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ABSTRACT

Machine learning (ML) has revolutionized the pharmaceutical industry in recent decades,

influencing molecule design, drug target identification, biomarker discovery, and various stages

of drug development. This transformation, driven by the synergy between ML and

high-throughput drug screening technologies, has broadened the scope for novel treatments and

therapeutic indications. This dissertation explores the application of ML algorithms in

surmounting fundamental challenges in drug development, including stabilizing high-throughput

screening outcomes and transforming initial discoveries into clinical practices.

The first part of the dissertation enhances the generalizability of drug-based experimental

results. Our first project in this part assesses the reproducibility across experimental batches in

vitro, using data from DrugComb, the most extensive public portal for combination treatment

currently available. A critical experimental variable identified is the concentration selection for

dose-response matrices. To address this, a concentration imputation method is implemented

during feature preparation, markedly improving the predictive transferability of ML algorithms

across datasets. The next project shifts focus to the transferability of results between different

biological contexts (in vivo and in vitro). I present the winning algorithm from the Malarian

DREAM Challenge, which predicts artemisinin resistance in laboratory isolates using models

trained on transcriptome and response data from Plasmodium falciparum strains. This project

tackles challenges arising from different microarray platforms, response evaluation methods, and

biological backgrounds. A rank normalization method is employed to mitigate platform

xxv



discrepancies, and model visualization highlights key genes and pathways indicative of

artemisinin resistance in both in vivo and in vitro settings.

The second part discusses ML's role in discovering new treatments, using DNA damage

response (DDR) targeted combination therapy as a case study. An original high-throughput

screening dataset featuring 87 anti-cancer drugs and 12 cancer tissues is introduced for DDR

combination therapy. Effective and synergistic treatments were identified in combination with

ATM, ATR, or DNAPK inhibitors. An ML model is developed, incorporating molecular

readouts, synthetic lethality, drug-target interaction, biological networks, chemical structure, and

drugs' modes of action, to predict DDR combination treatment responses in new biological

contexts. This model shows promise in prescribing optimal DDR treatments based on the

patient's biological characteristics, enhancing treatment responses. Furthermore, a core gene

panel of only 40 genes was found to be more efficient in predicting DDR combination treatment

responses than using full genomic or transcriptomic profiles, leading to the development of a

rapid-selection interface for DDR combination treatments in pharmaceutical and clinical

applications.

xxvi



CHAPTER I: Introduction

Drug Development and Current Challenges

Modern drug development is an intricate journey of multi-stage process (Office of the

Commissioner, 2020), commencing with the initial stage of drug discovery. This phase is

characterized by rigorous target identification and validation, a crucial step in pinpointing

biological markers—typically proteins or genes—associated with specific diseases (Mohs &

Greig, 2017; Morgan et al., 2018). Post-validation, the procedure employs high-throughput

screening (HTS), a method involving the testing of numerous compounds against the identified

target to unearth potential drug candidates (Wildey et al., 2017). Following HTS, the journey

progresses to lead identification and optimization. This critical phase refines initial HTS 'hits'

through a series of chemical modifications, enhancing their pharmacological properties, such as

efficacy and safety. These enhanced compounds are then prepared for the pivotal preclinical

testing stage, involving both in vitro and in vivo studies to ascertain their safety and biological

activity (Van Norman, 2016a). Successful preclinical evaluation paves the way for clinical trials,

systematically divided into three phases. Phase I trials primarily focus on assessing the drug's

safety and dosage in a small cohort. Phase II trials broaden the scope to evaluate efficacy and

side effects. Phase III trials, which are more extensive, confirm the drug’s effectiveness, monitor

side effects, and compare it to existing standard treatments (Van Norman, 2016b). Post-clinical

trials, the drug undergoes a stringent review and approval process by regulatory authorities such

as the FDA, ensuring its safety and efficacy for the intended use (Sherman et al., 2016). Once

approved, the drug is launched into the market, subject to continuous post-market surveillance to
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monitor its long-term effects and maintain ongoing safety and effectiveness (Eichler et al.,

2012). The extensive nature of this process often leads to significant investments in research,

with the average cost for developing a new drug often exceeding one billion dollars (DiMasi et

al., 2016), and the timeline extending over a decade (Research and Development Policy

Framework, n.d.). A key challenge in this process is the high rate of failure, particularly during

clinical trials, with many compounds failing to demonstrate efficacy or safety in human trials.

This issue is especially pronounced in the development of treatments for complex diseases like

Alzheimer's or cancer (Vamathevan et al., 2019), presenting opportunities for the application of

machine learning to optimize various aspects of drug development.

Reproducibility and Transferability of Pharmaceutical Knowledge

The reproducibility between differential experimental batches, i.e. high-throughput drug

screenings, is crucial for the identification of reliable drug candidates. However, due to

variations in experimental conditions, such as differences in cell lines, reagents, or assay

protocols, results from one HTS experiment may not always be directly applicable to another,

and conclusions and methods that are developed from data within a single study can be not

generalizable to different studies (Ding et al., 2017; Larsson et al., 2020; Xia et al., 2022; H.

Zhang, Wang, et al., 2023).

Another great challenge in the transferability of pharmaceutical knowledge is between the

preclinical in vitro to in vivo models, primarily due to the fundamental differences between the

simplified, controlled environments of in vitro systems and the complex, multifaceted nature of

living organisms in in vivo studies. In vitro experiments, often conducted using cell lines or

tissue cultures, provide valuable initial insights into the biological activity of compounds.

However, these settings lack the intricate interplay of systems found in an organism, such as

2
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immune responses, metabolic processes, and organ interactions. Consequently, a drug candidate

that appears effective and safe in a controlled in vitro environment may not exhibit the same

properties in vivo, where metabolism, bioavailability, and potential toxicity present significant

hurdles (J. Yadav et al., 2021).

Another challenge is the physiological relevance of the in vitro models. While these models

are instrumental for initial screenings, they may not accurately mimic the disease state or the

tissue-specific context in an organism. This discrepancy can lead to misleading results regarding

a drug's efficacy or mechanism of action (Horvath et al., 2016). Moreover, the pharmacokinetic

and pharmacodynamic profiles of compounds can differ markedly between in vitro systems and

living organisms. In vitro studies do not account for factors such as drug absorption, distribution,

metabolism, and excretion (ADME), which are critical for determining a drug's effectiveness and

safety in vivo (Markossian et al., n.d.).

These challenges highlight the necessity for advancing methodological approaches and

developing more representative models, aiming to harmonize the outcomes of in vitro and in vivo

studies, thereby enhancing the translational success rate in drug development.

Machine Learning in the Drug Development Process

Addressing the aforementioned challenges, machine learning methods have emerged as

pivotal in expediting the drug development pipeline, enhancing both efficiency and reliability in

the discovery of new pharmaceuticals. These methods adeptly manage vast data quantities and

facilitate information compression. Notably, machine learning techniques such as transfer

learning, few-shot learning, and reinforcement learning are increasingly utilized to augment the

transference of insights from preclinical studies to clinical trials within the pharmaceutical

domain.
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Transfer learning, in particular, has demonstrated potential in harnessing data from analogous

fields to address data paucity in specific drug research areas. This technique allows for the

application of models trained on extensive datasets to smaller, similar datasets, thereby

enhancing drug response and toxicity predictions (Cai et al., 2020). In the context of rare

diseases, where data are often scarce, few-shot learning proves invaluable. This approach,

capable of making precise predictions from a minimal dataset, substantially accelerates the

preclinical research phase and hastens the transition to clinical trials (Ma et al., 2021).

Concurrently, reinforcement learning is being employed to refine drug dosing regimens and

treatment strategies. Through simulating various clinical scenarios, it aids in identifying optimal

treatment plans, thus diminishing the duration and resources required for clinical trials

(Korshunova et al., 2022).

Thesis Outline

In this dissertation, I focus on four projects that address the above problems in the

pharmaceutical development process. In Chapter II, I introduced an imputation method that

normalizes the differences in dose range in the in vitro high-throughput drug screening to

increase the cross-dataset reproducibility of compound selection. In Chapter III, I describe a

machine learning solution to infer in vitro treatment resistance from in vivo population-based

studies. In Chapters IV and V, I describe the preclinical selection of an emerging type of cancer

treatment: DNA damage response targeted combination therapy, and how machine learning can

play a role in accelerating primary research. In Chapter VI, I summarize my work and propose

future directions for these studies.
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CHAPTER II: Harmonizing across Datasets to Improve the Transferability of Drug

Combination Prediction

Abstract

Combination treatment has multiple advantages over traditional monotherapy in clinics, thus

becoming a target of interest for many high-throughput screening (HTS) studies, which enables

the development of machine learning models predicting the response of new drug combinations.

However, most existing models have been tested only within a single study, and these models

cannot generalize across different datasets due to significantly variable experimental settings.

Here, we thoroughly assessed the transferability issue of single-study-derived models on new

datasets. More importantly, we propose a method to overcome the experimental variability by

harmonizing dose-response curves of different studies. Our method improves the prediction

performance of machine learning models by 184% and 1367% compared to the baseline models

in intra-study and inter-study predictions, respectively, and shows consistent improvement in

multiple cross-validation settings. Our study addresses the crucial question of the transferability

in drug combination predictions, which is fundamental for such models to be extrapolated to new

drug combination discovery and clinical applications that are de facto different datasets.

Introduction

Combining multiple therapeutic agents has become an emerging strategy in cancer treatment.

While the monotherapy approach is often the standard of care, the combination of multiple

treatments has become inevitable as multiple comorbid conditions occur in cancer patients

(Fowler et al., 2020; Ketcher et al., 2019). Moreover, drug combinations have shown advantages
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over monotherapy by overcoming drug resistance, and increasing efficacy by synergistic

interactions (Bayat Mokhtari et al., 2017). To accelerate the development of new combination

therapies, a large number of studies on high-throughput screening of drug combinations have

been launched (Forcina et al., 2017; Holbeck et al., 2017; O’Neil et al., 2016), and thereafter

have been made comparable in large-scale databases such as DrugComb (Zagidullin et al., 2019;

Zheng et al., 2021), DrugCombDB (H. Liu et al., 2020), and SYNERGxDB (Seo et al., 2020).

These databases provide abundant resources for training a powerful model to predict new potent

combination treatments. For example, multiple machine learning tools have been developed, by

hundreds of international participants in the NCI-DREAM Drug Sensitivity and Drug Synergy

Challenge, and the AstraZeneca-Sanger Drug Combination Prediction (AZ-DREAM) Challenge

(Bansal et al., 2014; Menden et al., 2019).

However, most existing drug combination prediction models have been trained and tested

using the same datasets (Julkunen et al., 2020; J. Li et al., 2020; Shim et al., 2022; Sidorov et al.,

2019; Torkamannia et al., 2022; Zagidullin et al., 2021; T. Zhang et al., 2021). Cross-dataset

prediction remains a significant challenge due to experimental variability between independent

studies (Larsson et al., 2020; Xia et al., 2022). For example, when determining the drugs’

efficacy, different dosing regimens are used. The O’Neil study used dose-response5 × 5

matrices to determine the drug combination response (O’Neil et al., 2016), while the

ALMANAC drug combinations were tested by or dose-response matrices4 × 4 6 × 4

(Holbeck et al., 2017). While different dosages may not have a huge impact on summary

monotherapy measurements, such as Hill coefficient (slope of the dose-response curve), IC50

(dose at 50% of maximum response), GRAoC (area over the dose-response curve), and RI (relative

inhibition normalized by positive control) (Hafner et al., 2017; Malyutina et al., 2019), they may
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easily result in different interpolations of the dose-response curves, thus are often not used as

features by machine learning models for cross-study drug combination prediction (Güvenç

Paltun et al., 2021).

Due to the above challenges from different experimental settings, previous drug combination

machine learning models only considered the summary monotherapy measurements as their

dose-response features (Menden et al., 2019; Torkamannia et al., 2022). The complete

dose-response curves of monotherapies, which contain the full spectrum of pharmacodynamics

under different doses, cannot be fully captured by a single summary metric (Calabrese, 2014,

2016). Therefore, a method for harmonizing different dose settings is crucial for cross-study drug

combination machine learning models.

In this study, we propose to explore drug combination prediction across different studies with

variable dose settings. In particular, we develop a method to standardize the dose-response

curves across different studies. We show that such a method enables more efficient utilization of

pharmacodynamics profiles of monotherapies in machine learning models, hence improving the

prediction accuracy when transferring to new datasets. Our modeling strategy is of particular

importance to solve the replicability issue of machine learning for drug combination discovery.

Results

A framework of intra- and inter-study machine learning prediction

Our goal is to test the capability of machine learning models in predicting combination

treatment response, not only within a single study but also between different studies and on

unseen drug combinations. To achieve this goal, we first explore the publicly available

high-throughput screening datasets for anti-cancer combination treatments, to build a gold

standard for our experiment. We explore the current latest version of the DrugComb portal
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(https://drugcomb.org/), which contains the most comprehensive publicly-available drug

combination high-throughput screening datasets, including 24 independent studies. Among them,

we select four major datasets: ALMANAC, O’Neil, FORCINA, and Mathews, as they are of the

biggest sizes and therefore are commonly used in machine learning prediction of combination

responses (Fan et al., 2021; Güvenç Paltun et al., 2021; Preuer et al., 2018; Shim et al., 2022;

Sidorov et al., 2019; Xia et al., 2018; T. Zhang et al., 2021). These four studies contain a total of

406,479 drug combination experiments, 9,163 drugs, and 92 cell lines, while the size, drug, and

cell line composition, as well as experimental settings, vary significantly among them

(Supplementary Table 1). Of the four datasets, ALMANAC is the largest dataset with the most

drug-cell line combinations, and FORCINA has the largest number of drugs screened. O’Neil has

the best quality, where all the combinations are tested with four replicates, whereas ALMANAC

tested at most three replicates for each combination and Mathews tested two replicates for each

combination. In contrast, the FORCINA dataset contains no replicates.

We carry out a two-step cross-study validation strategy (Figure 2.1a). First, we train

dataset-specific models and carry out intra-study cross-validation. The training and testing sets in

this step do not share the same treatment-cell line combinations. Therefore, we aim to test the

performance of machine learning models in predicting unseen combination treatments within the

same study. Next, during the inter-study cross-validation step, we test these dataset-specific

models on new individual datasets, which are denoted as “1 vs 1” in Figure 2.1a. Furthermore,

to explore more versatile inter-study scenarios, we design a “3 vs 1” cross-validation strategy by

combining three of the four datasets as the training set and the remaining one as the test set.

To analyze the potential of transferability, we determine the overlap of the drugs, cancer cell

lines, and treatment-cell line combinations between the four studies (Figure 2.1b). While drugs
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are overlapped between all the studies, no overlap of cell lines exists between FORCINA and

Mathews with the other datasets, since both FORCINA and Mathews include only one unique

cancer cell line. Overall, only 612 treatment-cell line combinations exist between ALMANAC

and O’Neil, providing reference data for evaluating the performance of cross-dataset prediction.

Using the replicates within each dataset and the overlapping treatment-cell line combinations

between the datasets, we analyze the reproducibility of a drug combination sensitivity score

called CSS (Malyutina et al., 2019), as well as multiple drug combination synergy scores,

including S, Bliss, HSA, Loewe, and ZIP (Malyutina et al., 2019; B. Yadav et al., 2015). The

intra- and inter-study reproducibility can be used as a benchmark for the drug combination

prediction model we build in the next step (Supplementary Figure 2.1). While no replicates

exist in the FORCINA dataset, the O'Neil dataset shows the best intra-study replicability (0.93

Pearson’s r for CSS, 0.929 Pearson’s r for S, 0.778 for Bliss, 0.777 for HSA, 0.938 for Loewe,

and 0.752 for ZIP), possibly due to the relatively more abundant replicates in this study

(Supplementary Figure 2.1). When testing the overlapping treatment-cell line combinations

between ALMANAC and O’Neil, as expected, all the drug combination synergy scores show

significant drops of replicability (0.2 Pearson’s r for S, 0.12 for Bliss, 0.18 for HSA, 0.25 for

Loewe, and 0.09 for ZIP), while the CSS score still maintains a higher correlation (0.342

Pearson’s r). The higher reproducibility of the CSS score, both within and across the studies,

suggests that drug combination sensitivity is more reproducible than synergy, which may justify

why most of the clinically approved drug combinations rely on their combinatorial efficacy

rather than synergy (Palmer & Sorger, 2017; Plana et al., 2022).

The above result highlights the challenges of predicting cross-dataset drug combinations

including 1) the scarcity of overlapped compounds and cell lines between studies, and 2) the
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variability in the assay and experimental settings, such as the total number and ranges of doses.

To combat these challenges, we propose a machine learning model using the following features

(Figure 2.1c): 1) for both drugs, we use chemical structure-derived fingerprints, which can be

transferred to chemicals that may not be present in the training set; 2) we use pharmacodynamic

properties, such as monotherapy efficacy scores and dose-response curves of the drugs. The

dose-response curves will be normalized; 3) we use the expression of 273 essential cancer genes

(Cheng et al., 2015) to represent the molecular states of the cell lines. The above features will be

fed into a lightGBM boosting model, as it has shown higher efficiency than other tree-based

algorithms such as XGboost and Random Forest when training on large datasets (Ke et al.,

2017). We will evaluate the accuracy of predicting the six types of drug combination response

scores (i.e. CSS, S, Bliss, HSA, Loewe, and ZIP).

Combating inter-study variability by integrating monotherapy efficacy and imputation of

dose-response curves

We observe that experimental settings differ not only between different studies but also

within the same study (Supplementary Table 2.1 and Supplementary Figure 2.2). For

example, the dose-response matrix ranges from (FORCINA) to (Mathews), and2 × 2 10 × 10

within the O'Neil dataset, both and dose-response matrices are used. Meanwhile,4 × 4 4 × 6

the dose ranges differ significantly within and between studies (Supplementary Table 1). For

example, within the ALMANAC study, more than 40 different doses were used (Supplementary

Figure 2.2), and the maximum doses tested for each drug were different due to their distinctive

pharmacodynamic properties(O’Neil et al., 2016). Therefore, we precalculate the replicability of

monotherapy efficacy scores, in terms of IC50, RI, and the distribution statistics (maximum,

minimum, mean, and median of all inhibitions in the dose-response curves) within and between
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different datasets (Supplementary Figure 2.3). We notice that RI and IC50 show comparable

reproducibility within datasets, with Pearson’s r of RI ranging from 0.363 (within Mathews) to 1

(within O’Neil), while Pearson’s r of IC50 ranges from 0.537 (within ALMANAC) to 1 (within

O’Neil). However, the replicability of IC50 is much lower than that of RI in the cross-dataset

analysis, (Pearson’s r = 0.084 for IC50 versus r = 0.451 for RI between ALMANAC and O'Neil).

Most dose-response curve shape statistics show Pearson’s r better than or comparable with IC50

and RI, either within or between studies, suggesting potential in cross-study prediction

(Supplementary Figure 2.3).

We start exploring the drug combination response prediction based on the monotherapy

responses such as efficacy and dose-response curves (M1-M12, Figure 2.2, Supplementary

Figure. 2.4-10, and Supplementary Tables 2.2-5). Three types of features based on

monotherapy responses are constructed, denoted as “drc_baseline”, “drc_imputation” and

“monotherapy_efficacy”, where the former two features are based on the exact dose-response

relationships, and the efficacy is summarized score of the curve (IC50 or RI) (Figure 2.2a). Since

the total number of doses varies significantly, we interpolate all the dose-response curves to the

same length for all the datasets (Figure 2.2b). We test linear, Lagrange, 4-parameter log-logistic

regression (LL4) interpolation (M2-M4, Supplementary Figure 2.5 and 2.6). Among the three

interpolation methods, linear interpolation performs the best in the intra-study cross-validation

while LL4 performs the best in the intra-study cross-validation. Furthermore, combining all three

methods shows better performances in both scenarios and thus is used in the final “imputation”

model (M5, Supplementary Figure 2.5 b and d). Also, since using IC50 and RI together is

generally better than them alone in the intra- and inter-study cross-validations, the final

monotherapy efficacy feature contains both measurements (M7-M9, Supplementary Figures
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2.7 and 2.8). Five models using different combinations of the monotherapy response-based

features mentioned above are shown in Figure 2.2. We notice that M12, which is a combination

of all three types of monotherapy features, performs slightly better in the intra-study

cross-validation (101~102% fold change compared to the other models), while M5, which is the

pure imputation model, performs the best in the inter-study cross validations (107%~115% fold

change compared to the other models), and this advantage is especially significant in the

prediction of Bliss (112% ~ 113% fold change compared to the other models) and Loewe scores

(119%~138% fold change compared to the other models) (Supplementary Figure 2.4). It is

expected that M12 performs the best in the intra-study validation since the un-imputed

dose-response baseline features contain the doses for dose-response evaluation. These doses

chosen for monotherapy response evaluation can be significantly different (Supplementary

Table 2.2), thus causing biases in the cross-study prediction. However, the monotherapy doses

can still be effective for within-study prediction since they contain unique experimental

information for each drug. The imputation method, on the other hand, indeed alleviates the

biases in the experimental settings and is more universally transferable between different

experimental settings, thus M5, which only imputes dose-response information, outperforms all

other monotherapy-based models.

When comparing the monotherapy efficacy directly with dose-response curve-based models,

interestingly, the efficacy model shows the best performance in inter-study prediction while the

worst in intra-study prediction (Supplementary Figures 2.9 and 2.10). We notice that the

efficacy model performs especially well when trained or tested on the FORCINA dataset, which

adopts a dose-response matrix design (Supplementary Figure 2.9a). We reckon that the2 × 2
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coarse dose-response relationship may not be as good as the total efficacy in this case, as the

imputation becomes unreliable with only two doses.

The imputation methods improve the benchmark model’s performance in the cross-study

prediction

Previously, the DrugComb study provided a benchmark model using the O’Neil dataset, by

integrating one-hot encoding of drugs and cell lines as well as drug chemical fingerprints, drug

doses, and cell line gene expressions in the model construction (Zheng et al., 2021). In this study,

we construct a reference model based on their schemes, by encoding the chemical structure

properties and molecular profiles of drugs and cell lines in the feature set, and explore if the

imputation method of the dose-response curve can further improve the prediction accuracy

across different individual datasets (Figure 2.3 and Supplementary Figure 2.11).

We construct five models step-by-step, from the label information (categorical encoding of

both drugs and cell lines) to adding the chemical structure of both drugs encoded by molecular

fingerprints and cell line cancer gene expression, to adding monotherapy efficacy, and adding the

dose-response curve baseline feature and imputation feature, respectively. The performances of

all models are listed as M13-M20 (Supplementary Tables 2.2-5). And five models, including

M13-16, and M20, are listed for the main comparison (Figure 2.3a).

We notice that, while the benchmark models with only information directly from drugs and

cell lines (M13 and M14) still achieve decent performances around the experimental

reproducibility levels in intra-study cross-validation (Supplementary Table 2), neither of these

models achieve better-than-random performances in the cross-study predictions, due to a lack of

shared drugs and cell lines across different studies (Figure 2.3b and Supplementary Table 2.3).

Incorporating pharmacological properties such as monotherapy activity on the same cell lines
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(M15) improves both the intra-study and inter-study prediction performances to 178% and

1299% compared to the reference model (M13), showing the robustness of monotherapy efficacy

information between studies (Figure 2.3c). Adding the monotherapy baseline information (M6)

further improves the inter-study performance but not the intra-study, possibly due to the same

reason we mentioned in the previous section, that the baseline information contains the dose

settings, which is a dataset-exclusive artifact. Furthermore, adding the imputed information

(M20) further improves the performances in both intra- and inter-study cross-validation, to 184%

in the intra-study cross-validation and 1367% in the inter-study validation (Figure 2.3c). This

improvement is consistent in terms of all the drug combination sensitivity and synergy scores,

with 1187% in CSS, 2141% in Bliss, 949% in HSA, 2257% in Loewe, 723% in ZIP, and 2019%

in S score, respectively (Supplementary Figure 2.11b). Notably, the models achieve better

performances than experimental replicates within and between studies (Supplementary Tables

2-5). We conclude that the imputed dose-response curve contains orthogonal information to the

monotherapy efficacy, which can be effectively used to improve the prediction of combination

treatment response by overcoming the variability between different experimental settings.

To understand which information plays the most important role in the inter-study prediction,

we carry out SHAP (SHapley Additive exPlanations) analysis to visualize the contribution of all

the features in the best-performing model (M20, Figure 2.3). As expected, the dose-response

curve-derived feature shows significant SHAP importance and remains the top feature for all the

drug combination response score predictions, while the monotherapy efficacy score also shows

significant importance in the S score prediction (Supplementary Figure 2.12). We then analyze

the contributions of the dose-response imputation features specifically and noticed that the

imputed responses at the beginning and end of the curve show significant importance in the
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prediction, suggesting that the minimum and the maximum response of the monotherapies are

informative for predicting the drug combination response (Supplementary Figure 2.13).

To demonstrate the robustness of our models in broader inter-dataset validation settings, we

carry out 3 vs. 1 cross-validation experiments based on the four datasets we use in this study

(Figure 2.4 and Supplementary Figure 2.14-17). For each training and test setting, we combine

three datasets and use the combination as the training set, then test the model on the remaining

datasets. We expect that using a multi-sourced training set can lead to improved model

performances, by including more types of drugs and cell lines in the training instances. Thus, the

training datasets can potentially contain more transferable information to new datasets. As

expected, the optimal model in 1 vs. 1 inter-study cross-validation settings, M20, which is the

baseline model plus dose-response curve imputation feature, shows the same advantages

compared to the other models, with 910% performance compared to M1 and 1544% performance

compared to M2 (Figure 2.4b).

Discussion

How to tackle the replicability in results between different studies to draw meaningful

conclusions has been a critical issue in drug discovery (Bailey, 1987). During cancer treatment,

resistance is frequently developed against monotherapies, and a combination usage of multiple

drugs targeting parallel pathways is needed to overcome this issue. While the application of

high-throughput screening on cancer cells accelerates the rational design of drug combinations

toward clinical trials (Bush et al., 2018; He et al., 2018; Ling & Huang, 2020), the inconsistency

between currently available datasets has been a major concern, posing a challenge to translate

these in-vitro studies into an in-vivo setting (Blucher & McWeeney, 2014; Caraus et al., 2015;

Chan et al., 2016; Szymański et al., 2012; Xia et al., 2022). As the experimental replicability
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between independent combination screening datasets can be quite low (0.089~0.342 Pearson’s r

between ALMANAC and O’Neil) (Supplementary Figure 2.1), which is much lower than that

for monotherapy screening (0.194~0.683 R2) (Xia et al., 2022), a robust machine learning

strategy is urgently needed for meaningful clinical applications.

Our study, for the first time, addresses the inter-study transferability issue in large-scale

screening. We identify a major cause of variability between different studies, which is the

experimental setting of drug dosage. The total number of doses, and the dose ranges, can be

significantly different between studies, and even between replicates within single studies

(Supplementary Figure 2.3). Based on the above observation, we consider the dose-response

relationship as part of the features in our machine learning model for drug combination

sensitivity and synergy prediction and find out that such a modeling strategy significantly

improves the transferability of machine learning models between datasets, with an accuracy that

is comparable with in-study replicabilities (Supplementary Tables 2.2-5).

Our study focuses on the transfer learning between in vitro high throughput drug

combination screening studies (Kim et al., 2021), however, future work is needed to further

improve the clinical translation of drug combination predictions. For example, it remains

unknown whether the top drug combinations from the in vitro studies are transferable to clinical

treatment (Plana et al., 2022), and whether the response of monotherapy treatment can help infer

clinical efficacious combinations (Jafari et al., 2022; Narayan et al., 2020) Furthermore, a

mechanistic model on signaling pathways is needed to validate that the predicted drug

combination biomarkers can be used for patient stratification in clinical trials (Boshuizen &

Peeper, 2020; Tan et al., 2021). Future modeling of transferability should be carried out between
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in vitro and preclinical studies, such as patient-derived ex-vivo and mouse models, as well as

multiple clinical trial meta-analyses (Kim et al., 2021; Ma et al., 2021).

Methods

Data collection

Currently, DrugComb has been the largest public data portal for in vitro high-throughput

combination treatment screening studies. We selected the four largest datasets (ALMANAC,

O’Neil, FORCINA, and Mathews) from DrugComb (https://drugcomb.org/) for the inter and

cross-study analysis in this paper, where the detailed comparisons for the four datasets are shown

in Supplementary Table 2.1.

DrugComb provides six metrics (CSS, S, Bliss, HSA, ZIP, Loewe) for the responses of

combination treatments, and two metrics (IC50 and RI (relative inhibition)) for the response of

single drug treatments. The details of the formula of these metrics have been described in Zheng

et al. (Zheng et al., 2021). Briefly, CSS analyzes the overall drug efficacy for the combination

treatment, while S, Bliss, HSA, ZIP, and Loewe evaluate the synergy or the degree of interaction

between the two drugs used in a combination treatment. Besides the efficacy and synergy metrics

for monotherapy/combination therapy, DrugComb also provides the SMILES (Simplified

molecular input line entry system) format chemical structure of drugs, which is used for

structural encoding in this study.

The transcriptomic profiles of all the cancer cell lines used in this study were obtained from

CCLE (Cancer Cell Line Encyclopedia) (https://sites.broadinstitute.org/ccle/datasets). We

obtained 279 cancer-associated genes from the IMPACT (Integrated Mutation Profiling of

Actionable Cancer Targets) project (Cheng et al., 2015), 273 of which were found to be
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overlapped with the CCLE transcriptomic profiles. Therefore, these 273 genes were used for

combination treatment response prediction in this study.

Hyperparameters of machine learning models

We chose the lightGBM gradient boosting model as the base learner used in the experiment.

The hyperparameters of the lightGBM models were set as follows:

param = {'boosting_type': 'gbdt',

'objective': 'regression',

'num_leaves': 20,

'max_depth': 8,

'force_col_wise': 'true',

'learning_rate': 0.05,

'verbose': 0,

'n_estimators': 1000,

'reg_alpha': 2.0,}

where the total number of leaves was set to 20 and the maximum depth was set to 8 to avoid

overfitting on the training dataset. 'num_boost_round' was set as 500 for boosting iterations.

Training and cross-validation of models within and between studies

For cross-validation of the models, we carried out model training in the following steps:

1) intra-study training and cross-validation: in this step, we carried out five-fold

cross-validation for model training and testing. We split the training dataset by combination

treatment-cell line, therefore the model can be tested on unseen examples to predict new

combination treatment synergy and efficacy. As a result, for each of the four datasets, five
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models were generated by training on different combination treatment-cell line splits. Since

the two drugs in the combination should be considered equally, during the training steps, the

first and second drugs were switched and put in the training set again to adjust for the

possible bias by order of the two drugs.

2) 1 vs. 1 inter-study validation: in this step, no extra models need to be trained. The models

trained within each study from step (1) were used for prediction in other datasets except for

the training dataset. In this step, the final prediction results from the five intra-study models

generated from step (1) are ensembled by averaging. The ensemble method can reduce the

prediction variance thus improving the stability of inter-study prediction performance

(Hashem, 1997).

3) 3 vs. 1 inter-study validation: To explore the generalization of 1 vs. 1 inter-study validation

in step (2), we tested the same feature settings on datasets with different compositions. In

this step, we combined 3 of the 4 datasets as the training set and tested it on the remaining

dataset. The training process is still carried out by inter-study five-fold cross-validation as

step (1) and tested on the remaining dataset as step (2).

Feature preprocessing and construction

We applied the following types of information to generate an inter-study-transferable model.

The chemical and pharmacological properties of both drugs and the biological characteristics of

the treated cell lines were used to construct the feature space.

Firstly, we defined a reference model by applying the following types of information:

1) Categorical encoding of the names of both chemical agents in the treatment (denoted as

“drug_categorical”), and categorical encoding of the cancer cell line (denoted as
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“cell_line_categorical”). Both features were implemented as categorical features during the

training of lightGBM models.

2) To provide information in terms of the drugs’ chemical properties, we generate molecular

fingerprints from the chemical structure of both chemical agents (denoted as

“chemical_structure”). 166 MACCS, 1024 Morgan, and 2048 RDK molecular fingerprints

were generated based on the SMILES format of the chemical structure of drugs, using

openbabel and rdkit modules from Python. The three types of fingerprints were

concatenated together directly for the chemical structure encoding.

3) To provide a meaningful biological background of the treated cell lines, we used the gene

expression levels of 273 cancer-associated genes obtained from CCLE as the representation

of the cell line features (denoted as “cancer_gene_expression”). The gene expression levels

for each cell line were quantile normalized before implementation.

4) To provide pharmacological properties of the single drugs, we used two efficacy metrics of

each of the cancer drugs on the same cell line: IC50 (denoted as “monotherapy_ic50”) and RI

(denoted as “monotherapy_ri”), where IC50 represents the dose of the drug achieving 50% of

the maximum response, and RI is the normalized area under the log10-transformed

dose-response curve.

5) For more detailed pharmacological properties, and also to evaluate the variability of

experimental settings in different studies, we used the information from the dose-response

dose of the single drugs on the same cell lines, which is also provided by the DrugComb

datasets. We encoded the dose-response curves using different methods as follows:

a) dose-response curve baseline encoding (denoted as “drc_baseline”): the doses of and

corresponding responses were flattened as a vector and concatenated together. Since in
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different experiments, the total number of doses measured could be different, ranging from

two to ten, the total number of doses is padded to ten by -1 from the right. For example, for

the monotherapy MK-5108 tested on ES2 cell line, the response was measured at five

different doses (μm): [0, 0.075, 0.225, 0.675, 2], and the corresponding response is [0, -0.48,

-0.47,4.32, 20.72], then both doses and responses will be padded to

[0,0.075,0.225,0.675,2,-1,-1,-1,-1,-1] and [0,-0.48, -0.47,4.32, 20.72,-1,-1,-1,-1,-1], and

concatenated together for feature input.

b) dose-response curve imputation encoding (denoted as “drc_imputation”): Instead of directly

taking dose-response curve information as the baseline encoding, we normalized the

dose-response relationship by interpolation since the dose-response curves within and

between different studies are measured by significantly different dose numbers and ranges

(Supplementary Figure 2.4), the total number of responses on the curve can be different,

introducing a significant challenge for applying this information in inter-study validation.

Therefore, interpolating the dose-response curves to the same length can help them to be

interpreted at the same magnitude. While all dose-response relationships were measured at

logarithmic dose scales, the maximum length of the dose-response curve ranges from 2-10.

Therefore, all dose-response curves are first log10-transformed and then interpolated to the

length of 10. We carried out the following commonly-used interpolation methods and tested

the difference between them:

i) Linear interpolation (denoted as “drc_intp_linear”): We use the Numpy Python package to

generate the linear interpolated dose-response curve. The linear interpolation is computed

using the equation (1):

… … Eq(1)
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where (x, y) is the coordinate for the interpolated point between (x0, y0) and (x1, y1).

ii) Lagrange interpolation (denoted as “drc_intp_lagrange”): We used the Scipy Python

package to compute the Lagrange interpolation of the dose-response curve. The formula for

computing Lagrange interpolation is equation (2):

... … Eq(2)

Where

,

n: total number of doses before interpolation.

iii) Four-parameter log-logistic (LL4) regression interpolation (denoted as “drc_intp_4PL”): As

dose-response curves are often fitted by a four-parameter logistic regression function in the

standard analysis, we implemented a Python version of the drc R package using the same

parameter implementation (Ritz et al., 2015). The LL4 interpolated curve is computed by

equation (3):

... … Eq(3)

where,
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In total, 20 different combinations of the above features are tested in this paper. For details of

all the models, please refer to Supplementary Table 2.5, and the corresponding performances

are summarized in Supplementary Tables 2.2-4.

Visualization of feature importance in machine learning models

To visualize the feature importance during cross-study validation, we carried out SHAP

(SHapley Additive exPlanations) analysis, a game-theory-based AI visualization method, on both

individual features and grouped features, by taking advantage of the addictive nature of Shapley

values (S. M. Lundberg et al., 2020; Shapley, 1983). The SHAP analysis is carried out and plots

are generated by using the Python shap package (S. M. Lundberg et al., 2018).

Statistical quantification and evaluation metrics

The model’s performances, as well as the replicability of drug response measurements, are

evaluated by Pearson’s correlation coefficient (r). Pearson’s correlation coefficient is defined by

equation (4):

… … Eq(4)

Where x is the gold standard and y is the prediction value when evaluating the machine

learning model performances. When evaluating the intra- and inter-study experimental

replicability, we selected all possible paired permutations from the replicate experiments with the

same treatment-cell line combinations and computed the Pearson’s r between the two replicates

in these permutations. This step demonstrates the variability of experiments and provides a

reference for the upper bound for the machine learning model prediction.
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As the distribution of each dataset deviates significantly we didn’t use RMSE as the main

evaluation metric in this study. Since RMSE can be significantly decreased by approaching the

average values of all responses, but not as sensitive by distinguishing higher and lower responses

in the test dataset. Thus, the models failed to generate meaningful predictions to differentiate

combination experiments with different responses that can have lower RMSE. This drawback

can be overcome by using a relativity-based metric, such as Pearson’s correlation coefficient,

instead.

