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Abstract 

Pancreatic ductal adenocarcinoma (PDA) is a particularly deadly form of cancer with a long-

term survival rate of merely 12%. PDA is often detected in late stages and has few effective 

therapeutic options. This treatment evasion can be attributed largely in part to its surrounding 

tumor microenvironment (TME). PDA exists in a dense, highly fibrotic TME that results in 

hypoxia and a lack of serum-derived nutrients. To survive in these harsh conditions PDA rewires 

its metabolism and adapts its nutrient inputs. Understanding these cancer-specific pathways is 

vital in better characterizing PDA and identifying future therapeutic targets. 

The aim of this work was to profile the nutrients capable of fueling PDA metabolism. In 

achieving this aim, we first employed a large-scale unbiased nutrient screen called the Biolog 

Mammalian Phenotyping Assay®, in which we cultured 20 PDA and two control cell lines in 

various nutrient-depleted conditions while providing them a wide array of substrates to measure 

metabolic activity rescue. Through this assay we profiled carbon and nitrogen-containing 

metabolites, a panel of ions, metabolic efforts, and chemotherapy drugs. From these data we 

chose to further investigate the carbon and nitrogen sources as potential rescue options for PDA 

metabolism.  

Through these data we found that uridine consumption is markedly increased in PDA under 

nutrient-depleted conditions, and this strongly correlates to high expression of the enzyme 

uridine phosphorylase-1 (UPP1) which is responsible for catabolizing uridine into uracil and 

ribose 1-phosphate. Using metabolomics and several orthogonal methods, we demonstrate that 
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uridine-derived ribose enters central carbon metabolism to fuel glycolysis and oxidative 

phosphorylation, restoring PDA growth. Further, we show that PDA UPP1 expression is 

regulated by the KRAS-MAPK pathway, and expression is further increased upon nutrient-

deprivation of glucose or uridine. Importantly, we demonstrate that UPP1 is active in mouse 

models, and following UPP1 knockout, uridine-derived carbons no longer enter oxidative 

metabolism, resulting in reduced tumor growth in an in vivo mouse model. These studies 

highlight the ability of PDA to utilize alternative substrates within the TME, while also 

providing a potential target for disrupting a cancer-specific pathway. 

To further explore nutrients that support PDA growth, we looked at the effect of nitrogen-

containing substrates in the Biolog assay. To achieve this aim, we used the statistical processing 

language R to collate and process the raw metabolic data from the large-scale assay. We 

calculated the maximum catabolic rate of each nitrogen-containing substrate and found 

glutamine-containing metabolites to consistently rescue PDA metabolism under nutrient-

depleted conditions. Glutamine is the most abundant non-essential amino acid in circulation and 

provides a valuable source of both carbon and nitrogen in biochemical processes.  Plotting the 

distribution of all glutamine-containing substrates, we observed a broad spectrum of catabolic 

rates, with glutamine-glutamine dipeptides being among the most rapidly consumed, and 

glutamine-glutamate among the slowest. These findings emphasize the role and importance of 

glutamine-derived carbon and glutamine-derived nitrogen and provoke future studies.  

Overall, this work aims to profile the nutrient inputs that PDA is capable of consuming to 

support metabolism. By uncovering these alternate energy sources and pathways, we provide 

new and much needed insight into the characteristics of PDA and present future potential targets 

for metabolic therapies. 
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Chapter 1 Introduction to Pancreatic Cancer 

1.1 Disease Overview 

Cancer is among the leading causes of death worldwide, only second to cardiovascular 

disease1. In 2020, there was an estimated 1.8 million cancer diagnoses in the US alone, with an 

estimated 600,000 mortalities1. Encouragingly, the overall mortality rate of cancer-related deaths 

had decreased worldwide from 2005 to 20151. This is due to early detection, and better 

characterization of cancer subtypes leading to more targeted therapies. However, as promising as 

these advances are, there are still many types of cancers that remain particularly deadly. When 

examining overall cancer incidence by type, the top four deadliest cancer types for men and 

women combined are lung, colorectal, pancreas, and breast2,3. Among these, pancreas cancer 

remains relatively stagnant in its treatment options and continues to grow in mortality rates2,3. 

Pancreatic ductal adenocarcinoma (PDA), the most common form of pancreatic cancer, is 

currently the third leading cause of cancer-related deaths and projected to increase to the second 

by 2040, only surpassed by lung cancer2,3. While PDA sits at 10th most common in incidence 

rate, it has the lowest 5-year survival rate among major cancer types making it a particularly 

important area of research. PDA accounts for 90% of all pancreatic malignancies, with the other 

major subtype, pancreatic neuroendocrine tumors (panNETs), presenting much more favorable 

prognoses4. Approximately 60-70% of PDAs are in the head of the pancreas, with the remainder 

residing in the body and tail regions5.  

A major reason why PDA is so deadly is that usually detected in late stages, as it is largely 

asymptomatic early on. When symptoms do present, they appear most commonly as abdominal 
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pain, weight loss, asthenia, and jaundice5. In addition to the lack of symptoms, PDA currently 

has a severe lack of early detection markers. The location of the pancreas makes it a difficult 

organ to routinely examine, as it resides in the abdominal cavity behind the liver and stomach, 

and above the duodenum6. Overall, these factors contribute to the late-stage detection of PDA 

which presents limited treatment options and ultimately high mortality rates. The 5-year survival 

rate for PDA has increased painstakingly slowly in the past 50 years, from 2.5% in 1973 to 

merely 12% in 20235,7. 

1.2 Therapeutic Landscape 

Due to late-stage detection, only 15-20% of PDA diagnoses are available for resection8. The 

anatomical location of the pancreas results in complications in resection for late-stage tumors 

with vasculature intertwining multiple other organs. Additionally, there is often distant 

metastasis upon diagnosis, making removal of the primary tumor ultimately ineffective8. In the 

cases where resection is possible, a pancreaticoduodenectomy, or Whipple procedure, is 

common. This involves removing the head of the pancreas, along with portions of the small 

intestine, gallbladder, and bile duct in a major reconstructive procedure9. Even in these resectable 

cases, long term survival increases to merely 20%, serving to highlight the dismal prognosis for 

the majority of PDA cases and the disease overall10.  

Recent advancements in treatment options for other cancer types, most notably immune-

checkpoint therapy, have proven to be largely ineffective in PDA11. This leaves the main 

treatment options to be chemotherapy and radiation. The standard of care for the last 50 years 

has been the chemotherapy regime of gemcitabine, with recent advancements in the last decade 

including combination chemotherapies12. The combination of 5-fluorouracil (5-FU), leucovorin, 

irinotecan, and oxaliplatin, commonly referred to as FOLFIRINOX, is the most aggressive 
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therapy recommended for patients, although it generally requires patients to be in robust health 

due to significant side effects of treatment. The more palliative combination option is 

gemcitabine alongside an albumin nanoparticle conjugate of paclitaxel (nab-paclitaxel)6. These 

two therapies have emerged as the primary and secondary options for standard of care for PDA 

and are administered depending on the patient’s progress and overall health.  

1.3 PDA Tumor Microenvironment 

PDA exists in a complex tumor microenvironment, a landscape surrounding the tumor that is 

wholly unique to other environments in the body. Within a PDA tumor, a majority of the tumor 

is comprised of non-cancer cells, consisting of fibroblasts, extracellular matrix (ECM), and a 

diversity population of inflammatory and immunosuppressive cells to support the tumor6. The 

high abundance of fibroblasts and ECM leads to a very dense, fibrotic, tumor microenvironment 

with interstitial pressures up to ten times to that of a normal organ. This structure serves as a 

physical barrier for the tumor from exposure to chemotherapies and anti-tumoral immune cell 

infiltration13. Studies have shown that combination therapies aimed at disrupting the ECM via 

depletion of hyaluronan, a major component of the ECM, improved chemotherapy efficacy with 

gemcitabine14. 

In addition to physical protection from therapies, the dense fibrotic environment commonly 

leads to a collapse and lack of penetrating vasculature, and a resulting lack of oxygen and serum 

derived nutrients. This results in the formation of a harsh and nutrient-deprived tumor 

microenvironment13,15. To survive and proliferate in this microenvironment, cancer cells can 

rewire their metabolic pathways to adapt to their presently available environment. This includes 

adapting their nutrient inputs to utilize those available, in the absence of classically consumed 

serum-derived nutrients. These nutrient inputs can be derived from the surrounding cells in the 
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TME in a symbiotic cellular crosstalk relationship, or by upregulated salvage pathways such as 

autophagy, a nutrient scavenging process regulated by nutrient access and energetic balance16,17. 

Through these mechanisms PDA rewires its metabolic pathways to adapt to and thrive. However, 

these altered pathways also present unique dependencies and sets the stage for future targeted 

therapies of these cancer-specific pathways. 

1.4 Cancer Metabolism 

In PDA, metabolic rewiring is largely affected by mutant KRAS (KRAS*), the main 

oncogenic driver. KRAS is a small GTPase that functions are a molecular switch induced by 

binding guanosine triphosphate (GTP) or guanosine diphosphate (GDP) to induce an active or 

inactive state, respectively. In quiescent non-cancerous cells, KRAS has low expression and 

remains in its inactive state for most of the time. KRAS is activated by extracellular stimulation 

of receptor tyrosine kinases (RTKs) or other cell-surface receptors, leading to active GTP 

binding and a signaling cascade to a multitude of regulatory signaling pathways for controlling 

mitotic processes. KRAS is mutated in almost all PDA, resulting constitutive activity and cancer 

promoting in its proliferative effects18. 

A majority of KRAS mutations occur as G12D and G12V, in which the glycine residue on 

codon 12 is mutated to an aspartate or valine, respectively18. With KRAS*, the main oncogenic 

driver in PDA great efforts have been made at targeting this GTPase. Historically, these efforts 

have been unsuccessful, leading many to label it as “undruggable”19. However, recent 

advancements have successfully developed small-molecule inhibitors capable of targeting 

KRAS* in multiple subtypes (G12C and G12D), showing great promise in clinical trials19–21. 

 When KRAS* is constitutively active, many metabolic pathways are altered to benefit 

cancer cell survival. One such adaptation that has been well characterized is the use of glucose 
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metabolism15,22. Glucose is the main serum-derived nutrient for cells and is utilized in the 

generation of ATP. Normally, under oxidative conditions this glucose is completely oxidized to 

carbon dioxide in the mitochondria to yield the highest amount of ATP15. However, due to the 

relative lack of vasculature and serum-derived nutrients glucose access is limited, resulting in 

KRAS* upregulating both the glucose transporter GLUT1 to promote glucose uptake, and 

glycolytic enzymes to promote glycolysis22. 

 To recapture lost mitochondrial ATP production, KRAS* also rewires glutamine 

metabolism to fuel the TCA cycle and produce ATP15. Glutamine is a highly abundant non-

essential amino acid and exists as a significant source of both carbon and nitrogen. KRAS* 

rewires glutamine metabolism by promoting its use as a carbon source in the TCA cycle for 

mitochondrial ATP used for proliferation22,23. Additionally, KRAS* promotes the use of 

glutamine for redox balance in a rewired malate-aspartate shuttle to counteract the collective 

ROS build up within cancer cells as a byproduct of their proliferation22,24. These alterations in 

metabolic pathways are driven by KRAS* to promote cancer cell survival in its TME, yet also 

present potential metabolic vulnerabilities that are cancer-specific, as these pathways are not 

dependent in non-cancerous cells.  

In addition to adaptations in glucose and glutamine metabolism, PDA utilizes nutrient 

scavenging pathways in response to nutrient availability in the TME25. Autophagy is a nutrient 

scavenging process regulated by nutrient access and energetic balance that is shown to be 

upregulated in PDA26-28. Under conditions of metabolic stress, autophagy degrades cellular 

organelles and macromolecules to support metabolic homeostasis. This process provides amino 

acids that facilitate PDA growth under nutrient deprived conditions. Importantly, PDA is highly 

sensitive to autophagy inhibition, and studies have shown through both genetic and 



 6 

pharmacological inhibition of the autophagy pathway that tumor growth in PDA mouse models 

is reduced26,28. By inhibiting KRAS* downstream through the MAPK pathway, autophagy 

dependence is increased, leading to a synergistic effect in combination therapy of inhibiting both 

MAPK and autophagy in vivo29. These KRAS* driven adaptations demonstrate the metabolic 

plasticity of PDA cells and highlight the importance of understanding these characteristics in 

targeting this disease. 

1.5 Metabolomics Overview 

The substrates and small molecules that fuel and become byproducts of chemical reactions in 

biological systems are called metabolites. They consist of carbohydrates, nucleotides, amino 

acids, lipids, and many other biochemical classes30,31. These building blocks constitute the 

metabolome, which often has the strongest effects on biological phenotypes. This is due to the 

metabolome occurring downstream of both the transcriptome and genome. Therefore, when 

studying metabolism, it is essential to identify and quantify these small molecules, which is the 

overall aim of metabolomics.  

To achieve this feat, an important technology is liquid-chromatography in tandem with mass 

spectrometry (LC/MS). Liquid-chromatography is a technique utilizing a column to separate 

metabolites based on chemical properties. While many column types exist, they generally consist 

of a stationary phase inside the column in conjunction with a mobile phase liquid being passed 

through the column32,33. The affinities for both the mobile and stationary phases result in 

separation of metabolites in a liquid sample across a given length and timeframe. The major 

column categories consist of hydrophilic interaction chromatography (HILIC) and reverse-phase 

chromatography (RPC), which separate polar metabolites based on hydro-affinity each in 
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different gradient directions34. Between these two chromatography techniques, a significant 

amount of the metabolome can be separated.  

After metabolite separation a mass spectrometer is utilized to detect and identify the 

metabolites within a sample by mass-to-charge ratios (m/z) and retention times (RT). The major 

components of a mass spectrometer include an ion source to convert compounds into ions; a 

mass analyzer to resolve these ions by time-of-flights or electromagnetic fields; and a detector to 

detect the ions and register the signals as m/z and abundance values33. The mass spectrometer 

can detect and quantify metabolites by measuring the m/z value as ions are passed to the 

detector. To increase the dynamic range of the instrument, the LC system is used to separate the 

sample across a range of time and stagger the ions as they reach the detector. Through the 

tandem LC/MS system thousands of metabolites can be quantified in a single experimental run.  

1.5.1 Metabolomics Methods 

There are many different applications for metabolomics, but almost all are derived from two 

major method categories: targeted and untargeted analyses30,34. When designing a targeted 

experiment, one has an identified list of metabolites of interest and the instrument ‘looks’ only 

for the metabolites of interest. This approach is generally used for hypothesis-driven experiments 

with a metabolic pathway of interest or mechanism of action being interrogated. By using a 

limited, known metabolite library, one can optimize metabolite isolation protocols, increase 

instrument detection sensitivity, run highly customized workflows such as absolute 

quantification with a standard ladder, and reduce analysis time. These approaches are quite 

powerful in cancer metabolism studies, as they can quickly and robustly profile multiple 

metabolic pathways in a single sample run, allowing comparison of metabolic profiles under 

given sample conditions, such as differing cancer types, or gene alterations.  
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While targeted methods are quick and offer more precise quantification, they rely upon 

verified standards and having a pre-defined metabolic pathway of interest. Thus, they are limited 

to preconceived knowledge. To broaden the scope of study, untargeted metabolomics methods 

can be employed. Untargeted methods aim to capture a full picture of the metabolome by 

measuring vast amounts of metabolites. These experiments generally are hypothesis-generating 

and aim to detect significant shifts in metabolic profiles or identify novel biomarkers and 

metabolites35. However, while metabolite coverage is increased, resolution and quantification 

may be sacrificed, as the experimental parameters are not optimized for such a broad spectrum of 

metabolite classes. Additionally, to capture unknown metabolites, the instruments use very loose 

filter settings, allowing most ions to reach the detector. This results in large datasets, commonly 

registering tens of thousands of significantly abundance signals, which are termed features. 

Features can be full metabolites, metabolites that have gained or lost atoms throughout the 

system from the formation of adducts or neutral losses, respectively, and occur as fragments, or 

artifacts within the sample. These ionizable species will be registered by the MS and outputted as 

a m/z value. Therefore, while the breadth of coverage is increased, the amount of effort needed 

to clean, process, and analyze the data is extensive and is a considerable hurdle in untargeted 

metabolomics36. Compound identification is commonly a rate-limiting factor in these studies35.  

1.5.2 Metabolomics Instrumentation 

The instrumentation commonly used for targeted experiments is a triple quadrupole (QqQ) 

MS30,33. These instruments utilize three quadrupole mass analyzers in a series to quickly separate 

ions by mass. The first and third quadrupoles filter out masses based on user specifications, 

while the middle quadrupole acts as a cell for collision-induced dissociation. For example, if one 

was aiming to detect the metabolite lactic acid, a common metabolic byproduct and indicator of 
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the glycolysis pathway, the instrument workflow would be as follows. First, the sample is 

separated by the LC system and continually ionized by the MS instrument ion-source as it enters 

the system. As lactate leaves the column, is ionized, and enters the MS it enters the first 

quadrupole (Q1), which is directed to let ions with a mass of 89 daltons (mass units) pass 

through and filter out the remainder. The second quadrupole (Q2) then emits a collision energy at 

the ion to fragment it into multiple pieces, which are then passed into the third quadrupole (Q3) 

which finally selects the desired fragment mass of 43.3 to be passed onto the detector to quantify 

the abundance of lactic acid. Through this workflow the instrument can increase sensitivity by 

pre-filtering for only the desired metabolite mass in Q1, and then reliably confirm metabolite 

identify by fragmentation patterns based on bond energies and structure in Q2 and Q330,33,37,38. 

In these targeted QqQ experiments the instrument parameters for the acquisition method 

must be pre-defined, which usually involves purchasing commercially available metabolite 

standards to be run through the LC/MS system. This is necessary in determining the RT that the 

metabolite will come off the column and enter the MS at, and the Q1 and Q3 values to be 

filtered. Building a library of standards can be costly, but once achieved the method is capable of 

being quite robust, with LC separation and MS filtering allowing hundreds of metabolites to be 

detected in a single sample30.  

Untargeted experiments are commonly carried out by quadrupole time-of-flight (QTOF) 

instruments that differ from QqQ instruments by having the third quadrupole replaced with a 

time-of-flight tube37. This distinction offers greater mass accuracy due to the physical separation 

of ions within the flight tube, but with a concession to speed, generally leaning these experiments 

toward qualitative analysis rather than quantitative. Additionally, due to the lack of Q3 filtration 
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all ions in the system will be passed to the detector, resulting in very large datasets with unnamed 

features, creating a bottleneck in data analysis35.  

1.6 Optimized Metabolomics Platforms in Cancer Research 

Through metabolomics profiling, the Lyssiotis lab at the University of Michigan has come to 

see many metabolic phenotypes within different cancer cell types. There are many different 

classes of metabolites that contribute to central carbon metabolism and are each best extracted 

and detected under different ideal conditions. The Lyssiotis lab has established a robust method 

that is capable of simultaneously detecting a majority of the metabolic pathways in central 

carbon metabolism, including glycolysis, the tri-carboxylic acid (TCA) cycle, pentose phosphate, 

Figure 1-1. Workflow for metabolomics methods. 

Experimental design consists of targeted or isotope tracing platforms. Metabolite extraction can be performed on in 
vitro or in vivo samples. Samples are analyzed via LC/MS tandem system, and data is processed for targeted 
metabolite lists or isotopologue distribution analysis. 



 11 

nucleotides, and amino acids39 (Fig. 1-1). The single-solvent extraction protocol used in multiple 

studies40–44. This platform garners a “snapshot” of central carbon metabolism. This approach has 

identified alterations in essential bioenergetic pathways in various cancer studies. 

In a study led by Dr. Daniel Kremer, it was found that the major PDA oncogene KRAS* 

upregulates the enzyme glutamate-oxaloacetate transferase 1 (GOT1) in a non-canonical 

pathway of the malate-aspartate shuttle (MAS) to support cancer cell redox balance. Inhibition of 

this pathway lead to redox imbalance, and primed PDA to be more susceptible to ferroptosis, an 

iron-dependent form of cell death45. This synergistic effect served to sensitize PDA to new 

therapeutic opportunities and was uncovered through the extensive use of metabolomics. First, 

glycolysis was identified to be increased following KRAS* induction. Metabolic pathways were 

then profiled upon GOT1 knockdown in cells, observing altered levels in redox intermediates. 

Finally, the snapshot metabolomics platform was used to quantify ferroptosis pathway 

intermediates to verify ferroptosis induction upon GOT1 knockdown. Through metabolomics 

and other orthogonal assays, a synergistic effect in GOT1 inhibition and ferroptosis efficacy in 

PDA was identified45.  

In addition to observing steady-state metabolite levels via targeted snapshot metabolomics, 

the Lyssiotis lab studies metabolic pathway flux and measures substrate-specific utilization to 

test hypotheses. This is achieved with stable isotope tracing, a method in which a substrate is 

modified by the addition of neutrons to create heavy isotopes, often 13C carbon or 15N nitrogen 

atoms. By incorporating these substrates into studies, it is possible to measure the given 

substrate’s utilization into other metabolites in metabolic pathways by tracking the isotopic shifts 

in mass46 (Fig. 1-1). This method is helpful in identifying dependency on a specific metabolic 

pathway. For example, in Chapter 2, the hypothesis proposes that uridine is catabolized by the 
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enzyme uridine-phosphorylase-1 (UPP1) to be used as metabolic fuel in glycolysis. By using 

isotopically labeled 13C-uridine, one can observe how the 13C carbons from the substrate are 

incorporated into glycolysis with and without UPP1 active47. Additionally, stable isotope tracing 

can be used for metabolic flux profiling. In a study led by Dr. Nneka Mbah, diffuse intrinsic 

pontine glioma (DIPG) cells were profiled to identify metabolic changes based on their 

differentiated state, existing as stem-like glioma cells resembling oligodendrocyte precursors 

(OPC) or more differentiated astrocyte (AC)-like cells. By using 13C-glucose OPC-like cells 

were shown to be more glycolytic than their AC-like counterparts, as well as demonstrating an 

upregulation in cholesterol metabolism48. Through these studies subtype-specific metabolic 

dependencies are identified and thus present new targeted therapy opportunities. The ability to 

measure metabolic flux as well as broad-scope steady-state metabolism highlights the versatility 

and utility in the metabolomics platforms developed in the Lyssiotis lab and their use in cancer 

metabolism studies. 

1.7 Data Acquisition and Analysis Pipeline 

Following data acquisition via LC/MS, extensive pre-processing, and quality control (QC) 

analysis of the raw data output is necessary before biological interpretations can be made from 

the data. To streamline reliability and reproducibility in our studies, a workflow has been created 

and optimized by using the programming language R to quickly clean and analyze targeted 

metabolomics data (Fig. 1-2)39. Metabolite abundance is quantified by measuring the area under 

the curve (AUC) of a peak, generally following a Bayesian distribution. Commonly, manual 
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inspection of peak integration within vendor software is required to verify that the peak shape is 

reliable and correctly integrated to avoid systematic errors in AUC calculations. After this 

inspection, a pivot table is commonly outputted from vendor software with AUCs representing 

metabolite ion abundance. These abundance counts represent relative values, and thus a standard 

curve must be applied to calculate absolute concentrations. From these values, one can determine 

the relative abundance difference for metabolites. To improve reliability and mitigate batch 

effects, concurrent runs are important to consider, as the instrument parameters may be altered 

from run-to-run, affecting the AUC values being reported. This consideration can reduce post-

processing normalization needs and shorten analysis time.  

