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Abstract 

 

The objective of this thesis is to investigate the genesis of zeros in the single-input single-output 

(SISO) transfer function of flexible linear time invariant (LTI) systems, and provide necessary and 

sufficient conditions to specifically guarantee the absence of non-minimum phase zeros. Flexible 

system dynamics plays a vital role in several motion and vibration control applications such as space 

structures, rotorcraft blades, hard-disk drives, flexure mechanisms, flexible manipulators, and motion 

systems with transmission compliance. These applications often require feedback and feedforward 

controls to achieve desirable dynamic performance, which generally includes high speed, low settling 

time, effective disturbance rejection, low sensitivity to modeling uncertainties, and stability robustness.  

Zeros in the transfer function, defined by the actuated load input and sensed displacement output of 

a flexible system, have a significant impact on its dynamic performance. Non-minimum phase zeros 

(i.e. zeros in the right half s-plane), in particular, lead to significant tradeoffs among the competing 

dynamic performance requirements. Therefore, there is a need for physical design strategies that are 

informed by mathematical conditions to guarantee the absence of non-minimum phase zeros. 

Comprehensive and precise mathematical conditions do not currently exist in the literature. A well-

known mathematical condition states that when all the modal residue signs of an undamped flexible 

LTI system are the same, the zeros of that system are guaranteed to be minimum phase. However, the 

same sign of all modal residues is a sufficient condition and not a necessary one. In other words, this 

condition is overly restrictive – there are many systems that do not satisfy this condition but still exhibit 

no non-minimum phase zeros. Furthermore, it may not always be possible to achieve the same sign of 

all modal residues given various practical constraints on the distribution of mass and stiffness and 
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location of actuators and sensors. Apart from mass-stiffness distribution and actuator-sensor 

placement, one can also explore the use of viscous damping to change the position of zeros. Viscous 

damping is generally found to be beneficial for the poles of the flexible system because it moves them 

to the left-hand side of the s-plane leading to smaller overshoot and residual vibration. However, the 

effect of viscous damping on the zeros has not been adequately investigated in the existing literature 

and therefore, there does not exist any physical design strategy where viscous damping is used in a 

deterministic manner to guarantee the absence of non-minimum phase zeros in the transfer functions 

of flexible LTI systems. In order to fill these various technical gaps, this thesis makes three key 

contributions: (i) create a mathematical and graphical framework to explore the necessary and 

sufficient conditions for the occurrence of different types of zeros in the transfer function of flexible 

LTI systems, with and without viscous damping; (ii) derive the necessary and/or sufficient conditions 

to guarantee the absence of non-minimum phase zeros for various flexible LTI systems with and 

without viscous damping; and, (iii) implement design strategies informed by the above mathematical 

conditions to demonstrate the absence of non-minimum phase zeros with and without viscous damping.  

The necessary and sufficient conditions for the absence of non-minimum phase zeros are derived 

for undamped and viscous damped, two and three degrees of freedom (DoF) flexible LTI systems by 

constructing a comprehensive set of zero loci that cover all possible distribution of the zeros with 

respect to the poles for all possible values of system parameters, which include modal residues, modal 

frequencies, and modal damping ratios. However, as the number of DoFs increase, the parameter space 

rapidly expands, making this zero loci based framework tedious and complicated. In order to overcome 

this issue and prove that there exist other sequences of modal residue signs apart from ‘same sign of 

all modal residues’ that guarantee the absence of NMP zeros, the parity (i.e. odd/even) of the number 

of zeros with respect to the poles in the system transfer function is investigated. This investigation 

leads to a non-unique sufficient condition for the absence of non-minimum phase zeros in terms of the 

system parameters that is applicable to undamped flexible LTI system with any arbitrary number of 
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DoFs (or modes). Furthermore, the zero dynamics of a multi-DoF proportionally viscous damped 

flexible LTI system is investigated using a change of variable method that reduces its large parameter 

space to a few composite parameters. This leads to a sufficient condition for the absence of non-

minimum phase zeros using proportional viscous damping in multi-DoF flexible LTI systems.  

The efficacy of the sufficient conditions derived for undamped and viscous damped flexible systems 

with any arbitrary number of DoFs (modes) is theoretically demonstrated in multiple case studies by 

making informed design choices of physical parameters such as actuator-sensor placement, mass-

stiffness distribution and viscous damping strategy that satisfy these sufficient conditions for different 

flexible systems. For undamped flexible systems, a step-by-step physical design strategy is provided 

to choose mass-stiffness distribution and actuator-sensor placement that lead to the required sequence 

of modal residue signs (not necessarily ‘same sign of all modal residues’) that guarantee the absence 

of NMP zeros. For proportionally viscous damped flexible systems, keeping the mass-stiffness 

distribution and actuator-sensor placement unchanged, a step-by-step design strategy is  provided  to 

choose only the viscous damping values to guarantee the absence of NMP zeros. Furthermore, in  

certain cases where proportional viscous damping cannot guarantee the absence of NMP zeros, a step-

by-step design strategy is provided to use proportional viscous damping to move all these NMP zeros 

further away from the imaginary axis , thereby mitigating their effect on the dynamic performance of 

the flexible systems. These various case studies demonstrate the practical utility (from a physical 

system design standpoint) of the mathematical results derived in this thesis.  
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Chapter 1 Introduction and Background 

1.1 Flexible System Dyanmics and Zeros 

A flexible system is a dynamic system that consists of inertia and compliance elements. A 

spring mass system is an ideal example of a flexible system in the mechanical domain where the 

mass is the inertia element and the spring is the compliance element. Similarly, an inductor 

capacitor (LC) circuit is an example of a flexible system in the electrical domain where the inductor 

is the inertia element and capacitor is the compliance element. Flexible systems may or may not 

include an energy dissipating element such as a viscous damper (dashpot) in the mechanical 

domain or a resistor in the electrical domain. In this thesis, we will be studying linear time invariant 

(LTI) flexible system dynamics. The equations of motion of such flexible system dynamics is 

given by: 

 

[ ] [ ] [ ] [ ]

[ ]

[ ] [ ] [ ] [ ]( ) [ ]
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 (1-1) 

where, [M], [C], and [K] denote the mass (inertia element), damping (energy dissipating element), 

and stiffness (compliant element) matrices, respectively; F denotes the force acting on the system 

through an input vector [B]; and, q is the measured displacement and is a linear combination, 

captured by sensor vector [D], of the individual DoF displacements denoted by w.  n denotes the 

degrees of freedom (DOFs) or the number of flexible modes of the system. The dynamics of a LTI 

single-input single-output (SISO) flexible system can be expressed in terms of its transfer function, 
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defined by the actuated load input, F and sensed displacement output, q as shown in Eq.(1-1). To 

understand the genesis of poles and zeros in the system dynamics, the transfer function in Eq.(1-1) 

can be re-written in terms of a numerator and denominator polynomial as shown below.  

 1 0
2

2 1 0

( )

( )

m
m

n
n

b s b s bq s

F s a s a s a

+ + +
=

+ + +



 (1-2) 

 The coefficients in the numerator and denominator of the transfer function i.e. an to a0 and bm to 

b0 are real and depend on the physical parameters [M], [C], [K], [B], and [D]. Since, the flexible 

system under investigation is a physical system (and therefore causal), the relative degree of the 

transfer function i.e. (2n – m) is positive. The transfer function is characterized by poles and zeros 

which are the roots of the denominator and the numerator of the transfer function, respectively. 

The flexible systems under investigation in this thesis are assumed to be stable. Mathematically, 

this means that all the poles of the transfer function of the flexible system lie on the closed left-

hand side (LHS) of the imaginary axis in the s-plane (this also includes the imaginary axis).  

Several machines used in motion and vibration control application exhibit flexible system 

dynamics such as spacecrafts [1, 2], hard disks [3, 4], rotorcraft blades [5], flexure mechanisms [6, 

7], and motion systems with transmission compliance [8], among others. In all these applications, 

the machines are expected to fulfill some or all of the following dynamic requirements 

simultaneously: low settling time, low undershoot & overshoot in step response, high rejection of 

disturbances (from actuator and environment) and noise (from sensor), high stability robustness 

under parametric variations, and excellent trajectory tracking.  The ability of a flexible system to 

achieve all these dynamic requirements simultaneously, via feedback and/or feedforward controls, 

depends on the position of the poles and zeros of its transfer function in the s-plane. This can be 

shown via the following example. Consider the case of two flexible systems (whose open-loop 

poles and zeros in the s-plane are shown in Fig 1-1a and Fig 1-1b) that are operating under the 
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same closed-loop control where the controller is a simple lead compensator. The root loci (or the 

trajectories of the closed-loop poles) of the two flexible systems under closed-loop control are 

shown in Fig 1-1a and Fig 1-1b. Based on the rules of root locus, the trajectory of the closed-loop 

poles start from the open-loop poles for small values of controller gains and approach the open-

loop zeros for large controller gains.   

Lead 
Controller

(a) Zero-pole 
Alternation

(b) No zero-pole 
Alternation

Lead 
Controller

 

Fig 1-1 Root locus for two different relative positions of open loop poles (cross) and zeros 

(circle) (a) Zero-pole alternation (b) No zero-pole alternation  

Fig 1-1a illustrates a sequence of open-loop zeros and poles on the imaginary axis, referred to 

as zero-pole alternation. In zero-pole alternation, every pole is preceded by a zero on the imaginary 

axis except the first pole which correspond to the ‘rigid body mode’. For this sequence of open-

loop poles and zeros on the imaginary axis, the closed-loop system is always stable for any value 

of controller gain since the root locus lies strictly on the left-hand side (LHS) of the imaginary 
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axis. Therefore, one can choose the closed-loop controller gain (associated with the lead 

compensator) to achieve a good tradeoff between competing dynamic performance requirements 

such as disturbance rejection and noise rejection, without worrying about stability. In contrast, Fig 

1-1b illustrates the case when zero-pole alternation is not observed. In this case, the closed-loop 

system cannot be made stable for any value of closed-loop controller gain since a portion of the 

root locus always lies on the right-hand side (RHS) of the imaginary axis. In reality, any flexible 

system is lightly damped and therefore, the the open-loop poles lie slightly to the LHS of the 

imaginary axis. Therefore, the closed-loop system (root locus is given by Fig 1-1b) can be stable 

for very small values of closed-loop controller gain. This negatively impacts the closed-loop 

system’s ability to achieve a good tradeoff between competing dynamic performance 

requirements. For example, small closed-loop controller gain will lead to good noise rejection but 

poor disturbance rejection. This example demonstrates that the position of poles and zeros of a 

flexible system in the s-plane can significantly impact its ability to simultaneously achieve 

different dynamic performance requirements.  

Note that for the sequence of open-loop poles and zeros illustrated by Fig 1-1b, one can still use 

feedforward control strategies to invert the open-loop dynamics in order to achieve better dynamic 

performance [9, 10] if an accurate model of the open-loop dynamics is readily available. 

Oftentimes, a combination of feedback and feedforward control strategy [11, 12] is used to satisfy 

the key dynamic requirements, wherein the feedforward portion of the control strategy provides 

high speed and good trajectory tracking performance by inverting the flexible system dynamics 

and the feedback portion of the control strategy provides stability robustness against parametric 

variation and good disturbance rejection capabilities.  However, if the open-loop zero lies strictly 

on the right-hand side (RHS) of the imaginary axis then irrespective of the control strategy 
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(feedback / feedforward / their combination), it becomes even more challenging (as compared to 

other positions of open-loop zeros in the s-plane such as the one shown in Fig 1-1b) to 

simultaneously achieve all key dynamic performance requirements. The zeros that lie strictly on 

the RHS of the imaginary axis are referred to as non-minimum phase (NMP) zeros. The presence 

of these zeros lead to significant tradeoffs between the competing dynamic performance 

requirements [13-15].  

1.2 Limitations of Non-minimum Phase Zeros 

A zero that has a positive real component is a non-minimum phase (NMP) zero. There are two 

types of NMP zeros: real NMP (RNMP) zero whose imaginary component is zero and complex 

NMP (CNMP) zero whose imaginary component is non-zero. The latter always occur in complex 

conjugate pairs. The detrimental effects of NMP zeros are evident in the time domain as well as 

the frequency domain. We will use simple feedback and feedforward control strategies in this 

section to demonstrate the detrimental effects of NMP zeros.  

In the time domain, the presence of atleast one RNMP zero in the transfer function guarantees 

the occurrence of undershoot in the step response of the flexible system [13]. Furthermore, the 

presence of RNMP zeros introduces a tradeoff between undershoot and settling time in the step 

response [16]. This tradeoff between settling time and undershoot is algebraically expressed by:  

 
b-

£
-

1

1s usxt
y

e
 (1-3) 

where (< 1) is the settling window, ts is the settling time for the given settling window x (> 

0) is the RNMP zero, yus (> 0) is the undershoot in the step response as shown in Fig 1-2b. Eq.(1-3)

demonstrates that for a fixed value of RNMP zero (x) and settling window (), if one tries to reduce 

the settling time (ts), the LHS of  Eq.(1-3), will increase. Since the LHS of Eq.(1-3) defines the 
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lower limit of the undershoot (yus), a higher value of this LHS will eventually lead to a larger 

undershoot (yus). Conversely, it also demonstrates that smaller undershoot is achieved at the 

expense of larger settling time. This tradeoff between undershoot and settling time in the presence 

of RNMP zeros was independently proven by other researchers [17, 18] as well who demonstrated 

that fast settling time and small undershoot, which are of practical relevance in several motion 

control applications, are conflicting requirements in the presence of RNMP zeros.  

The tradeoff between settling time and undershoot is demonstrated via an illustrative example 

of a flexible system with one pair of complex conjugate poles and one RNMP zero in the s-plane 

in Fig 1-2a. As expected, the presence of the RNMP zero leads an initial undershoot in the step 

response in time domain. Furthermore, in the beginning, this flexible system is characterized by 

lightly damped poles. Therefore, its step response exhibits a large undershoot (yus,ld), a large 

overhoot, slow settling time (t,ld). In order to achieve faster settling time and smaller overshoot, a 

simple feedforward control strategy can be implemented that cancels the two lightly damped poles 

with two controller zeros at the same location as the poles, and add two heavily damped controller 

poles. The net effect is that the poles of the  flexible system are moved further away from the 

imaginary axis (assuming perfect or close to perfect pole-zero cancellation). However, the position 

of the RNMP zero remains the same because cancelation of the RNMP zero requires a controller 

pole in the RHS of the s-plane which will lead to an unstable system.  
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Fig 1-2 (a) Location of poles and zero in the s-plane (b) Step response of lightly and heavily 

damped flexible system  

The heavily damped flexible system now demonstrates faster settling time, t,hd and almost no 

overshoot in its step response as shown in Fig 1-2b. However, because the position of the RNMP 

zero remained constant the undershoot of the heavily damped system becomes greater as compared 
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to its lightly damped counterpart i.e. yus,ld < yus,hd.  This demonstrates the tradeoff between settling 

time and undershoot in the presence of a simple feedforward control strategy. In the presence of 

this control strategy, faster settling time and smaller undershoot can inded be achieved 

simultaneously but only via the absence of the RNMP zero or by moving it further away from the 

imaginary axis.  

RNMP zeros are not the only zeros that exhibit undershoot. Certain positions of CNMP zeros in 

the RHS of the s-plane can also lead to an undershoot in the step response. Numerical simulations 

of simple flexible systems [19] have shown that when a pair of CNMP zeros is far away from the 

positive real axis, the step response does not exhibit any undershoot. However, as the CNMP zero 

pair gets closer to the positive real axis, the step response starts to exhibit undershoot. Therefore, 

one can conjecture that when the CNMP zero pair lies sufficiently close to the positive real axis, 

it can impose a tradeoff between settling time and undershoot. However, unlike the case for RNMP 

zero, there is currently no mathematical expression in the exisiting literature that captures this 

tradeoff. In order to demonstrate the conjecture that the presence of CNMP zeros can impose a 

tradeoff between settling time and undershoot, consider a simple numerical example shown below 

where the CNMP zero pair is chosen close enough to the positive real axis for the step response to 

exhibit an undershoot.  
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 (1-4) 

Both G1(s) and G2(s) have one pair of CNMP zero at the same location i.e. 0.5 ± 1j. However, 

the poles of G2(s) i.e. −2 ± 1j and −10 ± 4j are further away from the imaginary axis and well 

damped as compared to the poles of G1(s) i.e. −0.5 ± 1j and −0.7 ± 4j. Therefore, G2(s) represents 
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a flexible system with faster dynamics and smaller settling time as compared to G1(s). This is 

evident in the figure below where t,1 > t,2. However, due to the presence of a CNMP zero pair 

close to the positive real axis, the smaller settling time is obtained at the cost of higher undershoot 

i.e. yus,1 < yus,2.  

G1(s)

G2(s)
1+

1-

t,1t,2

yus,1 yus,2

 

Fig 1-3 Tradeoff between settling time and undershoot in the presence of CNMP zeros 

Note that a simple feedforward control strategy (similar to the one used in Fig 1-2a) can be used 

to transform the transfer function G1(s) into G2(s). This feedforward control strategy can only 

change the location of the poles. The location of the CNMP zero pair will remain unchanged.  

Therefore, in the presence of a simple feedforward control strategy (similar to the one used in Fig 

1-2a), faster settling time and smaller undershoot can be simultaneously achieved only via the 

elimination of the CNMP zero pair or moving it further away from the positive real axis (based on 
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the above conjecture supported by the numerical examples in [19]) or moving it further away from 

the imaginary axis (similar to RNMP zeros).  

So far we have discussed the detrimental effects of RNMP and CNMP zeros in the time domain. 

The step response demonstrates undershoot in the presence of RNMP zeros. However, the step 

response may or may not demonstrate undershoot in the presence of CNMP zeros depending on 

their location in the RHS of the s-plane. Now we will discuss the detrimental effect of NMP zeros 

in the frequency domain. In the frequency domain, performance tradeoff is imposed in the presence 

of both CNMP and RNMP zeros, irrespective of their location in the RHS of the s-plane. 

C(s) P(s)
+

-

dI

R q
+

n

dO

+

+

F

 

Fig 1-4 Feedback control using single-input (F) and single-output (q) 

To understand the detrimental effect of NMP zeros in the frequency domain, consider the 

feedback control strategy shown in Fig 1-4 where only a single sensor is used to measure the 

displacement q, and this measurement is fed back to the controller C(s), which actuates the plant, 

P(s) via force, F. This control strategy is referred to as single-input single-output (SISO) feedback 

control. In the frequency domain, disturbance rejection and low sensitivity to modeling 

uncertainties dictate the low frequency performance specification. Noise rejection, robustness 

against unmodelled dynamics as well as actuator saturation dictate the high frequency bandwidth 

limitation. For the SISO control strategy, the bode gain-phase relationship implies a tradeoff 

between the low frequency performance specification and the high frequency bandwidth 

limitation. Specifically, the rate of gain decrease near crossover frequency should not be greater 
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than -20 dB/decade in order to achieve nominal stability and reasonable phase margin that 

guarantee stability robustness. However, the presence of NMP zero in the open loop transfer 

function q(s)/F(s) contributes additional phase lag, therefore worsening the design tradeoff 

between high gain at low frequencies and low gain at high frequencies. This implies that the gain 

crossover frequency must lie well below the frequency where the NMP zero contributes to the 

additional phase lag. Since the gain crossover frequency is closely related to closed-loop 

bandwidth, the presence of NMP zero limits the achievable closed-loop bandwidth.  

Another way to understand the limitation imposed by NMP zeros is through the Poisson 

sensitivity integral (defined only in the presence of NMP zeros) which mathematically 

demonstrates the tradeoff between disturbance rejection at low frequencies, noise rejection at high 

frequencies and stability robustness of the closed-loop system in the presence of an NMP zero 

[18].  
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Fig 1-5 Graphical illustration of the Poisson senstivity integral in the presence of NMP zeros 

S(j) is the sensitivity function of the closed-loop system (shown in Fig 1-4) which is illustrated 

in Fig 1-5 by a representative curve, log|S1(j)|. In order achieve good disturbance rejection over 

a large frequency range, M1 and c,1 should be as large as possible. Furthemore, in order to achieve 

good noise rejection, log|S1(j)| should tend to 0 at high frequencies. Now, in the presence of an 

NMP zero, the Poisson sensitivity integral must be satisfied. This means that the weighted area 

under the log |S1(j)| must be equal to zero. Therefore, the weighted negative area under log|S1(j)| 

(for c,1) should be balanced by its the weighted positive area (for c,1). The weightage 

function, W(j) is small when y (location of NMP zero), achieves its maxima at y and then 

rapidly goes to zero at high frequencies. If one tries to achieve good disturbance rejection over a 

wider range of frequency i.e.c,1 < c,2, the negative area under log|S2(j)| (for c,2) increases 

which must be balanced by the positive area under log|S2(j)| (for c,2). As the frequency 
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range gets closer to the location of the NMP zero i.e. c,2 ≈ y, it leads to a larger peak in this 

positive area in log|S2(j)| as compared log|S1(j)|. The peak of the sensitivity function is a 

measure of the stability robustness of the closed loop system. Larger peak suggests low stability 

robustness and higher likelihood of instability in the presence of modeling uncertainties, 

unmodelled dynamics and parametric variations. c,1 and c,2 are a measure of the closed-loop 

bandwidth of the system. Therefore, as the closed-loop bandwidth gets closer to the location of the 

NMP zero, the stability robustness of the closed-loop system gets poorer. Therefore, NMP zeros 

that lie within the desired closed-loop bandwidth impose non-trivial and significant performance 

tradeoff in the frequency domain. Unlike the design tradeoff imposed by the Bode waterbed effect, 

the Poisson sensitivity integral ensures a peak in the sensitivity function due to the presence of 

NMP zeros even without the assumption of additional bandwidth constraints imposed by effects 

such as actuator saturation. This follows from the weightage function, W(j) in the Poisson 

sensitivity integral, which implies that the weighted length of the j axis is finite.  

Simple feedback and feedforward control strategies were used in this section to highlight the 

dynamic performance challenges imposed by the presence of NMP zeros. Various other advanced 

control strategies have been reported in the literature to alleviate these challenges with limited 

success. The various control strategies reported in the literature can be broadly classified into: 

approximate model inversion, direct model inversion with preview, and optimal control among 

others. Approximate model inversion strategies either cancel the magnitude or the phase error 

across all frequencies but not both, leading to poor transient behavior of the system [20, 21]. 

Several variations of these control strategies have been reported in the literature that provide 

incremental improvements [22, 23]. Direct model inversion strategies provide better transient 

response by optimally choosing the control input that minimizes the error between the desired and 
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output trajectory [24, 25]. However, these strategies require apriori knowledge of the desired 

trajectory which may not be suitable for applications where trajectory anticipation is not available. 

On the other hand, certain optimal control strategies [26, 27]  generate control inputs that minimize 

the settling time subject to the undershoot constraint. If NMP zeros could be eliminated in flexible 

systems or if RNMP zeros of flexible systems could be moved further away from the imaginary 

axis via suitable physical system design e.g. mass-stiffness distribution, actuator-sensor placement, 

and viscous damping strategy, these control strategies will lead to the minimum settling time 

subject to even smaller undershoot constraint. 

Therefore, there is a need for a broader mechatronic design strategy that combines physical 

system and control system design to achieve better dynamic performance. The objective of the 

physical system design would be to either eliminate NMP zeros or at least move them outside the 

desired closed-loop bandwidth so that existing control strategies can be more effectively 

implemented on the flexible system. Therefore, in this thesis, we will primarily investigate the 

impact of physical system design i.e. change in mass-stiffness distribution, actuator-sensor 

placement, and viscous damping strategies on the genesis of NMP zeros and formulate design 

strategies in terms of physical parameters to guarantee their absence.  

1.3 Literature Review 

There are six different types of zeros that can occur in the transfer function of a flexible system. 

These zeros are graphically shown in the s-plane in Fig 1-6. The mathematical definitions of these 

zeros are provided below. Let the zero be denoted by z = x+jy, where x and y represent the 

coordinates of the zero in the Cartesian plane. 

1. Marginally minimum phase (MMP) zero lies purely on the imaginary axis i.e. x ൌ 0, y ് 0. 
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2. Complex minimum phase (CMP) zero lies strictly on the left hand side of the imaginary axis 

i.e. x ൏ 0, y ് 0. 

3. Complex non-minimum phase (CNMP) zero lies strictly on the right hand side of the imaginary 

axis i.e. x ൐ 0, y ് 0. 

4. Real minimum phase (RMP) zero lies strictly on the negative real axis i.e. x ൏ 0, y ൌ 0. 

5. Real non-minimum phase (RNMP) zero lies strictly on the positive real axis i.e. x ൐ 0, y ൌ 0. 

6. Zero at the origin. It has no real and imaginary component i.e. x ൌ 0, y ൌ 0. 

Im
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Marginal MP (MMP)

Complex NMP (CNMP)

Real NMP (RNMP)

Complex MP (CMP)

Real MP (RMP)

Marginal MP (MMP)

Zero at 
Origin

 

Fig 1-6 Different types of zeros in the s-plane  

Having defined the different types of zeros, we will now discuss the existing literature on these 

zeros especially NMP zeros i.e. CNMP and RNMP zeros. The existing literature on the zeros of 

flexible LTI systems can be broadly divided into two categories:  

1. Physical Interpretation of Zeros  
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2. Analytical Investigation of Zeros in General Multi-DoF Flexible Systems 

1.3.1 Physical Interpretation of Zeros 

A physical explanation for the origin of MMP zeros in flexible systems was attempted by Miu 

[28] and later by Straete [29] and Calafiore [30]. They claimed that the MMP zeros of flexible 

systems are the resonant frequencies of the substructures constrained by the actuator and sensor.  

k1,2 k2,3

m3

F1 (actuator) q3 (Sensor)

m2m1 m4

k1,5 k3,4

m5

c1,2

m5

k1,5
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Fig 1-7 Physical interpretation of MMP zeros 

In order to demonstrate this physical insight, consider the flexible system shown in Fig 1-7. The 

transfer function q3(s)/F1(s) exhibits two pairs of MMP zeros. In order to predict these MMP zero 

pairs, first artificially constrain the masses where the actuator and sensor are located and then find 

the remaining substructures i.e. the substructures that are not confined between the actuator and 

sensor position. According to Miu, the resonant frequencies of these remaining substructures are 

the MMP zeros of the transfer function: q3(s)/F1(s). In order to physically understand why this 

happens, consider the following reasoning: when the mass at the actuator location is excited at the 

MMP zero frequency of the flexible system, there is no output displacement observed in the mass 

at the sensor location (as per the definition of transfer function zeros). Therefore, the energy being 

provided by the actuator must be  getting localized elsewhere in the system. This localization of 
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the energy happens in the remaining substructures when the actuator excitation frequency matches 

their resonant frequency. In Fig 1-7, there are two remaining substructures, one to the left of m1 

and another to the right of m3. The resonant frequencies (eigenvalues) of these substructures are 

 = ඥ𝑘ଵ,ହ/𝑚ହ and  =ඥ𝑘ଷ,ସ/𝑚ସ. Therefore, andare also the MMP zeros of the transfer 

function q3(s)/F1(s). Miu claimed that the same argument also holds in the presence of viscous 

damping. If the remaining substructure consists of viscous dampers, then its poles no longer lie 

purely on the imaginary axis but on its LHS. Therefore, underdamped poles of the remaining 

substructures are the CMP zeros of the flexible system and critically or overdamped poles of the 

remaining substructures are the RMP zeros of the flexible system. This physical insight is useful 

in identifying the remaining substructures and choosing their mass, stiffness and viscous damping 

properties to place the MMP zeros (or CMP/RMP zeros in the presence of viscous damping) at the 

desirable position in the s-plane. Since the poles of the remaining substructures either lie on the 

imaginary axis (for undamped remaining substructures) or on the LHS of the imaginary axis (for 

damped remaining substructures), Miu’s work can only explain the genesis of MMP, CMP and 

RMP zeros but not CNMP and RNMP zeros.  

Miu [28] provides a physical explanation for the genesis of RNMP zeros in the transverse 

vibration of beams. He argues that the presence of RNMP zeros is attributed to the dynamic 

coupling that exists between shear forces and bending moments or equivantly, between linear and 

rotary inertia. This physical argument is useful in explaining the absence of RNMP zeros in 

dynamic systems characterized by a single type of force and inertia because there is no scope for 

any dynamic coupling between different forces and inertias. Examples include the longitudinal 

vibration of bars which is characterized by axial force and linear inertia; and the torsional vibration 

of bars which is characterized by shear force and rotary inertia. However, in cases where multiple 
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forces and inertias exist, Miu does not provide any general mathematical description of this so 

called “dynamic coupling” between the different forces or inertias that lead to RNMP zeros, 

thereby limiting the usefulness and applicability of his work. In other words, Miu’s work cannot 

be used to choose physical parameters to guarantee the absence of RNMP zeros in transverse 

vibration of beams.  

Spector [31] suggested that RNMP zeros are a result of the propagation delay caused by finite 

speed of waves traveling from the actuator to the sensor. This physical explanation was based on 

the observation that both RNMP zeros and propagation delay cause phase loss in the open-loop 

frequency response function (FRF) of the flexible system. However, this equivalence between 

RNMP zeros and propagation delay is flawed on the account that RNMP zeros contribute +20 

dB/decade increase in magnitude of the FRF at frequencies higher than the zero frequency but the 

propagation delay does not contribute anything to the magnitude. In fact, the combination of 

increase in magnitude and phase loss in the FRF makes the presence of RNMP zeros more 

detrimental than the propagation delay in the dynamics of flexible systems. Therefore, the genesis 

of RNMP zeros cannot be attributed to propagation delay. Based on the discussion so far, the 

physical meaning of RNMP zeros still remains an open question.  

 Similarly, there is no conclusive physical meaning for CNMP zeros as well. Recent 

investigation in the dynamics of flexure mechanisms revealed that CNMP zeros and mode 

localization occur together for the same values of physical parameters [19]. It has been observed 

that these two phenomena concurrently occur in flexible systems that exhibit closely spaced modes 

arising from their periodic structure as well as small parametric asymmetry. It is well-known that 

mode localization is responsible for localized vibration in large space structures and turbine blades 

which leads to their premature failure [32-34]. So far the correlation between CNMP zeros and 
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mode localization appears circumstantial and based on observing the dynamics of a flexure 

mechanism. A detailed investigation is needed to gain a deeper understanding between the physical 

ties between CNMP zeros and mode localization.  

1.3.2 Analytical Investigation of Zeros of General Multi-DoF Flexible Systems 

There does not exist any conclusive physical meaning for the presence of RNMP or CNMP zeros 

that can be used to guarantee their absence in any flexible system. However, there do exist some 

mathematically derived sufficient conditions for the absence of these zeros that can be applied to 

a broad range of flexible systems. First, we will discuss Hoagg’s sufficient condition for the 

absence of only RNMP zeros [35]. This condition is composed of two subconditions given below, 

both of which must be satisfied to guarantee the absence of RNMP zeros:  

1. [B] and [D] should have only one non-zero element; remaining all elements must be zero. 

2. [M], [C], and [K] must be M-matrices.  

Consider the equation below where the transfer function q(s)/F(s) has been written in terms of 

the mass ([M]), viscous damping ([C]), stiffness matrices ([K]), actuator ([B]) and sensor vectors 

([D]). [ei] 1xn is a column vector where only the ith element is non-zero and [ej] nx1 is a row vector 

where only the jth element is non zero. The first condition is satisfied by choosing [D] = [ei] 1xn and 

[B] = [ej] nx1. If a matrix [A] is an M-matrix, then [A]-1 is elementwise positive i.e. all elements of 

[A]-1 are positive. Therefore, if [M], [C], [K] are M-matrices, then the transfer function q(s)/F(s) 

cannot be zero for any value of s = z where z lies strictly on the positive real axis or at the origin. 

This is mathematically shown in the equation below.  
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Hence, the flexible systems that satisfy Hoagg’s sufficient condition cannot exhibit RNMP zeros 

or zeros at the origin. As a simple rule, if [M], [C] and [K] display the following property on visual 

inspection then they are M-matrices: All off diagonal elements must be non-positive AND all 

diagonal elements must be positive AND the sum of each and every row must be non-negative. 

This property is a sufficient condition (not a necessary condition) for a matrix to be an M-matrix.  

Hoagg’s sufficient condition for the absence of RNMP zeros is completely mathematical in 

nature and therefore, it is not straightforward to see what kind of flexible systems will satisfy this 

condition. However, Hoagg [35] mathematically shows that there exists a class of flexible systems 

,which he refers to as ‘collinear lumped parameter’ flexible systems, that satisfy his above-stated 

sufficient condition. Hoagg has mathematically shown that a ‘collinear lumped parameter’ flexible 

system must satisfy the following three physical conditions: 

1. The force is only applied on one mass and the displacement of only one mass is measured. 

2. Any two masses can only be connected via springs and/or viscous dampers. 

3. When a unidirectional force is applied on one mass, all the masses (if they move) must move 

along the same direction along which the force was applied. In other words, unidirectional force 

must lead to unidirectional motion of all masses.  
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Fig 1-8 Example of a flexible system that satisfies Hoagg’s sufficient condition 

It can be seen that the flexible system shown in Fig 1-8 satisfies all three physical conditions. 

Force is only applied at mass m1 and displacement is only measured at mass m4, all the masses are 

connected only via springs and they are allowed to move in the same direction along which the 

force is applied (achievable via the appropriate bearing). Since, the above-stated three physical 

conditions are satisfied, the [M], [K], [B], and [D] of this flexible system satisfy Hoagg’s sufficient 

condition and therefore, there will be no RNMP zeros in the transfer function: q4(s)/F1(s). Note 

that the set of these three physical conditions is only a sufficient (and not necessary) condition to 

satisfy Hoagg’s sufficient condition. There can be other examples of flexible systems that do not 

satisfy these three physical conditions but its [M], [C], [K], [B], and [D] parameters can still satisfy 

Hoagg’s sufficient condition.  

Hoagg’s sufficient condition is the only reported sufficient condition in the existing literature 

for the absence of only RNMP zeros. Even though it can be applied to a wide range of flexible 

systems, there are still other flexible systems that do not satisfy this sufficient condition and yet 

do not exhibit RNMP zeros. That means that there should be other sufficient conditions as well. 

We will discuss the example of one such flexible system to motivate the need to find newer 

sufficient conditions for the absence of RNMP zeros.  
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Fig 1-9 Example of a multi-directional flexible system 

Fig 1-9 shows a flexure bearing based motion system where the flexure blades act as springs 

connecting multiple masses; X direction force is applied at mass m4 i.e. Fx4 and the X direction 

displacement of mass m1 is measured i.e. x1. This flexible system is an example of a 

multidirectional system because the masses m1, m2, and m3 can move in both X and Y direction. 

However, when m1 is not statically displaced in the Y direction, then an X direction force applied 

at m4 only leads to X direction displacement of all the masses. Therefore, in this nominal 

configuration, this flexible system satisfies all three physical conditions of Hoagg’s ‘collinear 

lumped parameter’ flexible system and as a result, does not exhibit RNMP zeros. However, if the 

mass m1 is statically displaced in the Y direction then an X direction force applied at m4 leads to X 

and Y direction displacement of m1, m2, and m3 [36]. This occurs due to the fact that the static 

displacement of m1 in the Y direction leads to the static deformation of the beams which 

kinematically relates the X and Y direction motions of the individual masses m1, m2 and m3 due to 

beam arc length conservation. Hence, a unidirectional application of force along the X direction 
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now excites the masses m1, m2 and m3 in both the X and Y directions simultaneously. Therefore, 

in its non-nominal configuration the flexible system does not satisfy the physical conditions that 

are sufficient for its [M] and [K] matrices to be M-matrices. On visual inspection of its [M] and 

[K] matrices in [36], it can be easily concluded that the [M] and [K] matrices are indeed not M-

matrices. In this particular system (for non-nominal operating point) even though Hoagg’s 

sufficient condition is not satisfied, it has been theoretically [36] and experimentally [37] verified 

that the transfer function between x1 and Fx4 does not exhibit RNMP zeros. This motivates the 

need for  new sufficient conditions that guarantee the absence of RNMP zeros in flexible systems 

that do not satisfy Hoagg’s sufficient condition.  

Chandrasekhar [38] built on Hoagg’s results and showed that when the three physical conditions 

provided by Hoagg are satisfied (therefor, no RNMP zeros), additionally if the flexible system is 

also ‘serially connected’ then its transfer function will not exhibit CNMP zeros as well. There 

exists one and only one path of connection (made up of springs, masses and viscous dampers) 

between any two masses in a ‘serially connected’ flexible system, as shown in Fig 1-7. As 

previously discussed, the flexible system illustrated in Fig 1-8 does not exhibit RNMP zeros 

because it satisfies Hoagg’s sufficient condition but it is not serially connected, therefore it can 

exhibit CNMP zeros. The flexible system shown in Fig 1-8 is an example of ‘non-serially 

connected collinear lumped parameter’ flexible system which can only exhibit CNMP zeros. 

Certain other flexure based motion systems with closely spaced modes [37, 39], catilevered beam 

[40], flexible manipulator [41] and motion system with transmission compliance [42] have been 

shown to exhibit only CNMP zeros in their transfer functions. However, there is no reported 

sufficient condition in the existing literature that can be used to guarantee the absence of  CNMP 
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zeros in all these different flexible systems. This motivates the need for new sufficient conditions 

that can guarantee the absence of CNMP zeros in a broad range of flexible systems.  

So far, we have discussed Hoagg’s sufficient condition for the absence of only RNMP zeros as 

well as its limitations and the lack of any sufficient condition for the absence of only CNMP zeros. 

Now we will discuss sufficient conditions for the absence of all NMP zeros i.e. RNMP and CNMP 

zeros, the relationships between these sufficient conditions and their limitations, thereby 

motivating the need for newer sufficient conditions.  

Martin [43] and Gevarter [44] investigated the transfer function of a general multi-DoF 

undamped flexible system by modally decomposing it into second order modes where each mode 

is characterized by two system parameters – modal residue (i) and modal frequency (i) as 

shown below. n is the Degrees of freedom (DoF) of the flexible system.  
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 They showed that when all the modal residues have the same sign, all the zeros of the flexible 

system are guaranteed to be MMP. Furthermore, Martin also showed that these MMP zeros are 

interlaced with the poles on the imaginary axis where every pole except the first one (referred to 

as the pole of the ‘rigid body mode’) is preceded by a zero. This interlacing property of the zeros 

and poles is referred to as zero-pole alternation (see Fig 1-1a) because the zeros and poles (except 

the pole of the ‘rigid body mode’) alternate on the imaginary axis. This distribution of the zeros 

with respect to the poles is robust to variations in the system parameters caused by modelling 

uncertainties and/or unmodelled dynamics as long all the modal residue signs remain the same [45, 

46]. The modal residue (i) corresponding to a particular mode is the product of the elements of 

its eigenvector at the actuator and sensor position. Therefore, one of the easiest ways to satisfy this 
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condition is to place the actuator and sensor at the same location. This physical arrangement of the 

actuator and sensor is referred to as actuator-sensor collocation.  

If multiple sensors are allowed as opposed to a single sensor, then different researchers have 

proposed different linear combinations of outputs from these multiple sensors in order to achieve 

the same sign for all modal residues [47-56]. Even when multiple sensors are used, the system still 

remains SISO and the sensor vector [D] is still a column vector because the outputs from all the 

sensors are linearly combined to form one composite output. The linear combination is chosen in 

such a way that all the modal residues corresponding to the transfer function between this 

composite output and the applied force have the same sign. This technique, referred to as sensor 

blending, has been shown to guarantee the absence of NMP zeros in multi-DoF undamped flexible 

systems with non-collocated actuator-sensor configurations in the presence of multiple sensors and 

a single actuator. However, in doing so, it only makes use of one sufficient condition i.e. all modal 

residue signs are the same which can overly restrict the actuator-sensor placement even in the non-

collocated configuration. If there were other sequences of modal residue signs that could guarantee 

the absence of NMP zeros then they could be used together with sensor blending to provide many 

more choices of actuator-sensor placements. This motivates the need for new sufficient conditions 

for the absence of NMP zeros when all modal residue signs are not the same.   

Williams [57] extended the result that the same sign of all modal residues guarantees the 

absence of all NMP zeros to classical viscous damped multi-DoF flexible systems. A viscous 

damped flexible system is classical if its [M], [C] and [K] matrices satisfy [C] [M]-1 [K] = [K] 

[M]-1 [C]. The assumption of classical damping [58, 59] allowed Williams to modally decompose 

the transfer function into second order modes. Unlike the undamped flexible system, each second 

order mode of the classically damped flexible system is characterized by three system parameters 
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– modal residue (i), modal frequency (i), and modal damping ratio ( i), as shown below. 

However, William derived this result only for underdamped flexible systems i.e. It is not 

clear so far whether the result provided by Williams holds for critically and overdamped flexible 

systems i.e. ≥.  
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Lin [60] provided a sufficient condition which states that if the actuator vector ([B]) and the 

sensor vector ([D]) are proportional to each other, then the absence of all NMP zeros is guaranteed. 

Unlike William’s result which was only applicable to classical viscous damped systems, Lin’s 

sufficient condition holds for any viscous damping matrix, [C]. This sufficient condition is 

mathematically expressed below.  

 [ ] [ ]
1 1

 where  is a scalar proportionality constant
n n

p p
´ ´
= T

B D  (1-9) 

Physical actuator-sensor collocation for a SISO system means that [D] = [ei] 1xn is a column 

vector where only the ith element is non-zero and [B] = [ei] nx1 is a row vector where only the ith 

element is non-zero. Therefore, it is easy to see that physical collocation implies that Lin’s 

sufficient condition is satisfied. Our conjecture in this thesis is that if Lin’s sufficient condition is 

satisfied then it implies physical collocation. This means that for any actuator vector, [B] and 

sensor vector, [D] that satisfy Lin’s sufficient condition, one can always construct a physical 

system with these vectors where the actuator and sensor are physically collocated. This conjecture 

has not been proven in this thesis (or in the existing literature to the best of the author’s knowledge) 

but it is supported by the following example.  
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Fig 1-10 Flexible system demonstrating physical equivalence between Lin’s sufficient condition 

and actuator-sensor collocation 

Let [B] = [p1 (1 + p2)  p2]T
 
 and [D] = [p1 (1 + p2)  p2] where p1 and p2 are some scalar. Clearly,  

[B] and [D] satisfy Lin’s sufficiency condition in Eq. (1-9). Now the task is to construct a flexible 

system with collocated actuator-sensor placement whose equations of motion lead to the above-

stated [B] and [D]. In order to complete this task, we choose masses i.e. m1 and m2 and two massless 

links i.e. Linkage 1 and Linakge 2 and connect them as shown in Fig 1-10. In Fig 1-10, Linkage 1 

is rigidly connected to mass m1 and connected to the ground via a pivot. Linkage 2 is connected to 

Linkage 1 via a pivot and it is connected rigidly to mass m2. The location of the pivots with respect 

to the masses have been chosen to achieve the above-stated [B] and [D]. Eq.(1-10) is the equations 

of motion for the flexible system shown in Fig 1-10.  
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Eq.(1-10) shows that the above-stated [B] and [D] have been achieved in the equations of 

motion. Note that the flexible system in Fig 1-10 is just one non-unique system with collocated 

actuator-sensor placement that was constructed to achieve the above-stated [B] and [D]. Other 

instances of flexible systems (with collocated actuator-sensor placement) are also possible that 

lead to the above-stated [B] and [D]. The key point here is the demonstration of the conjecture that 

for any given [B] and [D] that satisfy Lin’s sufficient condition, we can always construct a flexible 

system with collocated actuator-sensor placement, thereby implying that Lin’sufficient condition 

and actuator-sensor collocation are equivalent.   

Now, we will mathematically show that if Lin’s sufficient condition is satisfied then Williams 

sufficient condition is also satisfied. Let [] be the matrix whose columns are the eigenvectors of 

the flexible system. Then, under the assumption of classical viscous damping, the modal residue 

(i) can be expressed in terms of the eigenvector matrix [], actuator vector [B], and sensor vector 

[D] as shown below: 
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The above equation proves that if Lin’s sufficient condition is satisfied then all modal residue 

signs are the same. However, all modal residue signs being the same does not necessarily mean 

that Lin’s sufficient condition is satisfied, as demonstrated by the following example.  
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Fig 1-11 An example to demonstrate that all modal residue signs being the same does not 

necessarily satisfy Lin’s sufficient condition 
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Consider the flexible system shown in Fig 1-11, where the actuator and sensor are physically 

non-collocated. In fact, the actuator vector [B] and sensor vector [D] do not satisfy Lin’s sufficient 

condition, as is evident from the equations of motion below. 
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   (1-12) 

The matrix of eigenvector for this flexible system i.e [is a 2 x 2 unity matrix. Therefore, the 

modal residues for this flexible system are given by: 
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The above equation demonstrates that even though Lin’s sufficient condition is not satisfied, all 

the modal residue signs are still the same. Based on the arguments presented in the above 

paragraphs, the relationship between actuator-sensor collocation, Lin’s sufficient condition, and 

same sign of all modal residues (given by Martin for undamped [43] and Williams for viscous 

damped [57]) is summarized in Eq.(1-14). It shows that ‘same sign of all modal residues’ is a 

broader and richer sufficient condition as compared to Lin’s sufficient condition and actuator-

sensor collocation.  

 
[ ] [ ]{ }Actuator - Sensor Collocation Same Sign of all modal residues

Absence of all NMP zeros

p
T

B D = 


 (1-14) 

Having discussed the sufficient conditions for the absence of NMP zeros from the existing 

literature, the following is the summary of the technical gaps that are identified:  
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1. Hoagg’s sufficient condition is the only reported sufficient condition for the absence of only 

RNMP zeros in viscous damped and undamped flexible systems with any arbitrary number of 

DoFs (or modes). However, certain flexure based motion systems [36, 37] do not satisfy Hoagg’s 

sufficient condition and yet do not exhibit RNMP zeros. This motivates the need to find new 

sufficient conditions for the absence of RNMP zeros that can applied to flexible systems that do 

not satisfy Hoagg’s sufficient condition.  

2. There is no known sufficient condition for the absence of only CNMP zeros in viscous damped 

and undamped flexible systems with any arbitrary number of DoFs (modes). However, there are 

several flexible systems that can only exhibit CNMP zeros such as ‘non serially connected 

collinear lumped parameter’ flexible systems [35] because they already satisfy Hoagg’s sufficient 

condition. This motivates the need to find new sufficient conditions for the absence of only CNMP 

zeros.   

3. There is no known sufficient condition that makes use of viscous damping to guarantee the 

absence of NMP zeros. For a fixed actuator-sensor placement and mass-stiffness distribution, 

viscous damping has been used extensively to push the poles of flexible systems to the LHS of the 

imaginary axis thereby leading to smaller overshoot and residual vibrations [61-63]. Given the 

beneficial effect of viscous damping on the poles of flexible systems, this motivates the need to 

find sufficient conditions that use viscous damping to also guarantee the absence of NMP zeros 

for a given actuator-sensor location and mass-stiffness distribution.  

4. The same sign of all modal residues is the only known sufficient condition for the absence of 

all NMP zeros i.e. CNMP and RNMP zeros. If a single actuator and sensor are used, then the only 

known technique in the existing literature to achieve the same sign of all modal residues is actuator-

sensor collocation. If multiple sensors and a single actuator are used, then the concept of sensor 
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blending can be used to achieve the same sign of all modal residues even for non-collocated 

actuator-sensor configuration. Even then, the availability of just one sufficient condition restricts 

the design space in terms of mass-stiffness distribution as well as actuator-sensor location. 

Furthermore, it may not always be possible to achieve the same sign for all modal residues if a 

single actuator and a single sensor is being used and there are practical constraints on the location 

of actuators and sensors [36, 37, 39, 41]. For example, in certain parallel kinematic flexure 

mechanism based XY motion stages used for nanopositioning [36, 37, 39],the actuator and sensor 

cannot placed at the same location. Light weight robotic arms and manipulators used in space 

applications [41, 64, 65] also employ non-collocated actuator-sensor configuration in order to 

conserve weight and cost as well as control the end effector position precisely. Therefore, there is 

a need to characterize the zeros of multi-DoF flexible systems when all the modal residue signs 

are not the same so that new sufficient conditions for the absence of NMP zeros can be conceived.  

1.4 Problem Statement 

Based on the above mentioned technical gaps, the problem addressed in this thesis is stated as 

follows. “Formulate mathematical framework(s) for general flexible LTI SISO systems to derive 

the sufficient condition(s) for the absence of CNMP and RNMP zeros, with and without viscous 

damping, when all modal residue signs are not the same.” 

Solving this problem statement leads to several novel sufficient conditions for the absence of 

CNMP and RNMP zeros in viscous damped and undamped multi-DoF flexible LTI systems with 

any arbitrary number of DoFs (modes). These novel sufficient conditons are referred to as ‘Rath’s 

sufficient conditions’ in Fig 1-12. Fig 1-12 shows how the novel sufficient conditions derived in 

this thesis compare and contrast against already existing sufficient conditions in the literature 

(italicized in Fig 1-12).  
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Fig 1-12 Venn diagram of sufficient conditions for the absence of CNMP and RNMP zeros 

1.5 Organization of the Thesis 

In order to solve the problem statement, the work in this thesis is organized into five research 

tasks as shown below. The organization of the chapters is based on these tasks: 

Task 1 (Chapter 2): Conduct a systematic investigation based on modal theory and zero loci to 

explain the genesis and existence of different types of zeros in the transfer function of a three-DoF 

undamped flexible LTI system. Provide the necessary and sufficient conditions for the absence of 

non-minimum phase zeros in terms of the system parameters – modal residues and modal 

frequencies. This is achieved by constructing a comprehensive set of zero loci that cover all 

possible distribution of the zeros with respect to the poles for any value of system parameters. 

Based on these zero loci, the necessary and sufficient conditions for the absence of non-minimum 

phase zeros are derived in terms of the system parameters. 
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Task 2 (Chapter 3): Extend the investigation in Chapter 2 to study the genesis and existence of 

different types of zeros in the transfer function of two and three-DoF viscous damped flexible LTI 

systems under the assumption of classical viscous damping. A flexible system is classical viscous 

damped if its mass matrix ([M]), viscous damping matrix ([C]) and stiffness matrix ([K]) satisfy 

the following condition: [C] [M]-1 [K] = [K] [M]-1 [C]. Provide the necessary and sufficient 

conditions for the absence of non-minimum phase zeros in terms of the system parameters which 

now also includes modal damping ratio. However, as the number of DoFs (modes) increase, the 

parameter space rapidly expands, making this investigation tedious and complicated for higher 

DoF flexible LTI systems.  

Task 3 (Chapter 4): In order to study the zeros of multi-DoF undamped flexible LTI systems with 

any arbitrary number of DoFs (modes),  the parity (odd/even) of the number of zeros with respect 

to the poles is investigated. This investigation leads to a non-unique sufficient condition for the 

absence of only CNMP zeros in terms of the sequence of modal residue signs. Under the 

assumption that the sufficient condition for the absence of only CNMP zeros is satisfied, an 

additional mathematical condition is derived to guarantee the absence of RNMP zeros as well. The 

sufficient condition for the absence of only CNMP zeros and the additional mathematical condition 

for the absence of RNMP zeros together form a sufficient condition for the absence of all NMP 

zeros. A case study is used to provide a step-by-step design strategy to choose mass-stiffness 

distribution and actuator-sensor location to achieve the required sequence of modal residue signs 

(not necessarily ‘all modal residue signs are same’) that satisfies the sufficient condition for the 

absence of CNMP zeros. However, there still remains a need for a design strategy that makes use 

of viscous damping to guarantee the absence of non-minimum phase zeros in multi-DoF damped 

flexible LTI systems. 
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Task 4 (Chapter 5): Conduct a systematic investigation of the zero dynamics of proportionally 

viscous damped multi-DoF flexible LTI system with any arbitrary number of DoFs (modes) using 

a change of variable methodology to reduce its large parameter space to a few composite 

parameters. A flexible system is proportional viscous damped if its mass matrix ([M]), viscous 

damping matrix ([C]) and stiffness matrix ([K]) satisfy the following: [C] = cM[M] + cK[K] where 

cM and cK are proportional damping coefficients. This investigation shows that proportional 

viscous damping cannot guarantee the absence of RNMP zeros but it leads to the necessary and 

sufficient condition for the absence of only CNMP zeros in proportional viscous damped flexible 

systems. A case study is used to provide a step-by-step design strategy that makes use of 

proportional viscous damping to guarantee the absence of CNMP zeros for a given actuator-sensor 

location and mass-stiffness distribution.  