The confidence of evaluation metrics, of the 95% confidence interval, is generated by

bootstrapping the predictions from the total datasets. We randomly sampled the prediction results

from the test set without replacement 100 times to generate the 95% confidence interval.

Since all models were tested in different training and testing dataset combinations, to

evaluate the consistency of model performances in the intra- and inter-study cross-validation, we

carried out two-sided paired t-tests to evaluate the significance of differences between each pair

of models. The fold-change (FC) and significance of the p-value were used to show the

magnitude of differences between the two models.

Code Availability

The source code of the analysis and models are available on GitHub:

https://github.com/GuanLab/DrugComb-cross-study-prediction
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Figures

Figure 2.1. Overview of the framework on intra- and inter-study drug combination
predictions. a, The cross-validation strategy. We carry out the cross-validation in two steps:
intra-study, which is five-fold cross-validation carried out within a single dataset, where the
training and test sets are split by drug combination and cell lines, and inter-study, which is
carried out between different datasets. The models used in the 1 vs. 1 inter-study
cross-validation are the models generated from the inter-study training step. For the 3 vs. 1
inter-study cross-validation, three of the four datasets are combined and used as the training set
to generate five models by five-fold cross-validation and then tested on the remaining dataset. b,
The overlapped information (drug, cell line, and treatment-cell line combination) between the
four datasets used in this study. c, The schematic of model construction in this study. We use four
different data sources to generate the machine learning model used in this study. For drug-related
features, we used chemical structure, monotherapy efficacy score, and their corresponding
dose-response relationship. For the treated cancer cell lines, we used the transcription levels of
293 cancer-related genes. The constructed features are input into a lightGBM learner to generate
models predicting the six different response metrics of the combination treatment: CSS, which is
the sensitivity score representing the efficacy of the combination, and five synergy scores (S,
Bliss, HSA, Loewe, and ZIP) representing the degree of interaction between the two drugs.
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Figure 2.2. Strategy to normalize the differences in inter-study experimental settings. a,
Demonstration of different dose-response curves (drc) feature construction schemes. The drc
baseline feature is defined as the direct concatenation of doses and corresponding responses,
where the total number of doses and responses will be padded by “-1” to the same length for
different experimental settings. The drc imputation feature is the concatenation of imputed
responses by different interpolation methods (see Methods for details). The monotherapy
efficacy feature is the IC50 and RI of both drugs on the same cell line. b, Schematics of
inter-study interpolation normalization in experimental settings. For experimental settings A, B,
and C, which are tested using a different total number of doses, N1, N2, and N3, we pull out the
largest number of doses across all the studies, denoted as Nmax. Then, the dose-response
information of each setting is interpolated to the same size as Nmax. c, Performances are evaluated
by Pearson’s r for all models, which are models with different combinations of the three features.
The top performance in each training set (top) and testing set (right) is denoted by “*”. d,
Heatmap shows the results from paired t-test between the performances of five models in intra-
and inter-study cross-validation. The color in the heatmap shows the fold change (FCs) of the
average performances between each model pair.
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Figure 2.3. Normalized dose-response information improves the intra- and inter-study
prediction performances of benchmark models. a, Schematic of the step-by-step feature
construction strategy from the benchmark models (M13-M15) to the
dose-response-curve-incorporated models (M16 and M20). b, Performances in all the training
and testing scenarios for M1-M5. The best-performing models were denoted by “*” c,
Comparisons of performances of M1-M5 from paired t-test. The fold changes (FCs) between
model pairs are shown in different colors.

27



Figure 2.4. Comparison of performances before and after incorporating dose-response
curve into the baseline model in inter-study predictions. Models were trained using three
datasets and then tested on the remaining dataset. The models refer to the same model definition
in Figure 2.3. a, Performances of machine learning models in the 3 vs 1 training-testing setting.
For each comparison, the training set includes three studies shown on the top, while the test set
contains one study shown on the right. Top performances are marked by “*”. b, The Pairwise
comparison of performances of five models, showing the fold-changes (FCs) and their p-values
(paired t-test).
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Supplementary Tables

Supplementary Table 2.1. Summary basic information of all datasets used in this study
obtained from DrugComb. The numbers of total experiments, monotherapy drugs, drug pair
combinations, cell lines, cell line-treatment combinations, and experimental settings
(dose-response matrices and dose ranges) are shown in the table below.

Study #experiment # drug #drug
combination #cell line

#cell
line/-treatment
combination

dose-response
matrix

dose range
(μm)

ALMANAC 311,604 103 5142 60 299,548 or4 × 4 4 × 6 0~250

O’Neil 92,208 38 583 39 22,737 5 × 5 0~20

FORCINA 1,818 1818 1818 1 1,818 2 × 2 0~400

Mathews 1,119 477 967 1 967
or6 × 6

10 × 10 0~1000
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Supplementary Table 2.2. Performances (Pearson’s r) of all models tested in this study in
intra-study cross-validation. The best performances for each dataset, each score, were marked
as red. The features for all models are listed in Supplementary Table 2.5.
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Supplementary Table 2.3. Performances (Pearson’s r) of all models tested in this study in 1
vs. 1 inter-study cross-validation. The best performances for each train-test setting, each score,
were marked as red. The features for all models are listed in Supplementary Table 5.
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Supplementary Table 2.4. Performances (Pearson’s r) of all models tested in this study in 3
vs. 1 inter-study cross-validation. The best performances for each train-test setting, each score,
were marked as red. The features for all models are listed in Supplementary Table 5.
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Supplementary Table 2.5. Table legend for all models in Supplementary Table 2.2-4.
model feature

M1 drc_baseline

M2 drc_intp_linear

M3 drc_intp_lagrange

M4 drc_intp_4PL

M5 drc_intp_linear+drc_intp_lagrange+drc_intp_4PL

M6 drc_baseline+drc_intp_linear+drc_intp_lagrange+drc_intp_4PL

M7 monotherapy_ic50

M8 monotherapy_ri

M9 monotherapy_ri+monotherapy_ic50

M10 monotherapy_ic50+monotherapy_ri+drc_intp_linear

M11 monotherapy_ic50+monotherapy_ri+drc_intp_linear+drc_intp_lagrange+drc_intp_4PL

M12 monotherapy_ic50+monotherapy_ri+drc_baseline+drc_intp_linear+drc_intp_lagrange+drc_intp_4PL

M13 drug_categorical+cell_line_categorical

M14 drug_categorical+cell_line_categorical+cancer_gene_expression+chemical_structure

M15 drug_categorical+cell_line_categorical+cancer_gene_expression+chemical_structure+monotherapy_ic50+monothe
rapy_r

M16 drug_categorical+cell_line_categorical+cancer_gene_expression+chemical_structure+monotherapy_ic50+monothe
rapy_ri+drc_baseline

M17 drug_categorical+cell_line_categorical+cancer_gene_expression+chemical_structure+monotherapy_ic50+monothe
rapy_ri+drc_intp_linear

M18 drug_categorical+cell_line_categorical+cancer_gene_expression+chemical_structure+monotherapy_ic50+monothe
rapy_ri+drc_intp_lagrange

M19 drug_categorical+cell_line_categorical+cancer_gene_expression+chemical_structure+monotherapy_ic50+monothe
rapy_ri+drc_intp_4PL

M20 drug_categorical+cell_line_categorical+cancer_gene_expression+chemical_structure+monotherapy_ic50+monothe
rapy_ri+drc_intp_linear+drc_intp_lagrange+drc_intp_4PL
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Supplementary Table 2.6. Example of the drug combination dataset provided by
DrugComb. For each combination, two drugs (drug_row and drug_col) and the treated cell line
(cell_line_name) are shown. Five synergy scores (ZIP, Bliss, Loewe, HSA, and S) and sensitivity
scores (CSS) are shown for each experiment. For each drug combination, there could be more
than one replicated experiment. The source of each experiment can be traced using the block ID.

block id drug_row drug_col cell_line_name CSS ZIP Bliss Loewe HSA S
1 5-FU ABT-888 A2058 30.869 3.865 6.256 -2.951 5.537 19.839
2 5-FU ABT-888 A2058 27.46 8.247 12.334 3.126 11.614 16.43
3 5-FU ABT-888 A2058 29.901 6.063 11.660 2.452 10.941 18.871
4 5-FU ABT-888 A2058 24.016 -4.280 5.145 -4.063 4.426 12.986

34



Supplementary Figures
Supplementary Figure 2.1. Reproducibility of the six drug combination activity
measurements within and between studies used in this dataset. The reproducibility is
measured by Pearson's correlation between the response scores (S, CSS, Bliss, HSA, Loewe, and
ZIP) of the same treatment-cell line combinations. The reproducibility can be used as a standard
to evaluate the prediction performance in study and cross-study. For cross-study, only studies
with overlapped treatment-cell line combinations were evaluated. FORCINA is not included in
this figure since there are neither replicates within this dataset nor between this dataset and the
others.
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Supplementary Figure 2.2. Histograms show the concentration ranges (log10) for single
drug dose-response measurements adopted in the four high-throughput screening studies.
Different colors (red, purple, blue, and green) denote the HTS study (ALMANAC, O’Neil,
Mathews, and FORCINA) the monotherapy dose setting is used for each dose-response curve.
Since all doses start from 0, the log10 of the first concentration (- ) is not shown in this graph.∞
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Supplementary Figure 2.3. Reproducibility of monotherapy response measurements in
different studies used in this dataset. The reproducibility is measured by Pearson's correlation
between the response score (IC50 and RI (relative inhibition)), and statistics of the dose-response
curve (min, mean, median, and max of inhibition) of the same monotherapy treatment-cell line
combinations. The reproducibility can be used as a reference for the prediction performance
in-study and cross-study. For cross-study, only studies with overlapped monotherapy
treatment-cell line combinations were evaluated. FORCINA is not included in this figure since
there are no replicates in this dataset. “all” refers to the overall replicability across all studies.
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Supplementary Figure 2.4. Pair-wise comparison of model performances over each
combination treatment response score (CSS, Bliss, HSA, Loewe, ZIP, S) using p-values
from paired t-test and performance ratios (PR). The models in this figure correspond to
Figure 2.2 d. a. intra-study cross-validation. b. inter-study cross-validation.
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Supplementary Figure 2.5. The comparison between different interpolation methods for
dose-response curves. a. example of original drc and different interpolation methods. The
original dose-response curve contains only five doses and is interpolated to the maximum length,
which is ten doses. Also, for the interpolation models, we used the magnitude of interpolated
inhibition as the final feature. b. Performances of all interpolation models in different training
(horizontal) and testing (vertical) settings. c. Comparison of performances between models by
paired t-test and performance ratio (PR) on the average.
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Supplementary Figure 2.6. Pair-wise comparison of model performances over each
combination treatment response score (CSS, Bliss, HSA, Loewe, ZIP, S) using p-values
from paired t-test and performance ratios (PR). The models in this figure are corresponding
to Supplementary Figure 2.5 c. a. intra-study cross-validation. b. inter-study cross-validation.

40



Supplementary Figure 2.7. The comparison between using different monotherapy efficacy
scores as features. Both IC50 and RI (relative inhibition) are used to measure the monotherapy
efficacy. We tested the performances by using either or both in intra- and inter-study predictions.
a. Performances of all interpolation models in different training (top) and testing (right) settings.
b. Comparison of performances between models by paired t-test and performance ratio (PR) on
the average.
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Supplementary Figure 2.8. Pair-wise comparison of performances of models from
Supplementary Figure 2.7b over each combination treatment response score (CSS, Bliss,
HSA, Loewe, ZIP, S) using p-values from paired t-test and performance ratios (PR). a.
intra-study cross-validation. b. inter-study cross-validation.
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Supplementary Figure 2.9. Comparison between the monotherapy efficacy model as a
baseline and baseline model added with different drc models. a. Performances of all
interpolation models in different training (top) and testing (right) settings. b. Comparison of
performances between models by paired t-test and performance ratio (PR) on the average.
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Supplementary Figure 2.10. Pair-wise comparison of performances of models from
Supplementary Figure 2.9b over each combination treatment response score (CSS, Bliss,
HSA, Loewe, ZIP, S) using p-values from paired t-test and performance ratios (PR). a.
intra-study cross-validation. b. inter-study cross-validation.
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Supplementary Figure 2.11. Pair-wise comparison of performances of models from Figure
2.3c over each combination treatment response score (CSS, Bliss, HSA, Loewe, ZIP, S)
using p-values from paired t-test and performance ratios (PR). a. intra-study
cross-validation. b. inter-study cross-validation.
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Supplementary Figure 2.12. Feature contribution of the best-performing model (M20 in
Figure 2.3) in inter-study prediction when trained on ALMANAC and tested on the O’Neil
study. The importance when predicting all six response scores is shown below.
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Supplementary Figure 2.13. Feature contribution of dose-response curve imputation
features (M12) in inter-study CSS score prediction when trained on ALMANAC and tested
on O’Neil study. a. summary plot of ten imputation features. b. The bar plot shows the
contribution (average impact in model output magnitude) of ten imputation features. c. scatter
plot shows the relationship between feature value and contribution (SHAP value) of 10
imputation features.
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Supplementary Figure 2.14. Comparison between different dose-response curve
interpolation methods in 3 vs. 1 inter-study cross-validation. a. Performances of all
interpolation models in different training (top) and testing (right) settings. b. Comparison of
performances between models by paired t-test and performance ratio (PR) on the average. The
models in this figure are the same as in Supplementary Figure 2.5.
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Supplementary Figure 2.15. Comparison between different monotherapy efficacy features
in 3 vs. 1 inter-study cross-validation. a. Performances of all monotherapy efficacy models in
different training (top) and testing (right) settings. b. Comparison of performances between
models by paired t-test and performance ratio (PR) on the average. The models in this figure are
the same as in Supplementary Figure 2.7.
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Supplementary Figure 2.16. Comparison between monotherapy efficacy features in
addition to different dose-response curve features in 3 vs. 1 inter-study cross-validation. a.
Performances of all models in different training (top) and testing (right) settings. b. Comparison
of performances between models by paired t-test and performance ratio (PR) on the average. The
models in this figure are the same as in Supplementary Figure 2.9.
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Supplementary Figure 2.17. Comparison between different combinations of
pharmacological features in 3 vs. 1 inter-study cross-validation. a. Performances of all
monotherapy efficacy models in different training (top) and testing (right) settings. b.
Comparison of performances between models by paired t-test and performance ratio (PR) on the
average. The models in this figure are the same as in Figure 2.2.
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CHAPTER III: Machine Learning for Artemisinin Resistance in Malaria Treatment across

In Vivo-In Vitro Platforms

Abstract

Drug resistance has been rapidly evolving with regard to the first-line malaria treatment,

artemisinin-based combination therapies. It has been an open question whether predictive models

for this drug resistance status can be generalized across in vivo-in vitro transcriptomic

measurements. In this study, we present a model that predicts artemisinin treatment resistance

developed with transcriptomic information of Plasmodium falciparum. We demonstrated the

robustness of this model across in vivo clearance rate and in vitro IC50 measurement, and based

on different microarray and data processing modalities. The validity of the algorithm is further

supported by its first placement in the DREAM Malaria Challenge. We identified transcription

biomarkers to artemisinin treatment resistance that can predict artemisinin resistance and are

conserved in their expression modules. This is a critical step in the research of malaria treatment

as it demonstrated the potential of a platform-robust, personalized model for artemisinin

resistance using molecular biomarkers.

Introduction

Malaria raises major public health concerns in southeastern Asia and Africa (Asenso-Okyere

et al., 2011; Conn et al., 2018; Dhiman, 2019; Mbacham et al., 2019; Organization & Others,

2020; Sachs & Malaney, 2002; Tabbabi et al., 2020; World Health Organization, 2020).

Plasmodium falciparum, one of the five Plasmodium species leading to malaria, is the main

cause of mortality, resulting in 400,000 deaths each year (Fact Sheet about Malaria, n.d.,
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“Malaria: Biology and Disease,” 2016; Talapko et al., 2019). The most effective treatment is

artemisinin-based combination therapies, which have been used as the first-line treatment for

malaria since the late 1990s (Miller & Su, 2011). Today, malaria remains a global health threat

and drug resistance is a major contributor (Dhiman, 2019; Dondorp et al., 2009; Mok et al.,

2015). After being transmitted from mosquitoes into the human body, P. falciparum experiences

the rest of its life cycle in the peripheral bloodstream and liver. In the blood stage, they propagate

asexually in red blood cells in the form of ring, trophozoite, and schizont developmental stages

in 48 hours, resulting in daughter cells released in the peripheral bloodstream. The artemisinin

(ART) resistance of P. falciparum happens specifically at the ring stage, when the parasites lose

their apical complex and de-differentiate into round immature trophozoites, pushing their nuclei

to one side of the cell, making the cell morphologically resemble rings under the microscope

(Dondorp et al., 2009; “Mechanisms of Artemisinin Resistance in Plasmodium Falciparum

Malaria,” 2018).

In the past years, the research field has been tirelessly searching for the genomic and

transcriptomic traits associated with artemisinin resistance (Ariey et al., 2014; Ashley et al.,

2014; Cheeseman et al., 2012; Hunt et al., 2010; Mok et al., 2015; Takala-Harrison et al., 2013).

For instance, it has been reported that a point mutation in the gene ubp1 confers artemisinin

resistance in a P. chabaudi mouse malaria model (Hunt et al., 2010). This gene encodes a

de-ubiquitinating enzyme and the missense mutation reduces de-ubiquitinating activity and alters

the associated protein degradation pathways (Hunt et al., 2007). Additionally, multiple loci on

chromosomes 10, 13, and 14 have been identified to be associated with the heritable trait of

artemisinin resistance (Cheeseman et al., 2012; Takala-Harrison et al., 2013). Particularly,

mutations in the gene kelch PF3D7_1343700 (‘K13-propeller’) on chromosome 13 have been
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reported to be a significant molecular marker associated with artemisinin resistance (Ariey et al.,

2014; Ashley et al., 2014; L. Zhu et al., 2018). Beyond mutations, changes in the expression of

genes involved in the unfolded protein response (UPR) pathways have been linked to human

artemisinin resistance (Mok et al., 2015).

Although many studies have focused on the relationship between individual gene mutation

and expression and drug resistance in malaria, a systematic evaluation of the value of these

biomarkers in clinical or pre-clinical applications remains needed. The recent Malaria DREAM

Challenge, which blindly evaluated algorithms for predicting ART resistance addressed this need

(Bionetworks, n.d.-a). The Malaria DREAM challenge leveraged an important dataset previously

published (Mok et al., 2015), in which transcriptome profiles of P. falciparum isolates from

1,043 patients were measured in vivo without treatment and the resistance status was reported.

The participants of the challenge were asked to predict the in vitro drug response of independent

isolates with expression data obtained before and after perturbations with dihydroartemisinin

(DHA).

We are presenting here the top-performing algorithm ranked by accuracy to the

above-described question, a machine-learning model for predicting artemisinin resistance based

on the transcriptomic profile of the parasite. This model addresses several key challenges in

malaria genomics and drug research: how to build models that can deliver across in vivo and in

vitro datasets? Most of the P. falciparum experiments are cultured with human blood and carried

out in vitro, while clinical applications require the model to be robust for in vivo datasets. How to

make models deliverable from one measurement platform to another and thus allow wide

application and generalization of the models? Of note, the training dataset of the DREAM

challenge comes from a customized, two-color expression panel, while the test dataset came
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from one-color Agilent HD Exon Array with many more probes for each gene. How to identify

the biomarkers and create the minimal panel of genes that both reveal the biological

insights/pathways related to ART resistance and are capable of making good predictions? We

address the above challenges by developing a cross-platform, in vivo-in vitro generalizable

model for ART resistance prediction, and analyzing independent contributions of gene

expression signatures. We identified four molecular signatures important to the model:

PF3D7_0523000 (pfmdr1), PF3D7_1245300, PF3D7_1372000, PF3D7_0805000, creating a

panel that almost matched the entire transcriptome in performance when predicting the cross-in

vivo-in vitro drug resistance. Examination of co-expression modules reveals stable co-regulation

modules of the top molecular features related to ART resistance.

Results

Study design to investigate the transferability of models for in vivo-in vitro and cross-platform

generalization

The overall study design intends to construct a model that is transferable across microarray

platforms and across in vivo-in vitro conditions. The training dataset comes from Mok et al.,

which is a large cohort (1,043 isolates) of transcriptomic data of P. falciparum collected from

southeast Asia during 2012-2014 (Mok et al., 2015). The parasite samples were directly taken

from the peripheral blood of patients with acute falciparum malaria. The customized, printed

expression panel measured 4978 genes out of ~5591 genes of the P. falciparum genome.

ART-resistance phenotype was identified by the rate of clearance of parasites in the patient's

peripheral blood, which is quantified by the clearance half-life upon ACT treatment. In this

study, the samples with clearance half-life>5 hours are considered as ART-resistant, and labeled

with “Slow” clearance rate. On the other hand, The samples with <=5 hours of clearance half-life
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are labeled as “Fast” in terms of clearance rate, and considered as non-ART-resistant samples

(Figure 3.1).

This study, as shown below, starts with cross-validation with the above-described dataset.

Additionally, the design of the test set differs from the training set in its sampling geographic site

and timing of sample collection, synchronization status, microarray platform, and measurement

target, introducing new challenges to the prediction models. The in vitro test set consisted of

unpublished data from 32 isolates collected from the Thai-Mayanmar border (Figure 3.1a). The

isolates are synchronized in vitro. Each isolate was examined twice, once without treatment and

once with ART (DHA) treatment. The expression level was taken separately at 6 hours and 24

hours post-infection (hpi). The test data was measured using an Agilent HD Exon Array with

many more probes (on average 12 per gene) than the printed array in the training data (on

average 2 per gene) (Figure 3.1b-c). This test set was the test set for sub-challenge 1 of the

Malaria DREAM challenge in which the task was to predict ART IC50 given a training set

consisting of transcriptomes of parasites with known IC50. Additionally, the training data used a

two-color array and the test set used the Bozdech one-color array, which is expected to introduce

challenges in data analytics (Patterson et al., 2006). Due to the differences in the array platforms,

the methods used to pre-process the arrays also differ (see Methods). The test set panel included

non-coding RNAs, which are excluded in the training set. This results in a total of 5,540 genes in

the test set data. For the test set, a continuous value of IC50 upon artemisinin treatment is given

as the testing target. The direct test data on this challenge remains a hidden set for future model

refinement by the scientific community. However, an independent test set of 30 isolates collected

in the exact manner and cohort was available through sub-challenge 1 of this challenge

(Bionetworks, n.d.-a), which is used as the test set to evaluate model transferability in this study.
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Besides the DREAM challenge dataset, we also collected four independent public P. falciparum

transcriptome datasets, of which two were sampled ex vivo and two in vitro, to further validate

the robustness of transferability of the cross-platform model in this study. All transcriptomes

used in this study were analyzed by t-SNE to show the differences between

ART-resistance/sensitive samples, sampled conditions (in vivo, in vitro, or ex vivo), independent

studies, and treatment type (Supplementary Figure 3.4).

Excellent performance for within-cohort prediction of artemisinin clearance rate

The large collection of the Mok et al. data allows us to evaluate the models by two

approaches. First, we can evaluate the model performance by cross-validation within the 1,043

isolates. Cross-validation is a commonly used scheme to evaluate model performance by holding

out part of the data as the testing set and using the other part as the training set. Second, we can

evaluate the model performance by training a model on the Mok et al. data and test on the in

vitro data as described above. In this section, we describe the behavior of the model in the

within-cohort cross-validation using the Mok et al. data. Clearance half-life was labeled “fast” or

“slow” according to whether the parasite clearance half-life is longer than 5 hours. We labeled

‘slow’ as 1, and ‘fast’ as 0 in the following experiments.

We carried out ten-fold cross-validation by including all genes as features (Figure 3.2).

Specifically, in each round, 10% of the isolates were held out as the test set, and 90% were used

as the training set. We tested a selection of base learners, including LightGBM, XGboost,

random forest, Gaussian Process Regression (GPR), and linear regression (see Methods).

Because an important goal of this study is to develop a model transferable to transcriptome data

collected using different platforms, which can be of drastically different distribution, we also

tested if rank normalization of the expression data changed performance.
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LightGBM, a tree-based gradient boosting method, marginally excelled in performance for

both Area Under the Receiver Operating Curve AUROC and AUPRC measurements (Figure

3.2c) compared to other alternatives. It achieved a mean AUROC [95% confidence interval] of

0.8384 [0.8121, 0.8705], compared to XGboost (0.7669 [0.7262, 0.7910]), random forest (0.7782

[0.7441, 0.8099]), GPR (0.8456 [0.8212, 0.8673]) and linear regression (0.8448 [0.8206,

0.8668]). For AUPRC [95% confidence interval], LightGBM performed at 0.6983 [0.6438,

0.7522], compared to XGboost (0.6613 [0.5994, 0.7234]), random forest (0.5752 [0.5049,

0.6387]), GPR (0.6742 [0.6198, 0.7280]) and linear regression (0.6717 [0.6176, 0.7252]). Rank

normalization does not present substantial changes in performance (Figure 3.2e,

Supplementary Table 3.1), we chose to maintain this operation to support cross-platform

robustness.

Transferring models across platforms

The test data differs from the above examined in vivo data in that it was collected from

laboratory-cultured P. falciparum strains. This allows synchronization, and thus the gene

expression levels were sampled under four different conditions: 1) 6 hours post-invasion (hpi), 2)

24 hpi, 3) 6 hpi and treated with dihydroartemisinin (DHA) (6 hpi-p), 4) 24 hpi and treated with

DHA (24 hpi-p). We evaluated the models based on different base learners as described above

for each of the expression data. Because the test target is IC50, we labeled ‘slow’ as 1, and ‘fast’

as 0 in our training.

As expected, 6 hpi without treatment demonstrated the strongest performance, as the original

training data was pre-treatment as well (Figure 3.3d). Additionally, LightGBM maintains to be

the strongest base learner. In this case, rank normalization does not change the performance

substantially, so we retained it in the pre-processing steps (Figure 3.3e, Supplementary Table
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2). This combination achieved a Pearson correlation [95% confidence interval] of 0.2318

[0.1379, 0.5306], Spearman’s correlation of 0.2467 [0.1457, 0.3548], and a C-index of 0.5837

[0.5474, 0.6216] between the predicted clearance rate and IC50. Of note, the gold standard used

in training is non-granular values but rather a binary value of ‘fast’ and ‘slow’. Yet, we still

received meaningful predictions using a different microarray platform and data collection status

(p < 1e-6) compared to random prediction.

We further evaluate the best-performing in vivo LightGBM model to four other public

datasets for ART resistance prediction, where the ART resistance for each sample was available

(Supplementary Table 3) (Mok et al., 2011, 2015, 2021; Shaw et al., 2015; L. Zhu et al., 2018),

and results were shown in Supplementary Figure 3.5. We noticed that on ev vivo data, the

model achieved better cross-platform accuracy than in vitro data overall. The in vivo model

achieved 0.75[0.6431, 0.9773] and 0.6894[0.6065,0.8060] AUROC[95% confidence interval] on

the GSE25878 and GSE59098 dataset, respectively. While on the in vitro dataset GSE151189,

the model only achieved 0.5355[0.4530, 0.6416] overall AUROC[95% confidence interval]. One

possible reason could be the ex vivo transcriptomes show more similarity to the in vivo data the

model was trained on (Supplementary Figure 3.4 b and c). Interestingly, we also noticed the

model prediction heavily relies on the ex vivo cultured time, treatment by DHA, and

developmental stages (hpi), indicating these factors may change the expression levels of effector

genes related to ART resistance.

Robustness in molecular features across in vivo and in vitro environments

It was very encouraging that a model can be developed and carried across such different in

vivo and in vitro scenarios, and across experimental platforms, which prompted us to examine

the top molecular features that contributed to this prediction. We first used SHapley Additive

59

https://paperpile.com/c/2Z4Yil/4eVWL+WO3tg+1MzPT+0tfdm+akkur


exPlanations analysis (SHAP) to find out which genes played important roles in the in vivo

ART-resistance prediction (S. Lundberg & Lee, 2017). SHAP analysis is a feature importance

analysis method that recently gained popularity, in which the importance of one feature is

considered in the context of all other features. This approach has the advantage of delineating

gene features that are important for predicting ART resistance versus the ones that happened to

be correlated to an important feature. Table 1 shows the top genes during the ten-fold

cross-validation. Among them, there were five genes recognized by all ten models, showing

consistent importance (Supplementary Figure 3.2). The SHAP analysis is test set-dependent.

This unique feature allows us to test the robustness of these features further in the in vitro data.

We found the same set of top genes still showed significant contribution in in vitro prediction

(Figure 3.3a-b, Supplementary Figure 3.3). Of note, about ~70% of top genes (four out of top

five, seven out of top ten, 14 out of top 20, and 22 out of top 30) were found to be shared by both

in vivo and in vitro datasets, showing coherence in top-ranked features across platforms (Figure

3.5a). Pfmdr1 is among the most significant contributors in both in vitro prediction and in vivo

prediction. This result supports the robustness of the identified molecular features.

We further investigated the functions of top contributing genes considering both in vivo and

in vitro predictions of ART resistance in malaria (Figure 3.4a and Table 3.1). Among them,

pfmdr1 (PF3D7_0523000), Plasmodium falciparum multidrug drug resistance gene 1, has been

reported to play an essential role in response to a broad range of ACT antimalarials (Gil &

Krishna, 2017; Koenderink et al., 2010; Sidhu et al., 2006). Mutants and polymorphisms of this

protein have been widely reported to be associated with antimalarial drug resistance, and the

increase of pfmdr1’s expression will increase susceptibility to artemisinin (Chavchich et al.,

2010; Dahlström et al., 2009; Eastman et al., 2016; Gupta et al., 2014; Holmgren et al., 2006,
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2007; Imwong et al., 2010; Ngalah et al., 2015; Ould Ahmedou Salem et al., 2017; Sidhu et al.,

2006; Sisowath et al., 2007; Ursing et al., 2006). The identification of this gene at the top of the

list and its positive contribution to both IC50 and clearance rate corroborates the validity of the

approach (Supplementary Figures 3.2 and 3.3).

We found other interesting genes in this list. First, PF3D7_1372000 is a Plasmodium

exported protein of the Poly-Helical Interspersed Sub-Telomeric (PHIST) protein family (Tarr et

al., 2014; Warncke et al., 2016), also known as the PRESAN family (Oakley et al., 2007;

Sargeant et al., 2006). Although detailed functions of most Plasmodium exported proteins are yet

to be revealed, in general, the parasite-exported proteins are pivotal for parasite survival by

interacting and interfering activities of the infected cells (Maier et al., 2008). A recent study has

suggested that the expression level of PF3D7_1372000 is associated with mutations of kelch

PF3D7_1343700 (‘K13-propeller’) (Siddiqui et al., 2020), whose mutations have been reported

to be a significant molecular marker associated with ART resistance (Ariey et al., 2014; L. Zhu

et al., 2018). Second, PF3D7_1245300 is a Nedd8-conjugating enzyme UBC12, which has a

central role in the cell cycle and DNA damage repair (Karpiyevich et al., 2019). Since the

malaria parasite has a unique and unusual life cycle, the molecular machines in cell replication

processes are specially designed for its survival. As Plasmodium responds to artemisinin-induced

stress by delaying their cell cycle progression and inducing a state of dormancy during early

ring-stage development (van Biljon et al., 2018), UBC12 likely presents as an important feature

through this mechanism. Leave-one-out feature selection strategy based on the top ten genes

shows that taking PF3D7_1245300 away will undermine in vitro prediction performance (Figure

3.3d), indicating this gene is crucial for P. falciparum’s survival in both laboratory environments

and in the human body. Two other genes, PF3D7_0805000, a putative member of the alpha/beta
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serine hydrolase superfamily that mediates a variety of metabolic reactions of ester hydrolysis,

and PF3D7_1038700, another Plasmodium exported protein with unknown function, appeared in

the top list. The association between these 2 genes with ART resistance is currently unknown.

We further investigated other proteins related to these top contributing genes based on the

protein-protein interactome generated from blue native-polyacrylamide electrophoresis with

quantitative mass spectrometry (Hillier et al., 2019). We first extracted interacting proteins with

pfmdr1 and PF3D7_1245300 and found 20 and 37 interacting proteins, respectively. The other

three proteins of the top genes were not observed in the interactome. Then we performed GO

functional enrichment analysis of these proteins and identified the significantly enriched protein

clusters with FDR p-value cutoff of 0.05 (Figure 3.4b). For the multidrug resistance gene

pfmdr1, the interacting proteins are associated with RNA processing, COPII-coated vesicle

budding, and the formation of the translation preinitiation complex. For the Nedd8-conjugating

enzyme UBC12 (PF3D7_1245300), as expected, the interacting proteins are associated with

protein ubiquitination, a process previously found to be important for treatment resistance in

malaria (Dogovski et al., 2015; Tilley et al., 2016).

We went on to construct models only based on the top genes identified by SHAP analysis

(Figure 3.3c). We found that for within-in vivo cross-validation, 30 genes can completely

recover the performance of the model using the entire transcriptome. Additionally, the top genes

identified in the above analysis successfully reached the performance of the entire gene panel

when delivering the model to the in vitro test set. We acknowledge the existence of fluctuation in

performance after the sixth top genes. The likely reason is that SHAP identifies independent

features, and as we increase the number of features beyond six, the ones that are comparably

weaker yet orthogonal to the top features are included. Despite this limitation, this result supports
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the validity of the top features we identified in this study as potential biomarkers for ART

resistance.

While kelch13 genetic mutations are significantly correlated with ART resistance phenotype

in the in vivo population study (Pearson’s r = 0.6143, p<1e-6), no significant correlation of

kelch13 transcription with ATR-resistance phenotype has been found (Mok et al., 2015). This

result is concordant with our SHAP analysis results, as the kelch13 transcription level turned out

with no contribution to ART resistance prediction. Machine learning models with feature sets

excluding kelch13 transcription level still maintained similar performances (Supplementary

Tables 3.1 and 3.3). We also evaluated the ART-resistance model performances in different

genetic variation cohorts, including K13 KP/BTB mutations, crt-N326S, crt-I356T, fd-D193Y

and mdr2-T484I (Supplementary Table 3.4 and Supplementary Figure 3.1). The

ART-resistance model is still quite predictive within K13 subgroups, with mutations (group 2)

and heterozygous alleles (group 3) (Supplementary Figure 3.1).

Conserved co-expression patterns of top-ranking features

We next examined if the top-ranking features in the in vivo test and in the in vitro test share

similar expression patterns or regulatory modules. We took the top 30 features for each and

calculated the Pearson correlation of expression values across all samples separately for the in

vivo and in vitro datasets. This step created coexpression networks (Figure 3.5). Among the top

30 genes, 22 are shared between in vivo and in vitro tests, a piece of supporting evidence for the

robustness of the features (Figure 3.5a and Table 3.1).

We then examined if the co-expression networks of the top features share similarities

between the in vivo and in vitro datasets. We identified many co-expression relationships

maintained across the in vivo and in vitro datasets. For example, the correlation between

63

https://paperpile.com/c/2Z4Yil/WO3tg


PF3D7_0523000 and PF3D7_1466400 is 0.46 (p < 2.2e-16, the smallest value storable in the

computer) in the in vivo dataset and 0.42 (p < 2.2e-16) in in vitro dataset. Therefore, we

calculated the correlation values of the network weights (i.e., the correlation between genes) for

the 22 shared genes. The correlation is 0.55 (p < 2.2e-16) indicating strong and conserved

co-expression modules involved in ART resistance.

Discussion

In this study, we presented a model that is transferable between in vivo measured clearance

rate and in vitro measured IC50 for ART in malaria treatment and across expression

measurement platforms. This is a meaningful step in the research of malaria treatment as the

work demonstrated the potential and robustness of a personalized model for ART resistance,

which has not been achieved before. Some studies addressed the prediction in either in vivo or in

vitro studies but did not generalize the model across different conditions (Ford & Janies, 2020;

D. Li et al., 2021; Sastry et al., 2021). In fact, previous studies reported that generating predictive

models for ART resistance has been challenging since the in vitro IC50 of P. falciparum in

standard drug susceptibility assay correlates poorly with its clearance rate in vivo (Chotivanich et

al., 2014; Fairhurst & Dondorp, 2016). Thus the ability of this model to deliver across

drastically different sceneria makes this model favorable.