Figure 1-2. Metabolomics analysis pipeline. 

Raw data is pre-processed and cleaned by inspecting CV distributions to determine an appropriate noise threshold. 
Samples loading is inspected and appropriately normalized. Metabolite abundance is individually plotted, as well as 
globally displayed on heatmaps. Significance tests are performed between sample classes and pathway enrichment 
analysis is performed via MetaboAnalyst. 
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To ensure reliably in biological analysis of samples, the data must be cleaned and QCed. 

First, samples are checked for missing values. If a metabolite value is missing in greater than 

50% of samples in each experimental condition, that metabolite is discarded and deemed 

unreliable. For the remainder of missing values missingness is filled by calculating the median 

value of the metabolite from the technical replicates. Given that the MS is a quantitative system, 

we must check for equal sample loading. If a given sample is twice as concentrated as another, it 

will appear as a two-fold change in abundance, thus sample loading must be considered. Sample 

loading is inspected through both the total sum of metabolite abundance in each sample, and by 

plotting the log2 distribution of metabolites within a sample on a box plot to compare sample 

means.  After sample loading checks, sample quality is further inspected through the coefficient 

of variance (CV) for each experimental condition. Given that experimental conditions in a study 

are comprised of technical replicates, the CV values are expected to be low, indicating 

metabolite stability and reproducibility. High CV values are also indicative of noisy, unreliable 

metabolites. Thus, we use a CV inspection to determine a noise threshold to reduce the dataset to 

quality metabolites (Fig. 1-2a).  

From the remaining data, normalization techniques are applied by median centering the data 

and applying a log2 transformation. Z-scores are then calculated. The resulting output is a log2 

fold-change value relative to the dataset population. From these results heatmaps are commonly 

employed to visualize the relative changes in metabolites between sample classes (Fig. 1-2b). 

Additionally, individual metabolites can be extracted and represented in box plots. Statistical 

tests (ANOVA, T-Test, Wilcoxon Test) are then performed for all permutations of experimental 

groups. Significantly altered metabolites are inputted into a pathway enrichment analysis via 

MetaboAnalyst to assess altered metabolic pathways between sample groups49–51 (Fig. 1-2c). 
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1.8 Dissertation Summary 

This work aims to characterize PDA metabolism by utilizing a variety of metabolomics 

techniques alongside a large-scale nutrient profiling assay to identify the nutrient inputs capable 

of fueling PDA growth. Here, by utilizing the Biolog assay and subsequent metabolomics 

experiments, we identified uridine as a novel nutrient source capable of fueling PDA metabolism 

via the enzyme uridine phosphorylase-1 (UPP1) (Chapter 2). Additionally, we dove further into 

the Biolog phenotyping assay data to identify hypotheses on the role of nitrogen donor 

metabolites on PDA metabolism (Chapter 3). While these studies present promising directions 

in targeted therapies in PDA metabolism there are significant follow-up studies to be performed 

(Conclusions and Future Directions). 
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Chapter 2 Uridine-Derived Ribose Fuels Glucose-Restricted Pancreatic Cancer† 

2.1 Abstract 

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to 

therapy1,2. This is mediated in part by a complex tumor microenvironment (TME)3, low 

vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumor 

progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. 

Here, we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how 

>175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient 

restriction. Uridine utilization strongly correlated with expression of uridine phosphorylase 1 

(UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism 

and thereby support redox balance, survival, and proliferation in glucose-restricted PDA cells. In 

PDA, UPP1 is regulated by KRAS-MAPK signaling and augmented by nutrient availability. 

Consistently, tumors express high UPP1 compared to non-tumoral tissues, and UPP1 expression 

correlated with poor survival in patient cohorts. Uridine is available in the TME, and we 

demonstrate that uridine-derived ribose is actively catabolized in tumors. Finally, UPP1 deletion 

restricted the ability of PDA cells to use uridine and blunted tumor growth in immunocompetent 

 
† This chapter consists of a published primary article: Nwosu, Z. C.*, Ward, M. H.*, Sajjakulnukit, P.*, Poudel, 
P.*, Ragulan, C., Kasperek, S., Radyk, M., Sutton, D., Menjivar, R. E., Andren, A., Apiz-Saab, J. J., Tolstyka, Z., 
Brown, K., Lee, H. J., Dzierozynski, L. N., He, X., Ps, H., Ugras, J., Nyamundanda, G., Zhang, L., Halbrook, C. J., 
Carpenter, E. S., Shi, J., Shriver, L. P., Patti, G. J., Muir, A., Pasca di Magliano, M., Sadanandam, A. & Lyssiotis, C. 
A. Uridine-derived ribose fuels glucose-restricted pancreatic cancer. Nature 2023 618:7963 618, 151–158 (2023). 
*these authors contributed equally 
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mouse models. Our data identifies uridine utilization as an important compensatory metabolic 

process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy. 

2.2 Introduction 

Pancreatic ductal adenocarcinoma (PDA) remains one of the deadliest cancers1,2. The 

PDA tumor microenvironment (TME) is a major contributor to this lethality and is characterized 

by abundant immune cell infiltration, expansion of stromal fibroblasts and the associated 

deposition of extracellular matrix. This leads to an increase in interstitial fluid pressure and 

collapse of arterioles and capillaries3,4,7. These phenomena collectively contribute to low oxygen 

saturation, therapeutic resistance, metabolic alterations, and heterogeneity within the tumor at the 

cellular level5,8,9. PDA cells surviving in such nutrient and oxygen deregulated TME exhibit 

metabolic adaptations that increase their scavenging and catabolic capabilities10–13. In addition, 

recent studies have defined tumor-extrinsic nutrient sources for PDA, including extracellular 

matrix, immune, and stromal-derived metabolites14–16. While these studies uncovered discrete 

nutrient inputs, comprehensive screens with the power to identify many such nutrient drivers and 

mechanisms have not been performed previously. 

2.3 Results 

Nutrient-deprived PDA consumes uridine  

To screen for metabolites that fuel metabolism in nutrient-deprived PDA cells, we 

applied the Biolog phenotypic screening platform on 19 human PDA cell lines and two 

immortalized, non-malignant pancreas cell lines (hPSC and HPNE cells; Fig. 2-1a). We 

purposed the screen to assess cellular ability to capture and metabolize >175 nutrients in a 96-

well arrayed format under nutrient limiting conditions (0 mM glucose, 0.3 mM glutamine, 5% 
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dialyzed fetal bovine serum). The nutrient panel included carbon energy and nitrogen substrates. 

Metabolic activity was assessed by monitoring the reduction of a tetrazolium-based dye, a 

readout of cellular reducing potential, every 15 minutes for ~3 days (Fig. 2-1a, Fig. 2-5a). 

Analyses of nutrient consumption profiles revealed several metabolites that, in the absence of 

glucose, were utilized at comparable levels as the glucose positive control (Fig. 2-5b). For 

example, adenosine, uridine and several sugars were utilized by most of the cell lines. 

 

Uridine consumption correlates with UPP1 

To select lead metabolites for investigation, we correlated metabolite utilization patterns 

to the expression of metabolism-associated genes using a public dataset17,18. From the top 

metabolite and gene correlation pairs (Fig. 2-5c), we pursued uridine and uridine phosphorylase 

1 (UPP1) (r = 0.82, P = 0.0002, Fig. 2-1b) for the following reasons. First, UPP1 expression 

correlated positively with the metabolic activity from its known substrate, uridine. Second, our in 

vitro validation showed that all tested PDA cells utilized uridine, though to varying degrees (Fig. 

2-1c; Fig. 2-5b), suggesting it is a broadly used metabolic fuel. Third, contrary to our 

expectation that nutrients used in the absence of glucose would be carbohydrates, uridine was 

unusual in that it is a nucleoside. And, finally, UPP1-mediated uridine metabolism is unexplored 

in PDA.  

We further confirmed the correlation of uridine catabolism and UPP1 expression by 

mRNA and protein analyses (Fig. 2-1d-f). To determine the specificity of this association, we 

assessed the correlation of UPP1 expression to other nucleosides in the Biolog screen. While 

both inosine and adenosine were readily catabolized, their utilization was not correlated with 

UPP1 expression. Thymidine was neither actively metabolized nor correlated, when compared to 
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negative controls. (Fig. 2-5d). These results indicate that the association between UPP1 

expression and uridine catabolism is robust and specific. 

Next, we rank-sorted the PDA cell lines into high and low uridine metabolizers based on 

the Biolog data, and identified >700 differentially expressed genes (P<0.05) between these 

groups using the Cancer Cell Line Encyclopedia (CCLE) data19 (Supplementary Table 2). 

Consistent with our prior correlation analysis in a different dataset (Fig. 2-5c), UPP1 was the 

topmost gene in uridine-high metabolizers in the CCLE dataset (Fig. 2-1g). Pathway analysis of 

the upregulated genes in the uridine-high metabolizers (i.e., UPP1-high cell lines) showed 

upregulation of endocytosis and several inflammation/immune-related pathways, notably NFκB 

signaling (Supplementary Table 3). We also observed that UPP1-high tumors exhibit higher 

expression of glycolysis genes (Fig. 2-5e), indicating a potential link between the UPP1-uridine 

axis and energy metabolism. In contrast, UPP1-high cell lines and UPP1-high patient tumors 

displayed a profound downregulation of other metabolic pathways (Fig. 2-5f-g), notably amino 

acid-, fatty acid- and glutathione metabolism, altogether indicating metabolic vulnerability. 

 

Uridine-derived ribose fuels metabolism 

Our screen (Fig. 2-1a) was performed in glucose-free media to reveal both metabolites 

whose use would otherwise be overshadowed by glucose and carbon sources that could act in 

place of glucose. Thus, we next directly assessed the metabolic activity of equimolar glucose and 

uridine. Across four PDA cell lines, uridine and glucose fueled metabolism to a similar degree 

(Fig. 2-2a). Previous reports have also documented that uridine can substitute for glucose, by 

supporting nucleotide metabolism20–26. However, our screening data illustrate that uridine 

supplementation increases cellular reducing potential. Together with the observed connection 
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with UPP1, which catalyzes the cleavage of ribose 1-phosphate from uracil, we hypothesized 

that the UPP1-liberated ribose is recycled into central carbon metabolism to support cellular 

reducing potential. To test this hypothesis, we supplemented glucose-deprived cells with ribose, 

a cell-permeable substitute for ribose-1-phosphate. Indeed, like exogenous uridine, ribose 

supplementation fueled reducing potential (Fig. 2-2a).  

In our initial screen, glutamine concentration was also intentionally low (0.3 mM), as it is 

an important anaplerotic substrate that fuels tricarboxylic acid (TCA) cycle and proliferation in 

PDA27. Uridine potentiated reducing potential with or without glutamine and had a greater 

impact when glutamine was present (Fig. 2-6a). Together, these data suggest that uridine and 

glucose similarly fuel central carbon metabolism distinctly from glutamine. 

Next, we provided uridine to the UPP1-low, PATU8988S and the UPP1-high, DANG 

cell lines under glucose deprivation and applied liquid chromatography mass spectrometry (LC-

MS)-based metabolomics28. In both cell lines, uridine supplementation led to the elevation of 

glycolytic intermediates and lactate secretion (suggesting glycolytic flux); uridine derivatives 

(suggesting overflow metabolism); amino acids (indicative of increased anabolism); and TCA 

cycle intermediates (suggesting more mitochondrial activity) (Fig. 2-6b-e). Moreover, 

supplementation with uridine led to marked accumulation of intracellular uridine and ~100-fold 

increase in media uracil content (Fig. 2-2b,c, Fig. 2-6f-g), consistent with uridine capture, ribose 

extraction, and uracil release. Notably, intracellular uracil increased by a fold comparable to 

uridine, reflective of direct substrate to product conversion (Fig. 2-2b, Fig. 2-6f). Collectively, 

these profiling efforts support the model that uridine is catabolized to broadly fuel PDA cell 

metabolism. 
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To precisely delineate how uridine is metabolized, we traced the metabolic fate of 

isotopically labelled uridine (13C5-uridine with labeled ribose carbon) using LC-MS29 in 

PATU8988S (UPP1-low) and ASPC1 (UPP1-high) lines. Both lines demonstrated high uridine, 

UMP and UTP labeling (over 90%), as indicated by M+5 from ribose (Fig. 2-2d). Other 

nucleotides, such as ATP, ADP, AMP (all M+5) as well as NAD+ (M+5, M+10) were also 

labeled (Fig. 2-2e, Fig. 2-6h), demonstrating the use of uridine-derived ribose for ribosylation of 

the adenine base. Also labeled were glycolytic- (PEP, pyruvate, lactate), pentose phosphate 

pathway (PPP; xylulose 5-phosphate, ribose 5-phosphate), hexosamine biosynthetic pathway 

(UDP-GlcNAc), and TCA cycle intermediates (malate and citrate), as well as non-essential 

amino acids (aspartate, glutamate, serine), and oxidized glutathione (Fig. 2-2f, Fig. 2-6h). 

To determine the relevance of uridine metabolism for pancreatic tumors in vivo, we 

implanted murine syngeneic pancreatic cancer cells into the pancreas of immunocompetent hosts 

to establish tumors. Then, we injected these animals with 13C5-uridine or phosphate buffered 

saline vehicle and collected tumor tissues after one hour for LC-MS analysis. Consistently, we 

observed robust uptake of uridine by the tumor, with >30% of the pool labeled. We observed the 

M+5 label in pyrimidine and purine species (i.e., ribose salvage) as well as in glycolytic and 

TCA cycle intermediates (Fig. 2-2g, Fig. 2-7a). 13C incorporation into the TCA cycle was low in 

vivo, presumably due to the short duration of labeling. Nearly identical results to those from 

orthotopic studies were similarly observed in subcutaneous tumors from immune competent 

animals. These results confirm that PDAs catabolize uridine in vivo. 

In parallel, we collected tumor interstitial fluid (TIF) from independent orthotopic 

allograft tumors and quantified bulk uridine and glucose concentrations by LC-MS. Uridine and 

glucose were present in the low and high micromolar concentration range, respectively (Fig. 2-
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2h-i), similar to previous findings30. To determine how physiological concentrations of glucose 

and uridine impacted uridine metabolism, we grew two PDA lines in 5 or 0.1 mM glucose and 

0.1 or 1 mM 13C5-uridine and analyzed labeling patterns. First, the labeling of uridine was near 

100% (Fig. 2-2j). At equimolar concentrations, uridine carbon contributed to ~50% of several 

metabolites in the PPP, phosphoribosyl pyrophosphate (PRPP, in nucleotide biosynthesis), 

NAD+, upstream glycolysis, with enrichment exceeding 10% in some TCA cycle metabolites 

(Fig. 2-2k, Fig. 2-7b). With higher uridine (10:1), uridine carbon dominated, and with higher 

glucose (1:50), uridine carbon contributed at a much lower level, consistent with competition for 

these two carbon sources into the same pathways. Further isotope tracing using the exact TIF 

concentrations of uridine and glucose showed that both human (ASPC1) and murine (MT3-2D) 

cells incorporate uridine into central carbon metabolism (Fig. 2-7c-d). We confirmed these 

results in four human PDA lines with the tetrazolium assay: uridine supported bioenergetics at 

physiological (Fig. 2-8a,b) but not at elevated glucose levels (Fig. 2-8c).   

Our data suggest that uridine yields ribose-1-phosphate via UPP1 to fuel both catabolic 

and biosynthetic metabolism. Ribose-1-phosphate can be converted into the PPP product ribose-

5-phosphate by phosphoglucomutase 2 (PGM2) to enter nucleotide biosynthesis. Alternately, 

cells can convert uridine to uridine monophosphate (UMP) via uridine-cytidine kinase (UCK1/2) 

in the pyrimidine salvage pathway (Fig. 2-8d). We found that PGM2 and UCK2 are high in PDA 

and UCK1 is low, but these genes were largely uncorrelated with UPP1 mRNA expression (Fig. 

2-8e-h). Being the most upregulated, we tested PGM2 by western blot and found it to be 

expressed in most PDA cells, and its expression was nor related to UPP1 (Fig. 2-8i). Inhibition 

of the three genes by siRNA showed that only PGM2 knockdown suppressed the uridine-

mediated rescue of metabolic activity following glucose deprivation (Fig. 2-8j-l). Taken 
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together, these data support our model that uridine catabolism converges with central carbon 

metabolism, and they also reveal that exogenous uridine fuels PDA metabolism akin to glucose, 

supplying carbon for redox-, nucleotide-, amino acid-, and glycosylation metabolite biosynthesis 

(Fig. 2-2l). 

 

UPP1 provides uridine-derived ribose  

To confirm the role of UPP1 in uridine catabolism, we knocked out UPP1 (UPP1-KO) 

using CRISPR/Cas9 in the PATU8988S (UPP1-low) and ASPC1 (UPP1-high) human PDA cell 

lines and validated two independent clones per cell line (Fig. 2-3a). In these knockouts, the 

ability of uridine to rescue NADH production in the absence of glucose (Fig. 2-3b) or cellular 

bioenergetics read out by ATP-based viability (Fig. 2-3c) was abolished. Consistent with the 

blockade of uridine catabolism, metabolomics showed that UPP1-KO cell lines displayed an 

increase in intracellular and extracellular uridine (Fig. 2-9a,b) accompanied by a marked drop in 

intracellular and extracellular uracil (Fig. 2-3d, Fig. 2-9b). Further, UPP1 knockout broadly 

altered the intracellular metabolome of both cell lines (Fig. 2-9c). Noteworthy, ASPC1 cells are 

highly sensitive to glucose deprivation in combination with UPP1-KO, thus metabolomics in this 

cell was performed after 6 hours when assessing the KO effect. 

We next utilized our isotope tracing metabolomics platform to determine the impact of 

UPP1-KO on uridine catabolism in PATU8988S and ASPC1 cells (Fig. 2-3e, Fig. 2-9d-k). The 

ribose-labeled 13C5-uridine tracing showed similar fractional enrichment of the intracellular 

uridine pool in the UPP1-KO and control cells (Fig. 2-9d,e), indicative of unchanged, steady-

state uridine uptake. In contrast, and consistent with our model, flux of uridine ribose-derived 

carbon into glycolysis (Fig. 2-3e, Fig. 2-9f), TCA cycle-associated metabolites (Fig. 2-3e, Fig. 
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2-9g), non-essential amino acids (Fig. 2-9h,i), oxidized glutathione, and UDP-GlcNAc (in 

glycosylation), was holistically blocked or suppressed. Recycling of uridine-derived ribose was 

also completely blocked in the UPP1-KO cells, as evidenced by the absence of carbon labeling in 

NAD+ and bioenergetic metabolites AMP, ADP, and ATP (Fig. 2-9j,k). Together, these results 

reveal that the UPP1-mediated catabolism of uridine is indispensable for the utilization of uridine 

to support reducing potential, bioenergetics, and cell proliferation, and provide a detailed 

molecular confirmation that UPP1 directly controls the utilization of uridine-derived ribose in 

PDA cells.  

  

High UPP1 in PDA predicts poor survival  

To further assess the relevance of UPP1 in PDA tumors, we next analyzed its expression 

in publicly available human PDA datasets. Using The Cancer Genome Atlas (TCGA) data, we 

find that UPP1 is highly expressed in PDA tumors compared to non-tumoral samples, and also in 

liver metastasis compared to primary tumors (Fig. 2-3f). Its paralog, UPP2, is not expressed in 

this tumor type (Fig. 2-10a). We also observed from the Human Protein Atlas public database 

that UPP1 gene expression is extremely low in normal pancreas and UPP1 protein is high in 

PDA (Fig. 2-10b,c). Consistently, UPP1 is also high in several other non-PDA cancers from 

TCGA, with colon and prostate cancers being the notable contrast (Fig. 2-10d). Finally, as in 

PDA, high UPP1 also predicted poor survival outcome in lung, stomach, liver and renal cancers 

(Fig. 2-10e). Indeed, we tested uridine utilization in several non-PDA cancer cell lines and 

observed a modest uridine-driven increase in metabolic activity (Fig. 2-10f), supporting the 

potential relevance of this metabolite in other cancers. 
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To independently validate UPP1 expression in human PDA, we utilized patient samples 

from the University of Michigan to assay tumoral UPP1 expression by RNAscope (Fig. 2-3g,h, 

Fig. 2-11a), the cellular distribution of UPP1 expression by single cell RNA sequencing (Fig. 2-

11b,c), and UPP1 expression by immunohistochemistry (Fig. 2-11d). Collectively, these data 

were consistent with public databases, illustrating UPP1 upregulation in human PDA relative to 

normal pancreas tissue. In addition, our histological assessment of injured acinar cells indicated 

that UPP1 is upregulated upon pancreatic injury (Fig. 2-11d), suggesting a potential role in PDA 

formation. Finally, stratification of tumor datasets also showed that the high expression of UPP1 

predicted poor overall survival outcome in three of the four PDA patient cohorts we analyzed 

(Fig. 2-3i, Fig. 2-11e). Taken together, these data support that UPP1 is important in PDA. 

 

Kras-MAPK pathway regulates UPP1 

Kras mutations are the signature transforming event observed in the vast majority of 

PDA31. Using TCGA data, we determined that PDA with KRAS G12D express higher UPP1 than 

those with no KRAS alterations (Fig. 2-3j). We also analyzed the CCLE protein expression data 

of KRAS wildtype vs. mutant cell lines across cancers and from lung or colorectal cancer. A 

targeted analysis of PDA lines was not performed because KRAS mutations are observed in all 

but one line in the CCLE. From the pan-analysis (n=374), we observed a borderline association 

between KRAS status and UPP1 expression (P = 0.09) (Fig. 2-12a), but lung cancer cell lines 

(n=79) showed a strong association (P = 0.003). Colorectal cancer lines (n=30) showed no 

difference or slightly reduced UPP1 in mutant KRAS lines (Fig. 2-12a), consistent with the data 

in Fig. 2-10d. The colon cancer results may be due to the timing of KRAS mutation in tumor 

evolution and differences in its tissue-specific function, relative to that of lung and PDA32.  
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To experimentally test the role of mutant Kras on UPP1 expression, we first queried 

published microarray data from our doxycycline-inducible Kras (iKras) mouse model of 

PDA33,34. Mutant Kras promoted Upp1 expression in a subcutaneous xenograft model in vivo and 

iKras PDA cell lines in vitro (Fig. 2-12b). Consistently, in vitro validation experiments in two 

additional, independent iKras cell lines confirmed doxycycline (Kras) induction of Upp1 (Fig. 2-

3k-l). 

