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Abstract 

As the field of organic synthesis enters the digital age, an unprecedented number of tools 

are opened up for analyzing, planning and executing chemical reactions. This thesis will describe 

the development of two methods for analyzing reactions between organic molecules, and one for 

the automation of setting up high-throughput experiments. 

First, an extensive exploration of amine–carboxylic acid reaction space was conducted 

through computational enumeration of all theoretically possible matrix-encoded transformations 

between a simple amine–acid pair, delving into an under-explored axis of chemical space 

exploration. The extent of physicochemical property modulation enabled by this technique is 

analyzed using both small and large building blocks. The performance of reaction enumeration 

method in generating virtual libraries from one single building block pair was evaluated against 

the conventional approach of coupling many building blocks through one robust reaction. 

Next, the matrix encoding technique was applied to analysis of reactions throughout a total 

synthesis route. A new method of synthetic route visualization was developed by charting the 

graph edit distance between each intermediate and the target, producing a graph from which 

valuable high-impact steps can be quickly identified and analyzed. By merging this technique with 

computer-aided synthesis planning software, two enantioselective syntheses of the alkaloid 

stemoamide were conducted. At the length of six and three steps respectively, they mark the 

shortest synthesis of this molecule to date. 

Lastly, a platform for automated setup of high-throughput experiments in 24- and 96-

wellplates was developed, combining the online electronic notebook phactor™ with the Opentrons 

OT-2 autopipettor. Benchmarking test against the existing manual workflow reveal that the robotic 

setup performs adequately in most conditions, with the main exception being poorly soluble solid 

reagents. An alternative manual dosing of such solids was developed using custom spatula designs. 

The automated platform enables many novel experimental designs, such as remote collaboration 

over teleconferencing software, and small-scale library synthesis of nearly 100 products in a single 

wellplate.   
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Chapter 1 Introduction and Manuscript Overview 

1.1 Background of data science and automation in the field of organic chemistry 

The presence of data informatics in organic chemistry predates the incorporation of 

computers in the field. Methods of enumerating alkanes were proposed in 1875 by Cayley1 and 

iterated upon by many others2–4. Automated synthesis of peptides was developed as early as 1966 

by Merrifield and Jernberg5. On the computation front, Corey and Wipke reported in 1969 a system 

that allowed conversion of molecular structures via a drawing pad to a machine-readable and 

displayable format6. These structures could then be analyzed and broken down in-silico through 

encoded reaction rules, generating trees of suggested retrosynthetic disconnections.  

As improvements are made in computational power, information storage, and data science 

techniques, they have readily been harnessed in furthering the field of organic synthesis. These 

developments offer abundant opportunities to either add novel methods to this common toolbox, 

or tailor existing tools to specific laboratory tasks. In this manuscript, three contributions in the 

area of computers in chemistry will be detailed.  

The exploration of chemical space through enumeration was first performed as a 

mathematical exercise by Cayley1 and Schiff3, both developing methods to calculate the number 

of acyclic alkanes for a given carbon count. Many subsequent publications either offered 

corrections to the proposed formulae2,4, or expanded their applications to other functionalities7,8. 

In contrast, modern enumeration of chemical structures aim to produce a virtual collection of 

molecules that span a given chemical space. For example, the GDB-17 database by Reymond9 

contains structures that have a maximum of 17 heavy atoms, only possess a subset of C, N, O, S, 

and halogen atoms, and filtered to remove highly strained structures and functional groups. 

Pharmaceutical companies and chemical suppliers provide databases of molecules that can be 

quickly synthesized by coupling on-hand building blocks with tried-and-true reactions. Examples 

of these databases include the Proximal Lilly Collection10, Pfizer Global Virtual Library11 and 

Enamine REAL library12. 
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Another type of enumeration is that of chemical reactions. Systematic methods for 

classifying organic reactions have been proposed by researchers such as Hendrickson13, intended 

to aid reaction cataloging and referencing, while numerical methods developed by Ugi and 

coworkers14,15, that encoded chemical reactions as changes in a matrix of bond orders, were 

employed to discover novel reactions by fixing the pattern of bond changes while iterating through 

identities of the atoms at which these transformations occur16.  

As a complement to previous works, this manuscript will conduct a third axis of enumeration. 

Using matrix-encoded structures and transformations, the coupling space between a single pair of 

amine and carboxylic building blocks, chosen for their abundance and comparative low cost, will 

be extensively explored. Modulations of physicochemical properties will be compared between 

simple small molecules as well as larger druglike molecules, and the performance of this method 

in generating ultra-large virtual libraries will be evaluated. 

Moving forward from exploring single-step reactions, this manuscript will next apply matrix 

methods to evaluating multi-step synthetic routes. It is notable that several early works in 

representing molecules as matrix-encoded graphs, with atoms as nodes and bonds as edges, have 

been geared towards developments for retrosynthetic software15,17, and this encoding method 

remains in use among contemporary reaction prediction literature18–20.  

When converting computer-proposed retrosynthesis into experimental routes, methods of 

assessing step impact are useful to locate high-impact steps to ideally preserve in the experimental 

process. Existing assessment methods fall between two main frameworks. One classifies each step 

under one or several reaction types, with which to evaluate their synthetic ideality. For example, 

reactions that form rings17, merge multiple building blocks into one21,22, form multiple bonds in a 

cascading mechanism23,  or C–C bonds in strategic locations24 are considered highly impactful. In 

contrast, synthetic steps that manipulate protecting groups25, undergo unnecessary redox 

operations26, or perform multiple functional group interconversions27 are deemed to have low or 

negative impact. Evaluations of step impact using reaction type are simple for chemists to 

understand in context of their existing knowledge, but the method does not intrinsically 

differentiate two steps that fall under the same reaction class. The second assessment method 

calculates given properties for each intermediate, most commonly a measure of molecular 

complexity28–30 but also physicochemical properties such as molecular weight or fraction of sp3 

atoms31. A graph of property against intermediate readily shows the impact of each step as their 
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slopes, where steps with the highest slope value are assigned highest impact. However, complexity 

of algorithms employed to compute these properties result, to varying extents, in a “black box” 

visualization – the graphs can show which steps are impactful, but not why they are rated as such.  

The work herein will describe a new method for evaluation of relative step impact in a total 

synthesis route, combining a graphical representation that clearly underscores high- and low-

impact steps with a distance metric based on matrix representations of intermediates capable of 

displaying the contributing elements involved in determining the impact of each step. This step 

impact evaluation metric will be applied towards several computer-generated synthetic routes 

towards the natural product stemoamide, in order to extract high-impact steps from several 

retrosyntheses for implementation into experimental routes.  

The third and final section of this manuscript will detail development of a robotic platform 

to conduct high-throughput experiment (HTE) screens, such that valuable reactions highlighted in 

previous sections can be discovered in the laboratory. In an HTE screen, reactions are commonly 

conducted in parallel using wellplates with rectangular grids, with each well having its own unique 

reagents or conditions32. HTE is currently a rapidly developing field due to its data economy, being 

able to generate large amounts of organized data in a small footprint, in terms of both vessel size 

and material usage33. Many facets of chemical synthesis have benefited from adopting HTE, such 

as reaction condition screening34, exploration of reaction substrate scope35, reaction performance 

prediction through machine learning36, and discovery of novel reactivities37–39. 

The standardized nature of HTE equipment readily provides opportunities for automation. 

Developments in robotic and computational technology has enabled systems that can conduct 

experiments, evaluate results, and execute the next iteration of experiments in a closed cycle40–42. 

While these systems contain immense potential to expedite advancements in various scientific 

fields, they currently require large capital expenditure and repurposing of laboratory space. This 

manuscript will focus on an automation platform utilizing the Opentrons OT-2, a compact liquid 

handler developed for routine bio-chemical work, but can be repurposed for use in high-throughput 

organic synthesis, as both disciplines share similar hardware and workflows. The OT-2’s modular 

nature and small footprint allows its adoption by traditional chemistry laboratories without large 

expenditures in supporting infrastructure. The reproducibility of experiments set up in 96-

wellplates by the OT-2 will be evaluated by comparison with manual setup through micropipettes 

and custom-made plastic scoops for poorly soluble reagents43.  
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Chapter 2 Enumeration of Amine – Carboxylic Acid Coupling Reactions Based on Matrix 

Encoding of Chemical Transformations. 

2.1 Introduction 

Amines and carboxylic acids are two widely available functional groups that are classically 

united through the amide coupling reaction (Fig. 2.1a, 2.1 + 2.2  2.3), a tried-and-true chemistry 

that has become the most popular reaction for pharmaceutical explorations of chemical space1. To 

tap into this robust transformation, many research and drug discovery institutions possess large 

amounts of amines and carboxylic acid building blocks. We hypothesize that, by discovering new 

coupling chemistries between these abundant building blocks, larger amounts of chemical space 

can be accessed.  

In our group’s first study2, the strategy was to curate a set of coupling transformations that 

were deemed intuitive by chemical intuition, such as coupling (2.4), fragmentation (2.5) and 

reduction (2.6). Four pairs of simple amine and carboxylic acid building blocks were 

computationally united at each partner’s functional group atoms as well as α and β atoms, using a 

selection or sequence of these transformations. These virtual products spanned a wide range of 

physicochemical properties, suggesting that macroscopic properties such as cell permeability or 

metabolic stability of a product could be influenced by varying only the chemical transformation 

between two building blocks, in contrast to the conventional drug discovery approach of varying 

the building blocks themselves.  

However, this curated list of transformations focused on reaction simplicity and plausibility 

instead of exhaustive enumeration, which excluded many conceivable and popular transformations 

where multiple bonds were formed or broken. These include cyclization (2.7), where two bonds 

are made between the amine–acid pair, oxidation of the bond forged during coupling (2.8), as well 

as less intuitive instances where at least one of the substrates is fragmented, such as addition (2.9), 

rearrangement (2.10), insertion (2.11) and metathesis (2.12). In this subsequent study, we aim to 

perform a much more extensive enumeration process that will include all reactions presented 
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above, as well as any other transformations that are theoretically possible without violating the 

octet rule. 

 

 

Figure 2.1. Diverse amine–carboxylic acid transformation products. a. Given an amine 2.1 and carboxylic acid 2.2, the most 
popular transformation that unites this pair of building blocks produces the amide 2.3. b. Coupling products arising from a curated 
subset of chemical transformations charted by our prior work. c. Examples of transformations not appearing in our previous 
publication, that we wish to consider in this manuscript. 

 

2.2 Background of reaction encoding via matrices 

The application of graph theory concepts towards organic chemistry, wherein molecules 

are represented as molecular graphs, with atoms as nodes and bonds as edges, have been performed 

as early as 1875 to enumerate selected molecule classes, such as branched alkanes3,4, alcohols5,6, 

and cyclic carbon skeletons7. These methods later evolved to matrix encoding of molecular graphs8 

as well as molecular reactions, most notably by Ugi, Dugundji and coworkers9–13, who established 

the concept of a be-, or bond-electron matrix to encode molecular structure by denoting the 

distributions of bonds and electrons, and the difference between two be-matrices to be the reaction 

matrix, encoding information of bond and electron flow. These tools were utilized for reaction 
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enumeration in an orthogonal direction to our work, selecting one particular reaction matrix while 

permuting identities of atoms at which the transformations occur14.  

Other variants of matrix encoding have been reported, such as bond/edge matrices15,16, 

generalized graph matrices17,18, 3D molecular graphs19–21, atom-bond connectivity matrices22–26, 

and other graph theoretical matrices27,28. In contemporary literature, matrix encoding of molecules 

and chemical transformations have been applied towards prediction of molecular properties and 

reaction outcomes29,30, and enumeration of chemical spaces bound by number of bond 

transformations31, ring count32, or atom count33.  

2.3 Mathematical basis of coupling reaction enumeration 

In our exploration of the amine–carboxylic acid coupling space, we accessed that the upper bound 

to the occupants of this space is the total number of ways the building blocks’ constituent atoms, 

or a subset thereof, can be covalently attached without violating valency rules. We chose to only 

consider structures where all atoms do not have formal charges, although species with charged 

atoms, such as nitro groups or quaternary ammonium ions, are conceivable. 

