysis of parallel systems

has also historically been hindered by the appearance of differential-algebraic equations,

complicating efforts to find closed-form solutions.

This work thus focuses on exploring the less-understood phenomena of current imbalance

dynamics and variability propagation within parallel-connected battery systems.

7.2.1 Literature Review

Existing literature on parallel-connected systems can be grouped into three approaches:

experimental, simulation-based, and model-based. Experimental approaches have focused

on accurately measuring the current-sharing behavior of parallel-connected battery systems

using sensors including current shunts and Hall effect sensors [272, 273, 274]. These experi-

ments have shown that large current imbalances can persist during parallel-connected system

operation [274]. The current-sharing behavior of parallel-connected cells has since been repro-

duced in simulation using a variety of battery models ranging from equivalent circuit models

[275, 273, 276, 277] to physics-based models [104]. These experimental and simulation-based

approaches have enabled accurate quantification of the imbalance dynamics, especially in

the context of evaluating the impact of temperature gradients [278, 276, 279]. Model-based
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Figure 7.1: Battery cell manufacturing variability context. Battery manufacturing efforts
spur the need to understand the coupled dynamics of non-identical battery cells connected
in parallel.

approaches have focused on developing state-space formulations enabling state estimation

[280, 281, 282, 283], stability analysis [51] and steady-state analysis [273, 284, 285].

Despite these recent advances in measuring and modeling current imbalance in parallel-

connected systems, a major gap in understanding remains: how does current imbalance

affect long-term degradation behavior in parallel-connected systems? Reniers et al. [104]

tackled this question by simulating the degradation of an entire energy storage system,

initializing each cell with different initial capacities. The authors found that initial cell-to-

cell variability barely affected long-term degradation. However, the degree to which this

conclusion can generalize to additional use cases and cell systems remains under-explored.

Song et al. [276] analytically demonstrated that capacity variation can decrease over time for

convex or linear degradation curves and under certain degradation model assumptions. This

analysis, however, was restricted to a battery model with a linearized open-circuit voltage

(OCV) function.

7.2.2 Main Contributions

This work seeks to expand the analytical understanding of parallel-connected battery systems

toward answering the question “how does current and SOC imbalance within each cycle

affect long-term degradation trajectories?” (see Fig. 7.2). Towards this goal, Section 7.3

first develops a model of the intra-cycle (i.e. within a cycle) battery dynamics, starting

with an affine model based on equivalent circuits. We derive closed-form solutions to the

system dynamics, enabling a rigorous analysis of the intra-cycle dynamics and subsequent

degradation convergence behavior. We then run numerical simulations with nonlinear OCV
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functions for two cathode chemistries. In doing so, we assess the error introduced by the

affine OCV assumption. We also analyze the stability and bounds of the SOC imbalance

dynamics using Lyapunov analysis for the general case with a nonlinear OCV function and

time-varying current inputs. Sec. 7.4 then introduces a reduced-order degradation modeling

framework enabling cycle-by-cycle updates to cell capacities and resistances as a function

of SOC and current imbalance within each cycle. The work from Secs. 7.3 and 7.4 are

combined in Sec. 7.5 to realize the simulation framework outlined in Fig. 7.2, where the

intra-cycle dynamics are used to update the inter-cycle degradation, and vice versa. Here, we

highlight the importance of the underlying degradation model assumptions which ultimately

determine whether degradation trajectories converge or diverge over time. Sec. 7.6 compares

the modeled results to experiments, verifying the accuracy of the model-predicted intra-cycle

dynamics as well as giving clues to degradation convergence/divergence for a real-world

example. Sec. 8.2.4 finally suggests future research directions.

Figure 7.2: Main contributions and outline of this work. (A,B) Intra-cycle current and SOC
imbalance dynamics are first explored in detail (Section 7.3). (C,D) A framework for suc-
cessively updating cell capacities and resistances as a function of the intra-cycle dynamics
is next proposed (Section 7.4). (E) Convergence properties of degradation trajectories are
explored by combining the intra-cycle dynamics with the inter-cycle dynamics from the pre-
vious sections (Section 7.5). Finally, comparisons of model predictions versus experimental
results (Section 7.6) as well as recommended future work (Section 8.2.4) are provided.
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7.3 Intra-Cycle Dynamics: Closed-Form Solutions

We start by deriving equations describing the intra-cycle dynamics of parallel-connected

systems. Section 7.3.3 first develops closed-form solutions assuming an affine OCV function.

Section 7.3.4 next discusses the system behavior with nonlinear OCV functions.

7.3.1 Model Selection

We chose an OCV-R model for this work (see Fig. 7.3). This model provides the simplest

representation of cell-to-cell variability in capacity and resistance. We have omitted model

components that would add complexity without improving the understanding of the effect of

cell-to-cell variability and degradation. Specifically, the circuit representation of the parallel-

connected system omits RC pairs and interconnect resistances. Cell resistances are also

assumed to be constant parameters, though it is known that cell resistance is generally a

nonlinear function of both SOC and temperature [286, 58]. A thermal model is also omitted

to first focus on studying the effect of cell capacity and resistance variability on the electrical

dynamics. The analysis is finally restricted to two parallel-connected cells. The analytical

framework presented here can be extended in the future to support more cells [276], higher

degrees of nonlinearities (e.g. temperature-dependent resistances) [277], and more physics-

based cell models such as the single-particle model (SPM) [132, 133, 104].

Figure 7.3: System representation
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7.3.2 Model Description

Fig. 7.3 shows the parallel system under consideration. Ri and Qi describe the resistances

and capacities of cells i ∈ 1, 2, respectively. Since modern lithium-ion have coulombic ef-

ficiencies exceeding 99%, we assume that Ri and Qi remain constant over the course of a

single cycle. Ui is the OCV function and is generally a nonlinear, monotonically increasing

function with respect to the cell SOC zi. The system input is the applied current I which is

defined to be positive on discharge. The system output is the terminal voltage, Vt, which is

identical for all batteries due to voltage conservation, and is given by:

Vt(t) = Ui(zi(t))− Ii(t)Ri. (7.1)

Current conservation further requires that:

I(t) =
∑
i

Ii(t). (7.2)

Applying (7.1) and (7.2) for two parallel-connected cells yields the following expressions for

the terminal voltage and the two branch currents:

Vt(t) =
R1U2(z2(t)) +R2U1(z1(t))−R1R2I(t)

Rtot

(7.3)

I1(t) =
−∆U(t) +R2I(t)

Rtot

(7.4)

I2(t) =
+∆U(t) +R1I(t)

Rtot

, (7.5)

where Rtot ≜ R1 + R2 and ∆U(t) ≜ U2(z2(t)) − U1(z1(t)). The SOC dynamics for each

battery are given by the integrator state:

żi(t) = −
1

Qi

Ii(t). (7.6)

7.3.3 The Affine OCV-R System

The general behavior of the affine OCV-R system is previewed in Fig. 7.4 which serves as

a reference throughout this section. This figure shows the analytical solutions throughout

an entire charge and discharge cycle, including constant (CC) phases and a constant voltage

(CV) phase at the top of charge. Panel A shows solutions to the branch current and cell

SOC equations from Eqs. (7.9), (7.17), (7.18). Panel B shows solutions to the current and
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Figure 7.4: Demonstration of the affine OCV-R system. (A) Current: I, SOC: z, and
voltage: V , over a complete charge-discharge cycle. (B) Current and SOC imbalance. The
affine OCV function parameters used are (α, β) = (1.2, 3.0). The cell parameters used are
(Q1, Q2) = (4.3, 3.0)Ah, (R1, R2) = (136, 150)mΩ. This cell pairing represents an aged cell
(Cell 2), with lower capacity and higher resistance, connected with a less aged cell (Cell
1). The initial condition was set to (z1,0, z2,0) = (0.3, 0.2) to highlight the effect of initial
SOC imbalances on rebalancing currents. |I| = 3A during the constant current phases, and
the CV termination condition was set to Q2/5A. The green markers indicate that this same
set of parameters will be referenced in later figures. (C) Steady-state solutions to SOC and
current imbalance.

SOC imbalance equations from Eqs. (7.14), (7.21). During the CV phase, Eqs. (7.23) and

(7.26) were used. Panel C shows steady-state solutions to current and SOC imbalance.

We start by considering the case of an affine OCV function:

Ui(zi(t)) = αzi(t) + β, (7.7)

where α, β > 0. α is the characteristic slope of the OCV function and β defines the minimum

voltage. We note that this is the same starting point as previous works [275, 285, 284,
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276]. Section 7.3.4 later lifts this restriction and studies the model error introduced by this

assumption. Here, we will also assume constant-current input unless stated otherwise.

7.3.3.1 SOC Imbalance

Combining equations (7.4-7.7) yields the following system of equations:

[
ż1

ż2

]
=

α

Rtot

+1
Q1

−1
Q1

−1
Q2

+1
Q2

[z1
z2

]
− 1

Rtot

R2

Q1

R1

Q2

 I. (7.8)

The solution to (7.8) reads:[
z1

z2

]
=

1

Qtot

[
Q2(1− e−t/τ ) Q1 +Q2e

−t/τ

Q1 +Q2e
−t/τ Q1(1− e−t/τ )

][
z1,0

z2,0

]
(7.9)

+
κ

Qtot

[
−Q2(1− e−t/τ )− t

+Q1(1− e−t/τ )− t

]
I, (7.10)

where Qtot ≜ Q1 +Q2, and:

τ ≜
Rtot

α

(
Q1Q2

Qtot

)
(Time constant) (7.11)

κ ≜
1

α

(
R2Q2 −R1Q1

Qtot

)
(Input sensitivity). (7.12)

Remark 1. The parameters τ and κ can be physically interpreted: τ is the time constant of

the system and κ describes the input sensitivity.

The SOC imbalance is defined by ∆z(t) ≜ z2(t)− z1(t) and can be written by inspection

from (7.8) to yield:

∆ż(t) = − α

Rtot

(
1

Q1

+
1

Q2

)
︸ ︷︷ ︸

1/τ

∆z(t) +
1

Rtot

(
R2

Q1

− R1

Q2

)
︸ ︷︷ ︸

κ/τ

I. (7.13)

This is a standard linear time-invariant (LTI) system with the solution:

∆z(t) = ∆z0e
−t/τ + κ(1− e−t/τ )I, (7.14)

where ∆z0 ≜ z2,0 − z1,0 is the initial SOC imbalance.
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7.3.3.2 Branch Current Imbalance

The branch currents for the affine OCV-R system can be written as a function of the SOC

imbalance dynamics by substituting (7.7) directly into (7.4) and (7.5) to yield:

I1(t) = −
α

Rtot

∆z(t) +
R2

Rtot

I(t) (7.15)

I2(t) = +
α

Rtot

∆z(t)︸ ︷︷ ︸
Irebalance(t)

+
R1

Rtot

I(t)︸ ︷︷ ︸
Iohmic(t)

. (7.16)

The first terms in each equation represent the SOC rebalancing current and the second terms

are due to the resistance (i.e. ‘Ohmic’) mismatch between the two cells. Direct substitution

of (7.14) into (7.15-7.16) yields an explicit form of the branch current imbalance:

I1(t) = −
α

Rtot

[
∆z0e

−t/τ − κ(1− e−t/τ )I
]
+

R2

Rtot

I (7.17)

I2(t) = +
α

Rtot

[
∆z0e

−t/τ + κ(1− e−t/τ )I
]

︸ ︷︷ ︸
Irebalance(t)

+
R1

Rtot

I︸ ︷︷ ︸
Iohmic(t)

. (7.18)

The branch current imbalance ∆I ≜ I2 − I1 is then:

∆I(t) =
2

Rtot

∆U(t)− ∆R

Rtot

I (7.19)

=
2α

Rtot

∆z(t)− ∆R

Rtot

I (7.20)

=
2α

Rtot

[
∆z0e

−t/τ + κ(1− e−t/τ )I
]

︸ ︷︷ ︸
∆Irebalance(t)

− ∆R

Rtot

I︸ ︷︷ ︸
∆Iohmic(t)

, (7.21)

where ∆R ≜ R2 −R1.

A key insight from this derivation is that the input current term appears twice in Eq.

(7.21): once as part of the SOC rebalancing term, and again as part of the Ohmic term.

The applied current thus plays a dual role. First, the applied current directly contributes

to the ‘Ohmic’ current as part of the resistor network. Second, and less intuitively, the

applied current also creates an internal SOC imbalance which induces its own internal SOC

rebalancing current driven by the voltage difference between the two cells. These two currents

may flow in the same direction or in opposite directions depending on the sign of κ.
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Table 7.1: Special cases for SOC and current imbalance in the affine OCV-R system. ∆Q ≜
Q2 −Q1.