We previously showed that KRAS-mediated regulation of anabolic glucose metabolism 

in PDA occurs via mitogen-activated protein kinase (MAPK) signaling and MYC-dependent 

transcription34. In human and murine cell lines, the pharmacological inhibition of MAPK 

reduced UPP1 transcript and protein, concurrent with the suppression of pERK (Fig. 2-3m,n, 

Fig. 2-12c-j). MAPK inhibition also blocked the catabolism of uridine, reflected by intracellular 

uridine accumulation, a spectrum of other metabolite profile changes (Fig. 2-12k), and 

suppressed uridine-fueled proliferation (Fig. 2-3o, Fig. 2-12l). In contrast to our previous KRAS 

mechanism34, MYC inhibition did not alter UPP1 expression nor appear among the transcription 

factors binding to the UPP1 promoter (Fig. 2-13a-c), suggesting that MYC does not mediate 

Kras regulation of UPP1 in PDA. 

 

Nutrient availability modulates UPP1  

Given that glucose availability influences the use of uridine-derived ribose, we 

hypothesized that a glucose-depleted microenvironment triggers PDA to upregulate UPP1 as a 

compensatory response. Indeed, the removal or reduction of media glucose induced a strong 

increase in UPP1 expression (Fig. 2-3m-o, Fig. 2-12c-e, 8h-j, 9d), which was attenuated in 

uridine-supplemented media. Consistently, we found that Upp1 was strongly induced in a murine 



 30 

tumor-derived cell line from the KPC model (p48-Cre; LSL-KrasG12D; LSL-P53R172H) when 

cultured with tumor interstitial fluid media (TIFM)30 or implanted as orthotopic allografts, 

relative to cells cultured in routine media with high glucose (Fig. 2-13e). Thus, KRAS-MAPK 

signaling and a nutrient-deprived TME may both be responsible for high UPP1 expression. 

 

UPP1 knockout blunts PDA tumor growth 

Uridine concentration is reported to be ~2-fold higher in TIF than plasma30. In looking 

for a cellular source of supplying uridine to tumors, we observed from our previously generated 

dataset14 that macrophages release uridine and uracil in vitro when differentiated and polarized to 

a tumor-educated fate with PDA conditioned media (Fig. 2-14a). Thus, we tested the role of 

tumor associated macrophages (TAMs) in supplying intratumoral uridine by depleting 

macrophages from murine allograft tumors with colony stimulating factor 1 (CSF1) antibody and 

clodronate (liposome) combination (Fig. 2-4a), which depletes TAMs and suppressed orthotopic 

tumor growth35,36 (Fig. 2-4a,b). We observed a reduction in the plasma uridine level by ~8 fold 

upon macrophage depletion, concomitant with an elevation in plasma uracil. However, TIF and 

tumor uridine and uracil were not altered (Fig. 2-4c, Fig. 2-14b). This marked impact on plasma 

uridine levels following macrophage depletion indicates that macrophages may be important 

mediators of uridine production/release. 

To determine if UPP1 supports tumor growth in vivo, we generated two independent 

models of UPP1-KO in the syngeneic pancreatic cancer lines MT3-2D and KPC 7940b. Two 

sgUPP1 constructs (sg1, sg3) were compared to a vector control (sgVector). We confirmed that 

UPP1-KO cells were not rescued from glucose deprivation by uridine in vitro (Fig. 2-4d). 

Further, metabolomics profiling confirmed intracellular uridine accumulation and reduced 
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intracellular and extracellular uracil (Fig. 2-4e), consistent with blocked uridine catabolism. 

These were accompanied by changes in a spectrum of other metabolites which were mirrored by 

the human UPP1-KO cell lines (Fig. 2-4f). Finally, isotope tracing of uridine ribose-derived 

carbon illustrated conclusively that UPP1-KO in the murine lines restricted the use of uridine to 

fuel central carbon metabolism (Fig. 2-4g,h). This battery of metabolic assays confirms 

successful UPP1 knockout in lieu of a murine UPP1 antibody. Notably, UPP1-KO cells did not 

differ from controls in terms of proliferation (Fig. 2-14d). 

We implanted these two mouse lines and their KOs into the pancreas of syngeneic hosts 

and assessed tumor weight at endpoint (Fig. 2-4i). In both lines, contrary to the lack of a 

proliferative defect in vitro, we observed a marked reduction in tumor growth following UPP1-

KO (Fig. 2-4j, Fig. 2-14e). Similar results were also reproduced in an immunocompetent 

subcutaneous model with the MT3-2D cell lines (Fig. 2-4k). Metabolomic profiling of the 

orthotopic tumors revealed an increase in tumoral uridine and a drop in uracil in all UPP1-KO 

tumors as well as a profound change in the metabolome relative to vector controls (Fig. 2-4l-n). 

In addition, compared to in vitro data, we observed the accumulation of a similar suite of 

metabolites (Fig. 2-4m) and a strong depletion of uracil, components of PPP, glycolysis and 

nucleotide metabolism (Fig. 2-4n). 

The marked anti-tumor effect of UPP1-KO prompted us to look for changes in the in vivo 

microenvironment. Histological analysis of F4/80 staining revealed no differences in 

macrophage content between UPP1-KO and vector control tumors. However, the UPP1-KO 

tumors had lower vessel density (CD31) and more anti-tumor T cell infiltration (CD8 T cells) 

(Fig. 2-14h). Taken together, our data indicate that UPP1 and uridine are important in PDA 

growth. The contrast between in vitro and in vivo growth phenotype further highlights the role of 
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nutrient availability, as well as potential involvement of the tumor microenvironment and 

immune cell subsets in influencing the necessity of UPP1 in vivo. 

2.4 Discussion 

The metabolic features of PDA drive disease aggressiveness and therapeutic resistance 

and present new opportunities for therapy2,6. Despite this, the range of nutrients used by PDA 

cells is poorly understood. We addressed this by applying a high-throughput in vitro nutrient 

screening and found that under glucose-restricted condition and KRAS-MAPK signaling 

activation, uridine serves as a nutrient source in PDA cells. This aligns with previous studies, 

where uridine rescued glucose deprivation-induced stress in astrocytes and neurons20,21,23. 

Indeed, others have shown that the uridine-mediated rescue is UPP1-dependent and induced by 

glucose availability, and it was proposed that UPP1 functions in this capacity to support 

bioenergetics by providing nucleotides20. We show that the uridine ribose ring fuels both 

energetic and anabolic metabolism in PDA cells. We also found that, in addition to KRAS-

MAPK, the uridine utilization axis is regulated by a yet unknown rheostat sensing the upstream 

availability of glucose and/or uridine. These are newly identified regulators of UPP1, adding to 

p53 regulation37. Exploration of these regulatory pathways in PDA and other cancers may hold 

translational promise.  

Nutrients in the TME can be derived from serum or the various cell types that make up 

the bulk tumor. While discovery methods involving conditioned media and metabolomics are 

high-throughput, they tend not to capture the complex metabolic interactions of the TME. Biolog 

assays provide an unbiased approach to assess metabolic fuel utilization. We utilize this system 

to first obtain source-agnostic information about the nutrients utilized by PDA cells, before 

conducting a targeted analysis of potential sources providing exogenous uridine to tumors. We 
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observed evidence of uridine enrichment in the TIF of murine pancreatic tumors, tumor 

consumption of plasma-derived uridine by in vivo isotope tracing, reduction of this same plasma 

uridine pool upon whole-body macrophage depletion, and in vitro micromolar release of uridine 

from naïve macrophages and TAMs. Together, this evidence illustrates the complexity of 

nutrient availability in the TME and suggests a model where cells inside and outside PDA 

tumors fuel cancer metabolism with uridine. 

There is growing appreciation for the importance of nucleosides in cancer, including 

inosine, thymidine, and deoxycytidine6,14,38,39. Inosine is consumed in melanomas by both cancer 

and CD8+ effector T cells40. The upregulation of nucleoside usage under nutrient deprivation40–

42, especially in immune and PDA cells, supports the idea that metabolic competition contributes 

to immunosuppression and tumor progression. Along these lines, we show that UPP1-KO in an 

orthotopic syngeneic model of PDA severely blunts tumor growth, thus the UPP1-uridine 

scavenging axis is important for PDA cells. RNA is another important source of uridine for 

glucose-starved cells47 and may be relevant for PDA cells, which readily scavenge intracellular- 

(i.e., autophagy) and extracellular biomolecules to fuel metabolism8. There are also several 

healthy cell types that utilize uridine for various purposes20,21,23,43, and this complexity is a 

provocative area for future study. Collectively, our data identify the uridine-UPP1 axis as a 

driver of compensatory metabolism and support that nucleoside metabolism is therapeutically 

tractable in solid tumors. 

2.5 Methods 

Cell Culture.  

The panel of PDA cell lines, HPNE, A549, HT1080, HCT116, and U2OS, were purchased from 

the American Type Culture Collection (ATCC) or the German Collection of Microorganisms 
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(DSMZ). The hPSC cell line and the mouse cell lines KPC 7940b and MT3-2D were generously 

provided under MTA by Rosa Hwang (MD Anderson Cancer Center), Gregory Beatty 

(University of Pennsylvania), and David Tuveson (Cold Spring Harbor Labs), respectively. iKras 

cell lines A9993 and iKRAS 9805 were derived as previously described44. The confirmation of 

the identity of cell lines was established with STR profiling, and lines were routinely tested for 

mycoplasma using MycoAlert (Lonza, # LT07-318). For routine propagation, unless otherwise 

indicated, all cell lines were cultured in high-glucose Dulbecco's Modified Eagle Medium 

(DMEM, Gibco, # 11965092) supplemented with 10% fetal bovine serum (FBS, Corning, 35-

010-CV) at 37°C and 5% CO2. Phosphate buffered saline (PBS, Gibco, # 10010023) was used 

for cell washing steps unless otherwise indicated. For treatments, the following inhibitors were 

used: MYC: Fedratinib (MedChemExpress, # HY-10409) and 10058-F4 (Cayman Chemical, # 

15929); MEK1: trametinib (Selleckchem, # S2673). 

 

Biolog Metabolic Assay.  

In the initial phenotypic screen, the 22 cell lines were grown in 96-well PM-M1 and PM-M2 

plates (Biolog, # 13101 and 13102). The assay was set up such that one well was used per test 

metabolite substrate, accompanied by three replicates of positive (glucose) and negative (blank) 

controls wells. The relative metabolic activity (RMA) from substrate catabolism in the cells was 

measured using Biolog Redox Dye Mix MB. Briefly, the cell lines were counted, and their 

viability assessed using Trypan Blue Dye (Invitrogen, # T10282). The cells were then washed 2x 

with Biolog Inoculating fluid IF-M1 (Biolog, # 72301) to remove residual culture media. Then, a 

cell suspension containing 20,000 cells per 50 µL was prepared in Biolog IF-M1 containing 0.3 

mM glutamine and 5% dialyzed FBS (dFBS) (Hyclone GE Life Sciences, # SH30079.01) and 
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plated into PM-M1 and PM-M2 96-well plates at 50 µL per well. Plates were incubated for 24 

hours at 37°C and 5% CO2, after which 10 µL Biolog Redox Dye Mix MB (Biolog, # 74352) 

was added to each well. Plates were sealed to prevent the leakage of CO2. The reduction of the 

dye over time was measured as absorbance (A590-A750) using the OmniLog PM-M instrument 

(Biolog, # 93171) for 74.5 hours at 15 minutes interval. To account for proliferation/cell number 

in the Biolog screening assay, CyQUANT was used for normalization.  

 

The data were processed and normalized using opm package45 version 1.3.77 in R statistical 

programming tool. After removing CFPAC1 (atypically high signal across the plate), the 

maximum metabolic activity per cell line was taken as its main readout for substrate avidity (Fig. 

2-5a) and normalized by subtracting the mean negative control signal for a given cell line from 

all other values for that cell line.  Heatmap visualization of the data was plotted using heatmap2 

and ComplexHeatmap packages in R. 

 

Correlation of Biolog Metabolites to Gene Expression of Enzymes.  

High-confidence metabolites (HCMs) from the Biolog screening assay were correlated 

(Spearman Correlation) to gene expression data for enzymes associated with metabolite usage. 

Genes with high correlation co-efficient to a given metabolite were chosen for further analysis.  

 

NADH Assay.  

Cells were seeded in 96-well plates at 10,000 cells per well directly into the indicated media 

conditions. Following the incubation period at 37°C and 5% CO2 (i.e., 24, 48, or 72 hours), MTT 

(Thermo Scientific, # L1193903) was added directly to the wells containing media. Cells were 
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incubated at 37°C and 5% CO2 for 1 hour, after which the media and MTT reagent were 

carefully removed. Next, to each well, 50 μL of DMSO (Sigma-Aldrich, # D2650) was added 

followed by 5 minutes incubation at room temperature before measuring absorbance at 570 nm. 

 

CyQUANT Proliferation Assay.  

Cells were seeded at 20,000 cells per well for the screening study or 2,000 cells per well for 

proliferation assays in growth media in 96-well plates (Corning, # 3603). For proliferation 

assays, the culture media was removed the next day, followed by a gentle 1x wash with PBS. 

Treatment media was then applied, and the cells incubated at 37°C and 5% CO2 until they 

reached ~70% confluence. Media was then carefully aspirated, and the plate with cells attached 

was moved to -80°C for at least 24 hours to ensure complete cell lysis. To prepare the lysis 

buffer and DNA dye, CyQUANT Cell Lysis Buffer and CyQUANT GR dye (Invitrogen, # 

C7026) were diluted in water at 1:20 and 1:400, respectively. The frozen cells were then thawed 

and 100 µL of the lysis buffer was added to each well. Thereafter the plate was covered to 

prevent light from inactivating the GR dye and was placed on an orbital shaker for 5 minutes 

before measurement. Fluorescence from each well, indicating GR dye binding to DNA, was then 

measured utilizing a SpectraMax M3 Microplate Reader with SoftMax Pro 5.4.2 software at an 

excitation wavelength of 480 nm and an emission wavelength of 520 nm. 

 

ATP-based Viability Assay.  

Cells were seeded in quadruplicate at a density of 2,500 – 5000 cells in 100 μL DMEM per well 

of the white walled 96-well plates (Corning/Costar, # 3917). Next day, the media was aspirated, 

each well was washed with 200 μL PBS after which treatment media was introduced. At the end 
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of the experiment duration (48 or 72 hours), relative proliferation was determined with CellTiter-

Glo 2.0 Cell Viability Assay Kit (Promega, # G9243) and the luminescence quantified using a 

SpectraMax M3 Microplate Reader. 

 

Live Cell Proliferation Assay.  

Cells were seeded in 96-well plates at 1,000 cells per well in 100 µL of growth media and 

incubated overnight at 37°C, 5% CO2. After 24 hours, media was changed, and the cells were 

incubated for a further 72 hours during which cell proliferation was determined by live cell 

imaging on a BioSpa Cytation. 

 

UPP1 CRISPR/Cas9 knockout.  

The expression vector pspCas9(BB)-2A-Puro (PX459) used to generate the UPP1 CRISPR/Cas9 

constructs was obtained from Addgene (Plasmid # 48139). The plasmid was cut using the 

restriction enzyme BbsI followed by the insertion of human or mouse uridine phosphorylase 1 

sgRNA sequences (Supplementary Table 4), as previously described46. The human and mouse 

sequences were obtained from the Genome-Scale CRISPR Knock-Out (GeCKO) library. For 

transfection, the human or mouse PDA cells were seeded at 1.5 x 105 cells per well in a 6-well 

plate one day prior. The cells were transfected with 1 μg of plasmid pSpCas9-UPP1 using 

Lipofectamine 3000 Reagent (Invitrogen, # L3000001) according to manufacturer’s instruction. 

After 24 hours, the selection of successfully transfected cells was commenced by culturing the 

cells with 0.3 mg/mL puromycin in DMEM. The puromycin-containing media was replaced 

every two days until selection was complete, as indicated by the death and detachment of all 
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non-transfected cells. Thereafter, the successfully transfected cell lines were expanded and 

clonally selected after serial dilution.  

 

siRNA Experiments.  

5 x 105 ASPC1 cells were seeded per 6-cm dish for 24 hours in the growth media. On Day 2 

media was changed and the respective SMARTpool siRNA containing media was added. siRNA 

transfection was prepared with Lipofectamine RNAiMAX (ThermoFischer Scientific, # 

13778075) according to the manufacturer’s instructions. For the transfection, Opti-MEMTM 

Reduced Serum Medium (# 31985-062) was used and siRNAs were added at a concentration of 

20 nM. Cells were transfected for 48 hours after which the cells were trypsinized, counted, and 

plated for MTT assay. The remaining cells were pelleted, and RNA was extracted for qPCR. The 

siRNAs used were as follows: non-targeting control (Cat #D-001810-01-05), SMARTpool ON-

TARGETplus Human PGM2 (55276) (# L-020785-01-0005), ON-TARGETplus Human UCK1 

(83549) (# L-004062-00-0005), and ON-TARGETplus Human UCK2 (7371) (# L-005077-00-

0005). 

 

Quantitative Reverse-Transcriptase Polymerase Chain Reaction.  

Cells were seeded at a density of 5-8 x 105 cells/well, allowed to attach overnight, and scraped 

were and pelleted 24 h after treatment (where applicable). RNA samples were isolated using the 

RNEasy Plus Mini Kit (QIAGEN, # 74134) according to the manufacturer’s instructions. RNA 

purity was assessed using a NanoDrop One (ThermoFisher Scientific, ND-ONE-W). Thereafter, 

1 μg of the RNA samples were reverse transcribed to cDNA using the iScript cDNA Synthesis 

Kit (Bio-Rad, 1708890) according to the accompanying instructions. qPCR was performed on 
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the QuantStudio 3 Real-Time PCR System (ThermoFisher Scientific, # A28131) using Power 

SYBR Green PCR Master Mix (ThermoFisher Scientific, # 4367659). Alternatively, qPCR was 

run on an Applied Biosystems StepOne Plus instrument (software version 2.3) with Power 

SYBR Green Master Mix (Applied Biosystems, # 4367659) at 10 µL total volume [consisting of 

5 µL SYBR, 2 µL nuclease free water, 2 µL of cDNA after diluting 1:4 in water, 0.5 µL of 10 

µM forward (F) primer, and 0.5 µL 10 µM reverse (R) primer]. Primer sequences are listed in 

Supplementary Table 5. The gene expression was calculated as delta CT and RPS21 or ACTB 

was used as a housekeeping gene. 

 

Western Blotting.  

Following culture, media was aspirated, and the wells washed 1x with PBS. Thereafter, 100 μL 

of radioimmunoprecipitation assay buffer (Sigma-Aldrich, # R0278) to which phosphatase and 

protease inhibitors was added, as transferred to each well to lyse the cells. Lysis and the 

collection of the lysates were completed on ice. Following a 5-10-minute incubation on ice, 

lysates were collected into 1.5 mL Eppendorf tubes and centrifuged at 4°C for 10 minutes at 

18,000 g to extract the sample supernatant. Protein concentration of the samples for western blot 

analysis were measured using PierceTM BCA Protein Assay Kit (Thermo Fisher, # 23227) 

according to manufacturer’s instructions. For the running step, samples were loaded at 20-25 µg 

protein per lane along with the SeeBlue Plus2 protein ladder (# Invitrogen) and run at 120 V on 

an Invitrogen NuPAGE 4-12% Bis-Tris gel (Thermo Fisher, # NP0336BOX). Thereafter, the 

separated proteins were transferred to methanol-activated PVDF membranes (Millipore) at 25 V 

for 60 minutes. Following this, membranes were immersed in blocking buffer [5% blotting-grade 

blocker (Bio-Rad, # 1706404) in TBS-T solution: tris-buffered saline (Bio-Rad, # 1706435) with 
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0.1% Tween® 20 (Sigma-Aldrich, # 9005-64-5)] for ~ 1 hour on a plate rocker at room 

temperature. Next, membranes were washed 3x with TBS-T at 10 minutes per wash, immersed 

in the indicated primary antibodies, and incubated overnight at 4°C on a plate rocker. The 

antibodies used were diluted in blocking buffer at dilutions recommended by the manufacturer. 

The following day, the primary antibody was removed, and the membrane was washed 3x with 

TBS-T and on a plate rocker for 5 minutes per wash. Immediately after, the membrane was 

incubated for 60 minutes and with gentle rocking at room temperature in the appropriate 

secondary antibody diluted 1:10,000 in TBS-T. Lastly, the membrane was washed 3x in TBS-T 

at 10 minutes per wash and incubated in chemiluminescence reagent (Clarity Max Western ECL 

Substrate, Cat. #1705062) according to the manufacturer’s instructions. Subsequently, blot 

images were acquired on a Bio-Rad ChemiDoc Imaging System (Image LabTM Touch Software 

version 2.4.0.03). The following primary antibodies were used in this study and at 1:1000 

dilution: anti-UPP1 (Sigma-Aldrich, # HPA055394), anti-c-MYC (Cell Signaling, # 5605S), 

anti-pERK (Cell Signaling, # 9106L), anti-ERK (Cell Signaling, # 9102S), anti-PGM2 

(Invitrogen, # PA5-31378), and anti-Vinculin (Cell Signaling, # 13901S). The following 

secondary antibodies were used: anti-rabbit-HRP (Cell Signaling, # 7074S), and anti-mouse-

HRP (Cell Signaling, # 7076P2). The uncropped, unprocessed images of the western blots are 

presented in Figures 2-5 – 2-13. 

 

Murine Tumor Studies 

Animal studies were performed at the University of Michigan (UM), the Institute of Cancer 

Research (ICR), and the University of Chicago (UChicago) according to approved protocols. 

Specifically, for studies at UM, the Institutional Animal Care and Use Committee (IACUC) 
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PRO00010606 was followed; ICR studies conformed to UK Home Office Regulations under the 

Animals Scientific Procedures Act 1986 and national guidelines (Project licence-P0A54750A 

protocol 5); UChicago IACUC Protocol #72587 was followed. Mice were housed in a pathogen-

free animal facility at a maximum of five animals per cage with a 12-hour light/12-hour dark 

cycle, 30–70% humidity and 20–23°C temperatures maintained and were provided water and fed 

ad libitum with chow (5L0D – PicoLab Laboratory Rodent Diet). 

 

Pancreatic Tumor Models.  

For mouse studies at UM, male and female 6–8 weeks old C57BL/6J mice were obtained from 

The Jackson Laboratory (Strain # 000664) and maintained in the facilities of the Unit for 

Laboratory Animal Medicine (ULAM) under specific pathogen-free conditions. Prior to tumor 

cell injection, wild type or Upp1 knockout murine cell lines (either derived from MT3-2D or 

KPC 7940b) were harvested from culture plates according to standard cell culture procedures. 