Figure 2.2a demonstrates a simple example with the coupling of ethylamine (2.1) and 

propanoic acid (2.2) to form amide 2.3. First, a matrix is generated for the starting system. During 

this reaction, the bond order between N6 and C5 increases by one, while the bond order between 

C5 and O8 decreases by one. Addition of this transformation matrix to that of the starting materials 

then gives the amide product 2.3. This same transformation matrix can be obtained by first 

separating this two-carbon amine and three-carbon carboxylic acid system into constituent atoms 

(Fig. 2.2b), obtaining amide 2.3 by adding entries into a blank adjacency matrix, and then 

subtracting the adjacency matrix of the reactants from the adjacency matrix of the products (Fig. 

2.2c), in analogy to the work of Ugi9, Schneider34 and other colleagues.   
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Figure 2.2. Matrix enumeration in coupling product generation. a. Demonstration of matrix-encoding of reaction from Figure 1a. 
In the molecular diagrams, white circles represent carbon, blue circles nitrogen, and red circles oxygen. The numbers in the 
adjacency matrix correspond to the atom indices in the cartoon atoms, while the color represents bond order. b. Workflow for 
exhaustive generation of amine–acid coupling products. c. The difference between the product matrix and starting material matrix 
is the transformation matrix. 

The procedure to exhaustively generate all amine – carboxylic acid coupling products and 

transformation matrices is as follows: 

1. All heavy atoms are first assigned indices. The exact assignment of atoms to indices does 

not affect the result, but matrix visualizations will appear more intuitive if adjoining atoms 

in the molecule are given indices that put them next to, or close to each other in the matrix.  

2. Compute the matrix representation of this initial system, for generation of transformation 

matrices further down the workflow. Each bond between heavy atoms is encoded as an 

integer, in the position corresponding to its neighboring atoms’ indices. For example, in 

Fig. 2.2a, since atoms #2 and #6 have a single bond between them, then the matrix entries 

(2,6) and (6,2) are set to 1. Similarly, the (5,7) and (7,5) entries are set to 2. In our work, 
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four starting material representations are generated, for each permutation of hybridization 

of the α and β carbons (Figure 2.3). 

3. Determine bonding parameters for all atoms. Every atom has two parameters: the 

maximum total bond order, t, originating from it, and the highest order for an individual 

bond, b. For example, a neutral nitrogen atom has (t, b) = (3,3), while a neutral carbon has 

(t, b) = (4,3) since, while carbon can have a total bond order of 4, it is not permitted to 

make quadruple bonds.  

4. Determine the identity of the first row’s corresponding atom. Generate all possible rows 

that sum to t or below (since bonds to hydrogen are implied), with each entry having a 

maximum value of b, and the first entry being 0 (since an atom cannot bond with itself). 

5. For each generated matrix, the first entry of the second row is set to the second entry of the 

first row, and the second entry is set to 0. 

6. Using the second row atom’s values of t and b, generate all possible remaining variants of 

the second matrix row. 

7. Repeat steps 5 and 6 to generate subsequent rows, where the nth row is initialized by 

vertically stacking the previously generated rows into a rectangular matrix, copying the nth 

column into the nth row, then generating all permitted permutations of the n+1th element 

and beyond which the t and b values permit. 

8. Following this algorithm, the last row of each matrix is a copy of the penultimate column 

with an appended 0.  

9. Obtain the set of transformation matrices from each starting material pair, via subtracting 

a matrix generated in step 2 from each product matrix resulting from steps 4-8. 

 

Figure 2.3. The four starting material hybridization permutations, and their matrix representations. From left to right: sp3 amine 
2.1 and sp3 acid 2.2, sp3 amine 2.1 and sp2 acid 2.13, sp2 amine 2.14 and sp3 acid 2.2, and sp2 amine 2.14 and sp2 acid 2.13. 
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2.4 Results of amine–carboxylic acid coupling reaction enumeration 

 

Figure 2.4. Results and analysis of amine–carboxylic acid reaction enumeration. a. Schematic of enumeration from amine 2.1 and 
acid 2.2 to yield 56 million unique transformation matrices, which are filtered first to 222,740 unique products assuming carbon 
and oxygen atoms are degenerate, and further to 80,941 unique products after eliminating highly improbable structures. b. Two-
dimensional histogram showing distribution of ring count and bond edit distance of the initial 222,740 products. c. Kernel density 
estimate (KDE) plots of various physiochemical properties of the filtered amine-acid coupling system with 80,941 structures, along 
with selected products. The respective property of the classic amide is shown by the vertical grey line. HBD = hydrogen bond 
donor, PSA = polar surface area, FSP3 = fraction sp3-atoms, MW = molecular weight, HBA = hydrogen bond acceptors, QED = 
quantitative estimate of drug-likedness, LogP = partition coefficient, ROTB = number of rotatable bonds, Rings = number of rings. 
d. Principal Moment of Inertia (PMI) ratio distributions of all products from the expanded enumeration. 

2.4.1 Overview of product count and initial filtering for energetic plausibility 

The structure enumeration algorithm generated an initial count of 55,964,558 

transformation matrices (Fig. 2.4a)35, considering that only eight atoms were being united. Since 

the two oxygen atoms on a carboxylic acid are almost always chemically equivalent, the total 

number of products can be reduced by approximately half to 23,829,176, unless isotopic labelling 

of 16O versus 18O is incorporated. Setting all 5 carbon atoms as degenerate, and only considering 

products with four or more heavy atoms, further simplifies this space to 222,740. Though a 
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relatively drastic 100-fold reduction, this quantity of coupling products remains remarkable, since 

only a maximum of eight atoms were incorporated in each structure. 

Within this vast structural space, many products contained motifs that are energetically 

improbable, or structurally distant from the simple amine–acid building blocks. To limit the 

inclusion of such improbable structures, we eliminated any structure with more than 4 rings, or 

requiring more than 6 bond edits from the amine–acid substrates (Fig. 2.4b). This brought the 

structure count to a final 80,941 products.  

2.4.2 Distribution of physicochemical properties 

Molecular properties of the enumerated set of 80,941 amine–acid products were computed 

with the RDKit package36, and their distributions visualized as kernel density estimate (KDE) plots 

(Fig. 2.4c). For comparison with the amide coupling, properties of the corresponding sp3–sp3 

amide (2.3) are plotted as a vertical line in each panel. Expansion of the reaction space has a variety 

of effects on molecular properties compared to our earlier map2. While the amide product 2.3 has 

one hydrogen bond donor (HBD), the matrix enumeration set was allowed to break the carboxylic 

acid moiety into two alcohol groups, each being an HBD, accounting for the small peak at HBD = 

3. Molecular weight (MW) and number of hydrogen bond acceptors (HBA) skewed larger when 

the reaction space was expanded. Both observations can be attributed to the increase in structures 

that incorporate all carbon, nitrogen, and oxygen atoms (2.17, 2.18, 2.20). Since the number of 

possible structures increases with the number of atoms involved, expanding the reaction set affords 

an increase in the number of relatively massive structures, accounting for the shift in distribution 

to larger MW. The distribution of MW also has a long tail towards structures with low mass, as 

fragmentation transformations result in products with fewer atoms than the starting materials. The 

same reasoning holds for the large peak at HBA = 3, since more product substructures can 

incorporate all three polar atoms, as in 2.17. Other properties distribute more to lower values, such 

as logP, due to polar small molecules, and number of rotatable bonds (ROTB), due to highly rigid 

caged structures.  

2.4.3 Distribution of molecular shape 

To examine the shape diversity of the 80,941 matrix-enumerated products, a principal 

moment of inertia (PMI) ratio analysis37 was performed (Fig. 2.4d). The enumerated reaction space 
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covers a high diversity of three-dimensional shapes, including rod-like molecules such as 2.21, 

disc-like molecules such as 2.22, and sphere-like molecules such as 2.23. The sp3–sp3 amide 

coupling product 2.3, being a nearly linear molecule, sits near the upper left corner of the PMI 

plot. Upon application of matrix enumeration, the available molecular shapes cover a much larger 

portion of the PMI plot, suggesting that a wider diversity of molecular shapes can potentially be 

achieved by expanding the library of amine–acid coupling reactions. 

2.5 Application towards examination of retrosynthetic opportunities. 

Our dataset of virtual amine–acid coupling products can also be used as a retrosynthetic 

strategy to disconnect complex molecules for total synthesis. Through substructure searches of our 

enumerated products within a desired synthetic target, we can inform potential retrosynthetic 

disconnections for synthetic planning of complex molecules, as outlined in Figure 2.5. Lactone 

2.24, a structure generated via transformation enumeration, can be formed by cyclization, where 

the acid oxygen and β carbon of propenoic acid (2.13) form σ bonds to the amine β carbon of 

ethylamine (2.1) (Fig. 2.5a). Therefore, in any target molecule that contains 2.24 as a substructure, 

such as noscapine (2.25), the transformation in Figure 2.5a can present a retrosynthetic 

disconnection, simplifying the target into smaller building blocks (Fig. 2.5b).  

Within each drug molecule, the result of searching through all 80,941 amine–acid coupling 

structures can be visualized as a chord diagram (Fig. 2.5c and 2.5d). Target molecules to be 

disconnected lie on the black band, and matrix enumeration products on the checkered band. Each 

chord represents one disconnection as presented in Fig. 2.5b. The high degree of connectivity 

demonstrates the many opportunities for retrosynthetic simplification that arise through the 

invention of new reactions. For example, in addition to the 2.26–2.27 pair, noscapine can undergo 

another disconnection pathway into sp3 acid 2.28 and amine 2.29. In some products, a single 

substructure can present more than one disconnection mode, such as athamontanolide (2.30) 

disconnecting into acrylic acid (2.31), and either amine 2.32 or 2.33. We propose that this 

disconnection search method can complement current retrosynthetic algorithms, by screening 

many disconnection modes for readily available or easily synthesizable building blocks, then 

presenting the coupling reaction to be developed in an experimental setting.  
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Figure 2.5. Analysis of retrosynthetic opportunities using products generated through virtual amine–acid coupling. a. Amine 2.1 
and acid 2.13 couple to give lactone 2.24. b. By reversing the transformation in 5a, noscapine (2.25) is disconnected into amine 
2.26 and acid 2.27. c. Chord diagram visualizing retrosynthetic disconnection of noscapine (2.25). d. Chord diagram visualizing 
retrosynthetic disconnection of athamontanolide (2.30). A list of all substructures found in the two drugs can be found in Appendix 
A.   

A search of all 222,740 enumerated amine–acid coupling products was conducted within 

the Drugbank38 database. To effectively visualize this result within a high dimensional chemical 

space, a two-dimensional Uniform Manifold Approximation and Projection (UMAP)39 was 

applied to 2,048-bit Morgan fingerprints40 of all structures, and the resultant embedding visualized 

in Fig. 2.6. Each dot represents one structure, and the color represents its frequency of occurrence 

within Drugbank. Most structures commonly occurring within drugs were observed to gather 

largely in two neighboring clusters (yellow dots in the vicinity of 2.34), demonstrating the vastness 

of structural space that remains unexplored by pharmaceuticals and could be made accessible 

through novel amine–acid couplings. Notable “drug-like” transformations from other clusters 

include those that generate rings such as pyridine (2.22) and furan (2.36), suggesting that an 

amine–acid pyridine synthesis would be valuable in drug discovery. Amine–carbonyl 
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condensations are a popular approach towards pyridines41,42, including an amino acid 

fragmentation-reconstruction reaction, hence it is conceivable that several amine–acid pyridine 

syntheses could be developed to quickly access an even wider range of substituted pyridines. 

 
Figure 2.6. UMAP projection of Morgan fingerprints computed from 222,740 enumerated products. Dots are colored by the 
number of product substructure matches in the Drugbank database, with majority of product substructures appearing as unexplored 
chemical space. Sample structures from clusters containing products who appear as substructures in Drugbank (2.22, 2.34-2.38) 
are displayed. A list of the top 100 most frequent substructures found in the Drugbank is located in Appendix A.    
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To highlight impactful amine–acid reactions for development, the most frequently 

occurring matrix-enumerated coupling product substructures in DrugBank are displayed in Fig. 

2.7a. The most abundant substructure containing only carbon is the C–C–C–C motif 2.39. 

Meanwhile, the sp3–sp3 C–N coupling 2.42 and the sp3–sp3 C–O coupling motif 2.45 and are the 

most abundant in structures containing only carbon and nitrogen, and carbon and oxygen 

respectively. Together, these findings suggest that these three transformations could be valuable 

in drug discovery and natural product synthesis.  

