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Abstract

This thesis focuses on applying self-consistent embedding methods to strongly corre-
lated materials. The ab initio simulation of periodic solids with strong correlation is
an active area of research, since reliable parameter-free methods exist only for weakly
correlated solids, which are less suitable where the independent electron approximation
fails. We report a calculation framework from a fully self-consistent parameter-free ab
initio self-energy embedding theory (SEET) consisting of a weakly correlated environ-
ment (treated at the level of GW) and strongly correlated orbitals (treated with Exact
Diagonalization). Unlike previous work, the theory does not require any adjustable pa-
rameters and is fully ab initio, while being able to treat both the strong correlation and
the nonlocal screening physics of these materials. Importantly, our method is applied to
real materials with not only transition metal 𝑑 orbitals but also rare-earth element 𝑓 or-
bitals to obtain information about the spectral function and thermodynamic properties,
which can be compared with experimental measurement. Real materials of my inter-
est are the parent compound of a recent discovered superconductors, namely NdNiO2,
whose intrinsic mechanism remain as a hot topic in condensed matter. Analysis of these
materials includes, besides spectral function, the optical properties of the solids, which
are related directly to the experimental observations.

xii



Chapter 1

Introduction

It has been difficult to theoretically describe strongly correlated materials. Condensed
matter physics have substantial difficulties when dealing with strongly correlated sys-
tems, such as materials containing transition metal atoms. Since both the strong and
weak correlations between electrons must be taken into account, a quantitative descrip-
tion of these systems is challenging. The interaction of subtle electronic correlation
effects on low energy scales is the root cause of many of their intriguing features. The
primary factor making it difficult to describe these systems is the interaction between the
localized and delocalized electrons. In order to get thermodynamic quantities and spec-
tra, a computational approach must take into consideration both itinerant and localized
electrons that are present in a material.

Our calculation framework follows a fully self-consistent parameter-free ab initio self-
energy embedding theory (SEET) [1–6]. This method combines a diagrammatic per-
turbative theory, i.e., the GW approximation [7, 8], with nonperturbative solution of
quantum impurity solvers. Due to the perturbative nature of the GW approximation,
only the weak correlation regime is reliably accessible with the method. But unlike
other embedding methods such as a combination of the Dynamical mean-field theory
(DMFT) [9–11] with Density Functional Theory (DFT) [12], the fully self-consistent
GW approximation is free from adjustable parameters and double counting correction
and independent of a choice of functional. In addition, its expression in diagrammatic
language makes the method is suited to embedding theory. In order to go beyond the
weakly correlated regime, embedding theory solves nonperturbative strong-correlation
problem in a small but potentially strongly correlated subset of orbitals, using the so-
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lution from the GW approximation as a weakly correlated environment. Consequently,
SEET is a hybrid approach where we use two Green’s function methods, one is strongly
correlated and another one is weakly correlated. In their Green’s function language, it
is possible to calculate experimentally observable quantities such as the spectral func-
tion, realizing the comparison between computational calculations and experimental
observation.

Our main goal is to study the real materials following the above framework. A solid
can be modeled as a periodic arrangement of atoms in a Bravais lattice, described by
a basis of single-particle Bloch-wave function under the Born-Oppenheimer approxima-
tion. In our work, we use a finite basis of Gaussian functions to construct Bloch waves
[13–16]. Since it is difficult to assess the Gaussian basis functions independently, we
compare the results of simple DFT calculations in this basis from a Python package
PySCF [15, 17] with those obtained in a plane-wave code called Vienna ab initio simula-
tion package (VASP) [18, 19]. Meanwhile, the DFT solution can also provide an initial
guess to the GW approximation. Then we solve the system in the fully self-consistent
finite temperature GW approximation introduced by Hedin [7]. Based on the weakly-
correlated environment from the GW approximation, SEET with Exact Diagonalization
(ED) as the impurity solver is iterated fully to self-consistency.

At present, embedding methods for treating realistic problems can be applied to
perform calculations for systems with relatively complicated electronic structure such as
transition metal oxide [6, 20–23] or oxide perovskites [24–26]. Most commonly, only the
local transition metal 𝑑 orbitals in cubic geometry are embedded as impurity problems
containing the 𝑡2𝑔 and 𝑒𝑔 orbitals in order to achieve a good comparison with experiments
[6, 26]. Therefore, we choose to apply our methods to the superconductor NdNiO2 [27–
29], where not only the transition metal Ni 𝑑 orbitals but also the rare-earth element Nd
𝑓 orbitals make great contribution to characteristics of the electronic structure. Due to
self-interaction errors, rare-earth element 𝑓 electrons are not handled well by traditional
methods and the only way to cope with it is to place the 4𝑓 electrons in the core [30].
In our method, Nd 𝑓 electrons are also placed in the valence basis and are important
objects of research.

Besides its capability of showing the reliance of our calculation framework, NdNiO2

has also attracted much attention due to the recent discovery of superconductivity in Sr-
doped NdNiO2 [27]. The interest of investigating this material is motivated by cuprates,
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a family of high temperature superconductors [31, 32]. The quasi-two-dimensional
𝑑𝑥2−𝑦2-dominiated electronic structure in copper oxide (CuO2) planes is believed to be
crucial to the high transition temperature [33]. This discovery has motivated the study
of compounds with similar crystal and electronic structure, with the aim of finding
additional superconductors and understanding the origins of copper oxide superconduc-
tivity. Since nickel is just besides copper in the periodic table, it becomes a promising
candidate for constructing a kind of nickel oxide planes with superconductivity [34, 35].
Harold Hwang and colleagues [27] have reported the observation of superconductivity
in an infinite-layer nickelate that is isostructural to infinite-layer copper oxides.

Since most correlations in NdNiO2 are not qualitatively captured by the weakly corre-
lated method, an outer-loop self-consistency connecting weak and strong correlation [36]
is considered to improve the calculation, which helps relax the weakly correlated orbitals
in the presence of strong correlation coming from impurity orbitals. In the outer loop of
SEET, we use the converged Green’s function that contains the self-energy obtained by
impurity solvers and pass it back to the GW approximation as a zeroth-order Green’s
function. Then GW prepare a modified weakly correlated solution and inner-loop SEET
is iterated fully to self-consistency. These procedures are repeated until the outer-loop
self-consistency is achieved. Due to the self-consistent nature of the loop, the converged
GW Green’s function will be consistent at the end.

In the Green’s function language, it is easier to perform calculations with imagi-
nary time and Matsubara quantities than real time and real frequency ones. So what
we obtained from numerical simulations are Matsubara quantities. To compared with
experimental measurements, analytical continuation [37] is required to obtain real axis
quantities from Matsubara ones. Two methods are applied for this purpose: one is Max-
Ent [38–40], and another one is Nevanlinna analytical continuation [41]. From our data,
Nevanlinna method, together with Wannier interpolation [42], give momentum-resolved
spectral function near Fermi energy with higher resolution.

Besides spectral function, the optical properties of solids are also common and di-
rect observations in experiments. Experiments on optical reflectivity, transmission and
refraction provide the way to determine the dielectric constant and the optical conduc-
tivity of the solid, which is of much significance for the quantitative determination of
the electronic band structure of the solids. From numerical perspective, we are encour-
aged to derive the optical conductivity for real materials in Green’s function language

3



from lowest order to higher order, in order to compare with the experimental data. The
optical conductivity in Gaussian-type Bloch wave basis at lowest order is derived from
linear response theory. Further investigation is promising to implement.

In this thesis, we will proceed as follows: In Chp. 2, we overview the existing methods
on real material calculation and point out the advantages and limitations of each method.
Then in Chps. 3-5, the methodology of the calculation framework will be presented,
where the background of DFT is shown in Chp. 3, many-body perturbation theory
(MBPT) is introduced in Chp. 4 and the quantum embedding theory is discussed in Chp.
5. After that, Chp. 6 explains the required techniques to obtain momentum-resolved
spectrum and thermodynamic quantites. Then, the theory of optical conductivity in
real materials is derived in Chp. 7. Finally, the implementation of the above calculation
framework on NdNiO2 is demonstrated in Chp. 8.

4



Chapter 2

Motivation

In this chapter, we will overview the existing methods on real material calculations,
especially the ones dealing with the strongly correlated systems, and discuss the merits
and limitations of each method.

In order to quantitatively describe the strongly correlated systems, it is important
to treat both strong and weak correlations simultaneously. Two typical conceptual
approaches are used here: one is processing the entire system by means of significant
approximation of correlated effects, while the other one is construction of the model
system with a reduction to a few “relevant” degrees of freedom or essential orbitals near
the Fermi level.

DFT [12], as a typical example of the first approach, has revolutionized the way we
deal with the many-electron problem. It can be considered to be a generally accepted
model of condensed matter physics due to the low computational cost. However, DFT
is well known to fail to treat strong correlations properly and is difficult to identify the
most suitable method for a particular application [43].

Green’s function formalism provides an extensive series of many-body perturbation
theories (MBPTs) for the first approach beyond DFT. It accounts for electron correlation
by treating it as a perturbation to the Hartree-Fock wave function [44]. To the first order
approximation, the Hartree-Fock (HF) theory enables one to determine the best set of
single particle states that is optimized for each Hamiltonian and for a given number of
particles. Its computational efficiency enables it to provide a good starting point for more
accurate methods. But its disability of taking the effects of electron correlation beyond
the mean-field theory allows for the exploration of the higher-order approximations,

5



such as the self-consistent second-order Green’s function method (GF2) [45–48] and the
self-consistent GW (scGW ) approximation [7]. They are believed to be more accurate
in predicting the band gaps than DFT. GF2 is computationally less expensive than GW
and can be used to study larger systems. GW is more accurate than GF2 for strongly
correlated systems but is computationally more expensive. In spite of their theoretical
merits, the applications of scGW and GF2 are typically orders of magnitude more
expensive than those of DFT, which prohibit straightforward applications of realistic
materials [49].

Instead of treating the full Hamiltonian with potentially severe approximations to
electron correlations as the first approach states, the second approach can yield precise
results for the effective model systems. ED [50–53], for example, has been used early
on as a solver for the Anderson impurity model. The ED method works on a finite
Hamiltonian whose size is the limiting factor for its applicability. Hence, the effective
hybridization function needs to be “discretized”, i.e., the number of energy levels of the
bath needs to be finite and small, while it is infinite in the thermodynamic limit [54].
When used in realistic systems, the construction of the parameters of the effective model
accounts for significant uncertainties and potential sources for errors.

In the presence of strong electron correlations, quantum embedding theories combine
the best aspect of the above two approaches, by solving the systems using DFT or
MBPT and construct a model system based on the results. DMFT and its variants are
such a widely used method. Ordinary DMFT [9–11] schemes assume the lattice self-
energy to be a momentum-independent quantity so that a many-body lattice problem
can be mapped to a many-body local problem. This approximation becomes exact in
the limit of lattices with infinite coordination and then constrains the application of
DMFT to the situation where the interactions are predominantly local and self-energy
contributions from non-local terms (in both interactions and propagators) are negligible
[1].

LDA+DMFT is a technique that combines DFT and DMFT to account for non-local
correlation between unit cells [55, 56]. It has been widely used to describe strongly
correlated materials, as shown in References. [56–58]. However, The DFT component
cannot be improved in a systematic manner, and LDA+DMFT is plagued by the is-
sue of double counting. Additionally, on-site Coulomb interactions are adjusted to fit
experiments empirically, which is used to parameterize the impurity Hamiltonian in
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LDA+DMFT [59].
A combined GW+DMFT [60, 61] was introduced several years back with a view

to avoiding ad hoc nature of the Hubbard parameter and double counting arising out
of traditional LDA+DMFT combinations. This scheme inherits the virtues of its two
parent theories: a good description of the local low energy correlation physics encoded in
a renormalized quasi-particle band structure, spectral weight transfer to Hubbard bands,
and the physics of screening driven by long-range Coulomb interactions [61]. In practice,
numerous technical and theoretical limitations exist. It is extremely technically difficult
to achieve a fully consistent solution for the GW problem. The various approximations
employed (quasi-particles, no full self-consistency, etc) at the level of GW along with the
difficulty of numerically solving multi-orbital impurity problems with general non-local
time-dependent interactions means that the rigorous diagrammatic footing described
above is severely approximated in practical implementations of the GW+DMFT method
[62].
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Chapter 3

Density Functional Theory

Prior to the 1960s, approximate methods, such as the Hartree approximation [63], were
generally used to calculate the electron junction of condensed matter systems. Although
these methods have certain limitations, they still provide tools for relevant research. In
the 1960s, Kohn and his collaborators proposed density functional theory (DFT) [64, 65]
and established the Kohn-Sham equation, which, combined with the local density func-
tional approximation, laid the foundation for modern electronic structure calculations.
For this, Kohn and Pople, the founder of computational chemistry, shared the 1998 No-
bel Prize in Chemistry. With the continuous development of density functional theory
and the progress of computational methods and computer performance, computational
condensed matter physics has gradually shifted from the qualitative interpretation of
experimental data to the quantitative prediction of physical and chemical properties of
actual materials with first principles.

The development of density functional theory led to the study of electronic structure
and is regarded as a major breakthrough in computational condensed matter physics.
In many fields such as nuclear physics, molecular physics, chemistry and so on have
been paid attention to and widely used. In fact, density functional theory has not
only widely influenced many disciplines, but also received feedback from various re-
search fields. During the long period of development of density functional theory, due
to its dependence on the mean field approximation in specific applications, the physics
community has not paid enough attention to density functional theory. With the estab-
lishment of exchange-correlation (xc) energy parameterization [66] under local-density
approximation (LDA) and the development of gradient-corrected approximation (GGA)
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[67], density functional theory was widely used to describe the many-body systems.
It is still a grand challenge to understand the many-body effects in materials, by all

means, since the early days of the quantum mechanics. In fact, the general electronic
Hamiltonian which describes all possible systems, is shown in the non-relativistic limit
and the Born-Oppenheimer approximation [68] as

𝐻 =
𝑁

∑
𝑖

(−1
2

∇2 + 𝑣(r𝑖)) + ∑
𝑖<𝑗

𝑈(r𝑖, r𝑗) (3.1)

where 𝑁 is the number of electrons, 𝑣(r𝑖) is the potential for a single electron and
𝑈(r𝑖, r𝑗) is the electron-electron interaction. For a Coulomb system (the only type of
system we consider in this thesis) one has

̂𝑈 = ∑
𝑖<𝑗

𝑈(r𝑖, r𝑗) = ∑
𝑖<𝑗

1
|r𝑖 − r𝑗|

. (3.2)

Note that it is universal over any system of particles interacting with the Coulomb
interaction, just as the kinetic energy operator

̂𝑇 = −1
2

∑
𝑖

∇2
𝑖 . (3.3)

For a molecule or a solid one has

̂𝑉 = ∑
𝑖

𝑣(r𝑖) = ∑
𝑖𝑘

𝑍𝑘
|r𝑖 − R𝑘|

, (3.4)

where the sum on 𝑘 extends over all nuclei in the system, each with atomic number 𝑍𝑘

and position R𝑘.
There are many powerful methods developed for solving Schrodinger’s equation, such

as diagrammatic perturbation theory (based on Feynman diagrams and Green’s func-
tions) [69–71] in physics and configuration interaction (CI) methods [72] in chemistry.
The high demand for the computational resources makes these approaches simply im-
possible to be applied to large and complex systems.

Many studies are dedicated to how to improve the efficiency but still study the systems
in a very fundamental way. Fortunately, DFT provides a viable alternative, less accurate
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perhaps, but much more versatile. Although DFT is formally exact, it makes complex
systems tractable at the expense of a little accuracy where its performance depends on
the quality of the approximate density functionals used.

The big picture for DFT is that it no longer takes electrons as individuals, but consider
it as a whole and then the main concern becomes electron density. DFT shifts the
perspective from the electronic wave function, which depends on 𝑁 three dimensional
coordinates, Ψ(r1, … , r𝑁), to the electron density 𝑛(r)

𝑛(r) = 𝑁 ∫ 𝑑3𝑟2 ∫ 𝑑3𝑟3 ⋯ ∫ 𝑑3𝑟𝑁Ψ∗(r, r2, … , r𝑁)Ψ(r, r2, … , r𝑁), (3.5)

a function of a single coordinate, which provides a way to systematically map the many-
body problem, with ̂𝑈, onto a single-body problem, without ̂𝑈.

3.1 The Hohenberg-Kohn theorem

The Hohenberg-Kohn (HK) theorem [64] lies at the heart of DFT. Among the series
of theorems Hohenberg and Kohn proposed, there are three statements that are of the
most importance.

1. The ground-state (GS) wave function is a unique functional of the GS density

Ψ0 = Ψ[𝑛0] (3.6)

and thus observables are also unique functionals of the GS density

𝑂0 = 𝑂[𝑛0] = ⟨Ψ[𝑛0]|�̂�|Ψ[𝑛0]⟩ . (3.7)

2. The GS energy has the following properties, which states that energy evaluated
from density that is not ground state energy will be never below the true ground state
energy.

𝐸𝑣,0 = 𝐸𝑣[𝑛0] = ⟨Ψ[𝑛0]|�̂�|Ψ[𝑛0]⟩ ≤ 𝐸𝑣[𝑛′] (3.8)

where �̂� = ̂𝑇 + ̂𝑈 + ̂𝑉. This follows from the Rayleigh-Ritz variational principle [73].
Much like the variational principle used in quantum mechanics, we can adopt a similar
approach in the realm of DFT to calculate the energy of a system with an approximate

10



density. In this method, a single parameter is introduced as a flexible variable, and the
energy is initially computed. Subsequently, this parameter is adjusted to minimize the
energy until it converges to the ground state (GS) energy. This parameter could be
the lattice constant or the angle between two atoms, for instance. DFT predominantly
provides information about ground states, and while this might seem limiting, it’s worth
noting that in many solid-state systems, excitations can be effectively described as a
collection of quasi-particles. Therefore, it becomes possible to investigate the properties
of these quasi-particles within the ground state. For those solid-state materials where
excitations cannot be adequately represented as quasi-particles, alternative theories,
such as time-dependent density functional theory (time-dependent density functional
theory (TDDFT)) [74], have been developed to address the properties of excited states.

3. GS density does determine not only the GS wave function Ψ0, but also the potential
𝑣(r) [75–77]

𝑣(r) = 𝑣[𝑛0](r). (3.9)

As a consequence, 𝑛0 now is able to determine the complete Hamiltonian, with the
operator ̂𝑇 and ̂𝑈 fixed and the operator ̂𝑉 as

𝑉 [𝑛] = ∫ 𝑑3𝑟𝑛(r)𝑣(r), (3.10)

and thus all excited states too:

Ψ𝑘(r1, r2, … , r𝑁) = Ψ𝑘[𝑛0], (3.11)

where 𝑘 labels the entire spectrum of the many-body Hamiltonian �̂�. When considering
the GS energy as a functional of the external potential, this can be viewed as a Legendre
transform [78].

3.2 The Kohn-Sham equations

The minimization of 𝐸𝑣[𝑛] is, in general, a tough numerical problem on its own. To
begin with, reliable approximations for 𝑇 [𝑛] and 𝑈[𝑛] are required. In the Thomas-Fermi
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approximation [79, 80], the full interaction energy is approximated by the Hartree energy

𝑈[𝑛] ≈ 𝑈𝐻[𝑛] = 1
2

∫ 𝑑3𝑟 ∫ 𝑑3𝑟′ 𝑛(r)𝑛(r′)
|r − r′|

(3.12)

and the kinetic energy is approximated by that of a system of non-interacting electrons

𝑇 [𝑛] ≈ 𝑇𝑠[𝑛] = −1
2

𝑁
∑

𝑖
∫ 𝑑3𝑟𝜙∗

𝑖 (r)∇2𝜙𝑖(r). (3.13)

Then the GS energy can be split into

𝐸𝑣[𝑛] = 𝑇𝑠[{𝜙[𝑛]}] + ∫ 𝑑3𝑟𝑛(r)𝑣𝑒𝑥𝑡(r) + 1
2

∫ 𝑑3𝑟 ∫ 𝑑3𝑟′ 𝑛(r)𝑛(r′)
|r − r′|

+ 𝐸𝑥𝑐[𝑛] (3.14)

where 𝑣𝑒𝑥𝑡(r) is the external potential of the system, and the last term defines the xc
energy 𝐸𝑥𝑐, for which one can give no simple expression.

However, if 𝑛(r) varies slowly sufficiently, one can assume that

𝐸𝑥𝑐[𝑛] = ∫ 𝑑3𝑟𝑛(r)𝜖𝑥𝑐[𝑛] (3.15)

where 𝜖𝑥𝑐[𝑛] is the xc energy per electron of a uniform electron gas of density 𝑛(r).
From the stationary property of Eq.3.14, we can perform the minimization

0 = 𝛿𝐸𝑣[𝑛]
𝛿𝑛(r)

= 𝛿𝑇𝑠[𝑛]
𝛿𝑛(r)

+ 𝛿𝑉 [𝑛]
𝛿𝑛(r)

+ 𝛿𝑈𝐻[𝑛]
𝛿𝑛(r)

+ 𝛿𝐸𝑥𝑐[𝑛]
𝛿𝑛(r)

= 𝛿𝑇𝑠[𝑛]
𝛿𝑛(r)

+ 𝜑(r) + 𝜇𝑥𝑐[𝑛(r)]
(3.16)

where
𝜑(r) = 𝑣𝑒𝑥𝑡(r) + ∫ 𝑑3𝑟′ 𝑛(r′)

|r − r′|
(3.17)

and
𝜇𝑥𝑐[𝑛(r)] = 𝑑(𝑛(r)𝜖𝑥𝑐[𝑛(r)])

𝑑𝑛(r)
(3.18)

is the exchange and correlation contribute to the chemical potential of a uniform electron
gas of density 𝑛(r).

Based on the derivation above, Kohn and Sham [65] proposed an auxiliary reference
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system of non-interacting electron gas, which has the same GS energy as the interacting
system. One can define the Kohn-Sham (KS) potential as

𝑣𝐾𝑆(r) = 𝜑(r) + 𝜇𝑥𝑐[𝑛(r)]. (3.19)

Then the many-body Schrodinger equation becomes separable and the density 𝑛(r) can
be obtained by simply solving the one-particle Schrodinger equation, which is called as
the KS equation,

[−1
2

∇2 + 𝑣𝐾𝑆(r)] 𝜓𝑖(r) = 𝜖𝑖𝜓𝑖(r) (3.20)

where 𝜓𝑖(r) is the GS eigenstates of the one-particle reference system of electron 𝑖, and
setting

𝑛(r) =
𝑁

∑
𝑖=1

|𝜓𝑖(r)|2. (3.21)

The scheme can be solved self-consistently. Begin with an assumed 𝑛(r), 𝜑(r) and
𝜇𝑥𝑐[𝑛(r)] are obtained by Eq.3.17 and Eq.3.18. Then the new 𝑛(r) can be found from
Eq.3.20 and Eq.3.21. The energy is given by

𝐸 =
𝑁

∑
𝑖=1

𝜖𝑖 − 1
2

∫ 𝑑3𝑟 ∫ 𝑑3𝑟′ 𝑛(r)𝑛(r′)
|r − r′|

+ ∫ 𝑑3𝑟𝑛(r) (𝜖𝑥𝑐[𝑛(r)] − 𝜇𝑥𝑐[𝑛(r)]) . (3.22)

3.3 Exchange-correlation potentials and
gradient-corrected approximation (GGA)

The difference in kinetic and interacting energy between the true and fictitious system,
i.e. 𝑇 − 𝑇𝑠 and 𝑈 − 𝑈𝐻, has been cast into the xc energy.

The deviation of the xc function in relation to the total number of particles is among
the most interesting characteristics of an exact functional, which has opposed all at-
tempts at describing it within local or semilocal approximations, shown as [81–83]

𝛿𝐸𝑥𝑐[𝑛]
𝛿𝑛(r)

∣
𝑁+𝛿

− 𝛿𝐸𝑥𝑐[𝑛]
𝛿𝑛(r)

∣
𝑁−𝛿

= 𝜖+
𝑥𝑐(r) − 𝜖−

𝑥𝑐(r) = Δ𝑥𝑐. (3.23)

where 𝛿 is an infinitesimal shift of the electron number 𝑁, and Δ𝑥𝑐 is a system-dependent,
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but r-independent shift of the xc potential 𝑣𝑥𝑐(r) as it passes from the electorn-poor to
the electron-rich side of integer 𝑁. The noninteracting kinetic energy functional has a
similar discontinuity, given by

𝛿𝑇𝑠[𝑛]
𝛿𝑛(r)

∣
𝑁+𝛿

− 𝛿𝑇𝑠[𝑛]
𝛿𝑛(r)

∣
𝑁−𝛿

= 𝜖𝑁+1 − 𝜖𝑁 = Δ𝐾𝑆 (3.24)

where 𝜖𝑁 and 𝜖𝑁+1 are the KS one-particle energies of the highest occupied and low-
est unoccupied eigenstate. The true fundamental gap is the discontinuity of the total
ground-state energy functional [81–84],

Δ = 𝛿𝐸[𝑛]
𝛿𝑛(r)

∣
𝑁+𝛿

− 𝛿𝐸[𝑛]
𝛿𝑛(r)

∣
𝑁−𝛿

= Δ𝐾𝑆 + Δ𝑥𝑐. (3.25)

Standard density functionals predict Δ𝑥𝑐 = 0, and thus often underestimate the
fundamental gap. The most common approximations are LDA and GGA [67]. LDA
divides the whole inhomogeneous system into a lot of small pieces, and in the region of
each piece, subsystem is regarded as homogeneous. However, any real system is spatially
inhomogeneous, i.e., it has a spatially varying density 𝑛(r), and thus it would be useful
to include information on the rate of this variation in the functional

𝐸𝐺𝐺𝐴
𝑥𝑐 [𝑛] = ∫ 𝑑3𝑟𝑓(𝑛(r), ∇𝑛(r)), (3.26)

which have become known as GGA [67].
Different GGA differs in the construction of 𝑓(𝑛(r), ∇𝑛(r)). The most common GGA

is PBE functional [85], and is applied to both molecule and solids, including metals. It
is a non-empirical functional, though not the most accurate GGA [86, 87], that is able
to hold reasonable accuracy and can be generalized for a wide range of systems.

