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ABSTRACT

Within the past two decades there has been an increased amount of interest in human-

centered information retrieval research beyond the traditional system-focused view embodied

by Cranfield- and TREC-style evaluation. From blending search and recommender systems

to work on search as learning, the limits of conventional search engines’ focus on query

relevance to deliver ten blue links at millisecond speeds has become evident as use cases

become more varied. My work focuses on the types of scenarios that typical systems ne-

glect in searching and browsing, particularly tasks involving multi-attribute queries and

information seeking as learning, and explores ways to guide users towards optimal behavior

through system design. Enabling this across the three studies comprising this dissertation

is a sidebar affordance, serving as a means for enabling complementary information seeking

interactions. The contributions of this work will have implications on the effective design

and implementation of new types of user-centered interactive IR systems.

We begin with an investigation of time-quality tradeoffs with slow search. Taking inspira-

tion from movements such as slow food, slow travel, and slow technology, slow search serves

as an acknowledgement of the fact that there are tasks for which users have indicated a will-

ingness to wait for the perfect set of results. By implementing a user study where searchers

were exposed to a system that embodied characteristics of slow search, where speed could

be traded for an better results, we analyzed user behavior as they performed tasks which

typically required multiple queries with a baseline Web search engine and saw how their

effectiveness in using the system improved as they used this novel interface.

Next, we performed a simulation study to explore the implications of changing attributes

of our slow search system on the behavioral outcomes of synthetic users modelled based on

human interaction log data. By incorporating the users’ cost model, we were able to identify

fruitful directions for further interactive search experiments. In this way, we showed the

potential for guiding low-performing users towards higher performance.

We finally focus on search as learning, using a large language model (LLM) as an enabler

of slow search. Here, our study tests a contextual chatbot assistant that aids in users’ reading

and searching in a specialized domain – data science. The chatbot can provide responses

to questions about documents and domain-specific vocabulary. Using mixed methods, we

xv



identify patterns of use and investigate learning and interaction behaviors. Results show

learning gains reveals that trust is a prominent factor in users’ perceptions of usefulness.

We furthermore propose an extension to develop a retrieval framework that can be used to

directly optimise the set of interactions that a user may take in order to extract the maximum

utility of a document. Using vocabulary learning and searching-to-learn as a foundation, we

propose both an algorithm and user study to evaluate effectiveness in jointly considering

relevance and familiarity with technical terms to learn to ensure users get the most out of

the documents they search for.

The theme linking these studies together is a focus on improving user behavior to reduce

effort or time-on-task, and increase value over time during interactive search. This disserta-

tion serves as a basis for future system design and experiments that preserve interactivity,

encourage effective mental models, and reduce user effort while increasing the value users

receive during the search process.
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CHAPTER 1

Introduction

The goal of this dissertation is to understand user behavior as they use novel interactive

information system interfaces and explore the mechanisms we have as system designers to

enable users to achieve optimal behavior. Such improvements may be driven by interface

elements to expose operational transparency in the way the system works, system properties

such as ranking algorithms tuned for precision or recall, and fundamental changes to the

mode of search as seen in the recent exploration of chat for information seeking to allow

for interaction more akin to question-answering. In service of this, the work presented

here represents analysis and evaluation of task-centric search behavior with unconventional

systems in contrast to Web search, and an exploration of a simulation framework that models

multi-round interactions towards a complex goal satisfying multiple attributes in order to

predict the necessary changes to system and user behavior in order to reduce time on task,

increase relevance over time, and improve knowledge gain. In all, this dissertation offers

an exploration of the use of systems augmented with both atypical interface elements and

flexible system-level tradeoffs such as tradeoffs between retrieval time and result quality, as

well as approaches for optimizing combinations of dynamic system and user behavior. As

such, this work in toto probes an unexplored space in the literature.

Information retrieval (IR) has undergone a series of shifts in the evolution of the field. Be-

ginning with boolean search allowing access to literature databases, the dominant paradigm

shifted towards ranked retrieval, as typified by Web search engines such as Google, Bing,

and Yahoo Search. With the prominence of Web search, users have come to expect a model

of search that mirrors this paradigm.

We know however that this form of search is not sufficient for all forms of information

seeking. Marchionini [132] outlined a trichotomy of search activities: lookup, learn, and

investigate. Of the three activities, only lookup search is well served by our current search

systems. Marchionini made the case that learning and investigation could be addressed by

systems that encouraged and assisted in exploratory search. In cases such as these, we must
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be sure that we are not only providing value to users, but that we are conveying this value

in the most effective way so that users understand and trust what the system is doing.

In addition to exploratory search systems, there has been work on providing new ways of

ranking [97, 70, 96] and presenting results [85], as well as providing new ways of querying

[142, 216]. Systems are in development to trade quality off for time [36], and systems are

being developed to, for instance, rank for diversity rather than merely topic relevance [161].

We must ask ourselves as system designers and implementers whether users can develop an

understanding of the capabilities of these new types of systems: systems that many users,

despite their familiarity with search engines, may not have ever used before.

Marti Hearst has presented examples of uncommon search user interfaces [85] and design

principles for effective human-computer in information retrieval. As Hearst notes, informa-

tion seeking as a process is imprecise. As such, the interface of an IR system should do as

much as it can to guide the user in fulfilling his or her information needs. It should be noted

that representing an information need—“the current cognitive state of an information seeker,

[which is] fluid and constantly changing” [84]—may very well be impossible philosophically

[172]. Because relevance is truly dynamic, where what a user needs is affected by intermedi-

ate results throughout the process, systems should ideally take this into consideration. This

is usually considered in the realm of exploratory search [132], and has received attention in

the personalization of search systems [23, 210, 217].

There has been a wealth of research in human-computer interaction on how people build

mental models of interactive systems [220, 164, 148, 41]. For the concept of mental mod-

els, we may consider the definition by Jonassen and Henning: “...the internal, conceptual,

and operational representations that humans develop while interacting with complex sys-

tems” [98]. We must understand what in particular about information retrieval systems is

distinctive in this respect. There have been numerous publications on mental models in

information retrieval [27, 28, 29, 56, 60, 86, 115], but none account for the dynamic aspect

of the search process, that is, how a user’s mental model changes as they learn to use an IR

system. Additionally, we must understand how these systems encourage different methods

of information seeking. In particular, we are interested in systems that guide users toward

an efficient mental model.

Additionally, human-computer interaction researchers have developed a base of literature

on the topic of interface design, interaction, and the psychological factors present in the prior

two. This is a good starting point for determining how search interfaces may be designed,

not necessarily to simply be more transparent, but to effectively build understanding and

trust.

Economic models have made a bit of an impact in information retrieval, giving us insight
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into optimal interaction and search strategies, as well as decision making and cost evaluation

[9, 12, 10]. Such costs may take the form of scrolling [13], clicking on a document [10],

examining the document, and/or issuing a query – either new or reformulated [12] We believe

that exploring the relationships between economic theory and information retrieval will prove

fruitful in this endeavour. Particularly, we are interested in a more efficient and effective

learning experience when using search for learning purposes as well as reduced interaction

costs, which leads to what we will describe as optimal behavior. In situations such as these,

although improved learning outcomes my be a desirable objective, approaches that reduce

time or interaction costs can allow for users to turn their attention to other learning goals

using the time and effort saved. As an example, [186] shows a study in which participants

can learn the same amount in half the time, and we may also see other changes such as

increased curiosity in a given topic.

This dissertation embraces the interactive nature of search in which a user iteratively

negotiates with a system to satisfy their information need explores the resultant behaviors

by both system and user in this interchange. As such, it explores the types of mechanisms

we have as system designers in positions ranging from interaction designers to engineers to

enable users to achieve optimal behavior through interface design to improve users’ mental

models of the system, system properties through, for example, algorithmic changes, and

fundamental changes to the mode of search in a shift from relying solely on a query-response

paradigm to, as we introduce in Chapter 3 for example, a dynamic ranking that complements

a user’s search interaction as they complete their task. This particular chapter revolves

around a study published at SIGIR 2016 based on the idea of “slow search” – the notion

that a system may be able to “take its time” to process results for better results in certain

circumstances. I presented the first working prototype of such a system by introducing a

sidebar for asynchronous results in addition to a typical Web search interface, and showed

that users’ behaviors adapted to the system from session-to-session as they learned the

capabilities of the system. We further saw that this incarnation of slow search provided

benefits such as reduced session time and better worse-case performance.

Following from this, Chapter 4 seeks to explore the question, “what user outcomes can

we expect as we explore various novel interface elements?” To that end, I designed and

evaluated a simulation framework to explore fruitful directions for further interactive search

user experiments involving such novel interface elements with flexible time and risk tradeoffs.

This is based on the simple idea that, in interactive search tasks, users are involved in a cycle

of performing actions and receiving feedback in the form of information presented to them

by the system. I show, by investigating changes to user and system behavior, characteristics

of high and low performance, as well as ways to guide low-performing users toward higher
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performance. This work is directly inspired by economic models of search, the notion of

“optimal behavior”, and the evolution of a user’s mental model of system performance.

In Chapter 5, I turn to a specific scenario—vocabulary learning during technical read-

ing—and applied large language models as an analogue for slow search to provide assistance

to users in the process. Through building a system that supported contextual question-

answering with a sidebar-positioned chatbot affordance, I was able to provide a way for

users to ask about the content of articles they were reading, and for definitions of keywords.

Through log data analysis and interviews, we could see improvements to prior knowledge

and vocabulary knowledge before the study. Taking this direction further, I propose the case

for an algorithm that jointly optimises the relevance of documents that a learner searches

for, and the particular words that the learner should become familiar with in order to get the

most out of each document. This aims to balance a learner’s prior knowledge with the edu-

cational relevance of a resource and provides a pathway for them to maximise their expected

future gain.

The considerations of the tradeoffs of time and risk with quality combined with the

employment of novel interface elements should serve as a demonstration to system designers

as to the value of exploring these tradeoffs and the circumstances in which provide such

value. More to the point, there is still a lot of value that we can provide to users during

search tasks, and this dissertation explores interventions to lead users toward such value.
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CHAPTER 2

Background

This review of past literature will serve to expand on the major themes of mental models in

the human-computer interaction (HCI) and information retrieval (IR) fields, how individual

differences and patterns of interaction factor into user behaviour to guide personalisation,

and option pricing as a gateway to measuring the value of an interface element – and hence

giving us an objective to maximise when leading users towards optimal behaviour.

2.1 Mental Models

Mental models in human-computer interaction generally refer to what a user knows of how

he or she can interact with a complex system. Precise definitions however, are numerous.

Makri et al. [128] outlined examples, one of which comes from Carroll et al. [41], who define

mental models as “knowledge of how the system works, what its components are, how they

are related, what the internal processes are, and how they affect components.” This forms

a somewhat procedural view of these models. Schumacher and Czerwinski [174] categorised

these various definitions into at least three classes: as collections of knowledge structures,

metaphors and analogies, and as process descriptions [128].

Norman [148] was an early proponent of considering the mental models that designers

lead user to construct through their artefacts. He distinguishes a user’s mental model from

the design model of the system. The user’s model is how a user believes that a system

works. This model is dynamic – being constructed through use of a system. The system

image is what Norman considers the implementation of the designer’s conceptual model of

the system. The system image forms all the parts of the system that a user perceives, and

with which a user is able to interact. This could therefore include documentation, training

courses and materials, and error messages. The design model is what the designer has in his

or her head as they design the system; primarily how the use of a system is perceived by the

user. This is where metaphors and analogies can come in, such as the desktop metaphor of
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Figure 2. Pattern of thermostat adjustments consistent with the valve theory. 

Figure 2 shows hourly thermostat settings for a second house, also 
during winter, 1976. In this house, the thermostat is often changed between 
each hourly datum. In fact, the only times on the figure when the thermostat 
is not changed are probable sleeping times, for example, from 1 a.m. to 7 
a.m. Monday, and from 10 p.m. Monday to 8 a.m. Tuesday. It appears that, 
whenever someone is awake in this house, the thermostat is adjusted at least 
hourly. Examination of the full 2 years of data (not shown here) also shows 
many thermostat adjustments, not at regular times, and a wide range of set- 
tings (from 61’ to 85 “F; 16” to 29 “C). 

I hypothesize that the frequent thermostat settings of this second 
household result from the residents having a valve theory of their thermo- 
stat.’ Although I could not interview the households shown in Figures 1 and 
2, informants in my interviews do report following similar patterns (though 
rarely as extreme as Figure 2). I next discuss interview evidence for the two 
theories. 

’ Although I propose folk theory as an explanation of the pattern in Figure 1, many fac- 
tors contribute to thermostat setting, and frequent shifts could be due to other causes such as 
domestic conflict over desirable setting. 

Figure 2.1: Thermostat adjustment patterns consistent with the feedback theory [114].

graphical user interfaces.

There have been numerous studies performed that address mental models directly. It

should be noted that mental models are not exclusive to human-computer interaction. The

system in question may be a thermostat, a calculator, or a sewing machine. As an example,

in a influential cognitive science study, Kempton [114] interviewed participants about their

home heating and how they set their thermostats, and connected them their conceptions

about the mechanisms behind the heating system. The author was interested in the idea of

folk theories, which he considered to be socially-shared beliefs—acquired through interaction

with the world or social interaction, both of which form everyday experiences. He notes

that being a “theory” implies some degree of abstraction; knowledge that can be applied in

situations that are similar and analogous, and which can predict the result of an action and

therefore guide behaviour. The concept of a folk theory stems from cognitive anthropology

and thus is more general than a mental model; it encompasses it. Other, related constructs

include “naive theory”, or “naive problem representation”.

In his study, Kempton [114] interviewed users of residential thermostats and collected

behavioural data. His interviews included exploratory dialogues with residents of 30 houses

in Michigan about energy management and a set of 8 interviews from 12 Michigan residents

about thermostat control. He additionally collected automatic thermostat recordings from

26 New Jersey homes. This data was used to compare behavioural patterns between uses

with different folk theories of thermostat operation, of which he descovered two folk theories

through the course of the study: the feedback theory (patterns of which are shown in Fig-

ure 2.1), and the valve theory (shown in Figure 2.2). In the feedback theory, the thermostat

turns on and off in response to the temperature of the room. By contrast, the valve theory

sees the dial of the thermostat as controlling the rate of heat flow.

Although one, the feedback theory, is closer to how the system does in fact work, Kempton
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Figure 2. Pattern of thermostat adjustments consistent with the valve theory. 

Figure 2 shows hourly thermostat settings for a second house, also 
during winter, 1976. In this house, the thermostat is often changed between 
each hourly datum. In fact, the only times on the figure when the thermostat 
is not changed are probable sleeping times, for example, from 1 a.m. to 7 
a.m. Monday, and from 10 p.m. Monday to 8 a.m. Tuesday. It appears that, 
whenever someone is awake in this house, the thermostat is adjusted at least 
hourly. Examination of the full 2 years of data (not shown here) also shows 
many thermostat adjustments, not at regular times, and a wide range of set- 
tings (from 61’ to 85 “F; 16” to 29 “C). 

I hypothesize that the frequent thermostat settings of this second 
household result from the residents having a valve theory of their thermo- 
stat.’ Although I could not interview the households shown in Figures 1 and 
2, informants in my interviews do report following similar patterns (though 
rarely as extreme as Figure 2). I next discuss interview evidence for the two 
theories. 

’ Although I propose folk theory as an explanation of the pattern in Figure 1, many fac- 
tors contribute to thermostat setting, and frequent shifts could be due to other causes such as 
domestic conflict over desirable setting. 

Figure 2.2: Thermostat adjustment patterns consistent with the valve theory [114].

notes that these models are still, for the most part, incomplete [114]. Regardless, the author

holds that in examining the thermostat data, the “incorrect” valve theory is still functional;

users still make reasonable predictions and decisions of how to operate their thermostats.

In more recent study, Wash [205] used a similar method as Kempton did to assess the

common folk theories that non-expert computer users commonly hold about viruses and

hackers. Wash [205] here conducted a qualitative study using an iterative process of multiple

interviews. Although the study is not generalizable due to a biased, non-random sampling

method—which the author notes was intentional for a wider breadth of experiences and

demographics—the paper serves to outline the variability of folk models regarding informa-

tion security. In this case, these models of viruses, hackers, and botnets determine how

people will react to, e.g., a security threat, and what they will do to prevent it. For example,

someone who has the idea that hackers only target “big fish” might not be concerned, while

another who views them more as burglars or criminals believe they could potentially be a

target.

A common theme in these two papers is their respective outlooks on models and design.

Wash [205] says it best in the following: “[W]hether the folk models are correct or not,

technology should be designed to work well with the folk models actually employed by

users.”. Wash was specifically interested in models of security and individuals’ understanding

of threats; poor understanding may have serious consequences. Both Kempton and Wash

would agree that a user’s mental model need not be accurate to be useful or effective. Wash

in particular believes that the responsibility falls into the hands of designers as to how a user

constructs a mental model through their interactions with the system. Although users can

be re-educated to have more correct models, “it is more difficult to re-educate a society than

it is to design better technologies” [205]. Designers may try to tell users explicitly what to

do, but without an understanding of the rationale, users may ignore the advice if they are
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generated by the grammar from the starting symbol (calculation-sequence). It should 
be noted that the grammar produces sequences of alternating operations and numbers 
followed by an " = "  

Mappings 
The correspondence between the Abstract Machine and the basic calculation in the 
Task Arena is very straightforward, and is shown in the left-hand half of Fig. 6. Each 
entity and procedure in one domain has a direct correspondent in the other. Other 
kinds of calculations in the Task Arena map onto the Abstract Machine as variants 
of the basic calculation. A constant calculation, for example, corresponds to a basic 
calculation whose second operand is the same as in the one immediately preceding. 
A cumulative calculation is a series of basic calculations where the value of one step 
is used as the first operand for the next. The isomorphism between these parts of the 
two Arenas is so close that when discussing mappings involving the Action Arena,  it 
makes little difference which of these two Arenas one considers. We will focus below 
on the Task/Act ion mapping, as being the one of most immediate applicability. 

Abstract 
Machine Task Action 

Arena Arena Arena 

"execution cycle" (terminated- 
of machine ~- ~ basic calculation ~ --, calculation) 

function register "- ~ operator ~ ~ (operation) 
1st argument ~-. ~ 1st operand ~ ~ (lst-number) 

2nd argument  9 ~ 2nd operand ~ > (2nd-number) 
execution of 

computational unit -'- ; evaluation ~ --, " = "  
result , --, value ~ , answer on display 

FIG. 6. Mapping of the basic calculation task for the Four-Function calculator. 

When the calculator is actually used for basic calculations, the mapping between 
Task and Action domains is equally simple, as shown in the right-hand half of Fig. 
6. For a basic calculation, the grammar generates the sequence 

( ls t -number)  (operation) (2nd-number)=  

and each of these compounds corresponds directly to a part of the task. In other 
words, this is a way of providing a principled basis for our earlier comment  that "the 
user has a firm grasp of the idea that keying ' 2 + 3  = '  will cause the machine to 
compute the sum of 2 and 3". For other sequences, however, the mapping is more 
complicated. Figure 7 shows the relations between the entities which according to the 
grammar are optional and the corresponding task entities. The mapping contains some 

Figure 2.3: Young’s task/action/abstract machine mapping of his basic calculation task for
a four-function calculator. Later, he elides the abstract machine domain to focus on tasks
and actions [220].

not convinced that it will help. Shaping the construction of mental models without explicit

instruction is a topic that we will return to when we discuss persuasion.

In more familiar territory of HCI, Young [220] investigated in a the use of pocket cal-

culators and the conceptual models of how they operate. He compared the functionality of

three types of calculators (Reverse Polish Notation or RPN, four-function, and algebraic),

and attempted to construct conceptual models of all three. The endeavor provided a few

key insights, one of which is that we gain confidence in a model when it predicts behaviors

not specifically accounted for in the model’s construction. These models can be relatively

abstract, but must be simple enough to be understood; the assumption that each calculator

has a single conceptual model that covers the entire range of its usage and the interactions

between features is neither realistic nor attainable.

Young was able to construct a relatively simple and elegant model of RPN calculators, but

found it difficult to do so for four-function and algebraic calculators with what may seem to be

a straightforward framework (“implied register models”) due to its unwieldiness in describing

their complex interactions [220], and employed Moran’s task/action mappings [143] as an

alternative. Task/action mappings enables one to analyze the relationship between the

tasks carried out by the machine in response to actions performed by the user. It uses the

Command Language Grammar, a representational framework that abstracts a system into

its Conceptual Component (tasks and semantics), its Communication Component (syntax

and interaction), and its Physical Component (spatial layout and device construction).

The author found that by looking at connecting task-level operations to conceptual ac-

tions taken by the calculator as well as what the work that the machine actually performs
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FIG. 9. Complementary domains of the Algebraic and RPN calculators. 

error frequencies, speed of learning, rated ditticulties, and so on) should confirm the 
superiority of the preferred task for each machine. The studies ment ioned above 
(Kasprzyk et al., 1979; Card, 1979) are a beginning, and show that in a simple contrast  
be tween the two machines - - "which  is better,  A L G  or R P N ? " - - t h e r e  is little to choose 
between them. The experiments  probing for the strengths and weaknesses of each 
design have yet to be done. 

APPLICATION 2: STRUCTURE OF THE TASK ARENA 
The second application takes up a point raised in the analysis of the FF calculator, 
where it was seen that the mapping model  for the calculator imposes a particular 
structure on the Task Arena.  The basic calculation is at the centre, with other  tasks 
directly or indirectly linked to it [see Fig. 10(a)]. The more  general calculations, such 
as formulae and LSBs, can be handled only in special cases and only after rearrange-  
ment  of the problem in the arithmetical domain. 

For the A L G  calculator the structure is quite different, the mapping in this case 
making the formula the core task [Fig. 10(b)]. Some unexpected confirmation for this 
structure comes f rom the t rea tment  of constant calculations. The analysis of the 
calculator as a formula-evaluat ing machine is forced to predict that constant calcula- 
tions are effectively absent f rom the Task Arena,  since it is impossible (other than by 
the use of auxiliary memory)  to treat  constant calculations as formulae.  Indeed,  on 
the particular A L G  calculator analysed, constant calculations, al though allowed for, 
are handled as a special case in a little world (i.e. Arena)  of their own. The convention 
adopted is to use a repeated  opera tor  (which of course cannot  occur in a valid formula) 
to signal an escape f rom the normal  formula world into the special constant calculation 
world. Thus the sequence "7 [ ] [ ] "  prepares  the machine to multiply a series of 
numbers  by 7, so that the subsequent  input "3  E]"  yields an answer of 21. Analogously,  
"7  [ ]  [ ] ' !  readies the machine to divide a series of numbers  by 7. It should be noted 
how unclear is the relationship between these two worlds. Following the prepara t ion 
"7 [ ] r -~ , ' ,  will the input sequence "11+---]2 r~],, give an answer of 3 or of 21? What  
about "1-?-I1 ~ 2 [ ]  1~1"? 

The RPN calculator imposes yet a third structure on the Task Arena  [Fig. 10(c)]. 
The  central task is the LSB calculation. The basic calculation is t reated "semantical ly" ,  

Figure 2.4: Complementary domains of algebraic and RPN calculators [220].

(Figure 2.3), task/action mappings helped to overcome many of the prior difficulties and al-

lowed him to compare and contrast different kinds of tasks and the correspondence between

them (see Figure 2.4), but notes that these mappings often represent an idealized, or optimal

set of behaviours, and therefore does not capture the full scope of use. Task/action mappings

proves useful regardless: we can analyze the complexity of mappings and a comprehensive

model is, in any case, typically infeasible. As a final note, task/action mappings here are dis-

tinct from other common conceptual mappings; whereas other conceptual mappings predict

the machine’s process of execution in response to inputs, task/action mappings are intended

to capture the behaviours that the user needs to perform in order to get the expected output.

The task/action mappings employed by Young [220] constitute a formal framework for

analysing usage, but it is unlikely that users construct such types of models explicitly in

their minds. Mental models could be represented in a variety of forms, each of which is

difficult to elicit from a user due to the challenge for individuals to articulate the complete

picture. A set of studies by Zhang [225, 226, 227, 228] investigated mental models in the

realm of information retrieval, in which students were asked in semi-structured interviews

about their usage of particular systems, such as a digital library or a Web search engine. As

his method of eliciting the users’ mental models, he asks his participants to draw a diagram

of how the system worked, as well as conducting semi-structured interviews and collecting

drawing descriptions [226]. Finally, he combined these into a collective mental model of

the Web (Figure 2.5). Through this study, he found that drawing was a sufficiently useful

method for identifying the more concrete aspects of a user’s model, such as the elements of

systems and the relationships between them. However, to determine the abstract features

such as matching and ranking mechanisms, it falls short. Conducting interviews is better at

this, which makes the two methods complement each other.
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FIG. 1. Undergraduate students’ collective mental model of the Web.

operators in mind. During the interview, only the six func-
tions listed in the table were reported by the students. Among
the functions, phrase searching was mentioned the most,
followed by Boolean operators. The fact reflected that under-
graduate students had simple and incomplete mental models
of functions supported by search engines.

Attributes of search engines. During the interviews,
students mentioned several search engines’ attributes. One
student recognized that search engines are different from each
other in terms of scope: “Different search engines sometimes
have different things. [If you] search for pictures. Yahoo,
Google, they came up with different lists, not exactly the
same.” Two students realized that search engines overlap with
each other: “A lot of search engines seem to overlap. Some
search engines use the resources of other search engines.”
One student found out that search engines do not deal with
current events: “It is hard to find things for me about cur-
rent events for projects. You should not just use Web search
engines.”

It is widely known by students that search engines are
often sponsored by certainWeb sites: “Google makes so much
money because companies pay Google a certain amount of
money to have them to be the suggested sites that you visited.”

Search tactics. Students used various tactics when search-
ing on the Web. The following is a nonexhaustive list of
general tactics that students used, followed by the number
of students who mentioned the tactic.

• Be precise and specific: Use more words instead of one. (20)
• Try several different words choices. (5)
• Start specific, then broader. (4)
• Start general, then more specific. (4)
• Leave stop words/common words. (4)
• Skim reading and compare. (4)
• Search a couple of different search engines. (3)
• Pick up the main words. (2)
• Do not use sentences. (1)

Undergraduate Students’ Collective Mental Models
of the Web

The Web is a huge system with infrastructures and func-
tions that go beyond the scope of traditional IR systems.
Correspondingly, students’ perceptions of the Web also went
beyond the four main components of general IR systems out-
lined earlier. By combining data from interviews, elements
depicted in drawings, and drawings descriptions, a broader
picture of undergraduate students’ “collective” mental model
of the Web emerged (see Figure 1). This “collective” repre-
sentation of the mental models of the participants is intended
to provide a holistic view of students’ understandings of the
Web. Meanwhile, it serves as a tangible structure based on
which different user groups’ mental models of the Web could
be compared.

As shown in Figure 1, the undergraduate students’ collec-
tive mental model consists of four aspects: (a) components
(i.e., what the Web consists of ), (b) functions of the Web,
(c) characteristics and attributes of the Web, and (d) feel-
ings about the Web. In the previous section, students’ mental
models of the Web as an IR system have been discussed in
terms of information source, information organization, and
search mechanism. In the following sections, other aspects
of students’ mental models of the Web are briefly reported.

Components of the Web. The students’ view of the Web,
which emerged from the transcripts, drawings, and drawing
descriptions, consists of people, technology, and information.
People are users of the Web, various technologies constitute
the infrastructure of the Web, and information is the content
of the Web.

People. The concept of a user is complicated with multiple
dimensions (cognitive, affective, and physical) and is influ-
enced by dynamic situational factors (Wang et al., 2000).
The “user” concept was simply viewed by students as people
who conduct a series of activities of uploading, using, and
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Figure 2.5: Undergraduates’ collective mental model of the Web [226].

2.1.1 Mental Models of Search

Zhang (2008) also investigated the relationship between mental models and search behaviour

[225]. He elicited mental models through drawings (an example of which is shown in Fig-

ure 2.6), which he then categorised as follows:

1. Technical view, where the Web is a composition of computers, servers, modems, and

CPUs

2. Functional view, where the Web is viewed as a place for shopping, communication,

entertainment, looking for information, or doing research

3. Process view, or search engine-centred view, where the Web is seen as a set of infor-

mational branches from search engines

4. Connection view, where the Web is considered the connection between information,

people, and devices, and a means for them to communicate

.

By this process, the author was able to analyze mental models without the need to

relate them to a complete reference model of the system. He connected these different

types of models to user behaviours in the types of movements (that is, visiting a page via a

hyperlink or URL in the address bar), backtrackings (use of the “Back” button), and query

reformulations. In this study however, there were no significant differences in interaction

or query formulation, feelings of difficulty or satisfaction with their performance, and no
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Fisher’s exact test showed that the distribution of gender among the four mental model groups was signif-
icantly different (p = .0025). Subjects in the technical view group were more likely to be males and subjects in
the process view were more likely to be females. Pre-analyses of the data showed that gender did not have
significant effects on participants’ search behaviors in this study. The interaction effects of gender and mental
model styles on search behaviors were not significant either. Thus, only behavioral differences in terms of men-
tal model styles are reported in the result.

Past research reported that experience has major impacts on people’s information search behavior (e.g.,
Elkerton & Williges, 1984; Borgman, 1989). Participants in the study on average had been using the Web
for 8.2 years, ranging from 3 to 11 years (SD = 1.84). To examine the possible compounding effects of expe-
rience, a one-way ANOVA test was conducted. The test result showed that the four mental model groups did
not differ significantly on their experience of using the Web (F(3,40) = .566, p = .64).

5.2. Search behaviors

Subjects’ search behavior was measured from four aspects: (1) descriptive measurements, including time to
finish tasks, accuracy of responses, number of movements, number of backtrackings, and ways to start inter-
action; (2) psychological measurements: feeling about the difficulty of the task and satisfaction with their own
performance; (3) query constructions; (4) search patterns.

Fig. 1. Technical view of the Web.

Fig. 2. Functional view of the Web.

Y. Zhang / Information Processing and Management 44 (2008) 1330–1345 1335

Figure 2.6: One user’s functional view of the Web [225].

consistently repeated search patterns were identified. He however did see a slight difference

in the number of movements—users with connection views, where the Web is seen as a highly

connected network of entities, make the most movements.

A comparable study to Zhang’s [225] is one by Holman [86], in which the author used

a combination of contextual inquiry and concept mapping to analyze millenial students’

understanding of how search tools generated a list of results. Millenials have lived their

entire lives in the information age, but it is unclear whether this corresponds to the “Google

generation” having good mental models of search, despite the fact that they may conduct

Web searches on a regular basis. The author also asked the participants to draw a diagram as

Zhang [225] did, but of the relationship between the search tools and results, and interviewed

each participant. Three categories emerged from this method: a process view, a hierarchical

view, and a network view (Figure 2.7). The process view is seen as the simplest, which

characterises the search engine as a black box. There was no significance testing done

for the analysis, but the author notes that those with more sophisticated models (such

as the network view) performed the most searches and used advanced search features. In

comparison, users with a process view used only the basic search features.

Borgman (1985), in an early study of mental models of an information retrieval system

[27], asked participants to perform both simple and complex tasks, as determined by the use

of indexes and boolean operators, after “training” them with conceptual models. Borgman

here defines the conceptual model as what is portrayed by the designer through the design

of the system. This is distinct from a user’s mental model, which lives in his or her head;

a mental model is built from the conceptual model, but may have differences. In her study,
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Figure 1.  Process view mental model. (a)
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Figure 2.  Hierarchical view mental model. (b) Millennials’ Mental Models  
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Figure 3.  Network view mental model. (c)

Figure 2.7: Examples of a process view (2.7a), a hierarchical view (2.7b), and a network
view (2.7c) [86].
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the “model group” received an introductory narrative in the form of an analogy to tradi-

tional card catalogues. The “procedural group” got a narrative of background operational

information in the form of the IR system’s manual. The author also elicited models from

the user, and found that these models were typically abstract, with no resemblance to a card

catalogue. Previous studies of human-computer interaction [42, 81, 69] argued that model-

based instruction was more effective than procedural training, but Borgman’s results were

inconclusive; she observed a difference as predicted in the conditions that were suggestive,

but not statistically significant.

Through her study, Borgman (1985) uncovered a few issues—one of which concerned the

fidelity of the models given by users. Because they must articulate these models, the question

is left of whether differences in the models were due to how well the participants articulated

them. The results also indicated that subjects constructed two types of models: one for the

task, and one for the system, where the task model is built first and the system model is

built subsequently through usage and practice.

Borgman (1985) also raised an issue of the effects of individual differences. The results

showed that there were differences between majors in who passed the benchmark tests—

namely between those in STEM majors – who fared better – and those studying the Hu-

manities. She posited that these groups have different cognitive styles, and continued to

investigate these individual differences in a followup study [28], which will be elaborated on

in Section 2.2.

As Borgman [28] did, Zhang and Chignell [224] also performed a study at the intersection

between mental models and individual differences, in this case, examining their interaction.

To elicit users’ mental models, the authors used a psychological instrument called the Reper-

tory Grid Technique, or RGT [71]. RGT is based on the theory that people understand the

world through personal constructs—their set of representations/model of the world formed

through one’s social experience [113]. The process involves the generation of concepts and

the various attributes about them. Principal component analysis can then be employed to

compare the constituent factors of these constructs. This comparability is one advantage

of the method; another is that it does not rely on the participant describing their model

verbally, which is typically a challenge for subjects.

Zhang and Chignell’s aforementioned study [224] study involved 64 subjects across spec-

trums of academic levels (high school, college, graduate, professional), first language, dis-

cipline (STEM or Humanities) and computer experience. The analysis found differences

between groups depending on education level, academic discipline, and computer experi-

ence. Individually, each factor had a suggestive or statistically significant effect, but there

were no significant effects from interactions between these variables. The results focused on
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four factors: 1. the purposefulness of querying (targeted/untargeted), 2. the applicability

of data organization to other information systems outside of information retrieval, 3. the

function of querying as a form or process, and 4. the function of the structure of data. This

supports the idea of individual differences affecting the generation of mental models, though

the authors were careful to point out the novelty of the method and the exploratory nature

of the study.

2.1.2 Cognition and Personality

Turner and Sobolewska [195] published a related study that examined both mental models

and individual differences. It took a more emotional approach to mental models using EQ

(empathy quotient), which they contrasted with the more common approach of investigating

from a purely cognitive perspective. The work of Reeves and Nass [162] highlighted the

degree to which users anthropomorphise technology, and this determines how we view, use,

and react to these artefacts. Referencing work in Psychology by Baron-Cohen [15, 16, 17, 18],

the authors looked at the dichotomy between systemizing and empathizing cognition. The

prior is associated with the common behaviour of analyzing and exploring sytems, whereas

the latter leverages theory of mind [156]; this may be because computers seem autonomous,

complex in purpose, adaptable and unpredictable, which are all human-like qualities. The

gist indicates that people tend to use some amount of both cognitive styles, and the degree

to which they do can be measured. In this interpretivist study, Turner and Sobolewska

found that this individual difference in SQ (systematizing quotient) and EQ related to the

extent to which users gave longer, more technical answers (high SQ), or the degree to which

users ascribed agency to their technology (high EQ) [195]. This may indicate that high SQ

subjects had a higher depth of model fidelity than high EQ subjects.

