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and patience have always inspired me to be a better researcher. I aspire to emulate both of them in
my future academic endeavors. I am also immensely grateful for my other committee members,
Vijay Subramanian, Jean-Baptiste Jeannin, and Xinyu Wang, who with their diverse backgrounds
provided much insightful feedback, greatly improving the quality of this work. I would also like to
thank my committee for their availability and flexibility in these matters. My collaborators have
also played an essential role in shaping this dissertation. Many thanks to Madeline Blischke, Sahar
Mohajerani, Anne-Kathrin Schmuck, Ana Maria Mainhardt, Borzoo Bonakdarpour, Ana da Costa
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ABSTRACT

The development of cyber-physical systems, which integrate physical processes across cyber-
networks, has had a profound impact on our society. Many of these systems, ranging from
location-based services on our phones to devices on the Internet of Things in our homes, rely on the
communication of sensitive information which may be vulnerable to eavesdropping. The physical
harm that can result from leaking this information, like your current location or the occupancy of
your home, is well documented. This has lead to strict privacy and security requirements which are
often difficult to implement in practice. Motivated by the success of formal methods in developing
provable guarantees for cyber-physical systems with strict safety requirements, in this dissertation
we focus on the following problems: (1) How can we verify that a system maintains privacy? and
(2) How can we enforce privacy upon a system while maintaining its original purpose or utility?

Verification is used to analyze vulnerabilities in existing systems and provide feedback to guide
the design of new systems. Existing approaches to verification are limited by their ability to express
complex privacy requirements and by their high computational burden. We propose a general
framework expressing privacy as the formal information flow property of opacity. Over discrete
state models (automata), we show how this framework unifies many of the existing notions of opacity
studied in the area of discrete event systems. Within this framework, we develop approaches to
verification based upon elementary automata constructions that exhibit competitive performance to
existing techniques. Additionally, to overcome the inherent computational complexity of verification,
we propose a relaxation of opacity that captures bounds on the ability of observers to reason about
the system. We develop a corresponding verification approach based on an encoding to the Boolean
satisfiability problem. These approaches are demonstrated on randomly generated systems alongside
a novel server-load hiding problem.

Enforcement is used when a given system cannot be verified to maintain privacy, or when the
design of systems by hand is impractical. We focus on the enforcement of privacy with obfuscation,
altering communication on the network to shape the beliefs of observers. Over systems modeled by
automata, obfuscation takes the form of edit functions which dynamically delete certain outputs and
insert fictitious ones. We first show how to apply existing methods for designing such obfuscators
within our general framework for opacity. To generalize the limited notion of utility guaranteed
by these methods, we then propose a new approach to obfuscation which explicitly models the

xiii



information flow from the system to its authorized users as a distributed system. Finally, we integrate
control into this approach over a variety of network architectures. These approaches use a blend
of techniques from supervisory control for DES and reactive synthesis, and are demonstrated on a
contact-tracing problem as well as a smart building access-control system.
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CHAPTER 1

Introduction

1.1 Motivation

Privacy is an important concept discussed in areas as diverse as law, technology, and our everyday
lives. It generally refers to the ability to control access to spaces both physical, like one’s home,
and abstract, like our information landscape. Although its origins are unclear, the need for privacy
or a degree of separation from one’s community is near universal, observed in both humans and
non-human animals alike [72]. Regardless of whether hiding private information helps our society
by promoting individuality or hurts it by facilitating illicit activity, it is necessary to understand
and control how information is disclosed. Recent advancements in technology and the resulting
reorganization of our society has rendered this problem much more difficult.

This is especially the case for cyber-physical systems (CPS), which integrate physical processes
over cyber-networks. These systems, such as location-based services, building access-controls,
and contact-tracing apps, have become ubiquitous in many areas of life. CPS collect information
from their sensors, like user location data or home occupancy, which they communicate across
networks to achieve their goals. This information is often sensitive and must be protected from
unauthorized access and modification. Unfortunately, these networks, like the Internet or wire-
less communications, are vulnerable to eavesdropping and other cyber-attacks. Because of this,
information security is of critical importance to the correct operation of CPS. A common model of
information security is the CIA triad as depicted in Fig. 1.1, named for its three legs: confidentiality,
integrity, and availability. The first leg of the triad is confidentiality which requires that unauthorized
individuals do not have access to sensitive information. Privacy in context of the CPS literature
is best understood as a form of confidentiality. While such a system can trivially be rendered
confidential or private by removing communication of sensitive information, this information is
often critical for system to achieve its goals or utility. This reflects the second leg of the triad,
availability, which requires that authorized individuals do have access to information. The final
leg of the triad is integrity, which requires that information remains accurate and unmodified by
unauthorized individuals. The focus of this dissertation is the confidentiality and availability of
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Figure 1.1: Knowledge of a building’s layout like the one on the left can be used to track occupants’
locations, violating their information security. Information security is commonly modeled by the
CIA triad, visualized on the right.

CPS, understood as privacy and utility. The integrity of CPS is addressed by many existing works
on intrusion detection [66] and resilience to attacks [59, 67].

Privacy in CPS presents a number of unique challenges. The first challenge results from the
presence of dynamics describing how the system evolves over time. Aspects of these dynamics
may be public knowledge or even learned by motivated observers. This knowledge can refine
beliefs about the system’s behavior beyond a sequence of observations alone. For example, the
floor plan of a building restricts the mobility of its occupants, constraining the set of behaviors that
can be realized. This information in conjunction with observations of the building may enable the
tracking of its occupants’ locations. The second challenge is the serious harm posed by violations
of privacy. As by definition, CPS interact with the physical world, leaking information like personal
location can have physical consequences. While some aspects of privacy in CPS are well-studied,
there remains a need of more tools that address these challenges, providing provable guarantees
of privacy while accounting for dynamics. Techniques developed in the area of formal methods,
originating from the computer science community, verify that software meets its specifications and
even design it [22]. The control systems community has adapted these techniques to CPS with
broad success in application to systems with specifications like safety and liveness [1]. More recent
works in this direction have proposed approaches to verification and enforcement of privacy and
utility specifications for CPS. However, application of these approaches in practice is limited by (1)
computational tractability and (2) the ability to express specifications. This dissertation presents a
formal methodology addressing these limitations on the verification and enforcement of privacy and
utility in cyber-physical systems.
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1.2 Related Works

We now provide a brief overview of existing literature on privacy in CPS. We first discuss how
privacy requirements are formally specified and verified, followed by a presentation of several
approaches to privacy enforcement. The methodology of this dissertation is derived largely from
the area of discrete event systems (DES), which is the focus of this discussion of related works.
DES are event-driven systems whose behaviors are characterized by discrete transitions over time.
Whereas analyzing the complex behavior of CPS concretely is often intractable, DES can provide
high-level abstractions of CPS which are more computationally manageable.

1.2.1 Specification and Verification of Privacy and Utility

Privacy can be modeled by a variety of formal information flow and security properties. Many
of these properties were originally studied in the computer science community and concerned the
separation of high security clearance and low security clearance users. Such properties include, for
example, non-interference [41], anonymity [79], and non-inference or non-deducibility [65]. Of
particular interest in this dissertation is the property of opacity which captures the notion of plausible
deniability: a secret remains private if it can be plausibly denied. Formally, the property holds if an
observer cannot deduce sensitive information about a system’s behavior from their observations and
knowledge of the dynamics. Opacity (sometimes called opaqueness) was first introduced by Mazaré
and Hughes [45, 64]. Opacity has been widely adopted by the DES community to specify privacy
over transition systems [11] and later finite automata [3, 47, 83]. These works typically assume that
the observer has knowledge of a system’s dynamics but only partial observation of its behavior.
Many distinct notions of opacity have been proposed corresponding to different types of secrets to be
hidden. Language-based opacity (LBO) [57] describes secrets as sequences of the system’s events,
i.e., the secret behavior is specified by a sublanguage of the system. Alternatively, state-based
notions describe secrets in terms of visits to so-called secret states. For example, current-state
opacity (CSO) [83] and initial-state opacity (ISO) [84] require hiding whether the system currently
or initially inhabits a secret state, respectively.

A common trend of this literature is the proposal of a new notion of opacity along with a
corresponding verification technique tailored to it. The disconnected nature of these approaches
makes it difficult to apply improvements on one verification technique to another. The first step
towards a more unified theory was provided by Wu et al. [101], who showed that CSO, ISO, and
other notions of opacity can be transformed into LBO. We continue this research direction by
developing a general framework for specifying both state and language-based notions of opacity
with automata, along with a uniform approach to verification. In particular, our proposed framework
is applied to the more complex notions of K-step opacity and infinite-step opacity. Roughly, K-step
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opacity requires that visits to secret states during the last K steps of a system are hidden, while
infinite step opacity requires that visits to secret states are never revealed [86]. Verification ofK-step
opacity is difficult as one must consider smoothing, i.e. how observers use current observations to
refine past beliefs. Many approaches to more efficiently verify K-step opacity have been developed,
such as the one we propose, the two-way observer [108], and more recent techniques [6, 7]. While
these approaches reduce the computational load of verification, they struggle with scaling to more
complex systems. This is in part explained by the fundamental computational complexity of
the opacity verification problem, which is PSPACE-complete [15]. This limitation can only be
overcome by solving a different problem, such as the relaxed problem presented in this dissertation
that is co-NP-complete.

1.2.2 Enforcement

When a system cannot be verified to preserve privacy, using the aforementioned opacity verifi-
cation techniques for example, we can consider the problem of enforcing privacy upon it. Using
opacity to model privacy, the earliest proposed enforcement mechanism over DES was supervisory
control [28]. Supervisory control enforces opacity by restricting behaviors of the system which
would reveal sensitive information. In doing so, it is important that supervisors do not restrict
the system unnecessarily, reducing its utility. This is typically achieved by computing maximally-
permissive solutions. While control provides a robust enforcement mechanism, it may be unfeasible
to restrict certain aspects of a system’s behaviors. For example, human components of a system like
occupants moving around a building often cannot and should not be controlled. In this case, the
observations of the system must be modified rather than its behavior. While a variety of existing
mechanisms such as encryption use this approach, we consider privacy enforcement by modifying
the outputs of the system to hide information while mimicking the original system. We generally
refer to this approach as obfuscation.

The word obfuscation has been used to refer to a variety of concepts across different communities.
In a sense, the meaning of the word is itself is obfuscated. For example, data obfuscation or masking
alters sensitive data to prevent unauthorized users from accessing sensitive information for the
purpose of anonymity or even hiding malicious data [5]. Code obfuscation modifies the source
and implementation of software programs to be difficult to understand or reverse engineering
in order to protect against piracy [25]. In common usage, obfuscation often refers deliberately
confusing speech or coded messages such as doublespeak. The term has even taken on political
connotations, referring to small acts of rebellion against the current age of surveillance as described
in the book “Obfuscation” [10]. The common theme among these concepts is the propagation
of ambiguous or misleading information in order to hide sensitive information. Obfuscation for
opacity enforcement in DES can be realized with a variety of mechanisms including dynamically
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masking the information gathered from the system’s sensors [110], delaying observations of the
system [31], and event-based cryptography [56]. In this dissertation, we consider obfuscation with
edit functions that selectively delete and insert fictitious events to the stream of outputs from a
system [100]. Privacy preserving edit functions can be synthesized using tools from supervisory
control both in the case where the edit function is not publicly known [100, 103, 104] and when it is
publicly known [48]. We consider the case where the edit function is not publicly known and adapt
these tools to our general framework in order to enforce more complex notions like K-step opacity.
An alternative approach to enforcing K-step opacity with edit functions was later presented in [60]
which extracts edit functions as solutions to a two-player game constructed specifically for K-step
opacity.

As with supervisory control to enforce privacy, one must be careful to maintain utility when
obfuscating a system’s outputs. For example, privacy can be trivially enforced by deleting all
of a system’s outputs; however, such a system would not be of any use to an outside observer.
Previous work such as [103] model these requirements with utility constraints. For each state
the actual system inhabits, the constraints describe states that an observer of obfuscated outputs
should believe the system inhabits. In this way, utility constraints can express the requirement
that an observer can infer information about the current state of the system. However, systems
may have conflicting privacy and utility requirements, requiring that secret information is shared
with one observer but not with an eavesdropper. As existing methods consider a single type of
observer with uniform knowledge of the system model and obfuscation, there is no way to hide
information from some but reveal it to others. To address this limitation of obfuscation, we propose
a new framework which distinguishes observers by providing them with partial information about
the obfuscator. Borrowing terms from cryptography, we can think of this information as a “key”
mapping obfuscated observations to inferences about the system. After designing the obfuscator,
these keys can be securely shared with recipients using a variety of methods. So although the
system’s outputs are obfuscated preventing general observers from deducing secrets, the system
achieves utility as intended recipients can infer a specified amount of information about the behavior
of the system. An example network implementing this approach is depicted in Fig. 1.2. A similar
approach with an intended recipient was also proposed in [61].

1.2.3 Alternative Privacy Formulations

While we discuss privacy modeled by opacity over systems modeled by automata in this
dissertation, many other notions of privacy have been formulated over a variety of models. For
example, it has been shown that many observational properties can be expressed as hyperproperties
specified by formal temporal logics like HyperLTL [113]. This result is critical to the development
of the enforcement mechanisms we discuss later. Within DES, Petri nets provide a more expressive
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Figure 1.2: An example network architecture using obfuscation to enforce privacy on a smart office
building. Sensitive information output by the system is obfuscated before being broadcast on an
open network. Aspects of the original information can be recovered by emergency services and
an office security provider using their keys to partially invert obfuscation. Unintended recipients
without this key are and unaware of obfuscation believe they are directly observing outputs from
the system that do not reveal any sensitive information.

modeling framework than finite automata, while still maintaining a compact representation. Several
works have proposed opacity verification techniques for bounded Petri nets [11, 91]. We note that
the most common notions of opacity over DES (current-state, initial-state, and K-step) concern the
timing of visits to secret states. This prevalence of these notions reflects the time-sensitive nature
of privacy in practice, i.e., when did a secret occur? and when does an observer learn of it? This
motivates the use of timed models in studying opacity. Indeed, the discrete steps in K-step opacity
are often used as a surrogate for the passing of time in reality. Unfortunately, while there is some
work on the verification of opacity for timed automata [2], the general problem is undecidable [14].

While in this dissertation we consider “binary” notions of opacity, i.e., secret behavior is either
revealed or it is not, quantifying the degree of privacy may be an important in practice. For example,
there is a substantial body of work on stochastic notions of opacity, quantifying the probability that
a secret is revealed [87] and how uncertain an observer is that they observed a secret [9]. Beyond
discrete event system models, the base notion of opacity has been investigated over discrete-time
linear systems [77]. Towards the goal of adapting opacity to general continuous state-space, the
notion of approximate opacity was developed for nonlinear control systems [111]. Approximate
opacity can be verified via abstraction to discrete systems with an appropriate simulation relation
[114]. Control barrier functions have also been proposed as an efficient method for enforcing
approximate opacity.

Beyond opacity, many notions of privacy over CPS have been investigated. Alongside encryption,
which we will discuss later, the privacy of digital and analog communications has long been a
focus of channel coding theory. An early example of this is the study of wire-tap channels, where a
wiretapper (eavesdropper) observes communications on a network through an additional channel
that has been degraded with noise. Encoding schemes or codes have been proposed which guarantee
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information-theoretic privacy even when the eavesdropper is aware of this scheme [55, 106]. In
contrast to the deniability described by opacity, techniques from information theory guarantee that
no information about a given secret is revealed. These information theoretic techniques quickly
evolved to solve more complex problems like the private and secure sharing of secrets [75] as well
as the multi-party computation of functions [70, 107]. For example, the concept of differential
privacy [29] was originally formulated for databases, requiring that aggregate information shared
by the database does not reveal sensitive information about individuals. Differential privacy is
often implemented for numerical data with the addition of statistical noise to observations of the
system. Alternatively the “exponential mechanism” based on random sampling has been applied
to enforce differential privacy for discrete systems like Markov chains [19]. In either case, the
outputs produced are guaranteed to be close to the original data in some sense. As such, these
mechanisms for differential privacy are conceptually similar to obfuscation, modifying the outputs
of the system to ensure privacy while maintaining some utility. Importantly, differential privacy
assumes the implementation of the enforcement mechanism is publicly known. Obfuscation is
also similar to steganography, the practice of encoding messages within other types of data, such
as images. Unlike differential privacy, steganography and the obfuscation we consider here are
forms of information hiding, relying on the enforcement mechanism being unknown to hide the
mere existence of private communications. The application of steganography to CPS is sometimes
referred to as network steganography [62]. An information-theoretic discussion of information
hiding including applications to watermarking, steganography, and data embedding can be found in
this overview [73].

1.2.4 Encryption

One of the most common mechanisms for privacy enforcement is encryption. Encryption encodes
information with unintelligible streams of data that can only be decoded with the use of a private
key. The use of encryption is obvious to observers; it is often possible to determine the exact
technique used from the encrypted data alone. The key feature of these techniques are their strong
theoretical guarantees of privacy against eavesdroppers, even when the technique is known, so
long as the key remains secret. While this type of privacy guarantee is more than sufficient for
many systems, the conspicuous nature of encryption puts systems at risk of other forms of attack.
Knowledge of the existence of privacy enforcement mechanisms may be enough to motivate more
invasive and destructive attempts to access the system’s sensitive information. The goal of our
proposed obfuscation mechanism is to mimic behavior expected by eavesdroppers in order to avoid
detection. In this way, obfuscation provides privacy guarantees which are orthogonal to encryption.
Techniques like obfuscation that rely upon secrecy of the technique itself are historically subject to
criticism as security through obscurity. But more recently, some of these techniques have gained
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support as instances of cyber deception. Deception techniques which “mislead, confuse, hide critical
assets from, or expose covertly tainted assets to the adversary”, have been identified as an important
part of the cyber resiliency engineering framework presented by the United States National Institute
of Standards and Technology’s [81].

There are also some settings in which typical encryption is difficult to implement. For example,
the computational burden of many such techniques is too high for implementation on low-power
devices, such as those commonly found on the Internet of Things. Additionally, the existing
infrastructure of some systems may be brittle, failing in unexpected ways if the form of commu-
nications are altered. In the setting of static messages, this is the motivation of format-preserving
encryption [8] which guarantees, for example, that location coordinates still look like coordinates
encryption. Finally, while we typically discuss communication of digital data over cyber-networks,
our framework for obfuscation permits the modeling of different types of networks where encryption
cannot be implemented. For example, communication may refer to the observation of physical
phenomena such as power usage within a smart grid. In this case, obfuscation can be implemented
by controlling the power usage of loads or buffering power with a battery. The dynamics governing
these processes are readily integrated within our formulation of obfuscation in a dynamic system.

1.3 Summary of Contributions

We now summarize the main contributions and organization of this dissertation. The relevant
publications corresponding to the material of each chapter are indicated.

Chapter 2: Preliminaries
This chapter establishes the notation used by this dissertation and reviews the concepts necessary

to understand it. In particular, it presents an overview of formal languages and automata, along
with the common automata operations used in DES. In addition, an introduction to computational
complexity theory and reactive synthesis is provided.

Chapter 3: Specification and Verification of General Notions of Opacity [97]
In this chapter, we present a general framework for specifying notions of opacity to capture the

many complex privacy requirements on systems encountered in practice. The subsequent chapters
on both verification and enforcement discuss opacity within this framework. We show how many
existing state-based notions of opacity in DES can be expressed uniformly as a specific language
inclusion after a certain transformation. In particular, we focus on K-step opacity, unifying the two
existing notions in the literature and proposing two new notions as well.

Additionally, three approaches to verification which check this language inclusion are developed.
These approaches are complete, always correctly identifying if a system is opaque given enough
runtime. We evaluate these approaches in comparison with existing ones by developing theoretical
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bounds on their runtimes and measuring their runtimes experimentally over randomly generated
systems.

Chapter 4: Opacity Against Observers with a Bounded-Memory [98]
To overcome the inherent complexity (PSPACE-complete) of the opacity verification problem,

we propose a meaningful relaxation of opacity in this chapter. This relaxation, called k-bounded
memory opacity, explicitly models the deduction process of an observer as an automaton so that
constraints on the observer’s memory correspond to bounds on the state space of this automaton. We
present reductions to the Boolean satisfiability problem (SAT) and from the k-bounded nonuniver-
sality problem, showing that the problem of verifying this relaxed notion of opacity does not hold is
NP-complete. Furthermore, the reduction to SATprovides an efficient method for verification which
we evaluate over randomly generated examples. Finally, we extend this method using MAX-SAT to
solve an optimal sensor placement problem in the context of a server load-hiding problem.

Chapter 5: Enforcement of Opacity with Obfuscation [95]
This chapter discusses what can be done when a system cannot be verified as opaque. We

define the general problem of opacity enforcement with a specific focus on obfuscation, which
enforces opacity by altering the observations made of the system. Realizing obfuscation with edit
functions, we generalize the existing notions of private and public safety for current-state opacity to
the framework of Chapter 3. This generalization permits the use of existing tools for designing edit
functions to enforce K-step opacity. We demonstrate this approach on a contact-tracing system.

Chapter 6: Enforcement of Opacity and Utility with Distributed Synthesis [96]
This chapter addresses the limitations of existing obfuscation methods, like those employed

in Chapter 5, to enforce utility. We propose a stronger notion of utility by explicitly modeling
the intended recipient of the system’s outputs as a process in a distributed system as depicted in
Fig. 1.2. We then present a technique for the implementation of the obfuscator and intended recipient
processes using distributed reactive synthesis. This implementation is secretly communicated to the
recipient to act as a key to interpret obfuscated information, introducing information asymmetry
necessary to enforce privacy while maintaining utility. The expanded capabilities of this approach
is demonstrated on the contact-tracing system from Chapter 5.

Chapter 7: Integrating Control and Obfuscation [99]
The previous two chapters considered the enforcement of opacity with obfuscation alone, which

is applicable when altering the underlying behaviors of the system is infeasible. In practice, privacy
may require both the control of these underlying behaviors alongside obfuscation. In this chapter,
we extend the solution approach of Chapter 6 to more general network architectures which integrate
obfuscation and control. We explain this approach by solving three representative problems over
such architectures representing (1) designing a local feedback controller, (2) designing a remote
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feedback controller, (3) securing an existing remote feedback controller. These explanations feature
solutions to these problems over a smart building access-control system.

Chapter 8: Conclusion
In this chapter, we summarize the contributions of this dissertation and present possible directions

for future work.

10



CHAPTER 2

Preliminaries

This chapter presents the notation used by this dissertation as well as a review of the concepts
necessary to understand it. In particular the topics of formal languages and automata, logic and
complexity theory, and reactive synthesis are discussed. The set of real numbers is denoted by R and
the set of natural numbers by N = {0, 1, 2, · · · }. The natural numbers and positive natural numbers
bound by n ∈ N are denoted by [k] = {0, 1, · · · , k} and [k]+ = {1, · · · , k}, respectively. The set of
Boolean values is denoted by B = {0, 1} with 0 denoting false and 1 denoting true. Given a function
f : X → Y and a subset Z ⊆ Y , we denote the preimage by f−1(Z) = {x ∈ X | f(x) ∈ Z}.

2.1 Formal Languages

Behaviors of a DES can be described as a formal language over the system’s events. This section
provides the basic definitions and constructions of languages and their representation as automata
as used in this dissertation. A detailed discussion of these topics can be found in an introductory
text on DES [13].

Languages and Finite Automata

Given a finite alphabet of symbols called events Σ, the sets of finite, nonempty, and infinite

sequences over Σ are denoted by Σ∗, Σ+, Σω, respectively. Such sequences, called strings, represent
the order that events occurred in a behavior of the system. Given a string s ∈ Σ∗ with length n = |s|,
we write s = s0, · · · , sn−1 where si ∈ Σ. By convention the set Σ∗ contains the empty string ϵ
which represents the behavior in which no events occurred. A ∗-language is a subset L ⊆ Σ∗

while an ω-language is a subset M ⊆ Σω. When clear from contex, both are referred to simply as
languages. The set of finite prefixes of a finite or infinite string s is denoted by s ⊆ Σ∗. Likewise,
the set of finite prefixes of all strings in a language L is denoted by L,M ⊆ Σ∗. Given a finite string
s and a finite or infinite string s′, their concatenation is denoted by ss′ or for emphasis s · s′. A
similar notation is used for languages. The set of all finite concatenations of a language L ⊆ Σ∗,
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called the Kleene-star, is denoted by L∗ = {ϵ} ∪ L ∪ L2 ∪ · · · ⊆ Σ∗. Correspondingly, the set of
infinite concatenations of a language L ⊆ Σ∗ containing a nonempty string is denoted by Lω ⊆ Σω.

Automata provide a finite representation of a class of languages that are well-suite for compu-
tation. A finite automaton is a tuple G = (Q,Σ, δ, Q0, Qm) with a finite set of states Q, a finite
set of events Σ, a transition relation δ ⊆ Q × Σ × Q, initial states Q0 ⊆ Q, and marked states
Qm ⊆ Q. A subautomaton of G is an automaton whose states and transitions are a subset of those
in G. The size of an automaton G refers to its number of states |Q|. A run of G over a string
s = s0s1 · · · sn−1 ∈ Σ∗ is a sequence of states q0, q1, · · · , qn ∈ Q such that q0 ∈ Q0 and for all j [n],
(qj, sj, qj+1) ∈ δ. The language generated by G is the set L(G) ⊆ Σ∗ containing the strings for
which there exists a corresponding run over G. Given any set of states Q′ ⊆ Q the language of G
marked by Q′ is the set LQ′(G) ⊆ L(G) containing strings with a run ending in Q′. In particular,
the language marked by G is the set Lm(G) = LQm(G). A language L ⊆ Σ∗ is said to be regular if
it is marked by some finite automaton. We say that G is deterministic if its strings each correspond
to a unique run, i.e., if both |Q0| ≤ 1 and for all q ∈ Q and s ∈ Σ, there is at most one q′ ∈ Q such
that (q, s, q′) ∈ δ. Deterministic finite automaton is abbreviated as DFA and nondeterministic finite
automaton (including deterministic ones) as NFA. An example of how automata are depicted in this
dissertation can be seen in Fig. 2.1.

We make similar definitions of automata over infinite strings by considering different marking
or acceptance conditions. A Büchi automaton is a finite automaton B = (Q,Σ, δ, Q0, Qm) with
the interpretation that an infinite run is accepted if it visits Qm an infinite number of times. The
ω-language accepted by B is the set Lω(B) ⊆ Σω of infinite strings with an accepting run over
B. We say an ω-language M ⊆ Σω is ω-regular if it is accepted by a Büchi automaton. When
the context is clear, we drop the word infinite and prefix ω when referring to infinite strings and
ω-languages for convenience.

Automata Constructions

Now we present a number of standard automata constructions corresponding to transformations
and compositions of the systems behaviors as languages. In DES, it is common to model observation
of a language over the events Σ with a subset of observable events ΣO ⊆ Σ. In this case, observation
is described by the natural projection P : Σ∗ → Σ∗

O which simply erases the occurrence of
unobservable events. Formally this map is defined recursively by P(ϵ) = ϵ and for all s ∈ Σ∗ and
σ ∈ Σ

P(sσ) =

P(s)σ σ ∈ ΣO,

P(s) otherwise.
(2.1)
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Given an automaton G over events Σ, we can construct the projected automaton P(G) over
observable events ΣO which marks observations of behaviors in G through the projection

L(P(G)) = P(L(G)), Lm(P(G)) = P(Lm(G)) . (2.2)

This is done by replacing events σ labeling transitions in G by their image P(σ) in P(G), removing
ϵ transitions as necessary (for details see [13]). Note, P(G) may be nondeterministic even if G
is deterministic. Because, they are often required in computation, there is a need to construct
deterministic automaton that are language-equivalent to a given nondeterministic automaton. Given
an NFA G, the powerset construction is a DFA det(G) =

(
2Q,Σ, δdet, {Q0}, Qm,det

)
where

δdet = {(q, σ,q′) | ∀q′ ∈ q′. ∃q ∈ q. (q, σ, q′) ∈ δ} , Qm,det = {q | q ∩Qm ̸= ∅} . (2.3)

This construction guarantees that

L(det(G)) = L(G), Lm(det(G)) = Lm(G) . (2.4)

The powerset construction is also commonly referred to as the observer construction in DES when
combined with projection of observable events, or more generally as determinization. As an example
of the need for deterministic automata, given a DFA G, the complement automaton comp(G) is
constructed by adding transitions to a sink state labeled by events absent in the original. Formally,
comp(G) = (Q ∪ {qsink},Σ, δc, Q0, Q \Qm ∪ {qsink}) where

δc = δ ∪ {(q, σ, qsink) | ∀q′ ∈ Q. (q, σ, q′) ̸∈ δ} . (2.5)

This construction guarantees that

L(comp(G)) = Σ∗, Lm(comp(G)) = Σ∗ \ Lm(G) . (2.6)

In addition to projeciton, another operation which can produce an NFA from a DFA is the
reverse automaton. The reverse of a finite string s = s0 · · · sn is denoted by rev(s) = sn · · · s0.
We use the same notation for the reverse of a language. Given an NFA G, its reverse is an
NFA rev(G) = (Q,Σ, δrev, Qm, Q0), where the marked and initial states have been swapped and
transitions reversed, i.e.,

δrev = {(q′, σ, q) | (q, σ, q′) ∈ δ} . (2.7)

This construction is useful for transforming properties about the termination of strings to ones at
initialization, or vice versa.
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Given two automata G1 = (Q1,Σ1, δ1, Q0,1, Qm,1) and G2 = (Q2,Σ2, δ2, Q0,2, Qm,2), the paral-

lel composition is the automaton G1 || G2 =
(
Q1 ×Q2,Σ1 ∪ Σ2, δ || , Q0,1 ×Q0,2, Qm,1 ×Qm,2

)
,

where

δ || = {((q1, q2), σ, (q′1, q′2)) | ∀j ∈ {0, 1}.
(
σ ̸∈ Σj ∧ qj = q′j

)
∨(

σ ∈ Σj ∧ (qj, σ, q
′
j) ∈ δj

)
} .

(2.8)

This construction represents the parallel evolution of the systems’ behaviors. Defining the natural
projections Pj : (Σ1 ∪ Σ2)

∗ → Σ∗
j for j ∈ {1, 2}, the languages of the composition are given by

L(G1 || G2) = P−1
1 (L(G1)) ∩ P−1

2 (L(G2)) Lm(G1 || G2) = P−1
1 (Lm(G1)) ∩ P−1

2 (Lm(G2))

(2.9)
In the case where Σ1 = Σ2, we refer to this construction as the product automaton and write
G1 ×G2. In terms of their languages,

L(G1 ×G2) = L(G1) ∩ L(G2) Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2) (2.10)

Both parallel composition and the product can be extended commutatively a finite collection of
automata by induction.

Finite Transducers

More general than projection, observation of a system can be modeled as a relation between
the behaviors of the system and their observations. Given input events ΣI representing the system
and output events ΣO representing observations, a relation is a set R ⊆ Σ∗

I × Σ∗
O. We can view

such a relation as a nondeterministic mapping, i.e., given an input string sI ∈ Σ∗
I , the corresponding

set of outputs are R(sI) = {sO ∈ Σ∗
O | (sI , sO) ∈ R}. Similarly, we denote the set outputs

over an input language L ⊆ Σ∗
I by R(L). The composition of two relations R ⊆ Σ∗

I × Σ∗
O and

R′ =⊆ Σ∗
U × Σ∗

I as mappings is denoted byR ◦R′ = {(s, s′′) | (s, s′) ∈ R′ ∧ (s′, s′′) ∈ R′′}. We
will consider relations generated by the evolution of a dynamic system, in particular, modeled by
an automaton. A finite transducer is an automaton T = (QT ,Σ, δT , Q0,T , Qm,T ) over an alphabet
Σ = (ΣI ∪ {ϵ}) × (ΣO ∪ {ϵ}). By convention, we assume that all transducer states are marked
which corresponds to observations generated sequentially rather than in blocks. Strings s over
Σ can be decomposed into an input component sI ∈ ΣI and output component sO ∈ ΣO. In
this way, the transducer defines the relationR(T ) ⊆ Σ∗

I × Σ∗
O which relates all such inputs sI to

corresponding outputs sO. Relations which can be represented by a finite transducer, we call regular.
Such relations are also called rational in some sources [80]. Similar to the product construction for
automata, a transducer T can be composed with an automaton G over a compatible event set to
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0 1
σ

0 1
i|o

Figure 2.1: An example automaton G (left) and transducer T (right). Marked states are denoted by
double outlines. So the marked language of G is Lm(G) = {σ}. In the transducer, the notation i|o
represents an input i resulting in output o. So the marked relation of T isR(T ) = {(i, o)}.

construct an automaton T ⊗G such that Lm(T ⊗G) = R(L) where R = R(T ) and L = Lm(G).
Furthermore, the transducer T may be composed with another transducer T ′ with a compatible
output event set to construct a transducer T ⊗ T ′ withR(T ⊗ T ′) = R(T ) ◦ R(T ′). An example
of how transducers are depicted in this dissertation can be seen in Fig. 2.1. Transducers and their
constructions are used in Chapter 5 to represent edit functions.