The cells were counted, washed 1x with PBS and resuspended in 1:1 solution of serum free 

DMEM and Matrigel (Corning, # 354234). For orthotopic surgical procedure, mice were 

anaesthetized using inhalation anesthesia. The surgical site was sterilized by swapping with 

iodine (Povidine-Iodine Prep Pad, PDI, # B40600). This was followed by incision on the left 

flank using sterilized instruments. Thereafter, the cell lines were injected into the pancreas and 

the incision sutured. Cell injection was as follows: 50,000 or 100,000 cells in 50 µL final volume 

for orthotopic implantation or ~1 x 106 cells in 100 μL final volume for subcutaneous 

implantation. Animals were monitored regularly and all orthotopic experiments were concluded 

~3-4 weeks after injection. 
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For the studies at ICR, female ~6 weeks old C57BL/6NCrl mice were purchased from Charles 

River Laboratories (Strain # 027). Prior to tumor cell injection, MT3-2D sgVector (sgV) and the 

Upp1 knockout cells (sg1 and sg3) were trypsinized according to standard cell culture protocol. 

Cells were washed with PBS and resuspended in 1:1 Hank’s balanced salt solution (HBSS; 

Gibco, # 14025092) and Matrigel (Corning, # 354234). Following surgical incision, 50,000 cells 

in 20 µL final volume were injected into the pancreas. Tumor growth was monitored by 

palpating three times per week. Studies were terminated when the animals injected with the 

vector reached a high tumor burden based on palpation.  

 

For the studies at UChicago, C57BL/6J mice 8-12 weeks of age were purchased from Jackson 

Laboratories (Strain # 000664). 2.5 x 105 cells per tumor were resuspended in 20 µL of 5.6 

mg/mL Cultrex Reduced Growth Factor Basement Membrane Extract (RGF BME; R&D 

Biosystems, # 3433-010-01) and serum-free RPMI (SF-RPMI) solution. The BME:cellular 

mixture was injected into the splenic lobe of the pancreas of the mice, as previously described47. 

After implantation, end point was determined by abdominal palpation and daily monitoring of 

body weight.  

 

Macrophage Depletion.  

The KPC 7940b cell line was orthotopically implanted into ~8 weeks old male and female 

C57BL/6J mice, as above. Two weeks after injection, mice were randomized into two groups, 

namely, control and macrophage depletion (i.e., clodronate + anti-mouse CSF1 antibody). 

Thereafter, the control group mice were treated on Day 1 with 1 mg IgG (InVivoMAb rat IgG1 

Isotype control, anti-trinitrophenol, # BE020, Bio X Cell, USA) and on Day 2 with 200 μL 
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Control Liposome (PBS) (# CP-005-005, Liposoma BV, The Netherlands). The macrophage 

depletion mice were treated on Day 1 with InVivoMAb anti-mouse CSF1 (anti-CSF1, # BE0204, 

Bio X Cell) and Day 2 with 200 μL Clodronate Liposomes (# CP-005-005, Liposoma BV). Two 

subsequent treatment sequences were administered at two-day intervals as follows: 0.5 mg IgG 

or anti-CSF1 followed next day by 200 μL Control Liposome or Clodronate Liposomes for the 

control and depletion groups, respectively. The experiment was terminated after 1 week. From 

each mouse, blood samples were collected into EDTA BD Vacutainer K2 EDTA 3.6mg (# 

36784) and centrifuged at 200 g for 5 minutes for plasma collection. In addition, tumors were 

harvested, weighed, and used for the extraction of TIF, as below. 

 

Tumor Interstitial Fluid Collection.  

Tumor interstitial fluid (TIF) was isolated from tumors, as described before30. Briefly, tumors 

were rapidly dissected after euthanizing animals. Tumors were weighed and rinsed in blood bank 

saline solution (150 mM NaCl) and blotted on filter paper (VWR, # 28298–020) until dry. 

Tumor isolation occurred in less than 3 minutes to minimize the time the tumor is ischemic prior 

to TIF isolation. Tumors were cut in half and put onto 20 µm nylon mesh filters (Spectrum Labs, 

# 148134) on top of 50 mL conical tubes, and centrifuged for 10 minutes at 4°C at 400 g. TIF 

was then processed for metabolomics in a similar manner as plasma, as described below. 

 

In vivo Delivery of Isotopically Labeled Uridine.  

Uridine-derived ribose carbon was traced in vivo using 13C5 (ribose) labeled uridine (Cambridge 

Isotope Laboratories, # CLM-3680-PK). Specifically, mice bearing orthotopic or subcutaneous 

tumors were generated, as described above, using KPC 7940b cell lines. For the orthotopic 
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tumors, after the tumors became palpable, mice were either injected intraperitoneally with 200 

µL PBS (control group) or same volume of 0.2 M 13C5-uridine. For the subcutaneous models, 50 

µL PBS or 0.2 M 13C5-uridine were injected directly into the tumors. Tumors were harvested 1 

hour after injection and processed for isotope tracing, as detailed below. 

 

Mass Spectrometry-Based Metabolomics 

Metabolomics Sample Preparation. For in vitro extracellular (media) and intracellular 

metabolomic profiling, PDA cells were seeded in triplicates in a 6-well plate at 4-6 x 106 cells 

per well in growth media. A parallel plate for protein estimation and sample normalization was 

also set up. After overnight incubation, the culture media was aspirated and replaced with media 

containing treatments or supplemented metabolites of interest. The cells were then cultured for a 

further 24 hours. Thereafter, for extracellular metabolites, 200 µL of media was collected from 

each well into a 1.5 mL Eppendorf tube and to that 800 µL ice-cold methanol was added. For 

intracellular metabolites, the remaining media was aspirated, and samples washed 1x with 1mL 

PBS before incubation with 1 mL ice cold 80% methanol on dry ice for 10 minutes. Thereafter, 

cell lysates were collected from each well and transferred into separate 1.5 mL Eppendorf tubes. 

The samples were then centrifuged at 12,000 g. For each experimental condition, the volume of 

supernatant to collect for drying with SpeedVac Vacuum Concentrator (model: SPD1030) was 

determined based on the protein concentration of the parallel plate.  

 

For tumors, the samples were flash frozen in liquid nitrogen upon collection. Tumors of 

approximately equal weight (<100 mg) were collected per sample per experimental group. The 

tumors were then put into 2 mL Eppendorf tubes to which 1mL of ice-cold 80% methanol 
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(diluted in 20% H2O). Metallic beads were added to each tube and samples were shaken and 

homogenized on an Retsch TissueLyser II (# 129251128) in intervals of 30 seconds until fully 

homogenized. Samples were then centrifuged at 12,000 g and supernatant collected for further 

processing. 

 

Targeted Metabolomics.  

The collected supernatants were dried using SpeedVac Vacuum Concentrator, reconstituted with 

50% v/v methanol in water, and analyzed by liquid chromatography-coupled mass spectrometry 

(LC-MS), as described in detail previously48. Data was analyzed with Agilent Masshunter 

Workstation Quantitative Analysis for QQQ version 10.1, build 10.1.733.0. 

 

Stable Isotope Tracing.  

For stable isotope tracing in cells, 13C5 uridine (ribose labeled), hereafter called labeled- or 13C-

uridine (Cambridge Isotope Laboratories, # CLM-3680-PK) was supplemented at 0.1 mM or 

1mM for in vitro assays. Briefly, wild type or UPP1 knockout cells were cultured overnight in 

regular media. Next day, cells were washed 1x followed by the introduction of media containing 

the indicated amounts of glucose, dialyzed FBS and supplemented with labelled uridine. In 

parallel, a similar experiment was set up for unlabeled uridine. The cell lines were then cultured 

in the uridine-supplemented media for 24 hours or as otherwise indicated, followed by sample 

collection, as detailed for unlabeled intracellular metabolomics above. Labeled tumors were 

similarly collected as detailed above. Samples for TOF MS, as described in detail previously48, 

and analyzed with Agilent MassHunter Workstation Profinder Version 10.0, Build 10.0.10062.0. 
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For the experiments were glucose and uridine concentrations were varied (i.e., 5/0.1 mM and 

1/0.1 mM, respectively) followed by stable isotope tracing, the cells were seeded at a density of 

5 x 105 and treated with 13C5-uridine or unlabeled uridine in DMEM supplemented with dialyzed 

FBS and the indicated concentration of glucose for 24 hours. Then cells were washed with 1 mL 

cold PBS followed by the addition of 1 mL -20°C 2:2:1 methanol:acetonitrile:water to the wells 

on dry ice for 10 min. Cells were scraped from the dish. Next, samples were subjected to 3 

cycles of 30 second vortex, 1 minute liquid N2, and 10 minutes 25°C bath sonicate. Samples 

were then stored at -20°C overnight and centrifuged at 14,000 RCF at 4°C for 10 minutes. 860 

µL supernatant was transferred to a new tube and dried by SpeedVac Vacuum Concentrator. 

Protein pellets were also dried similarly to remove excess supernatant, resuspended in 400 µL 

100 mM NaOH through repeated vortexing, 5 minutes incubation at 95°C, and protein quantified 

by BCA assay (ThermoFisher, # 23227). Dried supernatant pellets were resuspended in 2:1 

Acetonitrile:Water at 1 µL per 2.5 µg protein and subjected to 2 cycles of: 5 minutes 25°C bath 

sonicate, 1 minute vortex. Samples were incubated at 4°C overnight, then centrifuged at 14,000 

RCF at 4°C for 10 min and the supernatant transferred to LC vials and stored at -80°C until 

analysis. For sample analysis, 4 µL of metabolite extracts were run on an Agilent 6545 Q-TOF 

Mass Spectrometer and an Agilent 1290 Infinity II LC system using a iHILIC-(P) Classic 2.1 

mm x 100 mm, 5 μm column (HILICON, 160.102.0520) with iHILIC-(P) Classic Guard column 

(HILICON, 160.122.0520) attached. A column temperature of 45°C and a flow rate of 250 

µL/min was used. Mobile phases were A: 95% water, 5% acetonitrile, 20 mM ammonium 

bicarbonate, 0.1% ammonium hydroxide solution (25% in water), 2.5 µM medronic acid and B: 

85% acetonitrile, 5% water, 2.5 µM medronic acid. Each sample was subjected to a linear 

gradient: 0-1 minute 90% B, 1-12 minutes 35% B, 12-12.5 minutes 25% B, 12.5-14.5 minutes 
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25% B, 14.5-15 minutes 90% B, which was then followed by 4 min at 400 µL/minute and 2 

minute at 250 µL/min at 90% B for re-equilibration. Chromatograms for selected metabolites 

were extracted in Skyline Daily (software version 22.2.1.256) and manually integrated according 

to an in-house list of standard m/z and retention times. Natural isotope abundance correction was 

performed, and peak areas plotted. 

 

Quantification of TIF Metabolite Levels.  

For quantification of uridine and glucose in TIF, quantitative metabolite profiling of fluid 

samples was performed, as previously described30. Briefly, chemical standards were prepared 

and serially diluted in high-performance liquid chromatography grade water in a dilution series 

from 5 mM to 1 µM. Using the external standard library dilutions, we created a standard curve 

based on the linear relationship of the normalized peak area and the concentration of the 

metabolite. This standard curve was then used to interpolate the concentration of the metabolite 

in the TIF sample. 

 

Clinical Samples.  

Patients with pancreas resections for PDA from 2021 to 2022 at the University of Michigan 

Health System were included in the study. All hematoxylin and eosin (H&E) stained slides were 

reviewed, and diagnoses confirmed, and corresponding areas were carefully selected and 

marked. The collection of patient-derived tissues for histological analyses was approved by the 

Institutional Review Board at the University of Michigan (IRB number: HUM00098128). 

Tissues were fixed in 10% neutral buffered formalin and paraffin embedded using standard 

protocols before sectioning and staining. 
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Tissue microarrays (TMAs).  

All specimens are from patients with pancreas resections for pancreatitis, cystic neoplasms, or 

PDA from 2002 to 2015 at the University of Michigan Health System. After fixation in 10% 

neutral buffered formalin (hours to a couple of days depending on the size of the tissue), samples 

were embedded in paraffin. All tissues were H&E stained, reviewed, and diagnoses confirmed. 

Corresponding areas were carefully selected and marked. Duplicate 1 mm diameter tissue cores 

from a total of 213 patient tissue samples were selectively punched and transferred to recipient 

tissue array blocks. Five TMAs were set up and H&E and immunohistochemistry staining was 

performed on each TMA block using standard protocols. The TMA was previously published49. 

 

RNAscope. RNAscope was performed as previously described50, and according to the 

manufacturer’s protocol (ACD: 323100-USM). Briefly, paraffin wax was removed with xylene 

and slides were rehydrated. Samples underwent antigen retrieval for 15 minutes. Samples were 

blocked for 30 minutes at room temperature with CoDetection Antibody Diluent and then 

incubated overnight at 4°C with a primary antibody for panCK (Mouse anti-cytokeratin, pan 

reactive; 1:100; BioLegend; # 628602) diluted in CoDetection Antibody Diluent. Protease 

digestion was performed for 13 minutes at room temperature. Human UPP1 RNAscope probe 

(ACD; # 509279; Lot: 21272A) was added to slides for 2 hours at 40°C. Samples were incubated 

with TSA-Cy3 fluorophore (1:2,000; Akoya Biosciences; # NEL704A001KT) diluted in 

CoDetection Antibody Diluent. Following HRP blocking, slides were rinsed in PBS + 0.1% 

Tween-20 (PBST). Slides were stained with DAPI (1:30,000; Millipore Sigma; # 10236276001) 

diluted in PBS for 15 minutes at room temperature. After rinsing in PBST, slides were incubated 
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for 45 minutes at room temperature with secondary antibodies diluted 1:500 in CoDetection 

Antibody Diluent. Slides were rinsed with PBST and mounted in ProLong Gold Antifade 

Mountant (Invitrogen, # P36930). Sections were visualized on a Leica SP5X upright confocal. 

For quantitation, 20x fields of view were imaged and analyzed using FIJI/Image J (version 

1.53c). For analysis, images were converted to 16-bit, the threshold was adjusted, and the area of 

UPP1 expression was measured per 20x image. 

 

Immunohistochemistry.  

Patients tissue slides were deparaffinized and rehydrated with graded Histo-Clear (National 

Diagnostics), ethanol, and water. Slides were quenched for 15 minutes in a methanol solution 

containing 1.5% hydrogen peroxide before antigen retrieval. Samples underwent antigen 

retrieval with sodium citrate buffer (2.94 g/L sodium citrate, 0.05% Tween 20, pH 6). Samples 

were blocked using blocking buffer (5% bovine serum albumin, 0.2% Triton-X 100, in PBS) for 

1 hour at room temperature. After blocking, slides were incubated overnight at 4°C with primary 

antibody (Rabbit anti-UPP1; 1:200; Sigma-Aldrich, # HPA055394) diluted in blocking buffer. 

Slides were rinsed in PBS and incubated for 1 hour at room temperature with a biotinylated 

secondary antibody (Horse anti-Rabbit; 1:500; Vector Labs, # BA-1100). After rinsing, slides 

were prepared for a color reaction by incubating with Vectastain Elite ABC Reagent (Vectastain 

Elite ABC-HRP Kit; Vector Labs, # PK-6100) for 30 minutes at room temperature. Sections 

were developed with DAB (DAB Substrate Kit; Vector Labs, # SK-4100) for 2 minutes, rinsed, 

and counterstained with hematoxylin. Slides were mounted in Permount Mounting Medium 

(Fisher). After drying, slides were imaged using an Olympus BX53F microscope, Olympus 

CP80 digital camera, and CellSens standard software. 
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Mouse tumors were fixed in 10% neutral buffered formalin for 48 hours and embedded in 

paraffin as formalin-fixed paraffin-embedded (FFPE) blocks. Serial sections of 4 µm thickness 

were cut from FFPE blocks, deparaffinized in xylene, processed in graded alcohol, and 

rehydrated in water. One section was stained with H&E for histological analysis. The Dako 

Autostainer Link 48 automated immunostaining platform was used for all the below 

immunostainings. Anti-Cd31 monoclonal antibody (SZ31, # DIA-310, Dianova) was used at a 

1:75 dilution, followed by heat-induced epitope retrieval for 20 mins at 97°C using a PT Link 

module (Agilent). Anti-Cd8 monoclonal antibody (clone - 4SM15, # 14-0808, eBioscience) was 

used at a 1:200 dilution, and anti-F4/80 monoclonal antibody (Clone-A3-1, # MCA497G, Bio-

Rad) was used at a 1:100 dilution. For these antibodies, EnVision FLEX Target Retrieval 

Solution (high pH; # K800421-2, Agilent) and Nichirei anti-rat Histofine polymer reagent (# 

41491F, Nichirei Biosciences Inc) primary antibody detection kits were used. For Cd3, 

polyclonal antibody (# ab5690, Abcam) was used at a 1:400 dilution with EnVision FLEX 

Target Retrieval Solution (low pH of 6) for 20mins in PT link module and detected with Vector 

Rabbit ImmPRESS HRP Horse anti-rabbit IgG polymer kit (Vector Laboratories, # MP-7401-

50). Appropriate positive and negative controls were used in all runs. The Nanozoomer-XR 

C12000 (Hamamatsu) was used to scan whole stained sections. Antigen expression was scored 

using Definiens Test Studio Software (Definiens). F4/80 was quantified using Image J. 

 

Immunohistochemistry of UPP1 expression in human normal and PDA tissues was also accessed 

from the Human Protein Atlas portal51.  
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PDA Dataset Analysis.  

The human PDA microarray datasets with accession numbers GSE71729 (n=46 normal pancreas 

vs 145 tumor tissues) and GSE62452 (n=61 non-tumoral vs 69 tumor tissues) were obtained 

from NCBI GEO52. Differential gene expression between PDA and non-tumors were performed 

in R using limma package (version 3.38.3). Kaplan Meier (KM) overall survival (log-rank test) 

was performed after splitting the tumor samples per dataset into UPP1 high and low subsets. For 

KM, human PDA tumor datasets and the accompanying clinical data from the following sources 

were used: GSE71729 (n=145), The Cancer Genome Atlas (TCGA) data (n=146), International 

Cancer Genome Consortium (ICGC, n=267), and Puleo et al. (n=288)53. The iKras mice data 

was obtained from NCBI GEO under the accession number GSE32277. TCGA expression data 

of tumors with KRAS wild type (n=43) and KRAS G12D mutation (n=42) were used to 

determine the relative expression of UPP1 in KRAS G12D mutated tumors.  

 

Pan-cancer Dataset Analysis.  

TCGA pan-cancer datasets, including bladder-, colon-, esophageal-, lung-, head and neck-, 

prostate cancer, and glioblastoma, were downloaded from Xena Platform from University of 

California Santa Cruz54. An additional colorectal (GSE44076) was also used. For the 

comparisons, the normal or adjacent matched/unmatched normal samples were used. In total, 

2,828 cancer tissue samples and 379 non-tumoral control tissue samples were analyzed. These 

datasets were used to compare UPP1 expression between cancer and non-cancer tissues.   

 

CCLE Gene Analysis and PDA Tumor Data Stratification.  
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Gene expression data for uridine high and uridine low metabolizers were extracted from the 

cancer cell line encyclopedia (CCLE, GSE36133). The subsets were then compared using limma 

package in R to determine the differentially expressed genes in uridine-high 

metabolizers/consumers relative to the lower metabolizers/consumers. For the tumor 

stratification, samples in the dataset GSE71729 (n=145) were ranked into UPP1-high and low 

groups and compared as above to determine the genes differentially expressed in UPP1 high 

tumors. UPP1 protein expression was performed in KRAS mutant and wildtype cell lines using 

data from DepMap55. 

 

Pathway Analyses.  

Pathway analyses were performed using DAVID functional annotation platform 

(https://david.ncifcrf.gov/, version 6.8) or the gene set enrichment analysis (GSEA, version 

4.0.3) with GSEAPreranked option. Ranking of genes was based on the product of the logFC and 

-log(p-value). GSEA was run with default parameters, except gene set size filter set at min=10. 

Gene ontology analyses were performed with DAVID.  

 

Promoter Analysis of UPP1.  

CiiDER56 was used for predicting UPP1 gene transcription factor sites. DNA sequence flanking 

UPP1 transcription start site (1500 bases upstream, 500 bases downstream) was used to compare 

to JASPAR2020_CORE_vertibrates Position Frequency Matrix (PFM) model to generate a score 

of similarity. As transcription factor binding sites are variable and binding sites rarely match the 

model perfectly, a default deficit score of 0.15 was used, where deficit score of 0 represents 

prefect match. Top 10 transcription factors were obtained using the predicted UPP1 binding sites 

https://david.ncifcrf.gov/
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with respect to sequences from the human genome (GRCh38.94) and mouse genome 

(GRCm38.94).  

 

Statistical Analysis.  

Statistics were performed either with GraphPad Prism 8 (GraphPad Software Inc.) or using R 

version 3.5.2. Data from experimental groups were compared using the two-tailed t-test or 

analysis of variance (ANOVA) with post hoc corrections where applicable, and between 

biological (or in vitro) replicates. The error bars in all graphs represent the mean ± standard 

deviation (s.d). Statistical significance was accepted if P < 0.05. For data analysis and 

visualization in R, packages (with versions) used include dplyr (0.8.3), ggplot2 (3.3.5), gplots 

(3.0.1, heatmap.2 function), ComplexHeatmap (2.3.5), tidyverse (1.3.0) and VennDiagram 

(1.6.20). 
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2.7 Figures 

 

Figure 2-1 Profiling of metabolite utilization in PDA cells identifies uridine  

a. Scheme of the nutrient metabolism screening assay and the correlation with gene expression in PDA cell lines and 
tumors.  

b. Spearman correlation, r, between the normalized relative metabolic activity (RMA) for uridine catabolism in the 
screening data and UPP1 mRNA expression from CCLE in 16 PDA cell lines. The highlighted cell lines were used 
for further analyses. In red are UPP1-high cell lines. 

c. RMA in a subset of PDA cell lines following supplementation with 1 mM uridine for 3 days.  

d. qPCR validation of UPP1 mRNA expression in a subset of PDA cell lines.  

e. Immunoblot showing basal UPP1 expression in PDA cell lines. Blots are representative of 

three technical replicates with similar results. kDa, molecular weight unit. 

f. Spearman correlation, r, between protein densitometry analysis of blot shown in Fig. 1e and mRNA expression of 
UPP1 in 8 corresponding PDA cells shown in Fig. 1b. 

g. Topmost 20 genes differentially expressed by the PDA cell lines (in the CCLE) that were identified as uridine 
high consumers compared to low consumers from the nutrient metabolism screen. CCLE, cancer cell line 
encyclopedia. Data (c, d) are shown as mean ± s.d.  
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See “Statistics and reproducibility” (Methods) for additional information. 