On this issue of mental model fidelity, Khoo and Hall [115] performed a study that consid-

ered the ways in which individuals thought about digital libraries through use. The authors

analyzed the issues that participants reported having with regards to the interface, naviga-

tion, and the ease of use of searching and browsing. They found that subjects held Web

search engines as a baseline, and therefore, when compared to a digital library (which, as

seen in [128], users tend to compare with search engines rather than traditional libraries),

the digital library was lacking. The paper also presented an interesting phenomenon: par-

ticipants seemed to attribute features that they would like to be added to another system

such as a particular search engine, despite the fact that this search engine itself may not

the features in question. This strengthens our belief that users are likely to have incomplete

models of the systems they use.
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Another, previously mentioned paper by Makri et al. [128] explored mental models of

digital libraries. The method of data collection here comprised interviews and observations

with eight participants to elicit mental models of the usage of both traditional and digital

libraries. The authors asked participants—masters students—to find relevant documents

using a traditional library, digital library, or another library of their choice. They found

that users’ perceptions shaped how they approached each system in terms of what a digital

library is in relation to what they believe a traditional library or search engine to “be”. The

authors perhaps expected users to exploit their knowledge of traditional libraries, but instead

found that users made analogies to common Web search engines like Google. Although

students were able to articulate the differences in the ways in which each system may be

used from a procedural or task-oriented standpoint, few drew explicit comparisons of the

various systems on their own. This led to users being unable to take advantage of all

the features or capabilities of the digital libraries, in the study, such as browsing (which

participants ascribed only to traditional libraries).

Taking a more mechanistic approach by contrast, which in this case can be seen as also

assisting users in mental model construction, Muramatsu and Pratt [144] conducted a user

study in which they provided users with feedback within the search interface to explain the

query transformations used for a given request, such as stemming, term closeness scoring,

or automatic boolean operations. Users were often unaware that these transformations were

being done, or knew why they were being done. This feedback gave users more transparency

into the workings of the system. The study participants indicated that suggestions for how

to reformulate queries would have been helpful—applying the model is still an important

step that may be difficult for users to do. The authors did not investigate the effect of

model accuracy on retrieval performance, but other studies in the literature explore the

model/behaviour relationship [29, 225, 27].

Commonly, the majority of these papers address the construction of mental models from

a cognitive perspective. However, a study by Turner and Sobolewska [195] approached

the topic from an emotional angle. Affective computing is a burgeoning field, but for our

purposes we are more concerned with cognition. However, these studies were focussed on

the initial construction of a mental model; we are at present interested not only in the

initial construction, but also subsequent alterations and reconstructions that come through

repeated use. Learning is continuous and dynamic, and it seems reasonable to expect systems

to regard it as such. Systems may guide users towards the optimal path of usage (discussed

further in Section 2.3). Many of these model elicitation methods are rather invasive: they

involve asking users to articulate their models, draw their models, or taking questionnaires

and participating in interviews. More appropriately, a system should be less invasive in
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learning what kinds, classes, or levels of fidelity of models exist in the minds of users. The

question of how to represent these models appropriately for machines to use is also important

to answer. Considering the economics of search may give clues as to how this could be done.

This will be covered in Section 2.3.

We are interested in methods of helping users form more useful mental models. We can

approach this as a reversal of the machine teaching problem, where the goal is to find an

optimal training set to provide to a machine learning algorithm in order to learn a particular

target model [230]. This is necessary if we cannot simply make use of the model, which is

the case for a human learner. Machine teaching assumes a cognitive model of the learner

which, given the optimal lesson, can be adjusted toward the desired cognitive state.

Socially Guided Machine Learning [190] is an approach that addresses looks at machine

learning in a similar manner as machine teaching. In other words, it takes an interactive

perspective for machine learning, where the task is designed as a partnership between the

human teacher and machine learner. Thomaz and Breazeal [191] performed a study with

a simulated environment they dubbed “Sophie’s World”. They modelled a problem in this

world–to bake a cake with provided ingredients– as a Markov Decision Process to be trained.

In a reinforcement learning paradigm, individuals provided feedback to the machine based

on the actions it takes.

The issue raised by Borgman [28] – that mental models and individual differences are

closely entwined – is an important one. Learning style, academic interests, technical aptitude,

and personality traits are all potential factors that may influence the development of mental

models. We will therefore turn our attention to individual differences, and their connections

to mental models and behaviour.

2.2 Individual Differences

The study by Borgman [27], covered in Section 2.1, had results that indicated an effect

stemming from individual differences. She noted that if there are differences in performance

due to individual differences, then these systems being designed and used might not be

equitable. Hence, in a followup study [28], Borgman further investigated these effects by

examining the link between academic interest, information seeking style; and personality

traits, technical aptitude and reasoning ability. The author thus hypothesized that technical

aptitude and personality traits determined academic orientation, which then intermediates

the aptitude for performing information retrieval tasks (Figure 2.8).

The author measured the results of a number of tests, including the SAT, symbolic rea-

soning test or SRT [173, 168], the number of math, science, and programming courses taken,
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Fig. 1. Hypothetical model. 

college performance and prior test scores (SAT) were obtained from academic records with 
student permission. 

5. RESULTS 

Descriptive statistics and preliminary results are reported in Borgman [16]; further 
results are reported in Borgman [71]. This article summarizes the prior findings, provides 
additional analyses, and suggests implications of the results. 

5.1 Description of the sample 
The sample consisted of 64 undergraduates, each of whom was paid $12 for partici- 

pation. We were able to attract 18 engineering majors (11 male, 7 female), 20 psychology 
majors (2 male, 18 female), and 26 English majors (8 male, 18 female). The sample is 
slightly skewed by sex. 

5.2 Correlations with technical aptitudes 
We first identified the correlations between the technical aptitudes and academic orien- 

tation. We ranked majors by degree of technical expertise required, as was done in the orig- 
inal study [lO,ll], such that English = 1, psychology = 2, and engineering = 3. Hence, 
positive correlations mean that scores typically are higher for engineering and lower for 
English majors on that variable. 

As a measure of the stability of major, we ran separate tests for the group of subjects 
who had stayed within one major or disciplinary area (n = 53). The other 11 students who 
had crossed disciplines all came from English or psychology; 3 had transferred from the 
social sciences to English, while 8 had transferred from the sciences and technology- 5 to 
English, and 3 to psychology. 

Table 1 lists the significant correlations between major and technical aptitudes and 
Table 2 lists correlations among the technical aptitude variables. Correlations are given 

Table 1. Significant correlations between major and technical aptitudes 

All subjects One discipline 
Variable (a!!= 50) (GJJ= 35) 

Test scores 
SRT .40** .42** 
SAT math .41** .3s** 

Coursework 
High school 

Math courses .29* .33* 
GPA .28* n.s. 

Undergraduate 
Math courses .37** .61**** 
Science .38** .65**** 
Computer science .39** .44*** 
Engineering .45*** .50*** 

n.s. = not significant. 
*p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001. 

Figure 2.8: Hypothetical model of information retrieval aptitude proposed by Borgman [28].

and personality indicators such as the Myers-Briggs Type Indicator or MBTI [145], and the

Kolb learning style inventory [119]. She found that choice of major could be explained by

personality tests alone, and could be predicted by the number of prior courses taken along

with aptitude test scores (SRT, SAT). There was thus some clustering by technical aptitude

and personality characteristics, but these two were independent of each other. She also found

that the effect was stronger for those who stuck with one major than for those who switched.

Ford et al. [68] performed a related study to investigate the relationship between cognitive

style and information seeking behaviour in particular among one hundred and eleven subjects

from various disciplines. This study considered a variety of factors, including global/analytic

style, the problem stage, uncertainty, and task complexity, among many others. The sub-

jects were asked to complete literature search tasks, while the battery of aforementioned

factors were measured. The analysis focused on a holist/serialist (or alternatively by corre-

lation, global/local) learning style. This is referred to as field dependence. Field dependent

individuals prefer to take more of a “spectator” approach to learning, where the process

is structured and analyzed for them. By contrast, field independent people are more ef-

fective at structuring their analytic activities on their own. Field independent individuals

are also less socially-oriented than those who are field dependent. The analysis found that

field-independent individuals are indeed more focused and analytic as well as more active in

their behaviour. It also found that holists were more exploratory, taking a more comprehen-

sive approach to search, supporting the idea that individual differences—here, of cognitive

style—can be a determinant of search behaviour. Field dependence is also considered in nu-

merous other studies in IR and HCI, amongst other fields such as psychology in investigating

differences in gender [40] and culture [133, 147].

Field dependence is a major aspect of cognitive style, and may also be viewed as

global/analytical style. The authors of a paper on the impact of thinking style on Web

search strategies [105] asserted that incorporating the consideration of thinking style into

the design of IR systems would help to predict user intention and give individuals a better

basis for comprehending search results. In this context, thinking style refers to one’s personal
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preferences in how he or she solves problems. This is distinct from personal abilities ; two

individuals with similar abilities may have very different preferences in when and how to

use them. This paper thus includes a study to determine whether a specific thinking style

emerges over time when searching, as it does for other daily tasks.

Their study consisted of three hundred and fifty five Taiwanese 5th grade students. All

the participants had two years of computer training, and their thinking styles (categorized as

global or local) were determined by questionnaire. For their search tasks, they were asked to

write down their target query terms and revise them as their intentions changed. Participants

also had their interactions recorded and formatted into navigation flow maps to show the

relationships between queries, documents, and tasks. This allowed the authors to examine

the number of keywords, visited pages, depth of exploration, revisited pages, and frequency

of query refinement. Their analysis found differences in interaction: more local thinking

styles correlated with more in-depth understanding and answer refinement. In comparison,

more global styles correlated to more high-level exploration.

From these results, it seems reasonable to believe that we may observe distinctions in

interaction behaviors that would reflect individual differences. In a large-scale study of

individual behavioural differences from search logs [38], Buscher et al. analyzed the mouse

movements that users performed on the results page of a large commercial search engine for

1.8 million queries. They extracted clusters of behaviour and related these clusters to the

results of other smaller-scale studies. They also considered the effect of the task (navigational

vs. non-navigational) on these clusters. Analysing the clusters, they found three clusters

of search behaviour for non-navigational tasks: 1. Economic (fast, focused movements,

little time on SERP, few clicks) 2. Exhaustive-Active (detailed examination, many clicks,

infrequently abandon searches), and 3. Exhaustive-Passive (similar to Exhaustive-Active,

but spends more time on SERP, and idle and abandon more searches).

The extent to which demographic factors as the individual differences in question affects

search behaviour has also been studied. Weber and Castillo [206] specifically investigated

the effect of age, race, gender, and income on predicting which URLs would be clicked on

for a given query. They also had other objectives and applications in mind, such as targeted

advertising, improved query suggestion, and more relevant news article recommendations.

The authors performed an analysis of 28 million users with Yahoo! accounts that had

demographic information filled in, with (Query, URL) pairs, (URL, Query) pairs, and (Query

Term 1, Query Term 2) (i.e., bigram) pairs. They found differences in behaviour regarding

the more distinctive queries that the different groups issued, and differences in behaviour

such as the relationship between education level and query length, click entropy, and URL

depth.
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Figure 1: Example: Queries vs Depth on Aquaint
collection for BM25. The isoquant denotes the min-
imum amount of the inputs to produce the specified
level of gain.

2.2 Model Limitations and Caveats
Firstly, in terms of the analogy with production theory, it

should be noted that the search process is not exactly like the
production process. This is because relevance is not really
produced, so to speak, it is found within documents. How-
ever, the relevant documents found provide the user with
some utility or gain. In our formulation the gain is consid-
ered the output of the search process. In mapping the search
process as an economics problems we also considered using
consumer theory as suggested by Varian [24]. In consumer
theory, a consumer receives utility from the bundles of the
goods that they consume [23]. However, this analogy was
less intuitive because searchers do not buy goods or services
in the search process. Instead, they exert effort like labour
in a production process when they query and assess. While
neither production theory nor consumer theory exactly fits
the search process2: the techniques used in both consumer
and production theory are similar i.e. they derive a utility
or production function that characterizes the consumer or
production process, and then examine the rates of change,
maximize utility/profit, minimize expense/cost, etc, see [23]
for more details). So either way we shall be applying similar
techniques.

Secondly, in terms of IIR, our abstraction of the search
process makes a number of assumptions about possible in-
teractions. In reality, users are likely to vary the depth of
assessment, the length of queries, and the number of queries
that they pose depending on how (un)successful their queries
are at returning relevant results given the retrieval system.
While, we assume the search strategies denoted by (Q, D)
are fixed for a given L, i.e. the user will issue Q queries,
each of length L, and assess D documents per query, this
helps constrain and reduce the possibilities to a manage-
able size so that we can perform the analysis. Rather than
thinking that these are fixed, if we consider that these vari-
ables reflect how a user would search on average, i.e. if a

2
Actually, the process appears to be an example of“prosumer theory”,

where the producer and the consumer are one and the same.

user on average examined D per query, and issued on aver-
age Q queries with an average length of L, then this model
provides a reasonable approximation of usage. Nonetheless,
this abstraction still provides a sufficiently rich representa-
tion of the search process which can still provide interesting
insights and explanations.

2.3 Research Objectives and Questions
Given this view of the search process, our main objective

is to estimate or describe the search production function
for interactive topic retrieval mathematically; and in doing
so provide a formal model for IIR. During the course of
this research we shall also consider the following research
questions:

• What combination of inputs are required to achieve a
particular level of utility?

• What is the trade-off between querying and assessing?
Or, what is the rate of change between querying and
assessing? and,

• Given a cost function, which search strategy or strate-
gies minimize the cost of searching?

3. EXPERIMENTAL METHODOLOGY
For the purposes of this study, three TREC test collections

were used: the AP 88-89 collection with TREC 1, 2 and 3
Topics (AP), the LA Times collection (LA) with TREC 6, 7,
and 8 Topics, and the Aquaint collection (AQ) with TREC
2005 Robust Topics (See Table 1). Each test collection was
indexed using the Lemur toolkit3, where the documents were
preprocessed using Porter Stemming and a standard stop
list. Since we are interested in interactive ad-hoc querying
and retrieval, where the goal is to retrieve a number of rel-
evant documents, we have selected only those topics that
have at least 50 relevant documents in Aquaint and AP, and
at least 40 relevant documents in LA. We used these cut
offs to ensure that there were enough relevant documents to
produce sensible values when we examined the various levels
of gain. Also, in terms of examining interaction, if we only
had a few of relevant documents per topic, then it is likely
that only one query would be needed, which would not be
particularly interesting.

3
http://www.lemurproject.org

Collections AP LA Aqauint
Docs 164,597 131,896 1,033,461

Topic Set TREC 123 TREC 678 Robust 05
No. of Topics Used 87 43 26
Avg. Query Len. 3.3 2.5 2.6

Mean Average Precision
BM25 0.2966 0.2145 0.2021
LM2K 0.2967 0.2143 0.2043

BM25AND 0.2038 0.1094 0.1331
TFIDF 0.1867 0.0683 0.0803

TF 0.1435 0.0501 0.0598
BOOL 0.1202 0.0683 0.0460

Table 1: TREC Collection and Topic Statistics for
Associated Press (AP), LA Times (LA) and Aquaint
(AQ), along with the Mean Average Precision for
the retrieval models used in this study.
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Figure 2.9: An example plot of queries vs. depth on a particular document collection and
ranking algorithm. The labelled isoquant is the minimum amount of the inputs that produce
the given level of gain [9].

From our exploration, we can see that the construction of mental models is closely re-

lated to an individual’s cognitive style. Recent work in information retrieval has looked at

cognition and decision-making from an economic perspective, which we shall explore next in

Section 2.3.

2.3 Economic Models of Interaction

In 2011, an influential paper by Azzopardi [9] established Search Economic Theory (SET)

to explain interaction with information retrieval systems. With analogies to Production

Theory, which models a firm’s outputs from its inputs, Azzopardi modelled search strategies

as a combination of inputs (Q,D) for a query of length L, where Q is the number of queries

to be issued, and D is depth, or the number of documents to examine. Azzopardi then

formulated a production function to determine the maximum cumulative gain possible from

employing this strategy. This forms the basis of our investigation into what we consider to

be optimal behaviour.

Influenced by SET and information foraging theory [154], Maxwell and Azzopardi [136]

performed an experiment to determine the effect of delays on behaviour in interactive infor-

mation retrieval. Driven by this overarching research question, they tested hypotheses that

document download delays and query response delays would increase the time spent on the

documents and search engine result pages respectively. They also examined the effect that
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Two Scrolls or One Click: A Cost Model for Browsing Search Results 697

Fig. 1. The area marked by the dotted line shows how much of the page is initially
visible, where k snippets can be seen. k will vary according to screen size. If the number
of results per page n is larger than k, then n − k results are below the fold.

2 Cost Model

To develop a cost model for results browsing we assume that the user will be
interacting with a standard search engine result page (SERP) with the following
layout: a query box, a list of search results (snippets), and pagination buttons
(see Fig. 1). Put more formally, the SERP displays n snippets, of which only
k are visible above-the-fold. To view the remaining n − k snippets, i.e., those
that are below-the-fold, the user needs to scroll down the page, while to see the
next n snippets, the user needs to paginate (i.e., click next). And so we wonder
whether is it better to scroll, click, or some combination of?

Here, we consider the case where the user wants the document at the mth
result. However, m is not known a priori. To calculate the total browsing costs
we assume that the user has just entered their query and has been presented
with the result list. We further assume that there are three main actions the user
can perform: inspecting a snippet, scrolling down the list, or clicking to go to
the next page. Therefore, we are also assuming a linear traversal of the ranked
list. Each action incurs a cost: Cs to inspect a snippet, Cscr to scroll to the next
snippet1, and when the user presses the ‘next’ button to see the subsequent n
results, they incur a click cost Cc. The click cost includes the time it takes the
user to click and the time it takes the system to respond. Given these costs, we
can now express a cost model for browsing to the mth result as follows:

1 i.e., the scroll cost is the average cost to scroll the distance of one snippet, which
includes the time to scroll and then focus on the next result.

Figure 2.10: Cost-based choices in search engine result page layout portrayed visually. The
dotted area is the visible portion of the page on load [13].

the increased cost of document access (i.e., download delays) had on the number of queries

issued and number of documents examined. In the study, the authors asked university stu-

dents to assume the role of a journalist, and to find as many documents relevant to a given

topic as possible within a 20 minute timespan. They found that subjects spent longer on

documents and on result pages due to an increase in the sum of document, query delays,

and query formulation times. Additionally, with increased document access times, subjects

performed fewer queries and examined more documents per query. However, the time of

the delays was not a variable that was considered; they conjectured that 2–4 seconds was

the ‘tipping point’ of where behaviour changes, but this claim was not investigated. Addi-

tionally, the subjects were given information needs explicitly; the effect of delays on users’

own information needs was not explored. This type of cost-based analysis can help us to

determine optimal choices more broadly in information seeking and retrieval.

In [13], the authors established a cost model of browsing search engine result pages based

on estimates of the time required by both the system and user for clicking, scrolling, and

inspecting snippets, while taking into account the size of the page, and the size of the screen

used. The motivating scenario involves a user being presented with a search engine result

page immediately after issuing a query. Optimally, for a given device, we may consider

whether the interface should optimally show as many results as can fit above the fold with

pagination, or should it allow for some scrolling before going to the next page. We can see

the scenario more clearly in Figure 2.10. This paper follows in a line of other endeavours

to model cost, as opposed to the more common avenue of optimising gain. Kashyap et
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al. [106] formulated a cost model of faceted navigation for a system called FACeTOR that

accounts for the time to examine results, the cost of choosing a facet and hence refining

the list of results, or expands an attribute, revealing more facets of the particular attribute.

Through simulated navigation and a user study via Amazon Mechanical Turk, they tested

the predictions of their model and found that their cost model was realistic. The cost model

of Russell et al. [170] served to inform the activity of sensemaking – a task more general

than information retrieval. The authors decomposed the process into different types of

subclasses, and characterized their costs. By doing so, they made the point that by trading

off costs in one task, we can take advantage of the reduced costs in other aspects. As such,

sensemaking becomes an anytime algorithm [6]. As an example, by saving time expenses

from automated clustering methods, the designers of an educational course were able to

extend the comprehensiveness of their search.

For examples of work which examine gain in information retrieval, we may turn towards

analyses conducted by Smucker and Clarke [181]. Following on their proposition of time-

biased gain, where the gain from a relevant document is equal to the probability of viewing

it subjected to a time decay [181], Smucker and Clarke [180] explored a simulation-based

approach to approximate this gain as an alternative to estimation using their closed-form

solution. This allows for more flexibility in analysis – one can model a distribution of gain

while changing other variable with less effort for easier “what-if” experiments. Taking this

approach also potentially allows one to model a sample from a population of users.

A number of papers have also taken a behavioural economics approach towards search. In

examining search persistence and failure, Mansourian and Ford [129] analyzed interviews of

academic members of staff to ascertain their perceptions about missing information – drawing

a direct connection to Simon’s concept of bounded rationality [130]. March and Simon [130]

outlined the problems with “classical” rationality, and instead reformulated rationality as

being relative to a frame of reference. This subjective viewpoint is more realistic than the

classical, objective viewpoint in that it does not presuppose the attainment of complete

information with regards to alternatives, consequences, and utilities that are needed for

decision making. Mansourian and Ford [129] coded their interview transcripts with a coding

scheme that accounts for the various aspects of both bounded rationality and satisficing

[130], which we have diagrammed in Figure 2.11.

From their data, it was evident that many participants often stopped their searches before

they felt truly satisfied that they had found all of the information relevant to their needs.

As far as perceptions go, the authors proposed the following impressions:

� The “Inconsequential” Zone: the best case scenario (Low volume; low importance)
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Bounded Rationality

Time constraints Information overload Physical constraints

Imposed Self-generated Textual overload Outcome overload Discomfort Exertion

Satisficing

Reduction Termination

Known sites Synopsis Categorization Acceptance Discomfort Boredom Time limits Snowballing

Figure 2.11: A visual representation of Mansourian and Ford’s (2007) bounded rationality
and satificing coding scheme [129].

� The “Tolerable” Zone: when missing the relevant information does not lead to search

failure (High volume; low importance)

� The “Damaging” Zone: for high-recall situations where users are more concerned about

the relevance of the information than the quantity (Low volume; high importance)

� The “Disastrous” Zone: the worst case scenario, when users might miss a large amount

of important information, leading to search failure (High volume; high importance)

The paper also points out a number of satisficing search strategies that were observed

in the data, which fall along the continuums of effort and the perceived extent of missed

information. As per [4], these strategies were categorized as follows:

� Reducing the search task

� Categorization of types of searches and resources

� Formulating synopses, rather than comprehensive consumption

� Termination of search, from acceptance, discomfort time limits, boredom, or snow-

balling (where a users reach a fixed point in the information they find)

This study by Mansourian and Ford [129] did not address the ways in which interviewees

arrived at their perceptions of the quantity of missed information. To address the question

of how users might arrive at this estimate of missed information, Umemoto et al. [197]

developed an interface called ScentBar, that visualizes the intrinsically diverse aspects of a

query, and shows how much information in each aspect a user could potentially miss at any

given time, were they to stop their search (Figure 2.12).

Their system adds an interface element that contains a horizontal bar chart, where each

bar represents an aspect, and the amount filled in with two different shades represents the to-

tal amount of information in each aspect, and the amount of unexplored information in those
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cigarettes price increase

smoking ruins your looks

smoking benefits

diseases caused by smoking

smoking cancer risk

(a) At beginning of search task

cigars vs. cigarettes

smoking ruins your looks

smoking effects on brain

diseases caused by smoking

smoking benefits

(b) At end of search task
Figure 2: How ScentBar works. The state of missed informa-
tion after the initial search is shown in Figure 1.

3.1 How It Works
When a user is typing a search query, ScentBar visualizes the

amount of missed information for both the search query and sug-
gestion queries in the form of a stacked bar chart. To be precise,
missed information for a query represents information that (1) can
be obtained from the search results of the query, (2) is important to
the search topic, and (3) the user has not yet obtained.

Take the search topic described in Section 1 as an example again.
Figure 2a illustrates the state of ScentBar visualization when a user
starts his/her search task with the query “smoking cancer risk” to
learn the effect of smoking. At the beginning of this task, the
amount of missed information for a query can be interpreted as
the total amount of important information that the user can obtain
from the search results of this query. For example, the user can infer
from Figure 2a that the queries “smoking cancer risk” and “diseases
caused by smoking” return search results containing more impor-
tant information than those such as “cigarettes price increase”.

When the user has obtained sufficient important information from
the returned documents, the amount of missed information for the
search query decreases, as shown in Figure 1. The length of the bar
for the search query (indicated in deep pink) is much shorter than
its initial length (indicated in light pink), which suggests this query
contains only a small amount of missed information. Note that the
bar for the suggestion query “diseases caused by smoking” also has
a short length compared to the initial state. This is because the sug-
gestion query shares with the search query a certain amount of im-
portant information. In contrast, the visualized bars for other sug-
gestion queries (e.g., “smoking ruins your looks”) remain almost
unchanged from the initial ones, which suggests great amounts of
important information are still unexplored for these queries.

When the user has exhaustively collected important information
on the search topic from a variety of angles through several query
reformulations, the amount of missed information considerably de-
creases for any query related to the topic. Figure 2b illustrates the
state of ScentBar visualization at the end of the search task. As
suggested in the figure, there is little important information left for
either the search query or the suggestion queries.

3.2 Research Questions
In the present study, we investigate the effect of displaying missed

information on searchers’ strategies and outcomes. More specifi-
cally, we address the five research questions listed below.

In intrinsically diverse tasks, searchers are more likely to issue
multiple queries to exhaustively collect relevant information from
different angles. Thus, we frame the following two research ques-
tions on individual searches (i.e., after a query is issued before an-
other one is issued or the session ends):
RQ1 How does ScentBar affect users’ decisions on when to stop

the current search?
RQ2 How does ScentBar affect users’ decisions on which query to

use for the next search?
We expect our visualization enables searchers to utilize more ra-

tional strategies in individual searches. For example, ScentBar
users may be able to stop the current search after collecting a suffi-
cient amount of important information by monitoring the bar visu-
alization for the search query. Missed information may also affect
searchers’ query formulation strategies; ScentBar users may use a
more effective query for the subsequent search by comparing the
visualized bars for suggestion queries.

The remaining three research questions relate to the overall search
sessions of intrinsically diverse tasks:
RQ3 How does ScentBar affect the temporal change in gain that

users acquire through their search process?
RQ4 How does ScentBar affect users’ decisions on when to stop

their task sessions?
RQ5 How does ScentBar affect the relationship between the effort

that users expend and the gain that they obtain?
Missed information may affect searchers’ strategies and outcomes
at the session level as well as at the query level. For example, Scent-
Bar users may acquire high gain at any point in their sessions. Anal-
ogous to RQ1, ScentBar may also enable users to rationally decide
when to stop the task sessions2. It can also be hypothesized that
ScentBar makes users’ search processes more cost-effective: they
may be able to collect a sufficient amount of important information
from a variety of angles without expending much effort.

4. MISSED INFORMATION ESTIMATION
In this section, we first introduce gain, a metric for evaluating

search outcomes in intrinsically diverse tasks, and then define the
amount of missed information by using the gain metric. We then
describe our algorithm of estimating the gain components.

4.1 Gain
Let us consider how searchers can obtain gain in intrinsically di-

verse tasks. As described in Section 1, these tasks require searchers
to collect extensive information covering a variety of different as-
pects. Considering this characteristic, it would be natural to assume
that the gain they obtain through their searches is independent of
their browsing order of documents. Thus, we formalize gain as
a set-wise metric, whose relation to other metrics is discussed in
Section 4.2. We also derive from this characteristic the following
requirements that the gain metric should satisfy:
Importance Documents relevant to a central aspect of the search

topic produce higher gain than those relevant to a peripheral one.
Relevance Highly relevant documents produce higher gain than

partially relevant ones.
Novelty Documents relevant to an unexplored aspect produce higher

gain than those relevant to a fully explored aspect.
First, we decompose the gain metric from the topic level to the

aspect level in an intent-aware manner [1]. More specifically, given
a topic t, we formulate the topic-level gain Gain-IAt(D) that can
be obtained from a set of documents D = {d1, d2, . . . } as

Gain-IAt(D) =
X

a2At

Pr(a | t) · Gaina(D) ,

where At is a set of aspects for t, Pr(a | t) is a probability mass
function representing the importance of an aspect a to t, and Gaina(D)
is the per-aspect gain that can be obtained from the documents D
with respect to a. To satisfy the first requirement, the above for-
mula puts greater value on the per-aspect gain for highly important
aspects when calculating the topic-level gain.
2 As in the literature [21], we refer to stopping behavior regarding

RQ1 as query stopping and that regarding RQ4 as session stop-
ping. Search stopping is used as the generic phrase for these two.
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Figure 2.12: The design of ScentBar [197].

aspects. The authors were primarily focused on stopping behaviour, and how introducing

this kind of feedback would affect it. They formulated a gain metric that satisfies the need

for importance, relevance, and novelty, and define missed information as the additional gain

from results that are unexamined. In their experimental study, participants were asked to

perform an exhaustive search on various aspects of a topic, with no time limit. They found

that participants missed significantly less information before stopping when using ScentBar

and formulated more expansive query strategies that allowed them to find more information

than they would have otherwise missed without feedback.

What governs stopping behaviour is another subject of study. Zach [222] conducted a

study in which twelve arts administrators were interviewed, and a model of information ac-

quistion using the collected data was constructed. These administrators viewed information

seeking as non-explicit; it was a means to making a decision and as such was thought of

as an auxiliary process. With the process not being explicitly considered, this may give

support to the idea of search as not necessarily constituting a set of rational choices. In

their interviews, the administrators indicated that their stopping criteria were never deter-

mined beforehand, but was the result of feeling comfortable with the results they gathered.

When time and comfort were at odds, participants often satisficed. The primary factor that

determined stopping behaviour therefore was their confidence in being able to address their

primary task.

A factor related to satisficing that affects decision making relates to the paradox of choice

[175]. This paradox in essence states that if one is provided with more choices where each

option is highly relevant and the individual perceives success from making the correct choice,

it is likely that the individual will make a poorer decision and will have reduced satisfaction.

In [150], the authors demonstrated in an experiment that when given a list of search results,

those who were given a larger result set were in fact less satisfied and less confident in their

choices. This is a finding that is consistent with prospect theory—introduced by Kahneman

and Tversky [102].

Prospect theory was proposed as a critique of the prevalent conceptualization of decisions
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being motivated by expected utility. By the expected utility hypothesis, risks are modelled

as a multinomial distribution (“lotteries”), where each alternative is one in a set of discrete

outcomes. Here, the preferred alternative is the one with a higher expected utility value than

another. Expected utility theory is also subject to two axioms: namely that of independence

and continuity, which establish that preference orderings are not affected by either a convex

combination with an additional lottery, or by small changes in probabilities. Similar to

lotteries, Kahneman and Tversky [102] introduced “prospects”, expanded in [196] as having

their expected value being rescaled by functions π(p) and v(x). These two functions reflect

a subjective appreciation and subjective value to the outcomes. Guided by psychology,

prospect theory considers phenomena such as loss aversion, where the subjective pain of a

loss is greater than the pleasure of a corresponding gain in value. In the [196] expansion, the

authors also considered cumulative decision weights as well as prospects with any possible

number of outcomes.

Prospect theory allows us to analyze and predict decision-making under risk. The nature

of the information at our disposal can influence the actions of users, and the lack of informa-

tion about uncertainty can be misleading. In prior work, Joslyn and LeClerc [99] argued that

despite the fact that it is often difficult for non-experts to make use of uncertainty estimates

in the decision-making process, the presence of specific numerical uncertainty estimates lead

to more optimal decisions that point estimates. In [100], Joslyn and LeClerc demonstrated

that when students were given the scenario of making daily decisions to salt roads during

winter months, their decisions were closer to the optimum than participants when given the

probability of freezing in addition to a single-value forecast. It should be noted however that

the authors also found that the decisions made were not necessarily rational; all participants

tended to be more risk averse in comparison to an optimal strategy.

With the benefit of information on uncertainty in mind, Kay et al. [109] proposed a

space-efficient visualisation for arrival times in mobile transit apps called a quantile dotplot.

This tactic discretises a probability distribution, which they find is easier to reason about,

by drawing randomly from the inverse cumulative density function (CDF). The result is less

noisy than discretising the density by taking random draws. In an experiment comparing dif-

ferent types of visualisations, they demonstrated that less granular discrete plots performed

better than finer-grained discrete plots, which in turn performed better than a continuous

density plot. An earlier study by Kay et al. also demonstrated in an earlier work that

individuals trust measurements more when they are also provided with information about

uncertainty [110]. Giving a point estimate can give the impression of being more precise

than it actually is.

Further investigations into the methods and limitations of uncertainty visualization in-
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as gas stations. Drivers build expectations about available 
power resources and, through often unforeseeable changes 
in conditions, will encounter situations in which these 
expectations are disappointed [3, 16]. Being surprised by 
what may come as a sudden lack of available range can 
cause anxiety and stress, and can lead to potentially 
hazardous situations. This concern stemming from limited 
range is often referred to as range anxiety, “an anxiety or 
fear that one may not reach a target before the battery is 
empty, which can occur while driving or prior to driving as 
the user worries about later planned trips [9, p. 202].” 

We have thus focused on the range display in electric 
vehicles, with the guiding question for our study being: 
How do expectations about available energy resources 
affect drivers’ attitudes towards the vehicle, the driving 
experience—with an emphasis on range anxiety—and 
driving behavior? 

We focused on the format of the range display in an electric 
car, in particular, for three reasons: First, the range display 
is a central instrument in electric vehicles. While rarely 
more than a gimmick in standard combustion engine 
vehicles, the range display is a central instrument for 
drivers of electric vehicles and it influences driving 
experience to a large degree [1, 20]. This focus is reflected 
in the public discourse that has shifted from emphasizing 
efficiency and miles per gallon typical for internal 
combustion engine vehicles to range in miles when 

referring to EVs. Perceptions of range even influence EV 
purchasing decisions [1]. Second, drivers of EVs and 
especially novice EV drivers are likely to rely more on the 
range display than drivers of combustion engine vehicles 
[20]. Drivers of standard cars have a sense about the best 
and worst case of fuel consumption and have developed a 
feel for the available range based on the indicated fuel 
level. As mileage is not a measure typically discussed with 
EVs it is much harder to translate a 30% battery charge into 
an available range. Third, EVs are a suitable test case 
because over-reliance on the information display can have 
severe consequences for the consumer of that information. 
Misjudging the battery life of a laptop might prevent one 
from sending an important email, but misjudging the 
battery life of a car might leave a driver stranded on a busy 
highway or remote mountain road.  

BACKGROUND AND APPROACH 

Trust and Range Displays 
How a device, process, or system displays information has 
consequences for attitudes that users and operators develop 
towards that system. Situations in which expectations are 
set up based on a high level of presumed precision and 
authority, which are subsequently not met, can affect trust 
not only towards the information displayed, but also 
towards the system as a whole [10]. 