2.2 Complexity Theory

In order to characterize the theoretical performance or complexity of algorithms solving the
problems proposed in this dissertation, we now briefly review computational complexity theory. For
more information, the reader may consult a standard reference such as [39].

Complexity Theory

A decision problem relates the inputs defining an instance of the problem to a corresponding
yes or no answer as output. We are interested in the asymptotic complexity of algorithms solving
the problem in terms of the resources they consume, e.g., time and space, in a given model of
computation, i.e., Turing machines. Formally, the complexity of an algorithm represented as a
function of the input size f : N → N is asymptotically bounded by the function g : N → N if
for large x it holds that f(x) ≤ Mg(x) for some fixed M ∈ N. In shorthand, this is written as
f(x) = O (g(x)). Complexity theory classifies decisions problems in terms of the complexity
required by any algorithm to solve the problem. For example, the classes P and PSPACE denote
problems that can be solved by a deterministic machine in polynomial time and space, respectively,
i.e., the complexity f(x) is O (p(x)) for some polynomial p. Likewise, NP denotes problems
solved by nondeterministic machines in polynomial time, i.e., problems for which there exist
certificates proving the correctness of yes answers in polynomial time. Similarly, co-NP denotes the
complement of NP, i.e., problems for which there exist certificates proving the correctness of no

answers in polynomial time. Higher in the complexity hierarchy, the class n-EXP denotes problems

which can be solved in O

(((22)···)2︸ ︷︷ ︸
n times

)p(x)

 time for some polynomial p. The class 1-EXPis often
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called exponential time and denoted by EXP. While it is known that NP, coNP ⊆ PSPACE ⊆ EXP,
it is unknown if these inclusions are strict. A problem in a complexity class C is said to be C-

complete if it is as hard as any other problem in C, i.e., there is a polynomial time algorithm reducing
any problem in C to it.

Boolean Satisfiability

The Boolean Satisfiability Problem (SAT), which asks if a given Boolean formula can be satisfied,
is the standard example of an NP-complete problem. Formally, Boolean formulas over a set of
variables V are specified by the following grammar

φ ::= v | ¬φ | φ ∨ φ , (2.11)

where v ∈ V denoting a Boolean variable, ¬ denoting not, and ∨ denoting or have their standard
interpretations. An assignment A ⊆ V , represented by the set of variables assigned to be true,
satisfying the formula φ is denoted by A |= φ. We see that such a satisfying assignment is a
certificate for SAT, proving its membership in NP. Conversely, the complement problem asking if a
formula is unsatisfiable is by definition coNP-complete.

A common approach to analyzing decision problems is to reduce them to SAT or one of its
extensions. For example, MaxSAT is an NP-complete optimization problem extending SAT with
a notion of hard and soft constraints. It requires maximizing the sum of weights assigned to
satisfied clauses of the formula. Another extension of SAT considers inputs given by formulas with
quantification over Boolean variables. Quantified Boolean Formulas (QBF) are specified by the
following grammar

ψ ::= ∃v.ψ | ∀v.ψ | φ , (2.12)

where φ is a Boolean formula over V . Note QBFs are equally expressive as unquantified Boolean
formulas. Indeed, existential and universal quantifiers over Boolean variables may be replaced by
disjunction and conjunction, respectively. However, representation as QBF may be exponentially
more compact. As a consequence of this reduction in input size, the problem of QBF satisfiability,
simply denoted as QBF, is the standard example of a PSPACE-complete problem. While all of these
problems (SAT, MaxSAT, and QBF) cannot be solved in polynomial time (unless P = NP), modern
solvers are able to solve many instances in practice by taking advantage of advanced heuristics.

2.3 Reactive Synthesis

Given an existing system, we may be interested in verifying if it meets some requirements.
This is the problem of verification or model checking [4]. When the system does not meet some
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requirements, we may consider designing additional components changing or controlling its behavior.
In this case we refer to the original system as the plant, and the additional component as a controller.
The problem of controller synthesis is to design a controller which in composition with the plant
satisfies the requirements. In DES, it is common to discuss controllers at the supervisory layer of a
system, i.e., a supervisor dictates which behaviors in the plant are enabled or disabled. Alternatively
in computer science, it is common to discuss the design of a system which reacts to its environment,
e.g., human input, satisfying some requirements, a problem known as reactive synthesis. Viewing
the plant as the environment and the controller as the system to design, the problems of supervisory
control and reactive synthesis are closely related [30]. As such, we may leverage many techniques
from reactive synthesis to enforce requirements on DES. This section presents the framework of
reactive synthesis and distributed synthesis along with a few key results.

Modeling Distributed Systems

We consider systems composed of interconnected reactive processes. These processes generate
outputs dynamically according to the inputs they have previously received. We model these inputs
and outputs by assignments to a subset of Boolean variables V , e.g., for variables V ′ ⊆ V the set of
possible inputs is 2V ′ . A behavior of a process with variables Vp ⊆ V evolving over time is described
by an infinite string or trace t ∈

(
2Vp
)ω. It is often convenient to discuss the restriction of a trace

t = t0t1 · · · to such a subset of variables V ′ ⊆ Vp which we define as t|V ′ = (t0∩V ′)(t1∩V ′) · · · ∈(
2V

′)ω. We can make similar definitions for the restriction of finite traces and a set of traces.
Similarly, it is convenient to discuss the lifting of a set of strings M ⊆

(
2Vp
)ω to a larger set

of variables V ′ ⊇ Vp which we define by M |V ′
= {t ∈

(
2V

′)ω | t|Vp ∈ L}. We can make a
similar definition for a set of finite traces. A deterministic implementation of a process is a strategy

s :
(
2I
)+ → 2O mapping a history of inputs i[0] · · · i[n] to a single output s(i[0] · · · i[n]). The set

of traces associated with a strategy is defined by

Tr(s) = {s ∈
(
2I∪O

)ω | ∀n ∈ N. s(s0 · · · sn|I) = sn|O} . (2.13)

Strategies can be represented with transducers that generate their set of traces or input-output
relation. We say a strategy is finite when there exists such a transducer that is finite.

We now present a framework for distributed systems adapted from [38]. There, the environment
is unconstrained, producing arbitrary sequences of outputs. As such, relations between the environ-
ment and the system must be encoded as a kind of assume-guarantee specification. As our focus is
feedback control of the environment, we present a framework with constrained environments and
make this encoding of constraints as specifications explicit.

The arrangement of processes and the interconnection of their inputs and outputs in a distributed
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system is called an architecture. The environment is a special process, with the rest classified
as either white-box with a fixed, known implementation or black-box otherwise. Formally, an
architecture over a set of variables V is a tuple A = (P,W, env, E,O,H) with processes P ,
white-box processes W ⊆ P , environment process env ∈ P \W , and interconnections E ⊆ P ×P
forming a directed graph with nodes P and edgesE. These edges are labeled by the set of observable

outputs O = {Oe ⊆ V | e ∈ E} communicated along the corresponding connection. Likewise the
nodes are labeled by a set of hidden outputs H = {Hp ⊆ V | p ∈ P} produced in the corresponding
process but not communicated to others. For each process, we require that the observable outputs
are disjoint from the hidden outputs. In addition, the set of both observable and hidden outputs
should be mutually disjoint for all processes. For convenience we denote the set of outputs, both
observable and hidden, for a process p ∈ P by Op =

⋃
p′∈P O(p,p′) ∪Hp. Similarly we denote the

set of inputs of a process p ∈ P by Ip =
⋃

p′∈P O(p′,p). The set of all variables for process p is
defined by Vp = Ip ∪ Op ∪Hp. When the context is clear, we may describe the interconnections
using only the inputs Ip and outputs Op of the processes p ∈ P .

In a given architecture A, white-box processes have a known implementation represented as
a set of strategies SW = {sp :

(
2Ip
)+ → 2Op | p ∈ W}, whereas non-environment black-box

processes will have an unknown implementation denoted by S = {sp :
(
2Ip
)+ → 2Op | p ∈ B}.

We say an implementation is finite if all of its strategies are finite. To model the non-determinism
of the environment, we describe its behavior in relation to the other processes as a set of traces
Menv ⊆

(
2Venv

)ω. The implementations and environment interact with each other according to the
architecture. The behavior of the overall or composed system is described by the set of traces
consistent with each process’s traces:

Tr(A, S, SW ,Menv) =
⋂
p∈P
p̸=env

Tr(sp)|V ∩Menv|V . (2.14)

In this dissertation, we consider distributed systems without delay, i.e., output from one process is
available to the next immediately. This is encoded in our definition of traces of a strategy in Equation
(2.13). In general, feedback in systems without delay can result in inconsistent implementations,
i.e., a process’s input may depend on its outputs in a way that cannot be resolved statically, like
in a ring oscillator. However, there is a simple transformation from this problem to the one
with delay as discussed in [38, 76]. Solutions to the transformed problem represent exactly the
consistent solutions to the problem with delay, i.e., those whose behavior can be expressed as a
single monolithic implementation.
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Distributed Synthesis

We consider the problem of implementing a distributed system to satisfy a given formal speci-
fication. We model these specifications by ω-regular languages φ ⊆

(
2V
)ω over the set of traces

Tr(A, S, SW ,Menv). The problem is then to find an implementation S of the black-box processes so
that the composed system traces satisfy the specification.

Problem 2.1. Given an architecture A = (P,W, env, E,O,H) over variables V with a white-box

implementation SW and environment traces given by the ω-regular language Menv ⊆
(
2Venv

)ω, find

an implementation S for A such that

Tr(A, S, SW ,Menv) ⊆ φ . (2.15)

In general, this problem is known to be undecidable [38, 76]; however, there are architectures
for which it is decidable. For example, the problem is decidable for pipeline architectures which
consist of a directed, linear arrangement of processes [76]. More generally it was shown in [38]
that the problem is decidable exactly for the architectures without so-called information forks.
Essentially, an information fork occurs when two processes possess incomparable information about
the environment’s output history, i.e., both processes have knowledge that the other does not. In the
absence of such forks, the processes may be ordered by the level of information they possess. An
algorithm for distributed synthesis utilizing this fact is presented in Section 4 of [38], which we
summarize with the following result.

Theorem 2.1 (Adapted from Theorem 4.12 [38]). LetA = (P,W, env, E,O,H) be an architec-

ture over V without information forks such that Ienv = ∅ and Menv =
(
2Venv

)ω. Let SW be a finite

white-box implementation and φ ⊆
(
2V
)ω be an ω-regular language. Then the distributed synthesis

problem for A, SW , Menv, φ is decidable.

Furthermore, if a solution implementation S exists, then the synthesis algorithm is guaranteed to
find a finite solution. The complexity of the algorithm is related to the number of information levels
of the black-box processes. If there are n information levels, the algorithm is n-exponential in the
size of the automata representing the specification and implementation of the white-box properties.
For example, in a pipeline architecture with 2 black-box processes and a specification represented
with an automaton of size m, the complexity would be O(22m). Distributed reactive synthesis is
used in Chapter 6 and Chapter 7 to design edit functions and controls which enforce privacy and
utility.
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Specification Logics

Temporal logics provide a convenient way to represent formal specifications. Linear temporal
logic (LTL) describes sets of traces over a given set of Boolean variables V (also called propositions).
LTL is defined with the following syntax which extends propositional logic temporal operators:

φ ::= v | ¬φ | φ ∨ φ | Xφ | φ U φ , (2.16)

where v ∈ V . Here, X and U denote the “next” and “until” operators. From these operators, we
can define the always operator G, the eventually operator F, and the weak until operator W. For a
precise definition of the semantics of LTL, the reader may consult [4]. There it is also shown that
LTL formulas express exactly the ω-regular languages (after a small transformation). In Chapter 6
and Chapter 7 where we utilize tools from distributed reactive synthesis, it is convenient to specify
utility properties with LTL, such as the system avoids unsafe states or eventually returns to desirable
ones. In this setting, we may also use LTL to specify the secret behavior to be hidden in our
definition of privacy. For example, if the utility requirement of the system is known, the secret
behavior of the system might be specified as traces satisfying the utility requirement which visit
some secret state.

While LTL is useful for specifying trace properties, requirements like information flow cannot
be expressed directly as trace properties. These requirements concern relations between traces of
a system, which are described by hyperproperties [24]. Hyperproperties are satisfied by systems,
i.e., sets of traces and can be specified with temporal logics like HyperLTL [23]. HyperLTL is an
extension of LTL with explicit trace quantifiers given by the following syntax:

ψ ::= ∃t.ψ | ∀t.ψ | φ , (2.17)

where φ is an LTL formula over the variables v[t] where v ∈ V and t is a trace variable. The reader
may consult [23] for the precise definition of HyperLTL semantics. The information flow of a
distributed reactive system can be specified with HyperLTL [35]. We apply this result in Chapter 6
and Chapter 7 to solve the distributed reactive synthesis problem as a HyperLTL synthesis problem.
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CHAPTER 3

Specification and Verification of General Notions of Opacity

3.1 Introduction

As stated in the introduction, the transmission of information across networks possesses an
inherent risk of revealing private information to an outside observer called the intruder, potentially
with malicious intent. Formal modeling of information flow properties has been proposed as a way
to understand and manage these risks in networked dynamic systems. We consider privacy modeled
by the property of opacity which captures the notion of “plausible deniability”: opacity holds if an
intruder cannot deduce sensitive information from their observations of a system’s behavior. We will
discuss the many notions of opacity developed for discrete event systems, including language-based
opacity [57], current-state opacity [83], initial-state opacity [84], and the related notions of K-step
and infinite step opacity [85, 86]. In addition to the type of private information, the capabilities of
the intruder are also integral to notions of opacity. Although a variety of notions of opacity have
been proposed, they may not directly capture the desired notion of privacy or security in a given
networked system. One approach to analyzing specific notions of opacity is to transform them
into existing notions where existing methods can be applied. While some transformations between
the various forms of opacity over automata have been studied (for example between current-state,
initial-state, language-based [101]), it is unclear if other notions like K-step opacity are comparable
or how to handle new notions. The first contribution of this chapter is to develop a systematic
approach for specifying and analyzing various notions of opacity. This is accomplished with a
general definition of opacity extending the notion developed for transition systems [12]. We use
this framework to model language-based opacity over automata and present several methods for
verification thereof. Then we develop a general transformation between state-based and language-
based notions of opacity. Using this, state-based notions of opacity can be described by constructing
automata to specify secret behavior and verified using language-based methods. This approach
is first demonstrated on the simple notions of current-state and initial-state opacity. The resulting
verification methods resemble the existing standard approaches for verification of these forms of
opacity.
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The second contribution of this chapter is to apply the proposed framework and verification
methods to the less well-understood notions of K-step and infinite step opacity. Whereas current-
state opacity only considers an intruder’s current state estimate, K-step and infinite step opacity
may involve the intruder smoothing their estimates, i.e., improving estimates of the past with current
information. While it may appear that these notions are incomparable [109], we provide a unified
view of two prominent existing notions of K-step opacity along with two new ones that emerge
using our framework. These notions are then transformed into language-based and hence current-
state opacity. Furthermore, the resulting language-based verification methods offers considerable
advantages over existing methods. We demonstrate this both formally and with numerical examples.

3.2 Problem Formulation

In this section we formalize the notion of opacity as a kind of plausible deniability in a system. We
take a behavioral approach [94], describing systems in terms of abstract behaviors and observations
. Formally, we denote the set of possible behaviors of the system as B. For example, B may be
the set of solutions to a differential equation modeling a continuous-time system or the language
of an automaton modeling a discrete event system. Let O be the space of observations made of
these behaviors. Then relation between behaviors and their corresponding observations is denoted
by Θ ⊆ B × O. We identify the system with the tuple of behaviors and observation relation
∆ = (B,Θ).

While many definitions of opacity assume that the observer knows the system exactly, more
generally, we consider that the observer possesses an arbitrary model of the system called the
nominal system. This nominal system also consists of behaviors B̂ with observations made in the
same space O according to the relation Θ̂ ⊆ B̂ × O. We denote it as ∆̂ = (B̂, Θ̂). If the observer
is uncertain about the system, their model may be an overapproximation of the actual system, i.e.,
B ⊆ B̂ and Θ ⊆ Θ̂. Alternatively, the observer may possess incorrect beliefs about the system, for
example if an enforcement mechanism is implemented without their knowledge. To emphasize the
the difference with nominal system ∆̂, we refer to ∆ as the real system.

We define opacity as the plausible deniability of certain behaviors to the observer. Rather than
discuss the set of behaviors that must be denied, i.e., secret behavior, we use the complement of this
set which contains behavior providing deniability, i.e., nonsecret behavior. As the observer reasons
about observations with respect to the nominal system, we consider a specification of nonsecret
behaviors φNS over the space of nominal behaviors B̂. In words, a system is opaque if after every
real behavior, the observer believes a behavior in φNS could have occurred. Formally,

Definition 3.1. We say that the system ∆ = (B,Θ) is opaque for the nominal system ∆̂ = (B̂, Θ̂)
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and nonsecret behavior φNS if

Θ(B) ⊆ Θ̂(B̂ ∩ φNS) . (3.1)

This definition corresponds to the notion of opacity presented in [12] where the behavior is given
by runs of a transition system and the nominal system is equal to the real system. Here we say the
system is opaque with respect to the secret information in the sense that the eavesdropper cannot
see through the system in order to infer the secret. The observations not in Θ̂(B̂ ∩ φNS) and the
behaviors that originate them are called violating for specification φNS. Specific notions of opacity
correspond to different specifications of nonsecret behavior and nominal models possessed by the
observer.

Joint & Separate Opacity

More complex notions of privacy can involve multiple, possibly overlapping specifications of
nonsecret behaviors. Given a set of specifications {φNS,i}i∈I indexed by the set I , we consider two
forms of opacity over these specifications.

Definition 3.2. We say that ∆ is jointly opaque for ∆̂ and {φNS,i}i∈I if ∆ is opaque for nominal ∆̂

and nonsecret

φNS =

(⋂
i∈I

φNS,i

)
. (3.2)

Joint opacity considers all secrets uniformly. It requires that an observation can be explained by a

single behavior that is in every nonsecret specification.

Definition 3.3. We say that ∆ is separately opaque for ∆̂ and {φNS,i}i∈I if for all i ∈ I , ∆ is opaque

for nominal ∆̂ and nonsecret φNS,i. Separate opacity considers all specifications individually. It

requires for each specification that an observation can be explained by behavior that is nonsecret in

that specification, but possibly secret in another specification.

Remark 3.1. From these definitions, we can immediately deduce the following statements.

1. When |I| = 1, joint and separate opacity reduce to opacity as in Definition 3.1.

2. Joint opacity implies separate opacity.

3. For I ′ ⊆ I , joint (separate) opacity of {φNS,i}i∈I implies joint (separate) opacity of {φNS,i}i∈I′ ,
respectively.
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3.3 Opacity in DES and Verification Approaches

We now present how various notions of opacity developed for DES over automata can be
expressed and verified in the framework. Language-based opacity (LBO) refers to the setting
where behaviors of the system and nonsecret classes are described as languages represented by
automata. More generally when these behaviors are also described in terms of the automata’s states,
we refer to this as state-based opacity (SBO). For example, many state-based notions involve visits
to states designated as secret. It is known that some state-based notions of opacity like current-state
opacity (CSO) and initial-state opacity (ISO) can be efficiently transformed into language-based
opacity [101]. In this section, we begin by presenting several verification methods for LBO and then
describe how SBO in general can be transformed into LBO, in particular reproducing the results for
CSO and ISO.

Verification of Language-Based Opacity

We now consider the setting where the behavior B of the system is described by a regular
language L ⊆ Σ∗ marked by an automaton G, i.e., B = L = Lm(G). Without loss of generality,
we assume that observations are given by a subset of observable events Σobs ⊆ Σ. We additionally
assume the observation relation is given by a regular relation Θ ⊆ Σ∗ × Σ∗

obs generated by a
transducer T . Likewise, we assume the nominal system consists of a regular language L̂ = Lm(Ĝ)

and a regular relation Θ̂ = R(T̂ ). Finally, the nonsecret class of behaviors is also described by a
regular language φNS ⊆ Σ∗ marked by an automaton HNS. We gather these descriptions into the
following definition.

Definition 3.4. Given L, Θ, L̂, Θ̂, and φNS are all regular languages and relations, we refer to the

opacity of ∆ = (L,Θ) to ∆̂ = (L̂, Θ̂) and φNS as language-based opacity.

While the observations relations in general may be dynamic, e.g., dynamic masks [110], for
simplicity we will only consider relations that are static or memoryless in this chapter. The
proposed verification approaches are easily extended to dynamic observation relations described by
transducers.

Definition 3.5. A static mask over Σ is a relation Θ ⊆ Σ∗ × Σ∗
obs that satisfies

1. Θ(ϵ) = {ϵ},

2. ∀s ∈ Σ∗. ∀σ ∈ Σ. Θ(sσ) = Θ(s)Θ(σ) with Θ(σ) ∈ Σ ∪ {ϵ}.

Any relation Θ ⊆ Σ× (Σobs ∪ {ϵ}) can be uniquely extended inductively into a static mask.
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We note that the natural projection P : Σ∗ → Σobs defines a static mask via its graph Θ =

{(s,P(s)) | s ∈ Σ∗}. If we assume that the observer knows the system dynamics, i.e., the nominal
model is equal to the system model, and that observation is given by the natural projection, then
Definition 3.4 corresponds to the notions of strong opacity in [57] and language-based opacity
in [101].

As we assume that everything is a regular language, LBO is equivalent to a regular language
containment, comparing observed behavior in the system to the nominal model. To show this
formally we observe that given the language L is marked by the automaton G, we can construct an
automaton Θ(G) which marks the observations Θ(L). This is done similar to the construction for
the projected automaton, replacing each transition labeled by an event σ in G by potentially multiple
transitions labeled events in Θ(σ), contracting ϵ-transitions as needed. Likewise, we construct Θ(Ĝ)

to mark observations of the nominal system. Then we have that LBO is equivalent to

Θ(L) ⊆ Θ̂(L̂ ∩ φNS) ⇔ Θ(Lm(G)) ⊆ Θ̂(Lm(Ĝ×HNS)) ⇔ Lm(Θ(G)) ⊆ Lm(Θ̂(Ĝ×HNS)) .

(3.3)
By expressing LBO as the well-understood problem of regular language containment, we can
leverage existing techniques to verify LBO. It is well-known that verifying opacity, or equivalently
checking the containment of languages represented by NFA, is PSPACE-complete [16, 89]. While
this means any verification algorithm requires exponential time in general, unless P = NP, the
specific numerical bound for different algorithms may vary significantly. In practice, we can greatly
improve runtime performance by develop algorithms taking advantage of the structure present in a
particular notion of opacity. Here, we present and later evaluate three such approaches for verifying
opacity, specifically checking the language containment in Equation (3.3). As input, these methods
take automata G = (Q,Σ, δ, Q0, Qm) and Ĝ =

(
Q̂,Σ, δ̂, Q̂0, Q̂m

)
, static masks Θ and Θ̂, and an

automaton HNS = (QNS,Σ, δNS, QNS,0, QNS,m).

Approach 3.1 (Forward Comparison). A standard approach for verifying language containment

utilizes the following equivalence:

L1 ⊆ L2 ⇔ L1 ∩ comp(L2) = ∅ . (3.4)

We construct the forward comparison automaton GF = Θ(G)× comp(det(Θ̂(Ĝ×HNS))) such that

Lm(GF ) = Θ(L) ∩ comp(Θ̂(L̂ ∩ φNS)) . (3.5)

Note we employ the powerset construction as Θ̂(Ĝ×HNS) is an NFA in general, and the complement

construction requires a DFA. Hence, LBO holds if Lm(GF ) is empty, i.e., GF contains no reachable,

marked states.
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Figure 3.1: An automaton Gn with n+ 1 states for which the powerset construction det(Gn) has
2n + 1 states while the powerset construction for the reverse det(rev(Gn)) has only n+ 1 states.

Approach 3.2 (Reverse Comparison). Instead checking the containment directly, we can equiva-

lently check the containment of the reversed languages. Similar to the forward comparison method,

we construct the reverse comparison automaton GR = rev(Θ(G))× comp(det(rev(Θ̂(Ĝ×HNS))))

such that

rev(Lm(GR)) = rev(Θ(L)) ∩ comp(rev(Θ̂(L̂ ∩ φNS))) . (3.6)

We then verify opacity by ensuring GR contains no reachable, marked state. For some forms of LBO,

reverse comparison significantly outperforms forward comparison. This is consistent with the fact

that the powerset construction for some automata is exponentially larger the powerset construction

for their reverse. For example, consider the automaton depicted in Fig. 3.1.

We can simplify verification by making additional assumptions. First, we will assume that the
actual and nominal models are the same, i.e. G = Ĝ and Θ = Θ̂. Second, we assume that HNS

is complete, i.e., at every state there is a transition for each event so L(HNS) = Σ∗. This may be
done without loss of generality by adding at most one sink state to HNS. In this case, the automaton
G × HNS encodes both the system behavior and nominal behavior in the nonsecret class with a
different set of marked states

LQm×QNS(G×HNS) = L, LQm×QNS,m(G×HNS) = L ∩ φNS . (3.7)

We can use this fact to show the following result

Theorem 3.1. Given an automaton G, a static mask Θ, and a complete automaton HNS, construct

the secret observer automaton GSO = det(Θ(G × HNS)) with marked states given by Qm,SO =

Q1 \Q2 where

Q1 = {q ∈ 2Q×QHNS | q∩ (Qm×QHNS) ̸= ∅}, Q2 = {q ∈ 2Q×QHNS | q∩ (Qm×Qm,HNS) ̸= ∅} .
(3.8)

Then LBO holds, i.e., Θ(Lm(G)) ⊆ Θ(Lm(G×HNS)), if and only if GSO contains no reachable,

marked states.
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Proof. Note by the definition of the powerset construction, Q1 are the marked states of det(Θ(G×
HNS)) if we consider Qm ×QHNS marked in G×HNS. Likewise, Q2 would be the marked states if
we consider Qm ×Qm,HNS marked G×HNS. Hence by Equation (3.7), we have

LQ1(GSO) = Lm(G), LQ2(GSO) = Lm(G×HNS) . (3.9)

Finally as GSO is deterministic, Lm(GSO) = LQ1(GSO) \ LQ2(GSO) which proves the claim.

Here states in Q1 correspond to observations of behavior that can occur in the system while states
in Q2 correspond to observations consistent with nonsecret behavior. This result motivates the
following approach.

Approach 3.3 (Secret Observer). We construct the secret observerGSO = det(Θ(G×HNS)) with

marked states as in Theorem 3.1. Then LBO holds if GSO contains no reachable marked states.

In each of these approaches, we verify opacity by constructing a verification automaton (GF , GR,
or GSO) and checking that there are no reachable, marked states. As these output automata are the
largest constructed during these approaches, we quantify their complexity in terms of the number
of states in the automata. Note, these verification approaches can be applied by incrementally
constructing the verification automata and possibly terminating early when a violating state is found.

As in our proposed secret observer approach, most existing works in the literature also assume
that the eavesdropper knows the exact model of the system, i.e., G = Ĝ and Θ = Θ̂. In order to
facilitate comparison, we will maintain this assumption in the remainder of this chapter. In this case
we simply say that the system ∆ is opaque for φNS.

State-based Opacity

We now discuss state-based notions of opacity in the framework of Section 3.2. Whereas LBO is
defined solely in terms of the events of a language represented by an automaton, SBO is defined in
terms of both events and states. As many notions of SBO implicitly consider only prefix-closed
behavior, we consider a system modeled by an automaton A = (X,E, f,X0, Xm) with Xm = X .
In this chapter, we use the convention that automata denoted by A represent state-based behavior,
while automata denoted by G and HNS represent languages. To express state-based opacity in the
framework of Section 3.2, we must first define the relevant behavior of the automaton.

One obvious choice for the behavior is the set of runs over strings of the automaton, for example
interleaved as q0s0q1 · · · sn−1qn ∈ (QΣ)∗Q. Alternatively, as we are mostly interested in capturing
existing notions of SBO which depend on whether a state is secret or not, we can obtain a more
compact representation by only modeling events and state labels. In this case we can view A as
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Figure 3.2: On the left, an automaton A is depicted with labels ℓ defined by labeling square states
with variable S. On the right, the state-transform automaton G = T (A, ℓ) is depicted.

a labeled transition system. Formally, consider a map ℓ : X → A assigning labels to the states
of A. Then runs of the system can be written as sequences of event and label pairs; (these can be
thought of as input/output pairs). In order to balance the number of events and labels, we introduce
an event e0 representing the system turning on. For example consider the automaton A depicted
in Fig. 3.2. The run starting at state 0, transitioning with event σu to state 1 with label S, then
transitioning with event σo to state 2, would be represented as s = (e0,NS)(σu,S)(σo,NS). In this
way, the state-based behavior of A can be written as a language over Σ = (E ∪ {e0})× A. We can
represent this language with an automaton as follows.

Definition 3.6. Given automaton A = (X,E, f,X0, Xm) with labels ℓ : X → A, the label-
transform of A is an automaton T (A, ℓ) = (Q,Σ, δ, Q0, Qm), where Q = X ∪ {qinit}, Σ =

(E ∪ {e0})× A, Q0 = {qinit}, Qm = Xm, and transitions defined by

δ = {(x, (e0, a), x′) | a = ℓ(x′) ∧ (x = qinit ∪ x′ ∈ X0 ∨

(x, e, x′) ∈ f)} .
(3.10)

An example of this transformation is depicted in Fig. 3.2. This transformation adds only a single
state and permits the following definition.

Definition 3.7. The IO sequences of A under ℓ are defined as LIO(A, ℓ) = Lm(T (A, ℓ)).

We will show that notions of SBO over A can be expressed as LBO over T (A, ℓ).
With the state-based behavior of the automaton defined, we can now express notions of SBO like

CSO and ISO. Although it is already known that CSO and ISO can be transformed into LBO [101],
we include this discussion as a demonstration of our opacity framework to provide insight to how
more complex notions of SBO can be expressed.

Recall that CSO and ISO concern visits to a set of secret states XS. This set is encoded with the
labeling ℓ : X → A with labels A = {S,NS}, defined for a state x ∈ X by ℓ(q) = S ⇔ x ∈ XS.
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Figure 3.3: The proposed method for verifying state-based opacity by transforming to language-
based opacity.

While in general these state labels could be observed, definitions of opacity in DES typically assume
observations in the form of the natural projection of observable events Eobs ⊆ E. We define a
corresponding static mask Θ over Σ with the convention that e0 is observable, i.e., the observer
can see the system turn on. Formally, the event σ = (e, ν) ∈ Σ is observed as Θ(σ) = e if
e ∈ Eobs ∪ {e0} and Θ(σ) = ϵ otherwise. Likewise, in DES it is typically assumed that the observer
knows the system model so Ĝ = G and Θ̂ = Θ. Under these assumptions, all that remains to
express notions like CSO and ISO is constructing an automaton HNS capturing the appropriate
notion of secrets. To do this, we note that a visit to a secret state x ∈ XS in A corresponds to the
occurrence of a event σ = (e, ℓ(x)) = (e,S) in G. This will allow us to define HNS in terms of the
secret events ΣS = (E ∪ {e0})× {S} and nonsecret events ΣNS = (E ∪ {e0})× {NS}.

Current state opacity describes the inability of an intruder to deduce that the current state of the
system is secret. It can be defined as follows.

Definition 3.8 (Current-State Opacity [32]). An automaton A = (X,E, f,X0, Xm) is said to be

current-state opaque with respect to the secret states XS ⊆ X and observable events Eobs ⊆ E if

∀x0 ∈ X0. ∀s ∈ L(A). s.t. ∃xS ∈ f(x0, s) ∩XS,

∃x′0 ∈ X0. ∃s′ ∈ L(A). P(E∪{e0})(s) = P(E∪{e0})(s
′) ∧ ∃xNS ∈ f(x′0, s′) ∩X \XS .

(3.11)
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In words, runs of A ending with a visit to a secret state should look like a run ending with a
visit to a nonsecret state. In terms of input-output sequences, this definition divides the behavior
L = LIO(A, ℓ) into secret and nonsecret behavior LS, LNS ⊆ L defined by

φNS = Σ∗ΣNS, LNS = L ∩ φNS, LS = L \ LNS . (3.12)

We can use the nonsecret specification automaton HNS depicted in Fig. 3.4 with Lm(HNS) = LNS.
Then using the observation map Θ induced by the observable events Eobs, we can see that A is

current-state opaque if and only if ∆ = (L,Θ) is opaque with respect to φNS.
Hence, we can use the language-based methods for verification.