 
Figure 2.7. High-impact reactions recommended for discovery. a. Frequencies of the top 100 most abundant substructure matches 
in DrugBank, plotted as histograms categorized by their elemental makeup. The top three most abundant structures for each group 
are shown (2.39-2.50). b. Experimental conditions for four amine–carboxylic acid couplings subsequently discovered by our group. 
sp3 acids (2.51) can couple with either sp3 amines (2.52) to form a C–C bond through deamination and decarboxylation (2.53), or 
with sp2 amines (2.54) through deaminative esterification (1.55). The latter conditions are also capable of coupling sp2 acids. sp2 
acids (2.56) can couple with either sp3 amines (2.57) to form a C–C bond through deamination and decarboxylation (2.58), or 
undergo deaminative esterification (2.59), which is also robust towards sp3 acids. 

The most abundant substructures with C, N and O atoms contain fragments of the amide bond 

(2.48, 2.49), which once more underscores the prevalence of the amide coupling in drug discovery, 
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but also opportunities in accessing complementary chemical space with amine–acid couplings that 

do not produce the amide, yet preserve C, N and O atoms. Following this guidance, our group has 

experimentally realized several amine–carboxylic acid couplings (Figure 2.7b), including sp3 

amine–sp3 acid C–C coupling43, sp2 amine–acid esterification44, sp3 amine–sp2 acid C–C 

coupling45,  and sp3 amine–acid esterification46.  

2.6 Application towards virtual late-stage diversification 

So far, our analysis of physicochemical property modulation has been restricted to that of small 

amine–acid coupling pairs. To explore the extent of this effect on larger building blocks, we 

applied the matrix-derived amine–acid transformation enumeration method towards the virtual 

late-stage diversification of druglike molecules. Traditionally, this has been achieved through the 

selection of alternative building blocks47–50,which are then united with the substrate through 

popular reactions such as the amide coupling, Suzuki coupling and Buchwald-Hartwig coupling. 

To investigate how we can complement this traditional strategy, we applied matrix-derived amine–

acid transformations to two druglike molecules, following the workflow outlined in Fig. 2.8a: 

1.  All transformation matrices are applied to the druglike molecule (2.60) and building block 

(2.61) by editing bond orders of the atoms at the reaction center, as instructed by the 

transformation matrix. 

2. Since there are substitutions at some α and β carbons, some transformations will lead to 

products that disobey the octet rule. These structures are screened and removed through 

analysis with RDKit.  

3. Products with high ring strain are removed from the data set. 

4. Other structural elements are checked for, and preserved or excluded depending on the 

identity of the coupling molecule pair.  

5. Matrices that result in valid coupling products are extracted. 

6. The set of matrices in step 5 are applied to a simple amine–acid pair (2.1 and 2.2) so that 

they undergo the same transformation as the druglike coupling pair (cf. step 1).  
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Figure 2.8. Process and results of virtual late-stage diversification study. a. Workflow of virtual late-stage diversification and 
generation of corresponding reaction centers. b. PMI ratio plots showing shape space distribution of reaction enumerated late-stage 
diversification of two drug-like molecules, one showing an sp3–sp3 coupling between 2.60 and building block 2.61, and c. another 
showing an sp2–sp2 coupling between 2.63 and building block 2.64. For each pair of plots, the left shows the distribution of full 
coupling products, while the right shows the distribution of only the atoms at the reaction center (cf. Fig. 2.4d). 

  

This workflow was applied to two druglike molecules – one containing an sp3-acid (2.60) 

(Fig. 2.8b) and one containing an sp2-acid (2.63) (Fig. 2.8c), with a simple amine of the 

corresponding hybridization (2.61 and 2.64). Steps 3 and 4 were implemented with the goal of 

aligning our results with desired outcomes of late-stage diversification in the laboratory. Products 

that lost a significant substituent in 2.60 and 2.61 removed, while the 2.63–2.64 coupling set only 

retained products that retained a six-membered ring at the reacting atoms. Steps 5 and 6 are 
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targeted towards investigating the effect of molecule size on property modulation brought about 

by varying transformation mode.  

For each transformation product set between the druglike building blocks, represented by 

the larger circles in Figs. 2.8b and 2.8c, a complementary set of only the reaction center is also 

produced, represented by the smaller colored circles in Fig. 2.8a and 2.8b. The substrate has a 

considerable effect over the modulation of molecular shape among the products, as illustrated in 

Fig. 2.8b and 2.8c. Though the reacting atoms of the carboxylic acid and amine functional groups 

span a more diverse shape space, the starting materials are larger (for example, 2.60/2.61 versus 

2.1/2.2) so they exert more influence on the final product’s shape. Between 2.60 and 2.61, the 

aggregate PMI ratios skew towards the 1D-2D line but still distribute towards the 3D region of the 

PMI due to the substituent’s higher linearity compared to 2.63 and 2.64. The products in the latter 

set were also filtered to those retaining the aromaticity of the benzoic acid and aniline moieties, so 

there are fewer molecules and less coverage in this sp2–sp2 pairing. 

The influence of substrate on physicochemical property modulation was also analyzed for 

the 2.60-2.61 pair, and visualized as 2D density plots in Fig. 2.9. The modulation of each property 

with regard to the amide (2.62) is plotted on the x-axis for the whole molecule, and y-axis for the 

reaction center. Molecules that lie on the lower left-upper right diagonal exhibit the same 

modulation for that property, regardless of whether the whole molecule, or only the reacting atoms 

are considered. Among the properties computed, HBA and HBD vary in similar amounts, since 

each datapoint represents the same transformation, as HBA and HBD are context-independent and 

additive properties. The parallel diagonal bands in MW, and some extent LogP reflect a divergence 

between transformations that lose atoms carrying functional groups (the large functional groups 

on the α-carbons of 2.60 and 2.61), while movement along the bands reflect simultaneous 

transformations that occur on the other atoms (such as the acid oxygens). Meanwhile, ROTB 

exhibits a broader spread, as it is influenced by structural motifs on both the reacting atoms and 

the other atoms of the building blocks. The change in fraction sp3 atoms (FSP3) varies more 

discretely for the reaction center, since there are only 8 atoms in the model system, hence the 

fraction can only change in multiples of 0.125. Lastly, quantitative estimate of drug-likeness 

(QED), being an aggregate property, shows no clear trend, as evidenced by differences in the 

distribution of each property whether the full product or only the reacting atoms are considered.  
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Figure 2.9. 2D density plots of physicochemical property modulation within the 2.57–2.58 amine–acid system. The x-axes show 
modulation of the entire molecule relative to the amide (2.59), while the y-axes show modulation of only the atoms at the reaction 
center. 

2.7 Virtual docking of compound libraries generated through diverse amine–acid 

coupling reactions 

Finally, we sought to evaluate the performance of matrix-derived late-stage diversification 

in practice. One amine–acid pair (2.65 and 2.66) resembling known inhibitors of the SARS-CoV-

2 main protease (Mpro) was designed (Figure 2.5a). Two orthogonal virtual libraries were created, 

one from enumerating amine–acid transformations between the pair via the workflow presented in 

section 1.5, and the other from performing only amide coupling of 2.62 with diverse primary and 

secondary amines retrieved from the PubChem database51, filtered to less than 13 heavy atoms, no 
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elements other than H, B, C, N, O, F, P, S, Cl, Br and I, and less than two total nitrogen and oxygen 

atoms, to maintain similar polarity between the two libraries. A UMAP analysis performed on 

2048-bit Morgan fingerprints  of sampled structures in both libraries showed complementary 

coverage of chemical space with little overlap, illustrating that invention of diverse amine–acid 

reactions will allow access of chemical space previously untapped by modifying building blocks 

alone. Docking of both virtual libraries was performed across three Mpro conformers (Fig. 2.10c). 

Across all conformers, the library generated via diverse reactions consistently achieved docking 

energies with a narrower spread than the library from diverse amines, while also performing more 

favorably.  

This study was repeated with two additional molecules – finasteride (Figure 2.10d, 2.67) 

docking with Steroid 5-alpha-reductase (7BW1)52, and diethyltoluamide (DEET) (Figure 2.10e, 

2.68) with Odorant Binding Protein 1 (3N7H)53. Both small molecules were disconnected at their 

amide bond, and a virtual library generated through recombining the resultant amine–acid pair 

with diverse transformations. As both acid building blocks possess ring systems, the 

transformation products were filtered to structures that preserved the ring system for the finasteride 

data set, and aromaticity of DEET. 

Compared to the Mpro inhibitor study, the library generated by combining one building 

block pair with diverse transformations did not produce a significantly different docking score 

distribution, but maintained a narrower spread. Interestingly, both methods of virtual library 

generation produced better average scores than the original amides, as indicated by the vertical 

lines in Figs. 2.10d and 2.10e. These studies reinforce our hypothesis that conducting diverse 

reactions between two building blocks allows for finer tuning of physicochemical properties than 

the traditional method of varying the building block itself. A future approach to in silico screening 

may be to first determine the target compound’s constituent building blocks, followed by probing 

the pair’s coupling space to determine the most favorable reaction to unite them with. 
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Figure 2.10. Workflow and results of docking studies. a. Workflow in generating two orthogonal virtual libraries. b. Two-
dimensional UMAP projection of the combined chemical space, using 1,024-bit Morgan fingerprints, colored by the library in 
which each molecule belongs in. c. Docking energies of both libraries across three Mpro conformers. d. Same workflow as 5a 
applied to finasteride (2.67), a schematic representation at the atoms at which transformations were permitted to occur (middle), 
and distribution of docking scores (right). Filters were applied to include only products that preserved the local ring structure. e. 
Same workflow as 5a applied to DEET (2.68). 
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2.8 Conclusions and Future Work.  

We have herein developed a method to computationally enumerate a vast array of 

transformations between a simple amine–carboxylic acid building block pair, producing a broad 

chemical space for exploration. Due to the abundance of amine and carboxylic acid building 

blocks, each amine–acid coupling identified and discovered represents an additional method to 

couple these moieties, accessing novel properties and structures.  

The database of product structures, as well as their transformation recipes, can be applied 

towards simple retrosynthetic searches, or producing coupling libraries between larger molecules 

that possess the relevant moieties. Ultra-large virtual libraries have seen a surge in interest recently 

due to improvements in computing power. While the traditional library generation approach 

gravitates to experimentally robust reactions, the invention of new technologies that accelerate 

invention of new reaction methods necessitates exploration of a wider reaction space, and the role 

these theoretical reactions play in modulating physicochemical properties. 

Naturally, this method is not restricted towards amine–carboxylic acid systems or only 

their functional groups, α, and β carbons. The same strategies can be applied to other functional 

group pairs and expanded beyond atoms close to the functional group, though it should be noted 

that computational time and storage requirements grow exponentially with the number of atoms 

considered. We are currently preparing a publication that surveys the coupling space between other 

functional groups such as alcohols, aldehydes, bromides and boronates, exploring the additional 

chemical space available if coupling conditions were discovered between every combination of 

these functional groups54. A complementary method of extensive enumeration over a few atoms 

will be enumeration of simpler reactions over an entire molecule, such as C–H oxidation, atom 

swapping, and atom insertion or deletion, to map the immediate chemical space around a single 

molecule accessible with other state-of-the-art reaction methodologies55–60. 
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Chapter 3 Applying Matrix Encoding of Reactions to Analysis of Organic Synthesis 

Pathways 

3.1 Introduction and background 

The utility of encoding organic reactions as matrices can be expanded beyond single-step 

reaction enumeration, and applied towards analysis of multi-step synthetic pathways. When 

presented with a total synthesis route, experienced chemists can readily apply knowledge and 

intuition to evaluate efficiencies of each step. For example, highly effective reactions are those 

that form multiple bonds, such as cycloaddition and cascade reactions1, or those that unite multiple 

building blocks into one2. On the other hand, reactions that manipulate protecting groups3, undergo 

unnecessary redox operations4, or perform multiple functional group interconversions5 are judged 

unfavorably.   

Several works have aimed to quantify this intuition and express them as visualizations of 

synthetic pathways. Hendrickson, through graph encoding of intermediates, depicts a synthetic 

route as a traversal along two axes6, one representing the number of building blocks and the other 

ring count. While being a unique approach that highlights convergent and ring-forming steps, each 

route can overlap with itself multiple times, causing clutter when visualizing long routes. Steps 

that do not modify ring or building block count also cannot be represented. Modern approaches 

broadly fall into two categories, using either a simple graph encoding intermediates as nodes and 

steps as weighted edges based on properties such as reaction yield7 or type8, or using a line graph 

plotting computed descriptors of intermediate against synthesis progress. The choices for 

descriptors frequently include molecular complexity9–11, similarity to the target12, or 

physicochemical properties such as FSP3 and MW13. 
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3.2 Strategy of synthetic route analysis through graph edit distance plots. 