Delivering models between platforms and in vivo-in vitro environments has always been a

challenge for many medical problems. Several techniques developed in this study may be

instructive to other problems. For example, rank normalization of the shared genes in the

transcriptomic profiles can potentially help to match two different sets of data and address batch

effects. Tree-based algorithms may help interrogate the interactions and overlaps between genes

and construct robust models.
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We discovered important biomarkers that can be used to create a simplified model for

predicting ART resistance. Among them, interesting molecular biomarkers were identified.

Pfmdr1 (PF3D7_0523000), Plasmodium falciparum multidrug drug resistance gene 1, was

identified among the shared top genes by both in vivo and in vitro datasets, consistent with

previous reports stating that it plays an essential role in the response processes of a broad range

of ACT antimalarials (Chavchich et al., 2010; Dahlström et al., 2009; Eastman et al., 2016;

Gupta et al., 2014; Holmgren et al., 2006, 2007; Imwong et al., 2010; Ngalah et al., 2015; Ould

Ahmedou Salem et al., 2017; Sidhu et al., 2006; Sisowath et al., 2007; Ursing et al., 2006).

PF3D7_1372000, a Plasmodium exported protein of the Poly-Helical Interspersed

Sub-Telomeric (PHIST) protein family (Tarr et al., 2014; Warncke et al., 2016), was also

identified among the shared top genes. Literature has reported that the parasite-exported proteins

are pivotal for parasite survival by interacting and interfering activities of the infected cells

(Maier et al., 2008). Additionally, UBC12, which plays a central role in cell cycle and DNA

damage repair (Karpiyevich et al., 2019), was identified, possibly reflecting the mechanism that

Plasmodium responds to artemisinin-induced stress by delaying their cell cycle progression and

inducing a state of dormancy during early ring-stage development (van Biljon et al., 2018). Other

important features whose molecular mechanisms are yet unclear were also identified, pointing to

future studies that follow up and validate these new molecular markers for ART resistance.

While our model has achieved satisfying performances on the same population study, we

noticed that during the cross-platform prediction, the performance has been impacted severely by

the condition of samples in the target datasets, i.e. in vivo, ex vivo, or in vitro, whether treated by

DHA, developmental stage (hpi). These observations imply that genes related to ART resistance

are expressed differently under different conditions. While many studies have addressed the
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dependency between artemisinin resistance with developmental stages (Intharabut et al., 2019;

Mok et al., 2011, 2015), in vitro environments may also impact the artemisinin resistance

phenotype, which needs more experimental assessments in the future.

Furthermore, while top genes were identified in this study, further experimental evidence is

still needed to elucidate their roles in artemisinin resistance.   For further verification of these

biomarkers, gene function perturbations could be carried out on the ART-resistant strains in both

in vivo and in vitro conditions. For example, translation and ubiquitin-activating enzyme

inhibitors were found to antagonize the activity of DHA in vivo and in vitro on Plasmodium

falciparum strains (Bridgford et al., 2018). Moreover, atovaquone, a mitochondrial electron

transport chain inhibitor, could reverse the ART resistance in Cambodian Cam3.II line in vitro

(Mok et al., 2021). Instead of broad inhibitors that deactivate certain pathways, more targeted

gene silencing methods, such as RNAi or CRISPR, would be recommended to inhibit certain top

biomarkers, to elucidate the mechanisms of ART resistance.

Materials and Methods

Data and code availability

● All Plasmodium falciparum transcriptome data used in this paper have been deposited in

GEO and Synapse storage, and are publicly available as of the date of publication.

Accession numbers are listed in the key resources table.

● All original code has been deposited at GitHub and is publicly available as of the date of

publication at: https://github.com/GuanLab/Predict-Malaria-ART-Resistance.
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Data preprocessing

The in vivo prediction model was built based on clinical population data from the published

paper by Mok et al. (Mok et al., 2015) and provided by the Malaria DREAM challenge. The P.

falciparum isolates were collected ~18 hours post-invasion from 1,043 acute patients under

varying treatment and health conditions mainly from Southeast Asia. The parasite isolates

transcriptome was analyzed by the Bozdech two-color microarray platform, with 10,159 unique

probes covering 5363 genes(Bionetworks, n.d.-a). The Artemisia resistance status of the P.

falciparum isolates was labeled as ‘Fast’ or ‘Slow’, indicating the clearance rate of P. falciparum

after ART treatment.

The test transcriptome data was generated by Agilent HD Exon one-color microarray

platform from 30 P. falciparum isolates collected from Thai-Myanar border from 2007 to 2012,

as provided by the Malaria DREAM Challenge, which includes 63,976 unique probes covering

5440 genes including non-coding RNS (Bionetworks, n.d.-b). The isolates were cultured in blood

cells and treated by artemisinin 6 and 24 hours post-invasion (hpi). The IC50 of P. falciparum

culture, i.e., the drug concentration that 50% of parasites die was recorded as an indicator of

ART resistance. Higher IC50 means stronger ART resistance, therefore corresponds to a slow

clearance rate.

The training and testing microarray data were then processed and normalized by different

pipelines with respect to their own microarray platforms (Bionetworks, n.d.-a). The two-color in

vivo microarray data were processed by GenePix Pro v6.0 software, where features of each array

were extracted with foreground intensity > 1.5 fold background intensity for either channel and

went through background correction and lowess normalization using the limma R package. Then

the arrays were log normalized against co-hybridized 3D7 control, and the gene expression levels
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were acquired by averaging their ORF Probe intensities. The in vitro single-color microarray

data were processed by Agilent Feature extraction and QC pipeline, then quantile normalized by

the preprocessCore R package. Then samples were log normalized against NF54 control and

batch corrected by the sva R package. Then the gene expression levels were obtained by the

reshape R package.

The microarray data usually contains missing values due to artifacts and technical failures. If

the expression level of gene i of sample j is missing, we fill in the average gene expression level

of gene i, based on the data from the rest of the samples.

In order to make a robust cross-platform model, we used rank normalization to process the

raw gene expression data, specifically,

The microarray record of sample i is transformed from Xi to Xi’ . The preprocessed in vivo

and in vitro data was then used in the model training and prediction.
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Model training

We tested five types of base learners, including LightGBM, XGboost, random forest, GPR,

and linear regression. The first three base learners are tree-based and the later two are

kernel-based algorithms. For LightGBM, we used gradient-boosted decision trees, with 5 as the

number of leaves, a learning rate of 0.05, and a total of 800 estimators, and 1000 boosting

rounds. For random forest, we used a maximal depth of 2 and 100 estimators. For GPR we used

dot products and a white kernel. For all other base learners, we used the default parameters.

ten-fold cross-validation was used to evaluate the performance of models. The ten in vivo models

were transferred to in vitro data to make predictions of the ART resistance of P. falciparum.

For cross-platform prediction, the shared genes were used in model construction. Each P.

falciparum strain was sampled under four different conditions (6 hpi, 24 hpi, with or without

ART perturbation), and each sample carried two biological replicates. We conducted

cross-platform prediction on the 4 conditions, respectively. For each condition, the average

prediction values of the two biological replicates are used as the final prediction.

SHAP feature importance analysis

We conducted SHAP (SHapley Additive exPlanations) analysis to evaluate the contributions

of different genes in ART resistance prediction. The SHAP value describes the average marginal

contribution of a feature across all instances (S. Lundberg & Lee, 2017). We summed up the

absolute values of SHAP values of all samples for each feature. The summary plot sorting

features by the sum of the absolute SHAP values over all samples are included in

Supplementary Figure 3.2-3.
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Coexpression and functional analysis of top genes

We conducted co-expression analysis on rank normalized gene expression level among the

top-ranked genes by SHAP analysis, for both in vivo and in vitro datasets. The co-expression

significance between two genes is defined as Pearson’s correlation of their normalized

expression level across all samples. For example, for gene i and j in all N samples, Xi and Xj

refer to the rank normalized expression level of both genes, respectively. Then,

Where n refers to the total number of samples in the dataset. The co-expression level ri,j

between two genes is:

Where ri,j is the Pearson’s correlation between gene i and gene j. The co-expression networks

of both in vivo and in vitro datasets were constructed based on the significantly correlated genes

(ri,j >0.4) and visualized using ggraph.

Quantification and statistical analysis

Because in vivo data and bore binary labels, we used AUROC (Area under the Receiver

Operating Curve) and AUPRC (Area under the Precision Recall Curve). For the in vitro data,

because the evaluation is a real value, we used Spearman and Pearson’s correlations and C-index,

as clearance rate and IC50 do not share the same distribution (Figure 3.2a and b). The C-index

is calculated as the following:
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C-index is equivalent to AUROC when predicting binary labels.

For external validation datasets, the labels were also binary, thus we use AUROC for

performance evaluation. AUPRC was not used for horizontal comparison since the baseline for

each dataset is different. 95% confidence intervals of all performances were calculated by

bootstrapping.

Pearson and Spearman’s correlation coefficient, AUROC, and AURPC were calculated using

the Python Sklearn module. The code implementing the c-index was provided in the GitHub

repository (see Data and Code Availability in the Resource Availability section).
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Figures

Figure 3.1. Study design. a. Demonstration of the training data given by the DREAM
Challenge. b. Strategy of training in vivo malaria ART prediction models, and transferring the
model to in vitro malaria transcriptome datasets. First, we imputed missing values and
rank-normalized the expression data. Second, we cross-validated models of different base
learners. We then selected the base learner and sample conditions with the best performance by
cross-validations and reverse tests. Lastly, important predictive biomarkers are prioritized by
SHAP analysis.
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Figure 3.2. Model performances across platforms. a and b: Distribution of ART resistance
measurement labels in the in vivo and the in vitro datasets. c. Cross-validation performance in the
in vivo dataset. d. Performance of transferring the model trained on the in vivo dataset to the in
vitro dataset, presented as the correlation between prediction and gold-standard (IC50)) under 4
conditions. e. Performance of transfer learning with/without rank normalization.
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Figure 3.3. Top genes related to malaria ART resistance as identified by SHAP feature
importance analysis, and performances of machine learning model after feature selection
using the top-ranked genes. a. Top 30 genes of ART resistance prediction model visualized by
SHAP analysis based on in vivo P. falciparum transcriptome. b. Top 30 genes of ART resistance
prediction model visualized by SHAP analysis based on in vitro P. falciparum transcriptome.
Genes were ordered by mean SHAP contributions across all test examples in a ten-fold
cross-validation. c. Model performances for in vivo and in vitro predictions when including only
top genes selected by SHAP analysis, as evaluated by AUROC (for binary labels) and C-index
(for continuous labels). ‘All genes’ shows prediction performance without feature selection. d.
Comparison of in vitro prediction performances between using all top ten genes as features and
leaving one gene out at a time.
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Figure 3.4. Cellular functions of top contributing genes in predicting ART resistance. a. The
functions of top contributing genes and their relationship with ART resistance. b. The
functionally enriched protein clusters that interact with PF3D7_052300 and PF3D7_1245300.
The prefix “PF3D7_” of these gene IDs is omitted and only the numbers are shown for
simplicity.
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Figure 3.5. Coexpression networks of top genes in in vivo and in vitro datasets. a. Sharing of
top genes across in vivo/in vitro datasets. b and d. The co-expression network and the
co-expression matrix of the top 30 genes in the in vivo dataset. c and e. The co-expression
network and co-expression matrix of the top 30 genes in the in vitro dataset. We retained all
co-expression relationships with an absolute correlation value > 0.4 in the plot. The five most
important genes in either in vivo or in vitro dataset were marked as red (except PF3D4_1038700,
which was not shown in c, since there were no other genes that shared a significant correlation
(|r| > 0.4) with this gene).
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Tables

Table 3.1. 22 shared features (among the top 30) between the in vivo and the in vitro
datasets.

gene id
in vivo SHAP
importance

in vitro SHAP
importance Annotations

PF3D7_0805000 0.027577556 0.019392157 alpha/beta hydrolase, putative

PF3D7_1038700 0.025549987 0.020552675 Plasmodium exported protein, unknown function

PF3D7_1245300 0.023449244 0.022728070 NEDD8-conjugating enzyme UBC12, putative

PF3D7_0523000 0.022131747 0.056972396 multidrug resistance protein 1

PF3D7_1372000 0.020715635 0.018587311
Plasmodium exported protein (PHISTa),
unknown function

PF3D7_1328400 0.020094142 0.010121155 conserved protein, unknown function

PF3D7_1349200 0.017402912 0.016821882 glutamate--tRNA ligase, putative

PF3D7_0525700 0.016087702 0.010102856 conserved protein, unknown function

PF3D7_1466400 0.013496112 0.020929573 AP2 domain transcription factor AP2-EXP

PF3D7_1243000 0.01083543 0.009874289 syntaxin-16, putative

PF3D7_1359800 0.010260771 0.009438231 ADP-ribosylation factor, putative

PF3D7_0114900 0.00976088 0.009389257
Plasmodium exported protein, unknown
function, pseudogene

PF3D7_1117500 0.009725304 0.009184379 tyrosine--tRNA ligase

PF3D7_0413400 0.009276499 0.014652890
erythrocyte membrane protein 1 (PfEMP1), exon
1, pseudogene

PF3D7_1107700 0.009240973 0.008681170 pescadillo homolog

PF3D7_1244400 0.009191554 0.007895322 RNA-binding protein, putative

PF3D7_0205100 0.008908881 0.008790011
conserved Plasmodium protein, unknown
function

PF3D7_1133600 0.0087618 0.008062268
conserved Plasmodium protein, unknown
function

PF3D7_0830800 0.00846947 0.008136531
surface-associated interspersed protein 8.2
(SURFIN 8.2)

PF3D7_1203000 0.008352643 0.010673660 origin recognition complex subunit 1

PF3D7_0921200 0.008144911 0.009305749
conserved Plasmodium membrane protein,
unknown function

PF3D7_1011400 0.007971128 0.008214462 proteasome subunit beta type-5
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Supplementary Tables

Supplementary Table 3.1. Performance of ART-resistance prediction models on in vivo data
in ten-fold cross-validation, related to Figure 3.2.

Model
Pearson’s r
mean[95CI]

Spearman’s r
mean[95CI]

AUROC
mean[95CI]

AUPRC
mean[95CI]

LightGBM
0.5616[0.5136,
0.6153]

0.5315[0.4845,
0.5753]

0.8384[0.8121,
0.8705]

0.6983[0.6438,
0.7522]

LightGBM (without
kelch 13)

0.5484[0.5008,
0.6019]

0.5217[0.4659,
0.5680]

0.8322[0.8027,
0.8658]

0.6813[0.6264,
0.7374]

LightGBM (no
normalization)

0.5293[0.4804,
0.5723]

0.5084[0.4631,
0.5485]

0.8237[0.7977,
0.8483]

0.6613[0.5994,
0.7234]

XGboost
0.4377[0.3703,
0.4837]

0.4191[0.3557,
0.4592]

0.7669[0.7262,
0.7910]

0.5752[0.5049,
0.6387]

Random Forest
0.4528[0.3909,
0.5063]

0.4369[0.3777,
0.4812]

0.7782[0.7441,
0.8099]

0.5797[0.5088,
0.6547]

GPR
0.5406[0.4986,
0.5753]

0.5428[0.5029,
0.5818]

0.8456[0.8212,
0.8673]

0.6742[0.6198,
0.7280]

Linear Regression
0.5390[0.4968,
0.5739]

0.5415[0.5015,
0.5809]

0.8448[0.8206,
0.8668]

0.6717[0.6176,
0.7252]
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Supplementary Table 3.2. Prediction performance of ART-resistance during transfer
validation on in vitro data, related to Figure 3.2.
Model in vitro Test Data Pearson’s r mean[95CI] Spearman’s r mean[95CI] C-index mean[95CI]

LightGBM 24HR_DHA -0.1947[-0.2872, -0.0612] -0.2502[-0.3388, -0.0935] 0.4069[0.3761, 0.4613]

LightGBM 24HR_UT 0.0411[-0.0451, 0.1872] 0.0139[-0.0821, 0.1518] 0.5060[0.4746, 0.5517]

LightGBM 6HR_DHA 0.0623[-0.0299, 0.1860] 0.0625[-0.0232, 0.1912] 0.5146[0.4856, 0.5590]

LightGBM 6HR_UT 0.2319[0.1379, 0.3206] 0.2467[0.1457, 0.3548] 0.5837[0.5474, 0.6216]

LightGBM (no kelch 13) 24HR_DHA -0.1912[-0.2754, -0.0635] -0.2380[-0.3450, -0.1143] 0.4148[0.3799, 0.4591]

LightGBM (no kelch 13) 24HR_UT 0.0406[-0.0341, 0.1458] 0.0241[-0.0727, 0.1589] 0.5121[0.4806, 0.5582]

LightGBM (no kelch 13) 6HR_DHA 0.0418[-0.0557, 0.1840] 0.0463[-0.0485, 0.1650] 0.5143[0.4815, 0.5516]

LightGBM (no kelch 13) 6HR_UT 0.2010[0.0968, 0.3197] 0.1836[0.0695, 0.2841] 0.5636[0.5237, 0.5980]

LightGBM(no
normalization) 24HR_DHA -0.1445[-0.2405, -0.0103] -0.1507[-0.2306, -0.0080] 0.4488[0.4205, 0.4983]

LightGBM(no
normalization) 24HR_UT -0.1400[-0.2404, -0.0356] -0.1678[-0.2901, -0.0566] 0.4446[0.4073, 0.4809]

LightGBM(no
normalization) 6HR_DHA 0.1165[0.0135, 0.2762] 0.0898[-0.0068, 0.2405] 0.5307[0.4972, 0.5838]

LightGBM(no
normalization) 6HR_UT 0.2449[0.1419, 0.3727] 0.2040[0.0961, 0.3316] 0.5690[0.5310, 0.6148]

XGboost 24HR_DHA 0.0075[-0.0942, 0.1283] 0.0026[-0.0977, 0.1421] 0.5009[0.4669, 0.5488]

XGboost 24HR_UT 0.0258[-0.0563, 0.1668] 0.0302[-0.0572, 0.1736] 0.5110[0.4809, 0.5615]

XGboost 6HR_DHA 0.1178[-0.0205, 0.2543] 0.0703[-0.0456, 0.1931] 0.5241[0.4815, 0.5671]

XGboost 6HR_UT 0.0364[-0.0622, 0.1839] 0.0018[-0.1044, 0.1425] 0.5003[0.4647, 0.5491]

Random Forest 24HR_DHA -0.2676[-0.3329, -0.1839] -0.2634[-0.3351, -0.1458] 0.4068[0.3794, 0.4473]

Random Forest 24HR_UT 0.1499[0.0657, 0.2480] 0.0830[-0.0028, 0.1931] 0.5329[0.5038, 0.5683]

Random Forest 6HR_DHA 0.2201[0.1059, 0.3638] 0.1536[0.0423, 0.3109] 0.5519[0.5132, 0.6063]

Random Forest 6HR_UT 0.1849[0.0740, 0.2982] 0.2120[0.1199, 0.3321] 0.5754[0.5427, 0.6208]

Gaussian process
regression 24HR_DHA -0.0225[-0.1508, 0.1557] -0.1160[-0.2300, 0.0503] 0.4576[0.4180, 0.5147]

Gaussian process
regression 24HR_UT 0.1669[0.0846, 0.2526] 0.1462[0.0464, 0.2693] 0.5440[0.5060, 0.5886]

Gaussian process
regression 6HR_DHA -0.1243[-0.2086, -0.0308] -0.0893[-0.1749, 0.0192] 0.4709[0.4403, 0.5088]

Gaussian process
regression 6HR_UT 0.0691[-0.0030, 0.1363] 0.0831[-0.0063, 0.1852] 0.5283[0.4986, 0.5578]

Linear Regression 24HR_DHA -0.0138[-0.1486, 0.1590] -0.0910[-0.2037, 0.0751] 0.4681[0.4268, 0.5258]

Linear Regression 24HR_UT 0.1618[0.0717, 0.2481] 0.1326[0.0323, 0.2260] 0.5377[0.5016, 0.5734]

Linear Regression 6HR_DHA -0.1117[-0.2032, -0.0138] -0.0707[-0.1720, 0.0403] 0.4774[0.4436, 0.5135]

Linear Regression 6HR_UT 0.0667[-0.0139, 0.1581] 0.0845[-0.0159, 0.1741] 0.5277[0.4961, 0.5605]
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Supplementary Table 3.3. ART-resistance datasets used in this study, related to STAR
methods.
reference #isolates #samples condition GEO
datasets for original training and testing
(Mok et al., 2015) 1,043 1,043 in vivo GSE59099
(Bionetworks, n.d.-a) 32 128 in vitro N/A
datasets for external validation
(Mok et al., 2011) 11 91 ex vivo GSE25878
(Mok et al., 2015) 19 110 ex vivo GSE59098
(Shaw et al., 2015) 4 29 in vitro GSE61536
(Mok et al., 2021) 5 156 in vitro GSE151189
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Supplementary Table 3.4. Performance of ART-resistance prediction models on in vivo data
within different genetic variation cohorts. genotype: 0: information missing; 1: reference
sequence of PF3D7; 2: mutation 3: heterozygous., related to Figure 3.2.
gene genotype Pearson's r[95CI] Spearman's r[95CI] AUROC[95CI] AUPRC[95CI]

K13
(KP/BTB) 1

-0.0289[-0.0943,
0.1004]

-0.0364[-0.1071,
0.0865]

0.4382[0.3021,
0.6690] 0.0272[0.0118, 0.0725]

K13
(KP/BTB) 2

0.2354[0.1348,
0.3715]

0.2373[0.1446,
0.3677]

0.6629[0.6025,
0.7580] 0.8648[0.8196, 0.9177]

K13
(KP/BTB) 3

0.4495[0.3084,
0.6174]

0.4521[0.2997,
0.6265]

0.7621[0.6731,
0.8664] 0.7615[0.6573, 0.8849]

crt-N326S 0
0.6238[0.4936,
0.7817]

0.4990[0.3423,
0.6744]

0.8437[0.7503,
0.9553] 0.7358[0.5860, 0.8872]

crt-N326S 1
0.2467[0.1411,
0.3887]

0.2120[0.1308,
0.3147]

0.7835[0.6874,
0.9165] 0.1749[0.0962, 0.4198]

crt-N326S 2
0.4696[0.3978,
0.5313]

0.4747[0.3995,
0.5417]

0.7741[0.7307,
0.8128] 0.7766[0.7147, 0.8273]

crt-N326S 3
0.4392[-0.1846,
0.9313]

0.2584[-0.2757,
0.7249]

0.7000[0.2875,
1.0000] 0.5190[0.0769, 1.0000]

crt-I356T 0
0.5467[0.1409,
0.9012]

0.2866[0.0000,
0.7184]

0.7500[0.5000,
1.0000] 0.7777[0.3098, 1.0000]

crt-I356T 1
0.2104[0.1135,
0.3576]

0.1931[0.1168,
0.3024]

0.7642[0.6741,
0.8615] 0.1361[0.0622, 0.3907]

crt-I356T 2
0.5328[0.4844,
0.6142]

0.5388[0.4948,
0.6241]

0.8120[0.7862,
0.8615] 0.7793[0.7370, 0.8439]

crt-I356T 3
0.3995[0.0687,
0.7087]

0.3053[-0.0114,
0.6133]

0.7188[0.4896,
0.9154] 0.5486[0.2440, 0.8988]

fd-D193Y 0
0.6794[0.4418,
0.8443]

0.4809[0.2932,
0.7223]

0.9892[0.9586,
1.0000] 0.9028[0.3750, 1.0000]

fd-D193Y 1
0.2126[0.0760,
0.3697]

0.1095[0.0188,
0.2428]

0.6233[0.5204,
0.7775] 0.2832[0.1293, 0.4755]

fd-D193Y 2
0.4557[0.3592,
0.5437]

0.4563[0.3572,
0.5465]

0.7662[0.7094,
0.8180] 0.7949[0.7389, 0.8486]

fd-D193Y 3
0.5023[0.1882,
0.7961]

0.4143[0.0982,
0.7543]

0.7760[0.5778,
1.0000] 0.6882[0.3842, 1.0000]

mdr2-T484I 0
0.4845[0.3873,
1.0000]

0.7746[0.7746,
1.0000]

1.0000[1.0000,
1.0000] 1.0000[1.0000, 1.0000]

mdr2-T484I 1
0.3203[0.1684,
0.4385]

0.2173[0.1082,
0.3397]

0.7483[0.6322,
0.9107] 0.3293[0.1734, 0.5015]

mdr2-T484I 2
0.4941[0.4170,
0.5805]

0.5048[0.4246,
0.5829]

0.7921[0.7460,
0.8383] 0.7986[0.7566, 0.8617]

mdr2-T484I 3
0.4223[0.1895,
0.5858]

0.3449[0.1198,
0.5081]

0.7533[0.5861,
0.9069] 0.5443[0.3642, 0.7420]

81



Supplementary Figures
Supplementary Figure 3.1. ART-resistance prediction performances across different genetic
variation cohorts. genotype: 0: information missing; 1: reference sequence of PF3D7; 2:
mutation 3: heterozygous. *for K13, there’s only one sample in the “0” genotype subgroup,
therefore there are no evaluation results, related to Figure 3.2.
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Supplementary Figure 3.2. SHAP Summary plot of in vivo data based on ten-fold
cross-validation, related to Figure 3.3.
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Supplementary Figure 3.3. SHAP Summary plot of in vitro data based on ten-fold
cross-validation, related to Figure 3.3.
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Supplementary Figure 3.4. t-Distributed stochastic neighbor embedding(t-SNE) analysis on
the transcriptome data of all datasets used in this study, related to STAR Methods. The first
two dimensions were shown in the scatter plots. Each data point, or transcriptome profile of a
sample, is denoted by a different color showing their: A. ART resistance; B. sample condition (in
vivo, ex vivo, or in vitro) C. dataset name. Except for the DREAM challenge dataset (denoted by
DREAMSubCh1), all other datasets are denoted by their GEO accession number. D. DHA
treatment status (treated, untreated, or unknown), respectively.
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Supplementary Figure 3.5. Prediction performance of the in vivo model on publicly
available datasets besides DREAM Challenge, related to Figure 3.2. A. cross-platform
prediction on ex vivo datasets GSE25878 and GSE95098, where the prediction performances
(AUROC and AUPRC) of each ex vivo cultured time point were shown. B. cross-platform
prediction results on in vitro dataset GSE151189, and prediction performances of each
developmental stage (hpi) were shown. DHA treatment status was denoted by red and green. C.
cross-platform prediction results on in vitro dataset GSE61536. While all samples in this dataset
were collected from the K1 strain, which is known for chloroquine resistance instead of
artemisinin, we show the predicted ART resistance instead of AUROC or AUPRC. The predicted
results at different treatment statuses (DHA/vehicle control for 1-3 hours) were shown separately.
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CHAPTER IV: Mapping Combinatorial Drug Effects to DNA Damage Response Kinase

Inhibitors

Abstract

One fundamental principle that underlies various cancer treatments, such as traditional

chemotherapy and radiotherapy, involves the induction of catastrophic DNA damage, leading to

the apoptosis of cancer cells. In our study, we conduct a comprehensive dose-response

combination screening focused on inhibitors that target key kinases involved in the DNA damage

response (DDR): ATR, ATM, and DNA-PK. This screening involves 87 anti-cancer agents,

including six DDR inhibitors, and encompasses 62 different cell lines spanning 12 types of

tumors, resulting in a total of 17,912 combination treatment experiments. Within these

combinations, we analyze the most effective and synergistic drug pairs across all tested cell lines,

considering the variations among cancers originating from different tissues. Our analysis reveals

inhibitors of five DDR-related pathways (DNA topoisomerase, PLK1 kinase, p53-inducible

ribonucleotide reductase, PARP, and cell cycle checkpoint proteins) that exhibit strong

combinatorial efficacy and synergy when used alongside ATM/ATR/DNA-PK inhibitors.

Introduction

Cancers are aggressive, invasive diseases characterized by uncontrolled growth. Many

cancers exhibit genome instability resulting from tumor-specific DNA repair defects and

increased replication stress, making them more susceptible than normal tissues to DNA damage,

such as single and double-strand breaks (SSBs and DSBs, respectively) (Hanahan & Weinberg,
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2011; Jackson & Bartek, 2009). Taking advantage of this vulnerability, DNA-damaging

treatments such as ionizing radiation and platinum-based antineoplastic have long been used as

anti-cancer treatments (Baskar et al., 2012; Cohen & Lippard, 2001). More recently, a suite of

therapeutic agents targeting DNA damage response (DDR) pathways has been developed that

specifically exploits this susceptibility, promising reduced side effects compared to non-targeted

treatments (Kelley & Fishel, 2016; Lord & Ashworth, 2012; McLaren et al., 2016; O’Connor,

2015). In this context, it is hypothesized that the simultaneous deactivation of multiple DDR

pathways could lead to improved treatment efficacy by addressing both acquired treatment

resistance and buffering by parallel DDR pathways (Jackson & Bartek, 2009).

A set of 450 proteins involved in different pathways of the DNA damage response has

recently been mapped (Pearl et al., 2015). While it is commonly assumed that specific pathways

exist that address different types of DNA damage, e.g., for SSBs, DSBs, or mismatch repair, loss

of function of a DDR pathway can be compensated by parallel repair pathways (Ciccia &

Elledge, 2010; Jackson & Bartek, 2009). The simultaneous inhibition of multiple complementary

DDR pathways by somatic mutation in the tumor and/or one or more targeted treatments, such as

the synthetic lethality between PARP1 inhibition and BRCA1 loss of function (Bryant et al.,

2005; Farmer et al., 2005), was therefore identified as a promising therapeutic strategy in clinical

cancer treatments. This strategy also inspired the development of combination treatments of

multiple DDR inhibitors to overcome resistance to single drugs, achieve synergistic effects, and

expand DDR drugs’ usage to other indications beyond BRCA-deficient cancers (O’Connor,

2015; Pilié et al., 2019).

Three canonical DNA damage-sensing kinases that are central to the human DDR are ataxia

telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), and
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DNA-dependent protein kinase (DNA-PK), which is also referred to as protein kinase,

DNA-activated, catalytic subunit (PRKDC) (Balmus et al., n.d.; Blackford & Jackson, 2017). So

far, studies that comprehensively map the synergistic effects between small molecule inhibitors

of these key DDR kinases and other anti-cancer drugs are lacking in both coverages across tumor

types and the number of combination therapy partners. In this study, we generated cancer cell

line drug combination screens of six kinase inhibitors, including two ATM inhibitors (M3541

and M4076 (Zimmermann, Zenke, et al., 2022)), three ATR inhibitors (berzosertib (Hall et al.,

2014; Reaper et al., 2011), gartisertib (Jo et al., 2021), M1774 (Zimmermann, Dahmen, et al.,

2022)), and one DNA-PK inhibitor (peposertib (van Bussel et al., 2021; Zenke et al., 2020))

against 87 anti-cancer drugs of a wide range of mode-of-actions on 22~62 cancer cell lines

across 12 tissues (or tumor types), forming a total of 17,912 combination treatment experiments.

In order to characterize tissue-specific patterns of DDR inhibitor combination treatments, we

carried out full-genome and transcriptomic profiling of all 62 cell lines and statistically

associated dose responses with genomic and transcriptomic readouts. This screen represents a

large DDR inhibitor combination study and allowed us to identify a small set of inhibitors to

proteins involved in five pathways that displayed strong co-therapeutic efficacy and synergy with

ATM/ATR/DNA-PK inhibition globally: the DNA topoisomerase pathway, the

serine/threonine-protein kinase PLK1 pathway, the p53-inducible ribonucleotide reductase

pathway, the PARP pathway, and the cell cycle checkpoint proteins.

89

https://paperpile.com/c/2Z4Yil/cfkSc+QS3AN
https://paperpile.com/c/2Z4Yil/oLgYT
https://paperpile.com/c/2Z4Yil/mZysc+Msma0
https://paperpile.com/c/2Z4Yil/mZysc+Msma0
https://paperpile.com/c/2Z4Yil/gaxxE
https://paperpile.com/c/2Z4Yil/E9RUl
https://paperpile.com/c/2Z4Yil/E9RUl
https://paperpile.com/c/2Z4Yil/Cp2Lj+Fe0zD


Results

The experimental dose-response screen of three DDR inhibitors across a wide range of

anti-cancer combination treatments

The goal of this study was to comprehensively analyze the synergistic relationship between

the inhibitors of canonical DDR kinases (ATM, ATR, and DNA-PK) and a panel of anti-cancer

drugs. In total, we combined six kinase inhibitors, including two ATM inhibitors (M3541 and

M4076), three ATR inhibitors (berzosertib, gartisertib, M1774), and one DNA-PK inhibitor

(peposertib) with 87 anti-cancer drugs, on 62 cancer cell lines covering 12 tissues or tumor types

(Figure 4.1 a, Supplementary Table 4.1 and Data Availablity). For each of the cell lines, we

carried out RNA- and whole-genome DNA sequencing, and derived genome-wide readouts

covering gene expression, copy-number profiling, and loss-of-function mutation both for single

genes as well as biological pathways.

In vitro combination treatment responses were quantified on the level of both efficacy and

synergy. The efficacy of treatment was estimated by the area above the parametric dose-response

curve divided by the sum of the areas above and below this curve, a quantity that we denote as

relative AoC score. The synergy between two combination partners within treatment was

measured by the Bliss score, which reflects the additional effect of two drugs over the expected

response if the two drugs were to act independently (see Methods Section for detailed

discussions of the dose-response experimental setup, cell line sequencing, and computation of

response measures).

In total, we generated 17,912 combination treatment experiments and 7,081 monotherapy

experiments, with reproducibility of Pearson’s correlation = 0.8380 (p < 1e-22) in AoC score for

monotherapy and 0.7611 (p < 1e-22) in Bliss score for combination treatment, which is
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comparable with previously reported combination treatment screening datasets including

DREAM (Menden et al., 2019), ALMANAC (Holbeck et al., 2017; Menden et al., 2019), and

O’Neil (O’Neil et al., 2016). While various DDR inhibitor combinations were used in our

screens, we report results on the level of mode-of-action combination (e.g., ATMi-PARPi) for

conciseness and generalizability. However, all analyses were conducted using and are supported

by individual drug combinations (such as M3541-olaparib).

Mapping the global interaction relationships between DDR inhibitors and combination treatment

partners

In anti-cancer treatment, ideal drug combinations are not only safe and effective but also

complement each other in a synergistic manner (O’Connor, 2015). Due to the complex

relationships between DDR pathways (Jackson & Bartek, 2009), finding optimal drug

combinations that show broad efficacy across multiple tumor types and genomic contexts of

tumors is particularly challenging. This large-scale screen, therefore, provides a unique

opportunity to map the overall global efficacy and synergy relationships between DDR inhibitors

and other anti-cancer agents.

To visualize these global relationships, we generated comprehensive heatmaps showing the

efficacy and synergy responses of all 87 anti-cancer drugs screened in combination with six

ATM/ATR/DNA-PK inhibitors across all 62 cell lines and 12 tissues (Figure 4.1b,

Supplementary Figure 4.1-3). By visual and numerical analysis, we identified several drugs

that result in high efficacy when combined with ATM, ATR, and DNA-PK inhibitors. In general,

ATR inhibitors have stronger synergy and efficacy compared to other DDR inhibitors in all

combinations tested. In terms of the combination partners, tubulin inhibitors achieved high

efficacy but low synergy with DDR inhibitors, possibly due to the high cytotoxicity of tubulin
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inhibitors alone (Lu et al., 2012) that may result in a plateau effect in cell growth inhibition

which could not be further increased by combination with DDR inhibitors. Combination

treatments with PARP inhibitors, such as veliparib, talazoparib, rucaparib, olaparib, and

niraparib, which, with the exception of veliparib, are approved as targeted drugs for

BRCA-mutated cancer treatment (Minchom et al., 2018; O’Connor, 2015), demonstrated the

highest synergy with ATM and ATR inhibitors across multiple cancer types. The TOP1/2 (DNA

topoisomerase 1/2) inhibitors SN-38 (the active metabolite of irinotecan), topotecan, etoposide,

and doxorubicin, also display high efficacy and synergy with ATM/ATR/DNA-PK inhibitors

(DNA-PK>ATR>ATM), as previously reported in preclinical studies (Fok et al., 2019; Jo et al.,

2021; “Therapeutic Targeting of ATR Yields Durable Regressions in Small Cell Lung Cancers

with High Replication Stress,” 2021). Last, selected chemotherapeutics such as gemcitabine, an

antimetabolite that inhibits DNA synthesis, also achieved high efficacy and synergy when

combined with ATR and ATM inhibitors (Figure 4.2a and b). While the synergistic relationship

between ATRi and gemcitabine has been reported before (Konstantinopoulos et al., 2021), we

note that similar relationships between gemcitabine and either DNA-PKi or ATMi have not been

reported before, to our knowledge. Overall, the dataset shows a low Pearson’s correlation of 0.2

(p<1e-22) between efficacy and synergy, which, while well within the range of values observed

in previous studies (Ianevski et al., 2020; Sen et al., 2019), highlights the need of analyzing both

measures of response independently.

