
Dynamics on the Moduli Space of
Non-Orientable Surfaces

by

Sayantan Khan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Mathematics)

in The University of Michigan

2024

Doctoral Committee:

Associate Professor Alexander Wright, Co-Chair

Professor Ralf Spatzier, Co-chair

Assistant Professor Pierre-Louis Blayac

Professor Richard Canary

Professor Venky Nagar



Sayantan Khan
saykhan@umich.edu

ORCID iD: 0000-0003-2582-0710

© Sayantan Khan 2024

All Rights Reserved



ACKNOWLEDGEMENTS

I am extremely grateful to my advisor Alex Wright for help and guidance throughout the

course of my PhD. He taught me how to keep on chipping away at a problem for months,

and not to be discouraged by apparent lack of progress. I would also like to thank Ralf

Spatzier for many helpful conversations, as well as helping out with many of the bureaucratic

requirements of a PhD program at short notice. I am also grateful to the graduate students

doing geometry and dynamics at Michigan, from whom I learnt a lot: in particular, thanks

Bradley, Chris, Karen, Carsten, Katia, and Mitul. Finally I’d like to thank my friends at

Michigan for making sure I had a life outside of math as well: thanks Urshita, Anna, Swaraj,

Karthik, Michael, Malavika, Sameer, Shelby, Danny, Lukas, and Havi.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER II: Limit set of Non-Orientable Mapping Class Groups . . . . . . . . . . . 12

II.1: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II.1.1: Non-Orientable Surfaces and Measured Foliations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II.1.2: Limit Sets of Mapping Class Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II.2: Lower Bound for the Limit Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II.3: Upper Bound for the Limit Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

II.4: Failure of Quasi-Convexity for T −
εt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

CHAPTER III: Towards Patterson-Sullivan Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III.1: Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III.1.1: Non-Orientable Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III.1.2: Critical Exponents and Patterson-Sullivan Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 44

III.2: The Weak Convex Core of T (Ng) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III.2.1: Issues with Geometric Finiteness and Statistical Convex-Cocompactness . . . 49

III.2.2: A Weaker Notion of Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

III.2.3: Weak Convexity for T −
εt (Ng). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III.3: Geodesics in the Thin Part of core(T (Ng)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

III.3.1: Construction of Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



III.3.2: Construction of the Foster-Lyapunov-Margulis Function . . . . . . . . . . . . . . . . . . . . 60

III.3.3: Recurrence for Random Walks and Geodesic Segments. . . . . . . . . . . . . . . . . . . . . . 64

III.4: Equality of Lattice Point Entropy and Net Point Entropy . . . . . . . . . . . . . . . . . . . . . . 69

III.4.1: Base Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

III.4.2: Good Points and Bad Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III.4.3: Using Complexity Length to Count Bad Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

III.4.4: Entropy Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

III.4.5: Proof of Theorem III.34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

III.5: Linear Gap in Complexity Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

III.5.1: An Example of Counting in Product Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

III.5.2: An Overview of Complexity Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

III.5.3: Linear Gap for Bad Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

III.6: Geometry of T (Ng) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

III.6.1: Minsky’s Product Region Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

III.6.2: Uniform Bounds for the Volume of a Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

III.6.3: Teichmüller Geodesics and Geodesics in the Curve Complex . . . . . . . . . . . . . . . . 105

CHAPTER IV: Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

IV.1: Statistical Convex Core of T (Ng) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IV.2: Upgrading Random Walk Phenonomena to Uniform Measure . . . . . . . . . . . . . . . . . . . 112

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

iv



LIST OF FIGURES

2.1 A quadratic differential q on S2 given by the slit torus construction. . . . . . 14

2.2 A quadratic differential on N3. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Two possibilities for first return to ηi: on the left, the arc returns without

the local orientation flipping, and on the right, the arc returns with the local

orientation flipped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 The curve ci is colored blue. Since the leaf from p0 returns with the local

orientation flipped to both pi−1 and pi, the curve ci is two-sided. . . . . . . . 27

2.5 Construction of the blue curve ci when the leaf always returns with orientation

flipped from the “up” or “down” direction. . . . . . . . . . . . . . . . . . . . 28

2.6 The arcs q̃1 and q̃2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Homotopy taking q2 to q1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 The curves restricted to a pair of pants. . . . . . . . . . . . . . . . . . . . . . 31

2.9 The right angled hexagon obtained by cutting the pants along the seams. . . 32

2.10 A DQD on N4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.11 A DQD on N9. To display the gluing maps on the small slits, we have a

zoomed in picture in the ellipses. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 The curves κ and κ′ on S1,0,1. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 The curves κ and κ′ on S0,2,1. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 The curves γ∞, γ0 and γ1 on S0,1,2. . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 A schematic of the geodesic [x, y] traveling through several product regions. . 85

3.5 Examples of Vi ↙ E and E ↘ Wi. . . . . . . . . . . . . . . . . . . . . . . . 90

v



ABSTRACT

The moduli spaces of non-orientable hyperbolic surfaces have conjectural similarities to in-

finite volume geometrically finite hyperbolic manifolds. This thesis establishes some of the

conjectured analogies to geometrically finite hyperbolic manifolds, which are useful in the

context of understanding the geodesic flow on the unit cotangent bundle of the moduli space.

In particular, it is shown that the Patterson-Sullivan measure is supported on the set of pro-

jective measured foliations containing no one-sided leaves. We then also show that the action

of the mapping class group on the Teichmüller space, restricted to a finite covolume subset,

is statistically convex-cocompact. We deduce from this that the Patterson-Sullivan measure

is non-atomic, and the Bowen-Margulis measure on the unit cotangent bundle is finite, and

the geodesic flow is ergodic with respect to this measure.
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CHAPTER I

Introduction

The moduli space M(Ng) of compact non-orientable hyperbolic surfaces of genus g is con-

jectured to have similarities to infinite volume geometrically finite manifolds (in a manner

similar to how moduli spaces of compact orientable surfaces have properties similar to finite

volume hyperbolic manifolds). The main results suggesting the analogy between moduli

spaces of non-orientable surfaces and infinite volume geometrically finite manifolds are due

to Norbury and Gendulphe.

• The M(Ng) has infinite Teichmüller volume [Gen17, Theorem 17.1]. While the as-

sociated Teichmüller space does not have a Weil-Petersson volume form, it has an

analogous volume form with respect to which the moduli space has infinite volume as

well (see [Nor08]).

• The action of the mapping class group MCG(Ng) on the Thurston boundary is not

minimal (Proposition 8.9 in [Gen17]).

• The Teichmüller geodesic flow is not topologically transitive, and thus not ergodic with

respect to any Borel measure with full support [Gen17, Proposition 17.5].

• There exists an MCG(Ng)-equivariant finite covolume deformation retract of T (Ng).

We extend this analogy further, by showing that the limit set of MCG(Ng) is contained

in the complement of a full measure dense open set.

Theorem II.28. The limit set of MCG(Ng) is contained in the complement of PMF−(Ng).

Here PMF−(Ng) is the set of all projective measured foliations that have one-sided

compact leaf. The fact that such foliations form a full measure dense open subset is classical,

due to Danthony-Nogueira (see [DN90]). This is analogous to limit sets of infinite volume

geometrically finite groups, where the complement of the limit set is a full measure open set

as well.
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In [Gen17], Gendulphe constructed a retract of T (Ng) to T −
εt (Ng), the set of points in

the Teichmüller space that have no one-sided curves shorter than ε, and showed that it has

finite covolume. They also asked the following question about T −
εt (Ng).

Question (Question 19.1 of [Gen17]). Is T −
εt (Ng) quasi-convex with respect to the Te-

ichmüller metric?

We show that T −
εt (Ng) is not quasi-convex, answering the above question.

Theorem II.30. For all ε > 0, and all D > 0, there exists a Teichmüller geodesic segment

whose endpoints lie in T −
εt (Ng) such that some point in the interior of the geodesic is more

than distance D from T −
εt (Ng).