The main challenge with current range displays is that they 

Figure 1. The four study conditions. Each panel shows the dashboard as participants saw it when entering the vehicle. Remaining 
range was displayed as either highly precise values (top row) or a diffuse color band that varied in width directly with remaining 

range (bottom row). 
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Figure 2.13: The instruments of investigation by Jung et al. [101]

clude [75], [91], [101], [51], [79], [92], and [19]. Greis et al. [75] distributed an online question-

naire where user preferences towards visual representations are elicited, and an experiment

involving a turn-based farming game, where a weather forcast is given for the next three

days using these visual representations. After the experiment, the players’ decisions were

compared, and participants viewing a probability density function made the most optimal

decisions. This representation also received the most selections in terms of preference.

An experiment by Jung et al. [101] investigated the role of precision in reflecting the

state of the current charge of an electric vehicle. The authors asked participants to drive in

a car in which the instruments were covered with a tablet showing gauges designed by the

experimenters to present different levels of information ambiguity through the fuzziness of

the colour band indicating the remaining range during the experiment in either a condition

of high or low initial charge. Qualitatively, the authors measured participants’ driving ex-

perience and trust towards the vehicle, as well as the quantitative efficiency of their driving.

They found that although the less ambiguous display led users to perceive higher informa-

tion accuracy, there was evidence that there was lower range anxiety and more trust towards

vehicles with more ambiguous displays.

The limitations of including uncertainty in visualizations must also be noted. Greis et al.

[75] notes that the usual method of conveying quantitative information through probabili-

ties can lead even well-educated adults toward difficulty in problem-solving. Alternatively,

qualitative information, or even the framing of the uncertainty (negative vs. positive) can

be misleading or bias decision-making. Hullman [91] goes further, identifying problems that
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come with evaluating different representations. The complexity of the psychology of uncer-

tainty leads to noise and bias in data collection without enough care. The work by Hullman

[91] gives suggestions for mitigation.

Within other realms of decision making, Kelly and Azzopardi [112] examined the be-

havioural effects of varying the number of results per page, and also measured users’ experi-

ences using a modified Search Self-Efficacy scale. In terms of interaction, the results showed

that those exposed to fewer search results per page viewed more search result pages, but

viewed significantly fewer documents than those exposed to more results per page. There

were no significant differences between users’ perceptions of difficulty or success, but those

in the condition with three results per page reported their tasks as less difficult, and felt

they were more successful. This is in concordance with the results from Oulasvirta et al.

[150] which investigated the paradox of choice.

In a paper by Yilmaz et al. [219], the authors posited that the traditional relevance

judgements used in information retrieval evaluation do not fully capture the utility that a

document has to a real user. The authors argue, rather, that extracting this utility may take

a great deal of effort on the part of a user, whereas judges of relevance for collection-based

evaluation is not only trained to perform the judgement, but is also more patient in carrying

out this evaluation. Consequently, when users cannot see the immediate relevance of the

document, or that it requires too much effort to evaluate, these users often give up to move

to another document. In some sense, this could potentially constitute missed information.

The authors proposed a two-stage model of user behaviour in this respect: first, users perform

a quick judgement to determine if there’s any value present and how much time and effort

it takes to make use of it. Secondly, users who expect the get use out of the document will

then commit that effort to do so.

Also of interest is switching behaviour, which can occur due to a number of reasons

including dissatisfaction with search results, the need for broader coverage, or for verification.

We can view switching behaviour as related to stopping behaviour, but rather than being the

result of satisfaction, it is the result of dissatisfaction. Guo et al. [80] collected users’ reasons

for switching in situ with a browser extension called SwitchWatch. On occasions when users

switch between one of Google, Yahoo!, or Bing, the add-on presents a questionnaire that

asks whether users are interested in finding the same information on both search engines,

and their reason for the switch. Dissatisfaction constituted the majority of the switching

occasions (57%), whether due to expecting better results, frustration, or simply not being

satisfied with the results in general. Next most common was for additional coverage and

verification (26%), and search engine preferences (12%).

However, we can imagine a situation in which the primary cost is time, rather than effort.
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We can see this in question-and-answer scenarios. Aperjis et al. [5] performed an analysis on

postings on Yahoo! Answers and found that users are willing to wait a longer period of time

after initially receiving a few answers to their question. In estimating the probability that a

user closes his or her question given the number of answers and time between answers, the

probability of closing the question increases with these variables. There is a tradeoff at play:

the user wishes to get a high-quality answer, but does not want to wait too long. Using the

data, they estimate the parameters of a concave utility function.

An economic model is not an end in and of itself. It should be informative and predictive.

In the case of information retrieval, what we aim for here is insight into user behaviour;

in our case to modify it towards higher value usage. One option towards modification is

nudging, which I took as the primary mechanism to be employed in Chapter 4 and now

discuss below.

2.3.1 Nudging

With an interactive system such as a search engine, we can adapt the system’s behaviour

in response to a user’s behaviour. A system can therefore present information or change

its interface in response to a user’s actions or inferred goals. A popular example of this

principle in production software was seen in Microsoft Office, which has experimented with

adaptive menus to cater to different levels of user expertise [140], and its Office Assistant

– character-based intelligent agent that offers tips and help based on a user’s background,

actions, and queries [87].

The Lumière Project [88] served as the basis for Microsoft’s Office Assistant. Among

its contributions, it applied Bayesian networks to construct user profiles of behaviour and

expertise, and reasoned about a user’s goals and needs based on their actions within the

system. Goals here, are target tasks or subtasks that form the basis of a user’s attention.

In contrast, needs are the information or steps that are required to achieve the user’s goals.

Describing Lumière’s integration into Microsoft Excel, the authors demonstrated the system’s

ability to reason temporally about a user’s actions, and goals, and likelihood that the user

requires assistance, and makes recommendations to help in performing actions in situ and in

more broadly topics which would assist for longer-term needs and goals. Although character-

based assistive agents have fallen out of favour, the Bayesian User Model formulation and

its use in reasoning and decision making about user needs is useful for decision theory and

preference elicitation [176, 223].

We have also seen active assistance at work in studies on the benefits of ambient informa-

tion interfaces and augmented reality. In one such study [104], the authors present a system
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under the assumption that it is better to provide just enough information in the right way

to facilitate good choices than it is to simply provide more information. An activity that is

commonly subject to information overload is that of shopping at the supermarket in aisles

of similar products. The authors consider the information visualisation and design aspects

of representing multiple dimensions of products in a way that is easy to grasp at a glance,

enabling quick comparisons and easy inference [193]. As an example, they present a design

for an in-store trolley interface that visualises a shopper’s current progress towards their

goal of, for instance, buying healthier foods with lower fat or buying more locally-grown pro-

duce. The trolley here is made to project a running overall score onto its handle to signify

the shopper’s adherence to their goal. In a user study, they asked 18 participants to shop

with either an ordinary shopping cart or with the same cart with a clip-on apparatus that

lights up a series of LEDs that indicates food mileage – how “local” the item was, as well

as whether the item was organic or conventially grown. They found that when using the

augmented shopping cart, 72% of the products selected had lower mean food mileage than

those selected by participants using the ordinary shopping cart. The authors make the case

for salience rather than recommendation in order to not disrupt a shopper’s experience.

In [157], the authors characterise interaction as a collection of input methods and system

responses that form an interactive prospect, subject to loss aversion. Interactions in the

service of a task under a goal are assigned some utility by the user, which is based on psy-

chological perception. Following this, one can assume that one interaction will be preferred

to another if it has higher utility. The system’s response to a user’s action making up the

interaction can be considered a multi-dimensional consumption bundle, where dimensions

might include the visual feedback of a character being typed on screen, an audible “click”

sound, and a vibration being produced. Loss aversion comes in to play as an extension of

prospect theory, however, whereas economic prospects such as monetary investments are

easy to manipulate on the experimenter side and reason about on the subject side, interac-

tions as prospects are more difficult to handle. The costs and benefits of interactions are

multifaceted, and may involve dimensions such as time, physical effort, and cognitive over-

head. This paper analyses text selection methods as prospects, comparing a letter-by-letter

technique, and a word-by-word technique where the selection is snapped to word boundaries.

Subjects’ preferences were observed and given an option to disable snapping behaviour, where

the mechanism results in a loss of character progress. The authors found that there was an

asymmetry between the subjective losses and gains in the interaction, with losses being more

pronounced than the gains.

We posit that this economic interaction framework can be applied to search systems,

where a user’s needs and goals are information based, but must also account for interaction

28



efficiency. We may apply nudging as a technique to encourage mental model development

based on the state of the system and a user’s goals in order to maximise the efficacy and

increase the overall perceived utility of the system. Chapter 4 was designed under this

assumption.

2.4 Patterns of Use in Interactive Information Systems

In evaluating search systems, researchers have a variety of tools and techniques for answering

their research questions. Log analysis allows us to study click interaction behaviour. Quali-

tative techniques let us know users’ subjective opinions and perceptions of a system. In our

case, we are interested in creating a correspondence between a user’s interaction patterns

and what they expect from their interactions, that is, an idea of their mental models.

Buscher et al. [37] used eye-tracking techniques to determine how people’s perceptions

of ad quality affect their perceptions of search result quality. In their study, they were sure

to cache the results for consistency between queries and gave different classes of tasks to

participants (i.e., informational, navigational, transactional). In order to generate bad ads,

the authors used a non-descriptive subset of queries. This still allowed for some keywords to

be highlighted. They measured areas of interest, fixation impact, clicks, and time on result

pages, and found that high quality ads led to more attention paid to ads and comparatively

less attention pair to organic search results.

In the realm of online advertising, it is imperative to have good estimates of an ad’s click-

through rate (CTR). Wang et al. [204] proposed a formulation to smoothen the estimates

of CTR under the assumption that the behaviour on similar pages will itself be similar;

that is, more similar than it would be on another random page. Estimating CTR is often

troublesome for rare events, because of data sparsity. Using pre-existing subject hierarchies

or automatic cluster discovery, the researchers enrich rare events with information from other

“close” events to make reasonable inferences about behaviour.

In experimental settings, researchers take advantage of the control that performing studies

in a laboratory allows. Käki and Aula [103] made a few recommendations for maximizing

the validity of a study involving a new search interface. This serves to reduce the variability

in things like query formulation skills, query refinement style, and the thoroughness that one

exercises in reading and evaluating results. In particular, some tactics may include using

balanced task sets in which tasks are similar in topic and difficulty between conditions, but

also different in a relatively minor aspect, such as changing one query term to something

different yet equivalent for the purpose of evaluation. This is particularly useful in within-

subject experiments, where it is also recommended that counterbalancing is employed as a
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12.3.4 Saracevic: Stratified Interactive IR Model

The stratified interactive model (Saracevic 1996) of IR was based on an acquisition-
cognition-application (A–C–A) type model of interaction. The model borrowed 
heavily (conceptually) from human computer interaction (HCI). The model is based
on the assumption that users interact with IR systems in order to use information; that 
is, apply the information acquired through a cognitive process. Including “information
use” as a part of the model was – like interaction – somewhat implied in previous 
models, but had not yet been explicitly positioned into the information seeking  
behavior models, perhaps because it can be safely assumed that a user would not 
take the time to specifically seek out information unless they were going to use it 
for something. Saracevic however, suggested that understanding the reason why a 
user sought out information was an important part of discerning the influencing 
factors on the interaction between the user, the IR system, and the information 
objects through the system.

In his stratified model, Saracevic (1996) proposed three levels, or strata, of IR 
interaction (Fig. 12.10):

1. A surface level of interaction – a sequence of events (interactions) between the 
user and the interface  of the IR system.

Fig. 12.9 Ingwersen’s Cognitive Model of IR interaction (1992; 1996)
Figure 2.14: Ingwersen’s Cognitive Model of IR interaction [118].

technique to alleviate learning effects. The authors also outline metrics that are meant to

be useful for interactive IR, such as “search speed” (answers per minute), “qualified search

speed” (answer per minute given relevance), interactive precision and recall, and immediate

accuracy. It should be noted that some of these recommendations are proposed in the context

of simple fact-finding experiments where each task has one correct answer.

Knight and Spink [118] outlined a comprehensive survey of models of information be-

haviour, applicable to the Web. Of particular interest is a set of interactive information

seeking retrieval models, which include Marchionini’s Information Seeking in Electronic En-

vironments Model, Bates’s Berrypicking Model, and Ingwersen’s Cognitive IR Interaction

Model. For our purposes, we are interested in a cognitive model of information interaction,

where we consider not only the interaction process between the user and the system, but also

between the user and the documents, and with other information objects. With Ingwersen’s

model, we can not only account for the cognitive dimensions of system interaction, but also

information interaction.

Chen and Macredie [44] considered the human factors involved in interaction patterns

with a survey of prior research on behaviour and three factors: gender differences, prior

knowledge, and cognitive styles. A comprehensive study design should be made with these

factors in mind, and analyses done to account for these differences. It should be noted

that not all findings are conclusive, but prior work shows differences in navigation patterns,
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“dpreview.com”, a popular digital photography review site, before 
proceeding to issue a new query and then browse to the second 
domain, “amazon.com”, perhaps to purchase the item.  In this 
example, the Web page at S2 seems to be a particularly important 
interaction hub within “dpreview.com”.  Branching points such as 
these appear to be important to support the “building block” 
strategy evident in most of the searches that navigators conducted.  
It is worth noting that we would expect most users to exhibit 
navigator-style behaviors when they attempt a well-defined fact-
finding task.  However, navigators represent an extreme case of 
users since almost all of their search interactions are this way, 
regardless of the query and even though there were no notable 
differences in the types of queries submitted by navigators 
compared to all other users. 

Explorers (high variance): These users have variable interaction 
patterns in the trails they follow.  That is many of the search trails 
for each of these users looked different when they were reduced to 
the representation used to compute LD.  Further analysis revealed 
three additional attributes of explorers’ search trails: (i) they tended 
to branch frequently, (ii) they submitted many queries during a 
search session, and (iii) they visit many new domains.  We name 
these extremely inconsistent users “explorers” since they appear to 
utilize multiple strategies concurrently when searching for 
information, and do not follow a direct path from problem 
specification to resolution.  In Figure 4 we show an example of a 
search trail that is typical of an explorer. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Typical search trail followed by an “explorer”. 

As can be seen in the figure, the explorer visits multiple domains 
and submits many queries during the course of their search.  In this 
case, this includes a brief visit to the Web site of the Photo 
Marketing Association International (pmai.org).  This behavior 
should be contrasted with that of the navigator in Figure 3.  Both 
trails start with the same query and end at the same domain (i.e., 
“amazon.com”), but their interaction in-between is much different.  
Explorers jumped between different domains frequently, and seem 
to be targeting multiple aspects of the search task simultaneously.   
Once again, it is worth noting that we would expect these behaviors 
to be exhibited by all users depending on the query.  For example, 
in complex sensemaking tasks an exploration strategy such as 

shown in Figure 4 may be appropriate.  However, explorers 
represent an extreme case since almost all of their search 
interactions are this way, regardless of the queries they submit and 
even though there were no notable differences in the distribution of 
queries issued by explorers compared to all other users.  Explorers 
may be more likely to be distracted by interesting links and 
serendipitous information encounters, perhaps even in the form of 
contextual advertising.  There may be more variance in their search 
trails simply because the trails they follow are significantly more 
complex than those followed by the general user population. 

Following the application of a logarithmic transform to make the 
data normally distributed, we devised thresholds that corresponded 
to the 95% confidence interval to give us upper and lower bounds 
on interaction variance (translated back into the original LD) of 14 
and 75 respectively.  These provide an approximation of whether 
the interaction variance of a participant is significantly different (at 

 = .05) from the mean average variance of all users.  According to 
this classification, approximately 17% of participants had an 
interaction variance of 14 or less (meaning they were classified as 
“navigators”), and approximately 3% had an interaction variance of 
75 or above (meaning they were classified as “explorers”).  The 
remaining 80% of participants lay somewhere between navigators 
and explorers (although the positive skew suggests that most were 
similar to navigators), and further classification of them may be 
possible with more detailed analysis planned for future work. 
Navigators and explorers represent two extremes of interaction 
variance.  However, improving our understanding of the behavior at 
these extremes can teach us to build more effective search solutions 
for them that are transferable to less extreme users and situations. 

4.2.2 Differences in Trail Features 
Until now we have focused solely on patterns of interaction and 
ignored additional features of the search trails that may be useful in 
characterizing interaction variance.  To facilitate more complete 
analysis we extracted the following six observable features for the 
each search trail: 
 Time: Amount of time spent (in seconds) on a trail. 
 Number of queries: The number of queries that were submitted 

during a trail. 
 Number of steps: The number of pages viewed in a trail, 

including all searches and revisits. 
 Number of revisits: The number of revisits to a page viewed 

earlier in the trail.  Revisits to pages viewed previously in 
other trails are disregarded.  

 Number of branches: The number of times a subject revisited 
a previous page on the trail and then proceeds with forward 
motion to view another page; this is subtly different from the 
number of revisits.  To qualify as a “branch”, the user must 
navigate to a page following the back operation and prior to 
the next back operation (if any).  For example, the browser 
trail illustrated by the Web behavior graph in Figure 1 has four 
branches yet five rows in the graph.  Row 4 does not constitute 
a branch since there is no forward motion. 

 Average branch length: The average number of steps in each 
branch in the trail. 

These features can give insight into aspects of search behavior not 
apparent from the interaction patterns used in the previous section.  
In Table 1 we present summary statistics for the trail features, 
averaged across all users and all queries.  The values shown can be 
useful for investigating differences between these two groupings. 
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Figure 2.15: Example of a search trail extracted by White and Drucker [211].

attitudes and perceptions, adjustment to information structure, and querying behaviour,

depending on these factors.

To better understand the behavioural variability seen in Web search interaction, White

and Drucker [211] analyzed log data collected over a period of five months. The authors

extracted search trails, which they were able to treat as a string and compute differences

in features such as time, number of queries, number of steps, number of revisits, number of

branches, and average branch length. Through factor analysis, they found that forward and

backward motion accounted for most of the variance between users, followed by branchiness

and time. The authors also noticed differences in query behaviours, with particular terms

being associated with the type of query—whether navigational or informational.

In another set of studies, researchers use these aforementioned techniques to explore inten-

tionality in behaviour and cognitive search strategies. Work by Marchionini [131] introduced

a framework for considering search strategies, which he defined as general approaches to

information seeking problems, such as using a particular search engine for particular kinds

of information. He categorised by their level of goal-directedness, planning, and formal-

ity, which led to two categories: analytical strategies and browsing strategies. Analytical

strategies are the more systematic, goal-driven and planned of the two, whereas browsing

strategies are more extemporaneous, informal, and data-driven. Marchionini [131] was clear

to discuss strategies in relation to “moves” and “tactics”, which are seen at different levels of

abstraction. Moves are individual actions, such as clicking a link or entering a query. Tactics
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are groups of behaviours, such as issuing a query and performing subsequent refinements.

Tactics are at the basis of a strategy, which is considered at the level of problem-solving for

particular needs, and “patterns”, at the highest level, are interactions used for all information

seeking tasks, such as a particular search style.

Using this conceptualisation as a basis, a study by Thatcher [189] explored the manners

in which different tactics constituted search strategies through a bottom-up approach. With

a combination of interviews, giving search tasks to participants, gathering log data, and col-

lecting retrospective verbal protocols with the help of screen recording, the author identified

seventy-eight tactics. With this set of tactics, the author used participants’ intentions at key

decision-making points to group tactics together into strategies. He found twelve distinct

strategies, and that participants often changed their strategy multiple times during a sin-

gle task. This might occur if one strategy was unsuccessful or they wished to use different

strategies in separate browser windows.

An earlier, yet related study by Stelmaszewska [182] aimed to better understand the

different information interaction patterns that emerge as users developed search strategies

for using digital libraries. These authors used a recorded observational study with a think

aloud protocol among seven participants, who were instructed to use several digital libraries

to achieve their own personal objectives. In congruence with Marchionini [131], the authors

saw two distinct types of strategies: searching and browsing. The authors argued that the

choice of strategy was related to the user’s prior knowledge of the domain and familiarity

with the collection. Much of the focus of this study is on result examination, which seems to

be the pivot for the next search strategy to be applied. Patterns emerged for which strategies

would be applied for different scenarios: for no matches (where users abandon the library,

reformulate their query, or change their preference settings), for too many results (where users

reformulate, change preferences, and change query terms in that order), and for a manageable

number of results (where users scanned results and examine documents in detail). When

faced with an “OK” number of results, users generally use this opportunity to determine

relevance of the results; their assessment determines whether to stop or continue. It should

be noted that result evaluation is only one step of the process; in work by Sutcliffe [184],

the author identified four main activities: problem identification, need articulation, query

formulation, and results evaluation. Sutcliffe also developed a comprehensive predictive

model of information retrieval, considering these four activities and synthesizing cognitive

theories from IR and experimental results of information seeking [184].
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2.5 Option Pricing

In capital investment, real options represent an opportunity to undertake an initiative. We

can view it as a staged investment or decision. Traditionally, one may use options valuation

in the service of operational production flexibility in one of four central ways [22]: reducing

set-up time at installed equipment, multipurpose stations, parallel assembly lines, and/or a

flexible work force. We can reframe these approaches for information retrieval, such that

reducing set-up time can be seen as the cost of switching search engines or rankings, multi-

purpose stations (or a flexible manufacturing system) can be seen as IR system integration,

parallel stations could be framed as parallel searches, and a flexible work force can be viewed

in terms of ranking and matching algorithms. Seen this way, real options seem to have par-

ticular applicability to the optimisation and time-quality cost tradeoffs that we see in slow

search, both from a user’s perspective and for an IR system implementation.

To see this more clearly, let us consider the type of system implemented in the study

described in Chapter 3 – a Chrome extension that added a sidebar and a “Work Harder”

button to Google Search. This particular system incorporated—in essence—two search en-

gines with a low cost of switching between the two, tight integration between the two search

engines, ranking running in parallel, and two different ranking algorithms. We can consider

the costs and value that these capabilities present to the user as well as for the provider. For

instance, will more sophisticated matching or ranking algorithms be worthwhile for a user

performing the current task? Providing the sophisticated algorithm will come at a cost for

the provider as well. Considering the option valuation will be useful in making the decision

of whether or not to employ the more advanced ranking algorithm.

For companies performing options valuation, their main source of uncertainty is the de-

mand of the goods and/or services they produce. For the user of a search engine, their

source of uncertainty may be whether a feature will be useful for their task. The designer

of a system has the responsibility to convey the value of the feature in a way that is easy

to understand and supports their decision-making. When performing a search, a user has

a particular mental model that guides their expectations of their use of a feature. “What

kinds of results can I expect from the sidebar when I click the ‘Work Harder’ button on this

search? Is this slow search working, or should I stop and abandon it?” Very simply, we can

distill this further to, “How likely am I to get better results using this feature, and how much

better are these results?” The uncertainty here maps cleanly to the typical characterisation

of relevance.

To influence a user’s conception of the usefulness of the feature, we may convey that

using the “Work Harder” button will be helpful. Furthermore, when using it, we may try
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to convey the improvement in quality in a tangible way, or one that allows easy comparison

to not using the feature. A hypothetical extension to the Work Harder button could say

that “most users got better results using the Work Harder button for this query”, or even

more simply that most users used the button for the query. The magnitude of the win is

more difficult to convey, but one method that is easily measurable is the odds of success

using the button versus not using the button. Other methods could try to directly convey

the improvement in document matching and ranking with visualisation techniques, or the

savings in time from using the feature.

Real options valuation provides a framework to think about slow search in a quantifiable

way that considers uncertainty, value, and cost. More sophisticated options valuation models

can help both users and search engine providers make informed decisions about using or

employing features in their interfaces. I use real options in Chapter 4 as a way to quantify

the benefits of system-level interventions to explore flexible time and risk tradeoffs.

2.6 Search-as-Learning

Search-as-learning comprises as substantial aspect of Chapter 5, which outlines the evalu-

ation of a system that assists in vocabulary learning using a conversational large language

model (LLM). This chapter includes a review of the literature in Section 5.2.1.

We now turn our attention toward a set of studies that encapsulate these principles and

themes in Chapters 3 to 5.
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CHAPTER 3

Exploring Time-Quality Tradeoffs through

Slow Search

3.1 Introduction

Current search systems are heavily optimized for speed: commercial search engines often

conspicuously display the fraction of a second that it takes to return the list of results to a

query. Traditional systems take numerous shortcuts for efficiency, such as making simplifying

linguistic assumptions for query processing, document matching and ranking [188, 135]. As

a result, much semantic richness is discarded in the process of retrieval, and much of the

potential in terms of relevance quality may not be realized. The implicit time budget to which

system developers must adhere also limits the scope and effectiveness of creative and useful

extensions that may be considered for search processing and interfaces, such as enhanced

personalization or novel ways of diversifying or summarizing results [117].

Slow search – the notion that a system may be able to “take its time” to process results for

increased effectiveness – has been proposed, but only at the level of advancing the concept and

exploring user attitudes to waiting for queries [188, 187, 58]. In this paper, we present a study

that investigates the effect that an actual slow search system that supports asynchronous

(background) query processing has on user behavior.

Search that focuses on speed, sometimes at the expense of quality, may be underserving

users with particular needs or devices. For instance, the growth of mobile phone usage is

outpacing that of desktop PCs—especially in developing countries—but there is a capability

gap not only between phones and PCs, but between different phones as well. This may lead

to lower levels of information seeking and engagement [146]. This study would therefore be

useful to search engine implementers and interface designers targeting developing regions.

Exploiting intrinsic diversity in search queries aids in exploratory search—useful in education,

for students learning about new topics [213]. Demonstrating the feasibility of this new slow

search paradigm would also encourage implementers of conventional search engines to further
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explore the importance of the time–quality tradeoff, potentially leading to more systems that

can automatically adjust their performance along a scale that effectively trades off urgency

and quality.

The contributions we present in this paper include an extensive analysis of a search system

that embodies characteristics of slow search. We are primarily interested in the practical

value of trading speed for quality. To that end, we developed a novel system which improves

the topic relevance of a query asynchronously over time while the user continues to work.

This allows us to investigate the types of tasks for which users are willing to tolerate a delay

in processing for more relevant search results. Using log data, we show how users behave

when given asynchronous slow search capabilities and compare it to a baseline without these

features. We also trained a logistic regression classifier to predict task success depending on

the capabilities given to the user and interaction features. We also provided an anonymized

data set1 to allow for analysis by other researchers.

As the primary purpose of this work is concerned with understanding patterns of interac-

tion behavior when users have the ability to run a slow search in the background, we consider

the following research questions:

RQ1 : What are the types of queries for which users initially report they would have a

willingness to wait?

RQ2 : How much time will users typically wait for results from a slow query?

RQ3 : In terms of search activity, how do users spend their time while waiting for a slow

query to finish?

RQ4 : How does typical user behavior change when provided with the ability to run a

slow query?

RQ5 : Do users perform search tasks more effectively with slow search?

We address RQ1 in Section 3.3.2, and RQ2–RQ5 in Section 3.4.

3.2 Related Work

The concept of slow search was introduced to the literature by Dörk et al. [58] and Teevan

et al. [188]. With inspiration from other “slow” movements, including slow food, slow travel,

and slow technology, the authors posit the changes in how individuals and groups approach

the process of search if a system emphasized slowness over speed. The authors propose

that users will be encouraged to be more mindful and reflective, allowed to revisit previous

journeys in their search tasks, and invited to explore the inner workings of a system as well

1http://umich.edu/~ryb/slow
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as the relationships between items in search results. Poirier and Robinson [155] described

a model of how slow principles may be applicable to information behavior. These initial

papers provide insight in how proposed slow systems might be built, or survey-based results

on how users might be willing to use such systems.

Previous work has shown that users would be willing to engage in slow search for certain

kinds of queries and tasks. A study by Teevan et al. [188] based on user surveys and empirical

analysis of search query logs found that, while increased load times for search results led to

increased abandonment for typical queries, for tasks in which result quality was poor, users

were willing to wait for better results or try alternative methods of finding information.

However, none of this previous work built or studied a working slow search system with real

users: to our knowledge, our paper represents the first study of how users interact with an

actual Web search scenario providing slow search features.

Asynchronous search has been studied previously, but primarily in the context of band-

width limitations and without recognition to the notion of improving search results [43]. Prior

work has examined the relationship between time delays and user behavior [33, 188, 136], but

these were in the context of conventional search systems, where users have the expectation

of rapid responses, and with no benefit to waiting.

Slow search also has parallels with question answering systems. Aperjis et al. [5] found

that users wait longer to get an additional answer after receiving a small number of responses

on Yahoo! Answers. By analogy, a user performing a search may be willing to repeatedly

check in on the results of a slow search as it builds a final result set, and decide whether to

stop the search or continue waiting. However, the authors do not show how the number of

answers for a question relate to their quality or the times in which they arrive. Liu et al. [126]

demonstrated in a field experiment that the frequency, quality and time of solutions to tasks

on the crowdsourcing site Taskcn reflect strategic decisions depending on the reward level,

the existence of a reserve (i.e., a prior high-quality solution), and expertise of crowdworkers.

The authors however do not investigate the waiting behavior of the requester in light of the

solutions. In other words, for slow search, we are interested in a mix of the two—examining

when a user believes the information received is “good enough” to stop waiting for additional

information.

Büttcher et al. [39] compared the effectiveness of different systems while accounting for

the CPU time involved in query processing. Generally, the systems that used more CPU

time showed better results in effectiveness. In the efficiency task, comparing each system’s

best run to its fastest run, the differences in ms/query can be quite appreciable. This shows

that there is often a benefit to extra processing time, and a system that takes advantage of

this time when appropriate could satisfy users better, provided they are willing to wait.
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There is also increasing recognition of time as an important factor in the evaluation of

search systems. Clarke and Smucker [46] proposed a metric of time-based gain to measure

an information retrieval system’s effectiveness to reflect the value that a user gains over time

in interacting with the system. For slow search, this metric is applicable to the value gained

from waiting as the system works to provide better results. A recent user study by Crescenzi

et al. looked at a design somewhat contrary to ours, namely, the effect on search behavior

when users were given less time to search [53].

To build a result set, we explore not only relevance, but also comprehensiveness of subtopic

coverage in the form of intrinsic diversity. Radlinski et al. [158] define intrinsic diversity

(as opposed to extrinsic diversity in the form of ambiguity about an information need)

as being the various aspects that are by their nature part of the information need. As

an example, given a query of “jaguar”, the extrinsic diversity of the information need lies

in disambiguating whether it is in reference to the automobile maker, the animal, or the

codename of a version of the Mac OS X operating system. In contrast, the intrinsic diversity

of the information need lies in its subtopics, provided it is not ambiguous. That is, if the user

is indeed searching for the animal, then relevant subtopics may include the jaguar’s habitat,

its diet, and its physical characteristics. Radlinski et al. [158] outline five different scenarios

where intrinsic diversity is required. These include cases where there is no single answer,

where the user would like different viewpoints on an issue (political; product reviews), where

the user would like a selection of options to choose from, when the user would like an overview

of a topic, and where a task requires gathering disparate evidence to build confidence in an

answer’s correctness. There has been much work done on query ambiguity and extrinsic

diversity; intrinsic diversity has received less treatment. Raman et al. [161] demonstrated

that it is possible to identify queries that signal the beginning of intrinsically diverse tasks

and re-rank results by their various aspects. Azari et al. [8] and Crabtree et al. [52] prior

to this applied an approach of exploiting different and diverse aspects and reformulations of

queries for the purpose of query expansion. These query expansion approaches increase the

set diversity of the candidates of the search results, but do not organize the results by aspect.

The portfolio theory, applied by Wang and Zhu [202] to balance relevance and risk for ranked

lists, has been used to optimize for diversity in search results [160]. Rafiei et al. [160] used

correlations between pages based on heuristics such as entity mentions, numbers, site names,

and query extensions to measure diversity. It may be possible to combine these approaches to

increase or reduce overall diversity as well as diversity within subsets or subtopics of results.

It should be noted that diversity has long been a topic of research in recommender systems

[199, 73], where there are many different perspectives of diversity, including a relationship

to novelty. All of these approaches ignore the dynamics of time: how the intrinsic diversity
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of a set of results changes with time.

Compared to the existing literature, this work presents a working system that embodies

the principles of slow search and directly improves the relevance of search results, while inves-

tigating the relationship between types of tasks, user impatience, and quality improvement

over time.

3.3 Method

To measure user behavior characteristics, we designed an extension for the Chrome Web

browser that works in conjunction with Web search engines to capture the current query

and send it to a server for extended processing when the user clicks a “Work Harder” button

to the right of the main search editbox on the search engine page, as shown in Figure 3.1.

Doing this adds the query to a sidebar (a) on the search engine result page, which shows a

progress bar (b) as well as the top three results at any given time (c). We call this extended-

time background query a ‘slow’ query. The user may click on the “(more results)” link (d)

at the bottom of the sidebar to view the full list of re-ranked results, as they are improved

and updated asynchronously by potentially adding new documents to the list and re-ranking

them. This page also displays a progress bar, and may be left open while the user continues

to search on the main search page.

This ‘slow’ query processing occurs as a background process, during which users are free

to continue performing their own searching and query reformulations in the main interface

while the ‘slow’ query completes. In this study, we allow at most one slow query at a time,

which may be cancelled before its progress is complete and removed from the sidebar. The

extension also serves to log interaction through queries, clicks, and mouse movements.

3.3.1 Study Participants

Our study consisted of 44 participants (18 Male, 26 Female; mean age = 23.5 SD = 5.9),

recruited through the University of Michigan School of Information. Most were undergrad-

uates (n = 18) or holders of an undergraduate degree (n = 12). The majority reported

being very experienced with search engines: we asked about their familiarity on a scale from

one to five; the mean response was 4.6 (SD = 0.6). Additionally, 38 reported using search

engines more than once per day, while 5 reported using them more than once per week.

The remaining participant reported using them more than once per month. We also asked

participants to report their confidence in their abilities to find the information they need

while searching on a scale from one to five; the mean response was 4.36 (SD = 0.65).
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Figure 3.1: Interface with “Work Harder” button and sidebar (a). Colors added for illustra-
tion. Clicking the “Work Harder” button in the upper right adds the current query to the
queue (b). The top three results at any moment are presented below (c), and a full list of
re-ranked results is available by clicking on (d). These interface additions are always present.
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3.3.2 Background Survey

To better understand tasks for which people might be willing to wait for a better answer

(RQ1), we asked participants to provide a description of the last search task they performed

in which they failed in satisfying their information need. We report these tasks as well as

their anticipated willingness to wait for the perfect results below.

3.3.2.1 Prior tasks users reported as difficult

We first asked participants the following question:

Think back to the last time you had trouble finding information with a Web search

engine. What was the information that you were trying to find? Please be as specific as you

can, as best as you can remember.

We coded responses by topic, summarized in Table 3.1. As most participants were stu-

dents, the majority had issues finding information for classes or assignments, as seen in the

response from an ecology student who tried to find information for a course on birds: “Our

team was trying really hard to find the specific information needed to support our study.

For instance, we hope to find if the tree bark thickness affect the foraging preference of the

bird. Most of the study we found were of the bird but not related to our topic.”