3.4 Implementations of DFT – Basis sets

There are basically three distinct types of approximations involved in DFT calculation.
One is the utilization of a fictitious reference system with the sum of single particle to
represent the true many-body system. The second approximation refers to constructing
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the expression for the unknown xc functional. The third one consists of the numerical
approximations involved in solving the differential equation, whose main aspect is the
selection of a suitable basis set.

In practice, the numerical solution of the KS differential equation Eq.3.20 is typically
obtained by expanding the KS orbitals to a suitable set of basis functions and solving for
the coefficients in this expansion and its eigenvalues from the resulting secular equation.
In the electronic structure theory, one of the main tasks is to construct such a set of
basis functions, which is of relevance to a wide range of other areas beyond DFT.

Plane-wave basis sets are popular in calculations involving periodic solids. The choice
of a plane wave basis set is normally determined by the cutoff energy. The calculation
then includes the plane waves in the simulation cell that are below the energy criterion.
In practical applications, plane-wave basis sets are frequently employed in conjunction
with an ‘effective core potential’ or pseudopotential. This approach allows the plane
waves to specifically describe the valence charge density, focusing on the electrons that
primarily participate in chemical interactions. The rationale behind this choice lies in
the fact that core electrons are typically tightly localized in the vicinity of atomic nuclei.
Consequently, they generate substantial wavefunction and charge density gradients near
the nuclei. These gradients pose a challenge for accurate representation using a plane-
wave basis set, unless an extremely high energy cutoff is used, resulting in exceptionally
small wavelengths that can become computationally burdensome.

Although any basis set that sufficiently spans the space of electron distribution could
be used, the concept of Molecular Orbitals as Linear Combinations of Atomic Orbitals
(LCAO) [88] suggests a very natural set of basis functions: AO-type functions centered
on each nuclei. One common used choice are Gaussian-type orbital (GTO) [89] for basis
functions. A Gaussian basis function has the form

𝐺𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = 𝑁𝑛 𝑟𝑛−1𝑒−𝛼𝑟2⏟⏟⏟⏟⏟
radial part

𝑌 𝑚
𝑙 (𝜃, 𝜙)⏟

angular part

. (3.27)

Note that in all the basis sets, only the radial part of the orbital changes, and the
spherical harmonic functions are used in all of them to describe the angular part of the
orbital.

The primary motivation for utilizing Gaussian basis functions in molecular quantum
chemical calculations is the Gaussian Product Theorem [90–92]. This theorem assures
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that when two Gaussian-type orbitals (GTOs) centered on distinct atoms are multiplied,
the result is a finite summation of Gaussians centered along the axis connecting those
atoms. This property facilitates the reduction of four-center integrals to finite combi-
nations of two-center integrals and, subsequently, to finite sums of one-center integrals.
Handling GTOs is numerically more tractable because the product of two GTOs from
different atoms yields another GTO positioned in between.

Conversely, the primary advantage of employing a plane-wave basis set lies in its
guaranteed smooth and monotonous convergence towards the target wavefunction. In
contrast, when localized basis sets are employed, achieving monotonous convergence to
the basis set limit can be challenging due to issues related to over-completeness. In
larger basis sets, functions associated with different atoms tend to exhibit similarities,
and numerous eigenvalues of the overlap matrix tend to approach zero. Additionally,
certain integrals and operations are more straightforward to program and execute with
plane-wave basis functions compared to their localized counterparts. When this prop-
erty is coupled with separable pseudopotentials of the Kleinman-Bylander type [93]
and preconditioned conjugate gradient solution techniques, it becomes possible to dy-
namically simulate periodic systems containing hundreds of atoms. Furthermore, as all
functions within the plane-wave basis are mutually orthogonal and not tied to specific
atoms, plane-wave basis sets do not exhibit basis-set superposition errors. However, it’s
important to note that the size of the simulation cell has an influence on the plane-wave
basis set, which can complicate the optimization of cell size.

3.5 The merits and shortcomings of DFT

DFT has been widely spread in the condensed matter community since it provides
surprisingly good results for a wide range of materials with regard to the experiments.
Furthermore, its computational cost remains relatively low and make the manipulation
of complex systems tractable with growing computer power. Even though there are
intrinsic approximations, DFT is usually able to provide a good starting point for the
further study, such as diagrammatic perturbation methods and quantum embedding
methods.

The difficulty of identifying the most suitable method for a particular application is
one of the main disadvantages. The user should refer to the literature to identify which
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setup is suitable for the particular problem or application. Another disadvantage of
density field theory is the fact that it does not appropriately take into account exchange
interactions. While the existence of a functional that can correct exchanges has been
demonstrated, this function is not known and approximations to it are based on semi-
parametric methods. Despite notable advancements in recent years, challenges persist
in applying DFT to accurately depict various intermolecular interactions, which are cru-
cial for comprehending chemical reactions. These challenges are particularly pronounced
in the context of Van der Waals forces (dispersion); charge transfer excitations; tran-
sition states, global potential energy surfaces, dopant interactions and some strongly
correlated systems; and in calculations of the band gap and ferromagnetism in semi-
conductors. These intricacies underscore the ongoing need for advancements in DFT
methodologies to effectively tackle these complex aspects of molecular and materials
science.
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Chapter 4

Many-Body Perturbation Theory

One powerful tool that has revolutionized our understanding of many-body systems is
Many-Body Perturbation Theory (MBPT) [94]. This theory has unveiled a compre-
hensive framework for comprehending various phenomena in condensed matter physics,
nuclear physics, and quantum chemistry. Central to this theory is the idea that the
complex interactions between multiple particles can be approximated by summing pro-
gressively more terms in a series. The approximations based on this theory, such as the
HF approximation [63], GF2 [95], and the GW approximation [96], have all proven to
be useful for addressing the complexities associated with many-body systems.

The HF approximation [63] treats each particle as moving independently under the
effect of an averaged field created by other particles. Even though this approximation
cannot capture correlation effects between particles, it offers reasonably good predictions
about the behavior of complex systems.

On the other hand, the GF2 [45–48] is more sophisticated, involving the creation of
a self-consistent field that accounts for both the quantum fluctuations and the corre-
lations between the particles, leading to a refined estimate of ground-state energy and
excitations.

The GW approximation [96] is a formalism that goes beyond the HF approximation
by incorporating the screened Coulomb interaction and is largely used in the field of
quantum chemistry and solid-state physics to calculate the properties of electrons in
solids. By having these approximations and methodologies at our disposal, it is possible
to build a more complete picture of the behavior of many-body systems, sequentially
unveiling the mysteries of quantum world.
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4.1 Electronic Hamiltonian and atomic
Gaussain-type orbital

In the second quantization formalism, the Hamiltonian in Eq.3.1 can be expressed as

�̂� = ∑
𝑖𝑗

∑
𝜎

(𝐻0)𝑖𝑗 ̂𝑐†
𝑖𝜎 ̂𝑐𝑗𝜎 + ∑

𝑖𝑗𝑘𝑙
∑
𝜎𝜎′

𝑈𝑖𝑗𝑘𝑙 ̂𝑐†
𝑖𝜎 ̂𝑐†

𝑘𝜎′ ̂𝑐𝑙𝜎′ ̂𝑐𝑗𝜎 (4.1)

where ̂𝑐†
𝑖𝜎 ( ̂𝑐𝑖𝜎) is the creation (annihilation) electronic operators in a single-particle

basis 𝜙𝑖(r) with spin 𝜎, and (𝐻0)𝑖𝑗 (𝑈𝑖𝑗𝑘𝑙) are the matrix elements of the one-electron
(two-electron) part of the Hamiltonian.

Atomic GTO [13–16] 𝜙𝑖(r) are specifically designed as a finite basis set of linear
superposition of Gaussian functions to model the behavior of electrons in isolated atoms.
They are characterized by their center, exponent, and normalization factor. The center
represents the position of the atom, the exponent determines the spread of the orbital,
and the normalization factor ensures that the orbital is properly normalized (i.e., its
integral squared over all space is equal to one). Atomic GTOs provide a flexible and
efficient representation of electron density and wavefunctions in atoms, enabling accurate
calculations of atomic properties.

However, the adoption of GTOs is accompanied by several notable drawbacks. Firstly,
GTOs lack correct asymptotic behavior, as they decay with an 𝑒−𝑟2 behavior rather than
the expected exponential 𝑒−𝑟 decay of true atomic orbitals. This discrepancy can in-
troduce inaccuracies, notably in the calculation of ionization potentials and electron
affinities. Additionally, addressing the incorrect asymptotic behavior necessitates em-
ploying multiple GTOs to approximate a single atomic orbital, thereby increasing com-
putational costs. Furthermore, GTO-based results are sensitive to the choice of basis
set, which adds complexity and system-dependent variability to the calculations. Core
orbitals pose another challenge, as GTOs struggle to accurately represent their tightly
bound, peaked-at-the-nucleus nature. Lastly, GTOs have limitations in capturing elec-
tron correlation effects, requiring more advanced methods in some cases. Despite these
limitations, GTOs are favored for their mathematical simplicity and computational effi-
ciency, particularly in moderately sized systems where a balance between accuracy and
cost is sought.
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The matrix element in Eq.4.1 can be expressed as

(𝐻0)𝑖𝑗 = ∫ 𝑑r𝜙∗
𝑖 (r) ̂𝐻0𝜙𝑗(r) (4.2)

and
𝑈𝑖𝑗𝑘𝑙 = ∫ 𝑑r ∫ 𝑑r′𝜙∗

𝑖 (r)𝜙𝑗(r) 1
|rr′|

𝜙∗
𝑘(r′)𝜙𝑙(r′) (4.3)

Atomic GTOs are non-orthogonal, so the anti-communication relation of the electronic
operators is given by

{ ̂𝑐†
𝑖𝜎, ̂𝑐𝑗𝜎′} = 𝑆𝑖𝑗𝛿𝜎𝜎′ (4.4)

where S is the overlap matrix

𝑆𝑖𝑗 = ∫ 𝑑r𝜙∗
𝑖 (r)𝜙𝑗(r) (4.5)

4.1.1 Bloch Gaussian-type orbital

Bloch GTOs [13–16] are used to describe the electronic structure of solids. Solids have
a periodic crystal structure, and the Bloch’s theorem plays a fundamental role in de-
scribing the behavior of electrons in such systems. It states that the wavefunctions of
electrons in a crystalline solid can be expressed as a product of a plane wave and a
periodic function [97]. The periodic part is represented by Bloch functions, and can be
expanded as a sum of periodic GTOs. These Bloch GTOs capture the localized behav-
ior of electrons within individual unit cells of the crystal lattice, while the plane wave
component represents the delocalized nature of electrons in the solid.

Bloch GTOs can be regarded as transitional-symmetry-adapted linear combination of
Gaussian atomic orbitals (AOs) of the form [13]

𝜙k
𝑖 (r) = ∑

T
𝑒𝑖k⋅T ̃𝜙𝑖(r − T) ≡ 𝑒𝑖k⋅r𝑢k

𝑖 (r) (4.6)

where T is the lattice translation vector and k is crystal momentum vector in the first
Brillouin zone (BZ). The latter equivalence in Eq.4.6 comes from the Bloch’s theorem,
where 𝑢k

𝑖 (r) is a Bloch function that is fully periodic with regard to all lattice transla-
tions.
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We can expand the Bloch GTOs in a set of auxiliary plane waves:

𝜙k
𝑖 (r) = ∑

G
𝜙𝑘

𝑖 (G)𝑒𝑖(k+G)⋅r = ∑
R

𝜙R
𝑖 (r)𝑒𝑖k⋅R (4.7)

𝜙k
𝑖 (G) = 1

Ω
∫

Ω
𝑑r𝜙k

𝑖 (r)𝑒−𝑖(k+G)⋅r (4.8)

where Ω represents the unit cell volume, G represents a reciprocal lattice vector, R
represents unit cell index and 𝜙R

𝑖 (r) are atomic-centered Gaussian functions shifted to
the unit cell with label R, i.e. 𝜙R

𝑖 (r) = 𝜑𝑖(r − R) in which 𝜑𝑖(r) are these functions in
the central unit cell.

For two Bloch basis functions, the overlap matrix is defined

𝑆𝑖𝑗 = ∫ 𝑑r𝜙k∗
𝑖 (r)𝜙k′

𝑗 (r) = 𝑁𝛿kk′ ∑
R

𝑒𝑖k′⋅R ∫ 𝑑r𝜙0
𝑖 (r)𝜙R

𝑖 (r) (4.9)

The Gaussian-type Bloch waves are orthogonal for different crystal momenta.
Then the corresponding Hamiltonian in Bloch GTOs can be expressed as

�̂� = ∑
k

∑
𝑖𝑗

∑
𝜎𝜎′

(𝐻0)k
𝑖𝜎,𝑗𝜎′ ̂𝑐k†

𝑖𝜎 ̂𝑐k
𝑗𝜎′

+ 1
2𝑁𝑘

∑
𝑖𝑗𝑘𝑙

∑
kk′q

∑
𝜎𝜎′

𝑈k,k−q,k′,k′+q
𝑖𝑗𝑘𝑙 ̂𝑐k†

𝑖𝜎 ̂𝑐k†
𝑖𝜎 ̂𝑐k′†

𝑘𝜎′ ̂𝑐k′+q
𝑗𝜎′ ̂𝑐k−q

𝑗𝜎′

(4.10)

where ̂𝑐k†
𝑖𝜎 ( ̂𝑐k

𝑖𝜎) are the creation (annihilation) electronic operators for the single-particle
spin-orbital basis with crystal momentum 𝑘, spin 𝜎 and basis function index 𝑖.

4.2 Hartree-Fock theory

The HF approximation [63] is a mean-field approach used in electronic structure calcu-
lations to describe the behavior of electrons in many-body systems. It plays a central
role in understanding the electronic structures of molecules, atoms, and solids. The HF
approximation assumes that each electron moves in an average potential generated by
all other electrons in the system, neglecting the dynamic correlation effects, and that the
wavefunction of each electron is independent of the wavefunctions of the other electrons.
This simplification leads to some limitations in the accuracy of the approximation, but
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still provides a practical starting point and valuable insights into the properties of ma-
terials. It serves as a stepping stone to more accurate but computationally intensive
methods that consider electron-electron correlation effects [73].

+
Figure 4.1: Feynman diagrams for the self-energy in the Hartree-Fock approxima-

tion.

The HF theory is the first order approximation to the self-energy, which is shown
using Feynman diagrams [98] in Fig. The HF self-energy is static and can be further
divided into a Hartree term (J) and an exchange term (K)

(Σ𝐻𝐹)k
𝑖𝜎,𝑗𝜎′ = 𝐽k

𝑖𝜎,𝑗𝜎′ + 𝐾k
𝑖𝜎,𝑗𝜎′ (4.11)

where in the Bloch GTOs,

𝐽k
𝑖𝜎,𝑗𝜎′ = 1

𝑁𝑘𝛽
∑
k′𝑛

∑
𝑎𝑏𝜎′

𝐺k′

𝑏𝜎′,𝑎𝜎′(𝑖𝜔𝑛)𝑈kkk′k′

𝑖𝑗𝑎𝑏 = 1
𝑁𝑘

∑
k′

∑
𝑎𝑏𝜎′

𝐺k′

𝑏𝜎′,𝑎𝜎′(𝜏 = 0−)𝑈kkk′k′

𝑖𝑗𝑎𝑏

= 1
𝑁𝑘

∑
k′

∑
𝑎𝑏𝜎′

𝛾k′

𝑏𝜎′,𝑎𝜎′𝑈kkk′k′

𝑖𝑗𝑎𝑏 ,

(4.12)
𝐾k

𝑖𝜎,𝑗𝜎′ = − 1
𝑁𝑘𝛽

∑
k′𝑛

∑
𝑎𝑏𝜎

𝐺k′

𝑎𝜎,𝑏𝜎(𝑖𝜔𝑛)𝑈kk′k′k
𝑖𝑎𝑏𝑗 = − 1

𝑁𝑘
∑
k′

∑
𝑎𝑏𝜎

𝐺k′

𝑎𝜎,𝑏𝜎(𝜏 = 0−)𝑈kk′k′k
𝑖𝑎𝑏𝑗

= − 1
𝑁𝑘

∑
k′

∑
𝑎𝑏𝜎

𝛾k′

𝑎𝜎,𝑏𝜎𝑈kk′k′k
𝑖𝑎𝑏𝑗

(4.13)
𝑁𝑘 is the number of k grids and 𝛾k is the density matrix.

In the HF method, the Fock matrix F is used to include the static part of the single-
electron energy operator of a given quantum system, which, in our case, is,

F = H0 + J + K (4.14)

Since the dynamic correlations are neglected by the HF approximation, the frequency-
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dependent HF Green’s function is

𝐺k
HF(𝑖𝜔𝑛) = [(𝑖𝜔𝑛 + 𝜇)Sk − Fk]−1 (4.15)

The HF equations are a set of integro-differential equations and cannot be solved
analytically for systems larger than a single electron. Therefore, they must be solved
iteratively. The iterative process typically begins with an initial guess for the molecular
orbitals. These are plugged into the Fock operator to compute an initial Fock matrix.
The Fock matrix is then diagonalized to give a new set of molecular orbitals. These
new orbitals are then used to construct a new Fock matrix, and the process is repeated.
This is known as a self-consistent field (SCF) procedure. The goal is to find a set of
orbitals that are unchanged by this process; in other words, they are self-consistent.
The iterative process is repeated until the energy converges to a predetermined level of
accuracy. This means that the difference in total energy between successive iterations
is less than a certain threshold.

While the Hartree-Fock method gives a reasonable approximation for many systems,
it does not include electron correlation effects. Therefore, it is often used as a starting
point for more accurate methods that do include these effects.

4.3 Self-consistent second-order Green’s function
method

The self-consistent second-order Green’s function method, also known as GF2, aims to go
beyond the limitations of the HF theory by incorporating electron-electron interactions
up to second order.

+ + +
Figure 4.2: Feynman diagrams for the second order self-energy within GF2. The

first two diagrams are frequency-independent, and are included in the
Fock matrix. The next two diagrams are frequency-dependent, and
represent the second-order correlation effects covered by Σ(𝜔).
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Based on the Hamiltonian expressed in a Bloch basis in reciprocal space shown in
Eq.4.10, the second-order self-energy is evaluated in an imaginary time formalism,

Σk,(2)
𝑖𝑗 (𝜏) = − 1

𝑁2
𝑘

∑
k1k2k3

∑
𝑘𝑙𝑚𝑛𝑝𝑞

𝐺k1
𝑘𝑙 (𝜏)𝐺k2𝑚𝑛(𝜏)𝐺k3

𝑝𝑞(𝜏)𝑈kk2k3k1
𝑖𝑚𝑞𝑘

× (2𝑈k1k3k2k
𝑙𝑝𝑛𝑗 − 𝑈k2k3k1k

𝑛𝑝𝑙𝑗 )𝛿k+k2,k1+k3

(4.16)

With the self-energy constructed, we can fast Fourier transform Σ(𝜏) to the frequency
domain and build the Green’s function as

𝐺(𝑖𝜔𝑛) = [(𝑖𝜔𝑛 + 𝜇)S − F − Σ(𝜔)]−1 (4.17)

In the bare second-order perturbation theory, known as Møller-Plesset second order
(MP2) [99–102], the HF Green’s function is employed in Eq.4.16 and the Dyson equation
is evaluated only once to yield the interacting Green’s function. MP2 widely fails to
predict gaps for materials with band gaps smaller than 6 eV [103].

In renormalized perturbation theories such as GF2, in order to obtain the full self-
consistency in both the static quantities (such as the density matrix, the Fock matrix as
well as the frequency-independent part of the self-energy Σ∞) and the dynamical self-
energy Σ(𝜔), we employ the following iterative procedures [45]: start from a restricted
HF calculation; adjust the chemical potential to obtain the electron number of HF so-
lution, then rebuild the Fock matrix and the HF Green’s functions using the Dyson
equation, repeat this step until we got a consistent static solution; construct the dy-
namical self-energy and then the interacting Green’s function for the next second-order
self-energy evaluation, until convergence is achieved in all quantities.

4.4 Self-consistent finite temperature GW
approximation

The GW approximation [96] is the simplest working approximation beyond the HF
approximation that takes screening into account. This screening arises from the corre-
lations between electrons, which prevent them from occupying the same single-particle
state due to the large Coulomb energy associated with it. As a result, a screening
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hole is created around each electron, reducing their interaction with other electrons and
lowering the Coulomb energy. By including screening effects, the GW approximation
can be regarded as a generalization of the HF approximation but with a dynamically
screened Coulomb interaction by replacing the bare Coulomb interaction 𝑈 by a screened
interaction 𝑊 [104]:

Σ𝐺𝑊(r, r′; 𝜔) = 𝑖
2𝜋

∫ 𝑑𝜔′𝐺(r, r′; 𝜔 + 𝜔′)𝑊(r, r′; 𝜔′) (4.18)

+ + + + ⋯
Figure 4.3: Feynman diagrams for the self-energy in the GW approximation.

Separating the self-energy into its static and dynamical part and considering on the
Matsubara axis, which is easy to tackle during the self-consistent process without re-
sorting to analytical continuation,

(Σ𝐺𝑊)k[G](𝑖𝜔𝑛) = (Σ𝐺𝑊,∞)k[G] + (Σ̃𝐺𝑊)k[G](𝑖𝜔𝑛) (4.19)

where (Σ𝐺𝑊,∞)k is the static HF self-energy, i.e. (Σ𝐻𝐹)k and (Σ̃𝐺𝑊)k(𝑖𝜔𝑛) is asso-
ciated with the GW self-energy that depends on frequency, derived through summing
an unlimited series of diagrams similar to those in the Random Phase Approximation
(RPA), often referred to as ‘bubble’ diagrams. And 𝜔𝑛 = (2𝑛 + 1)𝜋/𝛽, 𝑛 ∈ 𝒵 are
fermionic Matsubara frequencies, where 𝛽 is the inverse temperature.