0 1

ΣNS

ΣS ΣNS

ΣS

0 1

2

ΣNS

ΣS

Σ

Σ

Figure 3.4: The nonsecret specification automata HNS for CSO (left) and ISO (right).

To do this we first construct G = T (A, ℓ). As L(HNS) = Σ∗, using Theorem 3.1 we can verify
CSO of A by checking if every non-initial state of the secret observer GSO = det(Θ(G ×HNS))

is marked where G = T (A, ℓ). As an example of this method, we verify the current-state opacity
of A from Fig. 3.2 using its transformation G = T (A, ℓ). Assuming Eobs = {eobs}, we construct
G×HNS and GSO = det(Θ(G×HNS)) which are depicted in Fig. 3.5. As every non-initial state
of GSO is marked, we deduce A is CSO.

Remark 3.2. The construction G = T (A, ℓ) essentially moves the state label information from the

states of A to the events of G. In the product G×HNS, these labels are then moved from the events

back to the states in the form of state markings. As a result G ×HNS is the same as the original

automaton A where nonsecret states are marked and there are new initial states resulting from x0

in G. In this way the secret observer method is comparable to the standard method for verifying

current-state opacity [83] which checks if each state of the observer of A contains a nonsecret state.

While our approach may seem convoluted for verifying CSO, the purpose of our discussion and of

the above example are to demonstrate how our approach can be used to verify state-based notions

of opacity in general.
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Figure 3.5: The product G×HNS (left) for G = T (A, ℓ) where A is from Fig. 3.2 and the nonsecret
specification automaton HNS for CSO from Figure 3.4 and the corresponding secret observer GSO

(right).

3.3.1 Initial-state opacity(ISO)

Next, we discuss the notion of initial-state opacity. Initial-state opacity describes the inability of
an intruder to deduce that the initial-state of a run was secret. It can be defined as follows.

Definition 3.9 (Initial-State Opacity [101]). The automaton A = (X,E, f,X0, Xm) is said to be

initial-state opaque with respect to secret states XS ⊆ X0 and observable events Eobs ⊆ E if

∀x0 ∈ XS. ∀s ∈ L(A) s.t. ∃x ∈ f(x0, s),

∃x′0 ∈ XNS, ∃s′ ∈ L(A), PEobs(s) = PEobs(s
′) ∧ ∃x′ ∈ f(x′0, s′) .

(3.13)

Similar to the discussion of current-state opacity, we see that the initial-state opacity of A is
equivalent to the opacity of the system of L and the observation relation Θ induced by Eobs with
respect to

φNS = ΣNSΣ
∗, LNS = L ∩ LNS, LS = L \ LNS . (3.14)

We can construct HNS as in Fig. 3.4 so that Lm(HNS) = LNS and L(HNS) = Σ∗. Applying the
secret observer method in this case is similar to transforming initial-state opacity to current-state
opacity as in [101] and using the standard approach to verify current-state opacity. Furthermore, we
can take advantage of the specific structure of HNS to obtain more efficient verification methods.
Namely, applying the reverse comparison method is similar to verifying ISO using the reversed
initial-state estimator of [101] which is significantly more efficient than the initial method proposed
in [84].
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3.4 Opacity Specification

While current-state opacity captures the notion of hiding current secrets, K-step and infinite step
opacity capture the notion of hiding past secrets. In this section, we define language-based notions
of K-step and infinite step opacity over automata. We then show how these relate to the existing
notions.

3.4.1 Language-based K-step opacity

Consider a system as in Section 3.3 consisting of a language L = Lm(G) and static mask
observation relation Θ ⊆ Σ∗ × Σ∗

obs. Motivated by our transformation of current-state opacity to
language-based opacity, we consider a partition of the events Σ into secret events ΣS and nonsecret
events ΣNS. We propose a notion of language-based K-step opacity which concerns occurrences of
these secret events during the last K observations made by the intruder. We use the term observation

epoch to refer to the system’s behavior between observations. More specifically, the epoch starts
when an observation is made and ends right before another observation is made or at the end of the
run. We consider two types of secret behavior that can be exhibited in an observation epoch. In the
first type, which we call type 1, at least one secret event occurs. In the second type, which we call
type 2, only secret events occur.

We formally describe the observation epochs in terms of the set of events which do not produce
an observation through Θ which is given by Σsil = Θ−1(ϵ) ∩ Σ. We call these events silent in
reference to the silent transitions described by [43]. The remaining events Σ \ Σsil are called
nonsilent. With this we make the following definition.

Definition 3.10. The set of observation epochs is defined to be φep = (Σ \ Σsil)Σ
∗
sil. The sets of

observation epochs exhibiting type 1 or type 2 secrets, respectively, are defined by

φep,S,1 = φep ∩ (Σ∗ \ Σ∗[NS]), φep,S,2 = φep ∩ Σ∗
S . (3.15)

Likewise the sets of type 1 and type 2 nonsecret epochs are defined by

φNS,ep,1 = φep \ φep,S,1 = φep ∩ Σ∗
NS,

φNS,ep,2 = φep \ φep,S,2 = φep ∩ (Σ∗ \ Σ∗
S) .

(3.16)

For simplicity, we will assume that every behavior starts with a nonsilent event, so that we may
write L ⊆ (Σ\Σsil)Σ

∗ = φ+
ep. This means any run s ∈ L can uniquely be written as a concatenation

of observation epochs, i.e., ∃M > 0, r = sep,0 · · · sep,M−1 with sep,i ∈ φep for all i < M . We refer
to the epoch sep,M−k−1 as the epoch kth from the end or as k epochs ago. For K-step opacity, we

32



define different classes of secret and nonsecret behavior for each epoch in the past, up to K epochs
ago. For k ≤ K and type j ∈ {1, 2} secrets, we define

φS,j(k) = φ∗
epφep,S,jφ

k
ep ,

φNS,j(k) = φ+
ep \ φS,j(k) = (φ∗

epφNS,ep,jφ
k
ep) ∪

k⋃
i=1

φi
ep .

(3.17)

We refer to φS,j(k) and φNS,j(k) as the k-delayed secret and nonsecret behavior specifications,
respectively. Note that a run consisting of fewer than k + 1 observation epochs is by definition not
an element of φS,j(k), as a secret could not have occurred k + 1 epochs ago. The k-delayed secret
and nonsecret behavior of L with type j ∈ {1, 2} secrets are then defined

LS,j(k) = L ∩ φS,j(k), LNS,j(k) = L \ φS,j(k) = L ∩ φNS,j(k) . (3.18)

By considering these secrets jointly, we can model an intruder deducing if a secret occurred within
K epochs ago (or when a secret ever occurred in the case where K =∞).

Definition 3.11. For K ∈ N∪{∞}, we say the system ∆ = (L,Θ) with nonsecret events ΣNS ⊆ Σ

is jointly K-step opaque with type j secrets if it is jointly opaque with respect to {φNS,j(k)}Kk=0 as

defined in (3.17).

By considering these secrets separately, we can model an intruder deducing when a secret occurred
within K epochs ago (or when a secret ever occurred in the case that K =∞).

Definition 3.12. For K ∈ N ∪ {∞}, we say the system ∆ = (L,Θ) with nonsecret events

ΣNS ⊆ Σ is separately K-step opaque with type j secrets if it is separately opaque with respect to

{φNS,j(k)}Kk=0 as defined in (3.17).

For K =∞ we refer to these definitions as infinite step opacity. While separate K-step opacity
involves φNS,j(k) and hence φNS,j(k) for k ≤ K, joint opacity only involves their intersections. For
convenience we define for K ∈ N

φJ
NS,j(K) =

K⋂
k=0

φNS,j(k) = φ∗
epφ

K+1
NS,ep,j ∪

K⋃
k=1

φk
NS,ep,j , (3.19)

so that
⋂K

k=0 LNS,j(k) = L ∩ φJ
NS,j(K). In the joint sense, a run is secret if it consists entirely of

nonsecret epochs or its last nonsecret epoch was at least K + 1 epochs ago.
By comparing the nonsecret specification languages, we can relate the different notions ofK-step

opacity for K ∈ N ∪ {∞}. Because φNS,ep,1 ⊆ φNS,ep,2, it holds that φNS,1(K) ⊆ φNS,2(K) and
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thus φNS,1(K) ⊆ φNS,2(K). Hence joint and separate K-step opacity with type 1 secrets imply joint
and separate K-step opacity with type 2 secrets, respectively. Additionally, we see that joint K-step
opacity with type j ∈ {1, 2} secrets implies separate K-step opacity with type j secrets. These
implications are depicted in Fig. 3.6. This figure also depicts the relation to the existing notions of
K-step opacity derived in the next section. Furthermore for K ≤ K ′, joint and separate K ′-step
opacity with type j ∈ {1, 2} secrets implies joint and separate K-step opacity with type j secrets.

Joint, Type 1
Strong [31]

Trajectory-based [83]

Separate, Type 1
New

Joint, Type 2
New

Separate, Type 2
Weak [31]

Non-trajectory based [83]

Figure 3.6: Types of K-step opacity. Arrows indicate logical implication. For example, joint type 1
K-step opacity implies separate type 1 K-step opacity.

3.4.2 Relation to existing notions of K-step opacity

Now we show how these definitions relate to the existing state-based notions of K-step opacity
(for finite K). These notions were originally defined over deterministic finite automata, so for
consistency we derive these relations in this setting. Consider a deterministic automaton A =

(X,E, f, {x0}) and interpret f as a partial function f : X ×E → X . Consider a set of secret states
XS ⊆ X and nonsecret states XNS = X \XS as well as a set of observable events Eobs ⊆ E.

The first form ofK-step opacity was developed in [83], and was later referred to as non-trajectory-
based K-step opacity in [85] and weak K-step opacity in [32].

Definition 3.13 (K-step Weak Opacity [32]). The automaton A is weakly K-step opaque with

respect to XS and Eobs if

(∀uv ∈ L(A) s.t. |PEobs(v)| ≤ K ∧ f(x0, u) ∈ XS)

(∃u′v′ ∈ L(A))

(PEobs(uv) = PEobs(u
′v′) ∧ PEobs(u) = PEobs(u

′) ∧ f(x0, u
′) ∈ XNS) .

The second version we consider is referred to as trajectory-based K-step opacity in [85] and strong
K-step opacity in [32].
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Definition 3.14 (K-step Strong Opacity [32]). The automaton A is strongly K-step opaque with

respect to XS and Eobs if

(∀t ∈ L(A))

(∃t′ ∈ L(A), ∀u′, v′ s.t. t′ = u′v′)

(PEobs(t) = PEobs(t
′) ∧ (|PEobs(v

′)| ≤ K L→ f(x0, u
′) ∈ XNS)

Weak K-step opacity describes the inability of the intruder to deduce an exact time of a visit
to a secret state within the last K observations. Strong K-step opacity describes the inability of
the intruder to deduce there was a visit to a secret state within the last K observations. With this
intuition we can relate weak to separate and strong to joint opacity.

Theorem 3.2. Consider a deterministic automaton A with labeling map ℓ defined by the secret

states XS and observable events Eobs. Let ∆ denote the system with behavior L marked by

G = T (A, ℓ) and observation relation Θ induced by Eobs. Let ΣNS = {(e,NS) | e ∈ (E ∪ {e0})}.
Then

1. Weak K-step opacity of A is equivalent to separate K-step opacity with type 2 secrets of ∆

with nonsecret events ΣNS.

2. Strong K-step opacity of A is equivalent to joint K-step opacity with type 1 secrets of ∆ with

nonsecret events ΣNS.

Proof. Because the automaton A is deterministic, there is a unique sequence of states associated
with each string in L(A). This defines a bijection h : L→ L(A) such that

∀s ∈ L. PI(s) = e0 · h(s), Θ(s) = e0 · PEobs(h(s)) . (3.20)

Then note that we can write for k ≤ K

h(LNS,1(k)) = {t ∈ L(A) | ∀i ≤ |t|, |PEobs(ti · · · t|t|−1)| = k L→

f(x0, t0 · · · ti−1) ∈ XNS} (3.21)

h(LNS,2(k)) = {t ∈ L(A) | |PEobs(t)| < k ∨ ∃i ≤ |t| |PEobs(ti · · · t|t|−1)| = k ∧

f(x0, t0 · · · ti−1) ∈ XNS} . (3.22)

Suppose A is weakly K-step opaque and let k ≤ K. Consider a run of A given by s ∈ L. If
|Θ(s)| < k then by definition s ∈ LNS,2(k). Otherwise consider t = h(s) so |PEobs(t)| ≥ k. Let
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Figure 3.7: Automata demonstrating the differences in the various notions of K-step opacity. Here
square states denote secret states. The observable event set is Eobs = {eobs}.

i ≤ |t| be such that |PEobs(ti · · · t|t|−1)| = k and define u = t0 · · · ti−1 and v = ti · · · t|t|−1. By
weak opacity of A, there must exist t′ = u′v′ such that PEobs(t) = PEobs(t

′), |PEobs(v
′)| = k, and

f(x0, u
′) ∈ XNS. Thus for s′ = h−1(t′) it holds that s′ ∈ LNS,2(k) and Θ(s) = Θ(s′). Hence ∆ is

separately K-step opaque with type 2 secrets. The proof of the converse is similar.
Now we consider strong K-step opacity. Suppose that A is strongly K-step opaque. Consider a

run of A given by s ∈ L and define t = h(s). By strong K-step opacity of A, there exists t′ ∈ L(A)
with PEobs(t) = PEobs(t

′) where for every i′ ≤ |t′| such that |PEobs(t
′
i′ · · · t′|t′|−1)| ≤ K it holds that

f(x0, t
′
0 · · · t′i′−1) ∈ XNS. Thus for s′ = h−1(t′) it holds that s′ ∈ LNS,1(k) for all k ≤ K and

Θ(s′) = Θ(s). Thus ∆ is jointly K-step opaque with type 1 secrets. The proof of the converse is
similar.

The other notions of joint opacity with type 2 secrets and separate opacity with type 1 secrets,
to our knowledge, have not been previously proposed. Formally, we say that the automaton A
is K-step opaque with type j secrets if the transformation G = T (A, ℓ) is K-step opaque with
type j. The differences between the proposed notions of K-step opacity stem from how secrets
interact with unobservable behavior. To demonstrate how these notions differ, consider the automata
A1, A2, A3 from Fig. 3.7 and secret states X[S] given by the square states and observable event set
Eobs = {eobs}. In A1 for example, there are no type 2 secret epochs possible as a visit to secret
state 1 must be preceded by a visit to nonsecret state 0 in the same epoch. Hence A1 is jointly and
separately 1-step opaque with type 2 secrets. We can verify the various notions of 1-step opacity for
all of these automata as depicted in Table 3.1.

To paraphrase, joint K-step opacity with type 1 secrets reflects the inability of the intruder to
deduce if there was a period between observations where a single secret state was visited, while
joint K-step opacity with type 2 secrets reflects the inability of the intruder to deduce if there was
a period between observations where only secret states were visited. Likewise, separate K-step
opacity with type 1 secrets reflects the inability of the intruder to deduce when there was a period
between observations where a single secret state was visited, while separate K-step opacity with
type 2 secrets reflects the inability of the intruder to deduce when there was a period between
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1-Step Opacity Type A1 A2 A3

Separate Type 2 Yes Yes Yes
Separate Type 1 No Yes No

Joint Type 2 Yes No No
Joint Type 1 No No No

Table 3.1: The results of verifying joint and separate 1-step opacity with type 1 and type 2 secrets
for the automata A1, A2, A3 from Fig. 3.7.

observations where only secret states were visited. So we see for automata without unobservable
events, type 1 and type 2 secrets are equivalent and these new notions of joint and separate reduce
to the existing notions of strong and weak. While these new notions may only reflect differences in
the modeling of unobservable events in some sense, they demonstrate how the proposed approach
can be used to formulate precise notions of opacity appropriate for a given problem.

3.5 Verification methods for finite K-step opacity

In this section we will present methods for verification of K-step opacity for finite K. First, we
construct automata specifying nonsecret behavior. Then we show how to use these automata to
verify joint K-step opacity and separate K-step opacity.

3.5.1 Nonsecret specification automata

In order to use language-based methods to verifyK-step opacity, we must first construct automata
that mark the corresponding nonsecret specification languages. To do this, we will use the automata
depicted in Fig. 3.8 as building blocks.. Note that Lm(H∗) = Σ∗, Lm(Hep) = φep, Lm(Hep,1) =

φNS,ep,1, and Lm(Hep,2) = φNS,ep,2
1. To efficiently represent the nonsecret specifications languages,

we note that

φNS,j(k + 1) = φNS,j(k)φep ∪ φep, φJ
NS,j(k + 1) = φJ

NS,j(k)φNS,ep,j ∪ φNS,ep,j . (3.23)

So by appropriately defining the initial states and concatenating the automata from Fig. 3.8, we can
construct automata that specify the nonsecret runs. While the standard concatenation construction
adds an epsilon-transition between the marked states of one automaton and the initial states of
the next, we can reduce the resulting number of states by merging these states as in the following
construction.

Definition 3.15. Let H i = (Qi,Σ, δi, Qi
0, Q

i
m) for i ∈ {1, 2} be such that Q2

0 ∩ Q2
m = ∅. Let

Q∪· = Q1 ⊔Q2 \Q2
0, Q∪·

0 = Q1
0 ∪Q1

m, and Q∪·
m = Q2

m. Here ⊔ denotes the disjoint union. We define
1While Hep,2 could be designed to be deterministic, our nondeterministic Hep,2 offers reduced complexity.
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H∗ 0

Σ

Hep x0 0

Σ \ Σsil

Σsil

Hep,1 x0 0
ΣNS ∩ Σsil

ΣNS \ Σsil

Hep,2

x0 0

1

ΣNS ∩ Σsil

Σsil

Σ \ Σsil

Σ \ Σsil

ΣNS \ Σsil

Figure 3.8: Automata used to construct nonsecret specification automata for K-step opacity defined
over input-output pairs Σ categorized into nonsecret pairs ΣNS, and observable and unobservable
pairs Σsil,Σ \ Σsil.

the concatenated automaton H1 ∪· H2 = (Q∪· ,Σ, δ∪· , Q∪·
0 , Q

∪·
m) where for all σ ∈ Σ,

∀q1 ∈ Q1 \Q1
m. δ

∪· (q1, σ) = δ1(q1, σ)

∀q2 ∈ Q2 \Q2
0. δ

∪· (q2, σ) = δ2(q2, σ)

∀q1 ∈ Q1
m. δ

∪· (q1, σ) = δ1(q1, σ) ∪
⋃

q2∈Q2
0

δ2(q2, σ) .

This construction merges the marked states of H1 with the initial states of H2. Note that Lm(H
1 ∪·

H2) = (Lm(H
1)∪Lmm(H

1)) · Lm(H
2), where Lmm(H

1) = Lm(H
1, Q1

m) is the marked language

of H1 starting at the marked states of H1.

Based on the relation in (3.23), we use this ∪· to construct specification automata.

Definition 3.16. We define the nonsecret specification automata for K-step opacity iteratively as

follows. Let HNS,j(0) = HJ
NS,j(0) = H∗ ∪· Hep,j and for k ≥ 0 define

HNS,j(k + 1) = HNS,j(k) ∪· Hep, HJ
NS,j(k + 1) = HJ

NS,j(k) ∪· Hep,j . (3.24)

The following result relates these nonsecret specification automata to the K-delayed nonsecret
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behavior defining K-step opacity.

Lemma 3.3. For every K ∈ N it holds that

φ+
ep ∩ Lm(HNS,j(K)) = φNS,j(K),

φ+
ep ∩ Lm(H

J
NS,j(K)) = φJ

NS,j(K) .
(3.25)

Proof. We show this for HNS,2(K). The proofs for the other cases are similar. We claim that for all
k ≤ K that Lmm(HNS,2(k)) = Σ∗

sil and

Lm(HNS,2(k)) = Σ∗φNS,ep,2φ
k
ep ∪ Σ∗

sil

k⋃
i=1

φi
ep . (3.26)

Note that this condition holds for k = 0 as

Lm(HNS,2(0)) = Σ∗φNS,ep,2, Lmm(HNS,2(0)) = Σ∗
sil . (3.27)

Now assume that condition (3.26) holds for some k < K. Then by definition of ∪· we have

Lm(HNS,2(k + 1)) = (Lm(HNS,2(k)) ∪ Lmm(HNS,2(k)))Lm(Hep)

= (Σ∗φNS,ep,2φ
k
ep ∪ Σ∗

sil ·
k⋃

i=1

φi
ep ∪ Σ∗

sil)φep

= Σ∗φNS,ep,2φ
k+1
ep ∪ Σ∗

sil ·
k+1⋃
i=1

φi
ep

Hence by induction, condition (3.26) holds for all k ≤ K. Then note because φep = ΣobsΣ
∗
sil that

φ+
ep ∩ Lm(HNS,2(k)) = φ∗

epφNS,ep,2φ
k
ep ∪

k⋃
i=1

φi
ep

= φNS,2(k) .

We can then use the automata HNS,j(K) and HJ
NS,j(K) in specifying K-step opacity. As before,

consider an automaton A with secret states labeled by ℓ with behavior given by the input-output
pairs L = LIO(A, ℓ). Then in terms of equation (3.18),

L ∩ φNS,j(K) = φNS,j(K), L ∩ φJ
NS,j(K) =

K⋂
k=0

φNS,j(k) . (3.28)

So HNS,j(k) for k ≤ K can be used as nonsecret specification automata for verification of separate
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K-step opacity with type j secrets. Likewise, HJ
NS,j(K) can be used for joint K-step opacity with

type j secrets. In any case, it holds that L(HNS,j(K)) = L(HJ
NS,j(K)) = Σ∗ so we will be able to

apply the secret observer method later on.

Remark 3.3. By expanding the recursive definitions of H = HNS,j(K) or H = HJ
NS,j(K), we can

write H in the form
⋃·K+1

i=0 H i. To avoid ambiguity due to redundant state names, we refer to the

state q of H i by (q, i) when embedded in H .

3.5.2 Verification of joint K-step opacity

We now discuss how to verify K-step opacity using the specification automata we have con-
structed in conjunction with the approaches described in Section 3.3. Formally, we consider a
system represented by an automaton G and static observation relation Θ. As HJ

NS,j(K) encodes all
of the behavior considered nonsecret for K-step opacity with type j secrets, we can verify this form
of opacity by simply applying the aforementioned methods for verifying language-based opacity
with the nonsecret specification automaton HJ

NS,j(K), where K ∈ N with type j secrets. Due to the
equivalence described in subsection 3.4.2, we can verify the state-based notions of K-step opacity
in the same way after applying the label transform as follows.

Approach 3.4 (Joint K-step opacity verification). Given A, ℓ, Eobs, and K <∞, construct the

label-transform G = T (A, ℓ), the nonsecret specification automaton HJ
NS,j(K), and the static mask

Θ induced by Eobs. We can then apply any of the language-based methods from Section 3.3 to

G,HJ
NS,j(K), and Θ to verify the joint K-step opacity with type j secrets of A.

For example we depictHJ
NS,1(2) in Fig. 3.9. Recall this automaton is constructed by concatenating

H∗ and three copies of Hep,1. We apply the secret observer method to the automaton A from
Fig. 3.2 using its label transform G = T (A, ℓ) also depicted in Fig. 3.2. The construction of
GSO = det(Θ(G × HJ

NS,1(2))) is depicted in Fig. 3.10. We see that the string e0eobseobs is not
marked in GSO. Hence by the secret observer method, A is not jointly 2-step opaque with type
1 secrets. Upon observing eobseobs we can deduce that A traversed the states 0, 1, 2, 2 or 0, 3, 4, 2
which both pass through secret states.

3.5.3 Verification of separate K-step opacity

Verification of separateK-step opacity is less straightforward than joint opacity. By the definition
of separate opacity, it suffices to verify that the system is opaque for the specification φNS,j(k)) for
each k ≤ K using the proposed language-based approaches. However, these tests can be combined
into a single comparison as in the joint case by taking advantage of the structure of the specification
automata. As each comparison involves determinizing a different automaton, this alternative
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ΣNS ∩ Σobs
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Figure 3.9: The nonsecret specification automaton HJ
NS,1(2) for 2-step joint opacity with type 1

secrets.

approach is significantly more efficient. By construction, HNS,j(k) is embedded within HNS,j(K) as
a type of subautomaton for k ≤ K. So we can use HNS,j(K) to specify the nonsecret runs φNS,j(k)

for k ≤ K for separate K-step opacity. As in Remark 3.3, we can write HNS,j(k) =
⋃· k+1

i=0 H
i where

H0 = H∗, H
1 = HNS,ep,j , and H i = Hep for i ≥ 2. Recall using the convention of Remark 3.3, the

marked states of HNS,j(k) are simply the marked states of Hk denoted by Qk+1
NS,m embedded into

HNS,j(k) as Qk+1
NS,m × {k + 1}. Hence it holds that LQk+1

NS,m×{k+1}(HNS,j(K)) = Lm(HNS,j(k)). This
yields the following approach.

Approach 3.5 (Separate K-step opacity verification using secret observer). Given A, ℓ, Eobs,

and K < ∞, construct the label-transform G = T (A, ℓ), the nonsecret specification automaton

HNS,j(K), and the static mask Θ induced by Eobs. Recall that A is separate K-step opaque with

type j secrets if the k-delayed behavior with type j secrets is opaque for each k ≤ K. We can

verify this by applying the secret observer method for each k ≤ K to G, HNS,j(K), and Θ where

we redefine the marked states of HNS,j(K) to be Qk+1
NS,m × {k + 1}. Each of these tests involves

analyzing the states of the same automaton GSO = det(Θ(G×HNS,j(K))) under different notions

of state markings. As a result, we must only determinize a single automaton to apply this approach.

However, the idea of this approach is not applicable to the reverse comparison method as this
would require considering multiple sets of initial states. Alternatively, we can avoid multiple
determinizations by utilizing the fact that the intruder’s knowledge of the system’s behavior only
increases as they make more observations. Informally, if the intruder deduces a secret happened
within the last K − 1 observations, after making another observation they can still deduce a secret
happened within the last K observations. So if the intruder can always make more observations, it
suffices to consider secrets that occurred exactly K observations ago for the purposes of verification.
This is similar to the results of Lemma 2 in [83]. We will show under some conditions that it suffices
to verify the opacity of L to φNS,j(K) in order to verify separate K-step opacity with type j secrets.
Here we say that A is observation extendable with respect to Θ if for every s ∈ L = LIO(A, ℓ),
there exists ssuf ∈ Σ∗

sil(Σ \ Σsil) so that (s · ssuf ) ∈ L. With this we claim the following result.
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Figure 3.10: The product(top) of G from Fig. 3.2 with the nonsecret specification HJ
NS,1(2) and the

corresponding secret observer GSO (bottom).
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{x0} × {(0, 0), (1, 0), (2, 0), (3, 0)}

{0, 1} × {(0, 0), (1, 0), (1, 1), (2, 0), (3, 0)}

{2, 3, 4} × {(0, 0), (1, 0), (1, 1), (2, 0), (3, 0)}

{2} × {(0, 0), (1, 0), (1, 1), (2, 0), (3, 0)}

e0

eo

eo

eo

Figure 3.11: The secret observer GSO constructed for the automaton A from Fig. 3.2 with the
nonsecret specification HNS,2(2).
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ΣNS ∩ Σsil
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Figure 3.12: The nonsecret specification automaton HNS,2(2) for separate 2-step opacity with type
2 secrets.

Theorem 3.4. If A is observation extendable, then A is separate K-step opaque with type j secrets

if and only if the system with behaviors L = LIO(A, ℓ) and observation relation Θ induced by

Eobs is opaque for φNS,j(K).

Proof. Suppose that A is separately K-step opaque with type j secrets. Let s ∈ L. By the separate
opacity of A, there exists a run s′ ∈ L ∩ φNS,j(K) with Θ(s) = Θ(s′). Hence the system (L,Θ) is
opaque to φNS,j(K) is opaque to Θ.

Conversely, suppose that (L,Θ) is opaque for φNS,j(K). Then let s ∈ L and k ∈ {0, · · · , K}.
As L is observation extendable, there exists an extended run sext = s · ssuf so that sext ∈ L and
|Θ(ssuf )| = K − k. By hypothesis, there exists a run s′ext ∈ φNS = φNS,j(K) with Θ(s′ext) =

Θ(sext). By defining s′suf to be the lastK−k observation epochs of s′ext, we can write s′ext = s′ ·s′suf
with |Θ(r′suf )| = K − k. Then we see that s′ ∈ φNS,j(k) and Θ(s′) = Θ(s). Hence A is separately
K-step opaque with type j secrets.
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So when the system is observation extendable, we can verify separate K-step opacity in the
following way.

Approach 3.6 (Separate K-step opacity verification for observation extendable systems).
Given A, ℓ, Eobs, and K < ∞ where A is observation extendable with respect to the static mask

Θ induced by Eobs, construct the label-transform G = T (A, ℓ) and the nonsecret specification

automaton HNS,j(K). We can verify the separate K-step opacity with type j secrets of A by

applying any of the language-based approaches to G, Θ, and HNS,j(K).

Remark 3.4. While it may not be the case that A is observation extendable (for example if A

is deadlocked), we can always modify A to be observation extendable while preserving K-step

opacity. To do this we define a new automaton Aext by adding an artificial observable event σext as

a self-loop for every state in A. Then one can show that Aext will be separately K-step opaque if

and only if A is. Then by construction Lext will be observation extendable, and so we can apply

Approach 3.6 to Aext.

Using Approach 3.6 we can verify separate K-step opacity using the reverse comparison or
secret observer method. For example consider the system A from Fig. 3.2 which is observation
extendable and the nonsecret specification automaton HNS,2(2) which is depicted in Fig. 3.12. The
resulting secret observer GSO = det(Θ(G×HNS,2(2))) for G = T (A, ℓ) is depicted in Fig. 3.11.
As every state except the initial state is marked, we see that A is separately 2-step opaque with type
2 secrets.

3.6 Complexity of K-step opacity verification

In this section, we analyze the complexity of the proposed methods for verifying K-step opacity
for finite K for an automaton A with labeling map ℓ. These methods use the transformed automaton
G = T (A, ℓ). First we analyze the secret observer using Approach 3.4 for joint opacity and
Approach 3.5 for separate opacity. Then we analyze the reverse language comparison using
Approach 3.6. Finally, we compare the secret observer methods to existing verifiers for K-step
opacity known as theK-delayed state and trajectory estimators [31,86]. For separateK-step we also
compare with the two-way observer method [53, 109]. These results are summarized in Table 3.2
and Table 3.3. Note we allow the automaton A to be nondeterministic in general, but require A to be
deterministic when comparing with existing methods as they only consider deterministic automata.

3.6.1 Secret observer complexity

Recall that applying the secret observer method in Approaches 3.4, 3.5, or 3.6 to verify K-step
opacity involves constructing the automaton GSO = det(Θ(G×HNS)) for an appropriate choice of
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HNS. We will bound the number of reachable states in this automaton to bound state complexity
of these verification approaches. A naive upper bound for the number of states in the power set
construction for determinization of an automaton with n states is simply 2n. Using the known
structure of HNS, we can obtain a tighter bound for determinizing the automaton Θ(G×HNS). To
do this, we will analyze which states of HNS can be reached by runs that reach a fixed state of G in
the following observation.

Observation 3.1. Consider two automata G = (Q,Σ, δ, Q0, Qm) and H =

(QNS,Σ, δNS, QNS,0, QNS,m) with a static mask Θ ⊆ Σ∗ × Σ∗. For convenience for s ∈ Σ∗

let δ(s) =
⋃

q∈Q0
δ(q, s) and δH(s) =

⋃
qH∈QH,0

δH(qH , s). Suppose we are given sets F ⊆ 2QH

and C ⊆ Σ∗ such that F is closed under union, ∅ ∈ F , and for all s ∈ L(G × H) such that

Θ(s) ∈ C it holds that δH(s) ∈ F . Then for every γ ∈ C we can define the function wγ : Q→ F

by

wγ(q) =
⋃

s∈obs−1(γ)
s.t. q∈δ(s)

δH(s) (3.29)

Then denote the automaton Θ(G×H) As

Θ(G×H) = (QΘ(G×H),Σ ∪ {ϵ}, δΘ(G×H), Q0,Θ(G×H), Qm,Θ(G×H)) . (3.30)

For γ ∈ C it holds that

δΘ(G×H)(γ) =
⋃

s∈obs−1(γ)

δ(s)× δH(s) =
⋃
q∈Q

({q} × wγ(q)) . (3.31)

Hence the number of states in det(Θ(G×H)) reached by a string in C is bounded by the number

of functions from Q to F , of which there are |F ||Q|.

