
Explorations in Precision Holography and
Higher-derivative Supergravity

by

Robert J. Saskowski

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2024

Doctoral Committee:

Professor James T. Liu, Chair
Professor Christine A. Aidala
Professor Leopoldo A. Pando Zayas
Professor Aaron Pierce
Professor Laura Ruetsche



Robert Saskowski

rsaskows@umich.edu

ORCID iD: 0000-0002-9828-6814

© Robert J. Saskowski 2024



ACKNOWLEDGEMENTS

I want to start by expressing my gratitude to Jim Liu, my advisor, for all of

his help and support during my graduate studies. His insights and explanations

have helped mold me as a physicist and, by extension, as a scientist. His advice,

encouragement, and wisdom are a large part of what made the last five years so

exciting and fulfilling. Much of the review sections of this dissertation are filled with

physics which he explained to me many times.

Additionally, I would like to thank Professor Leo Pando Zayas for his very fruitful

collaboration with me, as well as for teaching three of the courses I took in grad

school: string theory, gauge/gravity duality, and modern relativity. I would also like

to thank Professor Henning Samtleben for taking the time to mentor and advise me

as part of the String Theory Mentorship Program.

I would like to express my appreciation to Sabare Jayaprakash, Yide Cai, and

Evan Deddo for their invaluable collaboration; without them, my graduate career

would have been much less fruitful.

In addition, I am grateful to the following professors: Finn Larsen, Henriette

Elvang, Aaron Pierce, James Wells, Ratindranath Akhoury, Lydia Bieiri, Andrew

Snowden, Alejandro Uribe Ahuamada, Laura Ruetsche, Gordon Belot, Dave Baker,

and Christine Aidala for the physics, mathematics, and philosophy that I have learned

from them both through conversation and in various courses. I would also like to

thank Gabriele Carcassi for many interesting discussions.

I also wish to thank my undergraduate advisor Professor Tom Kephart for accept-

ii



ing me as a young researcher and introducing me to the field of theoretical physics.

I also want to express my gratitude to all of the postdocs—both current and

past—that I have had the pleasure of interacting with, including Christoph Uhlemann,

Prudhvi Bhattiprolu, Jose de la Cruz Moreno, Nick Geiser, and Yingchun Zhang.

Thanks to all of the graduate students at Michigan. In particular, I wish to

acknowledge interactions, both physics and recreational, with Brian McPeak, Callum

Jones, Shruti Paranjape, Junho Hong, Sangmin Choi, Marina David, Ben Sheff, Zach

Johnson, Aidan Herderschee, Nizar Ezroura, Siyul Lee, Alan Chen, Max Jerdee,

Leia Barrowes, Evan Deddo, Justin Berman, Evan Petrosky, Sabare Jayaprakash,

Daniel Sela, Loki Lin, Shaghayegh Emami, Alex Takla, Ilia Nekrasov, and Francisco

Calderon, as well as the various visiting students we have had: Gabriel Larios, Jack

Hudson, and Jingchao Zhang.

I would also like to thank Karen O’Donnovan for many useful conversations and

much administrative help. I would also like to thank Harvey for much emotional

support.

I would especially like to thank all my friends and family for their unending and

unconditional support, especially my partner Ari Wright. I love you all.

Finally, thanks to whoever put together this nice LATEX template for me to use.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Higher derivatives . . . . . . . . . . . . . . . . . . . 10
1.2.2 Compactifications and consistent truncations . . . . 13

1.3 Overview of the dissertation . . . . . . . . . . . . . . . . . . . 17

II. Subleading Corrections in N = 3 Gaiotto-Tomasiello Theory 20

2.1 GT theory and the planar resolvent . . . . . . . . . . . . . . 23
2.1.1 Fixing the endpoints . . . . . . . . . . . . . . . . . 27
2.1.2 Computing the free energy . . . . . . . . . . . . . . 29

2.2 Subleading corrections to the free energy . . . . . . . . . . . . 31
2.2.1 Correction to the endpoints . . . . . . . . . . . . . . 32
2.2.2 The free energy . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Numerical analysis . . . . . . . . . . . . . . . . . . 40

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III. Four-derivative Corrections to Minimal Gauged Supergravity
in Five Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iv



3.1 Higher-derivative supergravity . . . . . . . . . . . . . . . . . 49
3.1.1 The action corresponding to (Cµνρσ)

2 + 1
6
R2 . . . . 50

3.1.2 The action corresponding to (Rµνρσ)
2 . . . . . . . . 53

3.1.3 The action corresponding to R2 . . . . . . . . . . . 56
3.1.4 The complete four-derivative action . . . . . . . . . 57

3.2 An application: the BMPV solution . . . . . . . . . . . . . . 60
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

IV. c-functions in Higher-derivative Flows Across Dimensions . . 69

4.1 Higher-derivative gravity and NEC . . . . . . . . . . . . . . . 74
4.1.1 Domain wall flows . . . . . . . . . . . . . . . . . . . 76
4.1.2 Two-derivative flows across dimensions . . . . . . . 77
4.1.3 A concrete example: AdS5 → AdS3 . . . . . . . . . 81
4.1.4 Gauss-Bonnet flows in arbitrary dimensions . . . . . 85
4.1.5 Changing coordinates . . . . . . . . . . . . . . . . . 90

4.2 Fixed point limits of the c-function . . . . . . . . . . . . . . . 91
4.2.1 The IR limit . . . . . . . . . . . . . . . . . . . . . . 91
4.2.2 The UV divergence . . . . . . . . . . . . . . . . . . 93

4.3 Higher-derivative gravity and holographic entanglement entropy 95
4.3.1 AdSD+1 → AdS3 . . . . . . . . . . . . . . . . . . . . 97
4.3.2 Relation to the NEC-motivated c-function . . . . . 103
4.3.3 AdSD+1 → AdSd+1 for general d . . . . . . . . . . . 104

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

V. Consistent Truncations in Higher-derivative Supergravity I:
The Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Heterotic torus reduction . . . . . . . . . . . . . . . . . . . . 113
5.1.1 Four-derivative heterotic supergravity . . . . . . . . 113
5.1.2 Torus reduction . . . . . . . . . . . . . . . . . . . . 116
5.1.3 The bosonic reduction at leading order . . . . . . . 118
5.1.4 Supersymmetry variations at leading order . . . . . 120

5.2 Truncating out the vector multiplets . . . . . . . . . . . . . . 121
5.2.1 The supergravity truncation at leading order . . . . 121
5.2.2 The supergravity truncation at O(α′) . . . . . . . . 123
5.2.3 The reduced Lagrangian . . . . . . . . . . . . . . . 133

5.3 Truncating the fermionic sector . . . . . . . . . . . . . . . . . 136
5.3.1 The variations at O(α′) . . . . . . . . . . . . . . . . 137

5.4 Comparing with the four-derivative corrected BPS black string 139
5.4.1 Two-derivative solution . . . . . . . . . . . . . . . . 140
5.4.2 Four-derivative correction . . . . . . . . . . . . . . . 141

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

v



VI. Consistent Truncations in Higher-derivative Supergravity II:
The Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Group manifold reduction on S3 . . . . . . . . . . . . . . . . 152
6.1.1 S3 reduction . . . . . . . . . . . . . . . . . . . . . . 152
6.1.2 The bosonic reduction at leading order . . . . . . . 156
6.1.3 The fermionic reduction at leading order . . . . . . 158

6.2 The bosonic truncation . . . . . . . . . . . . . . . . . . . . . 159
6.2.1 The leading order truncation . . . . . . . . . . . . . 159
6.2.2 The truncation at O(α′) . . . . . . . . . . . . . . . 162

6.3 The fermionic truncation . . . . . . . . . . . . . . . . . . . . 169
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

VII. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 176

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

vi



LIST OF FIGURES

Figure

1.1 Cigar geometry of Schwarzschild black hole . . . . . . . . . . . . . . 9
2.1 GT quiver diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Chern-Simons integration contours . . . . . . . . . . . . . . . . . . 30
2.3 GT integration contours . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Plot of the coefficient f1(ξ) . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Plot of the coefficient f2(ξ) . . . . . . . . . . . . . . . . . . . . . . . 42

vii



LIST OF APPENDICES

Appendix

A. GT Endpoints and Free Energy . . . . . . . . . . . . . . . . . . . . . 179

B. Technical Details for Minimal D = 5 Supergravity . . . . . . . . . . . 190

C. Supplemental Computations for RG Flows . . . . . . . . . . . . . . . 199

D. Torsionful Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

viii



LIST OF ABBREVIATIONS

ABJM Aharony-Bergman-Jafferis-Maldacena

AdS Anti-de Sitter

CFT Conformal Field Theory

DFT Double Field Theory

EFT Effective Field Theory

GR General Relativity

GT Gaiotto-Tomasiello

JM Jacobson-Myers

KK Kaluza-Klein

NEC Null Energy Condition

QFT Quantum Field Theory

RG Renormalization Group

ix



ABSTRACT

This thesis explores topics related to the study of quantum gravity, with a focus on

precision holography and higher-derivative supergravity. First, we study subleading

corrections to the free energy of a particular 3D N = 3 Chern-Simons-matter theory

found by Gaiotto and Tomasiello, which is given by a matrix model after supersym-

metric localization. This theory is dual to massive IIA supergravity on AdS4 × CP3,

and consequently, the structure of subleading corrections to the field theory naturally

elucidates the higher-derivative corrections to the gravity dual. We extract the first

order of corrections to the free energy using resolvent methods, and our results imply

that particular terms in the supergravity action should vanish on-shell.

Next, we consider the “unreasonable effectiveness” of five-dimensional minimal

gauged supergravity. There are three independent supersymmetric four-derivative

terms that one can add to the action; nevertheless, after going on-shell (or, equiva-

lently, after a field redefinition that pushes the off-shell discrepancies to six-derivative

order), there is a unique supersymmetric invariant.

Third, we consider the effect of higher-derivative corrections in holographic renor-

malization group flows across dimensions. In particular, we construct a local holo-

graphic c-function out of metric functions and show its monotonicity via the Null

Energy Condition. We also construct a c-function from the entanglement entropy for

flows with a CFT2 IR fixed point, and we show that such flows are monotonic.

Finally, we consider consistent truncations of four-derivative heterotic supergrav-

ity. In particular, we show that reducing both on an n-dimensional torus T n or on

S3 and truncating the vector multiplets is indeed a consistent truncation at the four-

x



derivative level. Moreover, we find examples of two-derivative consistent truncations

which fail to extend to four-derivative ones.
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CHAPTER I

Introduction

Einstein’s theory of General Relativity (GR) is wildly successful, encapsulating

much of the dynamics of classical gravity in a single, short line

Rµν −
1

2
Rgµν − Λgµν =

8πGN

c4
Tµν . (1.0.1)

The left-hand side captures the geometry of spacetime via the Ricci tensor Rµν , the

Ricci scalar R, the metric gµν , and the cosmological constant Λ. In contrast, the right-

hand side, proportional to the stress-energy tensor Tµν , is a function of the matter

and energy distribution. Thus, the shape of spacetime is determined by the matter

we put in it, and the curvature of spacetime controls the motion of matter. There

have been many experimental verifications of GR’s predictions, which include the

precession of the perihelion of Mercury’s orbit, the bending of light, the gravitational

redshift of light, Shapiro time delay, frame dragging, and gravitational waves.

However, we know the world is quantum, so we seek to upgrade general relativity

to be a theory of quantum gravity. In principle, we interpret the Einstein equation as
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the classical equations of motion corresponding to a field theory with action1

Sgrav =

∫
ddx

√
−g
(

c3

16πGN

R + Lmatter

)
, (1.0.2)

put it into a path integral

Zgrav =

∫
DgDϕ eiSgrav/ℏ, (1.0.3)

and we have quantum gravity. Unfortunately, this does not work. Unlike the Standard

Model, if we try to quantize the perturbative (Fierz-Pauli) expansion of GR, we

find that the coupling constant (the Planck mass) is dimensionful, and we expect to

obtain a non-renormalizable theory. In other words, general relativity simply fails to

accurately describe the world at sufficiently high energies.

But even classical general relativity contains hints of its non-fundamentality. Con-

sider the simplest (d-dimensional) Schwarzschild black hole solution of mass M with

metric

ds2 =

(
1− 2GNM

c2rd−3

)
c2dt2 +

(
1− 2GNM

c2rd−3

)−1

dr2 + r2dΩ2
d−2. (1.0.4)

This becomes singular as r → 0. Being a gauge-dependent object, the metric is not

always a good indicator of singular behavior; there is also seemingly a singularity

at the event horizon rd−3
s = 2GNM/c2, but this turns out to just be an artifact of

the coordinate system. However, one can check that invariant objects such as the

Kretschmann scalar (Rµνρσ)
2 will diverge as r → 0 (and are well-behaved around

the horizon).2 Since infinities usually signal the existence of phenomena taking place

at new scales, something about GR must be modified at sufficiently short distances.

1Technically, we should also add a Gibbons-Hawking term to make the variational principle
well-defined.

2Although the singularity is hidden behind a horizon, GR still predicts its existence and an
infalling observer could reach it. A fundamental theory should not have such singularities.
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Heuristically, given some localized matter distribution, we expect that quantum ef-

fects should begin to dominate when the Compton wavelength becomes of order the

Schwarzschild radius; this happens when the mass becomes of order the Planck mass,

so we expect the Planck scale to be the energy scale at which the theory breaks down.

Now, given the enormity of the Planck scale, one might näıvely believe that this

is a problem that only applies to phenomena beyond our capacity of observation such

as black hole interiors and solar system-sized3 super-colliders, and that semiclassical4

gravity should be empirically adequate for everything we can observe; but this is too

hasty. Indeed, it has long been known that black holes are thermodynamic objects (see

e.g. [2–9]), even semiclassically. There is a simple thought experiment to demonstrate

this: suppose black holes have no entropy, toss in some (entropy-rich) matter, and let

the system evolve into a new black hole. By assumption, this new black hole would

still have no entropy, and thus the total entropy would have decreased, violating the

second law of thermodynamics. Hence, one concludes that black holes must have

entropy.

In particular, it can be shown that a black hole has a temperature T related to

its surface gravity κ by

T =
ℏ
ckB

κ

2π
, (1.0.5)

and an entropy S given by one-quarter of its horizon area AH in Planck units

S =
kBc

3

GNℏ
AH

4
. (1.0.6)

Remarkably, this brings together the various domains of physics: kB refers to sta-

tistical physics, GN to gravity, c to special relativity, and ℏ to quantum mechanics.

Another surprising feature is that the entropy scales with the area of the black hole,

3To be precise, it may be possible to probe the Planck length with a collider sized as small as
1010 m, which, for context, is a tenth of the distance between earth and sun [1].

4By semiclassical, we mean classical gravity coupled to quantum matter.
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rather than the volume as we would have expected. There is thus a sense in which

the degrees of freedom live in one lower dimension.

Being thermodynamic objects, black holes turn out to satisfy the four laws of

thermodynamics

0. The surface gravity (temperature) is constant over its event horizon

1. Conservation of energy5

dM = T dS + ΩdJ + ΦdQ, (1.0.7)

where Ω is the angular velocity, J is the angular momentum, Φ is the electric

potential, and Q is the charge

2. The surface area (entropy) of a black hole never decreases6

3. The entropy of a black hole goes to a constant as the temperature vanishes

Now, the fact that black holes have entropy,7 by Boltzmann’s famous equation

S = kB log Ω, (1.0.8)

implies that there must be some quantum microstates, but semiclassical gravity offers

no hints of their identity.

All this is to say that there are many open questions regarding quantum gravity.

One approach to address such fundamental questions is to detour through string

5The mass may be thought of as the internal energy for asymptotically flat black holes, but it
should be interpreted as the enthalpy for asymptotically AdS black holes, for which the cosmological
constant functions as a thermodynamic pressure [10].

6This is true classically. Quantum effects cause the black hole to emit Hawking radiation. How-
ever, a generalized second law still holds, in the sense that the total entropy of the black hole-radiation
system still increases.

7For context, a solar mass black hole would have an enormous entropy, on the order of 1077 · kB .
That is about twenty orders of magnitude larger than the entropy of the sun itself.
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theory, which is the only known UV-complete theory of gravity.8 This will lead us to

study holographic duality, which is the theme of this dissertation.

Notation

Having left some unitful quantities for clarity in the preceding discussion, we will

now set ℏ = c = kB = 1 and GN = 1/16π for the rest of this dissertation, although

we will occasionally leave GN explicit for emphasis.

1.1 Holography

String theory originated as a theory of the strong nuclear force: In the late 1960s,

it was found that hadrons arranged themselves into Regge trajectories, with squared

energy proportional to their angular momentum, and theorists showed that such a

relationship emerged naturally from a rotating relativistic string. Seemingly unfor-

tunately, attempts to model hadrons as strings came with unwanted massless spin-2

excitations (whereas no such particle appears in usual hadronic physics). However,

such a particle must necessarily mediate a force with the properties of gravity [11].

So, in 1974, Scherk and Schwarz suggested that string theory was not a theory of

nuclear physics but a theory of quantum gravity [12]. Around that time, it was real-

ized that hadrons are composed of quarks and hadronic string theory was abandoned

in favor of quantum chromodynamics.9 However, string theory continued to develop

independently as a theory of quantum gravity. The two theories became intertwined

once again in 1974, when ’t Hooft considered the large-N limit of Yang-Mills theories

and argued that certain calculations in quantum field theory resemble calculations in

string theory in this limit [14].

8In principle, another candidate would be loop quantum gravity, which is known to be UV-
complete, but it is not known how to recover gravity from the low-energy limit.

9It is worth noting that the the string theory approach to non-perturbative quantum chromody-
namics has since been revived, see e.g. [13].
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Later, in 1986, Brown and Henneaux investigated the asymptotic symmetries of

three-dimensional Anti-de Sitter (AdS) space [15]. If one considers diffeomorphisms

that leave the asymptotic behavior of the metric unchanged, then the algebra of these

symmetries is precisely the Virasoro algebra with central charge

c =
3L

2GN

, (1.1.1)

where L is the AdS radius. This then hinted at a connection between AdS3 and

two-dimensional Conformal Field Theory (CFT), which also has a Virasoro symme-

try algebra. In 1995, Henneaux, along with Coussaert and van Driel, elucidated

this connection by suggesting that 3D gravity in AdS is equivalent to Liouville field

theory [16].

Meanwhile, in 1993, ’t Hooft wrote a paper revisiting black hole thermodynamics

and concluded that the total number of degrees of freedom in a region of spacetime

surrounding a black hole must be proportional to the surface area of the horizon [17].

This holographic principle was subsequently expanded upon by Susskind in [18].

Finally, in 1998, Maldacena published his landmark paper that initiated the study

of AdS/CFT [19]. The essential observation was that there are two descriptions of

branes: One is the string/M-theoretic description of D/M-branes, and the other is

the supergravity description. The string/M-theoretic description gives a conformal

field theory living on the worldvolume traced out by the brane. On the other hand,

the supergravity description generally has a near-horizon limit that resembles AdS.

Hence, Maldacena conjectured that the two descriptions are, in fact, the same.

Specifically, we get a “holographic dictionary” that relates gravity and CFT quan-

tities. This dictionary generally depends on the precise correspondence under consid-

eration, but as an example, we may consider the duality obtained from a stack of N

coincident D3-branes in IIB string theory. There is both an open string description as

6



well as a supergravity description of these branes, which leads to the duality. On the

gravity side of this correspondence, we have IIB supergravity on AdS5 × S5 with N

units of flux through S5, string coupling gs, AdS radius L, and string length α′ = ℓ2s.

On the CFT side, we have d = 4, N = 4 super-Yang-Mills with gauge group SU(N)

and coupling gYM. These parameters are then related by

g2YM = 2πgs, 2g2YMN =

(
L2

α′

)2

. (1.1.2)

This dictionary tells us quite a bit about the dual field theory. In particular, the

supergravity description is valid for gs ≪ 1 and α′/L2 ≪ 1. This tells us that we

must have gYM ≪ 1 and N ≫ 1 such that the effective coupling λ = g2YMN ≫ 1.

That is, while the gravity theory is weakly coupled, the dual field theory is strongly

coupled.

We also see that the symmetries match on both sides of the correspondence. The

AdS5 isometry group and the 4D conformal group are both SO(4, 2); similarly, S5 has

isometry group SO(6) and the R-symmetry group of N = 4 SYM is SU(4) ∼ SO(6),

so we see that the “internal”10 dimensions geometrize the R-symmetry. This is only

the bosonic symmetries, but a more careful analysis involving fermions reveals that

the full PSU(2, 2 | 4) symmetry matches.

This correspondence was subsequently fleshed out in papers by Gubser, Klebanov,

and Polyakov [20] and Witten [21]. In Poincaré coordinates, the boundary of AdS

lies at z = 0, and bulk supergravity fields have boundary behavior

ϕ(x, z)
z→0∼ z∆ϕ(0)(x), (1.1.3)

where ϕ generically refers to any field and ∆ corresponds to the conformal scaling

10It is a bit misleading to refer to the S5 as “internal” since the S5 radius and the AdS5 radius
are equal. However, one may still consider a consistent truncation to AdS5.
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dimension. ϕ(0) is then interpreted as the source of the CFT operator O of dimension

d − ∆, where d is the dimension of the dual CFT. This then means that we may

equate the bulk partition function of supergravity subject to the boundary condition

(1.1.3) with the generating functional of the CFT

Zsugra

∣∣
ϕ→ϕ(0)

= ZCFT[ϕ(0)]. (1.1.4)

This implicitly gives us n-point functions of O and formalizes the notion that “the

CFT lives on the boundary.” Making use of the semiclassical limit of supergravity,

we may use the stationary phase approximation

Zsugra ≈ eiIsugra , (1.1.5)

where we have used I to denote the on-shell action.11 Notably, this gives us a tractable

way to do computations for a strongly coupled field theory.

Moreover, this correspondence naturally incorporates temperature. In particular,

one may consider asymptotically AdS supergravity solutions, such as a black hole. In

Euclidean signature, the black hole temperature T causes time to have an asymptotic

periodicity β = 1/T . For the case of the Schwarzschild black hole, this results in a

cigar geometry, as shown in Figure 1.1. Notably, the boundary time is identified with

the CFT time, so this periodicity extends to the CFT. Thus, we see that the CFT is

also at temperature T .

Of course, the idea of gauge/gravity duality is broader than the original AdS/CFT

correspondence. In particular, there are generalizations away from conformal sym-

metry to more general Quantum Field Theory (QFT) [22], as well as generalizations

away from AdS to Minkowski [23] and dS [24]. There are also bottom-up constructions

11This is in contrast to the “off-shell” action S[g, ϕ], which is a functional that may take as input
any choice of field configuration, whereas the on-shell action I is a function of the boundary data
obtained by plugging a saddle-point configuration into S.
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τ ∼ τ + β

Figure 1.1:
The Schwarzschild geometry in Euclidean signature. Here the angular di-
rections are suppressed, which should be interpreted as a non-contractible
Sd−2 at each point. The geometry smoothly caps off as we go to the hori-
zon (hence the time circle is contractible), while as r → ∞, we have
periodicity β.

that do not a priori originate from string theory or even require supersymmetry, such

as the AdS3/CFT2 [16, 25], JT/SYK12 [31], Kerr/CFT [32], and higher-spin/O(N)

[33] correspondences. This hints that holography is a general property of gravity,

and hence understanding holography implies understanding (at least some part of)

gravity. In particular, because the field theory side is generally well-defined for all

parameter regimes, holography provides a non-perturbative definition of quantum

gravity.

1.2 Supergravity

Supergravity has a long and rich history starting with its discovery in 1976 [34, 35],

and much effort has been devoted to its study (see e.g. [36, 37]). However, for our

purposes, it boils down to general relativity coupled to appropriate choices of matter

(gauge fields, scalars, spinors, etc.) in such a way as to also respect supersymmetry.

Equivalently, it is a theory of local supersymmetry [38]; this follows from the fact that

the supercharges generically anticommute to the momentum operator, which means

that to gauge diffeomorphisms, we must gauge supersymmetry and vice versa.

12Although it will not be relevant for our present purposes, the JT/SYK correspondence provides a
duality between a near-AdS2 dilaton gravity due to Jackiw and Teitelbohm [26, 27] and a particular
conformal quantum mechanics due to Sachdev, Ye, and Kitaev [28–30].
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Motivated by the preceding discussion of holography, we are predominantly inter-

ested in classical supergravity solutions since we work in the large-N , large-λ limit,

where GNℏ ≪ 1. In general, any non-vanishing fermion vacuum expectation value

would violate our spacetime isometries, so the fermions must be set to zero. Since

we want to remove the fermions anyway, we just work with the bosonic terms in

the action.13 Imposing supersymmetry then reduces to checking the vanishing of the

fermion supersymmetry variations, giving us relations that we will refer to as the

Killing spinor equations.

1.2.1 Higher derivatives

Many quantum field theories, especially non-renormalizable ones, are now gen-

erally thought of in the framework of Effective Field Theory (EFT); in particular,

Einstein gravity may be viewed as a low energy EFT of some UV complete theory of

quantum gravity [40]. From this perspective, one can be agnostic about what precise

theory the UV completion entails so long as we stay within appropriate kinematic

regions. It has long been known that the one-loop renormalization of Einstein gravity

contains higher-derivative corrections [41–45] (see also [46] for the case of two loops).

So, from a Wilsonian RG perspective, it is natural to include higher-derivative cor-

rections as irrelevant operators modifying the EFT at high energy. Several methods

for constructing such higher-derivative corrections are the Noether procedure [47],

superconformal tensor calculus [39, 48–51], ordinary superspace [52–56], harmonic

superspace [57], the superform method (ectoplasm) [58–60], and holography [61, 62].

See [63] for a comprehensive review.

Conversely, if we consider our UV completion to be a (super)string theory, then

the string has some finite size characterized by α′ = ℓ2s. So, if we take the relevant

curvature scale L to be much larger than the string length, L2/α′ ≫ 1, it is natural

13The unwary reader may näıvely think that the fermion terms “can’t be that bad.” Said reader
is directed to look at the 227 pages of fermion terms in [39].
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to expand the action in powers of α′. Since α′ has units of (Length)2, we also need

a couple of powers of inverse length that naturally come in the form of derivatives.

This leads to the well-known string effective actions, with the zero-slope limit being

precisely two-derivative (super)gravity. In particular, string theories have massless

modes (which we shall schematically denote ϕ0) in addition to an infinite tower of

massive modes (which we shall schematically denote ϕn), and the effective actions are

obtained by integrating out these massive modes,

eiSeff [ϕ0] =

∫
Dϕn eiS[ϕ0,ϕn], (1.2.1)

whose influence is encoded in derivatives of the massless fields, containing both clas-

sical and loop contributions. In practice, these are generally obtained from S-matrix

elements [64, 65], sigma model β-functions [66, 67], imposing local supersymmetry

[68–71], imposing T -duality [72–76], using Double Field Theory [77–82], or using

string field theory [83–85].

One might be interested in such higher-derivative corrections because they corre-

spond to subleading (in N) corrections in holography. As an example, we may revisit

the example of IIB supergravity on AdS5 × S5, with holographic dictionary given

in (1.1.2). Higher-derivative corrections give us extra powers of α′, corresponding to

subleading corrections with respect to N . This pushes us away from the strict N = ∞

regime and allows us to do precision holography.

Now, a word of caution is in order. We must treat these higher-derivative terms

as corrections, or else we suffer from the infamous Ostrogradsky instability [86]. The

essential point is that a higher-derivative action, which is not thought of as corrections

to the two-derivative theory, will generically have a Hamiltonian not bounded from

below. At the quantum level, such a theory suffers from pathologies such as position

and momentum commuting, as well as ghost modes. To build some intuition, consider

11



the example of a massless scalar in flat space (see [87]). We may consider a higher-

derivative modified Klein-Gordon equation

(
□+

a

M2
□2
)
ϕ = 0, (1.2.2)

where M2 is some high-energy scale analogous to 1/α′ (and required for the dimen-

sions to work out). The propagator is thus

∆(p) =
1

p2
(
1− a

M2p2
) =

1

p2
− 1

p2 − M2

a

. (1.2.3)

The 1/p2 pole is associated with the usual massless scalar, whereas the second pole

is associated with additional massive modes. For a < 0, these modes are tachyonic,

but for any choice of a they are ghosts. This is because their contribution to the

propagator has the wrong sign and must correspond to a negative-norm state. One

might hope this is a pathological example, but it is a general feature of higher-

derivative theories.

The problem is that the equations of motion become higher-order in derivatives,

which require more initial data to specify a solution. So we are forced to view the

system as having additional degrees of freedom. If we view the higher derivatives

simply as corrections and expand perturbatively around the two-derivative solutions,

then we have the same degrees of freedom as the two-derivative theory, and all our

issues with instabilities and ghosts go away [88–91]. Effectively, this discards solutions

that are not continuously connected to the two-derivative solutions, which gives us

a decrease in degrees of freedom. In the above example, we see that the ghost term

in the propagator diverges as a/M2 → 0, so it would be discarded. This prescription

makes sense since we would have gotten the same result by taking the full string

effective action14 and expanding in α′; requiring convergence to the original string

14If we pretend for the moment that we knew the string effective action to all orders in α′.
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action automatically discards the spuriously divergent solutions. Said another way,

the spirit of effective field theory is to use the IR degrees of freedom and compute

corrections perturbatively, and we are safe so long as we do that.

However, there is a notable exception to this instability, which is when the higher-

derivative terms still lead to second-order equations of motion: This happens for the

so-called Lovelock terms [92]

e−1L0 = Λ,

e−1L1 = R,

e−1L2 = RµνρσR
µνρσ − 4RµνR

µν +R2,

...

e−1Ln =
1

2n
δµ1ν1...µnνnα1β1...αnβn

n∏
r=1

Rαrβr
µrνr , (1.2.4)

where the n-th Lovelock term is the Euler density in 2n dimensions, with the zeroth

Lovelock term being a cosmological constant and the first being the usual Einstein-

Hilbert term. Since the Lovelock terms always lead to second-order equations of

motion,15 they may be treated as a proper theory without viewing them as corrections.

That being said, in this dissertation, we will still treat them as corrections.

1.2.2 Compactifications and consistent truncations

The idea of dimensional reduction dates back more than a century to the 1914

work of Nordström [93], who formulated a unified theory of electromagnetism and

scalar gravity starting from five-dimensional Maxwell theory, work which predates

Einstein’s 1915 theory of general relativity [94]. It was Kaluza [95] who showed in 1921

that reducing general relativity from five to four dimensions yields gravity coupled

to electromagnetism and a massless scalar, which was subsequently often set to zero.

15Such a higher-derivative term in the action is called quasi-topological.
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Klein [96] later came up with the idea of compactifying this fifth dimension on a

circle, which led to an expansion in Fourier modes, known as the Kaluza-Klein (KK)

tower. By identifying the first Fourier mode with the electric charge, he was able

to compute the radius of the compact dimension, which turned out to be of order

the Planck length, and gave a geometric explanation for the quantization of electric

charge. On the other hand, it predicted that the first massive mode was of order the

Planck mass.

It was not until the work of Jordan in 1947 [97] and Thiry in 1948 [98] that it

was appreciated that it is inconsistent to set the scalar to zero unless the Maxwell

field is also set to zero. Later, in 1969, Hawking [99] considered the consistency of

dimensional reductions in the context of Bianchi cosmologies obtained by reducing GR

on a three-dimensional Lie group. He found that if the structure constants were not

traceless (i.e., if the group was not unimodular), then the reduction of the equations

of motion failed to match the equations of motion of the reduced Lagrangian. This

requirement was pointed out in more general reductions by Scherk and Schwarz in

1979 [100].

Let us now review the circle KK reduction to illustrate several important points.

We start with a metric in D + 1 dimensions and decompose it as

dŝ2 ≡ ĝMNdx̂
Mdx̂N = gµνdx

µdxν + e2ϕ(dz + Aµdx
µ)2, (1.2.5)

where hats denote (D+1)-dimensional quantities and we have split the coordinates as

x̂M = (xµ, z). If we allow g, A, and ϕ to depend on both x and z then this is simply

a rewriting of the original metric in a particular gauge. However, we are usually

interested in getting a D-dimensional theory out, so we further impose the cylinder

condition

∂z = 0, (1.2.6)
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which is the statement that nothing depends on the internal coordinate z. This lets

one view the (D + 1)-dimensional spacetime manifold as a circle fibration over a

D-dimensional base.16 Moreover, the U(1) subset of (D + 1)-dimensional diffeomor-

phisms

z → z − λ(x), (1.2.7)

leads to a gauge symmetry

A→ A+ dλ, (1.2.8)

and so A is naturally interpreted as a U(1) gauge field. This geometrizes the Maxwell

gauge symmetry.

There are two distinct but often confused philosophies of dimensional reduction

that we wish to distinguish: compactification and consistent truncation. In a com-

pactification, one views the resulting theory as merely an effective description of a

truly (D + 1)-dimensional theory. Hence, the fields, which we will schematically

denote as Ψ̂(x, z), may be expanded into Fourier modes as

Ψ̂(x, z) =
∑
n∈Z

ψn(x)e
inz/R, (1.2.9)

where R is the radius of the circle. We may view this as rewriting each (D + 1)-

dimensional field as an infinite tower of D-dimensional fields. The inverse is given

by

ψn(x) =

∫ 2π

0

dz e−inz/RΨ̂(x, z). (1.2.10)

Returning to our earlier example of a circle reduction, if we set A = 0 = ϕ for

16It is very common to refer to putting a theory on M × X. This is almost always a warped
product or just a general fibration, and rarely ever a direct product as the symbol × implies.
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simplicity17 and consider the Klein-Gordon equation for the dilaton ϕ, we see

□̂ϕ(x, z) =
∞∑

n=−∞

(
□− n2

R2

)
ϕn(x)e

inz/R. (1.2.11)

That is, the n-th mode has an effective D-dimensional mass of |n|/R. So if the

compactified dimension is very small (compared to all other relevant length scales),

then the mass is very large, and all the modes decouple. So we may effectively only

consider the zero modes ϕ0, but with the idea that if we went to high enough energies,

we would see those massive modes appearing. We will take this perspective in Chapter

IV.

On the other hand, the idea of a consistent truncation is simply to view the reduced

theory as a solution to the equations of motion. That is, the cylinder condition is

consistent if the equations of motion that we get from the reduced Lagrangian match

the reduced equations of motion from the original Lagrangian, i.e., we want the

diagram

L

L′

E

E ′

∂z = 0

δ

δ

∂z = 0

to commute, where E (E ′) denotes the equations of motion obtained by varying (δ)

the Lagrangian L (L′). This ensures that solutions of the reduced theory uplift to

solutions of the original theory. In this sense, consistent truncations generate a new

(generally simpler) theory from one we already have, and the higher-dimensional

theory functions as an intermediate device. We will take this perspective in Chapters

V and VI. This perspective also allows us to easily see why we cannot set the scalar

17Otherwise, we would get a mess of interaction terms that obscure the point. This is, of course,
how one sees the appearance of a gauge-covariant derivative.
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to zero:18 It is sourced by the Maxwell field

□ϕ ∝ F 2, (1.2.12)

where F = dA locally, and so the truncation would only be consistent if we set F = 0

too.

As it turns out, the cylinder condition always results in a consistent truncation

on a circle. This has to do with group theory. The situation that one worries about,

as with the dilaton above, is a field equation of the form

□H = L2, (1.2.13)

where H is a field we wish to truncate and L is a field we wish to keep. However,

for the cylinder condition, L must necessarily be a singlet under the U(1) isometry

of S1, while H is necessarily charged under U(1). But no product of non-singlets can

produce a singlet on S1, so nothing can ever go wrong. Likewise, it is straightforward

to generalize this procedure to the torus, which we will have more to say about in

Chapter V.

1.3 Overview of the dissertation

This dissertation explores topics in holography and supergravity in the pursuit

of further advancing our understanding of quantum gravity. The work presented is

based on articles written with my advisor Professor James T. Liu and collaborators,

Professor Leopoldo Pando Zayas and Evan Deddo. In the following, we give an

overview of the structure of the remaining parts of the thesis. A more extensive

introduction to these topics will be given in each chapter.

18i.e., the further truncation ϕ = 0 is generically inconsistent in the above sense.
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Chapter II

In this chapter, we study subleading corrections to the genus-zero free energy of

the N = 3 Gaiotto-Tomasiello theory. In general, we obtain the endpoints and free

energy as a set of parametric equations via contour integrals of the planar resolvent

up to exponentially suppressed corrections. In the case that the two gauge groups in

the quiver are of equal rank, we find an explicit (perturbative) expansion for the free

energy. If, additionally, both groups have equal levels, then we find the full expression

for the genus-zero free energy, modulo exponentially suppressed corrections. We also

verify our results numerically.

This chapter is based on [101].

Chapter III

In this chapter, we study four-derivative corrections to pure N = 2, D = 5 gauged

supergravity. In particular, we find that, up to field redefinitions, there is a single

four-derivative superinvariant that one can add to the action, up to factors of the

two-derivative action. Consequently, this selects a unique set of coefficients for the

four-derivative corrections. We confirm these coefficients (in the ungauged limit) on

the BMPV solution.

This chapter is based on [102].

Chapter IV

In this chapter, we study the role of higher-derivative corrections to Einstein

gravity in the context of gravitational theories describing renormalization group flows

across dimensions via AdS/CFT. We use the Null Energy Condition to derive mono-

tonicity properties of candidate holographic central charges formed by combinations

of metric functions. We also implement an entropic approach to the characterization

of the four-derivative flows using the Jacobson-Myers functional and demonstrate,
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under reasonable conditions, the monotonicity of certain terms in the entanglement

entropy via the appropriate generalization of the Ryu-Takayanagi prescription. In

particular, we show that any flow from a higher dimensional theory to a holographic

CFT2 satisfies a type of monotonicity. We also uncover direct relations between

NEC-motivated and entropic central charges.

This chapter is based on [103].

Chapter V

In this chapter, we consider the torus reduction of heterotic supergravity in the

presence of four-derivative corrections. In particular, the reduction on T n generically

leads to a half-maximal supergravity coupled to n vector multiplets, and we show that

it is consistent to truncate out said vector multiplets. This is done by analyzing both

the bosonic equations of motion and the Killing spinor equations. As an application of

the consistent truncation, we examine the four-derivative corrected BPS black string

that reduces to a black hole in minimal nine-dimensional supergravity.

This chapter is based on [104].

Chapter VI

At the two-derivative order, the group manifold reduction of heterotic supergravity

on S3 results in a half-maximal 7D gauged supergravity coupled to three vector mul-

tiplets, and a further truncation can be taken to remove the vector multiplets. In this

chapter, we demonstrate that this truncation remains consistent at the four-derivative

level; we do so both by analysis of the equations of motion and the supersymmetry

variations.

This chapter is based on [105].
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CHAPTER II

Subleading Corrections in N = 3

Gaiotto-Tomasiello Theory

As discussed in Chapter I, the AdS/CFT correspondence conjectures a remark-

able equivalence between large-N gauge theories and string/M-theory on asymp-

totically AdS backgrounds. In this context, Chern-Simons-matter theories are of

particular interest in regards to the dynamics of M2-branes [106–112]. In particu-

lar, the worldvolume theory of N coincident M2-branes probing the singularity of

a C4/Zk orbifold was constructed in [112] and is known as the Aharony-Bergman-

Jafferis-Maldacena (ABJM) theory. ABJM theory is an N = 6, U(N)k × U(N)−k

Chern-Simons-matter theory, and in the large-N limit is dual to either M-theory on

AdS4 × S7/Zk or IIA string theory on AdS4 × CP3, depending on the limit taken.

ABJM theory and its holographic dual provide an excellent opportunity to probe

the dynamics of string/M-theory as well as quantum gravity and AdS4 black holes.

However, as AdS/CFT is a strong/weak coupling duality, it is highly non-trivial to

directly compare both sides of the duality. Nevertheless, certain path integrals in

superconformal Chern-Simons-matter theories reduce to matrix models via super-

symmetric localization [113, 114]. Such localization techniques have long been stud-

ied in the context of supersymmetric and topological QFTs, and the application of

[113, 114] to superconformal field theories have proven a powerful technique to ana-

20



lyze observables via matrix models. In particular, ABJM theory can be localized to a

two-matrix model [114], which can then be studied via standard methods of random

matrix theory or by novel methods such as the ideal Fermi gas approach [115].

Many important results have been obtained for the supersymmetric partition func-

tion and Wilson loop observables in ABJM theory [115–118] and the ABJ generaliza-

tion [119–122]. In particular, the S3 partition function at fixed Chern-Simons levels

k and −k was shown to have the form of an Airy function

ZS3

ABJM =

(
2

π2k

)−1/3

eA(k) Ai

[(
2

π2k

)−1/3(
N − 1

3k
− k

24

)]
+ Znp, (2.0.1)

where A(k) encodes certain quantum corrections and Znp is a non-perturbative con-

tribution. Taking F = logZ then leads to a fixed k expansion of the free energy

as

FABJM =
π
√
2

3
k1/2N3/2 − π√

2k

(
k2

24
+

1

3

)
N1/2 +

1

4
logN +O(1). (2.0.2)

In the M-theory dual, the N3/2 term can be matched to the on-shell classical super-

gravity action, while the N1/2 term is related to eight-derivative couplings in M-theory

[123, 124] which reduce to four-derivative couplings in AdS4 supergravity [125, 126].

The Airy function form of the partition function holds for a wide range of Chern-

Simons-matter theories beyond ABJM theory. Then, by expanding the Airy function

at large N , one can see that the 1
4
logN term is universal to this full set of theories. As

an important test of quantum gravity, this log term has been reproduced successfully

by a one-loop calculation in eleven-dimensional supergravity on AdS4 ×X7 [127].

Given the remarkable successes of precision tests of ABJM holography, we wish to

extend such investigations to the Gaiotto-Tomasiello (GT) case [128]. The GT theory

is an N = 3 Chern-Simons-matter theory and can be thought of as a generalization of

the ABJM theory to arbitrary Chern-Simons levels, k1 and k2, with F0 = k1+k2 ̸= 0.
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This model is dual to massive IIA supergravity with F0 playing the role of the Romans

mass [129]. The leading order behavior of GT free energy is [130–132]

FGT =
35/3π

5 · 24/3
e−iπ/6(k1 + k2)

1/3N5/3 + · · · . (2.0.3)

The N5/3k1/3 scaling is in contrast to the N3/2k1/2 scaling of the ABJM free energy

and has confirmed on the supergravity side [133]. While this leading-order behavior

is well established and generalizes to a large class of N = 3 necklace quiver models

with F0 ̸= 0, less is known about its subleading corrections, which is the focus of this

chapter.

Although the partition function for GT theory can also be mapped to a corre-

sponding ideal Fermi gas system, unlike for the ABJM model, the resulting expression

does not take the form of an Airy function [115, 134]. Furthermore, the mapping to

the quantum Fermi gas system promoted in [115] involves taking

4π

ℏ
=

1

k1
− 1

k2
. (2.0.4)

This demonstrates that a small ℏ expansion is in tension with taking k1 ≈ k2, the

natural realm for exploring the free energy in (2.0.3). We thus find it more natural to

work directly with the GT theory partition function written as a two-matrix model.

While a saddle point analysis was performed in [134], here we use a standard resolvent

approach and compute the genus-zero partition function as an expansion in inverse

powers of the ’t Hooft parameter t = gsN with gs = 2πi/k where k is an effective

overall Chern-Simons level. For equal levels, k = k1 = k2, we find (at genus zero)

F k1=k2
GT =

1

g2s

[
3

5

(
3π2

2

)2/3(
t+

ζ(3)

2π2

)5/3

− π2

12
t+ const.

]
, (2.0.5)

up to exponentially small corrections in the large |t| limit.
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To highlight the first subleading corrections to the planar free energy, we substitute

t = 2πiN/k into (2.0.5) and expand to obtain

F k1=k2
GT =

35/3π

10
e−iπ/6k1/3N5/3 +

iπ

24
kN +

32/3

8π2
e−2πi/3ζ(3)k4/3N2/3 +O(1). (2.0.6)

The leading order N5/3 term matches (2.0.3), while the linear-N term was previously

obtained in [134], and is pure imaginary for real Chern-Simons levels. At the next

order, we find a N2/3 term with a coefficient proportional to ζ(3). This term is of

O(1/t) compared to the leading order and has a natural interpretation in the massive

IIA supergravity dual as originating from a tree-level α′3R4 coupling.