Task 5 (Chapter 6): Derive a proportional viscous damping strategy that pushes all RNMP zeros 

further away from the imaginary axis. A case study is used to demonstrate that this simultaneously 

leads to fast settling time and small undershoot which were otherwise conflicting requirements due 

to the tradeoff imposed by RNMP zeros.  

1.6 Research Contributions 

The contributions of this thesis are summarized below: 

1. Create mathematical framework(s) to explore the necessary and/or sufficient conditions for the 

occurrence of different types of zeros in the transfer function of multi-DoF flexible LTI 

systems with and without damping.  

2. Derive some necessary and/or sufficient conditions for the absence of non-minimum phase 

zeros from the transfer functions of multi-DoF flexible LTI systems.  
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3. Create design strategies informed by the above mentioned mathematical conditions to 

demonstrate via various case studies the absence of non-minimum phase zeros or pushing the 

non-minimum phase zeros further away from the imaginary axis.  
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Chapter 2 On the Zeros of Undamped Three-DoF Flexible Systems  

This chapter presents an investigation of zeros in the SISO dynamics of an undamped three-DoF 

LTI flexible system. Of particular interest are non-minimum phase zeros, which severely impact 

closed-loop performance. This study uses modal decomposition and zero loci to reveal all types of 

zeros – marginal minimum phase (MMP), real minimum phase (RMP), real non-minimum phase 

(RNMP), complex minimum phase (CMP) and complex non-minimum phase (CNMP) – that can 

exist in the system under various parametric conditions. It is shown that if CNMP zeros occur in 

the dynamics of an undamped LTI flexible system, they will always occur in a quartet of CMP-

CNMP zeros. Consequently, the simplest undamped LTI flexible system that can exhibit CNMP 

zeros in its dynamics is a three-DoF system. Motivated by practical examples of flexible systems 

that exhibit CNMP zeros, the undamped three-DoF system considered in this chapter comprises of 

one rigid-body mode and two flexible modes. For this system, the following conclusions are 

mathematically established: (1) This system exhibits all possible types of zeros. (2) The precise 

conditions on modal frequencies and modal residues associated with every possible zero provide 

a mathematical formulation of the necessary and sufficient conditions for the existence of each 

type of zero. (3) Alternating signs of modal residues is a necessary condition for the presence of 

CNMP zeros in the dynamics of this system. Conversely, avoiding alternating signs of modal 

residues is a sufficient condition to guarantee the absence of CNMP zeros in this system. 
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2.1 Introduction and Motivation 

The dynamics of flexible systems is of interest in a wide range of motion and vibration control 

applications including space structures [1, 2, 66], dexterous manipulation [67-71], locomotion [72, 

73], hard-disk drives [3, 4, 74], and flexure mechanisms [6, 75, 76], among others. These 

applications typically require a combination of range, speed, settling time, noise and disturbance 

rejection, control robustness, motion accuracy, etc. – performance specifications that are met by 

careful choice of sensors, actuators, and associated electronics, as well as design of various control 

strategies [77-79]. Yet the presence of resonant peaks along with ill-behaved zero dynamics such 

as non-minimum phase behavior [36, 37, 41, 43, 80] severely limits the performance that can be 

achieved through feedback and feedforward control strategies [14, 15, 81, 82]. 

Im
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Fig 2-1 Types of zeros in a LTI system 

Fig 2-1 shows the various types of zeros that can appear in the SISO dynamics of a LTI system 

– marginal minimum phase (MMP) that lie on the imaginary axis, real minimum phase (RMP), 
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real non-minimum phase (RNMP), complex minimum phase (CMP) and complex non-minimum 

phase (CNMP). These zeros are dictated by the physical design of the LTI system, including the 

location of sensor and actuator, and cannot be altered by output or state feedback. Given the critical 

role that zeros play (particularly NMP zeros) in control performance, an intimate knowledge of the 

existence of the various types of zeros and their dependence on the various system parameters is 

of interest.  

Section 2.2 of this chapter provides a review of the extensive literature on system zeros, but the 

existing results fail to present an analysis of systems that include all possible types of zeros. 

Furthermore, an interpretation of the genesis of zeros (particularly CNMP zeros) based on physical 

parameters and design is still lacking. In our previous work, we mathematically predicted [36] and 

experimentally demonstrated [37] the existence of CNMP zeros under certain combinations of 

physical parameters and operating conditions in flexure mechanisms. However, this was a system-

specific investigation and did not provide a more fundamental understanding into the origin of 

these zeros.  

To achieve such an understanding, we employ modal decomposition [83] to study zeros in the 

SISO dynamics of an undamped three-DoF LTI flexible system in this chapter. This system 

comprises of one rigid-body mode and two flexible modes. The genesis of different types of zeros 

and their transition from one type to another is shown to depend on mathematical conditions that 

involve the modal frequencies and residues of the flexible system. Since these modal parameters 

(i.e. frequencies and residues) can be expressed in terms of physical parameters of the system (e.g. 

stiffness and mass), the mathematical framework presented here offers a direct connection between 

the zeros and the physical parameters of the system. The mathematical framework and associated 

results of this chapter can therefore be used to derive key physical insights into the zero dynamics 
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of any flexible system that can be approximated by the undamped three-DoF LTI flexible system 

investigated here. 

2.2 Literature Review 

There is a significant body of research literature on the zero dynamics of flexible systems. Existing 

frequency domain studies may be broadly classified into three groups: (1) studies that focus on 

fundamental system types irrespective of the type of zeros, (2) studies that focus on gaining 

physical meaning into various types of zeros, and (3) studies that focus on specific types of zeros 

(e.g. CNMP) irrespective of the system type. 

Studying the zeros of LTI systems using fundamental system types is based on the idea of modal 

decomposition [83]. Since a single mode cannot lead to any zeros, the simplest flexible system 

type to study zeros is a system with two modes or DoFs. A simpler variation of this two-DoF 

system is one where the first mode has zero natural frequency (i.e. is a rigid-body mode). In the 

literature, Miu [84] used such a two-DoF model for a torsional system and studied the variation of 

zeros due to the variation of sensor location. Rankers [85] studied the interaction between the rigid 

body mode and the flexible mode on a frequency response plot. It was demonstrated that the 

variation of zeros arises due to the variation of modal residues (magnitude and signs) associated 

with these two modes. Colingh [86] studied a motion stage with flexible guidance and showed the 

mapping between sensor/actuator locations and various types of zeros. Using a two-DoF flexible 

system model, this work demonstrated marginally minimum phase (MMP), real minimum phase 

(RMP) zeros, and real non-minimum phase (RNMP) zeros, but did not capture complex non-

minimum phase (CNMP) zeros.  
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Studying the zeros of systems with a single flexible beam has also been an active area of research. 

Spector and Flashner [31, 87] studied a non-collocated pinned-free beam model and identified the 

migration of zeros on the real and imaginary axes due to variation in the sensor location. Wie  [[88] 

studied the pole-zero patterns in flexible structures including beams, membranes and triangular 

trusses. Lee and Speyer [89] used a Bernoulli-Euler beam model and studied the migration of zeros 

in various input-output transfer functions. In addition, Aphale [90]  studied the zeros of a cantilever 

beam with the impact of a feed-through term and Vakil [91] studied the location of zeros for a 

single flexible beam under the variation of different physical parameters. In all of this work, the 

migration of zeros is restricted to the real and imaginary axes, i.e. zeros are MMP, RMP, or RNMP, 

but not CMP or CNMP.  

There are also studies that focus on zeros of systems that extend beyond a two-DoF model. 

Tohyama and Lyon [92, 93] used a system with two modes and a constant remainder to study the 

transfer function in room acoustics. By varying the remainder, they identified marginally minimum 

phase (MMP) zeros and complex non-minimum phase (CNMP) zeros. These studies however, 

only investigate variation of the remainder without investigating the influence of changing the two 

modal residues or frequencies. As a result, RMP and RNMP zeros are not captured in this work. 

Duffour and Woodhouse [94] studied the transfer function of linearized systems with frictional 

contact. In their investigation, analytical and graphical locus techniques were used to examine 

cases with only two modes, with two modes with a constant remainder, and with three modes. 

While MMP zeros and CNMP zeros are reported in this work, RNMP zeros were not captured due 

to inadequate spanning of the parameter space. Martin [43] proposed modal decomposition to 

identify MMP, RNMP, RMP and CNMP zeros by studying a numerical model with three modes, 

but he did not draw any broader conclusions from his numerical results. He concluded that for the 
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situation of sensor and actuator collocation, the zeros are MMP, wherein zeros are alternately 

located between the system poles. He also argued that such a system is robust against modeling 

uncertainties and unmodeled high frequency dynamics when operated in closed loop.  

The second group of studies on zeros focuses on gaining physical meaning into various types of 

zeros. Miu [28] studied the MMP zeros in serially connected spring mass systems. He concluded 

that for this simple class of systems, MMP zeros indicate the natural frequencies of several sub-

systems defined by the actuator and sensor locations. Chandrasekar [38] showed that all zeros in 

such serially connected spring-mass systems are MMP zeros. Straete [29] used the approach of 

bond graphs to study all types of zeros and reached the physical insight that zeros are related to 

subsystems where energy is “trapped”. In addition, Calafiore’s [30] analysis also characterized 

how sub-systems are related to zeros. Nevertheless, in all of this work, a sub-system-based physical 

insight is applicable only in simple classes of systems, namely serially connected spring-mass 

systems. For a general flexible system, sub-systems and any associated physical insights are 

difficult to identify. Examples include Coelingh’s model [86] and the multi-axis flexure 

mechanism [36, 37] that exhibits dynamic coupling between the modes in different axes.  

The third group of studies focuses on specific types of zeros irrespective of the system type. In 

particular, CNMP zeros have been reported in flexible systems [36, 37, 41], [40, 42, 95] but there 

remains very little physical understanding of these zeros. Cannon and Schmitz [41] identified 

RNMP and CNMP zeros numerically in the transfer function of a pinned-free beam. Loix et al. 

[40] studied a four-DoF spring-mass model with spring stiffness variation. They numerically 

identified the existence of CNMP zeros and the corresponding zero locus. They also provided an 

experimental observation of CNMP zeros in a cantilever beam set-up but did not present a 

mathematical formulation for these zeros. Hoagg [35] investigated a three DoF spring-mass-
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damper model that also captured CNMP zeros. However, they assumed an unusually large 

damping ratio (ζ>1.3) to create the CNMP zeros. Awtar [42] predicted and experimentally 

measured CNMP zeros in the non-collocated transfer function of a multiple spring-mass servo 

system. Electromagnetic modeling showed that these zeros arose due to a coupling between the 

DC motor and the tachometer in this servo system. In our recent work, CNMP zeros have been 

modeled [36] and measured [37] in a lightly damped flexure mechanism-based motion stage.  

In all of these studies, the advantage of focusing on specific systems is that it allows one to validate 

the existence of certain types of zeros (particularly RNMP and CNMP) via models and 

experiments. Furthermore, the relationship between physical parameters and the location/existence 

of zeros can be demonstrated. Yet, all of these existing studies are system-specific and do not 

provide a deeper understanding into the existence of zeros for flexible systems in general.  

Thus, the gap in the existing literature on zeros may be summarized via two key points. First, while 

zeros of flexible systems have been studied using the technique of modal decomposition by 

varying modal parameters, the existing results are incomplete in terms of capturing all possible 

types of zeros in a single, general flexible system. Second, there remains a lack of physical 

understanding of the conditions for which certain zeros (especially RNMP and CNMP) appear or 

change from one type to another.   

This chapter addresses this gap by identifying the simplest LTI system – an undamped three-DoF 

flexible system – that exhibits all types of zeros. A mathematical framework based on modal 

decomposition is used to relate system zeros to modal parameters. Specifically, for a three-DoF 

flexible system with one rigid-body mode, the precise conditions on modal parameters 

(frequencies and residues) are derived for every possible zero type. This leads to a comprehensive 

set of necessary and sufficient conditions on modal parameters for the existence of each type of 
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zero. Since modal parameters can be ultimately correlated to physical parameters of the system 

(e.g. stiffness and mass), the mathematical framework presented here can be used to not only gain 

physical insights into the origin of zero dynamics but also influence them through the appropriate 

choice of physical parameters. 

The rest of this chapter is organized as follows. Section 2.3 captures zero dynamics via modal 

decomposition and presents key results that help narrow down the scope of this investigation to a 

three-DoF system. Section 2.5 provides an explicit mathematical and graphical correlation between 

the modal frequencies and the modal residues of a three-DoF flexible system (with one rigid-body 

mode) and the associated zeros. This leads to several important mathematical observations and 

physical insights. Section 2.6 concludes the chapter with a summary of the conclusions and design 

insights obtained in this work and a brief discussion on the subsequent course of this research. 

2.3 Zero Dynamics and Modal Decomposition 

The input-output dynamics of a LTI SISO system given by transfer function G(s) can be 

expressed as the sum of the contributions of its decomposed modes. 

 1 0
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  (2-1) 

Assumption 1: The LTI SISO flexible system investigated in this chapter is assumed such that all 

the decomposed modes are second order, and that there are no first order modes. Additionally, it is 

assumed that these second order modes are all oscillatory in nature (i.e. the poles associated with 

each mode lie on the imaginary axis and not on the real axis). This is a reasonable assumption for 

many continuous structural and discrete spring-mass systems. 
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Assumption 2: Next, it is assumed that the flexible system is undamped. This assumption is 

reasonable for flexible systems such as flexure mechanisms that are monolithic with no rolling or 

sliding joints [6, 75, 76], for space structures [1, 2, 66], and for machines that operate in vacuum 

[96], where damping is negligible.  

Assumption 3: If force is assumed to be the input and displacement is selected as the output of 

such a LTI SISO flexible system, then the input-output transfer function G(s) from Eq.(2-1) can 

be restated as follows:   
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  (2-2) 

Here the total number of second order modes is n, which is also the DoF of the system per the 

nomenclature of this chapter, and i is the natural frequency of the ith mode. Additionally, it is 

assumed that G(s) represents a physical system (as opposed to a mathematical system), and is 

strictly proper (i.e. m < n). In other words, the number of zero pairs is less than the number of 

modes in the system. 

From Eq. (2), it may be seen that the variation of modal residues (i) leads to the variation of 

the numerator coefficients (bi), and thus, the variation of the zeros of G(s). There are some key 

results that can be readily derived for a LTI SISO flexible system defined by the above 

assumptions.  

Result 1: For an undamped LTI flexible system whose SISO dynamics is given by Eq.(2), if a pair 

of complex non-minimum phase (CNMP) zeros occurs, it will always occur in a quartet along with 

a pair of complex minimum phase (CMP) zeros. 

Proof: Transfer function G(s) can be expressed in terms of its numerator N(s) and denominator 

D(s), as follows: 
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  (2-3) 

As a consequence of the assumptions made above, it is evident that N(s) and D(s) are even 

functions (i.e. N(s) = N(−s) and D(s) = D(−s)).  

Therefore, if a±ib (where a > 0) are CNMP zeros of G(s) (i.e. N(a±ib) = 0), and N(a±ib) = 

N(−(a±ib)) because N(s) is an even function, then it follows that N(−a±ib) = 0. In other words, 

−a±ib are also zeros of G(s). Since a > 0 these two zeros constitute a CMP zero pair. Thus, zeros 

that are neither on the imaginary axis nor on the real axes of the s-plane, always appear as a CMP-

CNMP quartet (±a±ib).  

Result 2: An undamped LTI flexible system must have a minimum of three modes (i.e. three-DoF) 

to exhibit a CMP-CNMP zero quartet in its SISO dynamics.  

Proof: According to Result 1, CMP-CNMP zeros always appear as a quartet. This means that for 

such a quartet to appear, the numerator N(s) in Eq.(2-3) should be at least a 4th order polynomial 

in s. Further, because the physical system is strictly proper, the denominator D(s) should at least 

be a 6th order polynomial in s. Since all the decomposed modes of G(s) are second order, it follows 

that the system should consist of at least three such modes to exhibit a CMP-CNMP zero quartet. 

Based on these results, since a three-DoF undamped LTI flexible system is the simplest system 

that exhibits CMP-CNMP zeros, we choose this system for the intended investigation that captures 

all the zero types. As discussed in Section 2.2, two-DoF undamped LTI flexible systems have been 

extensively studied [30-32] but exhibit only MMP, RMP and RNMP zeros. 
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2.4 Two DoF Flexible LTI System 

A two-DoF undamped LTI flexible system that follows Assumption 1 through 3 can be 

expressed as: 
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 (2-4) 

Note that Coelingh [86] studied a special case of the undamped two-DoF flexible system with 

one rigid body mode and one flexible mode. The zeros of G(s) are the roots of its numerator which 

can be expressed as follows: 
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The zeros of G(s) are studied by varying the ratio of its modal residues (u /v) from -∞ to +∞. 

In order to do this, we define a mathematical transfer function, T(s) = (s2 + v
2) / (s2 + u

2) and 

plot the root locus of T(s) as a function of (u /v). The root locus of T(s) gives the zero locus of 

G(s).  Note that the zeros of undamped flexible systems are symmetric about the real and imaginary 

axis. Therefore, for the sake of brevity, only the first quadrant of the s-plane is shown in the figure 

below to capture the zero locus of G(s) (root locus of T(s)). It must be kept in mind that when the 

zero locus shows a MMP zero on the positive imaginary axis, there is a symmetric MMP zero on 

the negative imaginary axis. Similarly, when the zero locus shows an RNMP zero on the positive 

real axis, there is a symmetric RMP zero on the negative real axis.  



 
48  

 
 

uw

vw

One MMP 
zero pair

uw

vw

One RMP-RNMP 
zero pair

uw

vw

One MMP 
zero pair

2

2
1 u u

v v

 
 

   
2

2
0u u

v v

 
 

  1u

v




   (a) (b) (c)

uw

vw

One MMP 
zero pair

0 u

v




  (d)

 

Fig 2-2 Zero locus of two-DoF flexible system 

Part (a) to Part (c) in Fig 2-2 are the negative (complementary) root locus of T(s) because (u 

/v) < 0. Part (d) in Fig 2-2 is the positive root locus of T(s) because (u /v) > 0. The following 

inferences can be drawn based on the zero locus of G(s) in Fig 2-2.  

1. When all modal residue signs are the same i.e. (u /v) > 0, Fig 2-2d shows that the zeros are 

always MMP.  

2. When all modal residue signs are not the same i.e. (u /v) < 0, Fig 2-2a – c show that the zero 

is either MMP or RNMP.  

3. As (u /v) is increased from -∞, the MMP zero moves along the imaginary axis towards +∞ 

as shown in Fig 2-2a.  

4. Beyond a critical value of (u /v), the MMP zero transitions into a RNMP zero. This critical 

value of (u /v) can be obtained by equating the coefficient of s2 in the numerator of G(s) to 0. 

This leads to (u /v) = -1. 
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5. As (u /v) is increased from -1, the RNMP zero moves along the positive real axis towards 

the origin as shown in Fig 2-2b.  

6. Beyond a critical value of (u /v), the RNMP zero transitions back to a MMP zero. This 

critical values of (u /v) can be obtained by equating the coefficient of s0 in the numerator of 

G(s) to 0. This leads to (u /v) = -u
2/v

2.  

2.5 Three DoF Flexible LTI System1 

A three-DoF undamped LTI flexible system that follows Assumptions 1 through 3 can be 

expressed as: 
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  (2-6) 

where R < u < v. Here we make one more assumption – that the first mode is much lower in 

frequency compared to the subsequent two modes. While a general three-DoF system can be 

considered, this assumption offers some practical advantages. In previous modeling [36] and 

experimental [37] work, we have shown that CNMP zeros appear in systems that have a low-

frequency mode and at least two higher frequency closely-spaced modes. This provides the 

motivation to investigate a slightly simpler system by setting R to zero in Eq.(2-6). This additional 

assumption also helps simplify the mathematical and graphical analysis of the zero locus in this 

section, which allows for better physical interpretation of the results.  

Yet, the three-DoF model that stems from this assumption can still be used to explain the 

dynamics of flexible systems that are characterized by a low-frequency rigid body mode and a 

couple of relatively high-frequency flexible modes. In such instances, the low-frequency flexible 

1 This work was done in collaboration with Leqing Cui (M.E. Ph.D. 2017) at the University of Michigan 
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mode is approximated as a pure rigid body mode to study its interaction with the two higher 

frequency modes that give rise to the CMP-CNMP zero quartet trapped between them. 

Assuming the first mode to be a rigid-body mode, the three-DoF flexible system of Eq.(2-6) 

reduces to:  
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  (2-7) 

Furthermore, R can be set to be +1, without any loss in generality. This helps reduce the 

number of parameters that need to be carried through the subsequent mathematical steps. The 

system transfer function from Eq.(2-7) may be further expressed as:   
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Next, if we define:  
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Now, we create a transfer function T(s) = A(s)/B(s), which has no physical meaning and simply 

serves as a mathematical tool, as described next. First, the poles of T(s) are the poles associated 

with the modes u and v. Second, T(s) has two pairs of zeros. One pair is fixed at the origin and the 

other pair changes position based purely on the ratio u /v. For a given u /v ratio, u, and v, if 

v is varied, then the root locus of T(s) with unity feedback is obtained. But note that the root-locus 

of T(s) is also the zero-locus of G(s). Moreover, if the sign of v is flipped, then the complementary 
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root locus is obtained. Thus, T(s) serves as an intermediate mathematical tool to obtain the zero-

locus of G(s) for various modal parameters.  

The root-loci of T(s), which correspond to the full zero-loci of G(s), are shown in Fig 2-3 for 

four different value ranges of u /v. For ease of illustration, only the first quadrant is shown in 

each case. As noted above, the value ranges of u /v determine the location range of the second 

zero pair of T(s) (shown in blue) as follows: 

(a) 0u

v

a
a

> : 2nd zero pair of T(s) lies between u and v 

(b)
2

2
0u u

v v

w a
w a

- < < : 2nd zero pair of T(s) lies b/w origin and u  

(c)
2

2
1 u u

v v

a w
a w

- < <- : 2nd zero pair of T(s) lies on the real axis 

(d) 1u

v

a
a

<- : 2nd zero pair of T(s) lies between v and infinity 

The top panel of Fig 2-3 shows the zero-loci of G(s) for positive v (varying from 0 to ∞) and 

the bottom panel shows the zero-loci of G(s) for negative v (varying from -∞ to 0). A key 

observation here is that CNMP zeros arise in instances (b), (c), and (d) of the top panel, where the 

zero-locus branches break-away from the imaginary axis and subsequently re-join at the real or 

imaginary axes, as v increases. To find the v value at these break-away and re-join points, one 

simply needs to find the repeated roots of s2 in N(s), where 
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To find the repeated roots, one can set the discriminant of the above quadratic expression in s2 to 

0, 
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Here, the smaller value of v corresponds to the break-away point and the larger value corresponds 

to the re-join point: 
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Another key observation in Fig 2-3 is that a pair of MMP zeros can approach infinity and then 

transition over to a RMP-RNMP pair, as seen in instance (d) of the top panel and instances (a), (b), 

and (c) of the bottom panel. The value of v for which this transition happens can be determined 

by finding the condition when N(s) has only one pair of roots.  
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This condition corresponds to setting the coefficient of s4 in the above expression to zero.  
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Fig 2-3 Zero loci of G(s) 

 

Result 1: In a three-DoF undamped flexible LTI system given by Eq.(2-7), when v > 0, the 

following conditions are individually sufficient and together necessary to guarantee the elimination 

of all NMP zeros: 
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Proof: The individually sufficient conditions shown above are derived from the top panel of Fig 

2-3 where v > 0. The first condition i.e. Condition 1.1 is derived from case (a) of Fig 2-3. Case 

(a) shows that when the ratio of modal residues i.e. then there is no NMP zero in the zero 

loci. Condition 1.2 is derived from case (b) by selecting that range of v where the zero loci lies 

purely on the imaginary axis. Similarly, Condition 1.3 and Condition 1.4 are derived from case (c) 

and case (d) respectively.  

Result 2: In a three-DoF undamped flexible LTI system given by Eq.(2-7), when v < 0, the 

following conditions are individually sufficient and together necessary to guarantee the elimination 

of all NMP zeros: 
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Proof: The individually sufficient conditions Result 2 are derived from the bottom panel of Fig 2-

3 where v < 0. Condition 2.1 is drived by combining case case (a), case (b) and case (c) of the 

bottom panel and Condition 2.2 is derived from case (d).  

Based on these results and Fig 2-3, the following conclusions can be drawn: 

1. By varying αu / αv and αv, all types of zeros (i.e. MMP, RMP-RNMP pair and CMP-CNMP 

quartet) are obtained in the zero loci of a three-DoF flexible system (with one rigid-body 

mode).   

2. CNMP zeros occur in cases (b), (c) and (d) of the top panel where (αu / αv) < 0 and 0 < αv < ∞. 

Therefore, the necessary condition for the existence of CNMP zeros is the alternating sequence 

of modal residue signs i.e. αR > 0 (already assumed to be +1), αu < 0 and αv > 0. This necessary 

condition is nevertheless not a sufficient condition. As seen in cases (b), (c) and (d) of the top 

panel, even when the necessary condition is satisfied, there exist values of αv for which the 

zeros are either MMP or RMP-RNMP. These are the values of αv before the break-away and 

after the re-join of the zero loci, given by Eq.(2-9).  

3. Conversely, avoiding the alternating sequence of modal residue signs is a sufficient condition 

for the elimination of CNMP zeros. However, this is not a necessary condition for the 

elimination of CNMP zeros. The value of αv can be tuned such that it does not lie between the 
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break-away and re-join points given by Eq.(2-9). This would guarantee that CNMP zeros do 

not occur in the system dynamics even in the presence of alternating modal residue signs.  

4. Eq.(2-9) gives the break-away point of the zero loci from the imaginary axis and the subsequent 

re-join of the zero loci onto the imaginary axis or the real axis. This equation mathematically 

shows the precise conditions under which MMP zeros transition to a CMP-CNMP quartet and 

then back to either MMP zeros or a RMP-RNMP pair. These break-away and re-join points can 

be easily visualized in instances (b), (c) and (d) of the top panel (i.e. 0 < αv < ∞) of Fig 2-3.  

5. Based on Eq.(2-9), it can be mathematically observed that as  2 2
u vw w tends to 1, the 

values of αv at which break-away and re-join occur tend to zero. Therefore, in the presence of 

alternating sequence of modal residue signs (represented by (b), (c) and (d) when 0 < αv < ∞), 

if a three-DoF flexible system has two closely spaced flexible modes (given by tending to 

1), then the occurrence of CNMP zeros (in form of quartet) becomes very sensitive to small 

values of αv. In the presence of closely spaced flexible modes, even a small non-zero value of 

αv (modal residue associated with the flexible mode v), can lead to the presence of CNMP zeros 

in the system dynamics. 

6. Eq.(2-10) gives the mathematical condition when MMP zeros transition into a RMP-RNMP 

pair. This point of transition only depends on the ratio of modal residues () of the two flexible 

modes. If  tends to -1, then the transition from MMP zeros to RMP-RNMP pair happens for 

very large values of αv. In other words, the transition becomes insensitive to the value of αv.  

7. There are two cases, namely case (a) of the top panel and case (d) of the bottom panel where 

NMP zeros do not occur in the zero locus for any value of αv. Case (a) of the top panel leads 

to a configuration of modal residue signs given by αR > 0, αu > 0 and αv > 0. This is in agreement 
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with [24] where it was shown that when all modal residues have the same sign, it only leads to 

MMP zeros in the system dynamics. 

2.6 Conclusion 

This chapter investigates the zero dynamics of an undamped three-DoF flexible system that 

consists of one rigid body mode and two flexible modes. Mathematical formulae are used to 

provide the necessary and sufficient conditions for the existence of every type of zero (MMP, 

RMP-RNMP pair and CMP-CNMP quartet) in the system. Particular emphasis is given to NMP 

zeros, which severely impact the closed loop performance of flexible systems. Based on this 

investigation, it is found that whenever CNMP zeros occur in the system dynamics, they always 

occur in a quartet of CMP-CNMP zeros and alternating signs of modal residues is a necessary 

condition for their occurrence. Therefore, in order to avoid CNMP zeros in the system dynamics, 

avoiding an alternating sequence of modal residue signs is a sufficient condition. The signs of 

modal residues are closely tied to the location of actuators and sensors on a flexible system through 

the mode shapes of the associated flexible modes [24]. The mathematical insight from this 

investigation can be combined with the knowledge of mode shapes of specific flexible systems 

that can be approximated by an undamped three-DoF flexible system model. This will enable 

optimal placement of actuators and sensors in order to avoid NMP zeros.  

This investigation also reveals that the occurrence of CNMP zeros in undamped three-DoF 

flexible systems with closely spaced flexible modes is very sensitive to variations in the modal 

residues and by extension very sensitive to variations in physical parameters of the flexible systems 

[36]. This phenomenon is usually observed in the dynamics of flexure mechanisms that make use 

of symmetric/periodic building blocks (or flexure modules) to achieve large range of motion, high 
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constraint direction stiffness, and low sensitivity to thermal effects [39]. The symmetric/periodic 

structure gives rise to closely spaced flexible modes and a large range of motion gives rise to 

geometric non-linearities that lead to varying system parameters [36, 37].  

In this chapter, we only presented an investigation on the zeros of an undamped flexible system. 

In the subsequent chapters, we will also investigate the zero dynamics of damped flexible systems 

and draw key physical insights on the impact of damping on zero dynamics. We will use these 

insights to choose actuator-sensor location and damping strategies to show how NMP zeros can 

be eliminated from the dynamics of large-range multi-axis flexure mechanisms. 
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Chapter 3 On the Zeros of Two and Three DoF Damped Flexible Systems 

This chapter presents an investigation of the non-minimum phase (NMP) zeros in the single input 

single output (SISO) transfer function of two and three-DoF (degrees of freedom) damped flexible 

linear time-invariant (LTI) systems under the assumption of classical damping. It is well-known 

that when all the modal residue signs of any multi-DoF damped flexible LTI system are the same, 

NMP zeros never occur in the system dynamics for any value of system parameters including 

modal residue, modal frequency and modal damping ratio. However, when all the modal residue 

signs are not the same, then additional conditions in terms of the system parameters are required 

to guarantee the elimination of NMP zeros. In this chapter, the zero loci of a two and three-DoF 

damped flexible LTI system are developed to derive the sufficient and necessary conditions for 

the elimination of all NMP zeros. These conditions can be employed in the robust physical design 

of flexible systems, i.e., as long as these conditions are satisfied, the elimination of NMP zeros is 

guaranteed even when the system parameters undergo variations 

3.1 Introduction and Background 

Flexible system dynamics plays a vital role in the performance of several motion and vibration 

control applications such as space structures [2, 66], rotorcraft blades [5, 97], hard-disk drives [3, 

4], flexure mechanisms [7, 39], and motion systems with transmission compliance [8, 98]. These 

applications often require the use of feedback and feedforward controls in an attempt to achieve 

high speed, low settling time, strong disturbance rejection, low sensitivity to modeling 
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uncertainties, and stability robustness. However, the presence of undamped poles and non-

minimum phase (NMP) zero dynamics in the single input single output (SISO) transfer function 

lead to significant tradeoffs amongst these competing requirements. A zero is non-minimum phase 

(NMP) if it has a positive real component, and minimum phase (MP) if it has a non-positive real 

component. 

One particular application example that highlights these tradeoffs is of flexure mechanisms used 

in high-precision high-speed positioning stages that exhibit undamped poles and ill-behaved zero 

dynamics such as non-minimum phase (NMP) behavior [36, 37, 39].  In these applications, the 

zeros are analytically and experimentally shown to transition from minimum phase (MP) to non-

minimum phase (NMP) as a function of parameters such as mass asymmetry and motion stage 

operating point. This variability in the system’s zero dynamics makes the flexible system all the 

more challenging to control. In such applications, it would be highly desirable to guarantee the 

absence of NMP zeros over the expected range of parameter variability via informed physical 

design. We refer to this as robust physical design of flexible systems.  

The physical consequences of NMP zeros on control performance of flexible systems is well-

documented in the literature [14, 16, 40, 41]. For example, a real NMP zero (i.e. with imaginary 

component = 0) guarantees the presence of undershoot in the step response [16]. It has been 

experimentally shown that the undershoot due to a real NMP zero and overshoot due to undamped 

poles limit the response time of a flexible one-link robot [41]. It is noteworthy that the presence of 

undershoot is only guaranteed for real NMP zeros; complex NMP zeros (i.e. with imaginary 

component ≠ 0) may or may not lead to undershoot as numerically demonstrated in [19]. The 

presence of any NMP zero also leads to a tradeoff between closed-loop bandwidth and stability 
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robustness [14]. Poor stability robustness in flexible systems leads to undesired residual vibrations, 

especially in case of modeling uncertainty. This is experimentally shown in [40] where the 

presence of complex NMP zeros in the end-point positioning control of a cantilevered beam leads 

to residual vibrations.  

Apart from the effect of NMP zeros on the control performance of flexible systems, these zeros 

are also linked to the vibration performance of flexible systems. Recent investigation in the 

dynamics of flexure mechanisms revealed that complex NMP zeros and mode localization occur 

together for the same values of physical parameters [36]. These two phenomena concurrently occur 

in flexible systems that exhibit closely spaced modes arising from their periodic structure as well 

as small parametric asymmetry.  It is well-known that mode localization is responsible for 

localized vibration in large space structures and turbine blades which leads to their premature 

failure [32-34]. The above-noted correlation between complex NMP zeros and mode localization 

can offer a means to predict and eliminate mode localization, which can be of significant value in 

these applications. Furthermore, Mottershead [99] numerically demonstrated the presence of 

complex NMP zeros in multi-DoF flexible systems and showed that in open-loop response, 

vibration is not completely eliminated at the frequency of these zeros. Furthermore, Mottershead 

[100, 101] has shown that zeros of multi-DoF flexible systems placed on the imaginary axis exhibit 

no vibration at these zero frequencies. However, these papers do not demonstrate how complex 

NMP zeros can be moved to zeros on the imaginary axis.   

These undesirable physical consequences of NMP zeros on the control and vibration 

performance of flexible systems motivate the need to systematically and comprehensively 

investigate the relationship between NMP zeros and the system parameters. Such an understanding 

can inform the design of flexible systems to intentionally eliminate NMP zeros. 
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Chapter 2 provided a comprehensive review of the research literature on zeros of linear time-

invariant (LTI) flexible systems, dating back to the 1980s. This review reveals that comprehensive 

sufficient and necessary conditions for the elimination of NMP zeros had not been reported in the 

literature for damped LTI flexible systems. Furthermore, Chapter 2 investigated the zeros of a 

three-DoF (Degrees of Freedom) undamped flexible LTI system by employing modal 

decomposition of the SISO transfer function. Five different zero types were investigated – complex 

MP (CMP) i.e. imaginary component ≠ 0, real MP (RMP) i.e. imaginary component = 0, marginal 

MP (MMP) i.e. real component = 0, complex NMP (CNMP), and real NMP (RNMP). 

Comprehensive sufficient and necessary conditions were then derived in terms of the system 

parameters, i.e. modal residues and frequencies, to guarantee the elimination of all NMP zeros. 

But this investigation did not consider any damping. 

There is a well-established body of research on the effect of viscous damping on the poles of 

flexible systems [61, 63, 102-107] but less so on the zeros [35, 94, 108, 109] even though zeros 

also play an important role in the dynamic performance of the flexible systems as noted above. 

Pang [108] analytically studied the effect of viscous damping on the migration of zeros specifically 

for transverse vibration of an Euler-Bernoulli beam and showed that the zeros lie on the LHS of 

the imaginary axis. However, this study was only limited to a collocated transfer function for the 

specific system studied. This paper provided no commentary on whether the conclusions reached 

are applicable to any general collocated transfer function. Alberts [109] also analytically 

investigated the effect of viscous damping on non-collocated transfer functions for transverse 

vibration of Euler-Bernoulli beams and reported the existence of NMP zeros. Duffour [94] 

analytically investigated the zero dynamics of two- and three- DoF flexible systems with and 

without damping. However, this paper did not explore the complete parameter space of the flexible 
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systems. Hoagg [35] numerically demonstrated the presence of CNMP zeros in the non-collocated 

transfer function of a three-DoF damped flexible system for large value of damping ratio (ζ >1.3). 

These prior numerical and analytical investigations provide examples of specific flexible systems 

where NMP zeros are either present or absent in the presence of viscous damping. However, no 

general insights or conditions for the elimination of NMP zeros are provided.  

Lin [60, 110] studied the zeros of general multi-DoF damped flexible systems, and reported a 

sufficient condition for the elimination of only NMP zeros. This sufficient condition stated that 

collocated transfer functions will guarantee the elimination of NMP zeros in flexible systems with 

any viscous damping. However, this sufficient condition does not address the zeros of non-

collocated transfer functions. Williams [57] under the additional assumption of classical damping, 

derived another sufficient condition for collocated as well as non-collocated transfer functions: If 

all the modal residue signs are positive and all the poles are underdamped, then all the zeros will 

be CMP. 

However, Williams [57] does not provide any result when all poles are not underdamped. 

Furthermore, when all the modal residue signs are not the same, finding the sufficient and 

necessary conditions for elimination of NMP zeros becomes far more complex. To the best of the 

authors’ knowledge, there are no previously reported conditions for two and three-DoF damped 

flexible systems, even though these systems are common and effective as reduced-order models 

in investigating the dynamics of practical multi-DoF flexible systems. For example, Tohyama [92, 

93] studied the zero dynamics of a transfer function associated with room acoustics, which is an 

infinite DoF system, using a three-DoF flexible system model to predict the occurrence of NMP 

zeros. Similarly, Duffour [94] investigated the self-excited instability in brake-disc like mechanical 



 
64  

 
 

systems in the presence of frictional contact by approximating the dynamics of the flexible system 

using two and three-DoF linearized models. 

Accordingly, this chapter investigates the sufficient and necessary conditions for the elimination 

of NMP zeros in two and three-DoF damped flexible systems, when all modal residue signs are 

not the same. Classical damping is assumed, which has widespread application in engineering 

practice because of its conceptual simplicity and practical utility [111-113]. Section 3.2 

demonstrates how this assumption enables modal decomposition of the system transfer function, 

leading to the subsequent investigation into zeros. The first novel contribution of this chapter, 

presented in Section 3.3, is a broader sufficient condition as compared to Williams [57] for any 

level of classical damping (underdamped, critically damped, or over-damped): If all the modal 

residue signs are the same, then the zeros of collocated as well as non-collocated transfer functions 

are guaranteed to be minimum phase (RMP or CMP). The second novel contribution, presented in 

Section 3.4, explicitly provides the sufficient and necessary conditions for the elimination of NMP 

zeros in terms of system parameters (i.e. modal residues, frequencies, and damping ratios) of a 

two-DoF flexible system using zero loci. The third novel contribution, presented in Section 3.5, 

explicitly provides the sufficient and necessary conditions for the elimination of NMP zeros in 

terms of system parameters (i.e. modal residues, frequencies, and damping ratios) of a three-DoF 

flexible system using zero loci.  Section 3.4 and Section 3.5 also provides several observations and 

inferences about the behavior of zero dynamics for their respective systems. The fourth novel 

contribution is in Section 3.6, which provides a step by step procedure that employs the above-

derived conditions to determine location and values of viscous damping so as to robustly eliminate 

NMP zeros in a three-DoF flexible system, leading to better control and vibration performance. 

Finally, Section 3.7 provides conclusion and subsequent research directions.  
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3.2 Zero Dynamics and Modal Decomposition 

Consider the equation of motion of a multi-DoF viscously damped flexible LTI system as shown 

in Eq.(3-1).  
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where, [M], [C], and [K] denote the mass, damping, and stiffness matrices, respectively; F denotes 

the force acting on the system through an input vector [B]; and, q is the measured displacement 

and is a linear combination, captured by sensor vector [D], of the individual DoF displacements 

denoted by w. 

If the [M], [C], and [K] matrices satisfy the following Caughey and O’Kelly criterion [59], the 

flexible system is referred to as “classically damped” system. 

 [ ][ ] [ ] [ ][ ] [ ]-1 -1
C M K = K M C  (3-2) 

This classically damped modeling assumption is commonly used in engineering applications 

because of its conceptual and mathematical simplicity [111-113]. The natural modes of vibration 

(i.e. eigenvectors) of such a classically damped flexible system are real valued and exactly same 

as those of the corresponding undamped flexible system (when [C] = 0). Due to this assumption, 

the mode shapes matrix [] is used to diagonalize the [M], [C] and [K] matrices simultaneously 

to obtain modal mass (mi
modal), modal damping (ci

modal), and modal stiffness (ki
modal), as follows: 
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The SISO transfer function of this system can then be modally decomposed, i.e., written as the 

sum of n second order modes [83], as follows:    
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The total number of second order modes (n) in the modal decomposition of G(s) is equal to the 

number of DoF of the flexible system. The roots of each second order mode in Eq.(3-4) lie on the 

LHS of the imaginary axis due to the presence of positive viscous damping. Each second order 

mode is characterized by three real valued system parameters namely, modal residue (i), modal 

frequency (i), and modal damping ratio (i). The modal residue (i) can be expressed in terms 

of the input vector [B], which depends on actuator location, and the sensor vector [D], which 

depends on sensor location, as well as the mode shapes matrix ([]), as shown in Eq.(3-5). The 

columns of the matrix [] are the mode shape vectors of the flexible system. Similarly, the modal 

damping ratio (i) and modal frequency (i) can be expressed in terms of the modal damping, 

mass, and stiffness. 

In this chapter, we use a set of mathematical and graphical tools, namely modal decomposition 

(as noted above) and zero loci (presented in Section 3.4 and Section 3.5), to generate granular 

insights into the behavior of different types of zeros as a function of system parameters (i, i, 

and i). We are able to differentiate between different types of NMP zeros, and provide separate 

conditions to eliminate each specific type, e.g. all NMP zeros, or CNMP zeros only, or RNMP 

zeros only. For example, Result 2 in Section 3.4 provides sufficient conditions for the elimination 
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of only CNMP zeros in a two-DoF damped flexible system, Result 3 provides sufficient and 

necessary conditions for the elimination of only RNMP zeros in such a system, and Result 4 

provides sufficient and necessary conditions for the elimination of all NMP zeros. The graphical 

insights also allow us to examine the robustness of the zero dynamics to parametric variations i.e. 

how close the zeros are to the imaginary axis where they can transition from minimum phase to 

non-minimum phase. 

Thus, the conditions for elimination of various types of NMP zeros derived in this chapter, in 

terms of the system parameters, help inform physical design choices such as selection of viscous 

damping strategies and magnitude i.e. choice of [C], actuator and sensor placement i.e. choice of 

[B] and [D], mass and stiffness distribution i.e. choice of [M] and [K]. The relation between these 

systems parameters (i, i, and i) and the physical design choices ([M], [C], [K], [B] and [D]) 

are given by Eq.(3-3) and Eq.(3-5). Physical design choices, thus informed, can lead to robust 

physical designs that guarantee the elimination of NMP zeros over a wide range of system 

parameters. 

3.3 Multi-DoF Damped Flexible System 

Result 1: In a multi-DoF damped flexible LTI system, a sufficient condition for the zeros of the 

SISO transfer function, G(s) to be minimum phase (MP) is that all the modal residue signs are the 

same. 

The zeros for G(s) are found by solving Eq. (3-6).  
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It is assumed that x+jy is one of the zeros of G(s) obtained by solving Eq.(3-6). Substitute x+jy 

into the ith mode in order to rewrite it in the Euler form as shown below. 
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Next, substitute the Euler form of the ith mode in Eq.(3-6).  
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Since all i are the same sign in this result, that sign can be assumed to be positive without any 

loss of generality. i is a positive quantity, by definition, as shown in Eq.(3-7). If it is assumed that 

the zero x+jy does not lie on the real axis i.e. y ≠ 0, then the sin(i) terms are not all zero. Therefore 

the sin(i) terms cannot all have the same sign in order to satisfy Eq.(3-9). The sign of sin(i) is 

given by the sign of the quantity 2y(x+ii  
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Fig 3-1 Sign of sin(i) when the zero (x+jy) lies in various regions of the s-plane 

Fig 3-1 illustrates the sign of 2y(x+iiwhen the zero x+jy lies in different regions of the s-

plane. For a multi-DoF damped flexible system that has n modes, the s-plane can be divided into 

n+1 regions defined by x = −ii. If the zero x+jy lies in Region 1 that extends from x = −11 to 

x = +∞, then all the sin(i) terms will necessarily have the same sign which would not satisfy 

Eq.(3-9). Hence, any zero of G(s) that does not lie on the real axis (i.e. y ≠ 0) can never lie in 

Region 1. Since Region 1 includes the right hand side (RHS) of the s-plane, such zeros will always 

be minimum phase. However, the zero x+jy can lie in Region 2 or for that matter in any region 

other than Region 1 and Region n+1, since the sin(i) terms do not have the same sign in these 

regions, as shown in Fig. 1, and therefore Eq.(3-9) can be satisfied. 

If it is assumed that the zero x+jy lies on the real axis i.e. y = 0 and as a consequence, all the 

sin(i) terms are equal to zero, then the above mentioned argument does not hold anymore for the 

sin(i) terms. In that case, one can observe the signs of the cos(i) terms in Eq.(3-9). The sign of 
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cos(i) is given by the sign of the quantity (x2 + 2iix + i
2) when y = 0. If the zero x lies on the 

RHS of the imaginary axis i.e. x > 0, then this quantity is always positive. As a consequence, all 

the cos(i) terms will be positive and Eq.(3-9) will not be satisfied. This leads to a contradiction 

that can only be resolved if x < 0 i.e. any real zero lies on the LHS of the imaginary axis and 

therefore is minimum phase. 

Result 1 proves that when classical viscous damping is added to a flexible system, with all modal 

residue signs being the same, the zero dynamics will continue to remain minimum phase for any 

value of system parameters, which now additionally include modal damping ratios. Therefore, if 

the same sign of modal residues can be realized through physical design of a multi-DoF damped 

flexible system, then it will guarantee the absence of NMP zeros. This result holds for any level of 

damping (underdamped, critically damped, or over-damped) as opposed to the result derived by 

Williams [57] which only holds for underdamped flexible systems. However, when all the modal 

residue signs are not same, additional conditions are required to guarantee the elimination of NMP 

zeros. Hence, in the next sections, the NMP zero dynamics of two-DoF damped flexible systems 

will be investigated to determine those additional conditions (in terms of system parameters) for 

the elimination of NMP zeros when all the modal residue signs are not the same. 

3.4  Two DoF Damped Flexible LTI Systems 

The SISO transfer function of a two-DoF classically damped flexible system is expressed in its 

decomposed form below. 
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The subscript ‘2’ in G 2 (s) stands for the number of modes (or the DoF). Furthermore, it is 

assumed without any loss of generality that u v. G 2 (s) is expressed in terms of its numerator 

and denominator as shown below.  
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The zeros of G 2 (s) are investigated by studying the roots of its numerator N2 (s). Of interest 

are the zeros when modal residues do not have the same sign, i.e., ( uv) < 0. N 2 (s) is 

expressed in terms of A 2 (s) and B 2 (s) that are defined below. A 2 (s) and B 2 (s) have no physical 

meaning and simply serve as a mathematical tool.  

( ) ( )

2 2 2

2 2 2 2
2 2

( ) ( ) ( ) where 

( ) 2  ( ) 2

u
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v v v u u u

N s A s B s

A s s s B s s s

a
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a

z w w z w w
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

 
 (3-12) 

Next, we define a transfer function T2(s) = A2(s) / B2(s), which has no physical meaning and simply 

serves as a mathematical tool. The root locus of T2(s) is the zero locus of G2(s). Therefore, to obtain 

the zero locus of G2(s), we plot the root locus of T2(s) as a function of the ratio of modal residues 

(Since,  < 0 by definition in this section, the negative (i.e. complementary) root locus of T2(s) 

will be analyzed to derive the sufficient and necessary conditions to eliminate NMP zeros in G2(s). 

In order to do so, first the sufficient and necessary condition for the elimination of CNMP zeros is 

derived in Result 2 followed by the sufficient and necessary conditions for the elimination of 

RNMP zeros in Result 3. Finally Result 4 provides the sufficient and necessary conditions for the 

elimination of all NMP zeros i.e. CNMP and RNMP zeros.  

The zeros of G 2 (s) (or equivalently, the roots of T 2 (s)) can be obtained by solving 
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If x + jy is part of the root locus of T2(s) and  < 0, then 
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 (3-14) 

Applying the tangent function to both sides of Eq.(3-14) and substituting Laplace variable ‘s’ 

with Cartesian coordinates x and y, the root locus of T2(s) in the Cartesian form is given by  
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  (3-15) 

A few observations can be made here. The entire real axis (i.e. y = 0) is always a solution to 

Eq.(3-15). Therefore, the entire real axis is always a part of the root locus of T 2 (s). The real axis 

is divided into two the negative real axis where real minimum phase (RMP) zeros occur and the 

positive real axis where real non-minimum phase (RNMP) zeros occur. 

There exists a critical value of for which the root locus T 2 (s) transitions from the negative real 

axis to the positive real axis or vice versa by passing through the origin. In the process, the zero 

changes from real minimum phase (RMP) to real non-minimum phase (RNMP), or vice versa. 

Mathematically, this value of can be found by substituting the Laplace variable s = 0 in Eq.(3-13) 
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There exists a critical value of for which the root locus T 2 (s) transitions from the negative real 

axis to the positive real axis or vice versa by passing through infinity. As a result, the zero changes 

from RMP to RNMP or vice versa. Mathematically, this corresponds to Eq.(3-13) having a single 

root. 
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 (3-17) 

While the entire real axis is part of the root locus of T 2 (s) (or zero locus of G 2 (s)), only a few 

points on the imaginary axis can be part of the root locus. The points of intersection of the root 

locus with the imaginary axis, if they exist, can be determined by substituting x = 0 in Eq.(3-15).  
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 (3-18) 

The sufficient condition to guarantee that the root locus of T 2 (s) does not cross the imaginary 

axis is to ensure that Eq.(3-18) does not have any real solutions for y. This can be ensured if 
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 (3-19) 

Since  < 1 by definition (i.e. u v), the above condition can be reduced to 

    AND  1         1c h c h h c h³ £  £ £  (3-20) 
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When Eq.(3-20) is satisfied, the root locus of T 2 (s) will not cross the imaginary axis. However, 

when or Eq.(3-18) will have real solutions for y. Therefore, the root locus will cross 

the imaginary axis leading to transition of complex minimum phase (CMP) zeros to complex non-

minimum phase (CNMP) zeros or vice versa. The critical value of when the root locus crosses 

the imaginary axis mathematically corresponds Eq.(3-13) having purely imaginary roots. 