In addition to analyzing results on the level of individual drugs, we further characterized the

most efficacious and synergistic combination treatments identified in our screen by their

mode-of-actions. Hierarchical clustering based on responses in different cell lines shows

treatments with the same mode of actions tend to cluster together (Supplementary Figure
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4.3-7). For example, for monotherapy, ATM inhibitors (M3541 and M4076), CHK1 inhibitors

(GDC0425 and LY2603818), and BET inhibitors (IBET151, CPI0610, and GSK525762A) are

located adjacent to each other (Supplementary Figure 4.3). The same pattern, i.e., combinations

with the same or similar mode-of-actions are more likely to cluster together, also appears in

combination response in terms of efficacy (Supplementary Figures 4.4 and 4.5) and synergy

(Supplementary Figures 4.6 and 7). When combined with ATM, ATR, and DNA-PK, several

modes of action consistently showed high efficacy and synergy (Figure 4.2c, also see

Supplementary Table 4.2), in particular, TOP1i (Subhash et al., 2016), RRM2Bi (the small

subunit of p53-inducible ribonucleotide reductase) (Sagawa et al., 2017; Xu et al., 2008), PLK1i

(polo-like kinase 1) (Ragland et al., 2013), and checkpoint inhibitors CHEK1i and CHEK2i,

suggesting that targeting cell cycle checkpoint may confer a significant benefit in the

combination setting as has recently been suggested for ATRi-CHEK1i (Smith et al., 2010).

Drug mode-of-actions identified from synergy analyses alone partly overlapped with those

for efficacy scores; inhibiting RRM1/2 and TOP pathways seems to be broadly effective in

combination with ATR/ATM/DNA-PK inhibition. The inhibition of RRM1/2 pathway is only

synergistic in combination with ATR, but not ATM and DNA-PK inhibition, while inhibiting

TOP pathway is synergistic with all ATR, ATM, and DNA-PK inhibition. Lastly, PARP

inhibitors appeared to be strongly and broadly synergistic in combination with ATRi/ATMi, but

not DNA-PKi (Figure 4.2d and Supplementary Table 4.3).

Four monotherapy and two DDR inhibitor combinations show significant variability in response

between different cancer types

To investigate whether general biological backgrounds, such as cancer or tissue types,

influence treatment response, we carried out statistical comparisons of the efficacy and synergy
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responses between different cancer types covering the 87 monotherapy agents and 465

combination treatments screened in our study.

As the number of cell lines covering each of the 12 cancer types varies, we chose the

non-parametric Kruskal-Wallis test to analyze the variance of treatment response of each

treatment across all cancer types in this study. After multiple testing corrections, only four out of

the 87 monotherapy agents showed significant variance in efficacy across different cancer types

(p < 0.01), including doxorubicin (p = 2.8e-08), M3541 (p = 2.2e-06); peposertib (p = 1.3e-05),

and oxaliplatin (p = 3.4e-05)) (Supplementary Figure 4.1). Analogously, only two combination

treatments out of the 465 combinations we tested showed significant variation in response across

different cancer types: peposertib-gamma-ionizing-radiation (a DNA-PKi-IR combination

showing significant cross-cancer type variance in terms of both efficacy (p = 3.38e-3) and

synergy (p = 7.82e-5)), and M4076-berzosertib (an ATMi-ATRi combination showing variance

only in terms of synergy (p = 2.39e-05)) (Figure 4.3a and b). As in the results on the raw

efficacy and synergy values (see previous sections), also no correlation of cross-cancer variance

significance values between efficacy and synergy scores was detected (Pearson’s r = -0.028, p =

0.54) (Figure 4.3c), indicating again that the two scores are measurements of different

pharmaceutical properties.

For all monotherapy and combination therapies that showed significant differences in

responses across cancer types, we carried out statistical post-hoc analysis including Dunn’s test,

to identify individual cancer types with variable responses to individual drugs and drug

combinations (Figure 4.3d-f and Supplementary Figure 4.2). Of the four significantly variable

mono-therapeutic agents, doxorubicin showed significantly higher efficacy in hematological

cancers than other cancer types, while M3541 demonstrated lower efficacy in both pancreas and
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melanoma cancers than other cancer types (Supplementary Figure 4.2b). For peposertib and

oxaliplatin, the difference in efficacy was only significant between bladder and

ovary/hematological cancers, as well as between sarcoma and hematological cancers

(Supplementary Figure 4.2b). For the combination treatments, the

peposertib-gamma-ionizing-radiation combination displayed significantly higher efficacy in

hematological cancers compared to bladder cancers (Figures 4.3d and e). Last, the case of

M4076-berzosertib, shows a significantly lower synergy in hematological cancers compared to

the pancreas, prostate, melanoma, and sarcoma cancers were observed (Figure 4.3f).

Interestingly, no significant correlation between average treatment efficacy or synergy and the

significance of variance in different cancer types (across monotherapies (Pearson’s r = -0.01, p =

0.92 and Spearman’s r = -0.075, p = 0.478) and combination therapies, as well as for both

efficacy (Pearson’s r = 0.01, p = 0.835 and Spearman’s r = 0.01, p = 0.8) and synergy (Pearson’s

r = -0.04, p = 0.37 and Spearman’s r = -0.021, p = 0.64)) could be identified, indicating that the

cancer type specificity and overall average treatment response are independent pharmaceutical

characteristics.

Discussion

We present a comprehensive combination treatment screening dataset focusing on DDR

inhibitors, which allows us to identify interactions between DDR inhibitors and a broad range of

anti-cancer drugs and map the molecular dependencies of their relationships. DDR inhibitors are

an increasingly important class of targeted therapies explored for the treatment of cancer, and the

results will help inform and recommend effective treatments depending on available genomic

information. In our data, both the sequencing as well as combination treatment response data
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were generated from the same cell culture lines, avoiding potential issues resulting from differing

molecular backgrounds between screened and sequenced cell lines that may bias the analysis.

We identified inhibitors to four biological pathways that achieve strong combination efficacy

in the screened cell lines when combined with any of the investigated DDR kinase inhibitors: the

DNA topoisomerase pathway (TOP1 and TOP2 inhibitors), the serine/threonine-protein kinase

PLK1 pathway (PLK1 inhibitors), the p53-inducible ribonucleotide reductase pathway

(gemcitabine and cytarabine) and cell cycle checkpoints (in particular, CHK1 inhibitors). In

addition, we found that PARP inhibitors achieve strong synergistic effects in combination with

the ATR and ATM inhibitors, a finding that is currently being investigated for ATRi in ongoing

clinical trials (Study of M1774 in Combination With DNA Damage Response Inhibitor or

Immune Checkpoint Inhibitor (DDRiver Solid Tumors 320), n.d.; Yap et al., 2022).

Concerning drug combination synergy, we identified peposertib-gamma-ionizing-radiation

(ionizing radiation) (DNA-PKi-IR) and M4076-berzosertib (ATMi-ATRi) as combination

treatments that show cross-cancer type variability in efficacy and synergy.

Peposertib-gamma-ionizing-radiation is a DDR inhibitor combination that has been actively

under preclinical evaluation (Romesser et al., 2021; Van Triest et al., 2018; Zenke et al., 2020)

and shows robust response in cervical cancer xenograft model (Gordhandas et al., 2022) and

enhances the response of immunotherapy (Carr et al., n.d.). Meanwhile, ATM and ATR

loss-of-function have been proposed as being in a synthetically lethal relationship (Weber &

Ryan, 2015), and ATM has been identified as a predictive biomarker of single-agent ATRi in

multiple tumor types (Dunlop et al., 2020; Kwok et al., 2016; Min et al., 2017). Both

combinations show synergy in vitro (0.14 bliss score for the

peposertib-gamma-ionizing-radiation combination and 0.11 bliss score for the
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M4076-berzosertib combination), indicating the potential for further investigation of the proper

indication of both combinations in clinical use.

Our investigation has yielded crucial evidence shedding light on the potential of

DDR-targeted combination therapies, highlighting their significant clinical prospects. However,

it is essential for future studies to meticulously evaluate the toxicity and adverse events linked to

such combined treatment approaches, ensuring patient safety and precise dosage calibration. The

concept of synthetic lethality, which forms the foundation of DDR-targeted combination therapy,

inherently enhances efficacy while concurrently increasing the risk of toxicity and adverse events

(Martorana et al., 2022; Mullard, 2022). For example, PARP inhibitors, both as monotherapies

and as components of combination regimens, have been extensively researched due to their

pioneering role in DDR-targeted therapy, with a clinical history spanning over a decade

(Coleman et al., 2019; LaFargue et al., 2019; Madariaga et al., 2020; C. Wang & Li, 2021). The

simultaneous administration of the PARP inhibitor olaparib with the ATR inhibitor ceralasertib,

for instance, has been correlated with the onset of anemia, neutropenia, and thrombocytopenia

(Mahdi et al., 2021; Shah et al., 2021). Furthermore, certain combinations elucidated in our

current study have previously been reported to increase the incidence of toxicity and adverse

events. The ATR inhibitor berzosertib, usually well-tolerated as a single-agent therapy, has

shown an increased prevalence of adverse events and hematological toxicities, including anemia,

nausea, and neutropenia, when combined with carboplatin (Yap et al., 2020), gemcitabine

(Konstantinopoulos, Cheng, Wahner Hendrickson, Penson, Schumer, Doyle, et al., 2020;

Middleton et al., 2021), or topotecan (Thomas et al., 2018) in early-phase clinical trials. Despite

the progress we have made in our research, we acknowledge that our efforts are still limited to

the preliminary phase of in vitro high-throughput screening. Therefore, a comprehensive
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exploration of in vivo toxicity associated with all the synergistic combinations unveiled in this

study awaits future clinical trials.

Methods

Cell culture and drug response detection

This study is carried out on cell lines only and complies with all relevant ethical regulations

of Merck Healthcare KGaA and the University of Michigan. All dose-response experiments were

conducted at Oncolead GmbH & Co. KG (Karlsfeld, Germany). Cell lines were purchased

directly from the ATCC, NCI, CLS, and DSMZ cell line collections. The cell lines were grown in

the media recommended by the suppliers in the presence of 100 U/ml penicillin G and 100 μg/ml

streptomycin supplied with 10% FCS.

Cells were grown in a 5% CO2 atmosphere. Cell growth and treatment were performed in

96-well microtiter plates CELLSTAR® (Greiner Bio-One, Germany). Cells harvested from

exponential phase cultures by trypsinization or by splitting (in the case of suspension growing

cells) were plated in 90 μl of media at optimal seeding densities. The optimal seeding density for

each cell line was determined to ensure exponential growth for the duration of the experiment.

All cells growing without anticancer agents were sub-confluent by the end of the treatment, as

determined by visual inspection.

Cells were allowed to stay for another 48 hours prior to compound treatment. The treatment

was performed for 120 hours and stopped by the addition of trichloroacetic acid followed by

using a total protein staining protocol (Sulforhodamine B (SRB) staining) (Vichai & Kirtikara,

2006). The bound SRB was solubilized with 100 μl of 10 mM Tris base. Optical density was

measured at 492, 520, and 560 nm. Compound dilutions were performed in DMSO and diluted

1:100 in the RPMI medium. Combined treatment has been performed simultaneously. 90 μl of
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cells were treated by mixing with 10 μl of the compound-containing media (resulting in a final

DMSO concentration of 0.1%). In the case of combination, both agents were mixed together in

DMSO at equal volumes so that the final concentration of DMSO was 0.2%. In addition, all

experiments contained a few plates with cells that were analyzed immediately after the 48 hours

recovery period. These plates contained information about the cell number, Tz, at time zero, i.e.,

before treatment, and served to calculate the cytotoxicity.

The calculation nomenclature used was introduced by DTP of the NCI (Shoemaker, 2006).

The first step in data processing was calculating an average background value for each plate,

derived from plates and wells containing mediums without cells. The average background optical

density was then subtracted from the appropriate control values (containing cells without the

addition of a drug), from values representing the cells treated with an anticancer agent, and from

values of wells containing cells at time zero. Thus, the following values were obtained for each

experiment: control cell growth, C; cells in the presence of an anticancer agent Ti and cells prior

to compound treatment at time zero, Tz (or T0, in some publications).

The selection of the concentration range for all agents was based on previous experiments

using a panel of 62 cell lines. A 4-fold dilution and 5 data points were sufficient to cover the

complete activity range for most of the agents (Supplementary Figure 4.8 and 4.9).

Dose-response evaluation measures

The non-linear curve fitting calculations were performed using algorithms and visualization

tools using four-parameter log-logistic regression (DeLean et al., 1978; Ritz et al., 2015).

To obtain an estimate of treatment efficacy that encompasses both potency and maximum

effect, the relative area over the curve (AoC) was computed by estimating the area under the

fitted dose-response curve by the trapezoidal rule within ranges of relative growth rates
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compared to untreated controls between 0% and 100%, and within ranges of drug concentrations

between 1 nM and 1 mM, and dividing the estimated area by the sum of areas below and above

the curve. The relative AoC measure used in this work thus captures both the potency of a

compound combination (usually measured by IC50 or GI50) as well as the maximum effect on

cellular growth (as measured by the minimum of the curve); the relative AoC is of particular

usefulness for capturing the efficacy of DDR inhibitors, many of which often have a

comparatively low maximum effect less than 50% growth inhibition at realistic concentrations,

which makes IC50 and GI50 less practically relevant.

Combination effects for the different compound combinations are calculated using the Bliss

independence model (Berenbaum, 1989; Greco et al., 1995) under the assumption of independent

modes of action of the combination partners. Bliss excess was calculated as the average excess of

the observed effect EOBS (i.e., the relative reduction of growth rate compared to untreated

controls) over the calculated linear combination of the monotherapy treatments effects (E1+2 = E1

+ E2 – E1 E2) for all concentrations used:

… … Eq. (1)𝐵𝑙𝑖𝑠𝑠
𝑒𝑥𝑐𝑒𝑠𝑠

= 1
𝑛 Σ

𝑖=1
𝑛  𝐸

𝑂𝐵𝑆
𝑖

− 𝐸
1+2

𝑖

In this formulation, the Blissexcess is a continuous value between -1 and 1 where values higher

than about 0.2 are usually considered synergistic, and values below about -0.2 are usually

considered antagonistic.

Statistics & Reproducibility

The reproducibility of measured response (i.e. AoC and Bliss score) are measured by

Pearson’s correlation within the replicated experiments. No data were excluded from the

analyses.
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Quantification and statistical analysis for drug response variance test

For hierarchical clustering based on drug responses, we used heatmap.2 function of gplots

module (3.1.3) from R (4.2.3) for hierarchical clustering using Euclidean as the distance function

and ward.D2 as the cluster function.

We used Python (>=3.8) module scipy (1.11.3) to carry out the Kruskal-Wallis test to test if a

drug has different responses between different cancer types. The Kruskal-Wallis test is

especially suitable for this situation as a non-parametric test, so it won’t be affected by the

different sample sizes of the subsets. For the significantly tissue-specific drugs (p<0.01), we also

used scipy to carry out posthoc tests, including Dunn's test, Mann-Whitney Pairwise test,

Conover-Iman test, and bootstrapping 10,000 times to locate the significantly different tissue

types. Bonferroni correction was performed to adjust the above multiple comparisons.

Data Availability

The DDR combination in vitro screening data collected in this study are shared at and can be

freely downloaded from: https://osf.io/8hbsx/. Source data are provided with this paper.

Code Availability

The source code of all statistical analyses is available from GitHub:

https://github.com/GuanLab/DDR_combination_analysis.
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Figures

Figure 4.1. Overview of combination treatment synergy screening experiments. (a)
Dose-response curves were used to calculate drug pairs’ efficacy and synergy scores. Inhibitors
to DDR kinases ATM, ATR, and DNA-PK (ATMi/ATRi/DNAPKi) were tested against 62 cell
lines across 12 tissues. (b) DDR inhibitor combination treatment screens show strong
interactions between drugs targeting different DDR factors. The efficacy (left panel, by area over
the curve (AoC) score) and synergistic (right panel, by Bliss score) responses of all combination
treatments across the 12 tissue types tested in this study are shown. Six DDR inhibitors of
interest of three mode-of-actions (ATMi, ATRi, and DNA-PKi, shown on the y-axis) combined
with 87 drugs (x-axis), form 546 different combinations, which are facetted by the 12 different
cancer cell line tissues of origin. Some drugs (and their mode-of-actions) with significant
synergistic effects, when combined with the six DDR inhibitors of interest, are marked and
shown in pop-out tables. More detailed information on all drug/mode-of-action combinations is
shown in Supplementary Figures 4.3 and 4.4.
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Figure 4.2. Top DDR inhibitor combination treatments that achieve the highest efficacy and
synergy across all cell lines in the high-throughput treatment screening in this study. (a and
b) Boxplots showing the treatment responses of drug combinations with the top 50 averaged (a)
efficacy and (b) synergy responses in all 62 cancer cell lines (n = 62). Drug combinations are
shown on the left side. Mode-of-actions of the DDR inhibitors are denoted by red (ATR
inhibitor), blue (ATM inhibitor), green (DNA-PK inhibitor), and yellow (ATR inhibitor-ATM
inhibitor combination) in the box plot, while mode-of-actions of the partner drugs are shown at
the right side. The interquartile range (25th to 75th percentile) and median lines are shown, with
whiskers extending to 1.5 times the interquartile range. (c and d) show the top 10 target genes
with the highest average (C) efficacy and (D) synergy in combination with ATR, ATM, and
DNA-PK (PRKDC) inhibitors. Each target gene of a partner drug is denoted by a node in the
diagram, and the combination response (efficacy or synergy) is denoted by the relative strength
of the connection.
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Figure 4.3. Results from cross-cancer type variance test of DDR inhibitor combination
treatment response. (a and b) Kruskal-Wallis test shows the significance of cross-cancer type
variance of DDR inhibitor combinations tested in this study. -log10(p) from the cross-tissue
variance test for (a) efficacy (AoC score) and (b) synergy (Bliss) of the top 50 combinations are
shown, and the significance threshold (p = 0.01) is marked by a dashed line. (c) shows the
correlation between cross-cancer-type variance significance in AoC score and Bliss score for all
combination treatments tested in this study. Each dot in (c) denotes a combination treatment.
(d-f) Heatmap shows the results from post-hoc analysis by Dunn’s test on the significantly
variant combination treatments (peposertib-gamma-ionizing-radiation and M4076-berzosertib)
from the Kruskal-Wallis test, and the right lane shows the distribution of responses (AoC or Bliss
scores) in different cancer types (boxplots show the 25, 50 and 75 percentiles with whiskers
extending to 1.5 times the interquartile range; for each cancer types the total numbers of cell
lines are: bladder=4; brain=3; breast=6; colon=8; hematological=10; liver=2; lung=5;
melanoma=3; ovary=5; pancreas=4; prostate=2; sarcoma=10). As M4076-berzosertib only
shows the cross-cancer-type variance in the Bliss score, only the post hoc test result on the Bliss
score is shown for this combination. All statistically significant values from the variance test are
two-sided.
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Supplementary Tables

Supplementary Table 4.1. Target gene and mode-of-action of all anti-cancer drugs tested in
this study.

drug_name
mode-of-actio
n drug target reference

Ceritinib ALKi

ABCB1,ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR
2B,AKT1,AKT2,AKT3,ALK,ARAF,ATR,AURKA,AURKB,BCR
,BMP2K,BMPR1A,BMPR1B,BRAF,CAMK2G,CDK1,CDK12,C
DK2,CDK4,CDK5,CDK6,CDK7,CDK9,CHD4,CHEK1,CIT,CLK
2,CSNK1D,CSNK1E,CSNK1G3,DCK,DDR1,DDR2,DDX3X,DD
X42,DDX6,EGFR,EIF2AK1,EML4,EPHA2,EPHA4,EPHA5,EPH
A7,EPHB6,ERCC2,ETV6,FES,FGFR1,FGFR2,FGFR3,FGFR4,F
LT3,GSK3B,IGF1R,IKBKE,INSR,IRAK1,IRAK4,JAK1,JAK2,JA
K3,KDR,KIT,LATS1,LCK,LYN,MAP2K1,MAP2K2,MAP3K1,M
AP3K2,MAP3K3,MAP3K4,MAP3K5,MAP4K3,MAP4K4,MAPK
1,MAPK10,MAPK14,MAPK15,MAPK3,MAPK8,MAPK9,MAP
KAPK5,MARK3,MARK4,MCM4,MET,NAT10,NEK2,NEK7,NL
K,NPM1,NTRK1,NTRK2,PAK4,PDGFRA,PDGFRB,PEBP1,PIM
1,PIM2,PKMYT1,PLK1,PLK4,PRKAA1,PRKAG2,PRKAR2A,P
RKCD,PRKCI,PRKCQ,PRKCZ,PRKD2,PTK2B,PTK6,RAN,RET
,ROCK1,ROCK2,ROS1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6K
A5,RPS6KA6,RPS6KB1,SMC1A,SMC2,SRC,STAT3,STK11,ST
K16,STK3,STK4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TGFB
R1,TGFBR2,TNIK,TOP2A,TOP2B,TTK,TYK2,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Formestane Aromatasei ESR1,TDP1,YES1
CHEMBL; DGIdb3.0;
Drugbank; LINCS

M3541 ATMi ATM
CHEMBL; DGIdb3.0;
Drugbank; LINCS

M4076 ATMi ATM
CHEMBL; DGIdb3.0;
Drugbank; LINCS

AZD6738 ATRi ATM,ATR,CYP2D6,MTOR,PIK3C2G,PIK3CA,PRKDC
CHEMBL; DGIdb3.0;
Drugbank; LINCS

BAY189534
4 ATRi ATM,ATR,CYP2D6,MTOR,PIK3CB,PRKDC

CHEMBL; DGIdb3.0;
Drugbank; LINCS

M1774 ATRi ATR
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Gartisertib ATRi ATR
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Berzosertib ATRi
ABL1,ATM,ATR,DYRK2,FLT3,FLT4,GSK3B,JAK2,KIT,MTOR,
PIK3CA,PIK3CG,PIK3R1,PRKDC,SYK

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Tozasertib Aurorai

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2A,AC
VR2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,AURKA,AUR
KB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,BRAF,BRSK2,CAM
K2A,CAMK2G,CAMKK1,CASK,CCNA1,CCNA2,CCNB1,CDC
7,CDK1,CDK12,CDK2,CDK4,CDK5,CDK6,CDK7,CDK8,CDK9
,CDKL2,CHD4,CHEK1,CHEK2,CIT,CLK2,CLK3,CSF1R,CSNK
1A1L,CSNK1D,CSNK1E,CSNK1G3,CSNK2A1,DAPK1,DCK,D
DR1,DDR2,DDX3X,DDX42,DDX6,DLK1,DMPK,DSTYK,DYR
K2,EGFR,EIF2AK1,EIF2AK4,EPHA2,EPHA3,EPHA4,EPHA5,E
PHA6,EPHA7,EPHB1,EPHB6,ERBB2,ERBB3,ERBB4,ERCC2,F
ES,FGFR1,FGFR2,FGFR3,FGFR4,FLG,FLT1,FLT3,FLT4,GSK3
B,HIPK2,IGF1R,IKBKE,INSR,INSRR,IRAK1,IRAK4,ITK,JAK1
,JAK2,JAK3,KDM4A,KDR,KIT,LATS1,LATS2,LCK,LRRK2,LY

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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N,MAP2K1,MAP2K2,MAP2K4,MAP2K7,MAP3K1,MAP3K13,
MAP3K2,MAP3K3,MAP3K4,MAP3K5,MAP3K7,MAP4K3,MA
P4K4,MAPK1,MAPK10,MAPK14,MAPK15,MAPK3,MAPK8,M
APK9,MAPKAPK5,MARK3,MARK4,MAST1,MATK,MCM4,M
ET,MST1,MTOR,MYO3B,NAT10,NEK2,NEK4,NEK6,NEK7,NF
E2L2,NLK,NTRK1,NTRK2,NTRK3,PAK1,PAK3,PAK4,PBK,PD
GFRA,PDGFRB,PDK1,PDPK1,PEBP1,PIK3C2B,PIK3C2G,PIK3
CA,PIK3CB,PIK3CD,PIK3CG,PIM1,PIM2,PIM3,PIP4K2B,PIP5
K1A,PKMYT1,PLK1,PLK4,PRKAA1,PRKAA2,PRKAG2,PRKA
R2A,PRKCD,PRKCG,PRKCI,PRKCQ,PRKCZ,PRKD1,PRKD2,
PTK2B,PTK6,RAF1,RAN,RAPGEF3,RET,RIOK3,RIPK1,ROCK
1,ROCK2,ROS1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS
6KA6,RPS6KB1,SGK1,SGK2,SGK3,SMAD3,SMC1A,SMC2,SR
C,SRPK2,STK11,STK16,STK3,STK4,STRADA,SUFU,SYK,TA
OK1,TAOK2,TAOK3,TGFBR1,TGFBR2,TLK1,TLK2,TNIK,TO
P2A,TOP2B,TTK,TYK2,TYRO3,WEE1,YES1

ABT737 BCL2i
BAD,BAK1,BAX,BBC3,BCL2,BCL2L1,BCL2L11,BCL2L2,BID,
MCL1,MDM2

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Imatinib BCRi_ABLi

ABCB1,ABCB11,ABCG2,ABL1,ABL2,ACAD10,ACTR2,ACTR
3,ACVR1B,ACVR2A,ACVR2B,ACVRL1,ADORA2A,AGTR2,A
KT1,AKT2,AKT3,ALK,APEX1,ARAF,AURKA,AURKB,AXL,B
CR,BDKRB2,BMP2K,BMPR1A,BMPR1B,BRAF,BRSK2,CAM
K2A,CAMK2G,CAMKK1,CASK,CCNA1,CCNA2,CCNB1,CCN
E1,CDC7,CDK1,CDK12,CDK2,CDK4,CDK5,CDK6,CDK7,CDK
8,CDK9,CDKL2,CHD4,CHEK1,CHEK2,CIT,CLK2,CLK3,CSF1
R,CSNK1A1L,CSNK1D,CSNK1E,CSNK1G3,CSNK2A1,CYP2B
6,CYP2D6,DAPK1,DCK,DDR1,DDR2,DDX3X,DDX6,DMPK,D
STYK,DYRK2,EGFR,EIF2AK1,EIF2AK4,ELANE,EPHA2,EPH
A3,EPHA4,EPHA5,EPHA6,EPHA7,EPHB1,EPHB6,ERBB2,ERB
B3,ERBB4,ERCC2,ESR1,ESR2,FEN1,FES,FGFR1,FGFR2,FGF
R3,FGFR4,FLT1,FLT3,FLT4,GSK3B,HDAC1,HDAC2,HDAC7,H
DAC8,HIPK2,HMGCR,IDH1,IGF1R,IKBKE,INSR,INSRR,IRAK
1,IRAK4,ITK,JAK1,JAK2,JAK3,KDR,KIT,LATS1,LATS2,LCK,
LMNA,LRRK2,LYN,MAP2K1,MAP2K2,MAP2K4,MAP2K7,M
AP3K1,MAP3K13,MAP3K2,MAP3K3,MAP3K4,MAP3K5,MAP
3K7,MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAPK15,
MAPK3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,MAST
1,MATK,MCM4,MET,MTOR,MYO3B,MYT1,NAT10,NEK2,NE
K4,NEK6,NEK7,NLK,NPM1,NTRK1,NTRK2,NTRK3,OPRK1,P
AK1,PAK3,PAK4,PBK,PDGFRA,PDGFRB,PDPK1,PEBP1,PIK3
C2B,PIK3C2G,PIK3CA,PIK3CB,PIK3CD,PIK3CG,PIM1,PIM2,P
IM3,PIP4K2B,PIP5K1A,PKMYT1,PLK1,PLK4,POLI,POLK,PR
KAA1,PRKAA2,PRKAB1,PRKAG2,PRKAR2A,PRKCD,PRKC
G,PRKCI,PRKCQ,PRKCZ,PRKD1,PRKD2,PTK2B,PTK6,PTPR
C,RAD52,RAF1,RAN,RET,RIOK3,RIPK1,ROCK1,ROCK2,ROS
1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB
1,SFN,SGK1,SGK2,SGK3,SMAD3,SMC2,SRC,SRPK2,STK11,S
TK16,STK3,STK4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TDP
1,TGFBR1,TGFBR2,TLK1,TLK2,TNIK,TOP2A,TOP2B,TTK,TY
K2,TYRO3,VRK1,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

CPI0610 BETi BRD4
CHEMBL; DGIdb3.0;
Drugbank; LINCS

GSK525762
A BETi BRD2,BRD3,BRD4,CREBBP,CYP2D6,SMARCA4

CHEMBL; DGIdb3.0;
Drugbank; LINCS

IBET151 BETi BRD2,BRD3,BRD4,CREBBP,CYP2D6,PDE4B,SMARCA4
CHEMBL; DGIdb3.0;
Drugbank; LINCS
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BMXIN1 BMXi JAK3
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Vemurafenib BRAFi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ARAF,ATR,AURKA,AURKB,BCR,BMP2K,BMP
R1A,BMPR1B,BRAF,CAMK2G,CDK1,CDK12,CDK2,CDK4,C
DK5,CDK6,CDK7,CDK9,CHD4,CHEK1,CIT,CLK2,CSNK1D,C
SNK1E,CSNK1G3,DCK,DDR1,DDR2,DDX3X,DDX42,DDX6,E
GFR,EIF2AK1,EPHA2,EPHA4,EPHA5,EPHB6,ERCC2,FES,FG
FR1,FLT3,GSK3B,IGF1R,IKBKE,INSR,IRAK1,IRAK4,JAK1,JA
K2,KDR,KRAS,LATS1,LCK,LYN,MAP2K1,MAP2K2,MAP2K4,
MAP3K1,MAP3K2,MAP3K3,MAP3K4,MAP3K5,MAP4K3,MA
P4K4,MAPK1,MAPK10,MAPK14,MAPK15,MAPK3,MAPK8,M
APK9,MAPKAPK5,MARK3,MARK4,MCM4,MET,NAT10,NEK
2,NEK7,NLK,NTRK1,PAK4,PDGFRB,PEBP1,PIM1,PIM2,PKM
YT1,PLK1,PLK4,PRKAA1,PRKAG2,PRKAR2A,PRKCD,PRKC
I,PRKCQ,PRKD2,PTK2B,PTK6,RAF1,RAN,RET,ROCK1,ROC
K2,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6K
B1,SMC1A,SMC2,SRC,STK11,STK16,STK3,STK4,STRADA,S
YK,TAOK1,TAOK2,TAOK3,TGFBR1,TGFBR2,TNIK,TOP2A,T
OP2B,TYK2,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Ibrutinib BTKi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ARAF,AURKA,AURKB,BCR,BMP2K,BMPR1A,
BMPR1B,BRAF,CAMK2G,CCNE1,CDC7,CDK1,CDK12,CDK2,
CDK4,CDK5,CDK6,CDK7,CDK9,CHD4,CHEK1,CIT,CLK2,CS
F1R,CSNK1D,CSNK1E,CSNK1G3,CYP2B6,DCK,DDR1,DDR2,
DDX3X,DDX42,DDX6,EGFR,EIF2AK1,EIF4EBP1,EPHA2,EPH
A4,EPHA5,EPHA7,EPHB6,ERBB2,ERBB3,ERBB4,ERCC2,FES
,FGFR1,FGFR2,FLT1,FLT3,GSK3B,IGF1R,IKBKE,INSR,INSRR
,IRAK1,IRAK4,ITK,JAK1,JAK2,JAK3,LATS1,LCK,LYN,MAP2
K1,MAP2K2,MAP2K7,MAP3K1,MAP3K2,MAP3K3,MAP3K4,
MAP3K5,MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAP
K15,MAPK3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,
MCM4,MET,NAT10,NEK2,NEK7,NLK,NTRK1,PAK4,PDGFRB,
PEBP1,PIM1,PKMYT1,PLK1,PLK4,PRKAA1,PRKAG2,PRKAR
2A,PRKCD,PRKCI,PRKCQ,PRKD2,PTK2B,PTK6,RAN,RET,R
OCK1,ROCK2,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6
KA6,RPS6KB1,SMAD3,SMC1A,SMC2,SRC,STK11,STK16,ST
K3,STK4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TDP1,TGFBR
1,TGFBR2,TNIK,TOP2A,TOP2B,TTK,TYK2,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

LY2857785 CDK9i CCNC,CCNH,CDK7,CDK8,CDK9,MNAT1
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Palbociclib CDKi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ALK,ARAF,AURKA,AURKB,BCR,BMP2K,BM
PR1A,BMPR1B,BRAF,CAMK2A,CAMK2G,CCNA1,CCNA2,C
CNB1,CCND1,CCND2,CCND3,CCNE1,CCNH,CDC7,CDK1,CD
K12,CDK2,CDK20,CDK4,CDK5,CDK6,CDK7,CDK8,CDK9,CH
EK1,CIT,CLK2,CLK3,CSF1R,CSNK1D,CSNK1E,CSNK1G3,CS
NK2A1,DCK,DDR1,DDR2,DDX3X,DDX42,DDX6,EGFR,EIF2
AK1,EPHA2,EPHA4,EPHA5,EPHA7,EPHB6,ERCC2,FES,FGFR
1,FGFR2,FGFR3,FGFR4,FLG,FLT1,FLT3,GSK3B,IGF1R,IKBK
E,INSR,IRAK1,IRAK4,JAK1,JAK2,JAK3,KDR,LATS1,LCK,LR
RK2,LYN,MAP2K1,MAP2K2,MAP2K4,MAP3K1,MAP3K2,MA
P3K3,MAP3K4,MAP3K5,MAP4K3,MAP4K4,MAPK1,MAPK10,
MAPK14,MAPK15,MAPK3,MAPK8,MAPK9,MAPKAPK5,MA
RK3,MARK4,MCM4,MET,MNAT1,NAT10,NEK2,NLK,NTRK1,
NTRK2,NTRK3,PAK4,PDGFRA,PDGFRB,PIK3CD,PIM1,PIM2,
PKMYT1,PLK4,PRKAA1,PRKAG2,PRKAR2A,PRKCD,PRKCI,
PRKCQ,PRKD2,PTK2B,PTK6,RAN,RET,ROCK1,ROCK2,RPS6
KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,SMC

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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2,SRC,STK11,STK16,STK3,STK4,STRADA,SYK,TAOK1,TAO
K2,TAOK3,TGFBR1,TGFBR2,TNIK,TOP2A,TOP2B,TYK2,TY
RO3,WEE1,YES1

Purvalanol CDKi

ABL1,ABL2,ACVR1B,AKT1,AKT2,AKT3,ALK,APEX1,AURK
A,AURKB,AXL,BRSK2,CAMK2G,CAMKK1,CCNA1,CCNA2,
CCNB1,CCNB2,CCNB3,CCND1,CCND3,CCNE1,CCNE2,CCN
H,CDK1,CDK12,CDK2,CDK20,CDK4,CDK5,CDK6,CDK7,CD
K8,CDK9,CHEK1,CHEK2,CLK2,CLK3,CSF1R,CSNK1D,CSNK
1G3,CSNK2A1,CYP2D6,DAPK1,DDR2,DMPK,DYRK2,EGFR,
EPHA2,EPHA3,EPHA4,EPHA5,EPHA7,EPHB1,ERBB4,FES,FG
FR1,FGFR2,FGFR3,FGFR4,FLT1,FLT3,FLT4,GBA,GSK3B,HIF
1A,HIPK2,IGF1R,INSR,INSRR,IRAK1,IRAK4,ITK,JAK2,JAK3,
KDR,KIT,KMT2A,LCK,LYN,MAP2K1,MAP2K7,MAP3K5,MA
P3K7,MAPK1,MAPK10,MAPK14,MAPK15,MAPK3,MAPK8,M
APK9,MAPKAPK5,MARK3,MEN1,MET,MTOR,NEK2,NEK6,N
EK7,NLK,NTRK1,NTRK2,PAK3,PAK4,PDGFRA,PDGFRB,PDP
K1,PIM1,PIM2,PIM3,PLK1,PRKAA1,PRKAA2,PRKAB1,PRKA
G2,PRKCD,PRKCG,PRKCI,PRKCQ,PRKCZ,PRKD1,PRKD2,PT
K2B,PTK6,RAF1,RET,ROCK1,ROCK2,ROS1,RPS6KA1,RPS6K
A3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,SGK1,SGK2,SGK
3,SRC,SRPK2,STAT6,STK11,STK3,STK4,SYK,TAOK1,TAOK2,
TAOK3,TDP1,TGFBR1,TLK2,TP53,TSHR,TYRO3,USP1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

RO3306 CDKi

AKT1,AKT2,AKT3,AURKA,AURKB,CCNA2,CCNB1,CCND1,
CCNE1,CCNH,CDK1,CDK12,CDK2,CDK20,CDK4,CDK5,CDK
6,CDK7,CDK8,CDK9,GSK3B,MAPK1,MNAT1,PRKCD,RPS6K
A3