The rest of this chapter is organized as follows. In Section 2.1, we predominantly

follow [130] in summarizing important results about the planar limit and the resolvent

in GT theory. We then proceed in Section 2.2 to obtain the planar free energy from the

resolvent in the limit of large ’t Hooft coupling and further check our results against

numerical data. Finally, we conclude in Section 2.3 with some open questions. Some

of the more technical calculations are relegated to two appendices.

2.1 GT theory and the planar resolvent

GT theory is anN = 3 superconformal Chern-Simons-matter theory with U(N1)k1×

U(N2)k2 gauge group and quiver diagram given in Figure 2.1. It was originally con-

structed as a deformation of ABJM theory in [128] by allowing the two U(N) quivers

to take on arbitrary ranks and levels, which in turn knocks the supersymmetry down

from N = 6 to N = 3. On the dual gravity side, which was constructed to first order

in perturbation theory in [135], this corresponds to turning on a nonzero Romans

mass F0 = k1+ k2, which is a 0-form R-R flux sourced by D8-branes. The supergrav-

ity description then corresponds to the massive IIA theory where the 2-form NS-NS

B-field acquires a mass precisely equal to F0 by “eating” the 1-form gauge field in a
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A1 A2

B1 B2

U(N1)k1 U(N2)k2

Figure 2.1:
The N = 3 GT quiver diagram. A1 and A2 are bifundamental hypermul-
tiplets and B1 and B2 are anti-bifundamental hypermultiplets coupling
the nodes of the quiver.

Higgs-like mechanism [129]. It is generally believed that there is no M-theory limit

[133] when this mass is non-vanishing.

Since GT theory still retains N = 3 supersymmetry, its partition function can be

localized following [114], just as in the AJBM case. The resulting matrix model takes

the form

Z =
1

N1!N2!

∫ N1∏
i=1

dui
2π

N2∏
j=1

dvj
2π

e−S(ui,vj), (2.1.1)

where the action is given by

e−S = exp

[
ik1
4π

N1∑
i=1

u2i +
ik2
4π

N2∑
i=1

v2i

]∏N1

i<j sinh
2
(ui−uj

2

)∏N2

i<j sinh
2
(vi−vj

2

)∏N1

i=1

∏N2

j=1 cosh
2
(ui−vj

2

) . (2.1.2)

Since there are two independent Chern-Simons levels, k1 and k2, we can define two

’t Hooft couplings, λ1 = N1/k1 and λ2 = N2/k2. However, to highlight the planar

limit, we find it more convenient to follow [130] by introducing an auxiliary parameter

k and defining

t1 =
2πiN1

k
, t2 =

2πiN2

k
, κ1 =

k1
k
, κ2 =

k2
k
. (2.1.3)

The planar limit is then taken by sending k → ∞ while holding ti and κi fixed.
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Written in terms of the above quantities, the action now takes the form1

S =
1

g2s

[
κ1t1
2N1

N1∑
i=1

u2i +
κ2t2
2N2

N2∑
i=1

v2i −
t21
N2

1

N1∑
i<j

log sinh2 ui − uj
2

− t22
N2

2

N2∑
i<j

log sinh2 vi − vj
2

+
t1t2
N1N2

N1∑
i=1

N2∑
j=1

log cosh2 ui − vj
2

]
, (2.1.4)

where we have introduced gs = 2πi/k. While the physical Chern-Simons levels k1

and k2 are real, below we will analytically continue to imaginary levels such that

the couplings ti and κi are real. This will allow us to work with a real action and

corresponding real saddle point equations. In particular, varying the action, (2.1.4),

with respect to ui and vj gives the saddle-point equations

κ1ui =
t1
N1

N1∑
j ̸=i

coth
ui − uj

2
− t2
N2

N2∑
j=1

tanh
ui − vj

2
, (2.1.5a)

κ2vi =
t2
N2

N2∑
j ̸=i

coth
vi − vj

2
− t1
N1

N1∑
j=1

tanh
vi − uj

2
. (2.1.5b)

At this stage, it is convenient to switch to exponentiated coordinates

zi := eui , wi := −evi . (2.1.6)

Making note of the sign in the definition of the {wi}, the saddle-point equations then

take the form

κ1 log zi =
t1
N1

N1∑
j ̸=i

zi + zj
zi − zj

− t2
N2

N2∑
j=1

zi + wj
zi − wj

, (2.1.7a)

κ2 log(−wi) =
t2
N2

N2∑
j ̸=i

wi + wj
wi − wj

− t1
N1

N1∑
j=1

wi + zj
wi − zj

. (2.1.7b)

1Note that this choice of parameters differs from that of [130] in the choice of sign of t2 and κ2.
In particular, (t2)there = (−t2)here and (κ2)there = (−κ2)here.
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We now define the planar resolvent in terms of the exponentiated variables

v(z) := v1(z)− v2(z) =
t1
N1

N1∑
i=1

z + zi
z − zi

− t2
N2

N2∑
i=1

z + wi
z − wi

, (2.1.8)

where the eigenvalues {zi}N1

i=1 and {wi}N2

i=1 solve the saddle-point equations (2.1.7). In

the planar limit, k → ∞, we expect the eigenvalue distributions {zi}N1
i=1 to localize

to a cut [c, d] ⊂ R+ and {wi}N2
i=1 to localize to a cut [a, b] ⊂ R−. We thus introduce

eigenvalue densities ρ(x) and ρ̃(x) and write the planar resolvent as

v(z) := t1

∫ d

c

dx ρ(x)
z + x

z − x
− t2

∫ b

a

dx ρ̃(x)
z + x

z − x
. (2.1.9)

Note that v(z) has branch-cut discontinuities along [a, b] and [c, d] where the eigen-

values condense. In terms of this resolvent, we can rewrite the saddle-point equations

quite simply as

κ1 log z =
1
2
[v(z + i0) + v(z − i0)], y ∈ [c, d], (2.1.10a)

−κ2 log(−z) = 1
2
[v(z + i0) + v(z − i0)], y ∈ [a, b]. (2.1.10b)

These equations can be solved by standard methods that have been developed in

random matrix theory (see e.g. [136]).

The planar resolvent for GT theory was already worked out in [130] by solving the

Riemann-Hilbert problem. The idea is to convert the saddle-point equations (2.1.10),

which correspond to the principal value of the resolvent along the two cuts, into

corresponding discontinuity equations by introducing

f(z) =
v(z)√

(z − a)(z − b)(z − c)(z − d)
. (2.1.11)
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We then use Cauchy’s theorem to write

f(z) =

∮
dζ

2πi

f(ζ)

ζ − z
, (2.1.12)

where the contour is a small circle surrounding z. By deforming the contour to go

around the two cuts and using the saddle-point equations, we can obtain an integral

expression for f(z). Converted back to the resolvent, v(z), we finally obtain [130]

v(z) =
κ1
π

∫ d

c

dx
log (x)

z − x

√
(z − a)(z − b)(z − c)(z − d)√
|(x− a)(x− b)(x− c)(x− d)|

+
κ2
π

∫ b

a

dx
log (−x)
z − x

√
(z − a)(z − b)(z − c)(z − d)√
|(x− a)(x− b)(x− c)(x− d)|

. (2.1.13)

This is the starting point for the subsequent analysis.

2.1.1 Fixing the endpoints

While the GT theory is parametrized by the couplings t1 and t2, the expression

(2.1.13) for the resolvent is instead parametrized by the endpoints a, b, c, d of the two

cuts. We thus want to relate these two sets of parameters. The problem can be

simplified by noticing that the saddle-point equations, (2.1.7), are invariant under

z → z−1 and w → w−1. This suggests that the eigenvalue distributions should also

be invariant under this map, which leads to an ansatz

ab = 1, cd = 1. (2.1.14)

It was shown in [130] that this ansatz is consistent with the constraints imposed by

the asymptotic behavior of the resolvent v(z) in the limits z → ∞ and z → 0. We

must still relate the two undetermined parameters (say a and d) to the couplings t1
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and t2. This can be done using the relations

t1 =
1

4πi

∮
C1
dz

v(z)

z
, (2.1.15a)

t2 =
1

4πi

∮
C2
dz

v(z)

z
, (2.1.15b)

which can be derived directly from the expression (2.1.9) for the resolvent. Here C1

and C2 are contours enclosing the branch cuts [c, d] and [a, b], respectively.

While the resolvent, (2.1.13), does not appear to admit a simple analytic form, we

can work with it as an integral expression. This is facilitated in the strong coupling

limit t1, t2 ≫ 1, where it was shown in [131] that the endpoints of the two cuts scale

uniformly when t1 ≈ t2 → ∞. In particular, making note of (2.1.14), we let

a = −eα, b = −e−α, c = e−β, d = eβ. (2.1.16)

Since the strong coupling limit is taken with α ≈ β, we find it convenient to further

parametrize the endpoints by

α = γ + δ, β = γ − δ. (2.1.17)

The symmetric case, t1 = t2 and κ1 = κ2, corresponds to δ = 0 and

t1 = t2 ∼
κ1 + κ2
3π2

γ3, (2.1.18)

at least to leading order [131]. More generally, the scaling ti ∼ γ3 continues to hold,

while δ is of subleading order compared with γ. The relation between {γ, δ} and

{t1, t2} will be worked out in more detail below.
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2.1.2 Computing the free energy

While the leading order free energy, (2.0.3), can be obtained directly from a large-

N saddle point solution [132], since we are interested in subleading corrections, we

will instead work with the resolvent, following [130, 131]. In particular, making the

identification gs = 2πi/k, the free energy can be written in the form of a genus

expansion

F =
∞∑
g=0

g2g−2
s Fg(t). (2.1.19)

It has long been known that the genus-zero free energy, F0(t), for such matrix mod-

els can be written as an integral of the planar resolvent over a particular contour

[137–139].2 The basic idea is to look at the change in the leading order free energy

from adding one eigenvalue to the branch cut and use this to deduce the derivative

of the genus-zero free energy with respect to the ’t Hooft parameter. The resulting

expression can then be shown to be an integral of the resolvent around the B-cycle,

a contour that starts at infinity on one Riemann sheet, passes through the branch

cut, and goes off to infinity on the other Riemann sheet. This results in a beautiful

geometric picture, where the A-cycle determines the endpoints and the B-cycle de-

termines the free energy; this is depicted in Figure 2.2 for the Chern-Simons matrix

model. This is the strategy we will employ for GT theory.

The two-node GT theory has two gauge groups whose eigenvalues condense along

separate cuts in the complex plane. As a result, there are two B-cycle integrals to

consider. We start by taking the genus-zero free energy F0 = g2sS|N→∞ from the

effective action, (2.1.4). For the first gauge group, we play the trick of adding one

more û eigenvalue to the first branch cut (i.e. we take N1 → N1 + 1). The ’t Hooft

2Note that our convention for the free energy differs from that in [138, 139] in that we take the
free energy to be F = − logZ.
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B

A

−iπ

iπ

Figure 2.2:
The A and B-cycle contours for Chern-Simons theory. Note that the
Riemann sheets are curled up due to the 2πi periodicity of the resolvent.

parameter correspondingly changes by ∆t1 = 2π/k. This gives

∆F0

∆t1
=
κ1
2
û2 − t1

1

N1

N1∑
i

log sinh2 û− ui
2

+ t2
1

N2

N2∑
i

log cosh2 û− vi
2

. (2.1.20)

Integrating the resolvent, (2.1.8)

v1(z) =
t1
N1

N1∑
i=1

z + zi
z − zi

, (2.1.21)

we then obtain

t1
N1

N1∑
i=1

log sinh2 û− ui
2

= −
∫ eΛ

eû
v1(z)

dz

z
+ t1(Λ− log 4), (2.1.22)

where Λ is a large cutoff, and we have dropped exponentially small terms of the form

e−Λ. Using this expression and a similar one for the integral of v2(z) gives, in the

large-N limit

∂F0

∂t1
=
κ1
2
û2 +

∫ eΛ

eû
v(z)

dz

z
− (t1 − t2)(Λ− log 4). (2.1.23)
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B2
B1

C1C2

Figure 2.3:
The integration contours (in exponentiated coordinates) used in the
derivation of the genus-zero free energy. Note that we no longer have
the 2πi periodicity of the Riemann sheets because we are in exponenti-
ated coordinates.

We take the last eigenvalue û at the right endpoint of the cut, (2.1.16), and write

∂F0

∂t1
=
κ1
2
β2 +

∫ Λ

β

v(eu)du− (t1 − t2)(Λ− log 4). (2.1.24)

Geometrically, this is the B1-cycle integral, which we have graphically depicted in

Figure 2.3. By swapping the two gauge groups, we can obtain a similar B2-cycle

integral for ∂F0/∂t2. This integral will be worked out perturbatively in the next

section.

2.2 Subleading corrections to the free energy

We now turn to an evaluation of the free energy beyond leading order. As we

have seen in (2.1.13), the planar resolvent for the GT model can be written down in

integral form. While the integral is challenging to perform analytically, the general

expression will be sufficient when working out the free energy.

Our goal is to compute the derivative of the free energy, (2.1.24), up to expo-

nentially small terms in the large ’t Hooft parameter limit. To do so, we insert the
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integral expression for the resolvent, (2.1.13), into (2.1.24) and work out the dou-

ble integral in the large t1 and t2 limit. However, since this gives an expression for

∂F0/∂t1 as a function of the endpoints of the cuts, (2.1.16), we additionally need to

relate the endpoints to the ’t Hooft couplings using the A-cycle integrals (2.1.15). We

will work this out first and then return to the free energy integral.

2.2.1 Correction to the endpoints

At leading order, the endpoints of the cuts scale with the ’t Hooft couplings

according to (2.1.18). However, this will pick up corrections, both for t1 ̸= t2 and

subleading in the couplings. We explicitly work out the A-cycle integral for t1; then

the t2 expression follows from symmetry under t1 ↔ t2 and κ1 ↔ κ2 interchange.

Substituting the integral expression for the resolvent, (2.1.13), into (2.1.18), then

explicitly writing out the A-cycle integral as an integral over the discontinuity across

the cut and finally interchanging the order of integration gives

t1 =
κ1
2π2

J1 +
κ2
2π2

J2, (2.2.1)

where

J1 =

∫ d

c

dx
log x√

(x− a)(x− b)(x− c)(d− x)
I(x), (2.2.2a)

J2 =

∫ b

a

dx
log(−x)√

(x− a)(b− x)(c− x)(d− x)
I(x), (2.2.2b)

with

I(z) =

∫ d

c

dy

y

√
(y − a)(y − b)(y − c)(d− y)

z − y
. (2.2.3)

Here the principal value of I(x) has to be taken in the J1 integral. We proceed by
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rewriting these expressions in terms of exponentiated variables:

J1 =

∫ β

−β
dv

vI(ev)

4
√

cosh α+v
2

cosh α−v
2

sinh β+v
2

sinh β−v
2

, (2.2.4a)

J2 =

∫ α

−α
dv

vI(−ev)

4
√

sinh α+v
2

sinh α−v
2

cosh β+v
2

cosh β−v
2

, (2.2.4b)

and

I(z) =

∫ β

−β
du

4
√
cosh α+u

2
cosh α−u

2
sinh β+u

2
sinh β−u

2

ze−u − 1
. (2.2.5)

Note that the cosh terms never vanish, while the sinh terms vanish at the endpoints.

Moreover, the square-root factors are all even under v → −v or u → −u. This

suggests that we split up the regions of integration into half intervals and write

J1 =

∫ β

0

dv
vI1(v)

4
√
cosh α+v

2
cosh α−v

2
sinh β+v

2
sinh β−v

2

, (2.2.6a)

J2 =

∫ α

0

dv
vI2(v)

4
√

sinh α+v
2

sinh α−v
2

cosh β+v
2

cosh β−v
2

, (2.2.6b)

where

I1(v) =

∫ β

0

du 4
√
cosh α+u

2
cosh α−u

2
sinh β+u

2
sinh β−u

2

(
coth

v − u

2
+ coth

v + u

2

)
,

(2.2.7a)

I2(v) =

∫ β

0

du 4
√
cosh α+u

2
cosh α−u

2
sinh β+u

2
sinh β−u

2

(
tanh

v − u

2
+ tanh

v + u

2

)
.

(2.2.7b)

Here we see explicitly that the integrand of I1 has a pole when v− u vanishes, so the

principal value should be taken when evaluating the integral.

So far, these expressions are still exact, as far as the planar resolvent is concerned.

However, the integrals are not easy to evaluate. To proceed, we now focus on the large
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’t Hooft coupling limit, where α, β ≫ 1. Since the integrals are over half intervals,

we can approximate α + v ≫ 1, β + v ≫ 1, and similarly for v replaced by u. As a

result, up to exponentially suppressed terms, we have

J1 =

∫ β

0

dv
ve−

1
2
(γ+v)I1(v)

2
√

cosh α−v
2

sinh β−v
2

, J2 =

∫ α

0

dv
ve−

1
2
(γ+v)I2(v)

2
√

sinh α−v
2

cosh β−v
2

, (2.2.8)

with

I1(v) =

∫ β

0

du 2e
1
2
(γ+u)

√
cosh α−u

2
sinh β−u

2

(
coth

v − u

2
+ coth

v + u

2

)
, (2.2.9a)

I2(v) =

∫ β

0

du 2e
1
2
(γ+u)

√
cosh α−u

2
sinh β−u

2

(
tanh

v − u

2
+ tanh

v + u

2

)
. (2.2.9b)

Recall that we have defined γ = (α + β)/2 and δ = (α− β)/2, following (2.1.16).

The I1 and I2 integrals can be performed explicitly and then substituted into the

integrands for J1 and J2. The remaining integrals are more challenging, and we have

been unable to obtain a closed-form expression for J1 and J2. Nevertheless, they can

be reduced to polynomial expressions in γ up to exponentially suppressed terms. The

integration is worked out in Appendix A.1, and the result is a relation between the

’t Hooft couplings t1 and t2 and the endpoints of the cuts as parameterized by γ and

δ. After defining convenient combinations of t1 and t2,

t̄ = 1
2
(t1 + t2), ∆ = 1

2
(t1 − t2), (2.2.10)

we find

t̄ =
κ1 + κ2
4π2

[
4

3
(γ − log 1

2
cosh δ)3 + 4γ tan−1 sinh δ(tan−1 sinh δ − ξ)

+
4

3
log3(1

2
cosh δ) + j1,e(δ) + j2,e(δ) +

2ξ

π
j1,o(δ)

]
, (2.2.11a)

∆ =
κ1 + κ2
4π2

[
−2πγ(tan−1 sinh δ − ξ) + j1,o(δ) + 2πξ log 1

2
cosh δ

]
, (2.2.11b)
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where

ξ :=
π

2

κ1 − κ2
κ1 + κ2

=
π

2

k1 − k2
k1 + k2

, (2.2.12)

is the relative difference in Chern-Simons levels. Here j1(δ) and j2(δ) are particular

functions explicitly defined in Appendix A.1, and the subscripts e and o denote their

even and odd parts, respectively.

For the most part, we are interested in the case of equal ranks, N1 = N2, where

the difference ∆ vanishes. Setting ∆ = 0 in (2.2.11) then gives a straightforward

expression for γ in terms of δ

2πγ(tan−1 sinh δ − ξ) = j1,o(δ) + 2πξ log 1
2
cosh δ. (2.2.13)

However, we are more interested in obtaining δ in terms of γ since we are focused

on the large coupling expansion generalizing (2.1.18) where ti ∼ γ3 with δ being

subdominant. Working to leading order in γ, we can disregard the last two terms in

the expression for ∆ in (2.2.11) so that

δ ≈ sinh−1 tan (ξ) . (2.2.14)

However, we can do better than this. Since we assume γ ≫ 1, we can expand

perturbatively

δ ≈ sinh−1 tan (ξ) +
δ1
γ

+
δ2
γ2

+O
(

1

γ3

)
. (2.2.15)

Solving the O(γ0) expression in ∆ gives

δ1 = sec (ξ) Cl2 (π + 2ξ) , (2.2.16)
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where Cl2(x) denotes the Clausen function

Cl2(x) = ImLi2(e
ix). (2.2.17)

The expression for δ2 is rather more involved

δ2 =
1

2
sec (ξ) Cl2 (π + 2ξ)

[
tan (ξ)

(
2ξ − 2gd

(
sinh−1 (tan (ξ))

)
+ Cl2 (π + 2ξ)

)
− 4 sinh−1 (tan (ξ))− 2 log

(
8 sec (ξ)(

(tan (ξ) + sec (ξ))2 + 1
)
2

)]
, (2.2.18)

where gd denotes the Gudermannian function

gd(z) = 2 arctan tanh
(
1
2
z
)
. (2.2.19)

This is a rather messy expression, but for ξ ≪ 1, it takes the nice perturbative form

δ2 ≈ 2ξ log2(2) + ξ3
(
3 log2(2)− 4

3
log(2)

)
+O

(
ξ5
)
. (2.2.20)

Having obtained δ, at least perturbatively, we now proceed to relate γ and t̄.

Keeping ∆ = 0, we first eliminate the second term in the t̄ expression in (2.2.11) to

obtain

t̄ =
κ1 + κ2
4π2

[
4

3
(γ − log 1

2
cosh δ)3 +

2

π
(tan−1 sinh δ + ξ)j1,o(δ)

+ 4 log
(
1
2
cosh δ

)(1

3
log2(1

2
cosh δ) + ξ tan−1 sinh δ

)
+ j1,e(δ) + j2,e(δ)

]
.

(2.2.21)

This expression is useful since the only γ dependence appears in the first term. We

can now substitute the perturbative expression (2.2.15). To the first non-trivial order,
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we find

t̄ =
κ1 + κ2
4π2

[
4

3
(γ − log 1

2
cosh δ)3 − 4 log(2 cos ξ)

(
1

3
log2(2 cos ξ) + ξ2

)
+

4ξ

π
j1,o(δ) + j1,e(δ) + j2,e(δ) +O(γ−1)

]
. (2.2.22)

The transcendental functions on the second line are a bit troublesome to work with.

However, by studying the series expansion of j1(δ) and j2(δ), we can determine em-

pirically that

t̄ =
κ1 + κ2
4π2

[
4

3
(γ − log 1

2
cosh δ)3 − 4(Cl3(π − 2ξ) + ζ(3)) +O(γ−1)

]
, (2.2.23)

where

Cl3(x) = ReLi3(e
ix). (2.2.24)

We will use this expression below when computing the planar free energy.

2.2.2 The free energy

We now turn to evaluating the free energy, which can be obtained from the integral

expression (2.1.24). The B-cycle integral can be evaluated similarly to the A-cycle

integral performed above for computing the endpoint relation. In particular, using

the integral expression for the resolvent, (2.1.13), we can write

∂F0

∂t1
=
κ1
2
β2 − (t1 − t2)(Λ− log 4)− κ1

π
K1 −

κ2
π
K2, (2.2.25)
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where

K1 =

∫ d

c

dx
log x√

(x− a)(x− b)(x− c)(d− x)
IB(x), (2.2.26a)

K2 =

∫ b

a

dx
log(−x)√

(x− a)(b− x)(c− x)(d− x)
IB(x). (2.2.26b)

These integrals are similar to the J1 and J2 integrals in (2.2.2), except that now IB(x)

is a B-cycle integral

IB(z) =

∫ eΛ

d

dy

y

√
(y − a)(y − b)(y − c)(y − d)

z − y
. (2.2.27)

These integrals can be evaluated up to exponentially small terms in a similar manner

as was done for the endpoint integrals. Combining ∂F0/∂t1 and the corresponding

expression for ∂F0/∂t2, we find the relatively compact expression

∂F0

∂t̄
=
κ1 + κ2

2

[
(γ − log 1

2
cosh δ)2 + (tan−1 sinh δ − ξ)2 − 1

12
π2 − ξ2

]
. (2.2.28)

Details of the calculation are given in Appendix A.2.

We now have everything we need to obtain the planar free energy from the re-

solvent. Since the derivative ∂F0/∂t̄ is given in terms of the endpoint parameters γ

and δ, the general procedure is to first obtain these parameters from the ’t Hooft

couplings t1 and t2 by inverting the endpoint relations (2.2.11). After doing so, it

becomes straightforward to integrate (2.2.28) to obtain the planar free energy F0 up

to a t̄ independent constant, which remains to be fixed.

Focusing on the case ∆ = 0, the relation (2.2.13) demonstrates that the combina-

tion (tan−1 sinh δ − ξ) is of O(γ−1). As a result, (2.2.28) can be written as

∂F0

∂t̄
=
κ1 + κ2

2

[
(γ − log 1

2
cosh δ)2 − 1

12
π2 − ξ2 +O(γ−2)

]
. (2.2.29)
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Making use of the t̄ versus γ relation, (2.2.23), and integrating then gives the genus

zero free energy

F0 = κ̄2

[
3

5

(
3π2

2

)2/3(
t̄

κ̄
+

2

π2
(Cl3(π − 2ξ) + ζ(3))

)5/3

−
(
π2

12
+ ξ2

)
t̄

κ̄
+O(t̄1/3)

+ const.

]
, (2.2.30)

where we have defined

κ̄ =
κ1 + κ2

2
=
k1 + k2
2k

. (2.2.31)

Several points are now in order. Firstly, the “constant” term is independent of t̄ but

can depend on the fractional difference of Chern-Simons levels, ξ. However, it cannot

be obtained directly from integrating the derivative of the free energy.3 In addition,

the leading term in the large-t̄ expansion of this expression matches what we expect

from (2.0.5). Finally, note that the O(t̄1/3) term vanishes in the ξ = 0 limit (ie, for

k1 = k2). In this case, expression (2.2.30) is exact up to exponentially small terms in

t̄.

It is easily seen that δ vanishes in the ξ = 0 limit. As a result, (2.2.23) takes on

the simple relation

t =
κ

2π2

(
4
3
(γ + log 2)3 − ζ(3)

)
, (2.2.32)

and the planar free energy, (2.2.30) becomes

F0 = κ2

[
3

5

(
3π2

2

)2/3(
t

κ
+
ζ(3)

2π2

)5/3

− π2

12

t

κ
+ const. +O(e−t)

]
. (2.2.33)

Here we have dropped the bars on t and κ as we are considering t1 = t2 and κ1 = κ2.

3In contrast, the O(t
1/3

) part can, in principle, be obtained term-by-term from higher-order

perturbation theory. We denote the O(t
1/3

) and constant terms separately to emphasize this dis-
tinction.
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If desired, this can be expanded in inverse powers of t

F0(t) = −π
2

12
t+

3 · 62/3

40π2

(
2π2t

)5/3 ∞∑
n=0

(
5
3

)
n

n!

(
ζ(3)

2π2t

)n
, (2.2.34)

where ( )n denotes the Pochhammer symbol. Since this expression holds for k1 = k2,

we have set κ = 1 and t = 2πiN/k. Note that t is imaginary when we take N and k

to be real. In this case, the first term, which is linear in t, does not contribute to the

real part of the free energy.

2.2.3 Numerical analysis

Our main result is the expression, (2.2.30), for the genus zero free energy F0(N, k1, k2)

at large ’t Hooft coupling t̄. While the first term is complete, additional terms of

O(t̄1/3) and smaller will contribute when the Chern-Simons levels are different, as

parametrized by ξ defined in (2.2.12). To get an idea of the size of these terms, we

carried out a numerical investigation of the large-N partition function. In this limit,

we solved the saddle-point equations in Mathematica for N ranging from 100 to 340

at fixed (real positive) ’t Hooft coupling t̄ and extrapolated N → ∞, using a working

precision of 50. This was done for various values of t̄ and then fitted to extract the

subleading coefficients f1(ξ) and f2(ξ) in the expansion

F0(t̄, κ̄, ξ) =
3

5

(
3π2

2

)2/3

t̄5/3κ̄1/3 + f1(ξ)t̄+ f2(ξ)t̄
2/3 + · · · , (2.2.35)

Throughout these fits, we hold κ̄ = 1 fixed since changing the value of κ̄ is equivalent

to an overall rescaling of k. The coefficients f1(ξ) and f2(ξ) are then extracted from

the numerical free energy for various values of ξ = (π/4)(κ1 − κ2). Due to the

computational difficulty of this process, this was only done for five sample points

corresponding to ξ = {0, π
40
, π
20
, π
10
, 3π
20
}.

We have verified that the leading order term in (2.2.35) is reproduced numerically
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Figure 2.4:
Plot of the coefficient f1(ξ). The red line is the analytic prediction from
(2.2.30), and the blue dots are sample points for numerical simulations
performed in Mathematica for ξ = 0, π

40
, π

20
, π

10
, and 3π

20
.

to very high precision and that no term of O(t̄4/3) shows up within numerical uncer-

tainties. As a result, we subtracted the analytic value of the leading term and fit only

the subdominant coefficients. The coefficient f1(ξ) of the linear t term shows very

good agreement and is plotted in Figure 2.4. We also plot the coefficient f2(ξ) of t
2/3

in Figure 2.5. Here, the coefficient is slightly less numerically stable, and we cannot

see the agreement quite as well. Nonetheless, we still see fairly good agreement with

the data.

2.3 Discussion

While the leading order N5/3k1/3 behavior of the free energy of GT theory was

essentially known since the model was first introduced, the subleading corrections have

been surprisingly difficult to obtain analytically. The planar resolvent was constructed

in [130]. However, its form did not readily lend itself to a simple expression for the

free energy beyond the leading order. Even the remarkable Fermi-gas approach to
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Figure 2.5:
Plot of the coefficient f2(ξ). The red line is the analytic prediction from
(2.2.30), and the blue dots are sample points for numerical simulations
performed in Mathematica for ξ = 0, π
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20
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Chern-Simons-matter theories [115] runs into limitations when exploring higher-order

corrections [134].

We obtained the planar free energy up to exponentially small corrections in the

limit of large ’t Hooft coupling by working with the resolvent (2.1.13) in integral form.

The main technical observation is that the endpoints of the cuts can be obtained from

A-cycle integrals of the resolvent integral while the derivative of the free energy can

be obtained from B-cycle integrals. The order of the resulting double integrals can

then be swapped, leading to expressions that can be more readily worked with. The

key results are then the endpoint relations (2.2.11) and the free energy expression

(2.2.28).

The expressions (2.2.11) and (2.2.28) in principle allow us to obtain the planar

free energy F0(N1, N2, k1, k2) in the t̄ ≫ 1 limit directly in terms of the parameters

of the model. However, inverting the endpoint equations is generally non-trivial.

Nevertheless, for small differences in the Chern-Simons levels, |k1 − k2| ≪ |k1 + k2|,

these equations can be inverted perturbatively, assuming the self-consistent condition
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|δ| ≪ 1 on the endpoints. Focusing on the equal rank case N1 = N2, or equivalently

∆ = 0, we have found an explicit expansion of the free energy. If, in addition, the

Chern-Simons levels are equal, we obtain the closed-form expression (2.2.33), which

is exact up to exponentially suppressed terms.

While we have focused on the equal rank case, one can work with unequal ranks

if desired. Here some care may be needed depending on how N1 and N2 scale in the

large-N limit, as there are now two independent ’t Hooft parameters. If the difference

in ranks, N1 −N2, is held fixed, then ∆ is a constant, and the perturbative inversion

of the endpoint equations (2.2.11) can be worked out as usual. However, if ∆ is not

fixed, then the inversion of {t1, t2} ↔ {γ, δ} becomes more involved, and the free

energy as a function of two independent ’t Hooft parameters becomes less obvious.

From a technical point of view, it is possible that the way we have chosen to break

the integrals into intermediate functions is not necessarily the most efficient. Many of

the expressions in Appendices A.1 and A.2 are quite complicated, and one may wonder

if there is a simpler parameterization that makes the formulation more elegant. One

possibility is to organize the expressions by the degree of transcendentality. However,

it is not clear if this would make them simpler.

One of the motivations for examining the subleading behavior of the free energy

is to compare it with the holographic dual. From this point of view, it is inter-

esting to observe that the expansion (2.2.34) involves powers of ζ(3)/t. From the

supergravity point of view, this is suggestive of the α′ expansion of the tree-level

closed string effective action, which starts with a term of the form ζ(3)α′3R4 [64].

More generally, at higher derivative order, one expects a series of corrections of the

form α′3(n+1)ζ(3)nD6nR4, or equivalently α′3(n+1)ζ(3)nR4+3n, which would provide an

obvious source of corrections to the dual free energy.

Of course, this is only a heuristic picture for now, as many open questions remain

to be addressed before the comparison can be made rigorous. For one thing, while the
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higher derivative couplings have been extensively studied for type II strings, the dual

to GT theory is massive IIA supergravity, which may not receive the same corrections

as ordinary type II supergravity. Nevertheless, we expect the structure to be very

similar, at least if we assume a common M-theory origin.

Perhaps more importantly, advances in computing open and closed tree-level string

amplitudes have provided a clearer picture of the structure of higher derivative cor-

rections beyond α′3R4. In particular, it is known that the α′ expansion yields terms

of the form α′3+nD2nR4 (along with counterparts such as α′3+nR4+n) multiplied by

various combinations of ζ(n). Assuming the free energy can be expanded only in

powers of ζ(3) then demands that these other terms not proportional to ζ(3)n do not

contribute to the free energy, and hence must vanish on-shell in the gravity dual.

Finally, the form of the planar free energy, (2.2.33), where the large-t expansion

involves a linear function of t raised to a fractional power, may hint at some underlying

symmetry in the α′ expansion. It would be interesting to study the dual massive IIA

description of GT theory and to clarify some of these questions. One obstacle in

doing so is the lack of an explicit construction of the dual supergravity background

beyond the limit of infinitesimally small Romans mass [135]. However, we hope that

such a solution may be found in the future.
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CHAPTER III

Four-derivative Corrections to Minimal Gauged

Supergravity in Five Dimensions

While higher-derivative corrections can be obtained directly from the underlying

string theory, they can also be parameterized more generally by working directly in the

supergravity theory. Various higher derivative superinvariants have been constructed,

both in the off-shell conformal supergravity approach and in the Poincaré frame.

The former is particularly powerful, although it is generally limited to theories with

at most eight real supercharges. In this manner, four-derivative corrections have

been constructed in four-dimensional N = 2 [140–146], five-dimensional N = 2 [48–

50, 147, 148], and six-dimensional N = (1, 0) [71, 149–152] supergravities. As these

constructions are not yet in the Poincaré frame, an additional step is needed in

integrating out the auxiliary fields to obtain conformally gauge-fixed superinvariants.

Supersymmetric higher derivative actions have a wide range of applications, from

black holes to precision holography. Higher-derivative corrected black holes provide a

window into quantum gravity and can also shed light on the black hole weak gravity

conjecture and the swampland. Higher derivative corrections have also played an

important role in holographic hydrodynamics and bounds on η/s, the ratio of the

shear viscosity to the entropy density of the plasma.

Recently, there has been interesting work on four-derivative corrections in N = 2,
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D = 4 gauged supergravity with regards to AdS4/CFT3 holography [125, 126, 153].

In particular, there are two off-shell four-derivative superinvariants that one can add

to the action, namely the Weyl multiplet and the Tlog multiplet

S4d
HD = S2∂ + α1SWeyl + α2STlog, (3.0.1)

where S2∂ denotes the usual two-derivative action. The authors of [125, 126] showed

that on-shell these reduce to a single four-derivative superinvariant, the Gauss-Bonnet

action, as well as a term proportional to the two derivative action

I4dHD =

(
1 +

4

L2
(α2 − α1)

)
I2∂ + α1IGB, (3.0.2)

where L is the four-dimensional AdS radius. Here I denotes the on-shell value of the

action S.

At this point, a comment on our usage of off-shell and on-shell is in order, as there

are perhaps two notions of on/off-shell in the supergravity literature: on-shell in the

context of conformal supergravity and on-shell in the context of evaluating actions. In

the former, the off-shell action includes non-dynamical auxiliary fields needed for off-

shell closure of the supersymmetry algebra, while on-shell indicates that the auxiliary

fields have been integrated out. In the latter, on-shell means the equations of motion

have been used when evaluating the action, thus yielding an on-shell value that can

no longer be used for dynamics. In the interest of clarity, we will refer to on-shell in

the conformal supergravity sense as the Poincaré frame and reserve the use of on-shell

to denote computing the on-shell value of the action.1

The remarkable feature of the four-derivative on-shell action, (3.0.2), as applied

1On-shell here should not be confused with the use of field redefinitions to transform the higher-
derivative actions. As further discussed in Section 3.1.1, we can shift the higher derivative action
by terms proportional to the two-derivative equations of motion. However, the resulting action is
still a dynamical action that is physically equivalent to the original one in that it yields identical
on-shell observables.
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to AdS4/CFT3, is that it provides a natural split between geometrical and theory-

dependent parameters. The former arise from the on-shell values of I2∂ and IGB, while

the latter correspond to α1, α2 and the five-dimensional AdS radius, L. As shown in

[125], the partition function of the dual SCFT obtained from (3.0.2) thus takes the

universal form

− logZ = πF
[
AN3/2 +BN1/2

]
− π(F − χ)CN1/2 + o(N1/2), (3.0.3)

where F and χ depend on the three-dimensional manifold that the SCFT lives on

while {A,B,C} are related to {α1, α2, L}, and are specific to the SCFT in question.

This motivates us to consider the analogous case for AdS5/CFT4, namely N = 2,

D = 5 gauged supergravity.

In the five-dimensional case, three independent four-derivative off-shell terms have

been constructed, corresponding to the supersymmetrization of R2
µνρσ, R

2
µν and R2

[50].2 Following [50], we choose an equivalent basis of CµνρσC
µνρσ+ 1

6
R2, RµνρσR

µνρσ,

and R2. Then

S5d
HD = S2∂ + α1SC2+ 1

6
R2 + α2S(Riem)2 + α3SR2 . (3.0.4)

After some work, we find a direct analog of the four-dimensional result for the on-shell

value of the action:

I5dHD =

(
1 +

8α1 − 24α2 − 205α3

2L2

)
I2∂ + (α1 − 2α2)I

susy
GB , (3.0.5)

where Ssusy
GB is the supersymmetrization of the Gauss-Bonnet action in 5D and IsusyGB

is its on-shell value. However, this is slightly more complicated than the 4D case, as

the Gauss-Bonnet action is no longer topological in 5D, and, as noted in [160], the

two-derivative solutions no longer satisfy the four-derivative equations of motion as

2The supersymmetrization of the 5DWeyl-squared action was performed in [48], and the resulting
corrections to black holes have been investigated in [154–159].
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was shown in the 4D case [125, 126].

One important aspect of (3.0.5) is that, up to field redefinitions and an overall

coefficient, the four-derivative action Ssusy
GB is completely fixed. As shown in [161],

the five-dimensional Einstein-Maxwell theory admits five independent four-derivative

terms up to field redefinitions. Here we choose a somewhat different but equally valid

parametrization from that of [161]

e−1L4∂ = c1IGB + c2CµνρσF
µνF ρσ + c3(F

2)2 + c4F
4 + c5ϵ

µνρσλRµνabRρσ
abAλ. (3.0.6)

The fields are normalized according to the two-derivative Lagrangian

e−1L2∂ = R + 12g2 − 1

4
F 2 − 1

12
√
3
ϵµνρσλFµνFρσAλ. (3.0.7)

Here g = 1/L is the gauge coupling constant, Aµ is the graviphoton field with F = dA

its corresponding field strength, and IGB = R2
µνρσ − 4R2

µν + R2 is the usual Gauss-

Bonnet combination. Our notational convention, here and throughout this chapter, is

that F 2 = FµνF
µν and F 4 = FµνF

νρFρσF
σµ. For the supersymmetric four-derivative

invariant, SGB, the above result, (3.0.5), fixes these coefficients up to an overall factor

c1 = −2c2 = 8c4 = 2
√
3c5, c3 = 0. (3.0.8)

Although we refer to Ssusy
GB as the supersymmetric Gauss-Bonnet action in 5D, it

could equivalently have arisen from integrating out the auxiliary fields of the off-shell

Weyl-squared action [48]. This was done earlier in [161, 162], which however led to a

different set of coefficients [163]

c̃1 = −2c̃2 = −6c̃3 = −24

11
c̃4 = 2

√
3c̃5. (3.0.9)
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We resolve this conflict by checking the four-derivative correction to the supersym-

metric BMPV solution [164], which corresponds to the ungauged limit (L → ∞) of

(3.0.5). In particular, we show that the BPS condition, M =
√
3
2
|Q|, only remains

satisfied for the present choice of coefficients, (3.0.8). We will comment further on

this discrepancy below.

The rest of this chapter is organized as follows. In Section 3.1, we show that

the three off-shell four-derivative superinvariants reduce to a single Poincaré frame

invariant, up to field redefinitions and factors of the two-derivative action. We then

proceed in Section 3.2 to check our results on the BMPV black hole solution. Finally,

we conclude in Section 3.3 with some additional comments and open questions.

3.1 Higher-derivative supergravity

Minimal D = 5 gauged supergravity has a single symplectic Majorana super-

charge. The field content is the N = 2 gravity multiplet (eaµ, ψµ, Aµ). The two-

derivative (bosonic) Lagrangian in the Poincaré frame is given by

S2∂ =

∫ [
(R + 12g2) ⋆ 1− 1

2
F ∧ ⋆F − 1

3
√
3
F ∧ F ∧ A

]
, (3.1.1)

where R is the Ricci scalar, F = dA is the field strength of the U(1) graviphoton, and

g = 1/L is the U(1) gauge coupling that may be identified as the inverse AdS radius.

Note that we choose to work in conventions such that 16πGN ≡ 1, the metric has

signature (−,+,+,+,+), and Rµν = Rρ
µρν . The two-derivative equations of motion

are

0 = Eµ ≡ ∇νF
νµ +

1

2
√
6
ϵµνρσλFνρFσλ, (3.1.2a)

0 = Eµν ≡ Rµν −
(
F σ
µ Fνσ −

1

6
gµνF

2 − 4g2gµν

)
. (3.1.2b)
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At the four-derivative level, three terms can be added to the action, corresponding

to the supersymmetrizations of (Rµνρσ)
2, (Rµν)

2, and R2. However, we choose to

parametrize these as (Cµνρσ)
2 + 1

6
R2, (Rµνρσ)

2, and R2, as the supersymmetrizations

of these combinations have been found in [49, 50] via conformal supergravity methods.

We consider these three off-shell invariants below and perform the field redefinitions

necessary to transform them into the parametrization of (3.0.6).