  
( ) ( )

( )

2 2

2 2 2

( ) ( ) 0

1 2 0

Setting coefficient of  to zero

0      

v v u u v u

v v u u

A s B s

s s

s

k

k kz w z w kw w

kz w z w k hc

+ =

 + + + + + =

 + =  =-

 (3-21) 

There also exists a critical value of for which CNMP zeros transition into RNMP zeros. This 

happens when the root locus meets the positive real axis. For this value of  , there are two repeated 

roots of the Eq. (3-13) that are real positive. This value of is found by setting the discriminant of 

the quadratic equation in Eq.(3-13) to zero.  
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 (3-22) 

Simple algebraic manipulation of the above critical values of will show that is valid for the 

parameter space and is valid for 

Having addressed how the root locus of T 2 (s), or equivalently the zero locus of G 2 (s), interacts 

with the real and imaginary axes of the s-plane, we can now construct the root locus of T 2 (s), or 
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equivalently the zero locus of G 2 (s), using this information. It should be noted that the three 

different parameter range of span all values of from 0 to +∞and therefore the zero loci shown 

in Fig 3-2 are a comprehensive depiction of the zeros of G 2 (s) for all possible system parameters 

as long as  < 0. Note that since the zeros occur as pairs of complex conjugate, only one half of 

the zero loci, which is above the real axis is shown in Fig 3-2. 

 

 

 

 



 
76  

 
 

(b)

(c)

1 CMP pair 
OR   

1 RMP & 1 RNMP 
OR 

2 RNMP

1 CMP pair 
OR 

1 CNMP pair 
OR 

1 RMP & 1 RNMP 
OR 

2 RNMP

1
c

h
>

1
h c

h
£ £

( )2,  1v v v vz w w z- -

k=-¥

0k=

( )2,  1u u u uz w w z- -

1k=- 2k h=-

( )2,  1v v v vz w w z- -

k=-¥

0k=

( )2,  1u u u uz w w z- -

k ch=-

2k h=-

1k=-

1k=-

1k=-

(a)

1 CMP pair 
OR 

1 CNMP pair 
OR 

1 RMP & 1 RNMP 
OR 

2 RNMP

c h<

2k h=-

1k=-1k=-

k ch=-0k=

k=-¥

( )2,  1u u u uz w w z- -

( )2,  1v v v vz w w z- -

1k k=

2k k=

 

Fig 3-2 Zero Loci of G2(s) for different ranges of as  varies from −∞ to 0. Zeros and poles of 

T2(s) provide the starting and ending locations, respectively, of these zero loci
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3.4.1 Sufficient and Necessary Condition for eliminating CNMP Zeros 

Result 2: In a two-DoF damped flexible LTI system given by Eq.(3-10), when the modal residue 

signs are not same ( < 0), the following conditions are individually sufficient and together 

necessary to guarantee the elimination of CNMP zeros: 
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 (3-23) 

Condition 2.1 is derived from Fig 3-2a. Fig 3-2a is valid for For Fig 3-2a shows 

that CNMP zeros are not part of the zero locus if ≥In this case the zero lies on the left 

hand side of the imaginary axis. Therefore, the zero can either be CMP or RMP (if the poles are 

overdamped) but never CNMP. Similarly, CNMP zeros do not occur again if ≤In this case, 

it is evident from Fig 3-2a that the zero is either RNMP, RMP or CMP but never CNMP. Therefore, 

the graphical analysis of Fig 3-2a in this manner leads to Condition 2.1. Similarly, Fig 3-2b leads 

to Condition 2.2 and Fig 3-2c leads to Condition 2.3.  

Based on Result 2 and Fig 3-2, the following observations can be made about the CNMP zeros 

of a two-DoF damped flexible LTI system: 

1. Each condition listed in Result 2 is individually sufficient but not necessary. For example, 

Condition 2.1, by itself, is a sufficient condition. However, Condition 2.1, by itself, is not necessary 
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because even if this condition is not met, NMP zeros can still be eliminated via other non-

overlapping conditions such as Condition 2.2 or Condition 2.3. 

2. Each sufficient condition comprises of parameter ranges that are essential and broadest possible. 

For each of these conditions, one can write various inferior conditions with narrower parameter 

ranges that would also be sufficient conditions. For example, based on Condition 2.1, [ AND 

 < −1] is also a sufficient condition for the elimination of NMP zeros.  

3. As shown by the zero loci of Fig 3-2, the entire range of the system parameters comprising of 

modal residues, frequencies, and damping ratios is covered in this analysis. Therefore, the 

conditions of Result 2 form a complete list of all possible sufficient conditions. In other words, 

there are no other sufficient conditions for which one can guarantee the elimination of NMP zeros. 

As a result, these three conditions when considered together, i.e., [Condition 2.1 OR Condition 2.2 

OR Condition 2.3], form a necessary condition for the elimination of CNMP zeros. 

4. The mathematical form of the conditions in Result 2 is the consequence of our choice of 

parameterization. The normalized parameters andthat are defined in terms of system 

parameters and used to provide the conditions in Result 2 could have been defined differently. For 

example, instead of considering  (= uv) as the varying parameter to plot the zero locus of G 

2 (s), one could use a different varying parameter defined by vu. The zero locus could have 

been plotted as a function of ratio of modal frequencies or modal damping ratios. While the 

resulting mathematical form of the conditions may be different in that case, the conditions would 

effectively be the same in terms system parameters. In other words, the conditions are unique.  

5. It was shown previously [114] that a two-DoF undamped flexible system can never exhibit 

CNMP zeros for any value of system parameters (modal frequencies and residues). However, for 
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a two-DoF damped flexible system, Fig 3-2a and Fig 3-2c depict the presence of CNMP zeros for 

certain parameter ranges of  and . This shows a potential disadvantage of adding damping to a 

two-DoF flexible system, which is intuitively unexpected because damping is generally beneficial 

[61]. 

3.4.2 Sufficient and Necessary Conditions for Eliminating RNMP zeros 

Result 3: In a two-DoF damped flexible LTI system given by Eq.(3-10), when the modal residue 

signs are not same ( < 0), the following conditions are individually sufficient and together 

necessary to guarantee the elimination of RNMP zeros: 
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 (3-24) 

Condition 3.1 is derived from Fig 3-2a. It can be observed from Fig 3-2a, which is valid for 

that RNMP zero occur in the zero locus when ≤ Therefore, removing this 

parameter space of  from its complete parameter space i.e. ∞to 0 gives the Condition 3.1 for 

which RNMP zeros do not occur in the zero locus of Fig 3-2a. Similarly, Fig 3-2b leads to 

Condition 3.2 and  Fig 3-2c leads to Condition 3.3. Note that the general observation for Result 2 

i.e. bullet point (1) to (4) also hold true for Result 3.  
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3.4.3 Sufficient and Necessary Conditions for Eliminating all NMP zeros 

Result 4: In a two-DoF damped flexible LTI system given by Eq.(3-10), when the modal residue 

signs are not same ( < 0), the following conditions are individually sufficient and together 

necessary to guarantee the elimination of all NMP zeros. 
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Condition 4.1 is derived from Fig 3-2a. Referring to Fig 3-2a, where , it can been seen that 

the zero locus remains on the LHS real axis when  < −1 and crosses back into the LHS of the 

imaginary axis when  ≥ −. Condition 4.2 is derived from Fig 3-2b. In Fig 3-2b, which 

corresponds to the parameter range ≤≤, there are no CNMP zeros in the transfer function 

G2(s). The zero locus flips from negative infinity to positive infinity on the real axis when  = −1 

and returns to the LHS real axis, crossing the origin when  = −2. Thus, no NMP zeros will occur 

if  ≤ −1 or if  ≥ −2. Condition 4.3 is derived from Fig 3-2c. Fig 3-2c shows the zero locus of 

G2(s) when , and it can be seen that NMP zeros will not occur if  ≤ − or if  ≥ −2. 

Note that the general observation for Result 2 i.e. bullet point (1) to (4) also hold true for Result 

4.  

The graphical visualization in Fig 3-2 allows one to determine the sufficient and necessary 

conditions for the elimination of specific types of NMP zeros e.g. CNMP only, RNMP only, as 
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well as all NMP. For example, Result 2 provides a sufficient and necessary condition for the 

elimination of CNMP zeros, while Result 3 provides sufficient and necessary conditions for the 

elimination of RNMP zeros. Finally, Result 4 provides sufficient and necessary conditions for the 

elimination of all NMP zeros. Furthermore, this graphical visualization allows one to examine the 

sensitivity of different types of NMP zeros to parametric variations, which helps inform the 

robustness of any choice of system parameters that avoid NMP zeros. For example, when the value 

of is close to −2, the RMP zero can flip to become a RNMP zero, and similarly when is close 

to −, CMP zeros can flip to become CNMP zeros. 

3.5 Three-DoF Damped Flexible LTI Systems 

The SISO transfer function of a three-DoF classically damped flexible system is given by G 3 

(s):  

 ( )3 2 2 2 2 2 22 2 2
u vR

R R R u u u v v v

G s
s s s s s s

a aa
z w w z w w z w w

= + +
+ + + + + +

 

where Ruv. Two additional assumptions are made here. The natural frequency and 

damping ratio of the first flexible mode, R and R, are assumed low enough to be set to zero. In 

previous modeling [36] and experimental work [37], CNMP zeros were reported in systems that 

have a low frequency rigid-body mode and at least two high frequency closely-spaced modes i.e. 

Ru≈v. The CNMP zeros occurred very close to the frequency of the closely-spaced 

modes, much higher that the rigid-body mode. Furthermore, in many flexible systems damping is 

relatively low [61]. Thus, at the higher frequencies of interest, the ‘R
2’ and the ‘2RRs’ terms can 

be ignored in comparison to the ‘s2’ term in the first mode. Motivated by practical examples, these 



 
82  

 
 

additional approximations limit the complexity of the mathematical and graphical analysis in this 

section, which in turn allows for better physical insights from the results.  

Accordingly, the three-DoF damped flexible system investigated in this section can be expressed 

as G3(s) =  

 3
2 2 2 2 2

3

( )

( ) 2 2
u vR

u u u v v v

N s

D s s s s s s

a aa
z w w z w w

= + +
+ + + +

 (3-26) 

Furthermore, R can be set to +1 without any loss in generality. This reduces the number of 

system parameters that need to be carried through the subsequent mathematical steps. The zeros 

of G3(s) are investigated by studying the roots of its numerator, N 3 (s). 

( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 2
3 ( ) 1 2 2 2v v v v u u u v v vN s s s s s s s sa k z w ch k w h k z w w z w wé ù= + + + + + + + + + +ê úë û

 where ,  ,  and u u u

v v v

w z a
h c k

w z a
    (3-27) 

N 3 (s) is expressed in a condensed form below in terms of v, A 3 (s) and B 3 (s). 
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 (3-28) 

A mathematical transfer function, T3(s) = A3(s) / B3(s), with no physical meaning is defined to 

capture the zero locus of G3(s). The root locus of T3(s) obtained by varying v, gives the zero locus 

of G3(s). When v is varied from 0 to +∞, the positive root locus originates at the roots of B3(s) 

and terminates at the roots of A3(s). When v is varied from −∞ to 0, the negative or complementary 

root locus goes from roots of A3(s) to the roots of B3(s). The goal of this section is to derive the 

sufficient and necessary conditions to eliminate all NMP zeros from G 3 (s) using its zero loci. First, 
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a set of sufficient conditions for the elimination of only CNMP zeros is derived in Results 5 and 

6, followed by the sufficient and necessary conditions for the elimination of CNMP and RNMP 

zeros i.e. all NMP zeros in Results 7 and 8. 

 Table 3-1shows all the possible modal residue signs for a three-DoF flexible system. The case 

when all the modal residues are positive has already been covered. In this section, the zero 

dynamics will be investigated for the remaining combinations (i.e. alternating signs and non-

alternating) of modal residue signs. 

Case R u v u /v) Result 
Same Signs + + + + 1 
Alternating Signs + − + − 5,7 
Non-Alternating Signs + + − − 6,8 

+ − − + 

Table 3-1Combination of modal residue signs 

Zeros of G3(s) are found by setting the numerator N3(s) in Eq.(3-28) to zero:  

 3
3 3 3

3

( )
( ) ( ) ( ) 0

( )v v

B s
N s A s B s

A s
a a= + =  =-  (3-29) 

A few key observations can be made here. Every point on the real axis of the s-plane (i.e. y = 0) 

is always a solution of Eq.(3-29). When s = x, the RHS of Eq.(3-29) i.e. B 3 (s) / A 3 (s) is always a 

scalar with either a positive or negative sign. This means that for some positive or negative value 

of v, this equation will always be true. Therefore, the entire real axis is part of the root locus. 

There exists a critical value of v referred to as v∞ for which the root locus flips from the negative 

real axis to the positive real axis, or vice versa by passing through infinity. This corresponds to the 

transition of the RMP zero of G 3 (s) into its RNMP zero, or vice versa. Mathematically, this 

condition corresponds to a loss in order of N 3 (s), and therefore v∞ can be derived by setting the 

coefficient of s4 in N 3 (s), given in Eq.(3-27), to zero. 
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While the entire real axis of the s-plane is part of the root locus, only certain points on the 

imaginary axis can be part of the root locus. These points can be determined by applying the angle 

condition to Eq.(3-29), rearranging the terms, taking tangent on both sides, and setting s = jy. 
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Eq.(3-31) can have five real solutions in y, which correspond to five potential locations where 

the root locus of T 3 (s) intersects the imaginary axis. Note that y = 0 is always a solution to 

Eq.(3-31), which means that the root locus always passes through the origin of the s-plane. This is 

to be expected since s = 0 is also a root of A 3 (s), which corresponds to the root locus location for 

v = ±∞. The other locations where the root locus crosses the imaginary axis correspond to the 

non-zero real solutions in y of Eq.(3-31). The mathematical conditions for which such crossings 

may or may not exist are given by: 
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2

2
2

2
2

Condition I:  4 0 

4
Condition II:  4 0   AND  0

2

4
Condition III: 4 0   AND   0

2

b ac

b b ac
b ac

a

b b ac
b ac

a

- <

- + -
- ³ <

- - -
- ³ <

 (3-32) 

Given the fourth order polynomial in Eq.(3-31), the root locus can cross the imaginary axis at a 

maximum of two sets of conjugate locations. Each set of conjugate location has a corresponding 

v that are referred to as v1 
img and v2 

img .The value of v1 
img and v2 

img when the root locus 

crosses the imaginary axis can be found by setting s = jy in the expression for N 3 (s) in Eq.(3-27) 

and equating N 3 (s) to 0. 

 

( ) ( )
( )

( ) ( )
( )

2 2
1 2

1 12
1

2 2
2 2

2 22
2

1 4
where 

2

1 4
where 

2

u vimg
v

u vimg
v

y b b ac
y

y a

y b b ac
y

y a

w w c h ch
a

ch k

w w c h ch
a

ch k

+ - + - + -
= =

+

+ - + - - -
= =

+

 (3-33) 

If Condition I is true OR [Condition II AND Condition III] are true, then there are no non-zero 

real solutions in y. If Condition I is not true, AND Condition II is not true AND Condition III is 

true, then the root locus will cross the imaginary axis at one set of conjugate locations given by s 

= ± jy1 and corresponding v = v1 
img. If Condition I is not true, AND Condition II is true AND 

Condition III is not true, then the root locus will cross the imaginary axis at one set of conjugate 

locations given by s = ± jy2 and corresponding v = v2 
img. If Condition I is not true, AND [both 

Condition II AND Condition III] are also not true, then the root locus will cross the imaginary axis 

at two sets of conjugate locations given by s = ± jy1 (corresponding v = v1 
img) and s = ± jy2 

(corresponding v = v2 
img). Thus, the above conditions determine the number of instances where 

the root locus crosses the imaginary axis, which in turn informs the shape of the root locus. These 
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crossings can happen for positive or negative values of v i.e. v1 
img and v2 

img can either be 

positive or negative. The detailed derivation of when v1 
img and v2 

img are positive or negative 

will be provided below. 

Having addressed how the root locus of T3(s), or equivalently the zero locus of G3(s), interacts 

with the real and imaginary axes of the s-plane, we next proceed to divide the parameter space, 

reduce the conditions from Eq.(3-32) to parameter ranges, and plot the resulting zero loci for 

various combination of parameter ranges. The steps are as follows:   

1. The parameter space of the modal residues ratio i.e. is divided into 

(−−−−
and. These four ranges span all values of from 

−∞ to +∞ and they were used for the analysis of NMP zeros in the analogous three-DoF undamped 

flexible system. Using the same parameter ranges of  in here allows for a direct comparison 

between the NMP zero dynamics of the undamped and damped systems. This leads to inferences 

on how the addition of damping changes the zero loci and the resulting condition for the 

elimination of NMP zerosThese inferences are discussed in Result 5 and Result 6. 

2. The mathematical inequalities given by Condition I, Condition II, and Condition III are solved 

separately for all four parameter ranges of This gives the non-overlapping parameter ranges of 

 and v for each parameter range of where these conditions are or are not satisfied. These 

ranges are then used to draw the multiple unique zero loci of G 3 (s), as shown in Fig. 3-5.  

3. Detailed steps on the derivation of these parameter ranges will be discussed below. 

The derivation for the parameter ranges starts from here: 

Firstly, we derive the parameters ranges of  and v for each parameter range of for which 

Condition I of Eq.(3-32) is satisfied.  
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Multiplying and dividing  by  and using modulus to represent both signs of 
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
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(3-34)       

Range of  Range of  for which the radicand 

in Eq.(3-34) are positive 

Range of v for which Condition I of 

Eq.(3-32) is satisfied 

1k<  
1 k

c
hk h
-

< <-  ,min ,maxv v vz z z< <  
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21 k h- < <-  
Upper and Lower limit do not exist 

for any value of  
Limit does not exist 

2 0h k- < <  
3k h

c
h k

- < <-  ,min ,maxv v vz z z< <  

0k>  For all values of  ,maxv vz z<  

Table 3-2 Range of and v for which Condition (I) of Eq.(3-32) is satisfied. 

   

Now, we find the parameter ranges of  and v for each parameter range of for which Condition 

II and Condition III of Eq.(3-32) are satisfied separately. Condition II and Condition III can only 

be true for certain combination of signs of a, b, and c as shown below. The combination of signs 

of a, b, and c in Eq.(3-35) is a necessary condition for Condition II and Condition III in Eq.(3-32) 

to hold true. Hence, we evaluate Condition II and Condition III only for these combination of signs 

of a, b, and c.  

2
2 4

Condition II:  4 0   AND 0        IIA. 0,  0,  0
2

                                                                                                     IIB. 0,  0,  0

            

b b ac
b ac a b c

a

a b c

- + -
- ³ <  > > >

< > >

                                                                                         IIC. 0,  0,  0

                                                                                             

a b c< < >

2
2

        IID. 0,  0,  0

4
Condition III: b 4 0   AND 0        IIIA. 0,  0,  0

2

                                                                                                     III

a b c

b b ac
ac a b c

a

< < <

- - -
- ³ <  > > >

B. 0,  0,  0

                                                                                                     IIIC. 0,  0,  0

                                                                

a b c

a b c

> > <

< < <

                                     IIID. 0,  0,  0a b c> < <

         

  (3-35) 
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In order to evaluate Condition II and Condition III separately, we first consider the parameter range 

of (−as shown below: 

Parameter Range of : ( < −1) 

2
2 4

Condition II:  4 0   AND  0
2

b b ac
b ac

a

- + -
- ³ <  (from Eq.(3-32)) 

Note that for −and  < 1 (because we have assumed u < v without any loss of 

generality)the following inequality holds true: 

  
3 1h h k
k k kh h

- <- <- <-   (3-36) 

 
# 

No. 
a c b 

 
and 
 

Range of  where the signs of a, b & c are 
satisfied (range is hashed if it exists) 

v 

 

 



 

 

IIA 

 

 

a>0 

 

 

c>0 

 

 

b>0 

>0, 
>0 -/ -/ -1/ -/

 

No 
sol 

>0, 
<0 -/ -/ -1/ -/

 

No 
sol 

<0, 
<0 -/ -/ -1/ -/

 

No 
sol 

Table 3-3 Range of  and v for which Condition (IIA) of Eq.(3-35) is satisfied 
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 
# 

No. 
a c b  and  

Range of  where the signs of a, b & c are 
satisfied (range is hashed if it exists) 

v 

 

 

 

IIB 

& 

IIC 

 

 

a<0 

 

 

c>0 

 

 

b><0 

>0, 
>0 

-/ -/ -1/ -/
 

No 
sol 

>0, 
<0 

No 
sol 

<0, 
<0 

No 
sol 

<0, 
>0 

No 
sol 

Table 3- 4 Range of  and v for which Conditions (IIB, IIC) of Eq.(3-35) is satisfied. The sign 

of b is irrelevant in these cases as the sign of a and c cannot be satisfied simultaneously 

 
# 

No. 
a c b 

 
and 
 

Range of  where the signs of a, b & c are 
satisfied (range is hashed if it exists) 

v 

 

 

 

 

 

IID 

 

 

a<0 

 

 

c<0 

 

 

b<0 

>0, 

>0 -/ -/ -1/ -/
 

No sol 

<0, 
<0 -/ -/ -1/ -/

 
v

ld
z

l
>  

<0, 
>0 -/ -/ -1/ -/

 

No sol 

Table 3-5 Range of  and v for which Condition (IID) of Eq.(3-35) is satisfied 

 

 

 

 

 

 



 
91  

 
 

 

2
2 4

Condition III: b 4 0   AND 0
2

b b ac
ac

a

- - -
- ³ < (From Eq.(3-32)) 

 
# 

No. 
a c b 

 and 
 

Range of  where the signs of a, b & c are 
satisfied (range is hashed if it exists) 

v 

 

 

 

 

 

IIIA 

 

 

a>0 

 

 

c>0 

 

 

b>0 

>0, 
>0 -/ -/ -1/ -/

 

No 
sol 

>0, 
<0 -/ -/ -1/ -/

 

No 
sol 

<0, 
<0 -/ -/ -1/ -/

 

No 
sol 

Table 3-6 Range of  and v for which Condition (IIIA) of Eq.(3-35) is satisfied 

 
# 

No. 
a c b 

 
and 
 

Range of  where the signs of a, b & c 
are satisfied (range is hashed if it exists) 

v 

 
 


 

 

 
 

III
B 

 
 

a>
0 

 
 

c<
0 

 
 

b>
0 

>0
, 

>0 -/ -/ -1/ -/
 

No sol 

>0
, 

<0 -/ -/ -1/ -/
 

No sol 

<0
, 

<0 -/ -/ -1/ -/
 

v

ld
z

l
<  

Table 3-7 Range of  and v for which Condition (IIIB) of Eq.(3-35) is satisfied 
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 
# 

No. 
a c b 

 
and 
 

Range of  where the signs of a, b & c 
are satisfied (range is hashed if it exists) 

v 

 
 


 

 

 
 

III
C 

 
 

a<
0 

 
 

c<
0 

 
 

b<
0 

>0
, 

>0 -/ -/ -1/ -/
 

No sol 

<0
, 

<0 -/ -/ -1/ -/
 

v

ld
z

l
>  

<0
, 

>0 -/ -/ -1/ -/
 

No sol 

Table 3-8 Range of  and v for which Condition (IIIC) of Eq.(3-35) is satisfied 

 
# 

No. 
a c b 

 
and 
 

Range of  where the signs of a, b & c 
are satisfied (range is hashed if it exists) 

v 

 
 


 

 

 
 

III
D 

 
 

a>
0 

 
 

c<
0 

 
 

b<
0 

>0
, 

>0 -/ -/ -1/ -/
 

No sol 

<0
, 

<0 -/ -/ -1/ -/
 

v

ld
z

l
>  

<0
, 

>0 -/ -/ -1/ -/
 

for all 
values of 

v 

Table 3-9 Range of  and v for which Condition (IIID) of Eq.(3-35) is satisfied.  

For the parameter range of (−Table 3-2Table 3-3Table 3-5and Table 3-6Table 3-

9 provide the solution for Condition I, Condition II and Condition III of Eq.(3-32) respectively. 

Based on these tables, we can provide the following parameter ranges of and v:  

a) 
3h

c
k

<-  

Based on Eq.(3-36) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-3Table 3-5, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-6Table 3-9, Condition III of Eq.(3-32) is also not true for this range of This 
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implies that the zero locus of G3(s) will cross the imaginary axis at two sets of conjugate locations 

at v =v1
img and v = v2

img (given in Eq.(3-33)).  

In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−and (−3Comparing 

the two distinct values of v (where the zero locus crosses the imaginary axis) from the numerically 

plotted zero locus with the values of v1
img and v2

img from Eq.(3-33) leads to the observation that 

v1
img > 0 and v2

img < 0. Although this observation has been made numerically for one set of 

system parameters that satisfy the condition (−and (−3it holds true for any 

combination of system parameters that satisfy (−and (−3. The proof for this as 

follows.  

The expression for v1
img

 and v2
img are given by Eq.(3-37) as shown below.  

 

( ) ( )
( )

( ) ( )
( )

2 2
1 2

1 12
1

2 2
2 2

2 22
2

1 4
where 

2

1 4
where 

2

u vimg
v

u vimg
v

y b b ac
y

y a

y b b ac
y

y a

w w c h ch
a

ch k

w w c h ch
a

ch k

+ - + - + -
= =

+

+ - + - - -
= =

+

 (3-37) 

From numerical simulation, we observed that v1
img > 0 and v2

img < 0 for one set of system 

parameters that satisfy the condition (−and (−3. If v1
img

 and v2
img have to change 

sign for another set of system parameters that satisfy the condition (−and (−3then 

either the numerator or the denominator of v1
img

 and v2
img

 should change signs but not both at the 

same time. If the numerators of v1
img

 and v2
img have to change sign then they will have to pass 

through 0 for some set of system parameters that satisfy the condition (−and (−3. 

This would mean that v1
img

 and v2
img will have to be equal to 0 for this set of system parameters. 
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However, if v1
img

 and v2
img are equal to 0, this means that for v

 = 0 the zero locus should cross 

the imaginary axis. But for v
 = 0 the zero locus passes through the damped poles that lie strictly 

on the open left half s-plane and not on the imaginary axis as shown in Fig 3-5a. Therefore, v1
img 

and v2
img cannot be equal to 0. Hence the numerators of v1

img and v2
img cannot change signs. 

The denominator of v1
img and v2

img cannot change sign because  for any set of system 

parameters that satisfy (−and (−3refer to Eq.(3-36)). Hence, v1
img

 and v2
img

 

cannot change signs for any set of system parameters that satisfy the condition (−and 

(−3Therefore, v1
img > 0 and v2

img < 0 for any set of system parameters that satisfy the 

condition (−and (−3

On further investigation, it was found that there exists an upper bound on v1
img given by 

Eq.(3-38). Since +< 0 (from Eq.(3-36)) 

 
( )
( )

( )
( )1 1

1 1
0img img

v v

ch ch
a a

ch k ch k
+ +

 + <  <-
+ +

 (3-38) 

Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (a) which is depicted graphically Fig 3-5a. This allows us to find sufficient 

condition for the elimination of only CNMP zeros for case (a) as shown below: 

 
1

2

 if 0

 if 0

img
v v v

img
v v v

a a a

a a a

£ >

³ <
 (3-39) 

Note that Eq.(3-39) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5a where for positive v > v1
img i.e. Eq.(3-39) is not 

satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order to find the 

necessary and sufficient condition for the elimination of only CNMP zeros and only RNMP zeros, 
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we characterize the intersection of the zero locus of G3(s) with the positive real axis. Zeros of G3(s) 

are found by setting the numerator N3(s) in Eq.(3-28) to zero:  

 ( )( ) ( )( )

( )( ) ( )

4 3 2
3 1 2 3 4 5

1 2

2 2 2 2 2 2 2 2
3 4 5

( ) 0

where 1 1 ,  2 2 2

4 ,  2 2 ,  

v u u v v v v v

u v u v u v v v u u v v v u u v

N s d s d s d s d s d

d d

d d d

a k z w z w z w a k ch

w w z z w w a w k h z w w z w w w w

= + + + + =

= + + = + + +

= + + + + = + =

   (3-40) 

In order to find the intersection of the zero locus of G3(s) with the positive real axis, we set s = 

x in Eq.(3-40) and find the repeated roots of Eq.(3-40). This is done by setting the discriminant in 

Eq. (3-40) to zero. The discriminant of the fourth order polynomial equation is given below: 

3 3 2 2 2 2 2 2 2 2 2 2 2 2
1 5 1 2 4 5 1 3 5 1 3 4 5 1 4 1 2 3 5

2 2 2 3 4 3 2
1 2 4 5 1 2 3 4 5 1 2 3 4 1 3 5 1 3 4

4 2 3 3 3 3 3 2 2 2
2 5 2 3 4 5 2 4 2 3 5 2 3 4

256 192 128 144 27 144

6 80 18 16 4

27 18 4 4

d d d d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d

D= - - + - +

- - + + -

- + - - +

 (3-41) 

Eq.(3-41) leads to a 5th order polynomial in v which cannot be solved analytically as proven by 

the Abel – Ruffini theorem [115]. This theorem conclusively proved that the roots of a 5th or higher 

degree polynomial in x cannot be expressed in analytical closed forms in terms of the coefficients 

of the polynomial. Therefore, we cannot analytically characterize the intersection of the zero locus 

of G3(s) with the positive real axis like we did in the two-DoF case in the previous section. 

Therefore, it will not be possible to find the necessary and sufficient conditions for the elimination 

of only CNMP zeros and only RNMP zeros for a three-DoF damped flexible system. However, 

we can attempt to find the number of times the zero locus meets with the positive real axis in order 

to provide at least some insight into how the zero locus interacts with the positive real axis.  

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  
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2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-29) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

following scenarios are possible for the meeting points of the zero locus of G3(s) with the positive 

real axis as described below and shown graphically in Fig 3-3. 

1. Scenario I: Zero meeting points of the zero locus of G3(s) with the positive real axis .  

2. Scenario II: One meeting points (with two repeated roots for s) of the zero locus of G3(s) with 

the positive real axis. 

3. Scenario III: One meeting points (with three repeated roots for s) of the zero locus of G3(s) with 

the positive real axis. 

4. Scenario IV: One meeting points (with four repeated roots for s) of the zero locus of G3(s) with 

the positive real axis. 

5. Scenario V: Two meeting points (with two repeated roots for s for each meeting point) of the 

zero locus of G3(s) with the positive real axis.  

Scenario I Scenario II Scenario III

Scenario IV Scenario V  
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Fig 3-3 Scenarios for the meeting points on the real axis by the zero locus of G3(s) 

Now we have to ascertain for case (a) where the conditions (−and (−3are 

satisfied, which of the five scenarios for the meeting point of the zero locus of G3(s) with the 

positive real axis are possible. In order to do so, we make use of following five facts about the zero 

locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. This is graphically depicted in Fig 3-5a. In order to find the location of 

the other zeros of T3(s), we analyze the roots of the equation below which is derived from 

expression of A3(s) from Eq.(3-28). 

 

( ) ( ) ( )

( )
( )

( )
( )

2 2 2

2 2

1 2 0

2
Product of roots= ,  Sum of roots=

1 1

v v v

v v v

s sk z w ch k w h k

w h k z w ch k
k k

+ + + + + =

+ +
-

+ +

 (3-42) 

Given the condition that (−and (−3and Eq.(3-36), we can conclude the 

following: 

 
( )
( )

( )
( )

2 2
2

Product of roots 0,  Sum of roots 0
1 1

v v v
w h k z w ch k

k k

+ +
= > =- <

+ +
 (3-43) 

Therefore, for case (a), based on Eq.(3-43), the roots of Eq.(3-42) will lie on the left hand side 

(LHS) of the imaginary axis. They can either be real or occur as a pair of complex conjugates. 

Fig 3-5a graphically depicts the location of these zeros on the LHS of the imaginary axis. 

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at two sets of conjugate locations at v =v1
img 
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and v = v2
img (given in Eq.(3-33)) as shown in Fig 3-5a. It is also known that v1

img > 0 and 

v2
img < 0 for any set of system parameters that satisfy the condition (−and (−3  

3. Relative position of intersection of positive zero locus (v >0)and negative zero locus (v <0) 

with the imaginary axis - From Eq.(3-33), it is known that 

 
2 2

2 2
1 2

4 4
0   AND   0

2 2

b b ac b b ac
y y

a a

- + - - - -
= > = >  (3-44)

In Eq.(3-44), based on the sign of a, it can be shown that

 

2 2
1 2

2 2
1 2

 if 0 

 if 0

y y a

y y a

> >

< <
                (3-45)      

Substituting for a from Eq.(3-31), it can be shown that 

 

2 2
1 2

2 2
1 2

 if 1/  

 if 1/  

y y

y y

c kh

c kh

> <-

< >-
      (3-46)                         

Therefore, for case (a), from Eq.(3-46) we can say that y1
2 > y2

2. Since, from Eq.(3-37),v1
img 

corresponds to y1
2 and v2

img corresponds to y2
2, the point of intersection of the zero locus of 

G3(s) corresponding to v1
img is higher than the point of intersection of the zero locus of G3(s) 

corresponding to v2
img.   

4. Which portion of the positive real axis belongs to the positive or negative zero locus - For a 

certain value of v, the zero locus of G3(s) approaches negative infinity along the real axis and 

flips over to positive infinity, or vice versa, as seen in Fig 3-5a. Mathematically, this condition 

corresponds to a loss in order of N3(s) in Eq.(3-28), and therefore the corresponding value of 

v can be derived by setting the coefficient of s4 for N3(s) in Eq.(3-28) to zero. This gives 
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1

1v 
  


            (3-47)

Therefore, for case (a), from Eq.(3-47), we can say that the portion of the positive real axis 

corresponding to v
∞ belongs to positive zero locus of G3(s). Further, since there are no zeros 

of T3(s) lying on the positive real axis, the entire positive real axis is covered by the positive 

zero locus of G3(s). 

5. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

The angle of arrival to zeros of a root locus are given by 

 

,

180 360 ( 1)      for positive zero locus

360 ( 1)              for negative zero locus 

where   

 sum of angles to all the poles

sum of angles to the remaini

arr i i

arr i i
i l arr

i

i

q l

q l

  

  







    

   





 
 




 



ng zeros

      multiplicity of the zero where arrival angle is calculated

    l    = 1,2,....,q

q 

   (3-48)  

Therefore, for case (a), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to 

the zeros of T3(s) at the origin is determined to be 0 and 180. The angle of arrival for the negative 

zero locus of G3(s) to the zeros of T3(s) at the origin is determined to be 90 and -90. 

Based on all these facts, we can conclude that for case (a), only Scenario II is possible for the zero 

locus of G3(s) to meet the positive real axis. The table below shows which of the above facts were 

used to eliminate the scenarios that are not possible for both v > 0 and v < 0. 
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Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0  2 - 2 2 2 

v < 0  2 4 4 4 4 

Table 3-10 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (a) 

Based on the above discussion, for parameter space (−and (−3Fig 3-5a captures 

the intersection of the zero locus with the imaginary and positive real axis. The derivation process 

shown above is quite tedious to follow. Therefore, a flowchart is shown below that captures the 

various steps in the derivation, the intent behind these steps i.e. why and how these steps are carried 

out i.e how. Even though this flowchart is based on the steps shown in the derivation of (a), it will 

remain common for all the subsequent derivations in this section.  
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Fig 3-4 Flowchart showing the entire process of characterization of zeros for case (a) 
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b) 
3 1h

c
k kh

- £ £  

Based on Eq.(3-36) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-3 – Table 3-5, Condition II of Eq.(3-32) is also not true for this range of Based on 

Table 3-6 – Table 3-9, Condition III of Eq.(3-32) is true for this range of This implies that the 

zero locus of G3(s) will cross the imaginary axis at one set of conjugate locations at v =v1
img 

(given in Eq. (3-33)) as shown in Fig 3-5b. 

In order to ascertain the sign of v1
img, we plot the zero locus of G3(s) numerically for certain 

values of systems parameters that satisfy the condition (−and 

(−3−Comparing the value of v (where the zero locus crosses the imaginary axis) 

from the numerically plotted zero locus with the values of v1
img from Eq.(3-33) leads to the 

observation that v1
img > 0. Although this observation has been made numerically for one set of 

system parameters that satisfy the condition (−and (−3−it holds true for 

any combination of system parameters that satisfy (−and (−3−The proof 

for this as follows.  

The expression for v1
img

 and v2
img are given by Eq.(3-33). From numerical simulation, we 

observed that v1
img > 0 for one set of system parameters that satisfy the condition (−and 

(−3−. If v1
img

 has to change sign for another set of system parameters that satisfy 

the condition (−and (−3−then either the numerator or the denominator of 

v1
img

 should change sign but not both at the same time. If the numerator of v1
img

 has to change 

sign, then it will have to pass through 0 for some set of system parameters that satisfy the condition 

(−and (−3−. This would mean that v1
img

 will have to be equal to 0 for this 
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set of system parameters. However, if v1
img

 is equal to 0, this means that for v
 = 0 the zero locus 

should cross the imaginary axis. But for v
 = 0 the zero locus passes through the damped poles that 

lie strictly on the open left half s-plane and not on the imaginary axis as shown in Fig 3-5b. 

Therefore, v1
img cannot be equal to 0. Hence the numerator of v1

img cannot change sign. The 

denominator of v1
img cannot change sign because  for any set of system parameters that 

satisfy (−and (−3−refer to Eq.(3-36)). Hence, v1
img

 cannot change sign 

for any set of system parameters that satisfy the condition (−and 

(−3−Therefore, v1
img > 0 for any set of system parameters that satisfy the 

condition (−and (−3−On further investigation, it was found that there 

exists an upper bound on v1
img given by Eq.(3-38).  

Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (b) which is depicted graphically in Fig 3-5b. This allows us to find 

sufficient condition for the elimination of only CNMP zeros for case (b) as shown below: 

 
1  if 0

0

img
v v v

v

a a a

a

£ >

<
       (3-49) 

Note that Eq.(3-49) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5b where for positive v > v1
img i.e. Eq.(3-49) is not 

satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order to find the 

necessary and sufficient condition for the elimination of only CNMP zeros and only RNMP zeros, 

we characterize the intersection of the zero locus of G3(s) with the positive real axis. Zeros of G3(s) 

are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the intersection of 

the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find the repeated 
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roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The discriminant 

of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th order 

polynomial in v which cannot be solved analytically as discussed in the previous case.  

Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 

and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 

the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  

2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-28) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case (a) and shown graphically in Fig 3-3. 

Now we have to ascertain for case (b) where the conditions (−and (−3−are 

satisfied, which of the five scenarios for the meeting point of the zero locus of G3(s) with the 

positive real axis are possible. In order to do so, we make use of following five facts about the zero 

locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 
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T3(s) are at the origin. This is graphically depicted in Fig 3-5b. In order to find the location of 

the other zeros of T3(s), we analyze the roots of Eq.(3-42) which is derived from expression of 

A3(s) from Eq.(3-28). Given the condition that (−and (−3−and 

Eq.(3-36), we can conclude the following 

 
( )
( )

( )
( )

2 2
2

Product of roots 0,  Sum of roots 0
1 1 )

v v v
w h k z w ch k

k k

+ +
= > =- <

+ +
 (3-50)

Therefore, for case (b), based on Eq.(3-50), the roots of Eq.(3-42) will lie on the left hand side 

(LHS) of the imaginary axis. They can either be real or occur as a pair of complex conjugates. Fig 

3-5b graphically depicts the location of these zeros on the LHS of the imaginary axis. 

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at one set of conjugate locations at v =v1
img 

(given in Eq.(3-33)) as shown in Fig 3-5b. It is also known that v1
img > 0 for any set of system 

parameters that satisfy the condition (−and (−3− 

3. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(b), from Eq.(3-46), we can say that the portion of the positive real axis corresponding to v
∞ 

belongs to positive zero locus of G3(s). Further, since there are no zeros of T3(s) lying on the 

positive real axis, the entire positive real axis is covered by the positive zero locus of G3(s). 

4. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (b), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the 

zeros of T3(s) at the origin is determined to be 0 and 180. The angle of arrival for the negative 

zero locus of G3(s) to the zeros of T3(s) at the origin is determined to be 90 and -90. 
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Based on all these facts, we can conclude that for case (b), only Scenario II is possible for the zero 

locus of G3(s) to meet the positive real axis. The table below shows which of the above facts were 

used to eliminate the scenarios that are not possible for both v > 0 and v < 0. 

Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0 3 - 2 2 2 

v < 0 3 3 3 3 3 

Table 3-11 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (b) 

c) ,min

1
, v v

k
c z z

kh h
- < <- <  

Based on Eq.(3-36) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-3 – Table 3-5, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-6 – Table 3-9, Condition III of Eq.(3-32) is also not true for this range of  and 

vThis implies that the zero locus of G3(s) will cross the imaginary axis at two sets of conjugate 

locations at v =v1
img and v = v2

img (given in Eq.(3-33)) as shown in Fig 3-5c1, Fig 3-5c2 and 

Fig 3-5c3.  

In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−and 

(−−vv,minComparing the two distinct values of v (where the zero locus 

crosses the imaginary axis) from the numerically plotted zero locus with the values of v1
img and 

v2
img from Eq.(3-33) leads to the observation that v1

img > 0 and v2
img > 0. Although this 

observation has been made numerically for one set of system parameters that satisfy the condition 
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(−and (−−vv,minit holds true for any combination of system 

parameters that satisfy (−and (−−vv,min. The proof for this as follows.  

The expression for v1
img

 and v2
img are given by Eq.(3-33). From numerical simulation, we 

observed that v1
img > 0 and v2

img > 0 for one set of system parameters that satisfy the condition 

(−and (−−vv,min. If v1
img

 and v2
img have to change sign for another set 

of system parameters that satisfy the condition (−and (−−vv,minthen 

either the numerator or the denominator of v1
img

 and v2
img

 should change signs but not both at the 

same time. If the numerators of v1
img

 and v2
img have to change sign then they will have to pass 

through 0 for some set of system parameters that satisfy the condition (−and 

(−−vv,min. This would mean that v1
img

 and v2
img will have to be equal to 0 

for this set of system parameters. However, if v1
img

 and v2
img are equal to 0, this means that for 

v
 = 0 the zero locus should cross the imaginary axis. But for v

 = 0 the zero locus passes through 

the damped poles that lie strictly on the open left half s-plane and not on the imaginary axis as 

shown in Fig 3-5c1, Fig 3-5c2 and Fig 3-5c3. Therefore, v1
img and v2

img cannot be equal to 0. 

Hence the numerators of v1
img and v2

img cannot change signs. The denominator of v1
img and 

v2
img cannot change sign because  for any set of system parameters that satisfy 

(−and (−−vv,minrefer to Eq.(3-36)). Hence, v1
img

 and v2
img

 cannot 

change signs for any set of system parameters that satisfy the condition (−and 

(−−vv,minTherefore, v1
img > 0 and v2

img > 0 for any set of system 

parameters that satisfy the condition (−and (−−vv,minOn further 

investigation, it was found that there exists an upper bound on v1
img given by Eq.(3-38). 
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Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (c) which is depicted graphically in Fig 3-5c1, Fig 3-5c2 and Fig 3-5c3. 

This allows us to find sufficient condition for the elimination of only CNMP zeros for case (c) as 

shown below: 

  
1 2 AND  if 0

0

img img
v v v v v

v

a a a a a

a

£ ³ >

<
 (3-51) 

Note that Eq.(3-51) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5c2 and Fig 3-5c3 where for positive v > v1
img i.e. 

Eq.(3-51) is not satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order 

to find the necessary and sufficient condition for the elimination of only CNMP zeros and only 

RNMP zeros, we characterize the intersection of the zero locus of G3(s) with the positive real axis. 

Zeros of G3(s) are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the 

intersection of the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find 

the repeated roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The 

discriminant of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th 

order polynomial in v which cannot be solved analytically as discussed in case(a).  

Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 

and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 

the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 
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1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  

2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-29) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case (a) and shown graphically in Fig 3-3. 

Now we have to ascertain for case (c) where the conditions (−and 

(−−vv,minare satisfied, which of the five scenarios for the meeting point of 

the zero locus of G3(s) with the positive real axis are possible. In order to do so, we make use of 

following five facts about the zero locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. This is graphically depicted in Fig 3-5c1, Fig 3-5c2 and Fig 3-5c3.  In 

order to find the location of the other zeros of T3(s), we analyze the roots of Eq.(3-42) which 

is derived from expression of A3(s) from Eq.(3-28). Given the condition that (−and 

(−−vv,minand Eq.(3-36), we can conclude the following

( )
( )

( )
( )

2 2
2

Product of roots 0,  Sum of roots 0
1 1 )

v v v
w h k z w ch k

k k

+ +
= > =- <

+ +
                            

(3-52)Therefore, for case (c), based on Eq.(3-52), the roots of Eq.(3-42) will lie on the left 

hand side (LHS) of the imaginary axis. They can either be real or occur as a pair of complex 

conjugates. Fig 3-5c1, Fig 3-5c2 and Fig 3-5c3 graphically depicts the location of these zeros 

on the LHS of the imaginary axis. 
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2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at two sets of conjugate locations at v =v1
img 

and v = v2
img (given in Eq.(3-33)) as shown in Fig 3-5c1, Fig 3-5c2 and Fig 3-5c3. It is also 

known that v1
img > 0 and v2

img > 0 for any set of system parameters that satisfy the condition 

(−and (−−vv,min 

3. Relative position of intersection of positive zero locus (v >0)and negative zero locus (v <0) 

with the imaginary axis - For case (c), from Eq.(3-46) we can say that y1
2 < y2

2. Since, from 

Eq.(3-37),v1
img corresponds to y1

2 and v2
img corresponds to y2

2, the point of intersection of 

the zero locus of G3(s) corresponding to v2
img is higher than the point of intersection of the 

zero locus of G3(s) corresponding to v1
img.   

4. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(c), from Eq.(3-47), we can say that the portion of the positive real axis corresponding to v
∞ 

belongs to positive zero locus of G3(s). Further, since there are no zeros of T3(s) lying on the 

positive real axis, the entire positive real axis is covered by the positive zero locus of G3(s). 

5. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (c), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the zeros 

of T3(s) at the origin is determined to be 0 and 180. The angle of arrival for the negative zero 

locus of G3(s) to the zeros of T3(s) at the origin is determined to be 90 and -90. 

Based on all these facts, we can conclude that for case (c), Scenario I, Scenario III and Scenario V 

are possible for the zero locus of G3(s) to meet the positive real axis. The table below shows which 

of the above facts were used to eliminate the scenarios that are not possible for both v > 0 and v 

< 0. 
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Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0 - 2 - 1,2 - 

v < 0 - 4 - 4 - 

Table 3-12 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (c)   

d) ,min

1
, v v

k
c z z

kh h
- < <- =  

Based on Eq.(3-36) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-3 – Table 3-5, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-6 – Table 3-9, Condition III of Eq.(3-32) is also not true for this range of  and 

vThis implies that the zero locus of G3(s) will cross the imaginary axis at two sets of conjugate 

locations at v =v1
img and v = v2

img (given in Eq.(3-33)) as shown in Fig 3-5d. However, we see 

that this is a limiting case where the zero locus goes from crossing the imaginary axis to not 

crossing the imaginary axis asv becomes greater than v,min. Hence, v1
img = v2

img and the two 

sets of conjugate locations where the zero locus of G3(s) crosses the imaginary axis are the same. 

In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−and 

(−−vv,minComparing the two distinct values of v (where the zero locus 

crosses the imaginary axis) from the numerically plotted zero locus with the values of v1
img and 

v2
img from Eq.(3-33) leads to the observation that v1

img > 0 and v2
img > 0. Although this 

observation has been made numerically for one set of system parameters that satisfy the condition 
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(−and (−−vv,minit holds true for any combination of system 

parameters that satisfy (−and (−−vv,min. The proof for this as follows.  

The expression for v1
img

 and v2
img are given by Eq.(3-33). From numerical simulation, we 

observed that v1
img > 0 and v2

img > 0 for one set of system parameters that satisfy the condition 

(−and (−−vv,min. If v1
img

 and v2
img have to change sign for another set 

of system parameters that satisfy the condition (−and (−−vv,minthen 

either the numerator or the denominator of v1
img

 and v2
img

 should change signs but not both at the 

same time. If the numerators of v1
img

 and v2
img have to change sign then they will have to pass 

through 0 for some set of system parameters that satisfy the condition (−and 

(−−vv,min. This would mean that v1
img

 and v2
img will have to be equal to 0 

for this set of system parameters. However, if v1
img

 and v2
img are equal to 0, this means that for 

v
 = 0 the zero locus should cross the imaginary axis. But for v

 = 0 the zero locus passes through 

the damped poles that lie strictly on the open left half s-plane and not on the imaginary axis as 

shown in Fig 3-5d. Therefore, v1
img and v2

img cannot be equal to 0. Hence the numerators of 

v1
img and v2

img cannot change signs. The denominator of v1
img and v2

img cannot change sign 

because  for any set of system parameters that satisfy (−and 

(−−vv,minrefer to Eq.(3-36)). Hence, v1
img

 and v2
img

 cannot change signs 

for any set of system parameters that satisfy the condition (−and 

(−−vv,minTherefore, v1
img > 0 and v2

img < 0 for any set of system 

parameters that satisfy the condition (−and (−−vv,minOn further 

investigation, it was found that there exists an upper bound on v1
img given by Eq.(3-38). 
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We have completely characterized the intersection of the zero locus of G3(s) with the imaginary 

axis for case (d) which is depicted graphically in Fig 3-5d. This allows us to find sufficient 

condition for the elimination of only CNMP zeros for case (d) as shown below: 

  
0

0

v

v

a

a

³

£
 (3-53) 

Note that Eq.(3-53) is a sufficient and necessary condition for the elimination of only CNMP 

zeros. This is evident from Fig 3-5d where Eq.(3-53) is always satisfied. For this case, we can also 

find necessary and sufficient conditions for the elimination of only RNMP zeros. From Fig 3-5d, 

it is evident that when v > v
∞, the zero locus of G3(s) approaches negative infinity along the real 

axis and flips over to positive infinity thereby leading to RNMP zeros. This allows us to find 

sufficient condition for the elimination of only RNMP zeros for case (d) as shown below: 

 v va a ¥<  (3-54) 

Since the two sets of conjugate locations where the zero locus of G3(s) crosses the imaginary axis 

are the same, the zero locus of G3(s) goes back to the left-hand side (LHS) of imaginary axis after 

touching the imaginary axis. Therefore, since there are no CNMP zeros present for this case, only 

Scenario I is possible for the meeting point of the zero locus of G3(s) with the positive real axis. 

e) ,min

1
, v v

k
c z z

kh h
- < <- >  

Based on Eq.(3-36) and Table 3-2, Condition I of Eq.(3-32) is true for this range of . Based on 

Table 3-3 – Table 3-5, Condition II of Eq.(3-32) is also true for this range of Similarly, based 

on Table 3-6 – Table 3-9, Condition III of Eq.(3-32) is also true for this range of  and vThis 

implies that the zero locus of G3(s) will not cross the imaginary axis as shown in Fig 3-5e. This 
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allows us to find sufficient condition for the elimination of only CNMP zeros for case (e) as shown 

below: 
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£
 (3-55) 

Note that Eq.(3-55) is a sufficient and necessary condition for the elimination of only CNMP zeros. 

For this case, we can also find necessary and sufficient conditions for the elimination of only 

RNMP zeros. From Fig 3-5e, it is evident that when v > v
∞, the zero locus of G3(s) approaches 

negative infinity along the real axis and flips over to positive infinity thereby leading to RNMP 

zeros. This allows us to find sufficient condition for the elimination of only RNMP zeros for case 

(e) as shown below: 

 v va a ¥<  (3-56) 

Since there are no CNMP zeros present for this case, only Scenario I is possible for the meeting 

point of the zero locus of G3(s) with the positive real axis. 

f) 
k

c
h

³-  

Based on Eq.(3-36) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-3 – Table 3-5, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-6 – Table 3-9, Condition III of Eq.(3-32) is also not true for this range of This 

implies that the zero locus of G3(s) will cross the imaginary axis at two sets of conjugate locations 

at v =v1
img and v = v2

img (given in Eq.(3-33)) as shown in  Fig 3-5f1, Fig 3-5f2 and Fig 3-5f3. 