Case ∆z(t) ∆I(t)

a General form ∆z0e
−t/τ + κ(1− e−t/τ )I 2α

Rtot
∆z(t)− ∆R

Rtot
I

b Zero input (I = 0) ∆z0e
−t/τ 2α

Rtot
∆z0e

−t/τ

c R-matching (R1 = R2) ∆z0e
−t/τ − R1∆Q

αQtot
(1− e−t/τ )I 2α

Rtot
∆z(t)

d Q-matching (Q1 = Q2) ∆z0e
−t/τ − ∆R

2α
(1− e−t/τ )I 2α

Rtot
∆z(t)− ∆R

Rtot
I

e QR-matching (Q1R1 = Q2R2) ∆z0e
−t/τ 2α

Rtot
∆z0e

−t/τ − ∆R
Rtot

I

f Initial (t = 0) ∆z0
2α
Rtot

∆z0

g Steady-state (t→∞) 1
α

(
R2Q2−R1Q1

Qtot

)
I (= κI) ∆Q

Qtot
I

h Max imbalance (maxt) max (|∆z0|, |κI|) max (| 2α
Rtot

∆z0|, | ∆Q
Qtot

I|)

7.3.3.3 Potentiostatic Mode

Since most battery charging protocols include a potentiostatic (i.e. constant voltage) hold, a

complete description of a battery’s charge-discharge cycle would need to consider this step.

Closed-form state equations under potentiostatic mode can be derived by inverting the input

and output from (7.3) to express the total current, Icv(t), as a function of a fixed voltage

set-point Vt = U(z = 1) = α + β, which yields:

Icv(t) =
α

R1

(z1(t)− 1) +
α

R2

(z2(t)− 1). (7.22)

The two terms in this equation correspond exactly to the two branch currents:

Ii,cv(t) =
α

Ri

(zi(t)− 1). (7.23)

This result can be verified by substituting (7.22) into (7.4) and (7.5). The SOC dynamics

can then be obtained by substituting (7.23) into (7.6) yielding:

żi,cv = −
1

τi,cv
zi,cv +

1

τi,cv
, (7.24)

where

τi,cv ≜
QiRi

α
(7.25)
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is the characteristic time constant for SOC decay for each cell. Eq. (7.24) is readily solved

to obtain:

zi(t) = zi,cv,0e
−t/τi,cv − (e−t/τi,cv − 1). (7.26)

Remark 2. The states and time constants during the CV mode of operation are no longer

coupled as was the case of CC operation: the SOC of each cell decays with its own charac-

teristic time constant.

Finally, the SOC and current imbalance dynamics during potentiostatic mode of operation

can be trivially calculated from Eqs. (7.23) and (7.26).

7.3.3.4 Affine OCV-R System Properties

The closed-form solutions presented here are consistent with the derivations from Refs [273,

284, 51]. However, whereas previous works mostly focused on presenting special cases (e.g.

steady-state solutions), our equations are more general. Table 7.1 summarizes how the

system equations can be reduced to special cases. Useful system properties are additionally

discussed below. These properties will be referenced in later sections.

a. Stability. The SOC imbalance system (Eq. 7.14), with a single negative eigenvalue

with the value λ = −1/τ , is globally exponentially stable. The current imbalance system

(Eq. 7.21) is also globally exponentially stable.

b. Convergence Rate. Steady-state imbalance values can be realized to within 5%

during a full charge or discharge cycle for C-rates lower than 1/3τ . The time constant τ

depends on the cell capacities and resistances (see Eq. 7.11).

c. Steady-State SOC Imbalance. At steady-state, the SOC imbalance is:

∆zss = κI (7.27)

=
1

α

(
R2Q2 −R1Q1

Qtot

)
I. (7.28)

For the SOCs of the two cells to converge, it is thus sufficient that Q1R1 = Q2R2. When

this condition is satisfied, zero SOC imbalance is achieved at steady-state under any applied

current. To understand this effect, consider the case where Q2 < Q1, R2 > R1, and Q1R1 =

Q2R2. In this case, Cell 2 experiences less current due to the higher resistance. However,

since Cell 2 has a lower capacity, Cell 2 experiences the same effective C-rate. Both cells

thus charge at the same rate on the basis of C-Rate or SOC.
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d. Steady-State Current Imbalance. At steady-state, the current imbalance is

∆Iss =
∆Q

Qtot

I, (7.29)

where ∆Iss ≜ Iss,2 − Iss,1 and ∆Q ≜ Q2 − Q1. The steady-state current imbalance is

thus driven by capacity mismatches, not resistance mismatches. This result can be directly

recovered from Eq. (7.21) by taking the limit of infinite time and realizing that all of

the resistance terms cancel. Note, however, that under the special case of QR-matching

(i.e. Q1R1 = Q2R2), the steady-state current imbalance can be equivalently expressed as

∆Iss = −(∆R/Rtot)I. Hence, capacity mismatch is equivalent to resistance mismatch but

only under QR-matching.

e. Maximum Imbalance. If the initial SOC imbalance is zero, then the maximum

SOC and current imbalances are equivalent to their steady-state values.

7.3.4 The Nonlinear OCV-R System

The affine OCV-R model derived in Section 7.3.3 provided an analytically tractable descrip-

tion of imbalance dynamics. But how accurate is this model? This section explores this

question by revisiting the OCV-R model, this time relaxing the affine OCV assumption.

Section 7.3.4.1 takes a numerical approach to explore the model behavior under nonlinear

OCV functions for two popular battery chemistries. Section 7.3.4.6 then takes an analytical

approach to bound the maximum SOC imbalance under arbitrary, nonlinear current inputs.

7.3.4.1 Numerical Simulations

Here, we revert to the general case of the OCV function U(z) being a nonlinear, monoton-

ically increasing function (Section 7.3.2). Fig. 7.5 summarizes the OCV functions used in

this section. We focus on studying two OCV functions that are characteristic of two com-

mon battery cathode materials: NMC [166] and LFP [287]. Both cathodes were paired with

conventional graphite (Gr) anodes. Affine OCV functions were also defined for comparison

purposes. The nonlinear system was numerically solved by discretizing the state equations

from Section 7.3.2 using a forward difference scheme with a 1-second timestep. CV mode of

operation was simulated by inverting the input and output from Eq. (7.3). The code used to

generate the simulation is available at https://github.com/wengandrew/current-imbalance.

Fig. 7.6 compares example simulation results using the NMC/Gr and LFP/Gr OCV

curves. Each simulation consisted of five back-to-back charge-discharge cycles. A CV phase

with a termination condition of Q2/5 was included at the end of each charge, but not at the
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Figure 7.5: Nonlinear OCV functions used for this work. The LFP/Gr curve was adapted
from Prada et al [287]. The NMC/Gr curve was adapted from Chen et al [166]. The affine
approximation to the LFP/Gr curve used (α, β) = (0.6, 3.0). The affine approximation to
the NMC/Gr curve used (α, β) = (0.89, 3.31).

end of each discharge. Analytical solutions for the affine OCV case were included for the first

cycle only for comparison purposes. Since the duration of the CC charge phase was generally

non-identical between the affine and nonlinear cases, the time vectors were realigned using

the start and end of the CV phase as reference points.

7.3.4.2 Nonlinear System Behavior

The nonlinear OCV functions drive nonlinear oscillations in current and SOC imbalance.

Meanwhile, the affine OCV system only predicts exponentially-decaying behavior (Section

7.3.3). The higher SOC imbalance in the LFP/Gr system can be attributed to the flatness

of the LFP/Gr OCV function which suppresses the SOC re-balancing current (Eq. 7.21).

SOC imbalance therefore accumulates in LFP/Gr systems until one of the cells reaches an

inflection point in the OCV function. The majority of SOC re-balancing in LFP/Gr systems

thus occurs as one of the cells approaches 100% SOC.
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7.3.4.3 Nonlinear vs Affine Model Accuracy

NMC/Gr. The nonlinear NMC/Gr solution deviates from the affine solution the most at

low and high SOCs, corresponding to regions where the slope of the OCV function dU/dz

deviates the most from the affine approximation α. Overall, the affine solution provides only

an approximation to the nonlinear behavior and fails to capture the localized perturbations

to current imbalance due to dU/dz. The appropriateness of using affine dynamics to model

the nonlinear system will depend on the accuracy requirements of the specific use case.

Figure 7.6: Intra-cycle current (A) and SOC (B) imbalance dynamics of the nonlinear OCV-R
system. Vertical dotted lines denote the start and end of the charge CV phase. (C) Corre-
sponding phase orbits in the (z1, z2) plane over a period of five complete charge-discharge
cycles. Parameters used were (Q1, Q2) = (4.28, 3.00)Ah, (R1, R2) = (45.5, 50.0)mΩ,
(z1,0, z2,0) = (0.2, 0.4), |I| = 3A during the constant current phases, and with a CV ter-
mination of Q2/5 A.

LFP/Gr. The current and SOC imbalance observed in the nonlinear LFP/Gr system is

greater than those in the NMC/Gr system. Affine approximations to the LFP/Gr curves fail

to capture the dynamics of the LFP/Gr system whose behavior is dominated by transitions

between low and high-sloping regions in the OCV function. For this system, it may be

more appropriate to use piecewise-linear OCV functions to approximate the nonlinear OCV

function, which we leave for future work.

Remark 3. The results highlighted in Fig. 7.6 depend on the input assumptions, particularly

the values of (Q2, R2) and the input magnitude I. The accuracy of the affine model and the

179



behavior of the nonlinear OCV systems should thus be considered on a case-by-case basis.

7.3.4.4 Nonlinear System Stability

Fig. 7.6C shows a phase portrait of the SOC dynamics over five consecutive charge-discharge

cycles. In both the affine and the nonlinear cases, the system converges to a stable orbit after

just one complete charge-discharge cycle. This result holds for both NMC/Gr and LFP/Gr

curves, although the hysteresis gap between charge and discharge is higher for LFP/Gr.

This result highlights the stability of the system under nonlinear OCV functions and that

convergence to a stable orbit can be realized within a few cycles.

7.3.4.5 QR-Matching Nullifies Nonlinearities

Here, we highlight a peculiar property of the nonlinear system: when Q1R1 = Q2R2, the

nonlinear oscillations in the SOC and currents are nullified. We will refer to this condition

as ‘QR-matching’. Fig. 7.7 shows this effect by comparing the nonlinear dynamics for the

NMC/Gr system under two specific cases. Case A (circle, Panel A) simulates two cells with

capacities and resistance values identical to those from Fig. 7.4. Case B (square, Panel B)

chooses resistance and capacities satisfying Q1R1 = Q2R2. Case A does not satisfy the QR-

matching condition, while Case B does. (See Fig. 7.8 for the same plot but with LFP/Gr

chemistry. The following discussion holds for both NMC/Gr and LFP/Gr chemistries.)

Panel B shows that, under QR-matching, the current oscillations disappear after one

cycle, and the affine solution begins to overlap with the nonlinear solution. Thus, after one

cycle, considerations for the nonlinear OCV dynamics appear to be no longer needed. To

explain this phenomenon, consider the fact that, under QR-matching, κ = 0 in Eq. 7.14, so

the SOC imbalance decays to zero under any input current. With zero SOC imbalance, the

SOC re-balancing current in Eq. (7.21) also disappears. Current imbalance thus becomes

purely driven by the resistance difference between the two cells, which does not depend on

the SOC or OCV dynamics.

Overall, under QR-matching, the system appears to be analyzable without considering

the nonlinear effects introduced by the OCV function. This result has practical implications

since QR-balancing can describe certain scenarios in which aged cells are mixed with fresh

cells. QR-balancing can also describe a scenario in which two cells having different electrode

areas that are otherwise identical are connected in parallel.
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Figure 7.7: Nonlinear OCV-R model system dynamics representing an NMC/Gr sys-
tem. In both (A) and (B), (Q2, R2) = (3Ah, 150mΩ), (z1,0, z2,0) = (0.4, 0.2), |I| = 3A
during the constant current phases, and with a CV termination of Q2/5 A. (A) uses
(Q2/Q1, R2/R1) = (0.7, 1.1). This pairing represents a typical scenario in which an aged
cell (Cell 2), with lower capacity and higher resistance, is paired with a less aged cell (Cell
1). (B) uses (Q2/Q1, R2/R1) = (0.7, 1.43). This pairing also represents a typical scenario
with an aged cell paired with a less aged cell, but this pairing additionally satisfies the ‘QR-
matching’ condition, i.e. Q1R1 = Q2R2. Under this condition, the SOC imbalance dynamics
become insensitive to the input current and exponentially decay to zero. The corresponding
imbalance dynamics also become driven purely by resistance differences in the absence of
SOC re-balancing currents. After the initial SOC imbalance fades, this system begins to
behave identically to the affine OCV system, despite the presence of the nonlinear OCV
function. See Section 7.3.4.5 for a complete discussion.

7.3.4.6 Stability and Analytic Bounds for SOC Imbalance

The previous sections showed that, with the exception of the QR-matching condition, the

affine OCV-R model may fail to capture transient behavior in SOC and current imbalance,

especially for systems having OCV functions with widely-varying slopes such as LFP/Gr.