3.2.1 Measurement of relative step impact 

The application of matrix-encoded transformations herein aims to address limitations we 

observe in current synthetic route visualization algorithms. The method of simple graphs places 

equal weight on all steps that fall under a certain reaction class, and hence does not provide insight 

on their relative impacts. Plots of molecular properties against synthesis progress can highlight 

impactful steps, but the complexity of algorithms employed to compute these properties result, to 

varying extents, to a “black box” visualization – the graphs can show which steps are impactful, 

but not why they are rated as such. 

We propose graph economy to be an effective measure of both step impact and overall 

route efficiency. A synthetic pathway can be conceptualized as a sequence of reactions that convert 

one or more building blocks, comprising of purchased bonds and atoms, into the target molecule’s 

bonds and atoms. Throughout the synthesis, strategic bonds, concession bonds, and concession 

atoms will be added and removed from these building blocks (Fig. 3.1a).  

To conduct graph economy analysis of a synthetic route, the target molecule, starting 

materials and all intermediates are converted into matrix representations, following the workflow 

in Chapter 2.3 (Fig. 3.1b), with some additional considerations: the presence of a stereocenter is 

encoded by entries on the diagonal, atom indices must be consistent throughout the route, and all 

atoms that appear at least once on an intermediate must receive an index. For example, in the 

simple route depicted in Fig. 3.1b, both oxygen #8, which is removed after the first step, and carbon 

#5, which is only added in the second step, receive indices. In contrast, atoms and groups that do 

not appear as part of the main intermediate at any point, such as the CuLi group, are omitted. 

The identities of each bond are evaluated on its presence in the starting materials and 

products (Fig. 3.1c). A purchased bond is present in both the target and starting materials, being 

desired bond that is present at the outset. A strategic bond is present in the target but absent in the 

starting materials, and needs to be formed during the synthesis. Lastly, a concession bond is absent 

in the target, and may or may not be present in the starting material. These are bonds need not be 

theoretically formed, but appear transiently in the route. One common example is a bond 

connecting the target scaffold to a protecting group, which serves to prevent undesired reactions 

in subsequent steps.  
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Figure 3.1. Matrix-encoded transformations in analysis of total synthesis routes. a. A high-level view of an organic synthesis route, 
where building blocks are converted to the target via a sequence of reactions. b. A simple synthetic route to demonstrate matrix 
encoding of multiple reactions in sequence, with matrix encoding of each intermediate to demonstrate different bond types. 3.1 
first cyclizes to lactone 3.2, followed by a stereoselective conjugate addition to 3.3. c. Classifications of bond types used in matrix 
representations. d. Visualization of how graph edit distance (GED) between two matrix-encoded molecular systems is computed. 
Transformation matrices only show whether an entry is positive (yellow) or negative (purple) in the visualization, but their 
numerical entries are tracked in practice. 

 

With matrix representations in hand, the transformation matrices between each 

intermediate and target are computed by subtracting each intermediate matrix from the target 

matrix (Fig. 3.1d). This matrix encodes all bond and stereocenter edits that the intermediate must 

undergo to arrive at the target structure. Next, the absolute value of the transformation matrix is 

taken, then the matrix split into the bond and stereocenter differences. Bond edit distance is taken 

by summing up all entries in the bond difference matrix, then dividing by 2, as the symmetry means 

that each bond edit is counted twice. Each stereocenter is only encoded once, hence the 

stereocenter difference is simply the sum of all diagonal elements. Finally, the bond and 

stereocenter edit distances are summed to obtain the intermediate’s graph edit distance (GED) to 

the target. 

Since GED measures the degree of similarity between two molecular systems, the plot of 

its value against synthesis progress generally shows a downwards trend, reflecting how  

intermediates are becoming increasingly similar to the target. The relative impact of each synthetic 
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step can then be compared through their relative slopes – high-impact steps, which do more work 

in bringing the intermediate closer to the target, appear as steep negative slopes, while lower-

impact steps have a less negative, or even positive slope.  

Fig. 3.2a shows the visualization of Heathcock and Stafford’s synthesis of (–)-

secodaphniphylline14 (3.4) in 9 steps from various building blocks (3.5–3.8). From examining the 

plot of GED against synthetic intermediates, step 6 is readily apparent as the highest impact step, 

(Fig. 3.2b) being the remarkable tetracyclization reaction that forms several target bonds while 

eliminating two concession alcohol groups. In contrast, lower-impact steps, such as the 

lactonization step 4 (Fig. 3.2c), involve fewer bond edits.  

 
Figure 3.2. Graph edit distance plots enable identification of key synthetic steps. a. (–)-secodaphniphylline (3.4) is synthesized 
from building blocks 3.5-3.8 in nine steps, as visualized in the GED plot. b. Key cascade step as identified by GED analysis. Indices 
are provided at atoms where transformations occur, accompanied by its transformation matrix. c. Example of a low-impact step, 
accompanied by its transformation matrix. Indices are provided at atoms where transformations occur. Black indices = carbon, blue 
indices = nitrogen, red indices = oxygen. Structures of all intermediates can be found in Appendix B. 
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Due to the matrix encoding of all intermediates, the transformation matrix for any 

individual step can be readily extracted to display the bonds which are changing in that step. This 

can provide insight into the reason behind a step’s calculated impact. Visualization of the 

transformation matrix of step 4 (Fig. 3.2d) reveals that numerous bonds and stereocenters are being 

formed, whereas there is much less activity in step 4 (Fig. 3.2e). Furthermore, even though the 

C32–N43 concession bond is broken in step 4, the created 32–42 bond is also a concession bond, 

hence there is no overall change in GED to the target.  

3.2.2 Calculation of graph economy in individual synthetic steps. 

As the previous chapter demonstrates, not all transformations are conducive to reducing 

the distance between intermediate and product. For example, formation of a strategic bond will 

reduce the GED, but formation of a concession bond will result in the opposite. Fig. 3.3a describes 

the effects of each change in bond types and stereocenters – creation of strategic bonds and 

stereocenters are favorable to synthesis progress, while their removal is unfavorable. Concession 

bonds, being absent in the target, have the opposite effect. The graph economy of an individual 

step can be calculated by dividing the number of favorable changes by the total number of bond 

and stereocenter changes made in that step. A step has 100% graph economy if all changes are 

favorable, and the percentage decreases if unfavorable bond changes are occurring simultaneously.  

In the synthesis of strychnine (3.13) by MacMillan and coworkers15, a GED plot highlights 

steps 4 and 10 as the highest-impact steps (Fig. 3.3b). However, a bar plot overlaying total bond 

edits and negative slope of each step reveals that the slope of step 4 was lower than its bond edit 

count, whereas these amounts are equal in step 10, as visualized by absence of the blue bar (Fig. 

3.3c). This difference in bond economy can be analyzed by extracting the full set of target atom 

indices (Fig. 3.3d) to cross-examine against the transformation matrix of each step. As the presence 

of all bonds throughout the synthesis have been encoded, each entry in the transformation matrices 

can be annotated based on their impact on the reduction of GED. An entry annotated with an “o” 

has a favorable impact, while an entry with an “x” is unfavorable.   

Both high-impact steps in the strychnine synthesis are identified as cascade reactions, 

forming many strategic bonds and stereocenters. However, visualization of step 4’s transformation 

matrix (Fig. 3.3e) reveals the creation of two concession bonds, one between C21 and C22, and 

the other between C23 and C24. In contrast, the second cascade reaction, step 10 (Fig. 3.3f), has 
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100% graph economy as all elements of its transformation matrix contributed to the lowering of 

GED between intermediate and target.  

 

Figure 3.3. Impact of manipulating different bond types on synthetic progress. a. The impact of strategic bonds, concession bonds, 
and stereocenters on the reduction of GED between intermediate and target. b. GED plot of the synthesis of strychnine by 
MacMillan and coworkers. c. Graph economy plot of the same synthesis. The maximum height of each bar depicts the total number 
of bond edits in that step, while the height of the pink bars depicts the negative slope of each step. The degree of coverage by the 
pink bars in each step represents its graph economy, with 100% graph economy if there is no blue visible. d. Structure of the target 
strychnine with indices of all atoms. e. A cascade reaction evaluated to be of high impact, but contains inefficiencies in graph 
economy, denoted by “x” markings in its transformation matrix. f. A high-impact cascade reaction that has 100% graph economy. 
Indices are provided at atoms where transformations occur. Black indices = carbon, blue indices = nitrogen, red indices = oxygen. 
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3.3 Application towards total synthesis of stemoamide  

The method of GED analysis was applied towards complementing our group’s computer-

aided total synthesis of stemoamide (3.18, Fig. 3.4a), a compound present in Stemonaceae plant 

roots which are used in traditional Chinese medicine for treatment of respiratory illnesses16. In 

addition to the synthetic challenges presented by its fused-ring structure and four stereocenters, 

stemoamide and its congeners, such as ethylstemoamide (3.19), are also intermediates in the 

synthesis of higher stemona alkaloids that exhibit exciting bioactivities, such as stemonine17 (3.20), 

a remarkable inhibitor of lung fibrosis in vitro and in vivo, and sessilifoliamide A18 (3.21), an in 

vitro inhibitor of nitrous oxide release. Efficient synthetic routes developed towards stemoamide 

will also bolster efforts towards these higher stemona alkaloids.   

To explore the potential of computer-aided synthesis planning (CASP) in total synthesis of 

complex alkaloids, we first performed automated retrosynthesis of stemoamide with the CASP 

software SYNTHIA™. Given a set of scoring criteria, the software will perform iterative 

disconnection using encoded reaction rules, until all building blocks are either commercially 

available or have been previously reported in literature (Fig. 3.4b). A surprising outcome was the 

presence of the Mannich reaction in all predicted routes, as it has not been featured in any previous 

syntheses of this target. One example route is shown in Fig. 3.4c: after hydroxymethylation of 3.22 

to 3.23, an asymmetric organocatalyzed Mannich is proposed to unite it with 3.24 and 3.25 to form 

3.26, with subsequent allylation and functional group interconversions to form the remaining rings 

and arrive at (-)-3.18. 

At the time of this study, the resultant seven-step synthesis was on par with, but not shorter 

than the shortest reported asymmetric route17. To further reduce step count, we employed GED 

analysis with the goal of extracting high-impact steps to incorporate into our own experimental 

synthesis route, while minimizing the number of lower-impact steps. In accordance with CASP 

proposals, the Mannich coupling was underscored as the step with highest impact, furthering the 

motivation to incorporate this reaction into our strategy. 
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Figure 3.4. Applying GED plots in analysis of a computer-proposed synthesis route. a. Stemoamide (3.18), the target of our group’s 
total synthesis work, along with analog 3.19, is an important intermediate towards the synthesis of higher stemona alkaloids such 
as 3.20 and 3.21. b. Network of 50 SYNTHIA™-predicted routes to (–)-3.18. The Mannich reaction, represented by a cluster of 
four orange dots in each route, appears as a consistent disconnection. c. A synthetic route towards (–)-3.18, proposed by 
SYNTHIA™. d. GED plot of the route in c, accompanied by the identified key step. 
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Through coupling the findings of GED analysis with manual examination of the computer-

proposed route, we completed a six-step asymmetric synthesis of 3.1819. An optimization of redox 

economy eliminated the first hydroxylation step (Fig. 3.5a, step 1), resulting in a self-Mannich 

reaction between two equivalents of 3.3120,21, a commercially available compound. Two other 

lower-impact steps, allylation and oxidative lactonization (Fig. 3.5a, steps 3 and 5), were further 

absorbed into this synthetic step. Attempts to perform subsequent hydrobromination were met with 

difficulty, hence the single computer-proposed step was split into two – first converting alkene 

3.35 into alcohol 3.36, followed by bromination and in-situ removal of the p-methoxyphenyl group 

to arrive at bromide 3.37. Closure of the final seven-membered ring22, and finally methylation17 

affords the target (+)-3.18, achieving the shortest asymmetric synthesis of this target at the time of 

discovery.  

GED analysis of this experimental synthesis highlights the impacts of our modifications 

to the computer-proposed route, contrasting the steep negative slope of step 1 (Fig. 3.5b) with the 

lower impact of the subsequent functional group interconversions, especially step 3 with zero 

slope, being an added concession to enable bromination of 3.35. 