On the imaginary-time axis 𝜏 ∈ [0, 𝛽], (Σ̃𝐺𝑊)k reads

(Σ̃𝐺𝑊)k
𝑖𝜎,𝑗𝜎(𝜏) = − 1

𝑁𝑘
∑

q
∑
𝑎𝑏

𝐺k−q
𝑎𝜎,𝑏𝜎(𝜏)�̃� k,k−q,k−q,k

𝑖𝑎𝑏𝑗 (𝜏) (4.20)

where �̃� is the effective screened interaction tensor, defined as the difference between
the full dynamically screened interaction 𝑊 and the bare interaction 𝑈, i.e. �̃� = 𝑊 −𝑈.
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Fourier transforms between imaginary-time and Matsubata frequency are defined as

𝐺k
𝑖𝜎,𝑗𝜎(𝑖𝜔𝑛) = ∫

𝛽

0
𝑑𝜏𝐺k

𝑖𝜎,𝑗𝜎(𝜏)𝑒𝑖𝜔𝑛𝜏 (4.21)

and
𝐺k

𝑖𝜎,𝑗𝜎(𝜏) = 1
𝛽

∑
𝑛

𝐺k
𝑖𝜎,𝑗𝜎(𝑖𝜔𝑛)𝑒−𝑖𝜔𝑛𝜏 (4.22)

Given an interacting Green’s function 𝐺k(𝜏), the correlated density matrix is determined
as

𝛾k = −𝐺k(𝜏 = 𝛽−) (4.23)

and thus the total number of electrons 𝑁𝑒 can be obtained by

𝑁𝑒 = 1
𝑁𝑘

∑
k

tr[𝛾k𝑆k] (4.24)

where the trace implies a sum over the diagonals in the spin-orbital space.
In the Matsubara frequency domain, the Dyson equation relating self-energies to

Green’s functions is

[𝐺k(𝑖𝜔𝑛)]−1 = (𝑖𝜔𝑛 + 𝜇)𝑆k − 𝐻k
0 − Σk[𝐺](𝑖𝜔𝑛)

= [𝐺k
0(𝑖𝜔𝑛)]−1 − Σk[𝐺](𝑖𝜔𝑛)

(4.25)

where 𝐺k
0(𝑖𝜔𝑛) is the non-interacting Green’s function of the one-electron Hamiltonian

𝐻k
0 and Σk[𝐺] is the self-energy being a functional of the full interacting Green’s function

𝐺k(𝑖𝜔𝑛). (Σ𝐺𝑊)k[G](𝑖𝜔𝑛) is the GW approximation of Σk[𝐺](𝑖𝜔𝑛).
Combining Eq.4.4 with the Dyson equation (Eq.4.4), the self-energy is solved as a

functional of the interacting Green’s function 𝐺k(𝑖𝜔𝑛) iteratively until self-consistency
between 𝐺k(𝑖𝜔𝑛) and (Σ𝐺𝑊)k(𝑖𝜔𝑛) is achieved [8].
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4.4.1 Decomposition of two-electron Coulomb interaction and
the screened interaction

In the GW approximation, the screened interaction 𝑊 is expressed as [96]

𝑊 k1k2k3k4
𝑖𝑗𝑘𝑙 (𝜏) = 𝑈k1k2k3k4

𝑖𝑗𝑘𝑙 + 1
𝑁𝑘

∑
k5k6k7k8

∑
𝑎𝑏𝑐𝑑

𝑈k1k2k5k6
𝑖𝑗𝑎𝑏 Πk5k6k7k8

𝑎𝑏𝑐𝑑 (𝜏)𝑊 k7k8k3k4
𝑐𝑑𝑘𝑙 (𝜏)

(4.26)
where Π is the non-interacting polarization function

Πk1k2k3k4
𝑎𝑏𝑐𝑑 (𝜏) = ∑

𝜎
𝐺k1

𝑑𝜎,𝑎𝜎(𝜏)𝐺k2
𝑏𝜎,𝑐𝜎(−𝜏)𝛿k1k4

𝛿k2k3
(4.27)

Given the substantial memory consumption of a two-electron Coulomb interaction
tensor 𝑈, it’s necessary to perform a decomposition on this tensor, which is displayed
as follows:

𝑈k,k−q,k′,k′+q
𝑖𝑗𝑘𝑙 = ∑

𝑄
𝑉 kk−q

𝑖𝑗 (𝑄)𝑉 k′k′+q
𝑘𝑙 (𝑄) (4.28)

where Q denotes an auxiliary decomposition index and 𝑉 kk−q
𝑖𝑗 is a tensor with two

momenta, two orbital indices and an auxiliary index.
The processes of decomposition encompass methods such as the Cholesky decomposi-

tion [105] and the density fitting technique, also referred to as the resolution-of-identity
(RI) approximation [106–108]. In the work of [8], they utilized periodic Gaussian density
fitting (GDF) with the overlap metric [109–111]. With an extra set of auxiliary Gaussian
orbitals 𝜒q

𝑄(r) acting as the auxiliary basis, we calculate Equation 6 as follows:

𝑉 k1k2
𝑖𝑗 (𝑄) = ∑

𝑃𝑃 ′

(𝐽q)1/2
𝑄𝑃 ′(𝐴q)−1

𝑃 ′𝑃𝐵k1k2
𝑖𝑗 (𝑃 ) (4.29)
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where q = k2 − k1, and

𝐴q
𝑃 ′𝑃 = ∫

Ω
𝑑r𝜒q∗

𝑃 (r)𝜒′q
𝑃 (r), (4.30)

𝐵k1k2
𝑖𝑗 (𝑃 ) = ∫

Ω
𝑑r𝜒q∗

𝑃 (r)𝑔k1∗
𝑖 (r1)𝑔k2

𝑗 (r), (4.31)

𝐽q
𝑃𝑄 = ∫ ∫ 𝑑r𝑑r′ 𝜒q∗

𝑃 (r)𝜒q
𝑄(r′)

|r − r′|
(4.32)

The above decomposition of Coulomb integrals enables us to repsent the effective
screened interaction tensor �̃� as

�̃� k,k−q,k−q,k
𝑖𝑗𝑘𝑙 (𝑖Ω𝑛) = ∑

𝑄𝑄′

𝑉 kk−q
𝑖𝑗 (𝑄) { ̃𝑃 q

0,𝑄𝑄′(𝑖Ω𝑛) + [ ̃𝑃 q
0 (𝑖Ω𝑛)]2𝑄𝑄′ + … } 𝑉 k−q,k

𝑘𝑙 (𝑄′)

(4.33)

= ∑
𝑄𝑄′

𝑉 kk−q
𝑖𝑗 (𝑄) ̃𝑃 q

𝑄𝑄′(𝑖Ω𝑛)𝑉 k−q,k
𝑘𝑙 (𝑄′) (4.34)

where Ω𝑛 = 2𝑛𝜋/𝛽 (𝑛 ∈ 𝒵) are bosonic Matsubara frequencies. The non-interacting
auxiliary function ̃𝑃 q

0 (𝑖Ω𝑛) is defined as

̃𝑃 q
0,𝑄𝑄′(𝑖Ω𝑛) = ∫

𝛽

0
𝑑𝜏 ̃𝑃 q

0,𝑄𝑄′(𝜏)𝑒𝑖Ω𝑛𝜏 (4.35)

where

̃𝑃 q
0,𝑄𝑄′(𝜏) = − 1

𝑁𝑘
∑

k
∑
𝜎𝜎′

∑
𝑎𝑏𝑐𝑑

𝑉 kk+q
𝑑𝑎 (𝑄)𝐺k

𝑐𝜎′,𝑑𝜎(−𝜏)𝐺k+q
𝑎𝜎,𝑏𝜎′(𝜏)𝑉 k+q,k

𝑏𝑐 (𝑄′) (4.36)

Thus the normalized auxiliary function can be calculated through the geometric series

̃𝑃 q(𝑖Ω𝑛) =
∞

∑
𝑚=1

[ ̃𝑃 q
0 (𝑖Ω𝑛)]𝑚 = [𝐼 − ̃𝑃 q

0 (𝑖Ω𝑛)]−1 ̃𝑃 q
0 (𝑖Ω𝑛) (4.37)

Transforming ̃𝑃 q(𝑖Ω𝑛) from the Matsubara frequency to the imaginary-time domain

̃𝑃 q
𝑄𝑄′(𝜏) = 1

𝛽
∑

𝑛

̃𝑃 q
𝑄𝑄′(𝑖Ω𝑛)𝑒−𝑖Ω𝑛𝜏 (4.38)
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At the end, the dynamical self-energy can be expressed in this way,

(Σ̃𝐺𝑊)k
𝑖𝜎,𝑗𝜎(𝜏) = − 1

𝑁𝑘
∑

q
∑
𝑎𝑏

∑
𝑄𝑄′

𝐺k−q
𝑎𝜎,𝑏𝜎(𝜏)𝑉 kk−q

𝑖𝑎 (𝑄) ̃𝑃 q
𝑄𝑄′(𝜏)𝑉 k−q,k

𝑏𝑗 (𝑄′) (4.39)

The dynamical self-energy is represented in a manner that allows for direct evalua-
tion along the imaginary-time axis. Self-consistent iterations along this axis are both
straightforward and stable. Additional approximations, such as ”quasi-particle” ap-
proximations or adjustments to the off-diagonal self-energy structure, are unnecessary.
Nonetheless, in order to determine real-frequency spectra and band gaps, an analytical
continuation to real frequencies is essential. Recently developed techniques in complex
analysis [41, 112] offer a precise means to carry out this critical step.
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Chapter 5

Quantum Embedding Theories

Quantum embedding theory is a powerful approach in the field of quantum chemistry
and condensed matter physics, which provides an effective way to describe the elec-
tronic structure of complex systems. The main idea behind this theory is to separate
the intractable problem into a series of manageable calculations. Specifically speaking, a
large-scale quantum system is divided into smaller, manageable strongly correlated sub-
systems and the surrounding weakly correlated environment. The subsystem is treated
quantum mechanically while the interactions with the external environment are captured
through effective potentials or self-energies.

Quantum embedding theory has several popular approximations, and among these,
the Dynamical Mean-Field Theory (DMFT) [9, 55, 60, 113, 114] and Self-Energy Em-
bedding Theory (SEET) [1–4] are two best known methods.

DMFT [9, 55, 60, 113, 114] is a non-perturbative method used to describe materials
with strong electronic correlations. Within DMFT, the complex many-electron prob-
lem is mapped onto an effective impurity problem that can be solved numerically. The
high-dimensional and intricate lattice problem is reduced to a single quantum impurity
embedded in a mean-field that accounts for the lattice environment. DMFT has suc-
cessfully described numerous phenomena observed in strongly correlated materials, such
as Mott transitions, Kondo effect, and heavy fermion behavior.

SEET [1–4], on the other hand, is a more recent development in quantum embedding
theory. The main idea of SEET is to approximate the self-energy, a crucial quantity in
many-body theory, by embedding high-level self-energy calculations for small clusters
into a lower-level description of the whole system. This allows the capturing of both
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local and non-local correlations in a balanced way.
Both DMFT and SEET have found wide applications in the physics and chemistry of

strongly correlated systems, and they represent important advancements in the field of
quantum embedding theory. The development and refinement of these methods continue
to be an active area of research.

5.1 Dynamical Mean-Field Theory

Dynamical Mean Field Theory (DMFT) is a powerful computational approach designed
to address the intricate challenges posed by quantum many-body systems characterized
by strong local Coulomb interactions [9, 113]. Over the years, DMFT has found extensive
application, particularly in the study of the Hubbard model [9], and has been effectively
integrated with electronic structure methods like LDA and GW to conduct materials
simulations [55, 60]. The derivation of DMFT can be approached through various routes,
and for a comprehensive understanding of these derivations, we direct interested readers
to pertinent references [9, 113, 114].

At the essence of DMFT lies in the approximation of the self-energy Σ(k, 𝑖𝜔𝑛) by
its local contribution Σ(𝑖𝜔𝑛). This approximation emanates from the transformative
mapping of a lattice fermion model onto an impurity problem, where the impurity
is defined as the unit cell embedded within a non-interacting dynamical mean field,
representing the surrounding crystal [115, 116]. This dynamical mean field is determined
through the DMFT self-consistency equations [9, 113].

In the limit of high spatial dimension (𝑑) or a high coordination number (𝑍), non-
local self-energies become negligible, and the mapping between the lattice model and
the impurity problem becomes exact [115, 116]. In this scenario, all many-body effects
are localized, and the approximation remains valid. However, for finite values of 𝑑
and 𝑍, the omission of momentum dependence in the self-energy signifies the neglect
of non-local electron correlations beyond a unit cell. Nevertheless, DMFT tackles full
many-body effects within a local unit cell in a non-perturbative manner by solving the
impurity problem using high-level methods. The DMFT local self-energy corresponds
to all skeleton self-energy diagrams, encompassing both internal and external indices,
limited to a local unit cell. On the other hand, non-local (on-site) electron correlations
are left unaddressed.
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In the context of real materials, the electronic Hamiltonian typically encompasses a
unit cell with a multitude of orbitals, yet only a select few are significantly correlated.
In such cases, the strongly correlated subset extends beyond the unit cell’s size. Conse-
quently, the DMFT local approximation is adapted to accommodate this scenario, with
a small subset 𝐴 comprising the strongly correlated orbitals within the unit cell. The
surrounding environment 𝑅 includes orbitals not only from different unit cells but also
from the same unit cell, excluding the correlated subset 𝐴. The local Green’s function
is then replaced by the local Green’s function whose orbital indices are restricted to 𝐴.

We consider a system described by a Hamiltonian with one-body term 𝑡𝑖𝑗 and full
two-body interaction 𝑣𝑖𝑗𝑘𝑙 in a finite orbital basis:

𝐻 =
𝑁

∑
𝑖𝑗

𝑡𝑖𝑗𝑎
†
𝑖 𝑎𝑗 +

𝑁
∑
𝑖𝑗𝑘𝑙

𝑣𝑖𝑗𝑘𝑙𝑎
†
𝑖 𝑎†

𝑘𝑎𝑙𝑎𝑗, (5.1)

where the indices 𝑖, 𝑗, 𝑘 and 𝑙 enumerate all 𝑁 basis orbitals present in the system.
The DMFT equations for this multi-orbital extension are derived, starting from the

general multi-orbital Hamiltonian, and they demand that electron correlations beyond
the correlated subset 𝐴 are handled using advanced methods. Various quantum embed-
ding techniques have been proposed to integrate DMFT with other electronic structure
methods [55, 60]. These methods are often based on the local Green’s function 𝐺 and
the bare Coulomb interactions 𝑈.

The foundation of DMFT bases on a Φ-derivable weakly correlated method, which
approximates the self-energy of the entire crystal through truncated skeleton self-energy
diagrams. This is mathematically represented as:

(Σweak)k(𝑖𝜔𝑛) = 𝐹 weak[𝐺weak] (5.2)

(𝐺weak)k(𝑖𝜔𝑛) = [(𝑖𝜔𝑛 + 𝜇)𝟙 − 𝑡k − (Σweak)k(𝑖𝜔𝑛)]−1 (5.3)

Here, 𝐹 weak[𝐺] is a functional of the Green’s function 𝐺 that defines the self-energy
diagrams of the weakly correlated solver.

For strongly correlated orbitals belonging to 𝐴, the local (on-site) Green’s function is
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given as:

𝐺RR
𝑖𝑗∈𝐴(𝑖𝜔𝑛) ≈ 1

𝑁𝑘
∑

k
[(𝑖𝜔𝑛 + 𝜇)𝟙 − 𝑡k − (ΣDMFT)k(𝑖𝜔𝑛)]−1

𝑖𝑗∈𝐴 (5.4)

This is further modified to include the local approximation:

(ΣDMFT)k
𝑖𝑗(𝑖𝜔𝑛) = (Σweak)k

𝑖𝑗(𝑖𝜔𝑛) + [(Σimp)𝑖𝑗(𝑖𝜔𝑛) − (ΣDC)𝑖𝑗(𝑖𝜔𝑛)]𝛿𝑖𝑗∈𝐴 (5.5)

where ΣDC)(𝑖𝜔𝑛) represents the double counting (DC) self-energy responsible for the
overlap between the strongly correlated and weakly correlated methods.

The self-consistency loop between the impurity Green’s function and the local ap-
proximation is established, given by the Eq. 5.4 and

Δ𝐴(𝑖𝜔𝑛) = (𝑖𝜔𝑛 + 𝜇)𝟙 − 𝑡imp − Σimp(𝑖𝜔𝑛) − 𝐺RR,−1
𝐴 (𝑖𝜔𝑛) (5.6)

Σimp(𝑖𝜔𝑛) = (𝑖𝜔𝑛 + 𝜇)𝟙 − 𝑡imp − Δ𝐴(𝑖𝜔𝑛) − 𝐺imp,-1(𝑖𝜔𝑛) (5.7)

5.2 Self-Energy Embedding Theory

5.2.1 The overview of self-energy embedding theory

Self-energy embedding theory (SEET) [1] can be comprehended as a conserving func-
tional approximation to an exact Luttinger–Ward functional [94]. It is a versatile frame-
work that enables the description of various physical properties, encompassing thermo-
dynamic quantities such as energies, entropies, and frequency-dependent single-particle
(Green’s functions and self-energies) and two-particle quantities (susceptibilities) within
a functional approach [94]. In this approach, a Φ-functional Φ[𝐺] of the Green’s function
𝐺, which contains all linked closed skeleton diagrams, and it satisfies

𝛿Φ
𝛿𝐺

= Σ[𝐺], (5.8)

where the self-energy Σ is defined with respect to a non-interacting Green’s function 𝐺0

via the Dyson equation
𝐺 = 𝐺0 + 𝐺0Σ𝐺. (5.9)
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The strength of the functional formalism lies in its inherent conservation of funda-
mental physical quantities, including electron number, energy, momentum, and angular
momentum [117, 118]. This property ensures that quantities obtained through thermo-
dynamic or coupling constant integration from non-interacting limits remain consistent
[117], rendering functional theory a valuable tool for constructing both perturbative [96,
117, 119] and non-perturbative [2–4, 9, 114] diagrammatic approximations.

Nonetheless, approximations based on a Φ functional are not guaranteed to be self-
consistent at the two-particle level, which can lead to disparities between the vertex
functions used in one-particle self-energy calculations and those derived from functional
differentiation in two-particle correlation functions, potentially violating crossing sym-
metries [120–122]. Resolving this issue and devising methods that inherently respect
such symmetries are active areas of research [123, 124].

SEET, as delineated in studies [2–4], embarks upon the assumption that all orbitals
in the system can be separated into distinct orbital subsets 𝐴𝜆, each containing 𝑁𝐴

𝜆

orbitals, alongside a remainder R comprising 𝑁𝑅 orbitals. These categorizations satisfy
conditions such that 𝑁𝐴

𝜆 << 𝑁 for each 𝑎, and 𝑁 = ∑𝑀
𝜆=1 𝑁𝐴

𝜆 + 𝑁𝑅.
We presume that the orbitals located within each subset 𝐴𝜆 exhibit stronger cor-

relations with each other than with any other orbitals in the system. As a result,
their inner-subset impurity orbitals with indices 𝑖, 𝑗 ∈ 𝐴𝜆, sometimes called active or-
bitals, are characterized as groups comprising the most physically important orbitals
for the problem that have correlations that are necessary to be determined using a
non-perturbative method. In contrast, correlations between orbitals from two distinct
sets 𝐴𝜆 and 𝐴𝜈, where 𝜆 ≠ 𝜈, as well as correlations related to the remaining system
𝑅, are predicted to be less pronounced. Therefore, they can be represented through a
perturbative approach.

SEET unfolds in a two-step process, initially approximating the entire system’s so-
lution using a tractable yet potentially inaccurate Φ-derivable method. This method,
often chosen from weak coupling methods (for instance GF2 [45, 46, 125] or the GW
method [96]), yields the solution for both the self-energy and functional of the entire
system. The weak correlation method’s self-consistency assures the elimination of any
initial starting point’s influence, rendering the results self-contained. Following the weak
correlation stage, correlated subspaces are identified based on certain criteria. These
subspaces are then utilized to compute [Σ𝐴

weak]𝜆 and [Φ𝐴
weak]𝜆 for each orbital subspace 𝜆,
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encompassing the weak correlation approximation exclusively for the correlated orbital
subsets 𝐴𝜆.

Subsequently, within each correlated subspace, the strongly correlated part of the
problem [Σ𝐴

strong]𝜆 is treated as a quantum impurity problem. This entails a transfor-
mation of interactions to the A-subspace, restricting the original interactions 𝑣𝑖𝑗𝑘𝑙 to
this subset. The bare Green’s functions 𝐺0, which can be written in a block form as [1]

𝐺0 = (
𝜔 − 𝑡𝐴 −𝑡int

−𝑡†
int 𝜔 − 𝑡𝑅

) , (5.10)

are also adjusted to new propagators 𝒢0 that account for a frequency-dependent ’hy-
bridization function’ Δ as

𝒢−1
0 = (𝐺−1

0 )𝐴 − Δ, (5.11)

where the hybridization function is defined as

Δ = [[(𝐺−1
0 )int − Σint]†[(𝐺−1

0 )𝑅 − Σ𝑅]−1[(𝐺−1
0 )int − Σint]]. (5.12)

These propagators encompass the new hybridization function and are calculated for
the strongly correlated orbital subsets, which defines a quantum impurity problem. A
quantum impurity solver obtains an expression for the correlated (𝐺imp)𝐴 given Δ and
𝐺0 as well as a subset of interactions 𝑣𝑖𝑗𝑘𝑙 ∈ 𝐴𝜆 in either spatial or energy basis. Using
the impurity problem Dyson equation, the self-energy for a strongly correlated orbital
subset is expressed as

[Σ𝐴
strong]𝜆 = 𝒢−1

0 − ((𝐺imp)𝐴)−1 (5.13)

Once this strongly correlation [Σ𝐴
strong] is known, the total self-energy Σ𝐴 in subspace 𝜆

is evaluated as
[Σ𝐴]𝜆 = Σtot

weak + ([Σ𝐴
strong]𝜆 − [Σ𝐴

weak]𝜆). (5.14)
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Thus the total self-energy Σ can be approximated in a matrix form as [1]

ΣSEET =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[Σ𝐴]1 Σint ⋯ ⋯ ⋯
Σint [Σ𝐴]2 Σint ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ Σint [Σ𝐴]𝑀 Σint

⋯ ⋯ ⋯ Σint Σ𝑅

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (5.15)

and the exact Φ-functional can be approximated as [1]

ΦSEET = Φtot
weak +

𝑀
∑
𝑎=1

([Φ𝐴
strong]𝜆 − [Φ𝐴

weak]𝜆). (5.16)

This framework ensures that non-local interactions outside of the A-subspace are
treated at the perturbative level and offers an effective adjustment to the self-energy
[Σ𝐴

strong] evaluated using a subset of local interactions.

5.2.2 SEET in real materials

The real space Green’s function and the lattice (𝑘-space) Green’s function are related
by the Fourier transform

𝐺RR′

𝑖𝑗 (𝑖𝜔𝑛) = 1
𝑉

∑
𝑘

𝑒𝑖kR𝐺k
𝑖𝑗(𝑖𝜔𝑛)𝑒−𝑖kR′ . (5.17)

We consider the GW method as the conserving low-order approximation in our case,
then its momentum-resolved Green’s function of the entire lattice is defined as [6]

(𝐺GW(𝑖𝜔𝑛))k = [(𝑖𝜔𝑛 + 𝜇)𝟙 − 𝑡k − (ΣGW(𝑖𝜔𝑛))k]−1, (5.18)

where
(ΣGW(𝑖𝜔𝑛))k = (ΣGW

∞ )k + (ΣGW(𝑖𝜔𝑛))k. (5.19)

As a result of embedding procedure, a lattice Green’s function can be expressed in
this way: [6]

(𝐺(𝑖𝜔𝑛))k = [(𝑖𝜔𝑛 + 𝜇)𝟙 − 𝑡k − Σk]−1, (5.20)

36



where

Σk
𝑖𝑗 = (ΣGW)k

𝑖𝑗 +
𝑀

∑
𝜆=1

((Σimp
𝐴𝜆

)𝑖𝑗 − (ΣDC
𝐴𝜆

)𝑖𝑗)𝛿(𝑖𝑗)∈𝐴𝜆
(5.21)

with Σimp = Σimp
∞ + ΣGW(𝑖𝜔𝑛) encapsulates the self-energy diagrams that are added

nonperturbatively and ΣDC-GW = ΣDC-GW
∞ + ΣDC-GW(𝑖𝜔𝑛) represents the removal of

those diagrams that are present both in the GW resolution and the nonperturbative
formulation.

The Fourier transform results in the following structure of the self-energy matrix in
the real space

ΣRR′

𝑖𝑗 = (ΣGW)RR′

𝑖𝑗 +
𝑀

∑
𝜆=1

((Σimp
𝐴𝜆

)𝑖𝑗 − (ΣDC-GW
𝐴𝜆

)𝑖𝑗)𝛿RR′𝛿(𝑖𝑗)∈𝐴𝜆
. (5.22)

For unit cells separated from the central cell (R ≠ R′), the self-energies are addressed at
a weakly correlated level, denoted as ΣRR′

𝑖𝑗 = (ΣGW)RR′

𝑖𝑗 , while the self-energy within
the local central cell (R = R′) incorporates nonperturbative corrections (Σimp

𝐴𝜆
)𝑖𝑗 for

each orbital group 𝐴𝜆.
Then the Green’s function in the real space can be written as

(𝐺(𝑖𝜔𝑛))RR
𝑖𝑗∈𝐴𝜆

= [(𝑖𝜔𝑛 + 𝜇)𝟙 − 𝑡RR
𝑖𝑗∈𝐴𝜆

− ΣRR
𝑖𝑗∈𝐴𝜆

(𝑖𝜔𝑛) − Δ𝐴𝜆
𝑖𝑗 (𝑖𝜔𝑛)]−1. (5.23)

The hybridization matrix Δ𝐴𝜆
𝑖𝑗 (𝑖𝜔𝑛) arises since an inverse of a subset is not equal to a

subset of an inverse, namely

[(𝐺(𝑖𝜔𝑛))RR
𝑖𝑗∈𝐴𝜆

]−1 ≠ [((𝐺(𝑖𝜔𝑛))RR′)−1]RR
𝑖𝑗∈𝐴𝜆

= [(𝑖𝜔𝑛+𝜇)𝟙−𝑡RR
𝑖𝑗∈𝐴𝜆

−ΣRR
𝑖𝑗∈𝐴𝜆

]−1. (5.24)

5.2.3 Bath fitting

We can approximate the infinite, continuous bath used to describe hybridization by a
finite, discrete one. This involves determining a finite number of bath orbital energies
𝜖𝑏 and impurity-bath couplings 𝑉𝑖𝑏 to reconstruct the hybridization Δ(𝑖𝜔𝑛):

[Δ(𝑖𝜔𝑛)]𝑖𝑗 ≈ [Δfit(𝑖𝜔𝑛)]𝑖𝑗 =
𝑁𝑏

∑
𝑏

𝑉 ∗
𝑖𝑏𝑉𝑗𝑏

𝑖𝜔𝑛 − 𝜖𝑏
(5.25)
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and thereby create the impurity Hamiltonian within a finite basis. It’s important to note
that the indices 𝑏, ranging from 1 to 𝑁𝑏, correspond to the bath sites, while the i and
j indices are used to label the impurity orbitals. Typically, the selection of bath orbital
energies 𝜖𝑏 and impurity-bath couplings 𝑉𝑖𝑏 is optimized to minimize the overall fitting
error, [Δ(𝑖𝜔𝑛)]𝑖𝑗 − [Δfit(𝑖𝜔𝑛)]𝑖𝑗. Additional insights into the bath fitting procedure can
be found in the condensed matter literature [52, 126].