The common trends for difficult education-related needs involve finding new and novel

information (e.g., finding articles on a topic that has not been seen before), finding reliable

scholarly articles on a topic, and expressing the problem in the right way for the search

engine to yield useful results (“It was difficult to search for because I wasn’t sure what I was

searching for.”).

For many other topics, the problem involved finding a specific item, such as a person,

product, or song. This was most common among the Career, Entertainment, and Shopping

topics. The main issue in these cases involved expressing the right criteria to find these

items. For instance, one subject tried to find a song by its lyrics, but the lyrics alone were

not specific enough. She knew that they were from a pop song from an indie artist, but could

not express this to the search engine. Instead, the results were dominated by a popular Jay-Z

song. Similarly, another subject tried to find a particular drawer slide, but was not able to

use the right search terms. Instead, he had to iteratively search related topics in order to

pick up more useful search terms.

For other topics, users had difficulty finding a specific item, such as a person, product,

or song, most commonly among the Career, Entertainment, and Shopping topics. The main
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issue in these cases involved expressing the right criteria to find these items. For instance,

one subject tried to find a particular drawer slide, but was not able to use the right search

terms. Instead, he had to iteratively search related topics in order to pick up more useful

search terms.

Topic Count

Education 16
Shopping 6

Entertainment 5
Health 5
Career 3

Technology/Troubleshooting 3
Food 2

Sports 2

Table 3.1: Topics of tasks reported as difficult.

We also categorized participants’ reported tasks according to the nature of information

they were seeking. Overall, 16/44 (36%) of difficult/unsatisfied needs involved searching for

specific items or facts that satisfied multiple attributes; 10/44 (22%) were questions seeking a

specific factual answer; 4/44 (9%) needs were for the latest version of information; 4/44 (9%)

involved searching for a person. The remaining needs involved more vaguely-defined needs,

more exploratory research needs, or procedural information on how to solve a problem. This

predominance of multi-attribute search needs, the nature of which we can find examined in

[117], motivated our design of tasks for slow search as described in Sec. 3.3.4.

3.3.2.2 User willingness to wait

As part of studying the time-quality tradeoffs that users might find acceptable in a search

engine (RQ2), we asked participants:

Given your experience, if a search system was able to provide the perfect results, how

long would you be willing to wait for the search engine to process your query while you did

other tasks and you were notified when it found these results?

Figure 3.2 shows users’ self-reported willingness to wait (the ‘impatience curve’) as a

function of waiting time. The y-axis shows the proportion of users, as estimated from survey

responses, who would be willing to wait at least t minutes for search results using the slow

search system.
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Figure 3.2: Users’ self-reported willingness to wait decays exponentially as a function of
waiting time.
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We are interested in what users self-report as acceptable, not only to calibrate our ex-

periment, but also to see if their actual behavior matches the expected behavior (which we

compare in Sec. 3.4.1). Users reported a willingness to wait 9.5 minutes on average (SD =

13.2). An exponential decay in acceptable waiting time is evident from our analysis: with

the survey response data, we fitted an exponential decay model w = exp(−at) to estimate

the empirical probability w that a typical user would be willing to wait at least t minutes.

The fitted exponential parameter was a = 0.11, meaning that for every additional minute

of waiting time, about 10% of remaining users were not willing to continue waiting. We

note that this rate of decay ‘impatience factor’ is in accord with that reported by Teevan et

al. [188] that asked a similar question about willingness to wait for perfect results.

3.3.3 Experiment Design

For the purpose of this study, we focused on investigating the effects of an improvement in

relevance for multi-attribute tasks. To that end, we implemented a server that communicates

with the Chrome extension to simulate an improvement in relevance over the course of five

minutes for each slow query submitted. For each task that a user may choose to tackle, we

manually selected five to ten high-quality documents and snippets that, collectively, allow

a participant to correctly solve the problem posed by the task. When the “Work Harder”

button is used, the server selects documents from the pool to insert into the ranking every

twenty seconds. Similarly, another process on the server periodically moves high-quality

documents closer to the top of the ranking over the course of the five minute period, until

these documents reach the top of the ranking.

We randomly assigned participants to one of three conditions. In the baseline condition

(n = 16), the interface resembles a conventional Web search engine, with no “Work Harder”

button or sidebar. In the “static gain” condition (n = 15), the interface adds a persistent

“Work Harder” button and sidebar to the conventional interface. Furthermore, the system

inserts highly-relevant documents in the middle of the ranking “below the fold” of the re-

ranked results page and the rank position of these documents stays the same over the course

of the five minutes. Finally, in the “dynamic gain” condition (n = 13), the interface is the

same as in the “static gain” condition, but the system inserts documents at the last position

of the re-ranked list and then continuously increases the position of documents at 20 second

intervals, over the five minute time window, until they finish at the top of the ranking. In

this study, we used a dynamic gain that was linear with respect to time. With this design,

we introduce the two new capabilities of an improved result list and a dynamic ranking. We

chose to contrast the “static gain” condition with the “dynamic gain” condition to determine
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whether users actually perceived the improved relevance as well as to study the effect of the

dynamic ranking.

3.3.4 Description of Search Tasks

Participants were presented with a list of four topics, with each topic having three tasks

within it. Each participant was required to select one task from two separate topics. We

allowed participants to choose tasks and topics of interest to them with the goal of increasing

their intrinsic motivation to complete each task.

We prepared the total set of twelve tasks such that each task was presented in the form

of a question to be answered, and each task called for the participant to find five items that

satisfy multiple attributes specified within the problem. We did this to control the cognitive

effort required for each task – users were expected to find a set of candidate answers and

verify that each of them satisfied all constraints in order to receive the full reward. For any

particular item that the user submitted in their answer, we considered it “correct” if and

only if it satisfied all of the required constraints. We believed that having a slow search

system which reduced this high expected effort would encourage use of that capability when

available.

Local Businesses (32 tasks completed)

Name five I.T. companies in Ann Arbor with at
least 50 employees.

Entertainment (28 tasks completed)

Name five video games in which Pharrell
Williams’s music has been featured.

Education (21 tasks completed)

Who are the five most influential professors in
the United States in the field of sociology?

Shopping (7 tasks completed)

What are five smartphones that are thinner than
a standard No. 2 pencil and usable on AT&T?

Table 3.2: Examples of search tasks and their topics.

In Table 3.2 we present examples of search tasks for each of the four topics, along with the

number of task completions by topic. Local Businesses had the most interest, with its tasks

being chosen 32 times in total. Conversely, Shopping received the least attention, which

users choosing these tasks only 7 times.
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3.3.5 Study Procedure

The user study took place in a laboratory setting at the University of Michigan School of

Information. Participants volunteered to attend one of eight study sessions, with each session

lasting a maximum of 90 minutes. Each participant was placed at a computer set up with

the Chrome extension, which in turn was randomly associated with one of the three study

conditions (Baseline, static gain, and dynamic gain). Participants completed two search

tasks, with each task lasting a maximum of thirty minutes.

To introduce participants to the capabilities of the system before they began the first

task, users were asked to perform an exploratory search task—in this case to explore the

topic ‘snow leopards’ —as a warmup for five to ten minutes.

As motivation to finish the task within the allotted thirty minutes, we compensated users

based on their performance in answering each question, which called for an answer that

addressed each attribute of the problem, as well as three relevant documents that they found

useful in solving the problem. This gave us a way of verifying whether participants found

the documents inserted into the ranking, and explicit relevance feedback of these documents.

An answer that perfectly met the criteria of the task led to a bonus of $2 with partial credit

being possible, and giving relevant documents led to a bonus of $1 per URL – this served as

motivation to give explicit relevance feedback.

3.3.6 Data Preparation

Missing Data. For each request made by the extension to log interaction data, the system

associated a session ID with a particular interaction event, with this session ID being linked

to the user’s ID, which is randomly generated when a user begins the study. After the

data collection was complete, there were 34 out of 1149 clicks without session IDs in our

log database, and hence, we were unable to associate these clicks with a task, user ID, or

condition. We therefore manually inspected the click data in an attempt to re-associate each

click with a session ID. We were able to re-associate all clicks but one due to ambiguity in

candidate tasks: 13 of 34 clicks were recoverable from session IDs included in page URLs,

and 20 of 34 clicks could be manually recovered based on analyzing clicks with session IDs

from closely associated contemporaneous queries. We outline our process below.

One set of clicks without session IDs originated on the slow search results page. In order

to show the correct user the correct page, we included a session ID and query ID in the URL

in the page, which was incidentally logged on each event. Therefore, we were able to pull

the session IDs directly out of the URLs. This enabled us to recover 13 of the 34 clicks.

The other set of sessionless clicks originated from the regular search results page. Of
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these, almost all of the remaining clicks seemed to originate from unambiguous tasks: that

is, only one user at a particular time was solving one of the candidate tasks at any given time.

Thus, to re-associate the clicks, we inspected the queries from which each click originated

(queries were logged with clicks, and all clicks had queries associated with them in the data)

and also the queries of contemporaneous clicks with session IDs. We were able to determine

the session that each click belonged to based on the subject of the query. For instance, if

a user searched for coffee shops, clicked on results which were logged without session IDs

and then searched for specific coffee shops at which point session IDs were logged, we were

reasonably confident that the two clicks belonged to the same session, as these sessions had

one user performing the task at once.

There was once click that we were unable to associate with a session ID unambiguously,

because at that moment, multiple users were working on the same task. We therefore do not

include that click in our results.

Relevance Judgements. As a part of completing the task, we asked users to provide

three relevant documents that helped in answering the task’s question. We made final

judgements on these documents in the process of calculating bonuses – if the document

indeed provides information relevant to answering the question correctly, then the document

was deemed relevant for the bonus. Otherwise, we considered the document not relevant.2

3.4 Experiment Results

In this section we conduct an analysis of user activity, addressing the remaining research

questions (RQ2–RQ5) and examining users’ behavior in more detail.

3.4.1 How Long Participants Waited For Results

Our second research question (RQ2) concerns the amount of time users typically wait for

results. In our background questionnaire described in Section 3.3.2.2, our participants ex-

pressed a mean willingness to wait 9.5 minutes for the perfect results for their difficult in-

formation needs. Our system imposes a maximum wait time of five minutes, which was not

explicitly communicated to our participants. Five minutes was selected in order to give users

more time to submit multiple slow queries within a single task session. 2/15 participants

in the static gain condition and 2/13 participants in the dynamic gain condition explicitly

2If the document only provides information that would result in answering the question incorrectly, as, for
example, only providing a Web page for a coffee shop outside of the location we ask, the page was considered
not relevant.
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Figure 3.3: The actions that users perform over the course of the two tasks by condition.
The black lines show the proportion of remaining participants in the session.

mentioned without prompting that the waiting time was too long when asked about their

impressions of using the system in post-task questionnaires.

Analyzing the behavioral data, we find that in both the dynamic gain and static gain

conditions, approximately twice as many participants used slow search in the second task

(n = 11) compared to the first task (n = 5). Table 3.3 presents expected wait times for

each condition and task, representing the time for which each slow query is processed until

either completion, or cancellation by a user. Users in the dynamic gain condition waited

an average of 227 seconds in both tasks 1 and 2. By comparison, for users in the static

gain condition, their wait times increased from an expected 136.1 seconds to 266.6 seconds:

participants cancelled more queries in the first task than in the dynamic gain condition, but

by the second task, these users cancelled fewer than in the dynamic gain condition, which

likely contributed to the increase in mean slow processing time observed for the static gain

condition. This difference was likely due to the continuous improvements in the dynamic gain

condition making the utility of the sidebar more apparent sooner to these users in comparison
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Condition Task Query Processing SD Users
Time (sec)

dynamic gain 1 227.3 109.8 4/13
dynamic gain 2 227.2 82.4 3/13

static gain 1 136.1 145.6 5/15
static gain 2 266.6 85.0 1/15

Table 3.3: Mean slow query processing times by task, with standard deviation (SD) and
fraction of users who cancelled their slow query.

to the single improvement seen in the static gain condition. An independent two-group t-test

shows that the difference between the mean wait time in the first and second tasks of the

static gain condition is statistically significant (t(9.7949) = −2.318, p < 0.05).

3.4.2 How Participants Spent Their Time

To obtain an overview of user activity as participants progressed through each task, we

aggregated the actions that users performed and averaged across users for each minute of

activity. The resulting plot of these aggregated actions is shown in Figure 3.3. Generally,

participants took slightly longer to complete their first task than their second (944 seconds

vs. 804 seconds on average). For the two tasks, the users in the dynamic gain condition had

the shortest completion times (879 seconds for the first task, and 735 seconds for the second

task). These differences were not statistically significant.

Differences between first and second session. In general, there appeared to be a

period of slight acclimatisation as users in the slow search conditions made and cancelled slow

queries throughout the session. By comparison, in the second task, users started by making

slow queries and committed more to this decision rather than cancelling and restarting.

More precisely, in the static gain condition, users made an average of 0.53 slow queries and

cancelled 0.33 of them in the first task. By the second task, they made 0.93 slow queries

and cancelled 0.07 of them. Similarly, in the dynamic gain condition, they made an average

of 0.62 slow queries in their first task and cancelled 0.23 of them; by their second task, they

made 1 slow query and cancelled 0.08 of them. Potentially, this small number of slow queries

could reflect an optimal interaction strategy, which we will discuss further in Section 3.4.8.

We present the results for comparison in Table 3.4.

Relevance gains over time. In Figure 3.4, we plot the median relevance of the docu-

ments clicked by users for the two tasks. We use the median to reduce the effect of outliers.

We will discuss this further in Section 3.4.3.

Here, we include the preselected highly relevant documents as well as the documents that
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Condition Task Submitted Cancelled
dynamic gain 1 0.62 0.23
dynamic gain 2 1.00 0.08

static gain 1 0.53 0.33
static gain 2 0.93 0.07

Table 3.4: Slow queries submitted/cancelled by task.

users considered relevant for solving the tasks. The highly relevant documents are worth

twice as much as the user-selected documents. This gives us a profile of how users manage

to make use of the system to find the documents used to solve the given tasks. As a means

of comparison, we also present the mean cumulative clicks performed during each task in

Figure 3.5.

In the first task of Figure 3.4, we see that in the static gain and baseline conditions, users

perform similarly, eventually leading to a cumulative relevance score of 4 at 1000 seconds.

However, in the dynamic gain condition, users do not perform as well: for these users it

takes approximately 1500 seconds to reach their cumulative relevance score of 2.

As we will see in Table 3.6, where we calculate session-level features for each condition,

users in this condition click on fewer documents on average than in other conditions. How-

ever, the trajectories are in fact similar (see Figure 3.5). The difference is in relevance.

This implies that users in dynamic gain do examine documents, but not the most relevant

documents. The relevance trajectories in the beginning are more similar in the second task

than in the first, but by the tenth minute they begin to diverge. The baseline condition ends

up with a median score of 2.5 at approximately 2000 seconds, while the dynamic gain and

static gain conditions gain a score of 3 by approximately 1000 seconds.

We suspect that the static gain condition performs as well as it does because all the

relevant documents are injected into the ranking when it is first available to be examined;

by contrast, in the dynamic gain condition, these documents are injected into the ranking

at the bottom of the list and their ranks increase over time. It may have taken the users

getting accustomed to the system in the first task before they were able to build a mental

model of how the system worked and employ that model in the second task.

3.4.3 How users progressed towards a goal over time

Similar to Figure 3.4, in Figure 3.6, we plot the average relevance of the documents clicked

by users, faceted by topic. The two most popular topics, Entertainment and Local Busi-

nesses, were the only two to have representation from all conditions in both sessions (with 27
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Figure 3.4: Median time-relevance curves by task.

Entertainment sessions and 31 Local Businesses sessions in total). As such, we will compare

the characteristics of the sessions for each session as they correspond to the conditions within

these topics. To do this, we performed a Mann-Whitney U test on each of the conditions

and topics to compare the characteristics on the first task to those on the second task.

We found that for the Entertainment topic, the users in the dynamic gain condition

made more slow queries (p < 0.05) during the second task (CntQS = 2) versus the first task

(CntQS = 1). In comparison, in the Local Businesses topic, we see that for the No Button

condition, users examined significantly fewer documents per query in the baseline condition

(p < 0.05) in the second session (CPQ = 1) than in the first session (CPQ = 2.07). For the

Local Businesses topic as well, in the dynamic gain condition, users also began making use of

slow queries (p < 0.05) for the second task (CntQS = 1) compared to the first (CntQS = 0).

We also found interesting differences in the way users progressed in these tasks, though

the differences were not statistically significant. Entertainment sessions typically became

shorter in duration in the second session across all conditions (994 seconds to 702.4 seconds

on average), and Local Businesses sessions became longer (658.8 seconds to 893.3 seconds

on average). In aggregate, the number of queries performed (8.3 to 5.4 for queries in session
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Figure 3.5: Average time-click curves by task. This includes non-relevant clicks.

for Entertainment and 5.2 to 9.7 for Local Businesses) changed accordingly. However, users

examined more documents per query in Entertainment (2.6 to 2.8) and fewer in Local Busi-

nesses (3 to 2.5). Furthermore, the number of slow queries issued per session is concomitant

with the number of regular queries by task and condition, however, we found that the num-

ber of highly relevant documents clicked increased in the second task compared to the first

for both topics in the dynamic gain condition, which was unusual in other conditions. Thus,

while users adjusted their behavior differently depending on the topic as they progressed

through the experiment, users in the dynamic gain condition were able to consistently find

the highly relevant documents regardless of other changes in interaction.

It should be noted that two time-relevance curves stand out in Figure 3.6: that of the

baseline condition for the first task of Education, and that of the static gain condition for the

second task of Shopping. This is due to two users who found a substantial number of relevant

documents in comparison to the other conditions in the same topic and task. These curves

in fact affect the aggregate profile of Figure 3.4 to the extent that the baseline condition in

the first task in this figure and the static gain condition ended with the highest cumulative

relevance score.
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Figure 3.6: Average time-relevance curves by topic.
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3.4.4 Behavior While Waiting

Our third research question (RQ3) pertains to activity while waiting for slow search results

to finish processing. To answer this question, we looked at how users continued to interact

with the system after submitting a slow query. We note that for the conditions with the

slow search button, many users spent their time waiting after submitting a slow query. This

was especially pronounced in their first five minutes of each task, where more users waited

on average after making a query than at subsequent time periods, Comparing the two slow

search conditions in the first task, we see in Figure 3.3 that more users spend time waiting

after querying in the first five minutes of dynamic gain than in static gain. However, the

profiles are more similar by the second task: in both groups, users made heavy use of the

“Work Harder” button initially, waiting before eventually clicking on results.

� �

�

�

�

�

�

�

�

�

�

�

�
��
���

��
�
��

�
�
�
�
�
��

��
�
��

��
��
��
��
��
��
��
���
��

��
��
��
��
��
���
��

��
��
��
���
��
��
��
��
���
��

��
��
��
���
��
���
�

��
��
��

��
��
��
��
��
��
��
���
��

��
��
��
��
��
���
��

��
��
��
���
��
��
��
��
���
��

��
��
��
���
��
���
�

��
��
��

��������

�
�
�
�

��������
�������������������

���������������

����������������������

���������������

������

Figure 3.7: How users spend their time while waiting for slow queries to finish.

Figure 3.7 shows the activities that users performed while slow queries were processing

for the dynamic gain and static gain conditions, i.e. after a slow query was submitted, and

54



before the query either finished processing or was cancelled. Most activity in this interval is

focused on examining documents: the number of clicks is relatively high in the first task (6.6

for static gain and 7.6 for dynamic gain). In comparison, the number of queries is relatively

low (2.2 for static gain and 3.8 for dynamic gain). By the second task, users do less in this

interval, perhaps relying on the system more than examining documents and conducting

additional queries themselves. In both conditions, the average number of queries and clicks

both decrease (static gain: Queries = 1.55, Clicks = 3; dynamic gain: Queries = 0.91, Clicks

= 3.09). Of additional note is that for static gain, the number of relevant clicks dropped

from 1.2 to 0.18, while the number of highly relevant clicks stayed relatively consistent (0.6

in task 1 and 0.55 in task 2). This may indicate that users’ time was better spent in the

second task with regards to finding the most relevant documents to solving the given task.

We can compare this to dynamic gain, where the number of relevant clicks increased (0.4 to

0.73), and also the number of highly relevant clicks increased from 0 to 0.36. Thus, while

the number of non-relevant clicks and queries decreased, users made better use of their time

in finding helpful documents.

3.4.5 Feature Analysis of Search Behavior

To investigate research questions RQ4 and RQ5, we computed a list of features characterizing

search behavior, as inspired by previous studies such as [3]. The features we calculated are

outlined in Table 3.6 and Table 3.7. The features we calculated are outlined in Table 3.5.

Dwell time (CIT ) was determined by calculating the time between a click and any subse-

quent interaction with a search page (mouse movements, scrolling, keyboard events, queries,

or clicks). As we ask users to provide five correct items that satisfy multiple attributes for

each task, we calculate Precision as the proportion of items included in their answer for a

task that satisfy all attributes.

3.4.6 Behavioral Analysis of Searchers by Condition

For our fourth research question (RQ4), we investigate the types of changes seen in users’

behavior when given asynchronous slow search capabilities. Having randomly assigned users

into a condition either with or without such capabilities, we compare the session-level features

for each condition. We present the values of these features in Table 3.6.

Compared to the two slow search conditions, users in the baseline condition on average

were the slowest in completing a session (Σ∆t = 961 seconds), issued the highest number

of queries (CntQR = 8.81) and the longest queries (QWL = 5.72; QCL = 34.88), and had

the longest dwell time (CIT = 358.86). These differences were not statistically significant,
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Baseline Features

Σ∆t length of session

CntQR count of regular queries in the ses-
sion

CntQS count of slow queries in the session

QRPS Regular queries per second (CntQR
Σ∆t )

Slow Features

QSPS Slow queries per second (CntQS
Σ∆t )

CntQSC Slow queries cancelled

QSCPS Slow queries cancelled per second
(CntQSC

Σ∆t )

Query Features

QWL Query word length

QCL Query character length

Click Features

CntR Number of pages in the session

CPQ Result clicks per query (CntR
CntQ)

QDT Query deliberation time (time to
first click for a query)

CIT Dwell Time (inactive time after
click)

P Precision

Table 3.5: Representation of session features.

but they may reflect a greater degree of effort for users in this condition, as users take more

time to examine and possibly evaluate documents, and conduct more queries to address

the various facets of the problem. We also found that users did indeed make use of slow

search when given the option: features that quantify the use of slow search such as CntQS,

QSPS, CntQSC, and QSCPS were significantly greater than zero in the dynamic gain and

static gain conditions (p < 0.05). For most of these features (that is, CntQS, QSPS, and

CntQSC), the values were highest in dynamic gain, though not significantly more so than in

static gain. In contrast, QSCPS was highest in the static gain condition, though this was

not statistically significant. No other differences were significant (with all tests here based

on paired Mann-Whitney U tests with Bonferroni correction). Cognitive factors such as the

evolving degree of user trust in result quality for the slow search conditions may contribute

to these cross-condition differences and exploring these is a topic for future work.
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3.4.7 Behavioral Analysis of Successful Searchers

Our fifth and final research question (RQ5) investigates whether users perform tasks more

effectively with the help of slow search. As Table 3.6 shows, users in the dynamic gain

condition received the smallest reward, and had the lowest precision. This raised the question

of what factors played a part in increased performance. We compared user features for

successfully completed tasks to those of the remaining tasks. We define success as a precision

of 1 for a particular task, such that the answers given satisfied all the criteria set by the task’s

question. We present the features computed based on success in Table 3.7. We performed

Mann-Whitney U tests to determine whether there were significant differences by success.

We found significant differences in session length (Σ∆t; p < 0.05) and time to first click

(p < 0.05). The average session length for successful tasks (891.10 seconds) was significantly

higher than that for less successful tasks (847.69 seconds). Despite this, the number of queries

issued is not significantly different, though the average time to first click is significantly

higher for the successful (343 seconds) than for the less successful (260.44 seconds). This

indicates that the time spent examining the search results was a major factor in success, as

we also notice that the dwell times were not significantly different. We also investigated click

relevance, as described in Section 3.4.2. Users who were successful had an expected click

relevance of 3.69, compared to a click relevance of 3.42 for the rest of the users. However,

this difference was not statistically significant.

We also performed logistic regression to predict user success using the above feature

set. We found that the intercept (β = −6.524) and the clicks per query (β = 0.887) were

significant predictors of success (p < 0.05). For the intercept, a participant is not likely to be

successful, with all other predictors held constant. An additional click per query increases

the odds of success by 143%. Other predictors that were marginally significant (p < 0.1)

include the rate of regular queries (QRPS, β = −0.009, p < 0.1) and the effect of session

length when the condition is static gain (β = −0.009, p = 0.1). In the case of the query

rate, an increase in this rate predicts an increase in the odds of success, whereas an increase

in the session length in the static gain condition predicts a decrease in the odds of success.

No other terms were significant predictors.

Overall, the logistic regression analysis shows that making good use of one’s time is the

main factor in success. That is, searching and examining documents in a short period of

time usually means that the user will be successful. The interaction between the session

length and using the static gain system also suggests that, as a longer session length implies

difficulty in satisfying an information need, not being able to take adequate advantage of the

system’s assistance decreases the likelihood of success. We present the values of the model

coefficients in Table 3.8.
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3.4.8 Analysis of Interaction Strategies

Because the ability to perform a slow search was a new feature for participants – the training

period built into the start of the study not withstanding – we examined how participants’

choice of search strategies changed across sessions as users became more familiar with the

feature.

In particular, we were interested in how users in the two slow conditions adapted their

decision-making and use of the feature in relation to more optimal strategies. Each of the

slow conditions could be considered to have an optimal strategy in terms of the number of

regular queries issued, the number of snippets examined, the time taken to invoke the “Work

Harder” button for the first time, and the waiting time for slow processing.

For the dynamic gain condition, we consider one optimal strategy to be the following: 1.

Issue a query; 2. Click “Work Harder”; 3. Wait for 5 minutes as the results automatically

improve to maximum effectiveness; 4. Examine the first 10 slow results3. In comparison,

the static gain condition has a very different strategy: 1. Issue a query; 2. Click “Work

Harder” 3. Examine the first 30 slow results immediately. The differences stem from the

fact that the static gain condition happens to improve relevance immediately, but to a much

lesser degree than in the dynamic gain condition at 100% completion. Thus, for the static

gain condition, it is in the user’s best interest not to wait, but this is not evident from the

interface.

To examine how behavior changed relative to these strategies, we analyzed whether these

strategic components shifted toward optimality from the first task to the second task, in

each condition. To do this, we estimated the number of snippets examined by using time

on page from our baseline condition to determine the time to examine one snippet (8s), and

used the time on page from the improved results page with slow results with the assumption

that the times to examine a snippet are comparable. This value is capped at the number of

results on the page (50). We employed a bootstrap hypothesis testing procedure [74], and

present our findings in Tables 3.9 and 3.10.

Table 3.9 shows for that for static gain users, the time it took for users to first use slow

search significantly decreased from the first to second task: from 386 s to 130 s (p < 0.01).

Wait time increased significantly from 136.1 s to 277.3 s (p < 0.01). We see users moving

closer to the optimal strategy for when to invoke slow search, but not for wait time. The

number of queries did not change significantly, but increased slightly from 6.4 to 6.6. This

could suggest that users did not know to take advantage of the fact that the preselected

3The times taken for each step would be as short as possible, and a user might elect to do other things,
including regular searches, during the waiting interval.

4Insufficient data due to lack of use of this feature during the session.
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documents were always in the middle of the ranking, and continued to search on their own

even as they waited more for an effect.

Table 3.10 shows that in the dynamic gain condition, users invoked slow search much

sooner for the second task (190.8 s to 135.9 s; p < 0.05), and significantly increased their

waiting time (266.6 s to 277.1 s; p < 0.05). Additionally, although not statistically significant,

we notice a decrease in the number of queries issued (5.38 to 3.68). This seems to suggest

that these users had begun adjusting their behaviors toward the optimal strategy, as they

developed a better mental model of how the system responded to their use of the “Work

Harder” button.

3.4.9 Post-task Survey Results

After each task, we asked users about their experience using the system. We also asked

participants in conditions having the “Work Harder” button to give their impressions on

whether the button made the task easier, whether they noticed an improvement in the

quality of results, as well as to write about their thoughts on the usefulness and ease of use

of the system.
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Figure 3.8: Post-task survey scores by condition.
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Figure 3.8 shows the mean ratings on a five point Likert scale of participants’ experiences

of using the system by condition. The error bars represent the standard errors of the means.

We performed ANOVAs on these results to see if exposure to the different conditions affected

the ratings given to whether they were able to find the information they were looking for, their

productivity, the effort extended, if they liked using the system, if the button made the task

easier, if the button improved the quality of results, if the progress bars were useful, and if the

ability to check the intermediate results was useful. Of these, we saw significant differences

between conditions in response to the button making the task easier (F (1, 54) = 5.324,

p < 0.05), the button improving the quality of the results (F (1, 54) = 4.529, p < 0.05), and

the progress bars being useful (F (1, 54) = 5.146, p < 0.05).

In general, users’ perceptions of the slow search features (the latter four in Figure 3.8)

were higher in the dynamic gain condition than in the static gain condition. Among the

more general experiential questions (the former four), we see that users in the static gain

condition gave the highest rating for whether they found the information they were looking

for (M = 4.43, SD = 0.90), while in the dynamic gain condition they gave the lowest

rating (M = 4, SD = 1.17). For productivity, we see that having the button improved

users’ perceptions over the baseline (M = 3.88, SD = 1.04), with the static gain condition

having the slight edge (M = 4.1, SD = 0.84) over the dynamic gain condition (M = 4.07,

SD = 1.01). Users in the baseline condition also reported exerting the most effort (M = 3.19,

SD = 1.31), which might have been reflected in their interactions, with users in this condition

taking longer on average to complete tasks, perform more queries, and examine documents.

Compared to the other conditions, users in the static gain condition reported liking the

system the most (M = 3.57, SD = 0.97). Indeed, among these former four questions, the

static gain condition has the highest ratings, though, once again, the differences were not

statistically significant.

3.4.10 How users progressed towards a goal over time

In Figure 3.6, we plot the average relevance of the documents clicked by users, faceted by

topic. The two most popular topics, Entertainment and Local Businesses, were the only two

to have representation from all conditions in both sessions (with 27 Entertainment sessions

and 31 Local Businesses sessions in total). We will first compare user behavior by topic, and

then turn our attention to contrasting the characteristics of the sessions for each session as

they correspond to the conditions within these topics.

Comparing behaviors by topic. In Table 3.11, we outline a list of features that we

computed to characterize search behavior. We present these features by topic, as a central
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question for the development of such a system is whether it will be used differently depending

on the type of information need. We aggregated the needs by topic and compared the top

two most addressed topics, Entertainment (28 completed tasks) and Local Businesses (32

completed tasks), against the combination of Education (21 completed tasks) and Shopping

(7 completed tasks). We also performed pairwise Mann-Whitney U tests adjusted with

Bonferroni correction to compare differences across topics.

As Table 3.11 shows, Other tasks had the longest mean session length at 1001 seconds.

In comparison, Local Businesses had the shortest sessions on average at 793.4 seconds, while

Entertainment had a mean session length of 841 seconds. Local Businesses also had the

most regular queries in its sessions, with an average of 7.656. With this combination, Local

Businesses also had the highest rate of regular queries in a session at 0.007928 queries

per second, which is significantly higher than that of Other at 0.00497 (p = 0.029). Local

Businesses additionally had an average dwell time of 247.2 seconds, which is significantly

shorter than that of the Other category (392.8 seconds; p = 0.023).

Comparing rewards (and precision, which is related) in Table 3.12, Entertainment ends

up having the worst performance outcome by users’ answers at a $3.943 average reward and

an average precision of 0.7286. This is significantly lower than the respective outcomes of the

Other category, which has an average reward of $4.348 and an average precision of 0.8593.

Comparing task sessions. We computed the same behavioral features, separated by

topic, to compare sessions being completed first versus sessions being completed second for

the same topic. We additionally performed Mann-Whitney U tests to determine whether the

differences observed between sessions were statistically significant. The full table was omitted

for space. Most of the significant differences were seen in the dynamic gain condition.

For users in the dynamic gain condition, those who performed Entertainment queries

cancelled fewer slow queries (p = 0.05) in the second session (2 slow queries cancelled to 0.2

cancelled on average). It should be noted that these users also performed fewer slow queries

in the second session, but this difference was not statistically significant (a drop from 2 slow

queries on average to 1; p = 0.49). This was the only condition and topic of the two for

which there was a meaningful difference in cancellation behavior based on task order. For

the same condition, users performing Local Businesses tasks did not cancel any queries in

either session.

We also observed that dynamic gain users performing Entertainment tasks saw a decrease

in the average relevance score of documents clicked in the session (from 4.67 to 2.4, p = 0.03).

While the difference for Local Businesses was not significant, we note for comparison that the

average relevance for Local Businesses increased from 2.2 to 4.6 between tasks (p = 0.16).

Similarly, the relevance score for Education, which has data for this condition for both
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task sessions, increased from 1.33 to 3 (p = 0.35). Users in this condition conducting

Entertainment in fact viewed fewer (27.3 on average to 8; p = 0.23).

Dynamic gain users as well performing Local Businesses tasks switched from performing

no slow queries in the first session to performing an average of one slow query in the second

session. This increase was statistically significant (p = 0.023).

There were no statistically significant differences within the static gain condition for

these topics, but we note that the number of slow queries dropped from 1.17 to 1 (p = 1) for

Entertainment and increased from 0.2 to 0.625 (p = 0.31) for Local Businesses. This behavior

is actually consistent within the topics: as previously noted, the slow queries performed in

for Entertainment also dropped for dynamic gain from 2 to 1, and slow queries increased

from zero to 1 for Local Businesses in the dynamic gain condition.

The only statistically significant difference between tasks for the baseline condition was

seen in Local Businesses users, where their result clicks per query dropped from 2.07 to 0.996

(p = 0.027).

The differences within the dynamic gain condition and the lack of many significant dif-

ferences in other conditions seems to point to a stronger effect of adjustment to the system

for users exposed to both the asynchronous capabilities and time-biased gain [46].

We also found interesting differences in the way users progressed in these tasks, though

the differences were not statistically significant. Entertainment sessions typically became

shorter in duration in the second session across all conditions (994 seconds to 702.4 seconds

on average), and Local Businesses sessions became longer (658.8 seconds to 893.3 seconds

on average). In aggregate, the number of queries performed changed accordingly (8.3 to

5.4 for queries in session for Entertainment and 5.2 to 9.7 for Local Businesses). However,

users examined more documents per query in Entertainment (2.6 to 2.8) and fewer in Local

Businesses (3 to 2.5). Furthermore, the number of slow queries issued per session is con-

comitant with the number of regular queries by task and condition, however, we found that

the number of highly relevant documents clicked increased during the second task compared

to the first for both topics in the dynamic gain condition, which is the opposite of what was

observed in other conditions. Thus, while users adjusted their behavior differently depending

on the topic as they progressed through the experiment, users in the dynamic gain condition

were able to consistently find the highly relevant documents regardless of other changes in

interaction.
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3.4.11 Performance Robustness

To measure performance, we used the reward earned per task by participants in each study

condition. We present a histogram of these rewards in Figure 3.9 and summary statistics in

Table 3.13. We performed Mann-Whitney U tests on these statistics by condition. However,

none of these differences were statistically significant.
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Figure 3.9: Distribution of rewards by study condition.