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Seliciclib CDKi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2A,AC
VR2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,ATAD5,AURK
A,AURKB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,BRAF,BRSK
2,CAMK2A,CAMK2G,CAMKK1,CCNA1,CCNA2,CCNB1,CCN
B2,CCNB3,CCND1,CCND3,CCNE1,CCNE2,CCNH,CDK1,CDK
12,CDK2,CDK20,CDK4,CDK5,CDK6,CDK7,CDK8,CDK9,CHD
4,CHEK1,CHEK2,CIT,CLK2,CLK3,CSF1R,CSNK1A1L,CSNK1
D,CSNK1E,CSNK1G3,CSNK2A1,CYP2D6,DAPK1,DCK,DDR1,
DDR2,DDX3X,DDX42,DDX6,DMPK,DYRK2,EGFR,EIF2AK1,
EIF2AK4,EPHA2,EPHA3,EPHA4,EPHA5,EPHA6,EPHA7,EPH
B1,EPHB6,ERBB2,ERBB4,ERCC2,FES,FGFR1,FGFR2,FGFR3,
FGFR4,FLT1,FLT3,FLT4,GSK3B,HDAC1,HIF1A,HIPK2,IGF1R,
IKBKE,INSR,INSRR,IRAK1,IRAK4,ITK,JAK1,JAK2,JAK3,KA
T2A,KDR,KIT,LATS1,LATS2,LCK,LMNA,LYN,MAP2K1,MAP
2K2,MAP2K4,MAP3K1,MAP3K2,MAP3K3,MAP3K4,MAP3K5,
MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAPK15,MAP
K3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,MATK,MC
M4,MET,MNAT1,MYO3B,NAT10,NEK2,NEK4,NEK6,NEK7,N
FE2L2,NFKB1,NLK,NTRK1,NTRK2,NTRK3,PAK1,PAK3,PAK4
,PBK,PDGFRA,PDGFRB,PDPK1,PEBP1,PIK3CA,PIK3R1,PIM1
,PIM2,PIM3,PIP4K2B,PIP5K1A,PKMYT1,PLK1,PLK4,PRKAA
1,PRKAA2,PRKAG2,PRKAR2A,PRKCD,PRKCG,PRKCI,PRKC
Q,PRKCZ,PRKD1,PRKD2,PTK2B,PTK6,RAF1,RAN,RB1,RET,
RIOK3,RIPK1,ROCK1,ROCK2,ROS1,RPS6KA1,RPS6KA3,RPS
6KA4,RPS6KA5,RPS6KA6,RPS6KB1,SGK1,SGK2,SMC1A,SM
C2,SRC,SRPK2,STK11,STK16,STK3,STK4,STRADA,SYK,TAO
K1,TAOK2,TAOK3,TDP1,TGFBR1,TGFBR2,TLK1,TLK2,TNIK
,TOP2A,TOP2B,TP53,TSHR,TTK,TYK2,TYRO3,VRK1,WEE1,
YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Dinaciclib CDKi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ARAF,ATR,AURKA,AURKB,BCR,BMP2K,BMP
R1A,BMPR1B,BRAF,BRD4,CAMK2G,CCNA2,CCNB1,CCND1
,CCNE1,CCNH,CDK1,CDK12,CDK2,CDK20,CDK4,CDK5,CD

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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K6,CDK7,CDK8,CDK9,CHD4,CHEK1,CIT,CLK2,CSNK1D,CS
NK1E,CSNK1G3,DCK,DDR1,DDR2,DDX3X,DDX42,DDX6,EG
FR,EIF2AK1,EPHA2,EPHA4,EPHA5,EPHA7,EPHB6,ERCC2,F
ES,FGFR1,FLT3,GSK3B,IGF1R,IKBKE,INSR,IRAK1,IRAK4,JA
K1,LATS1,LCK,LYN,MAP2K1,MAP2K2,MAP2K4,MAP3K1,M
AP3K2,MAP3K3,MAP3K4,MAP3K5,MAP4K3,MAP4K4,MAPK
1,MAPK10,MAPK14,MAPK15,MAPK3,MAPK8,MAPK9,MAP
KAPK5,MARK3,MARK4,MCM4,MET,MNAT1,NAT10,NEK2,N
EK7,NLK,NTRK1,PAK4,PDGFRB,PEBP1,PIM1,PIM2,PKMYT1
,PLK4,PRKAA1,PRKAG2,PRKAR2A,PRKCD,PRKCI,PRKCQ,P
RKCZ,PRKD2,PTK2B,PTK6,RAN,RET,ROCK1,ROCK2,RPS6K
A1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,SMC1
A,SMC2,SRC,STK11,STK16,STK3,STK4,STRADA,SYK,TAOK
1,TAOK2,TAOK3,TGFBR1,TGFBR2,TNIK,TOP2A,TOP2B,TYK
2,WEE1,YES1

THZ1 CDKi
CCNH,CDK1,CDK12,CDK2,CDK20,CDK4,CDK5,CDK6,CDK7
,CDK8,CDK9,MNAT1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

ML167 CDKi_CLK4i
CDK1,CDK12,CDK2,CDK20,CDK4,CDK5,CDK6,CDK7,CDK8,
CDK9,CLK2,CLK3

CHEMBL; DGIdb3.0;
Drugbank; LINCS

GSK923295 CENPEi CENPE
CHEMBL; DGIdb3.0;
Drugbank; LINCS

GDC0425 CHK1i CHEK1
CHEMBL; DGIdb3.0;
Drugbank; LINCS

LY2603618 CHK1i

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ARAF,ATR,AURKA,AURKB,BCR,BMP2K,BMP
R1A,BMPR1B,BRAF,CAMK2G,CDC7,CDK1,CDK12,CDK2,CD
K4,CDK5,CDK6,CDK7,CDK9,CHD4,CHEK1,CIT,CLK2,CLK3,
CSNK1D,CSNK1E,CSNK1G3,DCK,DDR1,DDR2,DDX3X,DDX
42,DDX6,EGFR,EIF2AK1,EPHA2,EPHA4,EPHA5,EPHA7,EPH
B6,ERCC2,FES,FGFR1,FLT3,GSK3B,IGF1R,IKBKE,INSR,IRA
K1,IRAK4,JAK1,JAK2,LATS1,LCK,LYN,MAP2K1,MAP2K2,M
AP2K4,MAP3K1,MAP3K2,MAP3K3,MAP3K4,MAP3K5,MAP4
K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAPK15,MAPK3,M
APK8,MAPK9,MAPKAPK5,MARK3,MARK4,MCM4,MET,NA
T10,NEK2,NEK7,NLK,NTRK1,PAK4,PDGFRB,PEBP1,PIM1,PI
M2,PKMYT1,PLK1,PLK4,PRKAA1,PRKAG2,PRKAR2A,PRKC
D,PRKCI,PRKCQ,PRKCZ,PRKD2,PTK2B,PTK6,RAN,RET,RO
CK1,ROCK2,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6K
A6,RPS6KB1,SMC1A,SMC2,SRC,STK11,STK16,STK3,STK4,S
TRADA,SYK,TAOK1,TAOK2,TAOK3,TGFBR1,TGFBR2,TNIK,
TOP2A,TOP2B,TYK2,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Prexasertib CHK1i
CDK1,CDK2,CHEK1,CHEK2,FLT3,LCK,LYN,PIM1,PIM3,PRK
AA1,PRKAB1,RPS6KA1,RPS6KB1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Pomalidomi
de CRBNi

ABCB11,BRD4,CDK6,CUL4A,DDB1,IKZF1,IKZF3,NFKB1,NF
KB2,PDE4B,RBX1,RELA

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Bleomycin
Cytostatic_An
tibiotic

ADORA2A,AGTR2,BDKRB2,CYP2D6,EGFR,ELANE,ERBB2,
ESR1,ESR2,FLT1,HMGCR,LCK,MAPK1,MAPK14,MAPK3,OP
RK1,PTPRC

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Mitomycin
Cytostatic_An
tibiotic

ABCB1,ADORA2A,AGTR2,APEX1,BDKRB2,CYP2D6,EGFR,E
LANE,ERBB2,ESR1,ESR2,FLT1,GNAS,HMGCR,IDH1,IDO1,L
CK,MAPK1,MAPK14,MAPK3,NFE2L2,OPRK1,POLI,POLK,PT
PRC,SMAD3,TDP1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Cytarabine
Cytostatic_An
timetabolite

ABCB1,ABCB11,ADORA2A,AGTR2,APEX1,ATAD5,BDKRB2,
BLM,CBFB,CYP2D6,DCK,DNMT1,EGFR,ELANE,ERBB2,ESR
1,ESR2,FLT1,HMGCR,KMT2A,LCK,LMNA,MAPK1,MAPK14,

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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MAPK3,MDM2,MEN1,MTOR,NCOA1,NCOA3,NFE2L2,NFKB
1,OPRK1,PIN1,POLA1,POLB,POLD1,POLE,POLI,PTPRC,RRM
1,RUNX1,SIRT1,SRC,TDP1,TK1,USP1

Azacytidine
Cytostatic_An
timetabolite

ADORA2A,AGTR2,APEX1,AR,ATAD5,BDKRB2,BLM,CYP2D
6,DNMT1,DNMT3A,EGFR,ELANE,ERBB2,ESR1,ESR2,FLT1,F
LT3,HMGCR,IDH1,KAT2A,LCK,LMNA,MAPK1,MAPK14,MA
PK3,MTOR,NFE2L2,NFKB1,OPRK1,PPARG,PTPRC,RORC,RX
RA,SMAD3,TDP1,TP53,UHRF1,VDR

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Fluorouracil
Cytostatic_An
timetabolite

ABCB11,ADORA2A,AGTR2,APEX1,ATAD5,BDKRB2,CTNNB
1,CYP2D6,DTYMK,EGFR,ELANE,ERBB2,ESR1,ESR2,FEN1,F
LT1,HMGCR,IDH1,LCK,LMNA,MAPK1,MAPK14,MAPK3,MB
NL1,MTOR,NFE2L2,OPRK1,PIK3CA,PIK3R1,PTPRC,TDP1,TP
53,TSHR,TYMS

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Gemcitabine
Cytostatic_An
timetabolite

ABCB1,ABCB11,ADORA2A,AGTR2,BDKRB2,CYP2D6,DCK,
EGFR,ELANE,ERBB2,ESR1,ESR2,FLT1,HMGCR,LCK,MAPK1
,MAPK14,MAPK3,OPRK1,PTPRC,RRM1,RRM2,RRM2B,SIRT
1,TDP1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Dacarbazine
Cytostatic_Int
ercalator

ABCB11,ADORA2A,AGTR2,BDKRB2,CYP2D6,EGFR,ELANE,
ERBB2,ESR1,ESR2,FLT1,HMGCR,IDH1,LCK,LMNA,MAPK1,
MAPK14,MAPK3,OPRK1,PAX8,PTPRC,TSHR

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Lomustine
Cytostatic_Int
ercalator

ABCB11,ADORA2A,AGTR2,BDKRB2,CYP2D6,EGFR,ELANE,
ERBB2,ESR1,ESR2,FLT1,HMGCR,LCK,MAPK1,MAPK14,MA
PK3,OPRK1,PTPRC,TDP1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Melphalan
Cytostatic_Int
ercalator

ABCB11,ADORA2A,AGTR2,AR,BDKRB2,CYP2D6,EGFR,EL
ANE,ERBB2,ESR1,ESR2,FLT1,GBA,HIF1A,HMGCR,LCK,MA
PK1,MAPK14,MAPK3,NFE2L2,NFKB1,OPRK1,PPARG,PTPRC
,RORC,RXRA,SMAD3,TDP1,TP53,USP1,VDR

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Temozolomi
de

Cytostatic_Int
ercalator

ABCB1,ABCB11,ABL1,ABL2,KMT2A,MBNL1,MEN1,PABPC1
,POLK

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Thiotepa
Cytostatic_Int
ercalator ABCB11,CYP2B6,LMNA,PLK1,POLI,TDP1,VDR

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Carboplatin

Cytostatic_Pla
tinumanalogu
e

ADORA2A,AGTR2,APEX1,BDKRB2,CASP7,CBFB,CYP2D6,E
GFR,ELANE,ERBB2,ESR1,ESR2,FLT1,HMGCR,KAT2A,KMT2
A,LCK,MAPK1,MAPK14,MAPK3,MEN1,OPRK1,POLK,PTPR
C,RUNX1,TDP1,USP1,VDR

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Cisplatin

Cytostatic_Pla
tinumanalogu
e

ABCB1,ADORA2A,AGTR2,APEX1,AR,BDKRB2,CBFB,CDK2,
CDK4,CYP2D6,EGFR,ELANE,ERBB2,ESR1,ESR2,FEN1,FLT1,
HMGCR,KAT2A,LCK,MAPK1,MAPK14,MAPK3,NFE2L2,OPR
K1,PIN1,POLI,POLK,PTPRC,RECQL,RUNX1,RXRA,TDP1,US
P1,VDR

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Oxaliplatin

Cytostatic_Pla
tinumanalogu
e

ADORA2A,AGTR2,BDKRB2,CYP2D6,EGFR,ELANE,ERBB2,
ESR1,ESR2,FLT1,HMGCR,LCK,MAPK1,MAPK14,MAPK3,OP
RK1,PTPRC,TDP1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Vincristine
Cytostatic_Tu
bulini

ABCB1,ABCB11,ADORA2A,AGTR2,ATAD5,BDKRB2,CYP2D
6,EGFR,ELANE,ERBB2,ESR1,ESR2,FLT1,HIF1A,HMGCR,IDH
1,KAT2A,LCK,LMNA,MAPK1,MAPK14,MAPK3,NFE2L2,OPR
K1,PTPRC,SMAD3,TDP1,TUBA1A,TUBA4A,TUBB4B

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Paclitaxel
Cytostatic_Tu
bulini_BCL2i

ABCB1,ABCB11,ABL1,ADORA2A,AGTR2,AR,ATAD5,BCL2,
BCL2L1,BDKRB2,BLM,CYP2D6,EGFR,ELANE,ERBB2,ESR1,
ESR2,FGFR1,FLT1,HIF1A,HMGCR,HSP90AA1,HSPE1,IDH1,K
MT2A,LCK,LMNA,MAPK1,MAPK14,MAPK3,MEN1,MTOR,N
FE2L2,OPRK1,PIN1,PPARG,PTPRC,RECQL,RXRA,SMAD3,S

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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NCA,SRC,TDP1,TK1,TP53,TUBA1A,TUBA4A,TUBB4B,USP1,
VDR

Methotrexat
e DHFRi

ABCB1,ABCB11,ABCG2,ADORA2A,AGTR2,APEX1,ATAD5,A
TIC,BDKRB2,BLM,CASP7,CBFB,CYP2D6,DHFR,EGFR,ELAN
E,ERBB2,ERG,ESR1,ESR2,FEN1,FLT1,HMGB1,HMGCR,IDH1,
KAT2A,KDM4A,KMT2A,LCK,LMNA,MAPK1,MAPK14,MAP
K3,MBNL1,MEN1,MMP2,MMP7,NCOA1,NCOA3,NFE2L2,OP
RK1,PABPC1,PIN1,POLB,POLH,POLI,POLK,PPARG,PTPRC,R
FC1,RUNX1,RXRA,TDP1,TP53,TSHR,TYMS,USP1,VDR,WRN

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Peposertib DNAPKi PRKDC
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Erlotinib EGFRi

ABCB1,ABCB11,ABCG2,ABL1,ABL2,ACAD10,ACTR2,ACTR
3,ACVR1B,ACVR2A,ACVR2B,ACVRL1,AKT1,AKT2,AKT3,A
LK,ARAF,ATR,AURKA,AURKB,AXL,BCR,BMP2K,BMPR1A,
BMPR1B,BRAF,BRSK2,CAMK2A,CAMK2G,CAMKK1,CASK,
CDC7,CDK1,CDK12,CDK2,CDK4,CDK5,CDK6,CDK7,CDK8,C
DK9,CDKL2,CHD4,CHEK1,CHEK2,CIT,CLK2,CLK3,CSF1R,C
SNK1A1L,CSNK1D,CSNK1E,CSNK1G3,CSNK2A1,DAPK1,DC
K,DDR1,DDR2,DDX3X,DDX6,DMPK,DSTYK,DYRK2,EGFR,
EIF2AK1,EIF2AK4,EPHA2,EPHA3,EPHA4,EPHA5,EPHA6,EP
HA7,EPHB1,EPHB6,ERBB2,ERBB3,ERBB4,ERCC2,FES,FGFR
1,FGFR2,FGFR3,FGFR4,FLT1,FLT3,FLT4,GSK3B,HDAC1,HD
AC2,HDAC7,HDAC8,HIPK2,IGF1R,IKBKE,INSR,INSRR,IRAK
1,IRAK4,ITK,JAK1,JAK2,JAK3,KDR,KIT,LATS1,LATS2,LCK,
LMNA,LRRK2,LYN,MAP2K1,MAP2K2,MAP2K4,MAP2K7,M
AP3K1,MAP3K13,MAP3K2,MAP3K3,MAP3K4,MAP3K5,MAP
3K7,MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAPK15,
MAPK3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,MAST
1,MATK,MCM4,MET,MTOR,MYO3B,MYT1,NAT10,NEK2,NE
K4,NEK6,NEK7,NLK,NTRK1,NTRK2,NTRK3,PAK1,PAK3,PA
K4,PBK,PDGFRA,PDGFRB,PDPK1,PEBP1,PIK3C2B,PIK3C2G,
PIK3CA,PIK3CB,PIK3CD,PIK3CG,PIM1,PIM2,PIM3,PIP4K2B,
PIP5K1A,PKMYT1,PLK1,PLK4,PRKAA1,PRKAA2,PRKAG2,P
RKAR2A,PRKCD,PRKCG,PRKCI,PRKCQ,PRKCZ,PRKD1,PR
KD2,PTK2B,PTK6,RAF1,RAN,RET,RIOK3,RIPK1,ROCK1,RO
CK2,ROS1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA
6,RPS6KB1,SGK2,SGK3,SMC1A,SMC2,SRC,SRPK2,STK11,ST
K16,STK3,STK4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TDP1,
TGFBR1,TGFBR2,TLK1,TLK2,TNIK,TOP2A,TOP2B,TTK,TYK
2,TYRO3,VRK1,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Lapatinib
ERBB1i_ER
BB2i

ABCB11,ABL1,ABL2,ACTR2,ACTR3,ACVR1B,ACVR2A,ACV
R2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,ATR,AURKA,A
URKB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,BRAF,BRSK2,C
AMK2A,CAMK2G,CAMKK1,CASK,CCNE1,CDC7,CDK1,CDK
12,CDK2,CDK4,CDK5,CDK6,CDK7,CDK8,CDK9,CDKL2,CHD
4,CHEK1,CHEK2,CIT,CLK2,CLK3,CSF1R,CSNK1A1L,CSNK1
D,CSNK1E,CSNK1G3,CSNK2A1,CYP2D6,DAPK1,DCK,DDR1,
DDR2,DDX3X,DDX42,DDX6,DMPK,DSTYK,DYRK2,EGFR,EI
F2AK1,EIF2AK4,EPHA2,EPHA3,EPHA4,EPHA5,EPHA6,EPHA
7,EPHB1,EPHB6,ERBB2,ERBB3,ERBB4,ERCC2,FES,FGFR1,F
GFR2,FGFR3,FGFR4,FLT1,FLT3,FLT4,GSK3B,HDAC1,HDAC2
,HDAC7,HDAC8,HIPK2,IGF1R,IKBKE,INSR,INSRR,IRAK1,IR
AK4,ITK,JAK1,JAK2,JAK3,KDR,KIT,KMT2A,LATS1,LATS2,L
CK,LRRK2,LYN,MAP2K1,MAP2K2,MAP2K4,MAP2K7,MAP3
K1,MAP3K13,MAP3K2,MAP3K3,MAP3K4,MAP3K5,MAP3K7,
MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAPK15,MAP
K3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,MAST1,M
ATK,MCM4,MEN1,MET,MTOR,MYO3B,MYT1,NAT10,NEK2,
NEK4,NEK6,NEK7,NLK,NTRK1,NTRK2,NTRK3,PAK1,PAK3,

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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PAK4,PBK,PDGFRA,PDGFRB,PDPK1,PEBP1,PIK3C2B,PIK3C
2G,PIK3CA,PIK3CB,PIK3CD,PIK3CG,PIM1,PIM2,PIM3,PIP4K
2B,PIP5K1A,PKMYT1,PLK1,PLK4,PRKAA1,PRKAA2,PRKAG
2,PRKAR2A,PRKCD,PRKCG,PRKCI,PRKCQ,PRKCZ,PRKD1,
PRKD2,PTK2B,PTK6,RAF1,RAN,RET,RIOK3,RIPK1,ROCK1,R
OCK2,ROS1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6K
A6,RPS6KB1,SGK2,SGK3,SMC1A,SMC2,SRC,SRPK2,STK11,S
TK16,STK3,STK4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TGF
BR1,TGFBR2,TLK1,TLK2,TNIK,TOP2A,TOP2B,TTK,TYK2,T
YRO3,WEE1,YES1

Ulixertinib ERKi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ARAF,AURKA,AURKB,BCR,BMP2K,BMPR1A,
BMPR1B,BRAF,CAMK2G,CDC7,CDK1,CDK12,CDK2,CDK4,C
DK5,CDK6,CDK7,CDK9,CHD4,CHEK1,CIT,CSNK1D,CSNK1E
,CSNK1G3,DCK,DDR1,DDR2,DDX3X,DDX42,DDX6,EGFR,EI
F2AK1,EPHA2,EPHA4,EPHA5,EPHB6,ERCC2,FES,FGFR1,FLT
3,GSK3B,IGF1R,IKBKE,INSR,IRAK1,IRAK4,JAK1,LATS1,LC
K,LYN,MAP2K1,MAP2K2,MAP2K4,MAP3K1,MAP3K2,MAP3
K3,MAP3K4,MAP3K5,MAP4K3,MAP4K4,MAPK1,MAPK10,M
APK14,MAPK15,MAPK3,MAPK8,MAPK9,MAPKAPK5,MAR
K3,MCM4,MET,NAT10,NEK2,NEK7,NLK,NTRK1,PAK4,PDGF
RB,PIM1,PKMYT1,PLK1,PLK4,PRKAA1,PRKAG2,PRKAR2A,
PRKCD,PRKCI,PRKCQ,PRKD2,PTK2B,PTK6,RAN,RET,ROC
K1,ROCK2,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA
6,RPS6KB1,SMC1A,SMC2,SRC,STK11,STK16,STK3,STK4,ST
RADA,SYK,TAOK1,TAOK2,TAOK3,TGFBR1,TGFBR2,TNIK,T
OP2A,TOP2B,TYK2,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

AZD4547 FGFRi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AC
VRL1,AKT1,AKT2,AKT3,ALK,ARAF,ATR,AURKA,AURKB,B
CR,BMP2K,BMPR1A,BMPR1B,BRAF,CAMK2G,CDC7,CDK1,
CDK12,CDK2,CDK4,CDK5,CDK6,CDK7,CDK9,CHD4,CHEK1,
CIT,CLK2,CLK3,CSF1R,CSNK1D,CSNK1E,CSNK1G3,DCK,D
DR1,DDR2,DDX3X,DDX6,EGFR,EIF2AK1,EPHA2,EPHA4,EP
HA5,EPHA7,EPHB6,ERCC2,FES,FGFR1,FGFR2,FGFR3,FGFR
4,FLT1,FLT3,GSK3B,IGF1R,IKBKE,INSR,IRAK1,IRAK4,JAK1,
JAK3,KDR,LATS1,LCK,LYN,MAP2K1,MAP2K2,MAP3K1,MA
P3K2,MAP3K3,MAP3K4,MAP3K5,MAP4K3,MAP4K4,MAPK1,
MAPK10,MAPK14,MAPK15,MAPK3,MAPK8,MAPK9,MAPK
APK5,MARK3,MARK4,MCM4,MET,NAT10,NEK2,NLK,NTRK
1,NTRK2,NTRK3,PAK4,PDGFRB,PIM1,PIM2,PKMYT1,PLK1,
PLK4,PRKAA1,PRKAG2,PRKAR2A,PRKCD,PRKCI,PRKCQ,P
RKCZ,PRKD2,PTK2B,PTK6,RAN,RET,RIPK1,ROCK1,ROCK2,
RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,
SMC1A,SMC2,SRC,STK11,STK16,STK3,STK4,STRADA,SYK,
TAOK1,TAOK2,TAOK3,TGFBR1,TGFBR2,TNIK,TOP2A,TOP2
B,TYK2,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Gilteritinib FLT3i_AXLi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ALK,ARAF,AURKA,AURKB,AXL,BCR,BMP2
K,BMPR1A,BMPR1B,BRAF,CAMK2G,CDK1,CDK12,CDK2,C
DK4,CDK5,CDK6,CDK7,CDK9,CHD4,CHEK1,CIT,CSNK1D,C
SNK1E,CSNK1G3,DCK,DDR1,DDR2,DDX3X,DDX6,EGFR,EI
F2AK1,EML4,EPHA2,EPHA4,EPHA5,EPHA7,EPHB6,ERCC2,E
TV6,FES,FGFR1,FLT3,GSK3B,IGF1R,IKBKE,INSR,IRAK1,IR
AK4,JAK1,LATS1,LCK,LYN,MAP2K1,MAP2K2,MAP3K1,MA
P3K2,MAP3K3,MAP3K4,MAP3K5,MAP4K3,MAP4K4,MAPK1,
MAPK10,MAPK14,MAPK15,MAPK3,MAPK8,MAPK9,MAPK
APK5,MARK3,MARK4,MCM4,MET,NAT10,NEK2,NLK,NTRK
1,PAK4,PDGFRB,PIM1,PKMYT1,PLK4,PRKAA1,PRKAG2,PR
KAR2A,PRKCD,PRKCI,PRKD2,PTK2B,PTK6,RAC1,RAN,RET

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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,ROCK1,ROCK2,ROS1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6K
A5,RPS6KA6,RPS6KB1,SMC1A,SMC2,SRC,STK11,STK16,ST
K3,STK4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TGFBR1,TGF
BR2,TNIK,TOP2A,TOP2B,TTK,TYK2,WEE1,YES1

PLX647 FMSi_KITi CSF1R,KIT
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Geldanamyc
in HSP90i

ABL1,ATAD5,BCR,CAMK2A,CAMK2G,CBFB,CDK2,CDK6,C
HEK2,CLK2,CLK3,CSNK1G3,CYP2D6,DMPK,ERBB2,FES,GS
K3B,HDAC1,HDAC2,HDAC7,HDAC8,HIF1A,HSP90AA1,HSP
90AB1,JAK1,LMNA,MAP2K2,MAP3K5,MAPK3,MTOR,NEK2,
NEK6,PAK4,PBK,PDPK1,PIM1,PIM2,PIM3,PLK1,PLK4,PRKA
A2,PRKDC,RIPK1,RPS6KA3,RUNX1,STK16,STK3,STK4,TDP
1,TNIK,USP1,VDR,VRK1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

GAMMA IR

ABCB1,ABCB11,ADORA2A,AGTR2,AKT1,APEX1,APH1A,AP
H1B,AR,ATAD5,ATM,ATR,BDKRB2,BLM,BRCA1,CASP6,CBF
B,CDK2,CREBBP,CYP2D6,DHFR,EGFR,ELANE,ERBB2,ERG,
ESR1,ESR2,FDPS,FEN1,FLT1,GABBR2,GABRA6,GBA,GNAS,
GSK3B,HDAC1,HDAC2,HDAC7,HDAC8,HMGCR,HRH4,HSD
11B2,HSP90AA1,IDH1,KAT2A,KDM4A,KIF11,KMT2A,LCK,L
MNA,MAPK1,MAPK14,MAPK3,MBNL1,MDM2,MEN1,MGM
T,MMP2,MMP7,MTOR,NCSTN,NFE2L2,NFKB1,NOS2,NOS3,
NR1H2,NTRK1,NUDT1,OPRK1,PDPK1,PHLPP1,PIN1,PLK1,P
OLB,POLH,POLI,POLK,PPARG,PRKAA1,PRKAA2,PRKAB1,P
RKAG2,PRKDC,PSEN1,PSEN2,PSENEN,PTPRC,RELA,RET,R
UNX1,RXRA,SMAD3,TDP1,TERT,TOP2A,TSHR,TUBA1A,TU
BA4A,TUBB4B,USP1,VDR,WRN

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Ruxolitinib JAKi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2A,AC
VR2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,AURKA,AUR
KB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,BRAF,BRSK2,CAM
K2A,CAMK2G,CAMKK1,CASK,CDC7,CDK1,CDK12,CDK2,C
DK4,CDK5,CDK6,CDK7,CDK8,CDK9,CDKL2,CHD4,CHEK1,
CHEK2,CIT,CLK2,CLK3,CSF1R,CSNK1A1L,CSNK1D,CSNK1
E,CSNK1G3,CSNK2A1,DAPK1,DCK,DDR1,DDR2,DDX3X,DD
X6,DMPK,DSTYK,DYRK2,EGFR,EIF2AK1,EIF2AK4,EPHA2,
EPHA3,EPHA4,EPHA5,EPHA6,EPHA7,EPHB1,EPHB6,ERBB2,
ERBB3,ERBB4,ERCC2,FES,FGFR1,FGFR2,FGFR3,FGFR4,FL
G,FLT1,FLT3,FLT4,GSK3B,HDAC1,HDAC2,HIPK2,IGF1R,IKB
KE,INSR,INSRR,IRAK1,IRAK4,ITK,JAK1,JAK2,JAK3,KDR,KI
T,LATS1,LATS2,LCK,LRRK2,LYN,MAP2K1,MAP2K2,MAP2K
4,MAP2K7,MAP3K1,MAP3K13,MAP3K2,MAP3K3,MAP3K4,
MAP3K5,MAP3K7,MAP4K3,MAP4K4,MAPK1,MAPK10,MAP
K14,MAPK15,MAPK3,MAPK8,MAPK9,MAPKAPK5,MARK3,
MARK4,MAST1,MATK,MCM4,MET,MTOR,MYO3B,NAT10,N
EK2,NEK4,NEK6,NEK7,NLK,NR1H2,NTRK1,NTRK2,NTRK3,
PAK1,PAK3,PAK4,PDGFRA,PDGFRB,PDPK1,PEBP1,PIK3C2B
,PIK3C2G,PIK3CA,PIK3CB,PIK3CD,PIK3CG,PIM1,PIM2,PIM3
,PIP4K2B,PIP5K1A,PKMYT1,PLK1,PLK4,PRKAA1,PRKAA2,P
RKAG2,PRKAR2A,PRKCD,PRKCI,PRKCQ,PRKD1,PRKD2,PT
K2B,PTK6,RAF1,RAN,RET,RIOK3,RIPK1,ROCK1,ROCK2,RO
S1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6K
B1,SGK3,SMC1A,SMC2,SRC,SRPK2,STK11,STK16,STK3,STK
4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TGFBR1,TGFBR2,TL
K1,TLK2,TNIK,TOP2B,TTK,TYK2,TYRO3,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

K858 KIF11i
APEX1,BLM,CBFB,IDH1,KIF11,LMNA,MBNL1,POLB,RECQL
,RUNX1,TDP1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Ralimetinib MAPKi MAPK1,MAPK10,MAPK14,MAPK15,MAPK3,MAPK8,MAPK9
CHEMBL; DGIdb3.0;
Drugbank; LINCS
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Nutlin MDM2i
BCL2,DAPK1,HDAC1,HIF1A,MCL1,MDM2,MDM4,TP53,VDR
,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

PF04217903 METi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ALK,ARAF,ATR,AURKA,AURKB,BCR,BMP2K
,BMPR1A,BMPR1B,BRAF,CAMK2A,CAMK2G,CDC7,CDK1,C
DK12,CDK2,CDK4,CDK5,CDK6,CDK7,CDK8,CDK9,CHD4,C
HEK1,CIT,CLK2,CLK3,CSF1R,CSNK1D,CSNK1E,CSNK1G3,C
YP2D6,DCK,DDR1,DDR2,DDX3X,DDX42,DDX6,EGFR,EIF2A
K1,EPHA2,EPHA4,EPHA5,EPHA7,EPHB6,ERCC2,FES,FGFR1,
FLG,FLT1,FLT3,GSK3B,IGF1R,IKBKE,INSR,IRAK1,IRAK4,JA
K1,JAK2,JAK3,KDR,LATS1,LCK,LRRK2,LYN,MAP2K1,MAP2
K2,MAP2K4,MAP3K1,MAP3K2,MAP3K3,MAP3K4,MAP3K5,
MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAPK15,MAP
K3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,MCM4,ME
T,NAT10,NEK2,NEK7,NLK,NTRK1,NTRK2,NTRK3,PAK4,PDE
10A,PDE1C,PDE4B,PDGFRA,PDGFRB,PEBP1,PIM1,PIM2,PK
MYT1,PLK1,PLK4,PRKAA1,PRKAG2,PRKAR2A,PRKCD,PRK
CI,PRKCQ,PRKCZ,PRKD2,PTK2B,PTK6,RAN,RET,ROCK1,R
OCK2,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RP
S6KB1,SMC2,SRC,STK11,STK16,STK3,STK4,STRADA,SYK,T
AOK1,TAOK2,TAOK3,TGFBR1,TGFBR2,TNIK,TOP2A,TOP2B
,TTK,TYK2,TYRO3,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

SGX523 METi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2A,AC
VR2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,AURKA,AUR
KB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,BRAF,BRSK2,CAM
K2A,CAMK2G,CAMKK1,CASK,CDC7,CDK1,CDK12,CDK2,C
DK4,CDK5,CDK6,CDK7,CDK8,CDK9,CDKL2,CHD4,CHEK1,
CHEK2,CIT,CLK2,CLK3,CSF1R,CSNK1A1L,CSNK1D,CSNK1
E,CSNK1G3,CSNK2A1,DAPK1,DCK,DDR1,DDR2,DDX3X,DD
X42,DDX6,DMPK,DSTYK,DYRK2,EGFR,EIF2AK1,EIF2AK4,
EPHA2,EPHA3,EPHA4,EPHA5,EPHA6,EPHA7,EPHB1,EPHB6,
ERBB2,ERBB3,ERBB4,ERCC2,FES,FGFR1,FGFR2,FGFR3,FG
FR4,FLT1,FLT3,FLT4,GSK3B,HIPK2,IGF1R,IKBKE,INSR,INS
RR,IRAK1,IRAK4,ITK,JAK1,JAK2,JAK3,KDR,KIT,LATS1,LAT
S2,LCK,LRRK2,LYN,MAP2K1,MAP2K2,MAP2K4,MAP2K7,M
AP3K1,MAP3K13,MAP3K2,MAP3K3,MAP3K4,MAP3K5,MAP
3K7,MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAPK15,
MAPK3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,MAST
1,MATK,MCM4,MET,MTOR,MYO3B,NAT10,NEK2,NEK4,NE
K6,NEK7,NLK,NTRK1,NTRK2,NTRK3,PAK1,PAK3,PAK4,PD
GFRA,PDGFRB,PDPK1,PEBP1,PIK3C2B,PIK3C2G,PIK3CA,PI
K3CB,PIK3CD,PIK3CG,PIM1,PIM2,PIM3,PIP4K2B,PIP5K1A,P
KMYT1,PLK1,PLK4,PRKAA1,PRKAA2,PRKAG2,PRKAR2A,P
RKCD,PRKCI,PRKCQ,PRKD1,PRKD2,PTK2B,PTK6,RAF1,RA
N,RET,RIOK3,RIPK1,ROCK1,ROCK2,ROS1,RPS6KA1,RPS6K
A3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,SGK3,SMC1A,S
MC2,SRC,SRPK2,STK11,STK16,STK3,STK4,STRADA,SYK,T
AOK1,TAOK2,TAOK3,TGFBR1,TGFBR2,TLK1,TLK2,TNIK,T
OP2A,TOP2B,TTK,TYK2,TYRO3,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Cabozantini
b METi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ALK,ARAF,AURKA,AURKB,AXL,BCR,BMP2
K,BMPR1A,BMPR1B,BRAF,CAMK2G,CCDC6,CDC7,CDK1,C
DK12,CDK2,CDK4,CDK5,CDK6,CDK7,CDK9,CHD4,CHEK1,C
IT,CLK2,CLK3,CSNK1D,CSNK1E,CSNK1G3,DCK,DDR1,DDR
2,DDX3X,DDX42,DDX6,EGFR,EIF2AK1,EPHA2,EPHA4,EPH
A5,EPHA7,EPHB6,ERCC2,FES,FGFR1,FLT1,FLT3,FLT4,GSK3
B,IGF1R,IKBKE,INSR,IRAK1,IRAK4,JAK1,JAK2,KDR,KIF5B,
KIT,LATS1,LCK,LYN,MAP2K1,MAP2K2,MAP3K1,MAP3K2,M
AP3K3,MAP3K4,MAP3K5,MAP4K3,MAP4K4,MAPK1,MAPK1