In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−and (−Comparing 
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the two distinct values of v (where the zero locus crosses the imaginary axis) from the numerically 

plotted zero locus with the values of v1
img and v2

img from Eq.(3-33) leads to the observation that 

v1
img > 0 and v2

img < 0. Although this observation has been made numerically for one set of 

system parameters that satisfy the condition (−and (−it holds true for any 

combination of system parameters that satisfy (−and (−. The proof for this is as 

follows.  

The expression for v1
img

 and v2
img are given by Eq.(3-33). From numerical simulation, we 

observed that v1
img > 0 and v2

img < 0 for one set of system parameters that satisfy the condition 

(−and (−. If v1
img

 and v2
img have to change sign for another set of system 

parameters that satisfy the condition (−and (−then either the numerator or the 

denominator of v1
img

 and v2
img

 should change signs but not both at the same time. If the 

numerators of v1
img

 and v2
img have to change sign then they will have to pass through 0 for some 

set of system parameters that satisfy the condition (−and (−. This would mean that 

v1
img

 and v2
img will have to be equal to 0 for this set of system parameters. However, if v1

img
 and 

v2
img are equal to 0, this means that for v

 = 0 the zero locus should cross the imaginary axis. But 

for v
 = 0 the zero locus passes through the damped poles that lie strictly on the open left half s-

plane and not on the imaginary axis as shown in Fig 3-5f1, Fig 3-5f2 and Fig 3-5f3. Therefore, 

v1
img and v2

img cannot be equal to 0. Hence the numerators of v1
img and v2

img cannot change 

signs. The denominator of v1
img and v2

img cannot change sign because  for any set of 

system parameters that satisfy (−and (−refer to Eq.(3-36)). Whenis equal 

toit is seen from numerical simulation thatv1
img

 and v2
img

 have finite values such that 

v1
img > 0 and v2

img < 0. Hence, v1
img

 and v2
img

 cannot change signs for any set of system 
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parameters that satisfy the condition (−and (−Therefore, v1
img > 0 and v2

img < 0 

for any set of system parameters that satisfy the condition (−and (−On further 

investigation, it was found that there exists an upper bound on v1
img given by Eq.(3-57).  

   

Since + 0 (from Eq.(3-36)) 
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Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (f) which is depicted graphically in Fig 3-5f1, Fig 3-5f2 and Fig 3-5f3. 

This allows us to find sufficient condition for the elimination of only CNMP zeros for case (f) as 

shown below: 
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Note that Eq.(3-58) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5f2 and Fig 3-5f3 where for positive v > v1
img i.e. 

Eq.(3-58) is not satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order 

to find the necessary and sufficient condition for the elimination of only CNMP zeros and only 

RNMP zeros, we characterize the intersection of the zero locus of G3(s) with the positive real axis. 

Zeros of G3(s) are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the 

intersection of the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find 

the repeated roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The 

discriminant of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th 

order polynomial in v which cannot be solved analytically as discussed in case(a).  
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Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 

and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 

the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  

2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-29) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case (a) and shown graphically in Fig 3-3. Now we have to ascertain for case 

(f) where the conditions (−and (−are satisfied, which of the five scenarios for the 

meeting point of the zero locus of G3(s) with the positive real axis are possible. In order to do so, 

we make use of following five facts about the zero locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. In order to find the location of the other zeros of T3(s), we analyze the 

roots of Eq.(3-42) which is derived from expression of A3(s) from Eq.(3-28). Given the 

condition that (−and (−and Eq.(3-36), we can conclude the following: 
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( )
( )

( )
( )

2 2
2

Product of roots 0,  Sum of roots 0
1 1 )

v v v
w h k z w ch k

k k

+ +
= > =- ³

+ +
 (3-59) 

Therefore, based on Eq.(3-59), the roots of Eq.(3-42) will lie on the right hand side (RHS) of 

the imaginary axis. They can either be real or occur as a pair of complex conjugates. Fig 3-5f1, 

Fig 3-5f2 and Fig 3-5f3 graphically depicts the location of these zeros on the RHS of the 

imaginary axis.  

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at two sets of conjugate locations at v =v1
img 

and v = v2
img (given in Eq.(3-33)) as shown in Fig 3-5f1, Fig 3-5f2 and Fig 3-5f3. It is also 

known that v1
img > 0 and v2

img < 0 for any set of system parameters that satisfy the condition 

(−and (− 

3. Relative position of intersection of positive zero locus (v >0)and negative zero locus (v <0) 

with the imaginary axis - For case (f), from Eq.(3-46) we can say that y1
2 < y2

2. Since, from 

Eq.(3-37),v1
img corresponds to y1

2 and v2
img corresponds to y2

2, the point of intersection of 

the zero locus of G3(s) corresponding to v2
img is higher than the point of intersection of the 

zero locus of G3(s) corresponding to v1
img.   

4. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(f), from Eq.(3-47), we can say that the portion of the positive real axis corresponding to v
∞ 

belongs to positive zero locus of G3(s). Further, since there are no zeros of T3(s) lying on the 

positive real axis, the entire positive real axis is covered by the positive zero locus of G3(s). 

5. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (f), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the zeros 
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of T3(s) at the origin is determined to be 0 and 180. The angle of arrival for the negative zero 

locus of G3(s) to the zeros of T3(s) at the origin is determined to be 90 and -90. 

Based on all these facts, we can conclude that for case (f), Scenario I, Scenario III and Scenario V 

are possible for the zero locus of G3(s) to meet the positive real axis. The table below shows which 

of the above facts were used to eliminate the scenarios that are not possible for both v > 0 and v 

< 0. 

Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0  - 2 - 1,2 - 

v < 0  - 4 - 4 - 

Table 3-13 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (f)  

Parameter Range of : (−1    −2  ) 

2
2 4

Condition II:  4 0   AND 0
2

b b ac
b ac

a

- + -
- ³ <  (from Eq.(3-32)) 

Note that for −1    −2 and  < 1 (because we have assumed u < v without any loss of 

generality) the parameter space of  can be written in two ways because under the condition that 

-1<<-2, it cannot be ascertained if –/> -/ or –/< -/. Hence, the parameter space can 

be written in two ways 

 
3 31 1

  OR  
h k h h h k
k h k kh k k h kh

- <- <- <- - <- <- <-                   (3-60) 
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 
# 
No. 

a c b and   Range of  where the signs of a, b & c 
are satisfied (range is hashed if it exists) 

v 

 
 

-1<<-
 

 
 
 
IIA 

 
 
a>0 

 
 
c>0 

 
 
b>0 

00 
-/ -/ -1/-/

-/ -/ -1/-/
 

No 
sol 

00 
-/ -/ -1/-/

-/ -/ -1/-/
 

No 
sol 

00 
-/ -/ -1/-/

-/ -/ -1/-/
 

No 
sol 

Table 3-14 Range of  and v for which Condition (IIA) of Eq.(3-35) is satisfied 

 
# 

No. 
a c b and   Range of  where the signs of a, b & c 

are satisfied (range is hashed if it exists) 
v 

 
 

-<<-
 

 
IIB 
& 

IIC 

 
 
a<0 

 
 
c>0 

 
 
b>0 

 

-/k -/ -1/-/

-/ -/ -1/-/
 

No 
sol 

  No 
sol 

  No 
sol 

 No 
sol 

Table 3-15 Range of  and v for which Condition (IIB) and (IIC) of Eq.(3-35) is satisfied 

 
# 

No
. 

a c b and   Range of  where the signs of a, b & c are 
satisfied (range is hashed if it exists) 

v 

 
 

 -
<<

- 

 
 
 
IID 

 
 
a<
0 

 
 
c<
0 

 
 
b<
0 


 

-/ -/ -1/-/

-/ -/ -1/-/
 

N
o 
sol 
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
 

/ -/ -1/-/

-/ -/ -1/-/
 

N
o 
sol 


 

-/ -/ -1/-/

-/ -/ -1/-/
 

N
o 
sol 

Table 3-16 Range of  and v for which Condition (IID) of Eq.(3-35) is satisfied 

2
2 4

Condition III:  4 0   AND 0
2

b b ac
b ac

a

- - -
- ³ <  

 
# 

No. 
a c b  and  

Range of  where the signs of a, b & c 
are satisfied (range is hashed if it exists) 

v 

 

 

 -1<<-
2 

 

 

 
IIIA 

 

 

a>0 

 

 

c>0 

 

 

b>0 

>0, 
>0 

-/ -/ -1/-/

-/ -/ -1/-/
 

No 
sol 

>0, 
<0 

-/ -/ -1/-/

-/ -/ -1/-/
 

No 
sol 

<0,<0 
-/ -/ -1/-/

-/ -/ -1/-/
 

No 
sol 

Table 3-17 Range of  and v for which Condition (IIIA) of Eq.(3-35) is satisfied 
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 
# 

No. 
a c b and  

Range of  where the signs of a, b & 
c are satisfied (range is hashed if it 

exists) 
v 

 
 
-

<<
- 

 
 
 
III
B 

 
 
a>
0 

 
 
c<
0 

 
 
b>
0 


 

-/ -/ -1/-/

-/ -/ -1/-/

v

dl
z

l
>  


 

-/ -/ -1/-/

-/ -/ -1/-/

For all 
values of 
v 


 

-/ -/ -1/-/

-/ -/ -1/-/

v

dl
z

l
<  

Table 3-18 Range of  and v for which Condition (IIIB) of Eq.(3-35) is satisfied 

 
# 

No. 
a c b and   Range of  where the signs of a, b & c 

are satisfied (range is hashed if it exists) 
v 

 
 

 -<<-
 

 
 
 
IIIC 

 
 
a<0 

 
 
c<0 

 
 
b<0 

 
-/ -/ -1/-/

-/ -/ -1/-/
 

No 
sol 

 
-/ -/ -1/-/

-/ -/ -1/-/
 

No 
sol 

 
-/ -/ -1/-/

-/ -/ -1/-/
 

No 
sol 
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Table 3-19 Range of  and v for which Condition (IIIC) of Eq.(3-35) is satisfied 

 
# 

No. 
a c b and  

Range of  where the signs of a, b & 
c are satisfied (range is hashed if it 

exists) 
v 

 
 

 -
<<

- 

 
 
 
III
D 

 
 
a>
0 

 
 
c<
0 

 
 
b<
0 


 

-/ -/ -1/-/

-/ -/ -1/-/

v

dl
z

l
<  


 

-/ -/ -1/-/

-/ -/ -1/-/

v

dl
z

l
>  


 

-/ -/ -1/-/

-/ -/ -1/-/

for all 
values of 
v 

Table 3-20 Range of  and v for which Condition (IIID) of Eq.(3-35) is satisfied 

For the parameter range of (−1    −2 )Table 3-2, Table 3-14 – Table 3-16, and Table 3-17 

– Table 3-20 provide the solution for Condition I, Condition II and Condition III of Eq.(3-32) 

respectively. Based on these tables, we can provide the following parameter ranges of and v: 

g) 
3h

c
k

<-  

Based on Eq.(3-60) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-14 – Table 3-16, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-17 – Table 3-20, Condition III of Eq.(3-32) is also not true for this range of 

This implies that the zero locus of G3(s) will cross the imaginary axis at two sets of conjugate 

locations at v =v1
img and v = v2

img (given in Eq.(3-33)) as shown in Fig 3-5g.  
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In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−1    −2 and 

(−3Comparing the two distinct values of v (where the zero locus crosses the imaginary 

axis) from the numerically plotted zero locus with the values of v1
img and v2

img from Eq.(3-33) 

leads to the observation that v1
img > 0 and v2

img < 0. Although this observation has been made 

numerically for one set of system parameters that satisfy the condition (−1    −2 and 

(−3it holds true for any combination of system parameters that satisfy (−1    −2 and 

(−3. The proof for this is as follows 

The expression for v1
img

 and v2
img are given by Eq.(3-33). From numerical simulation, we 

observed that v1
img > 0 and v2

img < 0 for one set of system parameters that satisfy the condition 

(−1    −2 and (−3. If v1
img

 and v2
img have to change sign for another set of system 

parameters that satisfy the condition (−1    −2 and (−3then either the numerator or 

the denominator of v1
img

 and v2
img

 should change signs but not both at the same time. If the 

numerators of v1
img

 and v2
img have to change sign then they will have to pass through 0 for some 

set of system parameters that satisfy the condition (−1    −2 and (−3. This would 

mean that v1
img

 and v2
img will have to be equal to 0 for this set of system parameters. However, 

if v1
img

 and v2
img are equal to 0, this means that for v

 = 0 the zero locus should cross the 

imaginary axis. But for v
 = 0 the zero locus passes through the damped poles that lie strictly on 

the open left half s-plane and not on the imaginary axis as shown in Fig 3-5g. Therefore, v1
img and 

v2
img cannot be equal to 0. Hence the numerators of v1

img and v2
img cannot change signs. The 

denominator of v1
img and v2

img cannot change sign because  for any set of system 
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parameters that satisfy (−1    −2 and (−3refer to Eq.(3-60)). Hence, v1
img

 and v2
img

 

cannot change signs for any set of system parameters that satisfy the condition (−1    −2 and 

(−3Therefore, v1
img > 0 and v2

img < 0 for any set of system parameters that satisfy the 

condition (−1    −2 and (−3On further investigation, it was found that there exists 

an upper bound on v1
img given by Eq.(3-61). Since +< 0 (from Eq.(3-60)) 

 
( )
( )

( )
( )1 1

1 1
0img img

v v

ch ch
a a

ch k ch k
+ +

 + <  <-
+ +

 (3-61) 

Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (g) which is depicted graphically in Fig 3-5g. This allows us to find 

sufficient condition for the elimination of only CNMP zeros for case (g) as shown below: 

 
1

2

 if 0

 if 0

img
v v v

img
v v v

a a a

a a a

£ >

³ <
 (3-62) 

Note that Eq.(3-62) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5g where for positive v > v1
img i.e. Eq.(3-62) is not 

satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order to find the 

necessary and sufficient condition for the elimination of only CNMP zeros and only RNMP zeros, 

we characterize the intersection of the zero locus of G3(s) with the positive real axis. Zeros of G3(s) 

are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the intersection of 

the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find the repeated 

roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The discriminant 

of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th order 

polynomial in v which cannot be solved analytically as discussed in case(a).  
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Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 

and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 

the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  

2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-28) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case a) and shown graphically in Fig 3-3. Now we have to ascertain for case 

(g) where the conditions (−1    −2 and (−3are satisfied, which of the five scenarios 

for the meeting point of the zero locus of G3(s) with the positive real axis are possible. In order to 

do so, we make use of following five facts about the zero locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. This is graphically depicted in Fig 3-5g. In order to find the location of 

the other zeros of T3(s), we analyze the roots of Eq. which is derived from expression of A3(s) 

from Eq.(3-28). 
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( ) ( ) ( )

( )
( )

( )
( )

2 2 2

2 2

1 2 0

2
Product of roots ,  Sum of roots

1 1 )

v v v

v v v

s sk z w ch k w h k

w h k z w ch k
k k

+ + + + + =

+ +
= =-

+ +

        (3-63)       

Given the condition that (−1    −2 and (−3and Eq.(3-60), we can conclude the 

following: 

                   
( )
( )

( )
( )

2 2
2

Product of roots 0,  Sum of roots 0
1 1 )

v v v
w h k z w ch k

k k

+ +
= £ =- >

+ +
    (3-64)                             

Therefore, based on Eq.(3-64), the roots of Eq.(3-63) can only be real with one zero lying on 

positive real axis and the other on negative real axis. In the limiting case when = -2, there 

is one zero at the origin and the other on positive real axis. In the limiting case when = -1, 

there is one zero at +∞ and the other on negative real axis. Fig 3-5g graphically depicts the 

location of these zeros. 

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at two sets of conjugate locations at v =v1
img 

and v = v2
img (given in Eq.(3-33)) as shown in Fig 3-5g. It is also known that v1

img > 0 and 

v2
img < 0 for any set of system parameters that satisfy the condition (−1    −2 and 

(−3 

3. Relative position of intersection of positive zero locus (v >0)and negative zero locus (v <0) 

with the imaginary axis - For case (g), from Eq.(3-46) we can say that y1
2 > y2

2. Since, from 

Eq.(3-37),v1
img corresponds to y1

2 and v2
img corresponds to y2

2, the point of intersection of 

the zero locus of G3(s) corresponding to v1
img is higher than the point of intersection of the 

zero locus of G3(s) corresponding to v2
img.   
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4. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(g), from Eq.(3-47), we can say that the portion of the positive real axis corresponding to v
∞ 

belongs to negative zero locus of G3(s). Further, since there is a zero of T3(s) lying on the 

positive real axis, the portion of the positive real axis that lies to the right of this zero of T3(s) 

is covered by the negative zero locus of G3(s) and the portion of the positive real axis that lies 

to the left of this zero of T3(s) is covered by the positive zero locus of G3(s). 

5. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (g), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the 

zeros of T3(s) at the origin is determined to be 0 and 180. The angle of arrival for the negative 

zero locus of G3(s) to the zeros of T3(s) at the origin is determined to be -90 and 90. However, 

for the limiting case when = -2, the zero of T3(s) on the negative real axis moves to the 

origin (leading to three zeros of T3(s) at the origin) . For this case, the angle of arrival for the 

positive zero locus of G3(s) to the zeros of T3(s) at the origin is determined to be -60, 60 and 

180 and the angle of arrival for the negative zero locus of G3(s) to the zeros of T3(s) at the 

origin is determined to be -120, 0 and 120.   

Based on all these facts, we can conclude that for case (g), Scenario II is possible for the zero locus 

of G3(s) to meet the positive real axis. The table below shows which of the above facts were used 

to eliminate the scenarios that are not possible for both v > 0 and v < 0. 

 

 

 

 



 
129  

 
 

Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0  4 - 2,3 1,2 2,3 

v < 0  4 4 4 4 4 

Table 3- 21 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (g)  

h) 
3 1h

c
k kh

- £ £-  

Based on Eq.(3-60) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-14 – Table 3-16, Condition II of Eq.(3-32) is also not true for this range of Based on 

Table 3-17 – Table 3-20, Condition III of Eq.(3-32) is true for this range of This implies that 

the zero locus of G3(s) will cross the imaginary axis at one sets of conjugate locations at v =v1
img 

(given in Eq.(3-33)) as shown in Fig 3-5h1 and Fig 3-5h2.  

In order to ascertain the sign of v1
img, we plot the zero locus of G3(s) numerically for certain 

values of system parameters that satisfy the condition (−1    −2 and 

(−3−1Comparing the value of v (where the zero locus crosses the imaginary axis) 

from the numerically plotted zero locus with the values of v1
img from Eq.(3-33) leads to the 

observation that v1
img > 0. Although this observation has been made numerically for one set of 

system parameters that satisfy the condition (−1    −2 and (−3−1it holds true 

for any combination of system parameters that satisfy (−1    −2 and (−3−1. 

The proof for this is as follows: The expression for v1
img

 is given by Eq.(3-33). From numerical 

simulation, we observed that v1
img > for one set of system parameters that satisfy the condition 

(−1    −2 and (−3−1. If v1
img

 has to change sign for another set of system 
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parameters that satisfy the condition (−1    −2 and (−3−1then either the 

numerator or the denominator of v1
img

 should change signs but not both at the same time. If the 

numerator of v1
img

 has to change sign then it will have to pass through 0 for some set of system 

parameters that satisfy the condition (−1    −2 and (−3−1. This would mean 

that v1
img will have to be equal to 0 for this set of system parameters. However, if v1

img
 is equal 

to 0, this means that for v
 = 0 the zero locus should cross the imaginary axis. But for v

 = 0 the 

zero locus passes through the damped poles that lie strictly on the open left half s-plane and not 

on the imaginary axis as shown in Fig 3-5h1 and Fig 3-5h2. Therefore, v1
img cannot be equal to 

0. Hence the numerator of v1
img cannot change sign. For checking the sign of denominator, this 

case can be analyzed by sub-dividing it into two sub-cases, one whereand one where 

. For both these sub-cases, the denominator of v1
img cannot change sign because for the 

first sub-case,  for any set of system parameters that satisfy (−1    −2 and 

(−3refer to Eq.(3-60)). Similarly, for the second sub-case, the denominator of 

v1
img cannot change sign because  for any set of system parameters that satisfy (−1   

 −2 and (−1refer to Eq.(3-60)).Whenis equal toit is seen from 

numerical simulation thatv1
img

 has a finite value such that v1
img > 0. Hence, v1

img
 cannot change 

sign for any set of system parameters that satisfy the condition (−3−1Therefore, 

v1
img > 0 for any set of system parameters that satisfy the condition (−3−1On 

further investigation, it was found that there exists an upper bound on v1
img given by Eq.(3-61) 

whenand an upper bound given by Eq.(3-57) when  
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Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (h) which is depicted graphically in Fig 3-5h1 and Fig 3-5h2. This allows 

us to find sufficient condition for the elimination of only CNMP zeros for case (h) as shown below: 

 
1  if 0

0

img
v v v

v

a a a

a

£ >

<
 (3-65) 

Note that Eq.(3-65) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5h2 where for positive v > v1
img i.e. Eq.(3-65) is not 

satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order to find the 

necessary and sufficient condition for the elimination of only CNMP zeros and only RNMP zeros, 

we characterize the intersection of the zero locus of G3(s) with the positive real axis. Zeros of G3(s) 

are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the intersection of 

the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find the repeated 

roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The discriminant 

of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th order 

polynomial in v which cannot be solved analytically as discussed in case(a).  

Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 

and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 

the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  
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2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-28) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case (a) and shown graphically in Fig 3-3. Now we have to ascertain for case 

(h) where the conditions (−1    −2 and (−3−1are satisfied, which of the five 

scenarios for the meeting point of the zero locus of G3(s) with the positive real axis are possible. 

In order to do so, we make use of following five facts about the zero locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. This is graphically depicted in Fig 3-5h1 and Fig 3-5h2. In order to find 

the location of the other zeros of T3(s), we analyze the roots of Eq.(3-63) which is derived from 

expression of A3(s) from Eq.(3-28). Given the condition that (−1    −2and 

(−3−1and Eq.(3-60), we can conclude the following: 

 
( )
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+
  (3-66)                         

We cannot tell anything about the sign of (+and therefore cannot comment on the sum 

of the roots. Therefore, based on Eq.(3-66), the roots of Eq.(3-63) can only be real with one 

zero lying on positive real axis and the other on negative real axis. In the limiting case when 

= -2, there is one zero at the origin and the other on negative real axis (which goes to the 
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origin when =. In the limiting case when = -1, there is one zero at +∞ and the other on 

negative real axis. Fig 3-5h1 and Fig 3-5h2 graphically depicts the location of these zeros. 

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at one sets of conjugate locations at v =v1
img 

(given in Eq.(3-33)) as shown in Fig 3-5h1 and Fig 3-5h2. It is also known that v1
img > 0 for 

any set of system parameters that satisfy the condition (−1    −2 and (−3−1 

3. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(h), from Eq.(3-47), we can say that the portion of the positive real axis corresponding to v
∞ 

belongs to negative zero locus of G3(s). Further, since there is a zero of T3(s) lying on the 

positive real axis (or the origin), the portion of the positive real axis that lies to the right of this 

zero of T3(s) is covered by the negative zero locus of G3(s) and the portion of the positive real 

axis that lies to the left of this zero of T3(s) is covered by the positive zero locus of G3(s). 

4. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (h), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the 

zeros of T3(s) at the origin is determined to be 0 and 180. The angle of arrival for the negative 

zero locus of G3(s) to the zeros of T3(s) at the origin is determined to be -90 and 90. This can 

be seen in Fig 3-5h2. However, for the limiting case when = -2, the zero of T3(s) on the 

positive real axis moves to the origin (leading to three zeros of T3(s) at the origin). For this 

case, the angle of arrival for the positive zero locus of G3(s) to the zeros of T3(s) at the origin 

is determined to be -120, 0 and 120 and the angle of arrival for the negative zero locus of 

G3(s) to the zeros of T3(s) at the origin is determined to be -60, 60 and 180. This can be seen 

in Fig 3-5h1. When = -2 and further when =, all zeros of T3(s) are at the origin. For this 
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case, the angle of arrival for the positive zero locus of G3(s) to the zeros of T3(s) at the origin 

is determined to be -135, -45 and 45, 135 and the angle of arrival for the negative zero 

locus of G3(s) to the zeros of T3(s) at the origin is determined to be -90, 0, 90 and 180. 

Based on all these facts, we can conclude that for case (h), Scenario I and Scenario II are possible 

for the zero locus of G3(s) to meet the positive real axis. The table below shows which of the above 

facts were used to eliminate the scenarios that are not possible for both v > 0 and v < 0. 

Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0 - - 1,2 1,2 1,2 

v < 0 - 2 2 2 2 

Table 3- 22 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (h)  

i) 
1

c
kh

- <  

Based on Eq.(3-60) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-14 – Table 3-16, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-17 – Table 3-20, Condition III of Eq.(3-32) is also not true for this range of 

This implies that the zero locus of G3(s) will cross the imaginary axis at two sets of conjugate 

locations at v =v1
img and v = v2

img (given in Eq.(3-33)) as shown in Fig 3-5i1 and Fig 3-5i2.  

In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−1    −2 and 

(−Comparing the two distinct values of v (where the zero locus crosses the imaginary 

axis) from the numerically plotted zero locus with the values of v1
img and v2

img from Eq.(3-33) 
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leads to the observation that v1
img > 0 and v2

img < 0. Although this observation has been made 

numerically for one set of system parameters that satisfy the condition (−1    −2 and 

(−it holds true for any combination of system parameters that satisfy (−1    −2 

and (−. The proof for this is as follows.  

The expression for v1
img

 and v2
img are given by Eq.(3-33). From numerical simulation, we 

observed that v1
img > 0 and v2

img < 0 for one set of system parameters that satisfy the condition 

(−1    −2 and (−. If v1
img

 and v2
img have to change sign for another set of system 

parameters that satisfy the condition (−1    −2 and (−then either the numerator or 

the denominator of v1
img

 and v2
img

 should change signs but not both at the same time. If the 

numerators of v1
img

 and v2
img have to change sign then they will have to pass through 0 for some 

set of system parameters that satisfy the condition (−1    −2 and (−. This would 

mean that v1
img

 and v2
img will have to be equal to 0 for this set of system parameters. However, 

if v1
img

 and v2
img are equal to 0, this means that for v

 = 0 the zero locus should cross the 

imaginary axis. But for v
 = 0 the zero locus passes through the damped poles that lie strictly on 

the open left half s-plane and not on the imaginary axis as shown in Fig 3-5i1 and Fig 3-5i2. 

Therefore, v1
img and v2

img cannot be equal to 0. Hence the numerators of v1
img and v2

img cannot 

change signs. The denominator of v1
img and v2

img cannot change sign because  for any 

set of system parameters that satisfy (−1    −2 and (−refer to Eq.(3-60)). Hence, 

v1
img

 and v2
img

 cannot change signs for any set of system parameters that satisfy the condition 

(−1    −2 and (−Therefore, v1
img > 0 and v2

img < 0 for any set of system 
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parameters that satisfy the condition (−1    −2 and (−On further investigation, it 

was found that there exists an upper bound on v1
img given by Eq.(3-57).  

Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (i) which is depicted graphically in Fig 3-5i1 and Fig 3-5i2. This allows us 

to find sufficient condition for the elimination of only CNMP zeros for case (i) as shown below: 
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Note that Eq.(3-67) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5i1 and Fig 3-5i2 where for positive v > v1
img i.e. 

Eq.(3-67) is not satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order 

to find the necessary and sufficient condition for the elimination of only CNMP zeros and only 

RNMP zeros, we characterize the intersection of the zero locus of G3(s) with the positive real axis. 

Zeros of G3(s) are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the 

intersection of the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find 

the repeated roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The 

discriminant of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th 

order polynomial in v which cannot be solved analytically as discussed in case(a).  

Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 

and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 
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the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  

2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-28) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case (a) and shown graphically in Fig 3-3. Now we have to ascertain for case 

(i) where the conditions (−1    −2 and (−are satisfied, which of the five scenarios 

for the meeting point of the zero locus of G3(s) with the positive real axis are possible. In order to 

do so, we make use of following five facts about the zero locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. This is graphically depicted in Fig 3-5i1 and Fig 3-5i2. In order to find 

the location of the other zeros of T3(s), we analyze the roots of Eq.(3-63) which is derived from 

expression of A3(s) from Eq.(3-28). Given the condition that (−1    −2 and 

(−and Eq.(3-60), we can conclude the following: 
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Therefore, based on Eq.(3-68), the roots of Eq.(3-63) can only be real with one zero lying on 

positive real axis and the other on negative real axis. In the limiting case when = -2, there is 
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one zero at the origin and the other on negative real axis. In the limiting case when = -1, there 

is one zero at -∞ and the other on positive real axis. Fig 3-5i1 and Fig 3-5i2 graphically depicts 

the location of these zeros. 

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at two sets of conjugate locations at v =v1
img 

and v = v2
img (given in Eq.(3-33)) as shown in Fig 3-5i1 and Fig 3-5i2. It is also known that 

v1
img > 0 and v2

img < 0 for any set of system parameters that satisfy the condition (−1    

−2 and (− 

3. Relative position of intersection of positive zero locus (v >0)and negative zero locus (v <0) 

with the imaginary axis - For case (i), from Eq.(3-46) we can say that y1
2 < y2

2. Since, from 

Eq.(3-37),v1
img corresponds to y1

2 and v2
img corresponds to y2

2, the point of intersection of 

the zero locus of G3(s) corresponding to v2
img is higher than the point of intersection of the 

zero locus of G3(s) corresponding to v1
img.   

4. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(i), from Eq.(3-47), we can say that the portion of the positive real axis corresponding to v
∞ 

belongs to negative zero locus of G3(s). Further, since there is a zero of T3(s) lying on the 

positive real axis (or at the origin), the portion of the positive real axis that lies to the right of 

this zero of T3(s) is covered by the negative zero locus of G3(s) and the portion of the positive 

real axis that lies to the left of this zero of T3(s) is covered by the positive zero locus of G3(s). 

5. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (i), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the zeros 

of T3(s) at the origin is determined to be 0 and 180. The angle of arrival for the negative zero 
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locus of G3(s) to the zeros of T3(s) at the origin is determined to be -90 and 90. This can be 

seen in Fig 3-5i2. However, for the limiting case when = -2, the zero of T3(s) on the positive 

real axis moves to the origin (leading to three zeros of T3(s) at the origin) . For this case, the 

angle of arrival for the positive zero locus of G3(s) to the zeros of T3(s) at the origin is 

determined to be -120, 0 and 120 and the angle of arrival for the negative zero locus of G3(s) 

to the zeros of T3(s) at the origin is determined to be -60, 60 and 180. This can be seen in 

Fig 3-5i1. 

Based on all these facts, we can conclude that for case (i), Scenario II and Scenario V are possible 

for the zero locus of G3(s) to meet the positive real axis. The table below shows which of the above 

facts were used to eliminate the scenarios that are not possible for both v > 0 and v < 0. 

Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0  5 4 4 4 - 

v < 0  5 - 1,2 1,2 - 

Table 3- 23 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (i)  

Parameter Range of : (-<  < 0) 

2
2 4

Condition II:  4 0   AND 0
2

b b ac
b ac

a

- + -
- ³ <  (From Eq.(3-32))   

Note that for -<  < 0and  < 1 (because we have assumed u < v without any loss of 

generality)the following inequality holds true: 

 
3 1k h h

h k k kh
- <- <- <-  (3-69) 



 
140  

 
 

 
# 

No
. 

a c b and  
Range of  where the signs of a, b & 

c are satisfied (range is hashed if it 
exists) 

v 

 
 -

<<
0 

II
A 

 
a>
0 

 
c>
0 

 
b>
0 


  -/ -/ -1/-/ v

dl
z

l
>  


  -/ -/ -1/-/

No sol 


  -/ -/ -1/-/

No sol 

Table 3-24 Range of  and v for which Condition (IIA) of Eq.(3-35) is satisfied 

 
# 

No. 
a c b and  

Range of  where the signs of a, b & c 
are satisfied (range is hashed if it 

exists) 
v 

 
 -

<<0 

IIB 
& 

IIC 

 
a<0 

 
c>0 

 
b><0 

 

-/ -/ -1/-/
 

No 
sol 

  No 
sol 

  No 
sol 

 No 
sol 

Table 3-25 Range of  and v for which Condition (IIB) and (IIC) of Eq.(3-35) is satisfied  

 
# 

No. 
a c b and   Range of  where the signs of a, b & c 

are satisfied (range is hashed if it exists) 
v 

 
 -

<<0 

 
IID 

 
a<0 

 
c<0 

 
b<0 

 
-/ -/ -1/-/

 

No 
sol 

 
-/ -/ -1/-/

 

No 
sol 

 
-/ -/ -1/-/

 

No 
sol 

Table 3-26 Range of  and v for which Condition (IID) of Eq.(3-35) is satisfied 
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2
2 4

Condition III:  4 0   AND 0
2

b b ac
b ac

a

- - -
- ³ <  

 
# 

No. 
a c b and  

Range of  where the signs of a, b & 
c are satisfied (range is hashed if it 

exists) 
v 

 
 -

<<
0 

 
III
A 

 
a>
0 

 
c>
0 

 
b>
0 


  -/ -/ -1/-/ v

dl
z

l
>  


  -/ -/ -1/-/

No sol 


  -/ -/ -1/-/

No sol 

 Table 3-27 Range of  and v for which Condition (IIIA) of Eq.(3-35) is satisfied 

 
# 

No. 
a c b and  

Range of  where the signs of a, b & 
c are satisfied (range is hashed if it 

exists) 
v 

 
 -

<<
0 

 
III
B 

 
a>
0 

 
c<
0 

 
b>
0 


  -/ -/ -1/-/ v

dl
z

l
>  


  -/ -/ -1/-/

for all 
values of 
v 


  -/ -/ -1/-/

No sol 

Table 3-28 Range of  and v for which Condition (IIIB) of Eq.(3-35) is satisfied 

 
# 

No. 
a c b and   Range of  where the signs of a, b & c 

are satisfied (range is hashed if it exists) 
v 

 
 -

<<0 

 
IIIC 

 
a<0 

 
c<0 

 
b<0 

 
-/ -/ -1/-/

 

No 
sol 

 
-/ -/ -1/-/

 

No 
sol 

 
-/ -/ -1/-/

 

No 
sol 
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Table 3-29 Range of  and v for which Condition (IIIC) of Eq.(3-35) is satisfied 

 
# 

No. 
a c b and  

Range of  where the signs of a, b & 
c are satisfied (range is hashed if it 

exists) 
v 

 
 -

<<
0 

 
III
D 

 
a>
0 

 
c<
0 

 
b<
0 


 -/ -/ -1/-/ v

dl
z

l
<  


 -/ -/ -1/-/

No sol 


 -/ -/ -1/-/

No sol 

Table 3-30 Range of  and v for which Condition (IIID) of Eq.(3-35) is satisfied 

For the parameter range of (−2    0) Table 3-2, Table 3-24 – Table 3-26, and Table 3-27 – 

Table 3-30 provide the solution for Condition I, Condition II and Condition III of Eq.(3-32) 

respectively. Based on these tables, we can provide the following parameter ranges of and v:  

j) 
k

c
h

£-  

Based on Eq.(3-69) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-24 – Table 3-26, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-27 – Table 3-30, Condition III of Eq.(3-32) is also not true for this range of 

This implies that the zero locus of G3(s) will cross the imaginary axis at two sets of conjugate 

locations at v =v1
img and v = v2

img (given in Eq.(3-33)) as shown in Fig 3-5j1, Fig 3-5j2 and 

Fig 3-5j3.  

In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−2 <  < 0 and 

(−Comparing the two distinct values of v (where the zero locus crosses the imaginary 
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axis) from the numerically plotted zero locus with the values of v1
img and v2

img from Eq.(3-33) 

leads to the observation that v1
img > 0 and v2

img < 0. Although this observation has been made 

numerically for one set of system parameters that satisfy the condition (−2 <  < 0 and 

(−it holds true for any combination of system parameters that satisfy (−2 <  < 0 and 

(−. The proof for this is as follows: The expression for v1
img

 and v2
img are given by 

Eq.(3-33). From numerical simulation, we observed that v1
img > 0 and v2

img < 0 for one set of 

system parameters that satisfy the condition (−2 <  < 0 and (−. If v1
img

 and v2
img have 

to change sign for another set of system parameters that satisfy the condition (−2 <  < 0 and 

(−then either the numerator or the denominator of v1
img

 and v2
img

 should change signs 

but not both at the same time. If the numerators of v1
img

 and v2
img have to change sign then they 

will have to pass through 0 for some set of system parameters that satisfy the condition (−2 <  

< 0 and (−. This would mean that v1
img

 and v2
img will have to be equal to 0 for this set 

of system parameters. However, if v1
img

 and v2
img are equal to 0, this means that for v

 = 0 the 

zero locus should cross the imaginary axis. But for v
 = 0 the zero locus passes through the damped 

poles that lie strictly on the open left half s-plane and not on the imaginary axis as shown in Fig 3-

5j1, Fig 3-5j2 and Fig 3-5j3.  Therefore, v1
img and v2

img cannot be equal to 0. Hence the 

numerators of v1
img and v2

img cannot change signs. The denominator of v1
img and v2

img cannot 

change sign because  for any set of system parameters that satisfy (−2 <  < 0 and 

(−refer to Eq.(3-69)). Whenis equal toit is seen from numerical simulation 

thatv1
img

 and v2
img

 have finite values such that v1
img > 0 and v2

img < 0. Hence, v1
img

 and v2
img

 

cannot change signs for any set of system parameters that satisfy the condition (−2 <  < 0 and 
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(−Therefore, v1
img > 0 and v2

img < 0 for any set of system parameters that satisfy the 

condition (−2 <  < 0 and (−On further investigation, it was found that there exists an 

upper bound on v1
img given by Eq.(3-61).  

Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (j) which is depicted graphically in Fig 3-5j1, Fig 3-5j2 and Fig 3-5j3. This 

allows us to find sufficient condition for the elimination of only CNMP zeros for case (j) as shown 

below: 

  
1

2

 if 0

 if 0

img
v v v

img
v v v

a a a

a a a

£ >

³ <
 (3-70) 

Note that Eq.(3-70) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5j2 and Fig 3-5j3 where for positive v > v1
img i.e. 

Eq.(3-70) is not satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order 

to find the necessary and sufficient condition for the elimination of only CNMP zeros and only 

RNMP zeros, we characterize the intersection of the zero locus of G3(s) with the positive real axis. 

Zeros of G3(s) are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the 

intersection of the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find 

the repeated roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The 

discriminant of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th 

order polynomial in v which cannot be solved analytically as discussed in case(a).  

Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 
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and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 

the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  

2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-29) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case (a) and shown graphically in Fig 3-3. Now we have to ascertain for case 

(j) where the conditions (−2 <  < 0 and (−are satisfied, which of the five scenarios for 

the meeting point of the zero locus of G3(s) with the positive real axis are possible. In order to do 

so, we make use of following five facts about the zero locus: 

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. This is graphically depicted in Fig 3-5j1, Fig 3-5j2 and Fig 3-5j3. In 

order to find the location of the other zeros of T3(s), we analyze the roots of Eq.(3-63) which 

is derived from expression of A3(s) from Eq.(3-28). Given the condition that (−2 <  < 0 and 

(−and Eq.(3-69), we can conclude the following: 

 
( )
( )

( )
( )

2 2
2

Product of roots 0,  Sum of roots 0
1 1 )

v v v
w h k z w ch k

k k

+ +
= > =- ³

+ +
 (3-71) 
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Therefore, based on Eq.(3-71), the roots of Eq.(3-63) will lie on the right hand side (RHS) of 

the imaginary axis. They can either be real or occur as a pair of complex conjugates. Fig 3-5j1, 

Fig 3-5j2 and Fig 3-5j3 graphically depicts the location of these zeros on the RHS of the 

imaginary axis. 

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at two sets of conjugate locations at v =v1
img 

and v = v2
img (given in Eq.(3-33)) as shown in Fig 3-5j1, Fig 3-5j2 and Fig 3-5j3. It is also 

known that v1
img > 0 and v2

img < 0 for any set of system parameters that satisfy the condition 

(−2 <  < 0 and (− 

3. Relative position of intersection of positive zero locus (v >0)and negative zero locus (v <0) 

with the imaginary axis - For case (j), from Eq.(3-46) we can say that y1
2 > y2

2. Since, from 

Eq.(3-37),v1
img corresponds to y1

2 and v2
img corresponds to y2

2, the point of intersection of 

the zero locus of G3(s) corresponding to v1
img is higher than the point of intersection of the 

zero locus of G3(s) corresponding to v2
img.   

4. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(j), from Eq.(3-47), we can say that the portion of the positive real axis corresponding to v
∞ 

belongs to negative zero locus of G3(s).  

5. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (j), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the zeros 

of T3(s) at the origin is determined to be -90 and 90.The angle of arrival for the negative zero 

locus of G3(s) to the zeros of T3(s) at the origin is determined to be 0 and 180. 
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Based on all these facts, we can conclude that for case (j), Scenario I, Scenario III and Scenario V 

are possible for the zero locus of G3(s) to meet the positive real axis. The table below shows which 

of the above facts were used to eliminate the scenarios that are not possible for both v > 0 and v 

< 0. 

Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0  - 4 4 4 - 

v < 0  - 2 - 2 - 

Table 3-31 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (j)  

k) 
3

,min, v v

k h
c z z

h k
- < <- <  

Based on Eq.(3-69) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-24 – Table 3-26, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-27 – Table 3-30, Condition III of Eq.(3-32) is also not true for this range of  

and vThis implies that the zero locus of G3(s) will cross the imaginary axis at two sets of 

conjugate locations at v =v1
img and v = v2

img (given in Eq.(3-33)) as shown in Fig 3-5k.

In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−2 <  < 0 and 

(−−vv,minComparing the two distinct values of v (where the zero locus 

crosses the imaginary axis) from the numerically plotted zero locus with the values of v1
img and 

v2
img from Eq.(3-33) leads to the observation that v1

img > 0 and v2
img > 0. Although this 

observation has been made numerically for one set of system parameters that satisfy the condition 



 
148  

 
 

(−2 <  < 0 and (−−vv,minit holds true for any combination of system 

parameters that satisfy (−2 <  < 0 and (−−vv,min. The proof for this is as 

follows: The expression for v1
img

 and v2
img are given by Eq.(3-33). From numerical simulation, 

we observed that v1
img > 0 and v2

img > 0 for one set of system parameters that satisfy the condition 

(−2 <  < 0 and (−−vv,min. If v1
img

 and v2
img have to change sign for 

another set of system parameters that satisfy the condition (−2 <  < 0 and 

(−−vv,minthen either the numerator or the denominator of v1
img

 and v2
img

 

should change signs but not both at the same time. If the numerators of v1
img

 and v2
img have to 

change sign then they will have to pass through 0 for some set of system parameters that satisfy 

the condition (−2 <  < 0 and (−−vv,min. This would mean that v1
img

 and 

v2
img will have to be equal to 0 for this set of system parameters. However, if v1

img
 and v2

img are 

equal to 0, this means that for v
 = 0 the zero locus should cross the imaginary axis. But for v

 = 0 

the zero locus passes through the damped poles that lie strictly on the open left half s-plane and 

not on the imaginary axis as shown in Fig 3-5k. Therefore, v1
img and v2

img cannot be equal to 0. 

Hence the numerators of v1
img and v2

img cannot change signs. The denominator of v1
img and 

v2
img cannot change sign because  for any set of system parameters that satisfy (−2 <  

< 0 and (−−vv,minrefer to Eq.(3-69)). Hence, v1
img

 and v2
img

 cannot change 

signs for any set of system parameters that satisfy the condition (−2 <  < 0 and 

(−−vv,minTherefore, v1
img > 0 and v2

img > 0 for any set of system parameters 

that satisfy the condition (−2 <  < 0 and (−−vv,minOn further investigation, 

it was found that there exists an upper bound on v1
img given by Eq.(3-57). 
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Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (k) which is depicted graphically in Fig 3-5k. This allows us to find 

sufficient condition for the elimination of only CNMP zeros for case (k) as shown below: 
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 (3-72) 

Note that Eq.(3-72) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5k where for positive v > v1
img i.e. Eq.(3-72) is not 

satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order to find the 

necessary and sufficient condition for the elimination of only CNMP zeros and only RNMP zeros, 

we characterize the intersection of the zero locus of G3(s) with the positive real axis. Zeros of G3(s) 

are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the intersection of 

the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find the repeated 

roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The discriminant 

of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th order 

polynomial in v which cannot be solved analytically as discussed in case(a).  

Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 

and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 

the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  
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2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-28) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case (a) and shown graphically in Fig 3-3. Now we have to ascertain for case 

(k) where the conditions (−2 <  < 0 and (−−vv,minare satisfied, which of 

the five scenarios for the meeting point of the zero locus of G3(s) with the positive real axis are 

possible. In order to do so, we make use of following five facts about the zero locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. This is graphically depicted in Fig 3-5k. In order to find the location of 

the other zeros of T3(s), we analyze the roots of Eq.(3-63) which is derived from expression of 

A3(s) from Eq.(3-28). Given the condition that (−2 <  < 0 and 

(−−vv,minand Eq.(3-69), we can conclude the following: 
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 (3-73) 

Therefore, based on Eq.(3-73), the roots of Eq.(3-63) will lie on the left hand side (LHS) of 

the imaginary axis. They can either be real or occur as a pair of complex conjugates. Fig 3-5k 

graphically depicts the location of these zeros on the LHS of the imaginary axis.  

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at two sets of conjugate locations at v =v1
img 

and v = v2
img (given in Eq.(3-33)) as shown in Fig 3-5k. It is also known that v1

img > 0 and 
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v2
img > 0 for any set of system parameters that satisfy the condition (−2 <  < 0 and 

(−−vv,min 

3. Relative position of intersection of positive zero locus (v >0)and negative zero locus (v <0) 

with the imaginary axis - For case (k), from Eq.(3-46) we can say that y1
2 > y2

2. Since, from 

Eq.(3-37),v1
img corresponds to y1

2 and v2
img corresponds to y2

2, the point of intersection of 

the zero locus of G3(s) corresponding to v1
img is higher than the point of intersection of the 

zero locus of G3(s) corresponding to v2
img.   

4. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(k), from Eq.(3-47), we can say that the portion of the positive real axis corresponding to v
∞ 

belongs to negative zero locus of G3(s). Further, since there are no zeros of T3(s) lying on the 

positive real axis, the entire positive real axis is covered by the negative zero locus of G3(s). 

5. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (c), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the zeros 

of T3(s) at the origin is determined to be -90 and 90.The angle of arrival for the negative zero 

locus of G3(s) to the zeros of T3(s) at the origin is determined to be 0 and 180. 

Based on all these facts, we can conclude that for case (k), Scenario I is possible for the zero locus 

of G3(s) to meet the positive real axis. The table below shows which of the above facts were used 

to eliminate the scenarios that are not possible for both v > 0 and v < 0. 
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Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0  - 4 4 4 4 

v < 0  - 2 2 2 2 

Table 3-32 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (k) 

l) 
3

,min, v v

k h
c z z

h k
- < <- =  

Based on Eq.(3-69) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-24 – Table 3-26, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-27 – Table 3-30, Condition III of Eq.(3-32) is also not true for this range of  

and vThis implies that the zero locus of G3(s) will cross the imaginary axis at two sets of 

conjugate locations at v =v1
img and v = v2

img (given in Eq.(3-33)) as shown in Fig 3-5l. 

However, we see that this is a limiting case where the zero locus goes from crossing the imaginary 

axis to not crossing the imaginary axis asv becomes greater than v,min. Hence, v1
img = v2

img and 

the two sets of conjugate locations where the zero locus of G3(s) crosses the imaginary axis are the 

same. 

In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−2 <  < 0and 

(−−vv,minComparing the two distinct values of v (where the zero locus 

crosses the imaginary axis) from the numerically plotted zero locus with the values of v1
img and 

v2
img from Eq.(3-33) leads to the observation that v1

img > 0 and v2
img > 0. Although this 

observation has been made numerically for one set of system parameters that satisfy the condition 
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(−2 <  < 0and (−−vv,minit holds true for any combination of system 

parameters that satisfy (−2 <  < 0and (−−vv,min. The proof for this is as 

follows: The expression for v1
img

 and v2
img are given by Eq.(3-33). From numerical simulation, 

we observed that v1
img > 0 and v2

img > 0 for one set of system parameters that satisfy the condition 

(−2 <  < 0 and (−−vv,min. If v1
img

 and v2
img have to change sign for 

another set of system parameters that satisfy the condition (−2 <  < 0 and 

(−−vv,minthen either the numerator or the denominator of v1
img

 and v2
img

 

should change signs but not both at the same time. If the numerators of v1
img

 and v2
img have to 

change sign then they will have to pass through 0 for some set of system parameters that satisfy 

the condition (−2 <  < 0 and (−−vv,min. This would mean that v1
img

 and 

v2
img will have to be equal to 0 for this set of system parameters. However, if v1

img
 and v2

img are 

equal to 0, this means that for v
 = 0 the zero locus should cross the imaginary axis. But for v

 = 0 

the zero locus passes through the damped poles that lie strictly on the open left half s-plane and 

not on the imaginary axis as shown in Fig 3-5l. Therefore, v1
img and v2

img cannot be equal to 0. 

Hence the numerators of v1
img and v2

img cannot change signs. The denominator of v1
img and 

v2
img cannot change sign because  for any set of system parameters that satisfy (−2 <  

< 0 and (−−vv,minrefer to Eq.(3-69)). Hence, v1
img

 and v2
img

 cannot change 

signs for any set of system parameters that satisfy the condition (−2 <  < 0 and 

(−−vv,minTherefore, v1
img > 0 and v2

img > 0 for any set of system parameters 

that satisfy the condition (−2 <  < 0 and (−−vv,minOn further investigation, 

it was found that there exists an upper bound on v1
img given by Eq.(3-57). 
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Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (l) which is depicted graphically in Fig 3-5l. This allows us to find 

sufficient and necessary condition for the elimination of only CNMP zeros for case (l) as shown 

below: 
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£
 (3-74)

Note that Eq.(3-74) is a sufficient and necessary condition for the elimination of only CNMP 

zeros. This is evident from Fig 3-5l where Eq.(3-74) is always satisfied. For this case, we can also 

find necessary and sufficient conditions for the elimination of only RNMP zeros. From Fig 3-5l, 

it is evident that when v < v
∞, the zero locus of G3(s) approaches negative infinity along the real 

axis and flips over to positive infinity thereby leading to RNMP zeros. This allows us to find 

sufficient condition for the elimination of only RNMP zeros for case (n) as shown below: 

 v va a ¥>  (3-75) 

Since the two sets of conjugate locations where the zero locus of G3(s) crosses the imaginary 

axis are the same, the zero locus of G3(s) goes back to the left-hand side (LHS) of imaginary axis 

after touching the imaginary axis. Therefore, since there are no CNMP zeros present for this case, 

only Scenario I is possible for the meeting point of the zero locus of G3(s) with the positive real 

axis. 

m) 
3

,min, v v

k h
c z z

h k
- < <- >  

Based on Eq.(3-69) and Table 3-2, Condition I of Eq.(3-32) is true for this range of . Based on 

Table 3-24 – Table 3-26, Condition II of Eq.(3-32) is also true for this range of Similarly, based 

on Table 3-27 – Table 3-30, Condition III of Eq.(3-32) is also true for this range of  and vThis 
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implies that the zero locus of G3(s) will not cross the imaginary axis as shown in Fig 3-5m. This 

allows us to find sufficient condition for the elimination of only CNMP zeros for case (m) as shown 

below: 
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                 (3-76)                              

Note that Eq.(3-76) is a sufficient and necessary condition for the elimination of only CNMP zeros. 