Since T −
εt (Ng) is an MCG(Ng)-invariant subset of T (Ng), the intersection of its closure

with the boundary must also be MCG(Ng)-invariant, and therefore contain the limit set

of MCG(Ng). This suggests that if we want long geodesic segments that start and end in

T −
εt (Ng), we must look for Teichmüller geodesics that have their expanding and contracting

foliations in the limit set. Conjecture 9.1 of [Gen17] states that the limit set should exactly be

the complement of PMF−(Ng), the set of projective measured foliations that do not contain

any one-sided leaves (denoted PMF+(Ng)). We prove a result that is slightly weaker than

the conjecture.

Theorem II.15. A foliation λ ∈ PMF+(Ng) is in the limit set of MCG(Ng) if all the

minimal components λj of λ satisfy one of the following criteria.

(i) λj is periodic.

(ii) λj is ergodic and orientable, i.e. all leaves exiting one side of a transverse arc always

come back from the other side.

(iii) λj is uniquely ergodic.

Furthermore, if λj is minimal, but not uniquely ergodic, there exists some other foliation λ′
j

supported on the same topological foliation as λj which is in the limit set.

Combining Theorem II.15 with a result of Lenzhen and Masur [LM10, Proposition 1], a

complete description of the limit set can be obtained.

Theorem I.1 (Also proven independently by [EGPS23]). The limit set of MCG(Ng) in

PMF(Ng) is PMF+(Ng).

2



With this description of the limit set, we prove Theorem II.30 by constructing a family of

Teichmüller geodesics whose expanding and contracting foliations are of the kind described

by Theorem II.15, and showing that some point in the interior of the geodesic segment is

arbitrarily far from T −
εt (Ng).

By understanding the failure of convexity of T −
εt (Ng), we can try to strengthen the analogy

to geometrically finite manifolds by constructing a family of Patterson-Sullivan measures

on the limit set. However, we still need a convex core, if we want a good analogy with

geometrically finite manifolds: we show that the failure of convexity of T −
εt (Ng) is not a

serious obstruction to understanding geodesic segments whose endpoints lie in T −
εt (Ng).

Theorem III.14. For any εd > 0, there exists constants ε′t and c, such that any geodesic

segment γ, whose length is more than c, with endpoints in T −
εt (Ng), for 0 < εt < ε′t, can be

homotoped to a segment relative to endpoints to lie entirely within T −
εt (Ng), such that the

length of the homotoped segment γ′ satisfies the following inequality.

ℓ(γ′) ≤ ℓ(γ) · (1 + εd)

Theorem III.14 shows that T −
εt (Ng), despite not being convex, almost behaves like the

convex core of T (Ng): it is a metric subset of T (Ng) (with respect to the induced path

metric) which is distorted by an arbitrarily small amount. We call T −
εt (Ng) the weak convex

core of T (Ng), and focus our attention on this subspace as a metric space, where the metric

is the induced path metric. If we restrict our attention to the cotangent directions in T (Ng)

along which the geodesic flow does not eventually leave T −
εt (Ng), we can use those cotangent

directions to define a geodesic flow for T −
εt (Ng). We call this collection of restricted directions

the restricted cotangent bundle over T −
εt (Ng).

In light of this, we restrict our attention to T −
εt (Ng), and the MCG(Ng) action on T −

εt (Ng).

Since the action of MCG(Ng) on T −
εt (Ng) is finite νN -covolume (but not cocompact), one

might try to prove that the action is like the action of lattices in SL2(R) on H. However, the

results on lattices (and Teichmüller spaces of orientable surfaces) rely on having a measure

preserving SL2(R) action on the unit tangent bundle (respectively on the moduli space of

quadratic differentials), and use the interplay between the geodesic flow and the horocycle

flow.

For non-orientable surfaces, we do not have an analog of the horocycle flow on the space

of quadratic differentials, so we cannot hope to directly import the techniques from the

orientable case. However, Yang [Yan18] introduced a notion of statistically convex-cocompact

action, which can replace the notion of a lattice-like action for our setting. In the setting

of T −
εt (Ng), proving statistical convex-cocompactness is equivalent to proving that geodesic

3



segments between MCG(Ng) orbit points in T −
εt (Ng) enter the thin part (i.e. the region in

T −
εt (Ng) where some two-sided curve is short) with exponentially low probabilities.

Our next result is that this holds for the MCG(Ng) action on T −
εt (Ng).

Theorem I.2 (Corollary of Theorems III.33 and III.34). The action of MCG(Ng) on T −
εt (Ng)

is statistically convex-cocompact.

Using Theorem III.14 and a result of Minsky [Min96a], we have that the projection of

balls disjoint from axes of the pseudo-Anosov elements have bounded diameter. This means

pseudo-Anosov elements are strongly contracting and most reducible elements are not (see

Lemma III.18).

Coulon ([Cou22], [Cou24]) and Yang ([Yan18], [Yan20]) prove fairly general results in the

setting of statistically convex cocompact group actions with strongly contracting elements.

We state these results in our setting, where MCG(Ng) plays the role of the group, T −
εt (Ng)

is the metric space (where dεt denotes the distance function) upon which MCG(Ng) acts

via a statistically convex cocompact action, and pseudo-Anosovs play the role of strongly

contracting elements. We also denote balls of radius R with respect to the metric dεt centered

at p as BR(p).

Theorem I.3 (Purely exponential growth (Theorem B of [Yan18])). There exist positive

constants A and B such that the following bounds hold for the cardinality of the MCG(Ng)

orbit of a point p ∈ T −
εt (Ng) in a ball of radius R.

A exp(hR) ≤ #(MCG(Ng) · p ∩BR(p)) ≤ B exp(hR)

Here, h is the critical exponent for the group action.

We also have that pseudo-Anosov elements are exponentially generic with respect to the

induced metric on T −
εt (Ng).

Theorem I.4 (Exponential genericity of contracting elements (Theorem 1.4 of [Yan20])).

For a point p ∈ T −
εt (Ng), let N(R) denote the number of mapping class elements γ such that

dεt(p, γp) ≤ R, and let Nnc(R) denote the reducible mapping class elements γ that leave a

two-sided curve invariant, dεt(p, γp) ≤ R. Then there exists a positive constant c such that

the following holds for large enough R.

Nnc(R)

N(R)
≤ exp(−cR)

After picking a basepoint p ∈ T −
εt (Ng), we can replicate the classical construction of

Patterson-Sullivan measures [Sul79] to get a measure ν supported on the limit set PML+(Ng).
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Since we have that the action is statistically convex cocompact, and we have plenty of

strongly contracting elements, the results of Coulon ([Cou22],[Cou24]) let us say a lot about

the Patterson-Sullivan measure ν. We have the Hopf-Tsuji-Sullivan dichotomy.

Theorem I.5 (Hopf-Tsuji-Sullivan dichotomy (Theorem 1.1 of [Cou24])). For the action of

MCG(Ng) on T −
εt (Ng), the following are equivalent.

(i) The Poincaré series for MCG(Ng) diverges at the critical exponent.

(ii) The measure ν gives full measure to the radial limit set.

(iii) The diagonal action on PML+(Ng)×PML+(Ng) is ergodic with respect to the product

measure ν ⊗ ν.

(iv) The geodesic flow on the unit tangent bundle (PML+(Ng)×PML+(Ng)×R)/MCG(Ng)

is ergodic with respect to the Bowen-Margulis measure.

It follows as a corollary of Theorem I.4 that the Poincaré series for MCG(Ng) diverges at

the critical exponent, and as a result, we have all the other equivalent criteria that appear

in the Hopf-Tsuji-Sullivan dichotomy.

Remark. Coulon [Cou24] states the above theorem where the role of boundary is played by

the horofunction boundary of the metric space, which for the Teichmüller space is not the

Thurston boundary PML(Ng). However, Miyachi [Miy08] proves that there is an MCG(Ng)

equivariant bijective map between the uniquely ergodic points in the horofunction boundary,

and the uniquely ergodic points in the Thurston boundary. Furthermore, by condition (ii)

of the Hopf-Tsuji-Sullivan dichotomy, the radial limit points have full measure, and Masur’s

criterion gives us that radial limit points are uniquely ergodic. This lets us replace the

horofunction boundary with the Thurston boundary in the statement of the result, since

they agree on a full measure set.

