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ABSTRACT

The use of computational fluid dynamics (CFD) has become essential for aerospace

design optimization processes. The computational cost of high-fidelity CFD is often

very large and can make design optimization prohibitively expensive if a large number

of design evaluations are required. Reduced-order models (ROMs) are a method that

can be used to mitigate this cost. ROMs are low-dimensional data-driven surrogate

models that are trained using a set of computed high-fidelity simulation snapshots.

Many ROMs utilize the proper orthogonal decomposition (POD), a linear subspace

method for representing solution spaces. While ROMs are becoming increasingly

popular, they do face some challenges in their practical use, which include maximizing

accuracy for a given computational budget, the ability to generalize throughout a

parameter space, and applicability to topologically dissimilar meshes.

In this dissertation, algorithms are introduced to improve the performance, stabil-

ity, and understanding of data-driven surrogate CFD models and their applications.

As ROMs tend to use a small amount of training data, their predictive performance is

highly sensitive to their choice. Algorithms to improve the data selection process for

POD-based ROMs are introduced using Isomap, a versatile technique for nonlinear

dimensionality reduction, resulting in significantly improved predictive performance

for a given computational budget when used over a traditional and widely used sta-

tistical sampling technique. Next, ROMs using artificial neural networks, specifically

convolutional autoencoders (CAEs), are introduced to address the performance limits

of POD for problems that are highly nonlinear or require large amounts of training

x



data, such as unsteady ROMs involving multiple designs. A steady ROM framework

combining CAEs with Gaussian process regression (GPR) is introduced and shown

to significantly outperform POD when applied to a highly nonlinear lid-driven cav-

ity problem. Ensemble learning is also used to effectively address the issue of error

propagation in unsteady ROMs, where errors made early on can accumulate and lead

to large inaccuracies over long time horizons at unseen design points. Finally, field

inversion and machine learning (FIML) is proposed as an an alternative to ROMs

for problems that require topologically dissimilar meshes. Field inversion involves

obtaining improvements to turbulence models by augmenting them with a corrective

field that is obtained using gradient-based optimization. Using a machine learning

model trained on local flow variables and their gradients, a data-driven turbulence

model is introduced to improve the predictive capabilities of baseline turbulence mod-

els, allowing for the prediction of complex flow phenomena present in experimental

results.
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CHAPTER I

Introduction

In this chapter, motivation for the research presented in this dissertation is dis-

cussed. A brief introduction to reduced-order models and their use cases is also given

to provide context for the undertaken research, although more in-depth literature

reviews are provided in each technical chapter. An overview of the structure of the

disseration is also provided.

1.1 Motivation

The use of physics-based modeling and simulation has become essential for many

aerospace applications involving fluid dynamics. Physical systems exhibiting complex

phenomena, extreme operating conditions, or costly physical designs can be difficult

or impossible to evaluate experimentally or empirically. Computational models gov-

erned by physical equations, generally in the form of parameterized partial differen-

tial equations (PDEs), allow for obtaining highly accurate representations of systems

that may otherwise be difficult to evaluate. Industrial aerospace development heav-

ily relies upon the use of computational fluid dynamics (CFD), which has several

use cases including aerodynamic design optimization, engine performance simulation,

compressible flow, and renewable energy. From the first industrial uses of CFD codes

in the early 1970s, their adoption has increased dramatically [1], largely in part due

1



to the substantial increase in computing power and its availability [2], leading to a

decreased need for complex and expensive experimental instruments such as wind

tunnels. Figure 1.1 shows a current plot of the computing power of the top 500

supercomputers in the world over time. Over the course of around 30 years, the per-

formance of state-of-the-art supercomputers has increased by approximately 107-fold,

allowing for a substantial increase in scientific computing.

Figure 1.1: Plot showing the computing power of the top 500 supercomputers in the
world over time (source: https://top500.org/).

While the use and accessibility of CFD is constantly increasing, there is still an

unmet demand for computational power that can efficiently drive large-scale aero-

dynamic design optimization processes [3]. Design optimization involves simulating

the performance and characteristics of multiple designs at different sets of design

parameters µ that control physical and geometric simulation properties. Often, the

resolution, or fidelity of these simulations, is required to be high in order to accu-

rately resolve the underlying physics [4]. As high-fidelity simulation can come at a

high computational cost even when utilizing modern supercomputers, evaluating a

2

https://top500.org/


large number of designs can become infeasible, introducing a bottleneck in the design

optimization process.

To overcome this prohibitive cost, the use of reduced-order models (ROMs) [5]

is often employed. ROMs are data-driven surrogate models that can be evaluated

in real-time to provide accurate approximations of the full-order model (FOM) for

unseen designs. ROMs use a set of computed high-fidelity simulations as training

data to build a surrogate model. ROMs use a low-dimensional embedding through

a set of expansion coefficients that are used to provide an efficient mapping to the

high-dimensional solution space. By drastically lowering the degrees of freedom of

the FOM, ROMs provide a model that can be solved and evaluated rapidly to provide

reliable estimates of full-order states. This enables practioners to effectively explore

design spaces at a low cost to identify points of interest, where the high-fidelity model

can optionally be run to obtain more accurate results.

Another widely used method for design optimization is multidisciplinary design

optimization (MDO) [6], a technique that uses numerical optimization to minimize

an objective function that represents the quantity of interest. MDO usually involves

the use of gradient-based optimization, which itself can incur significant computa-

tional costs in computing sensitivities even when using efficient algorithms such as

the adjoint method [7]. While constraints can be added to the design space for the

optimization problem, it is difficult or even impossible to add certain considerations

such as aesthetics, regulatory requirements, or user experience. An example of this

is automotive design; while fuel efficiency is a desired aspect of vehicles and can be

easily formulated into an objective function, consumers also place great importance

on aesthetics and user experience when purchasing vehicles, traits that are difficult to

incorporate into an optimization problem. This can result in the design space consist-

ing of a set of pre-selected designs that are evaluated for factors such as fuel efficiency

or performance to find an optimal design. While MDO is an effective method, it

3



cannot be used to provide fast approximations of the FOM at desired points.

When using ROMs, some important performance aspects to consider are accuracy

and generalizability. ROMs must be constructed and trained in a way that makes

them useful for making accurate predictions for their specific use case. While accuracy

and generalizability are often inter-changeable, the latter refers to the ability of the

model to offer adequate predictive performance throughout the design space rather

than only at some portions.

Figure 1.2: High-fidelity simulation snapshot of external flow over a vehicle containing
317 million cells (source: https://github.com/Autodesk/XLB/)

1.2 ROM Frameworks

ROMs require a mapping from the low-dimensional set of expansion coefficients

to the high-dimensional solution space. The most popular method for this is the

proper orthogonal decomposition (POD) [8, 9] method that applies the singular value

decomposition (SVD) to a snapshot matrix where the columns contain different full-

order states of the computed high-fidelity model at the training points. Using the

training data, POD decomposes the solution space into a set of orthonormal basis

vectors. Using the expansion coefficients, a linear combination of the basis vectors

is used to approximate solutions within the parameter space. POD is widely used

due to its effectiveness in dimensionality reduction, computational efficiency, linear
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algebra properties, and interpretability.

ROMs consist of two stages: a computationally expensive offline stage, where the

FOM is solved at chosen points within the design space to obtain training data and

the surrogate model is trained, and an inexpensive online stage, where the ROM is

evaluated at unseen designs. ROMs are classified as either non-intrusive or projection

based. Non-intrusive ROMs (ni-ROMs) [10] incorporate a fully data-driven approach

for making predictions. Predictions at unseen designs are made by using only the

design parameters and expansion coefficients from the training data. For steady-state

problems, this involves making a single point estimate of the expansion coefficients

by using a regression model that assumes a functional dependence on the design

parameters. While non-intrusive ROMs are very inexpensive to evaluate and easy to

implement, they do not provide approximations that obey the governing equations.

While the assumption of a functional dependence between the design parameters and

expansion coefficients is largely reasonable, certain problems can exhibit a highly non-

smooth relationship between the two, leading to poor regression results. As they are

not intrusive into the flow solver, ni-ROMs are very easy to implement and portable

between different physics codes.

Projection-based ROMs (p-ROMs) [11] incorporate the governing equations into

the surrogate model by solving a low-dimensional version of the FOM. This approach

leads to more physically consistent predictions that obey the underlying governing

equations to some level of approximation. For this reason, the results also tend to be

more accurate than those from ni-ROMs. While the offline stages for both projection-

based and non-intrusive ROMs are comparable in computational cost, the online stage

for p-ROMs does not have a negligible cost, although it is still typically far lower than

solving the FOM. The implementation of p-ROMs is not trivial as they require access

to the flow solver, often involving significant modifications. Additionally, p-ROMs are

known to suffer from numerical instabilities [12] and can fail to converge for certain
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problems.

The predictive performance of all data-driven models is highly dependent upon

the quality and diversity of training data used to build the model. Since ROMs

typically use a small amount of training data, this further increases the sensitivity of

the model’s performance. The physical regimes present within the design space should

be well-represented, making the choice of training points both vital and non-trivial.

This is particularly important for problems that exhibit highly nonlinear variations

throughout the design space.

While POD is widely used and works well for many problems, the method has

issues when applied to highly nonlinear problems, requiring a large number of basis

vectors to provide adequate performance [13]. POD makes the assumption that the

physical system being modeled behaves approximately linearly within the subspace

provided by the basis vectors. This is a reasonable assumption for many problems,

but can lead to a very large number of basis vectors being required for accurate

reconstructions within the solution space for highly nonlinear ones. For ni-ROMs,

this can lead to the compounding of individual errors in a large number of predicted

expansion coefficients that results in large inaccuracies. As p-ROMs typically rely on

numerically solving linear systems the size of which are in proportion to the number

of basis vectors, this can lead to increased issues with numerical instabilities.

Rather than using POD to provide a low-dimensional representation of the solu-

tion space, recent advances have utilized artificial neural networks (ANNs), a deep

learning [14] method, to provide a nonlinear mapping between a low-dimensional

latent space, an abstract representation of compressed data, and the high-fidelity so-

lution space. ANNs are computational models inspired by the human brain’s neural

structure and they excel at learning highly complex and abstract relationships from

data. Autoencoders, a type of ANN, are useful for learning low-dimensional rep-

resentations of data and have been used in ROMs where they have been shown to
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outperform POD [15]. Autoencoders can very efficiently represent high-dimensional

data using very few latent variables, making them ideal for highly nonlinear prob-

lems. Another case where this is useful is for problems that require large amounts of

simulation data, such as unsteady ROMs trained on a large number of time snapshots

from multiple designs. Although the use of ANNs can improve the performance of

ROMs, their generalizability and reliability have not been firmly established, nor the

type of problems for which they are more powerful than POD [16]. Additionally, deep

learning requires relatively large amounts of training data, which can restrict its use

for ROMs.

A major limitation of ROMs is that they require topologically similar meshes

across the design space if approximations of the FOM are desired. The methods

ROMs use require that the number of cells and their ordering are consistent for

all full-order states. While this can be achieved using mesh deformation methods,

it can remain infeasible for problems that involve large geometric changes or that

require re-meshing to sufficiently resolve fine-scale physics in specific regions of the

computational domain. In practice, a common baseline mesh is sometimes used to

interpolate the results, but this is not trivial and can result in large amounts of

information loss. This issue points towards a need for inexpensive data-driven CFD

models that are mesh-agnostic.

1.3 Contributions and Outline

This dissertation addresses three challenges faced by ROMs. The first involves

the development of computationally efficient methods to obtain training data for

both non-intrusive and projection-based POD-based ROMs. Given a fixed computa-

tional budget for generating high-fidelity training data, the goal is to maximize the

predictive performance of the ROM throughout the design space, aiming for high

levels of accuracy and generalizability. This leads to the development of iterative
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data-driven parameter selection algorithms based on the current set of training data.

The next challenge involves identification of the types of problems for which ROMs

using deep learning are well-suited as well as improving their reliability for unsteady

ROMs. For steady-state problems involving multiple designs, a previous work by

Mrosek et al. [17] applied an autoencoder-based ni-ROM to a geometrically param-

eterized vehicle problem and found no improvement over using POD. The type of

problem for which a ROM of this nature would be advantageous in addition to the

effect of the ROM’s dimensionality and neural network components is investigated.

An unsteady ROM framework involving multiple designs that retains high levels of

accuracy and stability over long time horizons at unseen points is also introduced.

Finally, an alternative to ROMs for CFD problems involving topologically dissim-

ilar meshes is introduced. In particular, field inversion [18] is used to obtain data-

driven corrections to turbulence models so that they better approximate high-fidelity

simulations such as direct numerical simulation (DNS) and large eddy simulation

(LES) or experimental data. Field inversion uses numerical optimization to solve an

inverse problem for a corrective field introduced into an existing turbulence model.

A machine learning model can also be used from completed field inversion runs to

develop a data-driven turbulence model, a mesh-agnostic framework referred to as

field inversion and machine learning (FIML).

The main contributions of the dissertation are as follows:

• Developed data-driven parameter selection algorithms for non-intrusive and

projection-based ROMs using manifold learning, a machine learning technique

for nonlinear dimensionality reduction.

• Introduced a non-intrusive ROM framework for steady-state problems using

autoencoders augmented by Gaussian process regression to predict the latent

variables.
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• Constructed an unsteady non-intrusive ROM framework using autoencoders

for spatial reconstruction of the full-order model and recurrent neural networks

for time-series forecasting trained using ensemble learning, a machine learning

technique for improving the stability of predictive models.

• Investigated the use of local state information in the form of flow variables,

their gradients, and mesh wall distance for a field inversion and machine learn-

ing framework and feature importance for both wall-resolved and wall-modeled

turbulent flows.

Chapter 2 introduces the proper orthogonal decomposition as well as the base-

line POD-based non-intrusive and projection-based ROMs that are used. Chapter

3 presents two efficient data selection algorithms for ROMs using manifold learn-

ing to improve the predictive performance of ROMs. The two non-intrusive ROM

frameworks using deep learning are introduced in Chapter 4 along with background

material on artificial neural networks. Chapter 5 introduces the field inversion and

machine learning framework using local state information as features to develop an

enhanced data-driven turbulence model.
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CHAPTER II

Reduced-Order Modeling

This chapter gives an overview of the baseline non-intrusive and projection-based

ROMs used in this work for steady-state problems. Both ROMs utilize the proper

orthogonal decomposition, which is also described. The non-intrusive ROM relies

on a regression model to predict the expansion coefficients at unseen points, while

the projection-based ROM solves a low-dimensional version of the full-order model

using a reduced representation of the residuals. While the non-intrusive ROM is more

computationally efficient and easier to implement, the projection-based ROM is often

more accurate and leads to more physically consistent approximations. However,

projection-based ROMs are known to suffer from stability issues that can impede

convergence.

2.1 Full-order Model

The full-order model is considered to be the solution x(µ) ∈ RN of state vari-

able(s) in a system governed by a set of steady-state parameterized partial differen-

tial equations discretized over a computational domain Ω ∈ Rd. We consider design

parameters µ ∈ D that define both the computational domain and parameters of

the governing equations. Here D ⊆ Rp denotes the parameter space such that x:

Parts of this chapter appear in or are adapted from our previously published papers [19, 20].
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D → RN . The set of PDEs governing the FOM is solved numerically over Ω to

generate a solution x(µ). The computational cost of numerically solving the system

increases polynomially with its dimension, N , which is in proportion with the fine-

ness of the mesh. Accurate or useful solutions of systems often require large values

of N (O(106 − 109)), resulting in large computational costs for a single solution. In

processes such as design optimization, the need to evaluate the solutions for many

different designs in real-time becomes infeasible if numerous FOMs have to be solved.

This large computational cost motivates the use of reduced-order models, where a

small number of FOMs are solved and used to create a computationally inexpensive

surrogate model that can deliver accurate approximations in real time.

2.1.1 Steady Navier-Stokes Equations

The majority of the test cases presented in this work are simulated by numerically

solving the steady incompressible Navier-Stokes equations,

∫
S

−→
V · dn⃗ dS = 0, (2.1)

∫
S

−→
V
−→
V · dn⃗ dS +

∫
V

∇p dV −
∫
S

(ν + νt)(∇
−→
V +∇

−→
V

T
) · dn⃗ dS = 0, (2.2)

where
−→
V = [u, v, w] is the velocity vector and u, v, and w are the velocity components

in the x, y, and z directions respectively, S is the face-area vector, n⃗ is the outward-

pointing normal, V is the volume; ν is the kinematic viscosity, νt is the turbulent

eddy viscosity, and p is the pressure. The continuity and momentum equations are

discretized over the computational domain by using the finite-volume method (FVM).

Both equations are coupled through the semi-implicit method for pressure-linked

equations (SIMPLE) algorithm [21] along with Rhie–Chow interpolation [22]. The

SIMPLE algorithm employs a pseudo time-stepping technique through a predictor-
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corrector method. In the predictor step, an intermediate velocity field is solved for,

followed by the correction step where the velocity field is updated based on a pressure

correction equation. For turbulent flows, the Reynolds-averaged Navier-Stokes [23]

(RANS) approach is used. Turbulent flows consist of a spatially varying mean flow

and random fluctuations. The RANS approach applies an averaging operation to

the Navier-Stokes equation to decompose the flow into its mean and Reynolds stress

terms which are required to be modelled. In this work, the Spalart–Allmaras [24]

(SA) one-equation turbulence model is chosen,

∫
V

∇ · (
−→
V ν̃) dV − 1

σ

∫
V

∇ · [(ν + ν̃)∇ν̃] + cb2|∇ν̃|2 dV−

cb1

∫
V

S̃ν̃ dV + cw1

∫
V

fw

(
ν̃

d

)2

dV = 0,

(2.3)

where ν̃ is the modified viscosity, which is related to the turbulent eddy viscosity as

νt = ν̃
χ3

χ3 + c3v1
, χ =

ν̃

ν
. (2.4)

The four terms in Eq. (2.3) represent the turbulent convection, diffusion, produc-

tion, and destruction respectively. The SA model was designed for aerodynamic flows

and accurately models the boundary layer. The model is also simpler than other tur-

bulence models, such as two-equation models including k−ω [25] and k− ϵ [26]. This

leads to a lower computational cost, making it desirable for large-scale problems. The

original work by Spalart and Allmaras can be consulted for an in-depth overview of

this model and detailed definitions of terms and closure coefficient values.

OpenFOAM [27], an open-source toolbox for multiphysics simulation, is used for

numerical simulations. The OpenFOAM solver simpleFoam is used to simulate steady

incompressible flow.

12



2.2 Proper Orthogonal Decomposition

Reduced-order models rely on training data obtained from a set of n solution

snapshots calculated at chosen design points in the parameter space. A snapshot

matrix, S ∈ RN×n, is assembled

S ∈ RN×n = [x1,x2, · · · ,xn] = [x(µ1),x(µ2), · · · ,x(µn)]. (2.5)

Denote by M a subspace of the column space of S. We assume that M provides a

good approximation of the solution space for µ ∈ D if there are a sufficient number

of solution snapshots in S that correspond to a judiciously chosen subset of design

parameters in D. M is the span of k orthonormal basis vectors, [ψ1,ψ2, · · · ,ψk] ∈

RN , where k ≪ N . The basis is chosen such that each solution snapshot xi in S can

be well-approximated as a linear combination of the basis vectors

xi ≈ ai1ψ
1 + ai2ψ

2 · · ·+ aikψ
k. (2.6)

Where ai is the set of basis coefficients, or expansion coefficients, for a given solution

snapshot. The truncated singular value decomposition of S contains two unitary

matrices U ∈ RN×n and V ∈ Rn×n, as well as a diagonal matrix Σ ∈ Rn×n

S = UΣV T . (2.7)

Here, U contains a set of n left singular vectors that form an orthonormal basis for

the column space of S, V contains a set of n right singular vectors that form an

orthonormal basis for the row space of S, and diag(Σ) ∈ Rn = [σ1, σ2, · · · , σn] con-

tains the singular values corresponding to the singular vectors in descending order,

σ1 ≥ · · · ≥ σn ≥ 0. The magnitude of the singular values represents the importance

or strength of the corresponding singular vectors in U . Often, the singular values
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associated with the basis vectors decay very quickly and only the first k singular vec-

tors are chosen to form the POD basis, Ψ ∈ RN×k = [ψ1,ψ2, · · · ,ψk]. To determine

the value of k, the relative information content of the subspace is evaluated

E(k) =

∑k
j=1 σ

2
j∑n

j=1 σ
2
j

, (2.8)

and k is chosen such that E(k) ≥ γ, where γ ∈ [0,1] is chosen depending on the

problem, usually to a value γ ≥ 0.95 [28]. This is done to preserve the most dominant

features of the solution space. Using the POD basis, full-order solutions at unseen

design parameters x(µ∗) can be approximated by

x(µ∗) ≈ Ψa∗ = a∗1ψ
1 + a∗2ψ

2 · · ·+ a∗kψ
k, (2.9)

where a∗ can be estimated through a computational model that takes µ∗ as an input.

Figure 2.1: Schematic of the proper orthogonal decomposition (POD).
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2.2.1 Projection Error

A measure of quality of the POD basis is its ability to reconstruct solution snap-

shots xi in S with a high degree of accuracy. We first calculate the projection of xi

onto Ψ

x̂i = ΨΨTxi. (2.10)

A measure of the relative error over all of the solution snapshots in S is the quantity

ϵPOD =
n∑

i=1

∥xi − x̂i∥2

∥xi∥2
. (2.11)

The Eckart-Young theorem [29] states that the POD basis consisting of the first

k left singular vectors found from the SVD of S minimizes this error amongst all

orthonormal bases of rank k. This is a desirable feature of the POD basis, as it

maximizes the amount of solution space information for a given reduced dimension.