5.2.4 Solution of the impurity model

SEET is a method of computational physics that utilizes the concept of embedding
nonperturbative impurity models into a self-consistently adjusted hybridization with
the environment. Solving impurity models, however, is a challenging task due to its
computational complexity. Therefore, quantum impurity solvers such as quantum Monte
Carlo (QMC) [127], numerical renormalization group (NRG) [128], exact diagonalization
(ED) [51], configuration interaction (CI) [129, 130], or coupled clusters [131, 132], are
needed. These solvers are sophisticated computational algorithms that are capable of
handling the complex computations involved in solving impurity models.

SEET, while requiring the solution of impurity problems that may involve strong
interaction, has the advantage of being able to treat multiple active spaces. This keeps
the size of the impurities being treated relatively moderate, which in turn helps in
managing computational complexity.

We used ED as an impurity solver for SEET problems in our case. It requires the
discretization of the continuous hybridization function and its approximation by a finite
number of discrete bath sites. The symmetric orthogonal basis allows for a simplification
where off-diagonal elements of the hybridization function can often be neglected due to
their significantly smaller magnitude compared to diagonal elements.

The approximation of the hybridization function is achieved by minimizing the fit
residue using a bound-constrained nonlinear least-square method [133, 134]. This method
enforces the constraint that 𝑉𝑖𝑏 are positive and 𝜖𝑏 are in the vicinity of the Fermi energy.

For practical implementation, the number of bath sites used per orbital varies depend-
ing on the number of orbitals in the problem. For example, for a two-orbital problem,
5 bath sites per orbital are used, while for a four-orbital problem only 3 bath sites
per orbital are used. The impurity problems are then solved using an open-source ED
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impurity solver [135].

5.2.5 Iterative self-consistent process

Inner-loop SEET process

Figure 5.1: Workflow of self-consistent inner-loop SEET. From [26].

We can reorder the terms in Eq. 5.23 by splitting the static and dynamic part of each
self-energy contribution: [26]

[(𝐺(𝑖𝜔𝑛))RR
𝑖𝑗∈𝐴𝜆

]−1 = [(𝑖𝜔𝑛 + 𝜇)𝟙 − ̃𝑡RR
𝑖𝑗∈𝐴𝜆

− Σcorr,RR
𝑖𝑗∈𝐴𝜆

(𝑖𝜔𝑛) − Σimp
𝑖𝑗∈𝐴𝜆

(𝑖𝜔𝑛) − Δ𝐴𝜆
𝑖𝑗 (𝑖𝜔𝑛)],

(5.26)
where

̃𝑡RR
𝑖𝑗∈𝐴𝜆

= 𝑡RR
𝑖𝑗∈𝐴𝜆

+ (ΣGW
∞ )RR

𝑖𝑗∈𝐴𝜆
− (ΣDC

𝐴𝜆,∞)𝑖𝑗∈𝐴𝜆
(5.27)
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is the frequency-independent renormalized non-interacting Hamiltonian and

Σcorr,RR
𝑖𝑗∈𝐴𝜆

= (ΣGW
corr )RR

𝑖𝑗∈𝐴𝜆
− (ΣDC

𝐴𝜆,corr)𝑖𝑗∈𝐴𝜆
(5.28)

is the local dynamic self-energy without double counting contribution.
In order to solve Σimp

𝐴𝜆
, we define the auxiliary propagator

𝑔−1
𝐴𝜆

= 𝑔0,−1
𝐴𝜆

− Σimp
𝑖𝑗∈𝐴𝜆

, (5.29)

where the inverse of the non-interacting auxiliary counterpart 𝑔0,−1
𝐴𝜆

is defined as

𝑔0,−1
𝐴𝜆

= (𝑖𝜔𝑛 + 𝜇)𝟙 − ̃𝑡RR
𝑖𝑗∈𝐴𝜆

− Δ𝐴𝜆
𝑖𝑗∈𝐴𝜆

. (5.30)

The Green’s function of Eq. 5.29 can then be obtained by solving an auxiliary quan-
tum impurity problem [9]

𝐻𝐴𝜆
imp = ∑

𝑖𝑗∈𝐴𝜆,𝜎
( ̃𝑡𝑖𝑗𝜎 − 𝜇𝛿𝑖𝑗)𝑐

†
𝑖𝜎𝑐𝑗𝜎 + ∑

𝑏𝜎
𝜖𝑏𝜎𝑎†

𝑏𝜎𝑎𝑏𝜎

+ ∑
𝑖∈𝐴𝜆,𝑏,𝜎

(𝑉𝑖𝑏𝜎𝑐†
𝑖𝜎𝑎𝑏𝜎 + ℎ.𝑐.) + 1

2
∑

𝑖𝑗𝑘𝑙∈𝐴𝜆,𝜎𝜎′

𝑣𝑖𝑗𝑘𝑙𝑐
†
𝑖𝜎𝑐†

𝑘𝜎′𝑐𝑙𝜎′𝑐𝑗𝜎

(5.31)

The equations for Σ (as a function of 𝐺) and 𝐺 (as a function of Σ) give rise to self-
consistent equations that are Φ-derivable, ensuring conservation and thermodynamic
consistency [1]. The SEET equations undergo iterative solving until convergence is
achieved for all relevant quantities. This self-consistency process is visualized in Figure
5.1.

In step A of the process, a single iteration of GW, denoted as 𝐹GW[(𝐺SEET)k], is
executed to update (ΣGW)k for the entire system. Additionally, step B involves solving
𝐻𝐴𝜆

imp, which corresponds to the Hamiltonian for a specific impurity subset 𝐴𝜆, using a
quantum impurity solver. In cases where multiple subspaces 𝐴𝜆 are defined, 𝐻𝐴𝜆

imp for
each subset is independently solved. Finally, ΣSEET and 𝐺SEET are updated according
to Eq. 5.20 and 5.21 with the new ΣGW and Σimp

𝐴𝜆
values.
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Figure 5.2: Workflow of self-consistent outer-loop SEET.

Outer-loop SEET process

In our computational approach, we employ a stepwise calculation scheme [36] that en-
sures the self-consistency and accuracy of our results. Initially, we utilize the outcomes
obtained from the self-consistent GW calculation as our starting point. Subsequently,
we employ a one-shot GW solver to bring about adjustments to the entire environment,
focusing on the domain of weak correlations. This modification serves to accommodate
the effects of weak correlations within the system.

Once the environment has been updated in this manner, we proceed to apply the
inner-loop self-consistent SEET methodology. This inner loop involves the iterative
updating of both the self-energy and the Green’s function, refining their accuracy in the
process. To further enhance the convergence of our computations, we employ techniques
such as direct inversion in the iterative subspace (DIIS) [136] to update the self-energy
components of both the weakly correlated portion and the overall system.

Following this, we reevaluate the environment, allowing for relaxation, and subse-
quently repeat all the aforementioned procedures to attain full self-consistency. This
comprehensive iterative process is referred to as the outer-loop self-consistent SEET.

The primary objective of the outer-loop self-consistency is to accommodate the re-
laxation of weakly correlated orbitals in the presence of strong correlations stemming
from impurity orbitals. It is important to note that the omission of the outer-loop self-
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consistency is justified when the weakly correlated approach, such as the self-consistent
GW (scGW ) method [8] used in our current work, adequately captures the qualitative
aspects of most correlations within the solid. Our empirical findings suggest that the
outer loop becomes essential when scGW , or any analogous weakly correlated method,
delivers a qualitatively incorrect description of the density of states. In such cases,
the outer loop becomes indispensable to attain qualitatively accurate outcomes. How-
ever, when the weakly correlated method provides a qualitatively sound representation,
the outer loop may primarily be necessary to achieve the highest levels of quantitative
accuracy and can be omitted, leading to computational savings in most instances.

5.2.6 Iterative acceleration algorithms

Damping

Damping is a well-established iterative acceleration technique frequently employed in
various computational procedures, including those in the realm of scientific simulations
and numerical methods. This subsection delves into the principles underlying damping,
elucidating its significance and the role it plays in enhancing convergence.

Damping, as a technique, introduces a damping factor, conventionally designated as
𝑥. This damping factor holds a pivotal role in determining the balance between the
results of the current iteration and those of the previous iteration within the iterative
process. In essence, it serves as a numerical ratio that combines a fraction of 𝑥 times
the outcome of the ongoing iteration with a complementary fraction of (1 − 𝑥) times
the result from the preceding iteration.

The value assigned to the damping factor 𝑥 has a profound influence on the iterative
process. Specifically, a smaller damping factor corresponds to a higher weight assigned
to the results obtained from the current iteration when blending it with the information
from the previous iteration. This, in effect, places more emphasis on the most recent
updates, thereby expediting convergence by steering the iterative procedure towards its
final outcome.

The incorporation of damping into iterative algorithms often leads to a more stable
and expedited convergence, particularly in scenarios where oscillations or slow conver-
gence pose challenges. The selection of an appropriate damping factor is a crucial con-
sideration, as it directly impacts the trade-off between stability and convergence speed
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in iterative processes.

Direct Inversion in the Iterative Subspace

We first define a general electronic structure solver functional 𝐹 = 𝐹[𝑥] = 𝑥, where 𝑥
represents any quantities that requires to achieve self-consistency. In Direct Inversion
in the Iterative Subspace (DIIS), a history of certain number of previous iterations is
considered [136–138]. We assume the exact solution 𝑥 can be expressed as a linear
combination of previous guess solutions 𝑥𝑖,

𝑥 =
𝑚

∑
𝑖=1

𝑐𝑖𝑥𝑖. (5.32)

On the other hand, we define an intermediate result ̃𝑥𝑖+1 and residual 𝑒𝑖

̃𝑥𝑖+1 = 𝐹[𝑥𝑖] (5.33)

𝑒𝑖 = ̃𝑥𝑖+1 − 𝑥𝑖, (5.34)

and then we will update 𝑥𝑚+1 as

𝑥𝑚+1 =
𝑚

∑
𝑖=1

𝑐𝑖 ̃𝑥𝑖+1 =
𝑚

∑
𝑖=1

𝑐𝑖𝑥𝑖 +
𝑚

∑
𝑖=1

𝑐𝑖𝑒𝑖 (5.35)

By comparing Eq. 5.32 and 5.35, it is obvious that if the quantity achieves self-
consistency, the suitable coefficient 𝑐𝑖 will satisfy

𝑚
∑
𝑖=1

𝑐𝑖𝑒𝑖 = 0 (5.36)

In addition, when exact solution 𝑥 is achieved,

𝑥𝑖 = 𝑥, ∀𝑖, (5.37)

𝑥𝑚+1 =
𝑚

∑
𝑖=1

𝑐𝑖𝑥𝑖 = 𝑥
𝑚

∑
𝑖=1

𝑐𝑖 = 𝑥 (5.38)
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Thus 𝑚
∑
𝑖=1

𝑐𝑖 = 1 (5.39)

The DIIS methodology aims to minimize the Euclidean norm of the extrapolated error
for the determination of extrapolation coefficients. The associated Lagrangian function
for minimizing the squared norm, as detailed in [139], can be expressed as follows:

𝐿DIIS(𝑐𝑖, 𝜆) = 1
2

∑
𝑖𝑗

𝑐𝑖𝐵𝑖𝑗𝑐𝑗 − 𝜆 (1 − ∑
𝑖

𝑐𝑖) 𝐵𝑖𝑗 = ⟨𝑒𝑖, 𝑒𝑗⟩ (5.40)

In the context of this formulation, assuming that the extrapolation coefficients are real,
differentiation of this Lagrangian yields a necessary condition for achieving the minimum

⎛⎜⎜⎜⎜⎜⎜
⎝

ℜ𝐵11 ⋯ ℜ𝐵1𝑛 1
⋯ ⋯ ⋯ ⋯

ℜ𝐵𝑛1 ⋯ ℜ𝐵𝑛𝑛 1
1 ⋯ 1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑐1

⋯
𝑐𝑛

1

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

0
⋯
0
1

⎞⎟⎟⎟⎟⎟⎟
⎠

(5.41)

While Equation 5.41 provides an analytical formula for computing the 𝑐𝑖 values,
it’s important to note that there remains a degree of flexibility in determining the
components of the 𝑥 vector. In our specific context, we define this vector as follows:

𝑥 = {𝐹 , Σ(𝜏), 𝜇} (5.42)

Here, 𝐹, Σ(𝜏), and 𝜇 correspond to the Fock matrix, self-energy, and chemical potential,
respectively. The selection of these particular components within the 𝑥 vector should
be driven by the underlying physical problems that are of interest.
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Chapter 6

Spectral Properties and
Thermodynamic Quantities

Following the comprehensive exploration of the self-consistent calculation framework
in the preceding chapters, it becomes imperative to delve into the subsequent stages
of our analysis. In this chapter, we navigate the complex realm of spectral functions
and thermodynamic quantities, which serve as essential tools for the interpretation and
presentation of our calculation results. To dissect and comprehend these subjects thor-
oughly, we employ a multi-faceted approach, with each component sequentially unveiled
in the following sections.

Our journey begins with the quest for a high-precision representation in momentum
space (commonly referred to as k-space). To achieve this, we exploit Wannier interpola-
tion [42, 140, 141], a powerful mathematical tool that allows us to interpolate electronic
band structures within the k-space domain. With a finely resolved k-space representa-
tion in hand, our focus naturally turns to identifying the orbitals by orbital projection.

Having achieved a good k resolution and identified our orbitals, we move onto the pro-
cess of analytical continuation. This pivotal procedure serves as the bridge between the
data residing on the imaginary axis and the real axis so that we can obtain the spectral
function from the Matsubara Green’s function. Within this domain, we introduce two
distinct methods: the Maximum Entropy Method (MaxEnt) [38–40] and the Nevanlinna
analytical continuation [41], offering diverse avenues for this crucial transformation.

Finally, for evaluating energies, the thermodynamic quantities can use statistical na-
ture of the theory. Details are presented in Section 6.4.
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6.1 Wannier interpolation

In the field of electronic structure calculations, the study of electron band structure in
momentum space (𝑘 space) is a basic work. However, practical considerations often
require us to use a discrete grid in k-space, which presents challenges when we try
to extrapolate our insights to regions beyond this grid. This dilemma requires the
intervention of a powerful technique, namely Wannier interpolation [42, 140, 141], which
plays a key role in solving this problem.

The essence of Wannier interpolation lies in the transformation from the discrete 𝑘-
space dispersion to a real space representation, followed by an interpolation on the real
space structure to get the value of quantities on any momenta in the Brillouin zone.
This transformation is founded on the implicit assumption that beyond the scope of
this real space representation, electronic correlations effectively vanish. This locality
approximation, while seemingly simplistic, proves to be a reasonable assumption in
scenarios where the correlations indeed diminish significantly outside the system.

One of the main motivations for employing Wannier interpolation is to overcome
the limitation of having only a restricted number of 𝑘 points on a discrete grid. It is
often necessary to evaluate the spectral function of any 𝑘-point throughout the Brillouin
zone. Wannier interpolation facilitates this by allowing us to construct a smooth and
continuous representation of the electronic band structure beyond a finite grid of points.

The Wannier interpolation of the self-energy can be performed by

ΣR
𝑖𝑗 = 1

𝑁𝑘
∑

k
Σk

𝑖𝑗𝑒−𝑖kR (6.1)

Σk′

𝑖𝑗 = ∑
R

ΣR
𝑖𝑗𝑒𝑖k′R (6.2)

where k comes from the coarse Brillouin zone sampling and k′ is arbitrary 𝑘 point that
requires interpolation. Other quantities such as Fock matrix and Green’s function can
be interpolated in the same way.
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6.2 Orbital orthogonalization and projection

The utilization of the GW approximation and Wannier interpolation is executed in
the basis of the atomic orbitals (AO). It is noteworthy that within this basis, obtaining
analytically continued results is difficult as the spectral functions are not strictly positive,
nor normalized. To facilitate the SEET embedding procedure, as well as the operation
of the impurity solvers, a transformation of the Green’s function into an orthogonal
basis, denoted as 𝐺orth, is necessitated and achieved through the following relation:

𝐺orth = 𝑋𝐺𝑋∗, (6.3)

In our case, we adopt a symmetrical orbital orthogonalization strategy [73], specifically
employing the transformation matrix 𝑋 given by:

𝑋 = 𝑆1/2, (6.4)

Where 𝑆 represents the overlap matrix as defined in Eq. 4.9. This particular basis,
referred to as the symmetric atomic orbitals (SAO) basis [73], is thereby employed.

Given that the spectral function is inherently frequency-dependent and impossible to
be represented in a single basis for all frequencies, we have empirically observed that the
density matrix within the SAO basis is nearly diagonal. This observation suggests that
the SAO basis is well-suited for orbital projection. Consequently, we study the orbital
characters in proximity to the Fermi surface by projecting onto the corresponding SAO
basis.

Let’s consider the elemental semiconductor Silicon (Si) as a straightforward example
to elucidate the concept of orbital character and the role of orbital projection. Silicon is
composed of atoms arranged in a crystal lattice, and its electronic structure is central
to its properties as a semiconductor.

In the realm of solid-state physics and electronic structure calculations, understanding
the electronic properties of Silicon relies on the analysis of its orbital character. Orbital
character essentially pertains to the specific contribution of atomic orbitals, such as the
3𝑝 or 3𝑠 orbitals in the case of Silicon, to the electronic states in the material. It allows
us to discern which orbitals are primarily responsible for forming the energy bands and,
subsequently, influencing the material’s electrical and optical behavior.
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To gain insights into the orbital character in Silicon, we employ the technique of
orbital projection. Orbital projection is a method that enables us to isolate and quantify
the contribution of specific atomic orbitals to the electronic states in a crystal. By
performing orbital projection in Silicon, we can discern the extent to which, for example,
the 3𝑝 orbitals of Silicon atoms contribute to the valence and conduction bands. This
information is crucial for understanding the semiconductor’s electronic behavior, as it
elucidates the nature of the charge carriers (electrons and holes) and their mobility.

6.3 Analytical continuation

Analytical continuation [37] emerges as a critical challenge when transitioning from the
realm of imaginary axis to the real axis, transforming correlation functions computed
in numerical simulations into response or spectral functions accessible to experimental
observation. In numerical simulations, correlation functions are naturally obtained in
imaginary time (or the Fourier transform known as Matsubara frequency). However,
the real axis counterparts of these functions, which are of paramount importance for
experimental measurements, remain elusive through standard numerical techniques.

We start with the imaginary time Green’s function

𝐺(𝜏) = −⟨𝑐(𝜏)𝑐†(0)⟩, (6.5)

which is periodic for bosonic and anti-periodic for fermionic particles within 𝜏 ∈ [0, 𝛽].
The Matsubara Green’s function can be obtained from the imaginary time Green’s
function by Fourier transform:

𝐺(𝑖𝜔𝑛) = ∫
𝛽

0
𝑒𝑖𝜔𝑛𝜏𝐺(𝜏). (6.6)

The Matsubara frequencies are defined as 𝑖𝜔𝑛 = 2𝜋(𝑛 + 1/2)/𝛽 for fermionic operators
and 𝑖𝜔𝑛 = 2𝜋𝑛/𝛽 for bosonic operators.

In the case of fermions, Green’s function on the imaginary axis is connected to that
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on the real axis by

𝐺(𝑖𝜔𝑛) = −1
𝜋

∫
∞

−∞

𝑑𝜔Im𝐺(𝜔)
𝑖𝜔𝑛 − 𝜔

(6.7)

𝐺(𝜏𝑛) = 1
𝜋

∫
∞

−∞

𝑑𝜔Im𝐺(𝜔)𝑒−𝜏𝑛𝜔

1 + 𝑒−𝛽𝜔 (6.8)

where 𝜏 has been discretized in some manner to 𝑁 points.
The imaginary part of the Green’s function defines the spectral function

𝐴(𝜔) = −1
𝜋

Im𝐺(𝜔) (6.9)

At the heart of this intriguing dilemma lies the exceptional ill-conditioned nature
of the transformation from the imaginary axis to the real axis. Even the slightest
deviations in the input data can trigger significant fluctuations in the resulting output
data. Consequently, this renders direct transformations practically unfeasible in the
quest to bridge the gap between the numerical world and real-world observations.

6.3.1 Maximum Entropy Method

The Maximum Entropy Method [38–40], often abbreviated as MaxEnt, is a well-established
mathematical technique used in a multitude of scientific and engineering fields. The
method is based on the principle of maximum entropy, which states that the probabil-
ity distribution, which best represents the current state of knowledge, is the one with
the largest entropy. MaxEnt is particularly useful in situations where one needs to
extrapolate, interpolate, or smooth data.

The method has been widely used in the context of image reconstruction, spectral
analysis, and machine learning. In the field of numerical simulations, it is especially
useful in the analytical continuation of data from the imaginary to the real axis. By
providing a systematic approach to handle the ill-posed nature of the problem, the
Maximum Entropy Method offers a significant advantage over direct methods.

Despite its apparent complexity, the underlying concept of MaxEnt is straightforward:
among all possible solutions to a problem, the one that should be chosen is the one that
makes the least assumptions beyond the known constraints.

Consider a truncation of Green’s function to 𝑁 components, obtained by averaging a
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set of 𝑀 estimates for each component 𝐺(𝑖)
𝑛

𝐺𝑛 = 1
𝑀

𝑀
∑
𝑖=1

𝐺(𝑗)
𝑛 , (6.10)

where 𝐺(𝑖)
𝑛 are independent and Gaussian distributed. Then the covariance matrix for

different correlated components is

𝐶𝑛𝑚 = 1
𝑀(𝑀 − 1)

𝑀
∑
𝑗=1

(𝐺𝑛 − 𝐺(𝑗)
𝑛 )(𝐺𝑚 − 𝐺𝑗

𝑚) (6.11)

From Eq. 6.9, [40]

𝐺𝑛 = 𝐺(𝜏𝑛) = ∫
∞

−∞
𝑑𝜔𝐴(𝜔)𝐾𝑛(𝜔) (6.12)

where
𝐾𝑛(𝜔) = 𝐾(𝜏𝑛, 𝜔) = − 𝑒−𝜏𝑛𝜔

1 + 𝑒−𝛽𝜔 (6.13)

is the kernel of the analytical continuation, here for a transformation of a fermionic
Green’s function from imaginary time to real frequencies.

Based on Eq. 6.12, a candidate spectral function 𝐴(𝜔) on the real axis and the
associated kernel are able to create an estimate of discretized Green’s function ̄𝐺𝑛. A
“goodness of fit” quantity 𝜒2 can be introduced to evaluate the consistency between
𝐴(𝜔) and 𝐺𝑛 [40]

𝜒2 =
𝑀

∑
𝑛,𝑚

( ̄𝐺𝑛 − 𝐺𝑛)∗𝐶−1
𝑛𝑚( ̄𝐺𝑚 − 𝐺𝑚) (6.14)

For the computational solution of Eq. 6.12, the most straightforward approach is to
utilize a least squares fitting routine. This method aims to minimize a functional, as
defined in Eq. 6.14. While back-continuation is a simple procedure that yields a distinct
outcome, the inversion of Eq. 6.12 presents an ill-conditioned problem. In other words,
there exist multiple solutions 𝐴 for that fulfill the conditions 𝐺 = 𝐾𝐴 specified by
within the range of uncertainty given by 𝐶𝑛𝑚 [40].

In the Maximum Entropy method, an entropy term 𝑆 is considered to help regularize
the solutions, then the functional that requires to be minimized becomes [40]

𝑄 = 1
2

𝜒2 − 𝛼𝑆[𝐴]. (6.15)
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Shannon entropy [142] is used to minimize spurious correlations between data [143].
Its application has a restriction that the resulting spectral function is finite and positive,
so it can be treated as a probability density [39].

Entropy can be defined with respect to a reference spectral function, the default model
𝑑(𝜔):

𝑆[𝐴] = − ∫ 𝑑𝜔𝐴(𝜔) ln 𝐴(𝜔)
𝑑(𝜔)

(6.16)

When 𝛼 ≫ 1, the default model ensures a sensible solution that is ideally independent
of the input data; while when 𝛼 ≪ 1, this functional recover the least square fit. The
final result is often insensitive to the choice of the default model.

6.3.2 Nevanlinna analytical continuation

The Maximum Entropy method is a widely-used technique in quantum physics and
condensed matter physics. However, it primarily focuses on fitting, rather than inter-
polating, spectral functions to Matsubara data, with the added requirement of satis-
fying specified error bars. While MaxEnt is successful in handling noisy data, it faces
challenges when dealing with high-frequency information, sharp peaks, and spectral
functions containing multiple features.

A recent breakthrough, detailed in a recent letter by Fei et al. (2021) [41], introduces
a novel approach that overcomes these limitations. This method employs a continued
fraction interpolation of Matsubara data, utilizing the analytical ”Nevanlinna” structure
of the Green’s function.