The method of GED analysis allows multiple synthetic routes towards the same target to 

be overlaid, and their relative performances examined. By overlaying the two routes to 3.18, the 

avenue through which the experimental route improves on the computer-proposed method can be 

identified. Our experimental route, through merging two lower-impact functional group 

interconversions with the high-impact Mannich coupling, produces a steeper slope in its key step 

(Fig. 3.6a). This is affirmed through comparison of the key steps’ transformation matrices (Fig. 

3.6b). While the computer-proposed key step already presents a 100% bond economy, our method 

enables the forging of one additional stereocenter and several other strategic bonds, without 

employing any concession bonds (Fig. 3.6c-d).  
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Figure 3.5. Experimental total synthesis of (+)-3.18 in six steps. TFA = trifluoroacetic acid, dppe =1,2-
Bis(diphenylphosphino)ethane; CAN = ceric ammonium nitrate; TBA = tetra-n-butylammonium; HMDS = hexamethyldisilazide. 
b. GED plot of the synthetic route, with the key step highlighted. 
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Figure 3.6. Overlay of multiple GED plots enable comparision between routes. a. GED plot of both the computer-proposed route 
(light grey) and experimental route (black) towards (+)-3.18, with key steps highlighted in orange. b. Transformation matrices of 
the key step in each route, with each entry annotated by their impact towards reduction in GED. c. Scheme of the computer-
proposed key step, with reacting atoms annotated with their indices. d. Scheme of the experimental key step, with reacting atoms 
annotated with their indices. Structure numbers are provided in parentheses. Indices are provided at atoms where transformations 
occur. Black indices = carbon, blue indices = nitrogen, red indices = oxygen. 

Seeking to further improve our synthesis of 3.18, we generated more routes to this target, 

aiming to repurpose multiple computer-proposed key steps into a single synthesis. Two different 

search strategies were employed – exclusion of the Mannich reaction as a retrosynthetic 

disconnection reveals a Michael addition–alkylation key step (Fig. 3.7a), while a search starting 

from the penultimate intermediate 3.38 highlights lactam formation through Schmidt 

rearrangement of a cyclobutanone intermediate (Fig. 3.7b). Through adapting both aforementioned 

key steps into a single route, we achieved a short synthesis of (-)-3.18 in only three steps (Fig. 

3.7c). Allylation of 3.43 produces 3.44, containing the same lactone motif as computer-proposed 

3.39, which undergoes Michael addition with the Enders (S)-1-amino-2-

methoxymethylpyrrolidine (SAMP) hydrazone of cyclobutanone (3.45). Methylation with methyl 

iodide followed by acidic quench affords 3.46, and finally anti-Markovnikov hydroazidation 

followed by an intramolecular Schmidt-Aubé rearrangement leads to the target (-)-3.18 in half our 

previous step count. Furthermore, we have improved upon the graph economy of both computer-

proposed routes from 56% and 70% to 100% economy in our final experimental route, through 

extracting steps with full individual graph economy from CASP (Fig. 3.7e). 
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Figure 3.7. Combining multiple key steps into a single route. a. A computer-proposed Michael addition-alkylation key step. b. A 
computer-proposed Schmidt rearrangement key step. c. Our experimental three-step synthesis of (–)-3.18 achieved by adapting key 
steps in both a and b. (+)-Ipc2B(allyl) = (+)-B-Allyldiisopinocampheylborane; IBA = iodosobenzoic acid; TMS = trimethylsilyl d. 
GED plots of both computer-proposed routes and the final experimental route. The steep first step of the Schmidt route was not 
selected due to an incorrect selectivity. e. Graph economy plots of all three routes. Structures of all intermediates in a and b can be 
found under Appendix B. 

As of publication, we have developed the two shortest asymmetric syntheses of 3.18, 

through the tandem effort of the CASP program SYNTHIA™ in generating large amounts of 

proposed routes, GED analysis in highlighting key steps, and human knowledge to adapt these key 

steps into experiment.  
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3.4 Incorporation of the Maximum Common Substructure (MCS) difference as an 

additional metric  

In comparing our synthetic route visualization method with other contemporary methods, 

we observed that several methods call attention to convergent steps6–8, which are reactions that 

couple two fragments, usually of equal molecular complexity. Convergent routes are highly sought 

after in total synthesis design23–25, as preparation of building blocks separately reduces the amount 

of functional group compatibility considerations per step, resulting in lower step count and 

consequently improved overall yield26,27.  

On the theoretical level, a convergent step should have favorable graph economy, as 

multiple target atoms are assembled into one structure. However, examination of GED analyses of 

various reported routes in synthetic literature reveals that convergent steps are not necessarily 

computed as high-impact steps. In the synthesis of welwitindolinone A by Baran and Richter28 

(Fig. 3.8a), GED analysis presents the highest-impact step as the last oxidative ring contraction 

(Fig. 3.8b, grey dots), but assigns a low score to step 1, despite it being a significant convergent 

coupling with indole. As the entire molecular system is encoded as a single matrix, the impact of 

each step is only calculated based on bonds and stereocenters formed, without considering whether 

these bonds reduce the number of connected fragments.  

Aiming to place more importance on convergent steps, we added an additional metric, the 

maximum common substructure (MCS) difference to the GED of each intermediate. The MCS 

between an intermediate and target is the largest interconnected motif in the intermediate that has 

identical atom identities and valencies as the target, that is, it can be accurately overlaid onto the 

target structure. Fig. 3.8a visualizes how the MCS, represented by the purple area in each 

intermediate, changes with synthetic progress. In contrast to GED, the number of heavy atoms in 

each intermediate’s MCS trend upwards with synthesis progress. To harmonize the two metrics, 

we chose to invert the MCS size into MCS difference by subtracting the heavy atom count in each 

intermediate’s MCS from that of the target. A plot of MCS difference against synthetic 

intermediates is shown in Fig. 3.8b in purple dots, demonstrating how step 1, the only convergent 

step which couples of 3.47 with indole (3.48), is now highlighted as the most impactful step. By 

scaling the MCS difference of each intermediate by half, then adding the result to GED, we were 
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able to achieve an improved step impact metric that highlights both convergent steps, and those 

that make many favorable bond changes.  

 
Figure 3.8. Incorporating MCS difference as an additional metric. a. Synthesis of welwitindolinone A (3.54) by Baran and Richter. 
Purple bonds indicate the maximum common substructure (MCS) between each intermediate and target. b. GED analysis (grey) 
assigns highest impact to step 6, while MCS analysis (purple) assigns this to step 1. c. A hybrid metric of GED + 0.5 MCS difference 
results in both important steps being identified. 

3.5 Comparisons to other similarity metrics 

For a wider perspective, we compared our synthetic route visualization method with other 

contemporary metrics, namely Tanimoto similarity, a popular measurement of fingerprint 

similarity29–31, and Böttcher’s complexity index Cm
32, as a representative of a complexity 
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measurement that has seen precedence in recent graphing of total syntheses13,33. From Shenvi and 

coworkers’ synthesis and brief literature review of himgaline (Fig. 3.9a, 3.55)13, we computed each 

intermediate’s GED, Tanimoto similarity, and Cm similarity with the target, and inverted the 

Tanimoto and Cm scores to align their trends with our GED metric.  

All three representations of the same route show different profiles (Fig. 3.9b) – both 

Tanimoto similarity and Cm labels assign highest impact to the last ketone reduction step (Fig. 

3.9c), especially by a wide margin with Tanimoto similarity. In contrast, our hybrid GED and MCS 

difference metric highlights both the convergent step 3 (Fig. 3.9d) and pyridine ring reduction in 

step 5 (Fig. 3.9e). For another reference, the same analysis was performed on Larson and Sarpong’s 

synthesis of 3.5534 (Fig. 3.9f). Once again, Tanimoto assigns the final carbonyl reduction as the 

highest-impact step (c.f. Fig. 3.9c), followed by deprotection step 15, which only breaks one 

concession bond, overlooking more significant steps such as cycloaddition step 2 (Fig. 3.9h), 

which was identified as highest impact when consulting both Cm and our difference metric, and 

reduction step 14 that removes three concession bonds (Fig. 3.9i).  
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Figure 3.9. Comparision of various metrics for relative step impact evaluation. a. Structure of synthesis target himgaline (3.55). b. 
Overlaid plots of our distance metric, Tanimoto difference and Cm difference. All three metrics are normalized to have the same 
start and end points. c. Tanimoto similarity (as well as Cm) analysis evaluates the reduction step 7 as highest impact, drastically 
above the other steps. d. A convergent photoredox coupling highlighted by GED analysis. e. An aromatic ring reduction highlighted 
by our distance metric. f. Overlaid plots for Sarpong and coworkers’ synthesis of 3.55. g. Tanimoto analysis favors simple reduction 
steps over others that form more strategic bonds. h. A convergent cycloaddition that is highlighted by both Cm and our hybrid 
metric. i. A pyridine reduction, similar to e, highlighted by our distance metric. Structures of all intermediates in both synthetic 
routes can be found in Appendix C. 

 

 



 45 

3.6 Conclusions and future direction 

We applied matrix-encoded molecular systems and reactions developed in Chapter 1 

towards analysis of multi-step reactions, and have developed a new visualization of total synthesis 

routes that can reveal the relative impacts of each individual steps. The matrix-based nature of this 

analysis method allows its conclusions to be visualized in a human-readable and understandable 

format. By analyzing many computer-proposed synthetic routes to the natural product stemoamide, 

we were able to extract high-impact key steps to incorporate into experiment, and discover two 

short asymmetric syntheses of this challenging target.  

Moving forward from evaluating routes that are already published or generated, our method 

can also open avenues to discovery of novel reactions. Fig. 3.10a illustrates this vision with our 

published six-step synthesis of 3.18, where several lower-impact functional group interconversions 

(Fig. 3.10a) can be bypassed with a strategic anti-Markovnikov hydroamidation that brings 

intermediate 3.35 directly to the target 3.18 (Fig. 3.10b).  

A greater impact can be seen with Christmann’s synthesis of englerin A35 (Fig. 3.10c, 3.67) 

– a protection and several low-impact steps are required to convert 3.68 to 3.72, which undergoes 

ring-closing metathesis to form 3.73, followed by deprotection to 3.74. However, this can be 

greatly shortened via discovery of various bond-forming reactions, most effectively an alcohol-

olefin metathesis that converts 3.68 directly to 3.74.  

Modern CASP has focused on reaction plausibility when proposing synthetic routes, 

leaning towards syntheses where all transformations have seen experimental precedent. Our 

method can complement this strategy by proposing novel reactions for discovery across points 

where a high-impact step can be made, or where several low-impact transformations can be 

conceivably omitted. We believe that improvements in modern computational data science and 

experimental methods will enable rapid discovery and optimization of reaction conditions, making 

room CASP programs to propose these valuable reactions.  



 46 

 
Figure 3.10. Plots of distance metrics enable proposals of novel reactions to lower step count. a. Visualization of our synthesis of 
3.18, where step 3’, if invented, results in a four-step synthesis. b. An anti-Markovnikov hydroazidation enables bypass of three 
steps. b. Christmann and coworkers’ synthesis of englerin A, where a hypothetical step 5’ can reduce step count by five. d. An 
alcohol-olefin metathesis enables bypass of six steps. Structures of all intermediates in the synthesis of englerin A can be found in 
Appendix C. 
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Chapter 4 Development of an Automated Platform for High-Throughput Experimentation  

4.1 Introduction to High-Throughput Experimentation 

Chapters 2 and 3 showed how matrix techniques can be applied in tandem with other 

computational methods to search for valuable reactions to discover. This chapter will discuss how 

our group turns these computer recommendations into experimental methods. 

4.1.1 Background 

Our group places high emphasis on high-throughput experimentation (HTE), the 

performance of many experiments in parallel, frequently in a wellplate format (Fig. 4.1a). The 

adaptation of HTE in chemistry research is becoming increasingly widespread, ranging from drug 

development1–5 and reaction discovery6–10 to the preparation of large-scale datasets11,12. 

Compared to traditional benchtop synthesis, HTE is capable of screening a wider range of 

substrates and experimental conditions per unit reagent used, while being more economical and 

environmentally friendly in terms of chemical requirement13. While synthesis in flasks and 1-2 

dram vials can be parallelized to some extent, they nonetheless require milligram to gram-scale 

amounts of reagent to generate fewer data points (Fig. 4.1b). With the same physical footprint, 

shell and microvials arrayed in wellplates require much less material per well, while performing a 

hundred to over a thousand reactions. This generation of organized data in high volume couples 

well with the growing adaptation of data science methods to enable rapid discoveries of new 

reactivities14–17. 
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Figure 4.1. Labware used for HTE. a. Examples of labware used to execute reactions in parallel. From left to right: capped glass 
vials for 0.5–2 mL scale, glass shell vials for 100–300 μL scale, and micro vials for 10–30 μL scale. b. Comparison of material 
usage and concurrent reactions permitted for each type of labware. 