In particular, we have that the action of MCG(Ng) on the limit set PML+(Ng), and the

double limit set PML+(Ng)× PML+(Ng) is ergodic, and that the geodesic flow is ergodic

with respect to the Bowen-Margulis measure.

Why we care about the limit set of MCG(Ng) and Patterson-Sullivan measures

Counting problems

Understanding the dynamics of the geodesic flow over the moduli space of orientable surfaces

has led to solutions for two counting problems: one on the moduli space of hyperbolic

surfaces, and one on hyperbolic surfaces themselves.

5



(i) Counting closed curves in moduli space: Via techniques originally introduced to Mar-

gulis in his thesis [Mar04], one can reduce counting closed curves, which are conjugacy

classes of mapping class group orbit points, to understanding the geodesic flow over

the moduli space. The number of closed curves of length at most R, which we denote

by N(R) has the following asymptotics (see [EM11]).

N(R) ∼ exp(hR)

hR
(I.0.1)

Here, the symbol ∼ means that the ratio of the two quantities approaches a positive

constant as R goes to ∞, and h is the volume growth entropy of T (Sg), which is 6g−6.

(ii) Counting simple closed curves on orientable hyperbolic surfaces: Mirzakhani [Mir08]

proved that the counting function M(R) that counts simple closed curves satisfies a

polynomial asymptotic.

M(R) ∼ Rh(I.0.2)

Here, h is again the volume growth entropy, i.e. 6g − 6. This count also led to an

explicit computation of the volumes of moduli spaces of orientable hyperbolic surfaces

with boundary, as well as the calculation of expected values for various geometric

properties of Weil-Petersson random hyperbolic surfaces.

For non-orientable surfaces, the counting function does not behave like the orientable

version. Gendulphe [Gen17] showed that the counting function Nno(R) and Mno(R), which is

the versions of the functions N(R) and M(R) for non-orientable surfaces satisfy the following

asymptotic.

Nno(R) = o

(
exp((3g − 6)R)

(3g − 6)R

)
Mno(R) = o(R3g−6)

These asymptotics raise the question of whether there is an exponent h < 3g − 6 for which

the non-orientable versions of (I.0.1) and (I.0.2) continue to hold. For g = 3, Magee [Mag18]

obtained precise asymptotics, and in this case, the growth rate is a non-integer exponent

smaller than 3g − 6 = 3.

If we can upgrade ergodicity of the geodesic flow to mixing of the geodesic flow, we can

count lattice points and their conjugacy classes to obtain a non-orientable version of (I.0.1)

where the role of h is played by the critical exponent for the group action of MCG(Ng) with

6



respect to the Teichmüller metric.

One way to do this would be to answer the following question.

Question I.6 (Restatement of Question III.11). Is the action of MCG(Ng) on T (Ng) sta-

tistically convex cocompact, where T ±
εt (Ng) plays the role of statistical convex core?

We expect the answer to this question is yes, despite our random walk methods not

working in this setting. If the answer is yes, we can use the results of Coulon, Gekhtman,

Tapie, and Yang [CGTY] to establish mixing of the geodesic flow with respect to the Bowen-

Margulis measure, and use that to count lattice points.

To explain how ergodicity of the MCG(Ng) action on PML+(Ng) might help count

simple closed curves on Ng, we outline Mirzakhani’s original proof of the fact for orientable

surfaces (see [Mir08] for the original proof, and [Ara22] for a gentler exposition).

Sketch of simple closed curve counting in the orientable case. The proof proceeds in 3 steps.

Step 1: For any simple closed curve γ and any L > 0, consider the measure µL on the space

ML(Sg) of measured laminations.

µL :=
1

L6g−6

∑
α∈MCG(Sg)

δ 1
L
αγ

Step 2: Letting L go to ∞, {µL} converges to measure µ that is MCG(Sg)-invariant. By

ergodicity of the MCG(Sg)-action onML(Sg) with respect to the Thurston measure,

we have that the limiting measure µ is a constant multiple c times the Thurston

measure.

Step 3: To show that the constant c is positive, one needs to average over the moduli space

M(Sg), using Mirzakhani’s integration formula for the Weil-Petersson volume form.

To replicate this proof in the non-orientable setting, we pick the original simple closed

curve γ to be a two-sided curve, and replace the exponent 6g − 6 with h+ 1, where h is the

critical exponent of MCG(Ng).

With this replacement, we have the following question.

Question I.7. Do the sequence of measures µL converge to a locally finite measure supported

on ML+(Ng)?
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Erlandsson, Gendulphe, Pasquinelli, and Souto [EGPS23] show that the MCG(Ng) orbit

closure of such a point indeed is ML+(Ng), but the question about convergence of measures

is still open. Since our results imply ergodicity of the MCG(Ng) action on PML+(Ng)

with respect to the Patterson-Sullivan measures, we can ask the following questions about

the limiting measure µ as well as the product of the Patterson-Sullivan measures with the

Lebesgue measure.

Question I.8. Is the limiting measure µ absolutely continuous with respect to the ergodic

measure on ML+(Ng) obtained by taking a product of Patterson-Sullivan measure and the

Lebesgue measure?

If the answer to the question is yes, then one will have completed Step 2 of the proof for

non-orientable surfaces.

To make Step 3 work for non-orientable surfaces, one needs to construct a recursive

formula for the volumes of T −
εt (Ng): this has been done by Stanford [Sta23].

In the lowest complexity case, namely forN1,3 (i.e. the projective plane with 3 punctures),

simple closed curve counting has been established via related methods. Gamburd, Magee,

and Ronan have proved a counting result for simple closed curves by constructing a conformal

measure of non-integer Hausdorff dimension on the limit set ([GMR19, Theorem 10]), and

then using that conformal measure to count simple closed curves ([Mag18, Theorem 2]).

Interval exchange transformations with flips

Teichmüller spaces of non-orientable surfaces also show up in the context of interval exchange

transformations with flips. The dynamics of interval exchange transformations are closely

related to the dynamics of horizontal/vertical flow on an associated quadratic differential,

which is related to the geodesic flow on the Teichmüller surface via Masur’s criterion (a

version of which holds in the non-orientable setting as well). IETs with flips do not have very

good recurrence properties: in fact, almost all of them (with respect to the Lebesgue measure)

have a periodic point (see [Nog89]) and the set of minimal IETs with flips have a lower

Hausdorff dimension (see [ST18]). To understand the IETs which are uniquely ergodic, one

is naturally led to determine which “quadratic differentials” on non-orientable surfaces are

recurrent. A necessary but not sufficient condition for recurrence of a Teichmüller geodesic

is that its forward and backward limit points lie in the limit set. From this perspective,

Theorems II.15 and II.28 can be seen as a statement about the closure of the recurrent set.

Constructing a measure supported on the closure of the recurrent set can be then used to

answer questions about uniquely ergodic IETs with flips.
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Geometric finiteness for mapping class subgroups

One can think of MCG(Ng) as a subgroup of MCG(Sg−1) (where Sg−1 is the orientation

double cover of Ng), where the embedding is obtained by lifting mapping classes on Ng to

orientation preserving mapping classes on Sg−1. The image of MCG(Ng) is an infinite-index

subgroup, and stabilizes an isometrically embedded copy of T (Ng) inside T (Sg−1).

For subgroups of mapping class groups, the notion of convex-cocompactness was intro-

duced by Farb and Mosher [FM02]: these groups have good properties with respect to their

dynamics on the Teichmüller space. A natural generalization of these subgroups, inspired

by the Kleinian setting, is the notion of geometric finiteness. While there is not universally

agreed upon notion of geometric finiteness for mapping class subgroups, the following two

classes of subgroups are considered to be geometrically finite by any reasonable definition.

(i) Veech groups: These are stabilizers of Teichmüller discs in T (Sg−1) which are finitely

generated. They are lattices in SL2(R), and their action on the Teichmüller discs they

stabilize is well understood via hyperbolic geometry.

(ii) Combinations of Veech groups: Leininger and Reid [LR06] show that if two Veech

groups H and K share a maximal parabolic subgroup A, the subgroup they generate

is H ∗A K (after possibly conjugating by a pseudo-Anosov).