For this case, we can also find necessary and sufficient conditions for the elimination of only 

RNMP zeros. From Fig 3-5m, it is evident that when v < v
∞, the zero locus of G3(s) approaches 

negative infinity along the real axis and flips over to positive infinity thereby leading to RNMP 

zeros. This allows us to find sufficient condition for the elimination of only RNMP zeros for case 

(m) as shown below: 

 v va a ¥>        (3-77)  

Since there are no CNMP zeros present for this case, only Scenario I is possible for the meeting 

point of the zero locus of G3(s) with the positive real axis. 

n) 
3 1h

c
k kh

- £ £-  

Based on Eq.(3-69) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-24 – Table 3-26, Condition II of Eq.(3-32) is also not true for this range of Based on 

Table 3-27 – Table 3-30, Condition III of Eq.(3-32) is true for this range of This implies that 

the zero locus of G3(s) will cross the imaginary axis at one set of conjugate locations at v =v1
img 

(given in Eq.(3-33)) as shown in Fig 3-5n. 
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In order to ascertain the sign of v1
img, we plot the zero locus of G3(s) numerically for certain 

values of systems parameters that satisfy the condition (−2 <  < 0and 

(−3−Comparing the value of v (where the zero locus crosses the imaginary axis) 

from the numerically plotted zero locus with the values of v1
img from Eq.(3-33) leads to the 

observation that v1
img > 0. Although this observation has been made numerically for one set of 

system parameters that satisfy the condition (−2 <  < 0and (−3−it holds true 

for any combination of system parameters that satisfy (−2 <  < 0and (−3−The 

proof for this is as follows: The expression for v1
img

 is given by Eq.(3-33). From numerical 

simulation, we observed that v1
img > 0 for one set of system parameters that satisfy the condition 

(−2 <  < 0and (−3−. If v1
img

 has to change sign for another set of system 

parameters that satisfy the condition (−2 <  < 0and (−3−then either the 

numerator or the denominator of v1
img

 should change sign but not both at the same time. If the 

numerator of v1
img

 has to change sign, then it will have to pass through 0 for some set of system 

parameters that satisfy the condition (−2 <  < 0and (−3−. This would mean 

that v1
img

 will have to be equal to 0 for this set of system parameters. However, if v1
img

 is equal 

to 0, this means that for v
 = 0 the zero locus should cross the imaginary axis. But for v

 = 0 the 

zero locus passes through the damped poles that lie strictly on the open left half s-plane and not 

on the imaginary axis as shown in Fig 3-5n. Therefore, v1
img cannot be equal to 0. Hence the 

numerator of v1
img cannot change sign. The denominator of v1

img cannot change sign because 

 for any set of system parameters that satisfy (−2 <  < 0and 

(−3−refer to Eq.(3-69)). Hence, v1
img

 cannot change sign for any set of system 
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parameters that satisfy the condition (−2 <  < 0and (−3−Therefore, v1
img > 

0 for any set of system parameters that satisfy the condition (−2 <  < 0and 

(−3−On further investigation, it was found that there exists an upper bound on 

v1
img given by Eq.(3-57). 

Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (n) which is depicted graphically in Fig 3-5n. This allows us to find 

sufficient condition for the elimination of only CNMP zeros for case (n) as shown below: 
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Note that Eq.(3-78) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5n where for positive v > v1
img i.e. Eq.(3-78) is not 

satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order to find the 

necessary and sufficient condition for the elimination of only CNMP zeros and only RNMP zeros, 

we characterize the intersection of the zero locus of G3(s) with the positive real axis. Zeros of G3(s) 

are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the intersection of 

the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find the repeated 

roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The discriminant 

of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th order 

polynomial in v which cannot be solved analytically as discussed in case(a).  

Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 
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and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 

the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  

2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-28) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case (a) and shown graphically in Fig 3-3. Now we have to ascertain for case 

(n) where the conditions (−2 <  < 0 and (−3−are satisfied, which of the five 

scenarios for the meeting point of the zero locus of G3(s) with the positive real axis are possible. 

In order to do so, we make use of following five facts about the zero locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 

roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. This is graphically depicted in Fig 3-5n. In order to find the location of 

the other zeros of T3(s), we analyze the roots of Eq.(3-63) which is derived from expression of 

A3(s) from Eq.(3-28). Given the condition that (−2 <  < 0and (−3−and 

Eq.(3-69), we can conclude the following: 

 
( )
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( )
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Product of roots 0,  Sum of roots 0
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Therefore, based on Eq.(3-79), the roots of Eq.(3-63) will lie on the left hand side (LHS) of the 

imaginary axis. They can either be real or occur as a pair of complex conjugates. Fig 3-5n 

graphically depicts the location of these zeros on the LHS of the imaginary axis. 

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at one set of conjugate locations at v =v1
img 

(given in Eq.(3-33)) as shown in Fig 3-5n. It is also known that v1
img > 0 for any set of system 

parameters that satisfy the condition (−2 <  < 0 and (−3− 

3. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(n), from Eq.(3-47), we can say that the portion of the positive real axis corresponding to v
∞ 

belongs to negative zero locus of G3(s). Further, since there are no zeros of T3(s) lying on the 

positive real axis, the entire positive real axis is covered by the negative zero locus of G3(s). 

4. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (n), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the 

zeros of T3(s) at the origin is determined to be -90 and 90.The angle of arrival for the negative 

zero locus of G3(s) to the zeros of T3(s) at the origin is determined to be 0 and 180. 

Based on all these facts, we can conclude that for case (n), Scenario I is possible for the zero locus 

of G3(s) to meet the positive real axis. The table below shows which of the above facts were used 

to eliminate the scenarios that are not possible for both v > 0 and v < 0. 

Sign of v Scenario I Scenario II Scenario III Scenario IV Scenario V 

v > 0  - 3 3 3 3 

v < 0  - 2 2 2 2 
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Table 3-33 Facts used to eliminate different scenarios for meeting points of the zero locus of 

G3(s) on the positive real axis that are not possible for case (n) 

o) 
1

c
kh

>-  

Based on Eq.(3-69) and Table 3-2, Condition I of Eq.(3-32) is not true for this range of . Based 

on Table 3-24 – Table 3-26, Condition II of Eq.(3-32) is also not true for this range of Similarly, 

based on Table 3-27 – Table 3-30, Condition III of Eq.(3-32) is also not true for this range of 

This implies that the zero locus of G3(s) will cross the imaginary axis at two sets of conjugate 

locations at v =v1
img and v = v2

img (given in Eq.(3-33)) as shown in Fig 3-5o.  

In order to ascertain the sign of v1
img and v2

img, we plot the zero locus of G3(s) numerically for 

certain values of system parameters that satisfy the condition (−2 <  < 0and 

(−Comparing the two distinct values of v (where the zero locus crosses the imaginary 

axis) from the numerically plotted zero locus with the values of v1
img and v2

img from Eq.(3-33) 

leads to the observation that v1
img > 0 and v2

img < 0. Although this observation has been made 

numerically for one set of system parameters that satisfy the condition (−2 <  < 0and 

(−it holds true for any combination of system parameters that satisfy (−2 <  < 0and 

(−. The proof for this as as shown below: The expression for v1
img

 and v2
img are given 

by Eq.(3-33). From numerical simulation, we observed that v1
img > 0 and v2

img < 0 for one set of 

system parameters that satisfy the condition (−2 <  < 0and (−. If v1
img

 and v2
img 

have to change sign for another set of system parameters that satisfy the condition (−2 <  < 

0and (−then either the numerator or the denominator of v1
img

 and v2
img

 should change 

signs but not both at the same time. If the numerators of v1
img

 and v2
img have to change sign then 
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they will have to pass through 0 for some set of system parameters that satisfy the condition (−2 

<  < 0and (−. This would mean that v1
img

 and v2
img will have to be equal to 0 for this 

set of system parameters. However, if v1
img

 and v2
img are equal to 0, this means that for v

 = 0 the 

zero locus should cross the imaginary axis. But for v
 = 0 the zero locus passes through the damped 

poles that lie strictly on the open left half s-plane and not on the imaginary axis as shown in Fig 3-

5o. Therefore, v1
img and v2

img cannot be equal to 0. Hence the numerators of v1
img and v2

img 

cannot change signs. The denominator of v1
img and v2

img cannot change sign because  

for any set of system parameters that satisfy (−2 <  < 0and (−refer to Eq.(3-69)). 

Hence, v1
img

 and v2
img

 cannot change signs for any set of system parameters that satisfy the 

condition (−2 <  < 0and (−Therefore, v1
img > 0 and v2

img < 0 for any set of system 

parameters that satisfy the condition (−2 <  < 0and (−On further investigation, it was 

found that there exists an upper bound on v1
img given by Eq.(3-57).  

Now, we have completely characterized the intersection of the zero locus of G3(s) with the 

imaginary axis for case (o) which is depicted graphically in Fig 3-5o. This allows us to find 

sufficient condition for the elimination of only CNMP zeros for case (o) as shown below: 

 
1

2

 if 0

 if 0

img
v v v

img
v v v

a a a

a a a

£ >

³ <
 (3-80) 

Note that Eq.(3-80) is only a sufficient condition for the elimination of CNMP zeros and not a 

necessary one. This is evident from Fig 3-5o where for positive v > v1
img i.e. Eq.(3-80) is not 

satisfied, the zeros of G3(s) can be RNMP instead of CNMP. Therefore, in order to find the 

necessary and sufficient condition for the elimination of only CNMP zeros and only RNMP zeros, 

we characterize the intersection of the zero locus of G3(s) with the positive real axis. Zeros of G3(s) 
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are found by setting the numerator N3(s) in Eq.(3-28) to zero. In order to find the intersection of 

the zero locus of G3(s) with the positive real axis, we set s = x in Eq.(3-40) and find the repeated 

roots of Eq.(3-40). This is done by setting the discriminant in Eq.(3-40) to zero. The discriminant 

of the fourth order polynomial equation is given in Eq.(3-41). Eq.(3-41) leads to a 5th order 

polynomial in v which cannot be solved analytically as discussed in case(a).  

Therefore, we cannot analytically characterize the intersection of the zero locus of G3(s) with 

the positive real axis like we did in the two-DoF case in the previous section. Therefore, it will not 

be possible to find the necessary and sufficient conditions for the elimination of only CNMP zeros 

and only RNMP zeros for a three-DoF damped flexible system. However, we can attempt to find 

the number of times the zero locus meets with the positive real axis in order to provide at least 

some insight into how the zero locus interacts with the positive real axis. 

In order to do so, we take into account certain facts that we know about the zero locus 

1. The real axis is always part of the zero locus of G3(s) irrespective of whether v
 > 0 or v

 < 0  

2. T3(s) has 2 pairs of zeros of which one pair always lies at the origin 

Based on these facts, we solve for the repeated roots of N3(s) in Eq.(3-28) since when the zero 

locus of G3(s) meets the positive real axis, we get repeated roots in s. For a fourth order polynomial, 

five scenarios are possible for the meeting points of the zero locus of G3(s) with the positive real 

axis as described in case (a) and shown graphically in Fig 3-3. Now we have to ascertain for case 

(o) where the conditions (−2 <  < 0and (−are satisfied, which of the five scenarios 

for the meeting point of the zero locus of G3(s) with the positive real axis are possible. In order to 

do so, we make use of following five facts about the zero locus:  

1. Position of zeros of T3(s) - To find the location of the zeros of T3(s), as previously discussed 

below Eq.(3-28), the root locus of T3(s) is the zero locus of G3(s). The zeros of T3(s) are the 
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roots of A3(s) given by Eq.(3-28). It can be observed from Eq.(3-28) that two of the zeros of 

T3(s) are at the origin. This is graphically depicted in Fig 3-5o. In order to find the location of 

the other zeros of T3(s), we analyze the roots of Eq.(3-63) which is derived from expression of 

A3(s) from Eq.(3-28). Given the condition that (−2 <  < 0and (−and Eq.(3-69), 

we can conclude the following: 

 
( )
( )

( )
( )

2 2
2

Product of roots 0,  Sum of roots 0
1 1

v v v
w h k z w ch k

k k

+ +
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+ +
 (3-81) 

Therefore, based on Eq.(3-81), the roots of Eq.(3-63) will lie on the left hand side (LHS) of the 

imaginary axis. They can either be real or occur as a pair of complex conjugates. Fig 3-5o 

graphically depicts the location of these zeros on the LHS of the imaginary axis. 

2. Intersection of zero locus of G3(s) with the imaginary axis - We have already shown that the 

zero locus of G3(s) will cross the imaginary axis at two set of conjugate locations at v =v1
img 

and v =v2
img (given in Eq.(3-33)) as shown in Fig 3-5o. It is also known that v1

img > 0 and 

v2
img <0 for any set of system parameters that satisfy the condition (−2 <  < 0 and 

(− 

3. Relative position of intersection of positive zero locus (v >0)and negative zero locus (v <0) 

with the imaginary axis - For case (o), from Eq.(3-46) we can say that y1
2 < y2

2. Since, from 

Eq.(3-37),v1
img corresponds to y1

2 and v2
img corresponds to y2

2, the point of intersection of 

the zero locus of G3(s) corresponding to v2
img is higher than the point of intersection of the 

zero locus of G3(s) corresponding to v1
img.   

4. Which portion of the positive real axis belongs to the positive or negative zero locus - For case 

(o), from Eq.(3-47), we can say that the portion of the positive real axis corresponding to v
∞ 
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belongs to negative zero locus of G3(s). Further, since there are no zeros of T3(s) lying on the 

positive real axis, the entire positive real axis is covered by the negative zero locus of G3(s). 

5. Angle of arrival of positive and negative zero locus at the zeros of T3(s) present at the origin - 

For case (o), from Eq.(3-48), the angle of arrival for the positive zero locus of G3(s) to the 

zeros of T3(s) at the origin is determined to be -90 and 90.The angle of arrival for the negative 

zero locus of G3(s) to the zeros of T3(s) at the origin is determined to be 0 and 180. 

Parameter Range of :  > 0 

Note that for the case of  > 0, the sign of a, c,  and  will be unconditionally positive. This can 

be easily seen from Eq.(3-31). This reduces the number of combination of signs of a, b and c for 

which there are no real solutions of y. These combinations of signs are given in Eq.(3-35). We 

just pick those combinations from Eq.(3-35) that have a > 0 and c > 0. They happen to be IIA 

and IIIA for condition II and condition III respectively. Since both IIA and IIIA are exactly the 

same, condition II and condition III are analyzed collectively below. 

 # No. a c b  and  
Range of  where the signs of 
a, b & c are satisfied (range is 

hashed if it exists) 
v 

 
 >0 

 
IIA, 
IIIA 

 
a>0 

 
c>0 

 
b>0 

 
>0, 
>0 

  
For all values of   

 

v

ld
z

l
>

 

Table 3-34 Range of  and v for which Condition (IIA,IIIA) of Eq.(3-35) is satisfied 

p) 0k>  

Based on Table 3-2, Condition I of Eq.(3-32) is true for this range of . Based on Table 3-34, 

Condition II and Condition III of Eq.(3-32) is also true for this range of This implies that the 

zero locus of G3(s) will not cross the imaginary axis as shown in Fig 3-5p. 



 
165  

 
 

This allows us to find sufficient condition for the elimination of only CNMP zeros for case (p) 

as shown below: 

 
0

0

v

v

a

a

³

£
 (3-82) 

Note that Eq.(3-82) is a sufficient and necessary condition for the elimination of only CNMP zeros. 

For this case, we can also find necessary and sufficient conditions for the elimination of only 

RNMP zeros. From Fig 3-5p, it is evident that when v < v
∞, the zero locus of G3(s) approaches 

negative infinity along the real axis and flips over to positive infinity thereby leading to RNMP 

zeros. This allows us to find sufficient condition for the elimination of only RNMP zeros for case 

(p) as shown below: 

 v va a ¥>  (3-83) 

Since there are no CNMP zeros present for this case, only Scenario I is possible for the meeting 

point of the zero locus of G3(s) with the positive real axis. 

The derivation of the parameter ranges is over.  
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Fig 3-5 Zero Loci of G 3 (s) for different ranges of and v as v varies from −∞ to 0 (green 

curve) and 0 to +∞ (red curve). The parameter ranges of and v are given below each sub 

figure.   

In each of the sub figures i.e. (a) to (p), the green curve which corresponds to the negative zero 

locus starts from the roots of A 3 (s) (represented by circle in above figure) as v starts from −∞ 

and terminates at the roots of B 3 (s) (represented by cross in above figure) as v becomes equal to 

0. In each of the sub figures i.e. (a) to (p), the red curve which corresponds to the positive zero 
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locus starts from the roots of B 3 (s) as v starts from 0 and terminates at the roots of A 3 (s) as v 

tends to +∞. The portion of the zero locus (positive or negative) that lies strictly on the right hand 

side (RHS) of the imaginary axis leads to NMP zeros of G 3 (s). The analytical expression for v 

where the zero locus crosses the imaginary axis i.e. v1 
img and v2 

img is given in Eq.(3-33). The 

analytical expression for v where the zero locus tends to +/−∞ on the real axis i.e.v∞ is given 

by Eq.(3-30).  

The zero loci of Fig 3-5 span the entire range of all the parameters:  (−∞ to +∞), (0 to +∞), 

v (0 to +∞),  (0 to +∞), and v (−∞ to +∞). For example, when (−there are six non-

overlapping parameter ranges of and v that lead to six unique zero loci depicted by Fig 3-5a-f. 

In these zero loci, Fig 3-5c and Fig 3-5f is divided into three parts i.e. c1, c2, c3 and f1, f2, and f3 

which depict all possible intersection of the zero locus with the positive real axis for the same 

parameter ranges of and v. The value of v ranges from −∞ to +∞ in each of these zero loci. 

Based on the Table 3-1, the positive zero loci in Fig 3-5 will be used to find the conditions for the 

eliminations of NMP zeros for the case of alternating sign of modal residues (v > 0). Similarly, 

the negative zero loci in Fig 3-5 will be used to do the same for the case of non-alternating sign of 

modal residues (v < 0). This separation of mathematical conditions between alternating and non-

alternating modal residue signs is done to allow a direct comparison between the results obtained 

in this chapter and those obtained in the previous chapter for a three-DoF undamped flexible 

system. 

3.5.1 Sufficient Condition for eliminating CNMP Zeros 

Result 5: In a three-DoF damped flexible LTI system given by Eq.(3-26), when the signs of the 

modal residues are alternating (i.e. v > 0), the ratio of modal residues (ratio of modal damping 
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ratios () and modal damping ratio (v) should satisfy the following inequalities to eliminate 

CNMP zeros for any positive value of modal residuev.  
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Condition 5.1 is derived from Fig 3-5(d-e). It can be seen that when the parameter ranges of 

and v in Fig 3-5(d-e) are satisfied, the positive zero loci (i.e. the red curve) do not cross the 

imaginary axis. Hence, for these parameter ranges, G 3 (s) does not exhibit CNMP zeros. Similarly, 

Condition 5.2 is derived from Fig 3-5(l-m). When Condition 1.1 and Condition 1.2 are not met, 

Fig 3-5(a-c), Fig 3-5(f-k), and Fig 3-5(n-o) depict the positive zero loci crossing the imaginary 

axis at non-zero frequencies, indicating the presence of CNMP zeros. 

Based on Result 5 and the red curves (v > 0) in the zero loci of Fig 3-5 the following 

observations can be made about the CNMP zero dynamics of the three-DoF damped flexible 

system: 

1.  Each of the conditions given in Result 5, i.e. Condition 5.1 and Condition 5.2, is individually 

sufficient for the elimination of CNMP zeros. Also, these sufficient conditions are not unique or 

necessary. Even when these sufficient conditions are not satisfied, Fig 3-5(a-c), Fig 3-5(f-k), and 

Fig 3-5(n-o) show that one can guarantee the absence of CNMP zeros by selecting ranges of 

vfor which the zeros never lie on the RHS of the s-plane (excluding the RHS real axis). This 
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requires the exact solution for v when the zero locus intersects with the positive real axis and it 

was shown in the preceding proof that it is not possible to find the closed form solution for v for 

which the zero locus intersects with the positive real axis. Hence, it is not possible to provide the 

sufficient and necessary condition for the elimination of CNMP zeros for a three-DoF damped 

flexible system. Only a few sufficient conditions i.e. Condition 5.1 and Condition 5.2 can be 

provided.  

2. It was shown previously that for a three-DoF undamped flexible system with alternating modal 

residue signs, the sufficient and necessary condition to eliminate CNMP zeros is to tune the value 

of v such that it lies within a certain range. However, as shown in Fig 3-5d, Fig 3-5e, Fig 3-5l, 

Fig 3-5m  and Result 5, the addition of viscous damping leads to sufficient conditions in terms of 

 and v that guarantee the elimination of CNMP zeros for any value of v. Therefore, these 

sufficient conditions guarantee the elimination of CNMP zeros for a wider range of system 

parameters, especially when the modal residue v undergoes large variation. 

Result 6: In a three-DoF damped flexible LTI system given by Eq.(3-26), when the signs of the 

modal residues are non-alternating (i.e. v < 0), the ratio of modal residues (and ratio of modal 

damping ratios () should satisfy the following mathematical inequalities to eliminate CNMP zeros 

for any negative value of the modal residuev. 
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Condition 6.1, Condition 6.2, Condition 6.3, and Condition 6.4 are derived from Fig 3-5(b-e), 

Fig 3-5h, Fig 3-5(k-n), Fig 3-5p respectively. When the parameter ranges in these conditions are 

satisfied, their corresponding negative zero loci (i.e. green curve) in Fig 3-5 do not cross the 

imaginary axis at non-zero frequencies. Therefore, the absence of CNMP zeros is guaranteed. 

When these conditions are not met, Fig 3-5a, Fig 3-5(f-g), Fig 3-5(i-j), and Fig 3-5o depict the 

negative zero loci crossing the imaginary axis at non-zero frequencies, indicating the presence of 

CNMP zeros. 

Based on Result 6 and the green curves (v < 0) in the zero loci of Fig 3-5, the following 

observations can be made about the CNMP zero dynamics of the three-DoF damped flexible 

system: 

1. It was shown previously that the sequence of non-alternating modal residue signs (R > 0, u 

> 0, v < 0) is a sufficient condition that guarantees the elimination of CNMP zeros for any 

negative value of modal residue (v) in a three-DoF undamped flexible system. However, Fig 3-

5a, Fig 3-5(f-g), Fig 3-5(i-j), and Fig 3-5o depict the presence of CNMP zeros for some parameter 
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ranges of and. This shows a potential drawback of adding viscous damping to a three-DoF 

undamped flexible system. Therefore, one key advantage of the sufficient conditions in Result 6 

is that it guarantees the elimination of CNMP zeros in the presence of viscous damping even if the 

modal residue (v) undergoes large variation.   

2. Condition 6.4 is derived from Fig 3-5p and implies that the non-alternating modal residue signs 

is a sufficient condition that guarantees the elimination of CNMP zeros for any negative value of 

modal residue (v). This is unlike Conditions 6.1, 6.2, and 6.3, which also hold true for non-

alternating modal residue signs, but they require additional conditions on to guarantee the 

elimination of CNMP zeros. 

3.5.2 Sufficient and Necessary Conditions for Eliminating all NMP zeros 

The sufficient conditions in Result 5 and Result 6 that guarantee the elimination of CNMP zeros 

do not guarantee the elimination of RNMP zeros. This can be seen, for example, in Fig 3-5(d-e) 

for alternating signs of modal residues and Fig 3-5(k-n) for non-alternating signs. In fact, in each 

zero locus plot of G 3 (s) in Fig 3-5, the positive real axis is always part of the zero locus for some 

range of values of v, which confirms the presence of RNMP zeros. In this section, we will 

determine the sufficient and necessary conditions for eliminating all NMP zeros i.e. CNMP as well 

as RNMP zeros such that the zeros of G 3 (s) always lie on or to the left of the imaginary axis. 

Therefore, it is indeed possible to report the sufficient and necessary condition for the elimination 

of all NMP zeros even in the absence of the closed form solution of v for which the zero locus 

intersects with the positive real axis. Based on Fig 3-5, Result 7 and Result 8 provide the sufficient 

and necessary conditions for the elimination of all NMP zeros for alternating and non-alternating 

modal residue signs, respectively.  
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Result 7: In a three-DoF damped flexible LTI system given by Eq.(3-26), when the modal residue 

signs are alternating (v > 0), the following conditions are individually sufficient, and together 

necessary, to guarantee the elimination of all NMP zeros. 
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Each sufficient condition in Result 7 is derived from the positive zero loci in Fig 3-5. For 

example, when (−AND (−
3/in Fig 3-5a, CNMP and RNMP zeros will not occur if 

v ≤ v1
img. Similarly, in Fig 3-5b, when (−AND (−

3/≤ ≤−then again CNMP 

and RNMP zeros will not occur if v ≤ v1 
img. Therefore, combining the parameter range of from 

Fig 3-5a and Fig 3-5b leads to Condition 7.1 i.e. (−AND (≤−AND (v ≤ v1 
img). 

Similarly, other sufficient conditions are also derived from the positive zero loci of Fig 3-5. The 

correspondence between each sufficient condition and Fig 3-5 is as follows: Condition 7.1 → Fig 

3-5a and Fig 3-5b, Condition 7.2 → Fig 3-5c, Condition 7.3 → Fig 3-5d and Fig 3-5e, Condition 

7.4 → Fig 3-5f, Condition 7.5 → Fig 3-5g, Fig 3-5h and Fig 3-5i, Condition 7.6 → Fig 3-5j, 

Condition 7.7 → Fig 3-5k, Condition 7.8 → Fig 3-5l and Fig 3-5m, and Condition 7.9 → Fig 3-

5n and Fig 3-5o. Note that when we refer to Fig 3-5c, we refer to all its parts i.e. Fig 3-5c1, Fig 3-

5c2, and Fig 3-5c3 because all these parts give the final condition i.e. Condition 7.2. This is true 

for all other subplots that have multiple parts.   
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Based on Result 7 and Fig 3-5, the following observations can be made about the NMP zero 

dynamics of a three-DoF damped flexible LTI system: 

1. Each condition listed in Result 7 is individually sufficient but not necessary. For example, 

Condition 7.1, by itself, is a sufficient condition. However, Condition 7.1, by itself, is not necessary 

because even if this condition is not met, NMP zeros can still be eliminated via other non-

overlapping conditions such as Condition 7.2 or Condition 7.3. 

2.  Each sufficient condition comprises of parameter ranges that are essential and broadest 

possible. For each of these conditions, one can write various inferior conditions with narrower 

parameter ranges that would also be sufficient conditions. For example, based on Condition 7.1, 

[(−2AND (≤−AND (v ≤ v1 
img)] is also a sufficient condition for the elimination 

of NMP zeros. 

3. As shown by the zero loci of Fig 3-5, the entire range of the system parameters comprising of 

modal residues, frequencies, and damping ratios is covered in this analysis. Therefore, Result 7 is 

a complete list of all possible sufficient conditions. In other words, there are no other sufficient 

conditions for which one can guarantee the elimination of NMP zeros. As a result, these nine 

conditions when considered together, i.e., [Condition 7.1 OR Condition 7.2 OR Condition 7.3 OR 

Condition 7.4 OR Condition 7.5 OR Condition 7.6 OR Condition 7.7 OR Condition 7.8 OR 

Condition 7.9], form a necessary condition for the elimination of NMP zeros. 

4. The mathematical form of the conditions is the consequence of our choice of parameterization. 

The normalized parameters andthat are defined in terms of system parameters and used to 

provide the conditions could have been defined differently. For example, instead of using v as 

the varying parameter to plot the zero locus of G 3 (s), one could use a different varying parameter, 

for example u. The zero locus could have been plotted as a function of modal frequencies or 
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modal damping ratios. While the resulting mathematical form of the conditions may be different 

in that case, the conditions would effectively be the same in terms of system parameters. In other 

words, the conditions are unique. 

5. The graphical visualization in Fig 3-5 allows one to determine the sufficient and necessary 

conditions for the elimination of specific types of NMP zeros e.g. CNMP only, RNMP only, as 

well as all NMP. For example, Result 5 provides a sufficient condition for the elimination of 

CNMP zeros, while Result 7 provides sufficient and necessary conditions for the elimination of 

all NMP zeros. Furthermore, this graphical visualization allows one to examine the sensitivity of 

different types of NMP zeros to parametric variations, which helps inform the robustness of any 

choice of system parameters that avoid NMP zeros. For example, when the value of vis close to 

v1 
img in Fig 3-5a, the CMP zero can flip to become a CNMP zero, and similarly when vis close 

to v∞, RMP zero can flip to become RNMP zero in Fig 3-5a. 

6. Condition 7.8 is the only sufficient condition that guarantees the elimination of all NMP zeros 

for any positive value of modal residue, v or any negative value of modal residue u. Such 

condition becomes useful in situations where the modal residues v or u undergo large variations 

and can enable robust physical design [36]. The application of Condition 7.8 in eliminating NMP 

zeros is demonstrated via a case study in the subsequent section.  

Result 8: In a three-DoF damped flexible LTI system given by Eq.(3-26), when the modal residue 

signs are non-alternating (v < 0), the following conditions are individually sufficient, and together 

necessary, to guarantee the elimination of all NMP zeros.   
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Each sufficient condition in Result 8 is derived from the negative zero loci in Fig 3-5. For 

example, in Fig 3-5a, when (−AND (−
3/RNMP zeros are not part of the zero locus. 

Therefore, they do not occur for any value of v. CNMP zeros are part of the zero locus but they 

only occur when CMP zeros cross the imaginary axis for v < v2 
img. This leads to Condition 8.1 

for the elimination of all NMP zeros i.e. [(−AND (−
3/AND (v ≥ v2 

img)]. 

Similarly, other sufficient conditions are also derived from the negative zero loci of Fig 3-5. The 

correspondence between each sufficient condition and Fig 3-5 is as follows: Condition 8.1 → Fig 

3-5a, Condition 8.2 → Fig 3-5(b-e), Condition 8.3 → Fig 3-5f, Condition 8.4 → Fig 3-5g, 

Condition 8.5 → Fig 3-5h, Condition 8.6 → Fig 3-5i, Condition 8.7 → Fig 3-5j, Condition 8.8 → 

Fig 3-5(k-n), Condition 8.9 → Fig 3-5o, and Condition 8.10 → Fig 3-5p. 

Based on Result 8 and Fig 3-5, the following observations can be made about the NMP zero 

dynamics of a three-DoF damped flexible system: 

1.  The general observations made for Result 7 above i.e. bullet point (1) to point (5) also hold 

true for Result 8 when the modal residue signs are not alternating. 

2. Condition 8.2 is the only condition that holds true for any negative value of modal residue v 

or any positive value of u and any positive value of modal damping ratio v or u. Therefore, such 

a condition becomes useful when the modal residue v or u and/or modal damping ratio v or u 

undergo large variations and can enable robust physical design [36]. 

3. Condition 8.10 is the only condition that holds true for any value of modal damping ratios v 

and/or u. Therefore, such a condition becomes useful when modal damping ratios undergo large 

variations and can enable robust physical design. 
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3.6 Case Study of Three-DoF Flexible System 

This section demonstrates how the results from previous section can be used to determine the 

location, value of viscous dampers and sensor placement in a three-DoF flexible system in order 

to eliminate NMP zeros in its transfer function and also place zeros on the imaginary axis. 

Furthermore, it will be demonstrated that the elimination of NMP zeros is robust to parametric 

variations in sensor placement.  

k1 k2
m1 m2 m3

F

w1 w2 w3

 

Fig 3-6 Three-DoF undamped flexible system 

Consider the three-DoF flexible system shown in Fig 3-6. For illustration, the physical 

parameters of this system are chosen as m1 = m3 = 1 kg, m2 = 10 kg, k1 = k2 = 1 N/m. The force, F 

is applied at m1 and the measured displacement, q is the linear combination of the displacement of 

m1 and m3 i.e. q = w1 + 3w3. The equations of motion of the undamped three-DoF flexible system 

is given below.  
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 (3-88) 

The transfer function from applied force, F to measured displacement, q is given below along 

with its poles and zeros. 
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 (3-89) 

This system exhibits a CMP-CNMP zero quartet. Our goal is to add viscous damping (location 

and value) to the flexible system so as to eliminate NMP zeros from the transfer function. The 

equations of motion of the resulting three-DoF damped flexible system (Fig 3-7) are given below.  

c1 c2

c3

k1 k2

m1 m2 m3
F

w1 w2 w3

 

Fig 3-7 Three-DoF damped flexible system 
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M] [C] [K] [B] , [D]  where  [C]=

 

 

 

  (3-90) 

In this chapter, we have assumed that the flexible system is ‘classically damped’. This means 

that the mass matrix [M], stiffness matrix [K], and damping matrix [C] should satisfy the Caughey 

and O’Kelly criterion given in Eq.(3-2). Applying Eq.(3-2) to the [M], [K], and [C] from Eq.(3-88) 

and Eq.(3-90) and using the numerical values of m1 = m3 = 1 kg, m2 = 10 kg, k1 = k2 = 1 N/m leads 

to the following condition on the viscous dampers c1, c2, and c3. 

 1 2 3 AND  can be any arbitrary valuec c c=  (3-91) 

The result that c3 can be any arbitrary value tells us that for any value of c3, Eq.(3-2) is satisfied. 

Therefore, we choose c3 = 0 to keep the ensuing mathematical analysis simple. Since, the Caughey 
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and O’Kelly criterion is satisfied, the [M], [C], and [K] matrices can be simultaneously 

diagonalized to obtain the modal mass, modal damping and modal stiffness diagonal matrices as 

demonstrated in Eq.(3-3). The modal mass, damping and stiffness matrices are then used to 

construct the decomposed form of the transfer function as demonstrated in Eq.(3-4) and Eq.(3-5). 

The decomposed transfer function in terms of the viscous damper, c1 is given below. Note that we 

already know that c2 = c1 and we have chosen c3 = 0. 

 
 
  2 2 2 2 2 2 2 2

1 1

0.33 1 1.67

2 2 1 1.2 1.21
u vR

u u u v v v

q s

F s s s s s s s s c s s c s

 
     


     

       
(3-92) 

Comparing the LHS and RHS of the above equation provides the relationship between c1, u and 

v. 

 1 10.5  AND 0.547u vc c    (3-93) 

The modal residue signs in Eq.(3-92) are alternating with v > 0. According to Table 3-1 we 

should use Result 7 to eliminate all NMP zeros in the transfer function with alternating modal 

residue signs. There are 9 distinct conditions in Result 7 and we have to choose the appropriate 

condition for our current system. From Eq.(3-92), the value of and  can be readily found as 

shown below. Since, both u and v are proportional to c1, as evident in Eq.(3-93), their ratio i.e. 

is independent of it. 

 0.6,  0.91,  and 0.914u u u

v v v

    
  

     
        

     
    (3-94) 

Based on the values of and , it can be inferred that the following two inequalities are 

simultaneously satisfied.  

  
3

2 0  AND 
   
 

 
       

 
 (3-95) 
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In Result 7, only Condition 7.7 and Condition 7.8 are applicable to our current system since 

they satisfy Eq.(3-95).  
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 

 (3-96) 

In order to completely satisfy Condition 3.8, we only need to additionally satisfy v ≥ 0. This 

will give us the value of c1 that will guarantee the elimination of NMP zeros in the transfer function 

in Eq.(3-92). However, in order to satisfy Condition 7.7, we will have to modify the value of v 

which can only done by modifying the mass matrix, stiffness matrix, actuator or sensor location. 

Since, our goal is to eliminate NMP zeros by simply adding viscous damping, we decide to satisfy 

Condition 3.8. Using the expression of 0 from Eq.(3-84) along with the numerical value of 

and from Eq.(3-94) leads to the following result. 

 0.2350v   (3-97) 

Eq.(3-93) is used along with Eq.(3-97) to find the range of values for c1 for which the transfer 

function in Eq.(3-92) will not have any NMP zeros. 

 1 0.4296c   (3-98) 

Therefore, selecting c1 = c2 = 0.5 and c3 = 0 leads to a transfer function of the three-DoF damped 

flexible system that does not exhibit any NMP zeros as shown below. Note that this transfer 

function is simply obtained by substituting c1 = 0.5 in Eq.(3-92).  
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 (3-99) 

Since, the damped flexible system satisfies Condition 7.8, Fig 3-5m (from which Condition 7.8 

was derived) predicts that its transfer function will exhibit two pairs of CMP zeros. This is shown 

to be true in Eq.(3-99) where z1,2 and z3,4 denote the two CMP zero pairs. Not only that, one of the 

CMP zero pair i.e. z1,2 is placed very close to the pole pair i.e. p1,2 leading to approximate pole-

zero cancellation and effectively eliminating any ‘vibration’ at the p1,2 frequency. The other CMP 

zero pair i.e. z3,4 is located very close to the imaginary axis leading to improved ‘vibration 

isolation’ at its frequency. This improvement in the ‘vibration performance’ of the damped system 

achieved via the elimination of NMP zeros is shown via a Bode plot in Fig 3-8a.  

Note that the zero pair z3,4 is not exactly located on the imaginary axis. If further ‘vibration 

isolation’ is desired by placing z3,4 exactly on the imaginary axis, it can also be easily achieved 

based on the graphical insight obtained from Fig 3-5l. According to the positive zero locus in Fig 

3-5l, if v = 0) AND (vv1 
img = v2 

img) are satisfied, then z3,4 will lie exactly on the 

imaginary axis. In order to satisfyv = 0), choose c1 = 0.4296 (see Eq.(3-97) and Eq.(3-98)). 

Choosing v = 0) automatically ensure that v1 
img = v2 

img (see Fig 3-5l). Finally, vv1 
img 

can be ensured by modifying the value of v. One of the ways to modify the value of v is by 

altering the sensor vector [D], which is parameterized as follows: 

    1 21 3D     (3-100) 

The value of and is found by using the relationship between v and [D], given in Eq.(3-5) 

and imposing the two conditions shown below. The condition on uvis to make sure 
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that value of 0 and v1 
img that were calculated for a constant = −0.6see Eq.(3-94)) do not 

change as v is changed. 

    1  AND 0.6img
v v      (3-101) 

Solving the conditions in Eq.(3-101) for the two unknowns and leads to the following 

sensor vector. 

    0.92 1.2 3D    (3-102) 

The zeros of the transfer function q(s) / F(s) with the new sensor vector from Eq.(3-102) and c1 

= 0.4296 are as follows: 

 1,2 3.40.2674 0.7801 , 0.6590z j z j      (3-103) 

It can be clearly seen that the zero pair z3,4 is now on the imaginary axis as intended. The ensuing 

improvement in vibration isolation due to the tuning of the viscous damper c1 and sensor vector 

[D] is shown via a Bode plot in Fig 3-8b. Therefore, by informed choice of the damping matrix 

[C] and sensor vector [D], the CNMP zeros of the three-DoF undamped flexible system can be 

converted into MP zeros of its damped counterpart lying exactly on the imaginary axis. 
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Fig 3-8 Bode plots of: a) Undamped vs. damped system with tuned damping to eliminate NMP 

zeros, b) Damped system with tuned damping and sensor vector to place the zero on the 

imaginary axis 

To investigate the robustness of the damped system obtained using the proposed technique for a 

fixed c1 that satisfies Eq. (3-98), Bode plots of the damped system with variations in the sensor 

vector [D] are shown in Fig 3-9. Variation in the sensor vector is generally caused by uncertainty 

in sensor placement. It can be observed from the Bode plots that even in the presence of finite 

perturbations (up to 10 %) in the sensor parameters, the designed damping matrix [C] still ensures 

that all the zeros of the flexible system remain MP. This is because even in the presence of this 

sensor parameter variation, the inequalities in Condition 7.8 are still satisfied. It should be noted 

that this level of robustness exists for c1 = c2 = 0.5, which is very close to the minimum required 

value of damping given in Eq.(3-98). If a more robust design is needed for a given application, 

then larger damping values can be chosen to ensure an even wider safety margin. Thus, this case 

study highlights that the new sufficient and necessary conditions derived in this chapter can be 

effectively used to enable robust physical design of three-DoF flexible systems. 
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Fig 3-9 Robust elimination of NMP zeros under variation in sensor vector 

3.7 Conclusion 

In this chapter, the sufficient and necessary conditions for the elimination of NMP zeros in the 

transfer functions of two-DoF and three-DoF damped flexible LTI systems are presented under the 

assumption of classical damping when all the modal residue signs are not same. No such results 

exist in the prior literature.   

In the case of a two-DoF damped flexible LTI system, Result 4 provides a complete set of all 

possible sufficient conditions for the elimination of all NMP zeros. This complete set of sufficient 

conditions when imposed together also serves as the necessary condition for elimination of NMP 

zeros. Similarly, Result 7 and Result 8 provide the sufficient and necessary conditions for the 

elimination of NMP zeros in a three-DoF damped flexible LTI system (with one rigid body mode 

and two flexible modes) when the modal residue signs are alternating and non-alternating, 

respectively. These conditions enable informed physical design choices such as selection of 
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viscous damping strategies and magnitude, actuator and sensor placement, mass and stiffness 

distribution, etc. These choices can lead to robust physical designs that guarantee the elimination 

of NMP zeros over a wide range of system parameters, as shown via a case study in the previous 

section.  

The mathematical and graphical tools used in this chapter (i.e. modal decomposition and zero 

loci) provide a more granular understanding of the NMP zeros as compared to other purely 

mathematical techniques such as the Routh-Hurwitz criterion. These tools allow one to derive 

conditions for the elimination of specific types of zeros as well as provide graphical insights into 

the behavior of the zeros as system parameters are varied. For example, Results 2, 5 and 6 provide 

sufficient conditions for elimination of specifically CNMP zeros. The graphical insights offered 

by the zero loci allow one to examine the robustness of the zero dynamics to parametric variations 

i.e. how close the CMP or RMP zeros are to the imaginary axis where they can transition from 

minimum phase to non-minimum phase.  

There are two key limitations of the modeling work presented in this chapter. First, the results and 

design insights are restricted to classically damped flexible systems. Second, the conditions for the 

elimination of NMP zeros have been investigated only for low DoF (two and three) damped 

flexible LTI systems. This was done to keep the parameter space small enough in order to find the 

complete set of all possible sufficient conditions, which in turn lead to the necessary condition. In 

the subsequent chapters, we will derive analytical conditions to eliminate NMP zeros in multi-DoF 

damped flexible systems with arbitrary number of DoFs (modes). To do so, we will investigate 

techniques to reduce the size of the parameter space of an n-DoF damped flexible system from 3n 

system parameters to fewer composite parameters. 
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Chapter 4 Non-minimum Phase Zeros of Multi-DoF Undamped Flexible Systems 

This chapter investigates the non-minimum phase (NMP) zeros in the transfer function, between 

actuated load input and measured displacement output, of a multi-degree of freedom (DoF) 

undamped flexible system. The transfer function of an undamped flexible system can be modally 

decomposed into second order modes where each mode is characterized by two system parameters 

– modal residue and modal frequency. It is well known that when all the modal residue signs are 

the same, all the zeros of the undamped flexible system are minimum phase (MP). However, it 

may not be possible to always guarantee the same sign for all modal residues, given practical 

constraints on actuator and sensor placements. This chapter presents a sufficient condition for the 

elimination of NMP zeros when all modal residue signs are not the same. Therefore, it enables a 

wider design space in terms of actuator–sensor placement and mass–stiffness distribution in order 

to eliminate NMP zeros. We start by deriving results that elucidate the distribution of zeros with 

respect to the poles on the real and imaginary axes of the s-plane. These results are then used to 

derive a sufficient condition for the elimination of only complex non-minimum phase zeros in 

terms of the sequence of modal residue signs. Once this sufficient condition is met, the sufficient 

condition for the elimination of all NMP zeros is derived i.e. complex and real non-minimum phase 

zeros. 

4.1 Introduction and Motivation 

Position control of the end effector is required in several machineries that exhibit flexible 
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system dynamics such as such as space structures [1, 2, 66], rotorcraft blades [5, 97, 116], hard-

disk drives [3, 4, 74], flexure mechanisms [7, 39, 75, 117], and motion systems with transmission 

compliance [8, 98, 118], among others. In these applications, the position of the end effector is 

controlled through feedback and feedforward control strategies to simultaneously achieve high 

speed, low settling time, good disturbance rejection, and stability robustness. Oftentimes, given 

the practical constraints on the cost of additional actuators and sensors and the available space to 

accommodate them within the machines, it is highly desirable to achieve the above mentioned 

dynamic performance with the help of a single actuator and a single sensor. Therefore, in this 

chapter we will limit the discussion to the dynamics of single input single output (SISO) flexible 

systems. 

The presence of non-minimum phase (NMP) zeros in the transfer function severely limits the 

dynamic performance that can be achieved through feedback and feedforward control strategies in 

SISO systems [14, 15, 18, 119-121]. A zero is non-minimum phase (NMP) if it has a positive real 

component, and minimum phase (MP) if it has a non-positive real component. NMP zeros occur 

very frequently in the dynamics of flexible systems. Chapter 2 provides a comprehensive review 

of the linear time invariant (LTI) flexible systems that exhibit NMP zeros in their transfer functions. 

In this review, we identified two types of NMP zeros: complex NMP (CNMP) where the imaginary 

component ≠ 0, and real NMP (RNMP) where the imaginary component = 0; and three types of 

MP zeros: complex MP (CMP) where the imaginary component ≠ 0, real MP (RMP) where the 

imaginary component = 0, and marginal MP (MMP) where real component = 0. 

The zeros of a multi-degree of freedom (DoF) flexible linear time invariant (LTI) systems 

depend on its physical parameters i.e. mass and stiffness distribution, actuator and sensor locations, 

and damping. Therefore, there is a need to investigate the effect of these physical parameters on 
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NMP zeros to be able to eliminate these zeros. The effect of the various physical parameters on 

NMP zeros is mathematically involved, and requires a step by step approach. Therefore, we first 

study the effects of mass-stiffness distribution and actuator-sensor location on NMP zeros in 

undamped multi-DoF flexible systems in this chapter. Then in the subsequent chapter, we 

investigate the effect of proportional viscous damping on NMP zeros in damped multi-DoF flexible 

systems. This sequential approach to investigating undamped and damped flexible systems 

provides a more comprehensive, systematic, and insightful understanding of how physical 

parameters affect NMP zeros.  

The transfer function of a multi-DoF undamped flexible LTI system can be modally 

decomposed into second order modes where each mode is characterized by two system parameters 

– modal residue and modal frequency, as described in Chapter 2. The modal residue and modal 

frequency depend on the mass-stiffness distribution and actuator-sensor location. Martin [43] and 

Gevarter [44] showed that when all the modal residue signs are the same, all the zeros of the multi-

DoF undamped flexible LTI system are marginally minimum phase (MMP) and are interlaced with 

the poles on the imaginary axis. It was demonstrated that a flexible system with this interlacing 

property can be easily stabilized in closed loop using proportional or proportional derivative 

feedback control [43, 44].  Furthermore, it was also shown that this distribution of the zeros with 

respect to the poles is robust to the variations in system parameters caused by modelling 

uncertainties or unmodelled dynamics, as long all the modal residue signs remain the same [43, 

45, 46, 122]. This makes the same sign for all modal residues a desirable trait to aim for when one 

designs a multi-DoF undamped flexible LTI system. Collocated actuator-sensor configuration is 

the only known technique that guarantees the same sign for all modal residues when a single 

actuator and single sensor are used [123, 124]. However, certain trajectory tracking applications 
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such as tracking the tip displacement of a flexible link robot while providing input torque at its 

root requires a non-collocated actuator-sensor configuration [47]. This non-collocated actuator 

sensor configuration can lead to the occurrence of NMP zeros in the transfer functions of multi-

DoF undamped flexible LTI systems [41]. If multiple sensors are allowed as opposed to a single 

sensor, then different researchers have proposed different linear combinations of outputs from 

multiple sensors in order to achieve the same sign for all modal residues. This technique guaranteed 

the elimination of NMP zeros in multi-DoF undamped flexible LTI systems with non-collocated 

actuator sensor configurations [47, 48, 125] when multiple sensors are used. However, for a SISO 

system, it may not be always possible to guarantee the same sign for all modal residues via 

collocated actuator-sensor placement due to various practical constraints on the location of the 

actuator and sensor [7, 39, 126]. Fortunately, the same sign for all modal residues is only a 

sufficient condition, and not a necessary one for the elimination of NMP zeros. This motivates the 

need to investigate the distribution of zeros with respect to the poles when all the modal residue 

signs are not the same, and for such systems it is useful to derive one or more sufficient conditions, 

in terms of the system parameters – modal residue and modal frequency, to eliminate NMP zeros.  

The zero dynamics of multi-DoF undamped flexible LTI systems when all modal residue signs 

are not the same has been less thoroughly studied analytically. However, there are several 

numerical studies for specific multi-DoF undamped flexible LTI systems [36, 37, 39, 87, 89, 92, 

93]. These flexible LTI systems employ a single actuator and sensor in non-collocated 

configurations which lead to all modal residue signs not being the same. A detailed review of the 

literature on NMP zeros of multi-DoF undamped flexible LTI systems when all modal residue 

signs are not the same is provided in Chapter 2. A brief summary is provided here. The transfer 

functions of certain flexure mechanism based motion stages [36, 37, 39] have demonstrated the 
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transition of two pairs of marginally minimum phase (MMP) zeros into a quartet of complex 

minimum phase (CMP) – complex non-minimum phase (CNMP) zeros, for small changes in the 

mass distribution and operating position of the motion stages. It was numerically demonstrated 

that these NMP zeros can be eliminated by tuning the mass distribution and keeping all other 

physical parameters constant. This elimination of NMP zeros via numerical simulation was only 

shown for a given set of physical parameters. No underlying physical explanation or general 

sufficient condition was provided that could guarantee the elimination of these NMP zeros for a 

different set of physical parameters.  Spector [87] and Lee [89] carried out numerical investigation 

of the transfer function of a pinned-free beam model and free-free beam model respectively and 

identified the migration of the zeros on the real and imaginary axis due to variation in sensor 

position. But they could not provide any general conclusion or design insights to eliminate NMP 

zeros other than collocation of the actuator and sensor. Tohyama and Lyon [92, 93]  investigated 

the zero dynamics of room acoustics using a three-DoF flexible system model whose transfer 

function could be modally decomposed into two flexible modes and a constant remainder. By 

varying the remainder, they identified NMP zeros in the system. These studies, however, only 

investigated the variation in the remainder without investigating the effect of varying the modal 

residues and frequencies associated with the other two modes. As a result, they could not provide 

a comprehensive list of all possible ways to eliminate NMP zeros in a three-DoF flexible system. 

The key gap in these prior publications is that they are system specific and investigate the NMP 

zeros over a limited range of parameters of the flexible systems. Therefore, the prior publications 

do not provide any meaningful conclusions in the form of necessary and/or sufficient conditions 

for the absence of NMP zeros in a general multi-DoF undamped flexible LTI system when all 

modal residue signs are not the same.  
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In Chapter 2, we carried out an analytical investigation of the zeros of a three-DoF undamped 

flexible LTI system by constructing zero loci that comprehensively covered all possible 

distribution of the zeros with respect to the poles for any value of system parameters. Based on 

these zero loci, the necessary and sufficient conditions for the elimination of NMP zeros were 

derived. But while it is possible to construct all possible zero loci that span the entire parameter 

space and use them to derive the necessary and sufficient conditions for the elimination of NMP 

zeros for low-DoF undamped flexible systems, this process becomes mathematically tedious and 

impractical as the number of DoFs increase. Therefore, there remains a need to find sufficient 

conditions for the elimination of NMP zeros in any general multi-DoF undamped flexible system 

when all modal residue signs are not the same. 