OCV function nonlinearities should thus be generally taken into account for accurate esti-

mates of SOC and current imbalance. However, a nonlinear OCV function makes it difficult
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Figure 7.8: Nonlinear OCV-R model system dynamics representing an LFP/Gr system. In
both (A) and (B), (Q2, R2) = (3Ah, 50mΩ), (z1,0, z2,0) = (0.4, 0.2), |I| = 3A during the
constant current phases, and with a CV termination of Q2/5 A. (A) uses (Q2/Q1, R2/R1) =
(0.7, 1.1). This pairing represents a typical scenario in which an aged cell (Cell 2), with
lower capacity and higher resistance, is paired with a less aged cell (Cell 1). (B) uses
(Q2/Q1, R2/R1) = (0.7, 1.43). This pairing also represents a typical scenario with an aged
cell paired with a less aged cell, but this pairing additionally satisfies the ‘QR-matching’
condition, i.e. Q1R1 = Q2R2. Under this condition, the SOC imbalance dynamics become
insensitive to the input current and exponentially decay to zero. The corresponding imbal-
ance dynamics also become driven purely by resistance differences in the absence of SOC
re-balancing currents. After the initial SOC imbalance fades, this system begins to behave
identically to the affine OCV system, despite the presence of the nonlinear OCV function.
See Section 7.3.4.5 for a complete discussion.
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to find closed-form solutions. Yet, despite the absence of closed-form solutions, we may still

attempt to use analytical methods to derive bounds on the maximum imbalance.

To derive imbalance bounds, we leverage concepts of input-output and L-stability from

Khalil [288]. Note that the imbalance system is not strictly asymptotically stable, but

only partially asymptotically stable, since the SOCs can asymptotically approach any value

between 0 and 1. We thus also leverage definitions from Haddad et al. [289] which apply to

partially asymptotically stable systems. The main result is summarized below.

Theorem 1. If the following condition is satisfied:

max(|I(t)|) ≤ |Ak1
B
|, (7.30)

then ∆z(t) satisfies the following bounds:

max(||∆z||) ≤ |∆z(0)|ek1At + | B
Ak1
|max(|I(t)|)(1− ek1At) (7.31)

where:

k1 = min

(
∂U(z)

∂z

)
(7.32)

A = − 1

Rtot

(
1

Q1

+
1

Q2

)
(7.33)

B =
1

Rtot

(
R1

Q2

− R2

Q1

)
(7.34)

Remark 4. Eq. (7.31) provides an l2-vector norm bound. A signal-norm bound can similarly

be calculated.

A full derivation of the imbalance bounds is provided as follows. From Eqs. (7.4-7.6), the

system can be represented as

ż1(t) = −
I1(t)

Q1

=
+∆U(t)− I(t)R2

Q1Rtot

(7.35)

ż2(t) = −
I2(t)

Q2

=
−∆U(t)− I(t)R1

Q2Rtot

(7.36)

where ∆U(t) ≜ U(z2(t))− U(z1(t)). We can redefine the state as

x =

[
x1

x2

]
=

[
∆z

Q1z1 +Q2z2

]
. (7.37)
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The dynamic system can then be presented as:

ẋ1 = ∆ż = A∆U(x1, x2) + BI(t) (7.38)

ẋ2 = −I(t) (7.39)

where

A = − 1

Rtot

(
1

Q1

+
1

Q2

)
(7.40)

B =
1

Rtot

(
R1

Q2

− R2

Q1

)
(7.41)

Since OCV functions monotonically increase, the bounds on the slope of the OCV function

can be defined as:

0 < k1 ≤
∂U(z)

∂z
≤ k2 (7.42)

Using the differential mean theorem from [290], we have

k1∆z ≤ ∆U ≤ k2∆z. (7.43)

Note that x2 in (7.39) is neutrally stable. We therefore present the following definition for

partial asymptotic stability.

Definition 7.3.1 (Partial asymptotic stability [289]). The general system

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
(7.44)

is said to be asymptotically stable with respect to x1 uniformly in initial value x2(0) if, for

every value of x2(0), x1 is stable and for every value of ||x1(0)|| < δ ⇒ limt→∞ x1(t) = 0.

Proposition 1. The unforced system (I ≡ 0) presented in (7.38) is asymptotically stable with

respect to x1 uniformly in x2(0).

Proof. Take the Lyapunov function candidate:

V = P∆z2 (7.45)

184



where P > 0. Taking the derivative, we have

V̇ = 2AP∆z∆U

=

[
∆z

∆U

]T [
0 AP
AP 0

][
∆z

∆U

]
(7.46)

The following sector condition can be easily derived from (7.42) [290]:

V1 =

[
∆z

∆U

]T [
k1k2 −k1+k2

2

−k1+k2
2

1

][
∆z

∆U

]
≤ 0. (7.47)

Using the S-procedure lemma [291] for (7.46) and (7.47), if the following matrix inequality

is satisfied, then x1 is asymptotically stable [289]:[
−k1k1 AP + k1+k2

2

AP + k1+k2
2

−1

]
⪯ 0. (7.48)

Since k1, k2 > 0 and A < 0, this inequality is always satisfied.

Remark 5. The same logic can be applied for multiple cells in parallel by taking ∆z for

every two consecutive cells.

Since, the system presented in (7.38) is input-x1 stable, Theorem 1 holds, with the proof

given below.

Proof. Here, we follow the procedure for input-state stability similar to [288]. Since the

unforced system is asymptotically stable with respect to x1, we can write:

d||∆z||
dt

=
∆z∆ż

||∆z||

=
A∆U∆z + BI∆z

||∆z||
.

(7.49)

Using the left hand side of the inequality from (7.43), we can have the upper bound of (7.49)

as:
d||∆z||

dt
≤ k1A||∆z||+ |B|||I(t)||. (7.50)

By using the comparison lemma [288], we have:

||∆z|| ≤ |∆z(0)|ek1At + |B|
∫ t

0

e−(t−τ)k1A||I(t)||dτ. (7.51)
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which can be simplified as:

||∆z|| ≤ |∆z(0)|ek1At + |B|max(|I(t)|)
∫ t

0

e−(t−τ)k1Adτ. (7.52)

Taking the integral from 0 to t results in (7.31). It is apparent that condition (7.30) guar-

antees that ||∆z|| ≤ 1.

7.3.4.7 Application of SOC Imbalance Bounds

To understand the utility of the nonlinear imbalance bounds, we applied the bounds to the

cases shown in Fig. 7.7. Red solid lines drawn in the second rows show infinity-norm bounds

(7.31) on the SOC imbalance. These bounds were computed for the cases shown in Panels A

and B which both satisfy condition (7.30). These bounds were compared against the affine

solution to the steady-state SOC imbalance (±κI), shown in red dashed lines, which we

interpret as ‘affine bounds.’ Panel A shows that these affine bounds were exceeded initially

since they fail to capture the effect of initial SOC imbalance. However, after the initial

transient response decays, the affine bounds successfully bounded the current imbalance for

the remainder of the simulation. By comparison, the nonlinear bounds gave correct, albeit

conservative, bounds on the maximum SOC imbalance. In Panel B, the affine bound again

could not capture the initial SOC imbalance but trivially predicted the SOC imbalance at

steady-state which decays to zero. Meanwhile, the nonlinear bound was able to bound both

the initial SOC imbalance and capture the decay of the SOC imbalance towards zero at

steady state.

This demonstration shows that the nonlinear bounds (7.31) correctly but weakly bound

the SOC imbalance. The weakness of the bounds can be attributed to the fact that k1,

the minimum slope of the OCV function (7.32), must be large in order for the bound to

be tight. Yet, for most practical lithium-ion battery chemistries, OCV functions often have

regions with shallow slopes, so k1 is generally small. Thus, battery chemistries having very

flat OCV curves such as LFP may not be able to derive utility from these bounds (see

Fig. 7.8). By comparison, the affine bound was surprisingly effective at providing bounds

on the SOC imbalance after the initial transient response decays, at least for the NMC/Gr

system. However, for the LFP/Gr system, the affine bounds also failed to bound the SOC

imbalance since the rapid change in the OCV slope at the top of charge takes this system

out of steady-state (see Fig. 7.8).
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7.4 Inter-Cycle Degradation: Successive Update

Scheme

Updating cell capacities and resistances based on the intra-cycle current and SOC dynamics

derived in Section 7.3 requires a degradation model. This model specifically needs to allow

for updates to the degradation states (i.e. capacity and resistance) as a function of time-

varying parameters such as currents and SOCs which could change cycle-by-cycle. Empirical

models, which rely on experimental curve fits to degradation data, cannot be used for this

work since these models assume that the intra-cycle dynamics (e.g. C-rates, depths of dis-

charges) remain fixed [85]. More physics-based approaches are thus needed. Such approaches

may provide electrode-level state variables, such as solid-phase lithium concentrations and

reaction current densities, which can be more directly tied to relevant degradation modes

such as loss of lithium inventory and loss of active material [77, 292]. Reniers et al. [104],

for example, used the SPM to represent the intra-cycle battery dynamics for each cell in a

system of series and parallel-connected cells, and successfully coupled these dynamics to an

‘inter-cycle’ degradation model based on SEI growth and electrode particle cracking.

Here, we develop a simplified, semi-empirical representation of battery degradation en-

abling cycle-by-cycle cell capacity and resistance updates as a function of current and SOC

imbalance. The model is semi-empirical in that degradation variables are restricted to full

cell-level quantities (i.e. full cell capacities and resistances). Since this work focuses on

making an elementary connection between the intra-cycle dynamics of parallel-connected

systems to battery degradation, we have chosen the simplest representation of degradation.

Provisions for electrode-level state variables (e.g. solid-phase lithium concentrations and

interfacial potentials) have thus been omitted. The methodologies presented here, however,

can be applied to more realistic degradation models and higher-fidelity models of battery

dynamics, which is left for future work.

7.4.1 Incremental Capacity Loss Model Formulation

We start by considering discrete updates to cell capacity by writing down the incremental

capacity loss at each cycle. The capacity of cell i at any given cycle number is:

Qi,n = Qi,0 − Li,n, (7.53)

where n ∈ 1, 2, ... is the cycle number, Qi,0 is the initial cell capacity, and Li,n is the total

capacity lost at the end of the nth cycle. Li,n is, in general, determined by multiple physical

degradation phenomena including loss of lithium inventory and loss of active material [292].
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Here, we adopt a generic form of the loss equation presented in Smith et al. [85] for solid-

electrolyte interphase (SEI) growth [18]:

dLi(t)

dt
= ri(t) · p ·

(
ri(t)

Li(t)

) 1−p
p

, (7.54)

where Li is the total capacity lost at time t, ri(t) is a time-dependent reaction rate con-

stant and p is an exponential factor. p is allowed to vary between 0.5 in the case of pure

diffusion-limited SEI growth, and 1.0 in the case of pure reaction-limited SEI growth. By

taking a constant reaction rate, Eq. (7.54) evaluates to the familiar form of Li(t) = rit
p.

However, this equation cannot be directly used if r changes cycle-by-cycle, which would lead

to discontinuities in the degradation curve.

We therefore develop an integral form of Eq. (7.54) to describe the incremental capacity

lost over a single cycle n, using Fig. 7.9 as a guide. In this formulation, ri is allowed to

vary cycle-to-cycle and within each cycle. The integration is performed through separation

of variables, taking the initial condition to be (t0, Li,n−1), where t0 is the time at the start

of the nth cycle and Li,n−1 is the total capacity lost immediately before the start of the nth

cycle. Performing this integration yields:

Li,n(t) =

(∫ t

t0,n

ri,n(τ)
1/pdτ + L

1/p
i,n−1

)p

, (7.55)

where ri,n now denotes the reaction rate, valid over cycle n. Li,n(t) is valid over the domain

t0,n < t < tf,n, where t0,n and tf,n denote the start and the end time of the nth cycle. The

total capacity lost at the end of the nth cycle is then Li,n ≜ Li,n(tf,n). The incremental

capacity loss during cycle n is:

δLi,n ≜ Li,n − Li,n−1 (7.56)

=

(∫ tf,n

t0,n

ri,n(τ)
1/pdτ + L

1/p
i,n−1

)p

− Li,n−1. (7.57)

If ri,n is further assumed to be constant over the cycle, then the expression simplifies to:

δLi,n =
(
r
1/p
i,n ∆tn + L

1/p
i,n−1

)p
− Li,n−1, (7.58)

where ∆tn ≜ tf,n − t0,n.

Eqs. (7.57) and (7.58) clarify the fact that the capacity lost at each cycle depends on how

much capacity was lost previously. This result can be physically interpreted for p < 1 which
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corresponds to a self-limiting SEI growth mechanism in which more capacity lost implies

slower reaction rates, and hence lower capacity loss rates [18]. A similar interpretation of

capacity loss is discussed in the context of path-dependent aging in Karger et al. [293].