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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0,MAPK14,MAPK15,MAPK3,MAPK8,MAPK9,MAPKAPK5,M
ARK3,MARK4,MCM4,MET,NAT10,NEK2,NEK7,NLK,NTRK1,
NTRK2,PAK4,PDGFRA,PDGFRB,PEBP1,PIM1,PKMYT1,PLK1
,PLK4,PRKAA1,PRKAG2,PRKAR2A,PRKCD,PRKCI,PRKCQ,P
RKCZ,PRKD2,PTK2B,PTK6,RAN,RET,ROCK1,ROCK2,ROS1,
RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,
SMC1A,SMC2,SRC,STK11,STK16,STK3,STK4,STRADA,SYK,
TAOK1,TAOK2,TAOK3,TGFBR1,TGFBR2,TNIK,TOP2B,TTK,
TYK2,TYRO3,WEE1,YES1

Crizotinib METi_ALKi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2A,AC
VR2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,AURKA,AUR
KB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,BRAF,BRSK2,CAM
K2A,CAMK2G,CAMKK1,CASK,CCNB1,CDC7,CDK1,CDK12,
CDK2,CDK4,CDK5,CDK6,CDK7,CDK8,CDK9,CDKL2,CHD4,
CHEK1,CHEK2,CIT,CLK2,CLK3,CSF1R,CSNK1A1L,CSNK1D,
CSNK1E,CSNK1G3,CSNK2A1,DAPK1,DCK,DDR1,DDR2,DD
X3X,DDX42,DDX6,DMPK,DSTYK,DYRK2,EGFR,EIF2AK1,EI
F2AK4,EML4,EPHA2,EPHA3,EPHA4,EPHA5,EPHA6,EPHA7,E
PHB1,EPHB6,ERBB2,ERBB3,ERBB4,ERCC2,FES,FGFR1,FGF
R2,FGFR3,FGFR4,FLT1,FLT3,FLT4,GSK3B,HIPK2,IGF1R,IKB
KE,INPPL1,INSR,INSRR,IRAK1,IRAK4,ITK,JAK1,JAK2,JAK3,
KDR,KIT,LATS1,LATS2,LCK,LRRK2,LYN,MAP2K1,MAP2K2,
MAP2K4,MAP2K7,MAP3K1,MAP3K13,MAP3K2,MAP3K3,M
AP3K4,MAP3K5,MAP3K7,MAP4K3,MAP4K4,MAPK1,MAPK1
0,MAPK14,MAPK15,MAPK3,MAPK8,MAPK9,MAPKAPK5,M
ARK3,MARK4,MAST1,MATK,MCM4,MET,MLKL,MST1,MTO
R,MYO3B,NAT10,NEK2,NEK4,NEK6,NEK7,NEK8,NLK,NPM1
,NTRK1,NTRK2,NTRK3,NUDT1,PAK1,PAK3,PAK4,PDGFRA,
PDGFRB,PDPK1,PEBP1,PIK3C2B,PIK3C2G,PIK3CA,PIK3CB,
PIK3CD,PIK3CG,PIM1,PIM2,PIM3,PIP4K2B,PIP5K1A,PKMYT
1,PLK1,PLK4,PRKAA1,PRKAA2,PRKAG2,PRKAR2A,PRKCD,
PRKCI,PRKCQ,PRKD1,PRKD2,PTK2B,PTK6,RAF1,RAN,RET,
RIOK3,RIPK1,ROCK1,ROCK2,ROS1,RPS6KA1,RPS6KA3,RPS
6KA4,RPS6KA5,RPS6KA6,RPS6KB1,SGK3,SMC1A,SMC2,SR
C,SRPK2,STK11,STK16,STK3,STK4,STRADA,SYK,TAOK1,TA
OK2,TAOK3,TGFBR1,TGFBR2,TLK1,TLK2,TNIK,TOP2A,TOP
2B,TTK,TYK2,TYRO3,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Everolimus mTORi

ABCB11,ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACV
R2B,AKT1,AKT2,AKT3,ARAF,AURKA,AURKB,BCR,BMP2K,
BMPR1A,BMPR1B,BRAF,CAMK2G,CDC7,CDK1,CDK12,CDK
2,CDK4,CDK5,CDK6,CDK7,CDK9,CHD4,CHEK1,CIT,CLK2,C
LK3,CSNK1D,CSNK1E,CSNK1G3,DCK,DDR1,DDR2,DDX3X,
DDX42,DDX6,EGFR,EIF2AK1,EPHA2,EPHA4,EPHA5,EPHA7,
EPHB6,ERCC2,FES,FGFR1,FKBP1A,FLT3,GSK3B,IGF1R,IKB
KE,INSR,IRAK1,IRAK4,JAK1,LATS1,LCK,LYN,MAP2K1,MA
P2K2,MAP3K1,MAP3K2,MAP3K3,MAP3K4,MAP3K5,MAP4K
3,MAP4K4,MAPK1,MAPK10,MAPK14,MAPK15,MAPK3,MAP
K8,MAPK9,MARK3,MARK4,MCM4,MET,MLST8,MTOR,NAT
10,NEK2,NEK7,NLK,NTRK1,PAK4,PDGFRB,PEBP1,PIM1,PK
MYT1,PLK1,PLK4,PRKAA1,PRKAG2,PRKAR2A,PRKCD,PRK
CI,PRKCQ,PRKD2,PTK2B,PTK6,RAN,RET,ROCK1,ROCK2,RP
S6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,RP
TOR,SMC1A,SMC2,SRC,STK11,STK16,STK3,STK4,STRADA,
SYK,TAOK1,TAOK2,TAOK3,TDP1,TGFBR1,TGFBR2,TNIK,T
OP2A,TOP2B,TTK,TYK2,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

OSI027 mTORi

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ARAF,AURKA,AURKB,BCR,BMP2K,BMPR1A,
BMPR1B,BRAF,CAMK2G,CDK1,CDK12,CDK2,CDK4,CDK5,
CDK6,CDK7,CDK9,CHD4,CHEK1,CIT,CLK2,CSNK1D,CSNK1

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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E,CSNK1G3,DCK,DDR1,DDR2,DDX3X,DDX42,DDX6,EGFR,
EIF2AK1,EPHA2,EPHA4,EPHA5,EPHA7,EPHB6,ERCC2,FES,F
GFR1,FLT3,GSK3B,IGF1R,IKBKE,INSR,IRAK1,IRAK4,JAK1,
LATS1,LCK,LYN,MAP2K1,MAP2K2,MAP3K1,MAP3K2,MAP3
K3,MAP3K4,MAP3K5,MAP4K3,MAP4K4,MAPK1,MAPK10,M
APK14,MAPK15,MAPK3,MAPK8,MAPK9,MAPKAPK5,MAR
K3,MARK4,MCM4,NAT10,NEK2,NLK,NTRK1,PAK4,PDGFRB
,PEBP1,PIM1,PIM2,PKMYT1,PLK4,PRKAA1,PRKAG2,PRKA
R2A,PRKCD,PRKCI,PRKCQ,PRKCZ,PRKD2,PTK2B,PTK6,RA
N,RET,ROCK1,ROCK2,RPS6KA1,RPS6KA3,RPS6KA4,RPS6K
A5,RPS6KA6,RPS6KB1,SMC1A,SMC2,SRC,STK11,STK16,ST
K3,STK4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TGFBR1,TGF
BR2,TNIK,TOP2A,TOP2B,TYK2,WEE1,YES1

NSC348884 NPMi NPM1
CHEMBL; DGIdb3.0;
Drugbank; LINCS

LY2584702 p70S6Ki

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2B,AKT
1,AKT2,AKT3,ARAF,AURKA,AURKB,BCR,BMP2K,BMPR1A,
BMPR1B,BRAF,CAMK2G,CDK1,CDK12,CDK2,CDK4,CDK5,
CDK6,CDK7,CDK9,CHD4,CHEK1,CIT,CSNK1D,CSNK1E,CSN
K1G3,DCK,DDR1,DDR2,DDX3X,DDX42,DDX6,EGFR,EIF2A
K1,EPHA2,EPHA4,EPHA5,EPHA7,EPHB6,ERCC2,FES,FGFR1,
FLT3,GSK3B,IGF1R,IKBKE,INSR,IRAK1,IRAK4,JAK1,LATS1,
LCK,LYN,MAP2K1,MAP2K2,MAP3K1,MAP3K2,MAP3K3,MA
P3K4,MAP3K5,MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,
MAPK15,MAPK3,MAPK8,MAPK9,MAPKAPK5,MARK3,MAR
K4,MET,NAT10,NEK2,NLK,NTRK1,PAK4,PDGFRB,PEBP1,PI
M1,PIM2,PKMYT1,PLK4,PRKAA1,PRKAG2,PRKCD,PRKCI,P
RKCQ,PRKD2,PTK2B,PTK6,RAN,RET,ROCK1,ROCK2,RPS6K
A1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,RPS6K
B2,SMC2,SRC,STK11,STK16,STK3,STK4,STRADA,SYK,TAO
K1,TAOK2,TAOK3,TGFBR1,TGFBR2,TNIK,TOP2B,TYK2,WE
E1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Veliparib PARPi CYP2D6,PARP1,PARP2,PARP3,PARP4,TNKS,TNKS2
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Rucaparib PARPi

AKT1,AKT2,AKT3,AURKA,AURKB,CDK1,CDK2,CDK5,CHE
K1,CHEK2,CSNK1D,CSNK2A1,EPHA2,FGFR1,FLG,FLT4,GSK
3B,INSR,IRAK4,KDR,MAPK1,MARK3,NEK2,PAK1,PAK4,PAR
P1,PARP2,PARP3,PARP4,PIM1,PLK1,PRKAA1,PRKCD,PRKC
G,PRKCZ,PRKD2,ROCK1,ROCK2,RPS6KA3,RPS6KB1,SGK2,
STK3,TNKS,TNKS2,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Talazoparib PARPi CYP2D6,PARP1,PARP2,PARP3,PARP4,TNKS,TNKS2
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Niraparib PARPi PARP1,PARP2,PARP3,PARP4,TNKS,TNKS2
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Olaparib PARPi HDAC1,PARP1,PARP2,PARP3,PARP4,TNKS,TNKS2
CHEMBL; DGIdb3.0;
Drugbank; LINCS

GSK233447
0 PDK1i

AKT1,AKT3,AURKA,AURKB,BRSK2,CHEK2,EGFR,GSK3B,
KDR,MAP3K5,MET,NLK,PDK1,PDPK1,PIK3CG,PRKCQ,RET,
ROCK1,ROCK2,RPS6KA1,RPS6KA3,RPS6KA6,SGK1,SGK2,S
YK,TGFBR1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Duvelisib PI3Ki PIK3CA,PIK3CB,PIK3CD,PIK3CG,PIK3R1
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Pictilisib PI3Ki

ABCB11,ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACV
R2A,ACVR2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,AURK
A,AURKB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,BRAF,BRSK

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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2,CAMK2A,CAMK2G,CAMKK1,CASK,CDC7,CDK1,CDK12,C
DK2,CDK4,CDK5,CDK6,CDK7,CDK8,CDK9,CDKL2,CHD4,C
HEK1,CHEK2,CIT,CLK2,CLK3,CSF1R,CSNK1A1L,CSNK1D,C
SNK1E,CSNK1G3,CSNK2A1,CYP2D6,DAPK1,DCK,DDR1,DD
R2,DDX3X,DDX42,DDX6,DMPK,DSTYK,DYRK2,EGFR,EIF2
AK1,EIF2AK4,EPHA2,EPHA3,EPHA4,EPHA5,EPHA6,EPHA7,
EPHB1,EPHB6,ERBB2,ERBB3,ERBB4,ERCC2,FES,FGFR1,FG
FR2,FGFR3,FGFR4,FLT1,FLT3,FLT4,GSK3B,HIPK2,IGF1R,IK
BKE,INSR,INSRR,IRAK1,IRAK4,ITK,JAK1,JAK2,JAK3,KDR,
KIT,LATS1,LATS2,LCK,LRRK2,LYN,MAP2K1,MAP2K2,MAP
2K4,MAP2K7,MAP3K1,MAP3K13,MAP3K2,MAP3K3,MAP3K
4,MAP3K5,MAP3K7,MAP4K3,MAP4K4,MAPK1,MAPK10,MA
PK14,MAPK15,MAPK3,MAPK8,MAPK9,MAPKAPK5,MARK3
,MARK4,MAST1,MATK,MCM4,MET,MTOR,MYO3B,NAT10,N
EK2,NEK4,NEK6,NEK7,NLK,NTRK1,NTRK2,NTRK3,PAK1,P
AK3,PAK4,PDGFRA,PDGFRB,PDPK1,PEBP1,PIK3C2B,PIK3C
2G,PIK3C3,PIK3CA,PIK3CB,PIK3CD,PIK3CG,PIK3R1,PIK3R2
,PIK3R3,PIM1,PIM2,PIM3,PIP4K2B,PIP5K1A,PKMYT1,PLK1,
PLK4,PRKAA1,PRKAA2,PRKAG2,PRKAR2A,PRKCD,PRKCI,
PRKCQ,PRKCZ,PRKD1,PRKD2,PRKDC,PTK2B,PTK6,RAF1,R
AN,RET,RIOK3,RIPK1,ROCK1,ROCK2,ROS1,RPS6KA1,RPS6
KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,SGK3,SMC1A,
SMC2,SRC,SRPK2,STK11,STK16,STK3,STK4,STRADA,SYK,T
AOK1,TAOK2,TAOK3,TDP1,TGFBR1,TGFBR2,TLK1,TLK2,T
NIK,TOP2A,TOP2B,TTK,TYK2,TYRO3,WEE1,YES1

BI2536 PLK1i

ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACVR2A,AC
VR2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,AURKA,AUR
KB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,BRAF,BRD4,BRSK
2,CAMK2A,CAMK2G,CAMKK1,CASK,CDC7,CDK1,CDK12,C
DK2,CDK4,CDK5,CDK6,CDK7,CDK8,CDK9,CDKL2,CHD4,C
HEK1,CHEK2,CIT,CLK2,CLK3,CSF1R,CSNK1A1L,CSNK1D,C
SNK1E,CSNK1G3,CSNK2A1,DAPK1,DCK,DDR1,DDR2,DDX3
X,DDX42,DDX6,DMPK,DSTYK,DYRK2,EGFR,EIF2AK1,EIF2
AK4,EPHA2,EPHA3,EPHA4,EPHA5,EPHA6,EPHA7,EPHB1,EP
HB6,ERBB2,ERBB3,ERBB4,ERCC2,FES,FGFR1,FGFR2,FGFR
3,FGFR4,FLT1,FLT3,FLT4,GSK3B,HIPK2,IGF1R,IKBKE,INSR,
INSRR,IRAK1,IRAK4,ITK,JAK1,JAK2,JAK3,KDR,KIT,LATS1,
LATS2,LCK,LRRK2,LYN,MAP2K1,MAP2K2,MAP2K4,MAP2K
7,MAP3K1,MAP3K13,MAP3K2,MAP3K3,MAP3K4,MAP3K5,
MAP3K7,MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAP
K15,MAPK3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,
MAST1,MATK,MCM4,MET,MTOR,MYO3B,NAT10,NEK2,NE
K4,NEK6,NEK7,NLK,NTRK1,NTRK2,NTRK3,PAK1,PAK3,PA
K4,PBK,PDGFRA,PDGFRB,PDPK1,PIK3C2B,PIK3C2G,PIK3C
A,PIK3CB,PIK3CD,PIK3CG,PIM1,PIM2,PIM3,PIP4K2B,PIP5K
1A,PKMYT1,PLK1,PLK4,PRKAA1,PRKAA2,PRKAG2,PRKAR
2A,PRKCD,PRKCG,PRKCI,PRKCQ,PRKCZ,PRKD1,PRKD2,PT
K2B,PTK6,RAF1,RAN,RET,RIOK3,RIPK1,ROCK1,ROCK2,RO
S1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6K
B1,SGK2,SGK3,SMC1A,SMC2,SRC,SRPK2,STK11,STK16,STK
3,STK4,STRADA,SYK,TAF1,TAOK1,TAOK2,TAOK3,TGFBR1,
TGFBR2,TLK1,TLK2,TNIK,TOP2A,TOP2B,TTK,TYK2,TYRO3
,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Bortezomib Proteasomei

ABCB11,ADAM17,APH1A,APH1B,BAX,BCL2,CASP2,CASP3,
CASP7,CASP8,CASP9,CTSC,ELANE,EPAS1,FLT3,HIF1A,MM
E,MMP2,MMP7,NCSTN,NFKB1,NFKB2,PLAT,PRSS1,PSEN1,P
SEN2,PSENEN,PSMB3,PSMD11,PSMD9,RELA,TDP1,TP53

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Carfilzomib Proteasomei
CASP3,CYP2D6,ESR1,PRSS1,PSMB3,PSMD11,PSMD9,TDP1,
VHL

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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GSK429286
A ROCK1i ROCK1,ROCK2,RPS6KA1,RPS6KB1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Sunitinib RTKi

ABCB11,ABL1,ABL2,ACTR2,ACTR3,ACVR1B,ACVR2A,ACV
R2B,ACVRL1,AKT1,AKT2,AKT3,ALK,APH1A,APH1B,ARAF,
ATR,AURKA,AURKB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,
BRAF,BRD7,BRD9,BRSK2,CAMK2A,CAMK2G,CAMKK1,CA
SK,CDC7,CDK1,CDK12,CDK2,CDK4,CDK5,CDK6,CDK7,CD
K8,CDK9,CDKL2,CHD4,CHEK1,CHEK2,CIT,CLK2,CLK3,CSF
1R,CSNK1A1L,CSNK1D,CSNK1E,CSNK1G3,CSNK2A1,DAPK
1,DCK,DDR1,DDR2,DDX3X,DDX42,DDX6,DLK1,DMPK,DST
YK,DYRK2,EGFR,EIF2AK1,EIF2AK4,EPHA2,EPHA3,EPHA4,
EPHA5,EPHA6,EPHA7,EPHB1,EPHB6,ERBB2,ERBB3,ERBB4,
ERCC2,FES,FGFR1,FGFR2,FGFR3,FGFR4,FLG,FLT1,FLT3,FL
T4,GSK3B,HIPK2,IGF1R,IKBKE,INSR,INSRR,IRAK1,IRAK4,I
TK,JAK1,JAK2,JAK3,KDR,KIT,KMT2A,LATS1,LATS2,LCK,L
MNA,LRRK2,LYN,MAP2K1,MAP2K2,MAP2K4,MAP2K7,MA
P3K1,MAP3K13,MAP3K2,MAP3K3,MAP3K4,MAP3K5,MAP3
K7,MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAPK15,M
APK3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,MAST1,
MATK,MCM4,MEN1,MET,MST1,MTOR,MYO3B,MYT1,NAT1
0,NCSTN,NEK2,NEK4,NEK6,NEK7,NLK,NOS3,NR2C2,NTRK
1,NTRK2,NTRK3,PAK1,PAK3,PAK4,PBK,PDGFB,PDGFC,PDG
FD,PDGFRA,PDGFRB,PDK1,PDPK1,PEBP1,PIK3C2B,PIK3C2
G,PIK3CA,PIK3CB,PIK3CD,PIK3CG,PIM1,PIM2,PIM3,PIP4K2
B,PIP5K1A,PKMYT1,PLK1,PLK4,POLK,PRKAA1,PRKAA2,P
RKAB1,PRKAG2,PRKAR2A,PRKCD,PRKCG,PRKCI,PRKCQ,
PRKCZ,PRKD1,PRKD2,PRKDC,PSEN1,PSEN2,PSENEN,PTK2
B,PTK6,RAF1,RAN,RET,RIOK3,RIPK1,ROCK1,ROCK2,ROS1,
RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA6,RPS6KB1,
SGK1,SGK2,SGK3,SIRT1,SMC1A,SMC2,SRC,SRPK2,STK11,S
TK16,STK3,STK4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TGF
BR1,TGFBR2,TLK1,TLK2,TNIK,TNKS2,TOP2A,TOP2B,TTK,T
YK2,TYRO3,USP1,VRK1,WEE1,YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Entospletini
b SYKi CYP2D6,FLT3,JAK2,KDR,RET,SYK

CHEMBL; DGIdb3.0;
Drugbank; LINCS

SN38 TOP1i ABCG2,HDAC1,HDAC2,HDAC7,HDAC8,TOP1
CHEMBL; DGIdb3.0;
Drugbank; LINCS

Topotecan TOP1i

ABCB1,ABCG2,ADORA2A,AGTR2,AKT1,BDKRB2,BRCA1,C
ASP7,CYP2D6,EGFR,ELANE,EPAS1,ERBB2,ESR1,ESR2,FLT1,
HIF1A,HMGCR,IDH1,KAT2A,KEAP1,KMT2A,LCK,LMNA,M
APK1,MAPK14,MAPK3,MEN1,NFE2L2,OPRK1,PAX8,PLK1,P
OLI,PTPRC,RAPGEF3,SMAD3,TDP1,TOP1,TOP2A,TOP2B,US
P1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Doxorubicin TOP2i

ABCB1,ABCB11,ABCG2,ADORA2A,AGTR2,APAF1,APEX1,A
R,ATAD5,AURKA,BCL2,BCL2L1,BDKRB2,BLM,BRCA1,CYP
2D6,DHFR,EGFR,ELANE,EPAS1,ERBB2,ERG,ESR1,ESR2,FA
NCD2,FEN1,FLT1,HDAC1,HDAC2,HDAC7,HDAC8,HIF1A,H
MGCR,HSP90AA1,HSP90AB1,IDH1,KAT2A,KDR,KEAP1,KM
T2A,LCK,MAPK1,MAPK14,MAPK3,MBNL1,MEN1,MMP2,NF
E2L2,NFKB1,OPRK1,PAX8,PDGFRB,PIK3CA,PIK3R1,PLK1,P
OLB,POLH,POLI,POLK,PPARG,PPM1D,PRSS1,PTPRC,RAPG
EF3,RECQL,RORC,RXRA,SMAD3,SNCA,STAT6,TDP1,TERT,
TNF,TOP1,TOP2A,TOP2B,TOP3A,TP53,TUBA1A,TUBA4A,TU
BB4B,USP1,VDR,WRN

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Etoposide TOP2i

ABCB1,ABCB11,ABCG2,ADORA2A,AGTR2,ATM,BDKRB2,C
ASP3,CHEK1,CYP2D6,EGFR,ELANE,ERBB2,ESR1,ESR2,FLT
1,HDAC1,HMGCR,LCK,MAPK1,MAPK14,MAPK3,MTOR,NC

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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OA1,NCOA3,NFE2L2,OPRK1,POLI,PTPRC,TDP1,TOP1,TOP2
A,TOP2B,TUBA1A

Sorafenib VEGFRi

ABCB11,ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACV
R2A,ACVR2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,ATAD
5,ATR,AURKA,AURKB,AXL,BCR,BMP2K,BMPR1A,BMPR1B
,BRAF,BRSK2,CAMK2A,CAMK2G,CAMKK1,CASK,CCNA1,
CCNA2,CCNC,CCND1,CDC7,CDK1,CDK12,CDK2,CDK4,CDK
5,CDK6,CDK7,CDK8,CDK9,CDKL2,CHD4,CHEK1,CHEK2,CI
T,CLK2,CLK3,CSF1R,CSNK1A1L,CSNK1D,CSNK1E,CSNK1G
3,CSNK2A1,DAPK1,DCK,DDR1,DDR2,DDX3X,DDX6,DLK1,
DMPK,DSTYK,DYRK2,EGFR,EIF2AK1,EIF2AK4,EPHA2,EPH
A3,EPHA4,EPHA5,EPHA6,EPHA7,EPHB1,EPHB6,ERBB2,ERB
B3,ERBB4,ERCC2,FES,FGFR1,FGFR2,FGFR3,FGFR4,FLG,FL
T1,FLT3,FLT4,GNAS,GSK3B,HDAC1,HDAC8,HIPK2,IDH1,IG
F1R,IKBKE,INSR,INSRR,IRAK1,IRAK4,ITK,JAK1,JAK2,JAK3
,KDM4A,KDR,KIT,KMT2A,LATS1,LATS2,LCK,LRRK2,LYN,
MAP2K1,MAP2K2,MAP2K4,MAP2K7,MAP3K1,MAP3K13,M
AP3K2,MAP3K3,MAP3K4,MAP3K5,MAP3K7,MAP4K3,MAP4
K4,MAPK1,MAPK10,MAPK14,MAPK15,MAPK3,MAPK8,MA
PK9,MAPKAPK5,MARK3,MARK4,MAST1,MATK,MCM4,ME
N1,MET,MTOR,MYO3B,NAT10,NEK2,NEK4,NEK6,NEK7,NF
E2L2,NLK,NTRK1,NTRK2,NTRK3,PAK1,PAK3,PAK4,PAX8,P
BK,PDGFRA,PDGFRB,PDPK1,PIK3C2B,PIK3C2G,PIK3CA,PI
K3CB,PIK3CD,PIK3CG,PIM1,PIM2,PIM3,PIP4K2B,PIP5K1A,P
KMYT1,PLK1,PLK4,POLI,PRKAA1,PRKAA2,PRKAG2,PRKA
R2A,PRKCD,PRKCG,PRKCI,PRKCQ,PRKCZ,PRKD1,PRKD2,
PRKDC,PTK2B,PTK6,PTPN6,RAF1,RAN,RET,RIOK3,RIPK1,R
OCK1,ROCK2,ROS1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5
,RPS6KA6,RPS6KB1,SGK1,SGK2,SGK3,SMAD3,SMC1A,SMC
2,SNCA,SRC,SRPK2,STK11,STK16,STK3,STK4,STRADA,SYK
,TAOK1,TAOK2,TAOK3,TDP1,TGFBR1,TGFBR2,TLK1,TLK2,
TNIK,TNKS2,TOP2A,TOP2B,TTK,TYK2,TYRO3,USP1,WEE1,
YES1

CHEMBL; DGIdb3.0;
Drugbank; LINCS

Vatalanib VEGFRi

ABCB11,ABL1,ABL2,ACAD10,ACTR2,ACTR3,ACVR1B,ACV
R2A,ACVR2B,ACVRL1,AKT1,AKT2,AKT3,ALK,ARAF,AURK
A,AURKB,AXL,BCR,BMP2K,BMPR1A,BMPR1B,BRAF,BRSK
2,CAMK2A,CAMK2G,CAMKK1,CASK,CDC7,CDK1,CDK12,C
DK2,CDK4,CDK5,CDK6,CDK7,CDK8,CDK9,CDKL2,CHD4,C
HEK1,CHEK2,CIT,CLK2,CLK3,CSF1R,CSNK1A1L,CSNK1D,C
SNK1E,CSNK1G3,CSNK2A1,DAPK1,DCK,DDR1,DDR2,DDX3
X,DDX42,DDX6,DMPK,DSTYK,DYRK2,EGFR,EIF2AK1,EIF2
AK4,EPHA2,EPHA3,EPHA4,EPHA5,EPHA6,EPHA7,EPHB1,EP
HB6,ERBB2,ERBB3,ERBB4,ERCC2,FES,FGFR1,FGFR2,FGFR
3,FGFR4,FLT1,FLT3,FLT4,GSK3B,HIPK2,IGF1R,IKBKE,INSR,
INSRR,IRAK1,IRAK4,ITK,JAK1,JAK2,JAK3,KDR,KIT,LATS1,
LATS2,LCK,LRRK2,LYN,MAP2K1,MAP2K2,MAP2K4,MAP2K
7,MAP3K1,MAP3K13,MAP3K2,MAP3K3,MAP3K4,MAP3K5,
MAP3K7,MAP4K3,MAP4K4,MAPK1,MAPK10,MAPK14,MAP
K15,MAPK3,MAPK8,MAPK9,MAPKAPK5,MARK3,MARK4,
MAST1,MATK,MCM4,MET,MTOR,MYO3B,MYT1,NAT10,NE
K2,NEK4,NEK6,NEK7,NLK,NTRK1,NTRK2,NTRK3,PAK1,PA
K3,PAK4,PBK,PDGFRA,PDGFRB,PDPK1,PIK3C2B,PIK3C2G,
PIK3CA,PIK3CB,PIK3CD,PIK3CG,PIM1,PIM2,PIM3,PIP4K2B,
PIP5K1A,PKMYT1,PLK1,PLK4,PRKAA1,PRKAA2,PRKAG2,P
RKAR2A,PRKCD,PRKCG,PRKCI,PRKCQ,PRKCZ,PRKD1,PR
KD2,PTK2B,PTK6,RAF1,RAN,RET,RIOK3,RIPK1,ROCK1,RO
CK2,ROS1,RPS6KA1,RPS6KA3,RPS6KA4,RPS6KA5,RPS6KA
6,RPS6KB1,SGK2,SGK3,SMC1A,SMC2,SRC,SRPK2,STK11,ST
K16,STK3,STK4,STRADA,SYK,TAOK1,TAOK2,TAOK3,TDP1,

CHEMBL; DGIdb3.0;
Drugbank; LINCS
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TGFBR1,TGFBR2,TLK1,TLK2,TNIK,TOP2A,TOP2B,TTK,TYK
2,TYRO3,VRK1,WEE1,YES1

BML284 WNTi WNT1,WNT11,WNT16,WNT2,WNT3,WNT4,WNT6
CHEMBL; DGIdb3.0;
Drugbank; LINCS
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Supplementary Table 4.2. The top ten directly targeted genes (among the 272 genes directly
targeted by all drugs in this study) that achieved the highest efficacy (AoC score) across all
cell lines in combination with the inhibition of drug targets ATM, ATR, or DNA-PK
(PRKDC) using the best model predicting across cell lines. **: genes that occur in the top ten
in combination with all three drug targets. *: genes that occur in the top ten in combination with
two out of three drug targets.

Gene1 Gene2 Alias of gene2

Average
efficacy across
all cell lines

ATM

PLK1** Polo-like kinase 1 (PLK-1) 0.7185

TUBA4A** Tubulin Alpha 4a 0.711

TUBB4B** Tubulin Beta 4B Class IVb 0.711

RRM2B** Small subunit of p53 (191170)-inducible ribonucleotide reductase 0.652

TOP2A* DNA Topoisomerase II Alpha 0.6444

TOP2B* DNA Topoisomerase II Beta 0.6444

TOP1** DNA topoisomerase 1 0.6137

RPS6KA1* Ribosomal Protein S6 Kinase A1 0.5758

CHEK2* Checkpoint Kinase 2 0.5758

HSP90AB1 Heat Shock Protein 90 Alpha Family Class B Member 1 0.5684

ATR

RRM2B** Small subunit of p53 (191170)-inducible ribonucleotide reductase 0.7703

TOP1** DNA topoisomerase 1 0.6959

RPS6KA1* Ribosomal Protein S6 Kinase A1 0.6924

CHEK2* Checkpoint Kinase 2 0.6924

RRM2 Ribonucleotide Reductase Catalytic Subunit M2 0.6915

RRM1 Ribonucleotide Reductase Catalytic Subunit M1 0.6915

PLK1** Serine/threonine-protein kinase PLK1, also known as polo-like kinase 1 (PLK-1) 0.6278

TUBB4B** Tubulin Beta 4B Class IVb 0.6142

TUBA4A** Tubulin Alpha 4a 0.6142

CHEK1 Checkpoint Kinase 1 0.602

DNA-PK
(PRKDC)

TUBA4A** Tubulin Alpha 4a 0.7634

TUBB4B** Tubulin Beta 4B Class IVb 0.7634

PLK1** Serine/threonine-protein kinase PLK1, also known as polo-like kinase 1 (PLK-1) 0.7573

TOP2B* DNA Topoisomerase II Beta 0.7226

TOP2A* DNA Topoisomerase II Alpha 0.7226

TOP1** DNA topoisomerase 1 0.6805

RRM2B* Small subunit of p53 (191170)-inducible ribonucleotide reductase 0.6667

TUBA1A Tubulin Alpha 1a 0.6199

WNT11 Wnt family member 11 0.6026

WNT16 Wnt family member 16 0.6026
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Supplementary Table 4.3. The top ten directly targeted genes (among the 272 genes directly
targeted by all drugs in this study) that achieved the highest synergy (Bliss score) across all
cell lines in combination with the inhibition of drug targets ATM, ATR, or DNA-PK
(PRKDC). **: genes that occur in the top ten in combination with all three drug targets. *: genes
that occur in the top ten in combination with two out of three drug targets.
Gene1 Gene2 Alias of gene 2 Average

synergy across
all cell lines

ATM

PARP1** Poly(ADP-Ribose) Polymerase 1 0.2454

PARP3** Poly(ADP-Ribose) Polymerase 3 0.2199

PARP2** Poly(ADP-Ribose) Polymerase 2 0.2127

ATR ATR serine/threonine kinase 0.184

TOP1** DNA topoisomerase 1 0.1093

TOP2B* DNA Topoisomerase II Beta 0.0743

TOP2A* DNA Topoisomerase II Alpha 0.0743

CYP2B6* Cytochrome P450 family 2 subfamily B member 6 0.0377

PDPK1* 3-phosphoinositide dependent protein kinase 1 0.0296

AURKB Aurora kinase B 0.0216

ATR

PARP3** Poly(ADP-Ribose) Polymerase 3 0.3165

PARP1** Poly(ADP-Ribose) Polymerase 1 0.3109

CYP2B6* Cytochrome P450 family 2 subfamily B member 6 0.2959

PARP2** Poly(ADP-Ribose) Polymerase 2 0.2919

DCK Deoxycytidine kinase 0.2237

ATM ATM serine/threonine kinase 0.1955

TOP1** DNA topoisomerase 1 0.166

RRM1 Ribonucleotide reductase catalytic subunit M1 0.152

RRM2 Ribonucleotide reductase catalytic subunit M2 0.152

RRM2B Ribonucleotide reductase regulatory TP53 inducible subunit M2B 0.1237

DNA-PK
(PRKDC)

TOP1** DNA topoisomerase 1 0.3321

TOP2A* DNA Topoisomerase II Alpha 0.3165

TOP2B* DNA Topoisomerase II Beta 0.3165

ERBB3 Erb-b2 receptor tyrosine kinase 3 0.0412

PDPK1* 3-phosphoinositide dependent protein kinase 1 0.037

HSP90AB1 Heat shock protein 90 alpha family class B member 1 0.0313

HSP90AA1 heat shock protein 90 alpha family class A member 1 0.0313

PARP3** Poly(ADP-Ribose) Polymerase 3 0.0231

PARP2** Poly(ADP-Ribose) Polymerase 2 0.0231

PARP1** Poly(ADP-Ribose) Polymerase 1 0.0231
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Supplementary Figures

Supplementary Figure 4.1. Overview of all monotherapies used in this study. (a) the
significance (-log10(p)) from the Kruscal-Wallis variance test across all cancer types for each
monotherapy. A dashed line marks the significance threshold (p=0.01, two-sided). (b) The total
count of experiments of monotherapy. (c) boxplot shows the efficacy of all anti-cancer drugs
used in this study. The color of the boxplot indicated the mode of action. Drugs were ordered by
average efficacy in all experiments in descending order.
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Supplementary Figure 4.2. The heatmap shows the results from post-hoc analysis on the
significantly variant monotherapy and combination treatments from the Kruscal-Wallis
test, and the right lane shows the distribution of response scores (AoC or Bliss) in different
cancer types. (a) shows post-hoc analysis results of monotherapy doxorubicin, M3541,
peposertib, and oxaliplatin, respectively., and (b) shows post-hoc analysis results of combination
therapy peposertib-gamma-ionizing-radiation (AoC and Bliss score) and M4076-berzosertib
(Bliss score). Boxplots show the 25, 50, and 75 percentiles with whiskers extending to 1.5 times
the interquartile range; for each cancer types the total numbers of cell lines are: bladder=4;
brain=3; breast=6; colon=8; hematological=10; liver=2; lung=5; melanoma=3; ovary=5;
pancreas=4; prostate=2; sarcoma=10. All statistically significant values from the variance test
are two-sided.
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Supplementary Figure 4.3. Hierarchy clustering of monotherapy from responses (efficacy)
on different cell lines.
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Supplementary Figure 4.4. Hierarchy clustering of combinations from responses (efficacy)
on different cell lines.
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Supplementary Figure 4.5. Hierarchy clustering of combinations from responses (efficacy)
on different cell lines.
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Supplementary Figure 4.6. Hierarchy clustering of combinations from responses (synergy)
on different cell lines.
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Supplementary Figure 4.7. Hierarchy clustering of combinations from responses (synergy)
on different cell lines.
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Supplementary Figure 4.8. Demonstration of the dose-response matrices of
peposertib-gamma-ionizing-radiation combination treatment. The responses (growth
inhibition rate, GI) in cell lines at different doses of peposertib (mol) and gamma
ionizing-radiation (Gy) were shown by heatmaps.
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Supplementary Figure 4.9. Demonstration of the dose-response matrices of
M4076-berzosertib combination treatment. The responses (growth inhibition rate, GI) in cell
lines at different doses of M4076 (mol) and berzosertib (mol) were shown by heatmaps.
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CHAPTER V: Machine Learning Predicts and Interprets the Synergistic DNA Damage

Response Combination Treatments in Variable Biological Contexts

Abstract

The combination therapy of DNA-damage sensing kinase inhibitors with other anti-cancer

therapies is a promising strategy in DNA damage response (DDR) targeted clinical cancer

treatment. It remains an open question to choose an optimal partner agent with the DNA-damage

sensing kinase inhibitors. In this study, we employed state-of-the-art algorithms of drug response

prediction on combination therapies with DDR kinase inhibitors by utilization of prior

knowledge of gene clusters and synthetic lethality and simulation of post-treatment gene

expression through network propagation. Based on feature importance visualization from SHAP

analysis, we selected a core set of global and tissue-specific molecular markers to create a

surrogate feature set, enabling us to build an optimal gene panel that is predictive for DDR

targeted treatment response. This method was further validated on a hold-out dataset with cell

lines and cancer tissue types that are not previously included in existing public datasets, showing

improvement of treatment efficacy in 100% of cases when selecting appropriate DDR

combinatorial therapy.