This chapter addresses this need by making two novel contributions. The first novel contribution 

is a non-unique sufficient condition for the elimination of all NMP zeros in multi-DoF undamped 

flexible LTI systems in terms of the system parameters – modal residue and modal frequency, 

without the overly restrictive requirement of all modal residue signs being the same. The second 

novel contribution is a step by step design strategy (demonstrated via a case study) to choose 

physical parameters that satisfy the sufficient condition for the elimination of NMP zeros. This 

chapter is organized as follows: Section 4.2 derives and presents some important mathematical 

results on the distribution of the zeros with respect to the poles on the real and imaginary axis of 

the s-plane. Section 4.3 makes use of these results to derive the sufficient condition for the 

elimination of NMP zeros. Section 4.4 provides a case study based on a four-DoF undamped 

flexible system to demonstrate the utility of this sufficient condition to make informed choices 

about actuator-sensor placement and mass-stiffness distribution. Section 4.5 provides a conclusion 

and briefly motivates the research direction in the subsequent chapters. 
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4.2 Parity of Number of Zeros on the Real and Imaginary axis 

Consider the equations of motion of an undamped multi-DoF flexible system given by: 
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 (4-1) 

where, [M] and [K] denote the mass, and stiffness matrices, respectively; F denotes the force 

acting on the system through an input vector [B]; and, q is the measured displacement and is a 

linear combination, captured by sensor vector [D], of the individual DoF displacements denoted 

by w. The mode shape matrix [] is used to diagonalize the [M] and [K] matrices simultaneously 

to obtain modal mass (m i 
modal) and modal stiffness (k i 

modal), as follows: 
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where diag  represents a diagonal matrix
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 (4-2) 

The transfer function, between the input force, F and the measured displacement output, q of the 

multi-DoF undamped flexible LTI system is given below where the coefficients in the numerator 

and denominator are all real valued.  
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 (4-3) 

The modal decomposition of the transfer function G(s) is also given by Eq.(4-3) where i ≠ 0 

for any i from 1 to n, and 1<2<n. The total number of second order modes in the modal 

decomposition is n, which is also the DoF of the system. i and i are the modal frequency and 

the modal residue of the ith mode, respectively. All the modal frequencies and residues are referred 
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to as the system parameters in this chapter. The modal residue (i) is expressed in terms of input 

vector [B], which depends on the actuator location, and sensor vector [D], which depends on the 

sensor location, as well as mode shape matrix [], which depend on mass-stiffness distribution i.e. 

[M] and [K]. The modal frequency only depends on the mass-stiffness distribution. G(s) represents 

a physical system (as opposed to a mathematical system), and is therefore strictly proper (i.e. m < 

n). The numerator of G(s) is referred to as N(s) and its denominator is referred to as D(s) as shown 

below: 

 ( ) ( )2 2 2 2
1 0 1 0,m n

m nN s b s b s b D s a s a s a= + + + = + + +    (4-4) 

Since, the coefficients of the numerator N(s), given by bi, are real as well as N(s) is an even 

function in s i.e. N(s) = N(−s), the roots of N(s) (or zeros of G(s)) will be symmetric about the real 

and imaginary axis. Hence the zeros of G(s) will either be real or complex conjugate pairs and it 

is sufficient to focus on the first quadrant of the s-plane including the positive real axis and the 

positive imaginary axis.   

The distribution of the zeros of the transfer function G(s) on the imaginary and real axis of the s-

plane is given in terms of the parity of the number of the zeros i.e. odd or even number of zeros 

between two points, s = c1 and s = c2, either both on the real axis or both on the imaginary axis 

with |c1| < |c2|. The choice of c1 and c2 divides the imaginary and the real axis into four distinct 

segments for which the parity of the number of zeros is investigated. These segments are 

graphically illustrated in Fig 4-1 and described below:  

1.Segment 1: Parity of number of zeros between c1 = jf and c2 = jf +1 on the imaginary axis for 

any f from 1 to n−1. 
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2.Segment 2: Parity of number of zeros between c1 = jn (pole corresponding to the last mode of 

G(s)) and c2 = +j∞ on the imaginary axis.  

3.Segment 3: Parity of number of zeros between c1 = origin and c2 = +∞ on the real axis.  

4.Segment 4: Parity of number of zeros between c1 = origin and c2 = j1 (pole corresponding to 

the first mode of G(s)) on the imaginary axis. 

Im (+∞) 

Re (+∞) 

Origin

Segment 1

Segment 2

Segment 3

Segment 4





1jw

fjw

1fjw +

njw

 
 Fig 4-1 Imaginary and real axis divided into four distinct segments 

When seeking to find the parity of the number of zeros between two points, c1 and c2, the sign 

of N(s), given by Eq.(4-3), will be sought at both points. Since N(s) is a continuous function in s, 

examining its sign at points c1 and c2 tells us how many times N(s) can become zero between these 

two points. An odd number of zeros occur between points c1 and c2 if the sign of N(c1)N(c2) < 0 

and an even number of zeros occur between points c1 and c2 if the sign of N(c1)N(c2) > 0. The 

opposite statements are also true i.e. if there are odd number of zeros between points c1 and c2 then 

N(c1)N(c2) < 0 and if there are even number of zeros between points c1 and c2 then N(c1)N(c2) > 0. 
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For the case where N(c1)N(c2) = 0 because N(c1) = 0 and/or N(c2) = 0, they will be replaced by 

their respective limiting cases as shown beloe. If c2→∞ it implies that N(c2)→∞, then it will 

replaced by its limiting case as shown below.  

 

( )

( )

1

2

1 1

2 2

If ( ) 0  Replace sgn ( )  with lim sgn( ( ))

If ( ) 0 or  Replace sgn ( )  with lim sgn( ( ))

s c

s c

N c N c N s

N c N c N s

+

-





= 

= ¥
 (4-5) 

4.2.1 Parity of number of zeros between jf and jf+1 

Result 1: In a multi-DoF undamped flexible LTI system with a transfer function given by 

Eq.(4-3), the parity of number of zeros between any two of its consecutive poles, given by jf 

and jf +1 for any f from 1 to n−1, is given by: 

 

( )( ){ }

( )( ){ }

1 1
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sgn 0 Odd no. of zeros between  and 

sgn 0 Even no. of zeros between  and 

f f f f

f f f f

j j
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a a w w

+ +

+ +

> 

< 

 (4-6) 

Proof: Express the transfer function G(s) as the sum of three transfer functions:  

 ( ) ( ) ( ) , 11
1, 1 , 12 2 2 2 2 2

, 11 , 1

( )
 where 

( )
f f nf f i

if f f f
i f ff f f f i
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s s D s s

a a a
w w w

++
=+ +
¹ ++ +

æ ö÷ç ÷= + + = = ç ÷ç ÷ç+ + +è ø
å (4-7) 

Next, the numerator of G(s), given by N(s), is evaluated at s = jf and s = jf +1. 
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  (4-8) 

Taking the product of N(jf) and N(jf +1) and evaluating the sign of the product leads to: 
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( ) ( ) ( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( ) ( )( )

22 2
1 1 , 1 , 1 1 1

1 1 , 1 , 1 1sgn sgn sgn

f f f f f f f f f f f f

f f f f f f f f f f

N j N j D j D j

N j N j D j D j

w w a a w w w w

w w a a w w

+ + + + + +

+ + + + +

=- -

 =-

 (4-9) 

It can be observed that 
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( )( ) ( )( ) ( ) ( )

2 2
, 1 1, , 1
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, 1 , 1 1 1 2
sgn sgn 1 1

n

f f ii i f f
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D j D j
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 (4-10) 

Substituting Eq.(4-10) in Eq.(4-9), we get: ( ) ( )( ) ( )1 1sgn sgnf f f fN j N jw w a a+ +=-  

This directly leads to Result 1 expressed in Eq.(4-6), which is restated below: 
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4.2.2 Parity of number of zeros between jn and j∞ 

Result 2: In a multi-DoF undamped flexible LTI system whose transfer function is given by 

Eq.(4-3), the parity of number of zeros between the last pole, given by jn, and positive infinity 

on the imaginary axis, j∞, is given below: 
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Proof: Express the transfer function G(s) as the sum of two transfer functions. 

 ( ) ( ) ( )
( )
( )

1

2 2 2 21
 where 

nnn i
n n i

n n i

N s
G s G s G s

s D s s

a a
w w

-

=
= + = =

+ +å  (4-12) 

Next, the sign of the numerator of G(s), given by N(s) is evaluated at s = jn. 

 
( ) ( )( ) ( ) ( ) ( )
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N s N s s D s N j D j
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 (4-13) 

It is observed that 

  ( ) ( ) ( )( ) ( ) ( ) ( )1 1 1 12 2 2 2

1 1 1
sgn sgn 1 1

n n n n

n n i n n n i ni i i
D j D jw w w w w w

- - - -

= = =
= -  = - = - = -  

  (4-14) 

Substituting Eq.(4-14) into Eq.(4-13) yields 

 ( )( ) ( ) ( )1
sgn 1 sgn

n

n nN jw a-
= -  (4-15) 

Now the sign of N(s) is evaluated at s = j∞. It is impossible to directly evaluate the sign of N(s) at 

s = j∞, because N(s) → ∞. Therefore, the limit of N(s) is considered as below, by making a change 

of variables and substituting for c2 in Eq.(4-5). 
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 ( )( ) ( ) ( )( )2

1
lim sgn lim sgn 1

m i i

iiy y
N jy b y

=¥ ¥
= -å  (4-16) 

As y tends to infinity, the term with the highest power of y in Eq.(4-16) which is y2m will dominate. 

This leads to 

 ( )( ) ( ) ( )lim sgn 1 sgn
m

m
y

N jy b
¥

= -  (4-17) 

Using Vieta’s formulae and binomial expansion, an expression for bm can be derived in terms of 

the elementary symmetric polynomials, which are defined as follows. 
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The expression for bm is stated below. 

 1 1 2 1 1 11
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b ea w w w w w w- - - + -=

=å  (4-19) 

Taking the product of the signs of N(s) at s = jn and s = j∞ using Eq.(4-15) and Eq.(4-17) gives 

Eq.(4-11), restated here: 
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( ) ( )( ){ }

( ) ( )( ){ }

1

1

1 sgn 0 Odd no. of zeros between  and 

1 sgn 0 Even no. of zeros between  and 

n m

m n n

n m

m n n

b j j

b j j

a w

a w

- +

- +

- <  ¥

- >  ¥

 

The term 2(n−m) is the relative degree of the transfer function of G(s) and bm corresponds to the 

highest power of s in the numerator as shown in Eq.(4-3). It has been shown previously that the 

relative degree of transfer functions of collinear lumped parameter undamped flexible systems 
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depends only on actuator and sensor location and is independent of the other physical parameters 

such as mass and stiffness distribution [35]. For such systems, Result 2 can be useful in evaluating 

the effect of mass and stiffness distribution on the parity of number of zeros in Segment 2 for a 

given actuator and sensor location. Certain flexure mechanisms exhibit a relative degree of 2 

irrespective of mass and stiffness distribution and actuator and sensor location [36, 39]. For such 

systems, Result 2 can be useful in evaluating the effect of mass and stiffness distribution and 

actuator and sensor location on the parity of number of zeros in Segment 2. A change in the parity 

of number of zeros in Segment 2 indicates that odd number of zeros have migrated from Segment 

1 to Segment 2, or vice versa, which suggests pole-zero flipping close to the frequency n. 

Alternatively, it could indicate that odd number of zeros have migrated from Segment 2 to Segment 

3, or vice versa, leading to transition from marginally minimum phase (MMP) zeros to real non-

minimum phase (RNMP) zeros or vice-versa. 

4.2.3 Parity of number of zeros between 0 and ∞ on the real axis 

Result 3: In a multi-DoF undamped flexible LTI system whose transfer function is given by 

Eq.(4-3), the parity of number of zeros between the origin and positive infinity on the real axis is 

given below: 
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Proof: The sign of N(s) is evaluated at s = ∞. 

 ( )( ) ( )2

1
lim sgn lim sgn

m i
iix x

N x b x
=¥ ¥

= å  (4-21) 

As x tends to infinity, the term with the highest power of x in Eq.(4-21) which is x2m will dominate. 

This leads to Eq.(4-22). 

 ( )( ) ( )lim sgn sgn mx
N x b

¥
=  (4-22) 

Eq.(4-19) provides the expression for bm. We evaluate the sign of N(s) at the origin by substituting 

c1 = 0 into Eq.(4-5). 

 ( )( ) ( )2

000
lim sgn limsgn

m i
iixx

N x b x
+ =

= å  (4-23) 

It can be observed that  

 1  as 0k kx x x+   (4-24) 

Thus, the term with the lowest power of x in Eq.(4-23) which is x2q* will dominate due to Eq.(4-24)

. This leads to: 
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 ( )( ) ( )*
0

lim sgn sgn
qx

N x b
+

=  (4-25) 

Note that an expression for the coefficient bq* can be obtained by substituting q* for m in Eq.(4-19) 

 * * 1 2 1 1 111
( , ,..., , ..., , )

n

i i i n nq n qi
b ea w w w w w w- + -- -=

=å  (4-26) 

Taking the product of the sign or sign limits at 0 and ∞ using Eq.(4-22) and Eq.(4-25) yields 

Eq.(4-20), restated below: 

 

( )( ){ }

( )( ){ }

*

*

sgn 0 Odd no. of zeros between 0 and 

sgn 0 Even no. of zeros between 0 and 

mq

mq

b b

b b

<  ¥

>  ¥

 

There are certain classes of multi-DoF undamped flexible LTI system for which q* = 0 for any 

actuator and sensor location and mass stiffness distribution [35, 36, 39]. A change in the parity of 

number of zeros in Segment 3 indicates that odd number of zeros have migrated from  Segment 2 

to Segment 3, or vice versa, leading to transition from MMP to RNMP zeros or vice-versa. 

Alternatively, it could indicate that odd number of zeros have migrated from Segment 4 to Segment 

3, or vice-versa, again leading to transition from MMP to RNMP zeros or vice-versa. 

4.2.4 Parity of number of zeros between 0 and j1 on the imaginary axis 

Result 4: In a multi-DoF undamped flexible LTI system whose transfer function is given by 

Eq.(4-3), the parity of number of zeros between the origin and the first pole, given by j1 on the 

imaginary axis, is given below: 
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Proof: The transfer function G(s) is expressed as the sum of two transfer functions as shown in 

Eq.(4-28). 

 ( ) ( ) ( )
( )
( )

11
1 12 2 2 22

1 1

 where 
n i

i
i

N s
G s G s G s

s D s s

aa
w w=
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Next, the sign of the numerator of G(s), given by N(s) is evaluated at s = j1. 

 
( ) ( )( ) ( ) ( ) ( )
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1 1 1 1sgn sgn sgn

N s N s s D s N j D j

N j D j

w a w a w

w a w

= + +  =

 =
 (4-29) 

It can be observed that 

  ( ) ( ) ( )( ) ( )2 2
1 1 1 1 12 2

sgn 1 1
n n

ii i
D j D jw w w w

= =
= -  = =   (4-30) 

Substituting Eq.(4-30) into Eq.(4-29) yields 

 ( )( ) ( )1 1sgn sgnN jw a=  (4-31) 

Now the sign of N(s) will be evaluated at j0, by substituting for c1 in Eq.(4-5) 

 ( )( ) ( )( ) ( )( )2 2

0 00 0 0
lim sgn lim sgn lim sgn 1

m mi i i
i ii iy y y

N jy b jy b y
+ + += =  

= = -å å  (4-32) 

Based on the procedure followed in Eq.(4-23) and Eq.(4-24) in Section 4.2.3, Eq.(4-32) can then 

be simplified to  

 ( )( ) ( ) ( )
*

*
0

lim sgn 1 sgn
q

qy
N jy b

+
= -  (4-33) 

Taking the product of the sign or sign limits at j0 and j1 using Eq.(4-31) and Eq.(4-33) yields 

Eq.(4-27), restated below: 
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A change in the parity of number of zeros in Segment 4 indicates that odd number of zeros have 

migrated from Segment 4 to Segment 1, or vice-versa, which suggests pole-zero flipping close to 

the frequency 1. Alternatively, it could indicate that odd number of zeros have migrated from 

Segment 4 to Segment 3, or vice-versa, leading to transition from MMP to RNMP zeros or vice-

versa. 

4.3 Multi-DoF Undamped Flexible Systems 

In this section, a non-unique sufficient condition is provided to guarantee the elimination of all 

NMP zeros from the transfer functions of multi-DoF undamped flexible LTI systems. In order to 

do so, first a sufficient condition for the elimination of only CNMP zeros is derived in Section 

4.3.1 i.e. Result 5. Following that, under the condition that Result 5 is satisfied, the sufficient 

condition for the elimination of all NMP (CNMP and RNMP) zeros is derived in Section 4.3.2 i.e. 

Result 6. Note that in order for Result 6 to be satisfied, Result 5 must be satisfied first. Therefore, 

if Result 6 is satisfied, it is implied that Result 5 has also been satisfied thereby guaranteeing the 

elimination of all NMP zeros i.e. CNMP and RNMP zeros. However, the converse is not true i.e. 

Result 5 can be satisfied without satisfying Result 6. Therefore, Result 6 is the non-unique 

sufficient condition for the elimination of all NMP zeros in multi-DoF undamped flexible systems. 

A sufficient condition for the elimination of only CNMP zeros (Section 4.3.1) is derived first 

because if collinear lumped parameter undamped flexible LTI systems exhibit NMP zeros in their 

transfer functions, those zeros occur only as CNMP zeros [35]. Because of their mathematical 
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simplicity, collinear lumped parameter models can be effectively used to investigate the dynamics 

of multi DoF undamped flexible systems in various applications e.g. the longitudinal and torsional 

vibration of building foundations [127], the torsional vibration of a drill string [128] and a hybrid 

powertrain [129], and acoustic properties of 1-D metamaterials [130]. Therefore, the sufficient 

condition for the elimination of only CNMP zeros will have practical relevance in several motion 

and vibration control applications where collinear lumped parameter models are used. Moreover, 

Result 6 will be widely applicable to any multi-DoF undamped flexible LTI system (collinear or 

non-collinear lumped parameter) for the elimination of all NMP zeros i.e. CNMP and RNMP 

zeros. 

4.3.1 A Sufficient Condition to eliminate only CNMP zeros 

Result 5: In a multi-DoF undamped flexible LTI system whose transfer function is given by 

Eq.(4-3), a sufficient condition for the elimination of only CNMP zeros is: 

 ( ) No. of modal residue sign changes +1  where 1r r r n m q*£ £ = - - +  (4-34) 

Proof: Note that in Eq.(4-34), No.” is abbreviation for “Number”. Given a sequence of modal 

residue signs, the number of times the sign changes in that sequence is defined as the number of 

modal residue sign changes. For example, consider a four-DoF undamped flexible system whose 

sequence of the modal residue signs is given by (+ − − +). For this sequence of modal residue 

signs, the number of modal residue sign changes = 2. 

A new parameter r is defined in Eq.(4-34) which is the sum of number of zero pairs at infinity 

i.e. (n−m−1) and the number of zero pairs at the origin i.e. q*. Note that m is defined as the greatest 

positive integer such that bm ≠ 0 in Eq.(4-3) (refer to Section 4.2.2) and q* is also defined as the 

smallest positive integer such that bq* ≠ 0 in Eq.(4-3) (refer to Section 4.2.3). It is known from 
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existing literature that q* = 0 and the value of m is independent of mass and stiffness distribution 

and depends only on the actuator and sensor location for certain classes of multi-DoF undamped 

flexible LTI systems [35, 36, 39]. For such undamped flexible systems, the value of r is fixed for 

a given actuator and sensor location. This allows one to make informed choices of mass and 

stiffness distribution in order to satisfy Eq.(4-34), thus guaranteeing the elimination of only CNMP 

zeros. This will be demonstrated via a case study in Section 4.4. 

It was stated in Section 4.2 that the distribution of the zeros is symmetric about the real axis. 

Therefore, we will only refer to the poles and zeros on the top half of the s-plane. Consider a n-

DoF (n > 1) undamped flexible system whose transfer function is given by Eq.(4-3). 

 

( )

( ) ( )*

No. of poles Total no. of zeros 1

Since, there are 1  zeros at infinity and at origin No. of MMP zeros 1

n n

n m q n r

=  £ -

- -  £ - -

  (4-35) 

It is known from Chapter 2 that a CNMP zero always occurs along with a CMP zero in the 

transfer functions of multi-DoF undamped flexible systems and two MMP zeros coalescence on 

the imaginary axis to give rise to a pair of CMP-CNMP zeros. Therefore, a single CMP-CNMP 

zero pair is numerically equivalent to two MMP zeros. Therefore, if at least one pair of CMP-

CNMP zeros occurs, the number of MMP zeros in Eq.(4-35) is modified to: 

 ( )No. of MMP zeros 3n r£ - -  (4-36) 

From Result 1 (Section 4.2.1), it is known that if two adjacent poles i.e. ji and ji+1 have the 

same sign of modal residues i.e. sgn(i) = sgn(i+1) then there is atleast one MMP zero trapped 

between these two poles i.e. i < zi < i+1. This leads to: 
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No. of same sign adjacent No. of MMP 

modal residue pairs zeros

æ ö æ ö÷ ÷ç ç÷ ÷ç ç£÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 (4-37) 

Combining Eq.(4-36) and Eq.(4-37) leads to the condition for the existence of at least one CMP-

CNMP zero pair.  

 ( )
No. of same sign adjacent

3
modal residue pairs

n r
æ ö÷ç ÷ç £ - -÷ç ÷ç ÷çè ø

 (4-38) 

Therefore, a sufficient condition for the complete elimination of CNMP zeros is given by Eq.(4-39) 

 ( )
No. of same sign adjacent

2
modal residue pairs

n r
æ ö÷ç ÷ç ³ - -÷ç ÷ç ÷çè ø

 (4-39) 

Eq.(4-39) provides a lower limit on the number of same sign adjacent modal residue pairs in 

order to guarantee the absence of CNMP zeros. However, there is an upper limit on this quantity 

for a given n-DoF flexible system with total r zeros at infinity ((n−m−1) zeros) and the origin (q* 

zeros). This upper limit comes from Eq.(4-35) and Eq.(4-37) as shown below. 

 

( )

( ) ( )

No. of same sign adjacent No. of MMP 
Eq. 4-37  

modal residue pairs zeros

No. of MMP 
AND Eq. 4-35 1

zeros

No. of same sign adjacent

modal residue pairs

n r

æ ö æ ö÷ ÷ç ç÷ ÷ç ç £÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

æ ö÷ç ÷ç £ - -÷ç ÷ç ÷çè ø

æ öçççççè ø
( )1n r

÷÷£ - -÷÷÷

 (4-40) 

Combining Eq.(4-39) and Eq.(4-40) provides the sufficient condition for the elimination of only 

CNMP zeros. 

 ( ) ( )
No. of same sign adjacent

2 1
modal residue pairs

n r n r
æ ö÷ç ÷ç- - £ £ - -÷ç ÷ç ÷çè ø

 (4-41) 
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Since a n-DoF undamped flexible system has (n−1) adjacent modal residue pairs, Eq.(4-42) holds 

true for this system. 

 
No. of same sign adjacent No. of modal residue 

1
modal residue pairs sign changes

n
æ ö æ ö÷ ÷ç ç÷ ÷ç ç+ = -÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 (4-42) 

Therefore, the sufficient condition in Eq.(4-41) can be written in terms of the number of modal 

residue sign changes as shown in Eq.(4-34) and restated below. 

  No. of modal residue sign changes +1r r£ £  

To demonstrate an example of what the modal residue sign sequence looks like when Eq.(4-34) 

is satisfied, we present the case when r = 0 i.e. there are no zeros at infinity and the origin. The 

transfer functions of certain flexure mechanisms demonstrate this behavior [36, 39]. In this case 

Eq.(4-34) leads to the inference that the number of modal residue sign changes can either be 0 or 

1. Assume that the first modal residue sign is positive, then the following sequence of modal 

residue signs guarantee the elimination of only CNMP zeros. 

1. Number of modal residue sign changes = 0 implies that all n modal residue signs are positive. 

Therefore the modal residue sign sequence is given by (+ + + …..+) n. This sequence of modal 

residue signs is very well known in the existing literature: all modal residue signs are same. It 

naturally falls out of Result 5. 

2. Number of modal residue sign changes = 1 implies that first l (l ≥ 1) modal residues are positive 

and the remaining (n−l) modal residues are negative. Therefore, the modal residue sign sequence 

is given by ((+ + +…+) l (− − −…−) n−l). This sequence of modal residue signs is new and has not 

been reported in the existing literature. This demonstrates that Result 5 can provide all possible 

sequence of modal residue signs for the elimination of CNMP zeros.  
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4.3.2 A Sufficient Condition for the elimination of all NMP zeros 

Result 6: In a multi-DoF undamped flexible LTI system whose transfer function is given by 

Eq.(4-3) and it satisfies Result 5, RNMP zeros do not occur in the transfer function if the number 

of modal residue sign changes = r. Therefore, the elimination of all NMP zeros is guaranteed. 

However, one RNMP zero may occur when the number of modal residue sign changes = r+1. 

Therefore, the mathematical condition which eliminates this RNMP zero thereby guaranteeing the 

elimination of all NMP zeros when the number of modal residue sign changes = r+1 is given by: 

 ( )( ){ }sgn 0mq
b b* >  (4-43) 

Proof: When Eq.(4-34) is satisfied to guarantee the elimination of only CNMP zeros, the number 

of modal residue sign changes can either be r or r+1. In this section, we will mathematically 

demonstrate that when number of modal residue sign changes = r, it also guarantees the elimination 

of RNMP zeros. Therefore, this condition becomes a sufficient condition for the elimination of all 

NMP zeros i.e. CNMP and RNMP zeros. For the special case of r = 0, this condition leads to the 

trivial case where all the modal residues have the same sign. This case has been extensively studied 

in the existing literature as discussed in Section 4.1. However, when r ≠ 0, (which can be the case 

for collinear lumped parameter undamped flexible LTI systems), this sufficient condition leads to 

a non-trivial modal residue sign sequence which will be demonstrated in Section 4.4 through a 

case study.  

Furthermore, we will mathematically demonstrate in this section that when the number of modal 

residue sign changes = r+1, one RNMP zero may exist in the transfer function. Therefore, an 

additional mathematical condition is required to guarantee the elimination of this RNMP zero 

which is given by Eq.(4-43). It was stated in Section 4.2 that the distribution of zeros is also 
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symmetric about the imaginary axis. Therefore, a RNMP zero occurs along with a RMP zero as a 

pair. For subsequent discussion, we will only refer to the RNMP zero of this pair.  

Consider the case when the number of modal residue sign changes = r. This case leads to a lower 

limit on the number of MMP zeros as shown in Eq.(4-44).  

 

( ) ( )

( )

No. of same sign adjacent
Eq. 4-42 1 , 

modal residue pairs

No. of same sign adjacent No. of MMP 
AND Eq. 4-37

modal residue pairs zeros

No. of MMP 

zeros

n r
æ ö÷ç ÷ç = - -÷ç ÷ç ÷çè ø

æ ö æ ö÷ ÷ç ç÷ ÷ç ç £÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

æ öçççççè
1n r

÷÷³ - -÷÷÷ø

 (4-44) 

The upper limit on the number of MMP zeros is given by Eq.(4-35). Considering Eq.(4-35) and 

Eq.(4-44) together, we come to the conclusion that the upper limit and lower limit on the number 

of MMP zeros is the same. Thus, the number of MMP zeros is given by Eq.(4-45)  

 ( )
No. of MMP 

1
zeros

n r
æ ö÷ç ÷ç = - -÷ç ÷ç ÷çè ø

  (4-45) 

The transfer function of a n-DoF undamped flexible LTI system has (n−1) zeros. There are total r 

zeros at infinity and the origin and the remaining (n−r−1) zeros have been shown to be MMP zeros. 

Therefore, RNMP zeros cannot exist in the transfer function when the number of modal residue 

sign changes = r.  

In fact, the distribution of MMP zeros with respect to the poles on the imaginary axis is fixed 

for the case when the number of modal residue sign changes = r. There are (n−r−1) MMP zeros 

and (n−r−1) same sign adjacent modal residue pairs. Therefore, it follows from Result 1 that there 

is one MMP zero trapped between two adjacent poles ji and ji+1 that have the same sign of 
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modal residues i.e. sgn(i) = sgn(i+1). For the special case of r = 0, this leads to the well-known 

and extensively studied pole-zero interlacing property when all modal residue signs are the same 

[43, 45, 46, 122].  

 Consider the case when the number of modal residue sign changes = r+1. This case leads to a 

lower limit on the number of MMP zeros as shown in Eq.(4-46) 

 

( ) ( )

( )

No. of same sign adjacent
Eq. 4-42 2

modal residue pairs

No. of same sign adjacent No. of MMP 
AND Eq. 4-37

modal residue pairs zeros

No. of MMP 

zeros

n r
æ ö÷ç ÷ç = - -÷ç ÷ç ÷çè ø

æ ö æ ö÷ ÷ç ç÷ ÷ç ç £÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

æ ö÷çççççè ø
2n r÷³ - -÷÷÷

 (4-46) 

The upper limit on the number of MMP zeros is given by Eq.(4-35). Considering Eq.(4-35) and 

Eq.(4-46) together leads to the following inequality in Eq.(4-47). 

 
No. of MMP 

2 1
zeros

n r n r
æ ö÷ç ÷ç- - £ £ - -÷ç ÷ç ÷çè ø

 (4-47) 

It was mathematically shown in the previous paragraphs that if the number of MMP zeros is 

(n−r−1), RNMP zeros will not exist in the transfer function. However, Eq.(4-47) suggests that the 

number of MMP zero can be either (n−r−1) or (n−r−2). When the number of MMP zeros is 

(n−r−2), there is one extra zero which can exist as a RNMP zero. Therefore, a mathematical 

condition is needed to guarantee that this extra zero does not exist as a RNMP zero.  

Result 1 proved that there are odd/even number of MMP zeros between any two adjacent poles 

ji and ji+1 that have the same/opposite modal residue signs. Therefore, when the number of same 

sign adjacent modal residue pairs is (n−r−2), the odd/even number of MMP zeros between any 
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two adjacent poles ji and ji+1 that have the same/opposite modal residue sign cannot be anything 

but 1/0 otherwise it violates the upper limit on the number of MMP zeros as shown in Eq.(4-47). 

Therefore, this implies that when the number of same sign adjacent modal residue pairs is (n−r−2) 

and the maximum number of MMP zeros possible is (n−r−1), then there are (n−r−2) MMP zeros 

in Segment 1 (refer to Fig. 2) i.e. between j1 (pole corresponding to the first mode) and jn (pole 

corresponding to the last mode) in such a way that there is one MMP zero between two adjacent 

poles ji and ji+1 that have the same modal residue sign i.e. sgn(i) = sgn(i+1).  

The total number of zeros is (n−1), out of which total r zeros are at infinity and the origin and 

(n−r−2) zeros are MMP zeros that lie in Segment 1. Therefore, there is one zero whose location is 

still not certain. This zero can lie in either Segment 2, Segment 3 or Segment 4. Since a single zero 

indicates an odd number of zeros, Result 2, Result 3 and Result 4 can be used to determine the 

mathematical conditions for which this zero lies in Segment 2, Segment 3 and Segment 4 

respectively. These mathematical conditions are given below.  

 

( ) ( )( ){ }

( )( ){ }

( ) ( )( ){ }

1

1

MMP zero in Segment 2 1 sgn 0

RNMP zero in Segment 3 sgn 0

MMP zero in Segment 4 1 sgn 0
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- + - <
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 - <

 (4-48) 

Eq.(4-48) provides the mathematical condition for which the zero lies in Segment 3 as a RNMP 

zero. When this condition is not satisfied, as shown by Eq.(4-43) (restated below), it leads to the 

elimination of that one RNMP zero thereby guaranteeing the absence of all NMP zeros i.e. CNMP 

and RNMP zeros. This concludes the proof for Result 6. 

 ( )( ){ }sgn 0mq
b b* >  
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Note that when Eq.(4-43) is satisfied i.e. the zero does not lie in Segment 3 as a RNMP zero. 

Then it should either lie in Segment 2 or Segment 4 as a MMP zero. It can be easily shown that if 

Eq.(4-43) is satisfied, then either one of the mathematical conditions corresponding to the zero 

lying in either Segment 2 or Segment 4 as a MMP zero is also satisfied as shown in Eq.(4-49).  

 ( )( ){ }
( ) ( )( ){ }

( ) ( )( ){ }

1

1

MMP zero in Segment 2 1 sgn 0

sgn 0                   OR

MMP zero in Segment 4 1 sgn 0
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b b
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- +æ ö÷ç  - < ÷ç ÷ç ÷ç ÷ç ÷ç ÷> ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ - <ç ÷çè ø

  (4-49) 
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Fig 4-2 Distribution of zeros w.r.t the poles when r = 0 and number of modal residue sign 

change = 1 (a) Zero is in Segment 2 as MMP (b) Zero is in Segment 3 as RNMP (c) Zero is in 

Segment 4 as MMP  

To demonstrate an example of the distribution of zeros with respect to the poles when Result 6 

is satisfied and when it is not satisfied, we present the case when r = 0 and Result 5 is already 

assumed to be satisfied. In this case, when the number of modal residue sign changes = 0, it leads 

to the trivial case of all modal residue signs being the same which leads to pole-zero interlacing 

which was discussed in the prior art in Section 4.1. When the number of modal residue sign 

changes = 1, Fig 4-2 demonstrates the distribution of the zero with respect to the poles. The sign 

next to the poles indicates the sign of the corresponding modal residue in Fig 4-2.  

The mathematical conditions in Fig 4-2 are derived from Eq.(4-48) when r = 0. This means m = 

n−1 and q* = 0 from Eq.(4-34) because m ≤ n−1 (Eq.(4-11)) and q* ≥ 0 (Eq.(4-20)). Since, Result 

5 is assumed to be satisfied, Fig 4-2a, Fig 4-2b, and Fig 4-2c do not exhibit CNMP zeros for any 

value of system parameters. Fig 4-2a and Fig 4-2c depict the case when Eq.(4-43) is satisfied 

leading to no RNMP zeros. There are (n−2) MMP zeros in Segment 1 in Fig 4-2a and Fig 4-2c. 

The (n−1)th MMP zero lies in Segment 2 in Fig 4-2a and Segment 4 in Fig 4-2c since they satisfy 

the corresponding conditions in Eq.(4-48). Fig 4-2b depicts the case when Eq.(4-43) is not satisfied 

leading to the presence of a RNMP zero in Segment 3. The remaining (n−2) MMP zeros still lie in 

Segment 1. Fig 4-2 will prove to be useful in selecting parameters of a multi-DoF undamped 

flexible LTI system in order to eliminate all NMP zeros when r = 0 which happens to the case for 

certain flexure mechanisms [36, 39].   

Section 4.3 provides a non-unique sufficient condition i.e. Result 6 for the elimination of all 

NMP zeros in multi-DoF undamped flexible LTI systems in terms of the system parameters – 
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modal residue and modal frequency without the narrow assumption of all modal residue signs 

being the same. In fact, this sufficient condition subsumes the already known sufficient condition 

that ‘all modal residue signs are same’ as well as provide other possible sequences of modal residue 

signs to eliminate NMP zeros. Therefore, it opens up a wider design space in terms of actuator–

sensor placement and mass–stiffness distribution in order to eliminate NMP zeros. 

4.4 Case Study: Four DoF Undamped Flexible System 

Here we provide a case study to demonstrate the use of the sufficient condition i.e. Result 5 

derived in Section 4.3.1 to inform the choice of physical parameters in an undamped flexible 

system.   

m1 m2 m3 m4

k12

k13

k14

k23

k24

k34

f1 x2 x3 x4

 
 Fig 4-3 Four-doF collinear lumped parameter undamped flexible LTI system 

Consider a four-DoF collinear lumped parameter undamped flexible LTI system as shown in Fig 

4-3. Since, this undamped flexible system is collinear lumped parameter, its transfer function will 

not exhibit RNMP zeros for any value of springs and masses, as noted previously in the second 

paragraph of Section 4.3. However, this flexible system can still exhibit CNMP zeros. Therefore, 

only Result 5 needs to be satisfied for this flexible system to eliminate CNMP zeros. Note that a 

collinear lumped parameter flexible system is any lumped parameter flexible system where each 

mass can only move in a single direction as shown in Fig 4-3. Hence, it represents a large class of 
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flexible systems and its study is of great practical importance as discussed in the second paragraph 

of Section 4.3. For this numerical example adapted from [40], m1 = m2 = m3 = m4 = 1, k12 = k34 = 

100, k13 = k14 = k24 = 200, and k23 = 100+Δk where Δk lies between −100 and +∞. In this section, 

we will examine three transfer functions between force input and displacement output: G12(s) 

=x2(s)/f1(s), G13(s) = x3(s)/f1(s), and G14(s) =x4(s)/f1(s); and will find the range of Δk for each 

transfer function over which CNMP zeros are eliminated using the sufficient condition Result 5 

(Eq.(4-34)). Note that even though we are using Result 5 to inform the choice of stiffness Δk for 

each transfer function to be MP, we can also use Result 5 to choose the sensor location for a given 

Δk and a given actuator location to guarantee that the transfer function is MP. The modal 

frequencies and mode shapes of the flexible system in terms of Δk are given below. 
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Fig 4-4 Modal frequencies of the Four DoF undamped flexible system as a function of Δk 

To use Eq.(4-34), we must first ascertain the order in which the modal frequencies of the four 

DoF flexible system occur. The four modes of the flexible system namely mode h, mode c, mode 

d and mode e and their associated mode shapes are given by Eq.(4-50). Note that there are 

certain elements of mode shapes c and e that are functions of Δk. However, they have a fixed 

sign when −100 < Δk < +∞ as shown in Eq.(4-50). Based on Eq.(4-50), 1 = h = 0. Based on 

Fig 4-4, the order in which the remaining modal frequencies, i occur and the construction of 

the mode shape matrix, [] is shown below.   
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For a lumped parameter flexible system, the modal decomposition of its transfer function is 

given by Eq.(4-52) [19].  
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The vectors [B] and [D] represent the actuator and sensor placement as described in Section 

4.2. Since, the force is applied only at m1 in Fig 4-3, [B] = [1 0 0 0]T. For G 12 (s), the 

displacement of m2 is being measured so [D] = [0 1 0 0]. Similarly, for G 13 (s) and G 14 (s), [D] = 

[0 0 1 0] and [D] = [0 0 0 1] respectively. mi
modal represents the modal mass and is always 

positive. Based on Eqs.(4-50)-(4-52), we can find the sequence of modal residue signs for each 

transfer function as shown below. 

    1  2  3  4 

−100 N/m < Δk < 100 
N/m 

G12(s) + − − + 

G13(s) + + − − 

G14(s) + − + − 

Δk > 100 N/m 

G12(s)  + − − + 

G13(s)  + − + − 

G14(s)  + + − − 

Table 4-1 Modal residue sign sequence for transfer functions 

Hoagg [35] provides the formula for the relative degree of transfer functions of collinear lumped 

parameter multi-DoF undamped flexible LTI systems. Based on that formula, the relative degree 

of G12(s), G13(s), and G14(s) is found to be 4 i.e. 2(n−m) = 4 → m = 2. Hoagg [35] also proved that 

these transfer functions do not have any zeros at the origin i.e. q* = 0, and therefore r = 1 from 

Eq.(4-34). Therefore, the sufficient condition for the elimination of only CNMP zeros i.e. Result 

5 (Eq.(4-34)) requires that the number of modal residue sign changes is either 1 or 2. Thus, based 

on Table 4-1, the following inferences can be drawn.  
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1.The number of modal residue sign changes for G12(s) is 2 when −100 N/m < Δk < +∞. Therefore, 

G12(s) will not exhibit CNMP zeros over this range of Δk. This is independently validated by the 

zero locus of G 12 (s) shown below in Fig 4-5a.  

2.The number of modal residue sign changes for G13(s) is 1 when −100 N/m < Δk < 100 N/m and 

3 when Δk > 100 N/m. Therefore, G13(s) will not exhibit CNMP zeros when −100 N/m < Δk < 100 

N/m. However, when Δk > 100 N/m G13(s) may or may not exhibit CNMP zeros because Result 

5 (Eq.(4-34)) is only a sufficient condition but not a necessary one to eliminate CNMP zeros. This 

inference is also independently validated by the zero locus of G13(s) in Fig 4-5b where CNMP 

zeros are shown not to occur when −100 N/m < Δk < 100 N/m and Δk > 367 N/m.  

3.The number of modal residue sign changes for G14(s) is 3 when −100 N/m < Δk < 100 N/m and 

1 when Δk > 100 N/m. Therefore, G14(s) may or may not exhibit CNMP zeros when −100 N/m < 

Δk < 100 N/m. However, when Δk > 100 N/m G14(s) will not exhibit CNMP zeros. This inference 

is independently validated by the zero locus of G14(s) in Fig 4-5c where CNMP zeros are shown 

not to occur when −100 N/m < Δk < −50 N/m and Δk > 100 N/m. 
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Fig 4-5 Zeros of transfer functions as a function of Δk (from Δk = −100 to Δk = 500) 

In the example considered in this section, we had to make use of the equations of motion (EOMs) 

to derive the eigenvectors and eigenvalues in order to construct Table 4-1 and apply Result 5. 

However, Result 5 becomes more useful and easy to apply if it can be satisfied via actuator-sensor 

placement. To accomplish this, an analytical model of the flexible system is not necessary. Once a 

rough estimate of the mode shapes are available via experimental modal analysis, then the design 

engineer can use them to tune the sequence of modal residue signs by varying the actuator [B] 

and/or sensor location [D] for the given mode shapes [] (see Eq.(4-52)) to satisfy Result 5. Result 

5 provides all possible sequence of modal residue signs for the elimination of CNMP zeros and is 

not simply restricted to all modal residue signs being the same. This means that Result 5 can 

(a) (b) (c) 
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guarantee the elimination of CNMP zeros even for non-collocated actuator-sensor placement in 

multi-DoF undamped flexible LTI systems.  

Note that, only a rough estimate of the mode shapes is enough to apply Result 5, since only 

the sign of modal residues is important and not their exact value. This also makes Result 5 robust 

to parametric variations and modeling uncertainties. Once Result 5 is satisfied, CNMP zeros are 

guaranteed to be absent as long as the modeling/parametric uncertainty is not large enough to alter 

the sequence of modal residue signs. However, if Result 5 cannot be satisfied via actuator-sensor 

placement, then the design engineer will need to modify the mass-stiffness distribution to change 

the mode shapes directly in order to achieve the required sequence of modal residue signs. This 

process is more involved since it will require an analytical model of the flexible system to find the 

relationship between mass-stiffness distribution and the sign of modal residues. 

4.5 Conclusion 

This chapter provides a non-unique sufficient condition for the elimination of all NMP zeros in 

multi-DoF undamped flexible LTI systems in terms of the system parameters – modal residue and 

modal frequency without the narrow assumption of all modal residue signs being the same. In fact, 

the sufficient condition provided in this chapter subsumes the already known sufficient condition 

that ‘all modal residue signs are same’ as well as provide other possible sequences of modal residue 

signs to eliminate NMP zeros. Therefore, it opens up a wider design space in terms of actuator–

sensor placement and mass–stiffness distribution in order to eliminate NMP zeros.  

A sufficient condition for the elimination of only CNMP zeros was derived in Section 4.3.1 i.e. 

Result 5. If the undamped multi-DoF flexible LTI system is collinear lumped parameter as shown 

via an example in Section 4.4, then only Result 5 needs to be satisfied to guarantee the elimination 
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of CNMP zeros since these systems never exhibit RNMP zeros. The sufficient condition for the 

elimination of all NMP zeros is derived in Section 4.3.2 i.e. Result 6. Note that in order for Result 

6 to be satisfied, Result 5 must be satisfied first. Therefore, if Result 6 is satisfied, it is implied 

that Result 5 has also been satisfied thereby guaranteeing the elimination of all NMP zeros i.e. 

CNMP and RNMP zeros. For any general multi-DoF undamped flexible LTI system i.e. collinear 

or non-collinear lumped parameter, Result 6 needs to be satisfied to guarantee the elimination of 

all NMP zeros.  

When the sufficient condition for the elimination of NMP zeros is satisfied, the MP zeros in the 

multi-DoF undamped flexible LTI system lie purely on the imaginary axis i.e. MMP zeros. This 

is because RMP zeros always occur in pairs of RMP-RNMP zeros and CMP zeros always occur 

in quartets of CMP-CNMP zeros (Chapter 2).  However, no practical flexible system is undamped. 

It has been recently demonstrated that depending on the damping strategy, the addition of damping 

can move the MMP zeros of undamped flexible systems to the right hand side of the imaginary 

axis leading to NMP zeros of their damped counterparts (Chapter 3). Therefore, in the presence of 

damping (even light damping), the sufficient condition derived in this chapter may fail to guarantee 

the elimination of NMP zeros. This motivates the need to identify atleast one damping strategy 

that preserve the MP behavior of the multi-DoF undamped flexible system by guaranteeing that 

the addition of damping moves the MMP zeros to the left hand side of the imaginary axis as shown 

below. This damping strategy is investigated in the subsequent chapter. In the presence of this 

damping strategy, when the flexible system is lightly damped, then the sufficient condition 

presented in this chapter will guarantee the elimination of NMP zeros. This will relax the strong 

assumption of ‘no damping’ made in this chapter. 
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Satisfy Result 6

MP behavior 
preserving damping 

strategy

(a) Undamped multi-DoF 
flexible system with NMP 

zeros

(b) Undamped multi-DoF 
flexible system with MMP 

zeros

(c) Damped multi-DoF 
flexible system with MP 

zeros

Pole
Zero

 

Fig 4-6 Damping strategy that preserves the MP behavior of multi-DoF undamped flexible 

systems
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Chapter 5 Non-minimum Phase Zeros of Multi-DoF Damped Flexible Systems 

This chapter investigates the non-minimum phase (NMP) zeros in the transfer function, between 

actuated load input and measured displacement output, of a multi-degree of freedom (DoF) flexible 

system in the presence of proportional viscous damping. NMP zeros have a negative impact on the 

dynamics and control of flexible systems and therefore are generally undesirable. Viscous damping 

is one potential means to eliminate NMP zeros. However, the impact of viscous damping on NMP 

zeros of multi-DoF flexible systems is not adequately studied or understood in the literature. In 

order to address this gap, a change of variable method is used to first establish a simple 

mathematical relationship between the zeros of a multi-DoF undamped flexible system and its 

proportionally damped counterpart. The “proportional” viscous damping model is used due to its 

practical amenability, conceptual simplicity and ease of application. This mathematical 

relationship (between zeros of an undamped system and its damped counterpart) is used to derive 

the necessary and sufficient condition for the elimination of NMP zeros in proportionally damped 

flexible systems. A graphical analysis of this necessary and sufficient condition is provided, which 

leads to the formulation of simple damping strategies. These informed damping strategies 

guarantee that the addition of proportional viscous damping to a multi-DoF undamped flexible 

system will convert all its zeros to minimum phase zeros. 

5.1 Introduction and Background 

The detrimental effects of non-minimum phase (NMP) zeros on the dynamic performance of 

flexible systems is well documented in the existing literature [14, 18, 40, 41, 82]. A zero is non-
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minimum phase (NMP) if it has a positive real component, and minimum phase (MP) if it has a 

non-positive real component. Chen [82] mathematically demonstrated that a feedback controller’s 

ability to reduce the tracking error is severely limited in the presence of NMP zeros in any plant 

dynamics including a flexible system. Freudenberg [14] and Middleton [18] mathematically 

demonstrated the tradeoff between disturbance rejection and stability robustness in the presence 

of NMP zeros. It was experimentally shown in two different investigations that poor stability 

robustness to modeling uncertainty due to the presence of NMP zeros leads to residual vibration 

in the end point positioning control of a cantilevered beam [40] and a pinned free beam [41]. These 

undesirable physical consequences of NMP zeros on the dynamic performance of flexible systems 

motivates the need to systematically and comprehensively investigate the relationship between 

NMP zeros and the system parameters. Such an understanding will inform the design of flexible 

systems in several applications, such as space structures [1, 2, 66], rotorcraft blades [5, 97], hard 

disk drives [3, 4], and flexure mechanisms [7, 131, 132], to intentionally eliminate NMP zeros.  

In the preceding chapter, a non-unique sufficient condition was derived for the elimination of 

NMP zeros in the single input single output (SISO) transfer function of undamped multi-DoF 

flexible linear time invariant (LTI) systems. When this sufficient condition is satisfied, all the open 

loop zeros are guaranteed to lie on the imaginary axis along with the open loop poles, i.e. all the 

zeros are MMP. However, in practice, there is generally some, even if small, amount of energy 

dissipation, for example due to material hysteresis [133], or friction at joints/interfaces [134], or 

air damping [135]. In several situations, damping is intentionally added to a flexible system in 

order to reduce its residual vibrations in open loop [61] or to improve closed-loop robustness[136]. 

Irrespective of whether the damping is inherent or added externally, it moves the open loop poles 

of the flexible system to the left hand side (LHS) of the imaginary axis, which is generally 
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beneficial. However, the impact of damping on the open loop zeros is less straightforward and 

sparingly researched.  

A detailed review of the existing literature on the effect of viscous damping on the zeros of 

flexible LTI systems is provided in Chapter 3. A brief summary of this review is provided here. 

Pang [108] demonstrated that the addition of viscous damping to an Euler-Bernoulli beam 

guarantees that all its zeros are MP. However, this study was limited to a collocated transfer 

function of a specific system and no inferences were provided on whether this result is applicable 

to the collocated transfer function of any general flexible system. Lin [60, 110] mathematically 

demonstrated that the zeros of a collocated transfer function of any general multi-DoF flexible 

system will be MP for any viscous damping. However, the zeros of non-collocated transfer 

function were not addressed. Section 3.3 in Chapter 3, under the assumption of classical viscous 

damping, mathematically proved that as long as all modal residue signs are the same, the zeros of 

collocated as well as non-collocated transfer function will be MP. A key gap in this existing 

literature is that it does not provide any inferences on how viscous damping can be used to 

eliminate NMP zeros in any general multi-DoF flexible system when all modal residue signs are 

not the same. 

Chapter 3 investigated the effect of viscous damping on the zeros of three-DoF damped flexible 

systems when all modal residue signs are not the same and found that for some choice of damping 

values, viscous damping can convert the MMP zeros of the undamped flexible systems to NMP 

zeros of its damped counterpart. This is somewhat unexpected finding, i.e. that additional of 

damping can be detrimental to the dynamics of a flexible system. Although this detrimental effect 

of viscous damping on zeros was demonstrated for a three-DoF flexible system, it could be true 

for any multi-DoF flexible system. This means that even if the sufficient condition in the preceding 



 
229  

 
 

chapter is satisfied for an undamped multi-DoF flexible system and zeros are all MMP, the addition 

of viscous damping (either intentionally or unintentionally) can again shift the MMP zeros to the 

right hand side (RHS) of the imaginary axis leading to NMP zeros. 

Multi-DoF Undamped 
Flexible System with NMP 

zeros

Apply sufficient condition from Chapter 4 via 
modification to actuator-sensor placement, mass-
stiffness distribution

Multi-DoF Undamped 
Flexible System with MMP 
zeros on the imaginary axis

Multi-DoF Undamped 
Flexible System with NMP 

zeros

Success No Success due practical 
constraints on actuator-
sensor placement, mass-
stiffness distribution

Zero 
Damping

Non-zero 
Damping

Addition of damping may 
convert MMP zeros into 
NMP zeros

Choose suitable damping strategy 
to preserve MP behavior of zeros 

(This Chapter)

Choose suitable damping 
strategy to convert NMP to 
MP zeros (This Chapter)

 

Fig 5-1 Flowchart of design strategies to eliminate NMP zeros 

Fig 5-1 illustrates a design flowchart to eliminate NMP zeros in any general multi-DoF flexible 

system. First, an attempt is made to satisfy the sufficient condition developed in Chapter 4 via 

actuator-sensor placement and/or mass-stiffness distribution to guarantee the presence of only 

MMP zeros in the undamped flexible system, even when all modal residue signs are not the same. 