The static gain and dynamic gain conditions had the highest and lowest rewards respec-

tively ($4.21 for the static gain and $4.04 for the dynamic gain condition). One possible

explanation for this difference is that in the static gain condition, the system inserts all of

the same documents that would have been inserted in the dynamic gain condition, but in

the lower half of the ranking. As a result, static gain users gained access to these documents

immediately, and seemed to be willing to look for them in the ranking. Dynamic gain users

however had to wait to see these same results: in the dynamic gain condition, the system

inserts documents into the ranking and improves the ranking of relevant documents steadily

over the course of five minutes.

With that said, we also noticed that these two conditions had the smallest variances

($1.13 and $1.12 for static gain and dynamic gain respectively), compared to the baseline

($2.14). This gives the slow search conditions a greater degree of stability and predictability;

for the baseline condition, especially in comparison to the dynamic gain condition, there is

a greater risk, but also a potentially greater reward to using it for these multi-attribute
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tasks. Therefore, we believe that there is usefulness in both types of search; in fact, having

traditional search as an option to additionally having slow search may indeed be a useful

approach.

3.5 Discussion and Implications

Our study provides insights about how users engaged with a slow search system that provided

an asynchronous query capability with improvements in search result quality over time. We

now discuss our main findings and implications.

Users are willing to wait for multi-attribute queries (RQ1). We found through our back-

ground survey that many of the tasks and queries that users typically have trouble with

are multi-attribute queries in which various constraints of a query must be satisfied (Sec-

tion 3.3.2.1). This justifies our use of such queries in our study, and the use of slow search

after users gain familiarity with the system shows that multi-attribute queries are a good fit

for a slow search system.

Users will typically wait for results (RQ2). Our background survey revealed that users

reportedly are willing to wait for a mean of 9.5 minutes for “perfect” results (Section 3.3.2.2).

Placing users under time pressure and imposing a maximum time of five minutes for query

processing also led to users waiting, as was seen in Section 3.4.1. Interestingly, in both

dynamic gain and static gain conditions, users typically submitted more slow queries, waited

more, and cancelled fewer slow queries by the second task. A future study may manipulate

the processing time for these slow queries to examine users’ tolerance for waiting, and whether

users will wait under tighter time constraints. Future studies may also look at impatience

under greater uncertainty.

Users spent time looking for additional documents while waiting (RQ3). As illustrated

in Section 3.4.2, users in both the dynamic gain and static gain conditions spent their

time performing queries and clicking on documents in the interval while a slow query was

processing. By the second task, these activities were reduced, but not in a statistically

significant sense. We also showed that users in both of these conditions performed more

slow queries in the second task and also waited more after performing these queries instead

of clicking on documents or cancelling. This may indicate that users could still have been

learning to use the system by the second task despite the training period and using the

system for the first task. The reasons why users appeared to make more effective use of slow

search by the second task require further study: the change could be due simply to their

experience with the system in the first task, or it could be due to their increased awareness

of the feature due to our explicitly asking users about their experience in using the “Work

64



Harder” button between tasks. A future study may extend the training period to ensure that

users are not only familiar with the system, but that they are also confident in predicting

what the system will do. We also plan to do a longer-term online study in which users

interact with the system for an extended period of time, which will help us to determine

how long it takes for user behavior to stabilize and what it looks like when it does. Such a

study will also help to understand usage in different scenarios without artificial constraints.

User search behavior did not significantly change with additional slow search capabilities

(RQ4). Our analysis in Section 3.4.6 showed that user behavior in terms of search interactions

was similar across conditions, with users in the two slow conditions making significant use of

the “Work Harder” button. We observed that users in the baseline condition took longer to

complete sessions, conducted more and longer queries, and clicked on fewer documents per

query (Table 3.6). Users, by the end of the study, may have still not yet fully understood the

capabilities of the system. However, these results may also indicate that slow search systems

should cater to similar types of queries as current search systems, and support the kinds of

interactions that users have grown accustomed to. A future study may serve to tease out

these differences by looking at users who have become familiar with the system and users

without such a system.

Users did not achieve higher final effectiveness with slow search, but showed evidence

of higher efficiency (RQ5). For the tasks we evaluated, users achieved comparable final

rewards across the three conditions, with the baseline condition showing slightly higher

average reward, but overall differences were not statistically significant. However, as we

note above, users obtained these rewards in less overall time for both slow search conditions

compared to the baseline condition, giving some evidence of higher efficiency. We also note

that the reward variance in the baseline condition is higher than either slow condition, the

reasons for which may be useful to explore in future work. In addition, users in the dynamic

gain condition did indeed report that they noticed more of a difference in the improvement

in search results than users in the static gain condition, and gave higher ratings for the

usefulness of the progress bars. This may have been because it would have been clearer in

the dynamic gain condition that the results were changing, and continued to change during

the five minute duration. In contrast, users in the static gain condition may have not noticed

the change between the unmodified and the modified results. Regardless, this shows that

users are able to notice the difference when the results change, suggesting there is some

utility in having future systems expose progressive improvements in ranking to users.

We note that users found slightly fewer relevant documents on average in the dynamic

gain condition compared to the static gain condition. One explanation for this difference is

that in the static gain condition, the system inserts all of the same documents that would
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have been inserted in the dynamic gain condition, but in the lower quarter of the ranking.

As a result, static gain users had the opportunity to gain access to these documents more

quickly if they were willing to look for them in the ranking. In the dynamic gain condition,

however, users had to wait longer to see the same highly relevant results, since the system

begins with those documents at the bottom of the initial ranking and improves their position

steadily over the course of five minutes.

While our dataset and corresponding analysis has allowed us to gain insight into the

research questions we posed, we also recognize a number of limitations in our current study.

Our findings, particularly that of RQ1, would be more robust with a larger sample of users.

A future study in a more natural setting may also reduce experimental demand effects that

might have influenced user behavior, and users’ choices of tasks may have also affected their

performance.

For future work, there are multiple possible avenues in exploring user interaction with slow

search systems The ‘Work Harder’ button might be removed altogether and replaced with

a background process that can automatically find and attempt to improve results for failed

or abandoned search sessions. A user with low time pressure and a high degree of trust in a

slow search system may submit a query to be processed in the background while performing

non-search tasks, especially in the transition between devices, in which case supporting the

examination of intermediate results or performing more queries in the interim would not be

vital. In another instance, a user may use the system as as a supporting agent in a search

task: the system would gather additional relevant documents and present them to the user

as they continue to search. The participants’ tendency in this study to continue searching

shows that this is a useful capability to have. Along these lines, Microsoft implemented

such a feature into their Bing Web search engine called “Deep Search” in December 2023

[1], which uses extra time – up to 30 seconds – to search for a more comprehensive set of

results in the background. With Deep Search, a query is expanded using the large language

model GPT-4 to a description of what the ideal results should look like to capture intent

and expectations, and additional queries are used to search for a larger set of results which

are then reranked.

The concept of “slowness” could additionally be applied to many different scenarios in

which other aspects of retrieval ‘quality’ may be improved. This study focused on improving

relevance for multi-attribute queries—a difficult class of queries for many existing systems,

but in principle a system could also improve intrinsic diversity, employ crowdsourcing to

augment algorithms, or summarize and organize results. Implementing slow search should

take the costs of the design and any algorithms into account. Considering the goals of the

users, simulation can be a low-cost tool for exploring design and algorithmic interventions, as
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we highlight in Chapter 4. Additionally, on the system-side, we could reduce the amount of

resources required for processing large volumes of requests by identifying tasks and queries

for which slow search would be most helpful and offering the feature primarily in these

circumstances.

The results of our study show that slow search is a robust alternative to Web search for

multi-attribute tasks, minimizing the worst case performance that one experiences in using

the system. We also compared how users behaved in satisfying a particular information need

when a topic is approached first versus when the same topic is approached second, and show

that there are many behavioral characteristics that change depending on when the topic is

attacked when users are exposed to slow search with a gain in quality. We believe that this

shows that there is a period of acclimatization in this case, where users take some time to

adjust to the capabilities of the system.

One limitation of this study is the length of time for which users are exposed to the

system. Our study sessions were designed to give users a ten minute exploratory “training”

period to probe the capabilities of the system, after which they would have thirty minutes

to solve each of two problems. This may have in fact not been enough time for training, and

in a future study, we will adjust the training period to reduce novelty effects.

3.6 Conclusion

We reported on a user study that investigated five research questions about user interaction

with a slow search system that offered users the option of running a ‘slow’ query in the back-

ground, showing progressive results in a sidebar. Using surveys and log data, we analyzed

users who interacted with the system in one of three between-subjects conditions: a ‘dy-

namic gain’ condition that steadily improved search result quality of the optional slow query

over the course of five minutes, a ‘static gain’ slow query that inserted relevant documents

immediately with no additional ranking improvements over time, or a baseline condition

giving conventional Web search results. Our findings suggest that users elected to perform

slow search queries when given the opportunity. Additionally, we show that users are willing

to wait for multi-attribute queries (RQ1), users will indeed wait for results when using slow

search (RQ2), and users continued to search while waiting for results (RQ3). User behavior

did not significantly change with additional slow search capabilities (RQ4), and users did not

achieve higher final effectiveness with slow search, but did finish in less time (RQ5) on the

tasks we evaluated. Followup studies may explore different mechanisms to improve quality

for slow search and further investigate the nature of time-quality tradeoffs and user choice.
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Feature SG DG Base-line U Test

Baseline features

Session length
(Σ∆t*, sec.)

839.47 807.23 961.00 -

Regular queries
(CntQR)

6.50 4.58 8.81 -

Regular queries/sec
(QRPS)

0.01 0.01 0.01 -

Slow features

Slow queries
(CntQS)

0.73 0.81 0.00 SG > B∗;
DG > B*

Slow queries per
second (QSPS)

9.03× 10−4 9.99× 10−4 0.00 -

Slow queries can-
celled (CntQSC)

0.33 0.35 0.00 SG > B*;
DG > B∗

Slow queries can-
celled per second
(QSCPS)

3.86× 10−4 3.65× 10−4 0.00 SG > B*;
DG > B*

Query features

Query word length
(QWL)

4.48 5.20 5.72 -

Query character
length (QCL)

27.14 31.20 34.88 -

Click features

Pages in session
(CntR)

13.27 11.62 14.48 -

Clicks per query
(CPQ)

3.14 3.23 2.37 -

Time to first click
(sec.) (QDT )

24.93 25.53 24.46 -

Dwell Time (sec.)
(CIT )

234.36 276.28 358.86 -

Outcomes

Reward ($) 4.21 4.04 4.16 -

Reward Variance
($)

1.13 1.12 2.14 -

Precision 0.85 0.72 0.83 -

Click Relevance 4.03 3.08 3.55 -

Table 3.6: Comparison of behavioral features across conditions. SG = Static Gain; DG =
Dynamic Gain. *p < 0.05; **p < 0.01; ***p < 0.001.
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Feature NS S U Test

Baseline features

Session length (Σ∆t*,
sec.)

847.69 891.10 NS < S∗

Regular queries (CntQR) 7.53 6.20 -

Regular queries/sec
(QRPS)

0.01 0.01 -

Slow query features

Slow queries (CntQS) 0.39 0.57 -

Slow queries per second
(QSPS)

5.22× 10−4 6.72× 10−4 -

Slow queries cancelled
(CntQSC)

0.14 0.27 -

Slow queries can-
celled/sec (QSCPS)

2.97× 10−4 1.65× 10−4 -

Query features

Query word length
(QWL)

5.01 5.23 -

Query character length
(QCL)

28.90 32.67 -

Click features

Pages in session (CntR) 12.44 13.75 -

Clicks per query (CPQ) 2.55 3.14 -

Dwell Time (sec.) (CIT ) 284.20 296.36 -

Time to first click (sec.)
(QDT )

13.65 32.86 NS < S*

Outcomes

Reward ($) 3.23 4.74 -

Reward Variance ($) 1.70 0.36 -

Precision 0.52 1.00 NS < S***

Click Relevance 3.42 3.69 -

Table 3.7: Comparison of behavioral features by success level. NS = Not Successful; S =
Successful. *p < 0.05; **p < 0.01; ***p < 0.001.
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β S.E. p-value

Intercept -6.524 2.927 0.026

Session length (Σ∆t*) 0.003 0.002 0.136

Condition: static gain 4.837 3.304 0.143

Condition: dynamic
gain

3.637 4.203 0.387

Regular queries
(CntQR)

-0.122 0.147 0.404

Regular queries/sec
(QRPS)

265.700 161.500 0.100

Slow queries (CntQS) 6.089 6.428 0.360

Slow queries per second
(QSPS)

-4954.000 4807.000 0.303

Slow queries cancelled
(CntQSC)

-0.989 6.428 0.878

Slow queries can-
celled/sec (QSCPS)

1840.000 4695.000 0.695

Query word length
(QWL)

-0.164 0.176 0.351

Pages in session (CntR) -0.025 0.072 0.725

Clicks per query
(CPQ)

0.887 0.437 0.042

Dwell time (CIT ) -0.001 0.003 0.697

Time to first click (sec.)
(QDT )

-0.029 0.027 0.267

Σ∆t ∗ × Condition:
static gain

-0.009 0.005 0.080

Σ∆t ∗ × Condition: dy-
namic gain

-0.009 0.006 0.158

Table 3.8: Logistic Regression for predicting user success

Component Task 1 Task 2 p-value

Queries 6.4 6.6 0.479
Time to “Work Harder” (sec.) 386 130.1 0.005 **

Wait time (sec.) 136.1 277.3 0.002 **
Snippets examined NA4 22.5 0.014 *

Table 3.9: Changes in interaction in relation to optimal strategies for static gain. The
number of snippets examined is estimated. *p¡0.05; **p¡0.01; ***p¡0.001.
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Component Task 1 Task 2 p-value

Queries 5.38 3.68 0.131
Time to “Work Harder” (sec.) 190.8 135.9 0.04 *

Wait time (sec.) 266.6 277.1 0.048 *
Snippets examined 21.2 20.1 0.5

Table 3.10: Changes in interaction in relation to optimal strategies for dynamic gain. The
number of snippets examined is estimated. *p < 0.05; **p < 0.01; ***p < 0.001.

Entertainment
(E)

Local Busi-
nesses (L)

Other (O) U Test

Baseline features

Session length (sec.) 841 793.4 1001 -

Regular queries 6.821 7.656 5.593 -

Regular queries/sec 0.006827 0.007928 0.00497 L > O

Slow query features

Slow queries 0.75 0.3438 0.4074 -

Slow queries/sec 0.000913 0.000416 0.000526 -

Slow queries can-
celled

0.4286 0.0625 0.1852 -

Slow queries can-
celled/sec

0.000439 0.000079 0.000232 -

Query features

Query word length 4.982 4.907 5.565 -

Query character
length

28.7 29.8 35.17 -

Click features

Pages in session 13.14 14.41 11.85 -

Clicks per query 2.684 2.707 3.335 -

highly.relevant.clicks 0.6786 0.4688 1.037 -

relevant.clicks 2.321 2.281 1.815 -

non.relevant.clicks 10.14 11.66 9 -

Time to first click
(sec.)

15.1 23.85 36.06 -

Dwell time (sec.) 245.9 247.2 392.8 L < O

Table 3.11: Comparison of behavioral features by topic.
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Entertainment
(E)

Local Busi-
nesses (L)

Other (O) U Test

Outcomes

Click relevance 3.679 3.219 3.889 -

Reward (dol-
lars)

3.943 4.075 4.348 E < O

Reward Vari-
ance (dollars)

1.025 1.579 1.79 -

correct.answers 3.643 4.094 4.296 E < O

Precision 0.7286 0.8187 0.8593 E < O

Table 3.12: Comparison of outcomes by topic.

Static Gain Dynamic Gain Baseline
Reward ($) 4.21 4.04 4.16
Reward Variance
($)

1.13 1.12 2.14

Table 3.13: Reward means and variances by study condition
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CHAPTER 4

Simulation Towards Optimal Behaviour

4.1 Introduction

Information retrieval (IR), starting from its earliest studies, has been driven by measurement

and performance metrics. Starting with the traditional Cranfield evaluation framework [47],

it soon became clear that human factors were also an important aspect to be considered

and measured [171]. Since then, work in IR has taken cues from other areas focused on user

effort and satisfaction, including but not limited to human-computer interaction [85, 209],

recommender systems, and economics [9, 10].

The process of evaluating these human factors typically takes the form of user studies

[111], but performing these at scale is often prohibitively expensive. Other, cheaper meth-

ods involving real users may involve crowdsourcing studies or log data analysis of existing

systems. Alternatively, stochastic simulation [180, 20, 137, 138] presents an extremely ef-

ficient method for running experiments at scale, albeit with synthetic users. Besides cost

and versatility in mimicking a wide variety of users and systems at scale for information

retrieval, simulation is also heavily used in other domains such as computational physics,

materials science, and as we will explore briefly, financial investments. This suggests an

avenue of integration, and we will introduce the use of a financial analysis technique known

as real options pricing as a means for quantifying the benefits of a new interface feature or

potential system-level intervention.

In economics and management, flexibility may be seen as a competitive advantage that

can be analysed through the lens of real options [22, 45], which gives a way to measure the

value of a potential decision that takes advantage of flexibility in light of uncertainty. Real

options represent an opportunity to undertake an initiative. We can view it as a staged

investment or decision. Bengtsson [22] highlighted four central ways to increase operational

production flexibility: reducing set-up time at installed equipment, multipurpose stations,

parallel assembly lines, and/or a flexible work force. We can reframe these approaches for
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information retrieval, such that reducing set-up time can be seen as the cost of switching

search engines or rankings, multipurpose stations (or a flexible manufacturing system) can

be seen as IR system integration, parallel stations could be framed as parallel searches, and a

flexible work force can be viewed in terms of ranking and matching algorithms. Seen this way,

real options seem to have particular applicability to the optimisation and time-quality cost

tradeoffs that we see in interactive information retrieval (IIR), both from a user’s perspective

and for an IR system implementation.

Using this economic IIR formulation, we may consider a system that presents users with

the choice of an new interface element as an option. Such an element presents some pre-

sumable benefit to the user, but with associated costs such as using the element through

effort, suffering from a loss in screen real estate, or spending extra attention on this new

element. For companies performing options valuations, their main source of uncertainty is

the demand of the goods and/or services they produce. For the user of a search engine, their

source of uncertainty may be whether a feature will be useful for their task. The designer

of a system has the responsibility to convey the value of the feature in a way that is easy

to understand and supports their decision-making. When performing a search, a user has

a particular mental model that guides their expectations of their use of a feature. Hence,

this chapter centers around showing how real options valuation may prove to be a useful

framework with applicability to IR system design through methods that give quantifiable

results while considering uncertainty, value, and cost. We will in fact use this framework

to investigate value and risk of choosing different rankings for our system, using simulation

as an instrument. More specifically, we use a user simulation model to perform a Monte-

Carlo integration of a utility function that quantifies the option value to a user of having

the choice to access an extra interface feature. In our experiment, we give the user a sidebar

that may provide better results asynchronously during a search task as an option – this is an

element that may present some uncertainty through use, that is, the user may not be sure

if it is worth their effort. A fundamental contribution of this work therefore is a method for

quantifying the potential future value of an information access option for a user.

Our previous experiences with conducting user studies on novel search interfaces made us

curious not only if we could systematically ensure that users were willing to engage with a

new element of the system, but also how changing various aspects of the given element could

lead to improved outcomes. With a simulation framework to explore these types of what-if

questions, we identified the following research questions as grounds for our study:

RQ1 : How close is our simulation to the behaviour of actual users? As we create our

simulation framework using the behavioural characteristics of the users of an experimental

pilot as a basis, we would like to determine whether our simulation can appropriately deliver
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similar outcomes as our pilot users.

RQ2 : What differences exist between real versus perceived quality of search results? Using

simulation, we attempt to answer the question, “What if a user believes the sidebar is better

than it actually is?” To do this, we will manipulate the decision probabilities of the simulation

to reflect this change in belief.

RQ3 : How can we increase the value of the sidebar – a novel interface element? To

do this, we introduce the measure option value, commonly used in financial investment and

risk management to estimate the expected future value of a given investment and apply this

measure to find system parameters that increase the value of our aforementioned sidebar.

This gets towards the problem of optimising system behaviour given a fixed user.

RQ4 : What state transitions of our simulation characterise high and low performance?

Our simulation will make stochastic decisions about how to behave as it proceeds through

a search task. For this question, we aim to explore what types of user decisions would

lead to the best outcomes in terms of cumulative relevance over the course of the task, and

conversely which would lead to the worst. Contra to RQ3, this research question gets towards

the problem of optimising user behaviour given a fixed system.

RQ5 : How might we guide a user from a state of low performance to high performance

through system or affordance changes? Because we are able to run many simulations resulting

in a spectrum of performance outcomes, we can explore the space of parameters that led

to these outcomes and determine which changes in parameters may lead to better outcomes

within the space. We will do this with the t-SNE dimensionality reduction technique.

4.2 Related Work

Simulation and Time-biased Gain. Simulation as tool for investigating session behaviour

in interactive information retrieval has been receiving increasing interest in recent years. As

a framework, it gives the ability to extend beyond the Cranfield view of information retrieval

to an interactive one while remaining fast and inexpensive to perform experiments.

Azzopardi [13] established a cost model of browsing search engine result pages based

on estimates of the time required by both the system and user for clicking, scrolling, and

inspecting snippets, while taking into account the size of the page, and the size of the screen

used. The motivating scenario involves a user being presented with a search engine result

page immediately after issuing a query. Optimally, for a given device, we may consider

whether the interface should optimally show as many results as can fit above the fold with

pagination, or should it allow for some scrolling before going to the next page. This paper

follows in a line of other endeavours to model cost, as opposed to the more common avenue
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of optimising gain. Kashyap et al. [106] formulated a cost model of faceted navigation

for a system called FACeTOR that accounts for the time to examine results, the cost of

choosing a facet and hence refining the list of results, or expands an attribute, revealing

more facets of the particular attribute. Through simulated navigation and a user study via

Amazon Mechanical Turk1, they tested the predictions of their model and found that their

cost model was realistic. The cost model of [170] served to inform the activity of sensemaking

– a task more general than information retrieval. The authors decomposed the process into

different types of subclasses, and characterized their costs. By doing so, they made the point

that by trading off costs in one task, we can take advantage of the reduced costs in other

aspects. As such, sensemaking becomes an anytime algorithm [6]. As an example, by saving

time expenses from automated clustering methods, the designers of an educational course

were able to extend the comprehensiveness of their search.

For examples of work which examine gain in information retrieval, we may turn towards

analyses conducted by Smucker and Clarke [181]. Following on their proposition of time-

biased gain, where the gain from a relevant document is equal to the probability of viewing it

subjected to a time decay [181], Smucker and Clarke [180] further explored a simulation-based

approach to approximate this gain as an alternative to estimation using their closed-form

solution. This allows for more flexibility in analysis – one can model a distribution of gain

while changing other variables with less effort for easier “what-if” experiments. Taking this

approach also potentially allows one to model a sample from a population of users.

Other work on simulation has used the technique to explore the diversity of strategies

during search sessions [20], the effectiveness of query personalisation [201], and the usefulness

of various implicit relevance feedback models [214]. More recent studies have increased the

sophistication of their models to improve the believability of their agent behaviours. In work

by Maxwell and Azzopardi [137], the authors noted that typical models lacked a degree of

realism that accounts for the agency of simulated users. Their main contribution was a

model that incorporated cognitive state – that is, data about what the user knows, saw

during tasks, and found relevant. Such a formulation was seen as useful for more realistic

interactions such as following information scent and exhibiting stopping behaviour through

abandonment [138].

Real Options. Simulation is also effective for the purpose of real option valuation in

finance. In effect, the pricing of an option involves computing a (possibly complex) integral

over time, and simulating stochastic paths in asset pricing space is often the only feasible

way to compute an approximate option integral for more complex types of option scenarios

that have no closed-form solution. There are parallels between the application of real options

1https://www.mturk.com/
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in finance and manufacturing, and a potential application in information systems in terms

of the value of increasing flexibility.

Exactly the same principle applies to our stochastic information retrieval scenario, except

that asset prices are replaced by cumulative relevance over time. The Datar-Mathews method

[134] is a Monte Carlo approximation of the Black-Scholes pricing options formula that, given

various cash-flow scenarios, creates a probability distribution of expected net present value,

that is, discounted cash flows. This “pay-off” distribution allows one to calculate real option

value by finding the probability weighted mean while mapping negative values to zero2[48].

Intuitively, the real option value using this method is calculated as follows:

Real Option Value = Risk Adjusted Success Probability × (Benefits - Costs).

When used in a Monte Carlo simulation, the calculation becomes

E[max(e−µtXp − e−rtXc, 0)]

where Xp and Xc are random variables for operating profits and launch costs respectively,

and µ and r are the risky-asset and risk-free discount rates respectively [134].

In finance, the Datar-Mathews method may be preferred to the Black-Scholes formula

because of its transparency [55]: whereas the Black-Scholes closed-form formula is more of a

black box with easily violated assumptions, the Datar-Mathews method is more flexible in

the types of cash-flow distributions it can deal with (such as non-lognormal distributions)

and uses the standard inputs typically used in net present value analysis. Furthermore, the

resulting distribution can be traced by following the algorithm. Thus the Datar-Mathews

method is more suitable to non-financial scenarios like our stochastic interaction scenario.

User Perceptions of Quality. In recommender systems and algorithmic sensemaking

[218], the effects of operational transparency – revealing the work behind a service – has been

explored as a means of improving perceptions of effort and trust [34]. Ethical principles of

design exhort that deception is a negative practice, but design naturally invokes the use

of deception through abstraction, metaphors, and affordances. Computing pioneer Alan

Kay has in fact described the correspondence between what a user sees on the screen and

what they think they manipulate as an illusion. In his words, from his experience at Xerox

PARC, “There are clear connotations to the stage, theatrics and magic–all of which give

much stronger hints as to the direction to be followed.” [108]. Despite its prevalence, it

is rarely described in principled terms, but has recently become to be known as benevolent

deception [2]. One example given by Adar et al. is a robot therapist that under-reports the

amount of force that a stroke patient exerts in order to help in overcoming their self-imposed

2Because an agent is not obligated to exercise an option, it is assumed that they will never exercise if it
leads to a loss, that is, below zero.
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limits [2]. Research on recommender systems has focused on various ways of manipulating

beliefs and perceptions of various attributes of these systems, including the relationship

between user effort and perceived user effort with a loading screen [194], persuasion [76, 59],

or nudging [95]. Misbeliefs and biases have been studied in information retrieval, primarily

for the purpose of mitigating or correcting them [208, 212, 11, 14]. Benevolent deception has

not received as much interest thus far in the field.

4.3 Method

Using the experience and log data we gained from conducting a pilot study, we formulated

a simulation that aimed to capture the behavioural aspects of users and explored the impli-

cations of changes to both the aspects of the system and aspects of user behaviour reflected

in simulated data. Much of our motivation stemmed from the perspective of looking at

the costs and benefits of presenting a user with the choice of using a new interface option

such as an alternative ranking, and asking the question ‘How can we measure the potential

future value of this interface feature to this user?’. As we describe below, we use real options

pricing strategies that arise naturally from stochastic simulation. We will now briefly de-

scribe the specifics of our search system that motivated this question, which has a sidebar of

high-quality documents delivered slowly to reflect the system’s ability to explore alternative

time-quality tradeoffs in parallel with the usual immediate ranking.

4.3.1 Pilot Study System Description

We built a custom search interface that mimics that of a typical commercial search engine,

but with an added sidebar at the right of the screen that presents additional relevant results

incrementally over time. This sidebar is evocative of an algorithm that might be used in a

“slow search” system [187] – trading result timeliness for improved result quality. The system

uses a simulated algorithm – as opposed to a real and functional algorithm – to provide these

better results using documents that were pre-labelled with relevance judgements depending

on the task that the user is currently in the process of solving. The fact that the process is

simulated rather than the result of an algorithm working to find better results is not made

explicit to the user. The task and system setup are heavily inspired by those in Chapter 3 and

such, a “high-quality” document is considered to be one that directly addresses the multi-

aspect task given, and one that therefore saves additional search time that would otherwise

be time looking through documents in the main ranking or issuing new queries. A screen

shot of the interface for this experiment is shown in Figure 4.1.
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Figure 4.1: Screenshot of interface used in pilot study. The stars to the right of each
result is a “save” button – the results saved can be called up at the end of the task for
answering questions. Items in the sidebar are explicitly given labels denoting the “quality”
of the results. In the sidebar, results arrive and are populated in reverse order starting with
the lowest ranked. Sidebar animations in the form of a spinning indicator beside the title
(“Working harder on...”) and throbbers in the unfilled slots of the results provide a degree
of operational transparency to show that more results are coming.

As opposed to interleaving higher quality search results in the pre-existing ranking or

performing re-ranking, the use of the sidebar presents the user with a clear option of using

another interface element and set of results. Besides quality, this allows us to examine the

effects of other aspects such as wait time and the rate at which results are added to the

sidebar on users’ preference for this option for various tasks.

The tasks given fell into four categories: education, local businesses, shopping, and en-

tertainment. These tasks were all multi-aspect with various constraints to be satisfied; an

example task in local businesses was, “Find five local I.T. companies with at least 50 employ-

ees.” Participants should satisfy all the constraints to receive the full reward for completion.

For our pilot however, participants were uncompensated.

Our pilot consisted of 6 participants, each of whom completed 2–6 tasks. The study flow

was completely automated after the calibration of an eye tracker to record gaze informa-

tion, and began with a tutorial in which participants were given a primer on the system’s

functionality and usage. Each task that was performed by the user was followed by a ques-
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State

Start (start)
Submit Query (query)

View Next Sidebar Result (view sidebar)
Click Sidebar Result (click sidebar)
Save Sidebar Result (save sidebar)

View Next Main Ranking Result (view main)
Click Main Result (click main)

Save Main Ranking Result (save main)

Table 4.1: List of Simulation States and their aliases as we use throughout the remainder of
the paper.

tionnaire that solicited opinions about the usefulness and quality of the sidebar, as well as

their perceptions about their own performance.

4.3.2 Model Description

We begin by enumerating the list of states that our simulation might take. These are shown

in Table 4.1. We chose behaviours that represent those that users perform for querying,

examining snippets, clicking results, saving links for later, and reading documents. Because

our system also includes two rankings, we separate the examination, clicking, and saving

behaviours into those performed on the main results on the left of Figure 4.1, and the

sidebar on the right.

In Table 4.2, we show the list of time-based costs we incorporate into the simulation.

The costs of reading the next sidebar and main result snippets (view sidebar and view main

respectively) are both approximately 4.52 seconds. To arrive at this time, we took inspiration

from Smucker and Clarke [180] to use a Weibull distribution model for snippet judgements,

but for simplicity we use the mean of the distribution and assume that because both rankings

use similar snippets, the time necessary to judge them will be similar. The times to click a

sidebar result and click a main result (alternatively click sidebar and click main respectively)

were estimated as approximately the time between clicks in the main ranking as measured

during our pilot; we assume, again for simplicity, that the documents in each ranking will

take similar amounts of time to read.

Using the data from our pilot experiment, we calculated the probabilities of each state

transition, which we show in Figure 4.2.

For the utility gained by our simulated users, we use three levels of relevance: not relevant

(R = 0), relevant (R = 1), and highly relevant (R = 2). Table 4.3 shows the interaction
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start

view
sidebar

0.10

view
main

0.90

query

1.00

click
sidebar

0.60

0.01

0.77

save
sidebar

0.04

0.23

0.12

0.03

0.01

0.01

0.10

click
main

0.30

0.38

0.62

save
main

0.45

0.49

0.41

Figure 4.2: State transitions taken by our simulation. The transition probabilities are esti-
mated from user data in our pilot experiment.
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State Cost (sec.)

View Next Sidebar Result 4.52
View Next Main Ranking Result 4.52

Click Sidebar Result 10
Click Main Result 10

Table 4.2: List of Time-based Costs in the Simulation.

State Description Value

P (C = 1|R = 2) Probability of clicking
on a highly relevant
snippet

0.3731343

P (C = 1|R = 1) Probability of clicking
on a relevant snippet

0.4477612

P (C = 1|R = 0) Probability of click-
ing on a non-relevant
snippet

0.1462687

P (S = 1|R = 2) Probability of saving
on a highly relevant
document

0.3924051

P (S = 1|R = 1) Probability of saving a
relevant document

0.4367089

P (S = 1|R = 0) Probability of saving
a non-relevant docu-
ment

0.0664557

Table 4.3: List of Interaction Probabilities in the Simulation.

probabilities in the simulation – the probabilities of clicking or saving documents conditioned

on their relevance. These values were in fact calibrated to [180], and adjusted to three grades

by splitting the probability density of the lesser two grades. Because our click data was

relatively sparse in our pilot, we opted for this estimation, and as we will see in Section 4.4.1,

seems to give results similar enough to real users.

Sidebar–Main Results Correlation. We also add an optional pair of a pair of pa-

rameters to capture 1. the degree of correlation between the information in the sidebar

and main results (µcorr), and 2. the proportion of main results that are correlated with the

sidebar (pcorr). These parameters are used when calculating the observed relevance rewards

accumulated by a simulated user. Our expectation is that a large value for the correlation

will reduce the benefit of examining the sidebar. The addition of these parameters gives us

an additional dimension to explore when comparing the effects of changing various aspects
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of the system. The effect of the correlation goes in both directions: clicking on an item in

the sidebar after one has seen the same information from the default ranking should reduce

the gain in relevance, and vice versa. We only consider the correlations between snippets in

this work, and as such, only the rewards from clicking on search results will be affected. Ex-

tending this to correlations between the information on the pages or documents themselves

would conceivably affect the reward that comes from saving after viewing those documents.

The the purpose of the simulation, during each run we randomly associate each result

in the main ranking with a correlation, which approximately averages to our correlation

parameter µcorr. Furthermore, we associate each of these results with a result in the sidebar

so that we can apply a discount factor equal to the correlation if one of these correlated

results were clicked after the associated result had already been clicked in the opposing

ranking. The number of main ranking results that have this association is determined by

the second parameter pcorr mentioned above.

rel-AUC. For the rest of the paper we will refer to a measure that we call rel-AUC. We

calculate this as the area under a time-relevance curve, as might be seen in Figure 4.5. This

serves as a convenient measure, as it gives us a single number for comparison over the course

of simulated sessions. We plot this simulated outcome rel-AUC as a factor of proportion of

ranking correlated, and the correlation in Figure 4.3.

Considering the quality of the sidebar (each result may have one of three levels – very

good, good, and not relevant), we look at the effect of all results having either poor or very

good quality in Figure 4.4. This serves as to verify our expections, that as the quality of the

results in the sidebar improves, so does the outcome of our simulation.