The key emphasis with these two examples is that there are only finitely many cusps,

i.e. finitely many conjugacy classes of reducible elements. However, that is not the case for

MCG(Ng), it stabilizes an isometrically embedded sub-manifold, and yet there are infinitely

many conjugacy classes of reducible elements. Despite having infinitely many “cusps”, our

results show that it is still possible to do Patterson-Sullivan theory on MCG(Ng), which is a

departure from the Fuchsian/Kleinian setting, where finite Bowen-Margulis measure requires

finitely many cusps.

Organization of the thesis

The main results in this thesis appear in Chapters II and III. Both the chapters begin with

the necessary background and notation required to state and prove the results in the chapter:

some of the notation differs between the chapters since they appear as two separate papers.

In Chapter IV, we list two approaches we tried in order to prove our theorem, that we did

not end up relying upon by the end. These approaches are interesting in their own right,

and lead to more questions about the mapping class group of non-orientable surfaces.
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Organization of Chapter II

Section II.1.1 contains the background on non-orientable surfaces and measured foliations,

and section II.1.2 contains the background on limit sets of mapping class subgroups. These

sections can be skipped and later referred to if some notation or definition is unclear. Section

II.2 contains the proof of Theorem II.15, section II.3 contains the proof of Theorem II.28, and

section II.4 contains the proof of Theorem II.30. Sections II.2, II.3, and II.4 are independent

of each other, and can be read in any order.

This chapter has also appeared in publication as [Kha23].

Organization of Chapter III

In this subsection, we outline the key ideas behind the proof of the main theorems, and how

they relate to each other. Interested readers can however read the sections in any order.

Weak convexity of T −
εt (Ng)

We construct a projection map from T (Ng) to T −
εt (Ng) which takes any one-sided curve of

length less than εt and increases its length to εt, while keeping the lengths and twists of other

curves constant. We then use Minsky’s product region theorem to show that this projection

map increases distance by only a factor of (1 + εd), where εd can be picked to be arbitrarily

small.

Statistical convexity of T −
εt (Ng)

To show that geodesics in T −
εt (Ng) stay away from the thin part, we construct a random

walk on T −
εt (Ng), and compute the probability of a single step of the random walk entering

the thin part, and show that this probability is small. Estimating this probability reduces

to computing an average over a ball in H because of Minsky’s product region theorem. The

random walk argument gives us that the number of geodesics of length at most R entering

the thin part is at most exp((hNP − 1)R), where hNP is the discrete analog of the volume

growth entropy of T −
εt (Ng). However, the total number of geodesics of length at most R

grows like exp((hLP)R), where hLP is the growth rate of the number of lattice points. To

show that the probability of a geodesic entering the thin part is exponentially small, we need

to relate the two entropy terms, and show that hLP > hNP − 1.
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Showing hLP = hNP

We prove entropy equality by inducting on the complexity of the surface. We first show

it for surfaces with Euler characteristic equal to −1 using direct methods, and reduce the

inductive step to proving an estimate on complexity length for geodesic segments that spend

a definite fraction of their time in thin part.

Complexity length estimate

In this section, we show that geodesic segments that spend a small but definite fraction

of time near their end in the thin part are rare. We do this by showing that hNP for a

proper subsurface is strictly smaller than hNP for the entire surface, and use the machinery

of complexity length (due to Dowdall and Masur [DM23]), which builds upon Minsky’s

product region theorem and hierarchical hyperbolicity of Teichmüller space, to show that

geodesic segments ending in the thin part are rare.
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CHAPTER II

Limit set of Non-Orientable Mapping Class Groups

II.1: Background

II.1.1: Non-Orientable Surfaces and Measured Foliations

For the purposes of this paper, the most convenient way to think about non-orientable

surfaces will be to attach crosscaps to orientable surfaces. Given a surface S, attaching a

crosscap is the operation of deleting the interior of a small embedded disc, and gluing the

boundary S1 via the antipodal map. Attaching k crosscaps to a genus g surface results in a

genus 2g+k non-orientable surface N2g+k (i.e. the non-orientable surface obtained by taking

the connect sum of 2g+ k copies of RP2). Associated to each cross cap is a one-sided curve,

which is the image of the boundary under the quotient map. We say that a curve intersects

the crosscap if it intersects the associated one-sided curve.

Consider the set S of simple closed curves on a non-orientable surface N . The elements

of S can be classified into two types.

Two sided curves Tubular neighbourhoods are cylinders.

One sided curves Tubular neighbourhoods are Möbius bands.

The subset of two sided curves in denoted by S + and one sided curves by S −. Since

these two types are topologically distinct, they form invariant subspaces with respect to

the mapping class group action. If we think of our non-orientable surface as an orientable

subsurface with crosscaps attached, a two-sided curve is one that intersects an even number

of crosscaps, and a one-sided curve is one that intersects an odd number of crosscaps.

The orientable double cover of Ng is the orientable surface Sg−1, and comes with an

orientation reversing involution ι. Since this is an orientation double cover, the subgroup of

π1(Ng) corresponding to this cover is characteristic, i.e. left invariant by every homeomor-

phism induced automorphism of the fundamental group. A useful consequence of this fact

is that one can lift mapping classes uniquely.
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Fact. Any self homeomorphism of Ng lifts to a unique orientation preserving self homeo-

morphism of Sg−1, and as a consequence, one has the injective homomorphism induced by

the covering map p.

p∗ : MCG(Nd) ↪→ MCG+(Sd−1)

Furthermore, this inclusion preserves the mapping class type, i.e. finite order, reducible

and pseudo-Anosov maps in MCG(Ng) stay finite order, reducible, and pseudo-Anosov in

MCG(Sg−1).

One also obtains a map from T (Ng) to T (Sg−1) using the fact that mapping classes

can be lifted canonically. Given a point (p, φ) in T (Ng), where p is a hyperbolic surface

homeomorphic to Ng, and φ is an isotopy class of homeomorphism from Ng to p, we define

the image of (p, φ) in T (Sg−1) to be (p̃, φ̃), where p̃ is the orientation double cover of p, and

φ̃ is the orientation preserving lift of the homeomorphism φ. One can also explicitly describe

the image of this map. To do so, we consider the extended Teichmüller space of Sg−1, i.e. also

allowing orientation reversing markings. This space has two connected components, one for

each orientation, and there is a canonical involution, given by reversing the orientation, that

exchanges the two connected components. We denote this conjugation map by ·. There is

another involution, induced by the orientation reversing deck transformation of Sg−1, which

we denote by ι∗. This map also exchanges the two components of the extended Teichmüller

space. The image of T (Ng) is precisely the set of points fixed by the composition of these two

maps, i.e. ι∗. We skip the proof of these two facts, since they follow by relatively elementary

covering space arguments, and summarize the result in the following theorem.

Theorem II.1 (Embedding Teichmüller spaces). Given a point (p, φ) in T (Ng), there is a

unique point (p̃, φ̃) in T (Sg−1), where p̃ is the pullback of the metric, and φ̃ is the unique

orientation preserving lift of the marking. The image of the inclusion map is the intersection

of the invariant set of ι∗ with the connected component of the extended Teichmüller space

corresponding to orientation preserving maps.

It turns out that the image of T (Ng) in T (Sg−1) is an isometrically embedded subman-

ifold, and the geodesic flow can be represented by the action of the diagonal subgroup of

SL(2,R).
To understand the Teichmüller geodesic flow on T (Ng), we need to determine what the

cotangent vectors look like: let X be a point in T (Ng) and let X̃ be the corresponding point

in T (Sg−1). Then the map on the extended Teichmüller space induced by the orientation

reversing deck transformation maps X̃ to X̃, i.e. the conjugate Riemann surface. Following
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that with the canonical conjugation map brings us back to X̃. Let q be a cotangent vector at

X̃, i.e. an anti-holomorphic quadratic differential on the Riemann surface X̃. Pulling back

q along the canonical conjugation map gives a holomorphic quadratic differential on X. In

local coordinate chart on X̃, this looks like q(z)dz2 if on the corresponding chart on X̃ it

looked like q(z)dz2. We want this to equal ι∗q, which will also be a holomorphic quadratic

differential on X̃. If that happens, then ι∗q is a cotangent vector to the point X in T (Ng).