We can apply this observation to bound the complexity of the secret observer method. As
GSO = det(Θ(G×HNS)) is deterministic, it has a single initial state reached by ϵ. So all states of
GSO other than the initial state are reached by C = Σ+. Then to apply Observation 3.1, we must
determine a set F ⊇ {δH(s) | s ∈ C} which is also closed under union and contains the empty set.
We claim in verifying joint K-step opacity that

• for H = HJ
NS,1(K), we can choose |F | = K + 3 with

F = {∅} ∪ {{0, · · · , k} × {0}}K+1
k=0 , (3.32)
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• for H = HJ
NS,2(K), we can choose |F | = 2(K + 1) + 1 with

F = {∅} ∪ {{(0, 0), (k + 1, 1)} ∪ ({1, · · · , k} × {0, 1})}Kk=0∪

{{(0, 0)} ∪ ({1, · · · , k + 1} × {0, 1})}Kk=0 . (3.33)

If we denote the number of states of the original automaton A as n = |X|, then the number of
states of G = T (A, ℓ) is n+ 1, including the artificial initial state. Observation 3.1 then shows the
number of states of GSO other than the initial state is bounded by |F |n. These bounds are given by
(K + 3)n for HJ

NS,1(K) and (2K + 3)n for HJ
NS,2(K). For separate opacity, we use the naive power

set bounds of 2n(K+2) for HNS,1(K) and 2n(K+3) for HJ
NS,2(K). These bounds are summarized in

Table 3.2 and Table 3.3.

3.6.2 Reverse comparison complexity

We can use the same approach to analyze the reverse comparison method as in Approach 3.4
and Approach 3.6 to verify K-step opacity. These approaches require constructing the automaton
GR = rev(Θ(G))×comp(det(rev(Θ(G×HNS)))) for an appropriate choice of HNS. By observing
that rev(Θ(G×HNS)) = Θ(rev(G)× rev(HNS)), we can use Observation 3.1, to bound the number
of reachable states of this automaton. For the nonsecret specification automata HNS use for K-step
opacity, the reachable sets of rev(HNS) are simpler than HNS. Consider a string s ∈ rev(φ+

ep) with
k = max(0, K +1− |Θ(s)|). Using the notation from Remark 3.3, we can see that HNS must reach
a state corresponding to Hk

NS. Consider the set Ck = ΣK+1−k with 1 ≤ k ≤ K and C0 = ΣK+1Σ∗.
Then we determine a set Fk ⊃ {δrev(HNS)(s) | s ∈ Ck} that is closed under union and contains the
empty set. We claim that

• for HNS = HJ
NS,1 or HNS = HNS,1 we can choose |Fk| = 2 with

Fk = {{(k, 0)}, ∅} . (3.34)

• for HNS = HJ
NS,2 or HNS = HNS,2 we can choose |Fk| = 3 with

Fk = {{(k, 0)}, {(k, 0), (k, 1)}, ∅} (3.35)

So by Observation 3.1 for Ck, the number of states of det(Θ(rev(G)× rev(HNS))) reached by a
string γ ∈ Σ+ with k = max(0, K + 1− |γ|) is bounded by |Fk|n+1 where n = |X| is the number
of states in the original automaton A. Hence the number of states of det(rev(Θ(G × HNS))) is
O((K+1)2n) for type 1 secrets andO((K+1)3n) for type 2 secrets. So then the number of states of
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K Forward (n = 4) Reverse (n = 4) Forward (n = 6) Reverse (n = 6)
0 5 6 7 8
2 53 29 187 67
4 293 45 3007 147
8 2117 77 114487 275

16 16517 141 T/O 531
K Forward (n = 4) Reverse (n = 4) Forward (n = 6) Reverse (n = 6)
0 5 6 7 8
2 35 29 137 67
4 137 45 1547 147
8 749 77 36047 275

16 4949 141 1071767 531

Figure 3.13: The number of states in the forward secret observer automata GSO(n) and reverse
automata GR(n) constructed from G(n) = T (A(n), ℓn). The bottom table uses HNS = HJ

NS,1(K)
and the top table uses HNS = HNS,2(K). Here T/O denotes a timeout where the automaton could
not be constructed.

GR = rev(Θ(G))×comp(det(rev(Θ(G×HNS)))) isO(n(K+1)2n) forH = HNS,1(K), HJ
NS,1(K)

and O(n(K + 1)3n) for H = HNS,2(K), HJ
NS,2(K). These bounds are depicted in Table 3.2 and

Table 3.3. From these bounds, we see that the reverse comparison method is distinguished by the
factor K entering linearly into the bound. This may indicate for systems with many states but small
value of K, the reverse comparison method may be more efficient.

To demonstrate the advantage of the reverse language comparison, consider the following family
of automata. For n > 1 define A(n) = (Xn, En, fn, X0,n, Xm,n) where Xn = {0, · · · , n − 1},
En = {e0, · · · , en−1}, fn(i, ej) = (i + j) mod n, X0,n = Xn \ {0}, and Xm,n = Xn. Likewise,
define the labels A = {S,NS} with ℓn(0) = S and ℓn(i) = NS for i ̸= 0. We define all events to
be observable Eobs = En. After constructing G(n) = T (A(n), ℓn) for various n, we compute the
number of states in the secret observer automatonGSO(n) = det(Θ(G(n)×HNS)) and in the reverse
automaton GR(n) = rev(Θ(G(n)))× comp(det(rev(Θ(G(n)×HNS)))) for HNS = HJ

NS,1(K) and
HNS = HNS,2(K) across various values of K. These results are depicted in Fig. 3.13. The number
of states in the forward automata increases roughly exponentially with K while the number of states
in the reverse automata increases linearly.

3.6.3 Comparison to K-delay State & trajectory estimators

We can compare our secret observer method with some existing methods for verification of
K-step opacity. The first proposed verification methods for weak and strong K-step opacity are
called the K-delay state estimator and K-delay trajectory estimator. These K-delay state estimators
construct an automaton that estimates the possible states sequences over the last K observations
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Separate Type 2 (Weak)
Algorithm State Complexity

Secret Observer O(2n(K+3))
Reverse Comparison O(n(K + 1)3n)
State Estimator [86] O((|Eobs|+ 1)K2n)

Two-way Observer [109] O(min(2n, |Eobs|K)2n)

Table 3.2: State complexities of verification methods for separate K-step opacity with type 2 secrets
(weak K-step opacity) of an automaton with n states. The discussion in subsection 3.6.3 implies
that the secret observer method has state complexity no worse than the K-delay state estimator.

from which one can deduce if weak opacity has been violated. The K-delay trajectory estimator
augments this structure with a sequence of binary variables representing whether a secret state was
visited between the observations to deduce if strong opacity has been violated. Their complexities
are depicted in Table 3.2 and Table 3.3. By analyzing our Approach 3.5 for verifying weak K-step
opacity, we see the resulting automaton estimates only the current state and whether a secret state has
been visited during each of the last K observations. Likewise, the automaton from our Approach 3.4
for strong K-step opacity estimates the current state and whether only secret states have been visited
during each of the last K observations. As we can deduce whether secret states have been visited
from the possible sequences of past states, we can view our secret observer automata as quotients of
the K-delay estimators. In this way, the complexity of our proposed methods are at most that of the
K-delay estimators for the respective forms of K-step opacity. We have provided a formal proof of
this result in longer version of this chapter [97].

To demonstrate this result, we construct a family of automata A(i) where the secret observer
method has significantly reduced complexity compared to the delayed state/trajectory method
for verification of strong/weak K-step opacity. For i > 1 define the deterministic automaton
A(i) = (X0, Ei, fi, {2}) where X0 = {1, · · · , i}, Ei = {σ1, · · · , σi}, Eobs = E, and the transition
function defined by fi(j, σk) = k. Consider the labeling map ℓi : X0 → A where A = {S,NS}
defined by ℓi(1) = S and ℓi(j) = NS for j ̸= 1. Note that A(i) recognizes a run along every
state sequence in {2} · (X0)

∗. Hence, we see the K-delayed state observer states correspond to⋃K
k=0{2} × (X0)

k, of which there are
∑K

k=0 i
k = 1−iK+1

1−i
= O(iK) states. Let G(i) = T (A(i), ℓi).

The secret observer GSO(i) = det(Θ(G(i)×HNS,2(K))) estimates the current state and the secrecy
of the past K + 1 epochs. We can verify that the number of states in GSO(i) is O(i2K). So we see
that the secret observer method can be significantly less complex than the delayed state estimator
for verification of weak K-step opacity. A similar result holds for strong K-step opacity.
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Joint Type 1 (Strong)
Algorithm State Complexity

Secret Observer O((K + 3)n)
Reverse Comparison O(K2n)

Trajectory Estimator [31] O((|Eobs|+ 1)K2n)

Table 3.3: State complexities of verification methods for joint K-step opacity with type 1 secrets
(strong K-step opacity) of an automaton with n states. The discussion in subsection 3.6.3 implies
that the secret observer method has state complexity no worse than the K-delay trajectory estimator.

3.7 Infinite step opacity

Now we consider K-step opacity for K = ∞, also called infinite step opacity. The results
of Theorem 3.2 can be extended to the infinite step case. In particular our notion of separate
infinite-step opacity with type 2 secrets corresponds to the existing notion of infinite step opacity as
in [85, 109]. We will discuss how the previous verification methods for finite K can be adapted to
this case.

Recall our definition of infinite step opacity involves an infinite number of nonsecret language
specifications, i.e. the k-delayed nonsecret behavior LNS,j(k) for k ∈ N as defined in (3.18). Recall
in the finite case we were able to reduce the multiple language comparison checks into a single check
for verifying separate opacity. In Approach 3.5, we constructed one automaton that encompassed
all of the nonsecret behavior, but this automaton would necessarily be infinite for K = ∞. In
Approach 3.6, under the condition of observation extendability we showed it suffices to consider
secret behavior occurring exactly K epochs ago, but there is no clear analog for this for K =∞.
Hence it appears that we cannot directly use our methods for verification of separate infinite step
opacity. However we can use a result of [109] that states that infinite step opacity (separate opacity
with type 2 secrets) is equivalent toK-step opacity forK = 2n where n denotes the number of states
of the automaton in question. With this observation, we can verify separate infinite step opacity
with type 2 secrets by verifying separate 2n-step opacity. Alternatively, the two-way observer could
be used to directly verify separate infinite step opacity [109].

We can more effectively apply our methods to joint infinite step opacity as this involves only one
language comparison by definition. Note that we can define

φJ
NS,j(∞) =

∞⋂
i=0

φNS,j(i) = φ+
NS,ep,j (3.36)

As in the finite case, we can construct an automaton to specify this nonsecret behavior. Consider
the automata depicted in Fig. 3.14. To obtain a smaller complexity bound, we will apply the forward
comparison method instead of the secret observer method. Recall in this case that we do not require
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0 1
ΣNS \ Σsil

ΣNS

0 1

2

ΣNS \ Σsil

Σ \ Σsil

Σsil ∪ (Σ \ Σsil ∩ ΣNS)

Σ \ Σsil

Σsil

ΣNS ∩ Σsil

Figure 3.14: The nonsecret specification automata HJ
NS,1(∞) (left) and HJ

NS,2(∞) (right) for joint
infinite step opacity.

Lm(H
J
NS,j(∞)) = Σ∗. As before, we will analyze the complexity using Observation 3.1. Consider

the set C = Σ+. Then we determine a set F ⊃ {δH(s) | s ∈ Ck} that is closed under union and
contains the empty set. We claim that

• for H = HJ
NS,1(∞) we can choose |F | = 2 with

F = {∅, {1}} . (3.37)

• for H = HJ
NS,2(∞) we can choose |F | = 3 with

F = {∅, {2}, {1, 2}} (3.38)

So by Observation 3.1 for C, the number of states of det(obs(G × HNS)) reached by a string
γ ∈ Σ+ is bounded by |F |n with n = |X| where G = T (A, ℓ). Then the number of states in the
automaton GF = obs(G)× det(obs(G×HNS))

c other than the initial state is O(n2n) for type 1
secrets and O(n3n) for type 2 secrets. To the best of our knowledge, verification of joint infinite
step opacity has not been reported in the literature previously.

3.8 Results

We evaluate the effectiveness of our verification methods for K-step opacity with numerical
experiments. We compare the time and space complexity of the proposed methods with existing
methods for verifying the existing notions of strong and weak K-step opacity. Recall these
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Figure 3.15: Plots of average runtime (time usage) and the number of states in the verifier automata
(space usage) versus the number of states in the random automata system model (|X|) for several
methods for verifying strong K-step opacity.

correspond to the notions of joint K-step opacity with type 1 secrets and separate K-step opacity
with type 2 secrets, respectively. It should be noted while the existing methods were originally
described for deterministic automata, there is a natural extension to the nondeterministic automata
considered here. We compare the runtimes and number of states in the final verifier automata for
an implementation of each method. In order to show how these methods scale with the size of
the original system and the value of K, we verify the opacity of systems represented by randomly
generated automata with secret states. We generate these automata in two ways. We present the
runtimes and number of states in the verification automata averaged over 100 systems for fixed
system sizes up to 250 states. These methods were implemented in the MDESops library [68].

3.8.1 First random generation approach

For the first experiment, we generate automata with a fixed number of states with a random
number of outgoing transitions to random states. There are 18 events total with 6 observable events.
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Figure 3.16: Plots of average runtime (time usage) and the number of states in the verifier automata
(space usage) versus the number of states in the random automata system model (|X|) for several
methods for verifying weak K-step opacity.

All states are considered to be initial, and one state is labeled as secret.
For strong K-step opacity, we compare the proposed forward comparison, reverse comparison,

and secret observer methods with the existing K-delay trajectory estimator. We consider both
K = 1 and K = 4. The average results over the randomly generated automata for verifying strong
K-step opacity are depicted in Fig. 3.15. Due to the long runtime of theK-delay trajectory estimator
(> 100s), we do not evaluate this method for large automata in the K = 1 case and remove it
entirely in the K = 4 case. In these examples, the forward comparison method performed nearly
identically to the secret observer method, which is why it does not appear in the space usage plots.
From these plots, we see that the proposed methods for verification perform significantly faster than
the existing method. This supports the claim of subsection 3.6.3, stating that the complexity of
the secret observer method for verifying K-step opacity is less than that of the K-delay trajectory
estimator. It is also interesting to note that the secret observer method outperforms the reverse
language comparison for the small values of K investigated. This indicates the linear scaling with
K in the complexity of this method is only significant for large values of K.
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Figure 3.17: Plots of average runtime (time usage) and the number of states in the verifier automata
(space usage) versus the number of states in the system model (|X|) for several methods for verifying
strong and weak 1-step opacity for the grid-based automata.

For weakK-step opacity, we compare the proposed forward comparison, reverse comparison, and
secret observer methods with the existing K-delay state estimator and the two-way observer [109].
For the secret observer method, Approach 3.5 is used, while for the forward and reverse comparison
methods, Approach 3.6 is used. As in the strong case, we consider both K = 1 and K = 4.
The average results over the randomly generated automata for verifying weak K-step opacity are
depicted in Figure 3.16. Due to the long runtime of the K-delay state estimator and two-way
observer in some cases, we omit these results when necessary. As in the strong case, the forward
comparison method performed nearly identically to the secret observer method. From these plots,
we see that the proposed methods for verification outperform the existing K-delay state estimator
in average runtime and size in all cases. While the runtime in applying the two-way observer is
smaller for small-sized automata, the secret observer method outperforms it on the average in time
and space for larger automata (> 15 states). It should be noted that one property of this method for
generating random automata is that for larger system sizes, nearly all of the automata generated
were opaque for each notion of K-step opacity. We consider a more balanced and structured method
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for generation next.

3.8.2 Second random generation approach (grid-based)

In the second experiment, we generate automata as a square grid where states can transition to
the 4 adjacent states. These transitions are then randomly removed or labeled with a random event.
The number of observable events and secret states are scaled logarithmically with the system size.
Again, all states are considered initial. The generation of these automata was tuned to provide a
balance of automata that were opaque and not opaque across all system sizes.

We present results for verifying weak and strong 1-step opacity in Fig. 3.17. These results show
similar trends to the previous method for generating random automata. One notable difference
is that the two-way observer method for verifying weak K-step opacity offers slightly improved
performance over the proposed secret observer method.

3.9 Conclusion

While advances in algorithms verifying different notions of opacity offer improved performance
in practice, such as those presented in this chapter, there remains a fundamental limit imposed by
the inherent complexity of the verification problem (PSPACE-hardness).

We have presented several new results for the information-flow property of opacity in the context
of discrete event systems. We presented a general framework of opacity to unify the many existing
notions across a variety of system and intruder models. We used this framework to discuss notions
of opacity over automata, both language-based and state-based. We provided several methods for
verification of language-based opacity. We then developed a general approach for specifying state-
based notions of opacity with automata and a transformation of these notions to language-based
ones. Together, we used these results to describe existing notions of opacity like current-state
opacity and initial-state opacity. We demonstrated how our approach unifies existing methods for
opacity by showing the resulting language-based verification methods for these notions embody the
existing verification methods. We further demonstrated the effectiveness of this approach in our
investigation of K-step and infinite step opacity.

Using the intuition of K-step opacity with our approach, we derived a uniform view of four
notions of K-step and infinite-step opacity. Two of these notions correspond to the existing notions
of strong and weak K-step opacity, while the other two are new and meaningful notions. We
developed appropriate specification automata for these notions, allowing verification with the
language-based methods. We formally analyzed the complexity of these methods for K-step and
infinite step opacity, showing these methods compare favorably in some instances to existing
methods. In particular, we showed that the proposed secret observer method outperforms the
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existing K-delay estimators for verifying strong and weak K-step opacity. Finally, we performed
numerical experiments with randomly-generated automata to compare the verification methods.
These results showed that the proposed verification methods offer increased performance over
existing methods.
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CHAPTER 4

Opacity Against Observers with a Bounded-Memory

4.1 Introduction

The practice of formal verification of cyber-physical systems requires many assumptions on
the system itself and its environment. For example, in expressing privacy as opacity, we require
that an observer cannot deduce sensitive information about the system’s behaviors. In this setting
it is typically assumed that the observer of the system has partial observation of behaviors but
impose no other constraints. This hides the implicit assumption that the in the process of their
deductions, observers have perfect recall, always deducing a secret correctly if possible. While
this approach provides strong theoretical guarantees of privacy, it presents a number of challenges
in practice. First, an observer may have limited computational resources to perform deduction,
especially in an embedded setting. Second, the computational resources required to verify these
privacy guarantees may be prohibitive as we must consider every possible way information may leak.
Indeed, the aforementioned notions of opacity over automata are all readily transformed into one
another [6, 97, 101], and the common verification problem is known to be PSPACE-complete [16].
This high complexity is observed in the poor exponential scalability of verification algorithms in
practice.

In this chapter, we address these challenges by proposing a new notion of opacity reflecting an
additional constraint on the observer: the amount of memory available to them. We characterize
opacity from the observer’s point of view, modeling their deductions with a nondeterministic
automaton that marks observations deemed secret. In this form, we can impose a bound k ∈ N on
the size of this automaton, representing the memory available to the observer. Our proposed notion
of k-bounded memory opacity (k-BMO) requires that no such automaton exists. We establish basic
properties of this notion, including that the verification problem is co-NP-complete, reduced from
the PSPACE-completeness for LBO. In addition to these results, we develop a verification approach
using an encoding into the Boolean satisfiability problem (SAT) and demonstrate it on a number of
examples.
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4.2 Problem Formulation

In this section, we present an alternative characterization of opacity from the viewpoint of the
observer which we use to propose a new notion of opacity against observers with bounded memory.
Formally, we consider a system modeled by an NFA G = (Q,Σ, δ, Q0, Qm) marking the system’s
behavior L = Lm(G) which is observed through an observation relation Θ ⊆ Σ∗ ×Σ∗

obs induced by
a static mask. Similarly, we assume an observer of this system also models the system with an NFA
Ĝ =

(
Q̂,Σ, δ̂, Q̂0, Q̂m

)
marking the nominal behavior L̂ = Lm(Ĝ) which is observed through

another observation relation Θ̂ ⊆ Σ∗ × Σ∗
obs also induced by a static mask. Using the framework of

Chapter 3, we will consider the language-based opacity of the system ∆ = (L,Θ) for the nominal
system ∆̂ = (L̂, Θ̂) with a nonsecret specification φNS.

Recall that we refer to the observations s ∈ Θ(L) violating if s ̸∈ Θ(L̂ ∩ φNS), and that opacity
corresponds to the inability of the observer to deduce an observation was violating. In deducing if
an observation s is violating, they attempt a version of the regular language acceptance problem, i.e.,
is s an element of Θ̂(L̂ ∩ φNS)? We will formulate a new notion of opacity capturing a restriction
on the algorithms the observer uses to solve this problem, namely the amount of available memory

states. As noted in [58], these algorithms can be viewed as passive attacks on the system which do
not alter the system’s behavior. We adopt this terminology, and model these attacks with an NFA
A = (QA,Σobs, δA, QA,0, QA,m) which tracks observations of the system G and marks some which
are violating. We can use this notion of attacks to provide an alternative characterization of opacity.

Proposition 4.1. The system ∆ = (L,Θ) is not opaque for nominal system ∆̂ = (L̂, Θ̂) and

nonsecret specification φNS if and only if there exists an attack NFA A with the following properties

1. Correctness: The attack marks only violating observations

Lm(A) ∩ Θ̂(L̂ ∩ φNS) = ∅ . (4.1)

2. Nontriviality: The attack marks some observation

Lm(A) ∩Θ(L) ̸= ∅ . (4.2)

Proof. If there exists a correct and nontrivial attack A, then there exists a string s ∈ Lm(A)

contained by Θ(L) but not by Θ̂(L̂ ∩ φNS). Hence s is violating and thus G is not LBO. Conversely
if G is not LBO, then there exists such a violating string. Thus the attack A marking this single
string is necessarily correct and nontrivial.

Note that we do not require attacks to deduce all violating observations, just one. Indeed, due
to nondeterminism an attack can be correct and nontrivial even if it rejects a violating observation
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on one run but accepts it on another. Because of this, the proposed memory bound is not directly
related to the standard notion of space complexity for the regular language acceptance problem.
Alternatively, the smallest attack which deduces every violating observation can be computed by
applying state minimization to the forward comparison automaton GF constructed in Section 4.4.
The number of states in an attack automaton A represents the number of memory states utilized
by a corresponding nondeterministic deduction algorithm. We can then define a notion of opacity
capturing a restriction on the memory available to an observer as a bound on the number of such
states.

Definition 4.1. Given k ∈ N, system ∆, nominal system ∆̂, and nonsecret specification φNS, we

say that the system is k-bounded memory opaque (or k-BMO for short) if there is no correct and

nontrivial attack A with k states.

4.2.1 Properties of Bounded Memory Opacity

We now observe a number of simple properties about this notion of opacity.

Proposition 4.2. Consider the setting of Definition 4.1.

1. If ∆ is (k + 1)-BMO, then ∆ is k-BMO.

2. If ∆ is LBO, then ∆ is k-BMO.

3. There exists a k ∈ N so that if ∆ is k-BMO, then ∆ is LBO.

Proof.

1. We can add unreachable states to an attack without altering its correctness or nontriviality.

2. If ∆ is LBO, then any correct attack cannot be nontrivial.

3. If ∆ is not LBO, then the forward comparison automaton with marked states swapped to
accept secret observations is a correct and nontrivial attack.

In general, we are interested in the smallest bound k for which a system is k-BMO or equivalently,
the size of minimal attacks. While we can always construct attacks recognizing the smallest violating
observation or attacks that are deterministic, the following examples show that such attacks may not
be minimal.

Example 4.1. Consider the DFA G depicted in Fig. 4.1 with M +1 states and all events observable.

We assume the eavesdropper knows the system ∆̂ = ∆, and consider the nonsecret specification

given by φNS = LQNS using the indicated nonsecret states QNS. Then the violating strings are
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q1 · · · qM−1 qM qM+1
a a a b

1 2
b

a

1 · · · M−1 M
a a a

Figure 4.1: A system NFA G (top) and corresponding attack NFAs A (bottom left) and A′ (bottom
right). States QS = {qM , qM+1} act as secret states in G as in Example 4.1 while the remaining
states QNS = Q \QS are nonsecret.

1 2 3 3
a

a, b

a

d

c

Figure 4.2: A nondeterministic attack A from which we construct the system G in Example 4.2.

s1 = aM−1 and s2 = aM−1b. The attack A depicted in Fig. 4.1 is minimal, marking the string s2.

Furthermore, it is clear that any correct attack marking s1, such as A depicted in Fig. 4.1, must

have at least M states, counting the occurrences of a. So the shortest violation of opacity may not

always correspond to a minimal attack.

Example 4.2. Consider the nondeterministic attack A with 4 states depicted in Fig. 4.2. We

will construct a system for which this attack is minimal. Let G′ denote the complement of the

determinization of A with all unmarked states removed. As a result Lm(G
′) = L(G′) contains

strings whose prefixes are not in Lm(A), i.e., L(G′) ∩ Lm(A) = ∅. Let G denote the union NFA

construction for G′ and an automaton generating the secret string abaadac ∈ Lm(A) and marking

its strict prefixes. We do not depict G here due to its large size. We suppose that all events are

observable and that the eavesdropper knows the system model ∆ = ∆̂. By construction, A is correct

and nontrivial, yet applying the verification method developed later in Section 4.4, we determine

that there is no deterministic attack with size 4. So in general, there may be no minimal attack that

is deterministic.

4.3 Problem Complexity

In this section, we discuss the problem of verifying k-BMO. We show this problem is co-NP-
complete, or equivalently, that falsifying k-BMO by synthesizing an attack is NP-complete. In
addition, we present a verification approach based upon an encoding into SAT. Formally, we state
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the problem of verifying k-BMO as follows.

Problem 4.1. Given NFAs G and Ĝ marking the behaviors L and L̂, observation relations Θ and

Θ̂ given by static masks, an NFA HNS marking the language φNS, and a k ∈ N, determine if the

system ∆ = (L,Θ) is k-BMO for the nominal system ∆ = (L̂, Θ̂) and nonsecret specification φNS.

4.3.1 Verifying k-BMO is co-NP

It is well-known that the complexity of verifying opacity in general is PSPACE-complete [16]. By
relaxing the requirement that an observer never deduces a secret, i.e., LBO, to the requirement that
one with a bounded memory never does, i.e., k-BMO, we reduce the complexity of the verification
problem.

Theorem 4.3. Verifying k-BMO is co-NP.

Proof. Let G, Ĝ, Θ, Θ̂, HNS, and k be as in Problem 4.1 which serve as input to the verification
problem. Let n and m denote the number of states and events of G, respectively. Likewise, let n̂
and nNS denote the number of states Ĝ and HNS, respectively. To show the problem is co-NP, it
suffices to show that we can check if an attack A with size k (serving as a certificate) is correct
and nontrivial in polynomial time. Using properties of the parallel composition, A is correct if the
following equivalent conditions hold

Lm(A) ∩ Θ̂(L̂ ∩ φNS) = ∅ ⇔ LQA,m×Q̂m×QNS,m
(A× Θ̂(Ĝ×HNS)) = ∅ . (4.3)

Likewise, A is nontrivial if the following equivalent conditions hold

Lm(A) ∩Θ(L) ̸= ∅ ⇔ LQA,m×Qm(A×Θ(G)) ̸= ∅ . (4.4)

The language of an NFA is nonempty if and only if its marked states are reachable from initial ones,
which can be checked using breadth-first search in linear time in the number of edges. So the first
condition can be checked over A× Θ̂(Ĝ×HNS) with time

O
(
(|QA| · |Q̂| · |QNS|)2|Σ|

)
= O(k2n̂2n2

NSm) .

Similarly, the second condition can be checked over A× Θ̂(G) with time

O
(
(|QA| · |Q|)2|Σ|

)
= O(k2n2n2m) .

So the total time complexity is O (k2(n̂2n2
NS + n2)m). By convention, we represent k in unary so

that its representation as an input is proportional to the value of k. In this case, we see that checking
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that an attack is correct and nontrivial can be done in polynomial time.

While we show next that this problem is co-NP-complete, the result of Theorem 4.3 is significant
as such problems can often be solved in practice with SAT solvers. To demonstrate this, we develop
a SAT encoding for verification in Section 4.4 whose performance is evaluated in Section 4.5.

Remark 4.1. While we have proposed a bound on the memory of a potential attacker, one may

instead consider verifying opacity over strings with a bounded length, similar to the concept of

bounded-model checking [21]. While such methods can be very efficient using symbolic techniques

[69], it is not immediately clear how long the strings considered must be in order to achieve some

privacy requirement. As demonstrated in Fig. 4.1, there may a simple attack to deduce a secret

occurred while the shortest violating string is arbitrarily long (bounded by the number of states in

the system). However, we can note for any attack A, a minimal string marked by the attack will

only visit the states of the product A×Θ(G)× Θ̂(Ĝ×HNS) at most once. Hence letting k = |A|,
n = |G|, n̂ = |Ĝ|, nNS = |HNS|, if there are no strings violating opacity with length (knn̂nNS)− 1,

the system is k-BMO.

4.3.2 Verifying k-BMO is co-NP-Complete

To show that verifying k-BMO is co-NP-complete, we adapt the proof of PSPACE-completeness
for verifying LBO [16]. This proof constructs a reduction from the universality problem which asks
if an NFA G marks every string, i.e., Σ∗ ⊆ Lm(G)? Without loss of generality, we may assume
that L(G) = Σ∗. We consider the system ∆ = (L,Θ) with L = L(G) and Θ defined by all events
being observable. Furthermore, we suppose the nominal system ∆̂ is equal to the true system ∆,
and the nonsecret specification is simply φNS = Lm(G). In which case, ∆ is LBO if and only if G
is not universal. This completes the reduction from the universality problem which is known to be
PSPACE-complete [89]. To show the NP-completeness of our problem, we consider a variant of the
universality problem over bounded strings. The bounded nonuniversality problem asks for an NFA
G and bound n ∈ N, does G not mark all strings of length at most n, i.e. Σ≤n ̸⊆ Lm(G)? We now
present a reduction to falsifying k-BMO from the bounded nonuniversality problem which is known
to be NP-complete [20]. This reduction and the original PSPACE reduction are depicted in Fig. 4.3.

Theorem 4.4. Verifying k-BMO is co-NP-complete.

Proof. Consider an NFA G′ and bound n ∈ N represented in unary which serve as inputs to the
problem. Let G≤n denote an automaton with n+ 1 states generating all strings with length at most
n and marking none of them. Let G be the union automaton of G′ and G≤n restricted to strings of
length n so L(G) = Σ≤n and Lm(G) = L(G′) ∩ Σ≤n. By construction, G is nonuniversal with
bound n if and only if there exists a string s ∈ L(G) but s ̸∈ Lm(G), i.e., s is violating. We consider
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Θ(Lm(G)) ̸⊆ Θ(L(G))
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Σk ̸⊆ L
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Turing machine M

Cassez 2012

Certificates O(2|M |)

Our reduction

Certificates O(poly(|M |))

Figure 4.3: The reductions proving the PSPACE-hardness of falsifying CSO (left) and the NP-
hardness of falsifying k-BMO (right).

the same setting of LBO for the PSPACEreduction described above. As we can construct an attack
with n + 1 states that only marks s, we see G′ is nonuniversal with bound n if and only if G is
k-BMO for k = n+ 1. As G may be constructed in polynomial time, this procedure describes a
reduction from the bounded nonuniversality problem to falsifying bounded memory opacity.

Remark 4.2. To show the general universality problem is PSPACE-complete, [89] construct an

NFA marking invalid computations of a nondeterministic Turing machine with a polynomial space

bound. Due to this polynomial space, nontrivial computations may be exponentially long in the

input. In the reduction, this corresponds to the shortest violations of opacity that exist being

exponentially long in the size of the system. Similarly, to show the bounded nonuniversality problem

is NP-complete, [20] perform a similar construction for nondeterministic Turing machines running

in polynomial time. As a result of this time bound, the length of computations is polynomial in the

input and the bound. This corresponds to the fact that the shortest violations of opacity marked by

an attack are polynomial in the size of the system and attack, rather than exponential like in the

general case.