4.4 Results

4.4.1 Comparing Simulation to User Behaviour

As a sanity check, it is useful to ensure that our simulation is capable of realistic user

behaviour. This sanity check will form the basis of our first research question: How close is

our simulation to the behaviour of actual users?. For this question, we used the data from a

pilot study of user indifference and the tradeoffs between risk and value.

To match the expected query behaviour of a user, we assume in the simulation that on

average, each additional query issued is likely to increase the relevance of the results by at

least a small amount. (The increase factor, chosen heuristically in this study, was 0.25.)

Another assumption of note was that the probability of issuing a new query would increase

as our simulated user moves further down the main ranking on the left by increments of
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Figure 4.3: Our outcome measure rel-AUC decreases as correlation increases and the pro-
portion of main results correlated with the sidebar increases in simulations with 10,000 runs
each. Bars show the standard deviations.
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(a) Quality: Poor

(b) Quality: Very Good

Figure 4.4: rel-AUC improves with sidebar quality during simulation, showing probability
distribution of utility outcomes conditioned on low vs high-quality sidebar results
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n
nmax

, where n is the ranking position and nmax the number of results in the main ranking.

For the utility gained by our simulated users, we use three levels of relevance: not relevant,

relevant, and highly relevant. The results in the sidebar were given relevance judgements

by one of the authors, but the main results were evaluated for relevance via crowdsourcing

on Amazon Mechanical Turk and Figure Eight3. Due to the nature of the tasks, as outlined

in Section 4.3.1, we use a notion of relevance that more closely aligns with the multi-aspect

nature of the type of search under study. More specifically, relevance is considered along

the dimensions of whether a result 1. addresses the needs of the task, that is, if the search

intent is satisfied; 2. the degree to which all aspects of the task appear in the result, and 3.

the result is high-quality and correct. For more on the specifics of the crowdsourcing task,

including the instructions given to crowdworkers, please see Appendix A.

To finally address RQ1, we computed the average relevance curve across all six of our

pilot users, as well as the average relevance curve across 1000 simulations using the rankings

from the pilot runs that our users saw. We plotted these curves for comparison in Figure 4.5.

As should be evident, the two curves track each other remarkably well. We also performed

statistical tests, the first being a one-sample t-test on the differences between the two curves

without the cumulative sum applied, which yielded a p-value of 0.22 (t = 1.2245). With

the null hypothesis of the difference being equal to zero not rejected, this suggests that the

curves are similar. We also performed an adaptive Neyman test for the difference between two

curves. This test has been shown to be statistically sound for hypothesis testing between

curves and involves applying a discrete Fourier transform to decorrelate stationary data

into nearly independent frequency components [65]. The test statistic TAN = 5028.13 with

m̂ = 87, which resulted in a p-value < 0.01. We can therefore say that our simulation is

capable of behaviour that closely matches the outcomes of real users in terms of the rate of

relevance gain.

4.4.2 Differences in Real and Perceived Quality

For this section in which we address RQ2, we are motivated by a hypothetical: what happens

if someone believes an interface element is more useful than it actually is? We believe this

counterfactual could serve an interesting purpose, and may be worth exploring as it has

implications for benevolent deception [2] in design. As we mentioned in the Related Work

(Section 4.2), this refers to a manipulation of belief in a user’s mental model of a system

for the benefit of a user as well as the developer. For the design of a search system, the

implication here may involve signalling an overestimate of usefulness for an interface element

3https://www.figure-eight.com/
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Figure 4.5: Mean cumulative relevance over time per task of our simulation using parameters
estimated from our user pilot data and actual user outcomes. Relevance is achieved through
clicks on relevant results. Simulation is averaged over 1,000 runs. Rates of relevance gain
for the simulation and users are similar. Bands show the standard deviation.
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that a user themselves underestimates the usefulness of. In the context of our experimental

search system, the interface element is the sidebar of auxiliary high-quality results that our

users may be hesitant to trust or engage with. Here, we know that users will benefit from

the results we present, but to the users, this may not be clear.

To investigate this change, we make two concrete assumptions – that a change in a user’s

belief of the sidebar’s usefulness manifests as a change in behaviour, and that a user that

examines the sidebar will be able to accurately assess the quality of the results contained

therein. These assumptions allow us to observe this change in preference as well as opera-

tionalise it in our simulation. The model describes the transition from the state “viewing

the main results” to the state “viewing the sidebar” and vice-versa with probabilities of

transitioning between states. We can cast these transition probabilities as preferences for

one ranking or the other, such that a preference for the main results would be accompanied

by a suitably low switching probability from the main results to the sidebar. Similarly, a

preference for the sidebar would suggest a high switching probability from the main results

to the sidebar.

Sidebar Quality. Closely related to relevance of the results contained in the sidebar, we

define the notion of sidebar quality, which is simply the expected relevance value of results

within the sidebar.

Figure 4.6 shows the results of simulating runs while manipulating the probability of

switching from the main results to the sidebar, which we take as being proportional to

the perceived quality of the sidebar. The outcome being measured here is the area under

the cumulative relevance curve (rel-AUC ). Analysis on these outcomes shows that as the

quality of the sidebar results increases, the average cumulative relevance also increases, (from

rel −AUC = 180 when q = 0 to rel −AUC = 335 when q = 1 and rel −AUC = 484 when

q = 2). These changes are statistically significant as reported by an ANOVA (p < 0.05).

The interaction between switching probability and quality is also statistically significant

(p < 0.05). A post-hoc Tukey’s pairwise comparison revealed a significant difference between

qualities q = 0 and q = 2 (p < 0.01).

Figure 4.6 also shows some interesting trends regarding switching probability. When

the sidebar quality q = 0 (and thus all results are non-relevant), the average cumulative

relevance measured drops when the switching probability increases from pswitching = 0 to

0.1. Conversely, sidebar qualities of q = 1 (medium quality, or all results are relevant) and

q = 2 (high quality, or all results are highly relevant) exhibit a sharp increase in cumulative

relevance when the switching probability pswitching increases from 0 to 0.1. Two-sample t-

tests indicated that these differences are statistically significant (p < 0.01). Intuitively, this

is understandable, as with limited time to complete a search, attention is taken away from
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Figure 4.6: Relevance changes with real sidebar quality (low=0, medium=1, low=2) medi-
ated by perceived quality (switching probability) with 5 sidebar results, averaged over 10,000
simulations. As sidebar quality increases, the median cumulative relevance increases as well
as the variability in relevance measured by standard deviation. Baseline quality when side-
bar is unused is where switching probability is zero.

a user’s task towards an element that does not help. On the other hand, it reaffirms our

base assumption that this element – the sidebar – may prove beneficial as long as relevant

documents are present and users do in fact use it. In general, this finding suggests that it

is worth exploring ways to draw attention to the benefit of an interface element such as our

sidebar when it is able to provide said benefit, and perhaps conversely, to draw attention

away from or de-emphasise the element when the benefit is absent.

4.4.3 Option Value of the Sidebar

We take this a step further by calculating win-loss distributions for these cases by considering

pswitching = 0, where the user never switches from the main results to the sidebar to be

alternative scenarios for each simulation. We subtract the simulated outcomes for each

combination of p and q, which gives an idea of how beneficial switching would be to not

switching. We show the win-loss distribution for pswitching = 0.6 in Figure 4.7.
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Figure 4.7: rel-AUC win-loss distibutions with real sidebar quality mediated by perceived
quality (switching probability), where switching probability pswitching = 0.6. Density plots
are for different measures of sidebar quality, from low (0) to high (2), and are shaded where
the win-loss > 0. As the sidebar quality improves, we see fewer losses at the modes. The
expected values given a win are shown as vertical lines corresponding to the sidebar quality;
as quality increases so does the expected value given a win (225 when q = 0, 333 when q = 1,
and 439 when q = 2.).
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We can boil these distributions down to a number by using the Datar-Mathews real

options approach to calculate a weighted average, p(win) × E[value|win]. This number

summarizes the likely future value of having a novel user interface element (the sidebar)

available as an option to the user. Showing this in Figure 4.9 verifies the effectiveness of a

high-quality sidebar. However, it also demonstrates the harm of a low-quality sidebar, where

any degree of switching starts to show losses compared to not switching. We see that the

most effective combination has pswitching = 1 and q = 2. When the sidebar quality is lower

however, the option values are highest at switching probabilities pswitching < 1 – when q = 0,

the option value is highest at pswitching = 0.5, and when q = 1, the option value is highest at

pswitching = 0.8. This implies that there is value in having the option to switch between the

main results and the sidebar to make up for any lack of quality in the sidebar.

We also consider the effect that the variance of the results in the sidebar might have on

the option value, that is, this indicator of likely future value. A system designer may make

the decision to prioritise an algorithm that produces relatively consistent results over an

algorithm that might take risks in finding high-reward results. In Figure 4.8, we plot the

option values from simulations with either a sidebar with results having high variance where

results are specified by a random permutation of the quality vector ⟨0, 0, 1, 2, 2⟩, or a sidebar

with results having low variance and all results having a quality q = 1. From this, we can

see that the higher variance sidebar always has a higher option value in comparison to the

lower variance sidebar. In cases where we can give the option of using a ranking that has a

higher variance, this could be beneficial to users.

We also look at the conditional value at risk, which is the expected shortfall, or the

average loss for the worst x% of cases. When we investigated the of this calculation at

x = 50%, we saw that this corroborates the relative effects of real sidebar quality on the

expected outcomes from use – the highest quality sidebar has the lowest average loss in the

worst 50% of cases. However, we also see that this intersects with the perceived quality as it

did when looking at the option value, in that the expected shortfall is the least with a high

perceived quality or switching probability (80%–90%), but switching from the main ranking

to the sidebar should not be exclusive here as well.

4.4.4 Sensitivity Analysis

To address RQ4, characterizing user behavior associated with high vs. low performance, we

performed a sensitivity analysis to increase our understanding of the relationships between

a user’s interaction behavior, as represented by the state transition probability parameters,

and the rel-AUC outcome variable (i.e., the area under a time-relevance curve).
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Figure 4.8: The option value of the sidebar to the user as a function of (1) the variance of
the quality of the results in the sidebar (with fixed mean q = 1), and (2) perceived sidebar
quality (switching probability from main results) resulting from 100,000 simulations at each
combination of variables. Variance values were 0.8 (high) and 0 (low). Bars show the 95%
confidence intervals. A high variance in sidebar quality leads to an increased option value
over a low sidebar variance, which suggests a likely future value of a sidebar that exercises
some degree of risk.
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Figure 4.9: The option value of the sidebar with variance zero as a function of (1) the actual
sidebar quality and (2) perceived sidebar quality (switching probability from main results)
resulting from 10,000 simulations with each combination of variables. The sidebar is most
effective when its results quality is high (q = 2) and the probability of switching to the
sidebar pswitching = 1. For all values of sidebar quality, we see that the highest option value
is reached when the sidebar is not preferred exclusively (option value is highest for other
values of quality p(main→ sidebar) = 0.2 when q = 0 and p(main→ sidebar) = 0.9 when
q = 1), which in these cases suggests value in switching to the main results in these cases.
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4.4.4.1 Linear Model

Our first step for preforming our sensitivity analysis involved building a linear re-

gression model with rel-AUC as the dependent variable, and model state transition

probabilities as the independent variables, with parameters fitted with simulated data.

This will enable us to analyse how changes in the independent variables (the pre-

dictors) were associated with changes in the rel-AUC outcome variable. Of the in-

dependent variables, start�view main, view main�view sidebar, view main�view main,

view main�click main, and view main�query were positively associated of success (p <

0.05) and click main�view main, click main�view sidebar, and click main�save main were

negatively associated with success (p < 0.05). This suggests that, for the system simulated,

examining both rankings is a positive predictor of success (that is, time spent viewing the

main or sidebar results). Clicking the main results after viewing them and issuing new queries

also predict success. However, going back to re-examine either of the rankings after clicking

a result is a negative predictor of success. One way to interpret this is as a manifestation of

the position bias: clicking on a result means that it is likely that the next result examined

will be less relevant than the result we already clicked. In this case, it makes sense to spend

time examining results, clicking when relevant, and re-querying after as necessary.

With this linear model, we then performed our sensitivity analysis. A visualisation

of this can be seen in Figure 4.10. This sensitivity analysis shows that a change to

view main�view sidebar or view main�click main leads to the largest normalised changes

in rel-AUC, where an increase would be expected to increase the rel-AUC. In the opposite

direction, click main�save main and click main�view main would be the most negatively

sensitive parameters, where an increase in the likelihood of moving from the sidebar to the

main results, or the likelihood of continuing to use the main results after clicking, would be

expected to decrease the rel-AUC.

As it relates to RQ4, we would expect that a stronger focus on the main results is more

beneficial when there are many more options in its ranking than in the sidebar. We will take

a look at simulations of high and low performance in more detail in response to RQ5.

4.4.5 Dimensionality Reduction of Simulation Space

To address RQ5 – how to get from low to high user performance – we explore the simulation

space in order to identify what changes might be necessary to the system and/or users’

behaviours. As a reminder, the original high-dimensional simulation space in terms of the

set of NN parameters representing the state transition probabilities shown in Figure 4.2

with the addition of the Sidebar–Main Results Correlation parameters in Section 4.3.2.
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A : start.view_main

B : view_sidebar.click_sidebar

C : save_sidebar.view_sidebar

D : view_main.click_main

E : click_main.view_main

F : click_main.save_main

G : save_main.view_main

H : view_sidebar.view_main

I : view_main.view_sidebar

J : view_main.view_main

K : view_main.query

Figure 4.10: Sensitivity analysis showing how change in rel-AUC outcome is sensitive to
changes in each of 11 independent variables representing user decision probabilities in the
interaction model. Outcomes are averaged over 100 simulations. Positive change in rel-AUC
was most closely tied to more exploration of main results and increased use of the sidebar
(increased view main�view sidebar and view main�click main: I and D, top right corner).
Decreases in rel-AUC were most closely tied to saving main page results and continued use
of the main results (increased click main�save main and click main�view main: F and E,
mid-right).
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Figure 4.11: Dimensionality reduction of simulation space with t-SNE. Blue represents low
rel-AUC and red represents high rel-AUC. Some structure is evident, such as the groups of
parameter instantiations and areas of high/low effectiveness indicated by colour in the areas
labelled “A”, “B”, and “C” and their correlation parameters. The corr parameter is the
correlation between the sidebar and main results, and the prop parameter is the proportion
of sidebar results with the given correlation.

Using the dimensionality reduction technique t-SNE [127], we project this NN -

dimensional simulation space of state transition parameters into a 2-D representation. We

show a visualisation of this reduction in Figure 4.11. In this figure, each point represents

the average of simulation outcomes for a particular combination of simulation parameters;

this means that with t-SNE applied, points close together have similar values for their pa-

rameters. We colour each point by its rel-AUC value using a non-linear scale described by

[94, 121] to highlight the differences between high and low performance.

In the t-SNE plot, we can discern some structural characteristics of the space. There are

areas in which high performance is seen, such as the area labelled “A” – this area of deep red

(high performance) is surrounded by a points of low performance (the points in blue). We

97



Figure 4.12: Dimensionality reduction of simulation space with t-SNE zoomed in to region
A from Figure 4.11. See text for a description.

show this in greater detail in Figure 4.12, and will describe this particular figure in greater

detail below. However, we also make note of similar regions labelled “B” and “C”, which

correspond to the three pairs of correlation parameters we simulated: (0.9, 0.1), (0.5, 0.5),

and (0.1, 0.9). This indicates that there are small differences between the combinations of

correlation parameters such that, we can always find an area of high performance regardless

of correlation and the correlation between the main results and sidebar plays a relatively

minor role in leading users to high performance. Other areas have structure as dictated by

the parameter space, but these are areas of low performance. Overall, this analysis suggests

that, using this method, we can not only identify high-performing parameters, but we may

also be able to guide users in low-performing areas to areas of higher performance.
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State Transition Average Distance

view main�view sidebar 0.1069
view main�query 0.1049

view main�click main 0.1040
view main�view main 0.0829

save sidebar�save sidebar 0.0004
save sidebar�view sidebar 0.0002
save sidebar�view main 0.0001

Table 4.4: Most salient state transitions in region A from Figure 4.11. Average distance
between points gives a rough estimate of how much the transition probabilities change within
the region.

State Transition Average Distance

click main�view main 0.1063
click main�click main 0.1050
click main�view sidebar 0.1050
click main�save main 0.1024

Table 4.5: Most salient state transitions in region B from Figure 4.11. Average distance
between points gives a rough estimate of how much the transition probabilities change within
the region.

Looking closer at region A in Figure 4.12, we see blue boundaries along the the edges

with rel-AUC close to zero, but central points with high outcomes. When we investigate

the transition probabilities in these points, we see that the region along the right bound-

ary (marked by the arrow “A1”) has the transition probability for view main�view sidebar

increasing as we move down the region as indicated by the arrow. Slightly to the left, the

region indicated with the arrow marked “A2” is one of high performance, and as we move

down that region, the transition probability for view main�view sidebar increases while the

transition probability for view main�query decreases. Moving to this region from “A1” to

“A2” entails a decrease in the probability of transitioning from view main�view main to-

wards zero. In Table 4.4, we show the salient state transitions from region A, calculated

by the average distance between all points in the region. We have excluded the transitions

with average distances very close to zero. For comparison we also show the salient state

transitions from region B in Table 4.5. The lack of overlap between these lists shows the

reason for the discontinuity between regions in the low-dimensional space and illustrates the

difference that the changes in certain transitions can make to outcomes.

Using the t-SNE reduction as a basis, we can find productive paths that lead from areas
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of low performance to higher performance. The process by which this was done is as shown

in Algorithm 4.1.

Algorithm 4.1: Find Productive Paths

Data: A list of points P from t-SNE dimensionality reduction
Result: A graph G consisting of paths from low to high performance

M ← DistanceMatrix(P);
foreach point p in P do

N ← four nearest neighbours of p;
foreach neighbour n in N do

if distance between n and p < MeanDistance(p, N) then
add adjacency (n, p) to graph;

end

end

end

This gives us an implicit graph of adjacencies, which we can traverse to determine direc-

tions of higher or lower performance. We perform a depth-first search along increasing edges

to find the final network of productive paths.

Following from this, we perform this process for different three values of the correlation

between the sidebar and main ranking (0.1, 0.5, and 0.9). This correlation captures the

degree of overlap between the results in the main ranking and the sidebar as described in

Section 4.3.2. This allowed us to identify the most “productive” paths as determined by the

cumulative improvement along the path by rel-AUC. We show summaries of the top path

for each correlation value in Figure 4.13, with the initial models followed by the cumulative

changes in the models along the path and the final scores.

Figure 4.13 highlights the changes that it takes to get from a lower-performing model to

a higher-performing one, with this example chosen as one of the models with the largest

difference in its outcome. Here, the correlation between the sidebar and the main results

and the sidebar is 0.9, and our analysis of other models has shown that with this high degree

of correlation, there is a focus on switching to the main results and staying there for higher

performance. This can be explained by the fact that many more results are present in the

main ranking than the sidebar, and if they mostly overlap, there is little benefit to using the

sidebar.

This analysis gives us a direction to pursue with regards to RQ4: ways to guide users

towards better performance. Depending on the level of similarity between the two rankings,

we can potentially employ different strategies – encouraging use of the sidebar when similarity

is between the rankings is low and the quality of the sidebar is high. Furthermore, that we
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Correlation: 0.9

start->view_main 0.9

start->view_sidebar 0.1

view_sidebar->click_sidebar 0.6

click_sidebar->save_sidebar 0.8

click_sidebar->view_sidebar 0.1

click_sidebar->view_main 0.1

click_sidebar->click_sidebar 0

save_sidebar->view_sidebar 0.9

save_sidebar->view_main 0.1

save_sidebar->save_sidebar 0

view_main->click_main 0

click_main->view_main 0.3

click_main->view_sidebar 0.1

click_main->save_main 0.6

click_main->click_main 0

save_main->view_main 0.9

save_main->view_sidebar 0.1

save_main->save_main 0

view_sidebar->view_main 0.7

view_main->view_sidebar 0.1

view_main->view_main 0.5

view_main->query 0.4

query->view_main 1

view_main->click_main -0.7

view_main->view_main +0.5

view_main->query +0.2

259.8

Final Score: 
4944.989

+4685.2

Figure 4.13: One of the most productive paths to highest cumulative gain, where each node
represents the behaviour of a simulated searcher. The top node in grey is the starting model,
and intermediate nodes in white are the changes to the model. Edges are labelled with the
change in score resulting from the model change.
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have devised a method for identifying these paths of increased performance means that we

can further explore other system- and user-level simulation parameters and discover other

means of guidance towards higher effectiveness.

4.5 Discussion

The changes between the starting model and subsequent increase resulting from the mod-

ifications suggest ways we might nudge users to change their mental models of the system

to achieve better effectiveness. Most of these changes (the white, intermediate nodes in Fig-

ure 4.13) reflect behaviour changes in users’ interactions with the sidebar and main results

– whether these elements are viewed, clicked, or results within them saved.

It is difficult to estimate the magnitude of these potential interventions, but we might

posit that varying magnitudes might be possible along a spectrum of nudges and shoves.

Whereas a nudge preserves choice, a shove removes it [183]. These nudges could either

involve explicit affordances, or else – along the lines of Information Foraging Theory [154]

– more implicit cues in the interface or results content itself. Highlighting elements is an

intervention that might serve as a nudge. To encourage a user to save a result after clicking

it, we may highlight the save button for the result they just examined. Similarly, if we want

to encourage a user to look at the results in the sidebar, we may highlight the entire sidebar.

To encourage users to click on a particular result, we may highlight just that result.

Providing additional information may also be a way to introduce a nudge. The position in

a search ranking gives relative information about a result being more relevant than another,

but how much more relevant is often not conveyed. In a sense, the results in our sidebar

are better at solving the tasks given by including more information in each result, but

this might not be evident unless a user examines the documents explicitly and understands

the abstract differences in content. A nudge to encourage usage of the sidebar may be to

convey the benefit of the sidebar before the user starts using the interface, or to convey this

information while they use the system, for example, by summarising the content (e.g., “this

result addresses four of the five aspects of your task”).

Disabling elements by contrast is an intervention that might serve as a shove. Because it

removes the choice of using the element, we may be potentially frustrating users depending on

their preferences on how to solve their task, or even inadvertently reducing their effectiveness

if the intervention is actually inappropriate. However, if we know that there is only a cost to

using an element, this shove could be beneficial. In our experiment, we essentially incorporate

a shove by disabling the sidebar until the simulated sidebar “finds” a result worthy of showing

in the sidebar. This discourages users from spending too much time trying to use the sidebar
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before it would help.

With all this in mind, we believe we have demonstrated the value of session simulation

as an exploratory tool. It pointed towards various avenues for future experimentation and

analysis both as a result of the simulation outcomes and during the process of building and

running the simulation. The simulation also enabled us to applying stochastic option pricing

methods to compute the likely future value of having a novel user interface element as an

option for the user. Investigating productive paths towards high performance was a goal

of our analysis from the outset, but the ability to plot and explore a space of simulation

parameters introduced a good deal of clarity and guided our methods in a way that would

have been more difficult solely using log data.

We must also make note of the limitations of our analysis. Our simulation model was

built largely in the interest of simplicity while being able to provide plausible behaviour,

and as such is not as sophisticated as some other contemporary searcher interaction models.

Different stopping behaviours [139], a model of relevance saturation, or browsing strategies

[179] were not considered. Future simulation work may take these into consideration, as well

as simulating other user phenomena such as fatigue, task difficulty, or reading level.

Finally, we note that the use of options pricing methods for estimating the likely future

value of user interface components is quite a general idea: it could be applied, beyond search

and recommender systems, to any interaction scenario where a user utility measure can be

defined for an interface feature or affordance, along with a stochastic model of utility over

time. Such a valuation measure could be used to evaluate the potential feature or affordance,

as we do here with the sidebar, or it could be used as the objective to be optimized. We intend

to explore theoretical and algorithmic aspects of this valuation framework more extensively

in future studies.

4.6 Conclusion

We have presented the use of user session simulation as a tool for exploration in the design

of information retrieval systems and for identifying interesting avenues for experimentation.

We collected user interaction data from a small-scale pilot experiment, and showed that

calibrating our simulation to this data was able to produce similar outcomes to those of real

users. Using statistical analysis of a regression model, we were able to identify the state

transitions of our model that characterise high and low performance, and applied principles

of real options pricing to show that increasing the perceived quality of search results in

our sidebar is benefitial to users when the real quality the search results is appropriately

high. Furthermore, the simulation made it possible to identify ways to guide users from low
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to high performance. Future work will investigate these avenues more directly, with more

sophisticated interaction models and confirmatory experiments on real users.

4.7 Author Contributions

This work was prepared by Ryan Burton and Kevyn Collins-Thompson. Burton originated

the state transition simulation design for modeling user behavior. Collins-Thompson pro-

vided the initial idea of using options pricing frameworks from finance to value user informa-

tion sources, along with a mathematical valuation framework that would be suitable for this

chapter’s scenarios. Ryan Burton was the main contributor for the remainder of the work,

having designed and conducted the experiments, as well as analyzing results and writing the

manuscript. Kevyn Collins-Thompson also contributed revisions to the manuscript.
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CHAPTER 5

Conversational LLM Assistance During

Technical Reading

In previous chapters, we have shown the effect of users learning to use a new, novel search

system and the value of simulation as a tool for exploration in the information retrieval

system design space. In this chapter, we take these concepts a step further to a new domain

– tools for vocabulary learning during technical reading and search. This work has been

submitted to CHIIR 2024 and is currently under review.

For a student reading a document on a specialized topic, it may be difficult to penetrate

the jargon contained within, even if the topic is in the student’s area of study. As system

designers, we can take a role in offering assistance to students engaging with resources to

make learning and understanding a less onerous process. In this study involving data sci-

ence student participants, we employ a chatbot assistant through two consecutive learning

phases: one centered on document reading and the other involving a simulated search engine.

The chatbot utilizes a contextual large language model (LLM) using a Retrieval Augmented

Generation approach to provide responses to user questions about the documents and their

associated keywords. We analyze log data, questionnaires, and interviews to identify usage

patterns of the chatbot and to understand learning and interaction behaviors. Additionally,

we assess the user’s opinions on when a conversational assistant would be appropriate or

helpful in a learning task. We find that trust is a recurring factor in users’ opinions, shaping

their perceptions of the assistant’s usefulness. Tests of learning gains point to improve-

ments over prior knowledge and vocabulary coverage before the study, but more extensive

investigation is needed to provide conclusive results.

5.1 Introduction

The heavy use of technical terminology in learning resources can put unnecessary strain on

students learning a new subject. A 1995 study of secondary school science textbooks found
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that the number of new vocabulary terms was at least as much as that in a foreign language

course [78]. The implications for learners are numerous – from the potential to memorise

facts without developing a deep understanding of the material, to the perception of such

subjects as “finished bodies of knowledge” with just facts to be absorbed [78, 83].

The primary goal for this study, therefore, is to investigate whether learning materials

could be made more accessible by providing two key affordances: first, recommending impor-

tant keywords to learn, using an approach that is personalised according to a student’s level

of prior familiarity with the keywords; and second, a conversational agent that is able to ac-

cess and analyze the texts of the provided class resources, so that students can ask questions

of the agent about these resources directly, including about how key technical concepts are

used. To that end, we conduct a study to evaluate the effectiveness of an automated con-

versational assistant that a student can use not only for increasing their factual knowledge

of key technical concepts, but for asking higher-level questions about how these concepts

are used in the technical reading. Our analysis includes a focus on how a learner’s knowl-

edge evolves during the session and how individual aspects such as their previous domain

knowledge and familiarity with AI chatbots are connected with features of their interaction

behavior. In particular, we address the following research questions:

RQ1 : What patterns of use can we characterise for learning from user interaction with

an AI assistant during reading?

RQ2 : Does a user’s previous knowledge on a search topic affect their interaction be-

haviour during use and answers in the post-study test and interview?

RQ3 : How does the use of an AI chatbot shape a user’s experience including trust in

the system?

In this work, we describe the implementation of a search interface to aid in vocabulary

learning that uses a large language model for conversational assistance. This assistance is

provided via a chatbot affordance, and this conversational agent is aware of the content of

the page a user is reading during their search task and is able to answer questions about

it. The chat is complemented by the use of keyword extraction from articles, where the

keywords are adaptively presented on the search results page as interactive elements that a

user may click to ask the chatbot for a definition. Therefore, the keyword recommendation

on the search page is complemented by additional assistance on the articles for which we

recommend these keywords. We present preliminary results of interaction patterns using

trace data, as well as a qualitative analysis of in-depth interviews after users have completed

the study.

We will now review related work for the aforementioned elements of the study, and will

follow with a description of our study design in Section 5.3, review our results in Section 5.4,
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and discuss the implications of our work in Section 5.5.

5.2 Related Work

This study combines elements of several research themes, including learning during informa-

tion seeking, conversational assistants, and concept extraction.

5.2.1 Searching as Learning

With the heavy focus on relevance in search, learning has not always been a particular topic

of explicit interest or study. Marchionini’s (2006) depiction [132] of the three types of search

activities (“Lookup”, “Learn”, and “Investigate”) in his description of exploratory search,

which encapulates the latter two, put the behaviours and needs that come with “learning

searches” in stark relief to the other types of activities. These learning searches are iterative

and require interpretation on the part of the user – intepretation that takes time and effort

and calls for qualitative judgements.

Eickhoff et al. took steps to identify search sessions that seemed to boost users’ learning

within log data by building models of the users and their specific contexts [63]. Using metrics

to characterise domain expertise from search behaviour such as domain and topic diversity,

branchiness (tendency of returning to a previously visited page) and display time (experts

spend less time reading a page within their domain of expertise), the authors were able to

see how these metrics change within a session and whether learning effects “persisted” across

session boundaries.

Although learning as a part of search has long been considered, it has only been more

recently that there has been work to investigate the indicators of effective learning that

comes as a part of the search process. Collins-Thompson et al. [50] looked at methods to

assess learning at different stages of a simulated work task involving a search engine that

proves intrinsically-diverse results, and found that both explicit and implicit measures such

as perceived learning outcomes, interaction speed, and length of written responses to the

given task served as indicators.

To investigate learning gains over time, Roy et al. [166] gave users a search task during

which they were prompted every 20 minutes about their knowledge about the topic. Users

who had some familiarity with a topic had the highest gains in learning, while users with

no prior familiarity saw a sublinear increase in learning gains. In order to measure this, the

authors gave participants four-level self-assessments of vocabulary knowledge.

Many learning assessments tend to involve administering pre- and post-tests, considering
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the difference in score to indicate the gain in knowledge. Yu et al. [221] aimed to predict

this difference with a supervised model using interaction features such as the maximum time

spent per page and the average time per page. However, this process requires calibration

for each topic, which may interfere with the prexisting knowledge levels we expect or want

study participants to have. Otto et al. [149] took the idea further by adding multimedia,

text, and structural features for the learning resources that participants used, and found

a mixture of linguistic and multimedia features that proved salient in their random forest

classifier, including the presence of classes of words (such as religious or certainty words), as

well as document complexity, the presence of infographics, and the presence of a heading or

menu bar.

In our present work, we take a search-inspired approach to our study design, presenting

a set of documents relevant to the main topic of the task. We measure users’ learning gains

as they progress through the task at set stages, measuring vocabulary familiarity and topic

knowledge. For simplicity we prevented users from issuing their own questions, but we see

the evidence of iterative nature of learning in users’ interaction with the chatbot.

5.2.2 Conversational Assistants

Conversational assistants have long been a “holy grail” of computer science research. With

brief spikes of interest over the decades since the 1960s beginning most significantly with

Weizenbaum’s ELIZA [207], progress has been stilted due to the obvious limitations on

the required syntax and semantics on the part of the user; however, the advent of large

language models presents a new avenue for exploration with fewer obvious limitations than

prior systems based on explicit pattern matching and rule application.

Large language models, which are currently enjoying the status of “foundation models” on

which other language tools and systems may be built [26], may be distinguished from previous

generations of language models not only by their size—they are typically trained on a large

multimodal corpus of web documents consisting of text and code and result in models with

billions of parameters—but also their training techniques which rely on dynamic pretraining

techniques. These models are amenable to further fine-tuning to give better performance in

specific domains [229]. ChatGPT 1 and LaMDA [192] are specific language models that have

been designed for conversational use.

A conversational assistant, however, should be expected to be capable of more than

carrying a conversation – it should also succeed in assisting the user with their task. A

human assistant is expected to have domain competence, to be able to learn from their

1https://openai.com/blog/chatgpt/
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client and adjust accordingly, know their own limitations, and handle inexact instructions,

and we should aim for computational assistants to exhibit the same properties [89]. One

system that focuses on assistance is Iris [66], which has the ability to combine commands

in order to perform complex tasks beyond the single standalone commands that might have

been included by the designer. To handle inexact instructions, it asks clarifying questions

and understands dependent questions that relies on the answer to a subsequent request.

In the context of the present study, we consider the explicit capabilities given above as-

pirational, though the combination of a large language model with contextual information

may simulate the capacity of an intelligent conversational assistant to some degree. As we

describe in Section 5.3.6, we provide the large language model GPT-4 with contextual infor-

mation and design the prompt such that the chatbot behaves as a helpful enough assistant

for our limited degree of expected interactions. Although prompting a large language model

can roughly serve a similar purpose to search, querying a large language model in the way

we propose is more analogous to question-answering than retrieval, and as such, we use a

chat affordance and keep the two modalities distinct.

Our work combines conversational assistance with information seeking, and therefore

evokes some relationship to conversational search. Research into conversational search is

relatively more recent, from Belkin et al. [21] applying case-based reasoning to create system-

level scripts to Radlinski and Craswell presenting a theoretical model of desirable properties

for a conversational search system to have [159]. In this case, the system should return a

result set, but also request clarification if needed and accept feedback on the returned results.

It is possible to view our system as conversational search but it does not quite fit because the

response of our language model-based chatbot is synthesized rather than retrieved. There

are relevant aspects of conversational search research that may be applicable, as work has

been done to investigate its application to query reformulation [116], query understanding

[163], and how to exploit relevance feedback [151]. However, this is outside the scope of our

present study.

5.2.3 Vocabulary Learning

Vocabulary learning has been studied using a distinction between intentional and incidental

learning. Swanborn and de Glopper [185] highlighted this difference, noting that intentional

word learning occurs in situations where a student is instructed to derive or actively try

to learn the meanings of unknown words in context while reading. In contrast, incidental

learning “is not triggered by the reading task” (p. 262), that is, it occurs in a setting that

is familiar to the reader, and when reading is not done for the purpose of learning or for
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directing attention to unknown words. Although we will use findings from both intentional

and incidental learning studies to inform our work, we are primarily interested in the task

of intentional learning for our experiment.

5.2.3.1 Concept and Keyword Extraction

Besides the issue of learning concepts, we must consider on the system side the problem

of determining what concepts exist in our corpus of documents. In the simple case, course

concepts are provided by the instructor. We would expect these to be relatively high-quality,

but possibly at a course level due to the effort required to come up with these concepts. We

may also run across the issue of a concept being referred to by other names in a document

besides the term provided by the instructor. It is for these reasons that concept extraction

becomes worthwhile.