The core idea revolves around the relationship between the Matsubara Green’s func-
tion, denoted as 𝒢(𝑖𝜔𝑛), and the retarded Green’s function, 𝐺𝑅(𝜔+𝑖𝜂). By consistently
replacing the variables 𝑖𝜔 and 𝜔 + 𝑖𝜂 with a single complex variable, denoted as 𝑧, this
method involves analytical continuation to obtain the desired 𝐺𝑅 from 𝒢.

In complex analysis, a Nevanlinna function is a complex function characterized by its
analyticity in the open upper half-plane, denoted as 𝒞+, and its non-negative imaginary
part, meaning it maps into the closed upper half-plane 𝒞+ [144]. These Nevanlinna
functions are denoted as members of the class N, and they possess specific properties
that make them highly suitable for this interpolation process.

To perform the analytical continuation from the Matsubara frequencies to the real
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axis, the goal is to find an interpolant for 𝒩𝒢 within the class of Nevanlinna functions N.
The constructed function passes through all Matsubara points, as shown in Figure 6.1,
and maintains a positive imaginary part in the upper half-plane, extending just above
the real axis. This property ensures the intrinsic positivity of the resulting spectral
function:

𝐴(𝜔) = lim
𝜂→0+

1
𝜋

Im[𝒩𝒢(𝜔 + 𝑖𝜂)] (6.17)

This approach notably overcomes common issues associated with other interpolation
methods, such as Pade interpolants [145].

Figure 6.1: Analytical continuation setup with fermion Matsubara points at i𝜔𝑛
and real frequency axis 𝜔. The retarded Green’s function is evaluated
𝜂 (small) above the real axis. Inset: Mobius transform of the closed
upper half plane 𝒞+ to the closed unit disk 𝒟. From [41].

The construction of Nevanlinna interpolants is accomplished using the Schur algo-
rithm [146]. Originally designed as a continued fraction expansion for all holomorphic
disk functions mapping from the open unit disk, 𝒟 = 𝑧 ∶ |𝑧| < 1, to the closed unit
disk, 𝒟, this algorithm has been modified to expand contractive functions [147]. These
contractive functions are holomorphic and map from 𝒞+ to 𝐷.

An essential component of this methodology is the invertible Mobius transform, rep-
resented by the function ℎ(𝑧):

𝑧 ↦ 𝑧 − 𝑖
𝑧 + 𝑖

(6.18)
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This transform effectively maps Nevanlinna functions one-to-one to contractive func-
tions, as shown in Figure 6.1. As a result, the Nevanlinna interpolation problem is
transformed into the challenge of constructing the contractive function 𝜃, which is Mo-
bius transformed from 𝒩𝒢:

𝜃(𝑌𝑖) = 𝜆𝑖 = ℎ(𝐶𝑖) = 𝐶𝑖 − 𝑖
𝐶𝑖 + 𝑖

, 𝑖 = 1, 2, … , 𝑀, (6.19)

where 𝑌𝑖 is the 𝑖th Matsubara frequency, 𝐶𝑖 is the value of 𝒩𝒢 at 𝑌𝑖, and 𝜆𝑖 is the
value of 𝜃 at 𝑌𝑖.

A particularly remarkable aspect of this approach is the existence criterion for Nevan-
linna interpolants, which is directly based on input data. This criterion is a generaliza-
tion of the Pick criterion. Nevanlinna interpolants exist if and only if the Pick matrix
is positive semidefinite:

[
1 − 𝜆𝑖𝜆∗

𝑗

1 − ℎ(𝑌𝑖)ℎ(𝑌𝑗)∗ ]
𝑖,𝑗

, 𝑖, 𝑗 = 1, 2, … , 𝑀. (6.20)

Uniqueness of the solution is ensured only if this matrix is singular.
The iterative construction of the contractive interpolant is a crucial part of the

methodology. A contractive function 𝜃(𝑧)

𝜃(𝑧) =
𝑧−𝑌1
𝑧−𝑌 ∗

1
̃𝜃(𝑧) + 𝛾1

𝛾∗
1

𝑧−𝑌1
𝑧−𝑌 ∗

1
̃𝜃(𝑧) + 1

(6.21)

satisfies the relationship 𝜃(𝑌1) = 𝛾1 for any contractive function ̃𝜃(𝑧) [147].
Given an interpolation problem for 𝑗 nodes, 𝜃(𝑌𝑘) = 𝛾𝑘, 𝑘 = 1, … , 𝑗, Equation 6.21

defines an interpolation problem for the 𝑗 − 1 nodes, 𝑌2, … , 𝑌𝑗, for ̃𝜃. This equation
arises from Schur’s expansion for any disk function with a known value 𝛾1 at the origin
[148], facilitated by the conformal map 𝑔 ∶ 𝒞+ → 𝒟:

𝑧 ↦ 𝑧 − 𝑌1
𝑧 − 𝑌 ∗

1
(6.22)

Equation 6.21 suggests an iterative algorithm that starts from the original interpola-
tion problem for 𝜃1 = 𝜃 involving all 𝑀 points. This defines an interpolation problem
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𝜃2 for 𝑀 − 1 points, and this process continues iteratively. Concatenating these inter-
polation problems results in a continued fraction form for 𝜃. Each step allows for the
flexibility of choosing an arbitrary contractive function 𝜃𝑀+1 at the final stage, derived
from 𝜃𝑀(𝑌𝑀) = 𝜙𝑀, thus satisfying the interpolation problem

The recursive final 𝜃 can be expressed in a matrix form,

𝜃(𝑧)[𝑧; 𝜃𝑀+1(𝑧)] =
𝑎(𝑧)𝜃𝑀+1(𝑧) + 𝑏(𝑧)
𝑐(𝑧)𝜃𝑀+1(𝑧) + 𝑑(𝑧)

, (6.23)

where

(
𝑎(𝑧) 𝑏(𝑧)
𝑐(𝑧) 𝑑(𝑧)

) =
𝑀
∏
𝑗=1

⎛⎜
⎝

𝑧−𝑌𝑗
𝑧−𝑌 ∗

𝑗
𝜙𝑗

𝜙∗
𝑗

𝑧−𝑌𝑗
𝑧−𝑌 ∗

𝑗
1

⎞⎟
⎠

(6.24)

with 𝑗 increasing from left to right. Ultimately, 𝜃 is back-transformed to a Nevanlinna
interpolant via the inverse Mobius transform ℎ−1:

𝒩𝒢(𝑧) = ℎ−1[𝜃(𝑧)] = 𝑖[1 + 𝜃(𝑧)]
1 − 𝜃(𝑧)

(6.25)

The comparison between MaxEnt and Nevanlinna analytical continuation is demon-
strated in Section 8.3 and Figure 8.7.

6.4 Thermodynamic quantities

For a conserving approximation, we employ a Φ-functional denoted as Φ[𝐺], which
includes all connected closed skeleton diagrams related to the Green’s function 𝐺. This
functional is utilized to represent the grand potential as follows [94]

Ω = Φ − Tr{ln 𝐺−1} − Tr{Σ𝐺} (6.26)

where the symbol Tr contains summations over crystal momentum (1/𝑁𝑘 ∑k), Matsub-
ara frequency (1/𝛽 ∑𝑛), and spin-orbital indices (𝑖, 𝜎). The Luttinger-Ward functional
Φ[𝐺] is a functional of 𝐺 in the form of

Φ[𝐺] =
∞

∑
𝑚=1

1
2𝑚

Tr{{Σ(𝑚)[𝐺]𝐺}} (6.27)
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where Σ(𝑚)[𝐺]𝐺 is the 𝑚th order skeleton diagram of the self-energy Σ. It is a functional
of interacting Green’s function 𝐺 and bare Coulomb interactions 𝑈 where the functional
dependence of 𝑈 appears in the expression of skeleton self-energy diagrams Σ(𝑚).

The total energy can be obtained using Galitskii-Migdal formula [149–151]

𝐸 = 𝐸1 + 𝐸2 (6.28)

𝐸1 = ∫ 𝑑𝑥 lim
𝑥′→𝑥

[−∇2

2
+ 𝑉𝑒−𝑛]𝐺(𝑥, 𝑥′; 𝜏 = 0−) = Tr{𝐻0𝛾} (6.29)

𝐸2 = 1
2

∫
𝛽

0
𝑑𝜏 ∫ 𝑑𝑥 ∫ 𝑑𝑥′Σ(𝑥, 𝑥′; −𝜏)𝐺(𝑥′, 𝑥; 𝜏) = 1

2
𝑇 𝑟{Σ𝐺} (6.30)
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Chapter 7

Optical Properties for Real
Materials

7.1 Introduction

7.1.1 Experimental techniques

In the field of studying strong correlated materials, a range of experimental techniques
have been developed and utilized. Among them, optical spectroscopy stands out as a
natural and intuitive approach. Similar to how our eyes perceive light, optical detectors
collect and analyze the response of materials to incident light. However, optical spec-
troscopy allows us to access frequencies and corresponding phenomena that go beyond
the limitations of human vision.

Optical spectroscopy is a technique that studies how matter interacts with electro-
magnetic radiation. It can be used to determine the chemical composition of matter
and to determine its physical structure. Optical spectroscopy is a broad term that en-
compasses various techniques such as absorption, emission, and scattering spectroscopy.
One of the advantages of optical spectroscopy is its inherent precision, which makes it
suitable for monitoring changes in correlated materials. In contrast to other methods
like photoemission spectroscopy or X-ray experiments, which rely on relative measure-
ments, optical spectroscopy provides results in greater precision, making it easier to
track the evolution of the system accurately.

In summary, optical spectroscopy offers a convenient and precise means of studying
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correlated materials. By utilizing this technique, researchers can explore the intricate
behavior of these materials under different circumstances, gaining valuable insights into
their fundamental properties and potential applications.

7.1.2 Theories

Initially, in the realm of strongly correlated electrons, efforts were made to calculate the
optical conductivity within the Dynamical Mean-Field Theory (DMFT) framework. The
pioneering work by Pruschke et al. [152] and Jarrell et al. [153] focused on the optical
responses of the Hubbard model. Building upon this foundation, Rozenberg et al. [154,
155] conducted significant research investigating the various optical behaviors exhibited
by the Hubbard model across its phase diagram while also incorporating experimental
observations from V2O3.

Expanding beyond the realm of idealized models, researchers Blümer [156] and Blümer
and van Dongen [157] tackled the challenge of calculating optical conductivity within
the more realistic framework of LDA+DMFT for systems with degenerate orbitals. The
pioneering work of Pálsson [158] introduced a more comprehensive approach for studying
thermo-electricity within this context, broadening the understanding of correlated ma-
terials. Presenting an alternative technique, Oudovenko et al. [159] proposed a method
that involved diagonalizing the interacting system, allowing for the analytical evaluation
of certain integrals due to the ”non-interacting” form of the Green’s function.

However, due to the frequency-dependent nature of the self-energy, this diagonaliza-
tion procedure had to be performed individually for each momentum and frequency,
involving both left and right eigenvectors. As a consequence, this approach could be-
come computationally expensive. Additionally, it is worth noting that this technique has
so far only been employed in LDA+DMFT calculations that made use of approximate
impurity solvers, which introduces further nuances and limitations to the analysis.

Overall, the body of literature reviewed highlights the evolution of optical conductiv-
ity calculations within the DMFT framework. From its initial applications to the Hub-
bard model to more realistic scenarios with degenerate orbitals, researchers relentlessly
pursued a deeper understanding of correlated materials’ optical responses, incorporat-
ing experimental data and exploring alternative techniques. While advances have been
made, challenges such as the computationally intensive nature of certain methods and
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the need for accurate impurity solvers still exist, motivating further investigations in
this field.

7.2 Current operator

7.2.1 Generic form of the current operator

The Hamiltonian for the system is taken to have the form

𝐻 = 𝐻0 + 𝐻′ (7.1)

where 𝐻0 contains all the possible interactions in the solid except the interaction with
the electromagnetic field and the term 𝐻′ contains the interaction between the total
electric field and the particles of the system.

The effect of an electromagnetic field on particles is to shift their moments by −𝑒A(r),
where A(r) is the vector potential[160]. Here we choose the gauge ∇⋅A = 0 so that the
scalar potential is zero. The resulting change in the particle energy is the product of its
velocity (i.e. the current) by the change in momentum. For a collection of particles,

𝛿𝐻′ = ∫ 𝑑rj(r) ⋅ 𝛿A(r) (7.2)

⇒ j(r) = − 𝛿𝐻
𝛿A(r)

(7.3)

where j(r) is an electric current. If we can express the Hamiltonian in terms of creation
and annihilation operators, then we can obtain a definition of the current operator.

In a solid, the operator p appears only in the kinetic energy, namely p = −𝑖ℏ∇:

𝐻′ = ∫ 𝑑r ∑
𝜎

𝑐†
r𝜎

[p − 𝑒A(r)]2

2𝑚
𝑐r𝜎 − ∫ 𝑑r ∑

𝜎
𝑐†

r𝜎
p2

2𝑚
𝑐r𝜎

= 1
2𝑚

∫ 𝑑r ∑
𝜎

𝑐†
r𝜎[𝑖ℏ𝑒∇r ⋅ A(r) + 𝑖ℏ𝑒A(r) ⋅ ∇r + 𝑒2A2(r)]𝑐r𝜎

(7.4)
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By using the integration by parts

∫ 𝑑r𝑐†
r𝜎∇r ⋅ A(r)𝑐r𝜎 = − ∫ 𝑑rA(r) ⋅ (∇r𝑐†

r𝜎)𝑐r𝜎, (7.5)

we can obtain that

𝐻′ = − ∫ 𝑑rj(r) ⋅ A(r) (7.6)

j(r) = j𝑝(r) + j𝑑(r) (7.7)

j𝑝(r) = 𝑖ℏ𝑒
2𝑚

∑
𝜎

[(∇r𝑐†
r𝜎)𝑐r𝜎 − 𝑐†

r𝜎(∇r𝑐r𝜎)] (7.8)

j𝑑(r) = − 𝑒2

2𝑚
∑

𝜎
A(r)𝑐†

r𝜎𝑐r𝜎 (7.9)

where j𝑝(r) is the paramagnetic current, and j𝑑(r) is the diamagnetic current.

7.2.2 Current density in the plane wave basis

In order to construct a basis on which we can expand a many-particle state, we start
by choosing a complete basis for the one-particle state 𝜙𝛼(1), where 1 ≡ (r1, 𝜎1). In a
solid, a convenient basis is formed by the plane waves

𝜙k𝜎(1) ≡
𝛿𝜎𝜎1√

𝒱
𝑒𝑖k⋅r1 (7.10)

which satisfy

⟨k𝜎|k𝜎′⟩ = 𝛿𝜎𝜎′𝛿kk′ (7.11)

∑
k𝜎

|k𝜎⟩⟨k𝜎| = 1 (7.12)

Then we are looking for a relation between 𝑐†
k and 𝑐†

r (here we ignore other quantum
numbers such as 𝜎 temporarily for simplification) in the form of

𝑐†
k = ∫ 𝑑r𝑈kr𝑐†

r (7.13)
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In the plane wave basis sets, act 𝑐†
k on the vacuum state |0⟩ on the right and on the

state ⟨r1| on the left:

⟨r1|𝑐†
k|0⟩ = 𝜓k(r1) = ∫ 𝑑r𝑈kr⟨r1|𝑐†

r |0⟩ = 𝑈kr1
(7.14)

So

𝑐†
k = 1√

𝒱
∫ 𝑑r𝑒𝑖k⋅r𝑐†

𝑟 (7.15)

Similarly

𝑐k = 1√
𝒱

∫ 𝑑r𝑒−𝑖k⋅r𝑐𝑟 (7.16)

𝑐†
r = 1√

𝒱
∑

k
𝑒−𝑖k⋅r𝑐†

k (7.17)

𝑐r = 1√
𝒱

∑
k

𝑒𝑖k⋅r𝑐k (7.18)

Actually, the same argument can be extended to arbitrary one-particle basis:

𝑐†
r = ∑

𝛼
𝜙∗

𝛼(r)𝑐†
𝛼 (7.19)

𝑐†
𝛼 = ∫ 𝑑r𝜙𝛼(r)𝑐†

r (7.20)

where 𝛼 represents any kind of basis and 𝜙𝛼(r) is the corresponding basis function.
The Fourier transform of j(r) is easily evaluated by using the expression of the field

operators in the plane-wave basis:

j𝑝(q) = ∫ 𝑑r𝑒−𝑖q⋅r 𝑖ℏ𝑒
2𝑚

∑
𝜎

1
𝒱

∑
kk′

𝑐†
k𝜎𝑐k′𝜎 [(∇r𝑒−𝑖k⋅r)𝑒𝑖k′⋅r − 𝑒−𝑖k⋅r(∇r𝑒𝑖k′⋅r)]

= ℏ𝑒
2𝑚

∑
𝜎

1
𝒱

∑
kk′

(k + k′)𝑐†
k𝜎𝑐k′𝜎 ∫ 𝑑r𝑒−𝑖q⋅r𝑒−𝑖(k−k′)⋅r

= ℏ𝑒
2𝑚

∑
k𝜎

(2k + q)𝑐†
k𝜎𝑐k+q,𝜎

(7.21)
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j𝑑(q) = ∫ 𝑑r𝑒−𝑖q⋅r(− 𝑒2

𝑚𝑐
) ∑

𝜎
A(r) 1

𝒱
∑
kk′

𝑐†
k𝜎𝑐k′𝜎𝑒−k⋅r𝑒𝑖k′⋅r

= − 𝑒2

𝑚𝑐𝒱
∑
kk′𝜎

𝑐†
k𝜎𝑐k′𝜎 ∫ 𝑑rA(r)𝑒−𝑖(q+k−k′)⋅r

= − 𝑒2

𝑚𝑐𝒱
∑
kk′𝜎

A(k − k′)𝑐†
k𝜎𝑐k+q,𝜎

(7.22)

7.2.3 Current operator in the Bloch waves

In our work, the one-particle basis we are using is Gaussian-based Block waves 𝜙k
𝑖 (r):

𝜙k
𝑖 (r) = ∑

R
𝜙R

𝑖 (r)𝑒𝑖k⋅R (7.23)

where

R: unit cell index,

𝑖: localized atomic orbital index,

k: momentum index in the first Brillouin zone.

𝜙R
𝑖 (r) are atomic-centered Gaussian functions shifted to the unit cell with label R, i.e.

𝜙R
𝑖 (r) = 𝜑𝑖(r − R) in which 𝜑𝑖(r) are these functions in the central unit cell.
For two Bloch basis functions,

∫
ℛ3

𝑑r𝜙k∗
𝑖 (r)𝜙k′

𝑗 (r) = 𝑁𝛿kk′ ∑
R

𝑒𝑖k′⋅R ∫
ℛ3

𝑑r𝜙0
𝑖 (r)𝜙R

𝑗 (r) (7.24)

The Gaussian-type Bloch waves are orthogonal in k.
Using the change of basis in Eq.7.19, we can express the creation and annihilation

operator in the Bloch waves:

𝑐†
r = ∑

𝛼
𝜓∗

𝛼(r)𝑐†
𝛼 = ∑

k,R
𝜙R∗

𝑖 (r)𝑒−𝑖k⋅R𝑐†
k (7.25)

𝑐r = ∑
k,R

𝜙R
𝑖 (r)𝑒𝑖k⋅R𝑐k (7.26)
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The paramagnetic current can be expressed as

j𝑝(q) =𝑖ℏ𝑒
2𝑚

∑
𝑖𝑗,kk′,𝜎

𝑐k†
𝑖𝜎 𝑐k′

𝑗𝜎 ∫ 𝑑r𝑒−𝑖q⋅r

× [𝜙k∗
𝑖 (r)∇r𝜙k′

𝑗 (r) − 𝜙k′

𝑗 (r)∇r𝜙k∗
𝑖 (r)]

(7.27)

7.3 Linear Response Theory

7.3.1 Kubo formula for the optical conductivity

Kubo formulas are applied to the correlation function that describes the linear response,
which means that the perturbation is weak and signal is directly proportional to the
intensity of the external perturbation.

In electrical conduction, the conductivity 𝜎 can be expressed as the proportionality
of how the induced current 𝐽 reponsed linearly to the electric field 𝐸 in the solid[161]:

𝐽𝛼(r, 𝑡) = ∑
𝛽

𝜎𝛼𝛽(q, 𝜔)𝐸𝛽(r, 𝑡) (7.28)

𝐸𝛼(r, 𝑡) = Ξ𝛼𝑒𝑖q⋅r−𝑖𝜔𝑡 (7.29)

where the indices 𝛼, 𝛽 are spatial coordinates, q and 𝜔 are the moment and frequency
of the external field.

The Kubo formula is derived assuming that the system is linear and perturbations at
different frequencies act indepently. From the derivation above:

𝐻′ = − ∑
𝛼

∫ 𝑑3𝑟𝑗𝛼(r)𝐴𝛼(r, 𝑡) (7.30)

𝐴𝛼(r, 𝑡) = − 𝑖
𝜔

𝐸𝛼(r, 𝑡) (7.31)

where 𝐴 is the vector potential, 𝑗 is the current operator and the relation Eq.7.31 is
based on the choice of the gauge as ∇ ⋅ A = 0.

According to the definition of the current operator in Eq.7.7, Eq.7.8 and Eq.7.9, The
measured value of the current, which is the average value for the velocity of the particles
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in the system, has the form of

J(r, 𝑡) = ⟨j(r, 𝑡)⟩ = ⟨j𝑝(r, 𝑡)⟩ + ⟨j𝑑(r, 𝑡)⟩

= ⟨j𝑝(r, 𝑡)⟩ − 𝑒2

2𝑚
⟨∑

𝜎
𝑐†

r𝜎𝑐r𝜎⟩A(r)

= ⟨j𝑝(r, 𝑡)⟩ + 𝑖𝑛0𝑒2

𝑚𝜔
E(r, 𝑡)

(7.32)

The second term in the current is proportional to the electric field and the first term is
given by the expectation value of the current operator. These two terms can be written
in the form of vectors:

J = J(1) + J(2) (7.33)

J(1) = 𝑖𝑛0𝑒2

𝑚𝜔
E(r, 𝑡) (7.34)

J(2) = ⟨j𝑝(r, 𝑡)⟩ (7.35)

When we use the phrase “the current operator” later, we mean “the paramagnetic
current operator”.

First consider the case at zero temperature. Then the expectation value of the current
operator in the interaction representation is

𝐽 (2)
𝛼 = ⟨Ψ0|𝑆†(𝑡, −∞)𝑗𝑝

𝛼(r, 𝑡)𝑆(𝑡, −∞)|Ψ0⟩ (7.36)

where |Ψ0⟩ is the groud state of the many-body Hamiltionian 𝐻0 and

𝑆(𝑡, −∞) = 𝑇 exp [−𝑖 ∫
𝑡

−∞
𝑑𝑡′𝐻′(𝑡′)] (7.37)

Only the terms linear in the electric field 𝐸𝛼 are desired, which requires us to only
keep terms linear in 𝐻′:

𝐽 (2)
𝛼 = ⟨Ψ0| [1 + 𝑖 ∫

𝑡

−∞
𝑑𝑡′𝐻′(𝑡′)] 𝑗𝑝

𝛼(r, 𝑡) [1 − 𝑖 ∫
𝑡

−∞
𝑑𝑡′𝐻′(𝑡′)] |Ψ0⟩ (7.38)

= ⟨Ψ0|𝑗𝑝
𝛼(r, 𝑡) − 𝑖 ∫

𝑡

−∞
𝑑𝑡′ [𝑗𝑝

𝛼(r, 𝑡)𝐻′(𝑡′) − 𝐻′(𝑡′)𝑗𝑝
𝛼(r, 𝑡)] |Ψ0⟩ (7.39)
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Assume that there is no current in the solid in the absence of the electric field or
something equivalent:

⟨Ψ0|𝑗𝑝
𝛼(r, 𝑡)|Ψ0⟩ = 0 (7.40)

So

𝐽 (2)
𝛼 = −𝑖 ∫

𝑡

−∞
𝑑𝑡′⟨Ψ0| [𝑗𝑝

𝛼(r, 𝑡), 𝐻′(𝑡′)] |Ψ0⟩ (7.41)

where
[𝑗𝑝

𝛼(r, 𝑡), 𝐻′(𝑡′)]

= 𝑖
𝜔

𝐸𝛽(r, 𝑡)𝑒−𝑖q⋅r𝑒𝑖𝜔(𝑡−𝑡′) [𝑗𝑝
𝛼(r, 𝑡), 𝑗𝛽(q, 𝑡′)]

(7.42)

and

𝑗𝛽(q, 𝑡′) = 𝑗𝑝
𝛽(q, 𝑡′) + 𝑗𝑑

𝛽(q, 𝑡′) (7.43)

Since we only consider the terms that are linear with the electric field 𝐸, and 𝑗𝑑 contains
an external dependence on 𝐸, we can ignore 𝑗𝑑 term here.