4.4 Verification Approach

In order to verify k-BMO effectively, we can express it as a Boolean satisfiability problem.
That is we can encode an attack A with propositional variables and develop constraints modeling
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correctness and nontriviality. The overall approach is depicted in Fig. 4.4. Formally given some
k ∈ N , we consider an attack A with states QA = {0, · · · , k−1}. Without loss of generality,
we assume the initial state is 0 and that the attack has a single marked state given by k−1. For
simplicity, we describe the encoding for current-state opacity which can be extended to the more
general case. In particular we assume all states ofG are marked, the nominal model ∆̂ is equal to the
true system ∆, and the nonsecret specification is simply φNS = LQNS(G) for some set of nonsecret
states QNS ⊆ Q. We introduce the variables τA(qA, σ, q′A) meaning the corresponding transition
is present in A, i.e., (qA, σ, q′A) ∈ δA. From equations (4.3)-(4.4), correctness and nontriviality of
A correspond to language emptiness/nonemptiness in the composition A || G. In order to encode
this composition, we encode the observability of an event σ ∈ Σ with a formula O(σ). Then the
presence of a transition in the composition from (qA, q) to (q′A, q

′) over event σ where (q, σ, q′) ∈ δ
is given by the formula τ(qA, q, σ, q′A, q

′) defined by

(¬O(σ) ∧ (qA = q′A)) ∨ (O(σ) ∧ τA(qA, σ, q
′
A)) . (4.5)

To encode language emptiness, we recall that the language marked by an automaton is empty if
and only if its marked states are not reachable from the initial state in the underlying graph. We
can represent reachability in the composition with the variables R(qA, q), whose truth indicates that
(qA, q) ∈ QA ×Q is reachable from the initial state (qA,0, q0). To encode reachability in SAT, we
use constraints similar to [74] based upon acyclicity over auxiliary variables T . These constraints
require the initial state to be reachable, i.e., R(qA,0, q0), and for all other states (qA, q) that

R(q′A, q
′)←

∨
σ∈Σ,qA∈QA
(q,σ,q′)∈δ

R(qA) ∧ τ(qA, q, σ, q
′
A, q

′) (4.6)

R(q′A, q
′)→

∨
σ∈Σ,qA∈QA
(q,σ,q′)∈δ

R(qA) ∧ τ(qA, q, σ, q
′
A, q

′)

∧ T (qA, q, q
′
A, q

′)

(4.7)

Acyclic(T ) . (4.8)

Constraint (4.6) ensures R is true for reachable states while constraints (4.7)-(4.8) ensure R is true
only for reachable states.

Here, the constraint Acyclic(T ) denotes a formula that is satisfied when the graph over nodes
QA × Q with edges encoded by T is acyclic. We can think of this graph as a spanning tree of
the reachable set rooted at the initial state. Critically, this formulation for reachability results in a
total number of constraints that is linear in the number of transitions in the composed automaton
(viewing acyclicity as a single constraint which is natively supported by solvers like [74]). From
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Figure 4.4: The proposed verification approach for k-BMO utilizing the SATencoding.

equations (4.3)-(4.4), we see the encoded attack is correct and nontrivial if the following constraint
is satisfied

ψQm =
∧

q∈Qm

¬R(k−1, q) ∧
∨

q∈Q\Qm

R(k−1, q), (4.9)

where k−1 is the marked state of A. Then there exists an attack A encoded by these variables that
is correct and nontrivial, i.e., G is not k-BMO, if and only the constraints (4.5)-(4.9) are satisfiable.
Furthermore, the total number of constraints is O(k2n2m) where n = |Q| and m = |Σ|. This
formulation of verification as a constraint satisfaction problem has many advantages. In particular,
it is easy to incorporate extensions or additional constraints on the attacks as demonstrated in the
following section.

4.5 Results

In this section, we investigate the performance of the proposed SAT encoding for verifying
k-BMO. We first demonstrate its superior scalability in comparison to a standard approach for
verifying LBO on randomly generated automata. We then present an example showing how the
SAT encoding can be easily extended to solve more general problems. This example system models
server load-balancing with quantitative constraints on observations available to an attacker.

4.5.1 Comparing Opacity Verification Methods

We compare an implementation1 of the proposed SAT encoding for verifying k-BMO with a
standard method for verifying LBO based upon constructing the observer (the NFA G is LBO if all

1Implementation available at https://gitlab.eecs.umich.edu/M-DES-tools/
bounded-opacity
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Figure 4.5: The runtimes to verify different notions of opacity as a percentage of the runtime to
verify LBO.

states in its observer are marked). In particular, we encode the constraints for verifying k-BMO
developed in Section 4.4 into the solver GraphSAT [74] which natively supports the acyclicity
constraint (4.8). We evaluate the runtime of both implementations on randomly generated automata.
For a given number of states n and a fixed number of events m = 10, transitions are included
in the automata independently with a fixed probability. The probability is selected such that the
expected number of transitions is 2nm where the exponential blowup of the observer construction is
encountered [92]. We do this to demonstrate for a fixed bound k that the proposed method performs
well in the worst-case scenario for verifying LBO.

The resulting runtimes for verification were averaged over 30 instances2 for each size n ranging
from 5 to 17. As the absolute runtimes are sensitive to details of each implementation, we depict
the verification runtimes as a percentage of the time to verify LBO in Fig. 4.5. We observe that for a
fixed k, this ratio for verifying k-BMO decreases steadily indicating that the proposed method, while
exponential itself, scales exponentially slower with automata size than the observer construction for
LBO. While there are more efficient approaches to verify LBO such as modular [54] or antichain-
based methods [27], it is likely similar trends will exist in comparison to verifying k-BMO due to
the different complexity classes.

4.5.2 Server Load Hiding

Many cyber-physical systems operate, in part, over the public Internet, using remote servers
to offer critical services. Security for these critical services is often based on location hiding,

2The SAT solver failed to terminate on 11 out of the 1170 of instances within a five minute timeout which are not
included in our analysis. We note that the unpredictability of the runtime of SAT solvers presents a limitation to our
approach in practice.
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e.g., hiding the true address of a server behind a network of proxies [52]. While this can provide
protection against distributed denial of service (DDoS) attacks, resourceful attackers can learn the
structure of simple, static networks to bypass these measures [50, 93]. When the server location
cannot be hidden, it may be desirable to instead hide which servers are under a heavy load as such
servers are attractive targets for DDoS attacks.

We consider the problem of verifying that these loads are hidden in the simplified load-balancing
system depicted in Fig. 4.6 in which users send requests to the balancer which then assigns these
requests to servers. We model the load balancer with a DFA GL that arbitrarily assigns requests to
available servers. The overall system G is given by the parallel composition of the load balancer GL

with nU users and nS servers with a capacity C ∈ N modeled by the DFAs GU,i and GS,j depicted
in Fig. 4.7

G = GU,1 || · · · || GU,nU
|| GS,1 || · · · || GS,nS

|| GL . (4.10)

We will extend the SAT constraints developed in Section 4.4 to encode opacity against attackers that
can compromise user devices with a k-bounded memory. Formally, if the attacker has compromised
user i, the events reqi and resi become observable. We can incorporate this choice of observability
for event σ by viewing O(σ) from constraint (4.5) as a decision variable. The attacker then aims to
solve a kind of optimal sensor placement problem, choosing users i to observe with uniform cost
ci = 1. By incorporating the constraints for k-BMO in the MAX-SAT framework, we can model
these costs with soft clauses ¬(O(reqi) ∨ O(resi)) with weight ci. We require that the attacker
cannot deduce that a specific server is heavily loaded, i.e., at secret state C. To model this, we
let Qm,j denote states of G where server j does not pass through state C. Then, we can encode
opacity with respect to all of the server secrets by replacing the constraint ψQm from (4.9) in the
SAT encoding with the constraint ψ =

∧nS

j=1 ψQm,j
.

By solving the resulting instance of MAX-SAT, we can determine the minimum cost of an attack
with size k (if one exists) as the total weight of the solution clauses. This corresponds to the number
of users that must be compromised to deduce when a server is heavily loaded. We report the results
for solving this problem over a variety of parameters in Table 4.1. As we would expect, there must
be sufficiently many users for an attack to exist, i.e. nU ≥ CnS . Interestingly, the size of an attack
may be smaller than the number of users that it monitors. Similar to Example 4.1, the minimum
cost attack in the first system utilizes the events of all 5 users but itself has only 4 states.

4.6 Conclusion

In this chapter, we have presented a new notion of opacity expressing privacy from an observer
with a bounded memory. We derived a number of its basic properties, including the co-NP-
completeness of its verification problem. We demonstrated the applicability of this notion on a
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Figure 4.6: The architecture of the load-balancing system.
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Figure 4.7: The automata GU,i (top) modeling user i and GS,j (bottom) modeling server j.

nU nS C |Q| k Time(s) #Clauses Opaque Cost
5 1 5 248 4 20.3 3.5×106 No 5
5 1 6 248 5 29.4 6.9×106 Yes n/a
4 2 2 419 3 22.3 3.9×106 Yes n/a
4 2 2 419 4 55.5 9.7×106 No 3

Table 4.1: Verification results for the server load-hiding system.
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number of experiments utilizing a SAT encoding for verification.
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CHAPTER 5

Enforcement of Opacity with Obfuscation

5.1 Introduction

Oftentimes, it can be verified that an existing system is not opaque, but it is desired to enforce

opacity upon the system. The problem of opacity enforcement has been approached using a variety
of mechanisms in the literature. For example, supervisory control can enforce opacity by restricting
behavior that would reveal secrets to an eavesdropper. The synthesis of such controllers has been
investigated in [28, 82] for instance. However, it is not always feasible to alter existing system
behavior, e.g., human behavior in a cyber-physical system. Obfuscation has been proposed as
an alternative to control to enforce opacity by altering the information ultimately available to the
eavesdropper. Several works have investigated the synthesis of edit functions which selectively
insert and delete outputs from the system [100, 102]. These approaches synthesize edit functions,
which effectively enforce current-state opacity, as winning strategies to finite two-player reachability
games as in [26]. Related obfuscation strategies, such as delaying observations at runtime [32] and
dynamic masks [110], have also been studied.

In this chapter, we consider the problem of synthesizing edit functions to enforce K-step opacity.

To the best of our knowledge, this problem has not yet been explicitly considered in the literature. As
noted in [100], synthesis methods for current-state opacity can be applied to enforce other notions
of opacity that can be transformed into current-state opacity, provided the resulting enforcement
strategy for current-state opacity can be mapped back to the original notion of opacity under
consideration. For example, it was found in [101] that initial-state and language-based opacity
can be transformed into current-state opacity. Recently, a novel language-based formulation of
the various notions of K-step and infinite step opacity was established, for the first time, in [97].
While [97] focuses on the verification of K-step opacity over finite automata, in this chapter we
focus on the enforcement of K-step opacity with edit edit functions. We show how safe edit
functions can be synthesized by suitably leveraging existing methods for current-state opacity. We
demonstrate this approach on a case study by synthesizing edit functions enforcing location privacy
on a system modeling the motion of individuals using a contact-tracing app whose data is available
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Figure 5.1: An automaton A (left) where the square state 1 is considered secret so ℓ(0) = NS and
ℓ(1) = S. The label-transform T (A, ℓ) (right) recognizes the input-output sequences of A under ℓ.

to a malicious eavesdropper.

5.2 Problem Formulation

In this setting, we assume that all observers of the system (both intended and unintended) have
access to the same observations. These observations are produced not directly from the system’s
sensors, but rather through the obfuscator.

Fig. 5.2 depicts the flow of information we consider.

5.2.1 Obfuscation Model

Recall that opacity is violated when the eavesdropper observes information output by the system
that reveals secret behavior. This situation can be avoided with obfuscation, i.e., altering the
information output by the system to fool the eavesdropper while maintaining the system’s utility.
As the outputs we consider are strings, we model this type of obfuscator as a nondeterministic edit
function as in [49].

Definition 5.1. A nondeterministic edit function over the events Σ∗ is a function Obf : Σ∗ → 2Σ
∗

or equivalently a relation Obf ⊆ Σ∗ × Σ∗.

We interpret the edit function Obf as follows: if the edit function has already received the string of
inputs s ∈ Σ∗, upon receiving the new input event σ ∈ Σ, it produces a string of outputs from the
set Obf(sσ). Similarly, before receiving any input, it produces a string of outputs in Obf(ϵ). With
this interpretation, the edit function defines the following observation relation between its inputs
and outputs

Plant
Plant

Obfuscator
Obf

Network
Net

Recipient
Inf

Eavesdropper

Figure 5.2: Network architecture for enforcement of opacity with obfuscation.
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Definition 5.2. Given the edit function Obf over events Σ, the non-prefix observation relation

induced by Obf denoted by Θn
Obf is the smallest relation satisfying

(ϵ, t) ∈ Obf =⇒ (ϵ, t) ∈ Θn
Obf

(s, s′) ∈ Θn
Obf ∧ (sσ, t) ∈ Obf =⇒ (sσ, s′t) ∈ Θn

Obf .

The prefix observation relation induced by Obf denoted by ΘObf is then the smallest relation

satisfying

(ϵ, t) ∈ Obf ∧ t′ ∈ t =⇒ (ϵ, t′) ∈ ΘObf

(s, s′) ∈ Θn
Obf ∧ (sσ, t) ∈ Obf ∧ t′ ∈ t \ {ϵ} =⇒ (sσ, s′t′) ∈ ΘObf .

An edit function can be understood as selectively deleting events as they occur and possibly
inserting fictitious ones. Such an edit function can be implemented in many ways. For example,
some edit functions can be represented as finite state transducers [80], i.e., a finite state transducer
marks the induced observation relation. In this case, we say the edit function is finite. For simplicity,
in this chapter we will only discuss such finite edit functions.

5.2.2 Notions of opacity under enforcement

We are interested in designing obfuscators which enforce language-based opacity in the frame-
work of Chapter 3. In this framework, we model the behaviors of the system as a language L over
the alphabet Σ. However, instead of making observations of these behaviors through a static mask as
in Chapter 3 and Chapter 4, the eavesdropper now makes observations through the obfuscator. For-
mally, if obfuscation is implemented with an edit function Obf , we consider the induced observation
relation ΘObf which defines the system ∆ = (L,ΘObf). As in the general framework, we consider
that the eavesdropper may have varying degrees of knowledge about the system encoded with a
nominal model ∆̂ = (L̂, Θ̂) where L̂ is a language over Σ. Given some nonsecret specification
φNS, we consider opacity with respect to different nominal observation relations which correspond
to different levels of information safety or privacy ensured by the enforcement mechanism. The
implementation of the edit function Obf may ultimately be unknown to the eavesdropper, or we say
the obfuscator is private. In this case, opacity requires that the obfuscated observations of the real
system are consistent with the nonsecret behavior, We represent this with the nominal observation
relation given by the identity I = {(s, s) | s ∈ Σ∗}.

Definition 5.3. Given a behaviors L, nominal behaviors L̂, and nonsecret specification φNS, we

say an edit function Obf enforces private safety if ∆ = (L,ΘObf) is opaque for ∆̂ = (L̂, I) and
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φNS, i.e.,

ΘObf(L) ⊆ L̂ . (5.1)

Alternatively, the edit function Obf may be learned by the eavesdropper after it is implemented,
or the obfuscator is public. In this case, opacity requires that the obfuscated observations of the real
system are consistent with the obfuscated observations of nonsecret behavior.

Definition 5.4. Given a behaviors L, nominal behaviors L̂, and nonsecret specification φNS, we

say an edit function Obf enforces public safety if ∆ = (L,ΘObf) is opaque for ∆̂ = (L̂,ΘObf) and

φNS, i.e.,

ΘObf(L) ⊆ ΘObf(L̂) . (5.2)

These notions of public and private safety generalize the definitions of public and private
safety for CSO from [49]. Additionally, given multiple nonsecret specifications, we can make
corresponding private and public definitions of joint opacity (Definition 3.2) and separate opacity
(Definition 3.3). In this way, we can define both private and public notions of K-step opacity as
described in Section 3.4. We recall that K-step opacity informally requires hiding secret behavior
over K of the last “steps” of the system. In formalizing a definition, we must identify which
steps we are referring to, e.g., original or obfuscated behavior. For simplicity, we consider steps
corresponding to events of the nominal model of behavior possessed by the eavesdropper. Formally,
the specifications for nonsecret behavior are given by the k-delayed behavior defined by equation
(3.17) for the observation relation Θ̂ = I. As we consider all events to be observable Σobs = Σ,
there is no distinction between type 1 and type 2 secrets, so we denote these k-delayed behaviors as
{φNS(k)}Kk=0.

5.3 Enforcement Approach

In this section, we describe how edit functions enforcing private safety for joint and separate
K-step opacity, as in Definitions 3.2 and 3.3, can be synthesized using existing methods for CSO
such as [48, 102, 104]. Abstracting away details specific to each implementation, these synthesis
methods can broadly be described as solving the following problem.

Problem 5.1 (Private Safety Enforcement). Given an NFA G = (Q,Σ, δ, Q0, Qm) and a class of

edit functions SObf ⊆ {Obf : Σ∗ × Σ∗}, find an edit function Obf ∈ SObf such that

ΘObf(L(G)) ⊆ Lm(G) . (5.3)

In this problem, the marked states Qm encode admissible or nonsecret states, and unobservable
events are represented with ϵ transitions. The set SObf describes the edit functions that satisfy
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additional constraints that can be imposed in a given synthesis method. For example, the methods
of [48, 102] synthesize edit functions with a bound on the number of consecutive insertions. After
determinizing G, the methods of [104] also consider utility constraints which limit the difference
between original observations and their obfuscations.

Remark 5.1. Other mechanisms for enforcement, such as the dynamic masks considered in [110],

can be viewed as a specific type of edit function. Additionally while Problem 5.1 describes private

safety for CSO, there is a similar problem for public safety with corresponding synthesis methods

that could be applied to K-step opacity. For example synthesis of edit functions which are both

publicly and privately safe is discussed in [48] while the R-enforcers of [32] can be viewed as edit

functions enforcing public safety using delay.

By transforming an automatonA with secret label map ℓ and refining the state space by nonsecret
specification automaton HNS into the automaton G = Θ(T (A, ℓ)×HNS) as in Section 3.3, we can
express K-step opacity with as language-based opacity as in Section 3.4. Using this result, we can
then enforce K-step opacity over A by solving Problem 5.1 over G.

5.3.1 Enforcing Joint K-step Opacity

As joint K-step opacity is defined in terms of only one class of nonsecret runs, namely the
intersection of the sets φNS(k) for k ∈ {0, · · · , K}, we can apply synthesis methods for current-state
opacity directly.

Theorem 5.1. Let G = Θ(T (A, ℓ)×HJ
NS(K)). An edit function Obf ∈ SObf is privately safe for

joint K-step opacity over A and ℓ if and only if it is a solution to Problem 5.1 for G, SObf.

Proof. We see that

L(G) = Θ(L(T (A, ℓ)) ∩ L(HJ
NS(K)))

= Θ(L(T (A, ℓ)) ∩ Σ∗) = Θ(L) .
(5.4)

Additionally,

Lm(G) = Θ(Lm(T (A, ℓ)×HJ
NS(K)))

= Θ

(
K⋂
k=0

LNS(K)

)
.

(5.5)

So we see edit functions that are solutions to Problem 5.1 are exactly those which enforce joint
private opacity as in the sense of Definition 5.3.
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If a deterministic automaton is required, the same result holds for the determinization det(G)

instead of G. Here the automaton det(G) corresponds to the secret observer automaton GSO for
joint opacity from [97]. So to enforce K-step opacity for an automaton A, we construct G as in
Theorem 5.1, synthesize an edit function Obf as a solution to Problem 5.1 for G, and apply Obf

directly to the outputs of the original system. This is possible as the language of G is the set of
observations produced by the original automaton A. We demonstrate this in the following example.

Example 5.1. In this example we construct an edit function enforcing joint 1-step opacity with

type 1 secrets. Consider the automaton A, secret label map ℓ, and their label-transform T (A, ℓ)
depicted in Fig. 5.1. Consider the nonsecret specification automaton HJ

NS(1) as depicted in Fig. 5.3

constructed for A and ℓ. This automaton marks sequences of input-output pairs corresponding

to runs that have not visited a secret state since 1 observation ago. We construct the automaton

G = obs(T (A, ℓ)×HJ
NS(1)) which is depicted in Fig. 5.4. This automatonGmarks the observations

of the behavior of A that do not violate joint 1-step opacity. To better understand these observations

we construct det(G) which is language equivalent and is depicted in Figure 5.5. We can see that

the observation ab is not marked and hence is unsafe. This is because if the eavesdropper observes

the event b, they reason that the system was in the secret state 1 exactly 1 step ago.

If knowing the total number of events executed in the system is important, we can consider the

following class of edit functions

SObf = {Obf : Σ∗ → Σ∗ | ∀s ∈ L(G), |ΘObf(s)| = |s|} . (5.6)

Then a solution to Problem 5.1 for G, SObf is the edit function Obf which replaces all occurrences

of a with b so ∀s ∈ L(G), ΘObf(s) = a|s|. We can verify that Obf is a solution to Problem 5.1 as

the set of obfuscated observations is ΘObf(L(G)) = {a}∗ which is safe. Thus by Theorem 5.1, the

edit function Obf is privately safe for 1-step opacity. This makes sense: Obf hides the only event b

that would reveal the secret to the eavesdropper.

5.3.2 Separate Case

Enforcing separate K-step opacity is complex as we must consider multiple classes of nonsecret
behavior φNS(k) for k ∈ {0, · · ·K}. However, like it suffices to consider observations of the
intersection of these nonsecret behaviors Θ

(⋂K
k=0 φNS(k)

)
for joint K-step opacity, it suffices

to consider the intersection of the observations of these nonsecret behaviors
⋂K

k=0Θ(φNS(k)) for
separate K-step opacity in terms of private safety. While we could represent this latter set of
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Hjoint
NS (1) (0, 0) (1, 0) (2, 0)

Σ

ΣNS ΣNS
HNS(2) (0, 0) (1, 0)

(1, 1)

(2, 0) (3, 0)

Σ

ΣNS

Σ

Σ

ΣNS ∩ ∅

Σ

Figure 5.3: The nonsecret specification automata Hjoint
NS (1) and HNS(2). These automata are defined

over the input-output pairs Σ = ((E ∪ {e0}))× {S,NS}. Here ΣNS = ((E ∪ {e0}))× {NS}.

(x0, (0, 0))

(0, (0, 0))

(1, (0, 0))

(x0, (1, 0))

(0, (1, 0)) (0, (2, 0))

e0
e0

a

a
a

b

b

e0

a

Figure 5.4: The automaton G = Θ(T (A, ℓ)×HJ
NS(1)) from Example 5.1.
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{(x0, (0, 0)), (x0, (1, 0)), (0, (0, 0)), (0, (1, 0)), (0, (2, 0))}

{(0, (0, 0)), (0, (1, 0)), (0, (2, 0))(1, (0, 0))}

{(0, (0, 0)), (0, (1, 0))}

a

a b a

Figure 5.5: The automaton det(G) from Example 5.1.

observations with the automaton

K∏
k=0

Θ(T (A, ℓ)×HNS(k)) , (5.7)

we can avoid this product by utilizing the fact that HNS(k) is a subautomaton of HNS(K) for k ≤ K.
For each k ∈ {0, · · · , K} there exists a set Qm,H,k of states of HNS(K) such that the language
of HNS,j(K) marked by the states Qm,H,k is Lm(HNS(k)) [97]. For example in the automaton
HNS(2) depicted in Figure 5.3, these sets are given by Qm,H,0 = {(1, 0)}, Qm,H,1 = {(2, 0)},
Qm,H,2 = {(3, 0)}.

Theorem 5.2. Let G = det(Θ(T (A, ℓ) × HNS(K))) using the power set construction for deter-

minization. Let the marked states Qm of G be redefined as

Qm = {q | ∀k ∈ {0, · · · , K} ∃q ∈ q ∩Q×Qm,H,k} . (5.8)

Then an edit function Obf ∈ SObf is privately safe for separate K-step opacity over A and ℓ if and

only if it is a solution to Problem 5.1 for G, SObf.

Proof. Similar to the proof for Theorem 5.1, we see

L(G) = Θ(L(T (A, ℓ)) ∩ L(HNS(K)))

= Θ(L ∩ Σ∗) = Θ(L) .
(5.9)
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Likewise

Lm(G) =
K⋂
k=0

Θ(Lm(T (A, ℓ)×HNS(k)))

=
K⋂
k=0

Θ(LNS(k)) .

(5.10)

So we see edit functions that are solutions to Problem 5.1 are exactly those which satisfy Defini-
tion 5.3 for private safety for separate opacity.

The automaton G in this theorem corresponds to the secret observer automaton GSO for separate
opacity from [97]. We can then synthesize edit functions by solving Problem 5.1 as in the joint
case.

5.4 Results

In this section, we demonstrate an application of K-step opacity enforcement in the context of
contact tracing smartphone apps, developed in response to the COVID-19 pandemic, that record
proximity between users to a centralized server. These apps raise a number of privacy concerns as
described in [17, 51, 78]. We propose the use of obfuscation to enforce privacy for users of these
apps while maintaining the utility of these apps for public health. We demonstrate this through a
small example where a malicious user who gains access to this information may be able to combine
it with partial location information to determine that another user has visited some secret location.
Then we show how to enforce K-step opacity with a privately safe edit function using our approach,
specifically, by leveraging Theorem 5.1. This edit function was synthesized with the methods
from [104] as implemented in the EdiSyn library1. The automata constructions presented in this
work and an interface to the EdiSyn library are provided by the MDESops library [68].

5.4.1 Modeling

Our model assumes that there are some number of users, including one user that acts as a
malicious eavesdropper, that can move freely between a shared set of locations. We suppose that the
malicious user has full knowledge of their own movements, in addition to partial knowledge of the
other users’ movements based on a partition of the map into discrete regions. This partial knowledge
is modeled similarly to the automaton model for location-based services described in [105], but with
event labels based on the destination node instead of the source node. We further assume that the
malicious user has access to information from the contact tracing app from which they can deduce

1https://gitlab.eecs.umich.edu/M-DES-tools/EdiSyn
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Figure 5.6: The graph Γ that represents the locations and the physical paths between them. R and
S represent the partition of locations into distinct regions. Location 5 is considered to be secret.

the sizes of contact clusters that exist at any given time, where we consider a contact cluster to be
a set of multiple users sharing the same location. The malicious eavesdropper does not know the
locations of the contact clusters, or which users are in which contact clusters.

Our procedure requires as input a simple undirected graph Γ = (V ,E ) that represents locations
by the set of vertices V , and the physical paths between locations by the set of edges E . It also
requires a partition P of V into regions, a fixed number of users n, and some definition of secret
behavior. We additionally define region : V → P so that for v ∈ V , region(v) is the region
containing v.

Throughout this section, we illustrate our procedure using Γ as shown in Fig. 5.6, with P =

{R,S} as shown. We also suppose that n = 3, and user 2 visiting location 5 as the secret state of
the system.

5.4.2 Mobility Model

Using Γ , we first construct the map automaton G = (V , E ,∆,V0), where V is the set of states, E
is the set of events, ∆ : V × E → 2V is the transition function, and V0 is the set of initial states. We
define V0 = V , E = {τ}, and ∆(v, τ) = {v} ∪ {u ∈ V | (u, v) ∈ E } for all v ∈ V .

For each i ∈ {1, 2, . . . , n}, we construct an individual automaton Gi, which represents all
movements that user i is allowed to make in a single time step. We construct G1 from G by removing
the secret location, since we assume the malicious user is not allowed to enter the secret location.
For i > 1, we let Gi = G, since other users are unrestricted in their movement. The individual
automaton G1 for our example is shown in Fig. 5.7. The individual automata G2 and G3 are not
shown, but are similar with G1, with the additional inclusion of the secret location 5. We then
constructH = G1×G2×· · ·×Gn, which gives the full model of all possible movements by all users
within the system. The state set of H is then Vn, and for each state x ∈ Vn with x = (v1, ..., vn),
we have that vi is the location of user i.
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Figure 5.7: The individual automaton G1, representing all possible movements by the malicious
user in a single time step. The individual automata G2 and G3 are similar, but also include the secret
state 5.

Given a state x ∈ Vn, we define

α(x) = (α1, ..., αn) (5.11)

where for each i,

αi =

 v1, i = 1

region(vi), i > 1.
(5.12)

The result is that α(x) denotes the locations of each user, as observed by the malicious eavesdropper,
when the system is in state x. We also define the multiset

β(x) = {|Bv| : |Bv| > 1} (5.13)

where for each v ∈ V ,
Bv = {i ∈ {1, . . . , n} : vi = v}. (5.14)

The result is that β(x) represents the sizes of the contact clusters that exist when the system is in
state x. Note that in general, β(x) must be a multiset since there may be more than one contact
cluster of a given size, but since also the contact clusters are indistinguishable and thus their sizes
should be unordered. For our example with n = 3, we note that β(x) has only three possible values:
β(x) = ∅ if all states in x are distinct, β(x) = {2} if two states of x are identical and the third is
distinct, or β(x) = {3} if all states of x are identical.

Finally, we construct A from H by relabeling each transition as the concatenation α(x)β(x)
where x is the state at which the transition ends, and α and β are the location and contact markings
as defined in equations (5.11) and (5.13). We let the observable event set of A be Σobs = Σ. We
additionally mark states with v2 ∈ VS as secret. For our example, A contains 100 states and 5,054
transitions, and so is unable to be shown in full. However, a small subautomaton of A is shown in
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(1, 1, 1) (2, 2, 4) (3, 5, 1). . .

...

. . .

(1,R,R){3}

(2,S,S){2}

(2,S,S){2}

(1,R,R){3}

(3,S,R)∅
(3,S,R)∅

(2,S,S){2}

Figure 5.8: A small subautomaton of A. Events are labeled according to their target state. The state
(3, 5, 1) is secret since v2 ∈ VS = {5}.

Fig. 5.8, illustrating the result of the event relabeling.

5.4.3 Opacity Enforcement

Using existing methods of opacity verification, we can determine that the system is current-state
opaque, but that it is neither separately nor jointly 1-step opaque. Note that since Σobs = Σ, there is
no distinction between type 1 or type 2 secrets. One event sequence that violates 1-step opacity is

o =
(
(1,S,R){2}, (3,S,S)∅, (4,S,S){3}

)
, (5.15)

which corresponds to the state-estimate sequence

X1 = {(1, 2, 1), (1, 3, 1), (1, 4, 1), (1, 5, 1)},

X2 = {(3, 2, 4), (3, 5, 4), (3, 4, 2), (3, 5, 2)},

X3 = {(4, 4, 4)}.

(5.16)

Each Xi contains at least one nonsecret state, and thus current-state opacity is not violated by o.
However, the only state in X2 from which the event o3 = (4,S,S){3} can occur is the secret state
(3, 5, 4), and thus 1-step opacity is violated.

To enforce joint 1-step opacity, we first use A to construct G as defined in Theorem 5.1, with
K = 1. We additionally constrain the set SObf of allowable edit functions in two ways. First, we
only allow the edit function to replace events, i.e. deleting events entirely or inserting new events
where none previously existed is not allowed. Second, we enforce a utility constraint as is defined
in [104]. This constraint prevents the obfuscator from changing any of the location information
observed by the eavesdropper directly. To construct this constraint, we first define the utility distance
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DA : Vn × Vn → {0, 1} over the automaton A such that for x, y ∈ Vn, we have

DA(x, y) =

 0, α(x) = α(y)

1, otherwise.
(5.17)

where α is as defined in equation (5.11). We then transform DA into a utility distance DG for G so
that DG(s, t) = 0 if and only if for every A component x in s, there exists an A component y in t
such that DA(x, y) = 0. The utility constraint on the edit function Obf over G then requires that
for any observation o ∈ obs(R), the state s of G reached by o and the state t of G reached by the
obfuscated observation M(o) satisfy DG(s, t) = 0.

Now we construct an edit function Obf by applying EdiSyn to solve Problem 5.1 for G, SObf.
The resulting edit function is encoded by an obfuscator automaton, similar to a string transducer,
containing 440 states and 11,290 transitions. Therefore it is not possible to include the full result in
here. However, we consider again the violating event sequence o defined in equation (5.15). This is
mapped by the edit function to the obfuscated event sequence

M(o) =
(
(1,S,R){2}, (3,S,S){3}, (4,S,S){3}

)
, (5.18)

which corresponds to the new state-estimate sequence

X ′
1 = {(1, 2, 1), (1, 3, 1), (1, 4, 1), (1, 5, 1)}

X ′
2 = {(3, 3, 3)}

X ′
3 = {(4, 4, 4)}.

(5.19)

Since X ′
1 contains nonsecret states from which the event M(o)2 = (3,S,S){3} can occur, and

since X ′
2 and X ′

3 each contain only nonsecret states, then joint 1-step opacity is not violated by
M(o). Additionally, this is a valid edit since each event that may occur from a state in X2 may also
occur from a state in X ′

2.