Keyword and key term extraction has been the subject of considerable study in natural

language processing. A survey of the methods and challenges are presented by Firoozeh et al.

[67] These methods are often concerned with identifying “key” lexemes within documents.

For our work, we are interested in connected these key terms to broader concepts in order

to disambiguate terms and recommend the user to learn a single concept covering multiple

instances of the same idea. Considerable work has been carried out in applying information

extraction techniques to this problem [77, 203, 54], and in our case we use the Wikifier service

[30] for the task.

5.2.3.2 Prerequisite Relations

An issue that may arise for students learning within a particular domain is that it is often ef-

fective to learn about prerequisite concepts before learning about a target concept. Without

this information, students may have to spend additional effort finding the required back-

ground knowledge on their own, and may not know what background knowledge is actually

required. A course’s structure is typically set up to introduce the information necessary to

understand a concept before tackling the topic, but it is not always clear which concepts

directly relate to each other.

Prerequisite relations may also be extracted from a document corpus. Particularly with

the large-scale efficiency demanded of MOOCs, this has seen a good deal of research within

that context [125, 152, 124, 167]. Hu et al. [90] used Wikipedia clickstream data to infer

prerequisite relations among Wikipedia articles. They note that clickstream data is relatively

sparse for any given relation, or pair of concepts, and as a result they also use the set of related

concepts within Wikipedia to increase coverage. This points to the utility of clickstream
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data for prerequisite relation mining, but relying primarily on clickstream data may only be

appropriate for Wikipedia.

Techniques that utilise only the link structure between documents have also been explored.

Liang et al. (2015) [123] proposed a measure of the pairwise relatedness of concepts called

reference distance, or RefD. By modelling a concept in its semantic frame within vector space,

they can use this single measure as a scalable method for predicting prerequisite relations

from large hypertext document sets such as Wikipedia.

PreFace [198] is a faceted search system that determines the prerequisites of facets and

balances the tradeoff between the relevance and diversity of each facet. At its core, it

represents a facet as a language model based on a domain-specific corpus and knowledge

base, and ranks them using a risk-minimization framework. This is perhaps the most similar

work to our proposal but differs largely in purpose and therefore execution – PreFace is

intended for retrieving interesting facets as well as the prerequisites for the aspects of a

query (such as “implementation” or “application”), whereas our work is intended to provide

an incremental vocabulary learning tool that aims to help students become familiar with the

terms within documents through the duration of a course.

We use datasets from [124] and [125] to determine which concepts should be encountered

before and after the concepts we extracted using Wikifier, and show the resulting collection

as key concepts for each document on a search page as shown in Section 5.3.

5.3 Study Design

The objective of this study was to explore the role of a conversational AI assistant in facil-

itating user learning during technical reading. To that end, we designed a study protocol

comprising multiple stages that involved masters-level data science students learning about

a designated topic in data science. The stages included assessments of their knowledge of

this topic before, during, and after the task.

Our study presented the task as two stages of a single learning session – a Reading stage

and a Search stage – in that order. Users were given a total of 45 minutes to complete

the task. During the Reading stage, which we conceived of to control for effects of the first

document that a user would select, users were provided with a single main document to read

and understand, while having access to a contextual chatbot powered by a large language

model. When users finished reading the main document, they were able to elect to move

to the Search stage by clicking a “Launch Search” button, provided they had time left in

the task to do so. During the Search stage, within which a user essentially continues finding

other documents as part of their search task, users were presented with a fixed list of five
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documents mimicking the design of search engine results, and were given access to the same

contextual chatbot that had access to the complete text of whichever document the user

chose to read. As the user interacted with the system, keyboard and mouse interactions of

the user with the page and the chat assistant were recorded.

After one week following completion of the study, users were interviewed to gather further

insights into their experience with the system, and their learning. We now present a detailed

description of the study’s stages.

5.3.1 Study Workflow: Stages and Screens

The complete workflow of our study protocol is shown in Figure 5.1.

Demographics 
Questionnaire

Tutorial Video

Consent
Provided

Prior Knowledge Test

MCQ: General + In-
Document Vocab: All

Reading Task

Search Task

Interview

Post-Document Test

MCQ: In-Document Vocab: In-
Document

Ti
m

e 
Up

Post-Study Test

MCQ: General + In-
Document Vocab: All

Post-Experiment Questionnaire

28m 
27s 16m 

8s

15m 
6s

7m 
23s

39m 
57s

38s

Figure 5.1: An overview of a user’s progression through the study. Median times spent at
each step are shown.

The study stages were structured in the following manner:

1. Demographics questionnaire. This questionnaire primarily gathered information about

their experiences with search engines as tools for learning. We specifically asked about

their existing familiarity with ChatGPT and ChatPDF which resembles our proposed

chatbot in terms of conversational interaction with documents.

2. Tutorial video. Participants watched a short one-minute video giving a brief overview

of their task and outlining how to use the chatbot. The video included examples
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of questions they might be able to ask, such as, “What was the problem statement

[outlined in the article]?” and interactions such as clicking on a keyword on the search

page to get a definition.

3. Pre-task questionnaire and prior knowledge test. On this screen, users were introduced

to the learning topic. They were asked open-ended questions about their existing

knowledge of the topic and what they believe is missing in their knowledge about it.

We assessed their interest and familiarity with the subject using a 5-point Likert scale.

Additionally, we presented a set of multiple-choice questions (MCQs), vocabulary tests,

and open-ended questions to assess their knowledge of the topic domain, across all cog-

nitive learning levels defined by Bloom’s taxonomy [25]. This initial assessment serves

two primary objectives. First, it helps us position the user’s prior knowledge about

the topic. Secondly, it will enable us to later evaluate if their knowledge of the topic

improves through interaction with the system and materials, acting as a benchmark

for measuring their learning progress. The pre-knowledge assessment encompassed

measurements across all levels of Bloom’s taxonomy. This specifically involved the use

of multiple-choice questions designed to assess the capacity to remember, as well as

vocabulary questions aimed at measuring the ability to understand key concepts.

4. Reading stage. Participants were given the main document to read on the topic with

access to the chatbot assistant.

5. Post-document test. Participants completed a secondary combination of knowledge

and vocabulary tests to determine how much knowledge was gained from reading a

single document with the assistance of the chatbot. Users were tasked with answering

9 multiple-choice in-document questions and 18 vocabulary questions without access to

documents or the chatbot. This assessment aimed to quantify the knowledge acquired.

We focused exclusively on in-document questions, as we did not expect users to gain

knowledge on the general topic-related questions from reading the document

6. Search stage. Participants were given a mock search results page pre-populated with a

query on the topic and a list of documents. Users were expected to use the remaining

time to read the new documents in the list and learn about recommended keywords.

They also had access to the chatbot assistant and the main document. The user was

free to make use of the keywords in interacting with the chatbot, to ignore them, or to

look for them manually in the provided documents.

7. Post-task Knowledge and Vocabulary test. Participants were given a third test at the

end of the Search stage: the set of questions to reassess their knowledge on all levels.
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We presented them with the same set of questions as the pre-knowledge test without

access to documents or the chatbot. This step allowed us to measure any knowledge

acquired or changed resulting from their participation in the study.

8. Post-study questionnaire. Participants completed a questionnaire to provide feedback

on their experience of learning using the system.

9. Interview. Participants returned one week later for an interview.

In the following sections, we now describe how the specific learning topic and reading

materials were selected for this study, how we measured learning and prior knowledge, and

how we selected participants.

5.3.2 Topic and Document Selection

In this section, we describe the criteria for selecting the topic about which participants were

expected to learn, the choice of the main document that participants were exposed to during

the Reading stage, and the list of five documents shown on the results page during the Search

stage.

5.3.2.1 The Topic: “What are the Netflix Prize and the SVD Machine Learning

Techniques used by its winners?”

We chose the topic of the study with the intention of ensuring it would be accessible and

engaging for our target audience of masters-level data science students. We chose the Netflix

Prize as a topic because we expected current students to be relatively unfamiliar with it,

presenting an opportunity to measure learning gains. We decided to center our study more

precisely on the primary machine learning technique the winners were known for employing

– namely Singular Value Decomposition (SVD). Users were presented with this topic and a

description of their learning goals at the beginning of the study.

5.3.2.2 Main Document in the Reading Stage

For a suitable document to assign to users for reading and comprehension, we aimed for a

document with a layout and design resembling that of a blog post, designed for accessibility

and clarity. For the document’s content, it was to be comprised primarily of text with a

limited number of images, not exceeding four. Furthermore, a small number of mathematical

formulas was expected to be present, with any formulas serving to clarify the specifics of

SVD. Any documents with content that appeared too complex to understand in the limited
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Article Title Content Description

On the “Usefulness” of the Netflix Prize
— by Xavier Amatriain — Medium

Presents implications of the prize.

Winning the Netflix Prize: A Summary Gives specific techniques used by the winner using
specific machine learning terminology.

Simple SVD with Bias for Netflix Prize
— 叶某人的碎碎念

Gives an explanation of SVD with Python. Fairly
technical.

Model Based Collaborative Filtering —
SVD — by Cory Maklin — Medium

An explanation of SVD using intermediate-level
formulas.

Recommendation System : Matrix Fac-
torization with Funk SVD

More general explanation of matrix factorization
using R.

Table 5.1: List of documents included in the Search stage.

task time or with content consisting of source code for implementing the techniques were

excluded from consideration. Our final choice therefore was an article presenting lecture

notes from the New Jersey Institute of Technology class Introduction to Data Science titled

“The Netflix Prize and Singular Value Decomposition” 2. This document was shown to users

after completing the Pre-Task Test and could be revisited during the Search stage by clicking

a link at the top of the results page.

5.3.2.3 Documents in the Search Stage

After reading the main document, we provided users with a mock search engine interface

to explore additional content related to the topic. We restricted the set of documents to

a list of five to constrain user choice, reducing potential sparsity of interaction, while also

giving users the freedom to decide which to pursue and in which order. These documents

were other potential candidates for the main document, found while the main authors were

looking for articles that covered a high-level overview of the Netflix Prize and the winning

team, SVD, recommender systems, or a combination of these topics. We also looked to have

content covered that included the implications of the prize, the specific techniques used by

the winner, and machine learning jargon. The final list of documents is shown in Table 5.1.

5.3.3 Search Interface Description

During the Search stage, the interface displayed a non-modifiable query “Netflix Prize SVD”

set in place. This fixed-query approach served a dual purpose. The first was to provide

every participant with access to the same set of documents, ensuring that later analysis

2https://pantelis.github.io/cs301/docs/common/lectures/recommenders/netflix/
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Figure 5.2: Search engine result page with suggested terms to learn within each document,
with the chatbot highlighted as (a), the timer with “Finish Task” button highlighted as (b),
and the key terms highlighted as (c). Each term is clickable, and populates the chatbot with
an appropriate prompt (shown). A user may also ask an arbitrary question about the task.
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would be unbiased by the content of the documents, and with a key source of traditional

variation removed, namely, individual differences in users’ query formulation ability. The

second was to reduce the cognitive burden of formulating and reformulating queries, thereby

allowing users to focus on interaction with the chatbot. Thus, in summary, we anticipated

that freezing the query would enable participants to concentrate on the learning task rather

than the searching process. Users still had access to the main document if needed. A mockup

of the search engine result page is presented in Figure 5.2.

5.3.4 Knowledge Assessment and Learning Measurement

To explore the connection between chatbot usage and user learning, we needed to estimate

the user’s domain knowledge before and after exposure. We measured across all levels of

Bloom’s taxonomy [25], specifically focusing on the Remember and Understand levels, which

represent the two lower levels of cognitive understanding.

The first level, Remember, measures users’ ability to recall facts and basic concepts. The

second level, Understand, assesses their capacity to explain ideas. We additionally asked

users some open-ended optional bonus questions that encompassed the other levels of the

taxonomy, for which answering correctly would net participants an additional $10. For the

Apply level, we posed theoretical questions in which users demonstrated their capacity to

apply SVD techniques to new situations. At the Analyze level, the question required drawing

connections between two ideas: SVD and the reduction of data dimensions. For the Evaluate

level, aimed at justifying a stand or decision, we asked them to assess two main strengths and

two weaknesses of utilizing SVD for the Netflix Prize competition. Finally, at the highest

level, Create, the question was meant to stimulate a high-level discussion about the Netflix

Prize and the techniques used. No participants answered these bonus questions; therefore,

we will not evaluate or discuss them in the remainder of this chapter. In a future study,

we may alter the incentive structure to encourage participation. The full list of questions is

included in Appendix B.

5.3.4.1 ‘Remember’ Assessment: Multiple-Choice Questions

In line with conventional methods for evaluating users’ knowledge online, we designed a

questionnaire consisting of MCQs that addressed factual information about the Netflix Prize.

Each question had a single correct answer, but participants also had the option to select “I

don’t know.” We presented users with 18 questions, equally distributed between those related

to the general topic and others specifically addressing content in the main document. These

are referred to as “general topic-related” and “document-related” questions respectively.
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Participants were asked to respond to these questions at multiple stages throughout the

study.

An example of a document-related question is as follows: Here is an example of a MCQ

asked during the assessment:

What was the task of the Netflix Prize?

� To identify users and films based on their ratings

� To improve Netflix’s own algorithm for predicting ratings

� To predict ratings for films based on previous ratings without any other

information

� To award prizes to users who rated films most accurately

� I don’t know

An example of a general topic-related question is:

Which of the following statements about the Netflix Prize Sequel is true?

� The second Netflix Prize competition was never planned

� No participant was declared the winner of the “Netflix Prize II” competition

� The second Netflix Prize competition, known as “Netflix Prize II” compe-

tition was canceled

� The Netflix Prize II differs from the original Netflix Prize competition by

having a different evaluation metric on a smaller dataset size

� I don’t know

To assess the user’s learning at the Remember level, we assigned a correctness score to

each question. A user’s test score is determined by the total number of correct answers. To

measure the learning progress between two points, we calculate the difference between the

test scores at these respective points.

5.3.4.2 ‘Understand’ Assessment: Vocabulary Test

We designed a vocabulary knowledge test to evaluate the user’s capacity to recall specific

topic-related concepts. This test involved presenting users with a series of vocabulary terms

and requesting that they assess their own familiarity with each term on a 4-point scale

[166]. If participants indicated familiarity with a term, they were also required to provide a

definition.

The test for a vocabulary term included the following options:
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� I don’t remember having seen this term/phrase before.

� I have seen this term/phrase before, but I don’t think I know what it means.

� I have seen this term/phrase before and I think it means...

� I know this term/phrase. It means...

The tests consisted of a different number of vocabulary terms at each stage, ranging from

8 at the Pre-Task stage, to 18 at the Post-Document stage and 20 at the Post-Task stage.

As we performed rounds of pilot testing, this appeared to be a reasonable tradeoff between

coverage and effort, as based on participant feedback, higher numbers of terms proved to

be discouraging. Therefore, with this design, we started with a small set of terms to probe

basic, intermediate, and advanced prior knowledge in the topic, and increased the number in

subsequent stages to include prior overlap with prior stages and appearance in the documents

the participants read at the given stage.

The vocabulary terms selected were based on a list of candidates that was automatically

extracted from the documents in our corpus about the Netflix Prize using the Wikifier

service. Wikifier annotates a given text document with links to relevant Wikipedia concepts

[30]. Using this list, we categorized each term based on difficulty, whether it is a prerequisite

or post-requisite of another term, and whether it appears in the main document that the

participant will be given to read. We used these criteria to arrive at our final lists to include

in our tests, such that we achieved a balance of our criteria.

On the search results page, we excluded keywords that participants considered to be

familiar in their vocabulary pre-test as a simple adaptive measure to potentially reduce the

number of keywords we recommend learning and hence that the participant must consider.

Because a participant is able to ask for definitions beyond the terms recommended, they

may nonetheless choose to ask for a definition of a familiar term not shown for confirmation.

To evaluate participant responses, we coded the responses on the four-point scale given in

[49]. Each response was considered to have multiple key aspects, and the score was dependent

on how well the aspects were covered relative to the definitions in Wikipedia for the same

term. As such, a definition that covers no aspects were given a score of zero, and one that

covered all aspects were given a score of 3.

5.3.5 Study Participants

We conducted an online study with student subjects recruited through a masters program in

data science. The study took approximately two hours to complete and we provided $30 in
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compensation for each participant contingent upon completion of various stages of the study.

To incentivize users to engage with the more advanced questions in the prior knowledge test,

we provided a $10 bonus for users who answer them, independent of the correctness of their

responses (which was assessed separately). Before participating in the study, all participants

provided informed consent for data collection. Participants’ confidentiality was maintained:

all data collected were anonymized, removing any personally identifiable information. Seven

participants completed our study; one was excluded due to technical issues experienced

during the study.

The participants had diverse academic backgrounds, including computer engineering, data

science, art and design, business, and microbiology. They all used search engines daily and

had varying degrees of experience with ChatGPT, ChatPDF or other conversational tools

designed for answering questions about documents.

While all participants had used ChatGPT at least once, their familiarity with it ranged

from infrequent use (less than once per month) to daily use. By contrast, not all of them were

familiar with conversational tools that chat with documents like ChatPDF. Two participants

had never tried it, one had heard of it, and two had tried it and one used it regularly.

5.3.6 Chatbot Assisting the Learning Task

The chat was facilitated by a small messaging interface in the lower-right corner of the screen,

fashioned after instant messaging. The bulk of the conversational functionality was provided

by the OpenAI ChatGPT API with system-level prompting to set the “personality” of the

agent as a helpful assistant. In addition, we provided the API with contextual information

about the Web page that the user was reading including the title, an excerpt, and a snippet of

context that we considered to be the most similar to the user query using word embeddings.

Reviewing the chatbot responses after the experiment, we found that the chatbot rarely

hallucinated in its answers. This will be discussed further in Section 5.4.2.

5.3.7 Interviews

One week after the study to coincide with a delayed post-test, we conducted interviews with

participants to further understand their use of the system beyond our inferences from log data

and their questionnaire responses. We asked for clarifications about participants’ opinions

about the study including the participants’ perceptions of task clarity and the complexity

of the topic, opinions about the chatbot including their levels of trust, and a verification of

the information they provided while taking the study. Despite the potential opportunity to

conduct an interview immediately after the study, we opted for a single interview one week
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after to reduce the time and energy commitment needed from the participants. We may

have potentially been able to gather insights when the experience was fresh in their minds,

but participants may have had an increased opportunity to reflect on their experience in the

intervening time. Participants were also asked to elaborate on their general preferences for

search engines and conversational tools for learning, as well as the rationales behind their

choices during the study. Interviews ranged in length from 28 minutes to 50 minutes, with

a mean of 40 minutes.

5.4 Results

We now present our results, beginning with an inspection of the time spent on the learn-

ing task in Section 5.4.1, an analysis of user interaction in Section 5.4.2, the participants’

responses to our tests and questionnaires in Section 5.4.3, an analysis of learning gains in

Section 5.4.4, and ending with an examination of our post-task interviews in Section 5.4.5.

5.4.1 Time Spent on Task

Participants were provided with 45 minutes to complete the entire task in two stages. Our

analysis of the data revealed a pattern in participants’ time utilization, with all participants

dedicating a substantial portion of their time to the reading part. Specifically, none of the

participants exceeded a duration of 1.55 minutes for the search task. In comparison, the

time spent during the reading stage ranged between 6.14 and 45 minutes. Later interview

analysis revealed a misunderstanding regarding the distribution of parts and time allocation,

which resulted in participant uncertainty about whether both tasks were required and how

time was distributed. Half of the participants had no time left for the search phase, and

the other half completed the entire task in fewer than twenty minutes. This behavior also

influenced the interaction patterns seen during the chat analysis, justifying why nearly all

questions to the chatbot were issued during the reading phase.

5.4.2 User Interaction

For user interaction, we now take a look at how participants used the chatbot and investigate

how participants used the key concepts presented on the search page alongside each document

snippet.
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Figure 5.3: Distribution of different question types issued by each participant

5.4.2.1 Interaction With the Chatbot

We look at how users interacted with the chatbot by examining the characteristics of the

questions they asked of it, and how the participants’ prior topic knowledge and experience

with chatbots interacted with their use.

Diversity of questions. To understand the user’s interaction with the chatbot, we

sought to categorize the questions they asked of it and identified six such categories: Explain

(where the participant asks for an explanation or elaboration of a concept further than a prior

response), Keyword Definition (where a participant asks the chatbot to define a keyword),

Listing (where the chatbot is asked to list examples), Question Answering (where a more

general question about a related, non-keyword concept is asked), Summarize Document,

and Translate (where a participate asks the chatbot to translate a keyword or concept into

another language). Keyword Definition was most frequent, followed by Question Answering,

Translating, Listing, and Summarize Document in respective order.

One possible explanation for participant awareness of the chatbot’s Keyword Definition

capability is that the tutorial video, in demonstrating how to use the tool, included a record-

ing of the chatbot being asked, “what is RMSE,” and this became the expected interaction

modality. It is also possible that users had prior experience submitting informational queries

of this type to search engines or other conversational tools.

Number and length of questions. Users asked between 5 to 15 questions each, with
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an average of 8.8 per user. The average length of questions ranged between 6 and 15 words

per question, which is lengthier than the 2.3 word queries that users typically issue to a

search engine [169].

Time between chat requests. Participants interacted with the chatbot with a fre-

quency ranging between 1.47 to 6.68 minutes, with a mean of 3.56 minutes between succes-

sive requests. Additionally, the time taken for their first interaction ranged between 0.57

to 8.72 minutes for an mean of 4 minutes after having access to the chatbot in the main

document.

Prior familiarity with chatbots. There was some evidence that prior chatbot famil-

iarity may be associated with chatbot use. We noted that SUB6, who showed the highest

familiarity with ChatGPT and ChatPDF, issued the lengthiest questions and was the fastest

to initiate the interactions with the chatbot, with minimal intervals between questions of 1.47

minutes. In contrast, SUB2, the individual least familiar with chatbots, generated the fewest

questions, totaling only 5, issued the shortest questions compared to other participants with

an average of 6.4 keywords, and was one of the slowest to initiate the chat interaction, taking

an average of 2.62 minutes to begin. Notably, the users who were most familiar with both

ChatGPT and ChatPDF also tended to issue more diverse questions. For instance, SUB6

mentioned that they use ChatGPT on a weekly basis and have previously tried ChatPDF.

They issued a total of 6 different types of questions. This participant was the only one to

request a numbered list ‘Give me a numbered list in simple English of the steps to...’ and

also asked for document summarization ‘Summarize this document succinctly for me. Give

me the big idea.’. This user employed the imperative tense, instructing the chatbot as if

engaged in a real conversation.

Figure 5.3 displays the distribution of question types across subjects. SUB3 does not

appear on the figure as they reported technical issues that may have prevented their questions

from being captured despite their attempts.

We note however that we are unable to substantiate the exact nature of their technical

issues; our server logs captured their interactions in clicking the “collapse” button of the

chatbot, but no other chatbot interactions for this participant.

On the other hand, the least diverse set of questions was issued by SUB2, who is the least

familiar with both tools. This user reported using ChatGPT once a year and had never heard

of ChatPDF or similar tools. In contrast, the most familiar with ChatGPT alone, SUB7,

claimed to use it every day but only issued one type of question, which was for keyword

definitions. This was surprising, because we expected users familiar with ChatGPT to issue

more complex prompts than just keyword definitions.

Prior domain knowledge. Regarding the user’s prior knowledge of topic-specific factual
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information, assessed through MCQs, we did not find a relationship with either the number

of questions issued or their diversity. All users demonstrated limited knowledge of the topic.

Even though they obtained varying scores on their pre-assessments, none of them were

capable of answering more than half of the questions. To delve deeper into the impact

of domain knowledge, it is advisable to contemplate a more diverse sample, encompassing

participants with both high and low levels of familiarity with the Netflix Prize topic. For

this study, the topic was intentionally selected to be significantly distinct from common user

knowledge to provide a broader margin for learning.

5.4.2.2 Key Term Use During Search

Despite being provided with a list of key terms that participants could click on during the

search phase to more easily ask the chatbot about a given term, no participants opted to

use this capability. Instead, they chose to explicitly ask the chatbot questions, including

a case of one participant doing so for definitions of key terms. This participant, SUB2,

asked questions such as “what is overfitting” and “what is a sparse matrix” on the article

pages themselves, which may indicate that it could be more useful to provide the key term

breakdown on the article page at least in addition to, if not instead of, on the results page.

For SUB2, these requests for definitions were for terms that on the vocabulary test prior to

the stage during which they asked the question, they indicated that they were unfamiliar

with the term. Perhaps in this case an adaptive keyword list provides value, but this warrants

further investigation with more participants.

5.4.3 Test and Questionnaire Responses

Increase in vocabulary definitions. At each stage, we asked the participants to indicate

the vocabulary terms with which they were familiar, which we described in Section 5.3.4.2.

As shown in Table 5.2, the number of definitions entered tended to increase in subsequent

testing stages.

Few definitions were revised. With a total of twenty vocabulary terms, we might

expect that participants who entered a definition at an earlier stage may revise a definition

at a later stage after they understand more about the topic or after they refresh their

memories. We see that there were cases of documents being refined slightly (where we

consider a refinement to be a change of more than one character), but as Table 5.2 shows,

these changes are relatively sparse. Furthermore, the changes are relatively minor in ways

that either correct what could have been a typographical mistake (such as correcting “Root

Mean Square Evaluation” to “Root Mean Square Error”). The most substantial correction
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Subject Pre-Task
Defini-
tions

Pre�Post-
Doc Edits

Post-Doc Defi-
nitions

Post-
Doc�Post-
Task Edits

Post-Task
Definitions

SUB2 1 0 6 1 9

SUB3 6 1 17 1 17

SUB4 1 0 7 0 7

SUB5 3 0 10 0 12

SUB6 0 0 0 0 5

SUB7 8 3 11 1 14

Table 5.2: Summary of total definitions entered, and edited, at each testing stage. The
number of definitions entered tended to increase from one stage to the next. Two out of
seven participants revised definitions after reading the introductory document, and three out
of the seven participants revised a definition at the end of the task. The two participants
who revised at the post-document stage also revised definitions at the post-task stage.

could have been based on a slight misunderstanding of item-item collaborative filtering,

where a participant first describes feature-based similarity and revises it in the post-task

response to more closely resemble the correct definition.

5.4.4 Learning Gains

We analyze the learning gains by considering two parts of the learning task as well as the

overall gain from completing it. This section will address the learning gain by comparing

users’ knowledge at three points: the pre-knowledge assessment, post-document knowledge,

and post-task assessment.

Learning at the ‘Remember’ level of Bloom’s Taxonomy. Before the search task,

participants could answer approximately half of the MCQs, typically achieving only 1 to 2

correct responses out of the 18 questions. As shown in Fig. 5.4, by the end of the task,

participants exhibited an improvement in their ability to recall facts related to the topic,

successfully answering an average of 9 to 10 questions correctly. This represents a 38%

increase in their knowledge of the subject.

We aimed to examine the progression of user knowledge in each phase of the learning

process. As previously mentioned, the 18 MCQs were divided into two sets: 9 directly

related to the document’s content, which were part of all three assessments, and the other 9

related to the general topic, featured in both the pre-and post-task assessments. Figure 5.4

illustrates a general improvement in performance across all questions before and after the

study.

A notable pattern emerged in the document-related questions. All users exhibited a sim-
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Figure 5.4: Mean knowledge change of participants over the multiple-choice question set.
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ilar trend, showing a slight 5.5% decrease in their knowledge between the post-document

and post-task assessments, equivalent to a drop of correctness in one question. It’s worth

noting that half of the users did not progress to the search stage or only accessed it briefly.

Therefore, the decline in user knowledge is less likely attributed to exposure to other in-

formation sources and more likely due to the participants’ fatigue towards the end of the

study. Subsequent interview analysis confirmed that users found the study lengthy and were

fatigued by the point of its conclusion.

Progression of vocabulary scores. We observed a similar trend to that of the drop in

the knowledge questions in the result of vocabulary scores. We present a table of averages in

Table 5.3. Although the mean score increases from 1.65 to 1.73 out of a maximum of 3 from

the Pre-Task to Post-Document stages, the mean falls back to slightly below the Pre-Task

level at the end in the Post-Task stage. We saw previously in Table 5.2 that participants

were nearly consistently adding new definitions at each stage. However, because participants

tended to spend most of their time reading the main document instead of on learning in the

subsequent Search phase, it is likely that for new terms introduced in the post-task test –

terms that primarily occur in the Search phase – the participants’ understanding of these

terms were less robust as they simply spent less time with them.

Pre-Task Post-Document Post-Task

1.65 1.73 1.61

Table 5.3: Average vocabulary definition scores at each testing stage (out of 3). There is a
drop in the score at the Post-Task stage to below that at the Pre-Task stage.

5.4.5 Interview Analysis

Familiarity with search engines and conversational agents. The participants pro-

vided nuanced insights into their usage of search tools and conversational tools like ChatGPT

for learning purposes. Compared to search engines, participants highlighted the dynamic na-

ture of the experience, describing it as “wild” due to the necessity of vetting resources and

validating data. Perceptions of ChatGPT were generally positive, with users valuing its

speed, convenience, and ability to provide specific answers. However, there were reservations

about the tool’s potential to give inaccurate information, creating an illusion of correct-

ness. Despite differences in familiarity levels with these tools, all participants were able to

distinguish between conversational tools and traditional search engines, accurately listing

the benefits and drawbacks of each. Some participants considered ChatGPT useful for sim-

pler questions, but not necessarily suitable for more complex information needs where Web
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search engines and scholarly platforms were deemed more reliable. Our interviews suggest

that users navigate between these tools based on the nature and depth of their learning

objectives and the strengths and limitations of each. When asked about their trust in the

chatbot’s answers, the users showed a split in attitudes towards reliability.

Study feedback. Participants generally comprehended the main objectives of learning

about a specific topic and answering related questions, but they expressed confusion in using

the system’s features such as the clickable key concepts on the search page and navigating

the different stages within the time limit. Confusion about when to switch from the Reading

stage to the Search stage might have led to perceptions of the study being too long, when

many participants spent the full 45 minutes on the Reading stage. Testing added to the

perceptions of lengthiness, with up to 38 questions as many as up to three times. Users

reported vocabulary questions being more difficult, which may be due to the potential open-

ended answers required if users were familiar with a term compared to MCQs with predefined

options.

The article’s length was satisfactory to participants, but some found the content difficult

due to technical jargon. This was intended to an extent. Three participants, particularly

those less familiar with advanced data science concepts, struggled with specific technical

terms such as SVD, sparse matrices, and mathematical content. Nevertheless, three par-

ticipants proactively claimed that they conducted further searches for the Netflix Prize and

rececommender systems after the study, which we think indicates that the study spiked their

curiosity.

Behavioral analysis. In shifting from the Reading stage to the Search stage, only

three participants manage to do so. When questioned about their reason for transitioning,

they mentioned that they did so when they felt they had sufficiently understood the main

document. Notably however, despite this, the interactions with the chatbot during the second

stage were minimal, and participants ultimately opted to proceed to the post-assessment test.

On question and term selection, users gave positive feedback in instances where the chat-

bot provided answers in a relatable, human-like manner. Participants found that the chatbot

could be a valuable resource in comprehending the article, acting as a supportive guide akin

to consulting a librarian. The chatbot was able to help participants in overcoming obstacles

like unfamiliar terms. Two participants in particular emphasized the positive influence of

the chatbot’s human-like responses on their learning experiences, saying “asking the AI was

like asking a librarian”, and “the chatbot answered some of the questions in a very human

way, so it was helpful”.

Interaction with the chatbot. While two participants found value in using the chat-

bot for straightforward tasks like obtaining definitions, others noted its limitations in more
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nuanced questions. A participant mentioned the assistance provided by the chatbot in

conjunction with the article enhancing their understanding. Concerns about the chatbot’s

reliability surfaced as participants reported instances where it failed to adequately under-

stand requests, prompting skepticism about its overall trustworthiness. Interestingly, there

was a preference among most participants to validate information using a search engine, in-

dicating a reliance on traditional methods for fact-checking. Other subjects relied on a more

subjective assessment of the coherence of the chatbot’s responses. Additionally, two partic-

ipants actively engaged in validating responses within articles, reflecting a more discerning

approach to ensuring the accuracy of the chatbot’s output.

The lengthy duration of the study may have exacerbated user frustration when faced

with system-level issues. With an imposed timeout of 30 seconds on our chatbot interface,

there were cases in which OpenAI’s overloaded servers took longer than expected to respond

leading to some time wasted on the part of the participant as they needed to resubmit

their question. Furthermore, a large language model is not truly “intelligent” – it can easily

get confused by the way a question is posed, or by the complete prompt not being robust

enough. There were instances of these issues as well, where one participant, SUB5, asked

about matrix factorization followed by “what is mes” [sic], a misspelling of “MSE”. This

confused the model, leading to an answer primarily about matrix factorization. SUB3 had a

similar issue, where the model was confused about the previous and current requests about

“RMSE” and “SVD” respectively, conflating the question into a comparison between the

two. Challenges such as these may have contributed to participants perceiving the chatbot

as unreliable.

Learning and knowledge gain. Four out of six participants noted that they could

grasp the article’s general content but found it challenging to understand the technical

intricacies. One also noted attempting to grasp the mathematical concepts by employing a

traditional approach with paper and pen, jotting down information from the article in an

effort to comprehend the concepts. However, they expressed difficulty in achieving a profound

understanding of the material using this method. The collective findings from both the study

and interviews suggest that while the chatbot proved valuable for summarizing the article’s

content, participants were not able to adequately use it to facilitate a deep understanding of

the article’s technical details.

5.5 Discussion and Implications

Our study set out to understand how users interacted with a chatbot that has the contex-

tual awareness to answer questions about the page a user was reading and to investigate
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the learning effects that might emerge from exposure to both this intelligent assistant and

information about the key concepts in a set of articles. We discuss our main findings below,

as well as potential implications.

The chatbot was used to explain vocabulary terms for comprehending articles (RQ1). In

interviews, we received feedback that the chatbot was not only useful for defining unfamiliar

terms, but that it was able to provide information about the articles in a helpful way. For

users who tried it in this manner, they considered it to be “like a librarian”. Interaction logs

and the transcript verify this type of use; its conversational nature meant that a participant

was able to ask for the definition of a term in English, and then ask for the term’s translation

to Mandarin.

Users’ prior knowledge did not affect their learning (RQ2). We expected that that prior

knowledge would play a role, and perhaps it in fact does. However, our participants had the

same levels of knowledge gain. A likely factor is that all participants tended to have lower

levels of prior knowledge, as they were unable to answer most of the knowledge multiple-

choice questions. A larger-scale study with a more diverse subject pool might be needed to

understand this characteristic.