Example II.2 (A cotangent vector to a point in T (N3)). Consider the quadratic differential

q on a genus two Riemann surface pictured in Figure 2.1.

a

a

b

bc
c

c′

c′

a′

a′

b′b′

Figure 2.1: A quadratic differential q on S2 given by the slit torus construction.

Observe that this particular quadratic differential is the global square of an abelian

differential, so it makes sense to talk about the pairing between
√
q and the homology

classes {a, a′, b, b′, c, c′}. Recall that the action of a mapping class like ι is merely relabelling

homology classes: in this case ι swaps a with −a′, b with b′, and c with −c′. That gives us

the following expressions involving
√
q.

⟨ι∗√q, a⟩ = ⟨√q,−a′⟩(II.1.1)

⟨ι∗√q, b⟩ = ⟨√q, b′⟩(II.1.2)

⟨ι∗√q, c⟩ = ⟨√q,−c′⟩(II.1.3)

On the other hand, the conjugation action conjugates the complex value of each pairing.

⟨√q, a⟩ = ⟨√q, a⟩(II.1.4)

⟨√q, b⟩ = ⟨√q, b⟩(II.1.5)

⟨√q, c⟩ = ⟨√q, c⟩(II.1.6)
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For q to be invariant under ι, both of the above set of equations must be satisfied, which

imposes certain conditions on q. For instance, the complex lengths of a and a′ must be

conjugates of each other, the complex lengths of b and b′ must be negative conjugates of

each other, and the complex length of c and c′ must be real. Only the quadratic differentials

satisfying these constraints will be the cotangent vectors to points in the image of T (N3).

To realize the quadratic differential directly as an object on N3, we can quotient out the

flat surface given by q by the orientation reversing deck transformation. Doing that for our

example gives the non-orientable flat surface gives the picture seen in Figure 2.2.

a

a

b
bc

c

Figure 2.2: A quadratic differential on N3.

This example suggests what the right definition of a quadratic differential on a non-

orientable surface ought to be: in the flat picture, rather than allowing gluing via just the

maps z 7→ ±z + c, we also allow z 7→ ±z + c. This leads to the definition of dianalytic

quadratic differentials (which we’ll abbreviate to DQDs).

Definition II.3 (Dianalytic quadratic differential (adapted from [Wri15])). A dianalytic

quadratic differential is the quotient of a collection of polygons in C, modulo certain equiv-

alences. The quotienting satisfies the following conditions.

(1) The interiors of the polygons are disjoint.

(2) Each edge is identified with exactly one other edge, and the mapping must be of one of

the following four forms: z 7→ z + c, z 7→ −z + c, z 7→ z + c, or z 7→ −z + c.

(3) Extending the edge identification map to a small enough open neighbourhood of a point

on the edge should not map it to an open neighbourhood of the image of the point: in

other words, it should get mapped to the “other side” of the edge.
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Two such quotiented collections of polygons are considered the same if they differ by a

composition of the following moves.

(1) A polygon may be translated, rotated by π radians, or reflected across the real or imag-

inary axis.

(2) A polygon may be cut along a straight line to form two polygons, or two polygons sharing

an edge may be glued together to form a single polygon.

Given a DQD, we can pull it back to the orientation double cover, getting an actual

quadratic differential: this operation corresponds to identifying a cotangent vector to a

point in T (Ng) to the corresponding cotangent vector in T (Sg−1).

To verify that T (Ng) is isometrically embedded, all we need to do is verify that the

Teichmüller geodesic flow takes the quadratic differentials satisfying the symmetry condition

ι∗(q) = q to quadratic differentials that satisfy the symmetry conditions.

Lemma II.4. If q satisfies ι∗(q) = q, then for any t, ι∗(gtq) = gtq.

Proof. Recall that if q satisfies the given condition, we must have the following hold for any

homology class a.

(II.1.7) ⟨√q, ι(a)⟩ = ⟨√q, a⟩

If q is not the global square of an abelian differential, we may have to pass to the holonomy

double cover. Observe now what gt does to q.

(II.1.8) ⟨√gtq, ι(a)⟩ = etRe⟨√q, ι(a)⟩+ ie−tIm⟨√q, ι(a)⟩

Using (II.1.7), we simplify (II.1.8) to the following.

⟨√gtq, ι(a)⟩ = etRe⟨√q, a⟩ − ie−tIm⟨√q, a⟩(II.1.9)

= ⟨√gtq, a⟩(II.1.10)

This proves the lemma.

Remark. The key idea that diagonal matrices commute: the conjugation action is really

multiplication by

(
1 0

0 −1

)
which happens to commute with the diagonal matrices of de-

terminant 1, which are exactly the matrices corresponding to geodesic flow. On the other

hand, the conjugation matrix does not commute with the horocycle flow matrices, and that

shows that the horocycle flow is not well defined on the cotangent bundle of T (Ng).
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Lemma II.4 shows that the Teichmüller geodesic flow for the cotangent bundle of T (Ng)

is the restriction of the geodesic flow for the ambient space T (Sg−1).

Theorem II.1 gives us an alternative perspective into the action of MCG(Ng) on T (Ng).

MCG(Ng) can be thought of as the subgroup of MCG(Sg−1) that stabilizes a totally real iso-

metrically embedded submanifold T (Ng). With this perspective, MCG(Ng) can be thought

of as the higher dimensional generalization of the subgroups obtained by stabilizing Te-

ichmüller discs, i.e. Veech groups.

We now state a few classical results about measured foliations on non-orientable surfaces

that show why the theory diverges significantly from the orientable case.

A measured foliation on a non-orientable surface Ng is singular foliation along with

an associated transverse measure, up to equivalence by Whitehead moves1. Any leaf of a

measured foliation can either be non-compact or compact: in the former case, the closure of

the non-compact leaf fills out a subsurface. Restricted to the subsurface given by the closure

of a non-compact leaf, the foliation is minimal, i.e. the orbit of every point under the flow

given by the foliation is dense. For a compact leaf, there are two possibilities for the topology

of the subsurface containing it: if the closed leaf is the core curve or the boundary curve of an

embedded Möbius strip, then the subsurface is the maximal neighbourhood of the periodic

leaf that is foliated by periodic leaves as well, and this turns out to be an embedded Möbius

strip. If the compact leaf is not the core curve or the boundary curve of an embedded Möbius

strip, then it is the core curve of an embedded cylinder, and the maximal neighbourhood

of the periodic leaf foliated by periodic leaf is an embedded cylinder. The identification of

leaves with associated subsurfaces lets us decompose a measured foliation into its minimal

components. Note the slightly confusing terminology: when the minimal component is a

Möbius strip or a cylinder, then the foliation restricted to the component is not minimal,

but when the minimal component has higher genus, then the foliation restricted to that

component indeed is minimal.

We denote the set of measured foliations on Ng by MF(Ng), the set of foliations whose

minimal components do not contain a Möbius strip by MF+(Ng), and the set of foliations

whose minimal components contain at least one Möbius strip by MF−(Ng). Via the stan-

dard identification between simple closed curves and measured foliations, we can associate

Q-weighted two-sided multicurves onNg to a subset ofMF+(Ng), denoted byMF+(Ng,Q).

Quotienting out MF(Ng) by the R+-action given by scaling the transverse measure gives

us the set of projective measured foliations PMF(Ng). The subsets MF−(Ng), MF+(Ng),

andMF+(Ng,Q) are R-invariant, and thus descend to their projective versions PMF−(Ng),

1A Whitehead move on a singular foliation is the process of collapsing a compact leaf joining two singu-
larities to a single point, or the inverse move.
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PMF+(Ng), and PMF+(Ng,Q). The set PMF(Ng) is the boundary of the Teichmüller

space of Ng, and admits a continuous mapping class group action. It is when considering

the mapping class group action that we see differences between the orientable and the non-

orientable case.