If this sufficient condition is satisfied, then there is a need to find at least one viscous damping 
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strategy that preserves this MP behavior by guaranteeing that the MMP zeros are moved to the 

LHS of the imaginary axis, and not to the RHS, upon addition of damping. This entire design 

strategy is depicted by the left arm of the flowchart in Fig 5-1. However, if the sufficient condition 

is not satisfied, could not be satisfied then there is a need for a viscous damping strategy that can 

directly convert the NMP zeros of the undamped flexible system into MP zeros of its damped 

counterpart. This design strategy is depicted by the right arm of the flowchart in Fig 5-1. 

In order to find the suitable damping strategies described in Fig 5-1, Chapter 3 investigated the 

zero dynamics of three-DoF flexible systems under the assumption of “classical” viscous damping. 

Based on this investigation, a comprehensive set of all possible sufficient conditions were derived 

for the elimination of NMP zeros. This comprehensive set of all possible sufficient conditions is 

also the necessary condition for the elimination of NMP zeros. This necessary and sufficient 

condition provides the damping strategies that fulfill the requirements in Fig 5-1. However, this 

investigation is only practical for low DoF (e.g. 2 or 3 DoF) flexible systems because as the number 

of DoF (i.e. modes) increase, the parameter space also grows, making the investigation tedious 

and complicated. 

Therefore, there remains a gap in the literature on damping strategies that meet the requirements 

of Fig 5-1 for any multi-DoF flexible system. In order to address this gap, we investigate the effect 

of proportional viscous damping on the zeros of SISO transfer functions of multi-DoF flexible LTI 

systems in this chapter. Proportional viscous damping is the most widely studied viscous damping 

model in the literature due to its conceptual simplicity and practical application in engineering 

practice [137-139]. In fact, proportional viscous damping is a subset of classical viscous damping 

[59] because it satisfies the Caughey and O’Kelly criterion, which defines classical viscous 

damping. 
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There are two novel contributions of this chapter: (1) Necessary and sufficient condition for the 

absence of NMP zeros in multi-DoF proportional viscous damped flexible systems (2) Case study 

to demonstrate the application of these proportional viscous damping strategies to guarantee the 

absence of NMP zeros. The rest of this chapter is organized as follows: In Section 5.2, a 

mathematical relationship between the zeros of a general multi-DoF undamped flexible system 

and its proportionally damped counterpart is formulated. In Section 5.3, the mathematical 

relationship derived in Section 5.2 is employed to derive the necessary and sufficient condition 

that guarantees that all the zeros of the multi-DoF undamped flexible system (i.e. MP and NMP 

zeros) are converted to MP zeros of the multi-DoF proportionally damped flexible system for a 

certain choice of damping. Furthermore, this necessary and sufficient condition is analytically and 

graphically investigated to formulate simple damping strategies to eliminate NMP zeros. Section 

5.4 provides a case study of a four-DoF flexible system to demonstrate a proportional viscous 

damping strategy which guarantees that all the zeros of the undamped flexible system are 

converted into MP zeros of the resulting damped flexible system. Section 5.5 provides concluding 

remarks and briefly motivates the research direction in the subsequent chapters. 

5.2 Proportional Damping and Modal Decomposition 

Consider the equation of motion of a multi-DoF viscously damped flexible LTI system, given 

by: 

 
[ ] [ ] [ ] [ ]

[ ]

1

1

n n n n n n n

n

w w w F
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´ ´ ´ ´

´
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M C K B
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 (5-1) 

where [M], [C], and [K] denote the mass matrix, viscous damping matrix, and stiffness matrix 

respectively; F denotes the force acting on the flexible system through an input force vector [B] 
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and q denotes the measured displacement and is a linear combination, captured by sensor vector 

[D], of the individual DoF displacements denoted by w. In this chapter we will analyze the zeros 

of the transfer function between applied force and measured displacement i.e. q(s) / F(s). 

For the flexible system to be proportionally damped, the damping matrix [C] should satisfy the 

equation below where cM and cK are the real valued proportional damping coefficients. 

 [ ] [ ] [ ]2 2M Kc c= +C M K  (5-2) 

Proportional damping is a special case of classical damping. Hence, the natural mode shapes of 

vibration (i.e. eigenvectors) of proportionally damped flexible systems are real valued and same 

as those of the associated undamped flexible systems [58]. Let []be a n x n vector whose columns 

the denote the eigenvectors of the undamped multi-DoF flexible LTI system (i.e. Eq.(5-1) without 

the damping matrix [C]). Since the eigenvectors of the undamped and proportionally damped 

multi-DoF flexible LTI system are the same, we use [to diagonalize [M], [C], and [K] matrices 

by following the steps shown in Eq.(5-3) and Eq.(5-4). 
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 (5-4) 

Substituting the diagonalized [M], [C], and [K] matrices from Eq.(5-4) into the equation of 

motion in Eq.(5-3) leads to a modified equation of motion in terms of the modal coordinates w* 

as shown in Eq.(5-5).  

 [ ] [ ] ( )( ) ( ) [ ] [ ]* 2 2 2 * 2 2 2 *
1 2 1 22 2 diag , ,..., diag , ,...,M K n nw c c w w Fw w w w w w+ + + = T

I I ψ B
 

 (5-5) 

Since all the matrices on the LHS of Eq.(5-5) diagonal, the ith element of w* is given by 

Eq.(5-6).  
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 (5-6) 

Making use of the relationship between w and w* from Eq.(5-3) as well as w and q from 

Eq.(5-1), the modal decomposition of q(s) / F(s)  is given by Eq. (5-7). The transfer function q(s) 

/ F(s) will be denoted by G pd (s) where the subscript ‘pd’ stands for proportional damping. 
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In this chapter, we will investigate a stable multi-DoF proportionally damped flexible system. 

Therefore, all the poles of the Gpd(s) will lie on the left hand side of the imaginary axis. This 

implies the following: 
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 (5-8)  

Now, we club the terms in the denominator of the second order modes and introduce a change 

of variable as shown in Eq.(5-9).  
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The change of variable expresses the transfer function Gpd(s) in terms of as shown in Eq.(5-10)  
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Next, we define another transfer function, G ud () as shown below.  

 ( ) 2 2
1

n
i

ud
i i

G
a

x
x w=

=
+å  (5-11) 

The subscript ‘ud’ stands for undamped. G ud () is the transfer function between the actuated 

load input, F and the measured displacement output, q in the absence of the proportional 

damping matrix [C] in Eq.(5-1). This is due to the fact that the eigenvalues and the eigenvectors 

of the multi-DoF flexible LTI system, mathematically defined by Eq.(5-1), are independent of 

the proportional damping matrix [C]. Therefore, the modal residues (i) and modal frequencies 

(i) of the undamped and proportionally damped flexible systems as shown in Eq.(5-11) and 

Eq.(5-7), respectively, will be the same. Hence, Eq.(5-10) can be re-written as shown below. 
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G s G
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 (5-12) 

It is evident from Eq.(5-12) that the zeros of the proportionally damped flexible system, G pd (s) 

can be found by using the following method. First, find the zeros of the undamped flexible 

system, G ud () in terms of by solving the equation below.   

 ( ) 2 2
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0
n

i
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i i

G
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x
x w=

= =
+å  (5-13) 

Second, convert these zeros into the zeros of G pd (s) by using the mathematical function Z p 

defined in Eq.(5-10). For example, if zudis a zero of G ud (which is found by solving Eq.(5-13), 
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then Z p (z ud) is the zero of G pd (s). Therefore, the function Z p converts the zeros of the multi-

DoF undamped flexible LTI system to the zeros of the multi-DoF proportionally damped flexible 

LTI system. If the relative degree of the transfer function of the undamped flexible system is 

greater than two, this means that some of its zeros are at infinity. When proportional viscous 

damping is added to the undamped flexible system, these zeros at infinity are converted to finite 

zeros given by Eq. (5-14). Therefore, a positive value of cK must be used to convert the zeros of 

an undamped flexible system that lie at infinity to a RMP zero of the proportionally damped 

flexible system. 
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5.3 Necessary and Sufficient Condition for the elimination of NMP Zeros 

Non-minimum phase zeros are defined as zeros that lie strictly on the right hand side (RHS) 

of the imaginary axis. In this section, we present the necessary and sufficient condition for the 

elimination of NMP zeros in proportionally damped flexible system. It is given by: 

 ( )( )Re 0p udZ x £  (5-15) 

ud is the zero of the undamped flexible system because it satisfies Eq.(5-11). Consider the 

Cartesian representation of ud i.e. ud = x+jy and substitute it in the function Zp(ud) given by 

Eq.(5-10). This leads to: 

 ( ) ( )( ) ( )( ) ( )
22 2 2

p M K M KZ x jy c c x jy c c x jy x jy+ =- - +  - + + +  (5-16) 

Extracting the real part of Zp(x+jy) from Eq.(5-16) leads to: 



 
237  

 
 

 

( )( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )( )

( ) ( )

2 2

2 2

1 2 1

2
2 2 2 2 2 2 2

1

2 2 2 2
2

Re , ,

where

,

, , ,
,

2

, 4

, 2 2 2 2 1

p

K M

K M K

K K M K

Z x jy f x y h x y

f x y c x y c

h x y h x y h x y
h x y

h x y c x y c c x y x y

h x y xy c x c y c c

+ = 

- -

+ +

- - - + -

- - +









 (5-17) 

In order to find the necessary and sufficient condition for the elimination of NMP zeros, 

Eq.(5-15) must be satisfied. This leads to the following: 
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From Eq.(5-17), it can be inferred that h(x, y) is a positive real valued function. However, f(x, y) 

is real valued function that can take positive or negative values. Therefore, the following can be 

inferred: 
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 (5-19)  

Therefore, based on Eq.(5-19), the necessary and sufficient condition for the elimination of NMP 

zeros is given by: 
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 ( ) ( ), , 0f x y h x y+ £  (5-20) 

The zeros of a multi-DoF undamped flexible LTI system are symmetric about the real and 

imaginary axis (Chapter 2). The functions f(x,y) and h(x,y) are also symmetric about the real and 

imaginary axis i.e. the x and y axis in the Cartesian plane. Hence, given a multi-DoF undamped 

flexible LTI system, one can find its zeros and choose the proportional damping coefficients i.e. 

cM and cK such that Eq.(5-20) is satisfied for each undamped zero that lies in the first quadrant of 

the s-plane (or equivalently the Cartesian plane) including the positive real and imaginary axis (or 

equivalently the positive x and y axis). This will ensure that all the zeros of the proportionally 

damped multi-DoF flexible LTI system are minimum phase.  

We will now provide the graphical depiction of Eq.(5-20) being satisfied in the x-y plane in order 

to attain design insights into the choice of proportional damping coefficients i.e. cM and cK. In order 

to graphically depict the region in the x-y plane where Eq.(5-20) is satisfied, we need to study the 

properties of the curve derived from Eq.(5-20). Since the curve derived from Eq.(5-20) does not 

represent any known conic section, we will refer to this curve as the envelope curve. It is 

mathematically defined in Eq.(5-21). The curve given by f(x, y) = 0 (f(x, y) is defined in Eq.(5-17)

) represents a standard hyperbola.  
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( ) ( )

Hyperbola: , 0

Envelope Curve: , , 0

f x y

f x y h x y

=

+ =
 (5-21) 

The asymptote for this hyperbola is given by x = y in the first quadrant of the Cartesian plane. 

The center of this hyperbola lies at the origin and its vertex lies either on the x axis or the y axis 

depending on the relative signs of cM and cK.  
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In order to find the region in the first quadrant of the Cartesian plane where Eq.(5-20) is satisfied, 

we need to plot the Envelope Curve in the Cartesian plane. Therefore, we find the intersection of 

the envelope curve with the x and y axis in Result 1. In Result 2, we find the bounds for the 

envelope curve. Based on Result 1 and Result 2, we plot the envelope curve in the Cartesian plane 

as shown Fig 5-2. The envelope curve divides the Cartesian plane into two regions. In one region 

f(x, y) + h(x, y) > 0 and in another region f(x, y) + h(x, y) < 0. In Result 3, we ascertain which 

region of the Cartesian plane belongs to which inequality. This finally gives the region where 

Eq.(5-20) is satisfied. Note that in the sequence of this chapter, Fig 5-2 is repeatedly referenced 

during the discussion of Results 1, 2 and 3 before it is actually presented. This is only done to 

demonstrate how the inferences from these results lead to the construction of Fig 5-2. All 

inferences about the zeros of the proportionally damped flexible system drawn from Fig 5-2 are 

provided after the presentation of the figure. 

Result 1: The intersection of the hyperbola and the envelope curve with the x and y axis is 

summarized in below: 

  Intersection with x axis Intersection with y axis 

Hyperbola 

cM ≥ 0 AND cK ≥ 0 M

K

c
x

c
=  

No intersection (except 

when cM = 0) 

cM > 0 AND cK < 0 No intersection M

K

c
y

c
= -  

cM < 0 AND cK > 0 No intersection M

K

c
y

c
= -  

cM ≥ 0 AND cK ≥ 0 0x =  0y =  



 
240  

 
 

Envelope 

Curve 

cM > 0 AND cK < 0 0x =  

0

M

K

y

c
y

c

=

= -
 

cM < 0 AND cK > 0 No intersection M

K

c
y

c
= -  

Table 5-1: Intersection of the hyperbola and envelope curve with the x and y axis. 

Proof: As discussed before, the vertex of the hyperbola lies either on the x axis or on the y axis 

depending on the relative sign of cM and cK.  

 

( )
2

Vertex on the  axis: 0

,0 0

0

 Solution exists if 0

K M

M M

K K

x y

f x

c x c

c c
x

c c

=

=

 - =

æ ö÷ç ÷ = ³ç ÷ç ÷çè ø

 (5-22) 

Based on Eq.(5-22), it can be inferred that the vertex of the hyperbola lies on the x axis when cM 

≥ 0 AND cK ≥ 0. Note that cM and cK cannot be negative simultaneously because it will lead to an 

unstable flexible system (refer to Eq.(5-7) and Eq.(5-8)). The hyperbola along with its asymptote 

is shown in Fig 5-2a and Fig 5-2c. Note that when cM > 0 and cK = 0, the hyperbola is said to lie at 

infinity because its vertex lies at infinity. Therefore, the hyperbola is not shown in Fig 5-2b.  

 

( )
2

Vertex on the y axis: 0

0, 0

0

 Solution exists if 0

K M

M M

K K

x

f y

c y c

c c
y

c c

=

=

- - =

æ ö÷ç ÷ = - <ç ÷ç ÷çè ø

 (5-23) 
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Based on Eq.(5-23), it can be inferred that the vertex of the hyperbola lies on the y axis for two 

different combinations of signs of cM and cK: (cM > 0 AND cK < 0) and (cM < 0 AND cK > 0). The 

hyperbola along with its asymptote is shown in Fig 5-2d and Fig 5-2e. 

For the envelope curve given by Eq.(5-21) and Eq.(5-17), the intersection with the x and y axis 

is given below: 

 

( ) ( )

( ) ( )

( )

22 2 2

Intersection with  axis: 0

,0 ,0 0

0

0 solution exists if 0

K M K M

M

x y

f x h x

c x c c x c x

x c

=

+ =

 - + - + =

 = >

 (5-24) 

Based on Eq.(5-24), the envelope curve intersects with the x axis at the origin for two different 

combinations of signs of cM and cK: (cM > 0 AND cK > 0) and (cM > 0 AND cK < 0). 

 

( ) ( )

( ) ( )

( ) ( )

1 12

22 2
1

Intersection with y axis: 0

0, 0, 0

0, 0,
0

2

where 0,

K M

K M

x

f y h y

h y h y
c y c

h y c y c y

=

+ =

+
- - + =

= + -

 (5-25) 

 

( )

( ) ( )

( )( )

1

22 2 2

1

If 0, 0

0

0 solution exists if 0 0,0 0

K M K M

M

h y

c y c c y c y

y c h

>

- + + + - =

 = >  >

 (5-26) 

Eq.(5-26) leads to the same conclusion as Eq.(5-24) i.e. the envelope curve intersects with the x 

and y axis at the origin when (cM > 0 AND cK > 0) and (cM > 0 AND cK < 0). 
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( )

( )
1

2

1

If 0, 0

0

 solution exists if 0 0, 0

K M

M M M

K K K

h y

c y c

c c c
y h

c c c

<

- + =

æ öæ ö ÷ç ÷ç ÷÷ç = - <  - <ç ÷÷ç ç ÷÷÷çç ÷è øè ø

 (5-27) 

Based on Eq.(5-27), the envelope curve intersects with the y axis at non-zero values of y for two 

different combinations of signs of cM and cK: (cM > 0 AND cK < 0) and (cM < 0 AND cK > 0). The 

results from the above equations are summarized in Table 5-1.  

Now, we will find the boundaries within which the envelope curve will lie in the Cartesian plane 

for different values of cM and cK. This is done because the envelope curve is a complicated curve 

and difficult to understand. Therefore, we seek to find simpler curves that bound the envelope 

curve. These simple curves derived in Result 2 and graphically depicted in Fig 5-2 will help us 

better understand the properties of the envelope curve. 

Result 2: The following statements provide the bounds for the envelope curve in the first quadrant 

of the Cartesian plane for different combination of signs of cM and cK: 
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( )

( )

: 0 AND 0  AND 0.25

 Envelope curve lies on the LHS of the curve: 

: 0 AND 0  

Envelope curve lies on the LHS of the curve:  AND on the LHS of the curve: c

M K M K

M K

M

c c c c

x y

c c

x y x

³ > £

 =

> =

 = =

Result 2.1

Result 2.2

Resu ( )

( )

: 0 AND 0  AND 0.25

 Envelope curve lies on the RHS of the curve:  AND on the LHS of the hyperbola

: 0,  0

 Envelope curve lies inside the triangle whose edges are give

M K M K

M K

c c c c

x y

c c

> > >

 =

> <



lt 2.3

Result 2.4

( )

n by ,  , 

and the y axis

: 0,  0

 Envelope curve lies on the LHS of the hyperbola

M

K

M K

c
x y y

c

c c

= = -

< >



Result 2.5
  

Proof: For cM ≥ 0 AND cK ≥ 0, Result 1 showed that the vertex of the hyperbola (i.e. f(x, y) = 0) 

is on the x axis at x = √( cM / cK) . The hyperbola along with its asymptote x = y is shown in Fig 5-

2a and Fig 5-2c for the case cM ≥ 0 AND cK > 0. For the special case cM > 0 AND cK = 0, the 

hyperbola lies at infinity and therefore not shown in Fig 5-2b. For cM ≥ 0 AND cK ≥ 0, Result 1 

showed that the envelope curve intersects the x and y axis only at the origin. Now we will prove 

that for cM ≥ 0 AND cK > 0 the envelope curve always lies to the left hand side (LHS) of the 

hyperbola.  

It can be observed from Fig 5-2a and Fig 5-2c that the hyperbola divides the first quadrant of the 

Cartesian plane (including the x and y axis) into two regions. In Fig 5-2b, since the hyperbola lies 

at infinity, the entire first quadrant of the Cartesian plane lies to the LHS of this hyperbola. In one 

region of the first quadrant of the Cartesian plane, f(x,y) < 0 and in another region f(x, y) > 0. The 

envelope curve whose equation is given by f(x,y) + h(x,y) = 0 can only exist in the region where 
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f(x,y) < 0 since h(x,y) ≥ 0 (refer to Eq.(5-17)). Therefore, we need to ascertain which region of the 

first quadrant of the Cartesian plane belongs to f(x,y) < 0. It can be seen in Fig 5-2a and Fig 5-2c 

that the region on the left hand side (LHS) of the hyperbola consists of the entire y axis. Therefore, 

we evaluate the expression f(x,y) on the y axis as shown below for the case when cM ≥ 0, cK ≥ 0: 

 ( ) 20, 0K Mf y c y c=- - <  (5-28) 

Note that when cK = 0, cM has to be greater than 0 otherwise it will lead to an unstable flexible 

system (refer to Eq.(5-7) and Eq.(5-8)). Therefore, for the case cM > 0 AND cK = 0 the entire first 

quadrant of the Cartesian plan satisfies Eq.(5-28). Eq.(5-28) proves that the envelope curve exists 

in that region of the first quadrant of the Cartesian plane that consists of the y axis. Hence, the 

envelope curve always lies on the LHS of the hyperbola as shown in Fig 5-2a and Fig 5-2c when 

cM ≥ 0 AND cK > 0. The envelope curve can lie anywhere in the first quadrant of the Cartesian 

plane when cM > 0 AND cK = 0.  

Now, we will impose a stricter bound on envelope curve when (cM ≥ 0 AND cK > 0) AND cM cK 

≤ 0.25 i.e. the envelope curve will always lie on the LHS of the curve: x = y as shown in Fig 5-2a. 

The mathematical proof is as follows: 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )

2 2

2 2 2

1 2 1

22 2 2

1 1 1

22 2 2 2

, , 0

, ,

, , , 2 ,

, , 2 , ,

4 , 1 ,K

f x y h x y

h x y f x y

h x y h x y h x y f x y

h x y h x y f x y h x y

x y c f x y f x y y x

+ =

 =

 + + =

 + = -

 + = -

 (5-29) 

Consider the following change of variable in terms of A and B as shown below and rewrite the 

last line of Eq.(5-29) by substituting f(x, y) with A and B. 
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( )

( ) ( )

( ) ( ) ( )

2 2

22 2

2 22

,  

4 1 4

1 4 2

K K M K M

K M K M K

A y x B xy

B c A c c A c A c

B c c A c A c c B

-

 - + - = +

é ù - = + +ê úë û

 

 (5-30) 

So far in Eq.(5-29) and Eq.(5-30), we did not consider the sign of cM and cK. Consider the case 

when cM ≥ 0, cK ≥ 0. Based on Eq.(5-30), the following inference can be made: 

 

( )

( ) ( )

2

2 2

2 2

If 0.25

1 4 0

2 0

0

K M

K M

K M K

c c

B c c

A c A c c B

A y x

£

 - ³

é ù + + ³ê úë û

 ³  ³

 (5-31) 

Eq.(5-31) shows that when (cM ≥ 0 AND cK > 0) AND cK cM ≤ 0.25, the envelope curve lies in 

that region of the first quadrant of the Cartesian plane where y ≥ x. This completes the proof for 

Result 2.1. Result 1 and Result 2.1 are used together to plot the envelope curve in Fig 5-2a for 

the case when (cM ≥ 0 AND cK > 0) AND cK cM ≤ 0.25. Therefore, the envelope curve lies on the 

LHS of the curve: y = x as shown in Fig 5-2a. 

Now, we will consider the case when cM > 0 AND cK = 0. For this case as well Eq.(5-31) is true. 

Therefore, the envelope curve lies on the LHS of the curve: y = x as shown in Fig 5-2b. 

Furthermore, we will show that for this case the envelope curve is also horizontally bounded by 

the line x = cM. 
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( ) ( )

( ) ( )

( )

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

2 2

2 2 2
1 2 1

22 2 2 2 2 2 2 2

2 22 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

, , 0

, ,

Since 0

,

Since , 0 and 0

,

, , , 2

4

4

K

M

M

M

M

M M

M M

M M

M M

f x y h x y

h x y f x y

c

h x y c

h x y c

h x y c

h x y h x y h x y c

c x y x y c y x

c x y x y c y x

x y c x c y

c x y c x

+ =

 =-

=

 =

³ >

 =

 + + =

 + - + = + -

 + - + = + -

 + =

 = -

 (5-32) 

Since the LHS of Eq.(5-32) is always a positive value, this implies that the RHS of Eq.(5-32) 

should also be a positive value. Therefore, the following inequality must hold: 

 
2 2

Mx c<  (5-33) 

Eq.(5-33) shows that when cM > 0 AND cK = 0, the envelope curve lies in that region of the 

first quadrant of the Cartesian plane where x < cM. This completes the proof for Result 2.2. Result 

1 and Result 2.2 are used together to plot the envelope curve in Fig 5-2b for the case when cM > 0 

AND cK = 0. Therefore, the envelope curve lies on the LHS of the curves: y = x and x = cM as 

shown in Fig 5-2b.  

Now we consider the case when (cM > 0 AND cK > 0) AND cK cM > 0.25. The following 

derivation is based on Eq.(5-30).   
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( )

( ) ( )

2

2 2

2 2

If 0.25

1 4 0

2 0

0

K M

K M

K M K

c c

B c c

A c A c c B

A y x

>

 - <

é ù + + <ê úë û

 <  <

 (5-34) 

Eq.(5-34) shows that when (cM > 0 AND cK > 0) AND cK cM > 0.25, the envelope curve lies in that 

region of the first quadrant of the Cartesian plane where y < x. This concludes the proof for Result 

2.3. Result 1 and Result 2.3 are used together to plot the envelope curve in Fig 5-2c for the case 

when (cM > 0 AND cK > 0) AND cK cM > 0.25. Therefore, the envelope curve lies on the RHS of 

the curve: y = x and on the LHS of the hyperbola (as previously proven) as shown in Fig 5-2c.  

Consider the case when cM > 0 AND cK < 0. Based on Eq.(5-30), the following inference can be 

made: 

 

( )

( ) ( )

2

2 2

2 2

If 0

1 4 0

2 0

0

K M

K M

K M K

c c

B c c

A c A c c B

A y x

<

 - >

é ù + + >ê úë û

 >  >

 (5-35) 

Eq.(5-35) shows that when cM > 0 AND cK < 0, the envelope curve lies in that region of the first 

quadrant of the Cartesian plane where y > x. Therefore, the envelope curve lies on the LHS of the 

curve: y = x as shown in Fig 5-2d. Now we will prove that the envelope curve is also bounded 

vertically by the line y = √−( cM / cK). 

 

( ) ( )

( ) ( ) ( )2 2

, , 0

, , 0  AND  , 0

f x y h x y

h x y f x y f x y

+ =

 - = £
 (5-36) 

The function h(x, y)2 − f(x, y)2 = 0 is expanded based on Eq.(5-29) as shown below: 
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( )( ) ( ) ( )

( )( ) ( )

( )

22 2 2 2

2 2 2 4 4 4 4

2 2 2 2 2

6 4 2
1 2 3 4

2 2 2
1 2

2 2 2 4 2 6 4 2 2
3 4

4 , 1 , 0

2

   0

0

where ,  2

,  2

K

K K M

M

K K K M

M K K K M M

x y c f x y f x y y x

c x y x y c c x y

c x y x y

a x a x a x a

a c a c y c c

a y c c y a c y c c y c y

+ - - =

 + - - +

+ - + =

 + + + =

= = -

= + - =- - -

 (5-37) 

 

( )

( )

3 2
1 2 3 4

2 6 4 2
1 2 3 4

Let 

 

g w a w a w a w a

g x a x a x a x a

= + + +

 = + + +
 (5-38) 

Now, we will prove that when cM > 0 AND cK < 0, f(x, y) ≤ 0 (from Eq.(5-36)) and y > √−( cM / 

cK), it implies that g(x2) > 0. 

 

( ) 2

2 2

2
1

3

6 2
1 1

, 0 AND 

0
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K
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f x y y
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c
x y
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c
a x a y

c

æ ö÷ç ÷£ >-ç ÷ç ÷çè ø

 ³ + >

= >

æ ö÷ç ÷ ³ +ç ÷ç ÷çè ø

 (5-39) 
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2 3 2 3

Expand the expression: 
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M M
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2 2
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4 2 2 2
2 3 2 3

Multiple LHS by  and RHS by M

K

M M

K K

c
x y

c

c c
a x a x a y a y

c c

æ ö÷ç ÷+ç ÷ç ÷çè ø

æ ö æ ö÷ ÷ç ç÷ ÷ + ³ + + +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

 (5-40) 

Adding the inequalities in Eq.(5-39) and Eq.(5-40) leads to the following: 

 

( )
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2 2

2

2 2 2

2 2

On expanding the expression: g

g 0

0

M

K

M

K

M M

K K

M

K
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g x g y

c

c
y

c
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y y y

c c

c
g x g y

c

æ ö÷ç ÷³ +ç ÷ç ÷çè ø

æ ö÷ç ÷+ç ÷ç ÷çè ø

æ ö æ ö÷ ÷ç ç÷ ÷+ = + >ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

æ ö÷ç ÷ ³ + >ç ÷ç ÷çè ø

 (5-41) 

Eq.(5-41) shows that when f(x, y) < 0 and and y > √−( cM / cK), h(x, y)2 − f(x, y)2 ≠ 0. Therefore, 

based on Eq.(5-36), we can conclude the following for the case when cM > 0, cK < 0.  

 ( ) ( ), , 0 M

K

c
f x y h x y y

c
+ =  £ -  (5-42) 

Combining Eq.(5-35) and Eq.(5-42) leads to the triangular bound for the envelope curve. 

 ( ) ( ), , 0 M

K

c
f x y h x y x y

c
+ =  < £ -  (5-43) 

Eq.(5-43) proves Result 2.4. Result 1 and Result 2.4 are used together to plot the envelope 

curve in Fig 5-2d for the case when (cM > 0 AND cK > 0). Therefore, Fig 5-2d shows when (cM > 

0 AND cK < 0), the envelope curve lies inside the triangular region whose edges are given by x = 

y and y = √−( cM / cK) and the y axis.  
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For the case when (cM < 0 AND cK > 0), Result 1 showed that the vertex of the hyperbola is on 

the y axis at y = √(− cM / cK) . The hyperbola along with its asymptote x = y is shown in Fig 5-2e. 

For the case (cM < 0 AND cK > 0), Result 1 showed that the envelope curve intersects only the y 

axis at y = √(− cM / cK). Now we will prove that for (cM < 0 AND cK > 0) the envelope curve always 

lies to the left hand side (LHS) of the hyperbola. Since h(x, y) is non-negative, the following 

inequality should hold true: 

 ( ) ( ) ( ), , 0 , 0f x y h x y f x y+ =  £  (5-44) 

It can be seen from Fig 5-2e that the hyperbola (f(x, y) = 0) divides the first quadrant of the 

Cartesian plane into two regions. In one region f(x, y) > 0 and in another region f(x, y) < 0. We 

need to ascertain which region belongs to which inequality. The region on the RHS of the 

hyperbola consists of the entire x axis. Therefore, we evaluate the sign of f(x, y) on the x axis. 

 ( ) 2,0 0K Mf x c x c= - >    (5-45) 

Eq.(5-45) shows that the region on the RHS of the hyperbola does not satisfy f(x, y) < 0. Hence, 

the region on the LHS of the hyperbola satisfies f(x, y) < 0. This completes the proof for Result 

2.5. Result 1 and Result 2.5 are used together to plot the envelope curve in Fig 5-2e for the case 

when (cM < 0 AND cK > 0). Therfore, Fig 5-2e shows that when (cM < 0 AND cK > 0), the envelope 

curve lies on the LHS of the hyperbola.  

So far we have only found the boundaries for the envelope curve in terms of simple curves for 

different values of cM and cK. We still have to find the region in the first quadrant of the Cartesian 

plane that satisfies the necessary and sufficient condition for the elimination of NMP zeros given 

by Eq.(5-20).  
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Result 3: For all combination of signs of cM and cK, the region in the first quadrant of the Cartesian 

plane (including the x and y axis) that satisfies Eq.(5-20) always lies on the LHS of the envelope 

curve.   

Proof: In order to prove Result 3, we use the same mathematical technique that was used in Result 

2.1 and Result 2.5. It can be observed in Fig 5-2 that the envelope curve i.e. f(x, y) + h(x, y) = 0 

divides the first quadrant of the Cartesian plane into two regions. One region lies on the LHS of 

the envelope curve and other region lies on its RHS. In one of the region, f(x, y) + h(x, y) < 0 and 

in the other region f(x, y) + h(x, y) > 0. The entire x axis resides in the RHS region for all 

combination of signs of cM and cK as observed in Fig 5-2. Therefore, we evaluate the function f(x, 

y) + h(x, y) on the x axis to ascertain which inequality holds in the RHS region. 
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c x c c x c x

f x h x

+

+ +
 - +

= = - + ³

 - + - + ³

 + ³

 (5-46) 

Based on Eq.(5-46), the region that lies on the RHS of the envelope curve does not satisfy f(x, 

y) + h(x, y) < 0. Hence, the region that lies on the LHS of the envelope curve will satisfy Eq.(5-20) 

for all combination of signs of cM and cK. This region is shaded in pink in Fig 5-2. Therefore, as 

long as all the zeros of the undamped multi-DoF flexible LTI system lie in the shaded region in 

Fig 5-2, the zeros of the proportionally damped multi-DoF flexible LTI system are guaranteed to 

be minimum phase.  
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Fig 5-2 Pink shaded regions in the first quadrant of the Cartesian plane that satisfy Eq. (5-20) 
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The right edge of the shaded region is the envelope curve which is a rather complicated curve in 

terms of x and y. Therefore, Fig 5-2 also provides the boundaries within which the shaded region 

exists for a given set of damping coefficients cM and cK. These boundaries are in terms of relatively 

simpler curves such as a hyperbola and a straight line that can be easily visualized. It is a necessary 

but not a sufficient condition that the zeros of the undamped flexible system should lie inside these 

boundaries for the elimination of NMP zeros. For example, in Fig 5-2a, Fig 5-2b, Fig 5-2d, and 

Fig 5-2e the shaded region always lies on the LHS of the curve x = y. This means that if any NMP 

zero of the undamped flexible system lies outside this boundary i.e. to the RHS of the curve x = y, 

it can never be converted into a MP zero of the proportionally damped flexible system. 

It can be clearly observed in  Fig 5-2 that the entire positive real axis is never a part of the shaded 

region for any value of proportional damping coefficients cM and cK. Hence, a real non-minimum 

phase (RNMP) zero of a multi-DoF undamped flexible system cannot be converted to a minimum 

phase (MP) zero of the multi-DoF proportionally damped flexible system. However, for several 

practical applications with finite closed loop bandwidth requirement, it is not always necessary to 

eliminate a RNMP zero if it can be placed beyond the desired bandwidth. Given the desired closed 

loop bandwidth, desired reduction in the sensitivity function below the closed loop bandwidth, and 

the acceptable lower limit for the peak of the sensitivity function, the Poisson Sensitivity Integral 

theorem [14] will provide the desired position of the RNMP zero on the real axis, for example at 

zd. If the RNMP zero of the undamped flexible system is at located at zu, then Eq.(5-47) can be 

used to provide the values of the proportional damping coefficients cM and cK that converts the 

RNMP zero of the undamped flexible system at zu to the RNMP zero of the proportionally damped 

flexible system at zd. Achieving better dynamic performance in the presence of RNMP zeros as 

described above requires the RNMP zero to be moved further away from the imaginary axis i.e. zd 
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> zu. The next chapter will provide a proportional viscous damping strategy i.e. choice of cM and 

cK to move the RNMP zeros further away from the imaginary axis. 

 ( ) ( )22 2 2
M K u M K u u dc c z c c z z z- - + - + =  (5-47) 

Based on the graphical depiction of the necessary and sufficient condition provided in Fig 5-2, 

a few simple damping strategies can be formulated as shown below: 

1. If all the zeros of the undamped flexible system lie purely on the imaginary axis, then any 

positive value of cM and/or cK ,however small, will always guarantee that the ensuing zeros of the 

proportionally damped flexible system are strictly minimum phase i.e. lie to the LHS of the 

imaginary axis. This is because for this choice of cM and cK the entire y axis satisfies Eq.(5-20) as 

shown in Fig 5-2a – Fig 5-2c. Therefore, this damping strategy is particularly useful for application 

to infinite-DoF undamped flexible systems whose infinitely many zeros lie all over the imaginary 

axis. This damping strategy is robust to uncertainty and variation in the location of the zeros of the 

undamped flexible system on the imaginary axis. 

2. If the complex non-minimum phase (CNMP) zeros of the undamped flexible system lies on 

the RHS of the curve x = y i.e. the magnitude of its real part is larger than the magnitude of its 

imaginary part, then one must use values of cM and cK such that cM cK > 0.25 as shown in Fig 5-2c. 

3. When either cM or cK are negative, only a portion of the imaginary axis is part of the shaded 

region as shown in Fig 5-2d and Fig 5-2e. The advantage of using negative cM or cK is that it leads 

to smaller damping values and fewer dashpots (i.e. viscous dampers) to fulfill the necessary and 

sufficient condition for the elimination of NMP zeros. 
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4. Therefore, if the imaginary part of the zeros of the undamped flexible system is lower than the 

modal frequency corresponding to the last mode i.e. n as shown in Fig 5-2d, then one must 

consider using negative value of cK and positive value of cM. 

5. Similarly, based on Fig 5-2e, if the imaginary part of the zeros of the undamped flexible system 

is higher than the modal frequency corresponding to the first mode i.e. 1 then one must consider 

using positive value of cK and negative value of cM. 

5.4 Case Study: Four-DoF Flexible System 

In this section, a proportional viscous damping strategy is provided to eliminate NMP zeros from 

the transfer functions of a four-DoF collinear lumped parameter flexible LTI system shown in Fig 

5-3.  

m1 m2 m3 m4

k12

k13

k14

k23

k24

k34

F q2 q3 q4

 

Fig 5-3 Undamped four-DoF flexible system 

A collinear lumped parameter flexible system is any lumped parameter flexible system where 

each mass can only move in a single direction as shown in Fig 5-3 [35]. Hence, it represents a 

large class of flexible systems and its study is of great practical importance. A collinear lumped 

parameter flexible system does not exhibit RNMP zeros for any choice of physical parameters but 

it can exhibit CNMP zeros [35]. Therefore, it is possible to choose proportional damping 

coefficients cM and cK such that the necessary and sufficient condition for the elimination of NMP 
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zeros i.e. Eq.(5-20) is satisfied. In doing so, we will make use of a damping strategy formulated in 

Section 5.3 from the graphical depiction of Eq.(5-20) in Fig 5-2. Consider the four-DoF undamped 

flexible system shown in Fig 5-3. For this numerical example adopted from Section 4.4 of Chapter 

4, m1 = m2 = m3 = m4 = 1, k12 = k34 = 100, k13 = k14 = k24 = 200, and k23 = 100. In this section, 

we will examine three transfer functions between force input and displacement output: G 12 (s) = 

q 2 (s) / F(s), G 13 (s) = q 3 (s) / F(s), and G 14 (s) = q 4 (s) / F(s) and find the values of proportional 

damping coefficients cM and cK that guarantee that the zeros of all these transfer functions are 

minimum phase. 

In order to do so, we first examine the zeros of these transfer function when the flexible system 

is undamped as shown in Fig 5-3. Based on the roots of their numerator, the zeros of the transfer 

functions is given by:  

 

( )

( )

( )

12,

13,

14,

Zeros of : 22.82  ,  31.29

Zeros of : 19.53  ,  25.85

Zeros of : 1.58 22.42
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ud

ud

G s j j

G s j j

G s j

 

 

 

 (5-48) 

The zeros of the transfer function G 12, ud (s) and G 13, ud (s) lie purely on the y axis. One pair of 

zeros of the transfer function G 14, ud (s) has positive real component i.e. it is CNMP zero pair. Since 

all the zeros in Eq.(5-48) and the envelope curve are symmetric about the x and y axis as discussed 

in Section 5.3, we will only consider the zeros that lie in the first quadrant of the Cartesian plane 

(including the x and y axis) in order to find the values of proportional damping coefficients cM and 

cK that satisfy Eq.(5-20). To do so, we set up an optimization problem that minimizes the amount 

of damping required to guarantee that all the zeros of the proportionally damped flexible system 

are minimum phase. 
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Based on Eq.(5-48), there are 5 zeros of the undamped flexible system that lie in the first 

quadrant. Therefore, the optimization problem in Eq.(5-49) will have five constraints; i.e. one 

constraint corresponding to each zero. However, based on the damping strategies formulated at the 

end of Section 5.3 (see bullet point 1), we can reduce the number of constraints to be solved in 

Eq.(5-49). Four out of the five zeros in Eq.(5-48) lie purely on the y axis. Therefore, if we add the 

additional constraints that (cM ≥ 0 AND cK ≥ 0) to Eq.(5-49), we can remove the constraints 

corresponding to the purely imaginary zeros. This is because when (cM ≥ 0 AND cK ≥ 0), the entire 

y axis satisfies the Eq.(5-20) for any value of cM and cK as shown in Fig 5-2a, Fig 5-2b, and Fig 5-

2c . Therefore, the optimization problem in Eq.(5-49) can be recast as follows: 

 ( ) ( )

2 2min  

subject to 1.58, 22.42 1.58, 22.42 0

0,  0

M K

M K

c c

f h

c c

+

+ £

³ ³

 (5-50) 

Since, we are assuming a proportional damping strategy i.e. [C] = 2cM [M] + 2cK [K], a non-zero 

value of cM would physically mean that there are dashpot (i.e. viscous dampers) connections 

between the masses and the ground. The undamped flexible system considered in Fig 5-3 has no 

connections between any of the masses and the ground. Therefore, providing a proportional 

damping strategy with non-zero cM may lead to loss of functionality for the flexible system. For 

example, the flexible system in Fig 5-3 may represent the lumped parameter model of a motion 

stage with transmission compliance that has infinite range of travel with respect to the ground and 
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placing a dashpot connecting the motion stage and the ground may limit its range of travel. 

Furthermore, it is logistically easier to reduce the number of dashpots required to accomplish the 

task of eliminating NMP zeros. Therefore, for the sake of practicality of the proposed proportional 

damping strategy, we assume that cM = 0. Finally the optimization problem becomes the following: 

 
( ) ( )

2min  

subject to 1.58, 22.42 1.58, 22.42 0,  0

K

K

c

f h c+ £ ³
 (5-51) 

The optimization problem in Eq.(5-51) is solved in MATLAB using the fmincon routine. It leads 

to cK = 0.0032. This is smallest value of cK required to guarantee that all the zeros of the undamped 

flexible system are converted to minimum phase zeros of the proportionally damped flexible 

system. The envelope curve is graphically depicted below for three different values of cK i.e. cK < 

0.0032, cK = 0.0032, and cK > 0.0032 along with the zeros of the undamped flexible system. The 

ensuing zeros of the proportionally damped flexible system are provided in the table below. 
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Fig 5-4 Position of the zeros of the undamped flexible system with respect to the envelope curve 

for different cK 

 cK 

 0.001 0.0032 0.005 

G 12, pd (s) −0.52±22.81j 

−0.97±31.27j 

−500.00 

−1.66±22.76j 

−3.13±31.13j 

−156.25 

−2.60±22.67j 

−4.90±30.90j 

−100.00 

G 13, pd (s) −0.38±19.52j 

−0.66±25.84j 

−500.00 

−1.22±19.49j 

−2.14±25.77j 

−156.25 

−1.90±19.43j 

−3.34±25.64j 

−100.00 

G 14, pd (s) 1.07±22.48j 

−2.07±22.34j 

−500.00 

−0.035±22.58j 

−3.16±22.13j 

−156.25 

−0.95±22.63j 

−4.04±21.92j 

−100.00 

Table 5-2 Zeros of the transfer functions of the proportionally damped four DoF flexible system 

The following inferences are drawn from Fig 5-4 and Table 5-2: 

1. If a value of cK < 0.0032 is chosen, for example cK = 0.001, then the CNMP zero of G 14, ud (s) 

lies on the RHS of the envelope curve because the constraint in Eq.(5-51) is not satisfied. Hence, 

one zero pair of the G14, pd (s) will be NMP. 

2. For cK = 0.0032, the CNMP zero of G14, ud (s) lies on the LHS of the envelope curve but very 

close to the edge such that the equality constraint for f(x,y)+h(x,y) in Eq.(5-51) is nearly satisfied. 

This means that the one of the zeros of G 14, pd (s) will lie very close to imaginary axis. 
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3. However, if the CNMP zero of G14, ud (s) lies very close to the edge of the envelope curve, any 

uncertainty in the position of this zero can push it outside the envelope curve. Therefore, for 

practical purposes a larger value of cK must be used i.e. cK > 0.0032. For example, for cK = 0.005, 

the CNMP zero of undamped G 14, ud (s) lies well within the envelope curve. Therefore, all the zeros 

of G 14, pd (s) will lie safely to the left hand side of the imaginary axis. 

4. For any value of cK, the zeros of G 12, ud (s) and G 13, ud (s) lie well within the envelope curve, 

hence the zeros of G 12, pd (s) and G 13, pd (s) will lie safely to the left hand side of the imaginary 

axis. 

5. There is an additional real minimum phase (RMP) zero that appears in all the transfer functions 

of the proportionally damped flexible system. This additional RMP zero corresponds to the zero 

of the undamped flexible system that lied at infinity. The location of this additional zero is given 

by Eq.(5-14).  

The proportional viscous damping strategy discussed above can be physically implemented as 

shown in Fig 5-5. Since cM = 0 and ck is a finite number, it means that there is a dashpot placed 

between two masses if there is a spring connecting them. The numerical value of the dashpots is 

given by Eq.(5-52).  

  
{ }

2  where 0.0032

for any , 1,2,3, 4  and 

ij K ij Kc c k c

i j i j

= ³

Î ¹
 (5-52) 
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Fig 5-5 Dashpot placement in proportionally damped four-DoF flexible system 

5.5 Conclusion 

This chapter investigates the zeros of multi-DoF flexible LTI systems in the presence of 

proportional viscous damping and provides the necessary and sufficient condition for the 

elimination of NMP zeros. The motivation for this investigation came from the need to find a 

damping strategy that meets the requirements of Fig 5-1 in Section 5.1. The proportional viscous 

damping strategy discussed in Section 5.4 (via a case study) meets those requirements. The four-

DoF undamped flexible system used in the case study in Section 5.4 was also used in the preceding 

Chapter 4. For the choice of stiffness values made in this chapter, G 12, ud (s) and G 13, ud (s) satisfy 

the sufficient condition for the elimination of NMP zeros in undamped flexible systems provided 

in Chapter 4 and therefore, they are MP. G 14, ud (s) does not satisfy that sufficient condition and is 

found to be NMP. The proportional viscous damping strategy discussed in Section 5.4 preserves 

the MP behavior of G 12, ud (s) and G 13, ud (s) by guaranteeing that the zeros of G 12, pd (s) and G 13, 

pd (s) are MP and it also converts the NMP zeros of G 14, ud (s) to the MP zeros of G 14, pd (s). 

Therefore, it satisfies all the requirements of Fig 5-1.  
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The damping strategy discussed in this chapter is robust to parametric variations and modeling 

uncertainty in the actuator and sensor placement, given by [B] and [D] respectively. Variation in 

these vectors lead to variations in the position of the zeros of the undamped flexible system in the 

Cartesian plane. Therefore, a design engineer should choose the appropriate values of cM and cK to 

create a large enough envelope curve that accommodates all possible positions of the zeros of the 

undamped flexible system on its LHS. This will guarantee that the zeros of the proportionally 

damped flexible system are MP. The robustness of this damping strategy to variations in mass-

stiffness distribution requires further investigation. Therefore it is a topic for future research which 

has not been covered in this thesis. 
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Chapter 6 Improving the Step Response Performance of Flexible Systems in the Presence 

of Real Non-minimum Phase Zeros  

 

The presence of real non-minimum phase (RNMP) zeros places a severe tradeoff between the 

settling time and undershoot in the step response of flexible systems. This trade-off cannot be 

overcome by any combination of feedback and feedforward control. However, the severity of this 

tradeoff can be reduced by tuning the open-loop dynamics of the flexible system in order to push 

the RNMP zeros further away from the imaginary axis. In this chapter, RNMP zeros of flexible 

systems are investigated in the presence of proportional viscous damping. A proportional viscous 

damping strategy is proposed to push all the RNMP zeros further away from the imaginary axis. 

Finally, a step-by-step design strategy is proposed to apply this damping to a three link flexible 

manipulator in order to achieve simultaneous improvement in the settling time and undershoot in 

the step response of the flexible system. 

6.1 Introduction and Background  

Several flexible systems such as flexible link manipulators [41, 91, 140-143] and beams under 

different boundary conditions [31, 87, 89] exhibit real non-minimum phase (RNMP) zeros in their 

single input single output (SISO) transfer function when the actuator and sensor are non-

collocated. A RNMP zero is a zero that lies on the positive real axis in the s-plane. The presence 

of these zeros makes the control of flexible systems a challenging problem to solve. Kamaldar [16] 

mathematically proved that the presence of RNMP zero guarantees undershoot in the step response 
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of any dynamic system including flexible systems. Furthermore, Middleton [18], Lau [17], and 

Kamaldar [16] independently proved that fast settling time and small undershoot, which are of 

practical relevance in several motion control applications, are incompatible requirements in the 

presence of an RNMP zero. This tradeoff between settling time and undershoot is algebraically 

expressed by the equation below. 

 
1

1

b-
£

-s usxt
y

e
 (6-1) 

In Eq.(6-1),  is the settling window, ts is the settling time for the given settling window x is 

the RNMP zero i.e. x > 0, yus (> 0) is undershoot in the step response. Eq.(6-1) shows that for a 

fixed value of RNMP zero (x), if one tries to aggressively reduce the settling time (ts), the lower 

limit for undershoot (yus) will increase. This will eventually lead to a larger undershoot (yus). 

Conversely, Eq.(6-1) also shows that smaller undershoot is achieved at the expense of larger 

settling time. This inference is true, even in the presence of any feedback or feedforward control 

strategy because they cannot change the location of the RNMP zeros of the plant. For example, 

Bayat [21] proposed a fractional order feedback controller to partially cancel the RNMP zeros of 

the plant. However, as a result of this, the settling time of the closed-loop system increased, 

demonstrating that the tradeoff between settling time and undershoot predicted by Eq.(6-1) was 

still active. As another example, Zhao [26] proposed a feedforward control strategy to guarantee 

the minimum possible settling time in accordance with Eq.(6-1) for a given undershoot and RNMP 

zero. Therefore, the only way to simultaneously achieve lower settling time and undershoot is to 

either eliminate RNMP zeros so that Eq.(6-1) is no longer valid or push the RNMP zeros further 

away from the imaginary axis to reduce the severity of the tradeoff imposed by Eq.(6-1). Both of 
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these objectives can only be accomplished by tuning the open loop dynamics of the flexible system 

via choice of actuator-sensor placement, mass-stiffness distribution and damping strategy. 

A detailed review of RNMP zeros in flexible systems is provided in Chapter 1and Chapter 2. A 

brief summary is provided here. Spector [31, 87] studied the effect of varying the sensor position 

in a pinned-free beam model and reported that as the separation between the actuator and sensor 

increases, the RNMP zeros move closer to the imaginary axis. Lee [89] reported the same 

observation for a free-free beam. However, no conclusions were drawn on how other physical 

parameters such as mass-stiffness distribution or damping can be varied to push RNMP zeros to 

higher frequencies, for a given actuator and sensor position. Vakil [91] investigated the effect of 

mass-stiffness distribution in order to push the RNMP zeros further away from the imaginary axis. 

However, these results were only applicable to a pinned-free beam. There are two key gaps in the 

existing literature. First, they are system-specific and do not provide any general design guideline 

for either eliminating or pushing the RNMP zeros further away from the imaginary axis, for any 

multi-DoF flexible system when the actuator and sensor are non-collocated. Second, they do not 

study the effect of damping on RNMP zeros. Among the various potential strategies for changing 

the location of RNMP zeros in flexible systems such as the addition of viscous damping, actuator-

sensor placement and mass-stiffness distribution, the addition of viscous damping can prove to be 

the most desirable strategy. This is because it can be used to simultaneously shift the undamped 

poles of the flexible system to the left-hand side (LHS) of the imaginary axis and push the RNMP 

zeros further away from the imaginary axis, leading to better overall dynamic performance. 