Statistics and Reproducibility 

a. The use of >175 metabolites by 19 PDA cell lines and 2 non-PDA pancreatic cell lines was measured every 15 
minutes for ~ 3 days (74.5 h) using the Biolog OmniLog device. The assay readout, relative metabolic activity 
(RMA), was correlated with the expression level of metabolic genes in cell lines; human PDA data were used for 
subsequent analyses. Nutrient-deficient media = no glucose, 0.3 mM glutamine and 5% dialyzed fetal bovine serum 
(dFBS).  

c. n = 4 biologically independent samples per group. Statistical significance was measured by multiple unpaired 
two-tailed t-tests (two-stage step-up method) comparing RMA from cells in basal media vs 1mM uridine media, 
****P < 0.0001. The experiments were performed twice with similar results. 

d. n = 4 biologically independent samples per cell line. The experiment was performed once. 
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Figure 2-2 Uridine-derived ribose supports nutrient-restricted PDA 

a. RMA of four PDA cell lines supplemented with glucose, uridine or ribose under nutrient-limited culture 
conditions (i.e., no glucose and glutamine, 5% dFBS).  

b-c. Intracellular and extracellular uridine and uracil after 24 h culture of PATU8988S cells in media with no 
glucose and 10% dialyzed FBS with or without 1 mM uridine as measured by LC-MS.  

d-f. Mass isotopologue distribution of 13C5-uridine ribose-derived carbon in the indicated metabolites and cell lines 
after 24 h culture with 1mM uridine.  

g. Isotope tracing showing 13C5-uridine ribose-derived carbon labeling in subcutaneous (Sub-Q) or orthotopically 
(Ortho) implanted KPC 7940b tumors collected 1 h after injecting the mice with 0.2 M 13C5-uridine.  

h. Absolute quantitation via metabolomics of uridine and uracil concentration in the pancreatic tumor interstitial 
fluid (TIF) of mice orthotopically implanted with KPC 7490b syngeneic tumors.  

i. Absolute quantitation via metabolomics of glucose concentration in the pancreatic TIF and plasma of mice 
orthotopically implanted with KPC 7490b syngeneic tumors.  
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j-k. Mass isotopologue distribution of 13C5-uridine ribose-derived carbon after 24 h culture of ASPC1 and 
PATU8988S cells in media supplemented with 1 mM or 0.1 mM uridine and each with 5 mM or 0.1 mM glucose. 
13C5-U, 13C5-uridine. 

l. Schematic depicting the fate of uridine-derived ribose carbon in PDA cells actively catabolizing uridine. 
3PG/2PG, 3-/2-phosphoglycerate; ATP, adenosine triphosphate; F6P, fructose-6-phosphate; HBP, hexosamine 
biosynthetic pathway; NAD+, nicotinamide adenine dinucleotide; PEP, phosphoenolpyruvate; PPP, pentose 
phosphate pathway; PRPP, phosphoribosyl pyrophosphate; R5P, ribose-5-phosphate; SBP, serine biosynthesis 
pathway; TCA cycle, tricarboxylic acid cycle; UDP-GlcNAc, uridine diphosphate N-acetylglucosamine; UMP, 
uridine monophosphate; UTP, uridine triphosphate. See “Statistics and reproducibility” (Methods) for additional 
information. 

Statistics and Reproducibility 

a. n = 4 biologically independent samples per group per cell line. Statistical significance was measured using one-
way ANOVA with Dunnett’s multiple comparisons test. CAPAN2 (comparison between no glucose/uridine and no 
glucose + 1 mM uridine, ***P = 0.0001; no glucose/uridine and 1 mM glucose/no uridine, *P = 0.021; no 
glucose/uridine and 0.1 mM ribose, P = ns (0.86); no glucose/uridine and 1 mM ribose, **P = 0.0093; no 
glucose/uridine and 10 mM ribose, ****P < 0.0001). PATU8988S (comparison between no glucose/uridine and no 
glucose + 1 mM uridine, ****P < 0.0001; no glucose/uridine and 1 mM glucose/no uridine, ****P < 0.0001; no 
glucose/uridine and 0.1 mM ribose, P = ns (0.9817); no glucose/uridine and 1 mM ribose, **P = 0.0019; no 
glucose/uridine and 10 mM ribose, ****P < 0.0001). DANG (comparison between no glucose/uridine and no 
glucose + 1 mM uridine, ****P < 0.0001; no glucose/uridine and 1 mM glucose/no uridine, ****P < 0.0001; no 
glucose/uridine and 0.1 mM ribose, P = ns (> 0.9999); no glucose/uridine and 1 mM ribose, P = ns (0.3025); no 
glucose/uridine and 10 mM ribose, ****P < 0.0001). ASPC1 (comparison between no glucose/uridine and no 
glucose + 1 mM uridine, ****P < 0.0001; no glucose/uridine and 1 mM glucose/no uridine, ****P < 0.0001; no 
glucose/uridine and 0.1 mM ribose, P = ns (0.9974); no glucose/uridine and 1 mM ribose, *P = 0.0103; no 
glucose/uridine and 10 mM ribose, ****P < 0.0001). The experiment was performed once. 

b,c. n = 3 biologically independent samples. Statistical significance was measured using two-tailed unpaired t-test. 
Intracellular – comparison between no uridine and 1 mM uridine: ***P = 0.0005 (uridine), ****P < 0.0001 (uracil); 
Extracellular – comparison between no uridine and 1 mM uridine: ****P < 0.0001 (uridine), **P = 0.008 (uracil). 

d-f. n = 3 biologically independent samples per cell line. M – mass; ‘Others’ – indicate M other than M+0 or M+5, 
where applicable. Bars shown for PATU8988S are same as the WT bars (where applicable) for that cell line in the 
Fig. 2-9. Tracing experiments were performed twice in these cells with similar results. 

g. Number of samples: Sub-Q = 6 tumors from 3 mice injected on the left and right flanks; Ortho = 4 tumors from 4 
mice. Mode of uridine injection is intratumoral for Sub-Q and intraperitoneal for Ortho. 

h. Median concentration of uridine = 24.1 µM; median concentration of uracil = 90.2 µM; n = 22 biologically 
independent TIF samples.  

i. Median concentration of glucose = 3.71 mM (plasma) and 0.63 mM (TIF). n = 8 biologically independent plasma 
samples and 8 TIF samples extracted from 8 tumors samples from same mice. These samples are from the control 
group of the study in Fig. 2.4a. Statistical significance was measured with two-tailed unpaired t test with Welch's 
correction, ****P < 0.0001. 

j-k. j shows the measured isotopologue distribution in uridine and k shows in the indicated metabolites. n = 4 
biologically independent samples per group per cell line. M – mass; ‘Others’ – indicate M other than M+0 or M+5, 
where applicable. Data (a-k) are shown as mean ± s.d. The metabolomics experiments (b-k) were performed once. 
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Figure 2-3 KRAS-driven UPP1 liberates ribose and is elevated in PDA  

a. Western blot validating UPP1 knockout in human PDA cell lines. kDa, molecular weight unit. 

b-c. Biolog tetrazolium assay showing uridine-derived reducing potential (b) and CellTiter Glo showing ATP 
generation (c) in UPP1 knockout (UPP1-KO) versus WT PATU8988S and ASPC1 cells cultured with or without 1 
mM uridine for 48 h.  

d. Relative intracellular uracil determined with LC-MS in WT and UPP1-KO human PDA clones supplemented 
with 1 mM uridine for 24 h (PATU8988S) and 6 h (ASPC1).  

e. Mass isotopologue distribution of 1 mM 13C5-uridine ribose-derived carbon in glycolysis and TCA cycle 
metabolites in WT or UPP1-KO ASPC1 cells after 6 h.  

f. UPP1 mRNA expression in PDA tumors and non-tumoral pancreas in microarray datasets. NT – non-tumor 
tissue; Liver Met – liver metastasis.  

g-h. RNAscope showing representative UPP1 mRNA expression in tumor and adjacent normal tissue sections (g) 
and quantification from three patients (Pt1-3) (h). 

i. Kaplan Meier overall survival analysis (log-rank test) by ranked UPP1 expression from the Puleo et al. PDA 
dataset. 
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j. Comparison of UPP1 mRNA expression in human PDA tumors annotated as KRAS G12D mutated or no 
alteration (No Alt) in KRAS from TCGA dataset.  

k. qPCR data showing UPP1 expression in murine cell lines (A9993 and 9805) with doxycycline-inducible 
oncogenic Kras (iKras*).  

l. Western blot validation of MAPK pathway induction as indicated by phosphorylated ERK (pERK) in the iKras* 
cell lines.  

m-n. qPCR for UPP1 mRNA (m) and western blot for pERK and UPP1 (n) in ASPC1 cells with or without 5 mM 
glucose, 1 mM uridine, and 1 μM trametinib (tram.) for 48 h. 

o. MTT assay showing relative proliferation without glucose of PDA cell lines with 1.25 μM trametinib and 1 mM 
uridine. See “Statistics and reproducibility” (Methods) for additional information. 

Statistics and Reproducibility 

a. WT, wild type. 1A, 1B denote UPP1 KO clonal cell lines. The experiment was performed once. 

b. n = 4 biologically independent samples per group per cell line. Statistical significance was measured using one-
way ANOVA with Tukey's multiple comparisons test. PATU8988S – comparison between no uridine (-) and 1 mM 
uridine (+): ****P < 0.0001, P = ns (0.9703) and P = ns (0.9089) for WT, 1A and 1B groups, respectively. ASPC1 – 
comparison between no uridine (-) and 1 mM uridine (+): ****P < 0.0001, P = ns (>0.9999) and P = ns (>0.9999) 
for WT, 1A and 1B groups, respectively. The experiments were performed three times with similar results. 

c. n = 4 biologically independent samples per group per cell line. Statistical significance was measured using one-
way ANOVA with Tukey's multiple comparisons test. PATU8988S – comparison between no uridine (-) and 1 mM 
uridine (+): ****P < 0.0001, P = ns (>0.9999) and P = ns (0.9599) for WT, 1A and 1B groups, respectively. ASPC1 
– comparison between no uridine (-) and 1 mM uridine (+): ****P < 0.0001, P = ns (0.9977) and P = ns (0.6537) for 
WT, 1A and 1B groups, respectively. The experiments were performed twice with similar results.  

d. n = 3 biologically independent samples per group. Statistical significance was measured using one-way ANOVA 
with Dunnett’s multiple comparisons test. Comparison between WT and clonal cells 1A or 1B: ****P < 0.0001 
(PATU8988S) and ***P = 0.0003 (ASPC1). Data are part of the metabolomics experiments shown in Fig. 2-9a-c. 
The metabolomics experiment was performed once. 

e. n = 3 biologically independent samples per group. M – mass; ‘Others’ – indicate M other than M+0 or M+5, 
where applicable. Data are part of the metabolomics experiments shown in Fig. 2-9 (e, h, j) for ASPC1. The 
metabolomics experiment was performed once. 

f. Statistical significance was measured using two-tailed unpaired t test with Welch's correction. Number of samples 
and statistical comparison: GSE62452 (NT = 61 vs PDA = 69, ***P = 0001), GSE71729 (middle graph: NT = 46 vs 
PDA = 145, *P = 0.0466), GSE71729 (right graph: primary = 145 vs Liver met, PDA = 25, ****P < 0.0001). Box 
plot statistics – GSE42452 (NT: minima = 3.582, maxima = 5.633, 25th percentile = 4.036, 75th percentile = 4.504, 
median = 4.262; PDA: minima = 3.853, maxima = 5.989, 25th percentile = 4.37, 75th percentile = 4.843, median = 
4.535), GSE71729 (NT: minima = 2.18, maxima = 4.402, 25th percentile = 2.901, 75th percentile = 3.469, median = 
3.139; PDA: minima = 2.293, maxima = 4.725, 25th percentile = 3, 75th percentile = 3.657, median =  3.339), 
GSE71729 (primary: minima = 2.293, maxima = 4.725, 25th percentile = 3, 75th percentile = 3.657, median = 
3.339; liver metastasis (met): minima = 3.306, maxima = 5.768, 25th percentile = 3.564, 75th percentile = 
4.498, median = 4.023). 

g. Representative images from Patient 1 of 3 tumor tissues. PanCK, pan-cytokeratin, stain indicates tumor cells. 
DAPI, nuclear stain. Adj = adjacent normal tissue. Scale bar indicates 100 μm.  

i. Number of samples: UPP1 low = 144, UPP1 high = 144. 

j. Number of samples: No Alt = 43, G12D = 42. Statistical significance was measured using two-tailed unpaired t 
test with Welch's correction, **P = 0.0029. Box plot statistics – No Alt: minima = 7.797, maxima = 10.66, median = 
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9.019, 25th percentile = 8.307, 75th percentile = 9.53; KRAS-G12D: minima = 8.154, maxima = 11.3, median = 
9.385, 25th percentile = 9.019, 75th percentile = 9.905. 

k. n = 3 biologically independent samples per cell line. Statistical significance was measured using two-tailed 
unpaired t test. Comparison between Dox (-) and (+) in iKras* cell A9993: ***P = 0.0002; in iKras cell 8905: **P = 
0088. The experiment was performed once. 

l. Vinculin is used as a loading control. The experiment was performed once. 

m. Number of samples: 3 biologically independent samples per group. Statistical significance was measured using 
two-tailed unpaired t test. Comparison between cells cultured in uridine/glucose-containing media with and without 
trametinib treatment: ****P < 0.0001; comparison between cells treated with and without trametinib in the presence 
of glucose but no uridine: ****P < 0.0001; comparison between cells treated with and without trametinib in the 
presence of uridine and no glucose: **** P < 0.0001; comparison between cells cultured with no uridine/glucose 
with and without trametinib treatment: ****P < 0.0001. The experiment was performed once. 

n. Vinculin is used as a loading control. The experiments were performed twice with similar results.  

o. Statistical significance was measured using one-way ANOVA with Tukey's multiple comparisons test. n = 4 
biologically independent samples per group per cell line. PATU8988S (comparison between cells cultured with and 
without trametinib in the absence of uridine: ****P < 0.0001, and with uridine supplementation: ****P < 0.0001), 
DANG (comparison between cells cultured with and without trametinib in the absence of uridine: P = ns (0.9967), 
and with uridine supplementation: ****P = 0.0001), ASPC1 (comparison between cells cultured with and without 
trametinib in the absence of uridine: P = ns (0.9987), and with uridine supplementation: ***P = 0.0001). The 
experiment was performed once. 

ns = not significant. Data (b-e, k, m, o) are shown as mean ± s.d. 

1,3-BPG, 1,3-bisphosphoglycerate; 2-PG, 2-phosphoglycerate; α-KG, alpha ketoglutarate; DHAP, dihydroxyacetone 
phosphate; Fructose-1,6-BP, fructose-1,6-bisphosphate; F6P, fructose-6-phosphate; PEP, phosphoenolpyruvate; 
TCA, tricarboxylic acid.  
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Figure 2-4 UPP1 knockout impairs growth of orthotopic pancreatic tumor allografts 

a. Schematic and validation of macrophage depletion.  

b. Tumor weight from control and macrophage-depleted mice at endpoint. 

c. Relative plasma, tumor interstitial fluid (TIF), and bulk tumor uridine levels in samples from the control and 
macrophage-depleted groups, measured by LC-MS.  

d. CellTiter Glo assay indicating relative viability (ATP) of Upp1 knockout (sg1, sg3) and non-targeting control 
vector (sgV) murine PDA cells.  

e. Relative intracellular and extracellular uridine and uracil levels in the control (sgV) versus Upp1-KO (sg1, sg3) 
MT3-2D mouse PDA cell lines, determined by LC-MS.  

f. Venn diagram showing metabolites depleted in vitro upon UPP1 knockout in the human (PATU8988S and 
ASPC1) and mouse (MT3-2D) PDA cell lines, determined by LC-MS. Blue font: glycolysis, nucleotide 
biosynthesis, and pentose phosphate pathway. 

g-h. Stable isotope tracing showing mass isotopologue distribution of 1 mM 13C5-uridine ribose-derived carbon in 
glycolysis (g) and other pathway metabolites in the MT3-2D cells after 6 h culture.  

i. Schematic of tumor studies. Below: representative photograph of tumors harvested from the mice orthotopically 
implanted with the control vector (sgV) or Upp1-KO (sg1, sg3) MT3-2D cell lines. 
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j. Tumor weight at endpoint in C57BL/6J mice orthotopically implanted with the MT3-2D cells.  

k. Weight and photograph of tumors harvested at endpoint after subcutaneous implantation of MT3-2D cells into the 
C57BL/6J mice flanks (left and right).  

l. Relative tumor uridine and uracil abundance in the orthotopic tumor samples described in (i,j), as determined by 
LC-MS.  

m-n. Venn diagram showing metabolites commonly accumulated (m) and depleted (n) in UPP1 knockout tumors 
and cultured cells relative to the control murine cell lines. (m) red font: nucleotide biosynthesis; (n) blue font: 
glycolysis, nucleotide biosynthesis, and pentose phosphate pathway. See “Statistics and reproducibility” (Methods) 
for additional information. 

Statistics and Reproducibility 

a. The experiment involved a sequential treatment of mice with control IgG followed the next day by liposome PBS 
(control group) or anti-CSF1 followed the next day by clodronate (Clod.+Ab/macrophage depletion group), after the 
establishment of palpable pancreatic orthotopic tumors with the KPC 7940b cell line. Below: immunohistochemistry 
images showing macrophage marker, F4/80, staining in the tumor. Right: quantification of F4/80 positive cells 
normalized to the control group. Data shown represent the average of quantification from 3 histological slides 
obtained per tumor. Sample size used for histology, n = 5 tumors from same number of mice per group. Statistical 
significance was measured using two tailed unpaired t test with Welch’s correction, P = 0.0635. CSF1, colony 
stimulating factor 1 (CSF1); PBS, phosphate buffered saline. The experiment was performed once. 

b. Sample size: control = 9, Clod.+Ab = 8 tumors from the corresponding number of mice. Statistical significance 
was measured using two-tailed unpaired t test with Welch’s correction, **P = 0.0046. Ab = anti-CSF1 antibody. 

c. Plasma n=8; TIF, n=8 control and macrophage-depleted (n=8); tumors, n=8 control and n=8 macrophage-
depleted. Statistical significance was measured using two-tailed unpaired t test with Welch’s correction. Comparison 
between control and Clod.+Ab (plasma uridine): *** P = 0.0003; control and Clod.+Ab (TIF uridine): P = ns 
(0.7923); control and Clod.+Ab (tumor uridine): P = ns (0.1244). Ab = anti-CSF1 antibody. 

d. The cells were cultured +/- 1 mM uridine in glucose-free media supplemented with 2.5% dFBS. Sample size = 4 
biologically independent samples per group. Statistical significance was measured using two-tailed unpaired t-test. 
KPC 7940b – comparison of cell culture without and with 0.1 mM uridine: ****P < 0.0001, P = ns (0.2577) and P = 
ns (0.1118) for sgV, sg1 and sg3 groups, respectively; MT3-2D – comparison of cell culture without and with 0.1 
mM uridine: **P = 0.0026, P = 0.9574 and P = 0.927 for sgV, sg1 and sg3 groups, respectively. The experiments 
were performed twice with similar results. 

e. Statistical significance was measured using one-way ANOVA with Dunnett’s multiple comparisons test, n = 3 
biologically independent samples per group. Comparison between sgV and sg1 or sg3: ****P < 0.0001 (for both 
intracellular uridine and uracil). Extracellular uridine – comparison between sgV and sg1, P = ns (0.1758); 
comparison between sgV and sg3, P = ns (0.1503). Extracellular uracil – comparison between sgV and sg1 or sg3: 
****P < 0.0001. 

f. In blue font are components of glycolysis, nucleotide biosynthesis or pentose phosphate pathway. 

g,h. n = 3 biologically independent samples per group. The metabolomics experiment was performed once. 

i. Tumor weight data is shown in j.  

j. Number of mice and tumor samples: sgV n = 6, sg1 n = 10, and sg3 n = 8. Statistical significance was measured 
using one-way ANOVA with Dunnett’s multiple comparisons test. Comparison between sgV and sg1 or sg3: ****P 
< 0.0001. Experiment performed once. 

k. Number of samples: sgV = 8, sg1 = 8, sg3 = 8 tumors, corresponding to four mice per group. Statistical 
significance was measured using one-way ANOVA with Dunnett’s multiple comparisons test. Comparison between 
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sgV and sg1: **P = 0.003, comparison between sgV and sg3: ***P = 0.0002. On the right is an accompanying 
representative image of the weighed tumors. Experiment performed once. 

l. Samples used for metabolomics per group: sgV = 5, sg1 = 6, sg3 = 6. Statistical significance was measured using 
one-way ANOVA with Dunnett’s multiple comparisons test. Uridine – comparison between sgV and sg1: **P = 
0.0016, sgV and sg3: **P = 0.0019); uracil – comparison between sgV and sg1: ****P < 0.0001, sgV and sg3: 
****P < 0.0001. Experiment performed once. 

m. Venn diagram showing metabolites commonly accumulated upon UPP1 knockout in mouse cell line (in vitro) 
and tumors (in vivo), as determined by metabolomics profiling. In red font are components of nucleotide 
biosynthesis. 

n. Venn diagram showing metabolites commonly depleted upon UPP1 knockout in mouse cell line (in vitro) and in 
tumors, as determined by metabolomics profiling. In blue are components of glycolysis, nucleotide biosynthesis or 
pentose phosphate pathway. 

1,3BPG, 1,3-bisphosphoglcerate; 2-PG, 2-phosphoglycerate; AMP, adenosine monophosphate; dAMP, deoxy-
adenosine monophosphate; DHAP, dihydroxyacetone-phosphate; F6P, fructose 6-phosphate; F1,6P, fructose 1,6-
bisphosphate; GSSG, oxidized glutathione; IMP, inosine monophosphate; NAD+, nicotinamide adenine 
dinucleotide; PEP, phosphoenolpyruvate; R5P, ribose 5-phosphate; UDP-Glc, uridine diphosphate-glucose; UDP-
GlcNAc, uridine diphosphate N-acetylglucosamine; X5P, xylulose 5-phosphate.  

Data (a-e, g-h, j-k, l) are shown as mean ± s.d. Metabolites used for Venn diagram (f, m, n) are significantly changed 
(P<0.05) in the metabolomics profile of UPP1 KO compared to control per cell line and were derived from LC-MS 
experiments [Fig. 2.3d and c (PATU8988S and ASPC1 – intracellular); Fig. 2.4e/Fig. 2.14c (MT3-2D cell line, in 
vitro, intracellular); Fig. 2.4l/Fig. 2.14g (MT3-2D tumors, in vivo), and Fig. 2.14e/f (KPC 7940b tumors, in vivo)]. 
The statistical significance was determined using limma package version 3.38.3 in R. Mouse schematic (a, i) was 
drawn with Adobe Illustrator 2021 version 25.4.3. 
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Figure 2-5 Correlation of nutrient utilization with gene expression identifies uridine and UPP1 

a. Schematic overview of the parameters measured by the Biolog Phenotype Microarray.  
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b. Heatmap showing the high confidence metabolites (HCMs), namely, the metabolites that were the least utilized or 
the most utilized. Legend denotes relative usage, where red shows high utilization and blue shows low utilization. 

c. Spearman correlation plot, indicating the genes that showed positive or negative correlation with metabolites’ 
RMA in the Biolog screen.   

d. Spearman correlations, r, between UPP1 expression from the CCLE and RMA of nucleosides that were included 
in the Biolog screen. n = 16 PDA cell lines. 

e. Heatmap showing the expression of glycolysis genes in human PDA tumors ranked based on UPP1 expression 
(dataset: GSE71729, UPP1 low, n=72; high, n=73). On the right: GSEA plot indicating the enrichment of glycolysis 
hallmark in the UPP1 high relative to the low tumors. NES, normalized enrichment score. 

f. Downregulated pathways in PDA cell lines that metabolize uridine at a high level, as revealed by gene ontology 
(GO) analysis of the differentially expressed genes (P<0.05). GO analysis was performed with DAVID 
(https://david.ncifcrf.gov/tools.jsp). Analysis was based on the differential genes derived from CCLE data and part 
of the data shown in Fig. 1g. 

g. GSEA plots of significantly enriched KEGG pathways in UPP1-high PDA tumors relative to UPP1 low tumors. 
Plots are part of the data (e) from the analysis of GSE71729 human PDA dataset.  