Theorem II.5 (Proposition 8.9 of [Gen17]). The action of MCG(Ng) (for g ≥ 2) on

PMF(Ng) is not minimal. In fact, the action is not even topologically transitive.

Compare this to the case of MCG(Sg).

Theorem II.6 (Theorem 6.19 of [FLP12]). The action of MCG(Sg) on PMF(Sg) is mini-

mal.

Remark. The proof of non minimality and topological non-transitivity in the non-orientable

case follow from the fact that one can construct a MCG(Ng)-invariant non-constant contin-

uous function on MF(Ng). That is because starting with a foliation in MF+(Ng), it is

impossible to approximate an element of MF−(Ng) since one does not have Dehn twists

about one-sided curves.

One can now consider subspaces of MF(Ng) where the MCG(Ng) action might be nicer.

There are two natural subspaces: MF+(Ng), and MF−(Ng). Danthony-Nogueira proved

the following theorem about MF−(Ng) in [DN90].

Theorem II.7 (Theorem II of [DN90]). MF−(Ng) is an open dense subset of MF(Ng) of

full Thurston measure.

Theorem II.7 means that the MCG(Ng)-orbit closure in PMF(Ng) of any point in T (Ng)

is contained in PMF+(Ng). In the case of MCG(Sg), PMF+(Sg) = PMF(Sg), and the

orbit closure is actually all of PMF(Sg).

Corollary II.8 (Corollary of Theorem II.6). For any x ∈ T (Sg), MCG(Sg) · x∩PMF(Sg) =

PMF(Sg).

Theorem II.5 and Theorem II.7 suggest that studying the MCG(Ng) dynamics restricted

to MF−(Ng) will be hard since one will not have minimality, or ergodicity with respect to

any measure with full support. In Section II.2, we get a lower bound for the set on which

MCG(Ng) acts minimally.

II.1.2: Limit Sets of Mapping Class Subgroups

The first results on limit sets of subgroups of mapping class groups were obtained by Masur

for handlebody subgroups [Mas86], and McCarthy-Papadopoulos for general mapping class
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subgroups [MP89]. They defined two distinct notions of limit sets; while they did not give

distinct names to the two different definitions, we will do so for the sake of clarity.

Definition II.9 (Dynamical limit set). Given a subgroup Γ of the mapping class group, the

dynamical limit set Λdyn(Γ) is the minimal closed invariant subset of PMF under the action

of Γ.

Remark. In the case where Γ contains two non-commuting pseudo-Anosovs, there is a unique

minimal invariant closed invariant subset of PMF : this is Theorem 4.1 of McCarthy and

Papadopoulos [MP89].

Definition II.10 (Geometric limit set). Given a subgroup Γ of the mapping class group,

and a point x in the Teichmüller space, its boundary orbit closure Λgeo,x(Γ) is intersection

of its orbit closure with the Thurston boundary, i.e. Γx ∩ PMF . The geometric limit

set is the union of all boundary orbit closures, as we vary x in the Teichmüller space, i.e.

Λgeo(Γ) =
⋃

x∈T Λgeo,x(Γ).

Remark. The specific family of subgroups considered by McCarthy-Papadopoulos were sub-

groups containing at least two non-commuting pseudo-Anosov mapping classes, in which

case the dynamical limit set is unique. The mapping class groups MCG(Ng) considered as a

subgroup of MCG(Sg−1) certainly satisfies this property, letting us talk about the dynamical

limit set.

Both of these definitions are natural generalizations of the limit sets of Fuchsian groups

acting on H2. In the hyperbolic setting, the two notions coincide, but for mapping class

subgroups, the dynamical limit set may be a proper subset of the geometric limit set.

For simple enough subgroups, one can explicitly work out Λdyn(Γ) and Λgeo(Γ): for

instance, when Γ is the stabilizer of the Teichmüller disc associated to a Veech surface,

Λdyn(Γ) is the visual boundary of the Teichmüller disc, which by Veech dichotomy, only

consists of either uniquely ergodic directions on the Veech surface, or the cylinder directions,

where the coefficients on the cylinders are their moduli in the surface. On the other hand,

Λgeo(Γ) consists of all the points in Λdyn(Γ), but it additionally contains all possible convex

combinations of the cylinders appearing in Λdyn(Γ) (see Section 2.1 of [KL07]).

The gap between Λgeo and Λdyn suggests the following operation on subsets of PMF ,

which we will call saturation.

Definition II.11 (Saturation). Given a projective measured foliation λ, we define its satu-

ration Sat(λ) to be the image in PMF of set of all non-zero measures invariant measures on

the topological foliation associated to λ. Given a subset Λ, we define its saturation Sat(Λ)

to be the union of saturations of the projective measured laminations contained in Λ.

19



Observe that for a uniquely ergodic foliation λ, Sat(λ) = {λ}, for a minimal but not

uniquely ergodic λ, Sat(λ) is the convex hull of all the ergodic measures supported on the

topological lamination associated to λ, and for a foliation with all periodic leaves, Sat(λ)

consists of all foliations that can be obtained by assigning various weights to the core curves

of the cylinders.

Going back to the example of the stabilizer of the Teichmüller disc of a Veech surface,

we see that Λgeo(Γ) = Sat(Λdyn(Γ)). One may ask if this is always the case.

Question II.12. Is Λgeo(Γ) = Sat(Λdyn(Γ)) for all Γ?

We know from Theorem II.15 that Λgeo(Γ) is contained in Sat(Λdyn(Γ)) when Γ =

MCG(Ng).

McCarthy-Papadopoulos also formulated an equivalent definition of Λdyn(Γ), which is

easier to work with in practice.

Theorem (Theorem 4.1 of [MP89]). Λdyn(Γ) is the closure in PMF of the stable and un-

stable foliations of all the pseudo-Anosov mapping classes in Γ.

List of notation

Here we describe some of the more commonly used symbols in the paper.

Sg: The compact orientable surface of genus g.

Ng: The compact non-orientable surface of genus g.

ι: The deck transformation of the orientation double cover of a non-orientable surface.

T (S): The Teichmüller space of S.

T −
εt (Nd): The set of points in T (Nd) where no one-sided curve is shorter than ε.

MCG(S): The mapping class group of S.

MF(S): The space of measured foliations on S.

PMF(S): The space of projective measured foliations on S.

MF+(Nd), PMF+(Nd): The set of (projective) measured foliations on Nd containing

no one-sided leaves.

MF−(Nd), PMF−(Nd): The set of (projective) measured foliations on Nd containing

some one-sided leaf.
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MF(S;Q), PMF(S;Q): The set of all (projective) weighted rational multicurves on

S.

Λgeo(Λ): The geometric limit set of the discrete group Λ.

Λdyn(Λ): The dynamical limit set of the discrete group Λ.

ℓi(γ): The hyperbolic length of γ on the surface mi, where {mi} is a sequence in the

Teichmüller space. We use this when we are only talking about hyperbolic lengths.

When talking about both hyperbolic and flat lengths, we disambiguate them using the

following symbols.

ℓhyp(M,γ): The hyperbolic length of γ with respect to the hyperbolic structure on

M ∈ T (S). We will suppress M when it is clear from context.

ℓflat(q, γ): The flat length of γ with respect to the flat structure given by the DQD q.

We will suppress q when it is clear from context.

µc: The probability measure on a transverse arc given by the closed curve c.

II.2: Lower Bound for the Limit Set

A natural lower bound for Λdyn(Ng) is the closure of the set of rational two-sided multicurves

PMF+(Ng,Q). For any λ ∈ PMF+(Ng,Q), and any pseudo-Anosov γ, conjugating γ with

large enough powers of the Dehn multi-twist given by λ gives us a sequence of pseudo-Anosov

maps whose stable foliation approaches λ, which shows that Λdyn(Ng) must contain λ. Note

that the same argument does not work if λ ∈ PMF−(Ng,Q), since one cannot Dehn twist

about one-sided curves. In Section II.3, we show that the geometric limit set is indeed

contained in the complement of PMF−(Ng).

In [Gen17], Gendulphe made the following conjecture about PMF+(Ng,Q).

Conjecture II.13 (Conjecture 9.1 of [Gen17]). For g ≥ 4, PMF+(Ng) = PMF+(Ng,Q).