Figure 7.9: Methodology for calculating the incremental capacity loss at cycle n. Li,n repre-
sents the capacity lost at cycle n and is a discrete quantity. Li,n(t) is a continuous variable
describing the instantaneous capacity loss value during cycle n and at time t, and is valid
over the domain t0,n < t < tf,n.

To model resistance growth, we adopt a simple approach by considering the cell resistance

at each cycle to be:

Ri,n = Ri,0 +Gi,n, (7.59)

where Ri,0 is the initial cell resistance and Gi,n is the total resistance growth at the end of

the nth cycle. We assume that Gi,n is related to Li,n according to

Gi,n = λ1Li,n + λ2, (7.60)

where λ1 > 0 is a proportionality factor that describes the lithium-consuming SEI film

growth process which leads to resistance growth [47] and λ2 > 0 describes resistance growth

contributions occurring independently from lithium-consuming processes such as SEI growth

(i.e. film growth in layered oxide cathodes [294]).

Fig. 7.10 demonstrates how this model formulation can be used to simulate dynamic

capacity fade trajectories on a single cell. In this simulation, δLi is calculated at each cycle

for an arbitrary cell i via successive updates according to Eq. (7.58). The cell capacity is
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then updated according to Eq. (7.53). For demonstration purposes, ri is set to 2 between

300 and 600 cycles and is otherwise set to 1 (Panel A). This trajectory is compared to two

control trajectories in which ri remain invariant throughout the simulation. The control

trajectories bounded the dynamic capacity fade trajectory but neither correctly predicted

the final cell capacity (Panel B). A similar observation follows for the resistance growth trend

(Panel C), which was updated according to Eq. (7.59).

Figure 7.10: Demonstration of the incremental capacity loss update model. This model
supports cycle-by-cycle updates to the reaction rate r. (A) Cycle-dependent reaction rate
assumptions for each degradation trajectory. (B) Capacity fade over cycles. (C) Resistance
growth over cycles.
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7.4.2 Coupling Reaction Rates to Imbalance Dynamics

The incremental capacity loss model derived here can be used to study the effect of changing

use conditions, irrespective of whether the change is due to external factors (e.g. customer

use patterns) or internal factors (e.g. parallel-connected battery dynamics). In both cases,

the effect of changing use conditions can be represented by treating the current and SOC

dynamics as modifications to ri(t):

ri,n(t) = g(zi,n(t), Ii,n(t)), (7.61)

where zi,n(t) and Ii,n(t) are the SOC and current for cell i and cycle n. Since the imbalance

values will generally change over life, ri,n(t) will take on different values over each cycle. In

this manner, the incremental degradation in each cell at each cycle, δLi,n, becomes coupled

with the intra-cycle dynamics of that cell.

To resolve ri,n(t), expressions for zi,n(t) and Ii,n(t) are needed. Fortunately, we have

already developed analytical expressions for zi,n(t) and Ii,n(t) in Section 7.3. We next ex-

plore model simplifications to g(zi,n(t), Ii,n(t)) and what these simplifications imply about

degradation convergence.

7.5 Degradation Convergence Analysis

This section highlights how the intra-cycle dynamics developed in Section 7.3 can be com-

bined with the inter-cycle capacity loss formulation developed in Section 7.4 to analyze and

simulate whether capacity degradation converges or diverges over the course of many cycles.

We will focus specifically on the case of a fresh cell connected in parallel with an aged

cell. Taking Cell 1 to be the fresh cell and Cell 2 to be the aged cell, we thus impose the

constraints that Q2 < Q1 (the aged cell has lost capacity) and R2 > R1 (the aged cell has

increased resistance). Fig. 7.4 showed an example of one such system.

7.5.1 Current Imbalance Can Lead to Degradation Convergence

We now describe a set of assumptions under which current imbalance can lead to degradation

convergence. Suppose that, for each cell i, the incremental capacity lost over a single cycle

is proportional to the maximum current experienced during that cycle. This assumption

approximates the lithium consumption process during SEI growth or lithium plating, both

of which are accelerated at higher current densities due to Butler-Volmer kinetics [70, 47, 18].

Using the incremental capacity loss model developed in Section 7.4.1, we can represent
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Figure 7.11: Maps of steady-state current and SOC imbalance. These maps are given as
functions of capacity and resistance variability. (A) Steady-state current imbalance ∆Iss
during CC charge or discharge. (B) Steady-state SOC imbalance ∆zss during discharge.
Red boxes show an aged cell (Cell 2) connected with a fresh cell (Cell 1), i.e. Q2 < Q1 and
R2 > R1. Green markers correspond to the conditions shown in Figs. 7.4 and 7.6. White
regions indicate scenarios in which degradation is expected to converge (see Section 7.5).
Gray regions indicate scenarios in which degradation is expected to diverge. In Panel A, the
convergence behavior is assumed to be driven by current magnitude differences (see Sections
7.5.1, 7.5.2). In Panel B, the convergence/divergence behavior is assumed to be driven by
differences in depths of discharge or cell utilization (see Section 7.5.3).

the effect of current on the degradation rate as a modification to the reaction rate parameter:

ri,n = γ1 · Iss,i,n, (7.62)

where γ1 is a proportionality constant and Iss,i,n is the steady-state current for cell i and at

cycle n. Here, the steady-state current provides a measure of the maximum current imbalance

over the course of a cycle, assuming affine OCV-R model dynamics (Section 7.3.3.4). Also

note that (7.62) represents a simplification of the function g from (7.61) in which the only

factor that influences the reaction rate is the steady-state current.

Degradation convergence requires that the aged cell (Cell 2) degrade more slowly than

the fresh cell (Cell 1), or:

r2,n < r1,n. (7.63)
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Expanding this inequality using (7.62) yields:

∆Iss,n < 0, (7.64)

where ∆Iss,n is the steady-state current imbalance at cycle n as previously defined in (7.29).

Substituting (7.29) into this expression yields simply Q2 < Q1 which is satisfied by definition.

The capacity degradation rate for the aged cell will therefore always be lower than that of

the fresh cell. The capacity difference between the aged cell and the fresh cell will thus

converge over the course of repeated cycles.

Fig. 7.11A further visualizes why, in the affine OCV-R system, current imbalance ‘favors’

the aged cell while ‘penalizing’ the fresh cell. The red box highlights the region corresponding

to when Cell 1 is a fresh cell and Cell 2 is an aged cell. The plot shows that the aged cell

always experiences less current compared to the fresh cell at steady-state. This result is

consistent with the condition simulated in Fig. 7.4, highlighted as a green circle.

We note that Song et al. [276] provided a similar analytical proof which also assumed

affine OCV-R dynamics and a similar capacity loss model. This work showed that, with

non-concave capacity degradation trajectories (p < 1), cell-to-cell variability in capacity

decreases over age, i.e. degradation trajectories converge.

7.5.2 Simulating Degradation Convergence Due to Current Im-

balance

Degradation convergence induced by current imbalance can also be numerically demonstrated

by simulating both the inter and intra-cycle dynamics according to the framework originally

proposed in Fig. 7.2. The simulation was initialized using the same cell parameters presented

in Fig. 7.4. For each cycle, the steady-state current value was calculated based on Eqs. (7.15)

and (7.16). The reaction rate constant for each cell was then updated according to (7.62).

The incremental capacity loss was finally updated according to (7.58). The process was

repeated until the lowest cell capacity reached zero. The procedure used in the simulation is

summarized in Algorithm 1. Control cells were additionally simulated. For these cells, the

current used to update the reaction rate was set to I/2 for all cycles.

Fig. 7.12 shows the simulation results under three values of p, representing three distinct

degradation trajectories: self-limiting (A), linear (B), and accelerating (C). In all three cases,

the aged cell (Cell 2), with lower initial capacity and higher initial resistance, lost capacity

more slowly than the fresh cell (Cell 1). In fact, both cells reached zero capacity at exactly

the same cycle number, irrespective of the value of p. The steady-state current values for

both cells remained constant since the ratios Q1/Qtot and Q2/Qtot remained invariant even as
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Figure 7.12: Simulation of degradation convergence due to current imbalance. This result
uses the incremental capacity degradation model to represent inter-cycle dynamics (Section
7.4) and the affine OCV-R model to represent the intra-cycle dynamics (Section 7.3.3). In
these simulations, steady-state current values (Eq. 7.62) are assumed to drive cell capacity
fade and resistance growth. Subpanels show simulations of capacity fade performed using
different values of the SEI exponential growth factor p. A: self-limiting, B: linear, C: accel-
erating. (D-F) show the corresponding resistance growth simulations.

Q1 and Q2 individually decreased. The current imbalance dynamics thus remained invariant

over all cycles, with Cell 2 always seeing less current at steady-state than Cell 1.

Panels (D-F) show the corresponding resistance growth predictions. Resistance growth

was calculated according to (7.60) with (λ1, λ2) set to (2 × 10−6, 0) for demonstration pur-

poses. The results show that resistance growth trajectories also converge for all tested values

of p.

7.5.3 Degradation Convergence is not Guaranteed

While the previous section showed that current imbalance can lead to degradation con-

vergence, we now highlight another set of degradation assumptions that do not guarantee

degradation convergence.

Here, we assume that the cell degradation rate increases as the minimum SOC experienced
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Algorithm 1 Successive update scheme for two cells

Require: Q1,0, Q2,0, R1,0, R2,0 ▷ Initial Conditions
L1,0 ← 0
L2,0 ← 0
n← 1
while (Qi,0 > Qmin)∀i ∈ {1, 2} do

for each i ∈ {1, 2} do ▷ Intra-Cycle Updates
Ii,n(t)← f1(t, Q1,n−1, Q2,n−1, R1,n−1, R2,n−1)
zi,n(t)← f2(t, Q1,n−1, Q2,n−1, R1,n−1, R2,n−1)

end for
for each i ∈ {1, 2} do ▷ Inter-Cycle Updates

ri,n(t)← g(Ii,n(t), zi,n(t))

δLi,n ←
(∫ tf,n

t0,n
ri,n(τ)

1/pdτ + L
1/p
i,n−1

)p
− Li,n−1

Qi,n ← Qi,n−1 − δLi,n

Ri,n ← Ri,n−1 + λ1δLi,n + λ2

end for
n← n+ 1

end while

by the cell at the end of each discharge is decreased. This assumption could be justified

considering that a lower minimum SOC is equivalent to a higher depth of discharge (DOD).

Higher DODs may amplify cathode particle cracking mechanisms, leading to higher capacity

fade, higher resistance growth, or both [295, 296, 173]. Note that, at the end of discharge,

SOC re-balancing does not typically occur under practical applications which generally lack

CV holds at the end of discharge cycles. It is thus possible that some cells in a parallel-

connected group end discharge at lower SOCs compared to their neighbors. Under these

assumptions, the reaction rate from Eq. 7.62 could take the following form:

ri,n =
γ2

min(zi,n) + 1
, (7.65)

where γ2 > 0 is another proportionality constant and min(zi,n) is the minimum SOC experi-

enced by cell i at the end of discharge and for the nth cycle. The reaction rate here reaches

a maximum value when zi,n approaches zero.

Figure 7.11B shows how the steady-state SOC imbalance ∆zss ≜ z2 − z1 (Eq. 7.27) can

be used to predict which cell will end at a lower SOC. When ∆zss > 0, Cell 2 (the aged cell)

will end discharge with a higher SOC (i.e. lower DOD) and be degraded more slowly, leading

to convergent degradation. We can thus interpret ∆zss > 0 as the necessary condition for

degradation convergence. However, according to Eq. (7.27), ∆zss > 0 is only guaranteed if

Q2R2 > Q1R1. Graphically, this condition corresponds to the white region in Figure 7.11B.
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Recalling that the red box represents scenarios in which an aged cell (Cell 2) is connected

with a fresh cell (Cell 1), we realize that degradation convergence is no longer guaranteed

for all of these cases of interest. The green circle highlights one such case, wherein the aged

cell ends discharge at a lower SOC (see Fig. 7.4), suggesting a higher DOD utilization and

thus divergent degradation.

This simple example highlights that different degradation assumptions lead to different

conclusions about the convergence and divergence of degradation trajectories. While the

result from Sections 7.5.1 and 7.5.2 suggested degradation convergence, these results were

obtained assuming that current imbalance was the sole driver for cell degradation. When

other factors such as SOC imbalance are added to the mix, results may differ.

7.6 Experimental Verification

The utility of the modeling and analysis framework we propose in this work ultimately

depends on its ability to predict real-world data. This section thus focuses on compar-

ing model-based predictions to measured lab data. Section 7.6.1 outlines the experimental

methods used to generate the lab data. Section 7.6.2 compares modeled versus measured

intra-cycle dynamics. Section 7.6.3 discusses measured degradation convergence outcomes.