5.5 Conclusion

In this chapter, we considered the problem of synthesizing edit functions that enforce the various
notions of K-step opacity. By transforming K-step opacity into a language-based notion, we can
apply existing synthesis methods for CSO. To the authors’ knowledge, synthesis methods for edit
functions enforcing K-step opacity have not been proposed before. We demonstrate this approach
on a novel contact-tracing system model. We focused on the effectiveness of edit functions that are
not known to the eavesdropper, but a similar approach can be used assuming the edit function is
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public as in [48]. Additionally, the language-based formulation of K-step opacity could be used to
study the problem of synthesizing supervisory control to enforce K-step opacity.
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CHAPTER 6

Enforcement of Opacity and Utility with Distributed Synthesis

6.1 Introduction

Obfuscation provides a powerful mechanism for opacity enforcement as we have seen in the
previous chapter. In particular edit functions, which selectively insert and delete system outputs,
edit functions can effectively hide secrets from everyone on an open network [100]. Because
these methods do not distinguish between intended and unintended recipients., information that is
available to some is available to all. This limits the utility of this approach as it forces a strict trade
off between privacy and utility.

In this chapter we propose an obfuscation framework that allows an intended recipient to infer

sensitive information that cannot be deduced by unintended recipients. Similar to encryption, this is
possible by designing a “key” that is provided to the intended recipient to recover information about
the plant from their obfuscated observations. Whereas encryption achieves privacy by conspicuously
altering data to ensure it is impossible or at least computationally difficult to recover, our proposed
method of obfuscation achieves privacy by inconspicuously altering data to deceive recipients
with partial knowledge of the system. In this sense, our goals for obfuscation are orthogonal to
those of encryption. We provide an automatic method for the simultaneous design of obfuscation
and inference policies for dynamic systems subject to security and utility requirements. In this
setting, plants can be modeled by finite automata over which we can specify requirements with
temporal logics. We consider obfuscation policies similar to edit functions which can produce a
positive number of outputs given a single input from the plant. By modeling the obfuscation and
inference policies as processes in a distributed system, we can leverage techniques from distributed
synthesis [38] to design solutions with formal guarantees of privacy and utility. We motivate our
solution to this problem with the following simple example.

Example 6.1. Consider a company operating a research facility whose layout is depicted in Figure

6.2. Smart devices report employee’s locations throughout the building to a server over an internal

network. However, the devices’ accuracies are limited and only report an approximate location

represented by a region of the building: R is the lobby, S is the offices, and T is the electronics lab
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Figure 6.1: The graph Γ = (V ,E ) that represents the locations V and the physical paths between
them E . Regions R, S, T represent the approximate locations the smart device can report and
partition the space V . The chemistry lab is considered to be a secret location.

Figure 6.2: The graph Γ = (V ,E ) that represents the locations V and the physical paths between
them E . Regions R, S, T represent the approximate locations the smart device can report and
partition the space V . The chemistry lab is considered to be a secret location.

and chemical lab. The company is concerned this information may reveal to their competitors how

they allocate their resources, i.e., when an employee enters the chemistry lab. However, the company

does not want to restrict employees’ movements or alter their schedules. While encryption can

secure this information over the network, it alerts competitors to the existence of a secret and may

prompt them to investigate using other means. Instead the company chooses to deceive competitors

by reporting obfuscated employee locations, but these must be consistent with the building layout in

order to not raise suspicion.

By expressing the requirement to hide their location as opacity, obfuscation techniques can be

applied to the dynamic model induced by the building layout for each employee. However, the

company also utilizes an emergency response service that must be informed when individuals are

using the chemical lab. Existing methods of obfuscation cannot guarantee this form of utility as

they view all recipients equally: if this information is hidden to competitors, it must be hidden from

everyone. Instead, the company realizes they could provide information about their obfuscation to

the emergency service, so that the service can infer the relevant information from the obfuscated

locations. In summary, the company wants to design obfuscation and inference policies that

are consistent with the dynamics induced by the building layout, guarantee privacy from their

competitors, and maintain utility with the emergency service.
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6.2 Problem Formulation

In this section, we formulate the problem of obfuscation synthesis with formal models for the
plant, obfuscator, and recipients. We express security and utility requirements through opacity and
a new notion of inference.

6.2.1 System Model & Requirements

We consider a plant that sequentially outputs over a set of Boolean variables Oenv. This behavior
is defined by a set of finite traces Lenv ⊆

(
2Oenv

)∗. The obfuscator Obf receives a subset IObf ⊆ Oenv

of the plant’s output variables as input and produces a sequence of outputs on the Boolean variables
OObf at each step. We only consider obfuscators that are deterministic, i.e., producing a single
sequence of outputs on a single input, and non-silent, i.e., never producing the empty sequence. We
call the implementation of an obfuscator an obfuscation policy.

Definition 6.1. A deterministic and non-silent obfuscation policy is a function Obf :
(
2IObf

)+ →(
2OObf

)+ that maps input histories to a sequence of produced outputs.

This definition is similar to the concept of an edit functions as in [49]. Given an input history
i = i0 · · · in ∈

(
2IObf

)+, the corresponding output histories consist of the complete output sequences
made for i0 through in−1 followed by a partial output sequence made for in. We define the set of
such output histories Hist(Obf , i) by

Hist(Obf , i) = {Obf(i0) · · ·Obf(i0 · · · in−1)} · (Obf(i0 · · · in) \ {ϵ}) . (6.1)

For example, if Obf(i0) = o0o1 and Obf(i0i1) = o2o3 then the output histories are
Hist(Obf , i0i1) = {o0o1o2, o0o1o2o3}.

Recipients passively observe a subset IInf ⊆ OObf of the obfuscator’s output variables and try to
reason about the state of the plant. Importantly we assume that recipients only observe the outputs

of the obfuscator sequentially, not how they are produced, e.g. they cannot distinguish outputting
the word σσ on one input and outputting σ twice over two inputs. This motivates our definition of
the output histories from equation (6.1). Privacy and security requirements express limits on the
knowledge deduced by unintended recipients. In the context of opacity [49], the notion of private

safety describes privacy from a recipient that knows the plant but is unaware of obfuscation. In
this case the recipient’s observations should correspond to observations of nonsecret behavior in
the plant. In this work, we more generally require these observations to belong to some nonsecret

language LNS.
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Definition 6.2. We say an obfuscation policy Obf enforces private safety with respect to the plant

behavior Lenv and nonsecret output histories LNS ⊆
(
2OObf

)∗ if

∀e ∈ Lenv \ {ϵ}, ∀h ∈ Hist(Obf , e|IObf) : h ∈ LNS . (6.2)

In the next subsection, we show how this notion of private safety can express the inability of a
recipient with uncertain knowledge of the obfuscation policy to infer information about the plant.
For instance, we construct LNS for Example 6.1 as the set of location histories that do not visit
the chemistry lab. In this case, private safety ensures that competitors can never deduce when
employees enter the chemistry lab. For simplicity, we will assume that both Lenv and LNS satisfy the
conditions of Lemma 6.4 so that they can be generated by finite automata without deadlock.

While obfuscation ensures security against unintended recipients, the intended recipient must
be able to infer certain information about the plant’s behavior using the outputs of the obfuscator.
So the inputs to the recipient are IInf = OObf while their outputs OInf encode their inferences about
the plant with Boolean variables. The recipient’s reasoning is then modeled by an inference policy

Inf :
(
2IInf
)+ → 2OInf mapping the recipient’s history of observations to their inferences. While the

recipient could reason about arbitrary predicates over the plant behavior, we consider only their
ability to always infer some fixed function Data : 2Oenv → 2OInf of the current plant output. This
means if the current plant output is e ∈ 2Oenv , then the recipient’s inference policy should output
Data(e). The number of possible inferences is given by 2|OInf|. In the context of Example 6.1, the
emergency service must infer when the user is in the chemistry lab, so we define Data to output
true when there is a user present and false otherwise.

Definition 6.3. Given the plant behavior Lenv ⊆
(
2Oenv

)∗, obfuscation policy Obf :
(
2IObf

)+ →(
2OObf

)+, and data function Data : 2Oenv → 2OInf , an inference policy Inf :
(
2IInf
)+ → 2OInf is

correct if

∀e = e0 · · · en ∈ Lenv \ {ϵ}, ∀h ∈ Hist(Obf , e|IObf) : Inf(h) = Data(en) . (6.3)

With the models of the system defined along with the notions of correct inferences and private
safety, we can now define the obfuscation synthesis problem.

Problem 6.1 (Obfuscation synthesis). Given a plant with behavior Lenv, nonsecret output histo-

ries LNS, and information Data, find an obfuscation policy Obf that enforces private safety and

an inference policy Inf that is correct.

After designing the obfuscation and inference policies, the inference policy can be securely trans-
ferred to the intended recipient. Critically, this allows the intended recipient to infer information
about the plant that unintended recipients cannot.
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6.2.2 Modeling Security Requirements

We now show how to construct the language LNS to express security properties as private safety.
In the context of opacity, reference [49] provides a definition of LNS expressing the inability of
an observer unaware of any obfuscation to deduce the plant is currently at a secret state. We
extend this definition by considering recipients with some fixed but uncertain knowledge of the
plant and obfuscation policy a priori. Namely they believe the plant behavior belongs to the
set L′

env ⊆
(
2Oenv

)+ and that this behavior is altered with an obfuscation policy in the class
SObf ⊆ {Obf ′ :

(
2IObf

)+ → (
2OObf

)+}. We consider the security requirement that the output of the
obfuscator must be consistent with the recipient’s model of L′

env and SObf. Additionally, the recipient
must not be able to deduce that the plant behavior did not belong to some set of nonsecret behavior
L′

env,NS ⊆ L′
env. We clarify that while the unintended recipient may know that their observations have

been altered, we assume they do not know for what purpose or how the obfuscation is designed1.
In this case it suffices to ensure any output history of the true obfuscation policy Obf over the
plant behaviors Lenv is also the output history of some obfuscation policy Obf ′ ∈ SObf applied to a
nonsecret plant trace e′NS ∈ L′

env,NS. Formally,

∀e ∈ Lenv \ {ϵ}, ∀h ∈ Hist(Obf , e|IObf),

∃e′NS ∈ L′
env,NS, ∃Obf ′ ∈ SObf : h

′ ∈ Hist(Obf ′, e′NS|IObf) . (6.4)

A class of obfuscation policies SObf = {Obf ′ :
(
2IObf

)+ → (
2OObf

)+} defines a relation
RSObf ⊆

(
2IObf

)+×(2OObf
)+ between plant behaviors and the corresponding possible output histories

defined by
RSObf =

⋃
e′∈(2IObf)

+

⋃
Obf′∈SObf

{e′} ×Hist(Obf ′, e′) . (6.5)

We call such a relation regular if it can be represented by a finite transducer, i.e., RSObf is the set
of all pairs of input and output words accepted by the transducer. These relations are also called
rational transductions in [80]. The composition R(L) of a relation R to a language L is defined by

R(L) = {h | ∃e ∈ L : (e, h) ∈ R} . (6.6)

We assume that the behavior L′
env,NS satisfies the conditions of Lemma 6.4 and the class of obfusca-

tion policies SObf defines a regular relation. Under these assumptions, we have the following result.

1In future work, we can consider obfuscators that are secure to recipients aware of the design requirements and
synthesis method. This would be similar to the notion of public safety [49].
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Theorem 6.1. Let L′
env,NS be a language satisfying the conditions of Lemma 6.4 and let SObf be such

that RSObf is regular. Then LNS = RSObf(L
′
env,NS \ {ϵ}) also satisfies the conditions of Lemma 6.4.

Furthermore, an obfuscation policy Obf is privately safe with respect to Lenv and LNS if and only if

unintended recipients never deduce the plant behavior did not belong to L′
env,NS, i.e, condition (6.4)

holds.

Proof. By assumption, there exists a finite automaton G with L(G) = L′
env,NS. Then as RSObf is a

regular relation, by the results of [80] the composition LNS = RSObf(L
′
env,NS\{ϵ}) can be represented

by an automaton constructed as the product of the finite transducer representing RSObf with G. As
both G and the transducer are both finite and deadlock-free (as obfuscation policies are defined over
all inputs), it follows that this product automaton is also deadlock-free in the sense of Lemma 6.4.
Hence LNS satisfies the conditions of Lemma 6.4.

Next observe by the definition of LNS and RSObf that

h ∈ LNS
(6.6)⇐=⇒ ∃e′ ∈ L′

env,NS : (e′, h) ∈ RSObf

(6.5)⇐=⇒ ∃e′ ∈ L′
env,NS, ∃Obf ′ ∈ SObf : h ∈ Hist(Obf ′, e′) .

Hence condition (6.4) is equivalent to private safety.

By explicitly modeling the knowledge of unintended recipients, we have control over the level of
security the obfuscator guarantees. We also note that the more uncertain the unintended recipient,
i.e., the larger L′

env,NS and SObf are, the easier it is to enforce private safety. For example if
the unintended recipient is not aware that the plant outputs are altered, we consider the class
SObf with only the identity map. This corresponds to the existing notion of private safety in
[48]. If instead the unintended recipient is more uncertain and believes that the outputs could
be altered but there can only be k consecutive outputs for a single input, we consider the class
SObf = {Obf | ∀e : |Obf(e)| ≤ k}. In this case, any solution for the first case will also be a
solution for the second case. In both bases, we can also see that the induced relations RSObf are
regular.

Example 6.2. We transform the problem described in Example 6.1 into an instance of Problem

6.1 as follows. First we model the movement of the employee around the building layout graph Γ

from Figure 6.2 and the regions detected by the smart devices as the plant behavior Lenv. We define

this behavior over the possible regions and whether or not the current location is the secret one

(the chemistry lab). So we define Oenv = {R,S, T , S} where S denotes the secret2. We construct an

2For simplicity, we encode each region with a single variable. As they are disjoint, they could more efficiently be
encoded with two variables rather than three total.
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Figure 6.3: An automaton G generating the plant behavior Lenv corresponding to the employee’s
movement throughout the building depicted in Figure 6.2. Each region of the building is encoded
with its own variableR,S, T along with the secret status of the room encoded with the variable S .

automaton that generates the behavior Lenv with states given by the locations in Γ . Then for each

movement from one location to another given by an edge in Γ , we add a transition labeled with the

region and secret status of the destination. This results in the automaton G depicted in Figure 6.3.

Next, we model the obfuscator. Recall the obfuscator only observes the current region (and not

the secret output S) so we have IObf = {R,S, T }. Likewise the obfuscator outputs regions which we

represent with copies of the region variables OObf = {R′,S ′, T ′} (variables across processes must

be disjoint). We can then express the privacy requirement as private safety. Recall the unintended

recipients are competitors that should not be able to deduce that an employee is in the chemistry

lab. As the competitor knows the true layout of the building, their model of the plant is also given

by L′
env = L(G). The nonsecret behavior L′

env,NS is then given by the language generated by G after

removing the secret state, i.e., L′
env,NS = {T R,SR}∗. As we assume the competitor will not be

aware of this obfuscation, we consider the class SObf consisting only of the identity map (mapping

regions to their copy). We can then construct LNS = RSObf(L
′
env,NS) = {T ′R′,S ′R′}∗ as in Theorem

6.1 to define the appropriate notion of private safety.

Finally, we model the intended recipient. Recall the intended recipient is the emergency service

that observes outputs from the obfuscator and must be able to infer when an employee is in

the chemistry lab. So we define IInf = OObf and OInf = {S′} and Data : 2Oenv → 2OInf with

Data(e) = {S′} if S ∈ e and Data(e) = ∅ otherwise. Here S′ is a copy of the plant variable S

that is true when the recipient infers an employee is in the chemistry lab.

The company then desires to solve Problem 6.1 to design an obfuscation policy Obf and

inference policy Inf . By having each employee obfuscate their location with Obf on their smart

device, they ensure their competitors will not think they visit the chemistry lab. Then by securely

distributing Inf to the emergency service, they ensure they will be able to know when they visit the

chemistry lab.
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6.3 Obfuscation Synthesis in Distributed Systems

In this section, we show how to transform Problem 6.1 for obfuscation synthesis into an instance
of Problem 2.1 for pipeline synthesis that we know how to solve. While the system of Problem
6.1 resembles the pipeline architecture of Problem 2.1 with the plant feeding into the obfuscation
policy feeding into the inference policy, it is not “synchronous”: the obfuscation policy produces a
variable-length sequence of outputs on consuming a single input. To address this issue we unfold

the obfuscation system and specifications for private safety and correct inferences into synchronous
ones. Then solutions to Problem 6.1 can be found by folding solutions found to an instance of
Problem 2.1 over the unfolded system.

6.3.1 Unfolding the System

We must unfold our the obfuscation system so that one output is produced by the obfuscation
policy in each step. This unfolded system has the same plant outputs Oenv as the original or folded

system. We represent the obfuscator with a process p0 = (I0, O0) with the same inputs I0 = IObf

but with outputs O0 = OObf ∪ {yield} augmented with a variable yield indicating the sequence
of outputs has completed. As the inference with an inference policy is already synchronous, we
can represent it directly with the process p1 = (I1, O1) with I1 = IInf and O0 = OInf. Here the
yield variable is output by the obfuscator process p0 because the obfuscation policy controls the
length of its output sequences; however, the yield variable is not available to the inference process
p1 as input because recipients do not observe these lengths. This defines a pipeline architecture
A = (Oenv, p0, p1). We now show how to unfold behavior of the original or folded system into
behavior over A.

In a single step of the folded system, the plant generates an output v ∈ 2Oenv , the obfuscation
policy outputs the sequence o0 · · · on ∈

(
2Oenv

)+, and finally the inference policy makes a corre-
sponding sequence of inferences p0 · · · pn ∈

(
2OInf

)+. By defining f = (v, (o0 ∪ p0) · · · (on ∪ pn))
we can view a step of the folded system as elements of the set

F = 2Oenv ×
(
2OObf∪OInf

)+
. (6.7)

To unfold this step of the original system, we break each output of the obfuscation policy into
a single step. The auxiliary output yield is used to indicate that output has completed. As there
must be one environment output each step, we have it output v on the first step followed by ∅ on
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subsequent steps. So we unfold the step, as unfold(f) = t0 · · · tn ∈
(
2V (A)

)+ where

t0 = v ∪ o0 ∪ p0, ∀j ∈ {1, · · · , n− 1} : tj = oj ∪ pj, (6.8)

tn = on ∪ pn ∪ {yield} , (6.9)

when n > 0 and t0 = v ∪ o0 ∪ p0 ∪ {yield} when n = 0.
Now we extend this notion from a single step to infinite traces. To this end, we denote the

flattening or concatenating of a sequence of empty words into a sequence of letters by flat :

(Σ+)ω → Σω so that for s = (sj)j∈N with sj ∈ Σ+, it holds flat(s) = s0s1 · · · . We can then define
the traces of the folded system by

Tr(Obf , Inf) = {(ej, aj)∞j=0 ∈ F ω | ∀j ∈ N : aj|OObf = Obf(e0 · · · ej|IObf),

for (ãk)k∈N = flat((aj)j∈N),

∀k ∈ N : ãk|OInf = Inf(ã0 · · · ãk|IInf)} .

(6.10)

We denote the set of words possible after unfolding a single step by U = unfold(F ) ⊆
(
2V (A)

)+.
So to unfold a trace in F ω, we unfold each each step to an element of U and flatten the result.
Formally, we define

PU = flat(Uω) ⊆
(
2V (A)

)ω
, (6.11)

and unfold : F ω → PU by

unfold(f0f1 · · · ) = unfold(f0)unfold(f1) · · · . (6.12)

To demonstrate unfolding, consider a behavior of the plant from Example 6.2 as depicted in Figure
6.3 where the employee moves from the lobby to the office to the chemistry lab, i.e., {S} → {T ,S}.
We consider the obfuscation and inference policies Obf and inf depicted in Figure 6.5. Over this
path, the obfuscator first outputs movement to office and back to the lobby, i.e., {S ′} → {R′}, then
movement to the electronics lab and back to the lobby {T ′} → {R′}. We see as the inference
policy is correct, for the first two locations it infers that they are not in the chemistry lab, i.e., ∅,
then on the next two that they are, i.e., {S′}. This corresponds to the finite folded trace

f = ({S}︸︷︷︸
e

, {S ′}︸︷︷︸
a0

{R′}︸ ︷︷ ︸
a1

) ({T ,S}, {T ′,S′}{R′,S′}) .
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This is unfolded to

unfold(f) = {S,S ′}︸ ︷︷ ︸
t0

{R′, yield}︸ ︷︷ ︸
t1

{T ,S, T ′,S′}{R′,S′, yield} .

The following result shows that unfold can be inverted to fold traces. Importantly, this defines
a transformation between behaviors in the folded setting of Problem 6.1 and unfolded setting of
Problem 2.1.

Lemma 6.2. The map unfold : F ω → PU is a bijection.

Proof. From the definition for a single step, we see unfold defines a bijection between F and
U . Then as unfold(f0f1 · · · ) = unfold(f0)unfold(f1) · · · we see unfold is surjective onto PU .
Finally as every word in U ends with yield, there is a unique way to write traces in PU as sequences
of words in U (delimited by yield). So as unfold is injective for a single step, unfold is injective
over F ω. Hence unfold is a bijection.

In addition to unfolding the traces of an obfuscation policy Obf :
(
2IObf

)+ → (
2OObf

)+ and
inference policy Inf :

(
2IInf
)+ → 2OInf , we can also unfold the functions themselves into strategies

s0 :
(
2I0
)+ → 2O0 and s1 :

(
2I1
)+ → 2O1 implementing the architecture A. Note that strategies

are defined for all input sequences, even those violating the yield behavior encoded in PU . These
violating traces do not correspond to traces in the folded system. As such, we say the strategies s0
and s1 are an unfolding of Obf and Inf if

unfold(Tr(Obf , Inf)) = Tr(s0, s1) ∩ PU . (6.13)

As obfuscation policies can only insert a finite sequence of outputs, we should only consider
strategies s0 that always eventually yield, i.e.,

∀i ∈
(
2I0
)+
, ∃v

(
2I0
)+

: yield ∈ s0(iv) . (6.14)

In this case we have the following results.

Theorem 6.3.
Unfolding: Every obfuscation policy Obf and inference policy Inf has an unfolding in the sense

of (6.13) given by strategies s0 and s1 where s0 always eventually yields and s1 = Inf .

Folding: For every strategy s0 that always eventually yields and strategy s1, there exists a unique

obfuscation policy Obf and inference policy Inf such that s0 and s1 are an unfolding in the sense

of (6.13) of Obf and Inf with s1 = Inf .
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Figure 6.4: The pipeline architecture A (top) and the structure of the obfuscation system (bottom).

Proof. See appendix.

This result shows that we can transform between policies over the folded system and strategies
implementing the unfolded distributed pipeline architecture A as in Figure 6.4. Similar to strategies,
the obfuscation policy can be represented by a transducer, and when this transducer is finite we
say the policy is finite. As unfolding and folding preserve ω-regularity, this theorem implies that a
solution to Problem 6.1 is finite if and only if it has an unfolding that is finite.

6.3.2 Unfolding the Specifications

In order to perform distributed synthesis on the unfolded system, we must map specifications for
the folded system onto the unfolded one. To do this, we observe that private safety of the obfuscation
policy Obf and the correctness of the inference policy Inf can be expressed as properties over
the traces Tr(Obf , Inf). Then by unfolding these traces, we can express these requirements as
ω-regular properties over the traces Tr(s0, s1) where s0 and s1 are an unfolding of Obf and Inf .
We define the properties of the folded system representing the plant behavior, private safety, and
correct inferences, respectively, by

Penv = {(ej, aj)∞j=0 ∈ F ω | e0e1 · · · ∈ limLenv}

PNS = {(ej, aj)∞j=0 ∈ F ω | a0a1 · · ·|OObf ∈ limLNS}

PInf = {(ej, aj)∞j=0 ∈ F ω | ∀j ∈ N : aj|OInf = Data(ej) · · ·Data(ej)︸ ︷︷ ︸
|aj | times

} .

Next, we construct Büchi automata that accept the unfolding of each of these properties.
To unfold the plant behavior, we recall that in the unfolded system the plant only progresses after

the outputs have yielded and outputs ∅ otherwise. We utilize the following simple result:

Lemma 6.4. If L = L(G) where G = (Q,Σ, δ, Q0) is finite and has no deadlocked state, i.e., each

state has an outgoing transition, then lim(L) is closed and ω-regular, being accepted by the finite

Büchi automaton H = (Q,Σ, δ, Q0, Q), and limL = L.
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As Lenv satisfies the conditions of Lemma 6.4, there exists a finite Büchi automaton Henv =

(Qenv, 2
Oenv , δenv, Qenv,0, Qenv) accepting limLenv. Let H ′

env = (Q′
env, 2

V (A), δ′env, Q
′
env,0, Q

′
env,m)

where Q′
env = Qenv × {0, 1}, Q′

env,0 = Qenv,0 × {0}, Q′
env,m = Qenv × {0}, and

δ′env((q, b), v) =



δenv(q, v|Oenv)× {0}, b = 0 ∧ yield ∈ v

δenv(q, v|Oenv)× {1}, b = 0 ∧ yield ̸∈ v

{(q, 0)}, b = 1 ∧ yield ∈ v ∧ v|Oenv = ∅

{(q, 1)}, b = 1 ∧ yield ̸∈ v ∧ v|Oenv = ∅

∅, otherwise

The first component q of the states of H ′
env follows a stuttered path of the plant automaton Henv,

repeating the current plant state until yield has occurred. This occurrence is tracked by the second
component b of the states of H ′

env, where b = 0 indicates that yield has occurred and the plant
can transition. Only the states with b = 0 are accepting as the obfuscation policy only outputs
finite sequences, i.e., yield occurs infinitely often. By construction unfold(Penv) = L(H ′

env).
Furthermore, if Henv is deterministic then H ′

env is as well and the size of H ′
env is polynomial in the

size of Henv.
Next, we unfold behavior representing private safety. As LNS satisfies the conditions of Lemma

6.4, there exists a finite Büchi automaton

HNS = (QNS, 2
OObf , δNS, QNS,0, QNS) (6.15)

accepting limLNS. Let H ′
NS = (Q′

NS, 2
V (A), δ′NS, Q

′
NS,0, Q

′
NS,m) where Q′

NS = QNS, Q′
NS,0 = QNS,0,

Q′
NS,m = QNS, and

δ′NS(q, v) = δNS(q, v|OObf) . (6.16)

The automatonH ′
NS simply accepts traces of the unfolded system whose restriction to the obfuscation

outputs OObf are in LNS. As unfolding does not alter these outputs, it holds that unfold(PNS) =

PU ∩ L(H ′
NS). Also, clearly H ′

NS has the same number of states as HNS.
Finally, we unfold behavior representing correct inferences, i.e, the inferred output is equal to

the Data function of the current plant output. In the unfolded system, the “current” plant output
corresponds to the value of the variables Oenv after the most recent yield (or the initial value). So
we construct H ′

Inf accepting these traces as follows. Let H ′
Inf = (Q′

Inf , 2
V (A) , δ′Inf , Q

′
Inf,0 , Q

′
Inf,m)
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where Q′
Inf = {q0} ∪ 2OInf , Q′

Inf,0 = {q0}, Q′
Inf,m = Q′

Inf , and

δ′Inf(q, v) =



v|OInf , yield ̸∈ v ∧ v|OInf = q

v|OInf , yield ̸∈ v ∧ q = q0 ∧ v|OInf = Data(v|OInf)

q0, yield ∈ v ∧ v|OInf = q

q0, yield ∈ v ∧ q = q0 ∧ v|OInf = Data(v|OInf)

The state of automaton H ′
Inf tracks the “current” plant output until yield, and the automaton accepts

only traces with inferences matching this output. Then it holds that unfold(PInf) = PU ∩ L(H ′
Inf).

Also we note that the size of H ′
Inf is polynomial in the number of possible inferences.

Additionally, we express the requirement of finite output sequences, represented by always
eventually yielding as in (6.14) in the unfolded system, with a finite Büchi automaton H ′

yield. Let
H ′

yield = (Q′
yield, 2

V (A), δ′yield, Q
′
yield,0, Q

′
yield,m) where Q′

yield = {0, 1}, Q′
yield,0 = {0}, Q′

yield,m = {0}
and

δ′yield(q, v) =

 0, yield ∈ v

1, yield ̸∈ v .
(6.17)

Then
L(H ′

yield) = {t ∈
(
2V (A)

)ω | ∀j ∈ N, ∃k ≥ j : yield ∈ tk} . (6.18)

Also note H ′
yield has two states. We combine these properties to create a specification capturing the

desired behavior of the unfolded system

φ = L(H ′
yield) ∩ (L(H ′

env)
c ∪ (L(H ′

NS) ∩ L(H ′
Inf))) . (6.19)

Using standard constructions for the union, product, and complement of Büchi automata [4], we
can construct a finite Büchi automaton that accepts this specification. Assuming the automaton
generating the plant behavior Lenv is deterministic, the size of the specification automaton is
polynomial in the size of the automata generating the plant behavior Lenv, nonsecret behavior LNS,
and number of possible inferences. With this specification we present our main results.

Theorem 6.5. Consider an obfuscation policy Obf and inference policy Inf with an unfolding

given by s0 and s1 where s0 always eventually yields in the sense of (6.14). Then Obf and Inf are

solutions to Problem 6.1 with respect to Lenv, LNS, and Data if and only if s0 and s1 are solutions

to Problem 2.1 for the architecture A and specification φ.

Proof. From Definitions 6.3 and 6.2, we see that Obf enforces private safety and Inf is correct
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with respect to Lenv, LNS , and Data if and only if

Tr(Obf , Inf) ∩ Penv ⊆ PInf ∩ PNS . (6.20)

As Tr(Obf , Inf), Penv, PInf, and PNS are all closed, this is equivalent to the infinite trace inclusion

Tr(Obf , Inf) ∩ Penv ⊆ PInf ∩ PNS . (6.21)

As unfold is a bijection, we can unfold each side of this inclusion. So by assumption as
unfold(Tr(Obf , Inf)) = PU ∩ Tr(s0, s1), the inclusion is equivalent to

Tr(s0, s1) ∩ PU ∩ unfold(Penv) ⊆ unfold(PNS) ∩ unfold(PInf) . (6.22)

In turn by the definitions of Henv, HNS, HInf, this inclusion is equivalent to

Tr(s0, s1) ∩ PU ∩ L(Henv) ⊆ PU ∩ L(HNS) ∩ L(HInf) . (6.23)

Rearranging terms and using the fact that L(Henv) ⊆ PU , this is equivalent to

Tr(s0, s1) ⊆ L(HInf) ∩ L(HNS) ∪ L(Henv)
c . (6.24)

By assumption as s0 always eventually yields, it must be that Tr(s0, s1) ⊆ L(Hyield). Hence by the
definition of φ, the inclusion is equivalent to Tr(s0, s1) ⊆ φ.

Applying the results of Theorem 6.3, we see if there is a solution to Problem 6.1 then there must be
an unfolding that is a solution to Problem 2.1. Conversely, if there is a solution to Problem 2.1 the
synthesis method [38] finds a finite solution. Applying the results of Theorem 6.3 that this solution
can be folded into a solution to Problem 6.1 that is also finite. Hence if the obfuscation synthesis
problem has a solution, finite obfuscation and inference policies solving the problem can be found by
solving the corresponding pipeline synthesis problem and folding the result. Applying this approach
to the problem from Example 6.2 yields the policies depicted in Figure 6.5. Assuming the automaton
generating the plant behavior Lenv is deterministic, the size of this solution is double-exponential in
the size of the automata generating Lenv and LNS and number of possible inferences.

6.4 Case Study: Contact Tracing

In this section, we demonstrate how our framework can be used in the context of smartphone
apps developed for contact tracing. We model apps that record proximity between users to a
centralized server. These apps raise a variety of privacy concerns as described in [17, 78], including
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Figure 6.5: The solution to the obfuscation problem described in Example 6.2 given by transducers
representing the obfuscation policy (left) and inference policy (right).

the disclosure of user location information due to unsecured networks. Our synthesis method
provides solutions that enforce location privacy from the malicious actors while maintaining utility
for public health by providing professionals with relevant contact information. We demonstrate this
approach on small model similar to the one developed in [95] where a malicious user has gained
access to the app. Our presentation of this model is condensed. More detail on the construction can
be found in [95].

6.4.1 Modeling

In our model, we consider a number of normal users and one user that is malicious. As in Example
6.1, their movement is constrained by a graph Γ = (V , E) depicted in Figure 6.6 representing the
layout of their city. The users’ smart devices would report their approximate location given by their
current region in a partition P of the graph Γ similar to the model proposed in [105]. As such,
we define region : V → P so that for v ∈ V , region(v) is the region containing v. We assume
the malicious user has compromised the users’ location-based service apps and has access to the
reported regions, and also knows their own location exactly. We further assume that this user has
compromised the contact tracing app which reports which users are in contact with each other, i.e.,
share the same location. As a privacy measure, the app does not report the location of the contact.