We prove a slightly weaker version of the above conjecture, by describing a subset of the

foliations that can be approximated by multicurves in PMF+(Ng,Q). To state the theorem,

we need to define what it means for a minimal foliation to be orientable.

Definition II.14 (Orientable foliation). A local orientation on a foliation is the choice of a

locally constant tangent direction on the leaves in a small open set. If the local orientation

can be extended to an entire minimal foliation, the foliation is said to be orientable.
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In the setting of orientable surfaces, the vertical foliations of translation surfaces are

orientable, while there are some directions in half-translation surfaces where the foliation is

non-orientable. There exist similar examples of orientable and non-orientable foliations on

non-orientable surfaces.

Having defined the notion of orientable foliations, we can state the main theorem of this

section.

Theorem II.15. A foliation λ ∈ PMF+(Ng) can be approximated by foliations in PMF+(Ng,Q)

if all the minimal components λj of λ satisfy one of the following criteria.

(i) λj is periodic.

(ii) λj is ergodic and orientable.

(iii) λj is uniquely ergodic.

Furthermore, if λj is minimal, but not uniquely ergodic, there exists some other foliation λ′
j

supported on the same topological foliation as λj that can be approximated by elements of

PMF+(Ng,Q).

Before we prove this result, we need to define the orbit measure associated to simple

curve, and define what it means for an orbit measure to be almost invariant. Consider an

arc η transverse to a measured foliation λ. We assign one of the sides of η to be the “up”

direction, and the other side to be the “down” direction. This lets us define the first return

map to T .

Definition II.16 (First return map). The first return map T maps a point p ∈ η to the

point obtained by flowing along the foliation in the “up” direction until the flow intersects η

again. The point of intersection is defined to be T (p). If the flow terminates at a singularity,

T (p) is left undefined: there are only countable many points in η such that this happens.

Since λ is a measured foliation, it defines a measure on η: we can scale it so that it is a

probability measure. It follows from the definition of transverse measures that the measure

is T -invariant. It is a classical result of Katok [Kat73] and Veech [Vee78] that the set of

T -invariant probability measures is a finite dimensional simplex contained in the Banach

space of bounded signed measures on η. Given an orbit of a point p under the T -action of

length L, we construct a probability measure on η, called the orbit measure of p.
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Definition II.17 (Orbit measure). The orbit measure of length L associated to the point p

is the following probability measure on η.

µp,L :=
1

L

L−1∑
i=0

δT i(p)

Here, δx is the Dirac delta measure at the point x.

One might expect that if a point p equidistributes, then a long orbit measure starting at

p will be “close” to an invariant measure. We formalize this notion by metrizing the Banach

space of signed finite measures on η.

Definition II.18 (Lèvy-Prokhorov metric). Define ∥·∥BL denote the bounded Lipschitz norm

on the space of Lipschitz functions on η.

∥f∥BL := ∥f∥∞ + sup
x ̸=y

|f(x)− f(y)|
|x− y|

Then the Lèvy-Prokhorov distance dLP between the probability measures µ1 and µ2 is

defined to be the following.

dLP(µ1, µ2) := sup
∥f∥BL≤1

∫
f( dµ1 − dµ2)

Using the Lèvy-Prokhorov metric, we can define what it means for a probability measure to

be ε-almost T -invariant.

Definition II.19 (ε-almost T -invariance). Ameasure µ is ε-almost T -invariant if dLP(µ, Tµ) ≤
ε. Here Tµ is the pushforward of µ under T .

We state the following easy fact about orbit measures without proof.

Fact. An orbit measure of length L is 2
L
-almost T -invariant.

The following lemma shows that a long orbit measure is close to an invariant measure.

Lemma II.20. Let {nj} be a sequence of positive integers and let {µij} be orbit measures

such that 1 ≤ i ≤ nj and d(µij, Tµij) ≤ lj, where limj→∞ lj = 0. For any ε > 0, there exists

an J large enough such that for all j > J , µij is within distance ε of an invariant measure.

Proof. Let Ak be the closure of all the µij such that j ≥ k. The set Ak is compact, because

it is a closed subset of a compact set, and we have that
⋂∞

k=1 Ak is contained in the set of

invariant measures. By compactness, we have that for some large enough J , AJ must be in
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a ε-neighbourhood of the set of invariant measures, and therefore every µij for j > J must

distance at most ε away from an invariant measure.

We now sketch a proof of the following lemma about simplices in finite dimensional

normed spaces.

Lemma II.21. Let V be a finite dimensional normed vector space, and S be a simplex in

V . Let {p1, . . . , pn} be points in S such that they are all at least distance ε from a vertex v.

Then there exists a positive constant k such that any convex combination of {pi} is distance

at least
ε

k
from v.

Sketch of proof. We shift the simplex so that the vertex v is at the origin. It will also suffice

to let {p1, . . . , pn} be the vectors joining 0 to the other vertices scaled to have norm ε. The

convex combinations of {p1, . . . , pn} will form a compact set not containing 0. Since the

norm is a continuous function, the norm will achieve a minimum ε′ on that compact set, and

the minimum will not be 0. Then k =
ε′

ε
is the required value of k.

We now prove a lemma that gives us a criterion for deducing when a long orbit measure

is close to an ergodic measure.

Lemma II.22. Let {ni} be a sequence of positive integers, and let {pij} and {Lij} be points

in η and positive integers respectively, where 1 ≤ j ≤ ni and minj Lij goes to ∞ as i goes to

∞. Consider the following sequence of probability measures, indexed by i.

µi :=

∑ni

j=1 Lij · µpij ,Lij∑ni

j=1 Lij

If the sequence {µi} converges to an ergodic measure ν, then there exists a subsequence of

the orbit measures µpij ,Lij
also converging to ν.

Proof. Suppose for the sake of a contradiction that no subsequence of µpij ,Lij
converged to

ν. That would mean there exists a small enough ε > 0 and a large enough i0 such that for

all i > i0, the measures µpij ,Lij
are more than distance ε from ν. Since minj Lij goes to ∞,

there exists some other large enough i1 > i0 such that for all i > i1, µpij ,Lij
is within distance

ε
k
of the simplex of invariant probability measures, where k is a large integer we will pick

later: this is a consequence of Lemma II.20. Using this, we decompose µpij ,Lij
as the sum of

an invariant measure ιij and a signed measure eij, such that dLP(0, eij) ≤ ε
k
.

µpij ,Lij
= ιij + eij
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Observe that the weighted average of µpij ,Lij
will differ from the weighted average of ιij by at

most ε
k
. Also note that all the invariant measures ιij are distance at least ε− ε

k
from ν. Since

ν is the vertex of a finite-dimensional convex set, we know from Theorem II.21 that any

weighted average of the ιij must be at least distance
ε− ε

k

k′
from ν, where the multiplicative

factor k′ only depends on the geometry of the convex set of invariant probability measures,

and not ε or k. By picking k > 2k′ we can ensure that any weighted average of the µpij ,Lij

must be at least distance ε
2k′

from ν. But this would contradict our hypothesis that the

measures µi converge to ν. Hence there exists some subsequence of µpij ,Lij
that converges to

ν, which proves the lemma.

We now have everything we need to prove Theorem II.15.

Proof of Theorem II.15. If a minimal component λj is periodic, then the proof is straight-

forward. Since λ contains no one-sided component, the core curve of λj must be two-sided,

possibly with an irrational coefficient. Approximating the core curve with rational coeffi-

cients proves the result in case (i).

In case (ii), we have that λj is not periodic, but an ergodic orientable foliation. Pick

an arc η0 transverse to λj such that the leaf passing through the left endpoint p0 of η0

equidistributes with respect to the ergodic transverse measure of λj. We can find such a

leaf because almost every leaf equidistributes with respect to the ergodic measure. We now

inductively define a sequence of points {pi}, sequence of sub-intervals ηi, and a sequence of

segments {ai} of the leaf passing through p0. Let p1 be the first return of the leaf going up

through p0 to the interval η0. Define the sub-interval η1 to be the sub-interval whose left

endpoint is p0 and right endpoint is p1. Let a1 be the segment of the leaf starting at p0 and

ending at p1. Given a point pi, define pi+1 to be the first return to the interval ηi, ηi+1 to be

the interval whose left endpoint is p0 and right endpoint is pi+1, and ai+1 to be the segment

of the leaf starting at pi and ending at pi+1.