7.6.1 Methods

Two 2.5Ah lithium-ion pouch cells were built on a prototype battery manufacturing line. The

cells both used graphite as the anode and NMC as the cathode. Each cell was individually

pre-conditioned to different capacities and resistances by aging them via a 1C charge, 1C

discharge cycling test protocol. Voltage limits during the cycling test were set to 3.0V to

4.2V. See Weng et al. [58, 112] for more details on the cell build process and experimental

setup for the cycling tests.

Cell capacities and resistances were measured after pre-conditioning. Capacities were

measured using a C/20 discharge from 4.2V to 3.0V. Resistances were calculated by taking

the voltage difference between a C/20 charge curve and C/20 discharge curve, dividing this

voltage difference by two times the input current, and averaging across all SOCs. The cell

properties were measured to be (Q1, R1) = (2.11Ah, 201mΩ), (Q2, R2) = (1.83Ah, 250mΩ).

After pre-conditioning, cells were connected in a parallel arrangement and cycled using

a commercial cycler (Arbin BT2000), according to Fig. 7.13. The cycling profile consisted

of 1C CCCV charge and 1C CC discharge between 3.0V and 4.2V. The branch current for

Cell 2 was measured using a commercial Hall effect sensor (Allegro ACS70331) and logged
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using LabVIEW. The branch current for Cell 1 was calculated from the difference between

the total input current and the branch current for Cell 2. Resistances of the wires and the

Hall effect sensor were estimated to be less than 5mΩ in each branch and were thus ignored.

Figure 7.13: Experimental setup for measuring branch currents in two parallel-connected
cells.

The parallel-connected system was cycled for 240 equivalent full cycles, then stopped.

The system was then charged and discharged at different rates, including C/4 and C/10,

to characterize the intra-cycle dynamics for different input currents. Finally, the cells were

disconnected from the parallel connection to re-measure individual cell capacities and resis-

tances using the same process described above.

7.6.2 Intra-Cycle Dynamics

To compare the model-predicted intra-cycle dynamics against experiment, the model was

initialized using measured values for (Q1, R1, Q2, R2). The nonlinear OCV functions U1

and U2 were parameterized by taking the average of the C/20 charge and C/20 discharge

voltage curves. The SOC for each cell was initialized to match the measured terminal voltage

preceding the charge cycle (ca. 0.3%). The model was simulated using the method described

in Section 7.3.4.1.

Fig. 7.14 compares the modeled versus measured intra-cycle dynamics at two different

C-rates: C/4 (Panels A,C) and C/10 (Panels B,D). At C/4, the model-predicted current

imbalances and terminal voltages show good agreement with the data. The model captured

inflections in the current imbalance and correctly predicted the durations of both the CC

and CV phases. This result is surprising considering the simplicity of the model which

omits RC circuit elements and assumes a constant value for resistance. At C/10, the model-

197



predicted current imbalances qualitatively match the experimental results, though some

model mismatches are evident. Specifically, during the CC charge, the model under-predicted

the magnitude of the current imbalance, and during the CC discharge, the model over-

predicted the current imbalance at mid-SOCs. The model also under-predicted the measured

terminal voltage on both charge and discharge. The cause of the model mismatches at low

currents is unclear and suggests the need for future investigations.

Figure 7.14: Model vs. experimental comparison of intra-cycle dynamics for two cells with
mismatched capacities and resistances. (Q1, R1) = (1.83Ah, 549mΩ) and (Q2, R2) = (1.93Ah,
277mΩ). The experimental profile consists of CCCV charging, resting for 30 minutes, fol-
lowed by CC discharging. (A) C/4 charge and discharge. (B) C/10 charge and discharge.
(C,D) The corresponding voltage profiles. The CV hold cut-off condition is set to C/30 for
all cases.

7.6.3 Inter-Cycle Dynamics

Table 7.2 compares the measured cell capacities and resistances before and after the par-

allel cycling test. The measured results suggest that the capacities are converging, with

Q2/Q1 increasing from 0.938 before cycling to 0.948 after cycling. However, the resistances

are not converging but diverging: R2/R1 has increased from 1.59 to 1.99. This result thus

highlights a scenario in which initial variability in cell properties has led to a convergence

in the individual cell capacities but divergence in the individual cell resistances. Degrada-

tion convergence is thus not a universal guarantee and depends on the degradation metric

(capacity or resistance). Degradation convergence is also likely strongly influenced by the
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underlying degradation assumptions. For example, Section 7.5.3 explored how a degradation

assumption based solely on current imbalance led to convergent degradation, but a degrada-

tion assumption based solely on SOC imbalance could lead to either convergent or divergent

degradation depending on the values of the cell capacities and resistances.

Table 7.2: Experimental vs. modeled Q and R before and after parallel cycling.

Before Cycling After Cycling

Q2 1.98 Ah 1.83 Ah
Q1 2.11 Ah 1.93 Ah

Q2/Q1 0.938 0.948
R2 321 mΩ 550 mΩ
R1 201 mΩ 277 mΩ

R2/R1 1.59 1.99

7.7 Conclusion

This chapter proposed a framework to model coupled degradation phenomena in parallel-

connected battery systems. We first developed an incremental capacity loss scheme based

on SEI growth dynamics which was used to compute the cycle-to-cycle (i.e. inter-cycle)

evolution of the capacity loss and resistance growth of individual cells connected in parallel.

We then developed a set of closed-form, analytical solutions to the affine OCV-R model which

described the dynamics of current and SOC imbalance within a single cycle (i.e. intra-cycle).

The two components were coupled by an SEI reaction rate term which was made a function

of the intra-cycle dynamical variables such as the current and SOC for each individual cell.

The degradation analysis demonstrated in this work assumed a single degradation mode,

SEI growth. With this assumption, we demonstrated that current imbalance can lead to

convergent degradation trajectories. However, we further presented experimental evidence

that degradation convergence may not be guaranteed, and that convergent capacity fade

trajectories does not imply convergent resistance growth trajectories. Understanding this

phenomenon will require the inclusion of additional degradation mechanisms.

The modeling and analysis framework developed here can be extended to further study

general degradation phenomena in parallel-connected battery systems. Such developments

remain necessary to fully answer the unavoidable yet essential questions in battery cell manu-

facturing (“how much manufacturing variability is too much?”) and pack re-purposing (“how
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much dissimilarity can be tolerated when repairing old packs using fresher counterparts?”).
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CHAPTER 8

Conclusions and Future Work

8.1 Summary

This thesis stemmed from three core beliefs:

1. that the world needs to transition to sustainable energy quickly,

2. that battery manufacturing is at the core of this transition, and that

3. battery manufacturing processes, especially the battery formation process, play an

outsize role in the cost, performance, and lifetime of batteries, but are far from being

optimized.

This thesis clarifies how battery manufacturing, specifically the formation process, can be

improved using better models and diagnostic techniques.

Part I: “Models” presented and explored a model-based framework for understanding

and controlling the industrial battery formation process. Whereas existing models from

literature focused exclusively on the SEI film growth process, our model puts the SEI growth

process in the context of a full cell, mirroring the reality of the industrial battery formation

process.

Chapter 3 introduced a dynamical model of formation that predicted key performance

metrics including first cycle efficiency, cell thickness expansion, and features in the dQ/dV

curve. The model led to several crucial insights about the dynamics of SEI formation. First,

the SEI growth process transitions from being reaction-limited to being diffusion-limited

during the very first charge cycle and stays diffusion-limited throughout the remainder of

the cell’s life. Therefore, SEI diffusivity, rather than kinetic parameters such as reaction

potentials and reaction rate constants, is a better indicator for SEI passivation. Second,

SEI formation does not begin until an external current is applied to the cell, implying that
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lithium loss accounting only needs to begin at the start of the first charge cycle as opposed

to when the electrolyte is inserted into the cell. Third, a boosted SEI growth mechanism,

i.e. due to SEI cracking, is necessary to reconcile the experimentally observed trends in cell

thickness expansion during and after formation. SEI boosting is thus a fundamental process

of formation that cannot be ignored.

Chapter 4 highlighted the potential for the formation model to advance five distinct

applications relating to formation protocol design, manufacturing process control, and life-

time prediction. First, the formation model was used to predict the emergent behavior of a

faster formation protocol including the first cycle charge dynamics, the cell thickness expan-

sion, and the resulting SEI passivation. Second, we used the formation model as a lifetime

simulator and showed that faster formation protocols are possible without compromising

battery lifetime. The model provided a mechanistic explanation for why this is the case:

the faster formation protocol was predicted to form a more passivating SEI which decreased

the rate of further side reactions. The model also provided a novel insight into how a faster

formation protocol can play a role in delaying a “knee” in the capacity fade trajectory due

to electrolyte additive consumption. Third, the formation model was reformulated from a

control-oriented perspective, including the introduction of block diagram and state-space

representations of the system dynamics. These model reformulations will aid in the de-

velopment of control-oriented approaches for formation protocol optimization. Fourth, we

discussed how the formation model can help improve the identifiability of degradation model

parameters. Finally, we showed how the formation model can be used to clarify the physical

connection between constructed diagnostic features such as the lithium consumed during

formation and the low-SOC resistance.

Part II: “Data” turned to a data-driven exploration of current-voltage signals collected

during formation or immediately after formation. We developed techniques to analyze this

data to yield features with electrochemical significance. We then explored applications of

these features toward battery lifetime prediction and manufacturing process control.

Chapter 5 explored applications of the differential voltage analysis (DVA) and the hy-

brid pulse power characterization (HPPC) techniques for quantifying differences in initial

cell state variables, including electrode capacities and SOC-dependent cell resistances. As

part of this work, we expanded the DVA method by defining additional features relevant to

manufacturing diagnostics including the capacity of lithium consumed during formation and

the practical N:P ratio. We also highlighted the challenges with reproducible data collection

hindering the broader adoption of the presented methods in a manufacturing setting. Fi-

nally, we showed that, if the challenges with data reproducibility can be overcome, then the

DVA method can be a cost-effective, non-destructive, and scalable method for quantifying
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electrode-level parameters without the need for cell dissections.

Chapter 6 showed that features measured at the beginning of life immediately after for-

mation can be used to predict cell lifetime without requiring cycle life testing, thus demon-

strating the promise of using manufacturing data to accelerate battery lifetime evaluation.

Our work improves upon prior results in the field which require data from cycle life tests,

usually 100 cycles to achieve a similar level of prediction accuracy. Leveraging the formation

model, we proposed a mechanistic reason for why our feature selected for lifetime prediction,

the low-SOC resistance, can act as a proxy for the lithium consumed during formation.

Part III: “Variability” started by asking an essential question: “how much manufac-

turing variability is too much?” We explored an answer to this question in Chapter 7

which focused on modeling the collective dynamics of parallel-connected battery cells. We

first built analytical tools to understand the intra-cycle dynamics of dissimilar cells con-

nected in parallel. We combined the understanding of intra-cycle dynamics with a simple

model of inter-cycle degradation based on SEI growth to demonstrate that the degradation

trajectories of individual cells connected in parallel can converge. However, we also empha-

sized that the degradation trajectories may not converge under a different set of degradation

assumptions. The work from this chapter highlights that not all variability is bad news, but

a lot more work is needed to ultimately find the answer to the original question of how much

variability is too much.

8.2 Future Work

8.2.1 Formation Modeling

Chapter 4 serves as a skeleton for eventual applications of the formation model we developed

in this thesis. Each of these applications warrants further exploration. We call out a few

focus areas for future work.

The usage of cell thickness expansion appeared to be a critical step in the development and

parameterization of the formation model. However, how critical was this dataset, really? A

rigorous answer to this question can be obtained through an observability analyis. Through

this analysis technique, we can quantify the extent to which the expansion data helped to

improve parameterization of certain model parameters such as Dsei.

Next, the usage of the formation model as a lifetime simulator is only beginning. A logical

next step is to revisit the model parameterization approach to include cycle life data. While

our work showed that there exists a single set of parameters that fit both formation cycling

and formation aging, we did not demonstrate that these parameters could additionally fit
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the cycle life test data that comes after. As a result, we could not directly compare our

simulated cycle life results against experimental data.

Temperature-dependent factors can also be introduced into the model to understand the

role of temperature in SEI film growth passivation. Temperature is another major control

lever for formation protocol design so including this model consideration will help to improve

the applicability of the model towards real-world use cases.

The formation process extends beyond formation cycling and aging. It also includes

a pre-charge step, a de-gassing step, and electrolyte wetting. Both the pre-charge and

de-gassing steps can be easily incorporated into the formation model. For pre-charging,

the relevant electrochemistry we seek to capture is copper dissolution. For de-gassing the

relevant electrochemistry is gas generation. Finally, to capture the electrolyte wetting step,

we require a mechanical model of the wetting process. While modeling the wetting process

will be challenging, it may ultimately be necessary to develop a full “digital twin” of the

battery formation process.

8.2.2 Lifetime Prediction

Chapter 6 demonstrated the possibility of battery lifetime prediction without cycle life data.