Introduction

DNA-damage response (DDR) pathways, often referred to as the “Achilles’ heel” of cancer,

have garnered major interest as a therapeutic target in the research and development of the

pharmaceutical industry in the past few years (O’Connor, 2015). A preferred strategy in clinical
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anti-cancer therapy involves the combination of multiple DDR-targeted agents. This approach

accounts for the complexity and interconnected nature of various parallel DDR pathways. Such

treatment strategy was exemplified by previous successful applications, including the

combination of PARP inhibitors with cancer patients with BRCA1/BRCA2 mutation (Bryant et

al., 2005; Farmer et al., 2005). This strategy was further extended by using targeted therapy for

the homologous recombination (HR) repair process to simulate “BRCAness” on

BRCA-proficient cancer cells, which resensitizes them to PARP inhibitors in clinical settings

(Lord & Ashworth, 2016). ATM, ATR, and DNA-PK, which are the core DDR regulators by

sensing double-strand break (DSBs), and transducing the DSB signal (Blackford & Jackson,

2017), have been proposed as the target of the backbone agents for DDR-targeted combination

treatments. The inhibitors of ATM, ATR, or DNA-PK have shown significant synergism in

combination with other anticancer treatments, such as radiotherapy, chemotherapy, or

immunotherapy in many previous preclinical studies (Barnieh et al., 2021; Brandsma et al.,

2017; Weber & Ryan, 2015). Consequently, they have been included as main agents of interest in

high-throughput in vitro combination treatment screening.

While the above experimental evidence has shown some DDR-targeted treatment

combinations may be more synergistic than others (H. Zhang, Kreis, et al., 2023), there still lacks

a unified approach to comprehensively analyze the biological context and select a suitable DDR

combination therapy for variable treatment subjects. Machine learning becomes a handy tool to

untangle the convoluted problem to choose an optimal DDR-targeted therapy for different

biological contexts. Benchmarks in combination synergy prediction include international

community challenges such as NCI-DREAM (Costello et al., 2014) and AstraZeneca-Sanger

DREAM (Menden et al., 2019), which have been launched to call for optimal machine learning
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algorithms to predict combination treatment response-based on high-throughput drug screening.

A variety of machine learning algorithms, such as TAIJI (H. Li et al., 2019) and DIGRE (Yang et

al., 2015), showed top performance in those competitions. Pharmaceutical properties and

molecular structure of drugs, as well as the molecular characterization of the treated cell lines,

such as genomic, epigenomic, and transcriptomic biomarkers, have been utilized for response

prediction. The top-performing method integrated prior knowledge such as drug-target

interactions and biological networks to simulate post-treatment molecular profiles and use these

simulated features for machine learning models, which achieved experimental replicate level

accuracy (H. Li et al., 2018).

In this study, we adapted the state-of-the-art machine learning strategy to the prediction of

DDR-targeted combination therapy, based on the pan-cancer DDR-targeted combination therapy

high throughput screening dataset we curated previously (H. Zhang, Kreis, et al., 2023). Our

strategies included introducing prior knowledge, such as drug target information, mode of action

of the drugs, geneset cluster information, and synthetic lethality gene pairs. Network

propagation (H. Li et al., 2018) on gene expression profiles using tissue-specific gene-gene

networks was also integrated into our model to improve the model’s transferability between

different cancer tissues (Greene et al., 2015; Guan et al., 2012; Wong et al., 2018). These

approaches are critical to our study and distinguish tumors sensitive to particular combination

treatments and for proposing putative response biomarkers in a genome-wide fashion. Our

machine learning model was further validated on a hold-out high throughput screening dataset on

DDR combination therapies, which comprises 24 cell lines and two tissue types that are not

covered by the training set, to demonstrate the model’s generalizability to unseen biological

contexts. Our model improved treatment efficacy in over 100% of the cases over the baseline
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treatments (the median efficacy of all treatments tested on the same cell line), thus demonstrating

the value of optimizing the selection of combining DDR therapeutics. In addition, by employing

global and local AI interpretation methods on the machine learning model, we identified

molecular biomarkers particularly associated with co-therapeutic efficacy and synergy of general

DDR combination therapy, and some particular combinations of interests, such as ATMi-ATRi,

ATRi-PARPi, ATRi-TOP1i, and DNA-PKi-IR. These biomarkers opened new avenues for patient

stratification by the genetic setup of a tumor or drug development efforts aimed at novel DDR

targets. The AI interpretation strategy also allows us to perform feature selection for a simplified

model, which showed improved performances compared to using the full set of genes and also

generated a minimal gene panel for accurate response prediction. Based on the simplified model,

we created a surrogate machine learning model to select optimal DDR-targeted combination

treatment, using the minimal gene panel readouts from the biological backgrounds. This interface

suggested the potential for future research and clinical usage in DDR-targeted therapeutics. The

hold-out validation dataset published in this paper will also enhance the current scope of DDR

combination therapy screening.

Results

Building machine learning models using simulated features that improve combination treatment

assignment by leveraging molecular features and drug information

To demonstrate the generalizability of our machine learning model across various biological

contexts, we adopted a two-step training and validation approach in this study (Figure 5.1a).

Initially, our machine learning dataset was trained using a high-throughput DDR combination

treatment screening dataset from a prior study (H. Zhang, Kreis, et al., 2023). This dataset

includes 17,912 combination experiments with 87 anti-cancer drugs tested on 62 unique cancer
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cell lines across 12 tissue types. We assessed model performance using k-fold cross-validation,

where the training and testing data were stratified by cell line and tissue type, respectively.

Subsequently, we performed additional validation on an independent dataset comprising 4,915

combination treatment experiments generated during this study. This dataset featured cell lines

and tissues not included in the initial training set and utilized the same set of anti-cancer drugs

(see Figure 5.1b). Genomic and transcriptomic analyses were conducted on cell lines from both

the previous and newly generated datasets (refer to Methods). t-SNE analysis revealed distinct

clustering patterns of cells from both datasets across various tissue types (Figure 5.1c and

Supplementary Figure 5.1).

The most critical aspect is the simulated molecular profiles that assume drug-targeted genes

turning their expression values to zero. Besides yielding information about which features (i.e.,

the putative biomarkers) are most important for the machine learning model in prediction, this

approach also provides a testing scenario for automatically assigning “optimal” (as in

maximizing synergy or efficacy) treatment to cell lines. To investigate the relative importance of

different kinds of molecules (i.e., cancer cell-derived) and drug-related features for prediction,

we trained multiple machine learning models on different groups of features as displayed in

Figure 5.1d and Supplementary Figure 5.2. In the initial naive model, we only used the

molecular characteristics for the treated cell lines, which encompassed genetic markers (such as

single nucleotide variants (denoted as “snv”), copy number variations (“cnv”), loss-of-function of

the gene (“lof”), and mRNA-based gene expression (“exp”)), derived gene cluster-based features

measuring expression (“coh_pat”) and loss-of-function (“lof_pat”) of cancer pathways, as well

as specialized DDR-related readouts (“ddr”) such as the cell doubling time of the cell line,

homologous recombination deficiency (HRD) scores, microsatellite instable (MSI) scores, and
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tumor mutational burden. In the second model, we incorporated publicly available drug target

information was included to provide additional pharmacological context. In the third model,

tissue-specific networks are further added upon the molecular signatures by network

propagation, in a fashion we have introduced in previous studies of TAIJI and AstraZeneca

DREAM Challenge, by tuning down the expression level of genes that are not directly targeted

by the drugs by its proximity with the targeted genes in the network. Synthetic lethality

information was further added on, by calculating the combined expression level of each synthetic

lethal gene pair on the post-treatment expression profiles we have generated earlier. After that,

the drug names, chemical structure of the drugs, the monotherapy efficacy responses for each

drug in a given combination, the gene set annotations, and the mode-of-actions for both drugs are

included to form our final model.

We implemented the above features in the following manner:

a) A total of 10,462 molecular biomarkers, including genomic (denoted as “snv”, “cnv”, “lof”

and “lof_pat”), transcriptomic (“exp” and “coh_pat”) and DNA damage response readouts

(“ddr”) were obtained as molecular features (see Methods). The expression level of individual

genes was first quantile normalized before being used as features. Besides, the target gene

information was added to the molecular information to provide additional information on the

drug mechanism in the cellular context. For example, for a combination treatment drug A-drug B

in cell line C, we have the expression level readouts of the 2,725 genes potentially involved in

DDR pathways, and m genes that are functionally perturbed by these two drugs. We alter the

expression levels by setting the perturbed genes to zero, as follows:

(for in all perturbed … ) … … Eq. (1)𝑒𝑥𝑝
𝑔𝑒𝑛𝑒

𝑖

 =  0 𝑔𝑒𝑛𝑒
𝑖

𝑔𝑒𝑛𝑒
𝑖

𝑔𝑒𝑛𝑒
𝑛
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This operation simulates the target gene’s activation/inactivation by the administered drugs

inside each cell and provides more variable information for context-based combination treatment

response prediction.

b) Tissue-specific network information was added upon the expression profiles by network

propagation, a method we have introduced in our previous studies (H. Li et al., 2018, 2019) and

the winning solution in AstraZeneca DREAM challenge (Menden et al., 2019). Simplicity, we

alter the expression level of genes that are not directly perturbed by the drugs by the interaction

probability of this gene to the target genes. For example, for , its closeness to all n𝑔𝑒𝑛𝑒
𝑗

perturbed genes in the network is:

… … Eq. (2){𝑝
1𝑗

,  𝑝
2𝑗

,  𝑝
3𝑗

,  .....  𝑝
𝑛𝑗

}

The altered expression levels of is:𝑔𝑒𝑛𝑒
𝑗

… … Eq. (3)𝑒𝑥𝑝
𝑔𝑒𝑛𝑒
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})

c) Synthetic lethality information is integrated to the altered gene expression profile (which is

the simulation of post-treatment expression). The definition of synthetic lethality is, only the

co-occurrence of down-regulation of both gene a and gene b will lead to cell death (Kaelin,

2005). Therefore, we constructed the synthetic lethal feature for a synthetic lethal gene pair a and

b as:

… … Eq. (4)𝑠𝑦𝑛𝑙𝑒𝑡ℎ 
𝑔𝑒𝑛𝑒

𝑎
,  𝑔𝑒𝑛𝑒

𝑏

=  𝑚𝑎𝑥(𝑒𝑥𝑝
𝑔𝑒𝑛𝑒

𝑎

 , 𝑒𝑥𝑝
𝑔𝑒𝑛𝑒

𝑏

 )

Where the expression levels of gene a and b were also normalized by the deduction of the

mean of this gene in all different cell lines and divided by standard deviation. We also

implemented the maximum, mean, and minimum of all synthetic lethality features in the feature

set.
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d) Drug names and mode-of-actions were converted to indexes and implemented as one-hot

encodings. To note, the order of the features of the two drugs is randomly exchanged during

training since we want to avoid information bias due to the order of the drugs.

e) The SMILE format of the chemical structure of both drugs was translated into bit strings

using six types of fingerprints, including MACCS, Morgan, RDK, FP2, FP3, and FP4, using

rdkit, pubchempy and openbabel Python API. This will generate binary strings (e.g., 101000111)

that embed the topological, substructural, and chemical characteristics of the drugs.

f) Monotherapy responses of the two drugs on the same cell line in the combinations were

regarded as two independent features and added to the feature set respectively. For example, in

combination treatment M1774-berzosertib on cell line HEPG2, the monotherapy efficacy of

M1774 and berzosertib on HEPG2, respectively, are used as input in the model in the feature set.

To note, we have obtained 7,326 single-drug tests in total (compared to

different types of monotherapy tests), and some of the87 (𝑑𝑟𝑢𝑔)×62 (𝑐𝑒𝑙𝑙 𝑙𝑖𝑛𝑒) =  5, 394

tests have been replicated multiple times for monotherapy. For these tests, we take the average

value of all replicates as the experimental monotherapy responses.

g) Gene set annotations of the target genes were also implemented as independent features.

We extracted 18,681 gene set annotations covering 9,450 genes in the human genome from

MSigDB (Subramanian et al., 2005) and literature. Each gene set could contain from one to up to

15 genes. We incorporated the gene set annotation information by counting how many genes of

that gene set were targeted by the drugs used in the combination treatments.

The final machine learning model was built by stepwise addition of each of the above feature

sets into LightGBM learners. Synergy and efficacy predictions were evaluated against the

experimental gold standard. In cross-validation, we partitioned the training data either by cell
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lines or, to be more challenging for the machine learning model, by tissue type (cancer

indications), i.e., each cell line or, alternatively, each tissue type was either present in the training

or the testing partition during training, but not in both (Figure 5.1a). This approach has been

demonstrated previously to excel in integrating diverse feature types (Spiro et al., 2019; Y. Zhang

et al., 2019; Y. Zhu et al., 2020).

For cross-validation between cell lines, molecular profiles alone do not show any signals in

predicting efficacy and synergy responses (Pearson’s correlation of -0.0162[-0.032, 0.0074]

(mean[95%CI]) and 0.0145[-0.0027, 0.0316] (mean[95%CI])). However, integrating the target

gene information of both treatments in the combination improved the performances significantly

to Pearson’s correlation of 0.6087[0.6018, 0.6206] and 0.4095[0.3905, 0.4425] in predicting

efficacy and synergy, reflecting the importance of introducing of treatment-specific data.

Integration of tissue-specific networks further improved the performances to 0.6141[0.6067,

0.6264] and 0.433[0.4171,0.4647], for efficacy and synergy, respectively. The same pattern of

improvement by integrating target information and network propagation is also observed by

comparing to the synthetic lethality baseline model (Supplementary Figures 5.3 and 5.4).

Adding synthetic lethality does not further improve the efficacy prediction, but improves the

synergy prediction to 0.4791[0.4621, 0.5083]. Adding treatment-specific features, including drug

name one-hot encoding, chemical structure fingerprints, monotherapy responses, and

mode-of-actions, further improved the model performances step by step. The best model that was

thus achievable produced 0.7834[0.7766, 0.79] Pearson’s correlation for AoC score and

0.679[0.6634, 0.6995] Pearson’s correlation for Bliss score, including all features mentioned

above (Figure 5.2a, left panel). The same trend is also observed in the validation of the above

models on the hold-out dataset with new cell lines from the same tissue types as the training set,
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achieving 0.7522[0.748, 0.756] Pearson’s correlation for AoC score and 0.7709 [0.7643, 0.7774]

Pearson’s correlation for Bliss score (Figure 5.2b, left panel).

We next took on a more challenging setup, i.e., examining the cross-validation model

performance across tissue types. We found similar contributions from each type of feature

(Figure 5.2a, right panel). The best model achieved 0.7765 [0.7697, 0.785] Pearson’s

correlation for AoC score and 0.7028[0.6901, 0.7156] Pearson’s correlation for Bliss score,

values practically identical to the cell-line cross-validation scenario. When validating the above

models on the two new tissues in the external validation sets, the features exhibit the same

additivity trend, and achieved 0.6611[0.641, 0.6818] Pearson’s correlation in AoC score and

0.7822[0.7627, 0.8064] Pearson’s correlation in Bliss score on cervix tissue, and 0.5454[0.5271,

0.5739] Pearson’s correlation and 0.8429[0.8278, 0.8585] Pearson’s correlation in Bliss score on

kidney tissue, respectively (Figure 5.2b, middle and right panel).

We also assessed the cross-tissue type model’s validation performance across 14 different

tissue types (Figure 5.2c). The model demonstrated superior performance in both efficacy and

synergy predictions for prostate, melanoma, and brain tissues compared to the overall baseline

performance across all tissues. In contrast, liver tissues showed lower performance in these

metrics, indicating limited generalizability of the model to this tissue type. Bladder, cervix, and

kidney tissues exhibited lower generalizability in efficacy, yet outperformed the baseline in

synergy. Interestingly, for breast cancer, while the model was more effective in predicting

efficacy, its performance in predicting synergy was notably weaker.

To demonstrate the ability of the machine learning model to optimize combination

treatments, we compared, for each cell line, the most effective DDR combination therapy

selected by the machine learning model by the baseline administration (the combination achieved
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the median efficacy in all combinations tested). We noticed in all of cell lines, the machine

learning model could select combinations with improved treatment efficacy compared to the

baseline treatment, with an improvement of efficacy from 0% to 280% (Figure 5.2d).

Identifying global determinants for combination treatment response to DNA damage response

kinase inhibitors

To gain deeper insight into the machine learning models and prioritize molecular features for

biomarker and drug target development, we utilized the improved SHapley Additive

exPlanations (SHAP) analysis (S. M. Lundberg & Lee, 2017) to identify the most important

predictive features for combination treatment’s efficacy and synergy. Being broadly used in

machine learning, SHAP values estimate the contribution of each feature to the final prediction

given the values of all other features. We carried out the SHAP analysis using the best

performing model in cross-cell line validation (Figure 5.3, Supplementary Figure 5.5-13),

within each mode-of-action combination, and for each type of molecular feature, and ranked

SHAP values by relative importance to gain insight into the most predictive features (higher

SHAP values indicate higher predictiveness of features). Based on this analysis, monotherapy

responses (AoC score) of both treatments in the combination on the same cell lines, and the

enrichment of pathways of the target genes (geneset annotation), proved to be the most important

predictors for efficacy and synergy, respectively (Figure 5.3a and f). The next important

predictors were chemical structure for both efficacy and synergy. Geneset annotations ranked

third in efficacy prediction, followed by molecular biomarkers and synthetic lethality of genes on

the cell lines. For synergy prediction, these two kinds of information also played important roles,

while monotherapy responses are considered much less important than efficacy prediction.
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Among the molecular features, gene expression levels are more informative for predicting

combination response in terms of both efficacy and synergy scores compared to gene

loss-of-function mutations and gene copy number alterations, as the target gene information and

tissue-specific networks are incorporated into the expression profile to simulate the

post-treatment effect (Figure 5.3b and g). The fact that genes in core DDR pathways are

relatively rarely mutated compared to known cancer drivers is the likely reason why gene

loss-of-function mutations and copy number readouts are not as predictive as expression

features, which encode the activity of DDR pathways and are thus more usable by the machine

learning model (Knijnenburg et al., 2018). Highly mutated outliers such as TP53 exist, of course,

but seem not to be predictive for most DDR-targeted combination treatments we investigated in

our data. This result is also consistent with the experiments we carried out earlier in this study:

when features are progressively added into the model, expression data incorporating target gene

and network information outperformed all other types of molecular features (Supplementary

Figure 5.4).

SHAP values are additive, i.e., the combined contribution of a set of features is simply the

sum of all individual SHAP values (Shapley, 1983). This property allowed us to explore the

per-gene contribution by summarizing the contributions from expression, loss-of-function, single

nucleotide variation, and copy number variation features relating to the same gene. The top genes

contributing most to efficacy and synergy prediction are shown in Figures 5.3d and i

(Supplementary Figures 5.7 and 5.8). At the same time, the top synthetic lethality gene pairs

that are contributing most to efficacy and synergy prediction are shown in Figures 5.3e and j

(Supplementary Figure 5.9). As expected, when ranking across all combination treatments, the

drug targets of the key DNA damage response kinase inhibitors screened in this study, ATM and
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ATR and PRKDC (DNA-PK) received high SHAP values for both efficacy and synergy

prediction. In the same global view, the PARP family, including PARP1 and PARP2 were also

among the top ten genes and synthetic lethal gene pairs relevant for synergy prediction,

indicating the broad importance of the molecular status, predominantly on the level of mRNA

expression, of these genes across multiple combination treatments.

Next, we analyzed the SHAP values of molecular features for the three major modes of

action investigated in this study, ATMi, ATRi, and DNA-PKi, across all combination partners.

First, we extracted the most important genes by SHAP values for ATM/ATR/DNA-PK inhibitor

combination treatments and combined the results into a global inhibitor-gene interaction network

(Figure 5.3k and l).

To internally validate the SHAP approach, we also compared the top genes and gene pairs in

SHAP analysis with directly targeted genes in the experimental screen that showed the highest

efficacy and synergy (H. Zhang, Kreis, et al., 2023). As expected, for both efficacy and synergy

responses, top-ranked drug targets in combination with ATM/ATR/DNA-PK inhibitors based on

experimental screening, such as TOP1 and PARP1, also appeared among the top-ranked genes of

the SHAP-based interaction network, as did the combination drug targets ATR, ATM, and

DNA-PK, which were also identified as important biomarkers in our analysis (Figure 5.3d-l).

Moreover, as the machine learning model also employs fine-grained molecular biomarker

information from the cellular context such as the expression level of DDR-related genes, we

observed, more interestingly, molecular features that were not used as drug targets in the

experimental screen but that nevertheless appear to be as important as the direct target genes in

almost all combination treatments.
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We further searched the biomarkers from functional reports and summarized the biological

pathways that may be involved in regulating the DDR process to influence the treatment

responses (Figure 5.4). While the minority of the prioritized genes, such as GUSB and COL5A1,

are involved in general housekeeping (Iyer et al., 2017; S. Lee & Greenspan, 1995), all other

identified factors have clear relations to DNA damage response: HSP90AA1 (HSPC1, Heat

shock protein HSP 90-alpha, a stabilizer of CHK1, MSH2, and XRCC1 (Sottile & Nadin, 2018)),

PKIB (cAMP-dependent protein kinase inhibitor beta, a potent competitive inhibitor of

cAMP-dependent protein kinase (PKA) activity), SESN1 (a target of TP53 regulation

upregulated in DNA damage (M. Wang et al., 2017)), and RBBP8 (a key modulator between

ATM and ATR (S. Li et al., 2000) physically associated with CTBP and BRCA1 that is involved

in cell proliferation (Yu et al., 2020)) are all broadly associated with combination efficacy

(Figure 5.3d and Supplementary Figure 5.7). Similarly, TEAD1 (involved in YAP/Hippo

regulation and thus proliferation, anti-apoptosis, and epithelial-to-mesenchymal transition (Huh

et al., 2019)), ZMYND8 (related to DNA repair activities at DNA double-strand breaks (Gong &

Miller, 2018)), and YWHAZ (a DNA-PK substrate and involved in several aspects of cell cycle

control and associated with TP53 (Anisenko et al., 2020; S. Liu et al., 2016)) were top hits for

synergy prediction (Figure 5.3i and Supplementary Figure 5.8). Other genes of interest

associated with response are XRCC6, which directly binds to the DNA-PK complex in the NHEJ

process in DSB repair (H. Liu et al., 2010; Roberts et al., 2010; West et al., 1998), and a suite of

other regulators of different aspects of the DNA damage response, such as PEA15 (an ATM

substrate (Nagarajan et al., 2014)), as well as CASP3 and BCL (both central regulators of

apoptosis but also involved in regulation of Fanconi Anemia pathway (CASP3 (Sakai &

Sugasawa, 2014)), and suppressor of DSB repair (BCL (Q. Wang et al., 2008))).
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Identifying molecular determinants of efficacy and synergy in clinically relevant combination

treatments

To conduct focused investigations of specific mode-of-action combinations that are of

particular clinical or pharmacological interest at the moment, such as the combination treatments

ATMi-ATRi, ATRi-PARPi, ATRi-TOPi, ATRi-Cytostatic Antimetabolites (including

Gemcitabine), and DNA-PKi-IR (irradiation), we extracted genes with highest SHAP values

separately for each of these mode-of-action combinations (Supplementary Figure 5.14-23).

Most salient in these analyses was the presence of LIG4, ADORA2A and PKIB gene expression

status as being highly predictive for combination efficacy in the top 10 ranked features (among

2,725 ranked genes) of all five highlighted combinations. The role of ATR in these combinations

was expected due to it being a drug target in these combinations and its general importance as a

DDR factor, and LIG4 was also previously highlighted as a biomarker for DNA damage

response targeted treatment by playing a role in DSB repairing process (Buchbinder et al., 2018;

Felgentreff et al., 2016), ADORA2A and PKIB were not yet highlighted as a potential biomarker

in these settings. Previous studies indicated lower ADORA2A expression levels occurring in

cancer patients with DNA damage repair deficiency (Chang et al., 2022). We tentatively

hypothesize that PKIB’s function as a competitive inhibitor of PKA activity, and thus of PKA

phosphorylation of ATR which actively recruits the key NER protein XPA (C. H. Lee et al.,

2001), may relate to its recurring importance in our analysis results.

While PARP1 expression status was highly predictive for synergy across all five combination

treatments, this is less surprising since synergistic relationships between PARP1, ATM, and ATR

(Lloyd et al., 2020) as well as between PARP1 and DNA-PK (C. Wang et al., 2020) had been

shown before.
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Additional, highly ranked predictive factors of combination synergy in ATRi-ATMi,

ATRi-TOP1i, as well as ATRi-Cytostatic antimetabolites, were the expression status of

DNA-PK, CEP76 (which inhibits centriole amplification after DNA damages detected by PLK1)

and MYD88 (which induces inflammatory genes as a result of single-stranded DNA detection by

TLR9 (Nakad & Schumacher, 2016)), which were predictive for combination synergy in the

ATRi-ATMi combinations, as well as YWHAZ, which was predictive for ATRi-Cytostatic

Antimetabolites synergy. Lastly, SESN1 expression was found to be predictive of combination

efficacy. Interestingly, none of the aforementioned genes are strongly correlated with ATRi

monotherapy (Supplementary Table 5.1 and 5.2), so these findings are specific to ATRi

combination treatments.

Pruning the full machine learning model to a portable, highly accurate surrogate model

Based on the molecular determinants identified above (Supplementary Figure 5.7 and 5.8),

we further constructed a simpler surrogate machine learning model that only includes the top

biomarkers we identified from model interpretations of the full machine learning model (Figure

5.5 a and b). We noticed that when only using the top 40 genes with highest SHAP values, the

resulting surrogate model runs significantly faster, requires fewer input features, and even

slightly outperforms the full model (0.7834[0.7766, 0.79], mean[95% confidence interval]) by a

small margin (0.8035[0.7973, 0.8100], mean [95% confidence interval] Pearson’s correlation for

AoC score prediction, 0.679[0.6634, 0.6995] to 0.7853[0.7701,0.8062] Pearson’s correlation for

Bliss score prediction). Since the surrogate model displayed better runtime performance and

fewer input data requirements while also demonstrating nearly identical accuracy, we decided to

publish the surrogate model as part of a public R Shiny app, SynDDR, to allow researchers to

predict drug combination efficacy and synergy on their own data using our approach (Figure
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5.5c) (https://github.com/GuanLab/DDR-drug-synergy-prediction-Shiny). Defining gene

expression signatures for prioritizing clinically relevant combination treatments.

Since accurate but complex machine learning models such as those mentioned here may be

less practical for everyday use by clinicians, we aimed to derive succinct gene expression

signatures according to methods presented by Staub et al. (Staub, 2012) that are both robust and

predictive of response. Once derived, these gene signatures can be easily applied to new datasets

without major computational knowledge to rank predicted drug combination efficacy or synergy.

For the previously highlighted mode-of-action combinations ATMi-ATRi, ATRi-PARPi,

ATRi-TOPi, ATRi-Cytostatic Antimetabolites (including Gemcitabine), and DNA-PKi-IR

(irradiation), we identified three robust gene expression signatures with high coherence scores

(see Methods). Among these, the signature for the synergy of ATRi-Cytostatic Antimetabolites

(YWHAZ, ANLN, PPP4R1) and ATRi-TOP1i (YWHAZ, PPP4R1, CD9, HUS2, ANLN,

TEAD1, XRCC6) treatment combinations achieved 0.28[0.0292, 0.4926] ([95% confidence

interval]) and 0.55[0.3471, 0.7026] ([95% confidence interval]) Pearson’s correlation. The

signature score for the efficacy of DNA-PKi-IR (PEA15, PTPN14, COL5A1) achieved

-0.57[-0.7170, -0.3723] Pearson’s correlation. For the remaining mode-of-action combinations

and readouts, no gene expression signature with high coherence could be identified. We note that

further evaluation of these signatures on independent datasets may be required, a task that is

outside of the scope of this work.

Discussion

DNA damage response has attracted a lot of research focus as recently both academia and

industry have turned their focus on developing new DDR-targeted therapies. First-line DDR

targeted agents have been developed, including a series of PARP, ATM, ATR, and DNA-PK
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inhibitors (Keung et al., 2019; Mohiuddin & Kang, 2019; Nam et al., 2019; Vecchio & Frosina,

2016). The applications of these new DDR-targeted therapies need to be urgently evaluated, in

terms of combination use with other drugs, applicable indications, and biological context. In this

study, we present a comprehensive analysis of DDR-targeted combination treatment, by

incorporating a novel feature construction strategy into state-of-the-art machine learning models

and generating satisfying results. Our study shows the strong potential of machine models to be

applied to DDR pathway-targeted clinical treatment strategies. With a selection of a core gene

panel (40 genes) as input, our model still maintains highly accurate performances compared to

all genes.

Meanwhile, we identified molecular features that are predictive for the synergy and efficacy

of DDR-targeted combination therapy both globally (i.e., across all combination partners of

ATRi, ATMi, and DNA-PKi) and specific to particular combination treatments that are of high

interest to drug development. We took particular care to control the overfitting of our machine

learning approach and identified features that are highly predictive for estimating the efficacy

and synergy of the screened combination treatments. Among the more than 10,000 cancer-related

features investigated, DDR-specific genes were highly enriched in the top hits (Figures 5.3 and

5.4). In particular, we note that in the global analysis, nearly all top predictive molecular features

were located in clearly interpretable cellular pathways of DNA damage repair or DNA synthesis,

with additional hits in apoptosis, cell survival, and proliferation that also have known molecular

relations to DDR. In addition to the direct drug targets ATR, ATM, and DNA-PK (PRKDC)

whose mRNA expression states are particularly predictive biomarkers of treatment efficacy and

synergy, PARP1 and PKIB seem to be of particular interest since they also frequently appear as

important biomarkers in particular combination treatments that are of high clinical interest such
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as ATMi-ATRi, ATRi-PARPi, ATRi-TOPi (“Therapeutic Targeting of ATR Yields Durable

Regressions in Small Cell Lung Cancers with High Replication Stress,” 2021), ATRi-Cytostatic

Antimetabolites (including Gemcitabine (Konstantinopoulos, Cheng, Wahner Hendrickson,

Penson, Schumer, Austin Doyle, et al., 2020)), and DNA-PKi-IR (irradiation). To facilitate

applications of our results by researchers with varying levels of computational expertise, we have

derived both a performant and accurate R Shiny app for conducting synergy and accuracy

predictions on new data, as well as succinct gene expression signatures for a subset of

mode-of-action combinations.

Methods

High throughput screening of DDR combination treatment dataset for training and hold-out

dataset

The DDR combination treatment training dataset used in this study was obtained from Open

Science Framework (OSF): https://osf.io/8hbsx/, which consists of 17,912 combination treatment

tests performed on 62 cell lines from 12 different tissue types. For the hold-out validation

dataset, high throughput screening of DDR combination treatment was carried out using the

same method as the previous study (H. Zhang, Kreis, et al., 2023). All cell lines used in this

study were purchased from ATCC, NCI, CLS GmbH, and Leibniz-Institute DSMZ–German

Collection and the dose-response experiments were performed at Oncolead GmbH & Co. KG

(Karlsfeld, Germany), resulting in 4,915 combination treatment experiments on 24 cancer cell

lines from 14 different tissue types, which are not encompassed by the training set. The relative

Area over Curve (AoC) and Bliss score were computed from the fitted dose-response curve to

measure the efficacy and synergy of the DDR combination treatment, respectively, following the

same fashion we reported earlier (H. Zhang, Kreis, et al., 2023).The experimental reproducibility
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of is measured by Pearson’s correlation coefficient between replicates, which is 0.8429 (p <

1e-22) for monotherapy efficacy score (AoC) and 0.7419 (p < 1e-22) for combination synergy

score (Bliss), and comparable to previously published datasets (H. Zhang, Kreis, et al., 2023).

Characterization of molecular readouts on all cell lines

For short nucleotide (SNV) and copy number variation (CNV) calling, the qualified genomic

DNA of the cell line samples wee fragmented by an ultrasonicator (Covaris). By adjusting

shearing parameters, DNA fragments were concentrated in 500bp peaks for each sample. These

fragments were purified, end blunted, ‘A’ tailed, and adaptor ligated. DNA templates with

adapters were then selectively enriched using PCR in order to obtain a sufficient amount for the

DNA library. The concentration of the libraries was quantified by a bioanalyser (Agilent

Technologies) and real-time PCR method. Each qualified DNA library was sequenced on the

Illumina HiSeq platform using paired-end reads according to the Illumina manufacturer’s

instructions. Sequencing-derived raw image files were processed by Illumina base calling

Software for base-calling with default parameters and the sequence data of each cell line was

generated using an Illumina HiSeq 2000 instrument in paired-end mode at 2 × 100 bp read

length.

Subsequently, short nucleotide variations and copy number variations were computed using

VarDict (Lai et al., 2016) and CNVkit (Lai et al., 2016; Talevich et al., 2016), respectively, in the

bcbio workflow system (Chapman et al., 2020) using default parameters against the human

reference genome hg19 with Ensembl 75 gene annotations. Variant calling by VarDict was

conducted by requiring a minor allele frequency of at least 10% and minimal support for four

de-deduplicated reads for each variant call; in addition, calibrated filters for strand bias, mean
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position of variant in read, minimum mean base quality, NM/MQ mapping qualities, and

DP/QUAL variant qualities were applied as per the bcbio default configuration.

For identifying functionally relevant mutations and indels, only SNVs with Variant Impact

Predictor (VEP) (McLaren et al., 2016) assessment of “HIGH” or variants that were deemed to

be at least likely pathogenic in SIFT, Polyphen, or Clinvar were retained. In addition, variants

with at least 1% prevalence in normal populations according to gnomAD (Karczewski et al.,

2020) were excluded. Note that for reasons of confidence and coverage, SNV analyzed in this

study are either homozygous or heterozygous (i.e., they affect at least one allele).

For the “snv” features used in downstream analyses, filtered SNVs were summarized on the

gene level by coding “1” for genes with at least one detected SNV and “0” for genes without any

detected variants. Integer allele calls from CNVkit were used directly as “cnv” features. For the

loss-of-function (“lof”) features, loss-of-function events were also summarized on the gene level

by coding “1” for genes with at least one detected SNV or an integer copy number call <2, while

coding “0” for all genes without any such variants.

For gene expression analysis, after total RNA extraction and DNase I treatment, magnetic

beads with Oligo (dT) were used to isolate mRNA (for eukaryotes) or by removing rRNAs from

the total RNA (for prokaryotes). Mixed with the fragmentation buffer, the mRNA was

fragmented into short fragments. Then cDNA was synthesized using the mRNA fragments as

templates. Short fragments were purified and resolved with EB buffer for end reparation and

single nucleotide A (adenine) addition. After that, the short fragments were connected with

adapters. After agarose gel electrophoresis, the suitable fragments were selected for PCR

amplification as templates. During the QC steps, Agilent 2100 Bioanalyzer and ABI

StepOnePlus Real-Time PCR System were used in quantification and qualification of the sample
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library before sequencing of the library using an Illumina HiSeq 2000 instrument in paired-end

mode at 2 × 100 bp read length.

Subsequently, transcript-based and gene-based quantitations in transcripts per million (TPM)

were computed using kallisto (Bray et al., 2016) in the bcbio workflow system (Chapman et al.,

2020) using default parameters against the human reference genome hg19 with Ensembl 75

transcript annotations. The TPM expression quantitations were summarized on the gene level

and directly used as “exp” features for downstream analyses.