 

4.1.2 Overview of current HTE workflow 

To support our HTE screening infrastructure, we developed phactor™18, an online software 

that couples with our digital chemical inventory to support design, execution, analysis and data 

storage of HTE screens. The workflow of a typical HTE screen is outlined in Fig. 4.2.  

First, the user, with a desired reaction in mind, selects the types and amounts of reagents 

to screen (Fig. 4.2a). With this information, a screen design can be constructed manually, or 

automatically populated by phactor™(4.2b), such that all combinations of reaction conditions are 

represented in the grid. Next, a downloadable recipe will be produced, containing directions such 

as preparations of all stock solutions, the wells in which they should be dosed, and the dosage 

volume (4.2c). The prepared screen is then moved to a suitable reactor to be heated and stirred at 

the prescribed conditions (4.2d). After the reaction is complete, it is quenched and extracted (4.2e), 

and then an analytical plate prepared and analyzed with UPLC-MS (4.2f). An external software, 

Virscidian, enables characterization of LC-MS traces and export of results (4.2g), which are 
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imported back into phactor™ for visualization and guidance on future experiment directions 

(4.2h). 

 

 
Figure 4.2. Workflow of an HTE screen. a. phactor™ interface for reagent selection. Users enter experimental data such as reagent 
identity, reagent class, desired final concentration, and overage. b. Reagent grid, which users can manually or automatically 
generate. Each colored bar represents on reagent present in the indicated well. c. Screen recipe spreadsheet generated by phactor™ 
for stock solution preparation. d. After dosing, the wellplate is moved to an appropriate environment for stirring and/or heating e. 
Wellplate is quenched and transferred to an analytical plate after reaction time has passed. f. High-throughput analysis is performed 
by UPLC-MS. g. Raw LC-MS data being analyzed with third-party software h. Analysis results can be uploaded into phactor™ 
for visualization. 

4.2 Expanding the extent of automation through integration of liquid handler 

Our group has employed phactor™ to conduct a wide range of HTE screens, discovering 

many novel reactivities and conducting direct-to-biology campaigns. To further bolster the 

efficiency of this software, we sought to introduce automation at the screen preparation and 
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workup stage through integrating phactor™’s screen designs with the Opentrons OT-2 (Fig. 4.3a), 

a robotic liquid handler capable of transferring reagents as liquids, solutions or suspensions across 

many types of wellplates. The OT-2 was selected due to its lower cost and smaller footprint 

compared to its counterparts, while being equipped with a Python API, which allows operations 

to be executed via procedurally generated scripts instead of needing the user to manually operate 

a separate interface. 

We have implemented a new functionality into phactor™ which allows a designed screen 

to be exported into a Python protocol compatible with the liquid handler. This protocol only 

requires minor user input on the size and location of wellplates, after which it can be directly 

imported into the Opentrons software and executed by the robot (Fig. 4.3b). To facilitate pre-run 

calibration in setups where the computer is not directly beside the robot, a video game controller 

can be used to interface with directional controls on the Opentrons software (Fig. 4.3 c).19 
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Figure 4.3. Implementing automated screen export and execution. a. Photograph of Opentrons OT-2 autopipettor robot. b. New 
feature added to phactor™ indicated by orange rectangle, allowing export of screen design into OT-2 compatible python scripts. 
c. Input mappings for OT-2 robot calibration using a video game controller19. 
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4.3 Assessing performance of robot compared to manual preparation of HTE screens 

4.3.1 Homogeneous reagent solutions 

To compare the outcome of an HTE screen executed by a human with that of a robot, a 96-

wellplate was split into two halves – one with all reagents dosed by hand, the other with the robot. 

A simple amide coupling reaction was chosen as a robust reaction where all reagents are soluble 

in N,N’-dimethylformamide (DMF), a high-boiling solvent suitable for HTE screens. To evaluate 

the reproducibility of results, a total of 8 conditions are tested over 48 wells, hence each condition 

is replicated 6 times.  

A heatmap of product yield, measured by concentration relative to an internal standard, is 

illustrated in Fig. 4.4a, accompanied by a bar chart in 4.4b comparing, for each condition, the 

product yielded through manual verses automatic dosing. In conditions that produce higher yield, 

manual dosing showed better performance, while lower-yielding conditions showed 

approximately equal results. Notably, even in conditions with little observed yield, both manual 

and robot-dosed wells recorded non-zero yields. This is an important observation, as HTE is 

frequently used in reaction discovery, where initial results may occur with very low yields as they 

are yet to be optimized. Being capable of detecting these products means that these initial successes 

are not ruled out due to false negatives.  
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Figure 4.4. Accessing autopipetter robot performance with a homogeneous reaction. a. Reagents and conditions used. Each unique 
condition is replicated six times in a 2 x 3 grid. Heatmap shows analytical yield relative to internal standard (1 mg/mL caffeine). 
b. Comparison of yields between wells dosed automatically and manually. DIC = N,N'-diisopropylcarbodiimide, DMAP = 4-
dimethylaminopyridine, HATU = hexafluorophosphate azabenzotriazole tetramethyl uranium, DIPEA = N,N’- 
diisopropylethylamine. 
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4.3.2 Heterogeneous reagents 

In an HTE campaign, all reagent stock solutions are prepared in concentrations that are 

several times higher than the desired concentration in the reaction flask, since they are diluted 

when dosed into a well with other stock solutions. Reagents that are not sufficiently soluble in the 

reaction solvent will hence form slurries or suspensions, which may not be dosed accurately. 

Vigorous agitation of the stock solutions is used to alleviate this issue in both manual and 

automated workflows, but we wished to explore an alternative method of dosing selected reagents 

in solid form. Single-use polypropylene scoops have been used for this purpose, but their sizes are 

limited, so reagents may not be dosed accurately, or require multiple scoops.  

A Buchwald-Hartwig coupling screen20 was selected for the presence of two poorly soluble 

bases, sodium tert-butoxide and cesium carbonate. Using computer-aided design (CAD) software, 

we modelled a simple hemispheric scoop with an editable diameter (Fig. 4.5a). Scoops with a 

range of diameters are then 3D printed (Fig. 4.5b) and the weight of a single flat scoop of the 

desired reagent is recorded. Four reagent weights are recorded per scoop size, with the first 

measurement discarded as the 3D printing process produces small grooves in between material 

layers that traps chemical powder. Plotting measured masses against scoop volume and performing 

linear best fit yields a calibration line (Fig. 4.5c, blue dots), which is used to calculate the desired 

scoop diameter. To verify performance of the resultant printed scoops, a final round of weighing 

was performed, and both solids were able to be dosed in the appropriate amount (Fig. 4.5c, orange 

dots). 

Following the methodology in Chapter 4.3.1, eight reaction conditions were selected and 

another 96-well screen was run, but with only the bases manually dosed on the right half of the 

wellplate. All other reagents, including bases for the left half of the wellplate, were dosed by the 

OT-2 robot as stock solutions which were continually agitated with a magnetic stirrer on the deck. 

Reaction yields are visualized as a heatmap in Fig. 4.6a, and bar charts in 4.6b. Unlike the 

homogeneous reaction, wells with sodium tert-butoxide performed better when the base was dosed 

automatically, while wells with cesium carbonate performed better with manual dosing. We 

believe the cause for this difference lies in the different particle sizes of these bases, as well as 

their behavior in the solvent, toluene. Sodium tert-butoxide forms a uniform suspension in toluene, 

and can hence be reliably dosed with a pipette while the solution is being agitated. However, as it 

is a fine powder, the manual dosing process is susceptible to reagent loss caused by static 
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electricity, which is present under the glovebox environment in which this reaction was performed. 

The opposite is true for cesium carbonate, which forms a hard cake in toluene, rendering the stock 

solution difficult to agitate. Any aspirated liquid will hence have lower concentration of base than 

expected. Since cesium carbonate is a coarser powder, it is less affected by static electricity, 

leading to more accurate dosing in solid form. 

 

Figure 4.5. Exploration of manual solid dosing when reagents are poorly soluble. a. A Buchwald-Hartwig coupling screen adapted 
from a publication from Wood and coworkers. b. CAD model of a scoop with a hemispherical head. c. 3D printed scoops with 
various radii. d. Process to determine optimal scoop size. Scoops with radii 2mm, 3mm and 4mm are used for calibration. A plot 
of weighed reagent mass against volume produces a calibration curve, from which the ideal volume and subsequently radius can 
be calculated. A scoop printed with the desired radius is used to weigh reagent again, for performance verification. 

  



 59 

 

Figure 4.6. Accessing autopipetter robot performance using a reaction with two poorly soluble bases. a. Reagents and conditions 
used. Each unique condition is replicated six times in a 2 x 3 grid. Heatmap shows analytical yield relative to internal standard (1 
mg/mL caffeine). b. Comparison of yields between wells with the base dosed automatically and manually. DPPF = 1,1′-
Ferrocenediyl-bis(diphenylphosphine), DCYPE = 1,2-Bis(dicyclohexylphosphino)ethane. 
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4.4 Applications of online HTE platform 

4.4.1 Remote experiment collaboration over teleconferencing software 

During the COVID-19 pandemic throughout 2020, laboratory occupancy was heavily 

restricted to reduce spread of the disease. This highlighted the potential for automated 

experimentation systems21, and provided an opportunity to showcase the potential for remote 

collaboration enabled by our HTE infrastructure.  

One of our projects disrupted by laboratory lockdown was the optimization of a newly 

discovered amine–acid etherification reaction (Fig. 4.7a). After observation of the initial hit, a 

reaction condition screen was designed online in phactor™ for 2 substrates, 24 ligands and 2 

reductants. This recipe is then accessed and prepared in the lab building by another member. A 

camera mounted above the OT-2 deck and connected to the controlling computer allowed other 

project participants to observe the experiment and provide feedback in real time through 

teleconferencing software (Fig. 4.7b). Analysis of this screen revealed AlPhos and diphenylsilane 

as the best combination of ligand and reductant, and that tosyl protection of the piperidine ring on 

the acid substrate (4.9) was necessary, as no product was observed with the free amine. 

 
Figure 4.7. Remote collaboration enabled by integrating phactor™’s online screen design storage with automated screen execution 
with an Opentrons autopipetter. a. Schematic of amine–acid ether synthesis. b. Teleconferencing software enables real-time 
experiment monitoring over teleconferencing software. c. Product yield of screen across 24 ligands and 2 reductants. Only half of 
the plate is shown, as all wells with unprotected acid substrate (4.8) did not yield any product. 
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4.4.2 Small-scale library synthesis 

The flexibility of phactor™’s screen design capability enables the execution of novel HTE 

screens. We have discovered a deaminative esterification reaction between an sp3 amine activated 

as the triphenylpyridinium (TPP) salt and a carboxylic acid, and sought to probe its utility in late-

stage functionalization by performing a small-scale library synthesis. Amlodipine was selected as 

the activated amine drug (4.12) to be coupled with 96 diverse acids. All reagents except the acids 

were weighed into 8 mL vials, while the 96 acids were weighed into glass shell vials arrayed in a 

wellplate. All reagents were brought into a nitrogen-filled glovebox for stock solution preparation. 

The robotic platform confers several advantages in this setup – both the activated amine and 

several acid substrates were not fully soluble at its stock solution concentration, but an on-deck 

tumble stirrer can be employed to agitate the amine, while mixing cycles can be programmed 

before the aspiration of each acid to induce suspension of any insoluble particles. In addition, as 

these acid solutions were in a grid, they can be rapidly dosed into the reaction wellplate using a 

multi-channel pipette (Fig. 4.8b).  