Yet, a major shortcoming of the work was that the dataset was limited to a single chemistry

system (NMC/graphite) and only two formation protocols were tested. A natural next step

is thus to repeat the experiment on a new set of cells and even more formation protocols.

Another confounding factor of the lifetime prediction study was that the diagnostic fea-

tures seemed to predict cycle life at 45°C better than cycle life at room temperature. We

speculated that the 45°C provided stronger correlations because of the improved tempera-

ture control. In general, more studies on the temperature effect on lifetime prediction will

be needed.

Next, while we also demonstrated that some diagnostic features calculated from DVA

and the formation protocol itself also correlated to cycle life, we could not come up with

physical explanations for why this is. Lacking a physical understanding, these results were

not included as part of the publication tied to this work. However, with the development of

the formation model, it may be time to revisit this dataset through the lens of the formation

model to see if additional insights can be gleaned.

8.2.3 Differential Voltage Analysis

A major obstacle preventing more widespread adoption of the DVA method presented in

Chapter 5 is the difficulties with reproducible implementation and interpretation of model
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outputs. These difficulties stem from a lack of literature guidance on a standard, rigorous

method to implement the fitting model and an absence of understanding of how sensitive

the model outputs are to small differences in input datasets, including both full cell and half

cell data. While Chapter 5 set out to provide this guidance is ultimately needed.

Several avenues may be taken to further improve the reproducibility of the electrochemical

features derived from the differential voltage analysis method. First, model input sensitivities

need to be better understood. This work introduced several input sensitivity considerations

including C-rate and current direction (charge versus discharge). However, a discussion on

sensitivity to temperature was not covered by this work. Moreover, a quantitative assessment

of the input-output sensitivities has not yet been completed. A logical next step is thus to

quantify model output differences due to these differences in model inputs.

Another important consideration involves understanding the optimizer’s ability to find

the optimal solution θopt. Reproducibility requires that there exists a global minimum value

of the error function defined by Equation 5.12 and that the optimizer can converge to this

value. However, in general, neither condition is guaranteed since the objective function is, in

general, non-convex. The solution uniqueness for the positive electrode parameters Q̃p and y0

may be especially challenging for NMC systems which are relatively featureless (Figure 5.2).

Some past efforts have been made to understand how model output parameter uncertainty

increased as the data collection voltage window decreased [297]. These studies should be

expanded. A better understanding here will enable practitioners to quantify how much of

the variability in model-predicted outputs, such as those shown in Figure 5.9, are due to

true manufacturing variability versus model uncertainty.

8.2.4 Variability Propagation

The modeling framework derived in Chapter 7 lends itself to mathematical analysis, enabling

more rigorous treatments of degradation convergence or divergence for future studies. We

envision that this framework can be expanded in the future to support analyzing parallel-

connected systems in a more generalized context. This section highlights several areas for

future exploration:

a. Arbitrary number of parallel-connected cells. This work presented only two cells

connected parallel to highlight the effect of initial cell variability on an elementary system.

Since only two cells were considered, the presented results may not generalize to the case

of n > 2 cells connected in parallel. However, our analysis can be extended to the general

case of n-cells by leveraging ideas presented by Song et al. [276, 277] and Drummond et al.

[283] to resolve the algebraic constraint for the branch currents and describing the solutions
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in state-space form.

b. Thermal analysis. Considerations for thermal imbalances (i.e. due to battery pack

design or differences in individual cell heating rates) were also omitted in this work but

will be important to consider for future work. To understand thermal effects, our proposed

modeling approach can be combined with a cell thermal model such as those presented by

Zhang et al., [282], Song et al. [276, 277], Reniers et al. [104] and Hosseinzadeh et al.

[298]. Thermal model predictions should also be compared against recent experimental work

including those from Fill et al. [284] and Paarmann et al. [279].

b. Interconnect resistances. Interconnect resistances also play an important role

in determining current imbalances in real battery packs. This work ignored interconnect

resistances to simplify the analysis. Other authors such as Reniers et al. [104] and Hos-

seinzadeh et al. [298] did consider interconnect resistances in their work. Ideas presented in

these works can be incorporated in the future to understand the relative contribution of cell

versus non-cell components on the overall system current imbalance.

c. Degradation mechanisms. Our experimental work showed that degradation con-

vergence is not guaranteed in parallel-connected systems. Specifically, while capacity fade

trajectories appeared to be converging, resistance growth trajectories appeared to be di-

verging. The divergent resistance growth trajectory was not predicted by our modeling

framework which assumed a single degradation mechanism: SEI growth. In reality, degra-

dation pathways in real lithium-ion devices are multi-faceted [292, 299, 300, 301, 302, 303],

requiring more sophisticated degradation models [77, 75, 304] and parameterization meth-

ods [166, 76] to fully capture. Future work should thus explore how additional degradation

assumptions could influence the convergence behavior in parallel-connected systems using a

combination of simulation-based and analytical approaches.
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APPENDIX A

Battery Passports for Promoting Electric

Vehicle Resale and Repurposing

This appendix chapter is based on the following published works:

• Andrew Weng, Eric Dufek, and Anna Stefanopoulou. Battery passports for promoting

electric vehicle resale and repurposing. Joule, 7(5):837–842, May 2023

A.1 Introduction

Starting in 2026, most batteries sold in the European Union will require a battery passport.

This initiative is part of a broader legislative framework, led by the European Commission,

to improve sustainable battery materials sourcing practices and enable a circular economy.

All batteries having a capacity of greater than 2 kilowatt-hours will be covered under the

legislation, effectively encompassing all electric vehicle (EV) batteries and stationary grid

storage batteries [305, 306].

At its core, a battery passport defines a minimum, standard set of information that must

be reported for every battery made and sold (see Figure A.1). Legislative actions have so

far focused on labeling standards enabling raw material traceability and recycling, which

has received ongoing support from the European Council and Parliament [307]. However,

work remains to finalize the electrochemical performance and durability minimum reporting

requirements by 2024, which has been challenging since performance and durability are

subject to many different interpretations.

This chapter advocates for including a key electrochemical performance indicator as part

of the battery passport minimum data reporting requirements: the remaining useful life

(RUL). The RUL can be broadly defined as the years, miles, or energy throughput (in kWh)

until the battery state of health (SOH) falls below some target minimum:
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Figure A.1: Overview of the digital battery passport concept, focusing on applications of
the RUL metric for electric vehicle resale, recycling, and repurposing.

RUL = (years, miles, or kWh) until SOH < SOHmin. (A.1)

Unlike SOH which captures the present state of a battery, the RUL is a prediction of the

future state of the battery. The RUL may rely on measurements of SOH to provide a forecast

of future battery performance. The RUL enables used car buyers, who also earn the least

income on average [308], to make informed purchasing decisions at the point of resale. The

RUL also enables repurposers to decide whether it is more economical to recycle a battery

or to repurpose it for second-life applications. The RUL is thus a metric at the core of the

battery passport’s mission to promote battery materials sustainability and equity.

Existing policy discussions concerning battery durability mainly focus on primary use, not

secondary use. For example, both the United Nations Global Technical Regulation (GTR)

[309] and the California Air Resources Board (CARB) [310] have framed EV durability

from the perspective of an 8-year warranty, with no specific provisions for quantifying RUL

beyond the first 8 years. Yet, since EVs are expected to be driven for 15 to 20 years

and for over 300,000 kilometers [311], they will likely be resold to used car buyers at least

once. Under the existing policy language, a battery that fails immediately after 8 years will

still technically satisfy the 8-year warranty requirement and still be considered “durable.”

The battery passport directive has an opportunity to address the longevity of batteries

beyond 8 years by carefully considering how RUL can be defined and reported as part of the

electrochemical and performance indicators to be finalized by 2024.
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The importance of RUL has been recognized by the European Commission. A key ele-

ment of the European legislation is to establish requirements for longevity and performance

management. Article 14 specifically mentions that a battery management system (BMS)

must contain “data needed to determine the state of health and expected lifetime of bat-

teries.” Furthermore, access to the data must be provided to “evaluat[e] the residual value

of the battery and capability for further use” and “facilitate[e] the reuse, repurposing or

remanufacturing of the battery” [312]. In a parallel effort, CARB has also recently im-

plemented state-level legislation requiring the battery SOH to be reported and accurate to

within 5 percentage points by 2026 [313]. This SOH accuracy requirement, while not directly

addressing RUL, acknowledges that SOH monitoring accuracy is necessary for quantifying

battery durability.

This chapter highlights the reality that a battery’s SOH is not the same as its RUL,

and that more discussion around RUL is needed to enable battery reuse and repurposing.

We discuss three pitfalls of obtaining a reliable RUL estimate, and, in doing so, highlight

the reality that RUL accuracy needs to be carefully considered for RUL reporting to be

useful. First, we argue that a single-point verification test to obtain SOH cannot, by itself,

be used to predict the RUL. Second, we show that 5% SOH accuracy is not enough to make

confident RUL predictions. Lastly, we highlight the need for more physics-based approaches

to estimating RUL, especially for repurposing applications where the use case changes.

A.2 On Single-Point SOH Measurements

Here we argue that single-point SOH measurements cannot be used to predict RUL.

Let us start with a thought exercise. Suppose that on-board SOH estimates are unavailable,

inaccurate, or both. Then, to determine SOH, a battery pack owner is forced to conduct an

external capacity check test, i.e. at a hypothetical battery testing station. The measured

SOH can then be defined as:

SOHmeasured =
UBEmeasured

UBEcertified

× 100%, (A.2)

where UBEmeasured and UBEcertified are the measured and certified Useful Battery Energy

values as proposed by the United Nations Global Technical Regulation [309].

In this example, the single SOH measurement was taken after 8 years of primary use

and was measured to be 70%. This measurement suffices for evaluating whether an EV

meets warranty requirements according to recent UN GTR [309] and CARB [310] legislation.

However, this metric reveals no information about how long the battery will last beyond the
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Figure A.2: RUL cannot be determined using a single-point SOH measurement. Three
different aging trajectories are shown: (A) linear, (B) self-limiting, (C) and accelerating. In
all three cases, the battery satisfies the warranty of 8 years, 160 kilometers, and 70% SOH
(red markers). However, the aging trajectories beyond 8 years differ drastically, affecting
the residual value during resale as shown in Panels (D-F). The residual value is quantified
by the Net Present Value (NPV) which discounts the future value of recycling.

8 years of primary usage. Ultimately, the RUL depends on the underlying aging trajectory

which can differ between battery packs due to differences in cell chemistries, manufacturing

processes, and usage conditions.

Figure A.2 (A-C) illustrates three such possible aging trajectories: “linear” (A), “self-

limiting” (B), and “accelerating” (C) [124]. Defining RUL here as the years from 70% SOH

to 50% SOH, we find that the self-limiting trajectory yields an RUL of 16 years, while the

accelerating trajectory yields only 1. The self-limiting scenario would thus add the most

value in a second-hand electric vehicle market, or possibly even be fit for repurposing or

second-life applications.

Critically, for all three aging trajectories, the SOH measured after 8 years yields an

identical value of 70% SOH, revealing no difference in battery “durability.” This example

demonstrates that a single-point measurement of SOH, no matter how accurate, is insufficient
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for predicting RUL. It follows that battery passports having only a single SOH measurement

will have a limited ability to assess RUL. To enable modeling of the aging trajectory, a

minimum of three SOH points should be measured and recorded over the life of a battery

pack. These SOH points must either be obtained through external testing, i.e., at a battery

inspection station, or from the onboard BMS.

Figure 2 (D-F) shows how knowledge of RUL can help bolster consumer confidence when

deciding between recycling versus reselling an electric vehicle (EV) battery at the end of

its 8-year warranty period. In calculating the residual value of EV resale, we consider both

(1) the value from continued usage as an EV throughout its RUL and (2) the value from

recycling the spent battery at the end of its RUL. The largest source of uncertainty in this

calculation is the RUL. Accurate RUL is thus necessary for facilitating decisions around

recycling versus reuse. Similarly, accurate RUL is also necessary for assessing the value of

repurposing.

A.3 On SOH Accuracy Requirements

How accurate do SOH estimates need to be to enable accurate RUL predictions? In theory,

accurate SOH estimates are obtainable by carefully controlled measurements which can, in

theory, be administered by service centers. Yet, relying on capacity measurements at a service

center to establish battery aging trajectories is undesirable since this will require a customer

to bring in their pack multiple times throughout the service life, a potentially expensive and

time-consuming process. A more economical way to establish an aging trajectory is thus to

obtain continuously streaming SOH data from the onboard BMS. However, onboard SOH

estimation inaccuracies are unavoidable due to numerous factors including sensor inaccuracy

and limited measurement voltage windows.