We suppose that there are n = 3 users and consider any user visiting the secret location 5 as
secret in the plant. Using Γ , we first construct the map automaton G = (V , E ,∆,V0), where V is
the set of states, E is the set of events, ∆ : V × E → 2V is the transition function, and V0 is the
set of initial states. We define V0 = V , E = {τ}, and ∆(v, τ) = {v} ∪ {u ∈ V : (u, v) ∈ E } for
all v ∈ V .For each user denoted i ∈ {1, 2, . . . , n}, we construct an automaton Gi modeling their
movement. We let user 1 denote the malicious user and construct G1 from G by removing the secret
location (if the malicious user can enter the secret location, the problem trivially has no solution).
For users i > 1, we let Gi = G as their movements are unrestricted. For example, the individual
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Figure 6.6: The graph Γ that represents the locations and the physical paths between them. Regions
P = {R,S} represent the approximate locations reported by smart phones. Location 5 is considered
to be secret.
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Figure 6.7: The automaton G1, representing the movement of the malicious user 1.

automaton G1 is shown in Figure 6.7. The synchronous movement of all the users is then described
by the product automatonH = G1 × G2 × · · · × Gn. Using the product construction,H has states
x = (v1, ..., vn) ∈ Vn where vi represents the current location of user i.

Given a state x ∈ Vn, we define

α(x) = (α1, ..., αn) (6.25)

where for each i,

αi =

 v1, i = 1

region(vi), i > 1.
(6.26)

When the system enters state x, the malicious user observes the information in α(x), i.e, their own
location and the regions of other users. We also define the set

β(x) = {(i, j) | 1 ≤ i < j ≤ n, vi = vj} , (6.27)

which represents the contact information of the users at state x, i.e. the pairs of users that share the
same location. To put this model into the setting of synthesis, we consider Boolean encodings of the
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outputs of α and β denoted by αb and βb, respectively. Finally, we construct an automaton Genv from
H by labeling each transition to a state x with the variables αb(x) ∪ βb(x). In order to construct
the specification φ, we also determinize Genv using the powerset construction. The automaton Genv

generates the plant behavior Lenv = L(Genv) which satisfies the conditions of Lemma 6.4, i.e., Genv

is finite and has no deadlocked states. Recall for privacy, the malicious user must not determine
users are at the secret location, i.e., if in the current state of Genv any user is in the secret location
which we call a secret state. As such we define the malicious user’s nonsecret plant model L′

env,NS as
the language generated by the automaton Genv after removal of the secret states. As we assume they
are not aware of obfuscation, their class of possible obfuscation policies SObf is just the identity map.
Finally, as the contact information represented by βb should be inferred, we define the function
Data for the plant output e = α(x)b ∪ βb(x) by Data(e) = β̃b(x), where β̃b(x) is a copy of the
variables in βb(x) (to ensure variables are disjoint). Together these components define an instance
of Problem 6.1 which by Theorem 6.5 can be transformed into a corresponding instance of Problem
2.1. In this form, we also add the additional ω-regular constraint that the obfuscation policy cannot
alter the location of the malicious user encoded in αb as this would alert them to the existence of
obfuscation.

6.4.2 Implementation and Results

While the pipeline synthesis problem can be solved directly using automata theoretic methods,
due to a lack of available tools and to take advantage of the performance of bounded synthesis
methods, we use a different approach. There is a straightforward reduction of a distributed synthesis
problem to a decidable hyperproperty satisfiability problem [34, 35]. Hyperproperties are properties
of a system quantified over multiple traces of the system. The key idea of the reduction is to encode
the variable dependence induced by the distributed architecture into a hyperproperty. Specifically,
this hyperproperty ensures that any traces of the system with the same input up to a point must
have the same output. Using this reformulation, we have implemented our synthesis method using
the bounded synthesis tool BoSy3. We construct the Büchi automaton accepting the specification
φ from (7.10), and perform minimization to reduce the number of states of this automaton while
maintaining the specification language in order to improve performance. We then provide the tool
with this automaton as well as the pipeline architecture encoded in HyperLTL, a temporal logic for
hyperproperties. When a solution exists, the tool returns the smallest solution encoded as a finite
automaton. Again, strategies for the obfuscation policy and the inference policy represented as
transducers are readily extracted from this monolithic automaton.

The automaton Genv representing the plant behavior consists of 60 states after minimization.
From this, we construct the Büchi automaton accepting the specification φ which has 968 states.

3https://www.react.uni-saarland.de/tools/bosy/
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With this automaton as input, the tool was able to synthesize a solution within 25 minutes on a
machine with typical specs. As an automaton encoding both the obfuscation and inference policies,
the solution mirrors the structure of the plant automaton Genv, possessing a corresponding 60 states.
After extraction from the solution, the obfuscation and inference policies constructed guarantee
privacy in the form of private safety while maintaining utility in the form of providing correct
contact information.

6.5 Conclusion

Balancing privacy and utility within a networked dynamic system presents an interesting chal-
lenge. To achieve this, we propose a framework of obfuscation with an inference policy that allows
intended recipients to interpret obfuscated information. We present a method for automatically
designing both obfuscation and inference policies using techniques from distributed synthesis. This
approach allows for a variety of specifications for utility and privacy in the form of temporal logic.
We also developed a software implementation of this approach and demonstrate its effectiveness in
enforcing privacy on a contact-tracing system model.

We remark that our proposed obfuscation framework is orthogonal to cryptographic methods
for network privacy. While cryptography achieves privacy by ensuring outputs appear arbitrary,
obfuscation achieves privacy by deception, i.e., ensuring outputs are consistent with a recipient’s
model of nonsecret behavior. In this way our obfuscation framework is similar to the notion of
network steganography [62]. Additionally, our approach can be applied in cases where encryption
cannot.
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CHAPTER 7

Integrating Control and Obfuscation

7.1 Introduction

Privacy modeled as opacity can be enforced with a variety of mechanisms. However, most works
on opacity enforcement consider a specific mechanism with a limited scope of application. For
example, it may be impractical to restrict some aspects of a system’s behavior with supervisory
control, such as human actions in a physical system. Likewise, it may not be possible to completely
alter a system’s outputs with obfuscation, such as when those outputs are publicly observable. As
such, many practical applications may require the integration of multiple mechanisms to enforce
privacy.

In altering either the system’s behavior or observations, these mechanisms must also maintain
the system’s utility, e.g., a controller must maintain safe behavior or an observer must monitor the
system accurately. For example, utility constraints on obfuscators in [104] require that observers can
infer some specified information about the system’s state; however, it is assumed that all observers,
both intended and unintended, have the same capabilities and access to information. This may
not be the case when controllers and observers are distributed across a network, or when intended
recipients need access to sensitive information while unintended ones do not. Chapter 6 considers
the enforcement of privacy and utility in this distributed setting, but is limited to obfuscation within
a simple linear network topology (pipeline) like the one depicted in Fig. 7.1. A similar problem
with the same topology but with alternative assumptions is also considered in [61]. The addition
of control imposes a new challenge for privacy, as an eavesdropper may observe all information
transmitted across the network including both sensor outputs and control commands.

In this chapter, we address the problem of privacy and utility enforcement in distributed systems
utilizing both obfuscation and control. We develop a solution approach for components modeled
by automata by leveraging distributed reactive synthesis [38]. While this problem is undecidable
for general network architectures, we demonstrate our approach on three representative networked
control problems which we show to be decidable. We discuss how privacy and various utility
constraints can be expressed with the ω-regular specifications used in our approach. In particular
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Figure 7.1: The architecture for obfuscation and inference without control considered in Chapter 6.

we consider language-based opacity [57] which has been used to express many other existing
notions of opacity [97] in DES. By explicitly modeling the eavesdropper’s beliefs about the system’s
implementation, this framework can precisely express many practical privacy requirements. Our

main contribution is the formulation of privacy and utility enforcement with obfuscation and control

as a distributed reactive synthesis problem, demonstrated over a number of practical network

architectures.
A similar problem of opacity enforcement is considered in [90] utilizing control, obfuscation,

and dynamic masks in a fixed network topology. Our work differs in a few key aspects. Importantly,
our approach is applicable to general network architectures, and furthermore, it is complete for the
three problems we focus on. In contrast, the synthesis method of [90] is incomplete, potentially not
finding a solution when one exists. Secondly, in [90] they consider control with supervisors which
can realize nondeterministic behavior, whereas our controllers are deterministic as implementations
of reactive processes. The complex relation between these two control approaches are thoroughly
discussed in [88]. Thirdly, [90] employs dynamic masks and obfuscation with general edit functions,
while for simplicity we limit our discussion to replacement functions.

We motivate our problem and approach with the following running example.

Example 7.1. Consider the building depicted in Fig. 7.2 whose doors are equipped with keypad

sensors and controllable locks. At each door, the keypad reports entry attempts to an authorization

server which responds with a signal to open the door or not. These signals may contain sensitive

information which raises privacy concerns if the server is remote. For example, an eavesdropper

may use their knowledge of the building’s layout to deduce room occupancy from their observation

of entry attempts at the keypads. While this risk can be mitigated by keeping all information at the

local site, it may be infeasible to alter the system’s existing network architecture.

In this case, obfuscation can be employed to alter both the keypad outputs sent to the server

and control outputs sent back to the building. At the same time, the system must maintain its utility.

This may concern a remote user’s access to information, for example to diagnose a faulty door.

Additionally, utility may require that rooms are accessible by authorized users, i.e., after using the

keypad, the door is eventually signaled to open. Our problem is then to design both obfuscators and
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Figure 7.2: The layout of a building with two electronically-controlled locked doors. At each door a
keypad, shared by both of its sides, controls the lock via a potentially remote authorization server.

controllers for a given network architecture to enforce privacy and utility reactively as an individual

moves about the building.

The rest of this chapter is organized as follows. In Chapter 2, we review concepts from formal
languages and discuss our methodology using results from distributed reactive synthesis. Next, we
develop our modeling and synthesis approach for privacy and utility enforcement in Section 7.2,
over a networked system employing both obfuscation and a local controller. Then in Section 7.3,
we apply this approach to the problems of designing a remote controller for utility and securing an
existing remote controller, respectively, alongside obfuscation for privacy. Finally, we discuss our
implementation of this approach in Section 7.4 in application to the building access control system.

7.2 Integrating Obfuscation and Control Locally

In this section, we present the first of three problems which integrate obfuscation and control
in a networked system to enforce privacy and utility. We will discuss modeling with distributed
systems, then specifications for privacy and utility, and finally, a method for synthesis. We build
upon the system architecture discussed in [96] and depicted in Fig. 7.1, in which a plant dynamically
produces outputs which are obfuscated before being broadcast on a network and acted upon by
a recipient. Here, we additionally consider that some behavior of the plant may be restricted or
controlled locally in order to better enforce privacy and maintain utility for the plant and recipient.
This controller uses the observable outputs from the plant as feedback to generate inputs to the plant.
The components of this networked system including the controller are modeled by processes in a
distributed system whose architecture, referred to as Architecture 1, is depicted in Fig. 7.3. Note
that the control action is assumed to be communicated locally, i.e., not broadcast on the network. As
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Figure 7.3: Architecture 1 featuring control and obfuscation at the local site which transmit infor-
mation to the recipient at the remote site. The edge labeled cut indicates the feedback eliminated in
the transformation used for synthesis in subsection 7.2.4. The black-box processes to be synthesized
are represented by parallelograms. The striped parallelograms denote processes unknown by the
eavesdropper.

such, we are not concerned with the control action leaking information as is considered in Sections
7.3.1 and 7.3.2.

7.2.1 System Model

The overall system is modeled as a distributed system with architecture A =

(P,W, env, E,O,H). The plant, obfuscator, controller, network, and recipient are represented
by the processes P = {Plant,Obf ,Cont,Net, Inf}. The interconnection of these processes
E ⊆ P × P is depicted in Fig. 7.3.

The plant drives the system, nondeterministically producing outputs which must be conveyed to
the recipient. As such, it acts as the environment process, i.e., env = Plant. The observable outputs
of the plant are communicated to both the obfuscator and controller, i.e., IObf = ICont ⊆ OPlant, while
its hidden outputs represent its internal state. The controller process Cont provides feedback to the
plant IPlant = OCont in order to enforce privacy (e.g., restricting secret-revealing behavior) and utility
(e.g., restricting unsafe behavior). We assume the dynamics relating the outputs from the plant to
inputs from the controller are described by the ω-regular language MPlant over the plant variables
VPlant.

The obfuscator process Obf modifies the outputs of the plant before they are broadcast on the
network to enforce privacy. As the obfuscator seeks to mimic the plant, its outputs are copies of
the plant’s outputs. Formally, we define OObf = {oObf | o ∈ IObf} where oObf denotes a distinct
copy of the plant output variable o which may take on different values. We emphasize that an
implementation of the obfuscator is a strategy sObf :

(
2IObf

)+ → 2OObf which in each step replaces
a single input from the plant with a single obfuscated output. This corresponds to the notion of a
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deterministic edit function using only replacement [104].
The network broadcasts the outputs it receives from the obfuscator to all recipients on the

network, both intended and unintended. In order to capture the potential dynamics of the network,
such as a delay or bandwidth limitation, we model the network as a white-box process Net. In
Architecture 1 the network receives input from the obfuscator INet = OObf and transmits copies
ONet = {oNet | o ∈ INet}. We assume the network has a fixed implementation as a deterministic
strategy sNet :

(
2INet

)+ → 2ONet . As such, the network Net is the only white-box process W =

{Net} with SW = {sNet}. In the case that the network directly broadcasts its inputs without
delay as considered in our examples, we may omit it from the architecture, directly connecting the
obfuscator to the recipient.

The final process Inf in the system models the actions of the intended recipient of the plant’s
information, for example inferring sensitive plant information. It utilizes the obfuscated outputs
from the network IInf = ONet to take action at the remote site modeled by its outputs OInf.

Example 7.2. In the building system from Example 7.1, the authorization server controlling the

locks may be local to the building, but outputs from the keypads are shared over a network with

their manufacturers in order to diagnose faults requiring maintenance. In particular, door 2 may

experience a fault preventing it from opening. We can model this system with Architecture 1 utilizing

obfuscation of the keypad signals for privacy. In this model, the plant receives inputs IPlant given

by the control cj from the server signaling door j to unlock for j ∈ {1, 2}. Likewise, the plant

produces outputs OPlant consisting of oj indicating door j is open, kj indicating keypad j is pressed,

and f indicating door 2 is faulty with j ∈ {1, 2}.
We assume that locally, the keypad and door outputs kj , oj are observed while the fault f is hidden.

In addition, we assume that the outputs of the plant are delayed by one step before observation

which can be represented by introducing delayed copies of these variables; however, in an abuse of

notation we simply write ICont = IObf = {kj, oj}. The outputs of the keypads, but not whether the

doors are opened, are nominally communicated to the manufacturer to infer a fault with door 2.

The obfuscator replicates these outputs over the network with its own set of outputs OObf given by

kjObf for j ∈ {1, 2}. For simplicity, we assume the network communicates these values unmodified

without delay, i.e., in an abuse of notation INet = ONet. Then finally, the manufacturer is the recipient

of these obfuscated outputs IInf = OObf and produces a single output OInf = {fInf} whenever the

fault has been inferred.

Now we describe the plant dynamics MPlant. We assume the user starting from room 0, always

remains at a keypad once pressed until the corresponding door is signaled to open, moving through

the door if it has opened. Furthermore, the doors always open immediately once signaled unless

the fault forces door 2 to remain closed forever. In order to allow the fault to be diagnosed, we must

also assume a kind of liveness that the user always eventually presses accessible keypads, i.e., if
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Figure 7.4: An automaton encoding the plant from Example 7.2. Not depicted are transitions
accepting invalid control outputs, e.g., when no keypad is pressed. Background colors indicate
which room from Fig. 7.2 corresponds to each state.

the plant visits a state with a transition labeled with ki infinitely often, then ki must occur infinitely

often. The resulting dynamics are represented by the automaton depicted in Fig. 7.4. Selected traces

of the system under this plant behavior are depicted in Fig. 7.5.

Remark 7.1. Beyond replacement, obfuscation can be implemented with edit functions which also

delete outputs or insert fictitious ones. In [96], distributed synthesis is used to design obfuscators

with insertion. This work transformed the system so the obfuscator outputs one insertion in each

step to fit the standard framework of synchronous systems considered by distributed synthesis.

To this end the obfuscator was augmented with an additional output yield to indicate the end of

insertions, and the specification was modified to ensure the plant holds its outputs until yield occurs.

This approach is conceptually similar to introducing a local controller as in Architecture 1 with a

single output yield. We may utilize a similar approach to design obfuscators with insertion; however,

synchronization is more complex in the presence of multiple feedback paths. So for simplicity, we

only discuss obfuscation by replacement.
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Figure 7.5: Possible traces of the building system in Architecture 1. In the first trace, the user passes
through door 1 to room 1 and then returns the same way to room 0. During this movement, the
obfuscator violates privacy. In step 4, the eavesdropper believes keypad 1 was used immediately
after keypad 2 was used from room 0. This could only happen in the original system if a fault
prevented door 2 from opening. The remaining traces are drawn from this system implemented
as in Fig. 7.6. The second trace represents non-faulty behavior as the user passes through door 2,
whereas the third trace, displayed over two lines, contains the fault f. After the user tries to use door
2 again, the recipient has observed 5 occurrences of kObf

2 (an odd number) followed by kObf
1, and

thus correctly infers a fault has occurred and output fInf.

7.2.2 Privacy Requirements

Knowledge about the current behavior of the plant or system may be used by a malicious agent
to damage the system or harm its users. As such, we consider requirements on the privacy of
the plant’s behavior. We model privacy as the opacity of a set of behaviors identified as secret.
Opacity requires that the occurrence of these behaviors can never be deduced by an eavesdropper.
In particular, we consider the notion of private safety [49], where the eavesdropper is aware of
the plant’s dynamics but not of obfuscation, i.e., the implementation and goals of obfuscation are
private knowledge. We adapt this notion of private safety to infinite traces over distributed systems
with obfuscation and control, expressed as an ω-regular specification. In this more general setting,
we assume that the eavesdropper possesses a nominal model of the system without obfuscation.
Privacy requires that the eavesdropper does not deduce secrets within this model, regardless of what
observations are made of the obfuscated system.

In particular, we model these nominal and secret behaviors as ω-languages, adapting of the
notion of language-based opacity (LBO) [57] to infinite strings. Formally, it is assumed that the
eavesdropper’s nominal model of the system is given by a known language M̂ ⊆

(
2V
)ω. Within

this model, we must ensure they cannot deduce some secret aspects of the behavior given by the
secret language MS ⊆

(
2V
)ω. The strings in the language M̂ \MS are called nonsecret. We assume
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the eavesdropper observes a subset of the output variables Vobs ⊆ V shared between the nominal
and actual system, i.e., a string s ∈

(
2V
)ω is observed as s|Vobs . Using this nominal model, the

eavesdropper deduces that they have observed secret behavior if their observation could not have
resulted from nonsecret behavior. Formally, upon the occurrence of the string s, the eavesdropper
cannot deduce if it was secret if s|Vobs ∈ (M̂ \MS)|Vobs . So we make the following definition for
language-based privacy.

Definition 7.1 (Privacy). Let M̂ ⊆
(
2V
)ω be the nominal language, MS ⊆

(
2V
)ω the secret

language, and Vobs ⊆ V the observed variables. Then we say the language M ⊆
(
2V
)ω enforces

privacy if

M |Vobs ⊆ (M̂ \MS)|Vobs . (7.1)

The right side of this inclusion represents observations that are both consistent with the eavesdrop-
per’s model of behavior and nonsecret. From this definition, we can observe some simple results
about monotonicity.

Proposition 7.1. Assume that M enforces privacy for secrets MS in a fixed nominal model M̂ . If

M ′ ⊆M and M ′
S ⊆MS then M ′ enforces privacy for M ′

S.

We require that our distributed system enforce privacy, i.e., the infinite traces of the system are
consistent with nonsecret behavior.

φpriv =
(
(M̂ \MS)|Vobs

)
|V . (7.2)

While it is not the focus of this work, the standard notion of LBO with respect to a language of
finite nominal behaviors L̂ = M̂ and finite secret behaviors LS [57] can be expressed as a safety
property φpriv with finite prefixes given by

φpriv =
(
(L̂ \ LS)|Vobs

)
|V . (7.3)

As shown in [97] many existing notions of opacity may be expressed as LBO. Examples include
current-state opacity, initial-state opacity, and notions of K-step opacity.

In general, the nominal model can be any language representing the eavesdropper’s beliefs
about the system’s behavior. These beliefs may be uncertain. For example, an eavesdropper may
know the plant behaviors MPlant resulting in a nominal model satisfying M̂ |VPlant ⊆MPlant. On the
other hand, beliefs about the system may also be incorrect. For example, the eavesdropper may be
unaware of some processes in the system’s architecture, such as the obfuscator. We can model this
nominal belief by “shorting out” these processes, treating them as white-box processes with a fixed
implementation that directly passes inputs to their corresponding output copies. In this way, we
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can construct a nominal model over the same variables as the true system model which captures
knowledge of the plant dynamics but only a subset of the system’s processes denoted P̂ as follows.

Definition 7.2. Given an eavesdropper aware of some nominal processes P̂ in the architecture A

with plant dynamics MPlant, this knowledge is captured by the base nominal model defined by

M̂0 =MPlant|V ∩
⋂

p∈W∪P̂

Tr(sp)|V , (7.4)

where the implementations sp of processes p ∈ P \ P̂ pass their inputs to corresponding output

copies.

We demonstrate constructing the privacy specification with the following example.

Example 7.3. Returning to the building system, we suppose the eavesdropper is unaware of obfus-

cation in Architecture 1, but is aware of the plant dynamics MPlant. So they model the system as in

Fig. 7.3 with the indicated process Obf unknown. Formally, this means P \ P̂ = {Obf} which

defines the base nominal language M̂0 as in Definition 7.2. Likewise, they may assume that the

doors are eventually controlled to open after the keypad is pressed. This requirement is expressed

by the LTL formula

φCont =
∧

j∈{1,2}

G
(
kj ⇒ F cj

)
(7.5)

Then the nominal language reflecting their beliefs is given by M̂ = M̂0 ∩ φCont. If the occurrence

of the fault f should be hidden from the eavesdropper for security reasons, we consider the secret

language MS expressed by the LTL formula F f. One can show that this induces the admissible

language

(M̂ \MS)|Vobs =
(
L+
1 L

+
2

)ω ∪ (L+
2 L

+
1

)ω
, (7.6)

where Li =
(
{∅}∗ {{kObf

i}}+
)2

corresponds to observations of the user going through door

i ∈ {1, 2} twice. Roughly this requires the eavesdropper to observe at least two presses of the

keypad at a door before one at the other door, and that both keypads are pressed infinitely often.

Otherwise, the eavesdropper knows the user left the keypad before the door was opened or that the

user was not able to open the door, so a fault is believed to have occurred. This is used to construct

the specification φpriv as in Equation (7.2), which describes traces of the system enforcing privacy.

Remark 7.2. While this framework can include knowledge about obfuscation, conceptually, one

must be careful that the nominal model accurately reflects this knowledge. An issue arises if the

eavesdropper knows why obfuscation is being implemented, i.e., the privacy specification. In this

case, a direct description of the nominal model and privacy specification are self-referential: the
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nominal model encompasses systems satisfying the privacy requirement which is in turn defined

with respect to the nominal model. A similar challenge arises when the eavesdropper knows the

specification for the controller, which we address in subsection 7.3.1. One way to resolve the issue

with the privacy requirement is to make stronger assumptions on the eavesdropper’s knowledge,

namely that the implementation of obfuscation is public knowledge. Privacy in this case is referred

to as public safety in [49] which also presents corresponding synthesis methods.

7.2.3 Utility Requirements

Utility refers both to desirable behavior of the plant as well as the recipient’s access to information.
For example the utility constraints proposed in [104], roughly require that all observers unaware of
obfuscation are still able to infer which region of states the system currently inhabits. In order to
allow for information about the plant to be hidden from unintended observers unaware of obfuscation
yet revealed to intended ones that are aware, [96] proposed an alternative utility requirement which
we discuss now.

To model this type of specification, we identify a subset of the plant outputs Data ⊆ OPlant that
should be inferred by the recipient. We model the inference of the recipient explicitly with the
output of the process Inf . As such the recipient outputs should match the plant outputs Data. To
ensure the output sets are disjoint, we define the outputs OInf = {oInf | o ∈ Data} as copies of the
variables in Data. The requirement that the recipient infers the outputs Data from the plant can
be modeled with the LTL formula

φData = G
∧

o∈Data

(o ⇔ X oInf) . (7.7)

Instead of requiring the recipient to infer the current plant output after a one step delay, we may
consider more temporally complex relations as demonstrated in the following example.

Example 7.4. In the building system, we require that the remote recipient must be able to monitor

the building and diagnose door lock faults. Formally, they must eventually infer if f occurs in the

current trace, i.e., Data = {f}. The diagnosis specification can then be expressed with the LTL

formula

φdiag = F f ⇔ F fInf . (7.8)

In addition, we will also require that the controller eventually signals the doors to open if the

keypads have been pressed. This is captured by the previous specification φCont defined in equation

(7.5). The utility requirement is then the combination

φutil = φdiag ∩ φCont (7.9)
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7.2.4 Synthesis

With this system model and these specifications we can state the design problem for Architecture
1.

Problem 7.1 (Architecture 1). Given an instance A of Architecture 1 and ω-regular privacy and

utility specifications φpriv and φutil, find an implementation S for Obf , Cont, and Inf solving the

distributed synthesis problem for A with specification

φ = φpriv ∩ φutil . (7.10)

To apply the distributed synthesis algorithm we must transform our problem to match the
conditions of Theorem 2.1. Specifically, we must eliminate the constraints on the plant and the
feedback from the controller while maintaining the same set of solutions. To do this, we utilize
two ideas from [38] for simplifying system architectures. First, due to the strict order of informed
processes, feedback edges from less informed to more informed processes may be eliminated as
they are redundant. Intuitively, as the non-environment processes are deterministic, such feedback
outputs from them can simply be predicted. In particular as the environment (the plant in our case)
is the most informed processes as the source of non-determinism in the system, feedback from
our controller is redundant. Second, white-box processes may be eliminated by combination with
more informed processes and encoding their implementation as part of the specification. Likewise,
we can incorporate our plant dynamics in the specification. With these ideas, we transform the
architecture and specification to the form used in Theorem 2.1 without altering the set of solution
implementations. We describe this transformation in general now.

Let A = (P,W, env, E,O,H) be an architecture over V with a finite white-box implementation
SW , environment traces Menv ⊆

(
2Venv

)ω and an ω-regular specification φ ⊆
(
2V
)ω. We create a

new architecture by cutting any feedback to the environment process. Outputs communicated from
a process only to the environment are replaced by hidden outputs in the process. For a given process
p ̸= env, letH ′

p = Hp∪
(
O(p,env) \

⋃
p′ ̸=env O(p,p′)

)
,O′

(p,env) = ∅, andO′
(p,p′) = O(p,p′) for p′ ̸= env.

Likewise, let E ′ = {(p, p′) ∈ E | p′ ̸= env}, O′ = {O′
e | e ∈ E ′}, and H ′ = {H ′

p | p ∈ P}.
The transformed architecture is denoted by A′ = (P,W, env, E ′, O′, H ′). Note that the output set
of each process is unchanged, while only the inputs of the environment process were changed by
removal. As such, the two architectures support the same implementations.

To capture the environment dynamics Menv, observe that the solution only needs to enforce the
specification φ over traces agreeing with Menv. So we define a new specification

φ′ = φ ∪ comp
(
Menv|V

)
. (7.11)
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Thus, this new specification is also ω-regular as it is constructed from the union, complement, and
restriction of ω-regular languages. Then as desired, the environment of the transformed system is
unconstrained, i.e., Menv

′ =
(
2Oenv

)ω. We then have the following result.

Theorem 7.2. Given a distributed synthesis problem overA, SW ,Menv, φ, consider the transformed

problem A′, SW ,Menv
′, φ′ be constructed as described above. Then the two problems have the same

set of solution implementations.

Proof. Consider an implementation S for both systems. Note that the trace sets for each strategy in
the implementations are the same for both architectures. So from the definition of the trace set for
distributed systems, we see

Tr(A, S, SW ,Menv) = Tr(A′, S, SW ,Menv
′) ∩Menv|V .

Hence we can compare satisfaction of the specifications:

Tr(A, S, SW ,Menv) ⊆ φ ⇔ Tr(A′, S, SW ,Menv
′) ⊆ φ ∪ comp

(
Menv|V

)
= φ′ .

So by the definition of Problem 2.1, S is a solution for the original problem if and only if it is a
solution for the transformed one.

As a consequence of this result, if the transformation results in a decidable problem, then we can
apply distributed synthesis to find a solution implementation.

Theorem 7.3. Problem 7.1 can be solved in 2-exponential time.

Proof. After eliminating the feedback in the transformation of Architecture 1, the only potential
fork is between the Obf and Cont. However, as they observe the same inputs and hence possess the
same information, this is not an information fork. Thus we may apply the results of Theorem 2.1 to
the transformed architecture. Note the number of the information levels excluding the environment
is 2, one for Inf and one for both Obf and Cont as they share the same information. Thus the
synthesis algorithm runs in 2-exponential time in the size of the automata representing MPlant, sNet,
φpriv, and φutil. If a solution implementation S is found, Theorem 7.2 states that it is also a solution
for Problem 7.1. Likewise if no solution is found, Problem 7.1 has no solution.

Thus distributed synthesis provides a sound and complete method for designing the obfuscator,
controller, and actions for the recipient simultaneously to enforce privacy and utility. We demonstrate
this procedure with the building system.
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Example 7.5. A solution to the distributed synthesis problem for the building system in Architecture

1 is depicted in Fig. 7.6. In particular, we see that after the corresponding keypad is pressed, the

controller immediately opens door 1 while it delays opening door 2. This delay demonstrates

coordination of the controller with the obfuscator, allowing the obfuscator to fabricate an extra

press of the keypad providing deniability to which room the user is in. Indeed, distributed synthesis

could be employed to verify that there exists no solution utilizing control or obfuscation alone. From

the solution, we also see that the obfuscator always outputs an even number of presses to keypad

2, unless a fault has occurred, which is precisely what allows the intended recipient to eventually

diagnose the fault. These behaviors are demonstrated by the selected traces of the system in Fig. 7.5.
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Figure 7.6: Automata implementing the combined obfuscator and controller (left) and inference
function (right) in the solution to Example 7.5. For compactness, transitions are labeled by formulas
over the plant variables rather than the corresponding sets which satisfy the formulas. The symbol
⊤ denotes true, the formula accepting all labels.

7.3 Integrating Obfuscation and Control Remotely

In this section, we discuss how obfuscation can be used when a controller is implemented at a
remote site.

7.3.1 Remote Network Control and Obfuscation

In some cases, the infrastructure to implement a controller for the plant may only be present at
a remote site. As the inputs to the controller and the feedback from the controller are transmitted
over the network, they may potentially need to be obfuscated to preserve privacy. In Architecture 2
depicted in Fig. 7.7, the controller takes the place of the recipient from Architecture 1, implicitly
inferring information from obfuscated plant outputs and selecting a control action which is then
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Figure 7.7: Architecture 2 featuring a controller at the remote site which operates on obfuscated
data produced by the obfuscator and consumed by the decoder at the local site. The processes are
styled as in Fig. 7.3.

obfuscated. To allow the plant to interpret obfuscated outputs from the controller, an additional
process called a decoder is introduced that processes outputs from the controller before passing
them along to the plant.

System Model and Specifications

As with Architecture 1, we model the system with a distributed architecture A =

(P,W, env, E,O,H) with processes P = {Plant,Obf ,Net,Netb,Cont,Dec} representing
the plant, obfuscator, both directions of the network, the controller, and the decoder. Later on,
we will discuss why the two channels of the network are modeled with separate processes. The
interconnections E are depicted in Fig. 7.7.

The sets of input and output variables of Plant, Obf , and Net are the same as in Architecture
1. Now instead of receiving inputs from the plant directly, the controller receives obfuscated inputs
from the plant over the network, i.e., ICont = ONet. Conversely, it produces outputs which are
fed back through the network, i.e. INetb = OCont. The eavesdropper may observe these control
outputs on the network and use them to refine their beliefs about the plant behavior. As such, it may
be advantageous for the controller to output obfuscated commands which are then interpreted at
the local site by the decoder. So as the control outputs should mimic the plant inputs, we define
OCont = {iCont | i ∈ IPlant}. Likewise, the return network process reports the controller outputs
to the decoder, so we define ONetb = {iNetb | i ∈ IPlant}. Finally, the decoder de-obfuscates these
outputs to provide to the plant with ODec = IPlant. Again, the only white-box processes are from the
network W = {Net,Netb} which each have fixed implementations.