3.1.1 The action corresponding to (Cµνρσ)
2 + 1

6
R2

The supersymmetrization of the square of the Weyl tensor was originally consid-

ered in [48] using the standard Weyl multiplet, and subsequently in [49, 50] using

the dilaton Weyl multiplet. In the latter case, the supersymmetric completion of

C2
µνρσ picks up an additional 1

6
R2 term, and the Poincaré frame action takes the form

[49, 50]3

e−1LC2+ 1
6
R2 =

1

4
RµνρσR

µνρσ −RµνR
µν +

1

24
R2 +

128

3
D2 +

1

8
ϵµνρσλC

µRνρτδRσλ
τδ

− 32

3
RµνρσT

µνT ρσ + 4RµνρσG
µνT ρσ +

2

3
RTµνG

µν − 16

3
RµνG

µ
σ T σν

− 128

3
RµνTσµT

σ
ν +

16

3
RT 2 − 64

3
DTµνG

µν +
2048

9
T 2D

− 128

3
∇µTνρ∇µT νρ +

128

3
∇µT νρ∇νTµρ −

256

3
Tµν∇ν∇σT

µσ + 2048T 4

− 5632

27

(
T 2
)2 − 128

9
TµνG

µνT 2 − 512

3
TµσT

σρTρνG
νµ

− 256

3
ϵµνρσλT

µνT ρσ∇τT
λτ − 64

3
ϵµνρσλG

µνT ρτ∇τT
σλ

− 32ϵµνρσλG
µνT ρτ∇σT λτ , (3.1.3)

3Note that our conventions are 16πGN = 1, whereas the conventions in [49, 50] are that 8πGN =
1.
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where G = dC, and we have relations

Cµ =

√
2

3
Aµ, (3.1.4a)

Tµν =
3

16
Gµν =

1

8

√
3

2
Fµν , (3.1.4b)

D = − 1

32
R− 1

16
G2 − 26

3
T 2 + 2T µνGµν = − 1

32
R +

1

192
F 2. (3.1.4c)

We note that [49, 50] derived the above action in the context of asymptotically

Minkowski space; however, moving to the AdS case (or, equivalently, gauging the

supergravity) does not affect (3.1.3). Rather, this gauging will only affect the two-

derivative action by turning on a non-zero gauge parameter g, which does affect the

field redefinitions used in the simplifications that follow. Making use of (3.1.4), one

can simplify (3.1.3) to

e−1LC2+ 1
6
R2 =

1

4
RµνρσR

µνρσ −RµνR
µν +

1

12
R2 +

1

4
RµνρσF

µνF ρσ − 61

432
(F 2)2 +

5

8
F 4

+
1

4
√
6
ϵµνρσλA

µRνρτδRσλ
τδ +

1

9
RF 2 − 5

3
RµνFσµF

σ
ν − (∇F )2

+ 3(∇σF
µσ)2 − F νρ[∇µ,∇ν ]F

µ
ρ +

1

4
√
6
ϵµνρσλF

µνF ρσ∇τF
τλ

− 1

2

√
3

2
ϵµνρσλF

µνF ρ
τ∇σF λτ . (3.1.5)

We now perform a set of field redefinitions to put the action, (3.1.5), into the

canonical form (3.0.6). Our starting point is a Lagrangian of the form

L = L2∂ + αL4∂, (3.1.6)

where L2∂ is given in (3.1.1) and we have introduced a parameter α to keep track of

the derivative expansion. Now consider a field redefinition

gµν → gµν + αδgµν , Aµ → Aµ + αδAµ. (3.1.7)
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Applying this to the full Lagrangian, (3.1.6), and allowing for integration by parts

results in

e−1L → e−1L2∂ + α
(
e−1L4∂ + Eµνδgµν + EµδAµ

)
+O(α2), (3.1.8)

where the two-derivative Einstein and Maxwell equations, Eµν and Eµ, are given in

(3.1.2). Since we are only interested in the four-derivative effective action, we ignore

all terms of O(α2) and higher. By judicial choice of δgµν and δAµ, we are then able

to transform the four-derivative Lagrangian into the form (3.0.6).

As seen in (3.1.8), field redefinitions allow us to shift the four-derivative action

by terms proportional to the two-derivative equations of motion. In practice, this

means we can substitute the two-derivative equations of motion, (3.1.2), into the

four-derivative action, (3.1.5) to transform it into canonical form. However, it is

important to note that we are treating the field redefinition, (3.1.7), perturbatively

in the derivative expansion. In particular, while we are only considering the four-

derivative terms, the field redefinition will generate an infinite set of terms beyond four

derivatives. Furthermore, a field redefinition in the path integral will transform the

measure and couplings to external sources. Nevertheless, physical (on-shell) quantities

computed before and after the field redefinition will remain unchanged at the four-

derivative order.

With the above in mind, we now use integration by parts and the two-derivative

equations of motion, (3.1.2), to make the replacements

(∇F )2 → −1

3
(F 2)2 − 2

3
F 4 +RµνρσF

µνF ρσ + 8g2F 2, (3.1.9a)

(∇µF
µν)2 → −1

3
(F 2)2 +

2

3
F 4, (3.1.9b)

ϵµνρσλF
µνF ρσ∇τF

τλ → 4√
6

[
(F 2)2 − 2F 4

]
, (3.1.9c)

F νρ[∇µ,∇ν ]F
µ
ρ → F 4 − 1

6
(F 2)2 − 1

2
RµνρσF

µνF ρσ − 4g2F 2, (3.1.9d)
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inside the four-derivative action. These replacement rules are proved in Appendix

B.1. Using (3.1.2) and (3.1.9), we find that (3.1.3) can be reduced to the simple form

e−1LC2+ 1
6
R2 =

1

4
IGB − 1

4
RµνρσF

µνF ρσ − 1

16
(F 2)2 +

11

24
F 4 +

1

4
√
6
ϵµνρσλRµνabRρσ

abAλ

+
2

3
g2F 2 + 20g4, (3.1.10)

where IGB is the usual Gauss-Bonnet combination

IGB = (Rµνρσ)
2 − 4(Rµν)

2 +R2. (3.1.11)

3.1.2 The action corresponding to (Rµνρσ)
2

We now turn to the supersymmetrization of (Rµνρσ)
2, which was found in [49, 50]

to be

e−1L(Riem)2 = −1

2
(Rµνab (ω+)−GµνGab)

(
Rµνab (ω+)−GµνGab

)
− 1

4
ϵµνρσλ (Rµνab (ω+)−GµνGab)

(
R ab
ρσ (ω+)−GρσG

ab
)
Cλ

− ϵµνρσλBρσ (Rµνab (ω+)−GµνGab)∇λ (ω+)G
ab

−∇µ (ω+)G
ab∇µ (ω+)Gab, (3.1.12)

where H = dB + 1
2
C ∧G and we have

H ab
µ = −1

4
efµϵ

fabcdGcd, (3.1.13a)

ω ab
+µ = ωabµ +H ab

µ , (3.1.13b)

where ωab is the torsion-free spin connection. Making use of the standard formula

Rab(ω+) = dωab+ + ωac+ ∧ ω+c
b, (3.1.14)
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we may rewrite Rµνab in a manifestly torsion-free way

Rµν
ab(ω+) = Rab

µν +
1

2
ϵfabcdef [µ∇ν]Gcd

+
1

4

(
2G[µ

aGb
ν] + 2GaδGδ[µe

b
ν] − 2GbδGδ[µe

a
ν] +G2ea[µe

b
ν]

)
. (3.1.15)

Using (3.1.13), we also see that

∇µ(ω+)Gab = ∇µGab −
1

2
efµϵf [a|cedG

edGc
|b]. (3.1.16)

It is now straightforward to work out that

(
Rµνab

(
ω+

)
−GµνGab

)2
=(Rµνab)

2 − 3

2
RµνρσGµνGρσ − 2RµνG

µσGν
σ

+
1

2
G2R− (∇G)2 − (∇µG

µν)2 +
5

8

(
G2
)2

+
9

8
G4

− 3

4
ϵµνρσλGµνGρσ∇τGτλ. (3.1.17)

By using some integration by parts to make the gauge invariance manifest, one also

finds

ϵµνρσλ
(
Rµνab (ω+)−GµνGab

)(
R ab
ρσ (ω+)−GρσG

ab
)
Cλ

→ ϵµνρσλRµνabRρσ
abCλ + ϵµρσλγGµλGσ

δ∇ρGγδ

+ 2RG2 − 8RµνGµσGν
σ + 2RµνρσGµνGρσ +G4

− 2ϵµνρσλRµνabGρσG
abCλ − 4ϵµνρσλ∇µHνabGρσG

abCλ

− 4ϵµνρσλHµacHν
c
bGρσG

abCλ. (3.1.18)

The last three terms in this expression look slightly concerning, but they will be
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precisely cancelled by those in

ϵµνρσλBρσ

(
Rµνab (ω+)−GµνGab

)
∇λ (ω+)G

ab

→ −RµνρσG
µνGρσ − 1

4
ϵµνρσλG

µνGρσ∇τG
τλ +

1

2
G4 +

1

4

(
G2
)2

+
1

2
ϵµνρσλRµνabGρσG

abCλ + ϵµνρσλ∇µHνabGρσG
abCλ

+ ϵµνρσλHµacHν
c
bGρσG

abCλ. (3.1.19)

Finally, we just need

(∇µ (ω+)Gab)
2 =(∇G)2 − ϵµνρλδG

λδGρ
β∇µGνβ − 1

4

(
G2
)2

+
1

2
G4. (3.1.20)

Using the above expressions along with (3.1.4) and making use of appropriate field

redefinitions, we get

e−1L(Riem)2 = −1

2
IGB +

1

2
RµνρσF

µνF ρσ +
1

8
(F 2)2 − 11

12
F 4 − 1

2
√
6
ϵµνρσλRµνabRρσ

abAλ

− 5

3
g2F 2 − 60g4. (3.1.21)

Thus, we immediately see that

L(Riem)2 + 2LC2+ 1
6
R2 = −1

3
g2F 2 − 20g4, (3.1.22)

which vanishes in the ungauged limit. We note here also that the supersymmetrized

Gauss-Bonnet Lagrangian may be written

Lsusy
GB = L(Riem)2 + 3L

C2+
1
6
R2
, (3.1.23)

which we will make use of as an analog to the 4D case [125, 126].
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3.1.3 The action corresponding to R2

Finally, the combination of the R2 Lagrangian with the usual two-derivative action

has been found in [50] (in the language of very special geometry for supergravity

coupled to vector multiplets) to be

e−1LR+αR2 =
1

4
(C + 3)R +

2

3
(104C − 8)T 2 + 8(C − 1)D +

3

2
CIJKρ

IF J
abF

abK

+ 3CIJKρ
I∂µρ

J∂µρK − 24CIJKρ
IρJFK

abT
ab +

1

4
ϵabcdeCIJKA

I
aF

J
bcF

K
de

+ aIρ
I

(
9

64
R2 − 3DR− 2RT 2 + 16D2 +

64

3
DT 2 +

64

9

(
T 2
)2)

,

(3.1.24)

where C is an auxiliary field and aI parameterizes the R2 corrections. The D equation

of motion gives

C = 1− 1

8
aIρ

I

(
−3R + 32D +

64

3
T 2

)
. (3.1.25)

Substituting this back in and truncating out the vector multiplets by taking ρI to be

constant gives

e−1LR+αR2 = R + 64T 23

2
CIJKρ

IF J
abF

abK

− 24CIJKρ
IρJFK

abT
ab +

1

4
ϵabcdeCIJKA

I
aF

J
bcF

K
de

+ aIρ
I

(
15

64
R2 −DR +

70

3
RT 2 − 16D2 − 832

3
DT 2 − 1600

9
(T 2)2

)
.

(3.1.26)

Using the fact that

D = − 1

32
R +

2

9
T 2, (3.1.27a)

R =
64

9
T 2 − 20g2, (3.1.27b)
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we finally get that, after field redefinitions,

e−1LR2 = −205

24
g2F 2 + 100g4. (3.1.28)

3.1.4 The complete four-derivative action

Given the three invariants, a generic four-derivative action in minimal 5D super-

gravity can be parameterized by three coefficients

SHD = S2∂ + α1SC2+
1
6
R2

+ α2S(Riem)2 + α3SR2 , (3.1.29)

where the αi are taken to be small such that the higher-derivative expansion is well-

defined. By making use (3.1.22), (3.1.23), and (3.1.28), this is equivalent (at the

four-derivative level) up to field redefinitions to

SHD = S2∂ + (α1 − 2α2)S
susy
GB

+ g2
∫ [

8α1 − 24α2 − 205α3

12
F ∧ ⋆F + (α1 − 2α2 + 5α3)20g

2 ⋆ 1

]
.

(3.1.30)

We would like to make the last portion of this expression manifestly proportional to

S2∂. To accomplish this, we perform one additional redefinition

A→
(
1 + g2b1

)
A, (3.1.31a)

g2 →
(
1 + g2b2

)
g2, (3.1.31b)
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where we assume bi ∼ O(αj), so that we may ignore higher-order terms that appear.

This field redefinition will then only pick up terms from the two-derivative action

SHD =S2∂ + (α1 − 2α2)S
susy
GB + g2

∫ [(
8α1 − 24α2 − 205α3

12
− b1

)
F ∧ ⋆F

+(20α1 − 40α2 + 100α3 + 12b2)g
2 ⋆ 1− 3b1

3
√
3
F ∧ F ∧ A

]
. (3.1.32)

We may then make use of the two-derivative equations of motion to rewrite this as

SHD =S2∂ + (α1 − 2α2)S
susy
GB

+ 3b1g
2

∫ {[
1

3b1

(
8α1 − 24α2 − 205α3

12
− b1

)
− 1

3

]
F ∧ ⋆F

+R ⋆ 1 +

(
20α1 − 40α2 + 100α3 + 12b2

3b1
+ 20

)
g2 ⋆ 1− 1

3
√
3
F ∧ F ∧ A

}
.

(3.1.33)

We must then choose b1 and b2 such that

1

3b1

(
8α1 − 24α2 − 205α3

12
− b1

)
− 1

3
= −1

2
, (3.1.34a)

20α1 − 40α2 + 100α3 + 12b2
3b1

+ 20 = 12. (3.1.34b)

This is solved by

b1 =
1

6
(8α1 − 24α2 − 205α3), (3.1.35a)

b2 =
1

6
(−21α1 + 68α2 + 360α3), (3.1.35b)

which finally yields

SHD =

(
1 + g2

8α1 − 24α2 − 205α3

2

)
S2∂ + (α1 − 2α2)S

susy
GB . (3.1.36)
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This is in direct analogy to the 4D case [125, 126]. By use of field redefinitions, we

have been able to rewrite the general four-derivative corrected action, (3.1.29), in the

canonical basis of (3.0.6). However, it is important to recall that this is a perturbative

result valid only to linear order in the αi coefficients. From an effective field theory

point of view, this is sufficient for most purposes, including computing the on-shell

value of the action, as physical observables are invariant under field redefinitions.

However, straightforward use of (3.1.36) is not valid for off-shell quantities unless the

effects of the field redefinitions, (3.1.7) and (3.1.31), are fully accounted for.

This result has a strong implication. Just as in the 4D case, at the four-derivative

level, the effective supergravity action is completely parametrized by two quantities,

{S2∂, SGB}, related to the geometry and three independent quantities, {αi, g}, related

to the particular theory.4 Unlike the 4D case, however, Ssusy
GB is not topological, so

there can be a potentially richer structure of background geometry dependence in the

AdS5/CFT4 setup.

We now give the explicit form of the supersymmetrized Gauss-Bonnet action Ssusy
GB

introduced in (3.1.23). Following [161], we parameterize the 5D four-derivative La-

grangian as5

e−1L4∂ = c1IGB+ c2CµνρσF
µνF ρσ+ c3(F

2)2+ c4F
4+ c5ϵ

µνρσλRµνabR
ab

ρσ Aλ. (3.1.37)

Supersymmetry fixes this correction in terms of a single overall coefficient. Using the

definition of the five-dimensional Weyl tensor, we can make the substitution

RµνρσF
µνF ρσ = CµνρσF

µνF ρσ +
4

3
F 4 − 1

4

(
F 2
)2 − 2g2F 2, (3.1.38)

obtained in Appendix B.1 in the expressions (3.1.10) and (3.1.21). Taking the Gauss-

4While there are three αi parameters, they only enter in two independent combinations in (3.1.36).
5This parametrization differs from [161] in c1 and c2, but is chosen for easier comparison with

[163].
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Bonnet combination, (3.1.23), then gives

SGB =

∫
d5x

√
−g
[
IGB − 1

2
CµνρσF

µνF ρσ +
1

8
F 4 +

1

2
√
3
ϵµνρσλRµνabRρσ

abAλ

]
,

(3.1.39)

which corresponds to

c1 = −2c2 = 8c4 = 2
√
3c5, c3 = 0. (3.1.40)

As mentioned in the introduction, this conflicts with some prior results [161, 163,

165]. However, support for the present result can be obtained from investigating

supersymmetric BMPV black holes, which we turn to next.

3.2 An application: the BMPV solution

As we have just seen, our main result, (3.1.40), disagrees with several results in the

literature. Thus, we would like to establish some evidence for the present coefficients.

We note that the distinction is subtle, as the previously obtained four-derivative

action of [163] differs only by a term proportional to (F 2)2 − 2F 4, which will vanish

for purely electric or purely magnetic solutions. This is because a purely electric black

hole will have Ftr as the only non-vanishing component of the field strength. One

then has

F 2 = gµρgνσFµνFρσ = 2gttgrr(Ftr)
2, (3.2.1a)

F 4 = 2(gtt)2(grr)2FtrFrtFtrFrt = 2
(
gttgrr(Ftr)

2
)2
. (3.2.1b)

So then we see that the combination (F 2)2 − 2F 4 vanishes. Another way to see this

is to note that this combination can be written as

ϵϵF 4 ≡ ϵαµ1µ2µ3µ4ϵ
αν1ν2ν3ν4F µ1

ν1F
µ2
ν2F

µ3
ν3F

µ4
ν4 = −3((F 2)2 − 2F 4), (3.2.2)
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where the overall minus sign arises since we are using the signature (−,+,+,+,+).

This also vanishes for purely magnetic objects, as the combination (F 2)2 − 2F 4 is

only sensitive to solutions where both electric and magnetic fields are present. So, to

see the distinction, we must either consider a dyonic solution or a charged, rotating

solution. Hence we turn to the BMPV solution [164], which is a rotating black hole

in five dimensions.

The BMPV solution is an asymptotically Minkowski solution, which corresponds

to ungauged supergravity (or, equivalently, the g → 0 limit); we consider an asymp-

totically flat solution here as we can avoid worrying about subtleties having to do

with extra factors of the two-derivative action, which simplifies the analysis. The

BMPV solution is as follows

ds2 = −f(r)−2
[
dt+

µω

r2
(sin2 θ dϕ− cos2 θ dψ)

]2
+ f(r)

[
dr2 + r2

(
sin2 θ dϕ2 + cos2 θ dψ2 + dθ2

)]
, (3.2.3a)

A =
√
3f(r)−1

[
dt+

µω

r2
(sin2 θ dϕ− cos2 θ dψ)

]
, (3.2.3b)

where

f(r) = 1 +
µ

r2
. (3.2.4)

This solution depends on two parameters, µ, and ω, and describes a charged, spinning

black hole with ADM mass

M =
3π

4
µ, (3.2.5)

two equal magnitude angular momenta in the independent planes defined by ϕ, ψ,

Jϕ =
π

4
µω, (3.2.6a)

Jψ = −π
4
µω, (3.2.6b)
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and electric charge

Q =

√
3π

2
µ. (3.2.7)

Being a supersymmetric solution, the BMPV solution satisfies the BPS equation6

M =

√
3

2
|Q|. (3.2.8)

The key point is that we expect (3.2.8) to hold even after four-derivative corrections

are taken into account, as the system ought to remain supersymmetric.

There is a simple argument that the four-derivative terms (3.1.39) do not modify

the charge of the BMPV solution.7 Heuristically, the four-derivative terms look like

two-derivative terms squared, so the equations of motion should pick up terms that

are more suppressed as r becomes large.8 Thus, one expects the corrections to A to

be subleading in r. The charge is computed by integrating over an S3 at r → ∞,

so we expect to only pick up the 1/r3 terms in F . For example, one might worry

about terms of the form F 3, Weyl·F , or Riem2 contributing, but these must fall

off faster than 1/r3 since F falls off like 1/r3 and Riemann must fall off like 1/r2

in an asymptotically flat background.9 Hence, the subleading corrections from the

four-derivative terms should not contribute, and the charge should not change when

one introduces higher-derivative corrections. Requiring that (3.2.8) hold in the four-

derivative case then immediately implies that the mass must not shift when one

introduces four-derivative corrections.

6In AdS, the BPS condition includes the angular momenta, M =
√
3
2 |Q|+ (|J1|+ |J2|)/L, which

is another reason why the asymptotically flat case is simpler to study.
7The charge may be modified by the factor that appears in front of the two-derivative action

after going on-shell, analogous to the four-dimensional case [125, 126], but we focus only on the
four-derivative part here.

8Note this argument only works for asymptotically Minkowski space, where we expect solutions
to fall off at infinity. In AdS, we know that objects such as the Riemann tensor will go to a constant
(with respect to r) rather than disappear.

9Any black hole solution with a spatially localized horizon should look more-or-less point-like
very far away (near spatial infinity). Hence, the Riemann tensor should fall off no slower than for
Schwarzschild, which falls off as 1/r2.
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The most direct way to access the mass is to find the four-derivative corrected

solution and compute the ADM mass. However, this is difficult, so we will use a

slightly more indirect approach. The on-shell action is naturally identified with the

(classical) Gibbs free energy

IHD = βG, (3.2.9)

where β = T−1 is the inverse temperature. We have the standard thermodynamic

relation

G = U − TS − ΦQ− ΩJ, (3.2.10)

where U is the internal energy, S is the entropy, Φ is the electric potential, and Ω is

the angular velocity. For a black hole, the internal energy should just be the mass

M .10 Moreover, since the BMPV solution is extremal, it has zero temperature, so we

are left with

IHD = β
(
M −

√
3Q
)
, (3.2.11)

where we have substituted in the BPS values of Φ and Ω. Thus, we see that the

change in the action is the change in the BPS equation

∆I := IHD − I2∂ = β∆
(
M −

√
3Q
)
= 0. (3.2.12)

In principle, we should evaluate the action on the four-derivative solution; however,

it will give the same result as evaluating it on the two-derivative solution. The

standard argument is as follows. We write the four-derivative solution as a two-

derivative piece plus some perturbing correction (using Φ schematically for all the

fields)

Φ = Φ0 + αδΦ +O(α2), (3.2.13)

10Up to a contribution from the cosmological constant, which may be removed by an appropriate
boundary counterterm.
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where Φ0 is simply the BMPV solution in this case. Then the action is

SHD[Φ] = S2∂[Φ0 + αδΦ] + αS4∂[Φ0 + αδΦ]

= S2∂[Φ0] + α
δS2∂

δΦ

∣∣∣
Φ0

δΦ + αS4∂[Φ0] +O(α2)

= SHD[Φ0] +O(α2), (3.2.14)

where we have used the fact that δS2∂/δΦ
∣∣
Φ0

vanishes by the equations of motion.

Thus, we need only evaluate the four-derivative part of the action (3.1.37) on the

two-derivative solution. We will do this for generic coefficients ci, and show that this

necessarily leads to (3.1.40). Note that the BMPV solution has nice asymptotics at

infinity, so we do not need to introduce any four-derivative Gibbons-Hawking terms

or boundary counterterms to remove divergences.

The Gauss-Bonnet action can be evaluated simply to be

∫
d5x eIGB =

4π2

5

5ω4 + 2ω2µ− 15µ2

µ2
vol(R), (3.2.15)

where vol(R) is the (formally infinite) factor from doing the t integration since we

are working with a zero-temperature solution. The Weyl tensor contracted with

graviphoton field strengths gives

∫
d5x eCµνρσF

µνF ρσ = −2π2

5

−160ω4 + 96ω2µ+ 15µ2

µ2
vol(R). (3.2.16)

The two quartic field strength terms yield

∫
d5x e(F 2)2 =

48π2

5

40ω4 − 48ω2µ+ 15µ2

µ2
vol(R),∫

d5x eF 4 =
24π2

5

20ω4 − 24ω2µ+ 15µ2

µ2
vol(R). (3.2.17)
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Finally, the mixed Chern-Simons term gives

∫
d5x eϵµνρσλRµνabRρσ

abAλ =
32
√
3π2

5

5ω4 − 2ω2µ

µ2
vol(R). (3.2.18)

Putting these terms together gives the requirement that

0
!
=
2π2vol(R)

5µ2

[
10(c1 + 16c2 + 96c3 + 24c4 + 8

√
3c5)ω

4

−4(−c1 + 24c2 + 288c3 + 72c4 + 8
√
3c5)ω

2µ− 15(2c1 + c2 − 24c3 − 12c4)µ
2
]
.

(3.2.19)

Demanding that the ci coefficients be independent of the solution parameters µ, ω

then requires that we individually set

c1 + 16c2 + 96c3 + 24c4 + 8
√
3c5 = 0,

−c1 + 24c2 + 288c3 + 72c4 + 8
√
3c5 = 0,

2c1 + c2 − 24c3 − 12c4 = 0. (3.2.20)

As we have five coefficients ci and only two parameters to vary, the solution is not

unique. Solving for the latter ci in terms of c1 and c2 gives

c3 = − 1

16
(c1 + 2c2),

c4 =
1

24
(7c1 + 8c2),

c5 = −
√
3

12
(c1 + 6c2). (3.2.21)

Since c1 just controls the overall coefficient of the four-derivative action, this is a

one-parameter family of solutions. However, there is no ambiguity in the literature
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as to c2 or c5, so demanding that c2 = −1
2
c1 or that c5 =

1
2
√
3
c1 immediately gives us

c2 = −1

2
c1, c3 = 0, c4 =

1

8
c1, c5 =

1

2
√
3
c1, (3.2.22)

in perfect agreement with the present result, (3.1.40).

3.3 Discussion

We have shown that the three possible supersymmetric four-derivative terms that

we can add to the 5D N = 2 supergravity action reduce after field redefinitions to a

single four-derivative superinvariant as well as factors of the original two-derivative

action. This, in turn, implied that there is a unique four-derivative piece of the action,

up to an overall factor. We checked this explicitly in the case of the BMPV black

hole and found excellent agreement.

Of particular note, we found ci coefficients that disagree with several results in

the literature [161–163, 165]. However, while we believe the particular ci determined

previously are incorrect, the results that they are used to derive are still generally

valid as they are predominantly applied to non-rotating, non-dyonic solutions, for

which the discrepancy, in the form of (F 2)2 − 2F 4, vanishes. As noted in (3.2.2), this

conflict with the previous result is in the c3 and c4 coefficients, and corresponds to a

difference in the four-derivative Lagrangians

e−1Lhere
4∂ = e−1Lprevious

4∂ − 1

18
ϵαµ1µ2µ3µ4ϵ

αν1ν2ν3ν4F µ1
ν1F

µ2
ν2F

µ3
ν3F

µ4
ν4 . (3.3.1)

This suggests that the previous determination of the ci had an issue when translating

the conventions of [48] to that of [161, 162]. In particular, ϵϵ = +5! or ϵϵ = −5! is

signature dependent, and an incorrect sign choice may have arisen when switching

conventions. It should also be noted that the same coefficients as in (3.1.40) were
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also found in [166, 167].

With that being said, the analysis leaves open questions. A natural solution to look

at is the Gutowski-Reall solution [168], which is a one-parameter family of charged,

spinning, supersymmetric black holes in AdS5. Näıvely, one expects that the four-

derivative correction to the on-shell action should vanish;11 however, after appropriate

holographic renormalization, we seem to find that the four-derivative correction to the

action does not vanish beyond what we expect from the renormalization of the AdS

radius (see Appendix B.2 for some technical details). There is a set of ci coefficients

such that the four-derivative action vanishes, but this requires we have either c2 ̸=

−1
2
c1 or c5 ̸= 1

2
√
3
c1, which seems to conflict with current results in the literature. The

alternative, however, is that there is a non-zero shift in the mass of the black hole. To

preserve the BPS relation, this would require a renormalization of either the charge

(which seems unlikely given the arguments presented in Section 3.2) or of the angular

momentum. However, a shift to the mass seems unlikely since it has been shown that

there are no corrections when the solution is uplifted to tree-level α′3-corrected type

IIB supergravity [169]. The resolution seems to be that the field redefinitions we have

used alter the boundary values of fields [167]. Indeed, many subtleties are involved

when applying the Reall-Santos trick to black holes in AdS [170], presumably, this

explains the observed discrepancies.

Additional puzzles come from some asymptotically flat solutions like supersym-

metric black rings [171] and four-dimensional dyonic STU black holes lifted to five

dimensions [165]. Of particular note is that the black ring reduces to the BMPV

solution in the limit that the ring radius goes to zero. However, both of these solu-

tions again have non-vanishing four-derivative actions. The black ring solution has

no set of coefficients ci such that the four-derivative action vanishes for all choices of

solution parameters; however, it does in the BMPV limit. On the other hand, the

11The stringy eight-derivative corrections to the Gutowski-Reall solution were recently explored
in [169] where the shift to the action was indeed shown to vanish in the BPS case.

67



lift of the dyonic 4D STU black hole has a unique set of ci coefficients making the

four-derivative action vanish with c2 = −1
2
c1 and c5 =

1
2
√
3
c1, but otherwise unrelated

to other coefficients in the literature.

In the future, we would like to resolve these open puzzles regarding the non-

vanishing four-derivative actions of BPS solutions. Moreover, we believe it would

be fruitful to dimensionally reduce to four dimensions, which would give us N = 2

supergravity coupled to a vector multiplet, which is a truncation of the 4D STU

model; we could then compare this with the results of [126]. We would also like to

extend the results of this note to the 5D STU model, or more generally, N = 2, D = 5

supergravity coupled to vector multiplets. Finally, although motivated by holography

and subleading corrections in supersymmetric partition functions, we have yet to

explore this avenue, which we believe will be a worthwhile extension of our results.
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CHAPTER IV

c-functions in Higher-derivative Flows Across

Dimensions

One central organizing principle in the space of QFTs is the Renormalization

Group (RG) flow. RG flow is often understood as a family of successive quantum

field theories starting at some high-energy (UV) CFT and flowing to some low-energy

(IR) CFT. As the flow progresses, the effective number of degrees of freedom decreases

due to the process of coarse-graining. This reduction can be accurately quantified

by “counting functions,” which are monotonic along the RG flow and thus render

the flows irreversible. Of particular interest are functions that connect quantities

in the CFTs, such as A-type central charges in even dimensions and sphere free

energies in odd dimensions. Both of these quantities will be referred to as central

charges in the following discussion. There are well-established theorems regarding

such flows, including proofs of the 2d c-theorem by Zamolodchikov [172], the 3d F -

theorem by Casini and Huerta [132, 173–175], and the 4d a-theorem by Komargodski

and Schwimmer [176, 177]; an alternative approach that has been used to great effect

involves entanglement entropy and has been quite useful for proving results in d =

2, 3, 4 [178–180]. There also exist partial results in 5d [181–183] and 6d [184–186].

The AdS/CFT correspondence geometrizes many aspects of QFTs and has proven

a particularly useful framework for studying the properties of RG flows. Considerable
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progress on constructing c-functions has been made from the holographic perspective:

Various holographic c-theorems have been established in this context by making use

of the Null Energy Condition (NEC) [87, 187–189], as well as using the entanglement

entropy perspective to analyze holographic RG flows [190, 191]. Holographic meth-

ods, for example, permit the construction of certain monotonic c-functions in any

dimension and at strong coupling, something way beyond the reach of field-theoretic

approaches.

Naturally, much work has been done on extending holographic c-theorems to in-

clude higher-derivative corrections [87, 189, 191–206]. Such extensions allow one to

distinguish various central charges [207, 208]. For example, in 4D, we have that a = c

at the two-derivative level in gravity or in the large-N limit in field theory. It is well

known, however, that a alone has a monotonic flow from the UV to the IR [177], while

c does not. As such, adding higher derivatives allows one to distinguish between the

central charges that have monotonic flows and the ones that do not. Such higher

derivatives correspond to sub-leading in N corrections to the central charges.

In this chapter, we explore the notion of counting functions in RG flows across

dimensions, meaning the compactification of a D-dimensional CFT, which is the UV

fixed point, on a (D − d)-dimensional compact space, such that the IR fixed point is

a d-dimensional CFT. RG flows across dimensions are particularly amenable to holo-

graphic methods; there are many examples of supergravity solutions holographically

dual to RG flows interpolating between CFTs of different dimensions [209–216]. Some

candidate c-functions for such flows were studied in [217–219], and more recently an

explicit c-function was constructed in [220]. The holographic entanglement entropy

picture for such flows was further analyzed in [221]. In this chapter, we explore the

role of higher-derivative corrections in holographic flows across dimensions. As a

natural starting point, we generalize some of the results of Myers-Sinha [87, 189],

who considered the effect of higher-derivative terms in holographic RG flows, to flows
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across dimensions.

The holographic setup

Our starting point is Einstein gravity with a negative cosmological constant. From

an effective field theory point of view, one would expect this to be corrected by a set

of higher derivative operators. The first such terms arise at the four-derivative level

and involve a combination of R̂MNPQR̂
MNPQ, R̂MN R̂

MN , and R̂2. However, since the

Ricci terms can be shifted by a field redefinition, we may choose the Gauss-Bonnet

combination

χ4 = R̂MNPQR̂
MNPQ − 4R̂MN R̂

MN + R̂2. (4.0.1)

As a result, we focus on the bulk (D + 1)-dimensional Lagrangian

e−1L =
1

2κ2

[
R̂ +

D(D − 1)

L2
+ αχ4

]
, (4.0.2)

where α parametrizes the correction. This choice of the Gauss-Bonnet combination

is convenient since in this case, the corrected Einstein equation remains second order

in derivatives. This system admits a maximally symmetric AdSD+1 vacuum with an

AdS radius L2
UV = L2 − α(D − 2)(D − 3), to linear order in α.

We are interested in flows from AdSD+1 in the UV to AdSd+1 ×MD−d in the IR.

Such flows can be induced by coupling the gravitational Lagrangian, (4.0.2), to a

suitable matter sector, i.e., L → L + Lmatter. To parametrize the flow, we split off

the would-be internal space MD−d and assume a spacetime metric of the form

ds2 = e2f(z)(ηµνdx
µdxν + dz2) + e2g(z)gij(y)dy

idyj. (4.0.3)

The flow is along the bulk radial coordinate, z, and we take the asymptotics to be

such that e2f ∼ e2g ∼ 1/z2 in the UV (z → 0) while e2f ∼ 1/z2 with e2g ∼ const.
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in the IR (z → ∞). Note that this metric implicitly assumes flat slicings of AdSd+1,

although some authors have considered curved slicings [222–224].

Given a bulk metric parametrized by the two functions f(z) and g(z), we then

explicitly construct a function c(f, g; z) such that dc/dz ≤ 0 upon imposing the

NEC, TMNξ
MξN ≥ 0, on the matter sector where ξ is a future-directed null vector.

This is the desired monotonicity property. This c-function directly generalizes the

two-derivative case [220] to which it reduces when the Gauss-Bonnet coupling α is

set to zero, as well as generalizing the four-derivative case of flows within the same

dimension [87, 189] to which it reduces in the limit that there are no compact internal

dimensions. This c-function is not unique but has two free parameters characterizing

it; despite this mild ambiguity, the IR limit of this central charge is unambiguously

the A-type central charge, as expected. In other words, limz→∞ c(z) = aIR, where aIR

is the four-derivative A-type central charge.

As in the two-derivative case [220], this c-function diverges in the UV. However,

we show that the divergence of the c-function encodes the UV central charge. As we

approach the UV, the compact extra dimensions unfurl and our massive KK towers

become increasingly light and begin to enter the spectrum, meaning that the number

of lower-dimensional degrees of freedom appears to become infinite. Dimensional

analysis alone tells us that the central charge must diverge as a pole of order the

number of compact dimensions; however, we go further and show that the coefficient

of this pole encodes the value of the UV central charge, i.e.,

c(z)
z→0∼ aUV

zD−d , (4.0.4)

where aUV is the (four-derivative) A-type central charge in the UV. This is not entirely

automatic; it requires an additional constraint on the remaining free parameters of

the c-function. However, we may always choose the parameters so this is the case.
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We also construct c-functions from the entanglement entropy. In particular, we

consider entangling regions of this CFT which completely wrap the internal space.

The entanglement entropy has been shown [225–228] to then be given by finding the

extremal surface that minimizes the Jacobson-Myers functional [229]

SJM =
1

4GN

∫
Σ

ddx
√
h (1 + 2αR) +

1

2GN

∫
∂Σ

dd−1x
√
h̃ (2αK), (4.0.5)

where Σ is the extremal surface with boundary ∂Σ, h is the determinant of the

induced metric on Σ, h̃ is the induced metric (of the induced metric h) on ∂Σ, R is

the scalar curvature of Σ, and K is the trace of the extrinsic curvature of the boundary

∂Σ. For the case of flows from AdSD+1 to AdS3, which may be equivalently viewed

as flows from CFTD to CFT2, we explicitly obtain a monotonic c-function from the

entanglement entropy as

cEE = R∂R SJM, (4.0.6)

where R is the radius of the entangling region. Given a minimal surface whose profile

is r(z), SJM admits a first integral that can be solved for r′(z). This allows us to

explicitly evaluate (4.0.6) and subsequently verify its monotonicity due to the NEC.

Moreover, it turns out to be the case that this c-function which one obtains from

the holographic entanglement entropy is indeed related to the local c-function ob-

tained directly from the NEC; we show that the monotonicity of one directly implies

the monotonicity of the other. Such precise connection of two a priori differently

defined c-functions opens the possibility of better understanding the connection be-

tween strong subadditivity of the entanglement entropy and the NEC as a condition

on the holographic gravity backgrounds.

The rest of this chapter is organized as follows. In Section 4.1, we explicitly con-

struct a local c-function for the case of Gauss-Bonnet corrected gravity and demon-

strate that it flows monotonically from the UV to the IR due to the null energy
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condition (NEC). In Section 4.2, we show that the IR limit of this c-function is the

A-type central charge and, although the c-function diverges in the UV, the coeffi-

cient of this divergence encodes the UV central charge. In Section 4.3, we discuss

the c-function obtained from holographic entanglement entropy and show that it is

monotonic, at least when there is no curvature of the internal space, and show that

this quantity is related to the NEC-motivated central charge constructed in Section

4.1. A summary and conclusions are given in Section 4.4. We relegate some more

technical details to Appendix C.1.

4.1 Higher-derivative gravity and NEC

We are interested in RG flows from CFTD to CFTd triggered by compactification

on a (D − d)-dimensional manifold, MD−d. Holographically, this corresponds to a

geometric flow from AdSD+1 to AdSd+1 ×MD−d. The holographic radial coordinate

z then naturally functions as the scale for RG flow. We may explicitly realize this

setup by choosing a metric

ds2 = e2f(z)
(
ηµνdx

µdxν + dz2
)
+ e2g(z)gij(y)dy

idyj, (4.1.1)

such that in the UV region z → 0 the metric is asymptotically AdSD+1 and in the

IR region z → ∞ the metric asymptotes to AdSd+1 ×MD−d. To be rigorous, the

metric (4.1.1) is not the most general metric describing holographic RG flows across

dimensions; for example, there are known holographic RG flows where the internal

space MD−d depends on the holographic radial coordinate z in a non-separable way

[230–232]. We restrict our attention to the separable case (4.1.1) for simplicity; we

leave it as an exercise for future research to extend our analysis of holographic c-

functions in separable flows to more general non-separable flows.

Furthermore, unless otherwise specified, we will assume that the metric gij of
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MD−d is maximally symmetric with Ricci curvature

R̃ij = κ
D − d− 1

ℓ2
gij, (4.1.2)

where κ = −1, 0, or 1 for negative, flat, or positive curvature, respectively. This is not

the most general choice of metric on the internal space, but we make this choice for

simplicity; we will generalize this to arbitrary Einstein internal manifolds in Section

4.1.4.1.

As discussed above, we start with a two-derivative theory in the gravitational

sector, namely the Einstein-Hilbert Lagrangian with a negative cosmological constant.

At the four-derivative level, we add a Gauss-Bonnet coupling

χ4 = R̂MNPQR̂
MNPQ − 4R̂MN R̂

MN + R̂2, (4.1.3)

so we end up considering the gravitational Lagrangian

e−1L =
1

2κ2

[
R̂ +

D(D − 1)

L2
+ αχ4

]
, (4.1.4)

coupled to a matter sector satisfying the null energy condition.

While the NEC is a condition on the matter, namely TMNξ
MξN ≥ 0, with ξ a

future-directed null vector, the Einstein equation allows this to be recast as a condition

on the four-derivative corrected geometry, namely

[
R̂MN + α

(
R̂MPQRR̂

PQR
N − 2R̂PQR̂MPNQ − 2R̂MP R̂

P
N + R̂R̂MN

)]
ξMξN ≥ 0.

(4.1.5)

The main result of this section is to show that the NEC (4.1.5) implies the existence

of a monotonic c-function from the UV to the IR in the background (4.1.1).
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4.1.1 Domain wall flows

Before discussing flows across dimensions, let us first review the case of flows

within the same dimension [87, 189], i.e., for which we have a metric of the form

ds2 = e2f(z)
(
ηµνdx

µdxν + dz2
)
. (4.1.6)

Pure AdS corresponds to the solution f(z) = log(L/z), with L being the AdS radius.

Then, in these coordinates, z = 0 corresponds to the UV, and z = ∞ corresponds to

the IR. Thus, we have a gravity solution that is a domain wall interpolating between

two AdSD+1 regions; the corresponding field theory interpretation is that of an RG

flow [187, 188]. One can calculate the curvature tensor components

R̂µνρσ = −e−2f (f ′)2(ηµρηνσ − ηµσηνρ), R̂µzνz = −e2ff ′′ηµν ,

R̂µν = −
[
f ′′ + (D − 1)(f ′)2

]
ηµν , R̂zz = −Df ′′. (4.1.7)

Choosing a null vector ξ = ∂t ± ∂z, the NEC with Gauss-Bonnet corrections is then

simply expressed as [87, 189]

(D − 1)
(
e−f
)′′(

1− 2α(D − 2)(D − 3)e−2f (f ′)2
)
≥ 0. (4.1.8)

Note that this will be the only non-trivial NEC due to the planar symmetry of the

domain wall.

We now consider flows to the IR. In the IR, the A-type central charge may be

computed via the methods of [233, 234] to be [235]

aIR =
LD−1
IR

GN

(
1− 2(D − 1)(D − 2)

α

L2
IR

)
, (4.1.9)

where GN is the (D + 1)-dimensional Newton’s constant. In order to obtain a c-
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function, note that in the IR, we expect that ef ∼ LIR/z, so that (e−f )′ ∼ 1/LIR.

Replacing LIR by an effective AdS radius

Leff(z) =
1

(e−f )′
, (4.1.10)

that interpolates between LUV and LIR then leads to a natural ansatz for an unnor-

malized c-function

c(z) =
1

GN

(
(e−f )′

)D−1

(
1− 2α(D − 1)(D − 2)((e−f )′)2

)
. (4.1.11)

Taking a derivative with respect to z, one gets that

c′(z) = −
(D − 1)

(
e−f
)′′

GN

(
(e−f )′

)D (1− 2α(D − 2)(D − 3)((e−f )′)2
)
≤ 0, (4.1.12)

where the final step makes use of the null energy condition (4.1.8). So, there is a

monotonically non-increasing flow of c(z) from the UV to the IR. Moreover, one can

check that this function c(z) interpolates between the UV and IR central charges in

the sense that

c(z = ∞) = aIR, c(z = 0) = aUV. (4.1.13)

Here aIR and aUV are the A-type central charges in the IR and UV, respectively,

where

aUV =
LD−1
UV

GN

(
1− 2(D − 1)(D − 2)

α

L2
UV

)
. (4.1.14)

This expression agrees with [235].

4.1.2 Two-derivative flows across dimensions

We now turn to the case at hand, which is flows across dimensions. Before consid-

ering the full case, we review the two-derivative case of flows across dimensions [220],
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i.e., without higher-derivative corrections. For such flows, we use the full metric

ansatz (4.1.1), with corresponding Ricci tensor components

R̂µ
ν = −e−2f [f ′′ + f ′((d− 1)f ′ + (D − d)g′)]δµν ,

R̂i
j = e−2gR̃i

j − e−2f [g′′ + g′((d− 1)f ′ + (D − d)g′)]δij,

R̂z
z = −e−2f [df ′′ + (D − d)(g′′ + g′(g′ − f ′))]. (4.1.15)

Note that because we are assuming the AdSd+1 in the IR to have flat slicings, the

corresponding Ricci tensor Rµν will vanish.

At the two-derivative level, the null energy condition is equivalent to RMNξ
MξN ≥

0. Since the D-dimensional isometry is broken by the flow, we end up with two

independent inequalities, which correspond to choosing null vectors along t-z and t-y.

These conditions are, respectively,

NEC1: − (d− 1)
(
f ′′ − (f ′)2

)
− (D − d)(g′′ + g′(g′ − 2f ′)) ≥ 0,

(4.1.16a)

NEC2: (f ′ − g′)′ + (f ′ − g′)((d− 1)f ′ + (D − d)g′) + κ
D − d− 1

ℓ2
e2f−2g ≥ 0.

(4.1.16b)

NEC1 may be suggestively rewritten as

(
e−f̃
)′′

≥ (D − 1)(D − d)

(d− 1)2
e−f̃ (g′)2 ≥ 0, (4.1.17)

where f̃ is an effective warp factor

f̃(z) ≡ f(z) +
D − d

d− 1
g(z). (4.1.18)
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Likewise, NEC2 can be rearranged into the form

(
e(d−1)f+(D−d)g(f ′ − g′)

)′ ≥ −κD − d− 1

ℓ2
e(d+1)f+(D−d−2)g. (4.1.19)

Note that the sign of the right-hand side term depends on the sign of the internal

curvature, κ. For κ = −1 or κ = 0 the expression on the left-hand side is non-negative.