2.2.2 Example: NACA 0012 Airfoil

An advantage of using an orthogonal basis is that the basis vectors represent

unique directions in the solution space, and as a result there is no information overlap

between vectors. The basis vectors are also interpretable, and often referred to as

POD modes. The modes can be visualized to understand important physical features.

Using a NACA 0012 airfoil, steady, incompressible, turbulent flow is simulated at five

different angles of attack α = [0, 2, 4, 6, 8]. Figure 2.2 shows contours of the velocity

magnitude as well as the first three POD modes. We can assume that the first mode

represents an average flow field from the training data, the second represents the

stagnation point at the leading edge, and the third separation caused by increasing

the angle of attack. The expansion coefficients used to reconstruct or approximate

designs within the solution space are also informative of the relative importance of

each mode. Figure 2.3 contains a plot of the singular values for each of the five
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POD modes using a log-scale. The singular values decay rapidly, and the relative

information content E from the first three modes is equal to 0.9994.

(a) CFD, α = 0 (b) POD Mode 1

(c) CFD, α = 4 (d) POD Mode 2

(e) CFD, α = 8 (f) POD Mode 3

Figure 2.2: Velocity magnitude contours from CFD (left) and the first three POD
modes (right) for a NACA 0012 case.

2.3 Non-intrusive ROM

This method relies on a functional dependence a = f(µ) between the design pa-

rameters µ and the expansion coefficients a. Non-intrusive ROMs use a regression

model to predict the expansion coefficients given the design parameters, leading to

a fully data-driven approach that does not incorporate the governing physics of the
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Figure 2.3: Singular values associated with the POD basis for a NACA 0012 case.

FOM. There are many popular regression models used in non-intrusive ROMs, in-

cluding artificial neural networks [13], radial basis function (RBF) interpolation [30],

and Gaussian process regression (GPR) [31], sometimes referred to as Kriging. While

ANNs can provide superior performance to other regression methods, they require

large amounts of training data to make accurate predictions at unseen points. Since

ROMs are typically trained using a small amount of data, this limits the use of ANNs

for predicting expansion coefficients. RBF and GPR are both similar in that they are

non-parametric models that use kernel functions to model similarity between data

points, leading to smooth functions. In non-intrusive ROMs, an individual regression

model is usually used for each coefficient in a, leading to k different regression models,

fi(µ) : Rp → R, i ∈ [1, 2, · · · k]. (2.12)

GPR utilizes a probabilistic framework using gradient-based optimization to deter-

mine kernel hyperparameters, which often leads to better generalization than RBF.
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2.3.1 Gaussian Process Regression

A brief introduction to GPR is given in this section, and a more complete overview

can be found in a work by Rasmussen [32]. A Gaussian process (GP) is a set of random

variables that follow a joint Gaussian distribution. In GPR, it is assumed that data

are generated according to a GP with mean function m and covariance function κ,

f(µ) ∼ GP (m(µ), κ(µ,µ∗)) , (2.13)

with some added Gaussian noise δ ∼ N (0, ξ2y),

y = f(µ) + δ, (2.14)

where ξ2y is a very small non-dimensional term (typically on the magnitude of 10−10)

that helps keep the covariance matrix positive definite to prevent numerical instabil-

ities. Using a finite amount of training data {µ̄, ā} and a prior joint Gaussian on the

data, the prediction at a point µ∗ is given by

 ā

f(µ∗)

 ∼ N

m(µ̄)

m(µ̄)

 ,

κ(µ̄, µ̄) + ξ2yI κ(µ̄,µ∗)

κ(µ∗, µ̄) κ(µ∗,µ∗)


 , (2.15)

where I is the identity matrix. Using the properties of conditional Gaussian distri-

butions, the conditional expectation of f(µ∗) is given as

E(f(µ∗)|ā) = κ(µ∗, µ̄)(κ(µ̄, µ̄) + ξ2yI)
−1 (ā−m(µ̄)) . (2.16)

In practice, the mean function m is set to the mean of the training outputs,

m(µ̄) =

∑n
i=1 ā

i

n
(2.17)
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and the inputs are scaled before training to obtain their standard score Z

Z i
j =

µi
j −m(µj)

sj
, (2.18)

where i and j refer to indices of the observation and input entry, respectively, and s

is the sample standard deviation. There are many different kernels that can be used

for the covariance function. A common one is the radial basis function (RBF) kernel

κ(µ,µ∗) = exp

(
−d(µ,µ∗)2

2l2

)
, (2.19)

where d is the Euclidean distance function and l represents the length scale, which

is a hyperparameter. The predictive performance of the regression model is highly

dependent upon the values of the hyperparameters. Gradient-based optimization is

used to maximize the marginal log-likelihood of the training data to obtain an optimal

set of hyperparameters, θopt,

θopt = argmax
θ

log p(ā|µ̄, θ) = −1

2
āT (κ(µ̄, µ̄)+ξ2yI)

−1−1

2
log |κ(µ̄, µ̄)+ξ2yI|−

n

2
log 2π.

(2.20)

2.3.2 POD-GPR ROM

This section describes the POD-GPR ROM, which is also sometimes referred

to as the POD-Kriging ROM [31] in the literature. The offline stage first involves

computing the high fidelity solutions for design parameters µ ∈ U train ∈ Rn×p and

assembling them into S. The truncated SVD of the snapshot matrix is obtained

to compute Ψ. When using the POD-GPR ROM, the number of basis vectors k is

often set to the number of training samples n, as the accuracy of the ROM tends

to level off as k approaches n [28] and training the GPR models is inexpensive.

After the expansion coefficients are calculated for the training data, the individual
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GPR models are trained and saved for use in the online stage. Given a set of unseen

design parameters µ∗, an approximation of the expansion coefficients ã∗ is computed.

Matrix-vector multiplication of the POD-basis and expansion coefficients is then used

to obtain an approximate full-order solution x̃. The POD-GPR method is outlined

in Algorithm 1.

Algorithm 1 Offline and online stages of POD-GPR ni-ROM

1: function PODGPR OFFLINE(U train)
2: Compute high-fidelity solutions for µ ∈ U train by solving FOM and assemble

into S
3: Calculate truncated SVD of snapshot matrix to obtain POD basis Ψ

4: Calculate expansion coefficients for training data Atrain =
(
ΨTS

)T
5: Train k GPR models F = [f1(µ), f2(µ), · · · fk(µ)] for each expansion coeffi-

cient in {U train,Atrain}
6: return (Ψ,F)
7: end function

1: function PODGPR ONLINE(µ∗,Ψ,F)
2: Evaluate expansion coefficients ã∗ = F(µ∗)
3: Predict full-order solution x̃∗ = Ψã∗

4: return x̃∗

5: end function

2.4 Projection-based ROM

In contrast to non-intrusive ROMs, projection-based ROMs require access to the

physics solver during the online stage. In CFD applications, the flow residualsR ∈ RN

are evaluated to provide convergence information. Evaluating the full-order residu-

als for a given approximated state is expensive and leads to p-ROMs incurring sig-

nificantly larger inference costs when compared to ni-ROMs. Generally, multiple

residual evaluations are required during the online stage of a p-ROM. To mitigate

this issue, many p-ROMs utilize hyper-reduction, which allows for approximating the

full-order residuals by evaluating the residuals at a small subset of cells. A popular
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hyper-reduction method for POD-based p-ROMs is the discrete empirical interpola-

tion method (DEIM) [33]. DEIM finds an optimal small subset of evaluation cells

and uses an interpolating basis of the full-order residuals to make approximations.

Although DEIM does offer benefits, its implementation is non-trivial for many solvers

and can lead to poor results for highly nonlinear problems [13].

The projection-based ROM that is introduced here comes from our previous

work [19]. The study includes results for a p-ROM including DEIM, although the

full computational gains from the method are not realized due to difficulties in imple-

mentation. Results for a brute-force p-ROM that explicitly computes the full-order

residual are also included. This ROM is shown to offer significant speed-up over CFD

simulations for two external aerodynamics problems while providing high levels of

accuracy.

When applied to fluid dynamics problems, projection-based ROMs solve a low-

dimensional version of the FOM through the full-order residuals R. The FOM gov-

erning equations can be expressed in terms of R and are a function of the state x

and design parameters µ,

R(x,µ) = 0. (2.21)

The residuals can also be approximated using the POD basis Ψ state approxima-

tion,

R(x,µ) ≈ R(Ψa,µ). (2.22)

For a new set of design parameters µ∗, the expansion coefficients a∗ that satisfy

Equation 2.22 are desired. A least-squares Petrov-Galerkin (LSPG) approach [34]

is used for the projection-based ROM. Specifically, the expansion coefficients that

minimize the L2 norm of the approximate residuals are solved for,
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min
a

L2 = ∥R(Ψa)∥2 . (2.23)

Most ROMs use a regular Galerkin projection [35], which projects the FOM gov-

erning equations onto the state POD basis. The LSPG ROM formulation involves

minimizing the L2 norm of the residuals, which has been shown to lead to better sta-

bility and convergence for many nonlinear problems. At the minimum point,
∂L2

∂a
= 0,

and substituting x = Ψa gives us an equation for a k-dimensional residual r,

r =

[
∂R

∂x
Ψ

]T
R = 0. (2.24)

A Newton-Krylov approach is used to solve Equation 2.24. First, a reference

full-order state xref from the training data is used to compute an initial value for

a. The reference state is chosen to correspond to the training point in U train closest

in Euclidean distance to µ∗ as the initial condition should be relatively close to the

solution. The low-dimensional residual is computed as well as the Jacobian
∂r

∂a
using a

finite-difference method. A linear equation is then solved for ∆a using the generalized

minimal residual (GMRES) method implemented in PETSc [36], a C++ library for

scalable scientific computing. A backtracking line search is performed to compute

the updated expansion coefficients an+1, with the requirement that the norm of r

decreases. If this does not happen, the step size is reduced by a factor of two, until

mmax iterations are reached, which is typically set to 5. This process is repeated

until the norm of r is less than a prescribed tolerance rtol or the Newton-Krylov

algorithm reaches nmax iterations. Although only the norm of r is driven to 0, the

full-order residual is also expected to decrease according to the LSPG formulation.

The Jacobian-matrix product from Equation 2.24 is explicitly computed for each

Newton-Krylov iteration using a matrix-free method. Individual basis vectors ψi are

extracted from Ψ and a matrix-free approach is used to compute the matrix-vector
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product,

∂R

∂x
ψi ≈ R(x+ ϵψi)−R(x)

ϵ
, (2.25)

where ϵ = 10−6 is a small step size relative to the residual magnitudes tested. The full-

order residuals are evaluated once for each of the k columns in Ψ using DAFoam [37],

an open-source adjoint derivative computation framework for OpenFOAM that uses

automatic differentiation.

The offline stage of the p-ROM is similar to that of the ni-ROM in assembling

the snapshot matrix and computing the POD basis. The p-ROM also uses a precon-

ditioner (PC) matrix

[
∂r

∂a

]
PC

to solve the linear equation using GMRES. The PC

matrix is computed in the offline stage at a design point in the training set that is

closest to the average of the training design parameters. The matrix is not updated

during the online stage as the size of the linear system being solved in small and it is

not difficult to solve. The entire p-ROM algorithm is outlined in Algorithm 2.
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Algorithm 2 Offline and online stages of projection-based ROM

1: function pROM OFFLINE(U train)
2: Compute high-fidelity solutions for µ ∈ U train by solving FOM and assemble

into S
3: Calculate truncated SVD of snapshot matrix to obtain POD basis Ψ

4: Compute the preconditioner matrix

[
∂r

∂a

]
PC

5: end function

1: function pROM ONLINE(µ∗,Ψ,xref,

[
∂r

∂a

]
PC

)

2: a0 = ΨTxref ▷ Compute the initial reduced state variable vector
3: for i ∈ {0, 1, . . . , imax} do ▷ Main loop to compute a∗

4:

[
∂R

∂x
Ψ

]T
← ai,Ψ ▷ Compute the Jacobian-matrix product

5: r ← ai,µ∗,

[
∂R

∂x
Ψ

]T
▷ Compute the reduced residual

6:
∂r

∂a
← ai,µ∗ ▷ Compute the reduced Jacobian matrix

7: ∆ai ← ∂r

∂a (ai,µ∗)
∆ai = −r(ai,µ∗) ▷ Solve the linear equation to get ∆ai

8: for m ∈ {0, 1, . . . ,mmax} do ▷ Backtracking line search
9: α = 1.0
10: ai+1 = ai + α∆ai ▷ Update ai with step α
11: if ||r(ai+1)||2 < ||r(ai)||2 then ▷ Reduced residual decreases, line

search done
12: break
13: else ▷ Reduced residual not dropping, decrease α
14: α = 0.5α
15: end if
16: end for
17: a∗ = ai+1 ▷ Assign the latest solution to a∗

18: if ||r(ai+1)||2 < rtol then ▷ Prescribed tolerance satisfied, exit the main
loop

19: break
20: end if
21: end for
22: x∗ ≈ Ψa∗ ▷ Compute the new full-order state variable vector
23: return x̃∗

24: end function
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CHAPTER III

Data Selection for ROMs Using Isomap

This chapter introduces data selection algorithms for POD-based ROMs using

Isomap, a versatile technique for nonlinear dimensionality reduction. A popular

method for generating sets of training design parameters from a multi-dimensional pa-

rameter space is Latin hypercube sampling [38] (LHS), a statistical method that aims

to maximize the distance and minimize the correlation between generated samples.

LHS uses a stratified sampling technique that generally leads to uniform coverage

of the parameter space. While this ensures that different areas of the parameter

space are equally represented, the physical regimes for a given problem may present

a non-linear variation within it. This can lead to certain physical regimes being over

or under-represented in the training data and result in poor predictive performance

at some unseen points. Two algorithms are presented in this chapter, one that uses

Isomap to produce locally selected POD bases to construct ROMs, and an adaptive

sampling algorithm that iteratively selects design parameters to increase the diversity

of the training data. The first algorithm shows that Isomap is effective at separat-

ing data by physical regime, while the latter outperforms LHS for both the ni-ROM

and p-ROM, and results in better or similar predictive performance given a lower

computational budget for generating full-order training snapshots.

Parts of this chapter appear in or are adapted from our previously published papers [39, 20].
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3.1 Latin Hypercube Sampling

Latin hypercube sampling uses random uniform sampling to divide each dimen-

sion of a multi-dimensional parameter space into equally probable intervals. Given n

desired samples, n intervals are constructed per dimension and their centers are cho-

sen such that the distance between points is maximized. The center of each interval

is filled exactly once per dimension in a random order to ensure that the parameter

space is sufficiently covered. This is in contrast to strictly random uniform sampling,

which does not construct intervals and can lead to clustering of points in certain re-

gions of the parameter space and insufficient overall coverage. Given the generated

design parameters U train ∈ Rn×p, the cross-column Pearson correlation coefficient ma-

trix C ∈ Rp×p is obtained. Since the random generation of the design parameters is

computationally inexpensive, a brute-force iterative approach is used to minimize the

correlation amongst the samples until a maximum number of iterations is reached.

The minimized criteria used in this work is the maximum value of the off-diagonal

values of |C|, which helps keep the generated points spread apart and equally dis-

tributed. Figure 3.1 shows an example of both LHS and random uniform sampling

applied to a two-dimensional parameter space with bounds give by µ1, µ2 ∈ [−1, 1]

and n = 40 samples. LHS leads to signifcantly better overall coverage of the param-

eter space. Random uniform sampling leaves a number of unfilled gaps within the

parameter space in addition to many closely clustered points. LHS avoids this by

using centers within each interval that are linearly spaced.

3.2 Isomap

Isomap [40] is a nonlinear dimensionality reduction method that estimates a low-

dimensional manifold of high-dimensional data. Nonlinear dimensionality reduction

methods are used to capture complex patterns present in high-dimensional data in a

26



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

2

Latin Hypercube Sampling Example

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

2

Random Uniform Sampling Example

Figure 3.1: Comparison of LHS with random unform sampling.

low-dimensional space. Most real-world datasets exhibit nonlinear relationships be-

tween variables and data points. Linear methods like principal components analysis

(PCA), which is closely related to the SVD, assume that there are linear relationships

present within the dataset, when this is often not the case. Nonlinear dimensionality

algorithms are useful for discovering the underlying intrinsic geometry, or manifold, of

high-dimensional data. There are many different nonlinear dimensionality reduction

algorithms, including Local Linear Embedding [41] (LLE) and t-Distributed Stochas-

tic Neighbor Embedding [42] (t-SNE). Isomap is adept at preserving both the local

and global structure of data, which makes it applicable to a wide range of problems,

including gene and protein expressions [43], climate data [44], and turbulent combus-

tion [45], where it is shown to outperform PCA in various tasks. Given a data matrix

X ∈ Rn×N with n observations and dimensionality N , Isomap provides a latent rep-

resentation matrix W ∈ Rn×r, where r ≪ N . The latent representation w ∈ Rr for

each sample represents its position on the low-dimensional manifold. Isomap aims

to produce a manifold that preserves the geodesic distances between points in the

high-dimensional space given a nearest neighbor graph G of the high-dimensional

training data where there are connections to the K nearest neighbors and the edges

are weighted by the distance between points. The geodesic distance between two
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points is the shortest distance between them on the graph. The Euclidean distance

is usually used as the metric of distance for the nearest neighbor graph, which can

be computed using methods such as Dijkstra’s algorithm [46]. Once the geodesic

distances between points are assembled into a distance matrix D ∈ Rn×n, multi-

dimensional scaling (MDS) [47] is applied to obtain W . MDS is an algorithm for

producing low-dimensional representations that preserve high-dimensional pairwise

distances. Using optimization, a stress function ω that represents the discrepancy

between the pairwise distances in the low and high dimensional space is minimized.

The stress function is given as

ω(D) =
∑

i ̸=j=1,··· ,n

(D[i, j]− d(W [i, :],W [j, :]))2 , (3.1)

where d is the Euclidean distance between two latent representations. There are

many ways to optimize the stress function in MDS. Isomap is implemented in this

work using scikit-learn [48], an open-source machine learning library for Python. The

scikit-learn implementation of Isomap uses the SMACOF (Scaling by MAjorizing a

COmplicated Function) algorithm [49], which iteratively adjusts positions of points in

the low-dimensional space using a majorization-minimization technique. The coordi-

nates of the low-dimensional points are first initialized randomly, and the SMACOF

algorithm is iteratively repeated until w(D) is minimized. This leads to a manifold

that represents the intrinsic geometry of the data. The computational aspects of the

SMACOF algorithm are outside the scope of this work, and the original paper can

be consulted for more detail.

The Isomap method is described in Algorithm 3. Figure 3.2 shows the man-

ifold resulting from Isomap being applied to the swiss roll dataset, a popular 3-

dimensional benchmark problem for dimensionality reduction methods. The resultant

2-dimensional manifold successfully separates points based on their positions along

the roll, rather than Euclidean distances. Points which are relatively close to each
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other in terms of Euclidean distance can be very far from each other along the roll. By

applying Isomap to the dataset, the swiss roll is successfully unrolled to discover an

intrinsic 2-dimensional geometric representation. When using Isomap, an important

hyperparameter to consider is K, the number of nearest neighbors used to construct

G. If K is too large, the local structure of the data manifold isn’t represented well,

while values of K that are too small can lead to inaccurate geodesic distances because

of an outsized focus on small regions surrounding data points and neglect of the global

structure of the data.

Algorithm 3 Isomap

Input: X ▷ High-dimensional data matrix
Output: W ▷ Low-dimensional latent representation matrix
1: G ←X ▷ Compute a nearest neighbor graph from each observation in X with

the edges weighted by distance.
2: D ← G ▷ Compute the pairwise geodesic distances between all points.
3: W ← MDS(D) ▷ Apply MDS and obtain the latent representation matrix.

Figure 3.2: 2-dimensional manifold (right) obtained from Isomap being applied to
the swiss roll dataset (left).

3.3 Local POD Bases

For problems exhibiting highly nonlinear behavior throughout the parameter space,

POD-based ROMs can suffer performance issues. The number of basis vectors re-

quired for approximations of reasonable accuracy becomes large. For projection-based
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ROMs, this can lead to numerical instabilities during the online stage due to the in-

creased size of the linear systems being solved. While non-intrusive ROMs generally

use a separate regression model for each expansion coefficient, the underlying func-

tions can exhibit low smoothness for nonlinear problems and be difficult to model. To

alleviate these issues, the use of local POD bases is often employed. This involves par-

tioning the training data by physical regime into local snapshot matrices, from which

local POD bases are obtained. An example from Amsallem et al. [50] computes local

POD bases for a projection-based ROM in the offline stage by grouping the training

snapshots using k-means clustering. During the online stage, the local basis is chosen

according to the subregion of the solution space where the current high-dimensional

solution lies. In a work [51] by Dupuis et al., the authors use Gaussian mixture models

to pre-compute local POD bases for use in a POD-GPR non-intrusive ROM. When

applied to a turbulent flow case involving both subsonic and transonic flow past an

airfoil, the method is shown to offer signifcantly improved predictive performance by

partioning the parameter space by flow regime by detecting the presence of shock

waves. By using data that are physically similar to each other, the expansion coef-

ficients from the local POD bases are much easier to predict even if there is a lower

amount of training data available as the GPR models are much smoother.