Intuitively, SOH estimation inaccuracies should also lead to poor RUL prediction inaccu-

racies. Here, we explore this question more quantitatively using a simple probabilistic model

of battery aging trajectories, shown in Figure A.3. Since our focus is to study the effect

of measurement uncertainty, we employ the simplest possible empirical aging model of the

form:

SOHmodeled(t) = a− btc, (A.3)

where a, b, and c are model coefficients, and t is the age of the battery in years. Each

SOH measurement is sampled from independent normal distributions, each with a standard

deviation of 1 percentage point to represent “1% SOH measurement inaccuracy.” The model

is then fit to the sampled points, which can then be used to extrapolate to 50% SOH. The
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process is repeated 100 times to generate a distribution of RUL outcomes (gray lines).

Figure A.3: Effect of SOH estimation inaccuracy on RUL estimation confidence. Panels
(A-C) each show 100 aging trajectories (gray lines) modeled using noisy SOH estimates (red
markers). Each subpanel represents different ground truth aging trajectories: (A): linear,
(B): self-limiting, and (C): accelerating. Panels (D-F) show the corresponding empirical
probability density functions for RUL. The red (blue) curve corresponds to 1% (5%) SOH
estimation inaccuracy. The solid vertical lines represent 95% confidence interval (CI) RUL
values.

The results shown in Panels (A-C) reveal that the distribution of RUL outcomes depends

on the aging trajectory, with the self-limiting aging trajectory having the highest variability

RUL variability, and the accelerating aging trajectory having the least. This numerical

example shows how SOH estimation inaccuracies manifest as RUL prediction uncertainties.

To further understand how RUL distributions change with SOH inaccuracies, we study the

empirical probability density function of RUL for two different SOH estimation inaccuracy

scenarios: 1% inaccuracy (red) and 5% inaccuracy (blue), as shown in Panel (D-F). We define

the 95% confidence interval (CI) RUL values to correspond to the years at which there is a

95% probability that the true RUL will exceed the given value. With 5% SOH inaccuracy,

the 95% CI RUL for all three aging trajectories decreases significantly. For example, for the

self-limiting aging trajectory, the 95% CI RUL decreases from 7.2 years to 1.6 years. A 5%

SOH inaccuracy thus severely degrades the confidence of RUL predictions.

This example highlights an important fact about consumer confidence: even if a battery
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pack is technically suitable for resale or repurposing, a consumer will not choose to do

so unless they have confidence in the RUL. To achieve this confidence, SOH estimation

uncertainty must be sufficiently low.

A.4 On Changing Use Cases for Repurposing

We finally highlight an inconvenient reality with RUL prediction for battery repurposing:

simple, extrapolation-based methods for predicting RUL may fail to yield accurate RUL

predictions for repurposing applications. This issue is unique to repurposing where the

battery use case can differ drastically from the primary use case as a traction battery. Figure

A.4 illustrates this by comparing the battery degradation trajectory in the context of EV

resale (Panel A) and repurposing (Panel B). In the case of EV resale, the battery pack

continues to be used as a traction battery, and while metrics such as daily mileage may

change after resale, the overall battery limits of operation, being bounded by the same BMS,

remain the same. The battery aging trajectory is thus expected to be similar during the

secondary usage period beyond 8 years.

Comparatively, batteries that are repurposed may be used in completely different contexts

compared to the primary usage in EVs, including for home backup power, grid frequency reg-

ulation, and low-power electric mobility [314]. For these use cases, the battery degradation

rate will tend to be milder than compared to the traction battery use case. Extrapolating

aging trajectories based on SOH measured during the primary use case may thus underesti-

mate the RUL, leading to a mischaracterization of the battery’s longevity in the second life

application.

An accurate assessment of RUL for repurposing therefore requires models that parame-

terize the degradation rate based on the use case. Simple, extrapolation-based approaches

based on past usage history alone cannot achieve this. Rather, more physics-based models

[77] may be more appropriate for capturing the dynamics of changing use cases and their

impacts to battery degradation. Such models typically parameterize battery degradation

at the electrode level, whereby environmental factors, such as depth of discharge, tempera-

ture, and C-rate, are translated into electrode-level stressors, such as lithium concentration

gradients and reaction overpotentials. These physical models can more readily evaluate the

impact of repurposing on RUL by dynamically updating the degradation rate as the use

case changes. A BMS that implements a physics-based model could, in principle, compute

the RUL associated with multiple use cases, enabling consumers evaluate the suitability of

a given battery system for different repurposing applications.
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Figure A.4: Impact of changing use cases on battery long-term aging trajectory. Panel A
shows the SOH trajectory before and after EV resale, where the use case remains relatively
unchanged. Panel B shows how, in the case of battery repurposing, the SOH trajectory may
deviate from the original trajectory due to changing use cases.

A.5 On Battery Management Systems

The BMS plays a central role in measuring and reporting battery SOH and RUL for each

electric vehicle. Existing policy language from the EU and CARB are not prescriptive in how

SOH or RUL estimation should be implemented but makes it clear that the BMS is respon-

sible for computing and reporting this information. Here, we briefly discuss some additional

considerations relevant to enacting battery passport policies promoting BMS development

and RUL estimation.

First, since RUL can be defined at the cell-level, module-level, or pack-level, battery

passport data requirements should carefully weigh the pros and cons of each level of rep-

resentation. Repurposing applications will generally benefit from module or even cell-level

information since individual units within a single battery pack can exhibit different aging

behavior [315]. A remanufacturer with accurate RUL information on individual modules, for
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example, can then choose which modules to remanufacture and which modules to recycle. On

the other hand, for EV resale applications, pack-level RUL information is sufficient since the

pack will not be disassembled. Enabling cell-level RUL will increase BMS sensor and devel-

opment costs, which must be weighed against the benefit of improving re-manufacturability.

Second, given OEMs’ general reluctance to publicly share BMS data, policy language

around BMS development should focus on RUL accuracy targets and verification methods

rather than prescribing implementation details. In this manner, legislators can focus on

assuring sustainability end goals while remaining agnostic to technology implementation,

thereby respecting the OEMs’ needs to protect their technology.

Finally, although the BMS typically only adds 4-5% to total battery pack costs [316], this

cost does not adequately capture the extra time and engineering effort needed to develop

and validate advanced RUL estimation methods. The more complicated the RUL reporting

requirements are, the more difficult it will be for OEMs to implement such requirements while

remaining competitive in the global EV market. Thus, to encourage widespread adoption

of standardized RUL reporting requirements, the requirements themselves should be kept as

simple as possible.

A.6 Conclusions and Recommendations

Battery passport data requirements should be kept as simple as possible. Adopting complex

requirements can increase battery costs, slow implementation, and become difficult to en-

force. Yet, while existing battery passport data requirements may help maintain minimum

performance guarantees for EVs within their first 8 years of use, these same requirements

may not enable accurate prediction of remaining useful life (RUL) beyond 8 years. Without

accurate RUL predictions, battery passports can only give limited guidance concerning EV

resale and repurposing.

We outlined several key considerations to ensure battery passports can inform EV resale

and repurposing decisions. At a minimum, three state of health (SOH) measurements should

be made over different time points to establish an aging trajectory. Each SOH measurement

must be sufficiently accurate: a 5% SOH inaccuracy cannot provide confident RUL predic-

tions. Finally, the battery management system (BMS) must enable the accurate prediction

of RUL under changing use cases, which may require the adoption of physics-based state

estimation algorithms in the BMS. These additional considerations emphasize the need to

develop and deploy high-performance BMS in electric vehicles.

Overall, this chapter raises awareness of the central role that the BMS plays in enabling

battery passports to predict RUL. With an accurate BMS, battery passports can help boost
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consumer confidence in the used EV market. With an accurate, physics-based BMS, re-

purposers can evaluate second-life application feasibility and fulfill the promise of a circular

battery economy.

216



APPENDIX B

Formation Data Analysis

The contents in this appendix accompany the material from Chapter 6.

Figure B.1: Mean discharge voltage over cycle number
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Figure B.2: Coulombic efficiency over cycle number

Figure B.3: Voltage efficiency over cycle number
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Figure B.4: Discharge energy over cycle number
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Figure B.5: Cycle life test results with equivalent cycles (Ah/Ah) as the throughput basis.
The total throughput is calculated by taking the cumulative discharge capacity and dividing
by the cell nominal capacity (2.36 Ah). (a,c) Discharge capacity for the room temperature
(a) and 45°C (c) tests. (b,d) Distribution of outcomes at the end of life for the room
temperature (b) and 45°C (d) tests. End of life is defined as equivalent cycles to reach 70%
of initial capacity.
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Figure B.6: Example hybrid pulse power characterization (HPPC) sequence. HPPC is used
to extract the 1C, 10-second charge and discharge resistances across different SOCs. (a,c)
current and voltage traces from the HPPC protocol. (b,d) magnified view of the first charge
and discharge pulse from the pulse sequence, which occurs at ∼4% SOC. The HPPC pulses
are included as part of every reference performance test (RPT).
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Figure B.7: Initial cell resistance comparison. Distribution of resistance measured at (a-c)
room temperature and (d-f) 45°C. Resistance is calculated from the Hybrid Power Pulse
Characterization (HPPC) test from the first RPT. ‘n.s.’: not statistically significant. ‘***’:
statistically significant with p-value < 0.001.
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Figure B.8: Effect of measurement SOC on the cell resistance measured from HPPC. Top
row: room temperature. Bottom row: 45°C. Values are obtained from the initial Reference
Performance Test (RPT) run prior to the start of cycling. ‘n.s.’: not statistically significant.
‘***’: statistically significant with p-value < 0.001. ‘*’: statistically significant with p-value
< 0.05.

Figure B.9: Effect of pulse duration on the cell resistance measured from HPPC. Top row:
room temperature. Bottom row: 45°C. Values are obtained from the initial RPT run prior
to the start of cycling. ‘***’: statistically significant with p-value < 0.001.
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Figure B.10: Correlation between RLS and conventional metrics during formation. Conven-
tional metrics include lithium consumed during formation (QSEI = Qc−Qd) and Coulombic
efficiency (CEf). (a,b) Correlation with RLS measured at room temperature. (c,d) Corre-
lation with RLS measured at 45°C. QSEI = Qc − Qd and CEf are always measured at room
temperature since these signals are derived directly from the formation protocol which ran
at room temperature. RLS was measured at the temperature of the cycling test.
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Figure B.11: Correlation between initial cell signals and cycle life for room temp. cycling.
End of life is defined as cycles to x% of initial capacity, where x = {50, 60, 70, 80}. Formation
signals (QSEI = Qc − Qd and CEf) are always measured at room temperature. R10s,5%SOC

and R10s,90%SOC are measured at the same temperature as the cycle life test.
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Figure B.12: Correlation between initial cell state signals and cycle life for 45°C cycling. End
of life is defined as cycles to x% of initial capacity, where x = {50, 60, 70, 80}. Formation
signals (QSEI = Qc − Qd and CEf) are always measured at room temperature. R10s,5%SOC

and R10s,90%SOC are measured at the same temperature as the cycle life test.
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Figure B.13: Correlation between low-SOC resistance and cycle life: charge versus discharge
pulses. Resistances are calculated from either discharge (a,c,e,g) or charge (b,d,f,h) pulses
from the Hybrid Pulse Power Characterization (HPPC) sequence. The comparison is pro-
vided for resistances evaluated at both 4% SOC (a,b,e,f) and 5% SOC (c,d,g,h).
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Figure B.14: Example set of C/20 charge curves used for voltage fitting analysis. The C/20
charge curves are embedded as part of the reference performance tests (RPTs).
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Figure B.15: Example of voltage fitting results obtained on a single cell over aging. Left
column: voltage feature alignment. Right: differential voltage feature alignment. Top row:
fresh cell. Bottom row: after 365 cycles have elapsed. Note that the voltage fitting algorithm
only consumes voltage data.
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Figure B.16: Comparison of discharge capacity versus cycle number at different C-rates.
(a,b) Cycle life tests run at room temperature. (c,d) Cycle life tests run at 45°C. (a,c) C/3
discharge capacity. (b,d) C/20 discharge capacity. All discharge capacities here are measured
from the Reference Performance Tests (RPTs).
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Figure B.17: Example pulse profile for a graphite/Li coin cell half cell. The pulses are
obtained as part of the coin cell HPPC test. The coin cell HPPC profile consists of the
following repeated sequence: (a) background charge, (b) rest, (c) 10-second charge pulse,
and (d) 10-second discharge pulse. The markers (x) indicate the potential difference taken
to compute the 10-second resistance using Ohm’s law. The potential measured at the end of
the rest period (b) is assumed to be in near-equilibrium. The current used during the pulses
is 0.4mA for all cells.
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Figure B.18: HPPC tests performed on coin cell half cells. Potential vs time for (a) LFP/Li,
(b) NMC/Li, and (c) Graphite/Li. (d-f) Corresponding pseudo-equilibrium potential curves,
where the potential is measured immediately preceding each pulse. (g-h) Calculated 10-
second resistances. For the positive electrodes, the resistances are calculated on discharge
(i.e. during delithiation). For the graphite negative electrode, the resistances are calculated
on charge (i.e. during lithiation).
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Figure B.19: Initial cell equilibrium potential curves before formation. The curves are gen-
erated using the electrode stoichiometry model by aligning the point of minimum negative
electrode stoichiometry (maximum potential) with the point of maximum positive electrode
stoichiometry (minimum potential). Blue: positive electrode. Red: negative electrode.
Black: full cell.