But for κ = 1 the sign of this term is unconstrained.

As in the domain wall flow, we seek a c-function that flows to aIR in the IR. Before

constructing such a function, we first recall the asymptotics of the flow. Flowing from

AdSD+1 in the UV to AdSd+1 in the IR, one expects

UV (z = 0) : (e−f )′ = (e−g)′ =
1

LUV

,

IR (z = ∞) : (e−f )′ =
1

LIR

, (e−g)′ = 0, (4.1.20)

For AdSd+1 in the IR, we have

aIR =
Ld−1
IR

Gd+1

=
e(D−d)g(∞)Vol(MD−d)L

d−1
IR

GN

=
Vol(MD−d)

GN

(
e

D−d
d−1

g(∞)LIR

)d−1

, (4.1.21)

where GN is the (D + 1)-dimensional Newton’s constant, and Gd+1 is obtained by a

standard Kaluza-Klein reduction with internal space metric ĝij = e2g(z)gij. Taking

LIR ∼ 1/(e−f )′, it is then natural to write down an unnormalized local holographic

c-function of the form

c(z) =
1

((e−f̃ )′)d−1
. (4.1.22)

In particular, the effective warp factor f̃ gives the precise combination of internal

volume and AdS radius needed to obtain the IR central charge. As before, one can
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verify that this is monotonic along flows

c′(z) = −(d− 1)(e−f̃ )′′

((e−f̃ )′)d
≤ 0, (4.1.23)

since (e−f̃ )′′ ≥ 0 from NEC1, (4.1.17).

As before, we may define an effective AdS radius

Leff(z) =
1

(e−f̃ )′
, (4.1.24)

such that L′
eff(z) ≤ 0. The c-function is then simply

c(z) =
Leff(z)

d−1

GN

. (4.1.25)

Note, however, that Leff defined here does not correspond directly to the radius of

AdSd+1; instead, it is the AdS radius modified by the internal volume to account for

the dimensionally reduced Newton’s constant. Moreover, unlike the domain wall flow

case, this c(z) diverges in the UV. This has a natural explanation: The D-dimensional

theory appears to have an infinite number of d-dimensional degrees of freedom; i.e.,

as we approach the UV, the compact dimensions become large and we can no longer

ignore the infinite KK tower of states. As it turns out, the divergence still encodes

the UV central charge; we will return to this point in Section 4.2.2.

Note that NEC2, given in the form (4.1.19), also leads to a monotonicity of sorts.

In particular, as long as the internal curvature is non-positive, κ ≤ 0, the quantity

C(z) = e(d−1)f̃ (f ′ − g′), (4.1.26)

satisfies the inequality

C ′(z) ≥ 0 (provided κ ≤ 0). (4.1.27)
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Hence C(z) is a monotonically non-decreasing function towards the IR. Moreover,

making use of the IR behavior (4.1.20), we see that

C z→∞∼ −e
(D−d)gIR

LIR

(
LIR

z − z0

)d
< 0, (4.1.28)

where z0 is a constant offset. Since this is negative in the IR and the flow is non-

decreasing towards the IR, we see that C(z) is negative along the entire flow. Thus

it must be the case that f ′ < g′ along the entire flow, so long as κ ≤ 0. It would be

interesting to explore the implications of this condition as a second constraint on the

flow (for κ ≤ 0).

4.1.3 A concrete example: AdS5 → AdS3

We now turn to four-derivative flows across dimensions where we include the

Gauss-Bonnet coupling. Since the expressions are somewhat lengthy for arbitrary

UV and IR dimensions, D and d, we start with a simple example of flowing from

AdS5 to AdS3 × T 2 to motivate our procedure. We thus take a metric of the form

ds2 = e2f(z)(− dt2 + dx2 + dz2) + e2g(z)(dy2 + dw2). (4.1.29)

There are various explicit solutions in this class, including supergravity solutions

describing flows of N = 4 SYM on T 2 [215, 236–238]. The resulting NECs, in the

presence of a Gauss-Bonnet term in the action, are obtained by orienting the null
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vectors along the t-z and t-y directions, respectively,

NEC1: −
(
f ′′(z)− f ′(z)2

)
− 2 (g′′(z) + g′(z) (g′(z)− 2f ′(z)))

+ 4αe−2f(z)g′(z)
[
g′(z)

(
f ′′(z)− f ′(z)2

)
+ 2f ′(z) (g′′(z) + g′(z) (g′(z)− 2f ′(z)))

]
≥ 0, (4.1.30a)

NEC2: (f ′(z)− g′(z))
′
+ (f ′(z)− g′(z)) (f ′(z) + 2g′(z))

+ 4αe−2f(z)
[
− (f ′(z)g′(z) (f ′(z)− g′(z)))

′

+ f ′(z)g′(z) (f ′(z)− g′(z)) (f ′(z)− 2g′(z))
]
≥ 0. (4.1.30b)

These generalize the two-derivative NECs, (4.1.16), in the case where D = 4, d = 2,

and κ = 0. As a sanity check, note that NEC2 becomes trivial in the domain wall

limit, g = f , while NEC1 reduces to

−3
(
f ′′(z)− f ′(z)2

) (
1− 4αe−2ff ′(z)2

)
≥ 0, (4.1.31)

in agreement with the domain wall flow case (4.1.8).

In order to obtain a c-function, note that, following (4.1.17), the two-derivative

NEC1 can be written as (
e−f̃
)′′

≥ 6e−f̃ (g′)2, (4.1.32)

where f̃ = f + 2g. Examination of (4.1.30) indicates that, in the presence of the

Gauss-Bonnet correction, this can be extended to

((
e−f̃
)′

+ 4αe−f̃−2ff ′g′2
)′

≥ 6e−f̃ (g′)2
[
1 +

4

3
α e−2f

(
(f ′ − g′)2 − g′2

)]
. (4.1.33)

Since (g′)2 is non-negative, the right-hand side of the two-derivative expression,

(4.1.32), is non-negative. However, the same cannot be said for (4.1.33), as the

term inside the square brackets can in principle have either sign. However, as long
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as we work perturbatively in the higher derivative coupling, α, this still leads to a

monotonic expression for the left-hand side.

Validity of the perturbative expansion requires that the four-derivative Gauss-

Bonnet term be parametrically smaller than the leading-order two derivative term,

αR2 ≪ R, or α/ℓ2 ≪ 1 where ℓ is some radius of curvature of the background. For

the particular higher derivative flow at hand, (4.1.33), this corresponds to the two

conditions

αe−2ff ′2 ≪ 1, αe−2fg′2 ≪ 1, (4.1.34)

in which case, we can conclude that

((
e−f̃
)′

+ 4αe−f̃−2ff ′g′2
)′

≥ 0. (4.1.35)

For a flow interpolating between the asymptotic regions given in (4.1.20), we note

that e−f ∼ e−g ∼ z/LUV in the UV region, z → 0. Then the perturbative conditions,

(4.1.34), translate into

α

L2
UV

≪ 1. (4.1.36)

While this changes along the flow, the first condition in (4.1.34) corresponds to

α/L2
eff ≪ 1 where Leff is an effective AdS radius interpolating between LUV and

LIR. For the second condition in (4.1.34), note that e−g interpolates from z/LUV to a

constant in the IR. Hence g′2 flows from 1/z2 to 0. Since e−2f scales as z2 throughout

the flow, the combination e−2fg′2 then interpolates between the values

e−2f (g′)2 =


0 z → ∞ (IR)

1
L2
UV

z → 0 (UV)

. (4.1.37)
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The requirement that we are working perturbatively in α is, therefore,

{
α

L2
UV

,
α

L2
IR

}
≪ 1. (4.1.38)

at the endpoints of the flow, along with the assumption that the four-derivative

corrections remain parametrically small along the flow. This is equivalent to requiring

that our EFT description remains valid.

With this in mind, one may generalize the two-derivative c-function defined in

(4.1.25) by taking

c(z) =
Leff(z)

GN

, (4.1.39)

where now

Leff(z) =
1(

e−f̃
)′
+ 4αe−f̃−2ff ′(g′)2

, (4.1.40)

is the Gauss-Bonnet corrected effective AdS3 radius, including the internal volume

factor. From (4.1.35), we immediately see that L′
eff(z) ≤ 0, so that c′(z) ≤ 0. As a

result, c(z) is monotonic non-increasing along the flow to the IR, so long as we work

perturbatively in α. Note that this c-function reduces to the two-derivative c-function

in the IR where g′ = 0; this is a consequence of the fact that the Gauss-Bonnet term

is trivial for AdS3 and we might expect otherwise in general dimensions.

Turning our attention to NEC2, we see that it can be written as a total derivative

(
ef̃ (f ′ − g′)

(
1− 4αe−2ff ′g′

))′
≥ 0, (4.1.41)

which generalizes (4.1.19) for the case κ = 0. If we commit to being perturbatively

small in α, (4.1.34), then the interpretation of NEC2 is almost identical to the two-

derivative case [220] as summarized above. We can define a function

C(z) = ef̃ (f ′ − g′)
(
1− 4αe−2ff ′g′

)
, (4.1.42)
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such that C ′(z) ≥ 0. In the IR, we have that

C(z) z→∞∼ −e
2gIR

LIR

(
LIR

z − z0

)2

< 0, (4.1.43)

where z0 is a constant. Since this is a negative in the IR and monotonically non-

decreasing with respect to z, it must be the case that it is also negative in the UV.

Hence, we have that f ′ < g′ along the entire flow.

4.1.4 Gauss-Bonnet flows in arbitrary dimensions

Having examined flows from AdS5 to AdS3 we now turn to the general case of

Gauss-Bonnet corrected flows in arbitrary dimensions. Consider a flow from AdSD+1

to AdSd+1. As noted above, we consider two conditions arising from the null energy

condition, which we denoted NEC1 and NEC2. Our main interest is in the c-function

arising from NEC1, although NEC2 will also give rise to a monotonic function from

the case κ ≤ 0.

Making use of the curvature tensor components summarized in Appendix C.1.1,

we find the t-z NEC1 to be given by

− (d− 1)(f ′′ − (f ′)2)− (D − d)(g′′ + g′(g′ − 2f ′))

+ 2αe−2f
[
(d− 1)(d− 2)(f ′)2

(
(d− 3)(f ′′ − f ′2) + (D − d)(g′′ + g′(g′ − 2f ′))

)
+ 2(D − d)(d− 1)f ′g′

(
(d− 2)(f ′′ − f ′2) + (D − d− 1)(g′′ + g′(g′ − 2f ′))

)
+ (D − d)(D − d− 1)g′2

(
(d− 1)(f ′′ − f ′2) + (D − d− 2)(g′′ + g′(g′ − 2f ′))

)]
− 2α

κ

ℓ2
(D − d)(D − d− 1)e−2g

[
(d− 1)(f ′′ − f ′2) + (D − d− 2)(g′′ + g′(g′ − 2f ′))

]
≥ 0. (4.1.44)
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One can check that upon setting f = g and κ = 0, we get

(D − 1)
(
(f ′)2 − f ′′)(1− 2α(D − 2)(D − 3)e−2f (f ′)2

)
≥ 0, (4.1.45)

which perfectly agrees with the domain wall flow NEC (4.1.8). As a sanity check, one

can also see that setting α = 0 recovers the correct two-derivative result (4.1.16).

We now seek a holographic c-function which could, a priori, be any arbitrary

function

c(z) = c(f, f ′, f ′′, ..., g, g′, g′′, ...; z). (4.1.46)

However, inspired by the form of the two-derivative c-function (4.1.22) and the

AdS5 → AdS3 case, namely (4.1.39) and (4.1.40), a natural generalization would

to be

c(z) =
1

((e−f̃ )′)d−1
→ 1 +O(α)

((e−f̃ )′ +O(α))d−1
, (4.1.47)

where the O(α) terms are made from combinations of f ′, g′ and κ. Hence, we propose

a candidate c-function

c(z) =
Leff(z)

d−1

GN

[
1 + α

(
e−2f

(
a1(f

′)2 + a2f
′g′ + a3(g

′)2
)
+ b1e

−2g κ

ℓ2

)]
,

Leff(z) =
[(
e−f̃
)′

+ α e−f̃
(
e−2f

(
a4(f

′)3 + a5(f
′)2g′ + a6f

′(g′)2 + a7(g
′)3
)

+ e−2g κ

ℓ2
(b2f

′ + b3g
′)
)]−1

, (4.1.48)

for some choice of real coefficients {ai, bj}. The structure of the central charge contains

various occurring products of derivatives of the functions f and g. Note that we are

interested in comparing to NEC1 to obtain monotonicity, and hence have avoided any

terms with f ′′ or g′′ in c(z) as these would lead to f ′′′ and g′′′ terms in c′(z), as well

as (f ′′)2 and (g′′)2 terms.

We now fix the coefficients {ai, bj} by demanding monotonicity of c(z), namely
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c′(z) ≤ 0 under the assumptions of NEC1 and perturbative control. To do so, we

compute c′(z) and adjust the coefficients to match the f ′′ and g′′ terms with the

structure of NEC1, namely (4.1.44). The expression for c′(z) is not particularly

illuminating, but it is given in Appendix C.1.2 for completeness. Comparing c′(z) to

NEC1, we see that for the particular choice of coefficients

a1 = −2(d− 1)(d− 2),

a2 = −4(D − d)(d− 2),

a3 = arbitrary,

a4 = 0,

a5 =
4(D − d)(d− 2)

(d− 1)
,

a6 = 2(D − d)

(
(2d− 3)(D − d)

(d− 1)2
− 1

)
− a3
d− 1

,

a7 = arbitrary,

b1 = 2(D − d)(D − d− 1),

b2 = 0,

b3 =
4(D − d)(D − d− 1)

(d− 1)
, (4.1.49)

we get monotonicity of the c-function, in the sense that

c′(z) = −e
−f̃ (Leff)

d

GN

[
NEC1 +

(D − 1)(D − d)

d− 1
(g′)2(1 +O(α))

]
≤ 0, (4.1.50)

where we have made crucial use of the fact that we are working perturbatively in α.

Here, O(α) denotes only terms which remain under perturbative control throughout

the flow in the sense of (4.1.34). Notice also that (4.1.48) reduces to (4.1.39) upon

setting D = 4, d = 2, and κ = 0, provided we take a3 = a7 = 0.

Note that the two coefficients a3 and a7 are left undetermined; a7 will be the
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coefficient of a term proportional to (g′)2, and so can never matter within the context

of our analysis, and shifting a6 is equivalent to a shift in a7 and a shift in a3 since

we are working perturbatively in α. This freedom in choosing a3 and a7 in principle

yields a family of c-functions that all flow to the same IR central charge as g′ → 0 in

the IR. However, the UV behavior will be affected, and below we will find a preferred

combination of these coefficients. If one were to relax the above condition (4.1.50) by

replacing NEC1 with NEC1×(1+O(α)), then it would become apparent that, due to

the perturbative nature of our analysis, there are five free parameters rather than the

näıvely apparent two. Intuitively, this is equivalent to the freedom of perturbatively

combining the numerator of (4.1.48) with its denominator. It is convenient, however,

to keep these terms separate when taking the IR limit, as we will see in Section. 4.2.1.

We may also consider NEC2, which can be arranged in the form

{
e(d−1)f̃

[
(f ′ − g′) + 2α

(
e−2f (f ′ − g′)

(
− (d− 1)(d− 2)(f ′)2

− 2(d− 1)(D − d− 1)f ′g′ − (D − d− 1)(D − d− 2)(g′)2
)

+ e−2g κ

ℓ2

(
(D − 4d− 1)f ′ + (−5 + (8− 3D)D + d(−8 + 6D))g′

))]}′

≥ − κ

ℓ2
e(d−1)f̃+2f−2g

[
D − d− 1 + 2α

(
e−2f

(
3d(d+ 1)f ′′ + 3d2g′′

+ (D + 2d+ 2)d(d− 1)(f ′)2 − d(D(3− 2D) + dD + 4d2 + 2)f ′g′

+ (D − d− 2)(D2 − 2dD − 4D − 2(d− 2) + 3)(g′)2
)

+
κ

2ℓ2
(D − d− 1)(7 + 2d2 − 4d(D − 2) + 2D(D − 4))

)]
.

(4.1.51)

One may check that setting g = f and κ = 0 makes the left- and right-hand sides of
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this inequality identically zero, as it should. This suggests that we define

C(z) =e(d−1)f̃
[
(f ′ − g′) + 2α

(
e−2f (f ′ − g′)

(
− (d− 1)(d− 2)(f ′)2

− 2(d− 1)(D − d− 1)f ′g′ − (D − d− 1)(D − d− 2)(g′)2
)

+ e−2g κ

ℓ2

(
(D − 4d− 1)f ′ + (−5 + (8− 3D)D + d(−8 + 6D))g′

))]
,

(4.1.52)

analogous to (4.1.42) for the case of AdS5 → AdS3. NEC2 is then the statement that

C ′(z) ≥ − κ

ℓ2
e(d−1)f̃+2f−2g(D − d− 1)(1 +O(α)). (4.1.53)

Then C ′(z) > 0 for κ = −1 and C ′(z) ≥ 0 for κ = 0, so long as the O(α) corrections

are parametrically small. Then in the IR, we find that

C(z) z→∞∼ −e
(D−d)gIR

LIR

(
LIR

z − z0

)d(
1− 2α(d− 1)(d− 2)

L2
IR

+ αe−2gIR
κ

ℓ2
(D − 4d− 1)

)
< 0.

(4.1.54)

This should hold so long as α/L2
IR ≪ 1 and α/ℓ2 ≪ 1. Then since C(z) is negative in

the IR and non-decreasing as z increases, we conclude that it must always be negative.

This imposes a constraint

0 > (f ′ − g′) + 2α
(
e−2f (f ′ − g′)

(
− (d− 1)(d− 2)(f ′)2

− 2(d− 1)(D − d− 1)f ′g′ − (D − d− 1)(D − d− 2)(g′)2
)

+ e−2g κ

ℓ2

(
(D − 4d− 1)f ′ + (−5 + (8− 3D)D + d(−8 + 6D))g′

))
.

(4.1.55)

Heuristically, this provides an additional constraint to the c-function considerations.
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4.1.4.1 Generic Einstein internal manifolds

If we relax the condition that the internal manifold is maximally symmetric and

instead only require it to be an Einstein manifold with Ricci curvature

R̃ij = kgij, (4.1.56)

with g the metric on the internal space, then the null energy condition will be, in

general, more complicated. In particular, we no longer know the internal Riemann

tensor R̃ijkl; however, the only component of the full Riemann tensor R̂MNPQ that

contains the uncontracted internal Riemann tensor is R̂ijkl with all internal indices,

which will not affect the t-z null energy condition NEC1. Then all the previous

arguments hold for the monotonicity of the c-function if we replace

κ

ℓ2
→ k

D − d− 1
. (4.1.57)

However, the same is not true of NEC2 since it would be dependent on R̃ijkl in general.

4.1.5 Changing coordinates

While we have parameterized the bulk metric according to (4.1.1), in some situa-

tions, it is convenient for one to work in a different gauge,

ds2 = e2A(r)(− dt2 + dx⃗2) + dr2 + e2B(r) ds2MD−d
. (4.1.58)

The c-functions we have defined do not depend on the choice of coordinates. Never-

theless, we present NEC1 and the corresponding c(r) function in Appendix C.2.1 in

case such expressions prove useful.
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4.2 Fixed point limits of the c-function

In Section 4.1, we have constructed a monotonic c-function, (4.1.48) with coef-

ficients given in (4.1.49), for Einstein-Gauss-Bonnet flows across dimensions. This

c-function is a natural extension of its two-derivative counterpart, (4.1.22), as well as

the higher-derivative c-function, (4.1.11), for flows in the same dimension. To better

understand the physics of this NEC-motivated c-function, we now consider its UV

and IR limits and compare them to the expected central charges at the endpoints of

the flow.

4.2.1 The IR limit

One important reason for considering higher derivatives is that they break the

degeneracy between the a-type and c-type central charges. Focusing on d = 4 for the

moment, the Gauss-Bonnet correction splits the two central charges in the IR [189]

a =
L3
IR

G5

(
1− 12α

L2
IR

)
, (4.2.1a)

c =
L3
IR

G5

(
1− 4α

L2
IR

)
. (4.2.1b)

If we do not include higher derivatives, then these are the same. In particular, a

holographic two-derivative flow cannot tell whether a or c is flowing monotonically.

However, for the four-derivative central charge, (4.1.48), we find the IR limit

c(z)
z→∞∼ Ld−1

IR

Gd+1

(
1− 2α(d− 1)(d− 2)

L2
IR

)
, (4.2.2)

where, as we show below, the (d+ 1)-dimensional Newton’s constant is

1

Gd+1

=
e(D−d)gIRVol(MD−d)

GN

(
1 + 2α(D − d)(D − d− 1)

κ

ℓ2
e−2gIR

)
. (4.2.3)
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While the above holds for arbitrary D and d, we can compare with the four-

dimensional IR central charges, (4.2.1), by setting d = 4. In this case, we get that

c(z)
z→∞∼ L3

IR

G5

(
1− 12α

L2
IR

)
, (4.2.4)

with

1

G5

=
e(D−4)gIR

GN

(
1 + 2α(D − 4)(D − 5)

κ

ℓ2
e−2gIR

)
. (4.2.5)

This then clearly reduces to the a central charge as expected from the a-theorem, and

notably is not the c central charge.

More generally, we expect the A-type central charge in the IR to be [226, 239]

A =
Ld−1
IR

Gd+1

(
1− 2(d− 1)(d− 2)

α

L2
IR

)
, (4.2.6)

which precisely matches the IR limit, (4.2.2). Hence, the c-function originating from

NEC1 pertains to the monotonicity of what becomes the A-type central charge in the

IR. Note that we have not imposed this fact; simply solving for the allowed parameters

{ai, bi} in (4.1.48) that give monotonicity from NEC1 has demanded that the IR limit

be unambiguously the A-type central charge.

We now return to the relation between the (D + 1)-dimensional and (d + 1)-

dimensional Newton’s constant, (4.2.5). The lower-dimensional Newton’s constant

is obtained from the compactification of the gravitational part of the Lagrangian

(4.1.4). In the IR, the spacetime is AdSd+1 ×MD−d. Furthermore, in this limit, the

Gauss-Bonnet term, (4.1.3), splits as

χ4 → χ4 + χ̃4 + 2RR̃, (4.2.7)
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where R̃ is the internal Ricci scalar and χ̃4 is the internal Gauss-Bonnet term

R̃ =
κ

ℓ2
(D − d)(D − d− 1),

χ̃4 =
1

ℓ4
(D − d)(D − d− 1)(D − d− 2)(D − d− 3). (4.2.8)

Then the gravitational action reduces as

S =
1

16πGN

∫
dD+1x

√
−g
[
R +

D(D − 1)

L2
+ αχ4

]
=

1

16πGN

∫
dd+1x

√
−gd+1

∫
dD−dye(D−d)gIR√gD−d

×
[(

1 + 2αR̃
)
R +

D(D − 1)

L2
+ αχ4 + R̃ + αχ̃4

]
. (4.2.9)

Integrating out the internal coordinates gives the (d+ 1)-dimensional Newton’s con-

stant

1

Gd+1

=
e(D−d)gIRVol(MD−d)

GN

(
1 + 2αR̃

)
, (4.2.10)

where R̃ is given in (4.2.8). Making this substitution for R̃ yields the above expression

in (4.2.5).

4.2.2 The UV divergence

We now turn to the UV behavior of the c-function, (4.1.48). As is often the

case when defining c-functions in flows across dimensions, this function diverges in

the UV. This, of course, is not surprising since we will see an infinite number of

lower-dimensional degrees of freedom in the UV. While (4.1.48) does not interpolate

between the UV and IR central charges, we can still ask whether its UV divergence

can be related to the UV central charge. To answer this question, we first look at the

two-derivative case.
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4.2.2.1 Two-derivative case

Ignoring higher-derivative corrections for the moment, for general D to d dimen-

sional flows, the c-function is given by (4.1.22), which we write out as

c(z) = e(d−1)f+(D−d)g
(
−f ′ − D − d

d− 1
g′
)−(d−1)

. (4.2.11)

In the UV we have ef ∼ eg ∼ LUV/z, so

c(z)
z→0∼

(
LUV

z

)D−1(
d− 1

D − 1
z

)d−1

∝ (LUV)
D−1

zD−d . (4.2.12)

The numerator gives the unnormalized UV central charge. The denominator diverges

with increasing energy scale, and the power is the number of compact dimensions.

4.2.2.2 Gauss-Bonnet

Now we consider what happens when we reintroduce the Gauss-Bonnet term. For

the case of no internal curvature, κ = 0, the c-function in (4.1.48) reduces to

c(z) = e(d−1)f+(D−d)g 1 + αe−2f (a1(f
′)2 + a2f

′g′ + a3(g
′)2)(

−f ′ − D−d
d−1

g′ + αe−2f (a5(f ′)2g′ + a6f ′(g′)2 + a7(g′)3)
)d−1

,

(4.2.13)

which, in the UV limit, behaves as

c(z)
z→0∼

(
LUV

z

)D−1 1 + α
L2
UV

(a1 + a2 + a3)(
D−1
d−1

1
z
− α

L2
UV

(a5 + a6 + a7)
1
z

)d−1

=

(
d− 1

D − 1

)d−1
(LUV)

D−1

zD−d

1 + α
L2
UV

(a1 + a2 + a3)(
1− α

L2
UV

d−1
D−1

(a5 + a6 + a7)
)d−1

. (4.2.14)

Note that the curvature terms proportional to κ/ℓ2 do not affect the UV limit (4.2.14)

since e−2gf ′ ∼ z and e−2g ∼ z2 in the UV, which is to be expected since intuitively

the “compact” dimensions will appear large at very high energies. If we demand
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that c(z) ∝ aUV/z
D−d in the UV limit, (4.2.14) places constraints on sums of the a

coefficients. In particular, compared to the known result,

aUV =
LD−1
UV

GN

(
1− 2(D − 1)(D − 2)

α

L2
UV

)
, (4.2.15)

we must satisfy

a1 + a2 + a3 +
(d− 1)2

D − 1
(a5 + a6 + a7) = −2(D − 1)(D − 2), (4.2.16)

which corresponds to the requirement that

a7 =
D − 1

(d− 1)2

[
2
(D − 1)((D + 1)(D − 4)− 3d(d− 3)) + (d− 3)(d− 1)(D − d) + (2d− 3)(D − d)2

(D − 1)

− D − d

d− 1
a3

]
. (4.2.17)

This provides an additional constraint on the coefficients (4.1.49), reducing the num-

ber of free coefficients from two to one. Given the discussion hitherto, we may always

impose this additional requirement.

4.3 Higher-derivative gravity and holographic entanglement

entropy

In this section, we discuss the construction of monotonic c-functions from the

perspective of holographic entanglement entropy. It is well-known that finding the

entanglement entropy of a region in a holographic CFT is equivalent to finding a

bulk surface minimizing some choice of functional; at the two-derivative level, this

is just the Ryu-Takayanagi (RT) area functional [240, 241]. However, minimizing

the area of the extremal surface is insufficient when higher derivatives are present;

in particular, it has been argued [225–228] that, given a theory described by the
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Einstein-Gauss-Bonnet action

Itotal = Ibulk + IGH + Ict,

Ibulk =

∫
dD+1x

[
R +

D(D − 1)

L2
+ αχ4

]
,

IGH =

∫
dDx

[
K − 2α

(
GabK

ab +
1

3

(
K3 − 3KK2 + 2K3

))]
, (4.3.1)

whereKab is the extrinsic curvature with traceK,K2 = (Kab)
2, andK3 = KabK

bcK a
c ,

the RT functional must be replaced with the Jacobson-Myers (JM) functional1 [229]

SJM =
1

4GN

∫
Σ

ddx
√
h (1 + 2αR) +

1

2GN

∫
∂Σ

dd−1x
√
h̃2αK, (4.3.2)

where Σ is the surface over which the functional is being minimized with boundary

∂Σ, h is the determinant of the induced metric on Σ, h̃ is the induced metric (of

the induced metric h) on ∂Σ, R is the scalar curvature of Σ, and K is the trace of

the extrinsic curvature of the boundary ∂Σ. The term containing K may be viewed

as a Gibbons-Hawking term that renders the variational principle well-defined. The

equation of motion that follows from the JM functional is

K + 2α(RK− 2RijKij) = 0. (4.3.3)

We may then compute the holographic entanglement entropy of a region A by mini-

mizing this functional over all surfaces homologous to A

SEE = min
Σ∼A

SJM(Σ). (4.3.4)

The goal of this section is to construct monotonic c-functions from the entangle-

ment entropy. For flows down to AdS3, it is natural to obtain a monotonic c-function

1Note that for black holes, the Jacobson-Myers functional leads to the same result as Wald’s
entropy [242–244], but it is generically different.
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as the coefficient of the logarithmic term [178]

cEE = R∂RSEE, (4.3.5)

where R is the radius of the entangling region. An analogous quantity that interpo-

lates between free energies in AdS4 flows is

cEE = R∂RSEE − SEE , (4.3.6)

and its monotonicity can be proven using strong subadditivity on field-theoretic

grounds [180]. However, how to define similar quantities for AdS5 and above is un-

clear. Strong subadditivity may be used to construct monotonic functions in higher

dimensions, but they no longer interpolate between central charges at the fixed points.

4.3.1 AdSD+1 → AdS3

Looking at flows from AdSD+1 down to AdS3 is the most tractable. Equivalently,

this may be viewed as a flow from CFTD to CFT2. Generically, we have a metric of

the form (4.1.1), but we will further specify the metric to be

ds2 = e2f(z)
(
−dt2 + dz2 + dr2

)
+ e2g(z)ds2MD−2

, (4.3.7)

with asymptotic behavior

z → 0 : f(z) → log (LUV/z), g(z) → log (LUV/z),

z → ∞ : f(z) → log (LIR/z), g(z) → gIR. (4.3.8)
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Our CFTD lives on R1,1 ×MD−2. We will consider entangling regions2 which wrap

the internal MD−2. The induced metric on a constant time slice parameterized by a

profile r(z) is

dσ2 = e2f (1 + r′(z)2) dz2 + e2g ds2MD−2
. (4.3.9)

We will assume boundary conditions

r(0) = R, r(z0) = 0, r′(z0) = −∞, (4.3.10)

where R is the radius of the entangling region, and z0 is the deepest point in the bulk

that the minimal surface probes along the holographic radial coordinate, that is, the

turning point of the surface in the mechanical analogy. In terms of this profile, the

induced Ricci scalar is

R =(D − 2)(D − 3)
κ

ℓ2
e−2g

+ (D − 2)
e−2f

(1 + (r′)2)2

[(
1 + (r′)2

)(
2f ′g′ − (D − 1)(g′)2 − 2g′′

)
+ 2g′r′r′′

]
,

(4.3.11)

which, after some integration by parts, leads to a JM functional

SJM =
2Vol(MD−2)

4GN

∫
dz ef̃

[√
1 + (r′)2

(
1 + 2α̃

κ

ℓ2
e−2g

)
+ 2α̃

e−2f (g′)2√
1 + (r′)2

]
, (4.3.12)

where the rescaled Gauss-Bonnet coupling

α̃ ≡ α(D − 2)(D − 3), (4.3.13)

2For a more detailed discussion of choices of entangling regions in flows across dimensions, see
[220].
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is introduced for convenience. Here, we have ignored the boundary term from inte-

grating by parts since it will automatically cancel with the Gibbons-Hawking term

K. Since this functional is independent of r(z), SJM admits a first integral

C =
r′ef̃

(
((r′)2 + 1)

(
1 + 2α̃ κ

ℓ2
e−2g

)
− 2α̃e−2f (g′)2

)
((r′)2 + 1)3/2

, (4.3.14)

which can be solved to give

r′(z) = − F√
1−F2 + 4α̃

(
κ
ℓ2
e−2g − e−2f (g′)2(1−F2)

) , F(r) ≡ Ce−f̃ , (4.3.15)

or, equivalently,

z′(r) = −

√
1−F2 + 4α̃

(
κ
ℓ2
e−2g − e−2f (g′)2(1−F2)

)
F

. (4.3.16)

To fix the value of C, we note that we should have r′(z) → −∞ as z → z0; this then

requires that

C = ef̃0
(
1 + 2α̃

κ

ℓ2
e−2g0

)
where f̃0 = f̃(z0), g0 = g(z0). (4.3.17)

Recall that we are interested in obtaining a monotonic c-function from the entan-

glement entropy following (4.3.5), where R is given by

R =−
∫ z0

0

dz r′(z). (4.3.18)

The negative sign is because r′(z) is negative in this parameterization. We know r′(z)
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from the integral of motion, (4.3.15), and so we may write

R =

∫ z0

0

dz
F√

1−F2 + 4α̃
(
κ
ℓ2
e−2g − e−2f (g′)2(1−F2)

)
=

∫ z0

0

dz

[
F√

1−F2 + 4α̃ κ
ℓ2
e−2g

+ 2α̃
e−2f (g′)2F√

1−F2

]
+O(α̃2). (4.3.19)

Note that in the second line, we have partially expanded the denominator; this will

be important to avoid triple derivatives from integrating by parts. As in the two-

derivative case, the integrand is divergent at the cap-off point z0, so it must be

integrated by parts to give

R = lim
ϵ→0

∫ rc

r0

dr

[√
1−F2 + 4α̃

κ

ℓ2
e−2g

d

dr

1

F ′ + 4α̃
F

κ
ℓ2
e−2gg′

+2α̃
√
1−F2

d

dr

(
e−2f (g′)2

F ′

)]
+ 2α̃ lim

ϵ→0

e−2f (g′)2

F ′

∣∣∣∣∣
z=ϵ

+O(α̃2).

(4.3.20)

The profile r(z) has been useful for obtaining an expression for R, but it will now be

useful to phrase matters in terms of a profile z(r) with boundary conditions

z(0) = z0, z′(0) = 0, z(R) = 0. (4.3.21)

The induced Ricci scalar for this profile is

R =(D − 2)(D − 3)
κ

ℓ2
e−2g

+ (D − 2)
e−2f (z′)2

(1 + (z′)2)2

[(
1 + (z′)2

)(
2f ′g′ − (D − 1)(g′)2 − 2g′′

)
+ 2g′z′z′′

]
,

(4.3.22)
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which leads to a Jacobson-Myers functional of the form

SJM =
2Vol(MD−2)

4GN

∫ Rc

0

dr ef̃(z(r))

[√
1 + (z′)2

(
1 + 2α̃

κ

ℓ2
e−2g(z(r))

)
+ 2α̃

e−2f(z(r))(g′)2(z′)2√
1 + (z′)2

]
− 2α̃ef̃−2fg′

∣∣∣
r=Rc

,

(4.3.23)

where Rc is the cutoff value of R such that z(Rc) = ϵ. The boundary term, while

divergent, is independent of R and so will not cause us any issues. Since the UV

boundary condition has the form zR(r = Rc) = ϵ, varying this boundary condition

with respect to R gives the relation

z′
dRc

dR
+

dz

dR
= 0. (4.3.24)

Moreover, as ϵ → 0, dRc/dR → 1 at the boundary. One may now apply R∂R

to (4.3.23) and impose the equations of motion. Using the relation (4.3.24), the

monotonic central charge is then given by

cEE =
2Vol(MD−2)

4GN

ef̃0
(
1 + 2α̃

κ

ℓ2
e−2g0

)
R. (4.3.25)

This generalizes the two-derivative case [220] by simply using the four-derivative first

integral C rather than the two-derivative one ef̃0 . Using the identity

∂F
∂z0

=
(
f̃ ′(z0)− 4α̃

κ

ℓ2
e−2g0g′(z0)

)
F , (4.3.26)

substituting our expression for R (4.3.20) into cEE, and differentiating with respect
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to z0, we can show that

dcEE
dz0

=
2Vol(MD−2)

4GN

∫ R

0

dr
ef̃F2f̃ ′

0√
1−F2(f̃ ′)2

{
(f̃ ′)2 − f̃ ′′ + α̃

κ

ℓ2
e−2g0g′0
f̃ ′
0

(
(f̃ ′)2 − f̃ ′′

)
+ α̃e−2f

[
−2f ′′(g′)2 + 4g′′f ′g′ + 2(D − 2)g′′(g′)2 − 2(f ′)2(g′)2 + 2(D − 2)(g′)4

]
+ 2α̃

κ

ℓ2
e2(f̃−2f̃0−g)(
e2f̃0 − e2f̃

)
f̃ ′

[
− 4e4f̃0(f ′)3 + 3

(
4ef̃ − (D − 4)e4f̃0 − 6e2(f̃+f̃0)

)
(f ′)2g′

− (D − 2)
(
−4(3D − 8)ef̃ + (D(D + 10) + 20)e4f̃0 + 6(3D − 8)e2(f̃+f̃0)

)
(g′)3

+
(
−8ef̃ + (D − 6)e4f̃0 + 12e2(f̃+f̃0)

)
g′f ′′

+ (D − 2)
(
−4ef̃ + (D − 4)e4f̃0 + 6e2(f̃+f̃0)

)
g′g′′

+
(
2(3D − 7)(g′)2 + g′′

)
f ′
(
4ef̃ − 6e2(f̃+f̃0)

)
+ 4e4f̃0f ′(−(3D(D − 8) + 40)(g′)2 + f ′′ +Dg′′

)]}
, (4.3.27)

where, for notational simplicity, we have denoted

f̃ ′
0 = f̃ ′(z0), g′0 = g′(z0). (4.3.28)

The above formula (4.3.27) of course assumes the use of the integral of motion (4.3.16).

Note that this agrees with [220] for α̃ = 0.

If one sets κ = 0, then we see that, schematically,

dcEE
dz0

=
2Vol(MD−2)

4GN

∫ R

0

dr
ef̃F2f̃ ′(z0)√
1−F2(f̃ ′)2

[
NEC1 + (D − 1)(D − 2)(g′)2(1 +O(α̃))

]
≤ 0, (4.3.29)

where the sign of f̃ ′(z0) is expected to be negative from NEC1. Thus, for κ = 0, we

recover a notion of monotonicity along flows from the UV to the IR. Unfortunately,

for κ ̸= 0, it is unclear what to make of the resulting expression.
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Note that upon setting D = 2, g = f , and κ = 0, one recovers the result for

the strip in flows within the same dimension [191]. The comparison is more direct in

the coordinates (4.1.58); the expression (4.3.27) is reexpressed in said coordinates in

Appendix C.2.2.

4.3.2 Relation to the NEC-motivated c-function

It is interesting to note that the monotonic c-function (4.3.25) constructed from

the entanglement entropy is related to the NEC-motivated c-function (4.1.48), at least

for κ = 0. For arbitrary D with κ = 0, we have

R =

∫ z0

0

dz
F√

1−F2

(
1 + 2α̃e−2f (g′)2

)
, (4.3.30)

and the entropic c-function is

cEE(z0) ∝ ef0+(D−2)g0R =

∫ z0

0

dz
ef+(D−2)gF2

√
1−F2

(
1 + 2α̃e−2f (g′)2

)
. (4.3.31)

We may split up the integrand as

(
−ef+(D−2)g

(f ′ + (D − 2)g′)

(
1 + 2α̃e−2f (g′)2

))(− (f ′ + (D − 2)g′)F2

√
1−F2

)
, (4.3.32)

such that the right term is a total derivative. Conveniently, the left term can be

identified as

cNEC(z) =
−ef+(D−2)g

(f ′ + (D − 2)g′)

(
1 + 2α̃e−2f (g′)2

)
, (4.3.33)

the NEC-motivated c-function (4.2.13). This c-function follows the coefficient con-

straints presented in (4.1.49), and further constrains a3 = 2, where a3 was previously

free. However, (4.3.33) does not give aUV as its residue since it does not follow
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(4.2.16). The expression for cEE can then be integrated by parts:

cEE(z0) ∝ −
√
1−F2 cNEC(z)

∣∣∣∣∣
z0

0

+

∫ z0

0

dz
√
1−F2

(
dcNEC

dz

)
. (4.3.34)

After differentiating with respect to z0, the surface term disappears since F(z0) = 1.

Similarly, the derivative hitting the upper integration bound gives no contribution.

When computing dcEE/dz0 the z0 derivative does not modify dcNEC/dz, so the mono-

tonicity of cNEC directly translates to monotonicity of cEE.

4.3.3 AdSD+1 → AdSd+1 for general d

One might also consider the more general case of flows down to AdSd+1 with d > 2.

We will specialize our metric to be

ds2 = e2f(z)
(
−dt2 + dz2 + dr2 + r2dΩ2

d−2

)
+ e2g(z)ds2MD−d

, (4.3.35)

and we will specify that our entangling region wraps MD−d and has a spherical cross-

section of radius R. Given a profile r(z), this then results in an induced metric

dσ2 = e2f(z)
(
1 + r′(z)2

)
dz2 + e2f(z)r(z)2dΩ2

d−2 + e2g(z)ds2MD−d
, (4.3.36)

with induced Ricci scalar

R =(d− 2)(d− 3)
e−2f

r2
+ (D − d)(D − d− 1)

κ

ℓ2
e−2g

+
e−2f

r2(1 + (r′)2)2

[
−
(
1 + (r′)2

)(
2(d− 2)((d− 2)f ′ + (D − d)g′)rr′

+ (d− 2)(d− 3)(r′)2 +
(
(d− 2)(d− 3)(f ′)2 + 2(d− 3)(D − d)f ′g′

+ (D − d)(D − d− 1)(g′)2 + 2(d− 2)f ′′ + 2(D − d)g′′)
)
r2

+ 2(−(d− 2) + ((d− 2)f ′ + (D − d)g′)rr′)rr′′
]
. (4.3.37)
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For more details, see Appendix C.1.3. It is straightforward to check that for d = 2,

R reduces to (4.3.11). Similar to (4.3.12), the JM functional is then

SJM =
Vol
(
Sd−2

)
Vol(MD−d)

4GN

×
∫

dz

{
rd−2e(d−1)f̃

√
1 + (r′)2

(
1 + 2α(D − d)(D − d− 1)

κ

ℓ2
e−2g

)
+ 2α rd−4 e

(d−1)f̃−2f√
1 + (r′)2

[
r2
(
(d− 2)(d− 3)(f ′)2 + 2(d− 2)(D − d)f ′g′

+ (D − d)(D − d− 1)(g′)2
)
+ 2(d− 2)rr′((d− 3)f ′ + (D − d)g′)

+ (d− 2)(d− 3)
(
1 + 2(r′)2

)]}
, (4.3.38)

where we have we have again integrated by parts and used the boundary term to cancel

the Gibbons-Hawking term. If we set α = 0, this agrees with the two-derivative case

[220, 221]. Moreover, setting D = d, we recover

SJM =
Vol
(
Sd−2

)
4GN

∫
dz rD−2e(D−1)f

√
1 + (r′)2

{
1 + 2α̃

[(
f ′ +

r′

r

)2

+
1 + (r′)2

r2

]}
,

(4.3.39)

which corresponds to the entanglement entropy of a spherical entangling region in

flows within the same dimension, as studied in [226, 227].

However, the method applied in the d = 2 case relied heavily on the fact that the

integrand of SJM admitted a first integral. Since (4.3.38) contains an explicit factor of

r(z), one cannot use the same technique. Without a first integral, we cannot rewrite

r′(z) in terms of the turning point z0 to produce an expression like (4.3.25). Recall

that monotonicity for the d = 2 was demonstrated with respect to z0, and it is not

clear how one would proceed when cEE is not expressed as a function of z0.
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4.4 Discussion

In this chapter, we have explored higher-derivative renormalization group flows

across dimensions. Our first look at holographic flows across dimensions involved

explicitly constructing a c-function that monotonically decreases along flows from the

UV to the IR due to the NEC. This c-function, just as the one constructed in the two-

derivative case [220], is divergent; we have, however, shown that this divergence can

be made to encode the UV central charge. Our second approach was to construct a

monotonic c-function from the holographic entanglement entropy, given by a minimal

surface prescription minimizing the Jacobson-Myers functional. We looked specifically

at flows from AdSD+1 to AdS3 and explicitly constructed a monotonic c-function.

More surprising is that this c-function is related to the NEC-motivated c-function.