In this section, I introduce an algorithm that uses Isomap to compute local POD

bases at unseen points in the parameter space for use with the POD-GPR ni-ROM.

While the previously mentioned examples pre-compute the local bases in the offline

stage, this algorithm computes a tailored POD basis for each unseen point in the

online stage. Although this involves computing the SVD, the cost of this is typically

negligible when compared to solving the FOM.

In constructing local POD bases, the goal is to use only training samples that will

be physically similar to a given prediction point. The design parameters themselves

may not be informative to this end, especially when the number of parameters is large.
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Applying Isomap to the transpose of the snapshot matrix, ST , a low-dimensional

manifold of the training data can be estimated to obtain a latent representation w for

each training sample. Using GPR, a regression model can be obtained to estimate the

latent representations w∗ for unseen design parameters µ∗. A separate GPR model is

used to predict each latent variable, as is done with the expansion coefficients in the

POD-GPR ROM. Guided by the general idea of nonlinear dimensionality reduction

that points closer to each other in the lower dimensional space are more similar, a

local snapshot matrix SL ∈ RN×l is created for an unseen point µ∗ consisting of the

training samples corresponding to the l closest latent representations to w∗ measured

by Euclidean distance. For the Euclidean distance to be a strong metric of similarity,

r is set to 2. When the latent variable dimension grows above 2, the Euclidean

distances between points become less meaningful due to increased sparsity and the

curse of dimensionality. The local POD basis ΨL ∈ RN×l is found from the SVD

of SL. Since ROMs using the POD-GPR method are most accurate when using all

of the basis vectors, k is set to l. Using this local snapshot matrix, the POD-GPR

method can be used to make a prediction of the unknown state x∗. This process is

outlined in Algorithm 4.

3.3.1 Lid-driven Cavity

The test case used to demonstrate the performance of the local POD basis se-

lection algorithm is a geometricaly and physically parameterized lid-driven cavity

flow, a popular benchmark problem for CFD solvers. Three parameters control the

computational domain Ω and one parameter controls the kinematic viscosity through

the Reynolds number. A version of this problem has previously appeared in a work

by Hesthaven and Ubbiali [13]. Figure 3.3 shows the boundary conditions on each

edge Γi, i ∈ [1, 2, 3, 4] of the domain; u, v = 0 on all of the edges except Γ1, where

u = 1, v = 0. The pressure gradient, ∇p, is set to 0 on all of the edges. The reference
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Algorithm 4 POD-GPR method using local POD bases found using Isomap

Input: S, U train, µ
∗ ▷ Snapshot matrix, design parameters, local POD basis

dimension
Output: x̃∗ ▷ Approximation of full-order state

1: k = l ▷ ROM dimension is equal to local POD basis dimension
2: W ← Isomap(ST ) ▷ Compute latent representations of training snapshots using

Isomap
3: w∗ ← GPR(W ,U train,µ

∗) ▷ Approximate latent representation of prediction
point using GPR

4: d← dist(w∗,W ) ▷ Compute pairwise Euclidean distances between latent
representations

5: i← argsort(d)[1 : k] ▷ Find indices of k closest training points to current
prediction

6: SL ← S[:, i] ▷ Assemble local snapshot matrix
7: ΨL ← SVD(SL) ▷ Compute local POD basis from SVD of local snapshot matrix

8: AL ←
(
ΨT

LSL

)T
▷ Compute expansion coefficients of states in local snapshot

matrix
9: for m ∈ {1, 2, . . . , k} do
10: ã∗[m]← GPR(AL[:,m],U train,µ

∗) ▷ Approximate each expansion coefficient
using GPR

11: end for
12: x̃∗ ← ΨLã

∗ ▷ Compute approximated full-order state

32



pressure is set to 0 in the bottom left corner of the domain. The parameterization

of the geometry is also shown, involving three parameters which change the length

of the horizontal (µ1) and slanting edges (µ2) as well as the slanting angle (µ3). The

Reynolds number, Re (µ4), is the fourth parameter, and is related to the kinematic

viscosity ν as

Re =
max(µ1, µ2)

ν(µ)
. (3.2)

The design parameter combinations are generated using Latin hypercube sampling

with the following bounds for each parameter

µ1 ∈ [1, 2],

µ2 ∈ [1, 2],

µ3 ∈ [−π

4
,
π

4
],

µ4 ∈ [100, 600].

The computational mesh consists of 64×64 cells uniformly distributed in the x and y

directions, and one cell spanning the z direction, resulting inN = 4096. The full-order

states u and v are used for the ROM, contours of which are shown in Figure 3.4 at

three different sets of design parameters. A sharp gradient in u exists at the top of the

domain, and a vortex moves throughout the cavity as the design parameters change.

This vortex is also shown moving throughout the cavity shown in the contours of v,

varying in shape and size with the design parameters. The relationship between both

u and v and µ is shown to be highly nonlinear, making this a difficult prediction

problem in the context of ROMs.

Separate ROMs are used for predicting u and v. The Matern kernel [52] is used

for GPR to predict both expansion coefficients and latent variables, and is given as
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(a) Lid-driven cavity boundary conditions. (b) Lid-driven cavity design parameters.

Figure 3.3: Schematics describing the lid-driven cavity problem.
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Figure 3.4: Contours of u (top) and v (bottom) for the lid-driven cavity problem at
three different sets of design parameters.

κ(µ,µ∗) =
1

Γ(ν)2ν−1

(√
2ν

l
d(µ,µ∗)

)ν

Kν , (3.3)
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where d is the Euclidean distance function, Γ is the gamma function, and Kν is the

modified Bessel function of the second kind. The Matern kernel was chosen through

a trial-and-error process and it was found to offer the best performance in predicting

both the expansion coefficients and latent variables. The set of hyperparameters θ

of the Matern kernel are l and ν, which control the length scale and smoothness

respectively. The number of nearest neighbors K to construct the nearest neighbor

graph is set to 5 to strike a good balance between acknowledging the local and global

structure of the data.

360 sets of design parameters are generated using LHS. The ROM constructed

using local POD bases found using Isomap is referred to as the Isomap local ROM,

while the ROM that uses all of the available training data will be referred to as the

global ROM. Additionally, results are shown for a random local ROM that selects POD

bases from a single random subset of the training data. The metric of performance

that is used is the relative L2 error ϵ between the approximated state x̃ and true state

x,

ϵ =
∥x− x̃∥2

∥x∥2
. (3.4)

To assess the performance of the ROM over the entire dataset, 5-fold cross-

validation is used to create 5 different splits of the data into 288 training samples

and 72 test samples. For each fold, the average relative error ϵ̄i, i ∈ [1, 2, 3, 4, 5] is

taken over all of the test samples. The mean of these average errors is then taken

over all of the folds to report a cross-validation error ϵ̄CV

ϵ̄CV =

∑5
i=1 ϵ̄i
5

. (3.5)

Figure 3.5 shows plots of ϵ̄CV against the ROM dimension k ∈ [50, 250] for the

Isomap and random local ROMs. The global ROM relative cross-validation error with
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k = 288 is also plotted for comparison. Compared to the global ROM, we can see

that using Isomap to generate local POD bases offers better predictive performance

in both u and v over a large number of ROM dimensions. When k is low, the amount

of data available may not be sufficient in both the quality of the POD basis and

GPR model to outperform the global ROM. As k grows larger, the performance

offered by using local POD bases is greater than that of the global ROM, with peak

performance occuring at around k = 120 for u and k = 150 for v. Although the

gains in performance are modest, signficantly less training data is being used for the

GPR models, which suggests that the functions being modeled are much smoother.

Although the local POD basis ΨL does not offer a lower projection error compared

to Ψ, the ROM is more accurate when working with physically similar data.

Generating random local POD bases does not exhibit this behavior; we can see

that the global ROM outperforms this method over all selected values of k, especially

when k is low. The random local ROM errors approach that of the global ROM as k

grows large, with the decay in ϵ̄CV showing expected behavior. This further suggests

that Isomap is highly effective in identifying training samples that are very similar

to the current test sample based on their latent representations on the manifold.

Figure 3.6 shows contours of the error magnitude at µ∗ = [1.601, 1.832, 0.3643, 543.8]

for both the global and Isomap local ROM using a local ROM dimension of k = 120.

The relative errors in both u and v decrease significantly when using the Isomap local

ROM, with percent decreases in ϵ of 40.6% and 47.6% respectively compared to the

global ROM.

3.4 Adaptive Sampling

In the previous section, a method for selecting local POD bases using Isomap was

introduced and showed modest gains in predictive performance while using signifi-

cantly less data when applied to a highly nonlinear lid-driven cavity case. While the
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Figure 3.5: Relative cross-validation error plots for the Isomap (top) and random
(bottom) local ROMs.

model does offer improved performance, the gains are slim and it is difficult to know

how to choose an optimal local ROM dimension a priori. However, the results do

highlight the efficacy of Isomap in separating full-order snapshots by physical regime.

For problems that do not exhibit highly nonlinear behavior throughout the param-

eter space, a lower amount of training data is typically needed for accurate results.

However, using a small amount of data makes the ROM more sensitive to the quality

of the training snapshots. Given a fixed computational budget for generating full-

order snapshots, the goal is to maximize the quality of the training data. Methods

that only take the design parameters into account when generating samples, like LHS,

can lead to important areas of the solution space being omitted. The POD basis can
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(a) u, Ground Truth (b) u, Global ROM Error (c) u, Local ROM Error

(d) v, Ground Truth (e) v, Global ROM Error (f) v, Local ROM Error

Figure 3.6: Comparison between global and Isomap local ROMs at µ∗ = [1.601, 1.832,
0.3643, 543.8] for k = 120.

lack certain physical features as a result, leading to poor predictive performance at

some unseen points. In this section, I propose an adaptive sampling algorithm us-

ing Isomap and GPR to develop physically diverse training datasets for ROMs. The

proposed adaptive sampling algorithm uses LHS to generate a baseline set of design

parameters at which the full-order model is solved, and Isomap is then utilized to

develop a greedy algorithm that iteratively selects the next design parameter from a

set of candidate points to add to U train by filling the current low-dimensional manifold

of the training data until a desired number of samples is obtained.

Previous work in developing adaptive sampling algorithms for POD-based ROMs

has mainly focused on non-intrusive methods and involves computing the SVD at

each adaptation iteration. Braconnier et. al [53] use an a-posteriori error estimator

based on a leave-one-out approach using the POD basis. Guenot et. al [54] propose
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two algorithms that select samples based on model improvement based on rotation

of the POD vectors or through changes in the POD coefficients. Wang et. al [55]

combine the two methods to develop a conjunction sampling strategy. My proposed

algorithm does not use POD, which is more computationally expensive than Isomap

when the number of observations is relatively low. When used in the algorithm,

Isomap produces a manifold of a fixed low dimension, whereas the dimensionality

of the POD basis grows with the number of samples. In a work [56] by Franz et

al., an Isomap-based adaptive sampling algorithm is introduced and applied to both

a nonlinear Isomap-based ROM [57] and POD-based ROM. The adaptive sampling

algorithm in that work requires solving an optimization problem to determine the

added samples, and results are limited in scope, with analysis being conducted at a

single test point. Computational costs and details of the optimization process are

also not provided. The criteria used to select added points are different from the

one presented here, although both are dictated by distances from points within the

low-dimensional space.

The proposed adaptive sampling algorithm utilizes Isomap to find a low-dimensional

physical representation of the current training data to make an informed decision

when selecting the next design parameter to add to the dataset. Given the current

set of design parameters in the training set U train ∈ Rn×p and a very large set of

design parameters U cand ∈ RM×p generated using LHS, the current manifold of the

training data is filled to diversify the represented physical states. A number ni of

initial samples generated using LHS is required, and the adaptation algorithm is it-

eratively repeated until a total of nt samples is obtained. First, Isomap is applied

to the transpose of the current snapshot matrix ST to obtain a 2-dimensional latent

representation matrix Wtrain. A set of candidate design parameters U cand is gener-

ated using LHS. By generating enough candidate points, the parameter space D is

efficiently represented. GPR is then used to approximate the latent representations
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Wcand of the candidate design parameters, with a separate regression model used

for each latent variable. The pairwise distances between all of the points in Wtrain

and Wcand are then calculated and the minimum pairwise distance for each candi-

date point is retained in a vector dmin ∈ RM . The candidate point corresponding

to the maximum value in dmin is chosen as the new design parameter µnew to be

added to U train. An example of this is shown in Figure 3.7. By looking at the mini-

mum pairwise distances for each candidate point, points that are already similar to

any of the current samples (i.e., the red marker in the lower left corner) are filtered

out. To fill the manifold efficiently, the point with the greatest minimum distance

from all current points is chosen, which is the point in the center. The FOM is then

solved at µnew and the solution xnew is added to S. The time complexity of Isomap

grows mainly with n, which is small, instead of N . The overall time complexity of

Isomap, including nearest neighbor graph construction, geodesic distance calculation,

and MDS is given as O (Nnlog(n) + n2log(N) + n2) when fixing the latent variable

dimension and K. The computational cost comes from the implementation of Isomap

in scikit-learn. Using the same library, the time complexity of the truncated SVD is

O(Nn2). The adaptation algorithm is fully outlined in Algorithm 5.

3.4.1 Results

The two test cases used to demonstrate the performance of the adaptive sampling

algorithm are a 2D NACA 0012 airfoil and a 3D Cessna 172 wing. The design pa-

rameters for both cases involve geometric deformations using a free-form deformation

(FFD) method through the pyGeo [58] package. While both the non-intrusive and

projection-based ROM are used for the first test case, only the non-intrusive ROM

is used for the Cessna 172 case. Although the p-ROM has previously been applied

to this test case [19], a very small geometric parameter range was used where there

was very little variation in physics and the adaptive sampling algorithm offers no
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Figure 3.7: Example of the selection criteria for the adaptive sampling algorithm.

Algorithm 5 Adaptive sampling algorithm using Isomap

Input: S, U train ▷ Initial snapshot matrix and design parameters
Output: S, U train ▷ Final snapshot matrix and design parameters
1: for j ∈ {ni + 1, ni + 2, . . . , nt} do ▷ Iterate over all additional samples
2: Wtrain ← Isomap(ST ) ▷ Compute latent representations of training data
3: U cand ← LHS(D) ▷ Generate large set of candidate design parameters using

LHS
4: Wcand ← GPR(Wtrain,U train,U cand) ▷ Approximate latent representations of

candidates
5: D ← dist(Wtrain,Wcand) ▷ Compute pairwise Euclidean distances
6: dmin ← sort(D)[1, :] ▷ Return minimum pairwise distances for each candidate
7: µnew ← U cand[argmax(dmin)] ▷ New µ maximizes the minimum pairwise

distances
8: xnew ← FOM(µnew) ▷ Solve full-order model at µnew

9: S[:, j]← xnew ▷ Add new solution to snapshot matrix
10: U train[j, :]← µnew ▷ Add new design parameters to training set
11: end for

advantage over LHS. When using a larger parameter range, the p-ROM lacks stabil-

ity and sometimes fails to converge, by either failing to converge to the prescribed

ROM tolerance and getting stuck at a bad local minima, or having rtol diverge. I

attempted to remedy this issue by using the ni-ROM solution as an initial condition,
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using fewer basis vectors, and slightly increasing the p-ROM tolerance, but the issue

persisted. This issue is common in projection-based ROMs and well-documented [12],

highlighting their limitations. The number of basis vectors k used for the ni-ROM is

equal to the number of samples n. The GPR kernel used in the adaptation algorithm

for predicting the latent representations is the rational quadratic kernel, which can

be seen as a scale mixture of RBF kernels, given as

κ(µ,µ∗) =

(
1 +

d(µ,µ∗)

2αl2

)−α

, (3.6)

where α is a scale mixture parameter. The Matern kernel is chosen to predict the

POD expansion coefficients. These kernels were chosen through a trial-and-error pro-

cess, where the RBF kernel was also considered. The Matern and rational quadratic

kernels are both accurate for predicting latent variables and POD coefficients, and

the difference in performance between the two is modest. The relative information

content threshold γ from Equation 2.8 is set to 0.999 to select the number of basis

vectors when using the p-ROM. I found that this strikes a good balance between the

quality of the POD basis and the numerical stability of the p-ROM. The tolerance

of the p-ROM is set to rtol = 100 and the maximum number of iterations is set to

nmax = 20. The initial norm of the reduced residuals at validation points is typically

on the order of 106 or 107, and setting rtol = 100 requires a drop of 4-5 magnitudes.

For both test cases, the number of nearest neighbors K used for Isomap is set to 4.

Since the manifolds are computed using a relatively small number of observations,

K must be low to provide meaningful geodesic distances as well as high enough to

acknowledge global data structure, which would be ignored with extremely low or

high values.

The adaptive sampling algorithm is performed using the full-order state x =

[u, v, p] while both ROMs use x = [u, v, w, p, νt, ϕ], where ϕ is the cell-face flux. A

subset of the flow variables is chosen for the adaptive sampling algorithm as they
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are the ones that are more representative of the flow physics, while the ROMs re-

quire access to all flow variables. For both test problems, M = 104 candidate points

are generated using LHS for each iteration of the adaptation algorithm and a set of

NV = 100 validation points generated using LHS is used to assess performance. Four

different sample levels nt = [20, 24, 28, 32] are used for both test problems. Addition-

ally, a number of trials Nt at each sample level is simulated to average performance

metrics over to account for the randomness associated with generating the baseline

samples using LHS. The average relative L2 error of a field quantity for a single trial

ϵt over all of the validation points indexed by i is given as

ϵt =
1

NV

NV∑
i=1

∥xi − x̃i∥2

∥xi∥2
, (3.7)

where x̃ is the field approximated by the ROM. The errors are then averaged over

each trial to give a single error value ϵ̄.

ϵ̄ =
1

Nt

Nt∑
t=1

ϵt. (3.8)

Relative errors in the coefficients of lift and drag CL and CD between the CFD

solver and ROMs are also evaluated using the same averaging procedure. Results are

presented using an initial number of LHS-generated samples ni =
nt

2
. This value is

chosen as a sufficient number of initial samples is required to obtain a meaningful low-

dimensional manifold from Isomap. Additionally, the final data should be composed

of an adequate number of adaptively chosen samples.

3.4.1.1 NACA 0012 Airfoil

A NACA 0012 airfoil, shown in Figure 3.8, is used as the first test case. The

chord measures 1 m and the span is 0.1 m, with one cell in the spanwise direction.

The flow is incompressible with Re = 106 with U∞ = 10 m/s. A coarse mesh with
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Figure 3.8: Mesh and FFD points for the NACA 0012 case.

23,182 cells is generated and the computational domain extends 30 chords from the

airfoil surface. Four FFD points control the vertical displacements at the leading and

trailing edges, with the bounds of the design parameters given by µ ∈ [−0.03, 0.03]

m, and the baseline angle of attack α is set to 4 degrees. The full-order model is run

for 2000 iterations, after which the flow residuals fall to at least 10−6, and a total

of Nt = 20 trials is simulated at each sample level. Table 3.1 lists computational

costs associated with the ROM and adaptive sampling algorithm. It is shown that

the computational cost of Isomap is signficantly lower than that of the SVD when

using n = 32 samples and negligible compared to a single CFD simulation. This

results in a very computationally efficient adaptive sampling algorithm, especially

when comparing the cost to a single CFD simulation. While the wall time for the

p-ROM varies with the number of iterations and residual evaluations, an average wall

time of approximately 3.4 seconds was found, which leads to an average speed-up of

around 11x, comparable to what was found in the original work [19] for a similar test

case.

Field contours of u, v and p from the CFD solver, ni-ROM, and p-ROM are shown

in Figure 3.9 at a validation point µ∗ = [0.017, 0.025,−0.0297,−0.0273] with nt = 32

samples generated using LHS. Both ROMs are in close agreement with the FOM,

although the p-ROM is more accurate, which is evident when looking at contours of u
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Algorithm Wall Time (s)

CFD (average, 8 CPUs) 38.32
p-ROM (average, 8 CPUs) 3.4
SVD (n = 32) 0.269
Isomap (n = 32) 2.73 ×10−5

Table 3.1: Computational costs associated with the NACA 0012 case.

and p. Figure 3.10 shows the average relative field errors over the chosen sample levels

for the ni-ROM (left) and p-ROM (right), while Figure 3.11 shows the average relative

errors in CD and CL. When comparing similar field quantities, it is shown that the p-

ROM offers much better predictive performance, even when using a lower number of

training samples. Using the adaptive sampling algorithm results in significantly lower

errors for all field quantities when using the p-ROM, and for v and p when using the

ni-ROM. This effect is greater when using the p-ROM; as it is a physics-based model,

we can expect that a greater diversity of training samples will lead to a better gain

in predictive performance compared to the ni-ROM. Errors in drag and lift exhibit

a similar pattern, where both the predictive performance and reduction achieved by

using the adaptive sampling algorithm are greater for the p-ROM when compared

to the ni-ROM. There is also a greater relative decrease in force coefficient errors

compared to field errors. Figure 3.12 shows the average number of basis vectors

used for the p-ROM for both adaptation and LHS alone. For the same singular

value threshold, using the adaptation algorithm results in a higher number of basis

vectors at all of the sample levels, which shows that the training samples are more

physically diverse. Building an ni-ROM with 28 total samples offers better predictive

performance in v, p, CD, and CL compared to using LHS alone with 32 samples.