Then average over the space variable r to eliminate atomic fluctuations:

1
𝒱

∫ 𝑑3𝑟𝑒−𝑖q⋅r𝑗𝑝
𝛼(r, 𝑡) = 𝑗𝑝

𝛼(−q, 𝑡) = 𝑗𝑝†
𝛼 (q, 𝑡) (7.44)

So the Kubo formula for the conductivity is

𝜎𝛼𝛽(q, 𝜔) = 1
𝜔𝒱

∫
𝑡

−∞
𝑑𝑡′𝑒𝑖𝜔(𝑡−𝑡′)⟨Ψ0| [𝑗𝑝†

𝛼 (q, 𝑡), 𝑗𝑝
𝛽(q, 𝑡′)] |Ψ0⟩ + 𝑖𝑛0𝑒2

𝑚𝜔
𝛿𝛼𝛽 (7.45)

= 1
𝜔𝒱

∫
∞

0
𝑑𝑡𝑒𝑖𝜔𝑡⟨Ψ0| [𝑗𝑝†

𝛼 (q, 𝑡), 𝑗𝑝
𝛽(q, 0)] |Ψ0⟩ + 𝑖𝑛0𝑒2

𝑚𝜔
𝛿𝛼𝛽 (7.46)

where Eq.7.46 is obtained from Eq.7.45 by making the variable change 𝑡 − 𝑡′ → 𝑡.
The above derivation can be easily extended to finite temperature case by interpreting

the bracket as a thermodynamic average.
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7.3.2 Current-current correlation function

The Kubo formulas contain a retared, two particle correlation function, which is called
the current-current correlation function:

Π𝛼𝛽(q, 𝑡 − 𝑡′) = − 𝑖
𝒱

Θ(𝑡 − 𝑡′)⟨Ψ0| [𝑗†
𝛼(q, 𝑡), 𝑗𝛽(q, 𝑡′)] |Ψ0⟩ (7.47)

Using its Fourier transform, we can express the conductivity in terms of the current-
current correlation function

𝜎𝛼𝛽(q, 𝜔) = 𝑖
𝜔

[Π𝛼𝛽(q, 𝜔) + 𝑛0𝑒2

𝑚
𝛿𝛼𝛽] (7.48)

It is usually easiest to calculate the retarded correlation function in the Matsub-
ara formalism. We can quickly generalize Eq.7.47 to imaginary time, by replacing
𝑖⟨[𝐴(1), 𝐵(2)]⟩ → ⟨𝑇 𝐴(1)𝐵(2)⟩:

Π𝛼𝛽(q, 𝜏) = − 1
𝒱

⟨𝑇𝜏𝑗†
𝛼(q, 𝜏)𝑗𝛽(q, 0)⟩ (7.49)

Π𝛼𝛽(q, 𝑖𝜔𝑛) = ∫
𝛽

0
𝑑𝜏𝑒𝑖𝜔𝑛𝜏Π𝛼𝛽(q, 𝜏) (7.50)

The current operator contains a product of one creation and one destruction operator,
so the correlation function Eq.7.49 contains at least four such operators. Substitute the
expression for the current operator Eq.7.21 into the correlation function in terms of the
plane wave basis:

Π(q, 𝜏) = − ℏ2𝑒2

𝑚2𝒱
∑

kk′𝜎𝜎′

(2k + q) ⋅ (2k′ + q)⟨𝑇𝜏𝑐†
k+q,𝜎(𝜏)𝑐k𝜎(𝜏)𝑐†

k′𝜎′(0)𝑐k′+q,𝜎′(0)⟩

(7.51)

Π(q, 𝑖𝜔𝑛) = − ℏ2𝑒2

𝑚2𝒱
∫

𝛽

0
𝑑𝜏𝑒𝑖𝜔𝑛𝜏 ∑

kk′𝜎𝜎′

(2k + q) ⋅ (2k′ + q)

× ⟨𝑇𝜏𝑐†
k+q,𝜎(𝜏)𝑐k𝜎(𝜏)𝑐†

k′𝜎′(0)𝑐k′+q,𝜎′(0)⟩
(7.52)

Here we only consider the first order contribution:
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Figure 7.1: The first contribution to the current-current correlation function.

Π(1)(q, 𝑖𝜔𝑛) = − ℏ2𝑒2

𝑚2𝒱
∫

𝛽

0
𝑑𝜏𝑒𝑖𝜔𝑛𝜏 ∑

kk′𝜎𝜎′

(2k + q) ⋅ (2k′ + q)

× [𝑇𝜏𝑒𝜏𝐻0⟨𝑐†
k+q,𝜎𝑐k𝜎⟩𝑒−𝜏𝐻0⟨𝑐†

k′𝜎′𝑐k′+q,𝜎′⟩

− 𝛿k=k′𝛿𝜎=𝜎′𝐺(k + q, 𝜏)𝐺(k, −𝜏)]

=2ℏ2𝑒2

𝑚2𝒱
∫

𝛽

0
𝑑𝜏𝑒𝑖𝜔𝑛𝜏 ∑

k
(2k + q)2𝐺(k + q, 𝜏)𝐺(k, −𝜏)

− ℏ2𝑒2

𝑚2𝒱
∑

kk′𝜎𝜎′

(2k + q) ⋅ (2k′ + q)⟨𝑐†
k+q,𝜎𝑐k𝜎⟩⟨𝑐†

k′𝜎′𝑐k′+q,𝜎′⟩ ∫
𝛽

0
𝑑𝜏𝑒𝑖𝜔𝑛𝜏

=2ℏ2𝑒2

𝑚2𝒱
∫

𝛽

0
𝑑𝜏𝑒𝑖𝜔𝑛𝜏 ∑

k
(2k + q)2𝐺(k + q, 𝜏)𝐺(k, −𝜏)

− ℏ2𝑒2

𝑚2𝒱
𝛽𝛿𝜔𝑛

∑
kk′𝜎𝜎′

(2k + q) ⋅ (2k′ + q)⟨𝑐†
k+q,𝜎𝑐k𝜎⟩⟨𝑐†

k′𝜎′𝑐k′+q,𝜎′⟩

(7.53)
Since [𝐻0, 𝑛] = 0 and ⟨𝑐†

k+q,𝜎𝑐k𝜎⟩, ⟨𝑐†
k′𝜎′𝑐k′+q,𝜎′⟩ is 𝜏-independent, the second term of

Eq.7.53 is zero unless 𝜔𝑛 = 0.
The Matsubara function can be evaluated by using the diagrammatic techniques

shown in Fig.7.1[162]:

Π(1)
𝛼𝛽(q, 𝑖𝜈𝑛) = 2 ℏ2𝑒2

𝑚2𝒱
1
𝛽

∑
k,𝑖𝜔𝑟

(2𝑘𝛼 + 𝑞𝛼)(2𝑘𝛽 + 𝑞𝛽)𝐺(k + q, 𝑖𝜔𝑟 + 𝑖𝜈𝑛)𝐺(k, 𝑖𝜔𝑟) (7.54)

where an extra minus sign derives from the fermion loop and the prefactor of 2 derives
from the summation of the spins.
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7.3.3 Correlation function in Bloch waves

In terms of the Bloch wave basis set, substitute Eq.7.27 into the definition of current-
current correlation Eq.7.49:

Π(q, 𝜏)𝛼𝛽 = ℏ2𝑒2

2𝑚2𝒱
∑
𝑖𝑗𝑘𝑙

∑
kk′pp′

⟨𝑐k†
𝑖 (𝜏)𝑐k′

𝑗 (𝜏)𝑐p†
𝑘 (0)𝑐p′

𝑙 (0)⟩ ∫ 𝑑3r𝑑3r′𝑒𝑖q⋅(r−r′)

× [𝜙k∗
𝑖 (r)∇r𝜙k′

𝑗 (r) − 𝜙k′

𝑗 (r)∇r𝜙k∗
𝑖 (r)]

𝛼

× [𝜙p∗
𝑘 (r′)∇r′𝜙p′

𝑙 (r′) − 𝜙p′

𝑙 (r′)∇r′𝜙p∗
𝑘 (r′)]

𝛽

(7.55)

Similarly, we only consider the first contribution here:

Π(1)
𝛼𝛽(q, 𝜏) = ℏ2𝑒2

2𝑚2𝒱
∑
𝑖𝑗𝑘𝑙

∑
kk′

𝐺k
𝑖𝑙(𝜏)𝐺k′

𝑗𝑘(−𝜏) ∫ 𝑑3r𝑑3r′𝑒𝑖q⋅(r−r′)

× [𝜙k∗
𝑖 (r)∇r𝜙k′

𝑗 (r) − 𝜙k′

𝑗 (r)∇r𝜙k∗
𝑖 (r)]

𝛼

× [𝜙k′∗
𝑘 (r′)∇r′𝜙k

𝑙 (r′) − 𝜙k
𝑙 (r′)∇r′𝜙k′∗

𝑘 (r′)]
𝛽

(7.56)

In discussing the direct transitions, we need not be concerned with the momentum of
the photon because it is very small in comparison to Brillouin zone. For typical optical
wavelengthes from 200nm to 800nm, the corresponding momentum range in 10−28 ∼
10−27kg⋅m/s. While for a typical lattice constant around 0.1nm, the typical dimension
across the Brillouin zone is 10−24kg⋅m/s. Thus, typical direct optical interband processes
excite an electron from a valence to a conduction band without a significant change in
the wave vector[163].

Next, we will show why the momentum matrix elements coupling two Bloch states for
a perfect crystal are diagonal in k and conserve crystal momentum and thus the optical
transitions between them are direct transitions.

Write the Bloch wave basis set in the form of the definition of the Bloch functions:

𝜙k
𝑖 (r) = 𝑒𝑖k⋅r𝑢k

𝑖 (r) (7.57)
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where from the definition of 𝜙k
𝑖 (r) in Eq.7.23,

𝑢k
𝑖 (r) = ∑

R
𝜙𝑖(r − R)𝑒−𝑖k⋅(r−R) (7.58)

and it is periodic under the translation r → r + R𝑛, where R𝑛 is any lattice vector.
So the momentum matrix element between two Bloch states is

⟨𝑗k′|p|𝑖k⟩ = ∫
ℛ3

𝑑3r𝑒−𝑖k′⋅r𝑢k′∗
𝑗 (r)(ℏ

𝑖
∇)𝑒𝑖k⋅r𝑢k

𝑖 (r)

= ∫
ℛ3

𝑑3r𝑒−𝑖k′⋅r𝑢k′∗
𝑗 (r)𝑒𝑖k⋅r(ℏk + ℏ

𝑖
∇)𝑢k

𝑖 (r)
(7.59)

where the first term is obtained from Eq.7.24

ℏk ∫
ℛ3

𝑑3r𝑒−𝑖k′⋅r𝑢k′∗
𝑗 (r)𝑒𝑖k⋅r𝑢k

𝑖 (r)

=ℏk𝑁𝛿kk′ ∑
R

𝑒𝑖k′⋅R ∫
ℛ3

𝑑r𝜙0∗
𝑖 (r)𝜙R

𝑗 (r)
(7.60)

which is diagonal in momentum k. The remaining term in Eq.7.59 is

∫
ℛ3

𝑑3r𝑒𝑖(k−k′)⋅r ℏ
𝑖

𝑢k′∗
𝑗 (r)∇𝑢k

𝑖 (r) (7.61)

The function 𝑢k′∗
𝑗 (r)∇𝑢k

𝑖 (r) is periodic under the transition r → r + R𝑛, and any
spatially periodic function can be Fourier expanded[163] in terms of the reciprocal lattice
vector G𝑚:

∑
𝑚

𝐹𝑚𝑒𝑖G𝑚⋅r = ℏ
𝑖

𝑢k′∗
𝑗 (r)∇𝑢k

𝑖 (r) (7.62)

Thus the integral in Eq.7.61 can be rewrite in the form of

∑
𝑚

∫
ℛ3

𝑒𝑖(k−k′)⋅r𝐹𝑚𝑒𝑖G𝑚⋅r (7.63)

which vanishes unless
k − k′ + G𝑚 = 0 (7.64)

Since k and k′ are momentum indices in the first Brillouin zoon according to the defini-
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tion of the Bloch wave basis sets in Eq.7.23, The difference between k and k′ can only
be zero, i.e. G𝑚 ≡ 0. Therefore, the optical transitions between two Bloch states are
direct transitions, which conserve the momentum during a transition. And according to
the discuss above, we can ignore the momentum of the photon, which means q = 0.

Then the first contribution to the current-current correlation function is

Π(1)(q, 𝜏) = ℏ2𝑒2

2𝑚2𝒱
∑
𝑖𝑗𝑘𝑙

∑
kk′

𝐺k
𝑖𝑙(𝜏)𝐺k′

𝑗𝑘(−𝜏)

× (𝑃 kk′

𝑖𝑗 − 𝑃 k′k
𝑗𝑖 )(𝑃 k′k

𝑘𝑙 − 𝑃 kk′

𝑙𝑘 )
(7.65)

where
𝑃 kk′

𝑖𝑗 = ∫ 𝑑3r𝜙k∗
𝑖 (r)∇r𝜙k′

𝑗 (r)

= ∑
R,R′

𝑒−𝑖k⋅R𝑒𝑖k′⋅R′ ∫ 𝑑3r𝜙R∗
𝑖 (r)∇r𝜙R′

𝑗 (r)

( ̃R = R′ − R)

= ∑
R, ̃R

𝑒−𝑖(k−k′)⋅R𝑒𝑖k′⋅R̃ ∫ 𝑑3r𝜙0∗
𝑖 (r)∇r𝜙R̃

𝑗 (r)

= 𝑁𝛿kk′ ∑
R

𝑒𝑖k⋅R ∫ 𝑑3𝜙0∗
𝑖 (r)∇r𝜙R

𝑗 (r)

(7.66)

which is diagonal in k.
The Mastubara function can be evaluated as

Π(1)
𝛼𝛽(0, 𝑖𝜈𝑛) = ℏ2𝑒2

2𝑚2𝒱
∑
𝑖𝑗𝑘𝑙

∑
kk′,𝑖𝜔𝑟

𝐺k
𝑖𝑙(𝑖𝜔𝑟 + 𝑖𝜈𝑛)𝐺k′

𝑗𝑘(𝑖𝜔𝑟)

× (𝑃 kk′

𝑖𝑗 − 𝑃 k′k
𝑗𝑖 )𝛼(𝑃 k′k

𝑘𝑙 − 𝑃 kk′

𝑙𝑘 )𝛽

= ℏ2𝑒2

2𝑚2𝒱
∑
𝑖𝑗𝑘𝑙

∑
k,𝑖𝜔𝑟

𝐺k
𝑖𝑙(𝑖𝜔𝑟 + 𝑖𝜈𝑛)𝐺k

𝑗𝑘(𝑖𝜔𝑟)

× (𝑃 k
𝑖𝑗 − 𝑃 k

𝑗𝑖)𝛼(𝑃 k
𝑘𝑙 − 𝑃 k

𝑙𝑘)𝛽

(7.67)

Then, the corresponding dielectric function in Matsubara representation can be cal-
culated by

𝜀(1)
𝛼𝛽(0, 𝑖𝜈𝑛) = 1 − 4𝜋

(𝑖𝜔𝑛)2 [Π(1)
𝛼𝛽(0, 𝑖𝜈𝑛) + 𝑛0𝑒2

𝑚
𝛿𝛼𝛽] (7.68)
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𝜀(1)(0, 𝑖𝜈𝑛) = 1
3

∑
𝛼

𝜀(1)
𝛼𝛼(0, 𝑖𝜈𝑛) (7.69)

7.4 Discussion

The derivation of optical conductivity in real materials serves as a pivotal aspect of our
study, providing a foundational understanding of electronic response properties within
the context of our self-consistent calculation framework. In our approach, we consider
the lowest-order term, the bubble term, to approximate the optical conductivity. This
choice is motivated by its simplicity and relevance to weak perturbations, aligning with
the assumptions of linear response theory. By focusing on the bubble term, we lay
the groundwork for a systematic exploration of optical properties, allowing us to gain
insights into the behavior of electrons under external fields in the weak perturbation
regime.

Our consideration of the optical conductivity in a Gaussian-type Bloch wave basis on
the imaginary axis is a strategic choice that seamlessly integrates with our self-consistent
calculation framework. The use of imaginary time and Matsubara quantities in our
numerical simulations facilitates efficient calculations and maintains consistency with
the Green’s function language employed throughout our methodologies. This approach
not only streamlines the computational aspects but also offers a practical advantage in
comparing theoretical predictions with experimental data.

The derivation of optical conductivity at the lowest order serves as a stepping stone
for future investigations into more intricate aspects of electronic response properties. As
we progress, higher-order terms and refinements can be systematically incorporated to
enhance the accuracy of our predictions. This foundational exploration of optical con-
ductivity enriches our calculation framework, providing additional facets for comparison
with experimental observations. The versatility and adaptability of our theoretical ap-
proach, coupled with the systematic exploration of optical properties, position our study
to contribute meaningfully to the broader understanding of electronic behaviors in real
materials.
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Chapter 8

Application - NdNiO2

8.1 Introduction

The discovery of a new class of superconductors marks a major development in the
field of condensed matter physics. It paves the way for a comprehensive study of the
commonalities and differences between these new superconductors and their existing
counterparts. By discerning similarities and differences, we can gain new perspectives
and insights into the mysterious and complex nature of superconductivity, revealing
the elusive microscopic mechanisms behind this fascinating quantum many-body phe-
nomenon.

The revolutionary discovery of superconductivity in layered copper-oxide materials
triggered a radical shift in the landscape of condensed matter physics and materials sci-
ence. This was primarily due to the unexpectedly high transition temperatures of these
materials in comparison to others known during that period. What further compounded
the intrigue was the marked deviation of both superconductive and non-superconductive
aspects of this finding from conventional theoretical predictions. This evident dispar-
ity underscored the potential of interacting electron physics stretching beyond the mean
field theory, capable of implications bearing significant relevance to fundamental physics.
In certain unique scenarios, these implications even touched the boundary of commercial
feasibility.

The recent discovery of superconductivity in infinite-layer [27–29, 164] and quintuple-
layer [165] 𝑑9 nickelates has been another groundbreaking event. The case of supercon-
ducting nickelates is interesting in the sense that their superconductivity was theoreti-
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cally predicted based on their structural and chemical resemblance to cuprates. Interest-
ingly, the inspection and elucidation of the properties intrinsic to these superconducting
nickelates creates an enormous scientific opportunity. It carves out the pathway to en-
hance and refine our understanding of the interactions between the crystal structure and
local chemistry on one end and revolutionary phenomena like superconductivity on the
other. This, in essence, may lead us deeper into the world of quantum mechanics and
materials sciences, and at the same time broaden our perspective on a diverse range of
functional materials.

8.1.1 Crystal Structure

Figure 8.1: Atomic structure of tetragonal NdNiO2. From Liu et al. (2020) [166].

The copper-oxide and layered nickelate materials are both transition metal oxide
(TMO) compounds. These types of materials are characterized by shared structural
design, particularly by the motif of the CuO2/NiO2 plane. This discussion begins with
an examination of the simplest of these materials — the ”infinite layer” CaCuO2 and
NdNiO2. Their structure consists of transition metal ions arranged on a square planar
template, with oxygen ions situated at the midpoints of the template’s edges, shown as
Figure 8.1. When these materials are seen in a three-dimensional context, they appear
as layered compositions of transition metal/oxygen planes. In these layers, Ca/Nd ions
are placed halfway between planes, directly above the square’s centers formed by four
transition metal ions.

There are numerous compound variations that can be formed using the CuO2/NiO2
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motif, leading to a wide range of compounds with different detailed properties but
similar overall characteristics. The focus here is on nickelate materials, not the vast
variety of cuprate materials. In nickelate materials, an ’infinite layer’ compound could
theoretically include any rare-earth element, represented as R, as the A-site cation. Up
until now, compounds inclusive of R = La, Pr, and Nd have been synthesized. Also,
they can exist in multilayer forms, symbolized as R1+𝑚Ni𝑚O2𝑚+2, and can include
groups of 𝑚 NiO2 planes detached by virtually insulating spacer layers of Nd and O. At
present, compounds with m = 3, 4, 5 have been synthesized. Some charge transfer to
spacer layers occurs, creating a distinct doping of the NiO2 planes from the infinite layer
compounds, however, their overall electronic physics is believed to be quite similar.

From a qualitative chemical perspective, the ions’ electronic configurations are inter-
preted as Ca2+Cu2+[O2−]2 and Nd3+Ni1+[O2−]2, relating in both instances to a tran-
sition metal 𝑑9 configuration (indicating one hole in the 𝑑-shell). Ligand field theory
suggests that this hole is located in the transition metal 𝑑𝑥2−𝑦2 orbital. It is possible
to alter the chemical formula, for example, by replacing a fraction 𝑥 of the Nd3+ with
Sr2+. This modification can cause changes in the Cu/Ni formal valence – altering to
𝑑9±𝑥 (either electron or hole doping). In both material families, such electron and hole
doping modifications lead to dramatic changes in physical properties; more specifically,
superconductivity happens exclusively within specific electron or hole doping ranges
outside of the nominal 𝑑9 valence.

8.1.2 Experiments

The prediction of nickelates to be a strong candidate for a cuprate analog can be traced
back to the last century [34]. However, This claim faced opposition five years later
from Kwan-Woo Lee and Warren Pickett [35]. Various groups searched for low-valence
nickelates over the following fifteen years, since it is tricky to synthesize RNiO2.

Finally, Hwang’s group [27] reported the discovery of superconductivity in thin films
of strontium-doped NdNiO2, an infinite-layer nickelate, which has a similar crystal and
electronic structure to copper oxide superconductors, with a 𝑇𝑐 of about 9-15 K. To
shed light on the electronic structure of these materials, X-ray spectroscopy and density
functional theory have been utilized [167]. Comparisons between LaNiO2, NdNiO2,
and cuprates have revealed notable distinctions. While similarities to cuprates exist,
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infinite-layer nickelates feature a rare-earth spacer layer supporting a weakly interacting
three-dimensional 5𝑑 metallic state. This metallic state hybridizes with a quasi-two-
dimensional, strongly correlated state within the NiO2 layers, echoing the behavior of
4f states in rare-earth heavy fermion compounds. This distinct electronic structure
forms the basis from which superconductivity emerges upon doping, replacing the Mott
insulator as the reference state.

Furthermore, the recent observation of superconductivity in these materials has raised
fundamental questions regarding their electronic structure hierarchy. Experimental data
involving state-of-the-art electron energy-loss spectroscopy have provided insights into
the Mott–Hubbard character of these systems [168]. The emergence of hybridization,
akin to the Zhang–Rice singlet, is a key feature, demonstrating the influence of hole
doping on various electronic bands, including oxygen, nickel, and rare-earth states.

Moreover, the exploration of phase diagrams for thin films of Nd1−𝑥Sr𝑥NiO2 on
SrTiO3 substrates has revealed superconducting behavior similar to cuprates [169].
These findings, however, indicate that while cuprate superconductivity exhibits bound-
aries between insulating and metallic phases, the nickelates demonstrate weakly insu-
lating characteristics on either side of the superconducting dome. The normal-metallic-
state Hall coefficient further supports the presence of both electron-like and hole-like
bands, in agreement with band structure calculations. These discoveries have expanded
our understanding of the electronic behavior in nickel oxide compounds.

In addition, experiments have extended to other nickelate compounds, such as PrNiO2

[164, 170], revealing superconductivity with varying transition temperatures upon dop-
ing. These findings suggest that superconductivity in infinite layer nickelates is relatively
insensitive to the details of the rare earth 4𝑓 configuration. They also underscore the po-
tential for investigating a broader family of compounds based on two-dimensional NiO2

planes, which offers opportunities for in-depth exploration of their superconducting and
normal state properties and the underlying mechanisms. Notably, investigations have
also touched upon the influence of rare-earth elements and ionic radii variations on the
phase diagram and superconducting behavior.

Shengwei Zeng and his team [171] have meticulously conducted a research on how
superconductivity varies with doping, leading to the creation of a phase diagram. The
diagram displays a superconducting dome similar to that of cuprates. However, they
observed that the superconductivity was marginally reduced at the center of the dome
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due to the influence of multiband effects. Beyond the superconducting area, the ground
state was weakly insulating, suggesting a significant deviation from the cuprates. Thus,
the new nickelate bears some resemblance to the cuprates, but not entirely.

8.1.3 Theories

DFT and advanced beyond-DFT analyses have collectively unveiled a comprehensive
understanding of the electronic structure of infinite layer 𝑑9 nickelates. Similar to
the cuprates, the nickelates exhibit a predominantly two-dimensional Ni-𝑑𝑥2−𝑦2-derived
band with strong electronic correlations. However, unlike the cuprates, the Fermi sur-
face in nickelates features an additional, more three-dimensional band derived from rare
earth 𝑑-orbitals, admixing some interstitial charge and Ni(3𝑑) states [35, 166, 172–175].
Notably, the energy gap between Ni(3𝑑) and O(2𝑝) orbitals in nickelates is larger com-
pared to cuprates, for example, the energy splitting in NdNiO2 is almost twice larger
than that in CaCuO2 [35, 176, 177], putting nickelates into the Hubbard regime rather
than the charge transfer regime[178]. In contrast to cuprate materials, where the rele-
vant configurations of transition metal ions are limited to 𝑑9 and 𝑑10 states, nickelate
materials display some admixture of the high-spin 𝑑8 configuration, introducing the
possibility of Hund’s metal physics[179].