Of course, one could ask: Given that the higher curvature corrections must be

treated perturbatively, how could our story have failed? Considering that we are

working perturbatively in α, we can move terms from the numerator of our c-function

(4.1.48) into the denominator, and so there are only 5 free parameters to consider. On

the other hand, the four-derivative part of NEC1 (4.1.44) has, up to our perturbative

omission of terms proportional to (g′)2, 10 terms that must be matched in c′(z). So,

the fact that the NEC-motivated c-function evolves monotonically is a non-trivial

statement and could have easily not been the case.

We note that we could have additionally included in the action the quasi-topological

term ZD+1 given by

ZD+1 =R̂
P Q

M N R̂ R S
P Q R̂ M N

R S +
1

(2D − 1)(D − 3)

[
3(3D − 5)

8
R̂MNPQR̂

MNPQR̂

− 3(D − 1)R̂MNPQR̂
MNP

RR̂
QR + 3(D − 1)R̂MNPQR̂

MP R̂NQ

+ 6(D − 1)R̂MN R̂
NP R̂ M

P − 3(3D − 1)

2
R̂MN R̂

MN R̂ +
3(D − 1)

8
R̂3

]
,

(4.4.1)
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which was constructed in [197, 198]; this term played a prominent role in [87, 189].

For our purposes, however, this term presents some difficulties. In contrast to the

Gauss-Bonnet term, or even more generally Lovelock terms, the coefficients of ZD+1

are dimension-dependent. This presents us with a problem: We must either choose

ZD+1, which is quasi-topological in the UV but which yields unsavory terms in the

IR, or we could choose Zd+1 which is quasi-topological in the IR but not the UV. The

conundrum originates from the fact that ZD+1 was engineered to be quasi-topological

for maximally symmetric backgrounds, and our background (4.1.1) does not satisfy

this criterion. Hence, we would generically have to deal with fourth-order derivatives

in the NEC.

As mentioned at the beginning of the chapter, the field theory techniques re-

quired for proving monotonicity theorems are very dimension-dependent. Recall that

Zamolodchikov’s proof of the c-theorem in 2d relied on properties of the correlator

of two stress-energy tensors [172] while in 4d Schwimmer and Komargodski relied on

properties of certain four-point amplitudes to prove the a-theorem [177]. The entropic

approach, due largely to Casini and collaborators, relied almost exclusively on strong

subadditivity of the relative entropy [180]. It is an outstanding problem to connect

these different approaches. Holography has furnished two sets of proofs, one following

from NEC and another related to the entropy via the Ryu-Takayanagi prescription.

We have found, at least in a particular case, that the proofs are connected. We hope

to explore this connection in more detail in the future and hope to draw lessons that

might translate to field theoretic approaches. Another question that seems particu-

larly suitable for holographic attacks is the nature of supersymmetric flows; in this

case, Einstein’s equations can be replaced by a set of linear differential equations.
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CHAPTER V

Consistent Truncations in Higher-derivative

Supergravity I: The Torus

Consistent truncations have played a pivotal role in theoretical physics, ranging

from string theory and supergravity to brane-world scenarios. As we saw in Chapter

I, the general principle is that, given a Kaluza-Klein reduction on some compact

manifold, one is interested in removing all but a finite number of modes from the

infinite Kaluza-Klein tower in such a way as to maintain consistency of the theory,

i.e., such that the solutions to the equations of motion of the truncated theory are also

solutions of the original theory. The classic example is the Scherk-Schwarz reduction

[100] wherein the internal space is taken to be a group manifold which becomes the

gauge group of the effective lower-dimensional theory. In this case, one can obtain a

consistent truncation by restricting to the singlet sector, which enforces consistency

via a symmetry principle. More generally, however, in the absence of a manifest

symmetry principle, consistent truncations have traditionally been rare and difficult

to construct; see for example [245, 246]. In particular, there is no such simple rule for

general reductions, and the consistency of a truncation imposes stringent requirements

on the field content and couplings of both the higher and lower dimensional theories.

Naturally, there has been much work on non-trivial consistent truncations. In

particular, there are many examples of coset reductions, including sphere truncations
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[246–258] and more general coset reductions [259–263]; in such cases, the massless

sector contains charged (non-singlet) fields that one is interested in keeping and care

must be taken that these do not source the fields that one wishes to truncate away.

There are also examples of reductions wherein one is interested in keeping a finite

number of massive modes, such as those on Sasaki-Einstein spaces [264–272] and T 1,1

[273], where one is often interested in keeping massive breathing and squashing modes.

Despite the difficulty of finding consistent truncations, there are powerful results.

Indeed, one has the conjecture that any warped product AdSD ×Md supergravity

solution in ten or eleven dimensions has a consistent truncation to a solution of pure

gauged supergravity in D dimensions with the same amount of supersymmetry as the

original solution [274], with additional evidence having been constructed in [275–283].

It is also generally believed that truncating to just the massless graviton multiplet is

consistent [284]. Note that all of these results are at the two-derivative level.

An important, more recent development has been the use of exceptional field

theory [285–289] as a means to construct consistent truncations [290]. The power

of exceptional field theory is that consistency is guaranteed by using a generalized

Scherk-Schwarz reduction. This has led to many new examples of consistent trunca-

tions [291–298] as well as analysis of the Kaluza-Klein spectra around such trunca-

tions [299–305]. Such developments have put the Gauntlett-Varela conjecture, [274],

on firm ground. Nevertheless, despite such enormous progress in the construction of

non-trivial consistent truncations, many of the results are currently limited to the

leading-order two-derivative theory.

While it seems reasonable that consistency of a truncation at the two-derivative

level would imply consistency at higher-derivative order, it is unclear that this neces-

sarily holds. After all, one possible obstruction could be a higher-derivative coupling

between the retained modes and states in the Kaluza-Klein tower. In the supergravity

context, this could appear as additional couplings between the supergravity multi-
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plet and matter multiplets in the spectrum. To examine this possibility, we will work

specifically in the context of four-derivative heterotic supergravity reduced on a torus.

This is a very standard Kaluza-Klein reduction, and by restricting to zero modes on

the torus (i.e., the singlet sector), one is ensured to obtain a consistent truncation.

The bosonic reduction of the four-derivative theory was obtained in [306].

It is important to note that reducing heterotic supergravity on T n leads to a half-

maximal supergravity theory in 10 − n dimensions coupled to n vector multiplets.

The question then arises whether it is consistent to truncate out the vector multiplets,

as they naturally arise at the same massless Kaluza-Klein level from the same ten-

dimensional fields that give rise to the lower-dimensional supergravity multiplet. We

answer this in the affirmative by explicitly truncating out the bosonic fields in the

vector multiplets at the level of their equations of motion as well as their superpartners

at the level of the supersymmetry variations.

While we work in general dimensions, the reduction on T 4 to six dimensions was

considered in [307], which performed a truncation to N = (1, 0) supergravity coupled

to one tensor multiplet and four hypermultiplets. This truncation further reduces the

supersymmetry and was indeed shown to be consistent. On the other hand, our trun-

cation gives N = (1, 1) supergravity which, in the N = (1, 0) language corresponds

to supergravity coupled to one tensor and two gravitino multiplets. We show that,

while the gravitino multiplet can be consistently truncated, the tensor multiplet can-

not be removed at the four-derivative level, even though it can be decoupled from the

two-derivative theory. This is a concrete example of a higher-derivative obstruction

to a consistent truncation, even in the relatively simple example of a torus reduction.

The torus reduction

We work with the fields of ten-dimensional heterotic supergravity, (gMN , ψM , BMN , λ, ϕ),

disregarding the heterotic vector multiplets. Our starting point is the torus reduction
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of the metric

ds210 = gµνdx
µdxν + gijη

iηj, ηi = dyi + Aiµdx
µ, (5.0.1)

where xµ are coordinates on the base space and yi are coordinates on the internal

space. The two-form B is reduced as

B = 1
2
bµνdx

µ ∧ dxν +Bµidx
µ ∧ ηi + 1

2
bijη

i ∧ ηj. (5.0.2)

Naturally, reducing the 10D gravity multiplet on an n-dimensional torus leads to

a half-maximal gravity multiplet coupled to n vector multiplets. By analyzing the

bosonic equations of motion, we show that it is consistent to truncate out the vec-

tor multiplet, and we write down the reduced Lagrangian. The resulting bosonic

reduction ansatz, (gMN , BMN , ϕ) → (gµν , bµν , A
(−) i
µ , φ), takes the form

gµν = gµν , Aiµ =
1

2
A(−) i
µ , gij = δij +

α′

16
F (−) i
µν F (−) i

µν ,

bµν = bµν , Bµi = −1

2
A(−) i
µ , bij = 0,

ϕ = φ. (5.0.3)

Here we have introduced the notation A(±) i = Aiµ ± δijBµi, or equivalently F
(±) i =

F i± δijGj, where F
i = dAi and Gi = dBi. The A

(+) i are in the vector multiplet and

are truncated out along with the scalars gij and bij. Note, in particular, the O(α′)

addition to gij that is required for the truncation to be consistent.

For the fermions, the gravitino ψM splits into a lower-dimensional gravitino ψµ

along the uncompactified directions and gaugini ψi along the compact directions. Af-

ter an appropriate shift, we show that the truncation of the bosonic sector is consis-

tent with supersymmetry, in the sense that δψ̃i = 0 where ψ̃i are the O(α′) corrected

gaugini. In particular, if we write the gravitino variation as δψµ = Dµϵ, then this
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redefinition takes the elegant form

ψ̃i = ψi −
α′

4
F (−) i
µν Dµψν , (5.0.4)

where F (−) i is the combination of field strengths that remains after our truncation,

and this is specifically selected out by the gaugino variation.

An O(α′) corrected black string

Finally, for illustrative purposes, we look at the four-derivative corrected BPS

black string in ten dimensions which reduces to a nine-dimensional black hole. The

leading order black hole solution takes the well-known form [308]

ds29 = −
(
1 +

k

r6

)−2

dt2 + dr2 + r2dΩ2
7,

A =
1

1 + k
r6

dt,

eφ =

(
1 +

k

r6

)−1/2

. (5.0.5)

We find that the four-derivative corrections to the 10D uplifted metric are then

ds210 =−
(
1 +

k

r6

)−2(
1 +

18α′k2

r2(k + r6)2

)
dt2 + dr2 + r2dΩ2

7

+

(
1− 18α′k2

r2(k + r6)2

)(
dz − 1

1 + k
r6

(
1 +

18α′k2

r2(k + r6)2

)
dt

)2

+O(α′2), (5.0.6)

while the B-field remains unchanged. Similar α′-corrected heterotic black holes in

lower dimensions were considered in [155, 309–316]. In particular, the truncation

places requirements on the components of the metric in the compactified direction,

and we find that these are precisely in agreement with the four-derivative corrected

black hole solution.

The rest of this chapter is organized as follows. In Section 5.1, we review four-
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derivative heterotic supergravity and discuss the torus reduction. In Section 5.2, we

verify the consistency of truncating out the vector multiplets by analyzing the bosonic

equations of motion, and in Section 5.3, we verify the consistency by analysis of the

gaugini variations. In Section 5.4, we derive the four-derivative corrections to the ten-

dimensional BPS black string geometry and compare it with the field redefinitions

required in Section 5.2. Finally, we conclude in Section 5.5 and discuss some further

truncations.

5.1 Heterotic torus reduction

In this section, we reduce the bosonic fields of four-derivative heterotic supergrav-

ity on a torus. Our notation is such that we use M,N, . . . for curved indices in 10D

and A,B, . . . for rigid indices in 10D, as well as µ, ν, . . . for curved indices along the

base space, α, β, . . . for rigid indices along the base space, i, j, . . . for curved indices

along the internal torus, and a, b, . . . for rigid indices along the internal torus. That

is, we split our curved indices asM → {µ, i} and our rigid indices as A→ {α, a}. We

use ∇̂ to mean the Levi-Civita connection in 10D, while we use ∇ for the Levi-Civita

connection on the base space.

5.1.1 Four-derivative heterotic supergravity

Heterotic supergravity is a ten-dimensional, N = (1, 0) theory with a single

Majorana-Weyl supercharge. The field content is simply the half-maximal gravity

multiplet, consisting of the metric gMN , the Majorana-Weyl gravitino ψM , the two-

form BMN , the Majorana-Weyl dilatino λ, and the dilaton ϕ. In the string frame, the

ten-dimensional bosonic Lagrangian up to four-derivative corrections takes the form

[317–320]

e−1L = e−2ϕ

[
R + 4(∂Mϕ)

2 − 1

12
H̃2
MNP +

α′

8

(
RMNAB(Ω+)

)2]
+O(α′3), (5.1.1)
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where R is the Ricci scalar and we have defined

H̃ = H − α′

4
ω3L(Ω+), (5.1.2)

where H = dB is the three-form flux. We have implicitly truncated the heterotic

gauge fields, as they will not play an important role in our discussion. Here we have

introduced the torsionful connection 1

Ω+ = Ω+
1

2
H, HAB ≡ H̃M

ABdxM , (5.1.3)

where Ω is the spin connection, and the corresponding curvature is

R(Ω+) = dΩ+ + Ω+ ∧ Ω+. (5.1.4)

Such choice of connection is required so that (Ω+, ψMN) transforms as an SO(9, 1)

gauge multiplet [318], where ψMN = 2∇[M(Ω−)ψN ] is the supercovariant gravitino

curvature. The Lorentz Chern-Simons form is

ω3L(Ω+) = Tr

(
Ω+ ∧ dΩ+ +

2

3
Ω+ ∧ Ω+ ∧ Ω+

)
, (5.1.5)

and is required by anomaly cancellation. This immediately leads to the Bianchi

identity

dH̃ = −α
′

4
Tr [R(Ω+) ∧R(Ω+)]. (5.1.6)

This is characteristic of the two-group structure.

Note that we can break up the Lagrangian (5.1.1), into two- and four-derivative

1Note that the choice of Ω+ versus Ω− is equivalent to a choice of the sign of H in the gravitino
variation, and we may always switch conventions by doing a sign flip B → −B. This is just a choice
of worldsheet parity. Our convention is opposite that used in [318].
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parts

e−1L2∂ = e−2ϕ

[
R + 4(∂Mϕ)

2 − 1

12
H2
MNP

]
,

e−1L4∂ =
α′

8
e−2ϕ

[
(RMNAB(Ω+))

2 +
1

3
HMNPω3LMNP (Ω+)

]
. (5.1.7)

The bosonic equations of motion are

0 = Eϕ ≡ R− 4(∂Mϕ)
2 + 4□̂ϕ− 1

12
H̃2
MNP +

α′

8
(RMNAB(Ω+))

2,

0 = Eg,MN ≡ RMN + 2∇̂M∇̂Nϕ− 1

4
H̃MABH̃N

AB +
α′

4
RMPAB(Ω+)RN

PAB(Ω+),

0 = EH,NP ≡ ∇̂M
(
e−2ϕH̃MNP

)
, (5.1.8)

where we have used the dilaton equation Eϕ to simplify the Einstein equation Eg,MN .

Equivalently, one may use the fact that the variation of the action with respect to

Ω+ is proportional to the two-derivative equations of motion [317]. These can also be

broken up into two- and four-derivative parts, and we write E = E (0) + α′E (1). Then

E (0)
ϕ = R− 4(∂Mϕ)

2 + 4□̂ϕ− 1

12
H2
MNP ,

E (0)
g,MN = RMN + 2∇̂M∇̂Nϕ− 1

4
HMABHN

AB,

E (0)
H,NP = e2ϕ∇̂M

(
e−2ϕHMNP

)
, (5.1.9)

and

E (1)
ϕ =

1

24
HMNPω

MNP
3L (Ω+) +

1

8
(RMNAB(Ω+))

2,

E (1)
g,MN =

1

8
HMABω3LN

AB(Ω+) +
1

4
RMPAB(Ω+)RN

PAB(Ω+),

E (1)
H,NP = −1

4
e2ϕ∇̂M

(
e−2ϕω3L,MNP (Ω+)

)
. (5.1.10)
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5.1.1.1 Supersymmetry variations

Although we primarily focus on the reduction of the bosonic fields, the super-

symmetry variations of the fermionic fields also need to be considered to ensure a

consistent truncation. Up to O(α′), the supersymmetry transformations of the grav-

itino and dilatino are [318, 321]2

δϵψM = ∇M(Ω−)ϵ =

(
∂µ +

1

4
Ω−M

ABΓAB

)
ϵ =

(
∇M − 1

8
H̃MNPΓ

NP

)
ϵ,

δϵλ =

(
ΓM∂Mϕ− 1

12
H̃MNPΓ

MNP

)
ϵ. (5.1.11)

The structure of these variations is such that the O(α′) corrections are entirely con-

tained in the definition of H̃ given in (5.1.2). As above, we can write

δϵψM = δϵψ
(0)
M + α′δϵψ

(1)
M , δϵλ = δϵλ

(0) + α′δϵλ
(1), (5.1.12)

where

δϵψ
(0)
M =

(
∇M − 1

8
HMNPΓ

NP

)
ϵ, δϵψ

(1)
M =

1

32
ω3L,MNPΓ

NP ϵ,

δϵλ
(0) =

(
ΓM∂Mϕ− 1

12
HMNPΓ

MNP

)
ϵ, δϵλ

(1) =
1

48
ω3L,MNPΓ

MNP ϵ. (5.1.13)

5.1.2 Torus reduction

We perform a standard Kaluza-Klein reduction on an n-dimensional torus T n by

taking our metric to be

ds210 = gµνdx
µdxν + gijη

iηj, ηi = dyi + Aiµdx
µ, (5.1.14)

2To avoid confusion with δ denoting O(α′) corrections, we use δϵ for supersymmetry transforma-
tions parameterized by a spinor ϵ.
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where xµ are coordinates on the base space and yi are coordinates on the internal

space. We can introduce a natural zehnbein basis

Eα = eαµdx
µ, Ea = eai η

i, (5.1.15)

where eα is a vielbein for gµν and ea is a vielbein for gij, so that ds210 = ηαβE
αEβ +

δabE
aEb. Then

E =

 eα

eai η
i

 , dE =

 deα

deai ∧ ηi + eaiF
i

 , (5.1.16)

where the abelian field strength is given locally by F i = dAi. In components, we have

EM
A =

eαµ eaiA
i
µ

0 eai

 , EA
M =

eµα −eµαAiµ

0 eia

 . (5.1.17)

The torsion-free spin connection can be computed to be

Ω =

 ωαβ − 1
2
gijF

i
αβη

j 1
2
ebiF

i
µαdx

µ − 1
2
eib∂αgijη

j

−1
2
eaiF

i
µβdx

µ + 1
2
eia∂βgijη

j 1
2

(
eiadebi − eibdeai

)
 , (5.1.18)

where ω is the torsion-free spin connection on the base manifold.

5.1.2.1 Inclusion of torsion

In addition to the metric, the B-field is reduced according to

B = 1
2
bµνdx

µ ∧ dxν +Bµidx
µ ∧ ηi + 1

2
bijη

i ∧ ηj. (5.1.19)
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Computing H = dB then gives

H = h+ G̃i ∧ ηi + 1
2
dbij ∧ ηi ∧ ηj, (5.1.20)

where

h = db− F i ∧Bi, G̃i = Gi − bijF
j, Gi = dBi. (5.1.21)

The one-form HAB is then

H =

 hµ
αβdxµ + G̃αβ

iη
i eib

(
G̃µαidx

µ + ∂αbijη
j
)

−eia
(
G̃µβidx

µ + ∂βbijη
j
)

eiaejbdbij

 . (5.1.22)

Combining H with the torsion-free connection Ω in (5.1.18) then gives the torsional

connection

Ω+ =

 ωαβ+ − 1
2

(
gijF

j
αβ − G̃αβi

)
ηi

−1
2
eia
((
gijF

j
µβ + G̃µβi

)
dxµ − ∂β(gij − bij)η

j
)

1
2
eib
((
gijF

j
µα + G̃µαi

)
dxµ − ∂α(gij − bij)η

j
)

1
2
eiaejb

(
ecjde

c
i − ecide

c
j + dbij

)
 .

(5.1.23)

The connection Ω− may be obtained by taking H → −H. The torsionful Riemann

tensor can be calculated from R(Ω+) = dΩ+ + Ω+ ∧ Ω+. The frame components are

given in Appendix D.1.

5.1.3 The bosonic reduction at leading order

Before proceeding with the truncation of the reduced vector multiplets, it is in-

structive to review the standard Kaluza-Klein reduction of the two-derivative action

and equations of motion. Since the truncation to the zero modes on the torus, (5.1.14)
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and (5.1.19), is guaranteed to be consistent, we can directly reduce the two-derivative

Lagrangian, (5.1.7). This yields the standard Kaluza-Klein result [322]

e−1L(0) = e−2φ
[
R(ω) + 4∂µφ

2 − 1

12
h2µνρ −

1

4

(
gijF

i
µνF

µν j + gijG̃µν iG̃
µν
j

)
− 1

4
gijgkl(∂µgik∂

µgjl + ∂µbik∂
µbjl)

]
, (5.1.24)

where the reduced dilaton φ is given by

φ = ϕ− 1

4
log det gij. (5.1.25)

It is also straightforward to directly reduce the leading order ten-dimensional

equations of motion (5.1.9). Making use of some of the reduction expressions in the

Appendix, we obtain the reduced two-derivative Einstein equations

E (0)
g,αβ =R(ω)αβ −

1

2

(
gijF

i
αγF

j
βγ + gijG̃αγ iG̃βγ j

)
− 1

4
hαγδhβγδ + 2∇α∇βφ

− 1

4
gijgkl(∂αgik∂βgjl + ∂αbik∂βbjl),

E (0)
g,αb =

1

2
eib

(
e2φ∇γ(e

−2φgijF
j
αγ)−

1

2
hαγδG̃γδ i − gjkG̃αγ j∂γbki

)
,

E (0)
g,ab =− 1

2
eiae

j
b

(
e2φ∇γ(e−2φ∇γgij)−

1

2
(gikgjlF

k
αβF

l
αβ − G̃αβ iG̃αβ j)

− gkl(∂γgik∂γgjl − ∂γbik∂γbjl)

)
, (5.1.26)

and the reduced H-field equations of motion

E (0)
H,αβ = e2φ∇γ

(
e−2φhαβγ

)
,

E (0)
H,αb = ebi

(
e2φ∇γ(e−2φgijG̃γα j) +

1

2
hαγδF

i
γδ

)
,

E (0)
H,ab = e[iae

j]
b

(
e2φ∇γ(e−2φ∇γbij)− gikF

k
γδG̃γδ j + 2gkl∂γgik∂γbjl

)
. (5.1.27)
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Finally, the reduced dilaton equation is

E (0)
ϕ =R(ω)− 1

4

(
gijF

i
αβF

j
αβ + gijG̃αβ iG̃αβ j

)
− 1

12
h2αβγ + 4□φ− 4(∂αφ)

2

− 1

4
gijgkl(∂αgik∂αgjl + ∂αbik∂αbjl). (5.1.28)

Since the torus reduction is consistent, these equations can also be directly obtained

from the reduced Lagrangian (5.1.24).

5.1.4 Supersymmetry variations at leading order

Along with the leading order bosonic reduction, we can consider the supersym-

metry variations of the gravitino and dilatino. When dimensionally reduced, we have

{ψM , λ} −→ {ψµ, ψi, λ}. As in the case of the lower-dimensional dilaton shift (5.1.25),

the dilatino also requires a shift of the form

λ̃ = λ− Γiψi. (5.1.29)

With this in mind, the reduction of the lowest-order transformations, (5.1.13), gives

δϵψ
(0)
µ =

(
∇µ(ω−) +

1

4

(
gijF

j
µν − G̃µν i

)
γνΓi − 1

8

(
2eci∂µe

c
j + ∂µbij

)
Γij
)
ϵ,

δϵψ
(0)
i =

(
−1

8

(
gijF

j
µν + G̃µν i

)
γµν − 1

4
∂µ(gij − bij)γ

µΓj
)
ϵ,

δϵλ̃
(0) =

(
γµ∂µφ− 1

12
hµνλγ

µνλ +
1

8
(gijF

j
µν − G̃µν i)γ

µνΓi
)
ϵ. (5.1.30)

At this order, the gravitino ψ
(0)
µ and dilatino λ̃(0), belong in the supergravity multiplet,

while the internal components ψ
(0)
i fall into vector multiplets. This allows us to
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identify the graviphoton and vector multiplet gauge field combinations as

F a (−)
µν = eaiF

i
µν − eiaG̃µν i, (graviphoton)

F a (+)
µν = eaiF

i
µν + eiaG̃µν i. (vector) (5.1.31)

This will serve as a guide for truncating out the vector multiplets below.

5.2 Truncating out the vector multiplets

Reducing the ten-dimensional heterotic action on T n gives rise to a lower-dimensional

half-maximal supergravity coupled to n vector multiplets. Here we proceed to trun-

cate out the vector multiplets, leading to a pure half-maximal supergravity in lower

dimensions. The truncation of the two-derivative theory is straightforward, and

our main intent is to highlight that the truncation remains consistent at the four-

derivative level. We start by considering the two-derivative truncation.

5.2.1 The supergravity truncation at leading order

As indicated in (5.1.30) and (5.1.31), the bosonic fields in the vector multiplet

consist of the vectors F
a (+)
µν along with their scalar superpartners gij − bij. This

suggests that, at least at leading order, we can truncate out the vector multiplets by

taking

gij = δij, bij = 0, Gµν i = −F i
µν . (5.2.1)

(Note that, with gij = δij, the internal indices i, j, . . . are raised and lowered using

δij.) However, as an intermediate step, it is instructive to truncate the scalars before

considering the gauge fields. Thus we let

gij = δij, bij = 0, F (±) i
µν = F i

µν ±Gµν i. (5.2.2)
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In this case, the two-derivative equations of motion, (5.1.26), (5.1.27), and (5.1.28),

take the form

E (0)
g,αβ = R(ω)αβ −

1

4

(
F (+) i
αγ F

(+) i
βγ + F (−) i

αγ F
(−) i
βγ

)
− 1

4
hαγδhβγδ + 2∇α∇βφ,

E (0)
g,αi = −1

4

(
e2φ∇γ(e

−2φF (+) i
γα ) +

1

2
hαγδF

(+) i
γδ

)
− 1

4

(
e2φ∇γ(e

−2φF (−) i
γα )− 1

2
hαγδF

(−) i
γδ

)
,

E (0)
g,ij =

1

8

(
F

(+) i
αβ F

(−) j
αβ + F

(−) i
αβ F

(+) j
αβ

)
,

E (0)
ϕ = R(ω)− 1

8

(
F

(+) i
αβ F

(+) i
αβ + F

(−) i
αβ F

(−) i
αβ

)
− 1

12
h2αβγ + 4□φ− 4(∂αφ)

2,

E (0)
H,αβ = e2φ∇γ

(
e−2φhαβγ

)
,

E (0)
H,αi =

1

2

(
e2φ∇γ(e−2φF (+) i

γα ) +
1

2
hαγδF

(+) i
γδ

)
− 1

2

(
e2φ∇γ(e−2φF (−) i

γα )− 1

2
hαγδF

(−) i
γδ

)
,

E (0)
H,ij =

1

4

(
F

(+) i
αβ F

(−) j
αβ − F

(−) i
αβ F

(+) j
αβ

)
. (5.2.3)

At the bosonic level, we can proceed in two ways, by either setting F (+) = 0

or F (−) = 0. The former case will truncate the gauge fields in the vector mul-

tiplet, while the latter will remove the graviphotons, leading to a consistent but

non-supersymmetric truncation. Note, in particular, that the two-derivative bosonic

Lagrangian, (5.1.7), is invariant under B → −B. This is what underlies the symmetry

between F (+) and F (−) at the leading order.

We are, of course, mainly interested in a supersymmetric consistent truncation.

Thus we proceed by setting F (+) = 0. Specifically, we take

gij = δij, bij = 0, Aiµ =
1

2
A(−) i
µ , Bµ i = −1

2
A(−) i
µ . (5.2.4)
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Doing so then yields the two-derivative equations of motion

E (0)
g,αβ = R(ω)αβ −

1

4
F (−) i
αγ F

(−) i
βγ − 1

4
hαγδhβγδ + 2∇α∇βφ,

E (0)
g,αi = −1

4

(
e2φ∇γ

(
e−2φF (−) i

γα

)
− 1

2
hαγδF

(−) i
γδ

)
,

E (0)
g,ij = 0,

E (0)
ϕ = R(ω)− 1

8
F

(−) i
αβ F

(−) i
αβ − 1

12
h2αβγ + 4□φ− 4(∂αφ)

2,

E (0)
H,αβ = e2φ∇γ

(
e−2φhαβγ

)
,

E (0)
H,αi = −1

2

(
e2φ∇γ

(
e−2φF (−) i

γα

)
− 1

2
hαγδF

(−) i
γδ

)
,

E (0)
H,ij = 0. (5.2.5)

Note, in particular, that the internal Einstein and H equations are trivial and that the

mixed Einstein and H equations are consistent with each other. This set of equations

can be derived from the reduced Lagrangian

e−1L = e−2φ

(
R + 4(∂φ)2 − 1

12
h2µνρ −

1

8

(
F (−) i
µν

)2)
, (5.2.6)

where the h Bianchi identity is given by

h = db+
1

4
F (−) i ∧ A(−) i ⇒ dh =

1

4
F (−) i ∧ F (−) i. (5.2.7)

This can equally well be obtained by directly substituting the truncation ansatz,

(5.2.4), into the two-derivative Lagrangian (5.1.7).

5.2.2 The supergravity truncation at O(α′)

We now wish to extend the truncation of the vector multiplets to the four-

derivative level. Working to O(α′), the supergravity truncation, (5.2.4), is expected
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to receive corrections. With a slight abuse of notation, we thus let

gµν = gµν + α′δgµν , bµν = bµν + α′δbµν , φ = φ+ α′δφ,

Aiµ =
1

2
A(−) i
µ + α′δAiµ, Bµi = −1

2
A(−) i
µ + α′δBµi,

gij = δij + α′δgij, bij = 0 + α′δbij. (5.2.8)

The equations of motion to O(α′) then take the form

E = E (0) + α′(δE (0) + E (1)
)
. (5.2.9)

Here δE (0) arises from inserting the corrected fields into the two-derivative equations,

and E (1) can be obtained from inserting the leading order fields into the four-derivative

equations.

Extending the leading order equations of motion (5.2.5) to the next order, we see

that the necessary conditions for maintaining a consistent truncation are

δE (0)
g,ij + E (1)

g,ij = 0, δE (0)
H,ij + E (1)

H,ij = 0, (5.2.10)

to ensure truncation of the scalars, and

δE (0)
g,αi + E (1)

g,αi =
1

2

(
δE (0)

H,αi + E (1)
H,αi

)
. (5.2.11)

to ensure truncation of the vector multiplet gauge fields. Solving these conditions

will provide constraints on the correction terms in (5.2.8).

To calculate E (1), we only need to work with the leading order truncation. This

simplifies various objects needed in the calculation. In particular, the torsionful spin
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connection reduces to

Ω+ =

ωαβ+ − 1
2
F

(−) i
αβ ηi 0

0 0

 . (5.2.12)

This gives the torsionful Riemann tensor

Rγδ
αβ(Ω+) = Rγδ

αβ(ω+)−
1

4
F

(−) i
γδ F

(−) i
αβ ,

Rγd
αβ(Ω+) = −1

2
δid∇(+)

γ F
(−) i
αβ ,

Rcd
αβ(Ω+) =

1

2
δ[ic δ

j]
d F

(−) i
αγ F

(−) j
γβ , (5.2.13)

and Lorentz Chern-Simons form

ω3L,αβγ(Ω+) = ω3L,αβγ(ω+),

ω3L,αβc(Ω+) = δic

(
Rαβ

γδ(ω+)F
(−) i
γδ − 1

8
F

(−) j
αβ F

(−) j
γδ F

(−) i
γδ

)
,

ω3L,αbc(Ω+) = δ
[i
b δ

j]
c

(
1

2
F

(−) i
γδ ∇(+)

α F
(−) j
γδ

)
,

ω3L,abc(Ω+) = δ[ia δ
j
bδ
k]
c

(
−1

2
F

(−) i
αβ F

(−) j
βγ F (−) k

γα

)
. (5.2.14)

Note that we have dropped an exact term from ω3L(Ω+), which is implicitly absorbed

into a field redefinition of B. For details, see Appendix D.2

5.2.2.1 Truncating the internal Einstein equation

We first check the scalar equations of motion (5.2.10), corresponding to the inter-

nal Einstein equation. Starting with the E (1)
g,MN from (5.1.10), we find

E (1)
g,ij =

1

16

[
−Rαβγδ(ω+)F

(−) (i
αβ F

(−) j)
γδ +∇(+)

γ F
(−) i
αβ ∇(+)

γ F
(−) j
αβ +

1

8
F

(−) i
αβ F

(−) k
αβ F

(−) j
γδ F

(−) k
γδ

+
1

2
F

(−) i
αβ F

(−) j
βγ F

(−) k
γδ F

(−) k
δα − 1

2
F

(−) i
αβ F

(−) k
βγ F

(−) j
γδ F

(−) k
δα

]
. (5.2.15)
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Since this is non-zero, it would have to cancel against a similar expression in δE (0)
g,ij.

To find this correction, we need to start from the full expression for E (0)
g,ij in (5.1.26).

To first order, we find

δE (0)
g,ij = −1

2
e2φ∂γ

(
e−2φ∂γδgij

)
+

1

8
F

(−) k
αβ F

(−) j
αβ δgik

+
1

4
F

(−) i
αβ

(
δF j

αβ + δGαβ j −
1

2
F

(−) k
αβ δbjk

)
, (5.2.16)

where symmetry of (ij) is implied. Our main focus is on δgij and δbij. Since these

carry i and j indices, and since we want them to be two-derivative terms, we expect

them to be built out of bilinears in the field strengths, F
(−) i
αβ . We will confirm below

that an appropriate choice is to take

δgij =
1

16
F

(−) i
αβ F

(−) j
αβ , δbij = 0. (5.2.17)

Note that there is no obvious antisymmetric choice for δbij, so the only natural result

is to set it to zero.

After some manipulation, we find

−1

2
e2φ∂γ

(
e−2φ∂γδgij

)
= − 1

16

[
−RαβγδF

(−) i
αβ F

(−) j
γδ +∇γF

(−) i
αβ ∇γF

(−) j
αβ

+ 2F (−) i
αγ F

(−) j
βγ (Rαβ + 2∇α∇βφ)

+ 2F
(−) i
αβ ∇α

(
e2φ∇γ(e

−2φF
(−) j
γβ )

)]
. (5.2.18)

The terms in parentheses in the second line are almost the leading order equations

of motion (5.2.5), but are missing a few terms. By adding and subtracting, we can
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arrive at

−1

2
e2φ∂γ

(
e−2φ∂γδgij

)
= − 1

16

[
−RαβγδF

(−) i
αβ F

(−) j
γδ +∇γF

(−) i
αβ ∇γF

(−) j
αβ

+
1

2
F

(−) i
αβ F

(−) j
βγ F

(−) k
γδ F

(−) k
δα +

1

2
hαδϵhβδϵF

(−) i
αγ F

(−) j
βγ

+ F
(−) i
αβ F

(−) j
γδ ∇αhβγδ + hβγδF

(−) i
αβ ∇αF

(−) j
γδ

+ 2F (−) i
αγ F

(−) j
βγ E (0)

αβ + 2F
(−) i
αβ ∇αE (0) j

β

]
, (5.2.19)

where we have normalized the graviphoton equation of motion according to E (0) i
α =

−4E (0)
g,αi = −2E (0)

H,αi. We can rewrite the torsion-free Riemann and covariant derivatives

in terms of their torsionful versions. The result is

−1

2
e2φ∂γ

(
e−2φ∂γδgij

)
= − 1

16

[
−Rαβγδ(ω+)F

(−) i
αβ F

(−) j
γδ +∇(+)

γ F
(−) i
αβ ∇(+)

γ F
(−) j
αβ

+
1

2
F

(−) i
αβ F

(−) j
βγ F

(−) k
γδ F

(−) k
δα + 2F

(−) i
αβ F

(−) j
γδ ∇αhβγδ

+ 2F (−) i
αγ F

(−) j
βγ E (0)

αβ + 2F
(−) i
αβ ∇αE (0) j

β

]
, (5.2.20)

Taking into account the implicit symmetrization of (ij), the term involving ∇αhβγδ

can be simplified using the Bianchi identity (5.2.7). The result is then

−1

2
e2φ∂γ

(
e−2φ∂γδgij

)
=− 1

16

[
−Rαβγδ(ω+)F

(−) i
αβ F

(−) j
γδ +∇(+)

γ F
(−) i
αβ ∇(+)

γ F
(−) j
αβ

+
1

4
F

(−) i
αβ F

(−) k
αβ F

(−) j
γδ F

(−) k
γδ +

1

2
F

(−) i
αβ F

(−) j
βγ F

(−) k
γδ F

(−) k
δα

− 1

2
F

(−) i
αβ F

(−) k
βγ F

(−) j
γδ F

(−) k
δα + 2F (−) i

αγ F
(−) j
βγ E (0)

αβ

+ 2F
(−) i
αβ ∇αE (0) j

β

]
, (5.2.21)

Inserting this into (5.2.16) and taking into account the second term in (5.2.16) as

127



well, we find

δE (0)
g,ij = − 1

16

[
−Rαβγδ(ω+)F

(−) i
αβ F

(−) j
γδ +∇(+)

γ F
(−) i
αβ ∇(+)

γ F
(−) j
αβ +

1

8
F

(−) i
αβ F

(−) k
αβ F

(−) j
γδ F

(−) k
γδ

+
1

2
F

(−) i
αβ F

(−) j
βγ F

(−) k
γδ F

(−) k
δα − 1

2
F

(−) i
αβ F

(−) k
βγ F

(−) j
γδ F

(−) k
δα

+ 2F (−) i
αγ F

(−) j
βγ E (0)

αβ + 2F
(−) i
αβ ∇αE (0) j

β − 4F
(−) i
αβ

(
δF j

αβ + δGαβ j

)]
, (5.2.22)

As a result, we are left with

δE (0)
g,ij + E (1)

g,ij = −1

8

[
F (−) i
αγ F

(−) j
βγ E (0)

αβ + F
(−) i
αβ ∇αE (0) j

β − 2F
(−) i
αβ

(
δF j

αβ + δGαβ j

)]
,

(5.2.23)

which vanishes by the leading order equations of motion provided

δF j
αβ + δGαβ j = 0. (5.2.24)

5.2.2.2 Truncating the internal H equation

We now turn to the internal components of the H equation of motion (5.2.10).

For E (1)
H,ij, we find

E (1)
H,ij = −1

4

[
1

2
e2ϕ∇γ

(
e−2ϕF

(−) i
αβ ∇γF

(−) j
αβ

)
+

1

2
e2ϕ∇γ

(
e−2ϕhγαβF

(−) i
αδ F

(−) j
βδ

)
− 1

2
∇γhδαβF

(−) i
γδ F

(−) j
αβ

]
. (5.2.25)

Note that here we implicitly assume antisymmetry on [ij]. This antisymmetry will

be very useful in making many terms disappear. Along with E (1)
H,ij, we also have

δE (0)
H,ij = e2φ∇γ

(
e−2φ∇γδbij

)
+

1

4
F

(−) j
αβ F

(−) k
αβ δgik

+
1

2
F

(−) j
αβ

(
δF i

αβ + δGαβ i −
1

2
F

(−) k
αβ δbik

)
. (5.2.26)
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If we take (5.2.17) for the corrections δgij and δbij, along with (5.2.24), we see that

this actually vanishes, namely δE (0)
H,ij = 0. Thus, to be consistent, we then need to

have E (1)
H,ij vanishing as well. To see that this is indeed the case, we can manipulate

(5.2.25) by expanding out the ∇γ derivative in the first two terms while making use

of antisymmetry on [ij]

E (1)
H,ij = −1

4

[
1

2
e2ϕF

(−) i
αβ ∇γ

(
e−2ϕ∇γF

(−) j
αβ

)
+

1

2
e2ϕ∇γ

(
e−2ϕhγαβ

)
F

(−) i
αδ F

(−) j
βδ

+ hγαβ∇γ

(
F

(−) i
αδ F

(−) j
βδ

)
− 1

2
∇γhδαβF

(−) i
γδ F

(−) j
αβ

]
. (5.2.27)

We can rewrite the first term using the Bianchi identity dF (−) j = 0

1

2
e2ϕF

(−) i
αβ ∇γ

(
e−2ϕ∇γF

(−) j
αβ

)
= e2ϕF

(−) i
αβ ∇γ

(
e−2ϕ∇αF

(−) j
γβ

)
. (5.2.28)

After moving ∇α past the dilaton factor and commuting it past the ∇γ, we end

up with part of the graviphoton equation of motion, E (0) j
β . Collecting terms and

simplifying then gives

E (1)
H,ij = −1

4

[
F

(−) i
αβ ∇αE (0) j

β +
1

2
E (0)
H,αβF

(−) i
αδ F

(−) j
βδ

]
. (5.2.29)

This now vanishes by the lowest order equations of motion.

5.2.2.3 Compatibility of the Maxwell equations

The final expression to verify is (5.2.11), namely the consistency of the two

Maxwell equations. The shifts of the two-derivative equations of motion are straight-
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forwardly found to be

δE (0)
g,αa = δeia

[
1

2
e2φ∇γ

(
e−2φgijF

j
αγ

)
− 1

4
hαγδG

γδ
i

]
+

1

2
eiae

2φ∇γ
(
e−2φδgijF

j
αγ

)
,

δE (0)
H,αa = δeai

[
e2φ∇γ

(
e−2φgijGjαγ

)
+

1

2
hαγδF

iγδ

]
+ eai e

2φ∇γ
(
e−2φδgijGjαγ

)
, (5.2.30)

so that the difference, after imposing our truncation, is simply

δE (0)
H,αa − 2δE (0)

g,αa =δe
a
i δ
i
aE

(0)
H,αa − 2δeiaδ

a
i E (0)

g,αa +
1

32
eai hαγϵF

(−) j
γϵ F

(−) i
βδ F

(−) j
βδ

+
1

8
δai F

(−) j
γα F

(−) (i
βδ ∇γF

(−) j)
βδ . (5.2.31)

The four-derivative parts of the equations of motion are simply

E (1)
g,αa =δ

a
i

[
1

16
R δϵ
βγ (ω+)hαβγF

(−) i
δϵ +

1

8
R γδ
αβ (ω+)∇(+)

β F
(−) i
γδ − 1

32
F

(−) i
βγ ω3L,αβγ(ω+)

− 1

128
hαβγF

(−) j
βγ F

(−) j
δϵ F

(−) i
δϵ − 1

16
F (−) [i
γϵ F

(−) j]
ϵδ ∇(+)

α F
(−) j
γδ

]
, (5.2.32)

and

E (1)
H,αa = −1

4
δai e

2φ∇β

[
e−2φ

(
R γδ
βα (ω+)F

(−) i
γδ − 1

8
F

(−) j
βα F

(−) j
γδ F

(−) i
γδ

)]
− 1

16
δai F

(−) i
βγ ω3L,αβγ(ω+). (5.2.33)

By use of the torsion-free differential Bianchi identity ∇[αRβγ]δϵ = 0, we have that

∇βRαβγδ = −2∇[γRδ]α, (5.2.34)
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and so, after appropriate substitution of equations of motion and use of the h Bianchi

identity (5.2.7), we find that

e2φ∇β
(
e−2φR γδ

βα (ω+)F
(−) i
γδ

)
=

F
(−) i
γδ

[
− 1

4
∇γ

(
F

(−) j
δϵ F (−) j

ϵα

)
− 1

4
∇γ(hδβϵhαβϵ) +

1

2
Rγ[δ|βϵh|α]βϵ −

1

8
hδαϵF

(−)j
γβ F

(−)j
ϵβ

− 1

8
hδαϵhγβωhϵβω −

1

16
hαβϵF

(−) j
βϵ F

(−) j
γδ +

1

8
F

(−) j
αβ ∇βF

(−) j
γδ

− 1

8
hδβϵF

(−) j
βϵ F (−) j

αγ − 1

4
F

(−) j
βδ ∇βF (−) j

αγ +
1

4
hβϵδ∇βhαγϵ −∇[γE (0)

g,δ]α

− 1

2
∇γE (0)

H,δα − ∂γφE (0)
H,δα −

1

2
hδαϵE (0)

H,γϵ +
1

4
hαγϵE (0)

H,ϵδ

]

+R γδ
αβ (ω+)∇βF

(−) i
γδ . (5.2.35)

We then substitute this back into E (0)
H,αa, and take the difference

(
δE (0)

H,αa + E (1)
H,αa

)
−

2
(
δE (0)

g,αa + E (1)
g,αa

)
. We then expand out the torsionful Riemann tensors as

R γδ
αβ (ω+) = R γδ

αβ +∇[αh
γδ

β] +
1

2
h γϵ
[α h ϵδ

β] , (5.2.36)

and use the Riemann algebraic Bianchi identity R[αβγ]δ = 0, as well as the h Bianchi

identity (5.2.7) and the F Bianchi identity dF (−) i = 0, to get that

(
δE (0)

H,αa + E (1)
H,αa

)
− 2
(
δE (0)

g,αa + E (1)
g,αa

)
=

− 1

4
δai F

(−) i
γδ

[
−∇[γE (0)

g,δ]α −
1

2
∇γE (0)

H,δα − ∂γφE (0)
H,δα −

1

2
hδαϵE (0)

H,γϵ +
1

4
hαγϵE (0)

H,ϵδ

]

+ δeai δ
i
aE

(0)
H,αa − 2δeiaδ

a
i E (0)

g,αa, (5.2.37)

which vanishes after the application of the two-derivative equations of motion. This

verifies (5.2.11). Hence, the truncation of the vector multiplet is consistent with the

bosonic equations of motion.
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5.2.2.4 The surviving equations of motion

The above shows that it is consistent to truncate away the bosonic equations of

motion related to the reduced vector multiplet fields, namely Eg,ij, EH,ij and EH,αi −

2Eg,αi, corresponding to the equations of motion for gij, bij and F
(+) i
µν , respectively.