Statistics and reproducibility: a. The kinetic measurement evaluated several parameters, including the time taken 
for cells to adapt to and catabolize a nutrient (lambda), the rate of uptake and catabolism (mu or slope), the total 
metabolic activity (area under the curve; AUC), and the maximum metabolic activity. The values from the 
maximum catabolic efficiency (maximum height, A) of the respective metabolites were used to determine relative 
metabolic activity (RMA).  

 

https://david.ncifcrf.gov/tools.jsp
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Figure 2-6 Nutrient-deprived PDA use uridine to support metabolism 

a. Relative RMA upon uridine supplementation with or without glucose and glutamine. n = 4 biologically 
independent samples per group per cell line.  

b-c. Differential changed (P < 0.05) intracellular (b) and extracellular (c) metabolites from PATU8988S cells 
supplemented with 1 mM uridine in glucose-free media for 24 h, as determined by LC-MS metabolomics. n = 3 
biologically independent samples per group. 

d-e. Differentially changed (P < 0.05) intracellular (d) and extracellular (e) metabolites from DANG cells 
supplemented with 1 mM uridine in glucose-free media for 24 h, as determined by LC-MS metabolomics. n = 3 
biologically independent samples per group. 

f. Intracellular and g) extracellular uridine and uracil from DANG cells supplemented with 1 mM uridine in glucose-
free media for 24 h, as determined by LC-MS. Plots in f-g are from the same experiment as d-e. n = 3 biologically 
independent samples per group. Statistical significance was measured using two-tailed unpaired t-test. Intracellular – 
comparison between no uridine and 1 mM uridine: *** P = 0.0001 for uridine, ** P = 0.0011 for uracil. 
Extracellular – comparison between no uridine and 1 mM uridine: *** P = 0.0002 for uridine, ** P = 0.0044 for 
uracil.  
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h. Mass isotopologue distribution of 13C5-uridine ribose-derived carbon in the displayed metabolites after 24 h 
culture in a glucose-free media supplemented with 1 mM 13C5-uridine. n = 3 biologically independent samples per 
cell line. Tracing experiments were performed twice in these cells with similar results. Data (a, f, g, h) are shown as 
mean ± s.d. ADP, adenosine diphosphate; GSSG, oxidized glutathione; UDP-GlcNAc, uridine diphosphate N-
acetylglucosamine; X5P, xylulose 5-phosphate. 

Statistics and Reproducibility: a. n = 4 biologically independent samples per group per cell line. Statistical 
significance was measured using one-way ANOVA with Tukey’s multiple comparisons test. PATU8988S 
(comparison between cells cultured in (-) glucose/glutamine/uridine and (-) glucose/glutamine/+uridine: *** P = 
0.0007, comparison between (-) and (+) uridine in the presence of glutamine and without glucose: **** P < 0.00001, 
comparison between (-) and (+) uridine in the presence of glutamine and glucose: P = ns (0.8856)). DANG 
(comparison between cells cultured in (-) glucose/glutamine/uridine and (-) glucose/glutamine/+uridine: * P = 
0.0165, comparison between (-) and (+) uridine in the presence of glutamine and without glucose: **** P < 0.0001, 
comparison between (-) and (+) uridine in the presence of glutamine and glucose: P = ns (0.7971)). ASPC1 
(comparison between cells cultured in (-) glucose/glutamine/uridine and (-) glucose/glutamine/+uridine: **** P < 
0.0001, comparison between (-) and (+) uridine in the presence of glutamine and without glucose: **** P < 0.00001, 
comparison between (-) and (+) uridine in the presence of glutamine and glucose: P = ns (0.9968)). Metabolomics 
(b-e) significance test was determined using the limma package version 3.38.3 in R. The experiments (a-e) were 
performed once. 
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Figure 2-7 PDA metabolize uridine via central carbon metabolism in vitro and in vivo 

a. Isotope tracing showing 13C5-uridine ribose-derived carbon labeling in subcutaneous (Sub-Q) or orthotopically 
(Ortho) implanted KPC 7940b tumors collected 1 h after injecting the mice with 200 µL or 50 µL (Sub-Q) 0.2 M 
13C5-uridine. Number of samples: Sub-Q = 6 tumors from 3 mice injected on the left and right flanks; Ortho = 4 
tumors from 4 mice. Mode of uridine injection is intratumoral for Sub-Q and intraperitoneal for Ortho. 

b. Mass isotopologue distribution of 13C5-uridine ribose-derived carbon after 24 h culture of ASPC1 and 
PATU8988S cells in media supplemented with 1 mM or 0.1 mM uridine, each with 5 mM or 0.1 mM glucose 



 73 

concentration. n = 4 biologically independent samples per group. M – mass; ‘Others’ – indicate M other than M+0 
or M+5, where applicable. 

c-d. Isotope tracing showing metabolite labeling upon supplementation with 13C5-uridine at the TIF uridine and 
glucose concentrations shown in Figure 2h-i, after 12 hours of culturing c) human PDA cell line ASPC1 and d) 
murine PDA cell line MT3-2D. The cell lines were cultured in media supplemented with 25 µM 13C5-uridine and 
0.65 mM glucose. n = 3 biologically independent samples per cell line. AXP – AMP, ADP, ATP, and related 
metabolites; UXP – UMP, UDP, UTP and related metabolites. The experiments (a-d) were performed once. Data (a-
d) are shown as mean ± s.d, where applicable. 

13C5-U, 13C5-uridine; 2-PG, 2-phosphoglycerate; 6-PG, 6-phosphogluconate; ADP, adenosine diphosphate; AMP, 
adenosine monophosphate; ATP, adenosine triphosphate; DHAP, dihydroxyacetone phosphate; F1,6-BP, fructose 
1,6-bisphosphate; CMP, cytidine monophosphate; G6P, glucose 6-phosphate; NAD+, nicotinamide adenine 
dinucleotide; R5P, ribose 5-phosphate; PEP, phosphoenolpyruvate; PPP, pentose phosphate pathway; TCA, 
tricarboxylic acid; S7P, sedoheptulose 7-phosphate; UDP, uridine diphosphate; UMP, uridine monophosphate; UTP, 
uridine triphosphate; UDP-GlcNAc, uridine diphosphate N-acetylglucosamine. 

 

 



 74 

 

Figure 2-8 Cellular pathways for ribose salvage from uridine 

a-c. Relative metabolic activity (RMA) of PDA cell lines depicting the preferential use of uridine at (a,b) low 
glucose concentration (0-1 mM) but not at c) the high glucose concentration (10 mM), over a 96 h culture.  

d. Schematic depicting metabolic pathways for uridine utilization.  

e. Expression of PGM2, UCK1, and UCK2 in non-tumor (NT) and PDA tissue samples from the GSE71729 dataset. 
Number of samples: NT = 46, PDA = 145.  

f-h. Expression of PGM2, UCK1 and UCK2 in TCGA (human PDA tumor) and CCLE (human cell line) data 
separated into UPP1 low (L) and high (H) subsets.  

i. Western blot for PGM2 in PDA cell lines. Presented in red are cells that express high UPP1. These samples are the 
same batch as the data shown in Fig. 1e and the blot was generated during one of the technical replicates of that 
western blotting. kDa, molecular weight unit. 
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j. qPCR for PGM2 in ASPC1 cells transfected with siPGM2 compared to non-targeting (siNT) control. On the right: 
RMA in PGM2 knockdown cells +/- uridine (1 mM) or glucose (1 mM).  

k. qPCR for UCK1 in ASPC1 cells transfected with siUCK1 compared to non-targeting (siNT) control. On the right: 
RMA in UCK1 knockdown cells +/- uridine (1 mM) or glucose (1 mM).  

l. qPCR for UCK2 in ASPC1 cells transfected with siUCK2 compared to non-targeting (siNT) control. On the right: 
RMA in UCK2 knockdown cells +/- uridine (1 mM) or glucose (1 mM). 

Statistics and Reproducibility: a-c. n = 3 biologically independent samples. Statistical significance for data in a-b 
was measured using one-way ANOVA with Tukey’s multiple comparisons test. PATU8988S (comparison between 
no glucose and no glucose + uridine [0.1 mM]: **P = 0.0017; 0.01 mM glucose and 0.01 mM glucose + uridine: 
***P = 0.0008; 0.1 mM glucose and 0.1 mM glucose + uridine: ***P = 0.0002; 1 mM glucose and 1 mM glucose + 
uridine: ****P < 0.0001). CAPAN2 (comparison between no glucose and no glucose + uridine: P = ns (0.5673); 
0.01 mM glucose and 0.01 mM glucose + uridine: P = ns (0.0541); 0.1 mM glucose and 0.1 mM glucose + uridine: 
P = ns (0.092); 1 mM glucose and 1 mM glucose + uridine: ***P = 0.0007. # All four group comparisons have 
significant P: 0.0468, 0.014, 0.0089, 0.0222, respectively, when directly compared using two-tailed unpaired t test). 
DANG (comparison between no glucose and no glucose + uridine: ****P < 0.0001; 0.01 mM glucose and 0.01 mM 
glucose + uridine: ****P < 0.0001; 0.1 mM glucose and 0.1 mM glucose + uridine: **P = 0.0051; 1 mM glucose 
and 1 mM glucose + uridine: **P = 0.0051). ASPC1 (comparison between no glucose and no glucose + uridine: *P 
= 0.0203; 0.01 mM glucose and 0.01 mM glucose + uridine: **P = 0.0031; 0.1 mM glucose and 0.1 mM glucose + 
uridine: ***P = 0.0003; 1 mM glucose and 1 mM glucose + uridine: ****P < 0.0001). Statistical significance for 
data in c was measured using two-tailed unpaired t test and P = ns (0.0852, 0.3509, 0.3021 and 0.3875 for 
PATU8988S, CAPAN2, DANG and ASPC1, respectively, in the comparison of no uridine vs 0.1 mM uridine 
groups in the presence of 10 mM glucose). 

d. Uridine can be channeled into DNA or RNA synthesis by direct phosphorylation from UCK1/2. Uridine can also 
be catabolized via UPP1 to produce uracil and ribose 1-phosphate. Ribose 1-phosphate is converted to ribose-5-
phosphate by PGM2 and fuel pentose phosphate pathway, nucleotide biosynthesis and glycolysis. 

e. Statistical significance was measured using two-tailed unpaired t test with Welch's correction. Comparison 
between NT and PDA: PGM2, ****P < 0.0001; UCK1, ****P < 0.0001; UCK2, *P = 0.018. Box plot statistics – 
PGM2 (NT: minima =3.097, maxima = 5.527, median = 4.335, 25th percentile = 3.992, 75th percentile = 4.74; 
PDA: minima = 2.386, maxima = 6.433, 25th percentile = 4.424, median = 4.961, 75th percentile = 5.457), UCK1 
(NT: minima = 3.7, maxima =5.1, median = 4.5, 25th percentile =  4.2, 75th percentile = 4.7; PDA: minima = 3.6, 
maxima = 5.1, median =  4.2, 25th percentile = 4, 75th percentile = 4.4), UCK2 (NT: minima = 4.034, maxima = 
7.615, median = 5.577, 25th percentile =  5.095, 75th percentile = 5.9; PDA: minima = 4.556, maxima = 6.93, 
median = 5.727, 25th percentile = 5.458, 75th percentile = 6.059). 

f-h. Number of samples: TCGA – UPP1 low = 75, high = 75; CCLE – UPP1 low = 22, high = 22. Statistical 
significance was measured using two-tailed unpaired t test with Welch's correction. Comparison between L and H 
groups in TCGA (PGM2: P = ns (0.1226), UCK1: P = ns (0.311); UCK2: *P = 0.0327). In the CCLE L versus H 
comparison, PGM2, UCK1 and UCK2 have P = ns (0.3486, 0.4645, 0.4381, respectively). TCGA – The Cancer 
Genome Atlas, CCLE – Cancer Cell Line Encyclopaedia. 

i. Vinculin is used as a loading control. 

j. Number of samples: qPCR = 3, RMA = 3 biologically independent samples per group. qPCR – statistical 
significance was measured using two-tailed unpaired t test; comparison between siNT and siPGM2: ***P = 0.0007. 
RMA – statistical significance was measured using multiple unpaired t tests with two-stage two-step method; 
comparison of siNT and siPGM2 in the presence of 1 mM glucose and no uridine: *P = 0.0452, and **P = 0.0014 in 
the presence of 1 mM uridine and no glucose. 

k. Number of samples: qPCR = 3, RMA = 3 biologically independent samples per group. qPCR – statistical 
significance was measured using two-tailed unpaired t test; comparison between siNT and siUCK1: ***P = 0.0004. 
RMA – statistical significance was measured using multiple unpaired t tests with two-stage two-step method. 
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Comparison of siNT and siUCK1 knockdown samples in the presence of 1 mM glucose and no uridine: P = ns 
(0.8652), and P = ns (0.131) in the presence of 1 mM uridine and no glucose. 

l. Number of samples: qPCR = 3, RMA = 3 biologically independent samples per group. qPCR – statistical 
significance was measured using two-tailed unpaired t test; comparison between siNT and siUCK2: ****P < 0.0001. 
RMA – statistical significance was measured using multiple unpaired t tests with two-stage two-step method; 
comparison of siNT and siUCK1 knockdown cells in the presence of 1 mM glucose and no uridine: *P = 0.035, and 
P = ns (0.8653) in the presence of 1 mM uridine and no glucose. Data (a-c, f-h, j-l) are shown as mean ± s.d. The 
experiments were performed once (a-c, k), and twice (j, l) with similar results.  
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Figure 2-9 UPP1 mediates the liberation of uridine-derived ribose for central carbon metabolism 
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a. Relative intracellular uridine level in the UPP1 knockout PATU8988S cells (after 24 h) and ASPC1 cells (6 h) 
compared to the wild type supplemented with 1 mM uridine in media with 10% dFBS and no glucose. n = 3 
biologically independent samples per group per cell line. Statistical significance was measured using one-way 
ANOVA with Dunnett’s multiple comparisons test. PATU8988S (intracellular uridine) – comparison between WT 
and 1A, ***P = 0.0002; comparison between WT and 1B, ****P < 0.0001. ASPC1 (intracellular uridine) – 
comparison between WT and 1A or 1B, ****P < 0.0001.  

b. Relative extracellular uridine and uracil in UPP1 knockout ASPC1 cells compared to the wild type supplemented 
with 1 mM uridine for 6 h in media with 10% dFBS and no glucose. n = 3 biologically independent samples per 
group. Statistical significance was measured using one-way ANOVA with Dunnett’s multiple comparisons test. 
Extracellular uridine: comparison between WT and 1A or 1B, ****P < 0.0001; extracellular uracil: comparison 
between WT and 1A or 1B, ****P < 0.0001. 

c. Heatmaps of significantly altered intracellular metabolites (P < 0.05) in PATU8988S cells after 24 h (left) and 
ASPC1 after 6 h (right), as measured by LC-MS metabolomics. Data used for the intracellular uridine/uracil plots 
(a-b) were extracted from this profiling study. 

d-k. Mass isotopologue distribution of 1 mM 13C5-uridine ribose-derived carbon into the indicated metabolic 
pathways in wildtype (WT) or UPP1-KO PATU8988S and ASPC1 cells. M – mass; ‘Others’ – indicate M other than 
M+0 or M+5, where applicable. 1A and 1B denote UPP1-KO sgRNA clones. Data (a-b, d-k) are shown as mean ± 
s.d. Metabolomics experiments were done once. 

Statistics and Reproducibility: Abbreviations – ADP, adenosine diphosphate; ATP, adenosine triphosphate; AMP, 
adenosine monophosphate; GSSG, oxidized glutathione; NAD+ nicotinamide adenine dinucleotide; PEP, 
phosphoenolpyruvate; TCA cycle, tricarboxylic acid cycle; UDP-GlcNAc, uridine diphosphate N-
acetylglucosamine; UMP, uridine monophosphate; UTP, uridine triphosphate.  
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Figure 2-10 UPP1 expression is elevated in PDA and other cancer types 

a. TCGA RNA seq data showing the expression of UPP1 and its paralog UPP2. FPKM, fragments per kilobase of 
exon per million mapped fragments.  

b. RNA seq showing UPP1 expression in various normal human tissues (Human Protein Atlas data), as obtained 
from the National Center for Biotechnology Information (NCBI) portal.  

c. Histological data showing UPP1 protein expression in normal pancreatic tissue compared to PDA.  

d. UPP1 expression in human non-PDA cancers accessed in publicly accessible datasets.  

e. Kaplan-Meier plot of survival probability (log-rank test) as obtained from KM-plotter 
(https://kmplot.com/analysis/) using the default parameters. 

https://kmplot.com/analysis/
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f. Relative Metabolic Activity (RMA), reflecting NADH levels, in human non-PDA cancer cell lines supplemented 
with uridine (as indicated) in 1 mM glucose media. n=5 biologically independent samples per group per cell line. 
Statistical significance was measured using one-way ANOVA with Dunnett’s multiple comparisons test. A549 (lung 
cancer cell line, comparison between no uridine and 0.1 mM uridine, *P = 0.0405 or 1 mM uridine, ***P = 0.0004); 
HT1080 (fibrosarcoma cell line, comparison between no uridine and 0.1 mM uridine, P = ns (0.1773) or 1 mM 
uridine, ***P = 0.0001); HCT116 (colon cancer cell line, comparison between no uridine and 0.1 mM uridine, *P = 
0.0294 or 1 mM uridine, **P = 0.0081); U2OS (osteosarcoma cell line, comparison between no uridine and 0.1 mM 
uridine, **P = 0.002 or 1 mM uridine, ****P < 0.0001).  

Statistics and Reproducibility: a, n=150 samples each. 

b. Sample size, n: salivary gland = 3, pancreas = 2, ovary = 2, skin = 3, prostate = 4, stomach = 3, kidney = 4, testis 
= 7, small intestine = 4, fat = 3, endometrium = 3, thyroid = 4, liver = 3, urinary bladder = 2, lymph node = 5, brain 
= 3, duodenum = 2, colon = 5, placenta = 4, heart = 4, spleen = 4, gall bladder = 3, lung = 5, adrenal = 3, appendix = 
3, esophagus = 3, bone marrow = 4. RPKM, reads per kilobase of exon per million reads mapped. UPP1 expression 
in normal pancreas is extremely low (second lowest of the > 25 tissues compared). 

c. Data obtained from the Human Protein Atlas (URL for ‘Normal’ - 
https://www.proteinatlas.org/ENSG00000183696-UPP1/tissue/pancreas; PDA – 
https://www.proteinatlas.org/ENSG00000183696-UPP1/pathology/pancreatic+cancer#img). 

d. Sample size, n: NT = 19, tumor = 408 (bladder cancer, TCGA); NT = 5, tumor = 154 (glioblastoma, TCGA); NT 
= 44, tumor = 520 (head and neck cancer, TCGA); NT = 59, tumor = 551 (lung cancer, TCGA); NT = 11, tumor = 
184 (oesophageal cancer, TCGA); NT = 52, tumor = 497 (prostate cancer, TCGA); NT = 41, tumor = 452 (colon 
cancer); health colon mucosa = 50, distant colon = 98, tumor = 98 (colon cancer, GSE44076). NT – non-
tumor/adjacent normal tissue. Data (a-b, f) shown as mean ± s.d. The experiments were performed three times with 
similar results. Box plot statistics – TCGA, bladder carcinoma (primary: minima= 5.83, maxima = 13.5, median = 
9.77, 25th percentile = 9.015, 75th percentile = 10.47; normal: minima = 6.61, maxima = 12.43, median = 8.35, 26th 
percentile = 8.03, 75th percentile = 9.59); glioblastoma multiforme (primary: minima = 5.71, maxima = 11.84, 
median = 9.585, 25th percentile = 8.79, 75th percentile = 10.143; normal: minima = 7.04, maxima = 7.63, median = 
7.4, 25th percentile = 7.36, 75th percentile = 7.61); head and neck squamous cell carcinoma (primary: minima = 
6.59, maxima = 15.64, median = 10.75, 25th percentile = 9.787, 75th percentile = 11.565; normal: minima = 6.38, 
maxima = 13.73, median = 10.42, 25th percentile = 8.672, 75th percentile = 11.065); lung adenocarcinoma 
(primary: minima = 6.45, maxima = 13.44, median = 9.8, 25th percentile = 9.13, 75th percentile = 10.49; normal: 
minima = 8.3, maxima = 11.39, median = 9.3, 25th percentile = 8.945, 75th percentile = 9.93); esophageal 
carcinoma (primary: minima = 6.7, maxima = 13.08, median = 9.26, 25th percentile = 8.578, 75th percentile = 
10.21; normal: minima = 6.17, maxima = 12.39, median = 7.62, 25th percentile = 6.7, 75th percentile = 8.26); 
prostate adenocarcinoma (primary: minima = 3.96, maxima = 9.69, median = 6.58, 25th percentile = 5.98, 75th 
percentile = 7.14; normal: minima = 4.56, maxima = 8.62, median = 6.97, 25th percentile = 6.447, 75th percentile = 
7.24); colon cancer (primary: minima = 6.41, maxima = 12.96, median = 8.535, 25th percentile = 8.068, 75th 
percentile = 9.07; normal: minima = 7.76, maxima = 11.29, median = 9.57, 25th percentile = 9.09, 75th percentile = 
9.92). Colon cancer (GSE44076, primary: minima = 4.564, maxima = 7.608, median = 5.917, 25th percentile = 
5.487, 75th percentile = 6.405; normal: minima = 4.568, maxima = 9.154, median = 7.18, 25th percentile = 6.781, 
75th percentile = 7.824; healthy colon mucosal cells: minima = 5.884, maxima = 8.279, median = 7.529, 25th 
percentile = 7.153, 75th percentile = 7.74). Statistical significance was tested using two-sided Wilcoxon or Kruskal-
Wallis tests. 