With this general consensus, the key question pertains to which differences and sim-
ilarities with cuprates are crucial for understanding the low-energy physics. In other
words, it remains uncertain whether the low-energy physics of infinite layer nickelates
can be comprehended within the framework of a one-band Hubbard model or if more
complex physics is necessary. The resolution of this query directly influences our under-
standing of the mechanism behind the observed superconductivity in these materials.
Unfortunately, this issue remains unresolved, partly due to varying outcomes from differ-
ent flavors of the DFT + DMFT approach concerning factors like the fractional weight of
high-spin 𝑑8 configurations in the ground state, the relative energy positions of the 𝑝 and
𝑑 band manifolds, and the mass enhancement of various bands near the Fermi surface.
Some of these disparities can be attributed to the choices inherent in the DFT+DMFT
approach for correlated materials.
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8.2 DFT calculations

8.2.1 Calculations with plane wave basis

We performed the DFT calculations within the Generalized Gradient Approximation
(GGA) [67] and the Projector Augmented Wave (PAW) method as implemented in the
Vienna ab initio simulation package (VASP) [18, 19] using the PBE [180] and B3LYP
(Becke, 3-parameter, Lee–Yang–Parr) [181, 182] exchange-correlation functional. The
hybrid functional demonstrates remarkable accuracy in describing systems that feature
a combination of itinerant and localized electrons from different orbitals, where the
delicate balance between itinerancy and localization can produce multiple competing
ground states and phases [183]. In rare-earth oxides like NdNiO2, both the transition
metal 𝑑 electrons and lanthanide 𝑓 electrons play a significant role in the electronic
band structure near the Fermi level [34, 35]. To effectively capture the behavior of elec-
trons in these materials, the hybrid functional stands out as a powerful method, which
can accommodate both itinerant and localized electrons seamlessly without adjustable
parameters [184–186].

The currently available density functionals struggle with handling 𝑓-electrons effec-
tively due to self-interaction errors. This is especially evident when describing the tran-
sition from an itinerant or band-like behavior, commonly observed at the onset of each
period, towards localized states that typically emerge towards the period’s end. This
is a complex process that cannot be adequately captured by the capabilities of current
DFT functionals. A widely adopted approach to handle these limitations, particularly
in dealing with the localized 4𝑓 electrons, is to position these 4𝑓 electrons within the
core [30]. This strategy was employed in our VASP calculations.

The lattice constants are 𝑎 = 𝑏 = 3.92 Å and 𝑐 = 3.28 Å for NdNiO2. The Brillouin
zone was sampled with 6×6×6 and 12×12×12 mesh for DFT calculation. The kinetic
energy cutoff was set to 520 eV.

Figure 8.2 shows the basic aspects of the DFT-level electronic structure of the infinite
layer nickelates NdNiO2. Like the cuprate band structure, nickelates exhibit a two
dimensional band predominately consisting of Ni 𝑑𝑥2−𝑦2 orbitals with a small admixture
of O 2𝑝 character. Besides, it demonstrates an additional, much more three-dimensional
band, derived from the Nd 𝑑-orbital.
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Figure 8.2: Orbital projected electronic band structures of NdNiO2. The size of
the red, blue, purple and green dots represents the weight of Ni 𝑑𝑥2−𝑦2 ,
Ni 𝑑3𝑧2−𝑟2 , Nd 𝑑3𝑧2−𝑟2 and O 𝑝 orbitals, respectively.

Charge transfer from the 𝑑𝑥2−𝑦2-derived band to the Nd-derived band results in a phe-
nomenon known as “self-doping”. In the stoichiometric infinite layer nickelate compound,
the Ni-𝑑𝑥2−𝑦2-derived band is partially filled. Consequently, the electronic structure of
stoichiometric nickelates can be compared for the hole-doped cuprates.

It’s worth highlighting that the DFT analyses, which investigate orbital admixture,
rely on the projection of states onto atomic orbitals. Gu et al. [172] have discovered,
through a Wannier analysis, that the extra band crossing the Fermi surfaces also has a
substantial contribution originating from a charge density not centered on any specific
atom. This component, known as an interstitial 𝑠 orbital [172], is located at the the
mid-point between two neighbouring Ni atoms along the 𝑧 axis. Due to its lack of atom-
centered concentration, this particular component is not easily revealed through the
conventional projector analysis. Gu et al. [172] shows it by using maximally localized
Wannier functions (MLWF) to fit the DFT band structure. When they add one more
MLWF that corresponds to the interstitial 𝑠 orbital, the fitting is improved, in particular
in that Nd-derived bands are now exactly reproduced throughout the Brillouin zone.
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8.2.2 Calculations with GTO basis

As outlined in Section 4.1, it’s crucial to acknowledge the influence of basis set selection
on the results obtained from GTO-based calculations. To address this concern, we con-
ducted DFT calculations using two distinct computational packages, namely CRYSTAL
[14, 187] and PySCF [15, 17], both of which employ GTO basis sets. The aim was to
identify the most appropriate basis set for our investigations.

In our calculations for the element Nd, we considered the presence of 32 valence elec-
trons, corresponding to the electron configuration 4𝑠24𝑝64𝑑104𝑓45𝑠25𝑝66𝑠2. A compar-
ison of the occupied bands derived from CRYSTAL with those from VASP reveals a
noteworthy correspondence. It’s important to note that in CRYSTAL, the Nd 4𝑓 elec-
trons were incorporated into the valence basis, which led to a slight shift in the bands
near the Fermi energy. One distinctive observation in these results is the presence of a
cluster of flat bands concentrated precisely at the Fermi energy. These bands primarily
correspond to the Nd 4𝑓 orbitals, serving as a clear indication that DFT struggles to
accurately represent the behavior of rare-earth 𝑓 orbitals.

Figure 8.3: Electronic band structure of NdNiO2 from VASP (black) and CRYS-
TAL (red) respectively. Brillouin zone was sampled with 6×6×6 mesh
and the exchange functional is chosen to be PBE.
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Our final objective is to identify the best basis set for PySCF that provides reason-
able DFT results. These results will be used as a starting point for subsequent steps.
PySCF is an open-source software that simplifies the preparation of intermediate quan-
tities such as the Fock matrix and Comloub integrals. However, PySCF is much slower
than CRYSTAL, which is why we choose CRYSTAL as an intermediate step to quickly
compare with VASP and find a suitable basis set. The next stage involves comparing
the GTO-based results from CRYSTAL and PySCF. We sampled the Brillouin zone
with a 4 × 4 × 4 mesh for the DFT calculation.

(a) original (b) moved

Figure 8.4: Electronic band structure of NdNiO2 from CRYSTAL (black) and
PySCF (red) respectively. Brillouin zone was sampled with 4 × 4 × 4
mesh and the exchange functional is chosen to be PBE. On the right,
the band structure of CRYSTAL has been moved to align with the
occupied bands of PySCF.

It’s important to highlight a notable discrepancy in the treatment of oxygen within the
two computational platforms. CRYSTAL incorporates the 1s electrons of oxygen into the
valence basis, while PySCF assigns these 1s electrons to the core. This differentiation
arises because the 1s electrons of oxygen are situated at a significantly lower energy
level. Attempting calculations with such a large energy window in PySCF could pose
substantial computational challenges. This variance likely contributes to the observed
energy shift between the occupied bands obtained from CRYSTAL and PySCF. However,
even with the adjustment that aligns the CRYSTAL bands with the occupied bands from
PySCF, certain bands in the vicinity of the Fermi surface remain unaccounted for by
PySCF. It’s important to note that, aside from the Nd 4𝑓 bands, PySCF results suggest
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an insulating behavior, whereas NdNiO2 is, in fact, metallic. This discrepancy highlights
the limitations of PySCF in providing accurate and reliable results in this context.

8.3 GW approximation

The rationale behind undertaking GW calculations lies in the need to establish a more
robust foundation for subsequent SEET calculations. While DFT serves as a valuable
tool for various electronic structure investigations, its reliability may sometimes fall
short in accurately representing the complex electronic interactions within the system
under study. Consequently, the introduction of GW calculations aims to enhance the
accuracy of our electronic structure description, making it a more suitable framework
for the subsequent SEET analysis.

(a) Density of states of GW results start-
ing from DFT with functional PBE.

(b) Density of states of GW results start-
ing from DFT with functional B3LYP.

Figure 8.5: Near Fermi energy GW density of states per Nd atom resolved into
Nd-4𝑓 orbitals.

Figure 8.5 illustrates self-consistent GW results originating from two different DFT
starting points. Surprisingly, GW yields two disparate outcomes, a discrepancy that
contradicts the expectations of self-consistent approaches.

In such scenarios, resolving this issue poses a substantial challenge, but a promising
avenue emerges through the recent application of a temperature extrapolation technique,
as suggested by Yu et al. [188]. This technique offers a novel perspective, as it allows
self-consistent many-body methods to address the problem effectively. Although GW

80



may face difficulties in seeking a global minimum from a zero-temperature initial point,
it can more readily identify the lowest free energy state when initialized from finite
temperature results. The Caratheodory [112] temperature extrapolation technique fa-
cilitates a seamless transition across various temperatures during simulations, rendering
it particularly well-suited for investigating heating and cooling processes within many-
body systems. It should be noted that the starting points obtained through this method
generally exhibit superior performance, especially when applied to systems characterized
by phase transitions and convergence challenges.

However, it’s important to note that this innovative temperature extrapolation tech-
nique is a relatively recent development, and as such, it was not employed in our specific
research project. Nevertheless, it represents a promising avenue for addressing conver-
gence issues in many-body simulations and could be valuable for future investigations
in this area.

(a) Ni 3𝑑 orbitals. (b) Nd 5𝑑 orbitals.

Figure 8.6: Near Fermi energy GW density of states per Nd atom resolved into
Ni-𝑑 and Nd-𝑑 orbitals.

Examining the data presented in Figure 8.6a, we observe that the Ni 𝑑𝑥2−𝑦2 orbital
plays a dominant role in contributing to the electronic structure near the Fermi surface.
Interestingly, the Ni 𝑑3𝑧2−𝑟2 and Ni 𝑑𝑥𝑧/𝑦𝑧 orbitals also exhibit notable contributions
at the Fermi surface. However, these contributions are primarily attributed to a form
of self-doping stemming from the Nd 𝑑 orbitals, a phenomenon that we will explore in
more comprehensive detail in subsequent discussions.

Turning our attention to Figure 8.6b, it is evident that the Nd 5𝑑3𝑧2−𝑟2 orbital like-
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wise makes a significant contribution near the Fermi energy. This observation strongly
suggests the occurrence of hybridization between the Ni 𝑑 and Nd 𝑑 orbitals, underscor-
ing the intricate interplay between these orbital components in shaping the electronic
structure of the system.

(a) GW band structure with MaxEnt an-
alytical continuation.

(b) GW band structure with Nevanlinna
analytical continuation.

Figure 8.7: Ni 3𝑑𝑥2−𝑦2 momentum-resolved spectral functions for NdNiO2 obtained
from MaxEnt and Nevanlinna analytical continuation after GW calcu-
lations.

In our investigation of the predominant band at the Fermi surface, particularly focus-
ing on the Ni 𝑑𝑥2−𝑦2 band, we have utilized various methods for analytical continuation
from the imaginary axis, as depicted in Figure 8.7. Notably, we employed two distinct
techniques for this purpose, namely MaxEnt [40] and Nevanlinna [41].

As have discussed in Section 6.3, it becomes apparent that MaxEnt exhibits certain
limitations in comparison to the Nevanlinna method. Specifically, MaxEnt presents a
lower level of resolution, especially as we move to higher energy regimes. In contrast,
Nevanlinna emerges as a more powerful approach, providing significantly enhanced res-
olution of the momentum-resolved spectral function near the Fermi energy.

Delving into the details of the results obtained via Nevanlinna, we discern the presence
of a Z-centered pocket in the momentum-resolved spectral function. Furthermore, there
are indications of a potentially existing M-centered pocket. This high level of resolution
facilitated by Nevanlinna allows us to explore these nuanced features in the electronic
structure near the Fermi energy.
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In essence, the GW approximation is a valuable method, particularly effective for
weakly correlated systems. This quantum many-body theory allows for the computation
of electronic band structures and excitation energies with an accuracy often superior to
that of DFT, providing a generally good starting point for SEET. In the context of
describing the electronic structure of NdNiO2, GW exhibits the ability to highlight the
general features.

However, the GW approximation encounters challenges when applied to systems in-
volving strongly correlated electrons. Specifically, in our case, the GW method struggles
to capture the behavior of Nd 𝑓 and Ni 𝑑 orbitals accurately. These electrons display a
high degree of correlation, characterized by strong interactions and entanglement, and
hence require more sophisticated models for accurate representation.

8.4 Inner-loop SEET calculations

8.4.1 Inner-loop SEET calculations with Nd 𝑓 orbitals as
impurities

The initial step in Self-Energy Embedding Theory (SEET) [1–6] involves the crucial
process of impurity identification. Typically, this entails selecting the specific orbitals
of interest to designate as the impurity. Subsequently, the construction of the impurity
Hamiltonian ensues, forming a pivotal element in the SEET framework.

What particularly fascinates us is the intriguing contrast observed in the GW results.
When we initiate these calculations using the DFT framework with the B3LYP func-
tional, a noticeable splitting pattern emerges within the 4𝑓 orbitals. Conversely, when
employing the DFT-PBE approach, there’s a distinct concentration of these orbitals at
the Fermi level. This striking disparity underscores the intricate nature of 𝑓 electrons
within the DFT framework and the inherent challenges associated with the 𝑓 bands
distributed around the Fermi level, as previously observed in our DFT band structure
analyses.

To address these challenges, we choose to select 𝑓 orbitals as the impurities for our
inner-loop SEET calculations. This choice stems from the well-established limitations of
DFT in handling 𝑓 electrons effectively, along with the inherent uncertainty associated
with the multitude of 𝑓 bands situated in the vicinity of the Fermi level. Thus, employing
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𝑓 orbitals as impurities in the SEET framework allows us to circumvent these limitations
and gain a more accurate representation of the material’s electronic structure.

With the impurity problem delineated and 𝑓 orbitals designated as impurities, the
next step involves solving this impurity problem. In this endeavor, we employ Exact
Diagonalization (ED) [50–53, 135], a potent computational technique that enables the
treatment of up to 3 impurities. This sophisticated methodology ensures the compre-
hensive analysis of the electronic properties, providing valuable insights into the system
under investigation while managing the computational complexities effectively.

The computational challenge with ED lies in its exponential complexity, which scales
directly with the size of the impurity system [135]. This size is determined by the
number of active orbitals multiplied by the number of bath orbitals adding 1. When the
size of the impurity system remains relatively small, typically no more than 12, the time
required for each ED solver to perform its calculations falls within acceptable limits,
usually taking just several minutes.

As a consequence of this computational constraint, it’s essential to carefully manage
the number of active orbitals within each impurity group. To maintain computational
tractability, the number of active orbitals in each group should not exceed 3. This
limitation ensures that the ED calculations can be performed efficiently while still pro-
viding valuable insights into the electronic properties and interactions of the system
under investigation.

Bath fitting [52] is also a vital component of embedding theory, addressing the chal-
lenge of accurately representing interactions between the active region and its envi-
ronment, commonly referred to as the ”bath”. This interaction is crucial for modeling
and understanding complex systems, encompassing disciplines such as condensed matter
physics, chemistry, and materials science. Bath fitting ensures a realistic treatment of
the environment’s influence on the active region, including its impact on properties like
charge distribution, charge transfer, and electronic coupling.

However, bath fitting is not without its challenges. It introduces additional compu-
tational complexity, particularly in large systems, leading to increased computational
costs. The parameterization of the bath and the choice of its functional form can be
intricate, affecting the quality and reliability of results. Additionally, bath size and
the quantum mechanical methods employed for both the active region and the bath
can significantly influence the quality of bath fitting. Striking the right balance between

84



computational accuracy and efficiency, accurate parameterization, and appropriate bath
size is essential for successful bath fitting in embedding theory.

In practice, we need to adjust the related bath fitting parameters and look carefully
how the minimization of the hybridization changes during the iterations. Monitoring
how this hybridization evolves provides valuable insights into the convergence and sta-
bility of the calculations. It allows us to gauge whether the chosen parameters effectively
describe the system’s electronic structure and how they influence the accuracy and effi-
ciency of the computational approach.

The first set of impurities is Nd 4𝑓𝑥3 , 4𝑓𝑦3 , 4𝑓𝑧3 ; 4𝑓𝑥𝑧2 , 4𝑓𝑦𝑧2 ; 5𝑓𝑥3 , 5𝑓𝑦3 , 5𝑓𝑧3 ; 5𝑓𝑥𝑧2 , 5𝑓𝑦𝑧2

and the corresponding density of states is shown in Figure 8.8.

(a) Nd 4𝑓 orbitals. (b) Ni 3𝑑 orbitals.

Figure 8.8: Near Fermi energy inner-loop SEET density of states per Nd atom
with Nd 𝑓 as impurities resolved into Nd-𝑓 and Ni-𝑑 orbitals.

The observations depicted in Figure 8.8a are of significant import, shedding light
on the impact of introducing Nd 𝑓 orbitals as impurities within the computational
framework. It is discernible that the prior arrangement of Nd 𝑓 orbitals, enveloping
the Fermi energy in both DFT and GW calculations, has undergone a pronounced
transformation subsequent to the inclusion of these orbitals as impurities. A salient
outcome of this modification is the division of the Nd 𝑓 orbitals into two distinct energy
regions, one situated above and the other below the Fermi energy. This bifurcation in
the energy spectrum of Nd 𝑓 orbitals is in concordance with the outcomes of preceding
investigations, aligning with the findings reported in earlier studies [189, 190].

Upon examination of Figure 8.8a, it is observed that the Ni 𝑑 orbitals, which conven-
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tionally contribute significantly at the Fermi surface, much like the previously discussed
Nd 𝑓 orbitals, are also displaced from their initial positions around the Fermi surface.
Specifically, it is anticipated that the Ni 𝑑𝑥2−𝑦2 orbital would manifest as the primary
contributor at the Fermi surface, while the Ni 𝑑3𝑧2−𝑟2 and 𝑑𝑥𝑧/𝑦𝑧 orbitals would make
relatively minor contributions [191]. The displacement of these Ni 𝑑 orbitals from their
expected positions near the Fermi surface raises intriguing questions about the under-
lying factors influencing this behavior.

An essential facet of this investigation pertains to the introduction of Nd 𝑓 orbitals as
impurities, which, as elucidated earlier, correctly influence the low-energy physics of the
system. Nevertheless, a contrasting outcome emerges with respect to the behavior of
the Ni 𝑑 orbitals, where the impurity-induced changes do not align with expectations.
To address this discrepancy and acquire a more comprehensive understanding of the
system’s electronic behavior, the next logical step is to introduce Ni 𝑑 orbitals as impu-
rities. This additional layer of investigation will facilitate a nuanced examination of the
Ni 𝑑 orbitals’ role and behavior within the electronic structure. By doing so, we aim
to gain deeper insights into the interplay between impurities and the host system and
refine our comprehension of the intricate electronic properties that emerge from these
perturbations.

8.4.2 Inner-loop SEET calculation with Nd 𝑓 and Ni 𝑑 as
impurities

Convergence and damping

(a) damping = 0.3 (b) damping = 0.4 (c) damping = 0.7

Figure 8.9: Convergence of total energy vs. iterations for inner-loop SEET calcula-
tions with Nd 𝑓 and Ni 𝑑 impurities under various damping conditions.
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The integration of Ni 𝑑 orbitals as impurities presents certain challenges, most no-
tably that convergence becomes increasingly difficult. This difficulty arises due to the
expansion of the impurity problems which, in turn, complicates their resolution. To ad-
dress this, we propose utilizing an iterative acceleration method, specifically damping,
to enhance the convergence process.

The damping factor, designated as 𝑥, represents a ratio that combines 𝑥 times the
result of the current iteration with 1-𝑥 times the one of the preceding iteration. A
smaller damping factor corresponds to a higher proportion of the current iteration’s
results being incorporated into the mixture.

Figure 8.9 presents a visualization of the convergence, specifically demonstrating the
changes in total energy across iterations, with varying damping factors applied when
the designated impurities are Nd 4𝑓𝑥3 , 4𝑓𝑦3 , 4𝑓𝑧3 ; Nd 4𝑓𝑥𝑧2 , 4𝑓𝑦𝑧2 ; Nd 5𝑓𝑥3 , 5𝑓𝑦3 , 5𝑓𝑧3 ;
Nd 5𝑓𝑥𝑧2 , 5𝑓𝑦𝑧2 ; Ni 3𝑑𝑥2−𝑦2 , 3𝑑𝑧2 ; Ni 3𝑑𝑥𝑦, 3𝑑𝑦𝑧, 3𝑑𝑥𝑧; Ni 4𝑑𝑥2−𝑦2 , 4𝑑𝑧2 ; Ni 4𝑑𝑥𝑦, 4𝑑𝑦𝑧,
4𝑑𝑥𝑧.

It is evident that when the damping factor is set to 0.3, the total energy exhibits
fluctuations throughout the iterations, failing to converge toward a consistent energy
value. Conversely, for damping factors of 0.4 and 0.7, the total energy converges to a
stable level of -765.064 Hartree.

This observation underscores the critical role of the damping factor in achieving con-
vergence in the presence of impurities, with specific values of damping influencing the
convergence behavior. Notably, a damping factor of 0.4 or 0.7 appears to be the opti-
mal choice, resulting in the convergence of total energy to a consistent and stable level,
thereby enhancing the reliability of the computational results. Additionally, it is worth
noting that temperature convergence methods [188] may also be employed to address
these issues and further refine the results. Moreover, the use of iterative acceleration al-
gorithms such as DIIS [192, 193] can also greatly improve the convergence rate, thereby
reducing the computational time and resources required, which is particularly useful for
large and complex systems.

Density of states

After the implementation of both Nd 𝑓 and Ni 𝑑 orbitals as impurities, shown in Figure
8.10a, the Nd 𝑓 bands persist in their divided state, appearing both above and below
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(a) Nd 4𝑓 orbitals. (b) Ni 3𝑑 orbitals.

Figure 8.10: Near Fermi energy inner-loop SEET density of states per Nd atom
with Nd 𝑓 and Ni 𝑑 as impurities resolved into Nd-𝑓 and Ni-𝑑 orbitals.

the Fermi energy. This split is consistent with previous observations, and suggests that
the addition of Ni 𝑑 orbitals as impurity does not significantly disrupt the behavior of
the Nd 𝑓 bands.

Simultaneously, in Figure 8.10b, the Ni 𝑑 bands display the anticipated behavior,
with the Ni 𝑑𝑥2−𝑦2 orbital primarily contributing at the Fermi surface. This phenomenon
aligns with the theoretical predictions about the role and influence of this specific orbital,
and further emphasizes the impact of orbital character at the Fermi surface.

Notably, the Ni 𝑑 bands manifest in a manner consistent with theoretical predictions,
with the Ni 𝑑𝑥2−𝑦2 orbital playing a dominant role at the Fermi surface, while the Ni
𝑑3𝑧2−𝑟2 orbital exhibits substantial contributions to the electronic structure below the
Fermi energy. These alterations in the electronic bands are encapsulated in the local
density of states, providing a comprehensive representation of the system’s electronic
properties.

The analysis of the ground state, as shown in Table 8.1, suggests that it is a mixture of
Ni 𝑑8, Ni 𝑑9 and potentially Ni 𝑑10 configurations, with the Ni 𝑑9 state being the most
dominant. This interpretation is not unanimously agreed upon, with varying conclusions
drawn from different studies.

Karp et al. [194, 195], for instance, using Density Functional Theory combined with
Dynamical Mean-Field Theory (DFT+DMFT), found that the high spin 𝑑8 configu-
ration contributes less than 15% to the ground state. They further argued that the
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Ni 3𝑑𝑥2−𝑦2 0.83
Ni 3𝑑3𝑧2−𝑟2 1.90

Ni 3𝑑𝑥𝑦 1.98
Ni 3𝑑𝑥𝑧/𝑦𝑧 1.95
Nd 5𝑑𝑥𝑦 0.13

Nd 5𝑑3𝑧2−𝑟2 0.12

Table 8.1: Orbital occupancies of the most relevant orbitals of NdNiO2 from the
Matsubara Green’s function.

low-energy physics of the system is primarily dictated by the Ni-𝑑𝑥2−𝑦2 orbital.
On the other hand, Wang et al. [196] found a higher proportion of high spin 𝑑8 in

the ground state configuration of LaNiO2—about 25.9% (and 10.8% low spin 𝑑8). They
proposed, based on this result, that the material should be considered a Hund’s metal,
a class of materials with unique electronic properties arising from strong spin-orbit
interactions.

Interestingly, the results from Wang et al. partially align with those from a study
conducted by Petocchi et al. [179] using Green’s function (GW) approach and Extended
Dynamical Mean-Field Theory (EDMFT). They too found that the high spin 𝑑8 state
had a significant contribution—about 25% (and a similar value for the low spin 𝑑8 state)
at the optimal doping level.

However, the discussion is far from settled. As Karp et al. [197] have shown, the choice
of method used to construct the local orbitals of the downfolded model significantly
impacts the results for the nickelates. This means that the precise nature of the ground
state, and the relative contributions of different configurations, might vary depending
on the specific computational approach used. Thus, further studies are required to
conclusively determine the ground state properties of these systems.