The remaining untruncated equations of motion are those of the reduced supergravity

multiplet fields. These are the Einstein equation, Eg,αβ, dilaton equation, Eϕ, h-field

equation, EH,αβ and graviphoton equation, −EH,αi − 2Eg,αi.

Combined with the two-derivative equations of motion in (5.2.5), the reduced

Einstein equation is

Eg,αβ = R(ω)αβ −
1

4
F (−) i
αγ F

(−) i
βγ − 1

4
h̃αγδh̃βγδ + 2∇α∇βφ

+
α′

4

(
Rαγδϵ(ω+)Rβ

γδϵ(ω+)−Rα
γδϵ(ω+)F

(−) i
βγ F

(−) i
δϵ

+
1

8
F (−) i
αγ Fβ

γ(−) jF
(−) i
δϵ F δϵ(−) j +

1

4
∇(+)
α F

(−) i
γδ ∇(+)

β F γδ(−) i

)
, (5.2.38)

where symmetrization on (αβ) is implicitly assumed. Here we have introduced

h̃ = h− α′

4
ω3L(ω+) = db+

1

4
A(−) i ∧ F (−) i − α′

4
ω3L(ω+), (5.2.39)

such that

dh̃ =
1

4
F (−) i ∧ F (−) i − α′

4
TrR(ω+) ∧R(ω+). (5.2.40)

This reduced h̃ has the simple equation of motion

EH,αβ = e2φ∇γ
(
e−2φh̃αβγ

)
. (5.2.41)
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The remaining equations of motion are the dilaton equation

Eϕ = R(ω)− 1

8
F

(−) i
αβ F

(−) i
αβ − 1

12
h̃2αβγ + 4□φ− 4(∂αφ)

2,

+
α′

8

(
(Rαβγδ(ω+))

2 −Rαβγδ(ω+)F
(−) i
αβ F

(−) i
γδ +

1

2

(
∇(+)
α F

(−) i
βγ

)2
+

1

8
F

(−) i
αβ F

(−) i
βγ F

(−) j
γδ F

(−) j
δα − 1

8
F

(−) i
αβ F

(−) j
βγ F

(−) i
γδ F

(−) j
δα

+
1

8
F

(−) i
αβ F

(−) j
αβ F

(−) i
γδ F

(−) j
γδ

)
, (5.2.42)

and the graviphoton equation

EA,αi = e2φ∇γ
(
e−2φF (−) i

γα

)
− 1

2
h̃αβγF

(−) i
βγ

+
α′

4

(
−h̃αβγRβγδϵ(ω+)F

(−) i
δϵ +

1

4
h̃αβγF

(−) j
βγ F

(−) i
δϵ F

(−) j
δϵ − 2Rαβγδ(ω+)∇(+)

β F
(−) i
γδ

+
1

2
F (−) j
αγ F

(−) j
δϵ ∇(+)

γ F
(−) i
δϵ − 1

2
F (−) j
αγ F

(−) i
δϵ ∇(+)

γ F
(−) j
δϵ

+ F
(−) i
βγ F

(−) j
γδ ∇(+)

α F
(−) j
βδ

)
. (5.2.43)

Note that, at the order we are working at, we cannot distinguish between h and h̃ in

the O(α′) terms. Nevertheless, the use of h̃ is expected to be natural when extending

to additional higher orders in α′.

5.2.3 The reduced Lagrangian

Since a torus reduction is known to be consistent, the reduced equations of mo-

tion will necessarily be consistent with the Kaluza-Klein reduced Lagrangian. With

the further consistent truncation of the vector multiplets, the supergravity multiplet

equations of motion, (5.2.38), (5.2.41), (5.2.42), and (5.2.43), may be derived from

the effective Lagrangian given by substituting the truncation into our Lagrangian
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(5.1.1), which gives

e−1L =e−2φ

[
R + 4(∂φ)2 − 1

12
h̃2µνρ −

1

8

(
F (−) i
µν

)2
+
α′

8

(
(Rµνρσ(ω+))

2 −Rµνρσ(ω+)F
(−) i
µν F (−) i

ρσ +
1

2

(
∇(+)
ρ F (−) i

µν

)2
+

1

8
Fµ

ν (−) iFν
ρ(−) iFρ

σ (−) jFσ
µ (−) j − 1

8
Fµ

ν (−) iFν
ρ(−) jFρ

σ (−) iFσ
µ (−) j

+
1

8
F (−) i
µν F µν (−) jF (−) i

ρσ F ρσ (−) j

)]
. (5.2.44)

While higher-derivative Lagrangians can be transformed by field redefinitions, it is

important to note that such field redefinitions will also transform the equations of

motion. This form of the Lagrangian is what matches the equations of motion given

above.

Using our freedom to perform field redefinitions, we may transform this Lagrangian

into a more standard form. In particular, we can rewrite the (∇F )2 term using the

identity

(
∇(+)
ρ F (−) i

µν

)2
= Rµνρσ(ω+)F

(−) i
µν F (−) i

ρσ − 1

4
F (−) i
µν F µν (−) jF (−) i

ρσ F ρσ (−) j

− 1

2
Fµ

ν (−) iFν
ρ(−) iFρ

σ (−) jFσ
µ (−) j +

1

2
Fµ

ν (−) iFν
ρ(−) jFρ

σ (−) iFσ
µ (−) j

+ 2e2φ∇ρ(e
−2φF (−) i

µν ∇µF ρν (−) i)− 2F µν (−) i∇µE (0) i
ν

− 2F (−) i
µρ Fν

ρ (−) iE (0)
g,µν . (5.2.45)

Here, the last line includes a total derivative and terms proportional to the leading

order equations of motion. The equation of motion terms can be removed by a suitable
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field redefinition, in which case we end up with the concise expression

e−1L =e−2φ

[
R + 4(∂φ)2 − 1

12
h̃2µνρ −

1

8

(
F (−) i
µν

)2
+
α′

8

(
(Rµνρσ(ω+))

2 − 1

2
Rµνρσ(ω+)F

(−) i
µν F (−) i

ρσ

− 1

8
Fµ

ν (−) iFν
ρ(−) iFρ

σ (−) jFσ
µ (−) j +

1

8
Fµ

ν (−) iFν
ρ(−) jFρ

σ (−) iFσ
µ (−) j

)]
.

(5.2.46)

This reduced Lagrangian can be compared with that of Ref. [306]. Note, however,

that Ref. [306] does not use a torsionful connection. To make the comparison, we

may use the identities

Rµνρσ(ω+)
2 = R2

µνρσ +
1

2
Rµνρσhµνλhρσ

λ − 1

8
(h2µν)

2 − 1

8
h4

+
3

32
F (−) i
µν F µν (−) jF (−) i

ρσ F ρσ (−) j − 3

16
Fµ

ν (−) iFν
ρ(−) jFρ

σ (−) iFσ
µ (−) j

− 1

4
h2µνF (−) i

µρ Fν
ρ (−) i +

1

8
hµνλhρσλF

(−) i
µν F (−) i

ρσ − 1

4
hµνλhρσλF

(−) i
µρ F (−) i

νσ

+ e2φ∇µ(e
−2φhνρσ∇νhµρσ)− hνρσ∇νE (0)

H,ρσ − h2µνE (0)
g,µν , (5.2.47)

and

Rµνρσ(ω+)F
(−) i
µν F (−) i

ρσ = RµνρσF (−) i
µν F (−) i

ρσ +
1

8
F (−) i
µν F µν (−) jF (−) i

ρσ F ρσ (−) j

− 1

4
Fµ

ν (−) iFν
ρ(−) jFρ

σ (−) iFσ
µ (−) j − 1

2
hµνλhρσλF

(−) i
µρ F (−) i

νσ ,

(5.2.48)

where we have defined h4 = hµνρhµσλhνσϵhρλϵ. Note that h̃ defined in (5.2.39) also

contributes to the four derivative action through h̃2µνρ. At O(α′) we only need to
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worry about the cross-term

hµνρω3Lµνρ(ω+) = hµνρω3Lµνρ − 3Rµνρσhµνλhρσ
λ − 3

16
hµνλhρσλF

(−) i
µν F (−) i

ρσ

+
3

8
hµνλhρσλF

(−) i
µρ F (−) i

νσ +
1

2
h4. (5.2.49)

Making the above substitutions in (5.2.46) then gives us

e−1L =e−2φ

[
R + 4(∂φ)2 − 1

12
h2µνρ −

1

8

(
F (−) i
µν

)2
+
α′

8

(
(Rµνρσ)

2 − 1

2
Rµνρσh

µνλhρσλ −
1

2
RµνρσF (−) i

µν F (−) i
ρσ − 1

8
(h2µν)

2 +
1

24
h4

− 1

4
h2µνF

(−) i
µρ F (−) i

νρ +
1

16
hµνλhρσλF

(−) i
µν F (−) i

ρσ +
1

8
hµνλhρσλF

(−) i
µρ F (−) i

νσ

+
1

32
F (−) i
µν F (−) j

µν F (−) i
ρσ F (−) j

ρσ − 1

8
F (−) i
µν F (−) i

νσ F (−) j
σρ F (−) j

ρµ

+
1

16
F (−) i
µν F (−) j

νσ F (−) i
σρ F (−) j

ρµ +
1

3
hµνρω3Lµνρ

)]
. (5.2.50)

In particular, this agrees with the result of [306] after appropriate truncation.3

5.3 Truncating the fermionic sector

Hitherto, we have only looked at the bosonic sector of the theory; it is a non-trivial

test to additionally check that the truncation extends to the fermion sector. We start

with the O(α′) truncation

gij = δij + α′δgij, bij = 0, F i
µν =

1

2
F (−) i
µν , G̃µν i = −1

2
F (−) i
µν , (5.3.1)

3It is important to note that our conventions differ from those of [306]. In particular, one must
send B → −B to compare, so our truncation F (+) = 0 is equivalent to F (−) = 0 in the notation of
[306].
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and consider the leading order supersymmetry variations (5.1.30). We find, at the

lowest order

δϵψ
(0)
µ =

(
∇µ(ω−) +

1

4
F (−) i
µν γνΓi

)
ϵ,

δϵψ
(0)
i = 0,

δϵλ̃
(0) =

(
γµ∂µφ− 1

12
hµνλγ

µνλ +
1

8
F (−) i
µν γµνΓi

)
ϵ, (5.3.2)

where the internal Dirac matrices Γi have flat-space indices. We see that the gaugini

are consistently truncated out at this order. However, with the δgij shift in (5.3.1),

the lowest order transformations, (5.1.30), also give rise to the O(α′) terms

δ(δϵψ
(0)
µ ) = 0,

δ(δϵψ
(0)
i ) =

(
− 1

16
δgijF

(−) j
µν γµν − 1

4
∂µδgijγ

µΓj
)
ϵ,

δ(δϵλ̃
(0)) = 0. (5.3.3)

5.3.1 The variations at O(α′)

The shift in the lowest order internal gravitino variation, δ(δϵψ
(0)
i ), will combine

with the higher order term, δϵψ
(1)
i , to yield the complete gaugino variation. As we

are aiming to truncate away the vector multiplets, this combined variation ought to

vanish.

Reduction of the first order internal gravitino variation, δψ
(1)
i , in (5.1.13) yields

δϵψ
(1)
i =

1

32

(
Rαβ

γδ(ω+)F
(−) i
γδ γαβ − 1

8
F

(−) j
αβ F

(−) j
γδ F

(−) i
γδ γαβ + F

(−) [j
γδ ∇(+)

α F
(−) i]
γδ γαΓj

− 1

2
F

(−) i
αβ F

(−) j
βγ F (−) k

γα Γjk
)
ϵ. (5.3.4)
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Combining this with (5.3.3) gives

δ(δϵψ
(0)
i ) + δϵψ

(1)
i =

1

32
F

(−) i
αβ

(
Rγδ

αβ(ω+)γ
γδ − 1

4
F

(−) j
αβ F

(−) j
γδ γγδ −∇(+)

γ F
(−) j
αβ γγΓj

− 1

2
F

(−) j
βγ F (−) k

γα Γjk
)
ϵ. (5.3.5)

As this is non-vanishing, the gaugino must be shifted if we are to truncate it away.

The Riemann tensor term in the variation suggests that we use the commutator of

two covariant derivatives. This can arise from the variation of a covariant derivative

of the gravitino. Since we work only to O(α′), we can take something like ∇[µψν]

whose variation will gives ∇[µ∇ν]ϵ. To be more precise, consider the variation δψ
(0)
µ

in (5.3.2), which we write as δψ
(0)
µ = Dµϵ where

Dµ ≡ ∇µ(ω−) +
1

4
F (−) i
µν γνΓi = ∇µ −

1

8
hµνλγ

νλ +
1

4
F (−) i
µν γνΓi. (5.3.6)

The commutator we want is then

[Dµ,Dν ] =
1

4

(
Rµν

αβ(ω−)γ
αβ +

(
2∇[µF

(−) i
ν]α − h[µ

αβF
(−) i
ν]β

)
γαΓi − 1

2
F (−) i
µα F

(−) i
νβ γαβ

− 1

2
F (−) i
µα F (−) j

να Γij
)
. (5.3.7)

Comparing this with (5.3.5) indicates that we need to convert between R(ω+) and

R(ω−). Using the h Bianchi identity, dh = 1
4
F (−) i ∧ F (−) i, we have

Rαβγδ(ω−) = Rγδαβ(ω+)−
3

4
F

(−) i
[αβ F

(−) i
γδ] . (5.3.8)

A bit of manipulation, including use of the F Bianchi dF (−) i = 0, then shows that

δϵψ̃i = 0 where we have defined the shifted gaugino

ψ̃i = ψi −
α′

4
F (−) i
µν Dµψν . (5.3.9)
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This demonstrates that we can consistently truncate ψ̃i out of the fermion sector

while preserving the supersymmetry of the solution.

For completeness, we also note that the gravitino and dilatino variations have

four-derivative corrections

δϵψ
(1)
µ =

1

32

[
ω3L,µνρ(ω+)γ

νρ + 2

(
Rµν

αβ(ω+)−
1

8
F (−) j
µν F

(−) j
αβ

)
F

(−) i
αβ γνΓi

+
1

2
F

(−) i
αβ ∇(+)

µ F
(−) j
αβ Γij

]
ϵ, (5.3.10)

and

δϵλ̃
(1) =

1

48

[
ω3L,µνρ(ω+)γ

µνρ +
3

2

(
Rµν

αβ(ω+)−
1

8
F (−) j
µν F

(−) j
αβ

)
F

(−) i
αβ γµνΓi

+
1

4
F

(−) i
αβ F

(−) j
βγ F (−) k

γα Γijk
]
ϵ. (5.3.11)

5.4 Comparing with the four-derivative corrected BPS black

string

A natural test for our truncation is considering N = 1, D = 9 supergravity [323].

The field content is the 9D metric gµν , the gravitino ψµ, a vector Aµ, a two-form Bµν ,

a dilatino λ, and a dilaton φ. Black hole solutions to this minimal supergravity lift

to ten-dimensional strings, so we may compare these two cases.
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5.4.1 Two-derivative solution

Balancing the nine-dimensional graviphoton charge with the mass gives rise to a

supersymmetric black hole solution given by [308]

ds29 = −
(
1 +

k

r6

)−2

dt2 + dr2 + r2dΩ2
7,

A =
1

1 + k
r6

dt,

eφ =

(
1 +

k

r6

)−1/2

, (5.4.1)

with all other fields vanishing. Here we have denoted the metric of the round S7 by

dΩ2
7. This two-derivative solution uplifts to a 10D black string solution via (5.1.14)

ds210 = −
(
1 +

k

r6

)−2

dt2 + dr2 + r2dΩ2
7 +

(
dz +

dt

1 + k
r6

)2

,

B = − 1

1 + k
r6

dt ∧ dz,

eϕ =

(
1 +

k

r6

)−1/2

. (5.4.2)

It is straightforward to check that this satisfies the 10D two-derivative equations of

motion (5.1.26). Moreover, this is a BPS solution, in the sense that δψ
(0)
M = 0 and

δλ(0) = 0 with Killing spinor

ϵ(0) =

(
1 +

k

r6

)−1/2(
1− γ0Γz

)
ϵ0(Ω7), (5.4.3)

where ϵ0 is a covariantly constant spinor4 on S7. Thus, the solution is 1
2
-BPS.

4Concretely, if we write the seven angles of S7 as θn, n = 1, ..., 7, such that the angles are defined
recursively as dΩ2

n = dθ28−n+sin2 θ8−ndΩ
2
n−1, then ϵ0(Ω7) is given by ϵ0 =

∏7
n=1 exp

[
θn
2 γ

n+1,n+2
]
η0,

where η0 is a constant spinor, i.e., with no coordinate dependence. This can be seen via an identical
analysis to that in [324].
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5.4.2 Four-derivative correction

We now solve the ten-dimensional equations of motion, including O(α′) correc-

tions. We do so by making an ansatz for the four-derivative corrected black string

as

ds210 =−
(
1 +

k

r6

)−2

(1 + α′f(r))dt2 + (1 + α′g(r))dr2 + r2dΩ2
7

+ (1 + α′h(r))

(
dz + (1 + α′j(r))

dt

1 + k
r6

)
+O(α′2),

B =− 1 + α′𝓀(r)
1 + k

r6

dt ∧ dz +O(α′2),

eϕ =(1 + α′ℓ(r))

(
1 +

k

r6

)−1/2

+O(α′2), (5.4.4)

where we have explicitly assumed that the SO(8) symmetry is preserved and that the

solution continues to have ∂t and ∂z as Killing vectors. Demanding that our fermion

variations vanish implies the conditions

0 = g(r),

0 =
d

dr

(
f(r)− h(r)− 2j(r)

1 + k
r6

)
,

0 =
d

dr

(
h(r) + j(r)− 𝓀(r)

1 + k
r6

)
,

0 = 6kf(r)−
(
1 +

k

r6

)2
d

dr

(
j(r) + 𝓀(r)

1 + k
r6

)
+ 4r(k + r6)m′(r),

0 = 3k(2𝓀(r)− f(r)− h(r)) + r(k + r6)
(
𝓀′(r)− 2ℓ′(r)

)
, (5.4.5)

where we have written our BPS spinor as ϵ = (1+α′m(r))ϵ(0). Note that since we are

demanding δψµ = 0 and δλ = 0 for a BPS solution, it is fine to require that δψz = 0
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without any field redefinitions. In particular, (5.4.5) allows us to write

f(r)− h(r)− 2j(r) =c1

(
1 +

k

r6

)
,

h(r) + j(r)− 𝓀(r) =− c2

(
1 +

k

r6

)
,

𝓀′(r)− 2ℓ′(r) =
3k(c1 − 2c2)

r(k + r6)

(
1 +

k

r6

)
, (5.4.6)

where c1 and c2 are undetermined constants of integration. Substituting these condi-

tions (5.4.6) into our equations of motion and solving gives the solution

f(r) =
18k2

r2(k + r6)2
+ c4 + 2c7 + c1

(
2− 1

1 + k
r6

)
− c3 + 2c6

6(k + r6)
,

g(r) =0,

h(r) =− 18k2

r2(k + r6)2
− c3

6(k + r6)
+ c4,

j(r) =
18k2

r2(k + r6)2
− c1k

2

2r6(k + r6)
− c6

6(k + r6)
,

𝓀(r) =
(c1 − 2c2)k

2r6
+

3c1k − c3 − c6
6(k + r6)

+ c2 + c4 + c7,

ℓ(r) =
3c1k − c3 − c6
12(k + r6)

+ c5 +
c7
2
, (5.4.7)

where the ci are (as yet undetermined) constants of integration, along with the four-

derivative corrected Killing spinor

ϵ =

[
1 +

α′

2

(
9k2

r2(k + r6)2
− c3 + 2c6 − 6c1k

12(k + r6)

)]
ϵ(0). (5.4.8)
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Now, we can further reduce the number of free constants. Our mass M , electric

charge Q(A), B charge Q(B), and scalar charge Σ are given by

M = 2k + α′
(
−(3c1 + 2c4 + 4c7)k +

c3 + 2c6
6

)
,

Q(A) = −k − α′
(c6
6
+ c7k

)
,

Q(B) = k + α′
(
c3 + c6

6
+ (c4 + c7)k

)
,

Σ = −k
2
+
α′

12
(3k(c1 − 2c5 − c7)− c3 − c6), (5.4.9)

where the scalar charge is defined as the coefficient of r−6 in the large-r expansion of

the dilaton

ϕ = ϕ∞ +
Σ

r6
+O(r−12). (5.4.10)

If we fix the metric at infinity, as well as the asymptotic value of the scalar ϕ∞ and

the charges Q(A) and Q(B), then this requires that all the ci vanish. Upon doing so,

we are left with the four-derivative corrected metric

ds210 =−
(
1 +

k

r6

)−2(
1 +

18α′k2

r2(k + r6)2

)
dt2 + dr2 + r2dΩ2

7

+

(
1− 18α′k2

r2(k + r6)2

)(
dz − 1

1 + k
r6

(
1 +

18α′k2

r2(k + r6)2

)
dt

)2

+O(α′2),

(5.4.11)

with B and ϕ left uncorrected.

We now compare this ten-dimensional solution with the form of the consistent

truncation (5.0.3). Making note of

F 2 =
1

3
H2 = − 72k2

r2(k + r6)2
, (5.4.12)
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we find

gzz =1 +
α′

4
F 2, (5.4.13a)

B =

(
−A+

α′

2
ΩαβFαβ

)
∧ dz. (5.4.13b)

In particular, (5.4.13a) is exactly what we expect from the general expression (5.0.3)

when n = 1. On the other hand, (5.4.13b) näıvely seems to have an extra term

compared with (5.3.1), but the TrΩF is precisely the term that we implicitly absorbed

into B to remove a total derivative from the Lorentz Chern-Simons form.

5.5 Discussion

In this chapter, we have shown that it is consistent to truncate out the vector

multiplets that arise in the toroidal reduction of heterotic supergravity in the pres-

ence of four-derivative corrections. In particular, this truncation does not ruin the

supersymmetry of the reduced theory. We further verified our truncation by looking

at the example of a four-derivative corrected black string solution. We view this work

as a step towards more general non-trivial truncations of higher-derivative theories,

such as what may arise from sphere reductions.

One may be tempted to interpret these results as a statement that a two-derivative

truncation automatically implies the existence of a four-derivative one. However, this

is not always the case. For example, one might consider further truncating the T 5

reduction to minimal D = 5, N = 2 supergravity. For n = 5, upon transforming

to the Einstein frame g = e4φ/3g̃ and dualizing h = e−2φ ⋆ G = e−2φ ⋆ dC, the two-
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derivative Lagrangian reads5

⋆̃L(0) = ⋆̃R− 8

3
dφ∧ ⋆̃dφ− 1

2
e8φ/3G ∧ ⋆̃G− 1

4
F (−) i∧F (−) i∧C− 1

4
e−4φ/3F (−) i∧ ⋆̃F (−) i,

(5.5.1)

where the Chern-Simons term arises from requiring that the h Bianchi identity be-

come the G equation of motion. This theory may be thought of, in bosonic N = 2

language, as a graviton multiplet (gµν , Cµ) coupled to a gravitino multiplet A
(−) i ̸=1
µ

and a vector multiplet (A
(−) 1
µ , φ). One may then check that it is consistent to truncate

the additional multiplets

F (−) 1 = ±2G, F (−) i ̸=1 = 0, φ = 0, (5.5.2)

which, upon rescaling G = F/
√
3, gives us pure minimal ungauged N = 2 supergrav-

ity

⋆L(0) = ⋆R− 1

2
F ∧ ⋆F − 1

3
√
3
F ∧ F ∧ A. (5.5.3)

Similarly, upon truncating, the two-derivative dilatino equation takes the form

δϵλ̃
(0) = − i

4
√
3
Fµνγ

µν
(
1± iΓ1

)
ϵ, (5.5.4)

where the presence of a projector is consistent with the fact that we are truncating

N = 4 supersymmetry down to N = 2.

At the four-derivative level, we näıvely expect the minimal N = 2 truncation

to yield the Lagrangian (3.0.6) with coefficients (3.0.8) that we saw in Chapter III.

However, the dilaton equation of motion in the Einstein frame contains the term

E (1)
φ ⊃ 1

3
e4φ/3(Rµνρσ)

2. (5.5.5)

5Here, we have chosen to use the notation ⋆ to refer to the Hodge star in the string frame and ⋆̃
the Hodge star in the Einstein frame.
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As is well-known, such a term cannot be removed by field redefinitions. This spells

doom for our truncation. An alternative way of seeing the same issue is to look at

the G equation of motion (or, equivalently, the h̃ Bianchi identity)

d
(
e−2φ ⋆ G

)
∼ −α

′

4
R(ω+) ∧R(ω+) + ... (5.5.6)

No such term appears in the F (−) i equation of motion and likewise cannot be removed

by a field redefinition. The issue in both cases is that the two-derivative equations

of motion have no Riemann tensors, and so field redefinitions cannot generate two

Riemann tensors.6 Hence, the truncation is likely inconsistent at the four-derivative

level. We may also see this in the fermionic sector. If we now identify h̃ = e−2φ ⋆ G

and set F (−) i ̸=0 = 0, then the four-derivative part of the dilatino variation becomes

δϵλ̃
(1) =

1

32

(
Rµν

αβ(ω+)−
1

8
F (−) 1
µν F

(−) 1
αβ

)
F

(−) 1
αβ γµνΓ1ϵ, (5.5.7)

where the Lorentz Chern-Simons piece has been absorbed into G and the last term

vanishes since Γ11 = 0. We can indeed remove the Riemann term via a field redefini-

tion similar to what was done for ψ̃ but at the cost of a ∇(+)F (−)∇(+)F (−) term that

cannot be removed.7

What this example illustrates is that not every two-derivative consistent trunca-

tion necessarily leads to a four-derivative version, even in the case of torus reduc-

tions. It is interesting to note that the problem rests with the vector multiplet; it

is perfectly consistent to truncate out just the gravitino multiplet (leaving us with

a matter-coupled N = 2 supergravity), but the vector multiplet gets non-trivially

sourced by the graviton multiplet at the four-derivative level. Here, the best we can

6Although, if we are clever, we can generate one, as happened for the Maxwell equation truncation
earlier.

7Note that we are very restricted in what field redefinitions we may make since δϵψ
(0)
i and δλ̃(0)

both vanish, which means we can only shift by ψµ.
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do is to truncate to minimal supergravity coupled to a universal vector multiplet. An

almost identical issue is present if one tries to truncate to pure N = 1 or N = 2

supergravity in D = 4, which leads to difficulty recovering the expected result of

[125, 126, 153]. It should also be noted that at (α′)3 order in D = 4, it is known that

the pure N = 1 theory has to be coupled to at least an extra chiral multiplet [325].8

One might also consider a similar truncation of the theory in D = 6. Here,

our N = (1, 1) Lagrangian may be thought of, in bosonic N = (1, 0) language, as

a graviton multiplet9 (gµν , b
+
µν) coupled to a gravitino multiplet A

(−) i
µ and a tensor

multiplet (b−µν , φ). As before, it is perfectly consistent to truncate out the gravitino

multiplet

F (−) i = 0, (5.5.8)

at the four-derivative level; in particular, the F (−) i equations of motion trivially

vanish when we set F (−) i = 0. This yields the truncated Lagrangian

e−1L = e−2φ

[
R + 4(∂φ)2 − 1

12
h̃2µνρ +

α′

8
(Rµνρσ(ω+))

2

]
. (5.5.9)

However, analogous to the vector multiplet in the D = 5 case, the universal tensor

multiplet cannot be truncated away. This can be seen from the dilaton equation

of motion, which again contains a (Rµνρσ(ω+))
2 that cannot be removed with field

redefinitions, or from the dilatino variation, which again has a Riemann term as in the

D = 5 case. Presumably, the truncation of [307] to N = (1, 0) supergravity coupled

to a tensor multiplet and four hypermultiplets will suffer the same fate; while the

hypermultiplets can be removed by a further truncation, the tensor multiplet cannot.

While we have focused on four-derivative corrected heterotic supergravity, more

generally, the dilaton coupling to higher curvature couplings precludes it from being

8See also [326] for a related story in the torus reduction of type II supergravity.
9We denote the self-dual part of b as b+ and the anti-self-dual part as b−. This is unrelated to

the ± notation associated with F (±).
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consistently truncated out of the lower-dimensional theory.10 One implication is that

a top-down approach to higher-derivative holography will necessarily include, at a

minimum, the dilaton multiplet in addition to the supergravity multiplet. It would

be interesting to see how this fits with the many non-trivial consistency checks of

bottom-up holography performed in the absence of the dilaton.

10It should be emphasized that this is a perturbative statement. In principle, one could consider
a non-perturbative reduction with compact dimensions of size α′, which could provide a loophole.
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CHAPTER VI

Consistent Truncations in Higher-derivative

Supergravity II: The Sphere

Life is simple on a torus T n since the truncation to the massless sector restricts

the U(1)n singlets. Products of singlets can never yield non-singlets, so symmetry

protects the truncation and there is little that can go wrong. However, there are many

subtleties involved with sphere truncations (see e.g. [246–258]) and more general coset

reductions (see e.g. [259–263]). The issue is that there are fields in the massless sector

that transform non-trivially under the isometry group; amongst these is the gauge

field that arises from the metric. In such cases, products of the retained fields may act

as sources for the very fields we wish to truncate, which spells disaster for consistency.

Hence, such truncations are quite delicate.

On the other hand, we are now entering an age of precision holography, where

higher-derivative corrections are becoming increasingly important. This is motivated

partially by advancements in the construction of higher-derivative supergravities but

also by advancements on the field theory side that allow for precise comparison.

However, such higher-derivative corrections are subtle. As we saw in the previous

chapter, not every two-derivative truncation necessarily leads to a consistent four-

derivative one. Some higher-derivative gauged supergravities could not be reached by

a consistent truncation, in particular, because of non-trivial couplings between the
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graviton and dilaton-containing multiplets. Hence, it is doubly subtle to check that

a four-derivative sphere truncation is indeed consistent.

As in Chapter V, we work in the context of heterotic supergravity with four-

derivative corrections. Here, we will be interested in the Scherk-Schwarz reduction

on S3, which yields half-maximal 7D gauged supergravity coupled to three vector

multiplets. The truncation to pure 7D supergravity is known to be consistent at

the two-derivative level [327], and, as we will show, it is indeed consistent at the

four-derivative level as well.

Our starting point is 10D heterotic supergravity with field content (gMN , ψM , BMN , λ, ϕ),

and leading order bosonic Lagrangian

e−1L = e−2ϕ

[
R + 4(∂Mϕ)

2 − 1

12
H2
MNP

]
. (6.0.1)

Note that we do not include the heterotic gauge fields, as we aim to truncate to pure

7D supergravity. For the S3 reduction, we take a metric ansatz

ds210 = gµνdx
µdxν + gijη

iηj, ηi = σi + Ai, (6.0.2)

where xµ are coordinates on the 7D base space, Ai is a principal SU(2) connection,

σi is a set of left-invariant one-forms on S3, and gij is a symmetric matrix of scalars.

We reduce the two-form as

B = b+Bi ∧ ηi +
1

2
bij η

i ∧ ηj +mω(2), (6.0.3)

such that

dω(2) =
1

3!
ϵijk σ

i ∧ σj ∧ σk, (6.0.4)

is the volume form on S3. Here, m is the H3 flux supporting the sphere reduction.

At the two-derivative level, this reduction was worked out in [327]; the resulting

150



theory is a seven-dimensional gauged supergravity with Lagrangian

e−1L7 = e−2φ

[
R + 4(∂µφ)

2 − 1

12
h2µνλ −

1

2g2
(F i

µν)
2 + g2

]
, (6.0.5)

where the gauge coupling constant g is related to the flux by g2 = −1/m. We extend

this reduction to the four-derivative level. In particular, after analyzing the bosonic

equations of motion, we find a consistent O(α′) truncation

gij =
1

g̃2
δij +

α′

4g̃4
F i
αβF

j
αβ, bij = 0, Bi = − 1

g̃2
Ai. (6.0.6)

where the gauge coupling constant, g̃, receives an O(α′) shift

1

g̃2
=

1

g2
− α′

2
= −m− α′

2
, (6.0.7)

This truncation reduces to the torus case of Chapter V in the g → 0 limit, assuming

the fields are appropriately rescaled.

We also consider the fermionic sector. Here, the 10D gravitino ψM splits into a

7D gravitino ψµ and three gaugini ψi. Note that the left-invariant one-form basis

trivializes the spin bundle and hence the reduction preserves the full supersymmetry

of our original theory. To truncate the gaugini, we require a field redefinition

ψ̃i = ψi −
α′

2g̃
F i
µνDµψν , (6.0.8)

where we have denoted δϵψµ = Dµϵ. This then sets δϵψ̃i = 0 and leads to consistency

with supersymmetry.

The rest of this chapter is organized as follows. In Section 6.1, we review the

two-derivative group manifold reduction of heterotic supergravity on S3. We then

show, in Section 6.2, that the truncation is consistent at the four-derivative level by
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analysis of the equations of motion, as well as summarize the remaining equations

of motion and effective Lagrangian. In Section 6.3, we check that this truncation is

consistent with supersymmetry, and, finally, we conclude in Section 6.4.

6.1 Group manifold reduction on S3

The reduction of heterotic supergravity on S3 can be viewed as a reduction on

the group manifold of SU(2). We first summarize the standard results of the group

manifold reduction [259, 327, 328]. As a matter of setting notation, we will use the

same notation for four-derivative heterotic supergravity as in Chapter V. In particular,

we split our indices as

M → {µ, i}, A→ {α, a}.

6.1.1 S3 reduction

We now proceed to reduce the heterotic theory on S3 to arrive at half-maximal

seven-dimensional gauged supergravity coupled to three vector multiplets [327, 328].

The vector multiplets will be truncated out in the next section, but we retain them

here since we must use the full non-truncated lowest-order equations of motion to

compute their four-derivative shifts.

The sphere S3 is, as a manifold, isomorphic to SU(2), which admits a basis of

globally defined left-invariant one-forms σi satisfying the Maurer-Cartan equation

dσi = −1

2
ϵijkσj ∧ σk. (6.1.1)

Such a global frame reduces the structure group to the identity, which is just the

statement that S3 is parallelizable. Moreover, σi generates the right isometries of the

metric. The ϵijk are the structure constants of su(2), and formally the indices should

be raised and lowered via the Cartan-Killing metric κ. However, in this case, the
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Cartan-Killing metric is trivial

κij ≡ −1

2
ϵkℓiϵ

ℓ
kj = δij, (6.1.2)

and so we will not concern ourselves with the positions of the indices of ϵ.

We then have a metric ansatz in the form of a standard Scherk-Schwarz reduction

[100]

ds210 = gµνdx
µdxν + gijη

iηj, ηi = σi + Ai, (6.1.3)

where xµ are coordinates on the 7D base space, gij is a symmetric matrix of scalars

and Ai forms a principal SU(2) connection with curvature locally given by

F i = dAi − 1

2
ϵijkAj ∧ Ak. (6.1.4)

Being non-abelian, our gauge field naturally has an associated gauge-covariant deriva-

tive, which we will denote as D. Given an su(2)-valued form ti, D acts as

Dti = dti − ϵijkAj ∧ tk. (6.1.5)

Considering the metric (6.1.3), we choose a natural zehnbein

Eα = eα, Ea = eai η
i. (6.1.6)

where eα is a siebenbein for gµν and e
a is a dreibein for gij, so that ds210 = ηαβE

αEβ+

δabE
aEb. We then compute

dEα = −ωαβEβ,

dEa =
1

2
eaiF

i
αβE

α ∧ Eβ + eibDαe
a
iE

α ∧ Eb − 1

2
ϵijkeai e

j
be
k
cE

b ∧ Ec. (6.1.7)
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from which one may extract the components of the spin connection

Ωαβ = ωαβ − 1

2
eaiF

i
αβE

a,

Ωαb = −P bc
α E

c − 1

2
ebiF

i
αβE

β,

Ωab = Qab
α E

α +
1

2
Cc,abEc. (6.1.8)

Here, we have made the conventional definitions

P ab
α = ei(aDαe

b)
i ,

Qab
α = ei[aDαe

b]
i ,

Cc,ab = ϵijk
[
ecie

j
ae
k
b + ebie

j
ae
k
c − eai e

j
be
k
c

]
, (6.1.9)

where P and Q are the scalar kinetic term and composite SU(2) connection, respec-

tively.

We may then compute the relevant Riemann tensor components to be

Rγδ
αβ(Ω) =Rαβ

γδ(ω)−
1

2
F i
αβF

j
γδgij −

1

2
F i
αγF

j
βδgij,

Rγd
αβ(Ω) =− 1

2
Dγ

(
ediF

i
αβ

)
− 1

2
eaiF

i
αβ

(
ejdDγe

a
j

)
− eciF

i
αγPβcd,

Rcδ
αb(Ω) =DδPαbc + Pαbde

i
cDδe

d
i +

1

4
ecie

b
jF

i
αγF

j
γδ − PαdcQδdb +

1

4
ediF

i
αδCc,db,

Rcd
αb(Ω) =Pαbaϵ

ijkeai e
j
ce
k
d + eciF

i
αγPγbd − PαacCd,ab,

Rcd
ab(Ω) =− 2PγacPγbd −

1

4
Cf,abϵijkefi ecjedk +

1

2
Cc,afCd,fb, (6.1.10)

where there is implicit antisymmetrization as relevant. Contracting Riemann then
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gives the Ricci tensor components

Rαβ(Ω) =Rαβ(ω)−
1

2
F i
αγF

j
βγgij −DβPαcc − PαcdPβ

cd,

Rαb(Ω) =
1

2
Dγ

(
ebiF

i
αγ

)
+

1

2
eaiF

i
αγe

j
bDγe

a
j +

1

2
ebiF

i
αγPγcc,

Rab(Ω) =−DγPγab − Pγad
(
eibDγe

d
i

)
+

1

4
eai e

b
jF

i
γδF

j
γδ + PγdbQγda − 2Pγa[b|Pγc|c]

− 1

4
Cf,acϵijkefi ebjeck, (6.1.11)

and the Ricci scalar

R(Ω) = R(ω)− 1

4
F i
αβF

j
αβgij − 2∇γPγcc − PγccP

γdd − P 2

− 1

4

(
ϵijkϵℓmnhiℓh

jmhkn + 2ϵijkϵjiℓhkℓ
)
. (6.1.12)

For the reduction, we also need to consider the dilaton and B-field. For derivatives

of the dilaton, we find

∇̂α∇̂βϕ = ∇α∇βϕ, ∇̂α∇̂bϕ = −1

2
eibF

i
αγ∂

γϕ, ∇̂a∇̂bϕ = Pγab∂
γϕ. (6.1.13)

For the B-field, we make the sphere reduction ansatz

B = b+Bi ∧ ηi +
1

2
bij η

i ∧ ηj +mω(2), (6.1.14)

such that

dω(2) =
1

3!
ϵijk σ

i ∧ σj ∧ σk, (6.1.15)

is the volume form on S3, andm is the three-form flux supporting the reduction. This

then leads to an expression for the three-form field strength in terms of the seven-

dimensional field strengths (three-form h, two-form G̃i and one-form Gij) according
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to

H = h+ G̃i ∧ ηi +
1

2
Gij ∧ ηi ∧ ηj +

m

6
ϵijk η

i ∧ ηj ∧ ηk, (6.1.16)

where

h = db−Bi ∧ F i − m

6
ϵijkA

i ∧ Aj ∧ Ak,

G̃i = Gi − bijF
j +

m

2
ϵijkA

j ∧ Ak, Gi = DBi,

Gij = Dbij + ϵkijBk −mϵkijA
k. (6.1.17)

Note that these field strengths satisfy the Bianchi identities

dh = −G̃i ∧ F i,

DG̃i = −Gij ∧ F j,

DGij = −mϵijkF k + ϵkijG̃k. (6.1.18)

6.1.2 The bosonic reduction at leading order

At the leading two-derivative level, the above reduction ansatz leads to the reduced

bosonic Lagrangian

e−1L(0) = e−2φ
[
R + 4(∂φ)2 − 1

12
h2 − 1

4

(
gijF

i
αβF

j
αβ + gijG̃µν iG̃µν j

)
− (Pµ

ab)2 − 1

4
gijgkℓGµikGµjℓ

− 1

4

(
ϵijkϵℓmngiℓg

jmgkn + 2ϵijkϵjiℓgkℓ
)
− 1

2
m2
]
. (6.1.19)

For comparison, note that the first two lines of (6.1.19) is a gauge covariantized

version of a standard torus reduction [103, 322], while the last line is a scalar potential

generated by the gauged geometry. Note also that there is a natural identification of
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the 7D dilaton as

φ = ϕ− 1

4
log det gij. (6.1.20)

Along with the reduced Lagrangian, we have a set of reduced equations of motion at

leading order. The reduced Einstein equation becomes

E (0)
g,αβ =Rαβ(ω)−

1

2

(
F i
αγF

j
βγgij + G̃αγiG̃βγjg

ij
)
+ 2∇α∇βφ− PαcdPβ

cd − 1

4
hαγδhβ

γδ

− 1

4
GαijGβkℓg

ikgjℓ,

E (0)
g,αb =

1

2
e2φDγ

(
e−2φF i

αγ

)
ebi + F i

αγe
a
iPγba −

1

4
hαγδG̃

γδ
i e

i
b +

1

2
G̃αγiG

γ
jkg

ikejb

− m

4
Gαijg

iℓgjmϵkℓme
k
b ,

E (0)
g,ab = − e2φ∇γ(e−2φPγab) + 2Pγ(a|dQγd|b) −

1

12
Cf,acCf,bc

+
1

4

(
F i
γδF

j
γδe

a
i e
b
j − G̃γδiG̃γδje

i
ae
j
b

)
− 1

2
GδikGδjℓh

kℓeiae
j
b

− m2

4
ϵikℓϵjmng

kmgℓneiae
j
b, (6.1.21)

while the H equation becomes

E (0)
H,αβ = e2φ∇γ

(
e−2φhγαβ

)
,

E (0)
H,αb = e2φDγ

(
e−2φG̃γαi

)
eib − 2PγbdG̃γαie

i
d +

1

2
hαγδF

i
γδe

b
i +

1

2
Cc,bdGαije

i
de
j
c,

E (0)
H,ab = e2φ∇µ

(
e−2φGµije

i
ae
j
b

)
− F i

αγG̃αγje
[a
i e

b]j + 2Qα[a|cGαc|b]

− 2Pγc[a|Gγije
i
ce
j
|b] − Cc,[a|dϵijkeidejcek|b]. (6.1.22)

Finally, the dilaton equation becomes

E (0)
ϕ = R(ω)− 1

4

(
F i
αβF

j
αβgij + G̃αβiG̃αβjg

ij
)
− 1

12
h2 − 4(∂φ)2 + 4□φ− (Pµab)

2

− 1

4
GαijGαkℓg

ikgjℓ − 1

12
C2 − m2

12
ϵijkϵℓmngiℓgjmgkn. (6.1.23)
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It is straightforward to check that the above equations of motion follow from the

Lagrangian (6.1.19), which confirms that the reduction is indeed consistent.