 

https://www.proteinatlas.org/ENSG00000183696-UPP1/tissue/pancreas
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Figure 2-11 UPP1 is expressed in PDA and TME cells and predict survival outcome 

a. RNAscope images showing UPP1 expression in tumor (PDA) compared to the adjacent non-tumor (Adj) in 
tissues. Pan-cytokeratin (PanCK) indicates the tumor cells; DAPI, nuclear stain. The images are representative of 
three 20x acquisitions per tissue slide, and of two independent experiments. Scale bar indicates 100 µm. 
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b. UMAP plot showing the expression of UPP1 at the transcript level, as determined by single cell RNA seq of PDA 
tissues from two patients (#1238 and 1302).  

c. Right, violin plots showing UPP1 expression in various tumor microenvironment cell types, including myeloid 
and epithelial cells where UPP1 is highest. Left, UMAP plot showing the specific cell compartments expressing 
UPP1 for all patients’ samples combined (n=16). Data used in plots b-c are from a previously published dataset57. 

d. Immunohistochemistry of UPP1 in patient biopsy sections from previously published tissue microarray53. 
Micrographs are representative from 213 patient samples in the microarray and two independent experiments. Large 
scale bar indicates 100 µm; scale bar on insets indicates 25 µm. 

e. Kaplan-Meier plot showing survival probability (log-rank test) based on UPP1 expression in three separate 
datasets. Each dataset was split into two – UPP1 high and UPP1 low – based on the ranked UPP1 expression value. 
Sample size: low = 133, high = 134 (ICGC); low = 62, high = 63 (GSE71729), low = 73, high = 73 (TCGA). TME – 
tumor microenvironment. 

 



 83 

 

Figure 2-12 KRAS-MAPK pathway activation and nutrient availability drive UPP1 expression 

a. Normalized UPP1 protein expression in Kras wildtype and mutant cell lines based on CCLE protein data accessed 
via the DepMap portal. 

b. Upp1 mRNA expression in iKras* orthotopic tumors and cell lines from dataset GSE32277.  
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c-d. Western blot showing UPP1 expression in human PDA cell lines c) ASPC1 cells and d) DANG and 
PATU8988S after 24 h culture +/- trametinib [MEK inhibitor], uridine, or glucose. kDa, molecular weight unit. 

e. qPCR for UPP1 in human PDA cell lines DANG and PATU8988S treated for 24 h with trametinib (1 µM), 
uridine (1 mM), or 5 mM glucose.  

f. Western blot showing pERK upon treatment of murine iKras 9805 cells for 24 h with trametinib or doxycycline (1 
µg/mL).  

g. qPCR for Upp1 in iKras* 9805 mouse PDA cells, 24 h after treatment with trametinib or doxycycline (1 µg/mL).  

h. qPCR for UPP1 in ASPC1 cells treated for 48 h with trametinib and at 0.1 mM uridine or 1 mM glucose 
concentrations.  

i. Western blot for UPP1 and pERK treated for 48 h with trametinib and low glucose [1 mM] and near physiological 
uridine concentration [0.1 mM].  

j. Densitometric quantification of pERK and UPP1 in the ASPC1 blots shown in Fig. 2.3n.  

k. Metabolomics profiling showing the spectrum of metabolic changes induced in ASPC1 upon pERK inhibition 
with trametinib [1 µM], 24 h after culture.  

l. MTT assay showing relative proliferation of PDA cell lines treated with 1.25 μM trametinib [MEK inhibitor] +/- 1 
mM uridine in the presence of glucose [5 mM] at 96 h. 

Statistics and Reproducibility: a. Sample size – wild type 0 and mutation 1: 304 and 69 (pan-cancer), 15 and 15 
(colon cancer), 54 and 25 (lung cancer). Box plot statistics – pan-cancer (KRAS = 0: minima = -4.8237, maxima = 
4.8004, median = -0.3029, 25th percentile = -1.3212, 75th percentile = 0.7687; minima = -2.1805, maxima = 3.7445, 
median = -0.3019, 25th percentile = -0.815, 75th percentile = 1.2867), colon (KRAS = 0: minima = -2.3253, 
maxima = 3.1201, median = -0.5127, 25th percentile = -0.8908, 75th percentile = -0.0958; KRAS = 1: minima = -
2.1805, maxima = 0.2672, median = -0.9153, 25th percentile = -1.3926, 75th percentile = -0.5595), lung (KRAS = 
0: minima = -2.7979, maxima = 4.0884, median = 0.4201, 25th percentile = -1.305, 75th percentile = 0.6032; KRAS 
= 1: minima = -0.9357, maxima = 3.7445, median = 0.8446, 25th percentile = -0.4923, 75th percentile = 1.3752) 

b. Sample size: tumors (Kras_OFF = 9, Kras_ON = 10), cell lines (Kras_OFF = 5, Kras_ON = 5). Statistical 
significance was measured using two-tailed unpaired t test. Comparison of Kras_OFF to Kras_ON: **P = 0.0088 
(tumors) and *P = 0.0244 (cell lines). 

c-d. pERK is used as a read out for MAPK pathway induction/activity. ERK and Vinculin are used as loading 
controls. Blots are representative of two biological and technical replicates for ASPC1 and one biological replicate 
for PATU8988S and DANG with similar results. 

e. n=3 biologically independent samples per group. Statistical significance was measured with one-way ANOVA 
with Tukey's multiple comparisons test. Comparisons between groups for DANG (from left to right): P = ns 
(0.9097), P = ns (0.5014), **P = 0.0025 and ****P < 0.0001. Comparisons between groups for PATU8988S (from 
left to right): ***P = 0.0002, ***P = 0.001, ****P < 0.0001 and ****P < 0.0001. 

f. Vinculin is used as a loading control. 

g. n= 3 biologically independent samples per group. Statistical significance was measured with one-way ANOVA 
with Dunnett's multiple comparisons test. Comparison between (-) and (+) doxycycline, ****P < 0.0001. 
Comparison between (-) doxycycline: vs 10 µM trametinib, P = ns (0.9997); 10 µM trametinib + doxycycline, P = 
ns (0.8226); 1 µM trametinib, P = ns (0.9997); 1 µM trametinib + doxycycline, P = ns (0.9994); 0.1 µM trametinib, 
P = ns (0.1904); 0.1 µM trametinib + doxycycline, P = ns (>0.9999).  

h. n = 3 biologically independent samples per group. Statistical significance was measured with one-way ANOVA 
with Tukey's multiple comparisons test. Comparisons between groups (from left to right): ****P < 0.0001, ****P < 
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0.0001, ****P < 0.0001 and ****P < 0.0001. The experiments (e, g, h) were performed once with similar results on 
UPP1 displayed by the three cell lines. 

i. n=3 biologically independent samples per group. This blot was run on the same gel as Fig. 2.3n hence the first two 
columns (separated by a box) overlap between the two blots. 

j. Blots (c,i) are representative of two independent experiments; blot e experiment was done once. 

k. n = 3 biologically independent samples per group. The statistical significance (P<0.05) was determined using 
limma package version 3.38.3 in R. 

l. Statistical significance was measured using one-way ANOVA with Tukey's multiple comparisons test. n = 4 
biologically independent samples per group. PATU8988S (comparison between cells cultured with and without 
trametinib in the absence of uridine: ****P < 0.0001, and with uridine supplementation: ****P < 0.0001); DANG 
(comparison between cells cultured with and without trametinib in the absence of uridine: **P = 0.0055, and with 
uridine supplementation: ***P = 0.0009); ASPC1 (comparison between cells cultured with and without trametinib 
in the absence of uridine: P = not significant, and with uridine supplementation: ****P = 0.0006). Data (b, e, g-h, l) 
shown as mean ± s.d. 

 

 

 



 86 

 

Figure 2-13 Regulation of UPP1 expression is independent of c-MYC 

a. Western blot showing Myc inhibition by 10058-F4 in ASPC1 cells after 24 h of culture. On the right: UPP1 
mRNA expression determined by qPCR. kDa, molecular weight unit. 

b. Western blot of Myc inhibition by Fedratinib in ASPC1 cells after 24 h of culture. On the right: UPP1 mRNA 
expression determined by qPCR. 

c. CiiDER analysis of transcription factor binding sites in the promoters of mouse and human UPP1. Myc binding 
sites were not detected. Details of analysis is in the “Methods” section. 

d. qPCR showing UPP1 expression upon uridine supplementation with or without basal glucose concentration in 
culture media.  

e. RNA seq data showing the expression of Upp1 in sorted tumor cells and in KPC cells cultured in vitro in regular 
RPMI culture media or tumor interstitial fluid media (TIFM). Sample sizes: Tumor, n = 6, RPMI, n = 3 biologically 
independent cell samples, TIFM, n = 3 biologically independent cell samples. Normalized by log transformation 
[log2 (count +1)]. Statistical significance was measured using one-way ANOVA with Dunnett’s multiple 
comparisons test. Comparison between RPMI and TIFM group, ****P < 0.0001 or tumor group, ****P < 0.0001. 
Statistics and Reproducibility: a, qPCR, n = 3 biologically independent samples per group. 

b. n = 3 biologically independent samples per group. Blots shown (a-b) are representative of two biological and 
technical replicate analyses with similar results. 
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d. n = 3 biologically independent samples per group per cell line. Statistical significance was measured using one-
way ANOVA with Tukey’s multiple comparisons test. PATU8988S (comparison between no glucose and no 
glucose + 1 mM uridine: P = ns (0.994); comparison between cells cultured in glucose-containing media with and 
without uridine: **P = 0.005; comparison between no glucose and glucose: *P = 0.0316; CAPAN2 (comparison 
between no glucose and no glucose + 1 mM uridine: ****P < 0.0001; comparison between cells cultured in glucose-
containing media with and without uridine: P = ns (0.8688); DANG (comparison between no glucose and no glucose 
+ 1 mM uridine: ****P < 0.0001; comparison between cells cultured in glucose-containing media with and without 
uridine: **P = 0.0021); ASPC1 (comparison between no glucose and no glucose + 1 mM uridine: ****P < 0.0001; 
comparison between cells cultured in glucose-containing media with and without uridine: P = ns (0.5339). 
Comparison between no glucose and glucose for CAPAN2, DANG and ASPC1: ****P < 0.0001. Data (a, b, d, e) 
shown as mean ± s.d. 
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Figure 2-14. Knockout of UPP1 suppresses in vivo uridine catabolism and tumor growth 
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a. LC-MS analysis of extracellular uridine and uracil in unpolarized bone marrow-derived macrophages (M0; 
10ng/mL M-CSF), those polarized toward an M1 fate (10 ng/mL LPS), an M2 fate (10 ng/mL murine IL-4), or a 
tumor-educated (TEM) phenotype with 75% PDA conditioned media and compared to growth media (DMEM). n = 
3 biologically independent samples per group. Data was extracted from a previously published metabolomics14.  

b. Relative uracil abundance in plasma, tumor interstitial fluid (TIF), and bulk tumor from the experiment described 
in Fig. 2.4a, where Clod. + Ab indicates the macrophage-depleted group. 

c. Extracellular (left) and intracellular (right) profiles of significantly changed (P < 0.05) metabolites from sgV and 
UPP1-KO (sg1, sg3) MT3-2D cells. The cells were cultured in media with 1 mM uridine and no glucose for 24 h, as 
determined by metabolomics.  

d. Proliferation assay of sgVector (sgV) and UPP1-KO (sg1, sg3) MT3-2D and KPC 7940b mouse PDA cell lines 
cultured over 72h and 96h, respectively, in normal growth media with 10% dialyzed FBS. 

e. Tumor weight and image, and bulk tumor uridine and uracil from the orthotopic implantation of sgV and UPP1 
KO (sg3) KPC 7940b cell lines into C57BL/6J mice; see Fig 4i for experimental details. 

f,g. Tumor metabolomics profile indicating statistically significant (P < 0.05) metabolites from sgV and UPP1 KO f) 
KPC 7940b and g) MT3-2D-derived tumors. 

h. Immunohistochemistry (IHC) staining of macrophages (F4/80), large blood vessels (CD31+), and cytotoxic cells 
(CD8) using tissue sections of MT3-2D orthotopic tumors. Micrographs are representative of 10 fields per image 
obtained per experiment group. Scale bar 500 µm. On the right are the respective quantifications of the IHC stains.  

Statistics and Reproducibility: a. Statistical significance was measured using one-way ANOVA and Dunnett’s 
multiple comparisons test. Uridine – DMEM: comparison to M0 Mac group ****P < 0.0001; to M1 Mac group P = 
ns (0.0758); to M2 Mac group ****P<0.0001; to TEM group ****P<0.0001. Uracil – DMEM: comparison to M0 
Mac P = ns (0.5476); to M1 Mac group ****P < 0.0001; to M2 Mac group P = ns (0.9894); to TEM group ****P < 
0.0001. 

b. Statistical significance was measured using a two-tailed unpaired t-test – Plasma uracil **P = 0.0045 with n = 8 
biologically independent replicates in both groups, TIF uracil P = ns (0.6872) with n = 8 biologically independent 
replicates in both groups – and using Welch’s t-test P=ns (0.9682) with n = 8 biologically independent replicates in 
both groups. 

c. n = 3 biologically independent samples per group. Color scale denotes fold change. Below: Venn diagram 
showing overlapping metabolites that accumulated in both human (PATU8988S and ASPC1) and mouse (MT3-2D) 
cell lines upon UPP1 knockout. 

d. MT3-2D, n = 4 and KPC 7940b, n = 3 biologically independent samples per group. 

e. n = 8 biologically independent samples per group. Statistical significance measured using two-tailed unpaired t-
test with Welch’s correction, **P = 0.0059. On the right: bulk tumor uridine and uracil as measured using 
metabolomics. Sample size: sgV = 8, sg3 = 7. Uridine: ****P < 0.0001. Uracil: ****P < 0.0001.  

f,g. Sample size: KPC 7940b sgV = 8 and sg3 = 7, MT3-2D sgV = 5 sg1 = 6 and sg3 = 6 biologically independent 
samples from mice with orthotopic pancreatic tumors. 

h. Sample size: F4/80 sgV = 7, sg1 = 6, sg3 = 5; CD31 n = 6; CD8+ sgV = 6, sg1 = 5, sg3 = 6, all biologically 
independent samples per group. Statistical significance was measured using one-way ANOVA with Dunnett's 
multiple comparisons test. Comparison between % F4/80 sgV and sg1 P = ns (>0.9968), and sgV and sg3 P = ns 
(0.9583). Data (a, b, d, e) shown as mean ± s.d; horizontal bars in h represent mean value. 
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Chapter 3 Nitrogen Profiling in Pancreatic Cancer 

3.1 Introduction 

Pancreatic Ductal Adenocarcinoma (PDA) exists in a highly dense, fibrotic, and 

metabolically deregulated tumor microenvironment1. This heterogenous environment is 

composed of fibroblasts, extracellular matrix, and various immune cell populations. Due to the 

dense, fibrotic nature of the TME, there is inefficient vasculature, causing a hypoxic environment 

and lack of serum-derived nutrients1,2. Within this environment, PDA can alter its metabolism to 

survive in these harsh conditions3,4. In lieu of blood-derived nutrients, PDA relies on other 

carbon and nitrogen sources to fuel metabolism. These can be derived from the TME by cellular 

crosstalk mechanisms or nutrient scavenging mechanisms such as autophagy1,3,5.  

To comprehensively profile which nutrients are capable of rescuing PDA metabolism, we 

employed a large-scale phenotyping assay in which we screened 20 PDA cell lines in various 

media conditions6-8. The Biolog phenotyping utilizes a proprietary tetrazolium salt which is 

reduced by cellular reductases to create a purple formazan dye, which can be quantified to 

indicate mitochondrial NADH reduction. Cells are cultured in various media conditions and 

plated on a 96-well plate, with each well containing a single dried metabolite. By culturing cells 

in these individual metabolites and adding the Biolog reagents, we can observe the intensity of 

the purple dye produced across time to measure relative metabolic activity via the 

mitochondria6,7. Through this screen we profiled 20 PDA cell lines in 14 different metabolic 

assay plates which included carbon and nitrogen sources, a panel of ions, metabolic effectors, 

and chemotherapy drugs. Thus far, we have utilized the data from the carbon sourced assays to 
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identify uridine as an alternative fuel source for PDA8, as described in Chapter 2. This chapter 

dives back into the Biolog assay to assess the effect of nitrogen sources on PDA metabolism. 

3.2 Results 

To assess the effect of nitrogen containing metabolites on PDA metabolism three 

metabolic plates (PM-M2, PM-M3, PM-M4) were used (Table 3-1 – 3-3). These plates consisted 

of nitrogen-containing amino acids and dipeptides, along with positive (glucose) and negative 

controls. Cells were cultured in glucose and glutamine-free media supplemented with 2mM 

galactose, 0.3 mM glutamine, 5% dialyzed fetal bovine serum (dFBS), and 1x penicillin 

streptomycin solution. This depleted media maintains cell survival with low levels of glutamine 

and pushes cells to an oxidative state by supplementing the energetically unfavorable substrate 

galactose, allowing us to attribute metabolic rescue to the individual substrate provided9. Cells 

were plated at 20,000 cells per well onto phenotyping plates and incubated for 24 hours, 

allowing cells to consume any remaining carbon from the FBS and reduce background. After 24 

hours 10 uL of 6-fold concentrated Redox Dye Mix MB was added to each well. Plates were 

further incubated for 72 hours and photographed at 15-minute intervals to assess redox dye as a 

metric of metabolic activity (Fig. 3-1a). 

The absorbance data for each time point was recorded for each substrate (well) and 

exported to .csv files for each cell line. Using the statistical programming language R, each data 

was imported and collated into a single data frame with variables including cell line, assay plate, 

time, substrate, absorbance (MTT). From these data, for each substrate across 72 hours, a local 

polynomial regression line of fit was derived and used to calculate the first derivative of the 

metabolic activity based on absorbance values across time (Fig. 3-1a,b). Through this the slope 

or rate of consumption of a metabolite was derived. Additionally, the fitted model allowed for 
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integration of the area under the curve (AUC) to calculate total consumption of a metabolite over 

the length of the assay. From these three important metrics of metabolic activity were generated: 

catabolic rate (slope), total metabolite catabolism (AUC), and maximum catabolic efficiency 

(maximum height) (Fig. 3-1a). Downstream analysis was based off catabolic rate, as this metric 

was the most dynamic of the three. 

Due to the nature of the consumption assays being a logarithmic distribution, the 

maximum slope of a metabolite indicated quick and effective metabolic rescue. When plotting 

the maximum slopes for each substrate across all cell lines we can see a wide array of nitrogen-

containing metabolites are capable of rescuing PDA metabolism (Fig. 3-2a). Across all three 

plates glutamine containing dipeptides rescued metabolic activity (Fig. 3-2a,b). This was 

expected, as glutamine provides an essential source of carbon and nitrogen in the cell10. In 

addition, PDA cells rely on glutamine to fuel the TCA cycle and generate mitochondrial 

ATP10,11. The data was subsetted to observe only glutamine-containing metabolites and 

maximum catabolic rates were plotted and ordered (Fig. 3-3). The fastest consumed dipeptides 

were isoleucine-glutamine and glutamine-glutamine, while the slowest were glutamine-

glutamate and aspartate-glutamate. 

3.3 Discussion 

The PDA tumor microenvironment is a nutrient dysregulated environment in which 

cancer cells must adapt and utilize non-classical nutrients to survive1,3. Understanding the 

nutrient sources capable of fueling PDA cells is an important step in furthering our knowledge of 

this deadly disease and developing new targeted therapy opportunities. Through the Biolog 

phenotyping assay we profiled 20 different pancreatic cell lines and studied the ability for 

nitrogen sources to rescue metabolic activity under nutrient-deplete conditions. In these analyses 
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I utilized the maximum catabolic rate of a substrate as an indicator for the top metabolites able to 

be readily utilized by PDA cells. From these studies we determined glutamine to be an effective 

rescue of PDA metabolism.  

Glutamine is well characterized to be utilized by PDA to support proliferation through 

the generation of mitochondrial ATP in the TCA cycle. Additionally, glutamine is an essential 

source of nitrogen within the cell for many biochemical processes including nucleotide and 

amino acids synthesis10,11. Given that glutamine is the most abundant non-essential amino acid in 

circulation in the body, it is not surprising that it is quickly and readily consumed by PDA cells 

to rescue metabolism in nutrient-deplete conditions. An observation of note from these studies is 

that while all glutamine dipeptides are highly catabolized by PDA, glutamine-glutamate is 

among the slowest (Fig. 3-3). This finding was surprising for a multitude of reasons. First, the 

cells are cultured in nutrient-depleted conditions and supplemented with galactose to sustain 

basal metabolism. Galactose is an energetically unfavorable substrate, as it must be converted 

into glucose 1-phosphate before entering glycolysis. Culturing cells in galactose results in an 

oxidative phenotype, forcing the cells to prefer mitochondrial respiration, or oxidative 

phosphorylation (OXPHOS)9,12. Second, for glutamine to be utilized in the TCA cycle it must 

first be deaminated to glutamate, and then further deaminated to alpha-ketoglutarate (aKG). 

Given that the screened cells are primed for OXPHOS via galactose culture, and are then 

provided glutamine dipeptides, it is reasonable to conclude that the glutamine-glutamate 

dipeptide should be more readily consumed than the glutamine-glutamine substrate, as glutamate 

is downstream of glutamine and needs only to be deaminated a single time.  

These conclusions are predicated on the findings that PDA relies on glutamine-derived 

carbon to fuel OXPHOS. However, an area of further study would be the fate of the carbon and 
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nitrogen within the glutamine-glutamate dipeptide. These findings indicate that while both 

dipeptides contain carbons capable of fueling OXPHOS, the role of nitrogen may be more 

important in rescuing PDA metabolism, as the glutamine-glutamine dipeptide contains more 

nitrogens and is more readily consumed. Additionally, the enzymatic expression and energies 

needed to catabolize the dipeptide bonds for the respective substrates may indicate the rate of 

catabolism by PDA cells, as well. 

Overall, there exists a wide array of nitrogen-containing substrates that have been shown 

to be capable of rescuing PDA metabolism under nutrient-deplete conditions. Given PDA’s 

profound ability to adapt to its TME and catabolize a wide range of substrates, these nitrogen 

sources present a unique potential therapeutic opportunity and warrant future study. From these 

studies we find that glutamine-containing dipeptides are most readily consumed by PDA cells. 

However, there is a broad spectrum of efficiency in catabolism depending on the composition of 

the dipeptides, which present exciting future directions in identifying the underlying mechanisms 

for PDA catabolism of dipeptides.  

3.4 Methods 

Biolog Metabolic Assay.  

In the initial phenotypic screen, the 22 cell lines were grown in 96-well PM-M2, PM-M3, and 

PM-M4 plates. The assay was set up such that one well was used per test metabolite substrate, 

accompanied by three replicates of positive (glucose) and negative (blank) controls wells. The 

relative metabolic activity (RMA) from substrate catabolism in the cells was measured using 

Biolog Redox Dye Mix MB. Briefly, the cell lines were counted, and their viability assessed 

using Trypan Blue Dye (Invitrogen, # T10282). The cells were then washed 2x with Biolog 

Inoculating fluid IF-M1 (Biolog, # 72301) to remove residual culture media. Then, a cell 
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suspension containing 20,000 cells per 50 µL was prepared in Biolog IF-M1 containing 0.3 mM 

glutamine and 5% dialyzed FBS (dFBS) (Hyclone GE Life Sciences, # SH30079.01) and plated 

into PM-M2, PM-M3 and PM-M4 96-well plates at 50 µL per well. Plates were incubated for 24 

hours at 37°C and 5% CO2, after which 10 µL Biolog Redox Dye Mix MB (Biolog, # 74352) 

was added to each well. Plates were sealed to prevent the leakage of CO2. The reduction of the 

dye over time was measured as absorbance (A590-A750) using the OmniLog PM-M instrument 

(Biolog, # 93171) for 74.5 hours at 15 minutes interval. To account for proliferation/cell number 

in the Biolog screening assay, CyQUANT was used for normalization.  