However, while the impact of viscous damping on the poles is well characterized and is found to 

be beneficial [62, 102, 136], its impact on the zeros is less straightforward and sparingly researched 

as compared to the poles. 
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Chapter 3 provides a detailed review of the effect of viscous damping on the zeros of flexible 

systems. A brief summary of this review is provided here. Pang [108] investigated the effect of 

adding viscous damping to an Euler-Bernoulli beam model when the actuator and sensor are 

collocated and found that all zeros are minimum-phase (MP) i.e. the zeros have non-positive real 

component. However, this study did not comment on whether this result holds true for the 

collocated transfer function of any general flexible system. Lin [60, 110] showed that the zeros of 

a collocated transfer function of any general multi-DoF flexible system will be MP for any viscous 

damping. However, the zeros of non-collocated transfer function were not addressed. Section 3.3 

in Chapter 3, under the assumption of classical viscous damping, showed that as long as all modal 

residue signs are the same, the zeros of collocated as well as non-collocated transfer function will 

be MP. A key gap in this existing literature is that it does not provide any inferences on how 

viscous damping can be used to either eliminate or push RNMP zeros further away from the 

imaginary axis, for any general multi-DoF flexible system when all modal residue signs are not 

the same. 

In order to fill this gap, Section 3.4 and Section 3.5 in Chapter 3 investigated the effect of viscous 

damping on the zeros of two and three-DoF damped flexible systems when all modal residue signs 

are not the same and reported the necessary and sufficient conditions for the elimination of all 

NMP zeros including RNMP zeros. However, the methodology developed in these papers becomes 

increasingly complicated and tedious for higher DoF flexible systems. Therefore, there remains 

the need for a viscous damping strategy, applicable to any general multi-DoF flexible LTI system, 

that can either eliminate RNMP zeros or push them further away from the imaginary axis so that 

it is possible to simultaneously achieve fast settling time and small undershoot. 
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In order fill this gap, we investigate the effect of proportional viscous damping on the RNMP 

zeros of multi-DoF flexible LTI systems. Proportional viscous damping is the most widely studied 

viscous damping model in the literature due to its conceptual simplicity and practical application 

in engineering practice [137-139].  

There are two novel contributions of this chapter: (1) Derivation of a proportional viscous 

damping strategy that moves all the RNMP zeros of any general multi-DoF flexible LTI system 

further away from the imaginary axis. This derivation is provided in Section 6.2 (2) A case study 

that demonstrates a step-by-step design strategy to apply this viscous damping to a multi-DoF 

flexible LTI system in order to simultaneously achieve fast settling time and small undershoot. 

This design strategy is provided in Section 6.3. Finally, Section 6.4 provides the conclusion and 

briefly discusses future research. 

6.2 Proportional Viscous Damping Strategy 

Consider the equation of motion of a multi-degree of freedom (DoF) viscously damped flexible 

LTI system, given by: 
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 (6-2) 

where [M], [C] and [K] denote the mass, viscous damping, and stiffness matrices respectively; F 

denotes the force acting on the flexible system through an input vector [B]; and q is the measured 

displacement and is a linear combination, captured by sensor vector [D], of the individual DoF 

displacements denoted by w. n is referred to as the number of DoFs of the flexible system. The 

transfer function of interest is between the applied force, F and measured displacement, q i.e. q(s) 

/ F(s). 
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If a flexible system is proportionally damped, then its damping matrix i.e. [C] should satisfy the 

following: 

 [ ] [ ] [ ]2 2M Kc c= +C M K  (6-3) 

cK and cM are real-valued constants referred to as the proportional damping coefficients. It was 

demonstrated in Section 5.2 of Chapter 5, that there exists a mathematical relationship between 

the zeros of the undamped flexible system (whose equations of motion are given by Eq.(6-2) 

without the damping matrix [C]) and the zeros of its proportionally damped counterpart. This 

relationship is shown below. 

 ( ) ( )22 2 2
pd M K ud M K ud udz c c z c c z z=- -  - +  (6-4) 

zpd is the zero of the proportionally damped flexible system and zud is the zero of its undamped 

counterpart. In this chapter, we are interested in investigating the effect of proportional damping 

on real zeros. There are two types of real zeros: real minimum phase (RMP) zeros that lie on the 

negative real axis of the s-plane and real non-minimum phase (RNMP) zeros that lie on the positive 

real axis of the s-plane. The real zeros of any undamped flexible system occur in pairs of RMP – 

RNMP zeros. The RMP and RNMP zeros in each pair are equidistant from the imaginary axis as 

discussed in Chapter 2. Consider an RMP – RNMP zero pair of the undamped flexible system i.e. 

zud = ± x and substitute it in Eq.(6-4). This leads to: 

 ( ) ( )22 2 2
pd M K M Kz c c x c c x x=- -  - +  (6-5) 

Eq.(6-5) shows that the RMP – RNMP zero pair of the undamped flexible system is converted 

into two real zeros of its damped counterpart i.e. zpd is real. However, it is yet to be determined if 

these real zeros are MP or NMP. Consider the first real zero from Eq.(6-5). It is referred to as xpd,1. 
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Based on the algebraic argument provided in Eq.(6-6), xpd,1 is an RMP zero of the damped 

flexible system. Consider the second real zero from Eq.(6-5). It is referred to as x pd,2. 
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It can be inferred from Eq.(6-7) that xpd,2 is an RNMP zero of the damped flexible system. We 

will refer to the RMP and RNMP zeros of the undamped flexible system as xRMP,ud and xRNMP,ud 

respectively. Note that xRMP,ud = – xRNMP,ud. Similarly, we will refer to the RMP and RNMP zeros 

of the proportionally damped flexible system as xRMP,pd and xRNMP,pd respectively. Hence, we can 

infer from Eq.(6-6) and Eq.(6-7) that proportional damping converts xRMP,ud to xRMP,pd and xRNMP,ud 

to xRNMP,pd. Therefore, it can be concluded that the addition of proportional damping to an 

undamped flexible system will preserve the RMP zeros as RMP, but the RNMP zeros will not be 

converted to an MP zero for any value of proportional damping coefficients cM and cK. Therefore, 

it is not possible to eliminate RNMP zeros via a proportional damping strategy. However, it may 

still be possible to move the RNMP zeros of the undamped flexible system further away from the 

imaginary axis via proportional damping. As discussed in Section 6.1, if the RNMP zeros are 

pushed further away from the imaginary axis, then the severity of the tradeoff between settling 

time and undershoot, implied by Eq.(6-1), is mitigated. Therefore, the problem at hand is to 
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determine the range of values of proportional damping coefficients cM and cK so that all the RNMP 

zeros of the damped system lie further away from the imaginary axis as compared to the all RNMP 

zeros of its undamped counterpart i.e. xRNMP,pd,i > xRNMP,ud,i. Eq.(6-7) can be generalized for the ith 

RNMP zero as shown below: 

 ( ) ( )22 2 2
, , , , , , , ,RNMP pd i M K RNMP ud i M K RNMP ud i RNMP ud ix c c x c c x x=- - + - +  (6-8) 

Given the complex mathematical relationship between xRNMP,pd,i and xRNMP,ud,i in Eq.(6-8), one 

can guess that there could be several ranges of cM and cK that lead to xRNMP,pd,i > xRNMP,ud,i for all i 

RNMP zeros. In this chapter, we provide one such range of proportional damping coefficients cM 

and cK. Consider the case cM = 0 and cK > 0. For this case, Eq.(6-8) is simplified into Eq.(6-9) 

where the index i denotes the ith RNMP zero and N is the total number of RNMP zeros of the 

system. 
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As shown in Eq.(6-10) simple algebraic manipulation of Eq.(6-9) demonstrates that xRNMP,pd,i > 

xRNMP,ud,i for all N RNMP zeros. 
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Therefore, the simple proportional viscous damping strategy i.e. cM = 0 and cK > 0 guarantees 

that all the RNMP zeros of the damped flexible system are moved further away from the imaginary 

axis as compared to their undamped counterpart.  
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Next, consider the difference between the xRNMP,ud,i and xRNMP,pd,i. 
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Eq.(6-11) implies that the distance ΔxRNMP,pd-ud,i increases with xRNMP,ud,i indicating that the larger 

the RNMP zero of the undamped flexible system (xRNMP,ud,i), the larger would be the distance 

(ΔxRNMP,pd-ud,i). Hence, for a constant value of cK, the smallest RNMP zero is pushed the least while 

the largest RNMP zero is pushed the most towards the right-hand side (RHS) of the s-plane i.e. 

ΔxRNMP,pd-ud,1 < ΔxRNMP,pd-ud,2 <…< ΔxRNMP,pd-ud, N. Therefore, the smallest and largest RNMP zeros 

of the undamped flexible system respectively become the smallest and largest RNMP zeros of its 

damped counterpart. This result can be used to find the minimum values of cK that move all the 

RNMP zeros further away from the imaginary axis beyond a certain point on the real axis in order 

to enable better dynamic performance of the flexible system. 

Consider a scenario where it is required to move all the RNMP zeros beyond a certain value i.e. 

xm on the positive real axis. This can be achieved by solving Eq.(6-9) to find the value of cK, 

referred to as cK
min

, which moves the smallest RNMP zero of the damped flexible system to xm i.e. 

xRNMP,pd,1 = xm. The inference from Eq.(6-11) guarantees that for this value of cK, all the remaining 

zeros of the damped flexible system will also lie beyond xm i.e. xRNMP,pd,i > xm for all 2 ≤ i ≤ N. The 

formula for cK
min is given by: 
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Furthermore, Eq.(6-6) demonstrated that the addition of proportional damping converts the RMP 

zeros (xRMP,ud,i) of the undamped flexible system into RMP zeros (xRMP,pd,i) of its damped 

counterpart for any value of cK and cM. The following equation provides the relationship between 

xRMP,ud,i and xRMP,pd,i for the case cM = 0 and cK > 0. 
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 (6-13) 

As shown below, simple algebraic manipulation of Eq.(6-13) demonstrates that xRMP,pd,i > 

xRMP,ud,i for all N RMP zeros. 

 , , , , , ,Since RMP ud i RMP ud i RMP pd ix x x<  <0  (6-14) 

Therefore, the above equation implies that xRMP,pd,i moves closer to the imaginary axis as 

compared to xRMP,ud,i as cK is increased. The RMP zeros (xRMP,pd,i) of the damped flexible system 

tend to the origin as cK tends to infinity but they never cross it to become RNMP zeros (xRNMP,pd,i). 

Consider an undamped flexible system with N RMP – RNMP zero pairs. Fig 6-1 visually 

illustrates how the proportional damping strategy with cM = 0 and cK > 0 affects all its N RMP and 

RNMP zeros. All the RNMP zeros of the damped flexible system are moved further away from 

the imaginary axis as compared to their undamped counterparts. The larger the undamped RNMP 

zero (xRNMP,ud,i), the more its corresponding damped RNMP zero (xRNMP,pd,i) gets pushed to the RHS 

of the imaginary axis. On the contrary, all the RMP zeros of the damped flexible system are moved 

closer to the imaginary axis as compared to their undamped counterparts. 
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Fig 6-1 Effect of the proportional viscous damping strategy i.e. cM = 0 and cK > 0 on the real 

zeros of flexible systems 

6.3 Three-link manipulator: Case Study 

In this section, a plant-control co-design strategy is proposed for flexible systems in the presence 

of RNMP zeros. In this section, the term ‘plant-control co-design’ refers to tuning the plant and 

controller parameters in tandem to achieve better dynamic performance. This case study aims to 

demonstrate the application of the proportional damping strategy i.e. cM = 0 and cK > 0 to 

simultaneously achieve fast settling time and small undershoot in the step response of a flexible 

system. Therefore, only the damping parameter will be varied as part of plant parameter tuning. 

a
m1, l1

θ3 

k1

k2

k3

m2, l2

m3, l3
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c2

c3

θ2 
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Fig 6-2 Schematic view of a three-link manipulator 
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A three-link flexible manipulator consisting of three rigid bars connected serially via springs and 

dampers is considered, as shown in Fig 6-2. Torque a is applied at the connection of the 1st link 

with the ground and the rotational angle of the last rigid link, θ3 is considered as the output. For 

the three-link manipulator, the linearized equations of motion were derived in [140] and simply 

stated below. It has been shown that the linearized transfer function (all rotation angles are 

linearized about zero radians) of such N link mechanisms from a to θN (rotation angle of the last 

element) has (N – 1) RNMP zeros [140, 141].  Therefore, the transfer function G3 (s) = θ3 /a will 

have 2 RNMP zeros. Accordingly, designing a controller to simultaneously achieve lower 

undershoot and settling time will be challenging due to the presence of these RNMP zeros. 
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M K  (6-15) 

The following geometric properties are considered for the case study: m1=2 kg, m2=3 kg, m3=4 

kg, l1=2 m, l2=1 m, l3=1 m, k1=7 N-m/rad, k2=5 N-m/rad, k3=6 N-m/rad. Furthermore, the 

following performance objectives are considered for the step response of θ3: overshoot < 2%, 

undershoot < 2% and settling time < 10s. The step-by-step design strategy is as follows: 

STEP I. Feedback controller design 

In the first step, a full-state feedback controller of the form given below, is applied to the 

undamped version of the three-link flexible manipulator in Fig 6-2 i.e. c1 = c2 = c3 = 0. The 
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controller is designed to relocate the poles of the closed-loop system to the LHS of the s-plane 

seeking the specified control objective.  

 

[ ]

1 2 3 1 2 3where  is 1 x 6 feedback gain vector and f

F

K

q

q q q q q q q

=-

é ù= ê úë û

f

T

K

  
 (6-16) 

Since the smallest (slowest) poles dominate the dynamics of the system, out of the six poles of 

the system, poles p3 – p6 are moved to some far away distance from the imaginary axis so that they 

have the least effect on the system dynamics. Now, the optimal location of the slowest pole pair 

p1,2 is sought to achieve the performance objectives. Let p1,2 = Re (p1) ± j Img (p1). In the absence 

of a full-state feedback controller, p1,2 lies on the imaginary axis, i.e. Re (p1) = 0. The feedback 

gains in [Kf] are modified to slowly reduce  Re (p1). Note that full-state feedback control allows 

arbitrary placement of all closed loop poles of the system. The step response of the system for 

three different values of Re (p1) is shown in Fig 6-3.  

 

Fig 6-3 Step response of the system for various Re (p1) 
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It can be observed from the figure that initially as Re (p1) is reduced from 0, the settling time, 

undershoot and overshoot decrease. However, after reaching a certain critical value of Re (p1), the 

undershoot starts increasing even though the settling time and overshoot continue to decrease. This 

critical value of Re (p1) = −0.4. The observation made in Fig 6-3 agrees with Eq.(6-1). For a given 

position of RNMP zeros, an aggressive reduction in settling time eventually comes at the cost of 

an increase in undershoot. 

Next, keeping Re (p1) = −0.4, Img (p1) is reduced. It can be observed from Fig 6-4 that as Img 

(p1) is reduced, the settling time, undershoot and overshoot decrease. However, beyond a critical 

value of Img (p1), the settling time begins to increase even though undershoot and overshoot 

continue to decrease. This critical value of Img (p1) = 0.25. Hence, the critical location of p1,2 = 

−0.4 ± j 0.25. Note that for this case study, we have chosen a settling window of 5% of the steady 

state value as shown in Fig 6-4.  

 

Fig 6-4 Step response of the system for various Img (p1) 
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The observation made in Fig 6-4 again agrees with Eq.(6-1). For a given position of RNMP 

zeros, aggressive reduction in undershoot eventually comes at the cost of an increase in settling 

time. For the closed-loop pole location of p1,2 = −0.4 ± j 0.25, the overshoot, undershoot and settling 

time are 0.89%, 44.37% and 7.68s respectively. Clearly, undershoot does not meet the specified 

performance objective which is < 2%. Any further change in the location of p1,2 beyond this critical 

point would lead to an increase in undershoot and/or settling time which is undesirable. Therefore, 

this can be regarded as the best achievable performance via full-state feedback control. Obviously, 

the control objective for undershoot cannot be achieved using only the control design. Note that in 

Step I above, the critical location of the slowest pole was ascertained by carefully varying the 

feedback gains in [Kf] and observing the resulting step response of the closed-loop system 

demonstrated in Fig 6-3 and Fig 6-4. This step can be time consuming but it was done in this 

manner to numerically demonstrate the tradeoff between settling time and undershoot. Interested 

researchers are encouraged to formulate Step I as an LQR problem with the right constraints and 

minimization function to get the answer faster. 

STEP II. Addition of Proportional viscous damping  

Due to the inability of full-state feedback control to decrease undershoot without increasing the 

settling time, the proportional viscous damping strategy derived in Section 6.2 is added to the 

flexible system to complement the controller performance. Physically, this means that ci = cK ki 

where i = 1, 2, 3 in Fig 6-2. Therefore, the damping matrix becomes: 

 [ ] [ ]Kc=C K  (6-17) 

It was shown in Section 6.2 that the proportional viscous damping strategy, given by Eq.(6-17) 

pushes all the RNMP zeros further away from the imaginary axis. As a result, the value of x in 

Eq.(6-1) increases and therefore, the lower limit for undershoot (given by the LHS of Eq.(6-1)) 
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decreases, leading to a smaller undershoot. To demonstrate this effect, the value of cK is 

incrementally increased while keeping the location of the closed pole fixed. The step response of 

the system for different values of cK is shown in Fig 6-5.  

 

Fig 6-5 Step response of the system in the presence of feedback controller and proportional 

damping for various damping constants 

The observation from Fig 6-5 is contrary to our expectation. As cK increases, undershoot and 

overshoot increase rather than decrease. Meanwhile, the settling time remains roughly the same. 

This peculiar behavior is attributed to the RMP zeros moving closer to the imaginary axis as cK is 

increased. Fig 6-1 demonstrated that the proportional damping strategy not only pushes the RNMP 

zeros away from the imaginary axis, but also pushes the RMP zeros closer to the imaginary axis 

(although they never cross it). It is not definitively understood why the movement of RMP zeros 

towards the imaginary axis should lead to an increase in undershoot and overshoot. To the best of 
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the authors’ knowledge, an equivalent mathematical constraint such as Eq.(6-1) (applicable to 

RNMP zeros only) does not exist for RMP zeros so far.  

It can be inferred from Fig 6-5 that although the placement of RNMP zeros to higher frequencies 

is supposed to reduce undershoot, this reduction is completely overshadowed by the RMP zeros 

which are also being pushed toward the imaginary axis by adding the proportional damping and 

therefore, produce additional undershoot and overshoot. Therefore, in the current plant-control 

configuration, simply increasing cK cannot lead to any further improvement in the performance 

objectives. 

STEP III. Relocating RMP zeros via feedforward controller 

Since the RMP zeros are stable, i.e. they lie on the LHS of the imaginary axis, their position can 

be changed via a simple feedforward control strategy. As the RMP zeros are relocated to higher 

frequencies, i.e. further away from the imaginary axis, their undesirable effect on undershoot and 

overshoot is reduced. By keeping the RMP zeros fixed at higher frequencies, cK can be increased 

as much as practically possible to push the RNMP zeros to higher frequencies and mitigate the 

tradeoff between settling time and undershoot. Note that in practice, while tuning the plant and 

control parameters, Step II and Step III go hand in hand because for every new cK value, the 

position of the RMP zeros i.e. xRMP,pd,1 and xRMP,pd,2 will change. Therefore, the associated 

feedforward controller used to relocate these zeros to higher frequencies i.e. xRMP,pd,1hf and 

xRMP,pd,2hf must also change. The red curve in Fig 6-6 shows the step response of the flexible system 

after cK = 8.0 is chosen and the RMP zeros are relocated to higher frequencies to meet the 

performance objectives.  
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Fig 6-6 Final step response of the system vs. feedback controller best performance 

Fig 6-6 illustrates a comparison between the final step response achieved at the end of Step III 

(red curve) and the step response achieved at the end of Step I (blue curve). This comparison yet 

again demonstrates that only tuning the controller parameters by themselves as shown in Step I 

cannot reduce undershoot beyond a certain point without increasing the settling time. However, 

the simultaneous tuning of plant and controller parameters as shown in Steps II and III can 

effectively reduce undershoot while maintaining/improving the other control objectives. The 

evolution of the numerical values of the control objectives through Step I – III are given in Table 

6-1.  

 

 

 

0 5 10 15 20
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12



 
281  

 
 

 

Parameter Step I Step II Step III 

Overshoot (%) 0.89 ≥ 0.89 0.65 

Undershoot (%) 44.37 ≥ 44.37 1.14 

Settling time (s) 7.68 ≥ 7.68 8.83 

Table 6-1 Step response characteristics during successive design steps 

High frequency 
RMP zeros

High frequency poles

RMP zeros leading to 
overshoot

0.2871j

1.8881j

6.5915j

7.7297-0.5010

-0.4 + 0.25j
-4 + 1j-6 + 1j

-10-12 2.1265

...

487.11-0.1181

-0.1250

0.5010-7.7297

Open loop
Step I: Feedback controller
Step II: Addition of proportional damping 
Step III: Relocating RMP zeros

RNMP zeros pushed 
out due to damping

 

Fig 6-7 Pole-zero map of the system during the proposed design strategy steps  

The pole-zero map in Fig 6-7 graphically illustrates how the location of poles and zeros change 

during the three steps of the proposed design strategy. In step I, all zeros are fixed and the pole 

locations are changed via full-state feedback control. Then, in step II, all poles are kept fixed and 

all the zero locations are changed by the addition of damping. Finally, in step III, only RMP zeros 

are relocated to high frequencies while all poles and RNMP zeros remain unchanged. The control 

block diagram of the proposed design strategy is shown in Fig 6-8.  
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Fig 6-8 Control block diagram of the proposed design strategy 

This block diagram demonstrates how this entire design strategy is implemented in practice. 

[ASS], [BSS] and [CSS] are the state-space matrices of the open loop plant given by Eq.(6-18) ; [Kf] 

is a vector of feedback gains and Kr is the scalar feedforward controller gain required to tune the 

DC gain. 
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 (6-18) 

[M] and [K] are given by Eq.(6-15) and [C] is given by Eq.(6-17). In Step I of the proposed 

design strategy, [Kf] is varied to optimally place the closed-loop poles. In Step II, [ASS] changes 

as a result of the addition of proportional damping, and [Kf] is also modified to keep the closed-

loop pole position unchanged from Step I. In Step III, the RMP zeros, i.e. xRMP,pd,1 and xRMP,pd,2, 

are moved to higher frequencies, i.e. xRMP,pd,1hf and xRMP,pd,2hf, respectively. The scalar feedforward 

gain, Kr is continually updated throughout Step I to III to ensure that the steady-state value of 3 

= 0.1. 
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6.4 Conclusion 

This chapter provides a proportional viscous damping strategy that moves all the RNMP zeros 

of the damped flexible system further away from the imaginary axis as compared to its undamped 

counterpart. This reduces the severity of the tradeoff between settling time and undershoot, implied 

by Eq.(6-1). It must be noted that this damping cannot eliminate RNMP zeros. Therefore, even in 

its presence, the step response of the flexible system will demonstrate undershoot. However, the 

magnitude of this undershoot, for a given settling time, will be significantly smaller in the presence 

of this damping as compared to its absence. This is theoretically demonstrated via a step-by-step 

design strategy applied to a three-link flexible manipulator. The first step of this design strategy is 

the design of a full-state feedback controller, the second step is the application of proportional 

viscous damping, and the third step is the design of a feedforward controller. This design strategy 

leads to simultaneous improvement in overshoot, settling time and undershoot in the step response 

which could not be achieved through only feedback/feedforward controller design. Although 

shown for a specific flexible system in this chapter, this design strategy can be applied to any 

general multi-DoF flexible LTI system.  
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Chapter 7 Conclusion and Future Work  

 

This thesis provided several new sufficient conditions for the absence of NMP zeros in multi-

DoF flexible LTI systems with and without viscous damping when all modal residue signs are not 

the same. The most noteworthy sufficient condition derived in Chapter 4 clearly demonstrated that 

there exist other sequences of modal residue signs apart from ‘all modal residue signs are same’ 

that guarantee the absence of NMP zeros. Design strategies were provided in Chapter 4 to 

theoretically demonstrate how to choose physical parameters such as actuator-sensor placement 

and mass-stiffness distribution to achieve the required sequence of modal residue signs. However, 

this sufficient condition was derived under the assumption of ‘no damping’. Generally all flexible 

systems used in practical applications have non-zero amount of damping due to various energy 

dissipation mechanisms such air resistance, material hysteresis, joint friction etc. Therefore, the 

question arises: can the sequences of modal residue signs derived in this thesis (for undamped 

flexible systems) guarantee the absence of NMP zeros in lightly damped flexible systems as well? 

We will demonstrate the practical efficacy of this sufficient condition in the presence of light 

damping via the example of a flexure bearing based motion system shown in Fig 7-1.  
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Fig 7-1 Flexure bearing based motion system 

The flexure bearing based motion system shown in Fig 7-1 was designed by Cui [37]. A voice 

coil actuator applies force along the X direction i.e. Fx4 which leads to the displacement of the 

motion stage (m1) along the X direction via the bending deformation of the flexure blades. The X 

direction displacement of the motion stage (m1) with respect to the ground is measured by the 

capacitance probe and target block. Under ideal bearing behavior [39], this flexure bearing based 

motion system should exhibit zero stiffness along its motion direction (MD) i.e. X direction and 

infinite stiffness along the other five directions referred to as the bearing directions (BD) i.e. Y, Z, 

X, Y, and Z directions.  However, in reality, since the displacement of the motion stage (m1) 

along the X direction happens via the bending deformation of flexure blades, the motion direction 

stiffness is small but non-zero. Similarly, due to the presence of parasitic compliance, the bearing 

direction stiffnesses are large but finite. Therefore, this flexure bearing based motion system is a 

multi-DoF flexible system with one low frequency flexible mode along the motion direction 
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referred to as the ‘rigid body’ mode and several high frequency flexible modes along the bearing 

directions.  
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Fig 7-2 Frequency response function of the transfer function: x1(s)/Fx4(s)  

Fig 7-2 is the experimentally obtained frequency response function (FRF) of the transfer 

function between X direction displacement of the motion stage (m1) i.e. x1 and X direction force 

applied at m4 i.e. Fx4. This FRF is shown in the frequency range between 100 Hz and 350 Hz to 

highlight the presence of two closely spaced modes at 210 Hz and 220 Hz and a quartet of CMP-

CNMP zeros trapped between them. In order to apply the appropriate sufficient condition i.e 

Result 5 from Chapter 4 to guarantee the absence of these CNMP zeros, we make the following 

simplifying assumptions: 

Assumption 1: The flexible system is undamped.  
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In reality, the flexible system is lightly damped ( ~ 0.005). Even then, we will proceed to apply 

the sufficient condition derived in Chapter 4 (for undamped flexible systems) to demonstrate its 

efficacy even in the presence of light damping.  

Assumption 2: Model the flexible system dynamics as a three-DoF system consisting of the rigid 

body mode, and the modes at 210 Hz and 220 Hz.  

Note that the rigid body mode is a low frequency motion direction mode that occurs at roughly 30 

Hz and therefore it is not visible in Fig 7-2. However, the fact that the phase is at -180 degrees at 

frequencies below the frequency of the closely spaced modes confirms that there is a low frequency 

rigid body mode in the FRF as expected. The assumption of three-DoF is made due to the fact that 

only one quartet of CMP-CNMP zeros exists between the two closely spaced modes in Fig 7-2. 

Chapter 2 proved that it takes atleast three modes (one low frequency rigid body mode and two 

closely spaced high frequency modes) to explain the genesis of one quartet of CMP-CNMP zeros. 

Therefore, in reality, even though the flexible system has several flexible modes, we are choosing 

the simplest possible model consisting of three modes to apply the sufficient condition for the 

absence of CNMP zeros.  

According to Result 5 of Chapter 4, n = 3 (three pair of poles), m = 2 (one pair of CMP + one 

pair of CNMP zeros) for this flexure bearing based motion system. Therefore, r = n − m − 1 = 0. 

The sufficient condition for the absence of CNMP zeros (Result 5 of Chapter 4) states that the 

number of modal residue sign change is either r or r+1. This means that the number of modal 

residue sign change must be either 0 or 1 to guarantee the absence of CNMP zeros. Therefore, the 

following sequences of the three modal residue signs guarantee the absence of the CNMP zero pair 

in the flexure bearing based motion system:  

1. RB > 0, 210 Hz > 0, 220 Hz > 0 ( number of modal residue sign change = 0) 



288 
 

2. RB > 0, 210 Hz > 0, 220 Hz < 0 ( number of modal residue sign change = 1) 

3. RB > 0, 210 Hz < 0, 220 Hz < 0 ( number of modal residue sign change = 1) 

Since, it is the relative sign of the modal residues that matters, the sign of the modal residue 

corresponding to the rigid body mode i.e. RB can be assumed to be greater than zero without any 

loss of generality. Therefore, the three modal residue signs can be arranged to form four unique 

sequences (via permutation and combination), out of which three sequences guarantee the absence 

of CNMP zeros as shown above. This means that the fourth possible sequence given by: (RB > 

0, 210 Hz < 0, 220 Hz > 0) [number of modal residue sign change = 2] is necessary for the presence 

of CNMP zeros. Therefore, for the current configuration of the flexure bearing based motion 

system which leads to one quartet of CMP-CNMP zeros in Fig 7-2, the sequence of modal residue 

signs must be (RB > 0, 210 Hz < 0, 220 Hz > 0). Now we will explain how the misalignment in 

actuator-sensor placement leads to this sequence of modal residue signs and therefore, cause 

CNMP zeros in the FRF in Fig 7-2.  

The mathematical relationship between physical and system parameters provided in Section 2 

of Chapter 4 showed that the modal residue is the product of the values of the mode shape at the 

actuator and sensor locations. Since, 210 Hz < 0, this means that in the 210 Hz mode, the actuator 

and sensor location at mass m4 and m1, respectively, move in opposite X directions. Since, 220 Hz 

> 0, the actuator and sensor location at mass m4 and m1, respectively, move in the same X direction. 

Since, only the sign of the mode shapes at the actuator and sensor location is needed, a simple 

experimental modal analysis was conducted by placing accelerometers on m4 and m1. It showed 

that these masses get excited in the Z direction at 210 Hz and 220 Hz when they are struck with a 

hammer in the Z direction. However, the 210 Hz and 220 Hz modes cannot be purely Z direction 

modes because a purely Z direction mode cannot be measured by the capacitance probe and target 
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block (shown in Fig 7-1). Therefore, in the 210 Hz and 220 Hz modes, the masses m1 and m4 must 

rotate about the Y direction as shown in Fig 7-3 so that these modes show up in the FRF in Fig 

7-2.  
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Fig 7-3 Mode shapes for 210 Hz and 220 Hz when actuator > 0 and sensor > 0 (only showing m1 

and m4) 

The most logical reason that these modes get excited is because of the misalignment in the 

actuator location (actuator). The center of stiffness of the flexure bearing lies on the dashed line in 

Fig 7-3. Since the flexure bearing is symmetric about the Z direction, this dashed line will be 

referred to as the ‘centerline’. If the actuator was placed exactly along this centerline, it would not 

excite these bearing direction modes. Similarly, if the capacitance probe and the target block 

measured the X displacement of m1 exactly along the centerline, these modes will not be observed. 

However, in reality, owing to finite tolerances in manufacturing and assembly, there will always 

be some small but non-zero actuator misalignment (actuator) and sensor misalignment (sensor) 

which leads to these two bearing direction modes showing up in the FRF in Fig 7-2. Small but 
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finite actuator and sensor misalignment lead to small but finite modal residues associated with 

these bearing direction modes i.e. 210 Hz and 220 Hz based on the mathematical relationship 

between physical and system parameters provided in Section 2 of Chapter 4. Chapter 2 

mathematically demonstrated that when the high frequency modes (210 Hz and 220 Hz modes in 

this case) are closely spaced, even small modal residues associated with these modes can lead to 

the presence of CNMP zeros. This is exactly what we observe in the FRF in Fig 7-2.  

In the current configuration of the flexure based motion system, sensor > 0 because the 

capacitance probe is placed above the centerline as shown in Fig 7-3. However, it is not practically 

possible to ascertain the sign of actuator misalignment because it is unintentional and therefore 

difficult to predict. So, we will assume actuator > 0 i.e. actuator is misaligned above the centerline 

as shown in  Fig 7-3. Later, we will show that the required sequence of modal residue signs is 

achieved irrespective of the sign of actuator misalignment because it is kept constant.  

In the current configuration, the system exhibits CNMP zeros, therefore, as discussed earlier, 

its sequence of modal residue signs must be (RB > 0, 210 Hz < 0, 220 Hz > 0). The modal residue 

sign corresponding to the rigid body mode can be assumed to be positive without any loss of 

generality i.e.RB > 0. Fig 7-3 shows the order of mode shapes that satisfy this sequence of modal 

residue signs when actuator > 0: 

1. For the 210 Hz mode, the point of actuation moves in positive X direction but the target block 

moves in the negative X direction with respect to the capacitance probe. Therefore, 210 Hz < 0.  

2. For the 220 Hz mode, the point of actuation moves in positive X direction and the target block 

also moves in the positive X direction with respect to the capacitance probe. Therefore, 220 Hz > 

0. 
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If in reality the actuator was misaligned below the centerline i.e. actuator < 0, the mode shapes 

for 210 Hz and 220 Hz shown in Fig 7-3 will get flipped to still maintain (RB > 0, 210 Hz < 0, 

220 Hz > 0) which is necessary for the presence of CNMP zeros in the FRF in Fig 7-2. Recall that 

the modal residue is the product of the values of the mode shape at the actuator and sensor 

locations. Therefore, we only need to change the sign of either the actuator (actuator) or the sensor 

misalignment (sensor) but not both to change the sequence of modal residue signs. Since, predicting 

and modifying the actuator misalignment (actuator) is practically difficult, we will keep it constant 

and change the sign of sensor misalignment (sensor) to the achieve one of the three sequences of 

modal residue signs that guarantee the absence of CNMP zeros. 
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Fig 7-4 Mode shapes for 210 Hz and 220 Hz when actuator > 0 and sensor < 0 (only showing m1 

and m4) 
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In Fig 7-4, the actuator misalignment remains the same i.e. actuator > 0 but the capacitance probe 

and the target block are placed below the centerline i.e. sensor < 0. Changing the sign of the sensor 

misalignment does not change the sign of the modal residue of the rigid body mode i.e. RB > 0. 

However, the sign of the modal residues of the bearing direction modes (at 210 Hz and 220 Hz) 

undergo a change as shown in Fig 7-4: 

1. For the 210 Hz mode, the point of actuation moves in positive X direction and the target block 

also moves in the positive X direction with respect to the capacitance probe. Therefore, 210 Hz > 

0. 

2. For the 220 Hz mode, the point of actuation moves in positive X direction but the target block 

moves in the negative X direction with respect to the capacitance probe. Therefore, 220 Hz < 0. 

Therefore, the new sequence of modal residue signs is (RB > 0, 210 Hz > 0, 220 Hz < 0) 

[number of modal residue sign change = 1]. As discussed earlier, this sequence of modal residue 

signs guarantees the absence of CNMP zeros. Sure enough, this is exactly what is seen via actual 

experimental measurements, as demonstrated by the new FRF in Fig 7-5 obtained for sensor < 0.  
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Fig 7-5 Frequency response function of the transfer function: x1(s)/Fx4(s) for sensor < 0 

Note that the absence of CNMP zeros obtained via sensor placement is independent of the 

actuator misalignment because it was kept constant/unchanged. If in reality actuator < 0, changing 

the sign of sensor misalignment from sensor > 0 to sensor < 0 would still have changed the sequence 

of modal residue signs from  (RB > 0, 210 Hz < 0, 220 Hz > 0) to (RB > 0, 210 Hz > 0, 220 Hz 

< 0), thereby still guaranteeing the absence of CNMP zeros.  

Once the absence of CNMP zeros is guaranteed via the appropriate sequence of modal residue 

signs, Eq.(7-1) provides the mathematical condition for the absence of RNMP zeros as well (from 

Result 6 of Chapter 4). As earlier, ‘MD’ stands for motion direction and ‘BD’ stands for bearing 

direction.  
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1 1

0
  
  

  
    

  
 MD BD

MD BD
MD BD

n n

i i

      (7-1) 
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For the flexure bearing based motion system with the modified sensor placement i.e. sensor < 

0, the inequality in Eq.(7-1) will be satisfied without any further physical design modifications. 

The reasoning for this is as follows: Small but finite misalignment of the actuator and sensor will 

lead to much smaller BD as compared to MD. This is because these bearing direction modes will 

not be strongly excited by the actuator or observed by the sensor if the misalignments are kept 

small. However, irrespective of the misalignment, the rigid body mode along the motion direction 

will always get excited. Therefore, the first bracketed term in the LHS of Eq.(7-1) i.e. sum of all 

modal residues will be greater than zero. Similarly, the frequencies of the flexible modes along the 

bearing directions will be much higher as compared to the rigid body mode along the motion 

direction i.e.  MD << BD. Therefore, the second bracketed term in the LHS of Eq.(7-1) will also 

be greater than zero. Overall, the entire LHS of Eq.(7-1) will be greater than zero, and therefore 

the absence of RNMP zeros will also be guaranteed. This is evident in the FRF in Fig 7-5 where 

both CNMP and RNMP zeros are absent. Thus, the absence of all NMP zeros has been achieved 

in this flexure based motion stage via systematic and deterministic physical design choices even 

when all modal residue signs are not the same.   

Based on this specific example, a few design guidelines or learnings are provided below that 

can be applied more generally to any motion system with finite bearing stiffness [3, 7, 39].   

Design Guideline 1: In the absence of actuator-sensor collocation, which is very hard to achieve 

in any case, make an informed choice of actuator-sensor placement to achieve the desired sequence 

of modal residue signs (not necessarily ‘all modal residue signs are same’) in order to guarantee 

the absence of CNMP zeros.  

Design Guideline 2: Choose appropriate values of physical parameters to push the bearing 

direction modes to higher frequencies without significantly increasing the frequency of the rigid 
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body mode along the motion direction. This leads to  MD << BD and therefore, aids in satisfying 

Eq.(7-1).   

Design Guideline 3: Keep the actuator and sensor misalignments as small as possible to keep the 

modal residues associated with bearing direction modes as small as possible. This leads to MD 

>> BD and therefore, aids in satisfying Eq.(7-1). 

Following Design Guideline 1 leads to the absence of CNMP zeros. Design Guideline 1 is 

generally practiced by designers and engineers but only to achieve the same sign of all modal 

residue via actuator-sensor collocation. However, this thesis demonstrates that it can be more 

widely applied to choose non-collocated actuator-sensor configurations and still guarantee the 

absence of CNMP zeros. Not only that, mass-stiffness distribution can also be modified to achieve 

the required sequence of modal residue signs as theoretically demonstrated via a case study in 

Chapter 4. However, as the example of the flexure bearing based motion system demonstrated 

here, it can be relatively easy to change the sensor location to alter the sequence of modal residue 

signs as compared to any other physical parameter. However, if the sensor or actuator position 

cannot be changed, then the design engineer must investigate the relationship between mode 

shapes and mass-stiffness distribution in order to achieve the required sequence of modal residue 

signs.   

Once the required sequence of modal residue signs is achieved, following Design Guidelines 

2 and 3 means that Eq.(7-1) is satisfied and therefore, it leads to the absence of RNMP zeros. 

Design Guidelines 2 and 3 are also generally practiced by designers and engineers to achieve good 

static performance such as large payload carrying capacity, low heat generation from actuators and 

small error motions along bearing directions. However, this thesis demonstrates (for the first time 
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to the best of the author’s knowledge) how these design guidelines also affect and potentially 

improve the dynamic performance of motion systems by guaranteeing the absence of RNMP zeros.  

In the above example, we have shown the practical utility of the sufficient condition for the 

absence of NMP zeros (derived for undamped flexible systems) in a lightly damped flexure bearing 

based motion system. Even though in this particular case of light damping, NMP zeros were found 

to be absent when the sufficient condition was satisfied, this may not always be the case. Chapter 

3 and Chapter 5 proved that the addition of viscous damping is not always beneficial to the zeros 

of the flexible system. Therefore, even though satisfying the sufficient condition in Chapter 4 

guarantees that all the zeros of the undamped flexible system are MMP, the addition of viscous 

damping can possibly push these MMP zeros to the RHS of the imaginary axis, making them NMP 

zeros. However, Chapter 5 showed that under the assumption of proportional viscous damping and 

for certain choices of proportional damping coefficients cM and cK, viscous damping will always 

have a beneficial effect on the zeros of flexible systems (i.e. will make the zeros MP). Therefore, 

once the sufficient condition in Chapter 4 has been satisfied, leading to all zeros lying purely on 

the imaginary axis i.e. MMP zeros, the addition of proportional viscous damping (for certain values 

of cM and cK) will guarantee that these MMP zeros always get pushed to the LHS of the imaginary 

axis, making either CMP or RMP zeros. This result from Chapter 5 is applicable to all levels of 

damping i.e. underdamped, critically and overdamped flexible systems. 

So far in the existing literature, viscous damping has only been shown to push the poles of 

flexible systems to the LHS of the imaginary axis, leading to smaller residual vibration and 

overshoot. The effect of viscous damping on the zeros of flexible systems was less thoroughly 

investigated in the existing literature. This thesis not only investigated the effect of viscous 

damping on the zeros of flexible systems in detail but also provided several novel design strategies 
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to apply viscous damping to guarantee the absence of NMP zeros leading to better closed-loop 

bandwidth, stability robustness, smaller undershoot and faster settling time. Although, the 

theoretical contributions of this thesis on the effect of viscous damping on zeros is strong and 

novel, it does not demonstrate the practical application of viscous damping via experiments. These 

are the major bottlenecks in realizing the practical utility of viscous damping to guarantee the 

absence of NMP zeros: 

1. This thesis assumes classical and proportional viscous damping to achieve no NMP zeros. 

However, in reality, the damping in flexible systems such as from material hysteresis, joint friction 

etc is neither classical nor proportional viscous damping. It may be possible that for small enough 

damping, certain damping mechanisms can be approximated as classical or proportional viscous 

damping. But no such approximations, along with suitable justifications, exist in the literature so 

far (including this thesis).  

2. It is not always practically feasible to add viscous damping to flexible systems. For example, 

Varanasi [61] has experimentally demonstrated that foam based viscous dampers are effective in 

reducing the residual vibrations in flexure bearings. However, the foam material in these dampers 

may not be vacuum compatible and therefore cannot be used in flexure bearing based motions 

systems that need to operate in vacuum. 

Therefore, this motivates the need to find practically feasible ways to apply viscous damping 

to flexible systems in a deterministic manner in order to satisfy the sufficient conditions derived 

in this thesis and therefore, guarantee the absence of NMP zeros. This task is left to future 

researchers who may find this problem interesting. 

This thesis presented new mathematical frameworks to study the zeros of the SISO transfer 

functions of general flexible LTI systems.These mathematical frameworks were used to derive 
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new sufficient conditions for the absence of all NMP zeros, with and without viscous damping, 

when all modal residue signs are not the same. A brief summary of the various contributions of 

the thesis is provided below.   

7.1 Conclusion 

Chapter 2 investigated the zero dynamics of undamped two and three-DoF flexible systems 

using modal decomposition and zero locus techniques. This investigation led to the necessary and 

sufficient condition for the absence of CNMP and RNMP zeros in these flexible system. The most 

noteworthy sufficient condition for the elimination of CNMP zeros was the presence of non-

alternating sequence of modal residue signs because the signs of modal residue is related to 

actuator-sensor placement and one can enforce this sufficient condition via informed choices of 

actuator and sensor position. This investigation motivated the need to find similar sufficient 

condition for undamped multi-DoF flexible system with any arbitrary number of modes and 

consider the effect of viscous damping on the behavior of zeros.  

Chapter 3 investigated the zero dynamics of classicaly damped two-DoF and three-DoF flexible 

systems using modal decomposition and zero locus techniques. This investigation again led to the 

necessary and sufficient condition for the absence of CNMP and RNMP zeros in these flexible 

systems. More importantly, this investigation demonstrated the effect of viscous damping on the 

zeros of flexible system by drawing constrast between the zeros loci of the undamped flexible 

systems in Chapter 2 and their counterparts in Chapter 3. It revealed that unlike the beneficial 

effect of viscous damping on poles, zeros can be negatively impacted by adding damping to a 

flexible system. The addition of viscous damping can push MP zeros to become NMP zeros, 

thereby leading to worse dynamic performance in open as well as closed-loop. However, the 

necessary and sufficient conditions provided in this chapter for the absence of NMP zeros lead to 
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informed choice of viscous damping strategies that have an overall beneficial effect on the zeros 

of two- and three-DoF flexible systems, as shown via a case study.  

Chapter 4 investigated the zero dynamics of multi-DoF undamped flexible systems with any 

arbitrary number of modes. It provides a new sufficient condition for the elimination of CNMP 

and RNMP zeros. Based on the existing literature, it was believed that only when all modal residue 

signs are the same, absence of NMP zeros was possible. However, Chapter 4 provides new 

sequences of modal residue signs that also guarantee the absence of NMP zeros. These sequences 

of modal residue signs can be enforced via either actuator-sensor placement or mass-stiffness 

distribution, as shown via a case study. However, the only drawback of this sufficient condition is 

that it is only applicable for undamped flexible systems (it has been empirically shown to gurantee 

the absence of NMP zeros in lightly damped flexible systems in the last chapter). Even when this 

sufficient condition is satisfied and therefore, all zeros are MMP, the addition of viscous damping 

can possibly convert these MMP zeros to NMP zeros. This motivated the need to find a viscous 

damping strategy that preserves the MP behavior of undamped multi-DoF flexible systems.  

Chapter 5 investigated the zero dynamics of multi-DoF proportionally damped flexible systems 

with arbitrary number of modes. It provided the necessary and sufficient condition for the absence 

of NMP zeros by only making use of proportional viscous damping. It was shown that proportional 

viscous damping can only guarantee the absence of CNMP zeros; absence of RNMP zeros cannot 

be guaranteed via this choice of damping strategy. It was shown that for certain choices of damping 

parameters, the proportional damping strategy preserves the MP behavior of undamped multi-DoF 

flexible systems. This means that if the undamped flexible system already consists of only MP 

zeros then the informed choice of proportional damping parameters will ensure that these zeros 

remain MP. Furthermore, if the zeros of the undamped flexible system are CNMP then the 
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informed choice of proportional damping paramters will convert these CNMP zeros to MP zeros, 

as shown via a case study. 

Chapter 6 investigated the effect of proportional viscous damping on the RNMP zeros of multi-

DoF flexible systems with any arbitrary number of modes. Proportional viscous damping cannot 

guarantee the absence of RNMP zeros for any choice of damping parameters, as shown in Chapter 

5. However, for some choices of damping parameters, all RNMP zeros can be pushed further away 

from the imaginary axis. The presence of RNMP zeros close to the imaginary axis makes it difficult 

to simultaneously achieve faster settling time and smaller undershoot. Therefore, pushing the 

RNMP zeros sufficiently away from the imaginary axis will lead to significant improvement in the 

dynamic performance of flexible systems. This is demonstrated in Chapter 6 via a case study where 

pushing all RNMP zeros further away from the imaginary axis via the application of proportional 

viscous damping led to faster settling time and smaller undershoot simultaneously. 

7.2 Future Work 

The following are the areas for future research in the field of zeros of flexible systems: 

1. Zeros of multi-input multi-output (MIMO) flexible systems: Very little is known in terms of 

the necessary and/or sufficient conditions for the absence of NMP zeros that occur in MIMO 

systems. A few references on the zeros of MIMO systems are given in [144-146]. Unlike the zeros 

of a SISO system, there are several alternate ways to define the zeros of a MIMO system such as 

“Smith-McMillan” zeros, zeros using co-prime factorization of the transfer function, zeros from 

Rosenbrock system matrix, among others. The commonly used definition of zeros of MIMO 

systems is based on their transmission blocking property and these zeros can be calculated using 

the Rosenbrock system matrix (RSM). If [A], [B], [C], and [D] are the state space matrices of a 

system with ‘n’ states, ‘p’ inputs and ‘q’ outputs, then the RSM matrix is defined as shown below:  
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‘z’ is the transmission zero of the MIMO system if the determinant of the RSM matrix for s = z is 

zero. In other words, the RSM matrix looses rank when s = z. This zero is referred to as the 

‘transmission zero’ because when the MIMO system is excited at this frequency via the ‘p’ inputs, 

then the response of all ‘q’ outputs is zero. Therefore, this definition of zero blocks the transmission 

of signal from all the inputs to all the outputs. The zeros of the SISO system studied in this thesis 

also have this transmission blocking property. However, there is no existing literature that provides 

a mathematical relationship between the zeros of a MIMO system and the zeros of its constituent 

SISO systems. The derivation of such relationships will provide a better understanding of the zeros 

of MIMO systems as well as allow us to extend the necessary and sufficient conditions derived for 

the absence of NMP zeros in SISO systems to MIMO systems.  

2. Experimental application of proportional viscous damping for absence of NMP zeros: Chapter 

5 and Chapter 6 provide the theoretical results and design strategies to use proportional viscous 

damping for the absence of NMP zeros. However, realizing proportional viscous damping in 

practice in not always feasible. Damping that inhenrently occur in flexible systems such as air 

damping, material hysteresis or damping due to joint friction in assembled machines are small but 

non-zero and they are not proportional in nature. Therefore, new and innovative techniques must 

be developed to add sufficient and deterministic proportional damping to flexible systems in order 

to guarantee the absence of NMP zeros and simultaneously push the poles to the LHS of the 

imaginary axis, leading to better overall dynamic performance.  

3. Creating closely spaced MMP zeros for vibration isolation over a large range of frequency: 

MMP zeros lying purely on the imaginary axis are also referred to as antiresonant frequencies. 
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These antiresonant frequencies provide excellent vibration isolation, however only over a small 

band of frequency. Therefore, the idea is to design the flexible system in such a way that multiple 

MMP zeros lie close to each other on the imaginary axis (just like closely spaced modes discussed 

in Chapter 2). These closely spaced MMP zeros can provide excellent vibration isolation over a 

large range of frequency.  Chapter 4 provides the sequence of modal residue signs that allows 

odd/even number of closely spaced MMP zeros without any poles in between. However, so far no 

example has been found in the existing literature where there are more than two closely spaced 

MMP zeros. Therefore, further research is needed to design flexible systems so that more than two 

closely spaced MMP zeros can be placed in the desired frequency range and achieve good vibration 

isolation.  

4. Leveraging the large sensitivity of CNMP zeros to system parameters to design ultra-sensitive 

sensors: Chapter 2 demonstrated that in the presence of closely spaced modes and alternating 

sequence of modal residue signs, MMP zeros can very easily transition into CNMP zeros even for 

the slightest change in system parameters such as mass-stiffness distribution or actuator-sensor 

placement. Although this property of flexible systems makes it difficult to achieve good control 

performance but this sensitive dependence of the CNMP zeros on the system parameters can be 

exploited to improve the sensitivity of existing sensors such as accelerometers or mass sensors. 

Several researchers [147-149] have already exploited the phenomena of mode localization and 

curve veering to increase the sensitivity of these sensors. However, no one has reported the use of 

CNMP zeros and its sensitive dependence on system parameters to achive the same goal. 

Therefore, further research is needed in this area to understand how the sensitivity of CNMP zeros 

can be leveraged to design ultra-sensitive sensors and what advantages it has over sensors built on 

the phenomena of mode localization.  
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