6.1.3 The fermionic reduction at leading order

We may also reduce the variations of the fermion fields. Since the dilaton is shifted

(6.1.20), we must likewise shift the dilatino as

λ̃ = λ− Γiψi. (6.1.24)

The leading order fermion transformations then reduce to

δϵψ
(0)
µ =

[
∇µ(ω−) +

1

4
QµabΓ

ab +
1

4

(
gijF

j
µν − G̃µνi

)
γνΓi − 1

8
GµijΓ

ij

]
ϵ,

δϵψ
(0)
i =

[
− 1

8

(
gijF

j
µν + G̃µνi

)
γµν − 1

2
ebi

(
Pµab +

1

2
Gµjke

j
ae
k
b

)
γµΓa

+
1

8

(
Cc,abeci −mϵijke

j
ae
k
b

)
Γab

]
ϵ,

δϵλ̃
(0) =

[
γµ∂µφ− 1

12
hµνργ

µνρ +
1

8

(
gijF

j
µν − G̃µνi

)
γµνΓi

−1

8

(
Cc,ab −

m

3
ϵijke

i
ce
j
ae
k
b

)
Γabc

]
ϵ. (6.1.25)

Notice that the composite connection Q appears in the gravitino variation to make the

derivative covariant with respect to this connection. Since the reduced gravitino, ψµ,

and dilatino, λ̃, are in the gravity multiplet, while the internal gravitino components,

ψi, are in the vector multiplets, we can identify the graviphoton and vector multiplet

gauge field combinations as

F a (−)
µν = eaiF

i
µν − eiaG̃µν i, (graviphoton)

F a (+)
µν = eaiF

i
µν + eiaG̃µν i. (vector) (6.1.26)
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This matches the torus case of Chapter V and will be used as a guide to truncating

out the three vector multiplets below.

6.2 The bosonic truncation

While the SU(2) reduction includes three additional vectors coming from the re-

duced B-field, it is possible to consistently truncate them away at the two-derivative

level, leading to pure 7D gauged supergravity [327, 328]. In this section, we demon-

strate that it remains consistent to truncate out the additional vector multiplets at

the four-derivative level by analysis of the bosonic equations of motion. Before doing

so, however, we review how the truncation works at the two-derivative level to set

the stage for the four-derivative truncation.

6.2.1 The leading order truncation

At the leading order, the natural choice of truncation is [327, 328]

gij = g−2δij, bij = 0, Bi = −gijAj = −g−2Ai, (6.2.1)

where we have introduced the 7D gauge coupling constant g. Here the choice of minus

sign in the relation between Bi and A
i is motivated by the desire to truncate away

the vector multiplets as identified in (6.1.26). As expected for a sphere reduction,

the gauge coupling g is necessarily related to the three-form flux m on S3. To fix the

relation between m and g, we note that, since Bi ∝ Ai, we expect a similar relation

with the field strengths, G̃i ∝ F i. Substituting (6.2.1) into (6.1.17), we obtain

G̃i = −g−2

[
dAi −

(
1 +

mg2

2

)
ϵijkAj ∧ Ak

]
, (6.2.2)
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and so we must pick m = −g−2 in order to get a properly covariant field strength,

G̃i = −gijF i. This can also be seen from the truncated scalar field strength term

Gij = −ϵijk(m+ g−2)Ak. (6.2.3)

We expect this expression to vanish since we are truncating away the scalars with

bij = 0.

Alternatively, we could have started by freezing out the scalars with

gij = g−2δij, bij = 0, (6.2.4)

in which case the scalar equation arising from the internal Einstein equation becomes

E (0)
g,ab =

1

4

(
g−2F i

γδF
j
γδ − g2G̃iγδG̃jγδ

)
δiaδ

j
b −

g6

2

(
m2 − g−4

)
δab. (6.2.5)

This tells us that we must pick the truncation

Bi = ±g−2Ai, m = ±g−2, (6.2.6)

to consistently remove this scalar equation as a constraint. At the bosonic two-

derivative level, either sign choice is valid, suggesting that either the graviphotons or

the vector multiplet vectors can be removed. However, based on supersymmetry, we

must choose the minus sign to truncate out the vector multiplets while preserving

supersymmetry in the gravity multiplet.
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After truncation, the two-derivative equations of motion become

E (0)
g,αβ = Rαβ(ω)− g−2F i

αγF
i
βγ + 2∇α∇βφ− 1

4
hαγδhβ

γδ,

E (0)
g,αb =

1

2g

[
e2φDγ

(
e−2φF i

γα

)
− 1

2
hαγδF

i
γδ

]
δib,

E (0)
g,ab = 0,

E (0)
H,αβ = e2φ∇γ

(
e−2φhγαβ

)
,

E (0)
H,αb = −g−1

[
e2φDγ

(
e−2φF i

γα

)
− 1

2
hαγδF

i
γδ

]
δib,

E (0)
H,ab = 0,

E (0)
φ = R(ω)− 1

2g2
F i
αβF

i
αβ −

1

12
h2 − 4(∂φ)2 + 4□φ+ g2. (6.2.7)

In particular, the scalar equations vanish, and the gauge field equations are propor-

tional; hence, the truncation is indeed consistent. Note also that, after truncation,

the h Bianchi identity becomes

dh = g−2Fi ∧ F i. (6.2.8)

The above equations of motion, (6.2.7), correspond to the reduced Lagrangian [327,

328]

e−1L(0) =e−2φ

[
R + 4(∂φ)2 − 1

12
h2 − 1

2g2
(
F i
αβ

)2
+ g2

]
, (6.2.9)

which matches the bosonic sector of gauged half-maximal 7D supergravity [329] with

gauge coupling constant g related to the flux on S3 according to g2 = −1/m. (In our

conventions, this indicates that the flux parameter m is negative.)
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6.2.2 The truncation at O(α′)

We now extend the truncation at the four-derivative level. Here it is important to

note that the two-derivative truncation, (6.2.1), may require O(α′) corrections. We

thus write

Bµi = −g−2Aiµ + α′δBµi gij = g−2δij + α′δgij, bij = 0 + α′δbij. (6.2.10)

We also split the equations of motion as

E = E (0) + α′(δE (0) + E (1)
)
, (6.2.11)

where δE (0) is the shift of E (0) generated by the field redefinitions (6.2.10). At the

order we are interested in, the four-derivative piece E (1) will only depend on the two-

derivative truncation. As in the torus reduction case, the necessary condition for

consistency of the truncation is that the scalar equations vanish

δE (0)
g,ij + E (1)

g,ij = 0, δE (0)
H,ij + E (1)

H,ij = 0, (6.2.12)

and the vector equations are compatible

δE (0)
g,αi + E (1)

g,αi = −1

2

(
δE (0)

H,αi + E (1)
H,αi

)
. (6.2.13)

In order to compute the O(α′) equations of motion, E (1), we require the torsionful

Riemann tensor RMN
AB(Ω+) and the Lorentz-Chern-Simons form ω3L(Ω+). These

can be obtained using the lowest order torsionful spin connection components, which
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become, after truncation

Ω+ =

ωαβ+ − g−2F i
αβη

i 0

0 −ϵijkδiaδ
j
bσ

k

 . (6.2.14)

This then leads to expressions for the torsionful Riemann tensor components

Rγδ
αβ(Ω+) =Rγδ

αβ(ω+)− g−2F i
αβF

i
γδ,

Rγd
αβ(Ω+) =− g−1D(+)

γ F i
αβδ

d
i ,

Rcd
αβ(Ω+) =2g−2F i

αγF
j
γβδ

[c
i δ

d]
j + ϵijkF i

αβδ
j
cδ
k
d , (6.2.15)

with all other independent components vanishing. Here D(+) is taken to mean D(ω+).

The Lorentz-Chern-Simons form is given by

ω3L,αβγ(Ω+) = ω3L,αβγ(ω+) + 2ϵijkAiαA
j
βA

k
γ,

ω3L,αβc(Ω+) = δic
(
2g−1Rαβ

γδ(ω+)F
i
γδ − g−3F j

αβF
j
γδF

i
γδ − 2ϵijkAjαA

k
β

)
,

ω3L,αbc(Ω+) = δ
[i
b δ

j]
c

(
2g−2F i

γδD
(+)
α F j

γδ + 2ϵkijAkα
)
,

ω3L,abc(Ω+) = δ[ia δ
j
bδ
k]
c

(
−4g−3F i

αβF
j
βγF

k
γα − 2ϵijk

)
. (6.2.16)

Given the shifted H-field, (5.1.2), the additional terms proportional to Ai in ω3L(Ω+)

hint that we should define modified field strengths

h̄ = db−Bi ∧ F i +
1

6

(
g−2 − α′

2

)
ϵijkA

i ∧ Aj ∧ Ak,

Ḡi = Gi − bijF
j +

(
− 1

2g2
+
α′

4

)
ϵijkA

j ∧ Ak,

Ḡij = Dbij + ϵkijBk +

(
g−2 − α′

2

)
ϵkijA

k. (6.2.17)

In order for Ḡi and Ḡij to be proper gauge-covariant field strengths for Bi and bij,
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we must choose the four-derivative truncation

Bi =

(
−g−2 +

α′

2

)
Ai. (6.2.18)

which results in the modified field strengths truncating to

h̄ = db+

(
g−2 − α′

2

)
ω3Y , Ḡi =

(
−g−2 +

α′

2

)
F i, Ḡij = 0, (6.2.19)

where we have defined the Yang-Mills Chern-Simons term as usual

ω3Y = Ai ∧ F i +
1

6
ϵijkAi ∧ Aj ∧ Ak. (6.2.20)

One may be tempted then to view this as a shift of g

g̃−2 = g−2 − α′

2
. (6.2.21)

Comparing with the field redefinitions of Chapter V and shifting g according to

(6.2.21), we naturally infer the truncation

δBi =
1

2
Ai, δgij =

1

4g4
F i
αβF

j
αβ −

1

2
δij, δbij = 0. (6.2.22)

We will show that (6.2.22) is indeed a consistent truncation. While we omit some

details, the steps parallel those of Chapter V, with additional terms due to the gauging

that must be taken care of.
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6.2.2.1 Consistency of the truncation

We start with the internal components of the Einstein equation. Given (6.2.22),

the shift to the two-derivative equations of motion for gab are

δE (0)
ab = − e2φ∇γ(e−2φδPγab) + 2δPγadQγdb −

1

6
Cf,acδCf,bc

+
1

4

(
F i
γδF

j
γδδ(e

a
i e
b
j)− 2G̃γδiδG̃γδje

i
ae
j
b − G̃γδiG̃γδjδ(e

i
ae
j
b)
)

− m2

4
ϵikℓϵjmnδ(g

kmgℓneiae
j
b), (6.2.23)

where the (ab) indices are implicitly symmetrized. Substituting in the lowest order

equations of motion and making use of the h Bianchi identity (6.2.8), one can derive

the useful formula

e2φ∇α
(
e−2φδPαab

)
=
[
− 1

4g2
Rαβγδ(ω+)F

i
αβF

j
γδ +

1

4g2
DγF

i
αβDγF

j
αβ +

1

4g4
F i
αβF

k
αβF

j
γδF

k
γδ

+
1

2g4
F i
αβF

j
βγF

k
γδF

k
δα −

1

2g4
F i
αβF

k
βγF

j
γδF

k
δα −

1

2g2
ϵjkℓF i

αβF
k
βγF

ℓ
γα

− 1

2g
DγE (0)

H,δjF
i
γδ −

1

2g2
E (0)
g,αβF

j
γαF

i
βγ

]
δi(aδ

j
b). (6.2.24)

We may also evaluate

E (1)
g,ab =

[
− 1

8g2
F i
γδF

j
αβ

(
2Rγδ

αβ(ω+)− g−2F k
γδF

k
αβ

)
+

1

2g4
F i
αβF

j
βγF

k
γδF

k
δα

− 1

2g4
F i
αβF

k
βγF

j
γδF

k
δα +

1

4g2
D(+)
γ F i

αβD
(+)
γ F j

αβ +
1

2
δij −

1

2g2
ϵikℓF k

αβF
ℓ
βγF

j
γα

+
1

4
F 2δij −

1

4
F i
αβF

j
αβ −

1

4g
ϵikℓAkγA

ℓ
δF

i
γδ

]
δi(aδ

j
b), (6.2.25)

which may then be used to obtain that

δE (0)
g,ij + E (1)

g,ij =
1

2g

(
DγE (0)

H,δjF
i
γδ + g−1E (0)

g,αβF
j
γαF

i
βγ

)
, (6.2.26)
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which vanishes upon imposing the leading-order equations of motion. In particular,

the last term in (6.2.25) with the bare A’s is precisely canceled by the corresponding

shift δG̃i in (6.2.23).

Similarly, δE (0)
H,ij almost vanishes except for the bare Ai that show up to account for

the shifts to the modified field strengths Ḡi and Ḡij, but these are precisely canceled

by the terms appearing in E (1)
H,ij. Keeping careful track of terms, it is straightforward

to work out that

δE (0)
H,ij + E (1)

H,ij = −g−1DαE (0)
H,βjF

i
αβ − g−2E (0)

H,αβF
i
αγF

j
βγ, (6.2.27)

which also vanishes by the leading-order equations of motion. This thus confirms that

it is consistent to truncate out the scalars gij and bij.

Finally, we turn our attention to the compatibility of the two Yang-Mills equations.

Again, we can derive a useful formula

e2φDβ
(
e−2φRβα

γδ(ω+)F
i
γδ

)
=

[
− g−2∇γ

(
F j
δϵF

j
ϵα

)
− 1

4
∇γ(hδβϵhαβϵ) +

1

2
Rγ[δ|βϵh|α]βϵ

− 1

2g2
hδαϵF

j
γβF

j
ϵβ −

1

8
hδαϵhγβωhϵβω −

1

4g2
hαβϵF

j
βϵF

j
γδ

+
1

2g2
F j
αβD

βF j
γδ −

1

2g2
hδβϵF

j
βϵF

j
αγ − g−2F j

βδD
βF j

αγ

+
1

4
hβϵδ∇βhαγϵ −∇[γE (0)

g,δ]α −
1

2
∇γE (0)

H,δα − ∂γφE (0)
H,δα

− 1

2
hδαϵE (0)

H,γϵ +
1

4
hαγϵE (0)

H,ϵδ

]
F i
γδ +R γδ

αβ (ω+)D
βF i

γδ.

(6.2.28)
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which may then be used to show that

(
δE (0)

H,αa + E (1)
H,αa

)
+ 2
(
δE (0)

g,αa + E (1)
g,αa

)
= −1

2
δai F

i
γδ

[
−∇[γE (0)

g,δ]α −
1

2
∇γE (0)

H,δα − ∂γφE (0)
H,δα −

1

2
hδαϵE (0)

H,γϵ +
1

4
hαγϵE (0)

H,ϵδ

]

+ δai

(
δeai E

(0)
H,αa + 2δeiaE (0)

g,αa

)
, (6.2.29)

which demonstrates that the two equations are indeed consistent after imposing the

two-derivative equations of motion.

6.2.2.2 The surviving equations of motion

Here we summarize the equations of motion for the remaining degrees of freedom,

namely the 7D metric gµν , the two-form b-field, the graviphoton Ai, and the dilaton

φ. The equations of motion for the metric become

Eg,αβ = R(ω)αβ − g̃−2F i
αγF

i
βγ −

1

4
h̃αγδh̃βγδ + 2∇α∇βφ

+
α′

4

(
Rαγδϵ(ω+)Rβ

γδϵ(ω+)− 4g−2Rα
γδϵ(ω+)F

i
βγF

i
δϵ

+ 2g−4F i
αγFβ

γ jF i
δϵF

δϵ j + g−2D(+)
α F i

γδD
(+)
β F γδ i

)
, (6.2.30)

where (αβ) symmetrization is assumed implicitly. Here, we have conveniently defined

h̃ ≡ h̄− α′

4
ω3L(ω+) = db+ g̃−2ω3Y − α′

4
ω3L(ω+), (6.2.31)

such that the Bianchi identity becomes

dh̃ = g̃−2F i ∧ F i − α′

4
TrR(ω+) ∧R(ω+). (6.2.32)
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This newly defined h̃ then has the equation of motion

EH,αβ = e2φ∇γ
(
e−2φh̃αβγ

)
. (6.2.33)

The graviphoton equation becomes

EA,αi = g̃−1e2φ∇γ
(
e−2φF i

γα

)
− 1

2g̃
h̃αβγF

i
βγ

+
α′

4

(
−g−1h̃αβγRβγδϵ(ω+)F

i
δϵ + g−3h̃αβγF

j
βγF

i
δϵF

j
δϵ − 2g−1Rαβγδ(ω+)D

(+)
β F i

γδ

+ 2g−3F j
αγF

j
δϵD

(+)
γ F i

δϵ − 2g−3F j
αγF

i
δϵD

(+)
γ F j

δϵ + 4g−3F i
βγF

j
γδD

(+)
α F j

βδ

+
1

4g
ϵijkF j

γδD
(+)
α F k

γδ

)
, (6.2.34)

while the dilaton equation becomes

Eϕ = R(ω)− 1

2g̃2
F i
αβF

i
αβ −

1

12
h̃2αβγ + 4□φ− 4(∂φ)2 + g̃2

+
α′

8

(
(Rαβγδ(ω+))

2 − 4g−2Rαβγδ(ω+)F
i
αβF

i
γδ + 2g−2

(
D(+)
α F i

βγ

)2
+ 2g−4F i

αβF
i
βγF

j
γδF

j
δα − 2g−4F i

αβF
j
βγF

i
γδF

j
δα + 2g−4F i

αβF
j
αβF

i
γδF

j
γδ

− 1

3g2
ϵijkF i

αβF
j
βγF

k
γα

)
. (6.2.35)

Having shown that the truncation is consistent, we may also compute the trun-

cated Lagrangian to be

e−1L =e−2φ

[
R(ω) + 4(∂φ)2 − 1

12
h̃2αβγ −

1

2g̃2
(
F i
αβ

)2
+ g̃2

+
α′

8

(
(Rαβγδ(ω+))

2 − 4g̃−2Rαβγδ(ω+)F
i
αβF

i
γδ + 2g̃−2

(
D(+)
α F i

βγ

)2
+ 2g̃−4F i

αβF
i
βγF

j
γδF

j
δα − 2g̃−4F i

αβF
j
βγF

i
γδF

j
δα + 2g̃−4F i

αβF
j
αβF

i
γδF

j
γδ

− 1

3g̃2
ϵijkF i

αβF
j
βγF

k
γα

)]
. (6.2.36)
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Notably, all of the coupling constant g’s at the two-derivative level combine in just

the right way with α′ to be consistent with the shift (6.2.21). Since we are working

only to first order in α′, we have also replaced g by g̃ in the O(α′) contribution to the

Lagrangian.

6.3 The fermionic truncation

We now turn our attention to the fermion sector. The gravitino ψM naturally splits

into components along the spacetime directions ψµ, which should be interpreted as

the lower-dimensional gravitino, and components along the internal directions ψi,

which should be interpreted as gaugini for the vectors Bi. Since we are truncating

away the Bi, we expect to also truncate out the associated gaugini.

Since we are reducing to seven dimensions, it is useful to decompose our gamma

matrices as

Γα = γα ⊗ 1⊗ σ1,

Γa = 1⊗ τa ⊗ σ2. (6.3.1)

Here the γα form a seven-dimensional Clifford algebra Cliff(6, 1), while the τa are

the Pauli matrices of our three-dimensional Clifford algebra Cliff(3).1 We take the

convention that γ0123456 = 1 and τ 789 = i. The chirality matrix then becomes

Γ11 = Γ0123456789 = −1⊗ 1⊗ σ3. (6.3.2)

The choice of 10D chirality, which we take to be Γ11ϵ = −ϵ, thus implies that σ3ϵ = ϵ.

The ten-dimensional gravitino has the same chirality as ϵ, while the ten-dimensional

dilatino has the opposite. Thus we can represent the heterotic Majorana-Weyl spinors

1We have denoted Pauli matrices by both τa and σi. While they are the same matrices, this is
done to clarify which spinor subspace they are acting on.
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as

ϵ→ ϵ⊗

1
0

 , ψM → ψM ⊗

1
0

 , λ→ λ⊗

0
1

 . (6.3.3)

The spinors on the right-hand side of these expressions are 16 component spinors that

further decompose into a pair of seven-dimensional spinors that are acted on by τa.

This pair of spinors satisfies a Majorana condition that we do not concern ourselves

with here.

After truncation, the leading order supersymmetry variations become

δϵψ
(0)
µ =

[
Dµ(ω−) +

i

2g
F i
µνγ

ντ i
]
ϵ,

δϵψ
(0)
i =0,

δϵλ̃
(0) =

[
γµ∂µφ− 1

12
hµνργ

µνρ +
i

4g
F i
µνγ

µντ i − g

2

]
ϵ. (6.3.4)

It is also noteworthy that the composite SU(2) connection, upon truncation, becomes

the gauge SU(2) connection

Qαab = ϵijkδiaδ
j
bA

k
α, (6.3.5)

which is what promotes the covariant derivative to a gauge-covariant one in δϵψµ,

which acts by

Dµϵ = ∇µϵ+
i

2
Aiµτ

iϵ. (6.3.6)

In analogy to the torus case, we make the definition

Dµ ≡ Dµ(ω−) +
i

2g
F i
µνγ

ντ i, (6.3.7)

which will be useful for the fermionic field redefinitions.

The bosonic field redefinitions (6.2.22) combined with the two-derivative trunca-
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tion (6.2.1) lead to four-derivative contributions to the supersymmetry variations

δ
(
δϵψ

(0)
µ

)
+ δϵψ

(1)
µ =

1

32

[
ω3L,µνρ(ω+)γ

νρ + 4ig−1

(
Rµν

αβ(ω+)−
1

2g2
F j
µνF

j
αβ

)
F i
αβγ

ντ i

+ 2g−2F i
αβD

(+)
µ F j

αβτ
ij − 4igF i

µνγ
ντ i

]
ϵ,

δ
(
δϵψ

(0)
i

)
+ δϵψ

(1)
i =

1

16g
F i
αβ

(
Rγδ

αβ(ω+)γ
γδ − g−2F j

αβF
j
γδγ

γδ − 2ig−1D(+)
γ F j

αβγ
γτ j

− 2g−2F j
βγF

k
γατ

jk − 2iF j
αβΓ

j
)
ϵ,

δ
(
δϵλ̃

(0)
)
+ δϵλ̃

(1) =
1

48

[
ω3L,µνρ(ω+)γ

µνρ + 3ig−1

(
Rµν

αβ(ω+)−
1

2g2
F j
µνF

j
αβ

)
F i
αβγ

µντ i

− 2g−3ϵijkF i
αβF

j
βγF

k
γα − 6g3 − 3igF i

µνγ
µντ i − 6

g
F i
αβF

i
αβ

]
ϵ.

(6.3.8)

While the supersymmetry variation of the gaugino, δϵψi, is undesirable, it has but a

single extra term compared to the ungauged case. In particular, using the fact that

[Dµ, Dν ]ϵ =
1

4

(
Rµν

αβγαβ + ϵijkF i
µνΓ

jk
)
ϵ, (6.3.9)

we see that an analogous field redefinition holds as that in Chapter V

ψ̃i = ψi −
α′

2g
F i
µνDµψν , (6.3.10)

such that

δϵψ̃i = 0. (6.3.11)

Thus truncating ψ̃i is indeed consistent with supersymmetry.

Interestingly, the higher-derivative corrections in the variations, (6.3.8), appear in

exactly the appropriate way to be consistent with the shifted gauge coupling (6.2.21).
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This is more readily seen in the combined expressions

δϵψµ =

[
Dµ(ω̃−) +

i

2g̃
F i
µνγ

ντ i +
iα′

8g̃

(
Rµν

αβ(ω+)−
1

2g̃2
F j
µνF

j
αβ

)
F i
αβγ

ντ i

+
α′

16g̃2
F i
αβD

(+)
µ F j

αβτ
ij

]
ϵ,

δϵλ̃ =

[
γµ∂µφ− 1

12
hµνργ

µνρ +
i

4g̃
F i
µνγ

µντ i − g̃

2
− α′

8g̃
F i
αβF

i
αβ

+
iα′

16g̃

(
Rµν

αβ(ω+)−
1

2g̃2
F j
µνF

j
αβ

)
F i
αβγ

µντ i − α′

24g̃3
ϵijkF i

αβF
j
βγF

k
γα

]
ϵ,

(6.3.12)

where again we make no distinction between g and g̃ in the O(α′) terms.

6.4 Discussion

In this chapter, we have shown that the SU(2) group manifold reduction of four-

derivative heterotic supergravity on S3 may be consistently truncated to pure half-

maximal gauged 7D supergravity. This may be seen as supporting evidence that the

Gauntlett-Varela conjecture [274] extends to higher-derivative truncations.

We may, of course, compare our results to those of the ungauged case. This

requires that we rescale Ai → gAi to recover the proper normalization and also

rescale σi → gσi so that the Maurer-Cartan equation becomes

dσi = −g
2
ϵijkσj ∧ σk. (6.4.1)

Upon sending g → 0, the field strength becomes abelian and the σi become torus

coordinates

F i = dAi, dσi = 0. (6.4.2)

This also has the effect of reducing the gauge-covariant derivatives D to regular
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covariant derivatives ∇. Writing σi = dyi, we then recover the torus metric

ds2 = gµνdx
µdxν + (dyi + Ai)2, (6.4.3)

as well as the ungauged Lagrangian

e−1L =e−2φ

[
R + 4(∂φ)2 − 1

12
h̃2αβγ −

1

2

(
F i
αβ

)2
+
α′

8

(
(Rαβγδ(ω+))

2 − 4Rαβγδ(ω+)F
i
αβF

i
γδ + 2

(
∇(+)
α F i

βγ

)2
+ 2F i

αβF
i
βγF

j
γδF

j
δα − 2F i

αβF
j
βγF

i
γδF

j
δα + 2F i

αβF
j
αβF

i
γδF

j
γδ

)]
.

(6.4.4)

Moreover, since the shift σ → gσ, Ai → gAi effectively rescales gij by g
2, the internal

metric becomes that of the torus case

gij = δij +
α′

4
F i
αβF

j
αβ. (6.4.5)

We also recover the ungauged supersymmetry variations (in the original ten-dimensional

Dirac matrix notation)

δϵψµ =

[
Dµ(ω̃−) +

1

2
F i
µνΓ

νΓi +
α′

8

(
Rµν

αβ(ω+)−
1

2
F j
µνF

j
αβ

)
F i
αβΓ

νΓi

+
α′

16
F i
αβ∇(+)

µ F j
αβΓ

ij

]
ϵ,

δϵλ̃ =

[
Γµ∂µφ− 1

12
h̃µνρΓ

µνρ +
1

4
F i
µνΓ

µνΓi +
α′

16

(
Rµν

αβ(ω+)−
1

2
F j
µνF

j
αβ

)
F i
αβΓ

µνΓi

+
α′

24
F i
αβF

j
βγF

k
γαΓ

ijk

]
ϵ, (6.4.6)
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where

ω̃− ≡ ω − 1

2
h̃ = ω − 1

2
h+

α′

8
ω3L. (6.4.7)

Hence, our results are consistent with the previous chapter, as they should be.

It is also interesting to note that the terms proportional to g at the two-derivative

level always have corresponding four-derivative terms in exactly the way to respect

the shift (6.2.21). While we have restricted our attention to S3, there is no reason

to suspect this is specific to that setup. In particular, assuming there are no other

obstructions to truncation, we should generically expect [328]

Hijk = mfijk, (6.4.8)

for a group manifold reduction on a unimodular Lie group G, whose Lie algebra

has structure constants f ijk. In general, we expect the two-derivative truncation

to be m = −g−2 and gij = g−2κij, where κ is the Cartan-Killing metric. Under

the assumption that G is compact and semi-simple, κ is necessarily symmetric, non-

degenerate, and positive-definite, so we write κij = δabk
a
i k

b
j . The torsionful spin

connection should, in general, be

Ωab
+ = −fijkkiak

j
bσ

k, (6.4.9)

which leads to the terms

ω3L,abc ⊃ −2kiak
j
bk

k
c fijk, (6.4.10)

in the Lorentz-Chern-Simons form. This then suggests that we ought always to get

the effective coupling shift (6.2.21) for a group manifold reduction of heterotic super-

gravity.

While we have truncated away the heterotic gauge fields from the start, one might

wonder if they may be included in the reduction. In the current context, since we
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were interested in truncating out all the vector multiplets, it was natural to truncate

them in 10D. As this is a truncation to gauge singlets, the initial removal of the

heterotic gauge fields is guaranteed to be consistent, even at the higher derivative

order. Nevertheless, it would be interesting to see how these play into the story of

higher-derivative consistent truncations and if they might obstruct truncation more

generally. We leave this to future work.

It would be interesting to see how our results extend to more general group man-

ifold or coset reductions. In particular, it is known that any unimodular Lie group G

may be used for a group manifold reduction of heterotic supergravity [328] and one

is free (at least at the two-derivative level) to truncate out the vector multiplets that

arise. One could then wonder if any new constraints on G arise at the four-derivative

level. It would also be interesting to see if consistency extends to more general coset

reductions such as the SO(4)/SO(3) coset reduction of heterotic supergravity [246].

Finally, one may ask whether such higher derivative truncations may be done

more systematically in the framework of Double Field Theory (DFT), along the lines

of [306]. In particular, gauged DFT was used in [82] to construct a large class of

consistent truncations, including the S3 group manifold reduction. Indeed, after

truncating the result in [82] and performing suitable field redefinitions, one finds that

the effective action matches (6.2.36) as expected. In the process, one must truncate

the O(3, 3) covariant packaging to a subsector. For example, the truncation sets half

of the components of the O(3, 3) field strength F I = (F (+) i, F (−) i) to zero. More

generally, while DFT can be extremely useful in constructing consistent truncations

where all the fields in an O(d, d) multiplet are kept, we still have to break apart the

O(d, d) covariant language to truncate away some of the multiplets and check the

consistency with the equations of motion.
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CHAPTER VII

Concluding Remarks

Throughout this thesis, we have studied precision holography and higher-derivative

supergravity. In Chapter II, we considered the N = 3 Gaiotto-Tomasiello theory and

used resolvent techniques to compute subleading corrections to the free energy, which

were then dual to the on-shell action of massive IIA supergravity on AdS4 × CP3.

In particular, our results implied that the higher-derivative D6nR4 and R4+3n terms

vanish on-shell, and it would be interesting to see if this can be verified directly in

the gravitational dual.

In Chapter III, we turned to the gravity side of the AdS/CFT correspondence,

focusing on minimal gauged supergravity in five dimensions. At the four-derivative

level, there are three independent supersymmetric invariants, the supersymmetriza-

tions of the curvature tensors squared. We have shown that after appropriate field

redefinitions, these three terms are all the same, up to six-derivative corrections that

we have perturbatively ignored. It would be interesting to see how this applies more

generally to theories in higher dimensions or with additional matter couplings.

In Chapter IV, we applied precision holography to study holographic RG flows

across dimensions. There, we extended previous work on higher-derivative RG flows

within the same dimension and two-derivative flows across dimensions. Adding a

Gauss-Bonnet term allowed us to distinguish the central charges, and we indeed
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found that the monotonic behavior was of the A-type central charge. In particular,

we constructed a local, monotonic c-function valid in arbitrary dimensions and for

arbitrary internal Einstein metrics by directly using the Null Energy Condition, as

well as a non-local, monotonic c-function valid for flows to AdS3 with no internal

curvature by using the entanglement entropy. We further showed that these two c-

functions were intimately related in their overlapping regime of validity. It is an open

problem to incorporate non-zero internal curvature, as well as to extend the proof to

higher dimensions.

Finally, in Chapters V and VI, we turned our attention to supergravity itself.

There, we studied the consistency of truncations in the presence of four-derivative

corrections. The lesson is that truncations protected at the two-derivative level by

T-duality will automatically continue to be protected at the four-derivative level.

However, our truncation may fail when we do not have this symmetry to protect

us. We see this in the reduction of four-derivative heterotic supergravity on T 5:

Attempting to truncate away the dilaton-containing multiplet is inconsistent due to

the coupling to the Riemann squared term. It is an open question whether this

statement applies only to truncations or also to the solutions. It would be interesting

to see if such solutions with an uncorrected, vanishing dilaton exist.
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APPENDIX A

GT Endpoints and Free Energy

A.1 Endpoint computations

After manipulating the A-cycle integrals for the endpoint relations, we have ar-

rived at the expression

t1 =
κ1
2π2

J1 +
κ2
2π2

J2, (A.1)

where

J1 =

∫ β

0

dv
v e−

1
2
(γ+v)I1(v)

2
√
cosh α−v

2
sinh β−v

2

, (A.2)

with

I1(v) =

∫ β

0

du 2e
1
2
(γ+u)

√
cosh α−u

2
sinh β−u

2

(
coth

v − u

2
+ coth

v + u

2

)
, (A.3)

up to exponentially small corrections in the large γ limit. (The principal value of I1(v)

has to be taken in the J1 integral.) Similar expressions for J2 are given in (2.2.8) and

(2.2.9). Here we carry out the integration to obtain the endpoint relations (2.2.11).

We first work on the I1(v) integral. As it turns out, this can be integrated in

179



closed form, with the result

I1(v) = 2 sinh v
(π
2
− tan−1 sinh δ

)
+ 2e

1
2
(γ+v)

√
cosh α−v

2
sinh β−v

2

[
− γ + log(2 cosh δ) + log(1− ev)

− 2 log
(√

1− ev−β +
√
1 + ev−α

) ]
− 2e

1
2
(γ−v)

√
cosh α+v

2
sinh β+v

2

[
− γ + log(2 cosh δ) + log

(
1− e−v

)
− 2 log

(√
1− e−v−β +

√
1 + e−v−α

) ]
,

(A.4)

up to exponentially small terms in the large γ limit. Since I1(v) is only needed for

v ∈ [0, β], we can further drop exponentially small terms to get

I1(v) = ev
(π
2
− tan−1 sinh δ

)
+ eγ

(
γ − log

(
1
2
cosh δ

)
− log

(
1− e−v

))
+ 2e

1
2
(γ+v)

√
cosh α−v

2
sinh β−v

2

[
− γ + log(2 cosh δ) + log(1− ev)

− 2 log
(√

1− ev−β +
√
1 + ev−α

) ]
.

(A.5)

Note that the replacement 2 sinh v → ev in the first line of this expression is not strictly

valid for v ≈ 0. However, the rest of the integrand for J1 in (A.2) is exponentially

suppressed in this limit, so there is no harm in making this substitution.

Substituting (A.5) into (A.2) now gives

J1 = 2

∫ β

0

dv

[
v√

(1 + ev−α)(1− ev−β)

(
ev−γ

(π
2
− tan−1 sinh δ

)
+ γ − log

(
1
2
cosh δ

)
− log

(
1− e−v

))
+ v

(
−γ + log(2 cosh δ) + log(ev − 1)− 2 log

(√
1− ev−β +

√
1 + ev+α

))]
,

(A.6)
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where we flipped the sign of 1− ev in the log on the second line to take the principal

value into account. Some of the integrals in the second line can be readily done. We

also integrate the final log term in the second line by parts, with the result

J1 = −1
3
β3 − 2ζ(3)−

∫ β

0

dv v2

(
1√

(1 + ev−α)(1− ev−β)
− 1

)

+ 2

∫ β

0

dv
v√

(1 + ev−α)(1− ev−β)

(
ev−γ

(π
2
− tan−1 sinh δ

)
+ γ − log

(
1
2
cosh δ

)
− log

(
1− e−v

))
.

(A.7)

The final term proportional to log(1− e−v) is only important for v close to zero.

Thus, for this term, we can replace the square root factor in the denominator by 1 up

to exponentially small terms and then integrate. For the remaining terms, we define

x = v − β and extend the lower range of integration to −∞ (which only introduces

exponentially small corrections) to obtain

J1 = −1
3
β3 + β2 (γ + log 2− log cosh δ)

+

∫ 0

−∞
dx

(
1√

(1− ex)(1 + ex−2δ)
− 1

)(
− (x+ β)2

+ 2(x+ β)(γ + log 2− log cosh δ)
)

+ 2

∫ 0

−∞
dx

(x+ β)ex−δ√
(1− ex)(1 + ex−2δ)

(π
2
− tan−1 sinh δ

)
. (A.8)

Recalling that β = γ − δ, the first line gives the leading order 2
3
γ3 factor we expect

from (2.1.18).
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To proceed, we define a set of basis integrals

fn(δ) ≡
∫ 0

−∞
dx xn

(
1√

(1− ex)(1 + ex−2δ)
− 1

)
,

gn(δ) ≡
∫ 0

−∞
dx

xnex−δ√
(1− ex)(1 + ex−2δ)

. (A.9)

Some of the integrals can be performed without too much difficulty. In particular,

f0(δ) = δ − log
(
1
2
cosh δ

)
, g0(δ) =

π

2
− tan−1 sinh δ. (A.10)

With some effort, it is also possible to obtain

f1(δ) = −π
2

3
− δ2 + 2δ log 2 + log2 2 + 2(cot−1 eδ)2 + (log cosh δ)2 − Li2

(
−e−2δ

)
+ Li2

(
1

1 + e−2δ

)
, (A.11a)

g1(δ) = 2 cot−1 eδ(δ + log
(
1
2
cosh δ

)
)− ImLi2

((
i+ eδ

−i+ eδ

)2
)
. (A.11b)

This leaves just the f2(δ) integral to be done to obtain a closed-form result for J1.

While we have not managed to analytically find an exact form for f2, it can never-

theless be expanded for δ ≪ 1 as

f2(δ) =
1

12

(
6ζ(3) + 4 log3(2)− π2 log 2

)
+

(
−π

2

12
+ log2(2) + π log 2

)
δ

+
1

24
((π − 24)π − 12(log 2− 4) log 2)δ2 − 1

6
(−8 + π(log 2− 1) + 6 log 2)δ3

− 1

144

(
(π − 24)π + 96− 12 log2(2) + 12 log 2

)
δ4 +

1

480
(10(4 + π) log(4)

− 8(5 + 2π))δ5 +

(
2π2 − 45π + 123− 6 log2(4) + 15 log 4

)
1080

δ6 +O
(
δ7
)
.

(A.12)

Although we have focused on J1, the second integral, J2, can be worked out
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similarly, with the result

J2(δ) = J1(−δ) + γ(−π2 − 2π tan−1 sinh δ)− 2π(δg0(−δ) + g1(−δ)). (A.13)

An interesting feature of the integral (A.8) is that it is precisely a cubic function of

γ up to exponentially small terms. In particular, we find

J1 =
2
3
γ3 − 2γ2 log

(
1
2
cosh δ

)
+ 2γ

(
log2(1

2
cosh δ) + (1

2
π − tan−1 sinh δ)2

)
+ j1(δ)

+O(e−γ), (A.14a)

J2 =
2
3
γ3 − 2γ2 log

(
1
2
cosh δ

)
+ 2γ

(
log2(1

2
cosh δ)− 1

4
π2 + (tan−1 sinh δ)2

)
+ j2(δ)

+O(e−γ), (A.14b)

where most of the complication is only in the γ-independent terms j1(δ) and j2(δ),

defined as

j1(δ) = −2
3
δ3 + 2δf1(δ)− f2(δ) + 2g1(δ)(

1
2
π − tan−1 sinh δ)− 2δ(1

2
π − tan−1 sinh δ)2

+ 2(δ2 − f1(δ)) log
(
1
2
cosh δ

)
− 2δ log2(1

2
cosh δ), (A.15a)

j2(δ) =
2
3
δ3 − 2δf1(−δ)− f2(−δ)− 2g1(−δ)(12π − tan−1 sinh δ)

+ 2δ(−1
4
π2 + (tan−1 sinh δ)2) + 2(δ2 − f1(−δ)) log

(
1
2
cosh δ

)
+ 2δ log2(1

2
cosh δ). (A.15b)

Note that

j1(0) =
2
3
log3 2− 1

2
π2 log 2− 1

2
ζ(3), j2(0) =

2
3
log3 2 + 1

2
π2 log 2− 1

2
ζ(3). (A.16)

Moreover, we can see numerically that j2(δ) is an even function, i.e., j2(−δ) = j2(δ).
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This then suggests an exact expression for the odd part of f2

f2,o(δ) = −2
3
δ3 + 2δf1,e(δ)− 2g1,o(δ)

1
2
π − 2g1,e(δ) tan

−1 sinh δ

− 2δ(−1
4
π2 + (tan−1 sinh δ)2)− 2f1,o(δ) log

(
1
2
cosh δ

)
− 2δ log2(1

2
cosh δ),

(A.17)

where subscripts e and o denote even and odd parts, respectively. This has been

verified numerically. Moreover, playing around with j1 and j2 numerically allows one

to get an empirical expression for the even part of f2

f2,e(δ) =2Cl3(2π − arctan sinh δ) + 4δ2 log(cosh(δ)) +
π2δ

6
− 1

3
2 log3(2sech(δ))

+ log(2sech(δ))

(
2
(
δ2 + log2(cosh(δ)) + log2(2)

)
+ gd2(δ)− π2

4

)
− gd(δ)

(
πδ + Im

(
Li2

( (
i+ eδ

)2
(−i+ eδ)2

))
− Im

(
Li2

((
−i+ eδ

)2
(i+ eδ)2

)))

+ 2δLi2
(
−e2δ

)
+ Li2

(
1

1 + e2δ

)
(−δ + log(sech(δ)) + log(2))

+ (δ + log(sech(δ)) + log(2))Li2

(
1

2
(tanh(δ) + 1)

)
+ 2

(
δ3 + ζ(3)

)
, (A.18)

where Cl3 is the Clausen function. This holds to very high precision numerically, but

we have not managed to show this identity analytically.

Finally, combining J1 and J2 according to (A.1) gives

t1 ≈
κ1 + κ2
2π2

[
2
3
γ3 − 2γ2 log

(
1
2
cosh δ

)
+ 2γ

(
log2(1

2
cosh δ)− 1

2
π tan−1 sinh δ + (tan−1 sinh δ)2

)
+ 1

2
(j1(δ) + j2(δ))

]
+
κ1 − κ2
2π2

[
2γ
(
1
4
π2 − 1

2
π tan−1 sinh δ

)
+ 1

2
(j1(δ)− j2(δ))

]
. (A.19)

We can obtain a similar expression for t2 by interchanging κ1 ↔ κ2 and taking
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δ → −δ. Taking sums and differences, and defining

t̄ = 1
2
(t1 + t2), ∆ = 1

2
(t1 − t2), (A.20)

then gives the expressions (2.2.11) for t̄ and ∆ in terms of γ and δ. Note that the

odd combination j2,o vanishes, at least numerically. Numerically, we also have

j1,e − j2,e = π2 log
(
1
2
cosh δ

)
. (A.21)

However, the remaining functions j1,o and j1,e + j2,e that show up in (2.2.11) do not

seem to have similar compact expressions.