The same is true for building a p-ROM with 24 samples, where the relative gain

in predictive performance is larger, again showing that the p-ROM benefits more

from using adaptively chosen samples. For a smaller computational budget, using the

adaptive sampling algorithm leads to better overall predictive performance of both
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Figure 3.9: Comparison of NACA 0012 field contours with nt = 32 at µ∗ =[0.017,
0.025, -0.0297, -0.0273].

field and integral quantities for both purely data-driven and physics-based ROMs.

Figures 3.13 and 3.14 show field error contours for a single trial with errors close

to the reported average relative errors. The errors are averaged over all over the

validation points for the ni-ROM and p-ROM respectively. The contours represent

the absolute difference between the CFD solver and ROM. For all field quantities,

errors are greater closer to the surface of the airfoil and negligible farther away. It

should be noted that the relative L2 errors reported consider the error over the entire

computational domain; since the majority of the error is close to the airfoil surface,

this can explain the larger relative decrease in force coefficient errors compared to

field errors.
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Figure 3.10: Comparison of average L2 relative errors for field quantities for the ni-
ROM (left) and p-ROM (right).
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Figure 3.11: Comparison of average L2 relative errors in CD and CL for the ni-ROM
(left) and p-ROM (right).
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Figure 3.12: Average number of basis vectors used for the p-ROM.
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Figure 3.13: Mean ni-ROM field error contours for a single NACA 0012 trial using
LHS (left) and adaptation (right) with nt = 32.
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Figure 3.14: Mean p-ROM field error contours for a single NACA 0012 trial using
LHS (left) and adaptation (right) with nt = 32.
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Comparison to a POD-based Algorithm The performance of the adaptive sam-

pling algorithm is compared to a POD-based adaptive sampling algorithm found in

a work [54] by Guenot et al. The original work uses a mean-centered SVD [28] to

compute the POD basis, while I do not use that approach. The POD-based algorithm

uses a leave-one-out (LOO) cross validation approach to determine the influence of

each current sample on the POD basis. The LOO snapshot matrix S−j with the jth

snapshot left out is given as

S−j ∈ RN×n = [x1, · · · ,xj−1,0,xj+1, · · · ,xn], (3.9)

where 0 is the zero vector. The LOO POD basis Ψ−j comes from the SVD of S−j.

Given the singular values σj of the complete POD basis, the influence of each training

sample µi on the complete POD basis is given as

infl(µj) =
n∑

i=1

σj

(
1

|ψi ·ψi
−j|
− 1

)
. (3.10)

The dot product gives the cosine of the angle between each vector in the complete

and LOO POD bases. The relative influence of a sample on the POD basis is given

as

inflrel(µ
j) =

infl(µj)∑n
i=1 infl(µ

i)
, (3.11)

which has the effect of using the singular values to to assign weights to the POD

basis vectors. The distances between all candidate points in U cand and their nearest

neighbors in U train are calculated and stored in a vector dmin, just as in Algorithm 5.

For each candidate point, the influence of its nearest neighbor µd is multiplied by the

corresponding entry in dmin to obtain a POD basis improvement potential,

pot(µcand) = d(µcand,µ
d)inflrel(µ

d). (3.12)
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The candidate point with the highest basis improvement potential is chosen as the

next sample. To avoid the cost of computing n truncated SVDs of N × n matrices

at each adaptation iteration as required for the dot product in Equation 3.10, the

authors of the work compute it as follows,

|ψi ·ψi
−j| = |Un[j, j]|, (3.13)

where Un is computed from the SVD of Σ(I−V [j, :]TV [j, :]), which is an n×n matrix.

Table 3.2 shows the average relative errors between the two adaptive sampling

algorithms and LHS with nt = 32 and ni = nt

2
. The POD-based algorithm offers

better performance in predicting u, v, and CD, while the proposed algorithm offers

better performance in predicting p and CL. u in particular is much better predicted

using the POD-based algorithm. A reason for this may be that the variation in

u between different samples does not contribute as much to the geodesic distances

between points as v and p do, and additional samples that vary these quantities

more are selected. Table 3.3 shows that the proposed algorithm outperforms the

POD-based one in predicting all quantities except u, which further suggests that the

algorithm is better suited for projection-based ROMs. The computational costs of

both algorithms as a function of the number of current samples is given in Figure 3.15.

The given computed costs include all parts of the algorithms excluding the generation

of candidate points using LHS. The algorithm does not display any significant trend

with the number of samples, and variations can be due to the GPR algorithm or CPU

background processes. The POD-based algorithm exhibits an upward trend with the

number of samples, most likely due to an increased cost with computing the POD

basis as more samples are added. While the difference in computational cost between

the two algorithms for this case is low, we can expect that for larger problems such

as the Cessna 172 test case introduced next, that the Isomap-based algorithm will be

faster given the costs listed in Table 3.4, since costs apart from Isomap and POD will
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not vary with N .

Quantity Isomap POD LHS

u 0.00184 0.00134 0.00186
v 0.00680 0.00630 0.00851
p 0.00970 0.00988 0.01309
CD 3.7333 3.5206 4.5794
CL 0.55636 0.71766 1.08001

Table 3.2: Adaptive sampling algorithms and LHS average relative errors for the
NACA 0012 test case (ni-ROM, nt = 32).

Quantity Isomap POD LHS

u 0.00129 0.00117 0.00147
v 0.00330 0.00346 0.00463
p 0.00503 0.00552 0.00722
CD 1.0539 1.1616 1.5492
CL 0.46691 0.55562 0.7555

Table 3.3: Adaptive sampling algorithms and LHS average relative errors for the
NACA 0012 test case (p-ROM, nt = 32).

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Number of Samples

1.05

1.10

1.15

1.20

1.25

W
al

l T
im

e 
(s

)

Adaptive Sampling Algorithm Computational Cost Comparison
Isomap Adaptation
POD Adaptation

Figure 3.15: Computational costs associated with the Isomap and POD-based adap-
tive sampling algorithms for the NACA 0012 case.
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Effect of Initial Sample Size The effect of the fraction of initial LHS-generated

samples is investigated with nt = 32 for both the ni-ROM and p-ROM. In partciular,

the relative errors in the fields and force coefficients are compared to using LHS alone

with ni =
(
nt

4
, 3nt

8
, nt

2
, 5nt

8
, 3nt

4

)
with Nt = 20 trials. Figures 3.16 and 3.17 show that

there is there is no distinguishable trend between the error metrics and number of

initial samples for the ni-ROM. Apart from the average relative error in u, which

was already previously shown to be close to that of using LHS alone for the ni-ROM,

the predictive performance in all other quantities is significantly better than using

LHS alone. The results suggest that the effect of including adaptively chosen samples

has diminishing returns as more samples are added. All of the error metrics are

slightly higher for the p-ROM with ni =
3nt

4
. The p-ROM is more sensitive to the

diversity of the training data, and using fewer adaptively chosen samples can lead to

a relatively larger degradation in performance compared to the ni-ROM. When using

the adaptation algorithm, an important consideration is the accuracy of the GPR

model in predicting the latent variables at candidate points. Using too few initial

samples, especially for highly non-linear problems, can lead to an inaccurate latent

variable regression model and to poorly chosen samples.

54



8 12 16 20 24
Initial Number of LHS Samples

0.034

0.036

0.038

0.040

0.042

0.044

0.046

Av
er

ag
e 

Re
la

tiv
e 

Er
ro

r

NACA 0012 ni-ROM Error, Drag Coefficient

Isomap Adaptation
LHS Only

8 12 16 20 24
Initial Number of LHS Samples

0.011

0.012

0.013

0.014

0.015

Av
er

ag
e 

Re
la

tiv
e 

Er
ro

r

NACA 0012 p-ROM Error, Drag Coefficient

Isomap Adaptation
LHS Only

8 12 16 20 24
Initial Number of LHS Samples

0.005

0.006

0.007

0.008

0.009

0.010

0.011

Av
er

ag
e 

Re
la

tiv
e 

Er
ro

r

NACA 0012 ni-ROM Error, Lift Coefficient

Isomap Adaptation
LHS Only

8 12 16 20 24
Initial Number of LHS Samples

0.0045

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

Av
er

ag
e 

Re
la

tiv
e 

Er
ro

r

NACA 0012 p-ROM Error, Lift Coefficient

Isomap Adaptation
LHS Only

Figure 3.16: Comparison of average L2 relative errors in CD and CL for the ni-ROM
(left) and p-ROM (right) with nt = 32.
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Figure 3.17: Comparison of average L2 relative errors for field quantities for the ni-
ROM (left) and p-ROM (right) with nt = 32.
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3.4.1.2 Cessna 172 Wing

Figure 3.18: Mesh and FFD points for the Cessna 172 case.

A Cessna 172 wing, shown in Figure 3.18, is used as the next test case. The

root chord of the wing measures 1.67 m, and the semi-span aspect ratio is 3.2. The

Reynolds number is set to Re = 7 × 106 with a freestream velocity of U∞ = 63.8

m/s. A structured mesh with N = 609, 280 cells is generated and the computational

domain extends 30 chords from the surface. 100 FFD points are used to deform the

wing surface at five spanwise locations. The design parameters are the five twist

angles at these spanwise locations, which are obtained by rotating each set of FFD

points. The bounds of the twist variables are µ ∈ [−3, 3] degrees, and the baseline

angle of attack α of the wing is set to 2.5 degrees. The full-order model is run for

1000 iterations, after which the flow residuals fall to at least 10−6. A total of Nt = 5

trials are simulated at each sample level. Computational costs for running the CFD

solver as well as Isomap and the SVD with n = 32 are listed in Table 3.4, where it

is again shown that the cost of Isomap is very low compared to the FOM and SVD,

making the adaptation algorithm very efficient for this case.

Figure 3.19 shows mid-section field contours of u, v, and p at a validation point

µ∗ =[-2.19, -1.47, -2.79, -2.97, 2.79] from both the CFD solver and ni-ROM with

nt = 32 samples generated using LHS. Visually, there is very good agreement between

the FOM and ROM in all three fields. The average relative errors in the fields are
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Algorithm Wall Time (s)

CFD (16 CPUs) 364
SVD (n = 32) 7.72
Isomap (n = 32) 0.312

Table 3.4: Computational costs associated with the Cessna 172 case.

shown in Figure 3.20 for the chosen sample levels. Using the Isomap adaptation

algorithm leads to significantly lower errors in both u and p over all the sample levels

and a slight error reduction in v. The average relative errors in CD and CL are shown

in Figure 3.21, where we see that using the adaptation algorithm leads to very large

reductions in the computed output errors. Building a ROM using the adaptation

algorithm with 28 samples compared to 32 samples using LHS leads to comparable

relative errors in u, v, and p and significantly lower errors in CD and CL, showing

that the adaptation algorithm leads to better predictive performance given a smaller

computational budget, similar to the airfoil test case. When looking at average error

contours in Figure 3.22 for a single trial with relative errors close to the reported

averages, it is again shown that using the adaptation algorithm leads to considerably

lower errors in the computed fields closer to the surface of the wing, leading to a

larger drop in error in coefficients compared to the fields, where the error metric is

computed over the entire domain. Far away from the wing surface, errors in the fields

are similarly low when using the adaptation algorithm and LHS alone.
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Figure 3.19: Comparison of Cessna 172 mid-section field contours with nt = 32 at
µ∗ =[-2.19, -1.47, -2.79, -2.97, 2.79].
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Figure 3.20: Comparison of average L2 relative errors in field quantities.
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Figure 3.21: Comparison of average relative errors in CD and CL.
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Figure 3.22: Mean mid-section field error contours for a single Cessna 172 trial using
LHS (left) and adaptation (right) with nt = 32.
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3.5 Summary

In this chapter, two data selection algorithms using Isomap for ROMs are intro-

duced. An algorithm that selects local POD bases for a POD-GPR non-intrusive

ROM based on the nearest neighbors on a low-dimensional manifold is shown to offer

slightly improved predictive performance while using significantly less data when ap-

plied to a highly nonlinear lid-driven cavity flow. While this data selection algorithm

may not be useful in practice, it does show the efficacy of Isomap to separate data

by physical regime. A computionally efficient adaptive sampling algorithm that iter-

atively fills the manifold of the current data set is introduced, and is shown to offer

significantly improved predictive performance for both non-intrusive and projection-

based ROMs when applied to two external aerodynamics problems. By filling gaps in

the manifold, there are a greater diversity of physical regimes present in the training

data compared to using LHS, which only accounts for the distribution of the design

parameters and not the physics of the full-order model. For a given singular value

threshold, using adaptively chosen samples leads to a higher number of basis vectors

being used for the p-ROM, showing that the diversity of the training data increases.

Given a smaller computational budget, using the adaptive sampling algorithm leads

to improved predictive performance over LHS as well. Comparisons to a POD-based

algorithm from another work show that the algorithm performs better when using

the p-ROM, and slightly worse when using the ni-ROM.
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CHAPTER IV

Deep Learning Based ROMs

The previous chapter introduced algorithms for selecting data in POD-based

ROMs to maximize predictive performance. The performance of POD-based non-

intrusive and projection-based ROMs was found to be adequate when applied to two

external aerodynamics problems. However, it was also shown that for a highly nonlin-

ear lid-driven cavity problem, the predictive performance of the non-intrusive ROM

was relatively poor, in spite of using significantly more training data. As a linear

method, POD has performance limits for highly nonlinear problems. POD can also

be unsuitable for ROMs that are required to use a large amount of training data,

such as unsteady ROMs. Since unsteady ROMs are used to predict the temporal

evolution of the full-order state, multiple snapshots are required per training point

and the number of basis vectors required for a given relative information content also

increases. As a result, projection-based ROMs can suffer from numerical instabilities.

For non-intrusive ROMs, individual errors in predicting expansion coefficients can

have a compounding effect, leading to poor performance.

Recent advances have utilized nonlinear methods to create low-dimensional em-

beddings of the full-order solution space for use in ROMs. While POD makes a linear

assumption about the solution space, using nonlinear methods can capture complex

and varying patterns. Many nonlinear dimensionality reduction methods, including

Parts of this chapter appear in or are adapted from our previously published papers [59, 60].
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Isomap, do not provide a direct mapping back to the high-dimensional space from

the low-dimensional embedding, so this limits their use in ROMs. Deep learning [14]

approaches have been utilized to develop ROMs that provide efficient nonlinear so-

lution manifolds of physical systems. Convolutional autoencoders (CAEs), a type of

artificial neural network (ANN), have been used in ROMs and have been shown to

outperform POD-based methods [61] for some problems. Convolutional autoencoders

are adept at learning data that are spatially distributed, including the solutions to

PDEs discretized over a computational domain. Autoencoder neural networks consist

of two parts: an encoder, which maps high-dimensional inputs to a low-dimensional

latent space, and a decoder, which maps the low-dimensional latent space to an ap-

proximation of the high-dimensional input. Deep learning and artificial intelligence

(AI) methods have been at the forefront of massive recent breakthroughs in numer-

ous fields such as computer vision, natural language processing, and recommender

systems [62, 63, 64]. However, many results in the literature restrict the analysis of

CAE-based ROMs to a small number of test points [15] or find no improvement over

POD for larger datasets [17], so establishing their ability to generalize is important.

In this chapter, I introduce a steady non-intrusive ROM that uses convolutional

autoencoders to provide expansion coefficients that use a nonlinear mapping to the

full-order state, referred to as the CAE-GPR ROM. The ROM uses GPR to predict

each latent variable individually. The predictive performance of the ROM is compared

to the POD-GPR method when applied to a lid-driven cavity test case over a number

of ROM dimensions and entire dataset.

An unsteady ROM framework using ensemble learning that combines CAEs with

LSTMs, a type of recurrent neural network (RNN), is also introduced and called

the CAE-eLSTM ROM. The ROM uses LSTMs for multivariate autoregressive time-

series forecasting of the CAE latent variables over long time horizons at unseen points.

Bootstrap aggregating (bagging), a machine learning method for ensemble learning,
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is used to train multiple LSTMs that have their productions combined by averaging.

This method is shown to significantly improve the stability and accuracy of the tem-

poral prediction of expansion coefficients for two unsteady, incompressible, laminar

flow problems.

4.1 Artificial Neural Networks

An artificial neural network is a computational model inspired by biological neural

networks existing in animal brains [65]. ANNs are widely used and versatile models

for regression and classification problems and learn from a training data set T =

{X,Y }, where X and Y refer to the inputs and outputs respectively. Feedforward

neural networks are a type of ANN in which information always propagates in only

one direction, creating a direct mapping between inputs and outputs. Feedforward

neural networks are composed of an input layer, a number of hidden layers, and

an output layer. Neurons comprising these layers are associated with weights and

biases, trainable parameters which are optimized during the model training stages.

Figure 4.1 shows the architecture of a simple feedforward neural network with an

input layer, two hidden layers, and an output layer. There are connections between

each possible pair of neurons between layers, with each connection carrying a weight

term and each neuron carrying a bias term with the exception of those in the input

layer. Such a network is referred to as fully connected, or a multilayer perceptron

(MLP). Hidden layers in MLPs are also referred to as fully connected or dense layers.

Each hidden layer state hj is computed from the state in the previous layer, hj−1,

along with its weights Wj and biases bj as well as an activation function ϕ(x)

hj = ϕ (Wjhj−1 + bj) . (4.1)
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The role of activation functions is to introduce nonlinearities into the model, allowing

for complex functional relationships to arise. In addition to being able to learn the

training data well, neural networks should provide reasonable accuracy for unknown

data of the same class, a property referred to as generalization [65]. A commonly used

activation function is the rectified linear unit (ReLU) [66], which has been shown to

offer better performance and ability to generalize when compared to other common

activation functions [67, 68],

ϕ(x) = max(0, x) =


x, if x ≥ 0

0, if x < 0

. (4.2)

For inputs less than 0, the ReLU activation function returns a value and gradi-

ent of zero, effectively rendering certain neurons inactive. This can be problematic

for network training if a large percentage of neurons exhibit this behavior and is

commonly referred to as the dying ReLU problem. The leaky ReLU [69] activation

function mitigates this issue, by incorporating a small positive constant α for negative

inputs.

ϕ(x) =


x, if x ≥ 0

αx, if x < 0

. (4.3)

4.1.1 Training Neural Networks

4.1.1.1 Backpropagation

Feedforward networks are trained using a differentiable loss function, L (T , (W , b)),

which calculates a measure of error between the state found in the output layer and

the correct output values from the training data. The loss function serves as an ob-

jective function in an optimization problem, where its gradients with respect to the

weights and biases are calculated through backpropagation [70], an algorithm utiliz-
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Figure 4.1: Architecture of a multilayer perceptron with a 3-dimensional input, six
neurons in two fully connected layers, and four neurons in the output layer.

ing automatic differentiation. Common optimizers used in training neural networks

include stochastic gradient descent (SGD) and Adam [71]. Optimizers perform a

number of training epochs over T in an attempt to minimize the loss function. The

weights and biases update at the end of epoch n according to

(
W n+1, bn+1

)
= (W n, bn)− ηG

(
∂L (T , (W n, bn))

∂ (W n, bn)

)
, (4.4)

where η is the learning rate, a hyperparameter controlling the optimizer’s step size and

G is a function of the loss function’s gradient dependent upon the chosen optimizer.

The gradient of the loss function can be calculated using a single training sample as it

is when using SGD, using the average gradient of the entire training set, or by using

averages of a number of randomly selected mini-batches from T . Using mini-batches

when training neural networks has been shown to improve the ability to generalize

in addition to providing stable convergence [72]. The mini-batch size is chosen based

on the size of T to strike a balance between performance and computational cost.
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The predictive performance of a neural network initially increases with the number

of training epochs but starts to stall and then decrease as the network parameters

become overly tuned towards the training data and fail to generalize, a problem

referred to as overfitting. Regularization methods [73] exist to prevent overfitting. A

popular and widely used regularization method is dropout [74], where during each

epoch, a random fraction of neuron weights/biases in each hidden layer is deactivated

by being set to 0. This leads to some neurons not contributing to the forward pass

or backpropagation. The model becomes less reliant on specific neurons and neurons

also avoid co-adaptation. These factors lead to better robustness and generalizability.

Weight decay, a method which adds a penalty term to the loss function based on

the L2 norm of the model’s weights/biases, is another regularization method. The

penalty term prevents overfitting by lowering the likelihood that network parameters

will have large numerical values. A method that uses out-of-sample data is early

stopping, where the loss on a validation data set V is monitored during training. If

L (V , (w, b)) fails to drop for a prescribed number of epochs, training is stopped.

The initial weights and biases that are used can also effect the final performance

of a neural network. A commonly used weight initialization scheme for layers using

ReLU activation functions is the He normal [75] initializer, which samples weights

from a normal distribution centered around 0. It is a common practice to initial-

ize the biases in each layer to 0. There is no standard and accepted approach to

choosing the number of hidden layers and the number of nodes in each layer when

designing multilayer perceptrons. An optimal choice depends upon a number of fac-

tors, including the number of training samples, the dimensionality of the inputs and

outputs, the choice of activation functions, and the complexity of the function which

is being approximated. The number of hidden layers and nodes to use is often found

through a trial-and-error approach involving model validation techniques such as

cross-validation. In general, the total number of trainable parameters in a network
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is directly related to its capacity to learn functions. Neural networks become deeper

as more hidden layers are added. However, network configurations with a large num-

ber of trainable parameters tend to overfit to the training data and fail to generalize

unless regularization techniques are used. In addition, large networks are computa-

tionally expensive to train. In spite of these downfalls, deeper network architectures

have become increasingly popular for complex learning tasks in multiple domains as

they offer better performance [14]. Although more than two hidden layers are not

required for many learning tasks, some functions are not adequately approximated

by networks containing two hidden layers and using deeper networks can drastically

improve performance [76, 77].