In essence, while the introduction of the Ni 𝑑 orbitals as impurities does not disrupt
the splitting of the Nd 𝑓 bands at the Fermi energy, it does lead to interesting behaviors
in the Ni 𝑑 bands themselves. Given that these findings are derived from the local
density of states, it is necessary to further examine the momentum-resolved spectral
function along the high symmetry path. This approach would provide a more detailed
understanding of each band’s character, and potentially reveal new insights into the
details of electronic structure.
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Momentum-resolved spectral functions

(a) Nd 4𝑓 (b) Ni 3𝑑𝑥2−𝑦2

Figure 8.11: Momentum-resolved spectral functions for NdNiO2 from inner-loop
SEET calculations.

Upon examining Figure 8.11a, the Nd 𝑓 bands exhibit a tendency to spread around
the Fermi energy. This distribution pattern is consistent with the observations derived
from the figure depicting the momentum-integrated total spectral function in Figure
8.10a, where the cumulative effect of the Nd 𝑓 bands becomes evident.

In Figure 8.11b, a comprehensive insight into the behavior of the Ni-𝑑𝑥2−𝑦2-derived
band unfolds, shedding light on its characteristics in the proximity of the Fermi energy.
It becomes evident that this particular band exerts a dominant influence in the vicinity
of the Fermi energy, emerging as the principal contributor to the electronic structure.
Moreover, this specific band exhibits a narrowed and broadened behavior in comparison
to the results deduced from DFT calculations. In terms of the band structure, the pres-
ence of an electron-like Z pocket along the Z-R path is noticeable, shown in Figure 8.12b.
Notably, this feature is consistent with the predictions at the GW approximation level.
This suggests that the GW approximation can provide a reasonably accurate description
of the band structure in this specific region. However, an intriguing observation arises
in the form of an M-centered pocket that remains conspicuously absent. Instead, the
spectral function solely reflects the presence of a Γ-centered pocket in Figure 8.12a, a
deviation from the anticipated outcome. This unanticipated variation in the electronic
band structure characterizes the complexity of the system and highlights the impor-
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(a) Ni 3𝑑𝑥2−𝑦2, 𝑘𝑧 = 0.0 (b) Ni 3𝑑𝑥2−𝑦2, 𝑘𝑧 = 0.5

Figure 8.12: Many-body Fermi surfaces for NdNiO2 projected to Ni 3𝑑𝑥2−𝑦2 or-
bital.

tance of a meticulous and comprehensive examination to unravel the intricacies of its
electronic behavior.

In Figure 8.13c and 8.13d, the analysis of the Fermi surface shows that the Nd 𝑑𝑥𝑦

orbital contributes to an oblate-shaped Fermi surface centered around the A point.
This suggests that the Nd 𝑑𝑥𝑦 orbital is ”doping,” or adding electrons to, the Ni-𝑑𝑥𝑧/𝑦𝑧-
derived band. This finding is consistent with results from prior calculations using DFT
and DFT+U [35, 173, 198], as well as studies using DFT+DMFT [177, 194].

When we look at Figure 8.13a and 8.13b, we can also observe the A-centered pocket,
which is a particular region of the Fermi surface that is centered around the A point.
This observation further corroborates the doping of the Ni-𝑑𝑥𝑧/𝑦𝑧-derived band by the
Nd 𝑑𝑥𝑦 orbital.

Table 8.1 provides additional evidence for this conclusion. The data in this table show
that the Nd-derived bands hold approximately 0.1 electrons (considering both spin up
and spin down states). This translates into a total doping of the Ni-𝑑𝑥𝑧/𝑦𝑧-derived band
by about 0.1 holes, or 0.05 holes per band.

Interestingly, this level of doping is greater than what was previously identified for
LaNiO2 in DFT calculations [173]. The differences between these results can be at-
tributed to the different electronegativities of the La and Nd elements. The greater
electronegativity of Nd compared to La leads to a larger amount of doping, as the Nd
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(a) Nd 5𝑑𝑥𝑦 (b) Ni 3𝑑𝑥𝑧

(c) Nd 5𝑑𝑥𝑦, 𝑘𝑧 = 0.5 (d) Ni 3𝑑𝑥𝑧, 𝑘𝑧 = 0.5

Figure 8.13: Momentum-resolved spectral functions and Fermi surfaces for Nd
5𝑑𝑥𝑦 and Ni 3𝑑𝑥𝑧/𝑦𝑧 orbitals.

atoms pull more electrons towards themselves, leaving more holes in the Ni-derived
bands.

From Figure 8.14a and Figure 8.14b, it can be observed that the Ni-𝑑3𝑧2−𝑟2 orbital
has a considerable degree of hybridization with the Nd-𝑑3𝑧2−𝑟2 band. This suggests
that the Ni 𝑑3𝑧2−𝑟2 might not just be a bystander within the system, but could have
a meaningful role. Specifically, it indicates that the three-dimensional bands might
not just be spectator bands, but could be involved to some degree in the correlation
physics. This observation suggests that Hund’s physics, characterized by the interplay

92



(a) Ni 3𝑑3𝑧2−𝑟2 (b) Nd 5𝑑3𝑧2−𝑟2

(c) Ni 3𝑑3𝑧2−𝑟2, 𝑘𝑧 = 0.0 (d) Nd 5𝑑3𝑧2−𝑟2, 𝑘𝑧 = 0.0

Figure 8.14: Momentum-resolved spectral functions and Fermi surfaces for Nd
5𝑑3𝑧2−𝑟2 and Ni 3𝑑3𝑧2−𝑟2 orbitals.

of electron correlations and Hund’s rule coupling, could be relevant in elucidating the
system’s electronic behavior [191]. This notion is further supported by the findings in
Table 8.1, which indicate that the Nd-𝑑3𝑧2−𝑟2-derived bands contribute approximately
0.1 electrons, resulting in a doping effect on the Ni-𝑑3𝑧2−𝑟2-derived band of about 0.1
holes.

However, it is important to note a discrepancy between the present findings and
those reported by Karp et al. [194]. In their study, Karp et al. [194] documented that
the Nd-𝑑3𝑧2−𝑟2 orbital generated a band crossing the chemical potential, consequently
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giving rise to an oblate Fermi surface centered on the Γ point. In contrast, the re-
sults depicted in Figures 8.14c and 8.14d demonstrate that the Nd-𝑑3𝑧2−𝑟2 orbital only
marginally intersects the Fermi energy, and there is no discernible Γ-centered pocket
evident on the Fermi surfaces. This disparity in observations underscores the sensitivity
of the electronic structure to variations in theoretical methodologies and highlights the
need for further investigation to reconcile these differences and gain a comprehensive
understanding of the system’s electronic properties.

(a) Ni 3𝑑𝑥𝑦 (b) O 2𝑝

Figure 8.15: Momentum-resolved spectral functions for NdNiO2 from inner-loop
SEET calculations (continued).

A significant consensus has emerged regarding the behavior of oxygen states in the
electronic structure of NdNiO2. It is widely acknowledged that the oxygen states in
NdNiO2 are positioned at a larger energy separation from the 𝑑𝑥2−𝑦2 orbital compared
to the cuprates [115, 173, 177, 195, 199]. Furthermore, these oxygen states exhibit
weaker hybridization with the rest of the electronic structure. This implies that the
incorporation of oxygen states into the electronic bands near the Fermi level is notably
reduced in NdNiO2 when contrasted with the cuprates. This aligns closely with the
outcomes depicted in Figure 8.15b, which illustrates the limited admixture of oxygen
states into the vicinity of the Fermi level bands.

However, a fundamental question still remains, namely whether NdNiO2 predomi-
nantly falls within the Mott-Hubbard region or resides in a critical region character-
ized by a mixture of charge-transfer and Mott-Hubbard characteristics [115, 199, 200].
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This distinction hinges on the nature of the material: ”charge transfer” materials are
governed by the energy difference between ligand and transition metal 𝑑-states, dictat-
ing their physical properties, while Mott-Hubbard materials derive their behavior from
the charging energy of the transition metal 𝑑-shells [178]. Consequently, the extent to
which ligand states are mixed with the transition metal states remains a pivotal and
unresolved issue, significantly impacting the understanding of NdNiO2’s electronic be-
havior. Further investigations and theoretical exploration are required to unravel this
complex interplay and provide a comprehensive perspective on the material’s electronic
properties.

8.5 Outer-loop SEET calculations

8.5.1 Outer-loop SEET calculations with isolated Nd 𝑓 orbitals
as impurities

As detailed in Section 5.2.5, outer-loop SEET calculations [36] entail an iterative pro-
cess where, following each inner-loop computation, an additional iteration involving
weakly correlated methods, such as GW, is performed. These iterations continue un-
til self-consistency is achieved, resulting in an self-consistent computational framework.
The central objective of the outer-loop self-consistency lies in its ability to relax weakly
correlated orbitals while accommodating the strong correlation effects stemming from
impurity orbitals. Through empirical observations, we have discerned that the incorpo-
ration of the outer loop is particularly crucial in cases where scGW , or other weakly
correlated methods, fail to provide a qualitatively accurate representation of the den-
sity of states. In this case, outer-loop SEET calculations are essential to correct these
differences and generate results with excellent qualitative accuracy.

However, it is essential to acknowledged that achieving convergence in outer-loop
SEET calculations can pose significant challenges. This complexity arises from the need
to strike a delicate balance between strongly correlated parts of the system and weakly
correlated environment. The interaction between these two states requires a rigorous
convergence scheme to ensure a faithful representation of the material’s electronic struc-
ture.

Given that the Nd 4𝑓 orbitals are inherently strongly correlated but of less immediate
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interest in the context of our systems, we devised a strategic approach. In an effort to
isolate the influence of these strongly correlated orbitals, we initiate the outer-loop SEET
calculations with Nd 𝑓 orbitals serving as impurities, without the inclusion of the bath.
This strategic approach allows us to systematically disentangle the complex interactions
between strongly and weakly correlated components within the system, paving the way
for a more refined and precise understanding of the electronic properties of materials.

(a) Energy from GW (b) Energy from inner-loop SEET

Figure 8.16: Convergence of total energy vs. iterations for outer-loop SEET cal-
culations with isolated Nd 𝑓 impurities.

Figure 8.16 shows the convergence of the outer-loop SEET calculations with isolated
Nd 𝑓 orbitals. The trend depicted in the figure validates the efficacy of our approach
of isolating the Nd 𝑓 impurities for the initial outer-loop calculations. The convergence
of total energy signifies that the strong correlations associated with the Nd 𝑓 orbitals
are being accounted for without disrupting the overall electronic structure predictions.
This also indicates that the weakly correlated orbitals are effectively adapting to the
strong correlation effects, thereby enhancing the accuracy and reliability of our outer-
loop SEET calculations.

The comparison between results from inner-loop and outer-loop SEET calculations
reveals a significant difference in the positioning of the Nd 𝑓 orbitals relative to the
Fermi energy. As depicted in Figure 8.17a, the outer-loop SEET calculation pushes the
Nd 𝑓 orbitals far from the Fermi energy.

In the context of electronic structure, the position of these orbitals relative to the
Fermi energy is of critical importance. The further away these orbitals are from the
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(a) Nd 𝑓 (b) Ni 3𝑑𝑥2−𝑦2

Figure 8.17: Momentum-resolved spectral functions for NdNiO2 from outer-loop
SEET calculations with isolated Nd 𝑓 impurities.

Fermi energy, the less they contribute to the low-energy physics. By pushing the Nd 𝑓
orbitals far from the Fermi energy, the outer-loop SEET calculations effectively isolate
these orbitals from the low energy physics.

This isolation of the Nd 𝑓 orbitals is in line with our expectations. By isolating these
strongly correlated orbitals from the low energy physics, we can effectively reduce the
complexity of the problem and obtain more accurate and reliable descriptions of the
electronic structure.

Figure 8.17b presents the momentum-resolved spectral function of the Ni-3𝑑𝑥2−𝑦2-
derived band, highlighting the distinctive features obtained through the outer-loop
SEET calculation. Evidently, this methodology continues to reproduce the electron-
like Z-centered pocket, a characteristic already successfully captured by the inner-loop
SEET calculation, as showcased in Figure 8.18b.

However, the outer-loop SEET calculation brings a notable addition to the forefront,
revealing the presence of an M-centered pocket in the momentum-resolved spectral func-
tion, as indicated in Figure 8.18a. This particular feature had eluded the inner-loop cal-
culation but aligns with previous findings [179, 194], lending further credibility to the
capabilities of the outer-loop SEET approach in providing a comprehensive description
of the electronic structure.

Figure 8.19a shows that the presence of the Nd 5𝑑𝑥𝑦 orbital is manifested by a con-
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(a) Ni 3𝑑𝑥2−𝑦2, 𝑘𝑧 = 0.0 (b) Ni 3𝑑𝑥2−𝑦2, 𝑘𝑧 = 0.5

Figure 8.18: Fermi surfaces for Ni 3𝑑𝑥2−𝑦2 from outer-loop SEET calculations with
isolated Nd 𝑓 impurities.

(a) Nd 5𝑑𝑥𝑦
(b) O 𝑝

Figure 8.19: Momentum-resolved spectral functions for NdNiO2 from outer-loop
SEET calculations with isolated Nd 𝑓 impurities (continued).

siderably larger Fermi surface which is centered at the A point. This enhanced Nd
5𝑑𝑥𝑦 orbital presence exerts a more substantial influence on the Ni-𝑑𝑥𝑧/𝑦𝑧-derived band,
effectively increasing the doping in this band when contrasted with the inner-loop calcu-
lations. This pronounced effect is further substantiated by the data in Table 8.1, which
highlights a slightly larger occupation number associated with the Nd 5𝑑𝑥𝑦 orbitals,
directly corresponding to a greater self-doping effect.
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On the other hand, Figure 8.19b delves into the behavior of the O 𝑝 bands, illuminat-
ing their response to the outer-loop SEET calculation. A noticeable observation is the
displacement of these bands to lower energy levels, thus implying weaker hybridization
with the Ni 𝑑 orbitals. This shift suggests a reduced interaction between the O 𝑝 and
Ni 𝑑 orbitals compared to what is seen in the inner-loop calculation.

Ni 3𝑑𝑥2−𝑦2 1.09
Ni 3𝑑3𝑧2−𝑟2 1.79

Ni 3𝑑𝑥𝑦 1.99
Ni 3𝑑𝑥𝑧/𝑦𝑧 1.97
Nd 5𝑑𝑥𝑦 0.14

Nd 5𝑑3𝑧2−𝑟2 0.12
Nd 4𝑓 3.56

Table 8.2: Orbital occupancies of the most relevant orbitals of NdNiO2 from outer-
loop SEET calculations with isolated Nd 𝑓 impurities.

These findings collectively demonstrate the capacity of the outer-loop SEET calcula-
tion to provide a more comprehensive understanding of the electronic structure and its
underlying intricacies.

8.5.2 Outer-loop SEET calculations with isolated Nd 𝑓 and Ni
𝑑 orbitals as impurities

Building upon the successful convergence achieved in the outer-loop SEET calculations
with isolated Nd 𝑓 orbitals, the logical progression involves introducing Ni 𝑑 orbitals as
additional impurities in the outer-loop computations.

However, the situation takes an unexpected turn in the outer-loop calculations where
both Nd 𝑓 and Ni 𝑑 orbitals are included as impurities. First of all, the calculation
are not able to achieve convergence after more than 500 iterations. Then, surprisingly,
the convergence process results in an occupation number for Ni 3𝑑𝑥2−𝑦2 that exceeds 2,
which is totally unphysical, as illustrated in Figure 8.20b. This peculiar behavior raises
questions about the accuracy of the computed results.

Furthermore, Figure 8.21 reveals that Ni 𝑑𝑥2−𝑦2 is pushed away from the Fermi energy,
while Ni 𝑑𝑥𝑦 hovers around the Fermi energy. These findings deviate from the expected
physical behavior, casting doubt on the reliability of the obtained outcomes.
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(a) Energy
(b) Orbital occupancy of Ni 3𝑑𝑥2−𝑦2

Figure 8.20: Convergence of total energy / Ni 3𝑑𝑥2−𝑦2 occupancy vs. iterations
for outer-loop SEET calculations with isolated Nd 𝑓 plus Ni 𝑑 as
impurities.

(a) Ni 3𝑑𝑥2−𝑦2 (b) Ni 3𝑑𝑥𝑦

Figure 8.21: Momentum-resolved spectral functions for NdNiO2 from outer-loop
SEET calculations with isolated Nd 𝑓 plus Ni 𝑑 as impurities.

8.5.3 Outer-loop SEET calculations with isolated Nd 𝑓 and Ni
𝑑 𝑒𝑔 orbitals as impurities

The decision to conduct outer-loop SEET calculations with isolated Nd 𝑓 and Ni 𝑑 𝑒𝑔

orbitals as impurities stems from a critical observation that Ni 𝑑𝑥2−𝑦2 was pushed away
from the Fermi energy, while Ni 𝑑𝑥𝑦 occupied a position around the Fermi energy in
the previous calculation. To investigate this phenomenon further, we specifically focus
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on the impurities consisting of Ni 𝑑𝑥2−𝑦2 , Ni 𝑑𝑧2 (collectively representing the 𝑒𝑔 or-
bitals), and Nd 𝑓 orbitals. The objective is to ascertain whether the previously observed
exchange in occupancy between Ni 𝑑𝑥2−𝑦2 and Ni 𝑑𝑥𝑦 persists in this configuration.

It’s also noteworthy that achieving the convergence of the outer-loop SEET calcu-
lation may require a significant number of iterations, underscoring the computational
complexity and the intricate balancing act involved in these calculations. This also
emphasizes the need for iterative refinement and adjustment in electronic structure cal-
culations to ensure that the results are not only accurate but also robust and consistent.
In light of these challenges, we have incorporated iterative acceleration techniques, such
as Direct Inversion in the Iterative Subspace (DIIS), as a means to expedite the conver-
gence process and enhance the overall efficiency of the calculations. See more details in
Section 5.2.6.

(a) Energy (b) Orbital occupancy of Ni 3𝑑𝑥2−𝑦2

Figure 8.22: Convergence of total energy / Ni 3𝑑𝑥2−𝑦2 occupancy vs. iterations
for outer-loop SEET calculations with isolated Nd 𝑓 plus Ni 𝑑 𝑒𝑔 as
impurities.

Even after DIIS is applied, the whole system is still hard to converge in the outer-loop
calculation with Nd 𝑓 and Ni 𝑑 𝑒𝑔 orbitals as impurity. As shown in Figure 8.22b, the
occupation number of Ni 3𝑑𝑥2−𝑦2 still exceeds 2, evolving into an unphysical state.
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Chapter 9

Conclusions

In this thesis, we report results from a fully self-consistent parameter-free ab initio SEET
[1–6] consisting of a weakly correlated environment (treated at the level of GW) and
strongly correlated orbitals (treated with ED). SEET is a hybrid approach that em-
ploys both a weakly correlated and a strongly correlated Green’s function method. The
self-energy of the active space is incorporated into the self-energy obtained from a per-
turbative approach to the treatment of non-local correlation effects. A highly accurate
approach describes the selected subsystem, while a lower-level approach maintains the
description of the environment at a lower level. Since SEET is derivable from a universal
functional, it implicitly satisfies conservation laws and thermodynamic consistency [1]
and the formulation in the Green’s function language provides access not only to total
energies but also to photoelectron and angular momentum resolved (ARPES) spectra
as well as thermodynamic quantities. It avoids intruder states and does not require any
high-order reduced density matrices [3]. The double counting problem does not appear
and the accuracy can be improved either by increasing the perturbation order or by
enlarging the active space [2]. The theory does not use any adjustable parameters and
is fully ab initio, while being able to treat both the strong correlation and the nonlocal
screening physics of these materials [6].

Our comprehensive investigation into the electronic structure of NdNiO2 through
the aforementioned framework with various computational methodologies has provided
valuable insights and raised intriguing questions. The journey began with DFT calcu-
lations using VASP, which highlighted the two-dimensional band structure dominated
by Ni 𝑑𝑥2−𝑦2 orbitals, resembling the cuprate electronic structure. Additionally, the Nd
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𝑑 orbitals contributed to a more three-dimensional band. The concept of self-doping,
manifested as charge transfer between Ni 𝑑𝑥2−𝑦2 and Nd-derived bands, underscored the
intricate interplay within the stoichiometric infinite layer nickelate compound.

The exploration of different GTO-based DFT calculations using CRYSTAL and PySCF
emphasized the influence of basis set selection on the results. CRYSTAL results showed
a correspondence with VASP, while PySCF exhibited limitations in accurately repre-
senting the metallic behavior of NdNiO2. This underscored the importance of selecting
an appropriate basis set for reliable DFT outcomes.

Moving beyond DFT, our GW calculations aimed to establish a robust foundation for
subsequent SEET analyses. The Ni 𝑑𝑥2−𝑦2 orbital played a dominant role in shaping
the electronic structure near the Fermi surface, while notable contributions from the
Ni 𝑑3𝑧2−𝑟2 and Ni 𝑑𝑥𝑧/𝑦𝑧 orbitals were observed. The Nd 5𝑑3𝑧2−𝑟2 orbital also made a
significant contribution, indicating hybridization between Ni and Nd orbitals.

However, challenges arose when applying the GW approximation to systems with
strongly correlated electrons, such as Nd 𝑓 and Ni 𝑑 orbitals. The limitations of the
GW method in capturing the behavior of highly correlated electrons highlighted the
need for more sophisticated models to achieve accurate representations.

The exploration of inner-loop SEET results with Nd 𝑓 as impurities revealed a trans-
formation in the arrangement of Nd 𝑓 orbitals near the Fermi energy. The inclusion of
Ni 𝑑 orbitals in subsequent inner-loop SEET calculations led to a spread of Nd 𝑓 bands
and the emergence of electron-like Z and Γ-centered pockets in the Fermi surface. The
self-doping effect of Nd 𝑑𝑥𝑦 and Nd 𝑑3𝑧2−𝑟2 orbitals on Ni 𝑑𝑥𝑧/𝑦𝑧-derived bands further
highlighted the intricate interplay in the system.

Outer-loop SEET calculations, initially with isolated Nd 𝑓 as impurities, successfully
reproduced the electron-like Z-centered pocket and introduced an M-centered pocket in
the momentum-resolved spectral function. The enhanced presence of Nd 5𝑑𝑥𝑦 orbitals
exerted a more substantial influence on Ni 𝑑𝑥𝑧/𝑦𝑧-derived bands, leading to increased
self-doping effects.

Surprisingly, the outer-loop SEET calculations with both isolated Nd 𝑓 and Ni 𝑑
as impurities faced convergence issues and yielded unphysical results, raising questions
about the limitations of the methodology in capturing the complex electronic structure
of NdNiO2.

In summary, our investigation has uncovered the complexities and challenges in accu-
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rately describing the electronic structure of NdNiO2. The combination of various com-
putational methods, from DFT to GW and inner- to outer-loop SEET, has provided
valuable insights into the interplay of different orbitals and the self-doping phenomena
in this unique material. The limitations observed underscore the need for further refine-
ment and the development of advanced theoretical models to capture the intricacies of
strongly correlated electron systems.

In addition to the investigation of the spectral function, our exploration of optical
properties, including the derivation of optical conductivity, adds a valuable dimension
to our research. By deriving optical conductivity in the Green’s function language
from lowest to higher order, we aim to establish a comprehensive understanding of
the electronic band structure of real materials, paving the way for a more nuanced
comparison with experimental data.

In looking forward, the complexities and challenges encountered in our study of
NdNiO2 underscore the need for continued exploration and refinement of theoretical
methodologies in the realm of correlated electron systems. The limitations observed,
particularly in capturing the behavior of strongly correlated Nd 𝑓 and Ni 𝑑 orbitals,
motivate the development of advanced models that can provide more accurate represen-
tations.

The convergence issues observed in the outer-loop SEET calculations with both iso-
lated Nd 𝑓 and Ni 𝑑 as impurities raise intriguing questions about the applicability of the
methodology to systems with highly entangled electronic structures. Addressing these
challenges will require a concerted effort to enhance the sophistication of theoretical
frameworks, potentially incorporating more advanced impurity solvers and refining the
embedding strategies.

Additionally, the discrepancy between the PySCF results, suggesting an insulating
behavior, and the metallic nature of NdNiO2 highlights the importance of benchmark-
ing different computational packages and basis sets. Future research should focus on
systematically assessing the performance of various methodologies and identifying the
most suitable combination for accurately describing the electronic properties of complex
materials.

As we look ahead, the study of correlated electron systems, especially those with
intricate electronic structures like NdNiO2, will benefit from a multi-faceted approach.
Integration with experimental data, such as advanced spectroscopic techniques, will
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provide critical benchmarks for validating theoretical predictions and refining compu-
tational models. Collaborative efforts between theorists and experimentalists will be
essential to unravel the mysteries of these fascinating materials.

Furthermore, the exploration of materials with similar crystal and electronic struc-
tures to NdNiO2, driven by the quest for additional superconductors and insights into
the origins of copper oxide superconductivity, opens new avenues for research. The re-
cent discovery of superconductivity in Sr-doped NdNiO2 adds an exciting dimension to
the field, prompting further investigations into the factors influencing superconducting
behaviors in nickelate compounds.
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