A.2 Free energy calculations

The integrals involved in evaluating the derivative of the free energy

∂F0

∂t1
=
κ1
2
β2 − (t1 − t2)(Λ− log 4)− κ1

π
K1 −

κ2
π
K2, (A.1)

are similar to those for determining the endpoints. In particular, the integrals

K1 =

∫ d

c

dx
log x√

(x− a)(x− b)(x− c)(d− x)
IB(x), (A.2a)

K2 =

∫ b

a

dx
log(−x)√

(x− a)(b− x)(c− x)(d− x)
IB(x), (A.2b)

correspond directly to the J1 and J2 integrals, (2.2.2), except with I(x) replaced by

the B-cycle integral

IB(z) =

∫ eΛ

d

dy

y

√
(y − a)(y − b)(y − c)(y − d)

z − y
. (A.3)
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After dropping exponentially small terms, we can write

IB(z) ≈
∫ Λ

β

du

√
(eu + eα)(eu − eβ)

ze−u − 1
. (A.4)

This can be integrated to give

IB(z) = −eΛ − 1
2
(eα − eβ)

(
Λ + log 4 + 1− log

(
eα + eβ

))
− z

(
Λ + log 4− log

(
eα + eβ

))
+ 2
√

(eβ − z)(eα + z) tan−1

√
eα + z

eβ − z
. (A.5)

Note that the first line of this expression is independent of z. We can also rewrite the

K1 and K2 integrals over the half intervals and use reflection symmetry to write

K1 ≈
∫ β

0

dv
v(IB(e

v)− IB(e
−v))√

(eα + ev)(eβ − ev)
, K2 ≈

∫ α

0

dv
v(IB(−ev)− IB(−e−v))√

(eα − ev)(eβ + ev)
, (A.6)

where as usual we drop exponentially small terms. In both integrals, we only need

the antisymmetric combination IB(z)− IB(1/z). As a result, the z-independent part

of IB(z) drops out, and we are left with

K1 ≈
∫ β

0

dv
2vÎB(e

v)√
(1 + ev−α)(1− ev−β)

, K2 ≈
∫ α

0

dv
2vÎB(−ev)√

(1− ev−α)(1 + ev−β)
,

(A.7)

where

ÎB(z) = e−γ
IB(z)− IB(z

−1)

2
. (A.8)

Just as with the endpoint integrals, we can work these integrals out using the

explicit form of ÎB(z). The arctan contribution can be integrated by parts, and after
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some manipulation, we find

K1 = β2(1
2
π − tan−1 eδ)− (Λ− γ − log 1

2
cosh δ)(βg0(δ) + g1(δ))

− 1
2
(β2g0(δ) + 2βg1(δ) + g2(δ))− 2 tan−1 eδ(βf0(δ) + f1(δ)), (A.9a)

K2 = −α2 tan−1 eδ + (Λ− γ − log 1
2
cosh δ)(αg0(−δ) + g1(−δ))

+ 1
2
(α2g0(−δ) + 2αg1(−δ) + g2(−δ))− 2 tan−1 eδ(αf0(−δ) + f1(−δ)).

(A.9b)

Replacing α and β with γ and δ gives

K1 = (Λ− γ − log 1
2
cosh δ)(γ(−1

2
π + tan−1 sinh δ) + kΛ1 )

+ γ(−g1(δ)− 2 tan−1 eδf0(δ)) + k01, (A.10a)

K2 = (Λ− γ − log 1
2
cosh δ)(γ(1

2
π + tan−1 sinh δ) + kΛ2 )

+ γ(g1(−δ)− 2 tan−1 eδf0(−δ)) + k02, (A.10b)

where

kΛ1 = δg0(δ)− g1(δ), kΛ2 = δg0(−δ) + g1(−δ), (A.11)

and

k01 = δg1(δ)− 1
2
g2(δ) + 2 tan−1 eδ(δf0(δ)− f1(δ)), (A.12a)

k02 = δg1(−δ) + 1
2
g2(−δ)− 2 tan−1 eδ(δf0(−δ) + f1(−δ)). (A.12b)
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The derivative of the free energy can then be written as

∂F0

∂t1
=
κ1
2
β2 − (Λ− log 4)(t1 − t2)

+
(
Λ− γ − log 1

2
cosh δ

)(κ1 + κ2
π

(
−γ tan−1 sinh δ − 1

2

(
kΛ1 + kΛ2

))
+
κ1 − κ2

2

(
γ − 1

π

(
kΛ1 − kΛ2

)))

− κ1 + κ2
π

(γ(−g1,o − 2 tan−1 eδf0,e) +
1
2
(k01 + k02))

− κ1 − κ2
π

(γ(−g1,e − 2 tan−1 eδf0,o) +
1
2
(k01 − k02)), (A.13)

where we have again used the e and o notation to denote the even and odd components

of the function. Note that the cutoff Λ should drop out of this expression. Comparison

with the expression for ∆ in (2.2.11) indicates that this requires the identities

j1,o = −2π(δg0,e − g1,o), j1,e − j2,e = −2π(δg0,o − g1,e). (A.14)

along with the assumed vanishing of j2,o. These identities do hold numerically. The

result is then

∂F0

∂t1
=
κ1
2
(γ − δ)2 + (log 4− γ − log 1

2
cosh δ)(t1 − t2)

− κ1 + κ2
π

(γ(−g1,o − 2 tan−1 eδf0,e) +
1
2
(k01(δ) + k02(δ)))

− κ1 − κ2
π

(γ(−g1,e − 2 tan−1 eδf0,o) +
1
2
(k01(δ)− k02(δ))), (A.15a)

∂F0

∂t2
=
κ1
2
(γ + δ)2 − (log 4− γ − log 1

2
cosh δ)(t1 − t2)

− κ1 + κ2
π

(γ(g1,o − 2 tan−1 e−δf0,e) +
1
2
(k01(−δ) + k02(−δ)))

− κ1 − κ2
π

(γ(g1,e − 2 tan−1 e−δf0,o)− 1
2
(k01(−δ)− k02(−δ))). (A.15b)
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We now transform from t1 and t2 to t̄ and ∆. In particular, we have

∂F0

∂t̄
=
∂F0

∂t1
+
∂F0

∂t2
,

∂F0

∂∆
=
∂F0

∂t1
− ∂F0

∂t2
. (A.16)

After some simplification, we find

∂F0

∂t̄
=
κ1 + κ2

2

(
(γ − log 1

2
cosh δ)2 − (log 1

2
cosh δ)2 − 2

π
(k01,e + k02,e) + δ2

)
+
κ1 − κ2

2

(
− 2
π
(k01,o − k02,o)

)
, (A.17a)

∂F0

∂∆
= 4∆(log 4− γ − log 1

2
cosh δ)

+
κ1 + κ2

2

(
1
π
γ(−2πδ + 4g1,o − 4(tan−1 sinh δ) log 1

2
cosh δ)− 2

π
(k01,o + k02,o)

)
+
κ1 − κ2

2

(
γ2 + 1

π
γ(4g1,e + 4δ tan−1 sinh δ)− 2

π
(k01,e − k02,e) + δ2

)
. (A.17b)

Since we have an explicit expression for f1(δ), we should be able to verify f1 =

f1,e + f1,o where

f1,e =
1
2
δ2 − 1

24
π2 + 1

2
(log 1

2
cosh δ)2 + 1

2
(tan−1 sinh δ)2, (A.18a)

f1,o = −1
2
π tan−1 sinh δ − δ log 1

2
cosh δ. (A.18b)

This leads to the identities

k1,e + k2,e =
π
2

(
δ2 + 1

12
π2 − (log 1

2
cosh δ)2 − (tan−1 sinh δ)2

)
, (A.19a)

k01,o − k02,o =
1
2
π2 tan−1 sinh δ, (A.19b)

which results in the simple expression for the t̄ derivative of the free energy given in

(2.2.28).
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APPENDIX B

Technical Details for Minimal D = 5 Supergravity

B.1 Equations of motion simplifications

Here we show several helpful simplifications that we use throughout Section 3.1.

All these simplifications make use of the two-derivative equations of motion and can

be considered as perturbative field redefinitions. Some also use integration by parts

and hence are only valid inside the action.

We start by evaluating (∇νF
νµ)2 using the two-derivative equations of motion.

(∇νF
νµ)2 =

1

24
ϵµνρσλFνρFσλϵµαβγδF

αβF γδ

=− 1

24
δνρσλαβγδFνρFσλF

αβF γδ

=− FνρFσλF
[νρF σλ]

=− 1

3
(F 2)2 +

2

3
F 4. (B.1)
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We quickly remark that the two-derivative equations of motion (3.1.2) imply that

RµνF
µσF ν

σ = F 4 − 1

6

(
F 2
)2 − 4g2F 2, (B.2a)

R =
1

6
F 2 − 20g2. (B.2b)

Next, we evaluate

F νρ[∇µ,∇ν ]F
µ
ρ = F νρ

(
RδµνµFδρ +Rδ

ρνµF
µ
δ

)
(B.3a)

= F νρ
(
Rδ

νFδρ +RδρνµF
µδ
)

(B.3b)

= RδνFδρFν
ρ +

1

2
RνρδµFµδFνρ (B.3c)

= F 4 − 1

6

(
F 2
)2 − 1

2
RµνρσF

µνF ρσ − 4g2F 2. (B.3d)

where (B.3c) follows from the first Bianchi identity for the Riemann tensor

R[µνρ]σ = 0. (B.4)

Now, we evaluate (∇F )2. We recall the field strength Bianchi identity

∇[µFνρ] = 0. (B.5)

This allows us to rewrite

∇µFνρ = ∇νFµρ +∇ρFνµ. (B.6)
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Using this, we have

∇µFνρ∇µF νρ =(∇νFµρ +∇ρFνµ)∇µF νρ

=2∇νFµρ∇µF νρ

→− 2(∇µ∇νF
µρ)F ν

ρ

=− 2(∇ν∇µF
µρ)F ν

ρ − 2([∇µ,∇ν ]F
µρ)F ν

ρ

→∇µF
µρ∇νF

νρ − 2F νρ[∇µ,∇ν ]F
µ
ρ

=− 1

3
(F 2)2 − 2

3
F 4 +RµνρσF

µνF ρσ + 8g2F 2, (B.7)

where the arrows denote integration by parts, which is valid as long as we are applying

this formula inside an integral. The last line follows from the equations of motion

and (B.1) and (B.3d).

Now, we wish to evaluate

ϵµνρσλF
µνF ρσ∇τF

τλ = − 1

2
√
6
ϵµνρσλF

µνF ρσϵλαβγδFαβFγδ

=
1

2
√
6
δαβγδµνρσF

µνF ρσFαβFγδ

=
12√
6
FµνFρσF

[µνF ρσ]

=
4√
6

[(
F 2
)2 − 2F 4

]
. (B.8)
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Finally, we compute

ϵµνρλδF
λδF ρ

β∇µF νβ =
1

2
ϵµνρλδF

λδF ρ
β∇βF νµ (B.9a)

= −1

2
ϵµνρλδF

λδF ρ
β∇βF µν (B.9b)

= −1

4
ϵµνρλδF

ρ
β∇β

(
F µνF λδ

)
(B.9c)

→ 1

4
ϵµνρλδ

(
∇βF ρ

β

)
F µνF λδ (B.9d)

= −1

4
ϵµνρλδF

µνF λδ∇βF
βρ (B.9e)

= − 1√
6

[(
F 2
)2 − 2F 4

]
, (B.9f)

where (B.9a) follows from the Bianchi identity (B.6). The last line in the computation

follows from (B.8).

We can also evaluate some curvature squared terms using (3.1.2)

RµνR
µν = F 4 − 7

36

(
F 2
)2 − 4

3
g2F 2 + 80g4, (B.10)

and also

R2 =
1

36

(
F 2
)2 − 20

3
g2F 2 + 200g4. (B.11)

One last useful formula for us is

RµνρσF
µνF ρσ =

(
Cµνρσ +

4

3
gµρRσν −

1

6
Rgµρgσν

)
F µνF ρσ

= CµνρσF
µνF ρσ +

4

3
RσνF

ρνFρ
σ − 1

6
RF 2

= CµνρσF
µνF ρσ +

4

3
F 4 − 1

4

(
F 2
)2 − 2g2F 2. (B.12)
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B.2 The Gutowski-Reall black hole

Here we compute the on-shell value of the parametrized four-derivative corrected

action, (3.0.6), for the Gutowski-Reall black hole [168]. When viewed as an asymp-

totically AdS5 × S5 solution to IIB supergravity, it is known that the first correction

occurs at the eight-derivative level. The corrected action with curvature and the

Ramond-Ramond five-form was obtained in [64, 330], and it was shown in [169] that

the on-shell eight-derivative correction vanishes for the supersymmetric Gutowski-

Reall solution. However, here we take more of a bottom-up view and introduce

four-derivative corrections to the five-dimensional action as may occur in theories

with reduced supersymmetry.

The Gutowski-Reall black hole [168] is a solution of minimal gauged supergravity

in 5D given by

ds2 = −U(r)Λ(r)−1 dt2 + U(r)−1 dr2 +
r2

4

[(
σ1′

L

)2
+
(
σ2′

L

)2
+ Λ(r)

(
σ3′

L − Ω(r) dt
)2]

,

(B.1a)

A =
√
3

[(
1− R2

0

r2
− R4

0

2L2r2

)
dt+

ϵR4
0

4Lr2
σ3′

L

]
, (B.1b)

where

U(r) =

(
1− R2

0

r2

)(
1 +

2R2
0

L2
+
r2

L2

)
, (B.2a)

Λ(r) = 1 +
R6

0

L2r4
− R8

0

4L2r6
, (B.2b)

Ω(r) =
2ϵ

LΛ(r)

[(
3

2
+
R2

0

L2

)
R4

0

r4
−
(
1

2
+

R2
0

4L2

)
R6

0

r6

]
, (B.2c)

σ1′

L = sinϕ dθ − cosϕ sin θ dψ , (B.2d)

σ2′

L = cosϕ dθ + sinϕ sin θ dψ , (B.2e)

σ3′

L = dϕ+ cos θ dψ , (B.2f)
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and ϵ2 = ±1. We also have that

θ ∈ [0, π), ϕ ∈
[
2ϵt

L
, 4π +

2ϵt

L

)
, ψ ∈ [0, 2π), (B.3)

in these coordinates. This solution corresponds to a charged spinning black hole with

mass

M = 12π2R2
0

(
1 +

3R2
0

2L2
+

2R4
0

3L4

)
, (B.4)

angular momenta

Jϕ =
6ϵπ2R4

0

L

(
1 +

2R2
0

3L2

)
, (B.5a)

Jψ = 0, (B.5b)

and charge

Q = 8
√
3π2R2

0

(
1 +

R2
0

2L2

)
. (B.6)

This is easily seen to satisfy the BPS equation

M − 2

L
|J | =

√
3

2
|Q|. (B.7)

In the coordinates induced from the bulk solution, the boundary metric becomes

ds2bdy = − dt2 +
L2

4

((
σ1′

L

)2
+
(
σ2′

L

)2
+
(
σ3′

L

)2)
. (B.8)

Hence, we see that the boundary topology is R×S3. As a result, we should not expect

a conformal anomaly, i.e., we do not need to cancel any logarithmic divergences.

The two-derivative action (3.1.1) is simple to compute. Using the standard Gibbons-

Hawking term [331]

SGH
2∂ = 2

∫
d4x

√
−hK, (B.9)
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and boundary counterterm

SCT
2∂ =

∫
d4x

√
−h
(
6

L
+
L

2
R
)
, (B.10)

to cancel the divergences, we find the holographically renormalized two-derivative

action is

IRen
2∂ =

π2T

2L2

(
−3L4 + 4R4

0

)
. (B.11)

Now, we must compute five pieces of the four-derivative action

S1 :=

∫
d5x

√
−g R̂GB, (B.12a)

S2 :=

∫
d5x

√
−g CµνρσF µνF ρσ, (B.12b)

S3 :=

∫
d5x

√
−g
(
F 2
)2
, (B.12c)

S4 :=

∫
d5x

√
−g F 4, (B.12d)

S5 :=

∫
d5x

√
−g ϵµνρσλRµνabR

ab
ρσAλ. (B.12e)

The only term we expect to give rise to divergences is S1. This can be cured with an

appropriate Gibbons Hawking term [332, 333]

SGH
1 = 2

∫
d4x

√
−h
[
−2

3
K3 + 2KKabK

ab − 4

3
KabK

bcKc
a − 4

(
Rab −

1

2
Rhab

)
Kab

]
,

(B.13)

where Kab is the extrinsic curvature, K = habKab is its trace, Rab is the induced Ricci

tensor on the boundary, and R is the induced Ricci scalar on the boundary. We also

have boundary counterterms [334]

SCT
1 = −

∫
d4x

√
−h
(
− 2

L2
+

3

2L
R
)
, (B.14)

per the usual holographic renormalization procedure. With this in hand, it is straight-
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forward to compute

IRen
1 =

π2vol(R)
20L4

(
210L4 + 408L2R2

0 + 128R4
0

)
, (B.15a)

I2 =
2π2vol(R)

5L4

(
−15L4 + 66L2R2

0 + 55R4
0

)
, (B.15b)

I3 =
24π2vol(R)

5L4

(
30L4 + 36L2R2

0 + 11R4
0

)
, (B.15c)

I4 =
6π2vol(R)

5L4

(
60L4 + 96L2R2

0 + 41R4
0

)
, (B.15d)

I5 =
9π2vol(R)

2L4

(
72L2R2

0 − 7R4
0

)
. (B.15e)

Of particular note is that

IRen
1 − 1

2
I2 +

1

8
SI +

1

2
√
3
SI =

9π2vol(R)
2L2

(
5L2 + 8R2

0

)
, (B.16)

which is neither zero nor the two-derivative result. If one writes the four-derivative

action with generic coefficients

S4∂ = c1S1 + c2S2 + c3S3 + c4S4 + c5S5, (B.17)

then we see that I4∂ = 0 requires that

−7c1 + 4c2 − 96c3 − 48c4 = 0, (B.18a)

17c1 + 22c2 + 144c3 + 96c4 + 12
√
3c5 = 0, (B.18b)

125c1 + 440c2 + 1056c3 + 984c4 − 28
√
3c5 = 0, (B.18c)
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which can be solved by

c2 = −151c1 + 512
√
3c5

96
, (B.19a)

c3 = −707c1 + 2368
√
3c5

768
, (B.19b)

c4 =
901c1 + 3296

√
3c5

576
. (B.19c)

If we enforce that c5 =
1

2
√
3
c1, we get that

c2 = −407

96
c1, c3 = −1891

768
c1, c4 =

2549

576
c1. (B.20)

These coefficients do not agree with any known results in the literature. Alternatively,

enforcing c2 = −1
2
c1 gives

c3 = − 615

2048
, c4 =

423

1024
, c5 = − 103

512
√
3
, (B.21)

which is likewise undesirable.
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APPENDIX C

Supplemental Computations for RG Flows

C.1 Technical details

In this Appendix, we provide some supplementary technical details that were

omitted from the main text.

C.1.1 Riemann tensors

Here we collect Riemann tensors for the metric

ds2 = e2f(z)(ηµνdx
µdxν + dz2) + e2g(z)gij(y)dy

idyj. (C.1)

We will use µ, ν, ρ, ... for curved indices in the d-dimensional base space and i, j, k, ...

for curved indices on MD−d, as well as α, β, γ, ... for rigid indices in the d-dimensional

spacetime and a, b, c, d, ... for rigid indices in the compact directions. We will use z

to denote the curved z-direction index and z to denote the rigid z-direction index.

We will use M,N, ... for curved indices and A,B,C, ... for rigid indices of the whole
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(D + 1)-dimensional spacetime. We choose a vielbein

êα = ef(z)eα, êz = ef(z)dz, êa = eg(z)ẽa, (C.2)

so that ds2 = ηαβ ê
αêβ+ êz êz+δabê

aêb. Here we have defined eα to be a vielbein for the

flat d-dimensional space with metric ηµν and ẽa to be a vielbein on MD−d. Imposing

the torsion-free condition

dêA + ω̂AB ê
B = 0, (C.3)

gives a spin connection

ω̂αβ = ωαβ, (C.4a)

ω̂αz = e−f∂zf êα, (C.4b)

ω̂aβ = 0, (C.4c)

ω̂az = e−f∂zg ê
a, (C.4d)

ω̂ab = ω̃ab, (C.4e)

where ω is the spin connection on the d-dimensional base space and ω̃ is the spin

connection on MD−d. The Riemann curvature two-form is then given by

R̂AB = dω̂AB + ω̂AC ∧ ω̂CB, (C.5)
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which, in components, reads

R̂αβ
γδ = −2e−2f (f ′)2δα[γδ

β
δ], (C.6a)

R̂αβ
γz = 0, (C.6b)

R̂αz
γz = −e−2ff ′′δαγ , (C.6c)

R̂αb
γd = −e−2ff ′g′δαγ δ

b
d, (C.6d)

R̂αb
cz = 0, (C.6e)

R̂az
cz = −e−2f

(
g′′ − f ′g′ + (g′)2

)
δac , (C.6f)

R̂ab
cd = e−2gR̃ab

cd − 2e−2f (g′)2δa[cδ
b
d], (C.6g)

where we have denoted the Riemann tensor on MD−d by R̃ab
cd. Note that in the

above, we have used the fact that the d-dimensional base space is flat to remove all

the corresponding curvature tensors, hence why there is no Rαβγδ. From here, one

can compute the Ricci tensor, R̂AB = R̂C
ACB, to be

R̂αβ = −e−2f
[
f ′′ + (d− 1)(f ′)2 + (D − d)f ′g′

]
ηαβ, (C.7a)

R̂αz = 0, (C.7b)

R̂zz = −e−2f
[
df ′′ + (D − d)

(
g′′ − g′f ′ + (g′)2

)]
, (C.7c)

R̂aβ = 0, (C.7d)

R̂az = 0, (C.7e)

R̂ab = e−2gR̃ab − e−2f
[
g′′ + (D − d)(g′)2 + (d− 1)f ′g′

]
δab, (C.7f)

where R̃ab denotes the Ricci tensor on MD−d. Finally, the Ricci scalar is given by

R̂ =e−2gR̃− e−2f
[
2df ′′ + 2(D − d)g′′ + d(d− 1)(f ′)2 + 2(d− 1)(D − d)f ′g′

+ (D − d+ 1)(D − d)(g′)2
]
, (C.8)
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where R̃ denotes the Ricci scalar on MD−d.

C.1.2 The general expression for c′(z)

In section 4.1.4, we made an ansatz for a candidate c-function, (4.1.48), in terms

of real parameters {ai, bj}. Given this ansatz, we find

c′(z) =
e−f̃ (Leff)

d

GN

×
{
−(d− 1)(f ′′ − (f ′)2)− (D − d)(g′′ + g′(g′ − 2f ′)) +

(D − 1)(D − d)

d− 1
(g′)2

+ αe−2f
[
f ′′ (ξ1(f ′)2 + ξ2f

′g′ + ξ3(g
′)2
)
+ g′′

(
ξ4(f

′)2 + ξ5f
′g′ + ξ6(g

′)2
)

+ ξ7(f
′)4 + ξ8(f

′)3g′ + ξ9(f
′)2(g′)2 + ξ10f

′(g′)3 + ξ11(g
′)4
]

+ αe−2g κ

ℓ2

[
ω1f

′′ + ω2g
′′ + ω3(f

′)2 + ω4f
′g′ + ω5(g

′)2
]}
, (C.9)

where, for brevity, we have defined coefficients

ξ1 = −(d− 3)a1 + 3(d− 1)a4,

ξ2 = 2
D − d

d− 1
a1 − (d− 2)a2 + 2(d− 1)a5,

ξ3 = (d− 1)(a6 − a3) +
D − d

d− 1
a2,

ξ4 = −(D − d)a1 + a2 + (d− 1)a5,

ξ5 = −(D − d)(d− 2)

d− 1
a2 + 2a3 + 2(d− 1)a6,

ξ6 = −(D − d)(d− 3)

d− 1
a3 + 3(d− 1)a7,

ξ7 = (d− 3)a1 − 3(d− 1)a4,

ξ8 = 2
(D − d)(d− 2)

d− 1
a1 + (d− 3)a2 − (D − d)a4 − 3(d− 1)a5,

ξ9 =
(D − d)((D − d)a1 + 2(d− 2)a2)

d− 1
+ (d− 3)a3 − (D − d)a5 − 3(d− 1)a6,

ξ10 =
(D − d)((D − d)a2 + 2(d− 2)a3)

d− 1
− (D − d)a6 − 3(d− 1)a7,
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ξ11 = (D − d)

(
D − d

d− 1
a3 − a7

)
,

ω1 = −(d− 1)(b1 − b2),

ω2 = (d− 1)b3 − (D − d)b1,

ω3 = (d− 1)(b1 − b2),

ω4 = 2(D − d− 1)b1 − (D + d− 2)b2 − (d− 1)b3,

ω5 =
(D − d)(D − d− 2)

d− 1
b1 − (D + d− 2)b3. (C.10)

Note that the form of the ansatz, (4.1.48), was chosen so that no higher than second

derivatives of f and g appear in (C.9).

C.1.3 Induced Ricci scalar

In Section 4.3, we require an expression for the Ricci scalar of the induced metric

on the entangling surface, which we compute here. The induced metric is given by

dσ2 = e2f(z)
(
1 + r′(z)2

)
dz2 + e2f(z)r(z)2dΩ2

d−2 + e2g(z)ds2MD−d
. (C.11)

By slight abuse of notation, we will use α, β, γ, δ, ... to index the rigid indices along

the unit (d − 2)-sphere (for this section only, these indices will not run over t or r).

A natural choice of vielbein is then

êz̄ = ef
√

1 + (r′)2dz, êα = efreα, êa = egẽa, (C.12)

where eα is a vielbein on the (d− 2)-sphere and ẽa is a vielbein on MD−d. Note that

this notation differs from the previous subsection. As before, we make use of the
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torsion-free condition to compute the components of the spin connection

ω̂αβ = ωαβ, (C.13a)

ω̂αz =
e−f√

1 + (r′)2

(
f ′ +

r′

r

)
êα, (C.13b)

ω̂αb = 0, (C.13c)

ω̂ab = ω̃ab, (C.13d)

ω̂az =
g′ e−f√
1 + (r′)2

, (C.13e)

where ω is the spin connection on the (d− 2)-sphere and ω̃ is the spin connection on

MD−d. The induced Riemann tensor components may then be computed to be

Rαβ
γδ =

e−2f

r2
R̄αβ

γδ − 2
e−2f

1 + (r′)2

(
f ′ +

r′

r

)2

δ[αγ δ
β]
δ , (C.14a)

Rαz
βz = −

[
d

dz

(
e−f√

1 + (r′)2

(
f ′ +

r′

r

))
e−f√

1 + (r′)2
+

e−2f

1 + (r′)2

(
f ′ +

r′

r

)2
]
δαβ ,

(C.14b)

Raz
bz = −

[
d

dz

(
g′ e−f√
1 + (r′)2

)
e−f√

1 + (r′)2
+
e−2f (g′)2

1 + (r′)2

]
δab , (C.14c)

Rab
cd = e−2gR̃ab

cd − 2
e−2f (g′)2

1 + (r′)2
δ[ac δ

b]
d , (C.14d)

Rαb
γd = − g′ e−2f

1 + (r′)2

(
f ′ +

r′

r

)
δac δ

β
δ , (C.14e)

where R̄αβ
γδ denotes the Riemann tensor on the (unit) (d − 1)-sphere and R̃ab

cd

denotes the Riemann tensor on MD−d. Computing the induced Ricci scalar as R =

RAB
AB, and using the identities for the Ricci scalars of the constituent metrics

R̄ = (d− 2)(d− 3), (C.15a)

R̃ = (D − d)(D − d− 1)
κ

ℓ2
, (C.15b)

204



we finally arrive at our expression for the induced Ricci scalar

R =(d− 2)(d− 3)
e−2f

r2
+ (D − d)(D − d− 1)

κ

ℓ2
e−2g

+
e−2f

r2(1 + (r′)2)2

[
−
(
1 + (r′)2

)(
2(d− 2)((d− 2)f ′ + (D − d)g′)rr′

+ (d− 2)(d− 3)(r′)2 +
(
(d− 2)(d− 3)(f ′)2

+ 2(d− 3)(D − d)f ′g′ + (D − d)(D − d− 1)(g′)2

+ 2(d− 2)f ′′ + 2(D − d)g′′
))
r2

+ 2(−(d− 2) + ((d− 2)f ′ + (D − d)g′)rr′)rr′′
]
. (C.16)

C.2 Alternate coordinates

Here we collect some of the results from the main text reexpressed in alternate

coordinates, more akin to those used in [87, 189, 191]. These are not new results, but

the reader might find them more useful for some purposes.

C.2.1 NEC-motivated c-function

One may alternately parameterize the metric as

ds2 = e2A(r)ηµν dx
µ dxν + dr2 + e2B(r)gij(y) dy

i dyj . (C.1)

These are the coordinates that are used in [87, 189]. Pure AdS corresponds to A(r) =

B(r) = r/L, and so it is natural to identify r = 0 with the IR and r = ∞ with the

UV. We expect the asymptotic behavior of the metric functions to be

r → ∞ : A(r) → r

LUV

, B(r) → r

LUV

,

r → 0 : A(r) → r

LIR

, B(r) → BIR. (C.2)
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We still assume that the internal manifold is maximally symmetric with Ricci scalar

R̃ = (D − d)(D − d− 1)
κ

ℓ2
. (C.3)

One can take this metric and compute the resulting t-z null energy condition NEC1

for arbitrary dimensions, which gives

0 ≤− (d− 1)A′′ − (D − d)B′′ + (D − d)A′B′ − (D − d)(B′)2

+ α
[
2(d− 1)(d− 2)(d− 3)(A′)2A′′ + 4(d− 1)(d− 2)(D − d)A′B′A′′

+ 2(d− 1)(D − d)(D − d− 1)(B′)2A′′ + 2(d− 1)(d− 2)(D − d)(A′)2B′′

+ 4(d− 1)(D − d)(D − d− 1)A′B′B′′ + 2(D − d)(D − d− 1)(D − d− 2)(B′)2B′′

− 2(d− 1)(d− 2)(D − d)(A′)3B′ − 2(d− 1)(D − d)(2D − 3d)(A′)2(B′)2

− 2(D − d)(D − d− 1)(D − 3d)A′(B′)3 + 2(D − d)(D − d− 1)(D − d− 2)(B′)4
]

+ 2α(D − d)(D − d− 1)
κ

ℓ2
[
−(d− 1)A′′ + (D − d− 2)

(
−B′′ + A′B′ − (B′)2

)]
.

(C.4)

One might then propose a generic candidate c-function

c(r) =

e(D−d)B(1 + α
(
a1(A

′)2 + a2A
′B′ + a3(B

′)2 + b1
κ
ℓ2
e−2B

))(
Ã′ + α

(
a4(A′)3 + a5(A′)2B′ + a6A′(B′)2 + a7(B′)3 + b2

κ
ℓ2
e−2BA′ + b3

κ
ℓ2
e−2BB′

))d−1
,

(C.5)

where we have defined

Ã = A+
D − d

d− 1
B, (C.6)
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in analogy to f̃ . This c-function is the obvious generalization of the two-derivative

case (when α = 0). As before, one computes

c′(z) =
e(D−d)B(

Ã′ + α
(
a3(A′)2B′ + a4A′(B′)2 + a5(B′)3 + b2

κ
ℓ2
e−2BA′ + b3

κ
ℓ2
e−2BB′

))d
×
{
− (d− 1)A′′ − (D − d)B′′ + (D − d)A′B′ + (D − d)2(B′)2

+ α
[
ξ1(A

′)2A′′ + ξ2A
′B′A′′ + ξ3(B

′)2A′′ + ξ4(A
′)2B′′ + ξ5A

′B′B′′ + ξ6(B
′)2B′′

+ ξ7(A
′)4 + (A′)3B′ + ξ8(A

′)2(B′)2 + ξ9A
′(B′)3 + ξ10(B

′)4
]

+ α
κ

ℓ2
[
ω1A

′′ + ω2B
′′ + ω3A

′B′ + ω4(B
′)2
]}
, (C.7)
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where we have defined

ξ1 = 3(a1 + a4)− (a1 + 3a4)d,

ξ2 = a2 − (d− 1)(a2 + 2a5) + 2
D − d

d− 1
a1,

ξ3 = −(d− 1)a6 +
D − d

d− 1
a2,

ξ4 = a2 − (d− 1)a5 − (D − d)a1,

ξ5 = −2(d− 1)a6 +
(D − d)(d− 2)

d− 1
a2,

ξ6 = −3(d− 1)a7,

ξ7 = (D − d)(a1 + a4),

ξ8 = (D − d)

(
a2 + a5 +

D − d

d− 1
a1

)
,

ξ9 = (D − d)

(
a6 +

D − d

d− 1
a2

)
,

ξ10 = (D − d)a7,

ω1 = −(d− 1)b2,

ω2 = −(d− 1)b3,

ω3 = (D − d− 2)b1 + (D − d− 2)b2,

ω4 = (D + d− 2)b3 +
(D − d)(D − d− 2)

d− 1
b1. (C.8)
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With the particular choice of

a1 = −2(d− 1)(d− 2), (C.9a)

a2 = −4(D − d)(d− 2), (C.9b)

a4 = 0, (C.9c)

a5 = −4
(D − d)(d− 2)

(d− 1)
, (C.9d)

a6 =
a2

d− 1
+ 2

D − d

(d− 1)2
(1 + d(−5 + 3d− 2D) + 3D), (C.9e)

b1 =
2(D − d− 1)((D + 1)d−D − d2 + 2)

d
, (C.9f)

b2 =
2(D − d− 1)(D − d− 2)

d
, (C.9g)

b3 =
2(D − d)(D − d− 1)(D − 3d− 2)

d(d− 1)
, (C.9h)

we get that

c′(r) =
e(D−d)B

(
NEC1 + (D−1)(D−d)

d−1
(B′)2(1 +O(α))

)
(
Ã′ + α

(
a3(A′)2B′ + a4A′(B′)2 + a5(B′)3 + b2

κ
ℓ2
e−2BA′ + b3

κ
ℓ2
e−2BB′

))d ≥ 0,

(C.10)

and hence the candidate c-function gives us a monotonic flow from the UV to the IR.

As before, we never need to use the all-internal components of the Riemann tensor

R̂ijkl to obtain NEC1, and so the above results also trivially generalize to arbitrary

Einstein internal manifolds, as in the f and g coordinates.

C.2.2 Entanglement entropy c-function

One may also repeat the arguments of Section 4.3.1 in the alternate coordinates

(C.1). Here we focus on flows from AdSD+1 to AdS3, and so we specialize the metric

(C.1) to

dσ2 = e2A(r)
(
−dt2 + dρ2

)
+ dr2 + e2B(r)ds2MD−2

. (C.11)
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In terms of a profile ρ(r), the induced Ricci scalar is

R =− (D − 2)

(1 + e2A(r)ρ′(r)2)
2

×
(
e2A(r)ρ′(r)

(
ρ′(r)

(
2A′(r)B′(r)− (D − 1)B′(r)2 − 2B′′(r)

)
+ 2B′(r)ρ′′(r)

)
− (D − 1)B′(r)2 − 2B′′(r)

)
+ (D − 2)(D − 3)

κ

ℓ2
e−2B, (C.12)

which leads to a JM functional whose first integral is

C =
ρ′(r)e2A(r)+(D−2)B(r)

((
1 + e2A(r)ρ′(r)2

) (
1 + 2α̃ κ

ℓ2
e−2B

)
− 2α̃B′(r)2

)
(1 + e2A(r)ρ′(r)2)

3/2
, (C.13)

which can be solved to give

ρ′(r) =
e−AF√

1−F2 + 4α̃
(
κ
ℓ2
e−2B − (B′)2(1−F2)

) , F(r) ≡ Ce−A−(D−2)B. (C.14)

To fix the value of C, we note that we should have ρ′(r) → −∞ as r → r0, where r0

is the deepest point in the bulk that the minimal surface. This then requires that

C = eA(r0)+(D−2)B(r0)
(
1 + 2α̃

κ

ℓ2
e−2B(r0)

)
. (C.15)

Then the radius of the entangling area is

R =

∫ ∞

r0

dr ρ′(r) =

∫ ∞

r0

dr
e−AF√

1−F2 + 4α̃
(
κ
ℓ2
e−2B − (B′)2(1−F2)

)
=

∫ ∞

r0

dr

[
e−AF√

1−F2 + 4α̃ κ
ℓ2
e−2B

+ 2α̃
e−A(B′)2F√

1−F2

]
+O(α̃2)

= lim
rc→∞

∫ rc

r0

dr
[√

1−F2 + 4α̃
κ

ℓ2
e−2B

d

dr

e−A

F ′ + 4α̃
F

κ
ℓ2
e−2BB′

+ 2α̃
√
1−F2

d

dr

(
e−A(B′)2

F ′

)]
+ 2α̃ lim

rc→∞

e−A(B′)2

F ′

∣∣∣∣∣
r=rc

+O(α̃2). (C.16)
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Equivalently, in terms of a profile r(ρ), we may write

r′(ρ) = eA

√
1−F2 + 4α̃

(
κ
ℓ2
e−2B − (B′)2(1−F2)

)
F

. (C.17)

The JM functional may then be calculated as

SJM =
2Vol(MD−2)

4GN

×
∫

dρ

[√
e2A + (r′)2e(D−2)B

(
1 + 2α̃

κ

ℓ2
e−2B

)
+ 2α̃

e(D−2)B(B′)2(r′)2√
e2A + (r′)2

]

− 4α̃e(D−2)BB′
∣∣∣
ρ=ρc

. (C.18)

As before, the boundary term is independent of R and so it will not affect the suc-

ceeding analysis. The monotonic central charge is then given by

cEE = R∂RSJM =
2πVol(MD−2)

ℓD−1
P

eA0+(D−2)B0

(
1 + 2α̃

κ

ℓ2
e−2B0

)
R. (C.19)

As before, this generically leads to rather complicated terms

dcEE
dr0

=
2Vol(MD−2)

4GN

×
∫

dρ
e(D−2)BF2Ã′

0√
1−F2(Ã′)2

{
− A′′ − (D − 2)B′′ + (D − 2)A′B′ + (D − 2)2(B′)2

+ 2α̃B′[A′((D − 2)(B′)2 + 2B′′) +B′(−A′′ + (D − 2)((D − 2)(B′)2 +B′′)
]

+ α̃
κ

ℓ2

[
eÃ−2BA

′′ + (D − 2)(B′′ − Ã′B′)

eÃ − eÃ0
+ 4e−2B0B′

0

A′′ + (D − 2)(B′′ − Ã′B′)

Ã′
0

−
4e2(Ã−2Ã0−2B−B0)

(
e2Ã0 − 2eÃ

)
Ã′

×
(
A′(2Ã′B′ +B′′) +B′((3D − 8)Ã′B′ − 2A′′ − (D − 2)B′′)

)]}
,
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but, if one sets κ = 0, then

dcEE
dr0

=
2Vol(MD−2)

4GN

∫
dρ

e(D−2)BF2Ã′
0√

1−F2(Ã′)2

[
NEC1 + (D − 1)(D − 2)(B′)2(1 +O(α̃))

]
≥ 0, (C.20)

which gives monotonicity along flows to the IR. This parallels the computation that

was done in f and g coordinates.
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APPENDIX D

Torsionful Tensors

D.1 Torsionful Riemann tensor

The torsionful Riemann tensor appears at O(α′) in the heterotic Lagrangian and

equations of motion. Although we only need its truncated form, here we give the

general frame components of the torsionful Riemann tensor. This is computed from

R(Ω+) = dΩ+ + Ω+ ∧ Ω+, where the torsionful connection is given in (5.1.23).

R(Ω+)γδ
αβ =R(ω+)γδ

αβ − 1

2
F i
γδ

(
(gij + bij)F

j
αβ −Gαβi

)
− 1

2

(
(gij − bij)F

j
γα +Gγαi

)
gik
(
(gkl − bkl)F

l
δβ +Gδβk

)
,

R(Ω+)γd
αβ =− 1

2
eid
(
∂γ(gij + bij)F

j
αβ +

(
(gij + bij)∇(+)

γ F j
αβ −∇(+)

γ Gαβi

))
+

1

4
eld
(
(gij − bij)F

j
γα +Gγαi

)
gik∂β(gkl − bkl)

− 1

4
eld
(
(gij − bij)F

j
γβ +Gγβi

)
gik∂α(gkl − bkl),

R(Ω+)cd
αβ =

1

2
eicekd

(
(gij + bij)F

j
αγ −Gαγi

)(
(gkl + bkl)F

l
γβ −Gγβk

)
− 1

2
ejceld∂α(gij − bij)g

ik∂β(gkl − bkl), (D.1)
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along with

R(Ω+)γδ
αb =− 1

2
gikelb∂γ(gkl + bkl)

(
(gij − bij)F

j
δα +Gδαi

)
+ eib∂γ(gij − bij)F

j
δα

− 1

2
eib∂α(gij − bij)F

j
γδ + eib

(
(gij − bij)∇(+)

γ F j

δ̂α
+∇(+)

γ Gδ̂αi

)
,

R(Ω+)γd
αb =

1

4
gikejdelb∂γ(gkl + bkl)∂α(gij − bij)−

1

2
eibejd∇(+)

γ ∂α(gij − bij)

+
1

4
ekbeid

(
(gij + bij)F

j
αϵ −Gαϵi

)(
(gkl − bkl)F

l
γϵ +Gγϵk

)
,

R(Ω+)cd
αb =

1

2
ekbeiceld

(
(gij + bij)F

j
αγ −Gαγi

)
∂γ(gkl − bkl), (D.2)

and

R(Ω+)γδ
ab =− 1

2
eiaelb∂γ(gij − bij)g

jk∂δ(gkl + bkl)

− 1

2
eiaekb

(
(gij − bij)F

j
γϵ +Gγϵi

)(
(gkl − bkl)F

l
δϵ +Gδϵk

)
,

R(Ω+)γd
ab =

1

4
eiaekbeld

(
(gij − bij)F

j
γϵ +Gγϵi

)
∂ϵ(gkl − bkl)

− 1

4
eibekaeld

(
(gij − bij)F

j
γϵ +Gγϵi

)
∂ϵ(gkl − bkl),

R(Ω+)cd
ab =− 1

2
eiaekbejceld∂γ(gij − bij)∂γ(gkl − bkl). (D.3)

In some cases, implicit antisymmetrization with weight one is needed on the two-form

indices. Note that the covariant derivative ∇(+) is taken with respect to the torsionful

connection Ω+ on frame indices, except in the R(Ω+)γδ
αb term where the hat on the δ

index indicates that it is corrected using the torsion-free connection Ω. (The α index

is corrected using the Ω+ connection.)

Since the two-derivative Lagrangian, (5.1.7), and equations of motion, (5.1.9), are

written in terms of a torsion-free connection, it is useful to make note of the standard
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reduction of the torsion-free Ricci tensor

Rαβ(Ω) = Rαβ(ω)−
1

2
F i
αγgijF

j
βγ −

1

2
gij∇α∇βgij +

1

4
gijgkl∂αgik∂βgjl,

Rαb(Ω) = eib
(
1

2
∇γ(gijF

j
αγ) +

1

4
gilF

l
αγg

jk∂γgjk

)
,

Rab(Ω) = eiaejb
(
1

4
gikgjlF

k
γδF

l
γδ −

1

2
□gij +

1

2
gkl∂γgik∂γgjl −

1

4
∂γgijg

kl∂γgkl

)
. (D.4)

In addition, the reduction of ∇̂M∇̂Nϕ yields

∇̂α∇̂βϕ = ∇α∇βϕ, ∇̂α∇̂bϕ = −1

2
eibF

i
αγ∂γϕ, ∇̂a∇̂bϕ =

1

2
eiae

j
b∂γgij∂γϕ.

(D.5)

D.2 A note on the torsionful Lorentz Chern-Simons term

The Lorentz Chern-Simons form, (5.1.5), is computed with the torsionful connec-

tion, Ω+. If we were to expand it out with Ω+ = Ω+ 1
2
H, we would get

ω3L(Ω+) = ω3L(Ω) + Tr

(
R(Ω) ∧H +

1

4
H ∧DH +

1

12
H ∧H ∧H

)
− 1

2
d(TrΩ ∧H) .

(D.1)

The final term is not Lorentz covariant but is a total derivative. Hence it can be

removed by a shift of the B-field. In particular, with

H̃ = dB − α′

4
ω3L(Ω+), (D.2)

we can make the shift

B → B +
α′

8
Tr(Ω ∧H), ω3L(Ω+) → ω3L(Ω+) +

1

2
d(TrΩ ∧H) , (D.3)

to remove the total derivative from the Lorentz Chern-Simons form.
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A similar manipulation can be performed in the lower-dimensional theory. In

particular, in (5.2.14), we have made the shift

ω3L(Ω+) → ω3L(Ω+)−
1

2
d
(
ωαβ+ F

(−)
βα iη

i
)
, (D.4)

to remove a total derivative. Note that removing this mixed component of ω3L cor-

responds to a shift of the gauge fields Bµ i.
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[315] T. Ort́ın, A. Ruipérez and M. Zatti, Extremal stringy black holes in
equilibrium at first order in α′, 2112.12764.
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