4.1.1.2 Data Normalization

Similar to many other machine learning algorithms, neural networks often require

that the training data be normalized in order to ensure adequate performance [78].

Data normalization allows the optimizer to learn the optimal network parameters at

a much faster rate. One way to normalize the training data is to apply min-max

scaling to each feature in the data matrix X containing either the inputs or outputs

x′ =
x−min(xj)

max(xj)−min(xj)
, (4.5)

where j is the feature index. Min-max scaling results in the data being transformed

into the range [0,1]. After training, new input data are also normalized while an

inverse transformation is applied to predicted outputs.

4.1.2 Autoencoders

Autoencoders are a type of feedforward neural network that aim to learn to re-

construct inputs in the output layer, g : x → x̂ where x ≈ x̂. Autoencoders use

69



an architecture composed of two individual feedforward neural networks. The en-

coder genc : RN → Rk where k ≪ N maps a high-dimensional input x into the

low-dimensional latent space a. The decoder gdec : Rk → RN maps the latent space

back to an approximation of the high-dimensional input x̂. The combination of the

two results in

g : x̂ = gdec ◦ genc(x). (4.6)

Autoencoders have been shown to provide robust low-dimensional representations of

high dimensional data [79]. Once an autoencoder is sufficiently trained and g(x) ≈ x

for all inputs over T , the corresponding low-dimensional codes can be passed to the

decoder gdec(a) to obtain accurate reconstructions x̂ for all data in T . States existing

outside of the training set x∗ can also be well-approximated if a good approximation of

the low-dimensional latent space a∗ can be found. In the context of ROMs, the latent

space is equivalent to the set of expansion coefficients that map from a low-dimensional

representation to the high-dimensional full-order solution. Similarly, the projection

of a full-order solution onto the nonlinear manifold provided by the autoencoder is

given by x̂. Training is conducted on the combination of the encoder and decoder,

while after training the encoder is often no longer useful and only the decoder is

used. Figure 4.2 shows a sample architecture of a symmetric MLP autoencoder with

two hidden layers between the input/output layers and latent space. Since MLP

autoencoders are fully connected, the total number of trainable parameters in the

network can grow very large when the dimension of the input, N , is high. As the

number of trainable parameters increases, the amount of training data required to

sufficiently train the network to make reasonably accurate predictions also grows

large. This is contrary to the objective of model reduction, which aims to make

predictions using a limited amount of training data.
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Figure 4.2: Architecture of a symmetric MLP autoencoder with two fully connected
layers between the input/output and latent space.

4.1.2.1 Convolutional Autoencoders

There exist neural network architectures that make use of parameter sharing,

where rather than weight combinations existing for each pair of neurons between lay-

ers, multiple neurons share a single weight. Convolutional autoencoders effectively

implement parameter sharing to limit the total number of trainable parameters in

the network. This is done through the use of convolutional layers, which provide

feature maps of input data that are spatially arranged [80]. Convolutional layers use

a number of filters to convolve over spatially distributed input data, with each filter

having its own set of weights. Pooling layers are also used in convolutional networks

to summarize the features in input data through operations including averaging and

maximization. Convolutional layers are widely used in the field of computer vision,
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dealing with spatially distributed data such as images [81, 62]. CAEs can also be a

useful tool for states that arise from numerically solving discretized PDEs as they

tend to be spatially distributed. Data with multiple states, i.e. components of ve-

locity or levels of red, green, and blue in images, can also be handled well by CAEs

through the use of a number of input channels. More details on convolutional layers

can be found in a work by Dumoulin and Visin [82]. A combination of convolutional,

pooling, and fully connected layers is used to construct CAEs, as shown in a schematic

of an encoder section of a CAE in Figure 4.3. Spatially distributed data arising from

the solutions of discretized PDEs often vary smoothly through the computational

domain. CAEs are highly adept at handling data that are naturally spatially dis-

tributed by learning spatially invariant features, allowing them to outperform other

neural network architectures [83, 84]. The input and output layers of CAEs usually

consist of 2-dimensional (2D) states in each channel. Training data must be reshaped

before being input into the network through the use of a reshape operator

R : RN×nc → Rny×nx×nc , (4.7)

where ny refers to the number of data points in the vertical direction and nx the

number of data points in the horizontal direction. The reshape operator is applied to

each separate state that occupies the nc input channels. An inverse reshape operator

is used to reshape state output data in each output channel into the original vector

format

R−1 : Rny×nx×nc → RN×nc . (4.8)

4.1.3 Recurrent Neural Networks

Feedforward neural networks are powerful models for capturing complex functional

relationships. However, they make the assumption that the inputs and outputs do not
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Figure 4.3: Architecture of the encoder of a convolutional autoencoder (CAE) con-
sisting of convolutional, pooling, and fully connected layers.

exhibit any sequential or temporal dependencies. There are no mechanisms within the

network to use information about the position, or order, of the inputs and outputs.

This makes feedforward neural networks unsuitable for tasks such as time-series fore-

casting or natural language processing, where capturing the underlying order of the

data is essential. Recurrent neural networks [85] (RNNs) were developed to address

the limitations of feedforward neural networks in handling sequential data. RNNs uti-

lize an architecture that processes inputs according to their sequential order through

the use of a hidden state that retains information about previous inputs. Inputs are

processed using a series of cells which contain neurons designed to update the hidden

state. RNNs update the weights and biases using backpropagation through time,

where the gradients are calculated with respect to the loss function for each input,

or time step. A common issue encountered when training RNNs is the vanishing

gradient problem [86], which occurs when gradients become very small as they are

backpropagated through time. When using training data of long sequence lengths, the

gradients are multiplied many times; for gradient values less than 1, this can lead to

the product approaching 0. Two RNN architectures developed to address this prob-

lem are long short-term memory networks (LSTMs) [87] and gated recurrent units

(GRUs) [88]. Both architectures use gating mechanisms to control information flow

and use memory cells to store long-term information. LSTMs use a more involved

network architecture that allows for better modeling of complex long-term depen-

dencies, although this comes at an increased training cost due to a larger number of
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network parameters.

4.1.3.1 Long Short-Term Memory Neural Networks

LSTMs use a network architecture that includes a series of gates that effectively

control the flow of information. An individual LSTM cell consists of a cell state ct

which acts as an internal memory, and a hidden state ht, which serves as an out-

put. The cell state is responsible for selectively retaining or forgetting information

from previous steps, while the hidden state represents the model’s cumulative out-

put. LSTM cells contain a forget gate ft, input gate it, and output gate ot. Forget

gates determine what information from previous states should be forgotten. Input

gates decide what new pieces of information should be stored in the current state.

Output gates use the current and previous cell states to determine what information

is retained in the model. Using this architecture, the model is able to retain informa-

tion that is relevant for long-range sequential dependencies and discard information

that becomes irrelevant over time, making LSTMs a popular choice for sequential

modeling. For a given input at ∈ Rk, the LSTM equations are given as

ft = σ(Ff (at))

it = σ(Fi(at))

ot = σ(Fo(at))

c̃t = tanh(Fc(at))

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct),

(4.9)

where σ is the sigmoid function, tanh is the hyperbolic tangent function, and ⊙ is the

Hadamard product. F is a linear function of the weights Wa ∈ Rnh and Wh ∈ Rnh

and biases b ∈ Rnh , where nh is the number of neurons in the hidden layer of each

LSTM cell, and is given as
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F =Waat +Whht−1 + b. (4.10)

A unique set of weights and biases belongs to each gate or cell state. When using

LSTMs for time-series prediction, an autoregressive prediction is used, often referred

to as the sliding window approach. For a given input sequence containing multivariate

data for w timesteps, the next step in the sequence is predicted. When making the

next prediction, the current prediction is incorporated into the input sequence by

removing the first element and shifting the rest to the prior position. Eventually,

the model inputs will consist of only previously computed predictions, which makes

model performance sensitive to error propagation. The input sequence length, or

window size w, is an important hyperparameter to consider when training LSTMs.

Although LSTMs are designed to effectively learn long-range dependencies, using an

input sequence length that is too long can lead to the inclusion of outdated and

irrelevant information. On the other hand, using an input sequence length that is too

small can ignore important long-range information.

4.2 Steady Non-intrusive ROM

This section describes a non-intrusive ROM for steady-state problems that uses

convolutional autoencoders to provide a nonlinear solution space, referred to as the

CAE-GPR ROM. Gaussian process regression is used to predict the expansion co-

efficients at unseen points. The offline stage involves obtaining full-order snapshots

of solutions evaluated at a set of design parameters U train and assembling them into

a snapshot matrix S, similar to the POD-GPR ROM. The reshape operator R is

applied to S so the data can be used to train a CAE with architecture C. The set

of expansion coefficients Atrain is obtained for the training set using genc. k GPR

models F = [f1(µ), f2(µ), · · · fk(µ)] are trained on {U train,Atrain} and saved for use
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Figure 4.4: Diagram of a single-layer LSTM neural network making a prediction one
timestep ahead.

in the offline stage along with the decoder gdec. During the online stage, approximate

expansion coefficients ã∗ are passed to the decoder to obtain approximate solutions

X̃∗. The CAE-GPR method is outlined in Algorithm 6. Training the convolutional

autoencoder makes the offline stage of CAE-GPR more expensive than POD-GPR,

while the online costs for both models are similar.

4.2.1 Lid-driven Cavity

The lid-driven cavity case from Section 3.3.1 is used to test the performance of

both the CAE-GPR and POD-GPR ROMs over a number of ROM dimensions. 500
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Algorithm 6 Offline and online stages of CAE-GPR method

1: function CAEGPR OFFLINE(U train,C,R)
2: Compute high-fidelity solutions for µ ∈ U train by solving FOM and assemble

into S
3: Apply reshape operator R to S to obtain Xtrain

4: Train convolutional autoencoder with architecture C on {Xtrain,Xtrain}
5: Calculate expansion coefficients for training data Atrain = genc (Xtrain)
6: Train k GPR models F = [f1(µ), f2(µ), · · · fk(µ)] for each expansion coeffi-

cient in {U train,Atrain}
7: return (gdec,F)
8: end function

1: function CAEGPR ONLINE(µ∗, gdec,F ,R−1)
2: Evaluate expansion coefficients ã∗ = F(µ∗)
3: Predict full-order solution X̃∗ = gdec (ã

∗)
4: Apply inverse reshape operator R−1 to X̃∗ to obtain x̃∗

5: return x̃∗

6: end function

design parameters are generated with LHS using the same bounds,

µ1 ∈ [1, 2],

µ2 ∈ [1, 2],

µ3 ∈ [−π

4
,
π

4
],

µ4 ∈ [100, 600].

Again, the computational mesh consists of 64 × 64 cells uniformly distributed in

the x and y directions and one cell spanning the z direction, resulting in N = 4096

and a reshape operator R with ny, nx = 64 and nc = 2. The full-order states of u

and v are used to compare the performance of the POD-GPR and CAE-GPR ROMs.

The metric of performance used to compare the ROMs is the relative L2 error ϵROM

between the FOM state x and the ROM approximated state x̃

ϵROM =
∥x− x̃∥2

∥x∥2
. (4.11)
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Similarly, the relative projection error ϵProj for both methods is also reported between

the FOM state and the projected state x̂ to assess how accurately the expansion co-

efficients are interpolated as well as to provide a lower bound for the ROM prediction

errors.

ϵProj =
∥x− x̂∥2

∥x∥2
. (4.12)

The CAE architecture is given in Table 4.1. The network has two input chan-

nels, one for each of the velocity components. The encoder consists of a combination

of convolutional, pooling, and fully connected layers. The decoder consists of fully

connected and transpose-convolutional layers. All of the layers with the exception

of the output use a leaky ReLU activation function with α = 0.25. There are a

relatively small number of convolutional and pooling layers in the network; I found

that adding more of them did not improve the network performance, although their

absence (using a MLP) causes a large decrease in performance. Compared to images

which can be very noisy, the physical states in the presented problem vary smoothly,

and fewer convolutional layers are required to learn features. I found that having a

fully connected layer on either side of the latent space is important for network per-

formance, although this does signficantly increase the number of network parameters.

The learning task at hand requires that reconstructions of data be highly accurate,

and networks with more parameters allow for more robust functional relationships to

arise. Min-max scaling is used independently on u and v before training and the CAE

outputs are then scaled back to their original range after prediction. The output layer

uses the sigmoid activation function, which scales into the range [0,1], ensuring that

the outputs can be scaled back to their original range for prediction, and is given as

ϕ(x) =
1

1 + e−x
. (4.13)
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A maximum number of 7500 training epochs are used, and early stopping is en-

forced if the validation loss fails to decrease over 500 epochs. A mini-batch size of

8 is used for training and the mean squared error loss function is used. The Adam

optimizer is used with an initial learning rate of of η = 3 × 10−4. A five-fold cross-

validation approach is used to assess the performance of the ROM over the entire

dataset, creating five folds of the dataset containing 400 training samples and 100

test/validation samples. These 100 samples are split evenly into 50 test and 50 val-

idation samples, which are used to monitor the autoencoder loss during training.

While every sample in the dataset is used for training, only half are used for predic-

tion. An average cross-validation error is reported for both the ROM prediction and

projection errors over all of the prediction points. The validation samples are not

used for the POD-GPR ROM, which uses an individual ROM for both u and v.

Layer Filters Kernel Stride Activation Function Output Size

Input 64 × 64 × 2
Convolutional 64 3 × 3 1 × 1 Leaky ReLU 64 × 64 × 64
Max-Pooling 2 × 2 2 × 2 32 × 32 × 64
Convolutional 32 3 × 3 1 × 1 Leaky ReLU 32 × 32 × 32
Max-Pooling 2 × 2 2 × 2 16 × 16 × 32
Reshape 8192
Fully Connected Leaky ReLU 128
Latent Space Leaky ReLU k
Fully Connected Leaky ReLU 128
Fully Connected Leaky ReLU 8192
Reshape 16 × 16 × 32
Convolutional Transpose 32 3 × 3 2 × 2 Leaky ReLU 32 × 32 × 32
Convolutional Transpose 64 3 × 3 2 × 2 Leaky ReLU 64 × 64 × 64
Convolutional Transpose 2 3 × 3 1 × 1 Sigmoid 64 × 64 × 2

Table 4.1: Detailed convolutional autoencoder architecture used for the lid-driven
cavity problem.

The POD-GPR ROM is evaluated for both projection and prediction errors at

ROM dimensions k ∈ [1, 2, · · · 35] while the CAE-GPR ROM is similarly evaluated

at k ∈ [2, 3, 5, 10, · · · 35]. Figure 4.5 shows the cross-validation relative errors for u

and v; for evaluated ROM dimensions k > 2, the CAE-GPR ROM exhibits higher
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predictive performance over the data set. The projection error provided by the CAE

is high at k = 2 and comparable to that of POD, and it decays rapidly until k = 5,

after which it does not vary much. Similar results are presented in a work by Lee

and Carlberg [15]. Very low values of k decrease the capacity of the network to learn

meaningful low-dimensional representations of the training data. As k increases, the

relative difference in the projection and prediction errors grows. This is an expected

result since prediction errors in the individual expansion coefficients will have a cas-

cading effect. The cross-validation projection error from POD continues to decay

after k = 35, while the POD-GPR prediction error flattens out at around k = 20.

The cross-validation projection error produced by the CAE for both u and v is lower

than that of POD until around k = 25; even with a higher projection error, the pre-

dictive performance offered by CAE-GPR exceeds that of POD-GPR for k ≥ 25. The

CAE offers a set of expansion coefficients that are more easily predicted when using

GPR compared to POD, which sees its predictive performance stall after k reaches a

certain value, a commonly found result for POD-GPR based ROMs [28]. In addition

to giving better performance in terms of both projection and prediction for low values

of k, the use of a nonlinear solution space for ROM construction offers a more robust

relationship between the design parameters and expansion coefficients. The difference

in projection and prediction errors from POD-GPR is almost 0 at low values of k,

but rapidly increases as k grows, suggesting that the individual expansion coefficients

become harder to interpolate as the corresponding singular values decay.

Figure 4.6 shows the relative error plot for both ROMs at k ∈ [5, 10, · · · 35] for a

single unseen design parameter µ∗ = [1.167, 1.997,−0.4665, 555.5], while Figure 4.7

shows the contour plots of the FOM as well as the absolute error plots for CAE-GPR

at k = 5 and POD-GPR at k = 35. Results at another design parameter instance at

µ∗ = [1.963, 1.789, 0.5890, 308.5] are shown in Figures 4.8 and 4.9. The generalized

results from the cross-validation also hold here; for a greater projection error, CAE-
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Figure 4.5: Cross-validation prediction and projection errors in u and v for both
ROMs at different values of k.

GPR provides a lower prediction error. It is also shown at these design parameters

that the prediction error curve of POD-GPR flattens out. There is more volatility

in both the projection and prediction errors for CAE-GPR, although POD-GPR still

never outperforms it in predicting u and v. For k = 10 at both design parameters,

the difference in the projection and prediction errors is very small, and almost 0 for u

at µ∗ = [1.167, 1.997,−0.4665, 555.5] and v at µ∗ = [1.963, 1.789, 0.5890, 308.5]. This

is similar to the behavior exhibited by POD-GPR for low values of k, showing that

CAE-GPR is also capable of producing highly accurate estimates of the expansion

coefficients. The error contours at these design parameters highlight the increased

predictive performance given by CAE-GPR over POD-GPR. While the error contours

given by POD-GPR exhibit distinct bands of high error, the contours produced by

CAE-GPR are generally more uniform and dispersed throughout the domain. At

the chosen design parameters, there is a significant decrease in relative error; at

µ∗ = [1.167, 1.997,−0.4665, 555.5], the percent decreases in relative error of u and

v from POD-GPR to CAE-GPR are 42.4% and 49.8% respectively, while at µ∗ =

[1.963, 1.789, 0.5890, 308.5] they are 48.3% and 75.6% respectively.
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Figure 4.6: Plots of the prediction and projection errors in u and v for both ROMs
at µ∗ = [1.167, 1.997,−0.4665, 555.5] at different values of k.

(a) u,Ground Truth (b) u,POD-GPR Difference (c) u,CAE-GPR Difference

(d) v,Ground Truth (e) v,POD-GPR Difference (f) v,CAE-GPR Difference

Figure 4.7: ROM comparison of u and v at µ∗ = [1.167, 1.997,−0.4665, 555.5], with
k = 5 for CAE-GPR and k = 35 for POD-GPR.

Convolutional autoencoder training Figure 4.10 shows the training and valida-

tion losses against the number of epochs for selected folds of the training and valida-
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Figure 4.8: Plots of the prediction and projection errors in u and v for both ROMs
at µ∗ = [1.963, 1.789, 0.5890, 308.5] at different values of k.

(a) u,Ground Truth (b) u,POD-GPR Difference (c) u,CAE-GPR Difference

(d) v,Ground Truth (e) v,POD-GPR Difference (f) v,CAE-GPR Difference

Figure 4.9: ROM comparison of u and v at µ∗ = [1.963, 1.789, 0.5890, 308.5], with
k = 5 for CAE-GPR and k = 35 for POD-GPR.

tion data for k = 5, 10, 25, 30. Early stopping is used as a regularization method, and

the validation loss fails to drop for 500 epochs well before the maximum number of

7500 epochs at k = 5, 10, 25. At k = 30, training stops after 7491 epochs. While the

training loss continues to decline slowly in all of the plots, the validation loss shows

asymptotic behavior. By monitoring the validation loss and using early stopping, the
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network is prevented from overfitting the training data. Training is performed on an

NVIDIA TITAN RTX GPU. The average wall time and number of epochs for train-

ing the CAE over all of the data folds is shown in Table 4.2; in general, increasing k

leads to higher computational costs. Both the number of trainable parameters and

capacity of the network to learn are affected by the size of the latent space.
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Figure 4.10: Training and validation losses at different ROM dimensions k for a
selected fold of the training and validation data.

Activation function performance In addition to the leaky ReLU activation func-

tion, results are also presented for the projection errors obtained when using the ReLU

activation function as well as the tanh activation function, another popular choice for
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ROM Dimension, k Average Wall Time (s) Average Number of Epochs
5 884 3533
10 883 3564
15 867 3441
20 1123 4465
25 971 3865
30 1283 4675
35 1301 4519

Table 4.2: Average computational costs over all data folds for training the CAE.

neural networks which is given as

ϕ(x) =
ex − e−x

ex + e−x
. (4.14)

This is done by replacing all of the leaky ReLU activation functions (α = 0.25) in

the network in Table 4.1 with either ReLU or tanh and following the same network

training procedure. Figure 4.11 shows the cross-validation projection errors obtained

using networks with the three different activation functions for ROM dimensions

k ∈ [5, 10, · · · 35] and POD. It is shown that the network using the ReLU activation

function is outperformed by POD for the chosen values of k, and that leaky ReLU

offers slightly improved performance over tanh in reconstructing u and v. Using the

leaky ReLU activation function overcomes the dying ReLU problem, which is shown

to lead to networks with very poor predictive performance. The initial randomization

of the network weights and biases may lead to poor performance when using the ReLU

activation function; for k = 15, the maximum value of ϵProj for u at a single test fold

is 4.228 × 10−1, while the second highest value is 2.372 × 10−2, which is similar to

the errors provided by using leaky ReLU or tanh. The poor performance given by

using ReLU is not restricted to single folds of the data either; for a specific fold over

the selected k, ϵProj for u has a maximum of 4.233× 10−1 at k = 5 and minimum of

2.1028× 10−2 at k = 25. This implies that using the ReLU activation function leads

to network performance being sensitive to the initialization of the weights and biases,
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in contrast to using tanh or leaky ReLU which offer more consistent performance.
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Figure 4.11: Cross-validation projection errors in u and v using different activation
functions.