The preparation of stock solutions was also greatly accelerated. As it is difficult to 

manually weigh out an exact amount of solid, users can input their measured weight for each 

reagent’s into phactor™, which will compute the revised volume of solvent required for all stock 

solutions to be their desired concentration. Manually adjusting a micropipette for over 100 reagents 

would have been time consuming for the large amount of reagents in this screen, and introduces 

an additional source of error. Instead, the volumes required are imported into a custom OT-2 script, 

which directs the autopipetter to dose the appropriate amount of solvent into each well to reach the 

desired 0.30 M concentration (Fig. 4.8c). Analysis of the screen results revealed that majority of 

wells yielded the desired ester product (Fig. 4.8d), and benchtop scale-up of selected wells 

produced satisfactory yields. 
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Figure 4.8. Library synthesis with an amine–acid esterification reaction. a. Reaction scheme. b. Screen setup using the Opentrons 
OT-2. The multipipette head can quickly transfer all 96 acids from the wellplate in which they were prepared to the one dosed with 
all other reagents. c. Volume of solvent added into each of the 96 shell vials containing various acid substrates. Automated liquid 
handling enabled efficient dosing of these varied volumes. d. Heatmap of product yield, measured by UV peak integration against 
internal standard. As products have varied UV absorbance, the heatmap does not represent exact relative yield. Distribution of acids 
are as follows. Rows A and B: (hetero)aryl acids, C: acetic acids, D: aliphatic acids, E: Protected amino acids, F: non-carboxylic 
acids, G: carboxylic acid-containing drugs, H: carboxylate salts. Identities of all 96 acids are displayed in Appendix C. 
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4.5 Conclusions and future work 

We have built upon our online HTE planning software phactor™ to allow exporting of 

experimental screens to an Opentrons OT-2 liquid handler, which further extends our capability to 

automate execution of HTE screens. Side-by-side comparisons with manual screen setup reveal 

that both methods perform similarly in terms of product yield, affirming that the move towards 

automated HTE screen setup will not compromise on the quality of data produced, while reducing 

the random error inherent to manual pipetting into dense wellplates. An exception is made with 

solids that do not form a uniform suspension upon agitation, which may warrant manual dosing 

with custom-made spatula. 

We are currently expanding our automation scope to include ultraHTE screens, which are 

conducted under nanoscale in 384- or 1536-wellplates. The OT-2 has already demonstrated 

reliability in preparation of stock solution in 384-wellplates, which are moved onto other 

instruments for precision dosing and heating. Robotic devices for precise positioning of labware 

across several instruments have potential for implementation in this space, in order to further 

increase throughput of these instruments.  

4.6 References 

(1) Mennen, S. M.; Alhambra, C.; Allen, C. L.; Barberis, M.; Berritt, S.; Brandt, T. A.; 
Campbell, A. D.; Castañón, J.; Cherney, A. H.; Christensen, M.; Damon, D. B.; Eugenio De 
Diego, J.; García-Cerrada, S.; García-Losada, P.; Haro, R.; Janey, J.; Leitch, D. C.; Li, L.; Liu, 
F.; Lobben, P. C.; MacMillan, D. W. C.; Magano, J.; McInturff, E.; Monfette, S.; Post, R. J.; 
Schultz, D.; Sitter, B. J.; Stevens, J. M.; Strambeanu, I. I.; Twilton, J.; Wang, K.; Zajac, M. A. 
The Evolution of High-Throughput Experimentation in Pharmaceutical Development and 
Perspectives on the Future. Org. Process Res. Dev. 2019, 23 (6), 1213–1242. 
https://doi.org/10.1021/acs.oprd.9b00140. 
(2) Cernak, T.; Gesmundo, N. J.; Dykstra, K.; Yu, Y.; Wu, Z.; Shi, Z.-C.; Vachal, P.; Sperbeck, 
D.; He, S.; Murphy, B. A.; Sonatore, L.; Williams, S.; Madeira, M.; Verras, A.; Reiter, M.; Lee, 
C. H.; Cuff, J.; Sherer, E. C.; Kuethe, J.; Goble, S.; Perrotto, N.; Pinto, S.; Shen, D.-M.; Nargund, 
R.; Balkovec, J.; DeVita, R. J.; Dreher, S. D. Microscale High-Throughput Experimentation as 
an Enabling Technology in Drug Discovery: Application in the Discovery of 
(Piperidinyl)Pyridinyl-1 H -Benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors. J. Med. 
Chem. 2017, 60 (9), 3594–3605. https://doi.org/10.1021/acs.jmedchem.6b01543. 
(3) Gesmundo, N. J.; Sauvagnat, B.; Curran, P. J.; Richards, M. P.; Andrews, C. L.; Dandliker, 
P. J.; Cernak, T. Nanoscale Synthesis and Affinity Ranking. Nature 2018, 557 (7704), 228–232. 
https://doi.org/10.1038/s41586-018-0056-8. 



 64 

(4) Krska, S. W.; DiRocco, D. A.; Dreher, S. D.; Shevlin, M. The Evolution of Chemical High-
Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis. 
Acc. Chem. Res. 2017, 50 (12), 2976–2985. https://doi.org/10.1021/acs.accounts.7b00428. 
(5) Gesmundo, N.; Dykstra, K.; Douthwaite, J. L.; Kao, Y.-T.; Zhao, R.; Mahjour, B.; 
Ferguson, R.; Dreher, S.; Sauvagnat, B.; Saurí, J.; Cernak, T. Miniaturization of Popular 
Reactions from the Medicinal Chemists’ Toolbox for Ultrahigh-Throughput Experimentation. 
Nat. Synth. 2023, 2 (11), 1082–1091. https://doi.org/10.1038/s44160-023-00351-1. 
(6) Buitrago Santanilla, A.; Regalado, E. L.; Pereira, T.; Shevlin, M.; Bateman, K.; Campeau, 
L.-C.; Schneeweis, J.; Berritt, S.; Shi, Z.-C.; Nantermet, P.; Liu, Y.; Helmy, R.; Welch, C. J.; 
Vachal, P.; Davies, I. W.; Cernak, T.; Dreher, S. D. Nanomole-Scale High-Throughput Chemistry 
for the Synthesis of Complex Molecules. Science 2015, 347 (6217), 49–53. 
https://doi.org/10.1126/science.1259203. 
(7) Uehling, M. R.; King, R. P.; Krska, S. W.; Cernak, T.; Buchwald, S. L. Pharmaceutical 
Diversification via Palladium Oxidative Addition Complexes. Science 2019, 363 (6425), 405–
408. https://doi.org/10.1126/science.aac6153. 
(8) Shevlin, M. Practical High-Throughput Experimentation for Chemists. ACS Med. Chem. 
Lett. 2017, 8 (6). https://doi.org/10.1021/acsmedchemlett.7b00165. 
(9) Shen, Y.; Mahjour, B.; Cernak, T. Development of Copper-Catalyzed Deaminative 
Esterification Using High-Throughput Experimentation. Commun. Chem. 2022, 5 (1), 83. 
https://doi.org/10.1038/s42004-022-00698-0. 
(10) Douthwaite, J. L.; Zhao, R.; Shim, E.; Mahjour, B.; Zimmerman, P. M.; Cernak, T. Formal 
Cross-Coupling of Amines and Carboxylic Acids to Form Sp3–Sp2 Carbon–Carbon Bonds. J. 
Am. Chem. Soc. 2023, 145 (20), 10930–10937. https://doi.org/10.1021/jacs.2c11563. 
(11) Lin, S.; Dikler, S.; Blincoe, W. D.; Ferguson, R. D.; Sheridan, R. P.; Peng, Z.; Conway, D. 
V.; Zawatzky, K.; Wang, H.; Cernak, T.; Davies, I. W.; DiRocco, D. A.; Sheng, H.; Welch, C. J.; 
Dreher, S. D. Mapping the Dark Space of Chemical Reactions with Extended Nanomole Synthesis 
and MALDI-TOF MS. Science 2018, 361 (6402), eaar6236. 
https://doi.org/10.1126/science.aar6236. 
(12) Mahjour, B.; Shen, Y.; Cernak, T. Ultrahigh-Throughput Experimentation for Information-
Rich Chemical Synthesis. Acc. Chem. Res. 2021, 54 (10). 
https://doi.org/10.1021/acs.accounts.1c00119. 
(13) Wong, H.; Cernak, T. Reaction Miniaturization in Eco-Friendly Solvents. Curr. Opin. 
Green Sustain. Chem. 2018, 11, 91–98. https://doi.org/10.1016/j.cogsc.2018.06.001. 
(14) Żurański, A. M.; Martinez Alvarado, J. I.; Shields, B. J.; Doyle, A. G. Predicting Reaction 
Yields via Supervised Learning. Acc. Chem. Res. 2021, 54 (8), 1856–1865. 
https://doi.org/10.1021/acs.accounts.0c00770. 
(15) Schleinitz, J.; Langevin, M.; Smail, Y.; Wehnert, B.; Grimaud, L.; Vuilleumier, R. 
Machine Learning Yield Prediction from NiCOlit, a Small-Size Literature Data Set of Nickel 
Catalyzed C–O Couplings. J. Am. Chem. Soc. 2022, 144 (32), 14722–14730. 
https://doi.org/10.1021/jacs.2c05302. 
(16) Stevens, J. M.; Li, J.; Simmons, E. M.; Wisniewski, S. R.; DiSomma, S.; Fraunhoffer, K. 
J.; Geng, P.; Hao, B.; Jackson, E. W. Advancing Base Metal Catalysis through Data Science: 
Insight and Predictive Models for Ni-Catalyzed Borylation through Supervised Machine 
Learning. Organometallics 2022, 41 (14), 1847–1864. 
https://doi.org/10.1021/acs.organomet.2c00089. 



 65 

(17) Lexa, K. W.; Belyk, K. M.; Henle, J.; Xiang, B.; Sheridan, R. P.; Denmark, S. E.; Ruck, 
R. T.; Sherer, E. C. Application of Machine Learning and Reaction Optimization for the Iterative 
Improvement of Enantioselectivity of Cinchona-Derived Phase Transfer Catalysts. Org. Process 
Res. Dev. 2022, 26 (3), 670–682. https://doi.org/10.1021/acs.oprd.1c00155. 
(18) Mahjour, B.; Zhang, R.; Shen, Y.; McGrath, A.; Zhao, R.; Mohamed, O. G.; Lin, Y.; 
Zhang, Z.; Douthwaite, J. L.; Tripathi, A.; Cernak, T. Rapid Planning and Analysis of High-
Throughput Experiment Arrays for Reaction Discovery. Nat. Commun. 2023, 14 (1), 3924. 
https://doi.org/10.1038/s41467-023-39531-0. 
(19) Xbox Controller Clipart. https://www.pikpng.com/pngvi/hJwiiw_xbox-clipart-ps4-
controller-xbox-controller-template-png-download/. 
(20) Cook, A.; Clément, R.; Newman, S. G. Reaction Screening in Multiwell Plates: High-
Throughput Optimization of a Buchwald–Hartwig Amination. Nat. Protoc. 2021, 16 (2), 1152–
1169. https://doi.org/10.1038/s41596-020-00452-7. 
(21) Burger, B.; Maffettone, P. M.; Gusev, V. V.; Aitchison, C. M.; Bai, Y.; Wang, X.; Li, X.; 
Alston, B. M.; Li, B.; Clowes, R.; Rankin, N.; Harris, B.; Sprick, R. S.; Cooper, A. I. A Mobile 
Robotic Chemist. Nature 2020, 583 (7815), 237–241. https://doi.org/10.1038/s41586-020-2442-
2. 
 

 



 66 

Appendices  

 

 



 67 

Appendix A: Supplementary Material for Chapter 2 

A.1 Code and data availability 

All code for matrix generation, molecular property computation, and figure plotting are 

available at https://github.com/cernaklab/acid-amine-enumeration-2. A demo of the same script be 

found at https://github.com/cernaklab/acid-amine-enumeration-2/tree/main/Demo. This folder 

contains the same hierarchy of script and directory paths as the main code, with only a few 

modifications to run on a smaller set of matrices and only utilizing one core. Drug structures were 

accessed from the Drugbank database via https://go.drugbank.com/releases, version 5.1.8.  

A.2 Computational methods 

All computation for the manuscript was performed in a Conda environment with the 

following packages: ipython 7.16.1, jupyterlab 3.1.4, matplotlib 3.3.4, numpy 1.19.2, pandas 1.1.3, 

RDKit 2019.09.379, seaborn 0.11.1, umap-learn 0.5.1, circos 0.69-9. All packages except Circos 

are installed via conda-forge or pip. Chord diagrams were plotted using the Circos package, 

downloaded via http://circos.ca/software/download/circos/. 

The Openeye Toolkit 2021.2.0 was used for the docking protocols.  Conformations were generated 

using OMEGA with default torsion libraries after selecting a reasonable tautomer and then 

performing stereo expansion for undefined stereo centers. The receptors for each protein were 

docked using FRED with default parameters. 