For all subsequent analyses, the “snv”, “cnv”, “lof”, and “exp” markers were subset to a list

of 2,725 genes involved in cancer and/or known DDR pathways as derived from literature

curation in order to decrease issues resulting from multiple testing and increase biological

interpretability of the results.

In addition to the aforementioned single-gene features, also derived gene set-based molecular

features were used in this study to capture the molecular status of signaling pathways and protein

complexes. For this purpose, 252 “coh_pat” and 451 “lof_pat” markers, which stand for the

expression level for coherently expression genesets and loss-of-function patterns for gene sets,

respectively, were generated in the following manner:

For the “coh_pat” set of markers, the gene set collection was scored to identify coherently

expressed gene sets similar to the method described in Staub et al. (Staub, 2012). Briefly, first the

median pairwise Kendall correlation of the TPM expression of all genes in an individual gene set

was computed. For gene sets with median pairwise correlation τ >= 0.5, TPM values for all

genes in an individual gene set were percentile-normalized and for each cell line the median

percentile value across all genes in the gene set was selected as “coh_pat” feature value. The

153

https://paperpile.com/c/2Z4Yil/t0wY9
https://paperpile.com/c/2Z4Yil/J9UPK
https://paperpile.com/c/2Z4Yil/J9UPK
https://paperpile.com/c/2Z4Yil/8U86t


features so derived summarize the expression status of the gene set as a single number for each

cell line.

For the “lof_pat” set of markers, the same gene set collection was scored to identify gene sets

enriched in loss-of-function mutations and copy number deletions. This was achieved by

identifying gene sets whose number of loss-of-function events across all cell lines (as described

above in the “lof” features) exceeded the expected number of such loss-of-function events under

a hypergeometric null model (using number of loss-of-function events across all gene as

background). If for a specific gene set the null hypothesis could be refuted with α <= 0.1

(without multiple testing corrections), then the “lof_pat” feature for all cell lines with at least one

loss-of-function gene in that gene set was coded as “1”, and “0” else. The features so derived

summarize the loss-of-function status of the gene set as a single number for each cell line.

Meanwhile, gene sets annotations used for above “coh_pat” and “lof_pat” were obtained

from DDR-related literature curation, msigDB (Liberzon et al., n.d., 2011; Subramanian et al.,

2005), Corum (Ruepp et al., 2010), KEGG (Kanehisa et al., 2020), Pathway Commons (Cerami

et al., 2011), Pathway Interaction Database (PID, http://pid.nci.nih.gov). The molecular

characteristics of all 86 cell lines (62 from the training set, 24 from the hold-out set) we obtained

in this study are uploaded to the public data repository OSF: https://osf.io/8mxgj/.

Data resources for constructing feature sets

The chemical structure fingerprints, including MACCS, Morgan, RDK, FP2, FP3, and FP4,

were generated by python OpenBabel (O’Boyle et al., 2011), PubChemPy (PubChemPy

Documentation — PubChemPy 1.0.4 Documentation, n.d.), Pybel (Pybel, n.d.) and RDKit

(Landrum, 2006) packages. Drugs-gene interactions were pulled from DGIdb3.0 (Cotto et al.,

2018), LINCS (HMS LINCS Project, n.d.), DrugBank 3.0 (Knox et al., 2011), and CHEMBL
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(Mendez et al., 2019). Synthetic lethality gene pairs were obtained from SynLethDB2.0 (J. Wang

et al., 2022) with a cut-off with a confidence score over 0.8. Tissue-specific networks were

obtained from HumanBase (https://hb.flatironinstitute.org/) (Wong et al., 2018).

The machine learning model construction

Based on the DDR combination treatment tests we obtained from the above, we constructed a

machine-learning model using LightGBM, the gradient boosting machine, to predict both

efficacy and synergy of combination treatments on new cell lines and tissue types (Ke et al.,

2017). Gradient boosting methods have achieved the top performances in many recent data

science challenges (Abel, n.d.; ALASKA2 Image Steganalysis, n.d., IEEE-CIS Fraud Detection,

n.d., iMaterialist Challenge (Fashion) at FGVC5, n.d., RecSys 2020 Challenge, n.d.). Compared

to traditional tree-based methods such as random forest and XGboost, LightGBM is especially

suitable for tackling large datasets with its leave-wise tree growth characteristics, which shrinks

training time without sacrificing prediction accuracy(Ke et al., 2017).

The machine learning model employed five types of feature sets as we mentioned in Figure

5.1c, including basic information (name and mode-of-action of the drugs in the combination),

monotherapy responses, the chemical structure of drugs, gene set annotations, and molecular

biomarkers, including genomic, expression and ddr readouts. The detailed numbers of each type

of feature respectively were shown in Supplementary Figure 5.2.

Evaluation of model prediction performances

To evaluate the prediction performances on new cell lines/tissues, we implemented five-fold

cross-validation by splitting the training and test dataset by cell line and tissue. Each time the

model was trained on of cell lines or tissues and tested on the remaining .4/5 1/5
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The average and 95% confidence interval of overall model predictions during all five folds

were computed by bootstrapping. We combined predictions of all five folds together and

calculated the prediction performance by bootstrapping. The accuracy of both combination

efficacy (AoC score) and synergy (Bliss score) were evaluated by Pearson’s correlation between

prediction and gold standard.

To evaluate how the administration of combination treatments can be improved based on the

prediction of machine learning models, we compared the machine learning model’s choice of

combination treatment with the combination treatment that achieves median efficacy on the cell

lines (Figure 5.2d). The experimental efficacy of the machine learning model’s choice of

combination treatment, most of the time (95.2%), exceeds the median efficacy on the same cell

line.

Interpretation of machine learning models by SHAP analysis

SHAP (SHapley Additive exPlanations) analysis evaluates the contributions of features on

the predicted datasets using the SHapley value, which describes the average marginal

contribution of a feature across all tested instances (Shapley, 1983). The average of the absolute

values of all Shapley values of samples for each feature can be used to describe the contribution

of the feature during prediction. We visualized the importance of all features during predictions

in the k-fold cross-validation and selected the most important ones, as shown in Supplementary

Figures 5.5 and 5.6.

Based on the additivity of SHAP values, we can carry out the following analysis to elucidate

the relationship between features. First, the overall importance of a group of features can be

computed as the sum of all SHAP values belonging to the feature set as the following:

… … Eq. (5)
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Where n is the number of features in that feature set. For example, as for the molecular

feature that comprises 10,462 molecular biomarker readouts, n = 10,462.

And the contribution of the feature set is the absolute value, or the magnitude of the SHAP

value, as the feature could positively or negatively influence the prediction. Overall, the

contribution of this set of features on the overall test set is computed as the average contribution,

which is:

… … Eq. (6)

Where m is the total number of test sets.

Also, the importance of a single gene can be computed in a similar manner. As we have four

types of molecular readouts (exp, snv, cnv, and lof) for single genes, the contribution of a single

gene i when predicting from a single record is calculated as the sum of all types of molecular

features of this gene.

… … Eq. (7)

The overall importance of this gene on the test set is the sum of the magnitude of all

importance of this gene.

… … Eq. (8)

Furthermore, we can also explore the fluctuation of SHAP importance between different

genes by considering the synchronization of fluctuations of SHAP values of different genes. In

this way, we would know that two genes are considered simultaneously important (or

unimportant) in a drug combination effect prediction situation. Therefore, we constructed a

correlation heatmap based on the SHAP values of all genes across all test sets.
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Meanwhile, as the SHAP contribution is calculated based on the test sets, we can also

analyze the mode-of-action specificity and tissue specificity of each feature by carrying out

SHAP analysis on each tissue or mode-of-action subset. For instance, the SHAP contribution of

feature i in subset S is:

… … Eq. (9)

Where is the total number of datasets in subset S. The distribution of SHAP contribution𝑚
𝑠

of top features on each different dataset, or the difference between top features in different

datasets, can be used to elucidate how the machine learning model solves problems under

different circumstances.

Shiny app for model application and evaluation

For feasible access to the presented model, we implemented a shiny app. The app provides a

series of tools to analyze the above-described input data, predicted scores (efficacy and synergy),

and derived SHAP values of the test data. The user can visualize the different input data groups

or compare predicted efficacy and synergy scores for the prioritization of drug combinations.

Various groupings of SHAP values provide vital insights into the contribution of individual

genes or feature groups. Lastly, users can upload model input data to evaluate the efficacy and

synergy of their own drug combinations. For further details, please see

https://github.com/GuanLab/DDR-drug-synergy-prediction-ShinyApp.

Procedure for gene expression signature definition

Based on the SHAP analysis of gene expression features, we define gene signatures for

clinically relevant treatment combinations ATMi-ATRi, ATRi-PARPi, ATRi-TOPi,

ATRi-Cytostatic Antimetabolites, and DNA-PKi-IR. In particular, we extracted the top 40 gene
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expression features (Supplementary Figure 5.14-23) for each combination. Next, we split these

features into separate signatures that were either positively or negatively correlated with

combination efficacy (AoC) or synergy (Bliss). For deriving succinct gene signatures, we further

split these signatures into smaller subsets of genes based on their contribution as defined by the

SHAP analysis (resulting in 180 signatures). Finally, we select the smallest gene signature for

each treatment combination with coherent gene expression scores larger than 0.1. The coherent

gene expression score is computed by a method similar to the method described in Staub et al.

(Staub, 2012). Briefly, the median pairwise Kendall correlation of the TPM expression of all

genes within a gene set was computed. The signature score for each signature then was computed

as the mean z-scaled log2 transformed expression values of all genes in the signature, across all

cell lines.

Data Availability

The molecular readouts for all 87 cell lines involved in this study were downloaded from

https://osf.io/8mxgj/. Source data are provided with this paper.

Code Availability

The source code of the analysis containing the surrogate machine learning model is available

from GitHub: https://github.com/GuanLab/DDR-Drug-Synergy-Prediction. The R Shiny app in

this study is available at; https://github.com/GuanLab/DDR-drug-synergy-prediction-ShinyApp.
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Figures

Figure 5.1. Overview of the Combination Treatment Synergy Screening Dataset and
Construction of the Machine Learning Synergy Prediction Model. (a). Training and external
validation of the DDR combination treatment prediction model. Cross-validation was conducted
with splits based on cell lines/tissue types for the training set, and then validation was performed
on a hold-out dataset with new cell lines and tissue types, independent of the training set. (b).
Distribution of cell lines from the training set and hold-out sets across different tissue types. (c).
t-SNE clustering based on molecular marker read-outs of all cell lines from various tissues and
training/hold-out sets. (d). Strategy for building the machine learning model in this study. Nine
types of information were integrated into the input features, including basic drug information
such as drug names and modes of action, chemical structure, monotherapy response, drug-target
interaction, gene set annotations, tissue-specific biological networks, synthetic lethality, and
molecular signatures. These feature sets were then input into the LightGBM gradient boosting
machine to predict efficacy and synergy for DDR combination treatments. Feature visualization
was performed on the model generated by SHAP analysis, and top features were selected as
candidate biomarkers.

160



Figure 5.2. Performances of machine learning models in predicting DDR combination
treatment responses. (a) and (b) show the performances of machine learning models using the
information mentioned in Figure 5.1a in (a) cross-validation and (b) external validation,
respectively. Boxplots display median lines and 25th to 75th interquartile ranges, with whiskers
extending to 1.5 times the interquartile range. The best-performing model was marked by
asterisks. (c). Performance of the cross-tissue model when validated on different tissue types, for
both efficacy and synergy. The dashed line marks the global performance of all tissue types
combined. Error bars indicate the 95% confidence interval. (d). Improvement of the efficacy of
the prioritized combination treatments from the baseline treatment (the treatment achieved
median efficacy of all combination treatments on the same cell line) on different cancer cell lines
by the machine learning model in this study.
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Figure 5.3. Contribution of predictive features. (a) and (f). Contribution of broad categories
of features in predicting (a) efficacy and (f) synergy. (b) and (g). Contribution of different types
of molecular features in predicting (b) efficacy and (g) synergy. (c) and (h). Contribution of
different types of fingerprinting methods in predicting (c) efficacy and (h) synergy. (d) and (i).
Contribution of top synthetic lethality in predicting (d) efficacy and (i) synergy. DDR kinases
ATM and ATR are marked in red, and direct drug targets are marked by asterisks. (e) and (j).
Contribution of top molecular features in predicting (e) efficacy and (j) synergy. (k) and (l). Top
predictive features of ATM, ATR, and PRKDC (DNA-PK)co-therapies for the (k) efficacy and
(l) synergy.
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Figure 5.4. Important genes and pathways and genes identified in this study are highly
correlated with ATM/ATR/DNA-PK inhibitor combination treatment.
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Figure 5.5. Constructing a surrogate model using a minimal gene panel. (a) and (b) shows
the model performances by using only top contributing genes in the machine learning models in
(a) cross-validation and (b) external validation on the hold-out dataset. (c). The diagram shows
the process of collecting samples, drug search, and treatment recommendations by SynDDR
Shiny App. Only the expression level of a minimum gene panel of 40 genes is required for
treatment prediction. The optimal treatment can be selected based on both synergy and efficacy.
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Supplementary Tables

Supplementary Table 5.1. Top 50 genes positively correlated with efficacy in ATRi
monotherapy.
gene Pearson’s r P value

CEBPA 0.2188828747526469 3.1528514498582526e-08

BRD3 0.2051399970863431 2.248731999656275e-07

PDSS1 0.20214827878897496 3.389593673651752e-07

ETV6 0.1975317723035595 6.308338387463387e-07

ZFP36L2 0.19093541704531555 1.49432455678798e-06

ERF 0.18721938117653691 2.397804230069868e-06

MT1G 0.18522706494745508 3.0779526985667635e-06

POLR2B 0.18165777665032803 4.78264938978935e-06

APEX1 0.18021272487010326 5.70312283089032e-06

FBXO18 0.17632106001753828 9.098987620026203e-06

TFAP4 0.17042589410802944 1.8115711357122857e-05

LRP6 0.16956621069903582 1.9991236013571346e-05

KEAP1 0.16360220353168275 3.9074086935800896e-05

LTBP4 0.16272471081054996 4.303919535654521e-05

ZNF384 0.15962168362884444 6.0334305303904244e-05

PRPF19 0.1589317449862145 6.498535289195255e-05

TRAF7 0.15783761927941475 7.30613139943933e-05

MPG 0.1573200846744955 7.72029810869797e-05

FES 0.1567661208178487 8.188106091310689e-05

BAG4 0.1564466255672635 8.469933733831009e-05

MARK4 0.1535317734037663 0.00011499

GFI1 0.15345822128707548 0.00011587

E2F4 0.1529751543258198 0.00012182

PRR12 0.15064728510333836 0.00015478

MXD4 0.15008871128712464 0.00016385

CCNB1IP1 0.14928373878745077 0.0001778

CD4 0.14810257441833954 0.00020029

CCT7 0.1480566798688799 0.00020122

DKK4 0.1473384966761277 0.00021624

TGFB1 0.14657856644939982 0.00023327

INSR 0.14569368189223536 0.00025468

GTF2H3 0.14491036 0.00027516

TTBK2 0.14468615556688785 0.0002813

165



CPSF6 0.14457189606434545 0.00028448

DOT1L 0.14417774965522515 0.0002957

LGR4 0.1438418518378297 0.00030558

RASGRP4 0.1436957302101679 0.00030998

FUS 0.14314331748002912 0.00032714

RUVBL2 0.14291464749676236 0.0003345

MCMBP 0.14291330581263992 0.00033454

RALGDS 0.14279739693842491 0.00033833

CAT 0.1425477311017998 0.00034663

FOXP2 0.14231076676022308 0.00035468

TRIB1 0.14124455220303933 0.00039312

PTPN6 0.1406827765676939 0.0004149

IKBKAP 0.1404735634041649 0.0004233

LYZ 0.14039486680518065 0.0004265

LPCAT3 0.1401497593812305 0.0004366

FCGR1A 0.1389510736670722 0.00048932

HSPE1 0.13882158204091127 0.00049536
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Supplementary Table 5.2. Top 100 genes negatively correlated with efficacy in ATRi
monotherapy.
gene Pearson’s r P value

PLAT -0.2799987 9.69546521613379e-13

ALPP -0.23851 1.5125877274690443e-09

FUT8 -0.237553 1.7653024027001322e-09

TNFRSF10C -0.2180376 3.571407173519536e-08

TTC37 -0.2176899 3.758740911067073e-08

SNX19 -0.217207 4.034783460523463e-08

RRM1 -0.2167851 4.291856589209018e-08

CD9 -0.2151778 5.424621940301407e-08

LASP1 -0.2149607 5.598176883114944e-08

GATA2 -0.2135997 6.815166586603542e-08

CLIC5 -0.2132912 7.124603686491893e-08

NF1 -0.2112306 9.56855240645544e-08

ARSK -0.2074292 1.635941437114444e-07

DCUN1D1 -0.1983852 5.630184837466466e-07

ETS1 -0.1977406 6.135469079253801e-07

HMCES -0.1880753 2.1521402471594824e-06

RASA1 -0.1879021 2.199819548434763e-06

RPA4 -0.1861071 2.75741552095053e-06

FOSL1 -0.1858553 2.845694753552529e-06

CDH1 -0.1844147 3.405281309676142e-06

CAST -0.1828027 4.155979828190317e-06

WNT9A -0.1785731 6.952174968124344e-06

SYTL2 -0.1780671 7.38765992084861e-06

NABP1 -0.1779763 7.468493564512224e-06

GAD1 -0.1774478 7.956119137805754e-06

COPS6 -0.176799 8.596306646716824e-06

PICALM -0.1752939 1.027574956357842e-05

PLAU -0.1749289 1.072791603378244e-05

WEE1 -0.1726088 1.407571439257513e-05

PEA15 -0.1718813 1.5316054115582397e-05

TEAD1 -0.1706769 1.7600362672490354e-05

KAT2B -0.1705629 1.783274185599646e-05

TOLLIP -0.1681692 2.3437955449662482e-05

LCK -0.1655348 3.152656559622629e-05

MAP3K13 -0.1641321 3.684993456526911e-05
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ABL2 -0.16361 3.9040644696342785e-05

SPAG9 -0.1623612 4.479071636284836e-05

EIF5A2 -0.1616369 4.8483922923373674e-05

RASGRP1 -0.1615469 4.89624046186599e-05

CCDC127 -0.1604579 5.5118394540816674e-05

RAB25 -0.1604332 5.526625515690283e-05

SP100 -0.1589243 6.503699868149149e-05

YWHAZ -0.158072 7.125508552234728e-05

BIRC3 -0.1569782 8.005913250122755e-05

SP140L -0.1564441 8.472239085603003e-05

IFI6 -0.1553763 9.482196364963771e-05

PPM1H -0.1544828 0.00010413

GOSR1 -0.1540279 0.0001092

MICALCL -0.152422 0.000129

PDGFB -0.1518864 0.00013632
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Supplementary Figures

Supplementary Figure 5.1. t-SNE clustering based on all different types of molecular
marker read-outs of all cell lines from various tissues in this study. all: all biomarker
combined; exp: mRNA-based gene expression;cnv: copy number variations; snv: single
nucleotide variants; lof: loss-of-function of the gene; ddr: DDR-related readouts; coh-pat:
derived gene cluster-based features measuring expression; lof_pat: loss-of-function of cancer
pathways)
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Supplementary Figure 5.2. The composition of all types of features used in the machine
learning model in this study. (a) Molecular biomarkers. (b) Geneset annotations. (c) Synthetic
lethality gene pairs. (d) General drug information. (e) Chemical structure fingerprints. (f)
Overlapped genes between four types of single-gene molecular markers.
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Supplementary Figure 5.3. Performances of machine learning models using
molecular/synthetic lethality information in combination with target genes and
tissue-specific network information. (a) and (b) show the performances of machine learning
models using molecular profiles and (c) and (d) show the performances of machine learning
models using synthetic lethality as a baseline. (a) and (c) shows results from cross-validation,
and (b) and (d) shows results from external validation, respectively. Boxplots display median
lines and 25th to 75th interquartile ranges, with whiskers extending to 1.5 times the interquartile
range. Asterisks marked the best-performing models.
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Supplementary Figure 5.4. Performances of machine learning models using different types
of molecular information in combination with target genes and tissue-specific network
information. (a) and (b) show the performances of machine learning models using different
kinds of molecular profiles of results from (a) cross-validation, and (b) external validation,
respectively. Boxplots display median lines and 25th to 75th interquartile ranges, with whiskers
extending to 1.5 times the interquartile range. Asterisks marked the best-performing models.
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Supplementary Figure 5.5. SHAP contributions of top 50 features in drug efficacy
prediction model.
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Supplementary Figure 5.6. SHAP contributions of top 50 features in drug synergy
prediction model.
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Supplementary Figure 5.7. Top genes in drug efficacy prediction as evaluated by each type
of molecular biomarkers (“exp”, “cnv”, “snv” and “lof”). (a). The top 40 genes after
combining all types of molecular markers. (b), (c), (d), and (e) show the top genes when
considering expression levels (“exp”), copy number variation (“cnv”), loss-of-function of the
gene (“lof”), and single nucleotide variation (“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.8. Top genes in drug synergy prediction as evaluated by each type
of molecular biomarkers (“exp”, “cnv”, “snv” and “lof”). (a). The top 40 genes after
combining all types of molecular markers. (b), (c), (d), and (e) show the top genes when
considering expression levels (“exp”), copy number variation (“cnv”), loss-of-function of the
gene (“lof”), and single nucleotide variation (“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.9. Top synthetic lethality features in drug combination prediction.
(a) and (b) show top synthetic lethal gene pair features in (a) efficacy and (b) synergy
prediction, respectively.
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Supplementary Figure 5.10. Top geneset cluster molecular biomarkers in drug combination
prediction. (a) and (b) show the top gene clusters in terms of (a) coherent expression patterns
(“coh_pat”) and (b) loss-of-function patterns (“lof_pat”) for efficacy prediction.
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Supplementary Figure 5.11. Top geneset cluster molecular biomarkers in drug
combination prediction. (a) and (b) show the top gene clusters in terms of (a) coherent
expression patterns (“coh_pat”) and (b) loss-of-function patterns (“lof_pat”) for synergy
prediction.
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Supplementary Figure 5.12. Top DNA damage response readouts (“ddr”) biomarkers for
efficacy prediction. (a) and (b) show top ddr features in (a) efficacy and (b) synergy prediction,
respectively.
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Supplementary Figure 5.13. Top geneset annotation features for drug target encrichment
for in DDR drug combination response prediction. (a) and (b) show top geneset annotations
in (a) efficacy and (b) synergy prediction, respectively.
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Supplementary Figure 5.14. Top genes in drug efficacy prediction for ATMi-ATRi
combination treatments. (a). The top 40 genes after combining all types of molecular markers.
(b), (c), (d) and (e) show the top genes when considering expression levels (“exp”), copy
number variation (“cnv”), loss-of-function of the gene (“lof”), and single nucleotide variation
(“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.15. Top genes in drug synergy prediction for ATMi-ATRi
combination treatments. (a). The top 40 genes after combining all types of molecular markers.
(b), (c), (d) and (e) show the top genes when considering expression levels (“exp”), copy
number variation (“cnv”), loss-of-function of the gene (“lof”), and single nucleotide variation
(“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.16. Top genes in drug efficacy prediction for ATRi-PARPi
combination treatments. (a). The top 40 genes after combining all types of molecular markers.
(b), (c), (d) and (e) show the top genes when considering expression levels (“exp”), copy
number variation (“cnv”), loss-of-function of the gene (“lof”), and single nucleotide variation
(“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.17. Top genes in drug synergy prediction for ATRi-PARPi
combination treatments. (a). The top 40 genes after combining all types of molecular markers.
(b), (c), (d), and (e) show the top genes when considering expression levels (“exp”), copy
number variation (“cnv”), loss-of-function of the gene (“lof”), and single nucleotide variation
(“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.18. Top genes in drug efficacy prediction for ATRi-TOP1i
combination treatments. (a). The top 40 genes after combining all types of molecular markers.
(b), (c), (d), and (e) show the top genes when considering expression levels (“exp”), copy
number variation (“cnv”), loss-of-function of the gene (“lof”), and single nucleotide variation
(“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.19. Top genes in drug synergy prediction for ATRi-TOP1i
combination treatments. (a). The top 40 genes after combining all types of molecular markers.
(b), (c), (d) and (e) show the top genes when considering expression levels (“exp”), copy
number variation (“cnv”), loss-of-function of the gene (“lof”), and single nucleotide variation
(“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.20. Top genes in drug efficacy prediction for ATRi-Cytostatic
Antimetabolite combination treatments. (a). The top 40 genes after combining all types of
molecular markers. (b), (c), (d) and (e) show the top genes when considering expression levels
(“exp”), copy number variation (“cnv”), loss-of-function of the gene (“lof”), and single
nucleotide variation (“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.21. Top genes in drug synergy prediction for ATRi-Cytostatic
Antimetabolite combination treatments. (a). The top 40 genes after combining all types of
molecular markers. (b), (c), (d) and (e) show the top genes when considering expression levels
(“exp”), copy number variation (“cnv”), loss-of-function of the gene (“lof”), and single
nucleotide variation (“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.22. Top genes in drug efficacy prediction for DNA-PKi-IR
combination treatments. (a). The top 40 genes after combining all types of molecular markers.
(b), (c), (d) and (e) show the top genes when considering expression levels (“exp”), copy
number variation (“cnv”), loss-of-function of the gene (“lof”), and single nucleotide variation
(“snv”), respectively. *: direct drug targets.
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Supplementary Figure 5.23. Top genes in drug synergy prediction for DNA-PKi-IR
combination treatments. (a). The top 40 genes after combining all types of molecular markers.
(b), (c), (d) and (e) show the top genes when considering expression levels (“exp”), copy
number variation (“cnv”), loss-of-function of the gene (“lof”), and single nucleotide variation
(“snv”), respectively. *: direct drug targets.
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CHAPTER VI: Summary, Conclusions, and Future Works

Summary and Conclusions

In recent years, the pharmaceutical sector has witnessed a significant increase in the

application of machine learning (ML) technologies. This trend is evident in the growing number

of submissions to the FDA that incorporate AI/ML methodologies in drug and biologic product

development (Center for Drug Evaluation & Research, 2023). These submissions cover a wide

range of drug development activities, including the identification of novel drug-target

interactions, refinement of treatment modalities, augmentation of drug safety measures,

mitigation of drug toxicity, and enhancements in both drug manufacturing processes and the

personalization of treatment plans.

Central to these advancements is the synergy between ML models and their training data.

The practical effectiveness of these models heavily relies on this interplay, particularly given the

diverse and complex nature of datasets derived from experimental procedures. These datasets,

which include single-cell RNA sequencing, bulk RNA sequencing, medical imaging, and

high-throughput screenings, often contain confounding factors such as batch effects,

experimental artifacts, equipment variability, and biological variances among samples. To

address these issues, various methodologies have been developed and implemented to detect,

adjust, or harmonize batch effects within training datasets, thus improving the performance of

ML models (Hu et al., 2023; X. Li et al., 2020; Trabucco et al., 18--24 Jul 2021).

192

https://paperpile.com/c/2Z4Yil/1TJN
https://paperpile.com/c/2Z4Yil/R2Gj+4oWQ+3sj6


Additionally, the potential of ML models to process real-world data (RWD) — information

obtained from healthcare settings beyond traditional, controlled clinical research, like electronic

health records (EHR) and medical claims (Sherman et al., 2016) — is gaining more attention.

This shift is crucial for translating ML models into clinical practice and real-world scenarios

involving end-users. The unstructured nature of RWD, characterized by variability in data

sources, quality, formats, and collection methodologies (Bakouny & Patt, 2021), underscores the

need for ML models to demonstrate robust generalizability and reliability. Consequently,

regulatory bodies like the FDA and the pharmaceutical industry are increasingly requiring ML

models to be adaptable and reliable across a broad spectrum of real-world applications.

In Chapters II and III, I delve into solutions for the generalizability issues of ML models in

various treatment-prediction scenarios. Chapter II addresses the crucial question of batch effect

in in vitro high-throughput drug screening. The reproducibility between four publicly available

benchmark high-throughput screening (HTS) combination treatment datasets was calculated,

revealing a significant drop in inter-dataset reproducibility, from 0.3~0.9 to 0.09~0.2 Pearson’s

correlation (Supplementary Figure 2.1). The limited shared information between datasets, such

as cell lines and drugs, posed significant challenges for cross-dataset prediction (Supplementary

Table 2.1). However, after optimizing the ML model by incorporating the imputed dose-response

relationship into the features, the treatment response prediction performances improved

significantly, achieving 0.6~0.8 Pearson’s correlation (Supplementary Table 2.3). This study

demonstrates that major measurement artifacts, often considered inevitable due to technical

setting variations, can be rectified in the downstream in silico analysis using ML model

predictions. Notably, the shape of the dose-response curve, including the start and end points,

and slope, proved highly informative for predicting combination treatment responses. This could

be used to predict responses to unseen drugs or those with unknown modes of action, a
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phenomenon previously noted but not comprehensively analyzed (B. Yadav et al., 2015). The

ML model developed in this study effectively processed and utilized this characteristic by

abstracting knowledge from the extensive training data.

Chapter III explores the generalizability of ML models in treatment response prediction

between real-world data and laboratory tests. This work was part of the Malaria DREAM

Challenge, which sought computational solutions to the rapidly growing resistance to artemisinin

in Plasmodium falciparum, the malaria pathogen, observed in Southeast Asia and Africa (Achan

et al., 2011; Miller & Su, 2011). Artemisinin, a transformative antimalarial drug replacing

quinine, and artemisinin-based combination treatments (ACT) have historically shown over 95%

efficacy in clinics (Nosten & White, 2007). However, artemisinin resistance has increasingly

been observed worldwide, with unclear mechanisms (Ariey et al., 2014; Mok et al., 2015; L.

Zhu et al., 2022). The challenge's subchallenge 2 required participants to train an ML model

using transcriptomes of 1,043 isolates collected from population blood samples labeled by in

vivo artemisinin resistance (clearance rate) and predict the resistance of 32 laboratory-cultured

isolates measured by IC50. Technical inconsistencies due to different microarray platforms,

differences between clearance rate and IC50 as measurements for in vivo or in vitro resistance,

and inherent biological gaps between in vivo and in vitro experiments were significant obstacles.

The transferability of primary screening results from preclinical research to clinical trials remains

a major issue; only about one in 10,000 candidates from the compound screening stage passes

the third phase of clinical trials (Sun et al., 2022). The true drug-target interactions in vivo can

differ from in vitro experiments, leading to off-target effects (Moffat et al., 2017). Similarly, a

drug's pharmacological effects, such as toxicity, can be affected by unknown molecular targets in

vivo (Lin et al., 2019). Cell lines and animal models, although established to mimic human

disease conditions, cannot perfectly recapitulate disease phenotypes or pathophysiology (New
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Approaches to Drug Discovery, n.d.). In our case of malaria ART-resistance prediction, the

transcriptomic patterns of P. falciparum strains collected from blood samples and those cultured

in laboratory conditions differed significantly, influenced by factors including culture

temperature, the presence of the human immune system, and the pathogen's developmental stage.

Our model achieved first-place performance in the Malaria DREAM Challenge but also

highlighted the challenges of applying real-world knowledge to controlled laboratory systems.

The differences between in vivo and in vitro systems resulted in distinct co-expression gene set

patterns and top biomarkers for these conditions (Figure 3.5). We also discussed the

transferability between in vivo and ex vivo states, an intermediate state between in vivo and in

vitro, showing that models based on in vivo data have greater predictive ability for ART

resistance in ex vivo P. falciparum strains than in vitro conditions. The prediction performance

declined as the ex vivo culture time exceeded 10 hours (Supplementary Figures 3.4 and 3.5).

This finding suggests that the stress response of P. falciparum to laboratory environments could

be a significant impediment to studying ART resistance mechanisms, despite the necessity of

controlled environments for quantification.

In Chapters IV and V, I showcase the role of machine learning in developing novel

treatments and drug repurposing. DNA damage response (DDR) targeted treatments have

garnered immense interest as a promising future direction in cancer treatment, supported by

extensive mode-of-action and preclinical studies, and some successful FDA-approved clinical

treatments like PARP inhibitors (Bryant et al., 2005; O’Connor, 2015). However, large-scale

screening and target identification for these treatments are still limited. Through industrial

collaboration with Merck, we initiated a project to comprehensively analyze DDR-targeted

treatments with combinations of two different anticancer drugs. We selected a treatment strategy
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using one DDR-targeted treatment (ATR, ATM, or DNAPK inhibitor) as the backbone drug in

combination with another anticancer drug, targeting multiple factors in the interlocked DDR

pathways to induce synthetic lethality in cancer cells. This resulted in an in vitro high-throughput

screening of 17,912 experiments, covering approximately 450 different treatment combinations

on 62 cell lines. The most efficacious/synergistic treatments were selected from the direct

screening output, and the cancer-type variations of these treatments were also analyzed (Figures

4.2 and 4.3). Since most drugs used in the screening dataset were already on the market and had

known modes of action and target interactions, we extracted drug target information from

external sources, including DrugBank (Knox et al., 2011), CHEMBL (Mendez et al., 2019), and

LINCS (HMS LINCS Project, n.d.). We identified targets that achieved the highest efficacy and

synergy when simultaneously targeted with core DDR sensing kinases (Figure 4.2c). We then

built a machine learning model to predict DDR-targeted combination therapy using the above

HTS dataset as the training set. Other information, such as transcriptomic and genomic profiles

of the treated cell lines, chemical structure information, tissue-specific networks, and synthetic

lethality, was integrated into the model. We adapted our first-place method from the

AstraZeneca-Sanger DREAM Challenge, which integrated drug-target information and network

propagation into molecular profiles to simulate post-treatment transcriptomic and epigenomic

profiles (H. Li et al., 2018; Menden et al., 2019). Our model was tested across different cancer

types and cell lines from the training set during cross-validation and further validated on hold-out

validation datasets with different cell lines and cancer types (Figure 5.2). It achieved accuracy

on par with experimental replicability and demonstrated clinical potential by optimizing

treatments for all cancer types in this study. An AI interpretation method enabled our machine

learning model to identify the genomic/transcriptomic phenotypes of cancer cells relevant for

treatment selection for DDR-targeted combination therapy, and top biomarkers were identified
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(Figures 5.3 and 5.4). We also showed that using a minimal gene panel of approximately 40

genes could further optimize the machine learning model’s performance and alleviate potential

overfitting. This demonstrates further applications of machine learning in the industry to

accelerate the screening and development process of DDR-targeted combination treatments

(Figure 5.5)

Future works

In the dynamic realm of pharmaceutical research, the advent of machine learning (ML) and

artificial intelligence (AI) is catalyzing a paradigm shift, heralding an era marked by

unprecedented innovation and efficiency. Far from being mere supplements to existing

methodologies, these technologies are pivotal in reshaping the industry's approach to drug

discovery and development. Particularly noteworthy is their impact in the field of biomarker

development, where AI's application in genomics and immunology has expedited progress in

targeted therapies and immunotherapy, extending its influence beyond oncology into other

medical domains such as cardiology and pulmonology (Subbiah, 2023).

One of the most promising aspects of this technological integration is dimensionality

reduction—a technique critical in distilling vast biological datasets into their most informative

components. Through advanced methods like manifold learning and autoencoders, researchers

are uncovering latent patterns that elucidate complex relationships between genes, proteins, and

disease phenotypes, a breakthrough that has implications for novel drug target identification and

compound optimization (Moon et al., 2018).

Equally important is the refinement of drug representation—the lexicon through which

molecular structures are interpreted by ML models. Here, generative models such as Variational

Autoencoders (VAEs) and Generative Adversarial Networks (GANs) are instrumental in
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proposing potential candidate structures, thus guiding chemists towards more promising leads (Y.

Wang et al., 2022). However, the challenge lies in ensuring that these representations accurately

reflect the intricate molecular-biological interactions. An integration of quantum mechanics with

ML frameworks may offer profound insights into these interactions, potentially revolutionizing

the design of tailored pharmaceuticals (Dral, 2022).

Another innovative frontier is meta-learning—an approach that equips models with the

capability to learn and generalize across diverse datasets. This adaptability is particularly

valuable in streamlining clinical trial designs, enhancing patient response predictions, and

addressing the variability inherent in real-world disease presentations (Finn et al., 2017). By

leveraging insights from previous trials and integrating real-world evidence from electronic

health records and wearable sensors, meta-learning algorithms are poised to refine treatment

strategies in real time, optimizing patient-specific outcomes (Tanwar et al., 2020).

In summary, as the pharmaceutical industry confronts a rapidly evolving landscape, the

integration of ML and AI stands as a beacon, guiding its progression. Embracing these advanced

methodologies will not only unlock a treasure trove of scientific insights but also pave the way

for personalized, efficient, and transformative medical innovations—a true testament to the

revolutionary impact of machine learning in the realm of pharmaceutical research.
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