4.3 Unsteady Non-intrusive Ensemble ROM

An important result from the previous section is that the projection error given by

CAEs does not exhibit a decrease with the ROM dimension, unlike POD. While the

projection error does initially decrease for very low ROM dimensions, it stabilizes as

the ROM dimension grows. CAEs can effecitively represent the solution space using a

small number of expansion coefficients, which make them suitable for highly nonlinear

problems. Another situation where this can be advantageous is when the number of

training snapshots is high. Unsteady ROMs applied to unseen designs require multiple

temporal snapshots per training point, which can become prohibitively large for POD.

Unsteady non-intrusive ROMs combine either POD or CAE for spatial recon-

struction of full-order states with a model used to make time-series predictions of the

expansion coefficients. Deep learning methods are popular for this as well, including

LSTMs [89] and transformer neural networks [90]. Both LSTMs and transformers are

powerful models for handling data that are sequential in nature. Transformers utilize

an architecture that is much more complex than the one LSTMs use, which leads to
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higher computational costs for both training and inference.

When making time-series predictions at unseen data sets over a long time horizon,

error propagation is a common issue. Errors made in early predictions can accumulate

and compound over time, leading to very large inaccuracies. Unseen data sets are

particularly suspect to this, as the model may not account for shifting data patterns.

Additionally, there is no feedback from previously seen data to correct errors. This

phenomenon is commonly observed in data-driven CFD applications [91, 16]. As

a result, most examples in the literature focus on applying unsteady non-intrusive

ROMs to single-parameter problems [89, 90, 92], where the ROM is both trained on

and used for a single design. I have identified two examples that combine CAEs and

LSTMs for non-intrusive ROMs and apply them to unseen designs [93, 94]. The work

by Maulik et al. does not mention the error propagation issue, while the work by

Hasegawa et al. presents results of low accuracy. A recent paper [95] by Jeon et

al. developed a hybrid AI-CFD method using flow residuals to address the issue of

error propagation. This method is intrusive and requires the ROM to have access to

the CFD solver for computing the residuals, which leads to a more computationally

intensive online stage.

In this section, ensemble learning [96], a machine learning technique for improving

the stability and lowering the variance of predictive models, is used to develop a

fully data-driven framework referred to as the CAE-eLSTM ROM. Ensemble learning

involves combining multiple base models, referred to as weak learners, to provide a

composite model that offers greater accuracy. To this end, bootstrap aggregating

(bagging) is used as the ensemble learning method for the temporal portion of the

ROM, which involves training the weak learners on subsets of the dataset chosen

randomly through sampling with replacement.
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4.3.1 Ensemble Learning

While LSTMs are powerful models for time-series prediction, the quality of pre-

dictions over long time horizons on data existing outside of the training set is highly

sensitive to the weights and biases of the model. Additionally, the total number of

weights and biases is usually very large, which makes finding an optimal configuration

very difficult, even when using state of the art optimization algorithms.

To mitigate the issue of high model variance, ensemble learning is a commonly

used approach. By leveraging multiple base models that exhibit high variance, en-

semble methods significantly reduce errors and improve robustness. Boosting and

bootstrap aggregating (bagging) are the two main types of ensemble learning meth-

ods. Boosting [97] trains individual models sequentially, where each subsequent weak

learner focuses on correcting prediction errors from the previous ones. While boosting

is widely used and offers good performance, the base models must be trained iter-

atively, which incurs a large computational cost, especially in the context of neural

networks.

Bagging [98] is an algorithm that consists of two stages: bootstrapping and ag-

gregation. Bootstrapping is a resampling technique where multiple random subsets

of the data set, chosen through sampling with replacement, are constructed. The

subsets of the data typically have the same number of data points as the original

data set. This approach leads to individual data points being present multiple times

in the individual subsets. Multiple base models are trained individually on each of

the bootstrapped data sets, which can be done in parallel. The aggregation stage cre-

ates an ensemble model by taking an average of the predictions given by each weak

learner. Given m weak learners fi, the aggregate prediction f̄ is given as

f̄ =
1

m

m∑
i

fi. (4.15)
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Bagging mitigates the issue of error propagation by averaging the errors of multiple

weak learners, which will become increasingly small as the number of learners grows,

leading to much lower variance. Bagging also offers a considerable gain in robustness

and generalization by leveraging the diversity of the weak learners to increase the

capability of handling varying patterns outside of the training data. Figure 4.12

shows an example of bootstrapping. The bootstrapped datasets can contain more or

less instances of the original data points.

Figure 4.12: An example of bootstrapping, where random subsets of the original
dataset are chosen through selection with replacement.

4.3.2 CAE-eLSTM ROM

The non-intrusive CAE-eLSTM ROM framework combining convolutional autoen-

coders for spatial reconstruction and LSTM ensembles utilizing bagging for temporal

prediction is described here. Solutions to the full-order model for designs µ in U train

are obtained during the offline stage and are assembled into a matrix X. A convolu-

tional autoencoder with latent dimension k is trained on X for a sufficient number of

epochs such that inputs are accurately reconstructed. Next, the expansion coefficients

for training data Atrain are computed using the encoder genc. Sequences of length w

are then generated from Atrain and m bagged LSTMs are trained on individual data

subsets chosen randomly with replacement.
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The online stage involves executing the ROM to compute approximate solutions

at a point µ∗, where the full-order model is initially run for Ti timesteps. An initial

sequence of latent variables of length w is required as an input to the ROM. This

means that the FOM must be run for at least w timesteps, and potentially longer

depending on the how useful initial simulation data is for the ROM. The latent

variables for the rest of the simulation are calculated autoregressively using the bagged

LSTMs by taking an average of the individual predictions. The online and offline

stages are outlined in Algorithm 7. When using a ROM with a single LSTM as in

previous works [93, 94], the LSTM is trained on the entire time-series dataset and is

used alone for time-series prediction.

Algorithm 7 Offline and online stages of CAE-eLSTM ROM

1: function CAE eLSTM OFFLINE(U train, k,m,w)
2: Compute high-fidelity solutions for µ ∈ U train by solving FOM and assemble

into X.
3: Train convolutional autoencoder with latent dimension k on X.
4: Calculate expansion coefficients for training data Atrain = genc (X).
5: Trainm LSTMs E = [LSTM1(A),LSTM2(A), · · ·LSTMm(A)] using a window

size of w on sequences selected randomly with replacement from Atrain.
6: return (genc, gdec, E)
7: end function

1: function CAEGPR eLSTM ONLINE(µ∗, genc, gdec, E)
2: Run FOM for Ti timesteps at µ∗ and compute the expansion coefficientsA∗

Ti
=

genc (XTi
).

3: for t ∈ {Ti, Ti+1, . . . , T − 1} do
4: Compute a∗

t+1 = E(A∗
t ) by using an average of the m individual LSTM

predictions.
5: Incorporate a∗

t+1 into the current window A∗
t .

6: end for
7: Predict full-order snapshots X̃∗ = gdec (A

∗)
8: return X̃∗

9: end function
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4.3.3 Results

The two test cases used to demonstrate the performance of the CAE-eLSTM ROM

are a lid-driven cavity and the flow over a cylinder. Both cases use two-dimensional

computational domains. The lid-driven cavity case consists of three design parame-

ters controlling the geometry of the domain, while the cylinder case consists of two

design parameters controlling geometric and physical properties of the simulation.

Both cases involve simulating unsteady, incompressible, laminar flow by solving the

unsteady Navier-Stokes equations, which are found by adding a time derivative term

for the velocity to Equation 2.2. The ROM is used to predict the vertical and hori-

zontal components of the velocity. The training data for each velocity component are

scaled to a range [0,1] using min-max scaling before being used for the CAE. Similarly,

the CAE latent variables are also scaled using min-max scaling before being used for

the LSTM. An NVIDIA DGX system consisting of 8 NVIDIA A100 GPUs is used

to train the CAE and LSTMs, run the cylinder simulations, and for ROM inference.

The lid-driven cavity simulations are run on a local workstation using a single CPU

core.

The performance of the ensemble ROM is tested against a CAE-LSTM ROM that

uses a single LSTM model. Using five different random initializations of weights and

biases prescribed by different seeds, the time-series of latent variables are visually

compared in addition to performance metrics averaged over the seeds. When training

bagged LSTMs for a single seed, the same initial weights and biases are used. The

seeds used to initialize the LSTM model are s =[1, 2, 3, 4, 5]. For a single test point

µ∗ and seed s, the error metric of interest is the relative L2 error in a field component

averaged over the prediction time horizon,

ϵs =
1

T − Ti

T∑
t=Ti+1

∥xt − x̂t∥2

∥xt∥2
. (4.16)

91



The errors are then averaged over each seed to give a single error metric ϵ̄

ϵ̄ =
1

5

5∑
s=1

ϵs. (4.17)

To measure how sensitive the error is to the initial weights and biases of the model,

the sample standard deviation σs of ϵs is used,

σs = std(ϵs). (4.18)

A lower standard deviation in the error term indicates that the model performance

does not vary much with the initial weights and biases.

4.3.3.1 Lid-driven Cavity

The first test case is a geometrically parameterized two-dimensional lid-driven

cavity flow that is similar to the one presented in Sections 3.3.1 and 4.2.1. The design

parameters are the geometric parameters shown in Figure 3.3 while Re is fixed to

400. The bounds for the design parameters are given as

µ1 ∈ [1.2, 1.8],

µ2 ∈ [1.2, 1.8],

µ3 ∈ [−π

6
,
π

6
].

The computational mesh consists of 128 × 128 cells distributed uniformly in the

x and y directions, resulting in N = 16, 384. The initial condition is the solution to

steady, incompressible, laminar flow at Re = 20. Unsteady flow is simulated using

the standard OpenFOAM solver icoFoam for T = 5 seconds with data being saved

every 0.025 seconds, leading to 200 time snapshots for a single simulation.
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100 sets of design parameters are generated and randomly split into 90 training

samples and 10 test points, which are given in Table 4.3. The CAE-eLSTM ROM

uses m = 64 bagged LSTMs and a window size w = 20. These parameters were cho-

sen through a trial-and-error process with the goal of maximizing predictive accuracy

while trying to keep the computational cost of training the LSTM ensemble relatively

low. The CAE latent dimension is set to k = 4; below this value, the CAE recon-

struction errors were found to be worse, and increasing k offered no improvement.

The LSTM architecture consists of two hidden layers consisting of 50 neurons each

and a dropout rate of 0.1. The output layer contains a sigmoid activation function

so the outputs are constrained to a range of [0, 1]. The Adam optimizer is used to

train both the CAE and LSTM, with an initial learning rate of η = 5 × 10−4 and

weight decay of λ = 1× 10−6. The CAE is trained for a total of 200 epochs, while an

individual LSTM is trained for 250 epochs. At the test points, the full-order model

is simulated for Ti = 0.75 seconds (15 snapshots), or 15% of the total time horizon.

Test Case Index µ1 µ2 µ3

1 1.473 1.701 0.288
2 1.659 1.653 -0.372
3 1.593 1.611 0.455
4 1.209 1.443 0.371
5 1.299 1.689 -0.0367
6 1.371 1.311 -0.351
7 1.443 1.617 -0.487
8 1.232 1.335 -0.330
9 1.719 1.785 -0.455
10 1.281 1.449 -0.340

Table 4.3: Test case design parameters for the lid-driven cavity problem.

Figure 4.13 shows the trajectories of the latent variables computed using ensemble

and single LSTMs at the test point µ∗ = [1.299, 1.689,−0.0367] using five different

seeds which control the initial weights and biases of the LSTM. It is shown that for

all of the latent variables, using LSTM ensembles leads to higher prediction accuracy
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and significantly lower variance. When using a single LSTM, the different predictions

quickly diverge from each other and the ground truth. The ensemble model is much

less sensitive to the initial seed, and the predicted trajectories do not differ much. The

second latent variable exhibits diverging trajectories when using the ensemble model,

but the effect is much less pronounced than when using a single LSTM. Figure 4.14

shows contours of u and v at the test point as well as absolute ROM errors averaged

over the last 10% of the simulation (t ∈ [4.5, 5] seconds) for a single seed. The

errors are signifcantly larger when using a single LSTM throughout the computational

domain for both u and v. Table 4.4 lists the seed-averaged relative errors ϵ̄ in u and

v for the test points. The ensemble method offers better performance in predicting

both fields at all of the test points, usually by wide margins. Table 4.6 lists the

standard deviation of these errors; at all of the test points, the standard deviation is

also smaller, showing that using the ensemble method leads to much greater stability

and reliability in predictions. Table 4.5 lists the computational costs associated with

CFD simulation and ROM inference. The given CFD wall time is for the portion of

the simulation over the prediction time horizon; using the ROM for inference offers a

speed-up of approximately 9.4x over CFD.

Test Case Index ϵ̄, u (Ensemble) ϵ̄, u (Single) ϵ̄, v (Ensemble) ϵ̄, v (Single)

1 0.02421 0.07119 0.02514 0.07204
2 0.01958 0.04199 0.02174 0.03870
3 0.02622 0.05282 0.02868 0.06296
4 0.03640 0.06575 0.03924 0.06742
5 0.02442 0.06589 0.01996 0.05131
6 0.04177 0.04939 0.03964 0.04733
7 0.02445 0.03771 0.02789 0.03915
8 0.04559 0.05304 0.04251 0.05194
9 0.03313 0.04678 0.03891 0.04900
10 0.02877 0.04291 0.02717 0.04079

Table 4.4: Average relative errors in u and v for the lid-driven cavity case
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Figure 4.13: Comparison of latent variable trajectories for the lid-driven cavity case
at µ∗ = [1.299, 1.689,−0.0367].
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Figure 4.14: Time snapshot of u (top) and v (bottom) at T = 5 and errors averaged
over the last 10% of the simulation.

Task Wall Time (s)

CFD (1 CPU) 136
ROM Inference 14.5

Table 4.5: Computational costs associated with the lid-driven cavity problem.

The CAE architecture for the lid-driven cavity case is given in Table 4.7. Con-

volutional layers are usually followed max-pooling layers that have batch normal-

ization [99] applied to them (referred to as pool-norm layers). Batch normalization

normalizes the input of each layer over a mini-batch, reducing internal covariate shift,

leading to more efficient gradient flow during backpropagation. The decoder consists

of convolutional transpose layers that are used to progressively increase the number

of pixels. The leaky ReLU activation function with α = 0.25 is used for convolutional

and fully connected layers.
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Test Case Index σs, u (Ensemble) σs, u (Single) σs, v (Ensemble) σs, v (Single)

1 0.005225 0.02819 0.004470 0.03051
2 0.001637 0.009202 0.001766 0.01267
3 0.004603 0.01885 0.004040 0.02263
4 0.008210 0.02007 0.006915 0.01172
5 0.003980 0.01121 0.004222 0.007739
6 0.003244 0.01555 0.002547 0.01726
7 0.002077 0.007614 0.002466 0.006886
8 0.002393 0.02031 0.002030 0.02041
9 0.002515 0.007371 0.002550 0.01324
10 0.002467 0.01627 0.001759 0.01493

Table 4.6: Standard deviation in relative errors of u and v for the lid-driven cavity
case.

Layer Filters Kernel Activation Function Output Size

Input 128 × 128 × 2
Convolutional 8 3 × 3 Leaky ReLU 128 × 128 × 8
Pool-Norm 2 × 2 64 × 64 × 8
Convolutional 16 3 × 3 Leaky ReLU 64 × 64 × 16
Pool-Norm 2 × 2 32 × 32 × 16
Convolutional 32 3 × 3 Leaky ReLU 32 × 32 × 32
Pool-Norm 2 × 2 16 × 16 × 32
Convolutional 64 3 × 3 Leaky ReLU 16 × 16 × 64
Pool-Norm 2 × 2 8 × 8 × 64
Reshape 4096
Fully Connected Leaky ReLU 128
Batch Norm 128
Fully Connected (Latent Space) 4
Fully Connected Leaky ReLU 128
Batch Norm 128
Fully Connected Leaky ReLU 4096
Batch Norm 4096
Reshape 8 × 8 × 64
Convolutional Transpose 32 3 × 3 Leaky ReLU 16 × 16 × 32
Batch Norm 16 × 16 × 32
Convolutional Transpose 16 3 × 3 Leaky ReLU 32 × 32 × 16
Batch Norm 32 × 32 × 16
Convolutional Transpose 8 3 × 3 Leaky ReLU 64 × 64 × 8
Batch Norm 64 × 64 × 8
Convolutional Transpose 2 3 × 3 Sigmoid 128 × 128 × 2

Table 4.7: Convolutional autoencoder architecture for the lid-driven cavity case.
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4.3.3.2 2D Cylinder

The next test case involves two-dimensional incompressible, unsteady, laminar

flow over a cylinder. Eventually, the lid-driven cavity flow from the previous test

case reaches steady-state and does not exhibit long-term transient behavior that is

commonly found in fluid dynamics problems. Laminar flow over a cylinder is a well-

studied problem in fluid dynamics, with both experimental and computational results

present in the literature [100, 101]. Unsteady cylinder flow is characterized by the

presence of vortices that separate from the surface and form in the wake. This distinc-

tive pattern is know as the Von Kármán vortex street, where alternating vortices of

a regular pattern are shed downstream of the cylinder. The unsteady Navier-Stokes

equations are solved using XLB [102], a Lattice Boltzmann method [103] library

utilizing the JAX framework [104] available for Python, which allows for effective

scaling across multiple CPUs, GPUs, and distributed multi-GPU systems. The cited

works can be referred to for an overview of the Lattice Boltzmann method and its

implementation in XLB.

No-slip boundary conditions are applied to the cylinder’s surface and top and

bottom walls. A Poiseuille flow profile is used for the inlet velocity. Extrapolation

outflow boundary conditions are used for the outlet to allow the fluid flow to exit

the domain freely. The computational domain measures 1536 × 512 voxels that are

uniformly spaced. The cylinder is centered at xc, yc = [160, 256] (zero-based indexing

is used). Simulation results are down-sampled onto a grid that measures 384 × 128

before being used for the ROM, resulting in N = 49, 152, as the original domain’s

large size leads to a very large training cost as well as memory usage. Two design

parameters are used, the diameter d of the cylinder and the Reynolds number Re.

The bounds of the design parameters are given as
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µ1 = d ∈ [48, 68],

µ2 = Re ∈ [120, 240].

The diameter d is set to an integer quantity by rounding to the nearest whole

number. The wake structure behind the cylinder undergoes instabilities [105, 106] at

a critical reynolds number of approximately Rec = 180, where the vortices transition

to becoming turbulent. As a result, the prescribed range given for Re in the parameter

space includes a variety of physical regimes. Additionally, both Re and d control the

size and periodicity of the shed vortices, making this a difficult prediction problem

for ROMs. The freestream velocity in the x-direction is set to u∞ = 0.001. The

simulation is run for T = 750, 000 timesteps with data being saved every 1000 steps,

leading to 750 snapshots for a single simulation. The initial condition for a simulation

of a given diameter d is the solution to steady flow at Re = 20.

50 sets of design parameters are generated and split into 45 training samples and 5

test points, shown in Figure 4.15. Table 4.8 also lists the test point design parameters.

The ROM uses m = 96 bagged LSTMs and a window size of w = 30, which are chosen

through a trial-and-error process to maximize accuracy while keeping the number of

weak learners to a minimum. The CAE latent dimension is set to k = 10. Similar to

the lid-driven cavity case, values below k = 10 resulted in higher reconstruction errors

and increasing the latent dimension further offers no improvement. A bidirectional

LSTM architecture [107] is used. Bidirectional recurrent neural networks process

sequential data in both forward and backwards directions, allowing the model to

learn both past and future context. The network consists of three hidden layers

with 36 neurons each and a dropout rate of 0.15. The output layer again contains a

sigmoid activation function, and the Adam optimizer with the same initial learning
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rate η = 5× 10−4 and weight decay of λ = 1× 10−6 is used for both the LSTM and

CAE. The CAE is trained for 200 epochs while an individual LSTM is trained for

250 epochs. At the test points, the full-order model is run for Ti = 300, 000 timesteps

(300 snapshots), or 40% of the total simulation time. This value is required to be

high as the flow exhibits highly oscillatory behavior initially, leading to very noisy

latent variables that cannot be used for model training. As a reult, latent variable

sequences are generated starting at the 200th snapshot, and Atrain does not contain

time-series data of latent variables before this point.

48 53 58 63 68
d

120

140

160

180

200

220

240

Re

2D Cylinder Parameter Space

Training Points
Test Points

Figure 4.15: Training and test design parameters for the 2D cylinder case.