  

https://github.com/cernaklab/acid-amine-enumeration-2
https://github.com/cernaklab/acid-amine-enumeration-2/tree/main/Demo
https://go.drugbank.com/releases
http://circos.ca/software/download/circos/
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A.3 List of amine–carboxylic acid coupling products present as substructures in drugs 

 

Appendix Figure A.1. All amine–acid reaction products in this work found in noscapine. The structures are arrayed in increasing 
minimum graph edit distance from a simple 2-carbon amine and 3-carbon acid pair. 
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Appendix Figure A.2. All amine–acid reaction products in this work found in athamontanolide. The structures are arrayed in 
increasing minimum graph edit distance from a simple 2-carbon amine and 3-carbon acid pair. 
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Appendix Figure A.3. Top 100 most frequently occurring amine–acid enumeration products found as substructures in Drugbank, 
labeled by number of drugs each product is found in. 
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Appendix B: Supplementary Material for Chapter 3 

B.1 Code availability 

Code for graph editing techniques applied towards synthesis of stemoamide (Chapter 3.3) can be 

found at https://github.com/cernaklab/synthetic-key-steps. 

Code for all other sections of Chapter 3 can be found at 

https://github.com/cernaklab/RZhang_Thesis/. 

SYNTHIA™ is available at www.synthiaonline.com. 

B.2 Computational environment 

All code is written and executed with python version 3.9.7. All dependencies are installed using 

conda (version 4.10.3). Versions of selected packages are as follows: ipython 7.27.0, jupyterlab 

3.1.12, matplotlib 3.4.3, numpy 1.20.3, pandas 1.3.3, RDKit 2021.03.5. A full list of all package 

versions in the conda environment used is downloadable at https://github.com/cernaklab/synthetic-

key-steps/blob/main/software_versions.txt. 

B.3 Procedure for Generation of Matrix-Encoded Synthetic Routes  

First, adjacency matrices for the target molecule and all synthetic intermediates are 

generated. Each resultant matrix is an (𝑁𝑁𝑡𝑡 + 𝑁𝑁𝑐𝑐) × (𝑁𝑁𝑡𝑡 + 𝑁𝑁𝑐𝑐) square, where 𝑁𝑁𝑡𝑡 is the number of 

atoms and groups in the target molecule, and 𝑁𝑁𝑐𝑐 is the number of concession atoms and groups. A 

group refers to a collection of atoms that do not undergo any transformation throughout the 

synthetic route, and hence can be encoded as a single atom without losing information relevant to 

the results presented in this manuscript. Examples include alkyl side chains and protecting groups. 

Several methods are possible for the generation of these matrices. The process employed by this 

manuscript is as follows: 

1. Encode the product as a mol object in RDKit, replacing large unchanged substituents with 

single atoms as desired. 

https://github.com/cernaklab/synthetic-key-steps
https://github.com/cernaklab/RZhang_Thesis/
http://www.synthiaonline.com/
https://github.com/cernaklab/synthetic-key-steps/blob/main/software_versions.txt
https://github.com/cernaklab/synthetic-key-steps/blob/main/software_versions.txt
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2. Iterate over the product’s atoms using GetAtoms(), and extract their atomic number using 

GetAtomicNum(). Should the mol object be encoded directly from a SMILES string, the 

order in which atoms appear in GetAtoms()will be the same as that in the SMILES string. 

3. Use GetAdjacencyMatrix(), setting useBO=True to generate the product adjacency matrix 

from the mol object. The ordering of product atoms along the rows and columns will be 

the same as that extracted in step 2.  

4. Working backwards from the product, note down the following for every reverse step: 

a. The number and identities of additional concession atoms to be appended. 

b. Atom indices at which there is a change in bond order. 

c. Changes in symmetry about atoms that are asymmetric in the product. 

These changes are transferred to a bond edit spreadsheet. An example of a short spreadsheet is 

depicted in Figure B1. 

 
Appendix Figure B.1. A sample bond edit spreadsheet, with which the matrix-encoded synthetic route is generated. 

 

Each retrosynthetic step is split into three sections:  

1. The “step” row, which separates individual steps. The cells highlighted in green are not 

read by the matrix generation algorithm, and are intended as flexible annotation spaces for 
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the user. In the files for this manuscript, they are most commonly used to keep track of step 

names and maximum atom count. 

2. The “pad” row, whose first entry is the number of concessions atoms to add, and the second 

is their atomic numbers, in order, separated by spaces. 

3. The bond edit block, where, for each row, the first two entries are indices of the atoms 

joined by a changing bond, and the third is the change in bond order.  

After the final step is encoded (i.e. the first step in the forward synthesis), a last row is added to 

mark the end of the bond edit file. 

Most edit files for this manuscript use the first “step” to add in stereocenters as diagonal entries. 

R and S stereocenters are not distinguished in this work, and only encoded as 1 for present, and 0 

for absent. Stereocenters that appearing during the synthesis, but are absent in the final product, 

are not encoded.  

After the bond edit file is complete, it is used to compute and save the adjacency matrices for the 

remaining intermediates. Should any changes be difficult to encode via a bond edit spreadsheet, 

they can be added to the matrices after they are generated.  
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B.4 Schematics and atom indices of all analyzed synthetic routes. 

 

Appendix Figure B.2. Total synthesis of (–)-secodaphniphylline by Heathcock and Stafford, including atom mapping. 

  



 75 

 
Appendix Figure B.3. Total synthesis of (–)-strychnine by MacMillan and coworkers, including atom mapping. 
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Appendix Figure B.4. Total synthesis route towards (–)-stemoamide as proposed by the CASP program SYNTHIA™, including 
atom mapping. 

 

Appendix Figure B.5. Six-step total synthesis of (+)-stemoamide performed by our group, including atom mapping. 
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Appendix Figure B.6. Total synthesis route towards (–)-stemoamide as proposed by SYNTHIA™ with the Mannich reaction 
excluded, including atom mapping. 

 

Appendix Figure B.7. Total synthesis route towards (–)-stemoamide as proposed by SYNTHIA™ when the penultimate 
intermediate is used as the target, including atom mapping. 
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Appendix Figure B.8. Three-step total synthesis of (+)-stemoamide performed by our group, including atom mapping. 

 

Appendix Figure B.9. Total synthesis of (+)-welwitindolinone A by Baran and coworkers, including atom mapping. 
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Appendix Figure B.10. Total synthesis of himgaline by Shenvi and coworkers, including atom mapping. 
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Appendix Figure B.11. Total synthesis of himgaline by Sarpong and coworkers, including atom mapping. 
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Appendix Figure B.12. Total synthesis of englerin A by Christmann and coworkers, including atom mapping. 
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Appendix C: Supplementary Material for Chapter 4 

C.1 Code availability 

Code for small-scale library synthesis (Chapter 4.4.2) can be found at 

https://github.com/cernaklab/McGrathEsterification. 

Code for all other sections of Chapter 4 can be found at 

https://github.com/cernaklab/RZhang_Thesis. 

Software for controller mapping to keyboard inputs was downloaded from 

https://github.com/AntiMicro/antimicro. 

C.2 General procedure for conducting HTE screens  

All reagents to be screened were entered into phactor™ either manually, or selected from 

the online inventory. The molar mass, reagent type, molarity in the reaction vessel, amount of 

overage, and order of addition were entered for each reagent, and a recipe is automatically 

generated.  

Following the recipe, all reagents were measured into oven-dried glass vials (ChemGlass 

#CG-4912-02) by mass or volume. A magnetic stir bar (Fisher Scientific 14-513-93) is placed in 

all vials where the reagent is not expected to be completely soluble at the stock solution 

concentration, unless the reagent is to be dosed as a solid.  

A 96-well aluminum microvial plate (Analytical Sales & Services cat. no. 25243) was 

equipped with oven-dried shell vials (Analytical Sales & Services cat. no. 884001) and one 

parylene-coated stir dowel (Analytical Sales & Services cat. no. 13258) was placed in each vial. 

All labware and reagents were brought into a glovebox (MBraun LABmaster Pro) and onto the 

deck of an Opentrons OT-2, fitted with a tumble stirrer (V&P Scientific Inc. 710D3). Reagents 

that require stirring are placed on a 24-well stirring block (Analytical Sales & Services #24125) 

which fits on the tumble stirrer deck. Stock solutions are prepared by adding the prescribed amount 

of solvent into each reagent vial, either manually with a single-channel micropipetter, or a single-

channel Opentrons autopipetter dosing from a deep well reservoir (Analytical Sales & Services # 

https://github.com/cernaklab/McGrathEsterification
https://github.com/cernaklab/RZhang_Thesis
https://github.com/AntiMicro/antimicro
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962144) using pipette tips supplied by the manufacturer (Opentrons PT0300-9B-NS). The tumble 

stirrer was activated to agitate stock solutions while the script to dose stock solutions into the 

microvial plate is being run. Pauses can be pre-programmed into the Opentrons script to allow for 

pre-mixing, or addition of solid reagent. After all stock solutions have been dosed, the microvial 

plate was sealed with two layers of rubber mat (Analytical Sales & Services # 96965) and one 

layer of PFA film (Analytical Sales & Services # 96979), removed from the glovebox, and heated 

using a heating block (V&P Scientific Inc. 741GA) for the desired temperature and duration, 

stirring at 500 RPM (V&P Scientific Inc. 710E5X tumble stirrer). 

After the reaction time has elapsed, the microvial plate was returned to the robot deck along 

with a polypropylene 96-well deep well plate (Analytical Sales & Services # 17P687Z) and a fresh 

deep well reservoir containing caffeine solution in Optima grade acetonitrile in one well, and only 

acetonitrile in the other. An 8-channel pipette first transfers a calculated amount of the caffeine 

solution into the microvial plate, and then an aliquot of these mixtures is transferred into the deep 

well polypropylene plate, with premixing of 3 repetitions of around half the total liquid volume. 

Lastly, pure acetonitrile is added to every well of the deep well plate such that each well contains 

a uniform amount of liquid not less than 600 μL. The deep well plate was centrifuged for 40 

minutes at 1000 RPM (Genevac HT-4X) and analyzed using UPLC-MS. 

The UPLC-MS was a Waters I-class ACQUITY (Waters Corporation, Milford, MA, USA) 

equipped with in-line photodiode array detector (PDA) and QDa mass detector (ESI positive 

ionization mode). 0.1 µL sample injections were taken from acetonitrile solutions of reaction 

mixtures or products (~1 mg/mL). A partial loop injection mode was used with the needle 

placement at 1.0 mm from bottom of the wells and a 0.2 µL air gap at pre-aspiration and post-

aspiration. Column used: Waters Cortecs UPLC C18+ column, 2.1mm ⋅ 50 mm with (Waters 

#186007114) with Waters Cortecs UPLC C18+ VanGuard Pre-column 2.1mm ⋅ 5 mm (Waters 

#186007125), Mobile Phase A: 0.1 % formic acid in Optima LC/MS-grade water, Mobile Phase 

B: 0.1% formic acid in Optima LC/MS-grade MeCN. Flow rate: 0.8 mL/min. Column temperature: 

45 °C. The PDA sampling rate was 20 points/sec. The QDa detector monitored m/z 150-750 with 

a scan time of 0.06 seconds and a cone voltage of 30 V. The PDA detector range was between 210 

nm – 400 nm with a resolution of 1.2 nm. 1-minute and 2-minute methods were used. The method 

gradients are as follows: 0 min: 0.8 mL/ min, 95% 0.1% formic acid in water/ 5% 0.1% formic 

acid in acetonitrile; 1.5 min: 0.8 mL/ min, 0.1% 0.1% formic acid in water/ 99.9% 0.1% formic 
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acid in acetonitrile; 1.91 min: 0.8 mL/min, 95% 0.1% formic acid in water/ 5% 0.1% formic acid 

in acetonitrile. 

In experiments covered in Chapter 4.3, the caffeine solution was at a concentration of 16 

mg/mL, 500 μL of which was transferred into each well. An aliquot of 70 μL was transferred into 

the deep well plate, and 730 μL of pure acetonitrile was added. 

In experiments covered in Chapter 4.4, the caffeine solution was at a concentration of 0.1 M, 100 

μL of which was transferred into each well. An aliquot of 40 μL was transferred into the deep well 

plate, and 560 μL of pure acetonitrile was added. 
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C.3 Structures of Carboxylic Acids Used in Small Scale Library Synthesis (Chapter 4.4.2) 
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