Figure B.20: Electrode stoichiometry model illustration. The model shows the impact of
fast formation on the alignment of initial cell equilibrium potential curves (a) and resistance
curves (b). In this plot, ∆QSEI has been set to ∼23 mAh.
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Figure B.21: Temperature measurement during cycle life testing. (a,b) Time-series data for
the room temperature (a) and 45°C (b) tests. (c,d) Temperature histograms for the room
temperature (a) and 45°C (d) tests.
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Figure B.22: Sensitivity of low-SOC resistance to loss of active material in the positive
electrode. (a-c) Impact of loss of positive active material in the delithiated state. (d-e)
Impact of loss of positive active material in the lithiated state. (c,f) Sensitivity of discharge
capacity to loss of active material in the positive electrode. In (a,d), LAM is set to 15% for
graphical clarity.
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Figure B.23: Sensitivity of low-SOC resistance to loss of active material in the negative
electrode. (a-c) Impact of loss of negative active material in the lithiated state. (d-e) Impact
of loss of negative active material in the delithiated state. (c,f) Sensitivity of discharge
capacity to loss of active material in the negative electrode. In (a,d), LAM is set to 15% for
graphical clarity.

Figure B.24: Sensitivity of RLS and discharge capacity to active material loss: summary. (a)
Sensitivity of low-SOC resistance to different active material loss types. (b) Sensitivity of
discharge capacity to different active material loss types. In general, active material can be
lost at both the positive and negative electrodes, as well as in the lithiated and delithiated
states.
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Figure B.25: Sensitivity of RLS to ∆QSEI: example 2. Sensitivity of low-SOC resistance (RLS)
to ∆QSEI depends on the fractional contribution of the positive electrode to the total cell
resistance: example 2. Sensitivity of the resistance at 5% SOC to ∆QSEI for varying positive
electrode resistance contributions to full cell resistance. fpos is the fractional contribution of
the positive electrode to the total cell resistance.

Figure B.26: Images of pouch cells taken after aging. Cell #9 has been excluded from the
study due to tab weld issues.
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B.1 Lithium Consumed During Formation: Signal-to-

Noise

Here, we perform a simple set of calculations to determine the resolution limit of lithium

consumed during formation (QSEI) as a function of the estimation method. We focus on com-

paring two estimation methods: the low-SOC resistance signal (RLS) and the cell discharge

capacity (Qd). Qd represents a conventional signal measured using current integration. In

this simplified analysis, we consider only the effect of lithium consumption and ignore pos-

sible effects from active material losses. For the analysis, we assume hardware specifications

from the battery testing equipment used in our experiments (Maccor Series 4000). The

hardware specifications and parameters used in the analysis are provided in Table B.1.

Parameter Symbol Value Unit

Voltage Precision Vp 0.02 % of FSR
Voltage Full-Scale Range VFSR 5 V
Current Precision Ip 0.02 % of FSR
Current Full-Scale Range IFSR 5 A

Current Setpoint for RLS Calculations Iset,1 2.37 ( = 1C) A
Current Setpoint for Qd Calculations Iset,2 0.237 ( = C/10) A

Table B.1: Parameters used for the signal-to-noise analysis

The current and voltage errors Ierr and Verr can be calculated as

Ierr = IFSR · Ip/100

= 0.001A
(B.1)

Verr = VFSR · Vp/100

= 0.001V.
(B.2)

The resolution limit for resistance, Rlimit, can be calculated as

Rlimit = Rhigh − Rlow

= 0.88mΩ
(B.3)

238



where

Rhigh =
∆Vmeas +Verr

Iset,1 − Ierr
(B.4)

Rlow =
∆Vmeas − Verr

Iset,1 + Ierr
. (B.5)

In these equations, ∆Vmeas is the measured voltage drop during the discharge pulse.

From Figure B.6, this value is less than 0.1V at low SOCs. For the remaining calculation,

we assume ∆Vmeas = 0.1V .

The resolution limit for a capacity measurement can be estimated as

Qlimit = Qhigh −Qlow

= 20mAh
(B.6)

where

Qhigh = (Iset,2 + Ierr) · 10 hours (B.7)

Qlow = (Iset,2 − Ierr) · 10 hours. (B.8)

These capacities correspond to the C/10 constant current discharge steps during the

final diagnostic cycle of the formation protocol (Figure 6.1b,c). Here, we neglect the effect of

voltage inaccuracies which would add an additional error in the voltage termination condition

for the discharge cycle. By ignoring this error, the estimate of the resolution limit for Qd

remains optimistic.

To calculate the sensitivity of ∆QSEI to ∆RLS, we linearize the curve from Figure 4d at

5% SOC to find that

∆QSEI

R10s,5%SOC

=
40mAh

10mΩ

= 5.00mAh/mΩ.

(B.9)

A similar exercise is done for ∆Qd which yields
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∆QSEI

∆Qd

=
40mAh

37mAh

= 1.08mAh/mAh.

(B.10)

Finally, the resolution of QSEI calculated using the two different methods are computed

as

QSEI calculated from R10s,5%SOC =
∆QSEI

∆R10s,5%SOC

· Rlimit

= 3.9mAh

(B.11)

QSEI calculated from Qd =
∆QSEI

∆Qd

·Qlimit

= 22.2mAh.

(B.12)

This simple calculation demonstrates that the low-SOC resistance metric improves the

resolution limit of QSEI by five-fold compared to the same calculation made using Qd.

We note that Qlimit = 20 mAh corresponds to the magnitude of the difference in lithium

consumed between the fast formation and baseline formation protocols (23 mAh), which

confirms that it would be difficult to detect such small changes in lithium consumption using

ordinary cycler equipment.

The precision of the Qd measurement can be improved in several ways. First, a higher

C-rate discharge would lead to less current integration error and higher accuracy. However,

a high-rate discharge would also include a kinetic contribution making it more difficult

to correlate to lithium loss. Second, Qd can also be improved by using higher precision

cyclers. For example, if the voltage and current precision both increased by 100-fold, then

the resolution limit of QSEI calculated from Qd will have improved to 0.2 mAh. However,

in this scenario, the resolution limit of QSEI calculated from R10s,5%SOC would also have

improved to 0.04 mAh.
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B.2 Fast Formation and Gas Evolution over Cycle Life

At the negative electrode, some common gas-generating reaction pathways include the reduc-

tion of ethylene carbonate (EC) to form carbon monoxide (CO) and the reduction of water

impurities (e.g. from manufacturing) which can form carbon dioxide (CO2) and hydrogen

gas [317]. Since every cell in the experiment was taken from the same manufacturing batch,

their water content is expected to be similar. It is therefore unlikely that water reduction

pathways is the major source of difference in the amount of gas formed between the two

different formation protocols. Next, the reduction of EC is lithium-consuming and thus the

amount of CO formed through this reaction pathway is expected to correlate to the loss of

lithium inventory (LLI) over life. However, our voltage fitting analysis (Figures 6.6, 6.7)

suggests that the rate of LLI for fast formation cells is equal to or lower than that of baseline

formation. We therefore expect the formation rate of CO from the EC reduction pathway to

be comparable between the two different formation protocols. From this brief survey, it is

unlikely that a reaction pathway based on the negative electrode can account for differences

in measured gas amount over life between the two different formation protocols.

We note that oxidation reactions at the positive electrode (e.g. at high potentials) can also

contribute to gas evolution over aging. Common reaction pathways at the positive electrode

include the decomposition of lithium carbonate at the surface of the NMC electrodes and

the oxidation of EC. The reaction products include the generation of CO2, CO, and oxygen

gas [317]. These reactions are known to accelerate at higher positive electrode potentials vs

Li/Li+, a phenomenon studied in detail by Jung et al. [318].

To determine whether fast formation could have caused the positive electrode to expe-

rience higher potentials at the top of charge, we used the electrode stoichiometry model to

measure the impact of increased lithium consumption during formation on the positive elec-

trode potential vs Li/Li+ at the top of charge (i.e. 4.2V in the full cell). The result, shown

in Figure B.27, illustrates how an increase in the magnitude of ∆QSEI shifts the positive

electrode stoichiometry window towards marginally lower values at both the bottom of dis-

charge and the top of charge. From this graphical analysis, we see that the positive electrode

stoichiometry at the top of charge (i.e. 4.2V in the full cell) has increased by 0.5 mV vs

Li/Li+. Thus, fast formation may have increased the positive electrode potential at the top

of charge, creating a more oxidizing environment and promoting more gas generation. While

the difference in the potential is marginal, a small change in oxidation rates could lead to a

large difference in accumulated gas generated over the course of hundreds of cycles. We also

note that a significant portion of the charge cycles are spent in the CV hold phase where

the positive electrode would stay at this higher potential. A similar mechanism has been
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identified as part of work by Dose et al. [319]. Note that Dose et al. observed that the

positive electrode impedance increased due to these oxidation reactions, but in our work,

this impedance rise was not observed (Figure 6.6a).

Figure B.27: Electrode stoichiometry model showing the impact of 20 mAh of additional
lithium loss on the positive electrode potential at the top of charge. (a) Model for baseline
formation. (b) Model for fast formation.

In general, gas build-up represents the combination of gas both generated and consumed.

Xiong et al. [320] demonstrated that gas in NMC-graphite cells can be generated at the

positive electrode and subsequently reduced at the negative electrode via a ‘shuttle’ mecha-

nism [321]. At the positive electrode, gas species such as O2, CO, and CO2 can be generated

through electrolyte oxidation pathways [317, 318], and at the negative electrode, gas species

can be further reduced into solid products [317]. Fast formation may be exacerbating the

gas generation rate, suppressing the gas consumption rate, or both.

We further hypothesize that the gas build-up over life may have a secondary benefit to

cycle life. Krause et al. [322] and Chevrier et al. [323] have reported that the reduction of

CO2 at the negative electrode contributes to the SEI growth process and have a stabilizing

effect. Since fast formation had increased cycle life, it is possible that more CO2 is being

generated at the positive electrode and reduced at the negative electrode, further improving

SEI passivation and delaying the knee-point. More experimental work will be needed to

confirm this theory.
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B.3 Effect of Lithium Consumption during Formation

on Maximum Positive Electrode Stoichiometry

A careful study of the electrode-specific equilibrium potential curves suggests another pos-

sible contributor to the improved cycle life seen in fast formation cells. Returning to Figure

4a, we observe that the capacity corresponding to the extra lithium consumed from fast

formation, ∆QSEI, is also associated with a decrease in the maximum positive electrode stoi-

chiometry, ymax. Since fast formation consumed more lithium to create the SEI, the positive

electrode becomes less fully lithiated when the cell is fully discharged. By comparison, the

positive electrodes of baseline formation cells will be more lithiated at the end of discharge.

Access to higher positive electrode lithiation states is associated with higher levels of

particle-level stress, leading to more likelihood for cracking of the ceramic oxide secondary

particles [324, 241, 243]. Stress-induced cracking over life can lead to electrical isolation of

particles, resulting in loss of active sites. The cracking may also expose additional surface

area which could accelerate the rate of parasitic reactions leading to earlier knee-points

[125]. We speculate that this difference in ymax, while small, could protect the fast formation

cells against cracking over the course of many cycles, leading to an overall improvement in

the overall cycle life. This degradation mechanism is particularly relevant in our testing

where every cycle ends on the minimum voltage target of 3.0V. This ‘hidden degradation

mechanism’ involving the positive electrode motivates the usage of the low-SOC resistance,

∆RLS, to quantify the small changes in ∆ymax due to new formation protocols.
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[142] D. Garćıa Elvira, R. Machado, G. L. Plett, M. S. Trimboli, H. Valderrama Blavi, A. Cid
Pastor, and L. Mart́ınez Salamero. Simplified Li Ion Cell Model for BMS Coupling an
Equivalent Circuit Dynamic Model with a Zero Dimensional Physics Based SEI Model.
Journal of The Electrochemical Society, 168(11):110526, 2021.

[143] Julius Schmitt, Markus Schindler, Andreas Oberbauer, and Andreas Jossen. Determi-
nation of degradation modes of lithium-ion batteries considering aging-induced changes
in the half-cell open-circuit potential curve of silicon–graphite. J. Power Sources,
532:231296, June 2022.

[144] P Mohtat, S Lee, J B Siegel, and A G Stefanopoulou. Comparison of expansion and
voltage differential indicators for battery capacity fade. J. Power Sources, 2022.

[145] Wenxiao Huang, Yusheng Ye, Hao Chen, Rafael A Vilá, Andrew Xiang, Hongxia Wang,
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