Test Case Index d Re

1 53 231.6
2 51 142.2
3 65 154.8
4 57 171.0
5 61 225.6

Table 4.8: Test case design parameters for the 2D cylinder case.

Figure 4.16 shows the latent variable trajectories for the first four latent variables

at the test point µ∗ = [51, 142.2]. For each latent variable, the predictions given

by single LSTMs are initially similar, but eventually diverge in terms of both the

amplitude and frequency of the latent variables, leading to large inaccuracies. Using
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Figure 4.16: Comparison of latent variable trajectories for the 2D cylinder case at
µ∗ = [51, 142.2].
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LSTM ensembles greatly mitigates this effect, and the resultant latent variable tra-

jectories follow the ground truth closely and do not differ greatly in amplitude nor

frequency. The regular pattern of the Kármán vortex street is well-predicted given a

small amount of initial latent variable history.

Figure 4.17: Time snapshots of u and v at T = 750,000 and errors averaged over the
last 10% of the simulation at µ∗ = [51, 142.2].

Figure 4.17 shows snapshots of u and v at T = 750, 000 as well as ROM errors

averaged over the last 10% of the simulation for a single seed. The errors are sig-

nificantly lower throughout the computational domain when using LSTM ensembles.

These errors are greatest in the wake of the cylinder and immediately downstream
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of it. Table 4.9 lists the seed-averaged relative errors in u and v at the test points.

The ensemble ROM again offers better performance in predicting both fields at all

of the test points. Table 4.10 lists the standard deviation of these errors, which are

again lower at all of the test points. At the fourth test case index (µ∗ = [57, 171.0]),

the errors and standard deviations are similar. This test point lies in the middle

of the parameter space and is well-surrounded by training samples; as a result, the

advantage gained using an ensemble method may be marginal. Table 4.11 lists the

computational costs associated with the problem. Using the ROM for inference offers

a speed-up of approximately 27x over CFD (again, the given CFD cost is the portion

of the simulation over the prediction time horizon).

Test Case Index ϵ̄, u (Ensemble) ϵ̄, u (Single) ϵ̄, v (Ensemble) ϵ̄, v (Single)

1 0.04324 0.07975 0.3379 0.6162
2 0.03463 0.05838 0.2971 0.4871
3 0.02380 0.05195 0.1399 0.3315
4 0.05446 0.06636 0.3995 0.4900
5 0.03655 0.06029 0.2269 0.4059

Table 4.9: Average relative errors in u and v for the 2D cylinder case.

Test Case Index σs, u (Ensemble) σs, u (Single) σs, v (Ensemble) σs, v (Single)

1 0.01321 0.04184 0.1138 0.3372
2 0.007607 0.03304 0.07005 0.2720
3 0.004610 0.01587 0.03493 0.1136
4 0.01521 0.02026 0.1186 0.1536
5 0.007528 0.03398 0.05904 0.2684

Table 4.10: Standard deviation in relative errors of u and v for the 2D cylinder case.

Task Wall Time (s)

CFD (2 GPUs) 1305
ROM Inference 48.4

Table 4.11: Computational costs associated with the 2D cylinder case.
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The CAE architecture for the 2D cylinder case is given in Table 4.12. It is similar

to the one for the lid-driven cavity case and has a larger overall number of paramaters

due to the increased input size. This also results in larger kernel sizes being used for

convolutional layers close to the input and output layers to account for the broader

dimensions.

Layer Filters Kernel Activation Function Output Size

Input 384 × 128 × 2
Convolutional 8 5 × 5 Leaky ReLU 192 × 64 × 8
Batch Norm 192 × 64 × 8
Convolutional 16 5 × 5 Leaky ReLU 96 × 32 × 16
Batch Norm 96 × 32 × 16
Convolutional 32 3 × 3 Leaky ReLU 96 × 32 × 32
Pool-Norm 2 × 2 48 × 16 × 32
Convolutional 64 3 × 3 Leaky ReLU 48 × 16 × 64
Pool-Norm 2 × 2 24 × 8 × 64
Reshape 12288
Fully Connected Leaky ReLU 128
Batch Norm 128
Fully Connected (Latent Space) 10
Fully Connected Leaky ReLU 128
Batch Norm 128
Fully Connected Leaky ReLU 12288
Batch Norm 12288
Reshape 24 × 8 × 64
Convolutional Transpose 32 3 × 3 Leaky ReLU 48 × 16 × 32
Batch Norm 48 × 16 × 32
Convolutional Transpose 16 3 × 3 Leaky ReLU 96 × 32 × 16
Batch Norm 96 × 32 × 16
Convolutional Transpose 8 5 × 5 Leaky ReLU 192 × 64 × 8
Batch Norm 192 × 64 × 8
Convolutional Transpose 2 5 × 5 Sigmoid 384 × 128 × 2

Table 4.12: Convolutional autoencoder architecture for the 2D cylinder case.

4.4 Summary

In this chapter, ROMs using convolutional autoencoders to provide nonlinear

solution spaces are introduced for both steady and unsteady fluid dynamics prob-

lems. CAEs learn efficient low-dimensional representations of spatially distributed
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data through an encoder and decoder connected by a latent space. A nonlinear

relationship exists between the expansion coefficients and full-order states when us-

ing autoencoders, in contrast with the linear relationship when using POD. A ROM

framework for steady problems utilizing CAEs and GPR for prediction of the expan-

sion coefficients is shown to signficantly outperform POD when applied to a lid-driven

cavity flow over a number of ROM dimensions. The projection errors provided by

CAEs are significantly lower than those from POD for low ROM dimensions. Ad-

ditionally, the projection error of CAEs does not decrease as the ROM dimension

increases, showing that they can efficiently represent solution spaces with a low num-

ber of degrees freedom. This makes CAEs useful for unsteady ROMs, where there

are typically a very large number of training snapshots. Unsteady ROMs require a

time-series forecasting model for the expansion coefficients, for which LSTMs are a

popular choice. A common problem encountered when making time-series predictions

over long horizons at unseen data sets is error propagation. An unsteady ROM that

combines CAEs with LSTM ensembles using bagging is introduced, and is shown to

effectively diminish the effect of error propagation and provide accurate latent vari-

able trajectories for a lid-driven cavity and 2D cylinder flow. A major limitation of

the introduced ROMs is that they are not readily applicable to problems involving

unstructured meshes due to the use of convolutional layers. While simulation data

can be interpolated onto a structured mesh, this can result in information loss, espe-

cially in regions where high levels of resolution are required to accurately resolve the

physics.
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CHAPTER V

Field Inversion and Machine Learning

The previous chapters introduced ROMs using POD and CAE to provide ef-

ficient low-dimensional representations of high-dimensional solution spaces. While

both methods are shown to offer good performance for different problems, they, and

ROMs in general, make an assumption of topologically similar meshes for different

designs. The number of cells and their ordering are required to be consistent across

the design space. While this is possible to achieve using methods like FFD, it can

remain infeasible for problems that involve substantial geometric changes. Addition-

ally, CAEs cannot readily handle simulation data from unstructured meshes, greatly

restricting the types of problems they can be applied to. The test cases used in

Chapter IV all involved structured meshes with uniformly spaced grids.

The test cases involving steady, incompressible, turbulent flow in Chapter 2 also

make the assumption that the Spalart-Allmaras turbulence model can accurately

model the flow. While existing RANS turbulence models are very useful in many

situations, they poorly model complex flow phenomena such as separation [108]. As

a result, expensive modeling techniques such as direct numerical simulation (DNS)

and large eddy simulation (LES) are required to sufficiently resolve the flow physics

for some problems. A situation where LES or DNS is required and topologically

similar meshes between designs cannot be achieved can lead to ROMs, and design

106



optimization in general, being infeasible. Attempts have been made to improve the

predictive performance of turbulence models for various flow applications. A recent

and popular advance is field inversion [18, 109], a method that uses reference high-

fidelity or experimental data, such as field distributions or coefficients of lift/drag,

to correct turbulence models. Field inversion uses gradient-based optimization to

solve an inverse problem for a corrective scalar field present in each mesh cell that

is introduced into an existing turbulence model by minimizing an objective function

that measures the discrepancy between the reference data and RANS model outputs.

Field inversion can incur a large computational cost as the number of design variables

is large and the optimization process requires multiple primal solves of the full-order

model.

Field inversion can be used to improve the accuracy of a turbulence model within

a parameter space so that it better approximates techniques such as DNS and LES

or available experimental data. Similar to ROMs, the data used from completed field

inversion runs at chosen points within the parameter space can be used to construct

a surrogate model to predict the corrective field for unseen designs. This paradigm

is referred to as field inversion and machine learning [110] (FIML), and it constructs

a machine learning model that uses local features to predict the corrective field. The

machine learning model and flow solver are combined to update the corrective field.

As it only relies on local cell-wise information to make predictions, FIML is agnostic

to the topological similarity between meshes.

In this chapter, the use of field inversion is investigated for flows over airfoils

using both wall-resolved and wall-modeled grids. The resultant corrective fields and

the effects they have on flow features such as separation are detailed. Additionally, an

FIML framework using neural networks that take the local states and their gradients

as inputs is introduced. Feature importance is also explored for both cases, where it

is shown that gradient information is significantly more important when using wall-
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resolved grids.

5.1 Field Inversion

Field inversion involves introducing a multiplicative corrective scalar field β(r⃗) ∈

RN present in each cell to an existing turbulence model, where r⃗ represents the

cell coordinates. For the Spalart-Allmaras turbulence model, the field multiplies the

production term, resulting in

∫
V

∇ · (
−→
V ν̃) dV − 1

σ

∫
V

∇ · [(ν + ν̃)∇ν̃] + cb2|∇ν̃|2 dV−

βcb1

∫
V

S̃ν̃ dV + cw1

∫
V

fw

(
ν̃

d

)2

dV =
∂ν̃

∂t
.

(5.1)

An objective function J is formulated that represents the discrepancy between a high-

fidelity output coefficient CH and the RANS model coefficient CR(β,x),

J = (CH − CR(β,x))
2 + λ ∥β − β1∥2 , (5.2)

where λ is a small regularization constant and β1 represents β = 1 throughout the

domain and gives the baseline turbulence model. The second term is included in

the objective function to prevent large and unphysical values of the corrective field.

Minimizing the objective function results in an altered turbulence model that better

approximates high-fidelity data. While it is common to use field distributions as

reference data, previous work has shown that using force coefficients results in similar

flow fields for external aerodynamics applications [110]. Gradient-based optimization

is used to minimize the objective function, which contains a large number of design

variables. Using the chain rule, the gradient dJ
dβ

can be expressed as
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dJ

dβ
=

∂J

∂β
+

∂J

∂x

dx

dβ
. (5.3)

The partial derivatives ∂J
∂β

and ∂J
∂x

can be solved for explicitly and do not re-

quire re-computing the primal solution. However, computing the total derivative dx
dβ

does require that the primal solution be re-computed for each entry in β when using

methods such as finite differences, which is computationally prohibitive. To effec-

tively calculate gradients with respect to a large number of design variables in CFD

applications, the adjoint method [111] is often used. The adjoint method involves

solving a set of adjoint equations along with the governing equations, which are de-

rived from the governing equations and allow for efficient computation of gradients

with respect to a large number of design variables. The governing equations can be

expressed through the residuals R, from which the gradients dR
dβ

are given as

dR

dβ
=

∂R

∂β
+

∂R

∂x

dx

dβ
. (5.4)

The governing equations are satisfied when R = 0, and the total derivative dx
dβ

is

found as

dx

dβ
= −

[
∂R

∂x

]−1
∂R

∂β
. (5.5)

Substituting this into Equation 5.3 results in

dJ

dβ
=

∂J

∂β
− ∂J

∂x

[
∂R

∂x

]−1
∂R

∂β
(5.6)

where ΦT = −∂J
∂x

[
∂R
∂x

]−1
is the adjoint vector, which represents the effects of per-

turbing the residuals on the objective function, the expensive part of computing the

gradients. Taking the transpose of the adjoint ΦT and moving everything to the left

hand side gives the adjoint equations,
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[
∂R

∂x

]T
Φ+

[
∂J

∂x

]T
= 0. (5.7)

The adjoint can be computed by solving Equation 5.7 and a final relation is given as

dJ

dβ
=

∂J

∂β
−ΦT ∂R

∂β
. (5.8)

In this work, DAFoam [37], an open-source adjoint derivative computation frame-

work for OpenFOAM, is used to implement the adjoint method and compute all

gradients. DAFoam uses a Jacobian-free approach to compute gradients, as detailed

in a work by Kenway et al. [112] by using reverse-mode automatic differentiation.

pyOptSparse [113], an object-oriented framework in Python for solving nonlinear

optimization problems is used. IPOPT [114], a software package for large-scale op-

timization problems is available through pyOptSparse and is chosen to be used for

minimizing the objective function. IPOPT employs an interior penalty method for

constrained optimization problems by adding a logarithmic barrier term to the objec-

tive function. This ensures that the design variables remain within a feasible region.

Although there are no hard constraints on the values of β, setting a prescribed prob-

able range can lead to faster convergence as the search space is reduced, allowing

the optimizer to explore only physically consistent regions. If no Hessian information

is provided, as is the case here, IPOPT uses a quasi-Newton method to compute

the search direction using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update

algorithm.

5.1.1 Wall-resolved NACA 0012

A two-dimesional NACA 0012 airfoil with a chord length of c = 1 m is used

to demonstrate the field inversion process using experimental data from a study by

Gregory and O’Reilly [115]. The flow is turbulent with Re = 6×106 and a freestream
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velocity of U∞ = 51.5 m/s and the angle of attack is set to α = 15 degrees. The

mesh, shown in Figure 5.1, contains N = 229, 376 cells and is wall-resolved with

an average y+ of 0.147. The mesh is obtained from the NASA website at https:

//turbmodels.larc.nasa.gov/naca0012 grids.html. Wall functions are not used for the

turbulence model.

Figure 5.1: Mesh for the wall-resolved NACA 0012 case.

Figure 5.2: Contours of the baseline RANS velocity magnitude and pressure for the
wall-resolved NACA 0012 case at α = 15 degrees.

Contours of the velocity magnitude and pressure from the baseline RANS solution

are shown in Figure 5.2. The lift coefficient given by the baseline RANS model is

CL(β1) = 1.551 and the experimental reference value is CL ≈ 1.507. Field inversion

is performed by constraining the values of β to a range of (-10, 10) to constrain the

optimizer to a likely and more physically consistent region. A regularization constant

of λ = 1 × 10−6 is used, and the value of the first term in the objective function is

111

https://turbmodels.larc.nasa.gov/naca0012_grids.html
https://turbmodels.larc.nasa.gov/naca0012_grids.html


scaled to unity for the first iteration. An optimizer tolerance of 1 × 10−6 is used.

Figure 5.3 shows the convergence history of CL; 8 total iterations are required for

convergence, and each iteration required exactly one primal solve per line search.

The reference experimental value of CL is matched almost exactly to 1.50699997.

1 2 3 4 5 6 7 8
Iteration

1.51

1.52

1.53

1.54

1.55
C L

NACA 0012 Field Inversion Convergence

CL, Baseline RANS
CL, Experimental
CL Iteration History

Figure 5.3: CL iterative history during field inversion for the wall-resolved NACA
0012 case.

Figures 5.4 and 5.5 show contours of β from the final iteration over the entire

airfoil and close to the leading edge respectively. The maximum and minimum values

of β are -9.4 and 9.6 respectively, which are close to the prescribed constraints,

although they are outliers. There is a significant decrease in turbulent production

just past the leading edge, followed by an increase over a larger section of the airfoil.

Farther downstream, the turbulent production again decreases until slowly increasing

to baseline levels at the trailing edge.

As shown in Figure 5.6, this pattern results in markedly different profiles of the

turbulent eddy viscosity νt at different locations along the chord when plotted with

the vertical distance y from the airfoil surface. When β < 1, the production of νt

is reduced and is conversely increased when β > 1. At the trailing edge (x/c = 1),

where β = 1, the profiles are similar. Increased levels of νt enhance turbulent mixing
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Figure 5.4: Contour of β obtained from field inversion for the wall-resolved NACA
0012 case.

Figure 5.5: Leading edge view of β obtained from field inversion for the wall-resolved
NACA 0012 case.

and momentum transport within the boundary layer, helping to prevent separation.

Figure 5.7 shows plots on the suction side of the negative pressure coefficient Cp from

approximately 0.25 < x/c < 1.0 and the skin friction coefficient Cf . Using field

inversion results in a pressure field that matches experimental results significantly

better when compared to the baseline turbulence model. The pressure is generally

greater, leading to a lower lift coefficient. The skin friction coefficient distributions are

also different; just past the leading edge, where the turbulent production is decreased,

the wall shear stress τ drops rapidly and recovers as β increases moving downstream.

The experimental results from Gregory and O’Reilly discuss the presence of a laminar

separation bubble [116] past the leading edge followed by flow re-attachment for high

angles of attack. Even though the flow solver is run fully turbulent, the decrease and

113



subsequent increase of turbulent production past the leading edge acts like a transition

model [117] for the flow. While the flow does not fully separate as τ does not reach

0, the behavior of the altered turbulence model better represents the experimental

results, where Cf would exhibit a similar pattern of a sharp decline followed by an

increase as the flow re-attaches. Field inversion achieves this by modifying the levels

of νt through β at different regions of the airfoil. This also results in flow separation

occuring earlier at the trailing edge.
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Figure 5.6: Profiles of the vertical distance y against νt at different chord locations
for the wall-resolved NACA 0012 case.

5.1.2 Wall-modeled NACA 0012

A NACA 0012 case using the same computational setup and experimental results

as in the previous section is used. The mesh, shown in Figure 5.8, contains N =
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Figure 5.7: Distributions of −Cp and Cf against x/c for the wall-resolved NACA 0012
case.

Figure 5.8: Mesh for the wall-modeled NACA 0012 case.

84, 669 cells and is not wall-resolved. The average y+ is 10.6 and the Spalding wall

function [118] is used to model νt. The lift coefficient given by the baseline RANS

model is CL(β1) = 1.535. Figure 5.9 shows the history of CL during field inversion;

the reference coefficient is again matched almost exactly to 1.5069995, and 10 total

primal solves are required for convergence.

Contours of the resultant corrective field are shown in Figures 5.10 and 5.11. There

is a very small increase in turbulent production past the leading edge and a relatively

small decrease downstream all the way until the trailing edge. Profiles of the vertical

distance against νt are shown in Figure 5.12 at the same locations along the chord
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Figure 5.9: CL iterative history during field inversion for the wall-modeled NACA
0012 case.

Figure 5.10: Contour of β obtained from field inversion for the wall-modeled NACA
0012 case.

from the previous section. While there is a noticeable difference in the profile at

x/c = 0.5, the rest are very similar, in contrast to the differences observed for the

wall-resolved case. Plots of the pressure and skin friction coefficients are shown in

Figure 5.13, where it is shown that the distribution of Cf does not change significantly

past the leading edge. The pressure is also generally increased as shown in the plot

of Cp, but the results do not match the experimental data as well as they did for the

wall-resolved case.

The wall shear stress is slightly suppressed downstream, leading to earlier sep-

aration closer to the trailing edge. While both the wall-resolved and wall-modeled
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Figure 5.11: Leading edge view of β obtained from field inversion for the wall-modeled
NACA 0012 case.
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Figure 5.12: Profiles of the vertical distance y against νt at different chord locations
for the wall-modeled NACA 0012 case.

cases reach the reference lift coefficient, the resultant corrective fields and changes to

the flow physics differ. Both corrective fields cause earlier separation downstream,
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resulting in decreased lift. This occurs earlier when using the wall-resolved grid, at

x/c ≈ 0.87 compared to x/c ≈ 0.92 when using the wall-modeled grid and better

matches experimental results at x/c ≈ 0.8. The corrections made when using the

wall-resolved grid also better match experimental results past the leading edge, al-

though this has a small overall impact on the lift coefficient. By providing a finer

resolution of the near-wall region, the wall-resolved grid can better capture the veloc-

ity and pressure gradients, which often change rapidly and are essential for accurately

computing the wall shear stress and separation. Profiles of the velocity gradient mag-

nitudes ||∇u|| and ||∇v|| for both grids are shown in Figure 5.14 at x/c ≈ 0.03, the

location where Cf reaches a minimum past the leading edge when using field inver-

sion. The cell-center values for the first 40 cells are shown for the wall-resolved grid,

while only the first three cells are shown for the wall-modeled grid. The fineness

of the wall-resolved grid is much higher, which allows for accurately capturing the

development of the gradients within the boundary layer. The wall-modeled grid’s

first cell is centered significantly farther from the surface, resulting in poorer resolu-

tion of the flow physics. While the Spalding wall function does compute the velocity

profile in the near-wall region using an empirical logarithmic correlation, this may

not accurately capture all flow features, including intricate and rapidly changing flow

structures involving transition such as separation bubbles.

5.2 Machine Learning

Obtaining reference high-fidelity or experimental data at multiple points within

a parameter space can come at a very high computational cost or be impossible due

to a lack of available data. Using the data from a set of computed field inversion

runs, a machine learning model can be built and combined with the CFD solver to

correct the turbulence model as the simulation is run. The combined framework, field

inversion and machine learning (FIML), uses local cell-wise features to predict the
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Figure 5.13: Distributions of −Cp and Cf against x/c for the wall-modeled NACA
0012 case.
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Figure 5.14: Profiles of the velocity component gradient magnitudes for the wall-
resolved and wall-modeled grids at x/c ≈ 0.03.

corrective field. Neural networks are usually used for the machine learning model,

and the input features tend to include non-dimensional flow quantities such as the

ratio of eddy to kinematic viscosity or vorticity to strain-rate magnitude. [110, 119].