User trust in chatbots was low, and remained low (RQ3). Users saw the potential of the

chatbot to provide quick and helpful answers, but understood that large language models are

prone to hallucination and misunderstanding requests. These expectations were confirmed

during the study – although we saw no instances of hallucinations in our logs when reviewed

by domain experts, there were cases of the model misunderstanding which parts of the

chat transcript was the history and which parts was the request. These cases tended to

be when both the transcripts and requests are short, and when there are grammatical or

spelling errors in the request. During interviews, users expressed a preference for access to

a search engine to verify the output of the model; we disallowed this as the focus of the

study is on chatbot interaction, but for a production system search integration may prove

helpful. We left the idea of trust up to interpretation by interviewees, but a limitation of this

approach was that we failed to capture the complexity of the phenomenon. For instance, [120]

distinguishes between cogitive trust and emotional trust when customers engage in electronic

commerce with software agents. Cognitive trust, in this case, is the “rational expectation”

that the agent is competent and can be relied upon. Emotional trust, in contrast, is the

degree to which the user feels secure and comfortable that the agent is reliable. It would

be interesting to qualitatively study the rational components of trust in comparison to the

emotional aspects by controlling familiarity, demeanor, propensity to explain responses, and

expertise personalized to users’ prior knowledge. For new users, we may also examine swift

trust – a presumptive form that sees trust being formed between team members with no
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prior relationships [141]. It may also be the case that trust is continously negotiated in a

scenario such as ours when an assistant is used in various conditions and for different tasks –

in this instance, understanding how trust is formed and re-formed would have implications

for design.

Further findings in our results show that users have a good understanding of the capabil-

ities and limitations of large language models, even if they are not familiar with using them.

They were able to articulate the difference between the chatbot and a search engine in fact,

which tells us that there is a place for both and it may be a mistake for system designers to

try to conflate the two.

Participants’ recognition of the contrast between the chatbot’s singular responses and the

search engine’s multiple results underscores the importance of adaptability in the learning

process. From these observations, we can infer that learners benefit from a dynamic and

flexible learning strategy that combines both specific, focused responses (as provided by a

chatbot) and a broader exploration of multiple resources (as facilitated by a search engine).

This suggests that a balanced and adaptive learning approach, leveraging different tools for

their respective strengths, contributes to a more comprehensive and nuanced understanding

of the subject matter.

We also saw that user who was most familiar with ChatGPT or systems like it showed

more expertise in interacting with the chatbot. They issued more and longer questions,

and had smoother conversations with faster turnaround. This is to be expected, however,

we cannot confidently confirm the exact nature of the relationship between familiarity and

frequency of interaction. From our results it is not a linear relationship, but a larger-scale

study would be needed to confirm and quantify this.

An unexpected phenomenon seen in our results was a drop in learning outcomes – on both

MCQs and vocabulary – at the end of the study, despite an initial increase after reading

the main article. We suspect that this is due to fatigue, and might indicate that our study

protocol needs revision.

The adaptive nature of our key concept extraction is quite simple due to the scope of our

study, but there is much room for improvement. Earlier vocabulary tutoring systems tended

to focus on question generation, as seen in work by Brown et al. [32] We have also seen work

in reading support for second language documents that uses a classifier to predict unfamiliar

words, presenting a pop-up with the meaning when hovered over [61]. This is closer to our

work, but we present keywords and definitions before users encounter them in the document

and rely on the simple method of excluding concept candidates that users indicated they

were familiar with in a prior knowledge test. A planned future work will employ eyetracking

to not only understand users’ reading patterns, but also as a source of data to predict word
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familiarity [93, 178, 24]

The results of our study show the potential of large language models as a conversational

assistant for vocabulary learning and reading. Users were not only satisfied with the capa-

bilities of our chatbot assistant, but they also exhibited learning gains beyond their initial

prior knowledge during the study. Limitations in the design and implementation of our

study protocol such as OpenAI integration, study length, and instruction clarity might have

hampered users’ potential learning gains and added to their frustration and fatigue. Our

integration with OpenAI’s APIs left us unable to control the timing of the responses which

led to timeouts and reduced user confidence. The length of the study was likely too long,

and the effort it required was a common source of complaints during the interviews. Finally,

perhaps due to unclear instructions, most users did not move from the reading to the search

stage, which limited our data collection and prevents us from addressing all of our research

questions. These issues can be remedied, and a future larger-scale study will allow us to

more confidently quantify these effects. One of the aims of this study was to explore the us-

ability of chat as an interface for reading assistance. Although we added interactive interface

elements such a clickable keywords to the search results page, chat remained the primary

modality for using the assistant while reading. It remains to be seen if chat is the most

appropriate interface – a future study may explore other modalities using large language

models such as generating assistive information on keywords alongside article text. Finally,

our pre- and post-tests have a high degree of overlap, which may have affected user behavior

by encouraging participants to look for specific answers to these questions while reading. We

do not think this is necessarily a major shortcoming, but different questions on the same

corresponding concepts at each stage might be preferrable.

We may potentially expand or refine a few aspects of our experiment and protocol in future

iterations. As an example, we intended to administer a delayed post-test one week after the

study to coincide with our interviews, but the test was not given due to an oversight. Giving

this test would allow us to measure retention and the effect that prior knowledge might have

on retention. Furthermore, the work presented here did not implement an experimental ma-

nipulation in order to gather interaction data and identify trends in our interviews. However,

we intend to compare knowledge gain among chatbot users in comparison to a control group

without a chatbot by providing standard definitions for keywords on the search page. Addi-

tionally, we may also choose to introduce a manipulation based on prior knowledge in which

we dynamically personalize keyword recommendations and adjust the chatbot’s prompt to

answer with more or less sophistication depending on a user’s expertise.
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5.6 Future Work

The work we present in the following sections will serve as the first steps towards a retrieval

framework for optimising the set of actions a user may take towards maximising the potential

utility of a document. Here, we propose a search algorithm that performs joint optimization

of search rankings and words that a particular student should learn.

5.6.1 Keyword Optimisation

With the increased interest in search as learning, there has been a fair amount of recent

work to place retrieval within a framework of optimisation for learning outcomes. In 2017,

Syed and Collins-Thompson [186] incorporated a cognitive learning model into their ranking

objective and showed using a crowdsourced study that personalising in this manner led to

increased learning gains for words read. This work built upon an optimisation algorithm

proposed by Raman et al. [161] to re-rank search results to provide a user with intrinsically

diverse results.

The intrinsic diversity re-ranking algorithm by Raman et al. does its job by performing

greedy optimisation on a diversity function that incorporates query suggestions to give a

ranking that jointly optimises the combination of documents and related queries. The work

by Syed and Collins-Thompson modified this algorithm by consider the aspects of a topic

by extracting subheaders from Wikipedia articles on a query’s topic and incorporating a

new sub-objective term to represent a user’s effort in reading documents based on keyword

density. This current proposal takes inspiration from these works, by reformulating the

original intrinsic diversity algorithm by Raman et al. [161] to jointly optimise the final

search result ranking with a set of keywords to learn for each result, as well as incorporating

a user’s familiarity with the set of keywords. The aim of this optimisation step is to present

a set of actions to users that, when taken, should maximise the user’s utility. In this case,

the actions are the keywords we present for users to learn (which, when clicked, serve as

resources to learn more about the particular term through either a video or definition), and

utility is gained through each result.

5.6.2 Optimisation Algorithm

We present a sketch of the algorithm as Algorithm 5.1, which we will use as a starting point

to obtain the rankings of documents and words to learn for each document in response to

a search query. This algorithm is an extension of that proposed by Raman et al. [161]

which jointly optimises the relevance of documents with the diversity of topics to which the
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Clustering problems and clustering algorithms are often overly sensitive to the presence of
outliers : even a handful of points can greatly a ect the structure of the optimal solution and
its cost. This is why many algorithms for robust clustering problems have been formulated
in recent years. These algorithms discard some points as outliers, excluding them from the
clustering. However, outlier selection can be unfair: some categories of input points may be
disproportionately affected by the outlier removal algorithm.

Figure 5.5: Terms identified by Wikifier in a scientific paper abstract (italicised, text from
https://doi.org/10.1145/3488560.3498485)

documents belong. For our purposes, our changes revolve around two primary goals:

1. Return a document set that, for each document, has an associated set of keywords that

were jointly optimised with the relevance of the document during re-ranking, and

2. Incorporate the vocabulary of the document as well as related terms that would help

in learning this vocabulary in the re-ranking as potential words to learn.

We outline a ranking objective function that satisfies these goals, along with the following:

1. The documents in the final ranking should be relevant to the submitted query q

2. Keywords should be related to the initial query q.

3. Ideally there should be diversity in coverage of the concepts.

With these Wikipedia concepts extracted, we use a dataset of prerequisites for the domain

of data mining collected by Hu et al. (2021) [90] to determine the prerequisites of each

concept. An example of the prerequisites of the term “cluster analysis” from the abstract

in Figure 5.5 for example would include “data analysis”, “correlation and dependence”, and

“arithmetic mean”, and “standard deviation”.

A user’s familiarity with concepts will also serve as a factor. Ideally, we would like to

not recommend terms that a user is already familiar with or their prerequisites. In our

running example, “arithmetic mean” and “standard deviation” are prerequisites of both

“cluster analysis” as well as one of its prerequisites, “correlation and dependence”. We show

this relationship diagrammatically in Figure 5.6. Assuming the user is already familiar with

“correlation and dependence”, we would avoid presenting this term as well as the shared

prerequisites “arithmetic mean” and “standard deviation”. Thus, for this concept, we would

only present “data analysis” as a potential prerequisite.

We expect to represent a user’s familiarity as a function of the reading time of a keyword

or concept:

134

https://doi.org/10.1145/3488560.3498485


Figure 5.6: Prerequisites of “cluster analysis”, a term identified in Figure 5.5.

Familiarity(U, ki) = σ(−reading time(ki))

This formulation is inspired by [72], which found an inverse relation between reading time

and exposure to a word. This formulation is also similar to that outlined in Item Response

Theory [35], where the probability of a correct answer is predicted by a logistic function

of the difference between the learner’s skill an the difficulty of the resource. Collecting the

reading time of a word will be facilitated by the use of an eye tracker.

For the joint ranking objective of documents and keywords, we use the following formu-

lation:

argmax(d1,K1)...(dn,Kn)

n∑
i=0

Rel(di|q)× eβ·Div(di,Ki)−γ·Familiarity(U,Ki) (5.1)

where Ki is the set of keywords and their prerequisites recommended for document di and

Div(·) is an MMR-like diversity function defined as:

Div(di, Ki) = η · Sim(Ki, di) − (1 − η) max
j<i

Sim(Ki, Kj) (5.2)

.
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This formulation is due to [161]. η ∈ [0, 1] is a parameter that controls the tradeoff

between the relatedness of the keywords to the documents and diversity. By satisfying

this tradeoff and preserving the value of diversity, we can present documents and keywords

that represent various aspects of the query; for example, for a query on machine learning, we

may wish to present results covering both the statistical and algorithmic aspects of the topic.

This not only helps in disambiguating an ambiguous query, but also has the potential to give

results on subtopics the user might not have considered explicitly searching for. Intrinsic

diversity [161], or the condition of search results covering a range of related subtopics in a

single ranking, has been shown to provide some additional benefit for factual and conceptual

knowledge gains [50]. The complete algorithm is presented as Algorithm 5.1.

Algorithm 5.1: Words-to-Learn Algorithm that jointly ranks documents and vo-
cabulary for learning.

Input: Query q
Input: User Model U
Result: A document set D consisting of pairs of documents and words to learn

D ← ∅;
baseD ← Query(q);
for i = 1, ..., |baseD| do

d← baseDi;
Ki ← Wikifier(d);
bestS ← −∞;
foreach term k in Ki do

Ki ← Ki ∪ Prerequisites(k);
end

v ← Rel(d)× Sim(d, r)× eβ·Div(d,Ki)−γ·
∑Ki

k Familiarity(U,k);
if v > bestS then

bestS ← v;
// When adding keywords, remove those and their prerequisites

that the user is already familiar with

Ki ← Ki \ {k ∈ Ki|Familiarity(U, k) > α ∨ k ∈⋃Ki

j {Prerequisites(j)|Familiarity(U, j) > α}};
D ← D ∪ {(d,Ki)};

end

end
return D;

Keyword Evaluation. To evaluate the effectiveness of the algorithm’s ability to surface

useful keywords and their prerequisites, we may create a dataset for concept map extraction

and use this dataset for evaluation – both to compare the algorithm’s results to a baseline
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and also to adjust its parameters.

The first step may involve collecting the top ten results of a set of search queries based on

the topics covered in various course syllabi in the field of data science. Because we rely on

Wikifier for keyword extraction, we may exclude Wikipedia pages from each list of results.

We may then extract the text of the pages, extract candidate terms, then manually rank the

terms to identify the most salient “key concepts”, and then for each pair of key concepts, we

manually label whether term A is a prerequisite of term B, whether term B is a prerequisite

of term A, or if there is no prerequisite relationship. Using 10 queries may initially give

us a seed set that we can use as gold standard data – we may then use the large language

model GPT-4 from OpenAI to label the remainder by giving it the document and asking it

to extract the key concepts and relationships with a few-shot prompt.

Following this step, we may use Precision@n, where n = 1, 3, 5 as our evaluation metric.

We assume that finding the most relevant terms and prerequisites is most important for our

task of recommending words to learn.

5.6.3 Potential Optimisation Study Design

In this study we would investigate the effect of our proposed algorithm on participants’

learning performance for domain-specific vocabulary words. The following research questions

would be useful to address:

RQ1 : Does a system that optimises relevance jointly with vocabulary learning provide

increased effectiveness for learning?

RQ2 : Does incorporating a user’s word familiarity in the optimisation objective improve

learning effectiveness?

RQ3 : Do reading time and exposure effectively facilitate domain-specific vocabulary

learning?

We therefore propose a between-subjects experiment design, conditioned on our algo-

rithmic intervention. Therefore, there might be three conditions based around algorithmic

interventions:

� Full: Joint optimisation of documents and words to learn with personalisation based

on word familiarity

� No Familiarity: Joint optimisation of documents and words to learn without person-

alisation based on word familiarity

� Baseline: No optimisation of documents and words to learn
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Motivated by the aforementioned research questions, we may test the following hypothe-

ses:

� As familiarity increases, users exposed to words to learn will give less attention to the

recommended words while reading

� Users exposed to an algorithmic ranking of documents (Full or No Familiarity)

will exhibit improved learning outcomes compared to those in the Baseline ranking

condition (RQ1)

� Users in the Full condition (exposed to an optimised ranking of words to learn) will

show a faster rate of learning than those in the No Familiarity condition (RQ2)

� Users exposed to words to learn will give additional attention to the recommended

words during searching [63] (RQ3)

� Users exposed to words to learn with low familiarity will give additional attention to

the recommended words while reading [62] (RQ3)

5.7 Conclusion

We reported on a user study that investigated three research questions about user interaction

with a contextually-aware chatbot assistant during reading for technical learning. Using

log data, knowledge tests, and interviews, we characterized usage patterns, investigated

learning gains, and examined user trust in large language models as information sources.

We found that users employed the chatbot assistant to explain unfamiliar terms and to help

in understanding the articles they were reading (RQ1), that despite users showing learning

gains we could not confirm that their prior knowledge was a factor (RQ2), and that users

saw the potential of chatbots but remained skeptical of the accuracy of its output (RQ3). A

future larger-scale study will explore additional means of assessing familiarity with technical

terms and will seek to quantify effects after addressing the shortcomings of the present study.

5.8 Author Contributions

This study was a collaborative effort between Ryan Burton, Dima El Zein, Arpitha Ghanate,

Kevyn Collins-Thompson, and Célia da Costa Pereira. Ryan Burton and Dima El Zein jointly

designed the study, Arpitha Ghanate recruited participants and conducted interviews, and

Kevyn Collins-Thompson and Célia da Costa Pereira contributed revisions to the manuscript.

Ryan Burton implemented the study design and served as the lead author.
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CHAPTER 6

Discussion and Conclusion

Web search has been stuck in a local maximum of “ten blue links” for the past few decades.

Despite lamentations from researchers, professionals, and commentators, escaping this com-

fort zone has been difficult. There are numerous reasons for this, particularly on the part of

users – expectations, inertia, and difficulty in evaluation are primary among them. It is my

hope that this dissertation, in which we have explored both novel search systems as well as a

simulation framework to explore the design space of interface affordances, might inspire more

consideration of new interface additions, algorithms, and potentially new search systems.

6.1 Interface Additions

Chapter 3 showed the design and implementation of a new sidebar added to a conventional

Web search engine result page. This sidebar introduced flexibility in the tradeoff between

time and result quality – by waiting an additional amount of time, users would be provided

with high-quality results relevant to their current search task. Results showed that users

were willing to wait for these higher quality results and that they ultimately used less time

in completing their task. However, there was some reluctance in users engaging with this new

interface element, which led to the simulation framework in Chapter 4, which would would

enable us to systematically ensure that “users” would be willing to use this new element, as

well as change aspects of this element and explore outcomes. Regardless, slow search seems

to be a good fit for decomposable tasks with subtasks that can be tackled in parallel by both

the user and the system – users in our experiment tended tended not to submit new queries

in parallel to slow search, choosing instead to explore the already-retrieved set of results.

Future work in slow search may investigate alternative interface interventions, visualizations

to convey predictions of expected future value, and various means for revealing intermediate

state to users.
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6.2 Algorithms

Query relevance has been the dominant metric for search algorithms, but with greater time

flexibility, there is room to explore other avenues for improvement. Ideally, this may be done

in conjunction with interface changes in the interest of operational transparency, but we

could potentially see algorithms to improve the intrinsic diversity of results, to summarize

and organize results, or to use crowdsourcing to augment algorithms. In the final sections of

Chapter 5, I propose an algorithm that jointly optimizes the ranking of results and the words

that a user would be expected to learn in order to get the most out of a document. This is

also something that the simulation framework of Chapter 4 could be used to evaluate.

6.3 New Search Systems

For the first time in decades, Web search users outside the academic community are eager

for new types of search. Spurred by the recent interest in generative AI and the perceived

drawbacks of popular search engines [31, 153, 82, 122], users, especially technology enthu-

siasts, are interested to see what’s next for Web search. Web search presents an outsized

influence on users’ perceptions and mental models of other search systems [115]. Therefore,

as system designers, we are, for better or for worse, tied to the directions of major online

search providers. I will use the remaining space to discuss how this dissertation ties into

future directions of search.

Reasearch in conversational search has sought to combine the benefits of incremental

assistance with interactive information seeking [107, 7]. The explosive popularity of Chat-

GPT however, enabled in part by the Transformer architecture [200] and abundant content

available on the Internet, has led to a renewed interest in chatbots and other forms of conver-

sational artificial intelligence (AI) as the primary modality for information seeking. Microsoft

has invested in OpenAI, the company behind ChatGPT, and is introducing new AI-based

products including the conversational Bing Chat search engine as well as actively iterating

on existing ones such as the programming assistant GitHub Copilot [57]. Google, whose

researchers invented the Transformer architecture, and who felt at risk at being left behind

in AI-powered conversational search [165], rushed to develop Bard, its competitor to Bing

Chat [64]. Both thus far have been unsuccessful in capturing many users despite the fanfare

and media coverage, perhaps due to the penchant for generative pretrained transformers

(GPTs) to “hallucinate” [215]. This does not necessarily mean that conversational search,

with or without AI, is a dead-end; what it does perhaps mean however, is that generative

AI is likely an unsuitable substrate for search, which centers on retrieval. Retrieval and the
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types of interactions afforded by generative AI are distinct, and should likely remain as such.

Shah and Bender support this viewpoint with their paper “Situating Search” [177]. This

work argues for systems that preserve the interactive aspects of information seeking while

remaining transparent and accountable. These current affordances lead to the benefits we

see in using search such as the capacity for information verification and serendipity. My work

falls squarely along these lines – augmenting interactive information retrieval to lead users

towards optimal behavior and outcomes. Operational transparency was a major factor in my

design of slow search in Chapter 3. The use of generative AI in Chapter 5 in the form of a

chatbot assistant was less focused on this aspect, but it I considered it important to preserve

a degree of interactivity, autonomy and control within this design. Feedback from subjects

showed that trust was nonetheless an issue, with the participants highlighting their relative

mistrust of generative AI as a reason for their lack of interaction with the chatbot assistant

we provided. This is another case in which visually conveying the value of this new interface

element may increase trust and hence its usefulness. For future work, we may ask users not

only about trust, but also about verification – in which situations it would be paramount

versus a nice-to-have, how users currently verify information from a large language model,

and how a system might help to facilitate the verification process. Qualitative coding and

affinity mapping would serve as useful techniques to facilitate this analysis.

6.4 Significance of this Work to Information Retrieval

More broadly, I believe that this dissertation may contribute to potential changes in per-

spective in how IR is approached in the future. Firstly, as Chapters 3 and 4 highlight, there

is a gap between how users may use a system and the optimal value they may derive from

it. This gap deserves more attention, and I believe could be a fruitful avenue for future

research and application. Chapter 4 in particular investigates a method for exploring this

gap and how it might be reduced, and not only would new methods and metrics be valuable

new additions to the field, but so would scalable evaluation systems in production systems

be beneficial to users.

Additionally, we investigated real option pricing as a technique for evaluating time-biased

gain in Chapter 4, and saw the effect of the risk/reward tradeoff in a system in which an

additional sidebar ranking is provided as an option, similar to the system in Chapter 3.

In particular, we observed that such an augmented system with a high-variance option can

result in greater overall likely future value. This demonstrates the utility of not only a

system that provides such optional components, but also of the application of real options

to investigate value in dynamic interactive IR scenarios. I believe that both of these aspects
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will be the subject of additional interest.

Finally, I believe it is worth highlighting the additional tradeoff of time and quality that

was the focus of Chapter 3. More exploration of this tradeoff is perhaps worthwhile in the

face of time- and energy-intensive AI algorithms potentially being integrated into search,

but more generally I believe that there is much room for analyzing other forms of system

flexibility such as the aforementioned risk and reward from Chapter 4, and of diversity

[158, 161] and relevance.

6.5 Conclusion

The studies presented here were motivated by a focus on human-computer interaction in

search. They contribute to the design space of search systems with the first implementa-

tion of slow search, towards understanding how users interact with novel interfaces, and

in proposing ways to measure and improve user outcomes through the simulation of user

interaction. Despite this, it must be noted that a primary limitation of this dissertation

is that of evaluation – the studies presented here are on a small scale, and future work to

investigate the effects of these interventions on large populations, especially with regards

to the systems presented in Chapters 4 and 5 would allow us to test hypotheses such as

the effect of the conversational learning assistant or the degree to which the findings of the

simulation framework presents benefits to users exposed to system-level changes.
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APPENDIX A

Crowdsourcing Relevance Judgements

The instructions given to crowdworkers for judging the relevance of search results from Sec-

tion 4.4.1 are shown verbatim below in Section A.1. An example task as seen by crowdworkers

is shown in Figure A.1.

A.1 Instructions

If someone is doing a search for the task “Find the five most influential

professors in the United States in the field of sociology”, how well would

this item answer the question of the task?

You should be assessing the results based on the ability of the result to address

the needs of the task.

� If a person is searching for “Five Ways to Cook Bacon in the Oven”, the

ideal result has as many ways to cook bacon in the oven as we need (at least

five).

� If the result was “Ten Ways to Deep Fry Bacon” the ability to answer the

question would be poor as the user needs ways to cook bacon in the oven

and not in the deep fryer.

� If the result was “The Best Way to Cook Bacon in the Oven”, the ability

to answer the question would be good since it provides one way, though the

user might have to search for more.

We also provided more detailed instructions, with examples:

Overview

Help us determine how relevant results are to search tasks.

Steps
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1. Read and Understand the Search Task

2. Review the Search Result made during the Task

3. Select the level of relevancy for each result to the Task

Rules Tips

� You should be assessing the results based on the ability of the result to

address the needs of the task.

– Ability to answer the question is the purpose of the search

* If a person is searching for “Five Ways to Cook Bacon in the Oven”,

the ideal result has as many ways to cook bacon in the oven as we

need (at least five).

* If the result was “Ten Ways to Deep Fry Bacon” the ability to

answer the question would be poor as the user needs ways to cook

bacon in the oven and not in the deep fryer.

* If the result was “The Best Way to Cook Bacon in the Oven”, the

ability to answer the question would be good since it provides one

way, though the user might have to search for more.

� Review the information we’ve provided before making your decision.

� If you aren’t sure what the result is saying, open the link provided to see the

full page and decide whether the content addresses the needs of the task.

Relevancy Definitions

� You should choose Off-Topic if:

– The task cannot be addressed by the result.

– The results are irrelevant to the task

– “Why is this item even being returned?”

� Choose Poor if:

– The ability to address the needs of the task is poorly matched.

– The result is somewhat related to the query, but it not a good match.

– ”I see why this is returned but it’s definitely not everything I need – I

probably would need to search a lot more to find what I need”

� Choose Good if:
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– Matches most of the conditions of the task - or the most important

parts of the task.

– Technically, most of the task are satisfied but result doesn’t provide a

full, clear and complete answer to what is needed.

– “This broadly matches what I need, but it’s not a perfect match. I might

need to search a bit more”

� Choose Excellent if:

– The search intent is clearly satisfied.

– All specifics of the Task appear in the Result

– “This is exactly what I need to finish the task”

Examples:
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Task Find five popular toys for girls aged 7-10 in 2015

Result Title: Uttermost Stockton White Rescued Denim Rug

(5’ x 8’)

Relevance Score

Off-Topic:

� “Why is this item even being returned?”

� The intent of the query was not matched

� The results are irrelevant to the search query

Task Find five cell phones on AT&T have the highest

quality cameras

Result Title: Phone Review: Samsung Galaxy Note 3

Relevance Score

Poor/Good:

� ”I see why this is returned but it’s definitely not

everything I need – I probably would need to search

a lot more to find what I need”

� The result only gives information about one cell

phone, but we need information for five

� The ability to fully answer the question: Is this

phone on AT&T? Does it have a good camera?

This might depend on what is on the full page and

bring the rating from Poor to Good

Task Find five I.T. companies in Los Angeles with

fewer than 50 employees

Result Title: Meet the Hottest Startups in L.A. of the Year

Relevance Score

Good/Excellent:

� ”This broadly matches what I need, but it’s not a

perfect match. I might need to search a bit more”

� Matches most of the conditions of the task - or the

most important parts of the task

� The ability to fully answer the question: do these

companies have fewer than 50 employees? Do we

have 5 companies? This might depend on what is

on the full page and bring the rating from Good

to Excellent
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Figure A.1: An example of the task crowdworkers were given to complete on the Amazon
Mechanical Turk platform.
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APPENDIX B

Knowledge Assessment Questions

The following are the questions used for knowledge assessment before, during, and after the

study in Chapter 5. Refer to the study design in Section 5.3 for details of when and how

users were exposed to them.

B.1 ‘Remember’ Assessment: Multiple Choice Ques-

tions

B.1.1 Document-Related Questions

For the following questions, participants were able to find the answers within the main

document given during the Reading stage.

� What was the task of the Netflix Prize? (Pre-Task, Post-Document, Post-Task)

– To identify users and films based on their ratings

– To improve Netflix’s own algorithm for predicting ratings

– To predict ratings for films based on previous ratings without any other informa-

tion

– To award prizes to users who rated films most accurately

– I don’t know

� How was the movie rating data represented for prediction? (Pre-Task, Post-Document,

Post-Task)

– As a graph/network

– As a list
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– As a matrix

– As a set

– I don’t know

� Which of the following explains why the Netflix Prize matrix was considered sparse?

(Pre-Task, Post-Document, Post-Task)

– The matrix had high dimensions with many rows and columns

– The matrix had a significant number of missing values

– The matrix had an imbalance in dimensions with the number of rows being sig-

nificantly lower than the number of columns

– The matrix had unequal dimensions, with a smaller number of rows in comparison

to the number of columns

– I don’t know

� Which of the following statements is true about SVD and matrix factorization? (Pre-

Task, Post-Document, Post-Task)

– They increase the dimensionality of a matrix

– They reduce the dimensionality of a matrix

– They have no effect on the dimensionality of a matrix

– They only work on square matrices

– I don’t know

� What is the role of SVD decomposition in revealing latent features of a data matrix?

(Pre-Task, Post-Document, Post-Task)

– To generate new data points based on existing data

– To reduce the dimensionality of the data matrix

– To cluster similar data points together

– represent the data matrix in terms of its latent features

– I don’t know

� How are rating predictions obtained using matrix factorization techniques like SVD in

movies recommendation systems? (Pre-Task, Post-Document, Post-Task)
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– By averaging the user ratings in the user latent feature matrix

– By adding the user latent features and movie latent features matrices

– By subtracting the user latent features from the movie latent features matrices

– By multiplying the user latent features and movie latent features matrices

– I don’t know

� Which statement accurately describes the use of the Stochastic Gradient Descent

(SGD) method in Singular Value Decomposition (SVD) decomposition? (Pre-Task,

Post-Document, Post-Task)

– It maximizes mean square error to determine optimal parameters

– It minimizes mean square error to identify optimal parameters

– It randomly selects parameters to minimize error

– It has no involvement in SVD decomposition

– I don’t know

� Which of the following statements accurately defines the variables in the Singular Value

Decomposition (SVD) formula: M = UΣV t? (Pre-Task, Post-Document, Post-Task)

– M represents the original data matrix, U represents the left singular matrix, Σ

represents the diagonal matrix of singular values, and V represents the right

singular matrix

– U represents the diagonal matrix of singular values, Σ represents the left singular

matrix, M represents the right singular matrix, and V represents the original data

matrix

– U represents the original data matrix, Σ represents the diagonal matrix of singular

values, V represents the left singular matrix, and M represents the right singular

matrix

– M represents the diagonal matrix of singular values, U represents the left singular

matrix, V represents the right singular matrix, and Σ represents the original data

matrix

– I don’t know

� How many matrices result from SVD factorization? (Pre-Task, Post-Document, Post-

Task)
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– Two

– Three

– No fixed size

– The size is a parameter that is calculated during error minimization

– I don’t know

The following questions are more general, but still topic-related. Their answers are not

necessarily in the main document, but are more evident in the set of documents on the search

page.

� What was the main goal of the Netflix Prize? (Pre-Task, Post-Task)

– To improve the user interface of the Netflix website

– To improve the accuracy of Netflix’s movie recommendations

– To increase the number of subscribers to Netflix

– To reduce the cost of producing original content for Netflix

– I don’t know

� What metric was used to evaluate the performance of the models in the Netflix Prize

competition? (Pre-Task, Post-Task)

– Mean squared error (MSE)

– Mean absolute error (MAE)

– Root mean squared error (RMSE)

– Precision

– I don’t know

� What was the winning team’s approach to the Netflix Prize? (Pre-Task, Post-Task)

– Collaborative filtering with matrix factorization

– Content-based filtering with decision trees

– Item-based collaborative filtering

– Association rule mining

– I don’t know
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� Why did Netflix not adopt the winning algorithm from the Netflix Prize? (Pre-Task,

Post-Task)

– The algorithm was too computationally expensive to use in production

– The algorithm was too difficult to implement with Netflix’s existing technology

– The algorithm did not result in a significant improvement in recommendation

accuracy

– The algorithm was not scalable to larger datasets

– I don’t know

� Cinematch is: (Pre-Task, Post-Task)

– The name of the grand prize winner

– The name of the algorithm to improve

– The name of the dataset

– I don’t know

� Which of the following is a true statement about the grand prize-winning team in the

Netflix Prize competition? (Pre-Task, Post-Task)

– The grand prize was given to a team that used a completely different algorithm

than SVD

– The team that submitted their results first was declared the winner

– Two teams were able to reach the benchmark; the winning team was the one that

submitted their results first

– No team was able to reach the competition’s benchmark, and the grand prize was

awarded to the team with the highest score

– I don’t know

� Which of the following statements is true about the algorithm used by the winning

team of the Netflix Prize competition? (Pre-Task, Post-Task)

– The winning algorithm was eventually found to be impractical for use by Netflix

– Netflix chose not to implement the winning algorithm and had no intentions of

doing so

– The winning algorithm is currently being utilized by Netflix for recommendations
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– Netflix combined the algorithms of the winning teams to create an improved

version that is now being used for recommendation

– I don’t know

� Which of the following statements about the Netflix Prize Sequel is true? (Pre-Task,

Post-Task)

– The second Netflix Prize competition was never planned

– No participant was declared the winner of the “Netflix Prize II” competition

– The second Netflix Prize competition, known as “Netflix Prize II” competition

was canceled

– The Netflix Prize II differs from the original Netflix Prize competition by having

a different evaluation metric on a smaller dataset size

– I don’t know

� What was the main privacy concern raised by the release of the Netflix Prize dataset?

(Pre-Task, Post-Task)

– Competition datasets are not subject to privacy policies since they do not contain

personal information about users, and no terms were violated

– Netflix violated the terms of service by users who shared their accounts

– Netflix data was collected and published without the users’ consent

– The possibility of re-identification attacks that could link anonymous user data

to real-world identities

– I don’t know

B.2 ‘Understand’ Assessment: Vocabulary Test

The vocabulary test’s terms, which consists of a set of key terms of varying difficulty selected

by their dependencies on other key terms, is shown in Table B.2. Words were given at

different stages of the study, which is also shown in the table. Participants were asked to

indicate their familiarity with terms by selecting on of the following options for each term:

� I don’t remember having seen this term/phrase before.

� I have seen this term/phrase before, but I don’t think I know what it means.
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� I have seen this term/phrase before and I think it means...

� I know this term/phrase. It means...

If participants indicated familiarity with a term, they were also required to provide a

definition.

Term Dependency Difficulty Stage

Pre- In- Post- S E M H Pre- Doc Post-

Collaborative Filtering Algorithm • • • •
Sparse Matrix • • • • •

Item-item Filtering • • • •
Regularization • • • • •

Implicit Feedback • • • • •
Latent Factor • • • •
Normalization • • • •

Matrix Factorization • • • •
Singular Value Decomposition • • • •

Gradient Boosted Decision Trees • • • •
RMSE • • • •

Overfitting • • • •
Artificial Neural Network • • • •

Backpropagation • • • •
K Means Clustering • • • •
Gradient Descent • • • • •
Ensemble Learning • •

Boosting • • • •
Conditional Probability • • • • •

Expectation Maximization • • • •

Table B.2: Vocabulary Terms which participants indicated familiarity with at various stages
of the study. Dependencies are Pre-Requisite, In-Document, and Post-Requisite respectively.
Difficulties are Standard, Easy, Medium,and Hard. Stages are Pre-Test, Post-Document, and
Post-Test respectively.

B.3 Bonus Questions

B.3.1 Bloom’s Taxonomy Level 3: ‘Apply’

Suppose you were provided with a dataset for a music recommendation system. What

would you consider as the rows and columns of the corresponding matrix? Additionally, how
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might the matrix change when Singular Value Decomposition techniques are applied to this

dataset? (4 points)

B.3.2 Bloom’s Taxonomy Level 4: ‘Analyze’

What makes Singular Value Decomposition (SVD) a dimensionality reduction method? Do

you think it is possible that the reduction of dimensions using SVD results in a loss of data?

(2 points)

B.3.3 Bloom’s Taxonomy Level 5: ‘Evaluate’

Assess two main strengths and two weaknesses of utilizing SVD for the Netflix Prize com-

petition. (2 points)

B.3.4 Bloom’s Taxonomy Level 6: ‘Create’

List the steps required to transform a matrix using SVD. (2 points)
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