We now discuss the specifics of formulating privacy and utility specifications in this architecture.
In particular, we suppose the controller is designed such that the closed-loop behavior of the system
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satisfies some utility requirement φutil reflecting safety or liveness in the plant for example. As the
controller is more apparent in this architecture, the eavesdropper may possess knowledge about
both it and the plant. In particular, we assume the eavesdropper knows the utility requirement
φutil. We would like to construct the privacy specification φpriv capturing privacy with respect
to this new knowledge. Unaware of obfuscation, the eavesdropper derives their nominal model
from the plant dynamics and Architecture 2 in Fig. 7.7 with the indicated unknown processes
P \ P̂ = {Obf ,Dec}. This defines the base nominal model M̂0 as in Definition 7.2. At this
point, the eavesdropper expects behavior from M̂0 that not only satisfies φutil, but belongs to an
implementation solving the corresponding distributed synthesis problem for Architecture 2 over the
nominal processes P̂ . The correct nominal model should then consist of the union of the trace sets
of all such solutions.

In this case where the plant is in a simple feedback loop with the controller, we can use ideas
from ω-supervisory control [88] to construct the nominal model M̂ as an ω-regular language. If
the plant is completely observed by the controller, the union of all deterministic solutions to the
reactive synthesis problem form a maximally permissive supervisor. Specifically, we take M̂ to
be the supremal closed-loop behavior with respect to M̂0 describing the plant and the language
φutil describing the specification. More generally in the partial observation case, there is no unique
maximal solution. However, for regular specifications over finite strings, the union of all correct
supervisors can be constructed as a regular language as shown in [46] and Theorem 2 of [112].
Under mild conditions, these results may be extended to the ω-regular case. With this, we can now
discuss the building example in detail.

Example 7.6. We now consider that the building is instead controlled remotely as in Architecture

2 subject to the same specification φCont from Example 7.3. Removing the requirement that the

remote site infers the fault, the utility specification is simply φutil = φCont. We construct the

privacy specification in a manner similar to before, identifying the fault as the secret behavior and

assuming the processes related to obfuscation, i.e., Obf and Dec, are unknown to the eavesdropper.

The key differences are that now the eavesdropper observes the control actions over the network

and knows about the control specification φutil. Thus the nominal model is constructed as all

closed-loop behaviors of all implementations ensuring the base nominal model M̂0 satisfies the

specification φutil as discussed above. In this case, it turns out that this nominal model M̂ and secret

language LS are the same as the one from Example 7.3 for Architecture 1 (up to the addition and

renaming of variables). However, as the obfuscated controls cObf
1 and cObf

2 are now observed by

the eavesdropper, the admissible observations are different, now given by

(M̂ \MS)|Vobs =
((
L+
1 L

+
2

)ω ∪ (L+
2 L

+
1

)ω)
, (7.12)
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where Li =
(
{∅}∗ {{kObf

i}}∗{{cObf
i, kObf

i}}
)2

corresponds to observations of the user going

through door i ∈ {1, 2} twice. This defines the privacy specification φpriv as in Equation (7.2).

Synthesis

With the system model and specifications we can state the design problem for Architecture 2.

Problem 7.2 (Architecture 2). Given an instance A of Architecture 2 and ω-regular privacy and

utility specifications φpriv and φutil, find an implementation S for Obf , Cont, and Dec solving the

distributed synthesis problem for A with specification φ = φpriv ∩ φutil.

As before, we can transform the system with Theorem 7.2 to match the conditions of Theorem 2.1.

Theorem 7.4. Problem 7.2 can be solved in 3-exponential time.

Proof. After eliminating the feedback from the decoder as depicted in Fig. 7.7, the resulting
architecture is a pipeline, free of information forks. Thus we may apply the results of Theorem 2.1
to the transformed architecture. As there are 3 black-box processes in the pipeline, the synthesis
algorithm runs in 3-exponential time in the size of the automata representing MPlant, sNet, sNetb , φpriv,
and φutil.

Here we see why the two channels of the network must be modeled as separate processes. If
instead they are modeled with a single process, there is an information fork between the decoder
and controller rooted at the hypothetical merged network process. This is because the network may
transmit different information from the plant to the controller and decoder. Alternatively, we can
also avoid information forks with a single network process by requiring it to transmit the same
outputs to each receiving process.

Example 7.7. A solution to the distributed synthesis problem for the building system with Archi-

tecture 2 is depicted in Fig. 7.8. From the solution, we see the obfuscator communicates to the

controller the use of keypad 1 by the absence of output and of keypad 2 by two consecutive kObf
2.

Similarly, the controller communicates the open command to the decoder for door 1 by the absence

of output and for door 2 by two consecutive cObf
2. All the while these processes intersperse the

outputs kObf
1 and cObf

1 to mimic the nominal system without obfuscation. In addition by removing

fault diagnosis from the utility specification, we can observe that the remote site can no longer infer

the occurrence of the fault.
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Figure 7.8: Automata implementing the obfuscator (left), controller (middle), and decoder (right) in
the solution to Example 7.7.
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Figure 7.9: Architecture 3 featuring a controller with a fixed implementation at the remote site
which must be secured by combination obfuscator-decoders at both the local and remote site. The
processes are styled as in Fig. 7.3.

7.3.2 Securing an Existing Remote Controller with Obfuscation

In this section, as in the previous one, we consider a plant that is controlled from the remote
site. However, we assume that this controller has an existing implementation which cannot be
altered. As this implementation may not have been designed with security in mind, it may leak
sensitive information. We now consider the problem of securing such a controller by obfuscating its
outputs in addition to those of the plant while maintaining the original closed-loop behavior. As in
Architecture 2, the obfuscated controller outputs must be de-obfuscated before they can be input
into the plant. Conversely, because the controller has a fixed implementation that was designed
without obfuscation, its inputs must also be de-obfuscated. Unlike Architecture 2, for simplicity
we model both obfuscation and decoding with a single process at each site. Similarly, we model
both channels of the network with a single process as well. By merging these processes, we can
avoid the information fork between the obfuscator and decoder present in Architecture 2. While
both of these processes perform obfuscation and decoding, for consistency with Architecture 2 we
will refer to the local process as the obfuscator Obf and the remote process as the decoder Dec.
We refer to this architecture as depicted in Fig. 7.9 as Architecture 3.

System Model and Specifications

We model the system with a distributed architecture A = (P,W, env, E,O,H) with processes
P = {Plant,Obf ,Net,Dec,Cont} representing the plant, obfuscator, network, obfuscator, and
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controller. These obfuscator processes also take the role of the decoder from Architecture 2. The
interconnection of these processes E is depicted in Fig. 7.9.

While the plant remains unchanged, the obfuscator, decoder, and network now receive inputs and
produce outputs mirroring both the inputs and outputs of the plant. Formally, OObf,Net, ONet,Dec, and
ODec,Cont are distinct copies of OPlant. Likewise ONet,Obf, ODec,Net, and OCont,Dec are distinct copies of
IPlant.

Unlike in the previous architectures, the controller is added as a white-box process W =

{Cont,Net} with a fixed implementation sCont :
(
2ICont

)+ → 2OCont . We assume that the closed-
loop behavior for this controller must be maintained by the obfuscators. We can express this utility
requirement with a specification φutil ensuring the plant and controller inputs are exactly recovered
by corresponding decoders after obfuscation. We can express this with an LTL formula

φutil =
∧

i∈IObf

G(i ↔ X iCont)︸ ︷︷ ︸
Control input is

delayed plant output

∧
∧

i∈IPlant

G(i ↔ iDec)︸ ︷︷ ︸
Plant input is
control output

. (7.13)

Example 7.8. We again consider the building utilizing a controller at the remote site; however, we

now assume that its implementation is fixed due to practical considerations. This implementation

simply immediately sends the signal for the door to open once the corresponding keypad signal is

received. Without obfuscation, this controller satisfies the utility specification from Example 7.6,

requiring doors be signaled to open after the keypad is pressed. We will assume that this specification

forms the eavesdropper’s knowledge about the controller. Given the processes related to obfuscation,

i.e., P \ P̂ = {Obf ,Dec}, are unknown to the eavesdropper, this results in the same privacy

specification φpriv as in Example 7.6 (up to renaming variables). In order to maintain the existing

closed-loop behavior, we must ensure the plant and controller recover their respective inputs exactly

from obfuscation. As explained above, this is captured by the utility specification φutil from Equation

(7.13).

Synthesis

With the system model and specifications we can state the design problem for Architecture 3.

Problem 7.3 (Architecture 3). Given an instance A of Architecture 3 and ω-regular privacy and

utility specifications φpriv and φutil, find an implementation S for Obf and Dec solving the dis-

tributed synthesis problem for A with specification φ = φpriv ∩ φutil.

As before, we can transform the system with Theorem 7.2 to match the conditions of Theorem 2.1.

Theorem 7.5. Problem 7.3 can be solved in 2-exponential time.
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Figure 7.10: Automata encoding the implementation of the obfuscator Obf (left) and decoder Dec
(right) for Example 7.9.

Proof. While there are many forks in this architecture, none of them constitute information forks.
This is because information from the plant, i.e., the environment, propagates linearly to the other
processes inducing a strict order on the processes levels of information. Indeed, after removing
the feedback edges which are redundant and applying the transformation in Theorem 7.2, the
resulting architecture is a pipeline. Thus we may apply the results of Theorem 2.1 to the transformed
architecture. As there are 2 black-box processes in the pipeline, the synthesis algorithm runs in
2-exponential time in the size of the automata representing MPlant, sNet, sCont, φpriv, and φutil.

Example 7.9. Analysis of the building system with Architecture 3, shows that there are in fact no

solutions to the distributed synthesis problem. We note while under non-faulty conditions, there are

enough possible messages that the obfuscator can send to convey which key pads have been pressed:

the obfuscator can transmit its inputs without modification. However, such a solution is no longer

possible once we consider the occurrence of a fault. This possibility in the source of information,

i.e., the plant, along with decrease in bandwidth from mimicking non-faulty behavior renders the

problem unfeasible. Alternatively, if we assume that the fault has already occurred which reduces

the amount of information that needs to be conveyed, a solution exists which is depicted in Fig. 7.10.

In fact this solution guarantees privacy even when the eavesdropper knows the implementation of

the controller.

While we were able to ensure privacy against an eavesdropper with the exact model of plant and
controller, such a requirement may be too restrictive. In this case, as the controller is deterministic,
the eavesdropper can predict its output on any obfuscated input from the plant. As such, it is often
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Figure 7.11: An alternative to Architecture 3 for securing an existing network controller.

necessary for the nominal model to contain uncertainty about the controller implementation in order
to make the problem feasible.

Remark 7.3. Instead of combining obfuscation and decoding into a single process in Architecture 3,

we may instead maintain two separate processes like in Architecture 2. This alternative architecture

is depicted in Fig. 7.11. While conceptually similar, there are a number of practical differences

between these architectures. This alternative ensures, for example, that the local decoder only

uses information transmitted from the remote obfuscator. In contrast, decoding at the local site

in Architecture 3 may use all information available locally, including the direct outputs from the

plant. In addition, the alternative architecture contains 4 black-box process arranged linearly after

eliminating feedback to the environment. As a result, the synthesis algorithm for the alternative

requires 4-exponential time, compared to the 2-exponential time required for Architecture 3.

7.4 Results

In this section, we describe how distributed reactive synthesis problems can be solved in
practice. In particular, we explain at a high level the approach used to design the solutions for the
building access control examples presented in the previous sections. Additional details about the
implementation can be found in the appendix.

We observed that the original algorithm for distributed synthesis proposed in [38, 76] does
not scale to the example problems considered here. This is due in part to the algorithm’s explicit
construction of automata of n-exponential size. Instead, we employed a similar approach to [96] used
for the synthesis of obfuscators and inference functions. This approach is based upon the reduction
from distributed synthesis to synthesis for hyperproperties described in [34]. Hypeproperties

generalize the concept of specifications for individual traces such as LTL properties, to relations of
multiple traces. In short, the reduction constructs a hyperproperty encoding the information flow
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Arch. States Hyper States Synth. Time (s)
1 59 2 149
2 81 3 72
3 31 2 548

Table 7.1: Information for the synthesis of the reduced examples for each architecture, including
the number of states in the automata describing the property and hyperproperty specifications.

induced by the distributed architecture as a relation of the input and output variables of different
traces.

We then solved the reduced synthesis problem for hyperproperties using the tool BoSyHyper [35].
This tool achieves improved performance by taking advantage of the existence of small solutions
with bounded synthesis as well as advanced heuristics employed within modern constraint solvers.
Unfortunately, even with these optimizations, the tool was unable to synthesize solutions for the
building access control problems discussed in Examples 7.5, 7.7, and 7.9. In order to obtain
solutions for these problems, we manually abstracted the plant and specifications, simplifying the
problems and reducing their complexity for the synthesis tool. The tool was then able to synthesize
solutions for the reduced problem which were then manually lifted to the original problems. These
solutions, depicted in Fig. 7.6, 7.8, and 7.10, were then formally verified for correctness in enforcing
privacy and utility. Information about the synthesis for the reduced problems is provided in Table 7.1.
Counterintuitively, the smaller sized examples result in longer synthesis times. This demonstrates
the observed fact that smaller problem sizes do not necessarily correspond to easier problems for
the constraint solvers.

In addition to improved performance, the hyperproperty approach is also more extensible. While
the original explicit algorithm cannot be applied to architectures with an information fork, the
information flow of arbitrary distributed architectures can be expressed with hyperproperties. This
problem is undecidable in general; however, synthesis algorithms for hyperproperties provide a
sound but incomplete method for more general architectures. In our framework this would enable
synthesis for problems with non-deterministic network delays as well as plants distributed across
multiple sites.

7.5 Conclusion

In this chapter, we have addressed the problem of enforcing privacy and utility over networked
systems with obfuscation and control. By modeling the system with distributed reactive pro-
cesses, we were able to leverage tools from distributed reactive synthesis to automatically design
implementations. We demonstrated this approach on three problems with distinct architectures.
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CHAPTER 8

Conclusion

8.1 Summary of Contributions

In this dissertation, we have presented several methods for the verification and enforcement of
both privacy and utility over cyber-physical systems. In particular, we addressed the problems of
computational efficiency and support for complex specifications. We modeled privacy with the
formal information flow property of opacity which requires that an observer cannot deduce sensitive
information about a system’s behavior. Informally, verification asks “Can we prove a given system
is opaque?”; whereas enforcement asks “Can we implement a mechanism ensuring a given system
is opaque”. We focused on the use of obfuscation as an enforcement mechanism which was later
integrated with control.

Chapter 3 proposes a general framework for both specifying and verifying opacity over discrete
event systems modeled with automata. We considered the possibility that an observer’s model of
the system’s behavior and observable outputs may be uncertain or even incorrect in comparison
with the actual model of the system. This possibility was reflected in our definition of opacity with
separate models for the actual system and the observer’s nominal model of the system along with a
specification of nonsecret behavior. The use of a nominal model is critical in expressing opacity
over systems with enforcement mechanisms which may or may not be known by the observer, as
was considered in subsequent chapters. We showed that using this definition, opacity is equivalent
to a certain regular language inclusion problem. We presented three approaches to checking
this inclusion based on elementary automata constructions. To demonstrate these approaches,
we expressed the complex notion of K-step opacity within the framework and evaluated the
theoretical and empirical performance of the proposed verification algorithms. In order to improve
the computational efficiency further, in Chapter 4 we developed a relaxation of opacity. We proved
the verification problem for this relaxation is co-NP-complete, reduced from the complexity of
PSPACE-completeness for the general notion of opacity. An encoding to SATwas used to provide
an efficient and extensible verification method for the relaxation which was demonstrated to scale
better than methods verifying the general notion.
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Next, we discussed how the problem of enforcement, specifically with obfuscation, can be
formulated in the framework of Chapter 3. We considered obfuscation with edit functions that
dynamically delete and insert fictitious events to a system’s output to confuse and mislead observers.
Critically, these outputs are designed to mimic the original system. In this way, knowledge
of the privacy enforcement mechanism itself can be made private. In Chapter 5, we adapted
existing techniques for the synthesis of edit functions to our framework in order to enforce more
complex notions of opacity, such as K-step opacity. We then proposed a stronger notion of
utility for obfuscated systems in Chapter 6 by considering that some intended recipients of the
system’s information need more access to sensitive information than unintended ones. We employed
distributed reactive synthesis in order to find privacy enforcing edit functions alongside strategies for
an intended recipient to interpret the obfuscated information. Finally, we extended this framework
further in Chapter 7 to more complex network architectures combining obfuscation and control.
This extension was demonstrated on three representative problems over a building access-control
system.

8.2 Future Work

While this dissertation presented techniques addressing the computational efficiency and ex-
pressivity of specifications for verification and enforcement problems, there are still a number of
barriers limiting application of these approaches in practice. Here we discuss directions for future
work to remove these barriers. In particular, we focus on the problem of privacy enforcement with
obfuscation.

The main limitation of the proposed methods remains scalability to large system models. As
with many applications of formal methods, the scalability of our methods can be greatly improved
by first abstracting such large models into smaller ones, providing a high-level view of the system’s
dynamics relevant to privacy. For example, the automata models described in this dissertation can
be minimized using the concept of opacity-preserving bisimulation [71]. Additionally, rather than
enforcing the general notion of opacity with obfuscation, which results in exponential complexity,
we may instead enforce a relaxed notion of opacity like bounded-memory opacity as defined in
Chapter 4. Indeed, the SAT constraints encoding bounded memory opacity can be used with a QBF
solver in order to solve the enforcement problem as in [58]. This would result in a reduced PSPACE

complexity for enforcement. Alternatively, we may investigate more scalable approaches to the
distributed reactive synthesis problem used to design obfuscators. Recent work on contract-based
and modular synthesis may offer greatly reduced complexity in practice [37]. Yet another approach
would be the synthesis of programs with syntactical structure rather than the structureless automata
and transducers considered in this dissertation [63].
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Figure 8.1: The proposed obfuscation scheme in the presence of obfuscation-aware eavesdroppers.
An obfuscation implementation acting as a kind of secret key is selected from a pool at runtime to
be implemented on the system. While an eavesdropper may know the members of this pool, they
are unaware of the specific implementation chosen. Similar to encryption, we can design this pool
so each obfuscator provides deniability for the others’ observations.

While we describe at a high-level how the framework used in this dissertation can describe privacy
specifications in general, it remains to investigate which notions of privacy are most applicable and
practical for cyber-physical systems. For example, the idea of quantifying measures of opacity has
gained interest recently. We recall that our obfuscation framework based on distributed reactive
synthesis is implemented as a hyperproperty realization problem. This approach could be adapted
to enforce quantitative hyperproperties [36]; instead of deniability through a single alternative
explanation, deniability through many alternatives may be desired in practice. Additionally, just
as we specify the secrets for opacity with formal logic, there is a need to specify the beliefs of the
observer as well. This may be accomplished using strategy logic to describe the obfuscators an
observer believes are possible as strategies in a game [18]. Likewise, it may be useful to formalize
the overall privacy guarantees in a formal language more familiar to the information security
community, for example using Dolev-Yao theory as in [64].

Along these lines, we may investigate how obfuscation can achieve the stronger notions of privacy
guaranteed by cryptography for example. In particular, we ask how can obfuscation guarantee
privacy even when observers are aware of its existence? One solution could be the use of obfuscation
on top of encryption. A more integrated solution inspired by encryption is depicted in Fig. 8.1
which is partially implemented in [44]. There, a pool of obfuscators providing mutual deniability is
synthesized as a solution to a different hyperproperty realization problem.

Finally, once the aforementioned barriers have been addressed, we must identify real systems that
would benefit from the privacy guarantees provided by obfuscation. This dissertation has presented a
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number of potential use cases, including location-based services, contact-tracing apps, and building
access-control. These applications are likely to present unique challenges for implementation, such
as vulnerability to timing attacks [40] which must be addressed carefully. Alternatively, rather
than using obfuscation to enforce information security, we may shift our perspective to an attacker.
Obfuscation is a natural model for attackers on a compromised system to exfiltrate sensitive data
while remaining undetected. In this way, tools for the design of obfuscators may be used to analyze
the resilience of systems to this kind of attack.
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APPENDIX A

Proofs of Transformation for Insertion Function Synthesis

Proof of Theorem 6.3 (Unfolding). For convenience, we make the following definition. Given a
folded trace f = f0f1 · · · ∈ F ω and its unfolding t = t0t1 · · · = unfold(f), we say step n in f
corresponds to step j in t if |unfold(f0 · · · fn−1)| < j ≤ |unfold(f0 · · · fn)|.

Consider an obfuscation policy Obf :
(
2IObf

)+ → (
2OObf

)+ and inference policy Inf :(
2IInf
)+ → 2OInf . Given two folded traces f, f ′ ∈ Tr(Obf , Inf) let t = unfold(f) and

t′ = unfold(f ′). Suppose that at some point, the outputs in O0 differ between t and t′ so
j = min{k ∈ N | tk|O0 ̸= t′k|O0} exists. Let n denote the corresponding step in the f and f ′. If
yield differs in tj and t′j , then the length of the outputs in fn and f ′

n differ. Otherwise if the outputs
in OObf differ in tj and t′j , then the outputs themselves differ in fn and f ′

n. Hence the inputs of
IObf must differ in f and f ′ at some step n′ ≤ n as they result from the deterministic obfuscation
policy Obf . Let j′ = |unfold(f0 · · · fn′−1)| + 1 be the first step in t corresponding to n′ in f .
By definition of unfold, the inputs of I0 in tj′ and t′j′ are given by the inputs in fn′ and f ′

n′ . So
tj′ |I0 ̸= t′j′|I0 . By contrapositive, we have the following result

∀p, p′ ∈ unfold(Tr(Obf , Inf)) : t|I0 = t′|I0 ⇒ p|O0 = p′|O0 . (A.1)

So given i ∈
(
2I0
)+, if

∃p = p0 · · · pn ∈ unfold(Tr(Obf , Inf)) : p|I0 = i , (A.2)

we can uniquely define s0(i) = pn|O0 , and otherwise we define s0(i) = {yield}. Because Inf is
already synchronous, we simply define s1 = Inf . Then by construction we see that

unfold(Tr(Obf , Inf)) ⊆ PU ∩ Tr(s0, s1) .

Conversely, consider a trace t ∈ PU but t ̸∈ unfold(Tr(Obf , Inf)). Then as unfold is
bijective onto PU , this means that t = unfold(f) for some f ̸∈ Tr(Obf , Inf). As Obf is defined
for all inputs, there exists a trace f ′ ∈ Tr(Obf , Inf) with the same inputs in IObf as f . Let
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t′ = unfold(f ′) and define j = min{k | tk ̸= t′k} which must exist as t ̸= t′. Let n denote the
corresponding step in the folded system. If yield ̸∈ tj−1 = t′j−1 then as t, t′ ∈ PU it must hold that
tj|I0 = t′j|I0 = ∅ by the definition of unfold. Otherwise if yield ∈ tj−1 = t′j−1 then tj|I0 and t′j|I0
must be given by the corresponding inputs in fn and f ′

n, respectively. But by assumption, these
inputs are equal so tj|I0 = t′j|I0 . In either case the inputs in I0 of t and t′ are equal up to step j, but
the outputs in O0 ∪O1 are unequal. As t′ ∈ Tr(s0, s1), this implies t ̸∈ Tr(s0, s1). This implies that
unfold(Tr(Obf , Inf)) ⊇ Uω ∩ Tr(s0, s1).

Finally, by definition, traces in PU always eventually yield and traces outside of PU must not
satisfy the condition of (A.2) at some point, after which they must always yield by construction. In
either case s0 always eventually yields.

Proof of Theorem 6.3 (Folding). Let s0 :
(
2I0
)+ → 2O0 and s1 :

(
2I1
)+ → 2O1 be strategies such

that s0 always eventually yields in the sense of (6.14). As s0 always eventually yields and is defined
for all inputs, for every e = e0e1 · · · ∈

(
2Oenv

)ω, we can inductively construct a trace t ∈ Tr(s0, s1)

so that
t|Oenv = e0∅k0−1e1∅k1−1 · · · ,

for some kj > 0 so that the partial sums
∑n

j=0 kj is the index of the nth occurrence of yield in
t. For example k0 = min{k | yield ∈ s0(e0∅k−1)}. This trace t is unique as it results from
the deterministic strategies s0 and s1. Note that t follows the yield behavior, i.e., t ∈ PU , so
there exists f = f0f1 · · · ∈ F ω such that t = unfold(f). Additionally, by the construction
of t, we see that the plant outputs in Oenv of f are exactly e. Furthermore, similar to the proof
of the unfolding case, if f ′ is constructed for plant outputs e′ as detailed above, where e′ has
a common prefix with e, then f ′ has a corresponding common prefix with f . Hence, we can
define the obfuscation policy Obf(e0 · · · en) = fn|OObf and inference policy Inf = s1 so that
unfold(Tr(Obf , Inf)) ⊆ Tr(s0, s1) ∩ PU .

Also similar to the proof of the unfolding case, given a trace t ∈ Tr(s0, s1 that is not constructed
as above, at some point t must violate the yield behavior so that t ̸∈ PU . Hence we also have
unfold(Tr(Obf , Inf)) ⊇ Tr(s0, s1) ∩ PU . Thus s0 and s1 are an unfolding of Obf and Inf .

127



APPENDIX B

Implementation Details for Obfuscation and Control

This appendix details the synthesis of solutions to the building access control problems presented
in Examples 7.5, 7.7, and 7.9.

B.0.1 Specifications for Examples

We now discuss the trace specifications for the example problems in detail. In particular, we
represent the specifications with Büchi automata as needed by the synthesis tool. The desired
specification used for each of the three examples is of the form φ = φutil ∩ φpriv as in Equation
(7.10). Here φutil describes utility requirements for each problem while privacy is described by
φpriv =

(
(M̂ \MS)|Vobs

)
|V as in Equation (7.2) depending on the nominal model M̂ . In light of

Theorem 7.2, the specification input to the synthesis tool must incorporate the plant dynamics MPlant

constructed as in Equation (7.11) as φ′ = φ ∪ comp
(
Menv|V

)
.

Each example utilizes the same plant dynamics MPlant encoded by the automaton depicted in
Fig. 7.4 which represents a single user’s movement throughout the building. The liveness condition
that all persistently accessible keypads are eventually used can be expressed as a Streett acceptance
condition over the states of this automaton. Formally, for j ∈ {1, 2} we define Bj as the set of states
where keypad j can be pressed, i.e., states with an outgoing transition labeled by kj . Specifically,
B1 = {0, 1, 2, 3, 0f, 1f, 2f, 3f} and B2 = {0, 4, 5, 6, 0f, 4f, 5f, 6f}. Likewise, we define Gj as
the set of states where keypad j is pressed, i.e., the destination of these transitions labeled by kj .
Specifically, G1 = {1, 3, 0f, 3f} and G2 = {4, 6, 4f, 6f}. The acceptance condition for liveness
requires for each j, that if the states of Bj are visited infinitely often then so are the states of Gj .
In words, if keypad j can always eventually be pressed, then it is always eventually pressed. It is
well-known that such Streett conditions can be transformed into a Büchi conditions [42] which are
used by the synthesis tool.

Next, we discuss the construction of the privacy specification. In all three examples, we assume
the eavesdropper’s model of the system architecture is the plant with dynamics MPlant in direct
feedback with the controller with a unit delay. As such, the base nominal models M̂0 in each problem
are the same up to the renaming of variables. Furthermore, we assume that the eavesdropper knows
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that the closed-loop system satisfies the control specification φCont defined in Equation (7.5) which
requires door j to eventually be signaled to open with Contj after the corresponding keypad has
been pressed with output kj . In this case, we know that feasible traces must belong to the intersection
M̂ = M̂0 ∩ φCont which is used by the eavesdropper as their nominal model in the example for
Architecture 1.

However, the question remains whether all of such traces of the plant satisfying the control
specification are realized by a controller, as pondered by the more astute eavesdroppers considered
in Architecture 2 and Architecture 3. In this case, the question can be answered in the affirmative
by inspection, any trace in M̂0 ∩ φCont can be achieved by a controller by appropriately inserting
delays in opening doors as necessary. We see that the eavesdroppers in all three examples utilize
the same nominal model which can be expressed by the plant automaton with an additional Streett
acceptance condition modeling φCont. In particular given the secret language MS defined by the
occurrence of the fault, the language M̂ \MS can be expressed by the non-faulty (left) half of
the plant automaton where each room must be visited infinitely often. This is described by the
Streett condition with Bi is given by all states and Gi is given by the states of room i ∈ {0, 1, 2}.
Specifically, G0 = {0, 1, 4}, G2 = {2, 3}, and G2 = {5, 6}. Again, this Streett automaton is then
converted to a Büchi automaton. Finally, a single Büchi automaton accepting φ′ may be constructed
using the standard constructions for the complement and intersection.

B.0.2 Synthesis of Examples

Next, we present the details of how solutions for the example problems were designed. While the
classical tree-automaton based algorithm [38, 76] is useful for theoretic analysis of distributed reac-
tive synthesis, its explicit construction of large automata results limits applicability. Unfortunately,
there are not many tools available for the purpose of distributed synthesis. Alternatively, solving
the reduction to the more general problem of synthesis for hyperproperties has been observed to
improve performance. For example, this is the approach taken in [96] to synthesize obfuscation and
inference functions for privacy and utility enforcement. Hyperproperties generalize the concept of
trace specifications such as LTL or ω-regular properties. Whereas properties describe individual
traces, hyperproperties describe relations of multiple traces. For example, HyperLTL is a formal
logic for expressing hyperproperties which extends LTL with explicit trace quantifiers [23]. It is
capable of expressing classical information flow properties such as non-interference as well as
information flow within a distributed architecture [35].

Using this fact, we can reduce the distributed synthesis problem to a HyperLTL synthesis problem
by introducing a HyperLTL formula capturing the architecture. This formula is built using the
following HyperLTL formula which expresses the causal dependence of the output variables O ⊆ V
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on the input variables I ⊆ V without delay

DI→O = ∀π. ∀π′.
( ∨
o∈O

O[π]↔ O[π′]
)
W
(∨
i∈I

I[π]↔ I[π′]
)
,

whereW denotes the weak until operator. In words, this formula requires the outputs of any two
traces to be the same until their inputs differ. A similar definition for DI→O is made in [35] for
processes with delay. Given a distributed architecture A = (P,W, env, E,O,H), we can construct
a HyperLTL formula encoding its information flow as

ΦA =
∧
p∈P
p ̸=env

DIp→Op . (B.1)

We then aim to solve the synthesis problem for the trace property φ′ and the hyperproperty ΦA.
We solve this problem using the tool BoSyHyper [34], an extension of the well-known LTL

bounded synthesis tool BoSy to HyperLTL [33]. In particular BoSyHyper supports synthesis
for HyperLTL formulas with only universal quantifiers, which includes the formulas needed for
distributed synthesis. The tool was modified to accept as input the trace specification φ′ represented
by an explicit Büchi automaton and the HyperLTL formula ΦA. If found by the tool, solutions are
given as a monolithic model of the realized system in the Aiger format [33]. Such solutions can be
converted into automata models implementing each process of the system. The construction and
manipulation of automata input and output by BoSyHyper was performed with the automata library
MDESops [68].
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[9] Béatrice Bérard, Krishnendu Chatterjee, and Nathalie Sznajder. Probabilistic opacity for
Markov decision processes. Information Processing Letters, 115(1):52–59, January 2015.

[10] Finn Brunton and Helen Nissenbaum. Obfuscation. The MIT Press. MIT Press, London,
England, September 2016.

[11] Jeremy Bryans, Maciej Koutny, and Peter Ryan. Modelling Opacity Using Petri Nets. Electr.
Notes Theor. Comput. Sci., 121:101–115, February 2005.

131



[12] Jeremy W. Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A. Ryan. Opacity gener-
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[15] Franck Cassez, Jérémy Dubreil, and Hervé Marchand. Dynamic Observers for the Synthesis
of Opaque Systems. In Zhiming Liu and Anders P. Ravn, editors, Automated Technology
for Verification and Analysis, Lecture Notes in Computer Science, pages 352–367, Berlin,
Heidelberg, 2009. Springer.
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[30] Rüdiger Ehlers, Stéphane Lafortune, Stavros Tripakis, and Moshe Y. Vardi. Supervisory
control and reactive synthesis: A comparative introduction. Discrete Event Dynamic Systems,
27(2):209–260, June 2017.
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[64] Laurent Mazaré. Using unification for opacity properties. In In Proceedings of the Workshop
on Issues in the Theory of Security (WITS’04), pages 165–176, 2004.

135



[65] J. McLean. A general theory of composition for trace sets closed under selective interleaving
functions. In Proceedings of 1994 IEEE Computer Society Symposium on Research in
Security and Privacy, pages 79–93, May 1994.
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