Non-dimensional features are typically used so that the machine learning model can

be applied to different flow problems (e.g. flow over an airfoil, a backward facing

step, flow over a cylinder) as they tend to be universal in nature, but this approach

has had little success in predicting useful corrective fields, even for cases within the

training dataset [120]. As FIML lacks generalizability across different flow problems,

its usefuleness in developing a general-use data-driven turbulence model has not been
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realized.

Using the local state variables x, their gradients ∇x, and the cell distance from

the wall d as features has been tested for case-specific parameter spaces in external

aerodynamics with success in accuaretly predicting corrective fields [121]. However,

information on the importance of the flow features has not been explored for this

approach, and in general when comparing wall-resolved and wall-modeled grids. In

this section, neural networks with the inputs consisting of (x,∇x, d) where x =

(u, v, p, ν̃) are used to predict β locally. ν̃ is also chosen as a state variable as it is

directly present in the model transport equation of the turbulence model and directly

related to β. There are two approaches to combining the machine learning model

with the flow solver: an iterative method where β is predicted and updated at every

iteration, or a successive method where the corrective field is updated at the end

of complete primal solves until the objective function stops changing. While the

first method is more common, more accurate results have been observed when using

the latter for a single primal solve update in a study using OpenFOAM by Ho and

West [119]. The authors found that the iterative method was sensitive to the initial

conditions and required the use of a relaxation factor to update β. As a result,

successive method is used in this work although it does incur a larger computational

cost.

A general method to determine feature importance for machine learning models

is permutation feature importance. First, the model is trained on the training data

using all of the features and a metric of performance such as the mean squared error

is evaluated. Next, each individual feature has its values randomly shuffled within

the dataset while leaving the rest unchanged to create a new dataset where one of

the features is permuted. The model is then re-evaluated on this new dataset to

obtain the metric of performance. After repeating this procedure for each feature,

the features can be ranked by how much they impact the baseline performance metric.
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5.2.1 NACA 0012 Angle of Attack

For both the wall-resolved and wall-modeled grids from the previous section, field

inversion is performed at angles of attack α ≈ [13, 14, 16] degrees using experimental

lift coefficients and the machine learning model is used with the flow solver to make

a prediction at α = 15 degrees. The neural network contains 13 neurons in the input

layer, two hidden layers with 72 neurons, and an output layer with a single neuron.

A dropout rate of 0.1 is used between each of the layers to prevent overfitting. Both

the inputs and outputs are scaled using min-max scaling into a range of [0,1]. The

mean squared error loss function is used. ReLU activation functions are used for the

hidden layers and the sigmoid activation function is used for the output. The Adam

optimizer with an initial learning rate of η = 1 × 10−4 is used and the network is

trained for 500 epochs with a mini-batch size of 1024.

5.2.1.1 Wall-resolved grid

α CL, Baseline RANS CL, Experimental CL, Field Inversion

13.1 1.387 1.367 1.367
14.1 1.474 1.447 1.447
16.1 1.632 1.561 1.565

Table 5.1: Lift coefficients for the training data using the wall-resolved NACA 0012
grid.

The lift coefficients at the training points are listed in Table 5.1. As the angle of

attack increases and the flow exhibits greater separation, the discrepancy between the

baseline RANS and experimental coefficients increases. Field inversion matches the

experimental coefficients almost exactly at α = [13.1, 14.1]. At α = 16.1, the flow field

obtained from field inversion does not match the experimental lift coefficient exactly

due to reaching a local minimum, but gets very close and offers a large improvement

over the baseline RANS result. Contours of β from both field inversion and machine
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learning are shown in Figures 5.15 and 5.16. The machine learning model required

14 primal solves to reach a lift coefficient of CL = 1.512, close to the experimental

value of 1.507, after which the lift coefficient and flow field stopped changing.

Figure 5.15: Comparison of β contours obtained from field inversion (left) and ma-
chine learning (right) for the wall-resolved NACA 0012.

Figure 5.16: Leading edge comparisons of β contours obtained from field inversion
(left) and machine learning (right) for the wall-resolved NACA 0012.

There is good agreement in the overall pattern between both corrective fields,

where there is a decrease in turbulent production just past the leading edge, followed

by an increase and then another decrease farther downstream. β obtained from

machine learning does show a more sustained decrease in turbulent production past

the leading edge. The effect of this can be seen in the plot of Cf in Figure 5.17.

The sudden decrease in the wall shear stress occurs farther downstream compared to

field inversion and Cf goes very slightly below 0, indicating that the flow does fully

separate and then re-attach. Farther downstream, there is good agreement between

both field inversion and machine learning, which is also shown to be true for Cp,

where both match the experimental results well.

Figure 5.18 shows a feature importance plot for the neural network. The three

features related to the pressure ( ∂p
∂x
, p, ∂p

∂y
) are the most important features. Most of
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the features are significantly important for the neural network with the exception

of the gradients of u and ∂v
∂y
. Since β only deviates from 1 close to and within the

boundary layer, it is expected that quantities that show large variations throughout

this region will have greater predictive power. The velocity gradients typically show

large variations only very close to the surface, although β can deviate from 1 farther

away. On the other hand, gradients of p and ν̃ can vary farther away from the

surface in regions where β changes. The mesh wall distance d provides topological

information along with the other features, making it important for distinguishing

different areas of the flow.
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Figure 5.17: Distributions of −Cp and Cf from field inversion and machine learning
against x/c for the wall-resolved NACA 0012.

5.2.1.2 Wall-modeled grid

α CL, Baseline RANS CL, Experimental CL, Field Inversion

13.1 1.370 1.367 1.367
14.1 1.458 1.447 1.447
16.1 1.620 1.561 1.561

Table 5.2: Lift coefficients for the training data using the wall-modeled NACA 0012
grid.

The lift coefficients at the training points are listed in Table 5.2. Compared to the
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Figure 5.18: FIML feature importance for the wall-resolved NACA 0012 case.

wall-resolved case, the baseline RANS lift coefficients are closer to the experimental

values, especially at α = 13.1 where a very small discrepancy is present. The difference

between the coefficients rises with the angle of attack again. Field inversion matches

the experimental lift coefficients almost exactly at all of the training points. Contours

of β from field inversion and machine learning are shown in Figures 5.19 and 5.20. The

machine learning model required 3 total primal solves for convergence and resulted

in a flow field with CL = 1.519, higher than the value from the previous section.

Again, there is a good match between the overall patterns of the corrective fields.

The distributions of Cp and Cf are shown in Figure 5.21. The distributions from

machine learning tend to be between the baseline RANS and field inversion ones,

although slightly closer to field inversion.

The neural network feature importance plot is shown in Figure 5.22. The pressure

and velocity components are the most important features, followed by those related

to ν̃. Gradients with respect to other states and d follow. When using a wall-modeled

grid, the gradients are not captured well and do not exhibit smooth changes, limiting
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Figure 5.19: Comparison of β contours obtained from field inversion (left) and ma-
chine learning (right) for the wall-modeled NACA 0012.

Figure 5.20: Leading edge comparisons of β contours obtained from field inversion
(left) and machine learning (right) for the wall-modeled NACA 0012.

their usefuleness in a machine learning model. A reason the gradients of ν̃ might

be more important is because it can show large variations relatively far from the

surface, especially close to the trailing edge in addition to being directly present in

the turbulence model. Overall, the performance of FIML for this case is worse than

the wall-resolved one, where there was a larger discrepancy in CL between baseline

RANS and field inversion and yet a more accurate value obtained from machine

learning.

5.2.2 Multiple NACA Airfoils

For this test case, six different NACA airfoils are used. The maximum camber,

maximum camber location, and maximum thickness are all varied to achieve different

geometries. The geometric changes are relatively large and as a result the meshes

are not topologically similar, with the number of total cells varying between them

although they are close to N ≈ 85, 000. The Reynolds number is set to Re = 6× 106

with a freestream velocity of U∞ = 51.5 m/s and the angle of attack is set to α = 12
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Figure 5.21: Distributions of −Cp and Cf from field inversion and machine learning
against x/c for the wall-modeled NACA 0012.
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Figure 5.22: FIML feature importance for the wall-modeled NACA 0012 case.

degrees for each airfoil. The neural network used for FIML uses only (x, d) as inputs,

as these are later shown to be the five most important features. The neural network

again consists of two hidden layers with 72 neurons each. The hidden layers use the

tanh activation function and the output layer uses the sigmoid activation function as

min-max scaling is used. A dropout rate of 0.1 is used between each of the layers.

The Adam optimizer with an initial learning rate of η = 1 × 10−4 is used and the
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network is trained for 400 epochs with a mini-batch size of 1024.

Due to a lack of consistent experimental data for all the airfoils, mfoil [122], a

MATLAB implementation of the popular airfoil flow solver XFOIL [123], is used to

obtain reference lift coefficients. XFOIL uses a panel method to discretize airfoils

and solves the potential flow equations to predict pressure distributions and uses

empirical boundary layer models to predict the flow. The code is highly efficient and

robust, making it useful for research purposes. The lift coefficients for the training

data are listed in Table 5.3. For each case, the reference lift coefficient is higher and

the discrepancy between baseline RANS grows smaller as the maximum camber is

increased. Although field inversion does not match the mfoil lift coefficients exactly

at most of the points, it gets close and offers a very large improvement over baseline

RANS.

Airfoil CL, Baseline RANS CL, mfoil CL, Field Inversion

0012 1.263 1.319 1.316
0015 1.266 1.325 1.324
1212 1.363 1.408 1.412
1215 1.362 1.415 1.427
2412 1.472 1.510 1.510
2415 1.471 1.493 1.493

Table 5.3: Training data lift coefficients for multiple NACA airfoils.

A NACA 2314 airfoil is used as the test case. Contours of the velocity magnitude

and pressure from baseline RANS are shown in Figure 5.23. The mfoil reference value

of CL is 1.499 and the baseline RANS value is 1.466. Field inversion and machine

learning result in values of 1.499 and 1.502 respectively. Field inversion requires 5

primal solves while machine learning requires 10. Contours of the corrective field

from both are shown in Figure 5.24. As the lift coefficient is required to increase,

the turbulent production is mainly increased rather than decreased. This delays

or prevents separation, leading to lower pressure on the suction side of the airfoil
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and greater lift. There is good agreement in β between field inversion and machine

learning, although the corrective field from the machine learning model does exhibit

some decrease in the turbulent production past the leading edge. Plots of Cp and Cf

are shown in Figure 5.25. There is excellent overall agreement between field inversion

and machine learning over the plotted range of the pressure coefficient, although

the mfoil results better match the baseline RANS distribution closer to the trailing

edge. In addition to the RANS flow being wall-modeled, mfoil makes some simplified

model assumptions that lead to uncertainty in the computed distribution. There is a

slight decrease in Cf past the leading edge when using machine learning, likely due

to the mentioned decrease in turbulent production. Farther downstream, both field

inversion and machine learning are in good agreement, with higher values of the wall

shear stress preventing separation as Cf does not reach 0.

Figure 5.23: Contours of the baseline RANS velocity magnitude and pressure for the
wall-modeled NACA 2314 case at α = 12 degrees.

Figure 5.24: Comparison of β contours obtained from field inversion (left) and ma-
chine learning (right) for the NACA 2314.

A plot of the feature importance of a neural network using (x,∇x, d) as inputs

is shown in Figure 5.26. The most important features are shown to be the flow
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Figure 5.25: Distributions of −Cp and Cf from field inversion and machine learning
against x/c for the NACA 2314.

variables and the mesh wall distance. While the partial derivative ∂ν̃
∂y

is also shown

to be important, randomly shuffling the rest of the gradients does not significantly

degrade the predictive performance of the model. As a result, only the flow variables

and mesh wall distance are chosen to be used as inputs for the machine learning

model, where they alone were shown to train a model able to offer good predictive

performance of the corrective field. Altering the geometry between training points

can further enhance this effect due to the presence of different flow structures. This

case further shows the limitations of including gradient information in the machine

learning model when using wall-modeled grids.

5.3 Summary

In this chapter, a framework for field inversion and machine learning using local

state information in the form of the flow variables, the mesh wall distance, and op-

tionally the gradients as inputs to a neural network is introduced. When applied to

two different airfoil flow problems involving changes to the boundary conditions and

airfoil geometries, the proposed framework is shown to offer good predictive perfor-

mance of the corrective field introduced into the Spalart-Allmaras turbulence model
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Figure 5.26: FIML feature importance when using multiple wall-modeled NACA
airfoils.

as well as the reference lift coefficients used for field inversion. When using wall-

resolved grids, the gradients of the flow variables are generally shown to be important

to the overall predictive performance of the neural network. For wall-modeled grids,

where the gradients cannot be accurately captured, this information is shown to be

significantly less important. Using the flow variables and the mesh wall distance alone

is sufficient to make accurate predictions of the corrective field for a case using multi-

ple wall-modeled NACA airfoils with topologically dissimilar meshes. The introduced

framework presents an alternative to ROMs for data-driven modeling of high-fidelity

simulations where the reduction in computational cost comes from solving a cheaper

RANS model. This also guarantees that results are physically consistent, as the

governing equations are being solved directly.
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CHAPTER VI

Conclusions and Future Work

The work presented in this disseration is motivated by the need to address common

challenges concerning the utility of reduced-order models. Like all data-driven models,

the performance of ROMs is determined by the quality and diversity of the training

data. As ROMs are usually trained using a small amount of data, this makes it

vital to choose training points judiciously. While statistical methods such as LHS

are useful for partioning the parameter space, they do not account for the variation

of the physics within it. Using Isomap, an algorithm for nonlinear dimensionality

reduction, two algorithms for data selection are introduced. The first, applied to

non-intrusive ROMs to select local POD bases, showed that Isomap is highly effective

at separating data by physical regime, allowing for more accurate predictions when

using significantly less data. These results are used to develop a computationally

efficient adaptive sampling algorithm for both non-intrusive and projection-based

ROMs using a manifold filling technique, which is shown to offer similar or better

performance given a smaller computational budget for generating the training data.

While ROMs using autoencoders have been shown to outperform POD-based

ROMs, their generalizability over entire parameter spaces has not been firmly es-

tablished. Unsteady ROMs also suffer from error propagation issues when making

temporal predictions of latent variables over long time horizons which can lead to
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large inaccuracies. A non-intrusive CAE-GPR combining convolutional autoencoders

with Gaussian process regression for predicting latent variables is introduced and

shown to significantly outperform POD over a number of ROM dimensions when ap-

plied to a highly nonlinear lid-driven cavity problem. CAEs are much more efficient

than POD at compressing data into a low-dimensional representation and can learn

complex nonlinear relationships. This also makes them useful for unsteady ROMs in-

volving multiple designs, as the number of training snapshots becomes prohibitively

high when using POD. To remedy the issue of error propagation, LSTM ensembles are

used for autoregressive time-series forecasting of latent variables using bagging. This

is shown to effectively mitigate error propagation, allowing for stable and accurate

predictions of latent variables over long time horizons.

While ROMs are useful, they do require that the design space can be represented

by topologically similar meshes, a major restriction for problems involving large ge-

ometric changes. Instead of using a low-dimesnional surrogate model, data-driven

RANS modeling can be used as a cheaper alternative to high-fidelity models such

as LES or DNS. Field inversion, a method for altering turbulence models by solving

an inverse problem for a corrective field by using numerical optimization, is an in-

creasingly popular approach for improving the predictive capabilities of turbulence

models. Using a machine learning model trained on local cell-wise features, a data-

driven RANS model can be developed for use within parameter spaces. An FIML

framework using neural networks trained on local state variables, their gradients, and

the mesh wall distance is introduced for both wall-resolved and wall-modeled grids.

While gradient information is shown to be important for wall-resolved grids, their

usefuleness is limited for wall-modeled grids, where accurate corrective fields can be

obtained without them. As several methods are used in this dissertation, it is impor-

tant to understand their appropriate use cases. The pros and cons of each are given

as follows:
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POD-Based ROMs

Pros:

• The modes from POD are interpretable, allowing for an understanding of dom-

inant flow features.

• POD is easy to implement, generally computationally efficient, and determin-

stic.

• POD can be applied to different geometries and mesh structures.

Cons:

• POD suffers from performance issues when applied to highly nonlinear problems.

• Problems requiring large amounts of data, such as unsteady ROMs, can render

POD infeasible.

Deep Learning Based ROMs

Pros:

• Neural networks can learn complex functional relationships, making them suit-

able for highly nonlinear problems.

• Autoencoders are much more efficient at compressing data than POD, allowing

for using a very low number of expansion coefficients even when the number of

training data are high.

Cons:

• Deep learning requires a relatively large amount of training data.

• Convolutional autoencoders are not readily usable for unstructured meshes.

• Autoencoders are black-box models that are generally not interpretable.
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Field Inversion and Machine Learning

Pros:

• FIML can be applied to topologically dissimilar meshes.

• Reference high-fidelity data can consist of distributions or output coefficients

and come from experiments, which might be easy to obtain.

• FIML guarantees that results are physically consistent and obey the governing

equations.

Cons:

• The evaluation stage of FIML is more computationally intensive, still requiring

a full-order model to be solved.

• RANS models make many generalizations and can’t be applied to some problems

including compressible or highly unsteady flow.

The appropriate choice of data-driven surrogate model is dependent on the flow

problem, desired properties of the approximate solutions, and design optimization

workflow. For example, POD-based non-intrusive ROMs can be useful for obtaining

approximate solutions of general problems very quickly to efficiently explore design

spaces, while FIML can offer physically consistent results at a set of queried points,

although at a higher cost. The algorithms introduced in this dissertation are designed

with practical use cases in mind and aim for high levels of accuracy, generalizability,

and stability. Future work will focus on the shortcomings and promise of the presented

methods, including:

• Introduce interpretability to CAE-based ROMs while maintaining high levels

of reconstruction accuracy.
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• Develop methods that allow CAEs to be applied to unstructured meshes while

retaining fine-scale flow information.

• Investigate the application of FIML to three-dimensional flows and optimal

neural network architectures.

• Explore the utility of using FIML as a transition model within parameter spaces

exhibiting laminar-turbulent behavior.
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[114] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Math-
ematical programming, 106:25–57, 2006.

[115] Nigel Gregory and CL O’Reilly. Low-speed aerodynamic characteristics of
NACA 0012 aerofoil section, including the effects of upper-surface roughness
simulating hoar frost. 1970.

[116] Michael Gaster. The structure and behaviour of laminar separation bubbles.
Citeseer, 1967.

[117] Florian R Menter, R Langtry, and S Völker. Transition modelling for general
purpose cfd codes. Flow, turbulence and combustion, 77:277–303, 2006.

[118] DB Spalding. A single formula for the law of the wall. Journal of Applied
Mechanics, 28(3):455–458, 1961.

[119] Joel Ho and Alastair West. Field inversion and machine learning for turbulence
modelling applied to three-dimensional separated flows. In AIAA Aviation 2021
Forum, page 2903, 2021.

[120] Christopher L Rumsey, Gary N Coleman, and Li Wang. In search of data-driven
improvements to RANS models applied to separated flows. In AIAA Scitech
2022 Forum, page 0937, 2022.

[121] Krzysztof J Fidkowski. Gradient-based shape optimization for unsteady turbu-
lent simulations using field inversion and machine learning. Aerospace Science
and Technology, 129:107843, 2022.

[122] Krzysztof Fidkowski. An interactive airfoil analysis and design tool in Matlab.
In AIAA SCITECH 2023 Forum, page 0551, 2023.

[123] Mark Drela. XFOIL: An analysis and design system for low reynolds number
airfoils. In Low Reynolds Number Aerodynamics: Proceedings of the Conference
Notre Dame, Indiana, USA, 5–7 June 1989, pages 1–12. Springer, 1989.

146


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Motivation
	ROM Frameworks
	Contributions and Outline

	Reduced-Order Modeling
	Full-order Model
	Steady Navier-Stokes Equations

	Proper Orthogonal Decomposition
	Projection Error
	Example: NACA 0012 Airfoil

	Non-intrusive ROM
	Gaussian Process Regression
	POD-GPR ROM

	Projection-based ROM

	Data Selection for ROMs Using Isomap
	Latin Hypercube Sampling
	Isomap
	Local POD Bases
	Lid-driven Cavity

	Adaptive Sampling
	Results
	NACA 0012 Airfoil
	Cessna 172 Wing


	Summary

	Deep Learning Based ROMs
	Artificial Neural Networks
	Training Neural Networks
	Backpropagation
	Data Normalization

	Autoencoders
	Convolutional Autoencoders

	Recurrent Neural Networks
	Long Short-Term Memory Neural Networks


	Steady Non-intrusive ROM
	Lid-driven Cavity

	Unsteady Non-intrusive Ensemble ROM
	Ensemble Learning
	CAE-eLSTM ROM
	Results
	Lid-driven Cavity
	2D Cylinder


	Summary

	Field Inversion and Machine Learning
	Field Inversion
	Wall-resolved NACA 0012
	Wall-modeled NACA 0012

	Machine Learning
	NACA 0012 Angle of Attack
	Wall-resolved grid
	Wall-modeled grid

	Multiple NACA Airfoils

	Summary

	Conclusions and Future Work
	BIBLIOGRAPHY