 

The data was processed using the R statistical programming tool utilizing packages readr, 

tidyverse, dplyr, gplots and ggplot2. Data was obtained from Biolog as .csv files for each 

individual cell line. Cell lines Tu8988T and Panc1 were removed from analyses for missingness. 

Files were imported and stored in a data frame. Each substrate per cell line has absorbance 

values recorded across 72 hours. From these a predicted model was generated via 

loess(absorbance ~ time). From these an AUC was generated to measure total metabolite 

catabolism, first derivative slopes were generated to measure catabolic rate, and maximum height 

was generated to measure maximum catabolic efficiency. 

 

Maximum slopes were plotted for each substrate across all cell lines on a heatmap via gplots. 

Data was then subsetted to combine all three plates and extract glutamine-containing substrates. 

Distribution of maximum slopes were plotted on a box plot and facet wrapped for cell line for 

glutamine-containing substrates via ggplot2.  
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3.6 Figures 

 

 

 

 

 

 

 

A01_Negative Control C01_L-Methionine E01_Ala-Pro G01_Asp-Glu 
A02_Negative Control C02_L-Ornithine E02_Ala-Ser G02_Asp-Gln 
A03_Negative Control C03_L-Phenylalanine E03_Ala-Thr G03_Asp-Gly 
A04_Tween 20 C04_L-Proline E04_Ala-Trp G04_Asp-Leu 
A05_Tween 40 C05_L-Serine E05_Ala-Tyr G05_Asp-Lys 
A06_Tween 80 C06_D-Serine E06_Ala-Val G06_Asp-Phe 
A07_Gelatin C07_L-Threonine E07_Arg-Ala Acetate G07_Asp-Trp 
A08_L-Alaninamide C08_D-Threonine E08_Arg-Arg Acetate G08_Asp-Val 
A09_L-Alanine C09_L-Tryptophan E09_Arg-Asp G09_Glu-Ala 
A10_D-Alanine C10_L-Tyrosine E10_Arg-Gln G10_Glu-Asp 
A11_L-Arginine C11_L-Valine E11_Arg-Glu G11_Glu-Glu 
A12_L-Asparagine C12_Ala-Ala E12_Arg-Ile Acetate G12_Glu-Gly 
B01_L-Aspartic acid D01_Ala-Arg F01_Arg-Leu Acetate H01_Glu-Ser 
B02_D-Aspartic acid D02_Ala-Asn F02_Arg-Lys Acetate H02_Glu-Trp 
B03_L-Glutamic acid D03_Ala-Asp F03_Arg-Met Acetate H03_Glu-Tyr 
B04_D-Glutamic acid D04_Ala-Glu F04_Arg-Phe Acetate H04_Glu-Val 
B05_L-Glutamine D05_Ala-Gln F05_Arg-Ser Acetate H05_Gln-Glu 
B06_Glycine 
Hydrochloride 

D06_Ala-Gly F06_Arg-Trp H06_Gln-Gln 

B07_L-Histidine D07_Ala-His F07_Arg-Tyr Acetate H07_Gln-Gly 
B08_L-Homoserine D08_Ala-Ile F08_Arg-Val Acetate H08_Gly-Ala 
B09_trans-4-Hydroxy-L-
Proline 

D09_Ala-Leu F09_Asn-Glu H09_Gly-Arg 

B10_L-Isoleucine D10_Ala-Lys F10_Asn-Val H10_Gly-Asn 
B11_L-Leucine D11_Ala-Met F11_Asp-Ala H11_Gly-Asp 
B12_L-Lysine D12_Ala-Phe F12_Asp-Asp H12_a-D-Glucose  

Table 3-1 Substrates included in the Biolog PM-M2 plate. 

The substrates from a 96-well plate are listed, with each well being represented as a matrix with letters A through H 
and numbers 1 through 12. Substrates are listed by well position and are adhered to the well in amounts ranging 
from 1-12mM. 
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A01_Negative Control C01_His-Pro E01_Leu-Glu G01_Lys-Thr 
A02_Negative Control C02_His-Ser E02_Leu-Gly G02_Lys-Trp Acetate 
A03_Negative Control C03_His-Trp E03_Leu-His G03_Lys-Tyr Acetate 
A04_Gly-Gly C04_His-Tyr E04_Leu-Ile G04_Lys-Val Bromide 
A05_Gly-His C05_His-Val E05_Leu-Leu G05_Met-Arg Acetate 
A06_Gly-Ile C06_Ile-Ala E06_Leu-Met G06_Met-Asp 
A07_Gly-Leu C07_Ile-Arg Acetate E07_Leu-Phe G07_Met-Gln 
A08_Gly-Lys C08_Ile-Asn E08_Leu-Pro G08_Met-Glu 
A09_Gly-Met C09_Ile-Gln E09_Leu-Ser G09_Met-Gly 
A10_Gly-Phe C10_Ile-Gly E10_Leu-Trp G10_Met-His 
A11_Gly-Pro C11_Ile-His E11_Leu-Tyr G11_Met-Ile 
A12_Gly-Ser C12_Ile-Ile E12_Leu-Val G12_Met-Leu 
B01_Gly-Thr D01_Ile-Leu F01_Lys-Ala Bromide H01_Met-Lys Formate 
B02_Gly-Trp D02_Ile-Met F02_Lys-Arg Acetate H02_Met-Met 
B03_Gly-Tyr D03_Ile-Phe F03_Lys-Asp H03_Met-Phe 
B04_Gly-Val D04_Ile-Pro F04_Lys-Glu H04_Met-Pro 
B05_His-Ala D05_Ile-Ser F05_Lys-Gly H05_Met-Thr 
B06_His-Asp D06_Ile-Trp F06_Lys-Ile Acetate H06_Met-Trp 
B07_His-Glu D07_Ile-Tyr F07_Lys-Leu Acetate H07_Met-Tyr 
B08_His-Gly D08_Ile-Val F08_Lys-Lys H08_Met-Val 
B09_His-His 
Trifluoroacetate 

D09_Leu-Ala F09_Lys-Met Formate H09_Phe-Ala 

B10_His-Leu D10_Leu-Arg Acetate F10_Lys-Phe H10_Phe-Asp 
B11_His-Lys Bromide D11_Leu-Asn F11_Lys-Pro H11_Phe-Glu 
B12_His-Met D12_Leu-Asp F12_Lys-Ser H12_a-D-Glucose 

Table 3-2 Substrates included in the Biolog PM-M3 plate. 

The substrates from a 96-well plate are listed, with each well being represented as a matrix with letters A through H 
and numbers 1 through 12. Substrates are listed by well position and are adhered to the well in amounts ranging 
from 1-12mM. 
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A01_Negative Control C01_Pro-Pro E01_Thr-Gly G01_Tyr-Leu 
A02_Negative Control C02_Pro-Ser E02_Thr-Leu G02_Tyr-Lys 
A03_Negative Control C03_Pro-Trp E03_Thr-Met G03_Tyr-Phe 
A04_Phe-Gly C04_Pro-Tyr E04_Thr-Phe G04_Tyr-Trp 
A05_Phe-Ile C05_Pro-Val E05_Thr-Pro G05_Tyr-Tyr 
A06_Phe-Met C06_Ser-Ala E06_Thr-Ser G06_Tyr-Val 
A07_Phe-Phe C07_Ser-Asn E07_Trp-Ala G07_Val-Ala 
A08_Phe-Pro C08_Ser-Asp E08_Trp-Arg G08_Val-Arg 
A09_Phe-Ser C09_Ser-Glu E09_Trp-Asp G09_Val-Asn 
A10_Phe-Trp C10_Ser-Gln E10_Trp-Glu G10_Val-Asp 
A11_Phe-Tyr C11_Ser-Gly E11_Trp-Gly G11_Val-Glu 
A12_Phe-Val C12_Ser-His Acetate E12_Trp-Leu G12_Val-Gln 
B01_Pro-Ala D01_Ser-Leu F01_Trp-Lys Formate H01_Val-Gly 
B02_Pro-Arg Acetate D02_Ser-Met F02_Trp-Phe H02_Val-His 
B03_Pro-Asn D03_Ser-Phe F03_Trp-Ser H03_Val-Ile 
B04_Pro-Asp D04_Ser-Pro F04_Trp-Trp H04_Val-Leu 
B05_Pro-Glu D05_Ser-Ser F05_Trp-Tyr H05_Val-Lys 
B06_Pro-Gln D06_Ser-Tyr F06_Trp-Val H06_Val-Met 
B07_Pro-Gly D07_Ser-Val F07_Tyr-Ala H07_Val-Phe 
B08_Pro-Hyp D08_Thr-Ala F08_Tyr-Gln H08_Val-Pro 
B09_Pro-lle D09_Thr-Arg Sulfate F09_Tyr-Glu H09_Val-Ser 
B10_Pro-Leu D10_Thr-Asp F10_Tyr-Gly H10_Val-Tyr 
B11_Pro-Lys Acetate D11_Thr-Glu F11_Tyr-His H11_Val-Val 
B12_Pro-Phe D12_Thr-Gln F12_Tyr-Ile H12_a-D-Glucose 

Table 3-3 Substrates included in the Biolog PM-M4 plate. 

The substrates from a 96-well plate are listed, with each well being represented as a matrix with letters A through H 
and numbers 1 through 12. Substrates are listed by well position and are adhered to the well in amounts ranging 
from 1-12mM. 
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Figure 3-1 Nitrogen-containing substrates rescue metabolic activity in PDA cell lines  

a. Schematic of Biolog phenotyping assay utilizing 20 different PDA cell lines in nutrient-deficient media. Nitrogen-
containing metabolites are added to individual wells. Graph depicts parameters for data analysis, where absorbance 
is registered on the y-axis (blue dots), line of fit (loess), area under the curve (AUC), and slope are observed across 
time on the x-axis. 

b. Representative absorbance plots for each cell line where absorbance is recorded as the y-axis and time is the x-
axis. Each color represents a nitrogen-containing substrate from the Biolog assay plate. Each plot is a different PDA 
cell line. Plate 2 is depicted, while plates 3 and 4 are not shown. 
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Figure 3-2 Maximum slopes indicate highly catabolic substrates in PDA. 

a. Heatmap of maximum catabolic rate of each substrate from PM-M2. Rows represent cell lines, while columns 
represent substrates in the 96-well plate. Log2 maximum slope is plotted. Plate 2 is shown, while plates 3 and 4 are 
not shown.  

b. Ranked bar plot for average maximum catabolic rate across all cell lines for each substrate. Plate 2 is shown, 
while plates 3 and 4 are not shown. 
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Figure 3-3 Composition of glutamine-containing peptides decide catabolic rate of consumption. 

Ranked boxplots depicting the distribution of maximum slopes in glutamine-containing peptides across all three 
plates. Colored dots represent each cell line. 
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Chapter 4 Future Directions and Conclusion 

4.1 Future Directions 

The work presented here contributes to the growing field of cancer metabolism which has 

recently been deemed a hallmark of cancer1. Understanding the ways in which cancer cells adapt 

to their specific microenvironments is key in not only developing targeted therapies but 

improving model systems in the laboratory. By fully understanding the inner workings of the 

tumor microenvironment we can better model experiments in vitro to reflect these conditions. 

The large-scale Biolog phenotyping assay performed in this work across a wide array of PDA 

cell lines aims to comprehensively profile the nutrient inputs capable of sustaining cancer cells. 

Through the work in Chapter 2 we identified uridine as a significant energy source for PDA 

metabolism through the enzyme UPP12. By inhibiting UPP1 we achieved significant tumor 

reduction in vivo, indicating uridine to play a significant role in PDA metabolism. This chapter 

addresses future areas of study building off these findings. 

UPP1 as a therapeutic target 

 In Chapter 2 our findings demonstrated knockout of UPP1 reduced tumor burden in 

syngeneic mouse models. These findings present UPP1 as a potential therapeutic target. Our 

studies thus far have targeted UPP1 via genetic knockout, and modulation of expression via 

MAPK inhibition and nutrient deprivation. Inhibition of UPP1 by pharmacological means is the 

most translational approach and should be studied more extensively. The synthetic compound 

potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65) has been shown to 

be a potent inhibitor of UPP13. In liver fibrosis studies CPBMF65 treatment showed reduced 
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proliferation in hepatic stellate cells independent of apoptosis or senescence4. Contrastingly, in 

hepatocellular carcinoma (HCC) cells (HepG2), use of CPBMF65 to inhibit UPP1 resulted in 

reduction of cell proliferation through cell cycle arrest and senescence3. Together, these studies 

indicate that UPP1 inhibitors may be viable options to reduce cell proliferation. These studies 

reasoned that the accumulation of intracellular uridine caused by inhibiting UPP1 provides a 

protective effect by inhibition of inflammation and fibrosis. The reduction of cell proliferation 

upon UPP1 inhibition aligns well with our findings in PDA and indicates a promising avenue for 

future therapeutic studies.  

Furthermore, the use of CPBMF65 could be a good combination therapy candidate in 

conjunction with the chemotherapy drug 5-fluorouracil (5-FU)5. 5-FU inhibits DNA replication 

and RNA synthesis by competing as an agonist and being incorporated in processes in place of 

uracil, ultimately leading to cell death. It has been shown to be an effective chemotherapy 

regimen and is included in the standard of care for PDA in the combination treatment 

FOLFIRINOX. These treatments result in significant side effects, yet preliminary studies have 

shown promise that CPBMF65 treatment in combination with 5-FU may reduce toxicity without 

impairing anti-tumoral activity. The potential for pharmacological UPP1 inhibition in 

combination with PDA chemotherapy regimens seem promising in both relieving side effects 

and providing synergistic response in anti-tumoral effects. 

UPP1 and its role in metastasis 

When implanting UPP1 knockout cells in immunocompetent mice we saw a significant 

reduction in tumor size2. However, when using human cell lines implanted in 

immunocompromised mice, we did not observe a significant change to tumor burden. 

Interestingly, we observed an increase in liver metastasis in these immunocompromised mice 
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that was decreased upon UPP1 knockout2. We saw no difference in metastasis in the 

immunocompetent cohorts. In human PDA, the liver is the most common metastatic site 

followed by the lung6. Metastasis occurs through a series of events referred to as the metastatic 

cascade, which broadly include: invasion and migration from the primary tumor to the basement 

membrane, intravasation into the vasculature, survival and circulation in the bloodstream, 

extravasation through the endothelial barrier into the metastatic site, and colonization in the 

target organ6,7. An important process to begin this cascade is epithelial to mesenchymal transition 

(EMT), a process that results in adherent epithelial cells losing their E-cadherin (CDH1) 

anchorage and transitioning into a more motile mesenchymal phenotype8. Recent studies have 

characterized two major subtypes of PDA: classical, representing an epithelial phenotype, and 

basal, representing a mesenchymal phenotype, with the latter presenting significantly worse 

patient prognosis8,9. Our immunocompromised mouse models may indicate a relationship 

between UPP1 and metastasis, with the former potentially being used to help metastatic tumors 

obtain nutrients at a greater rate. Additionally, from publicly available datasets we observed 

UPP1 to be highly expressed in liver metastatic tumors. Together, these findings warrant further 

study into how UPP1 affects the EMT process and its association with different PDA subtypes. 

Given that PDA is often found in late stages, investigating the role that UPP1 plays in metastasis 

is an important area of study and one that our laboratory is actively pursuing. 

Uracil accumulation upon uridine catabolism 

 UPP1 catabolizes uridine into uracil and ribose-1-phosphate. Thus far our studies have 

centered upon the fate of uridine-derived ribose. There has been little done to investigate the 

uracil component downstream of UPP1. While uracil has many uses in cellular processes, it is 

largely seen as a byproduct in uridine catabolism that is either recycled for pyrimidine synthesis 
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or exists as a waste product10. From our studies in Chapter 2 we observed an accumulation of 

UPP1-cleaved uracil both intracellularly and extracellularly, indicating that uracil is being 

transported out of the cell after uridine catabolism2. Preliminary studies from collaborators with 

our laboratory have seen a correlation between high extracellular uracil levels and metastasis in 

breast cancer models. Additionally, another set of collaborators have used stable isotope tracing 

on the nitrogen atoms in both uridine and uracil in glioblastoma cell lines and have seen that 

uridine-derived uracil is recycled back into pyrimidine pools, but exogenous uracil merely 

accumulates intracellularly. These findings and the large accumulation of uracil as a byproduct 

of our UPP1 studies have shaped future projects in our laboratory. Ongoing studies aim to 

investigate how this UPP1-cleaved uracil may play a role in metastasis in PDA. 

The source of uridine in the TME 

Our findings from Chapter 2 demonstrate that uridine is imported into the cell and 

actively consumed by PDA as an energy source for central carbon metabolism. When measuring 

the levels of uridine in the tumor interstitial fluid (TIF) we observed these levels to be in the low 

micromolar range. Additional studies have shown uridine to be ~2-fold higher in the TIF than the 

plasma11. While we have demonstrated that PDA cells consume uridine, future studies are 

needed to determine the source of uridine within the TME. In our mouse models we observed 

immunocompetent mice to have reduced tumor growth upon UPP1 knockout. However, in our 

immunocompromised models we did not see this phenotype. The stark difference in phenotype 

may indicate that the immune compartment plays a role in supplying the uridine for uridine-

driven metabolic growth. Previous datasets from our laboratory indicated that macrophages 

release uridine and uracil in vitro when differentiated and polarized12. However, when depleting 

macrophages from murine allograft tumors we observed a reduction in plasma uridine, but no 
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alteration in TIF levels. Further studies into immune cell abundance in the TME and their 

potential excretion of uridine are ongoing in the laboratory, as these murine model differences 

are a key indicator of UPP1’s relevant in vivo.   

Ongoing collaborations in the laboratory present a potential source of uridine via cancer-

associated fibroblasts (CAFs). These works elucidate a potential cellular crosstalk mechanism in 

which mitochondrial deficient or hypoxic cancer cells secrete the metabolites dihydroorotate and 

orotate which in turn are consumed by CAFs to produce and export uridine into the TME. These 

studies present a potential source of uridine in the TME, while simultaneously introducing 

another variable to our model in the form of hypoxia. Understanding the role of hypoxia in UPP1 

is another area of active pursuit as it is well characterized that PDA exists in an extremely 

hypoxic TME. 

Nutrient sensors regulate UPP1 

Our studies have demonstrated that UPP1 expression is regulated by the MAPK signaling 

pathway and augmented by nutrient availability. However, the mechanisms for how UPP1 

expression is altered by nutrient availability is still unknown and warrants future studies. An 

ongoing study to address this aims at investigating how the integrated stress response (ISR) 

affects UPP1 expression. The ISR is an elaborate signaling pathway which activates in response 

to a wide range of stimuli, including hypoxia, amino acid deprivation, endoplasmic reticulum 

(ER) stress, and oncogene activation, to name a few. These stimuli converge on the 

phosphorylation and activation of eukaryotic translation initiation factor 2 (eIF2α), which results 

in downstream activation of activating transcription factor 4 (ATF4) promoting cell survival and 

recovery13,14. Given that this response is integral to cell homeostasis and survival, and its 

stressors include nutrient deprivation, this is an important area of investigation for immediate 
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follow-up studies stemming from our findings. The feedback mechanism of action to upregulate 

UPP1 in nutrient-depleted conditions could be elucidated by perturbation of the ISR. 

Understanding the nutrient sensor that regulates UPP1 in addition to MAPK signaling would 

further our characterization of PDA’s dependency on uridine-driven metabolism significantly.  

Further characterization of PDA via Biolog phenotyping assay  

 To comprehensively profile the nutrient inputs that PDA is capable of metabolizing in the 

absence of glucose we used carbon sources within the Biolog phenotyping assay. Alongside this 

we used CCLE gene expression data for all cell lines used in the assay and found a correlation 

between UPP1 and uridine consumption outlined in Chapter 2. Within these carbon datasets 

remain many future discoveries and areas of investigation for PDA metabolic profiling. One such 

is adenosine, which showed a varied response in consumption across cell lines. Adenosine is a 

purine nucleoside base that is highly utilized in metabolic processes, chief of which is its 

incorporation in the energy molecule ATP. Additionally, adenosine has been shown to be highly 

abundance in the TIF and functions to protect tumors against anti-tumoral immune cell response 

by T cells and NK cells15. Further exploration into the balance between consumption of 

adenosine to induce a mitochondrial response, as seen in the Biolog assay, versus the 

accumulation of extracellular adenosine levels to protect against T cell invasion may show 

targetable vulnerability, as this substrate is in demand for two distinct proposed mechanisms. 

This interplay may also explain the lower consumption of adenosine in a subset of PDA cell lines 

from our screen, so it would be informative to look at T cell infiltration in syngeneic mouse 

models from those cell lines.  

 In addition to the carbon and nitrogen substrates from the Biolog assay, there were a 

multitude of other conditions used in the large-scale screen that have yet to be analyzed. A panel 
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of chemotherapy drugs was administered to all cell lines in nutrient-replete conditions to assess 

cytotoxicity. There was a varied metabolic response across cell lines, which was consistent with 

phenotypic clusters of cell lines throughout the Biolog screen. Overall, regardless of substrate 

given, cell lines clustered as either basal or classical PDA subtype, and either highly glycolytic 

or oxidative metabolically. While we expected the varied response among cell lines due to these 

classifications, the categorial variables were not considered in previous studies owing to the 

strong median phenotypes of the substrates being investigated. For chemotherapy responses, the 

relationships between PDA subtypes and metabolic response should be more heavily considered, 

as drug efficacy will likely be impacted and indicate specific vulnerability to a given subtype. 

From the analysis pipeline created in Chapter 3 we can quantify a wide range of kinetics 

parameters from the Biolog assay, combine those with the background categorial variables from 

each cell line, and incorporate CCLE gene expression data to uncover many more relationships 

in PDA metabolism that warrant further investigation.  

4.2 Conclusion 

The work described herein has focused primarily on pancreatic cancer, its complex TME, 

and the nutrients capable of sustaining cancer cell metabolism. These aims provide significant 

findings to further PDA metabolism studies and potential therapeutic options. Through these 

works and my graduate studies, I have gained an appreciation for the complexity of cancer and 

its context dependent mechanisms. By altering existing biological processes and pathways, PDA 

effectively hijacks and repurposes an already well-established and efficient cellular 

infrastructure. Additionally, the TME provides a protective physical barrier against 

chemotherapies and immune cell penetration, and PDA upregulates scavenging pathways to 

counteract the hypoxic and serum-nutrient deprived environment. By profiling these metabolic 
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differences via a wide range of metabolomics techniques and the Biolog phenotyping assay, we 

have made significant strides in further understanding another important pathway for altered 

PDA metabolism. Our findings demonstrate the importance of uridine in the TME and provoke 

many additional studies for the future. These studies also demonstrate our capabilities in 

interrogating metabolism through highly sophisticated and customizable metabolomics platforms 

that will continue to propel future studies in the laboratory.  
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