Since we have assumed λj is an orientable foliation, we have that the leaf we are working

with always enters η0 from the bottom, and exits from the top. If we pick η0 to be small

enough, we can pick a local orientation, and keep track of how a positively oriented frame

returns to each pi, i.e. with or without the orientation flipped (see Figure 2.3). If the

flow returns infinitely often without the orientation flipped, we join the endpoint pi to p0

by going left along ηi to get a simple closed curve that is two-sided. Furthermore, the

geodesic tightening of the resulting curve is very close to the original curve, because the

initial and final tangent vectors can be made arbitrarily close since they both face the “up”

direction: the Anosov closing lemma then tells us that an orbit of the geodesic flow that

approximately closes up can be perturbed by a small amount to exactly close up. This gives
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η0ηi pi
p0

ai

η0ηi pi
p0

ai

Figure 2.3: Two possibilities for first return to ηi: on the left, the arc returns without the
local orientation flipping, and on the right, the arc returns with the local orientation flipped.

us a long geodesic that equidistributes with respect to the ergodic measure, and therefore

an approximation by two-sided curves.

If the flow does not return without the orientation flipped infinitely often, it must always

return with the orientation flipped after some large enough i0. In that case, consider the

simple two-sided curves ci obtained by concatenating ai with the arc on ηi−1 joining pi−1

and pi (see Figure 2.4). We have that as i goes to ∞, the length of ci must go to ∞ as

well, otherwise a subsequence would converge to a closed vertical curve starting at p0, which

cannot happen since the leaf through p0 equidistributes. Also, note that the average of the

curves ci weighted by their lengths for i′ < i < i′′ where i′′ ≫ i′ is close to the ergodic

measure, since we assumed that the leaf through p0 equidistributes. This lets us invoke

Lemma II.22 to claim that there is a subsequence of ci whose orbit measures converge to the

ergodic measure. Consequently, the geodesic representatives of ci converge to λj, since the

geodesic tightening is close to the original curve, by the virtue of the initial and final tangent

vectors being arbitrarily close. This resolves the two cases that can appear in the case of an

orientable foliation, proving the result for case (ii).

For case (iii), we define the points pi, the nested intervals ηi, and the arcs ai in a similar

manner as to case (ii). The key difference is that we no longer have that the foliation is

orientable, which means the leaf can approach pi in one of four possible ways: from the “up”

or the “down” direction, and with or without the orientation flipped.

In case that the leaf approaches pi from the “down” direction without the orientation

flipped infinitely often, the same closing argument as case (ii) works. Suppose now that the

leaf approaches pi from the “up” direction, but without the orientation flipping, infinitely

often. We then construct simple two-sided curves by concatenating the flow with the arc
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η0ηi pi
p0

ai

pi−1

Figure 2.4: The curve ci is colored blue. Since the leaf from p0 returns with the local
orientation flipped to both pi−1 and pi, the curve ci is two-sided.

joining pi to p0. While this curve does equidistribute with respect to the ergodic measure, it

is not necessary that its geodesic tightening will do so. Denote the geodesic tightening by c′i:

we have that its intersection number with λj goes to 0 as i goes to ∞. By the compactness

of the space of transverse probability measures, we must have that µc′i
converges to some

projective measured foliation γ which has 0 intersection number with λj, but is still supported

on a subset of the support of λj. This means γ must be another projective measured foliation

in the topological conjugacy class of λj, i.e. is supported on the same underlying foliation.

This proves the furthermore case of theorem. If λj is actually uniquely ergodic, there is only

one measure in the simplex of invariant probability measures, namely the uniquely ergodic

one, and therefore µgi is forced to converge to it.

Suppose now that neither of the first two scenarios occur, i.e. the leaf returns to pi from

the “up” or “down” direction, but with the orientation always flipped. We deal with this

case like we did with the second subcase of case (ii). See Figure 2.5 for the construction

of the two-sided curves ci. We have that the geodesic tightenings of the curves ci are close

to the original curve by the Anosov closing lemma, and that the weighted averages of the

ci converge the ergodic measure, which means by Theorem II.22 we have a subsequence µci

that converges to the ergodic measure. This proves the result for case (iii), and therefore
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η0ηi
p0

Figure 2.5: Construction of the blue curve ci when the leaf always returns with orientation
flipped from the “up” or “down” direction.

the theorem.

II.3: Upper Bound for the Limit Set

In this section, we prove that Λgeo(MCG(Ng)) is contained in PMF+(Ng). We do so by

defining an MCG(Ng)-invariant subset T −
εt (Ng), and showing that the intersection of its

closure with PMF(Ng) is contained in PMF+(Ng).

Definition II.23 (One-sided systole superlevel set). For any ε > 0, the set T −
εt (Ng) is the

set of all points in T (Ng) where the length of the shortest one-sided curve is greater than or

equal to ε.

We can state the main theorem of this section.

Theorem II.24. For any ε > 0, T −
εt (Ng) ∩ PMF(Ng) is contained in PMF+(Ng).

The key idea of the proof is proving a quantitative estimate on the Fenchel-Nielsen

coordinates of points converging to points in PMF−(Ng).

Proposition II.25. Let {mi} be a sequence of points in T (Ng) converging to a projective

measured foliation [λ]. If p is a one-sided atom of λ, for any Fenchel-Nielsen coordinate

chart containing p as a cuff, the length coordinate of p goes to 0.
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Outline of proof. The proof of Theorem II.25 proceeds in two steps:

(i) We first show that there is a curve p3 intersecting p such that p3 is left invariant by

Dehn twisting along the two-sided curve that deformation retracts onto 2p (when p is

thought of as an element in π1(Ng)). We do so in Theorem II.26 and Theorem II.27.

This gives an upper bound for the length of p3 in terms of the length of p, and an

orthogeodesic going through p.

(ii) We use the upper bound obtained in the previous step to show that if the length of p3

goes to ∞, the length of p must go to 0. This result can be thought of as a converse

to the collar lemma, using the additional hypotheses we manage to obtain from the

previous step.

Proof of Theorem II.25. Consider the following decomposition of the measured foliation λ.

λ = 1 · p+ λat + λLeb

Here, λat are the minimal components on periodic components other than p, i.e. cylinders

and Möbius strips, and λLeb are non-periodic minimal components. In the above expression, p

is the one-sided curve considered as a measured foliation (since we’re picking a representative

of [λ], we can pick one such that p has weight 1).

Pick simple closed curves p0, p1, and p2, where p0 is the curve p, and {p0, p1, p2} bound

a pair of pants. Furthermore, we impose the following conditions on p1 and p2.

i(p1, λat) = 0

i(p2, λat) = 0

Note that this can always be done, by deleting the support of λat, and looking at the resulting

subsurfaces. Neither p1 nor p2 can be the same as p0, since p0 is one-sided.

Consider now a collection of curves {q} which satisfy the following two constraints.

(i) i(q, p0) = 1.

(ii) i(q, p1) = 0 and i(q, p2) = 0.

We use the fact that p0 is one-sided to make the following claim.

Claim II.26. There is exactly one curve q up to homotopy that satisfies conditions (i) and

(ii).
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Proof. Let q1 and q2 be two curves satisfying both the conditions. We can assume without

loss of generality that both q1 and q2 intersect p0 at the same point. We now delete the curves

p0, p1, and p2 to get a pair of pants P : denote the boundary component corresponding to p0

by p̃0, and the arcs corresponding to q1 and q2 by q̃1 and q̃2. Since p0 was one-sided, q̃1 and

q̃2 intersect p̃0 at two points, which are diametrically opposite (with respect to the induced

metric on the geodesic p̃0).

On a pair of pants, two arcs going from a boundary component to the same component

must differ by Dehn twists along that component up to homotopy relative to the boundary

components: this is a consequence of the fact that the mapping class group of P is Z3,

where each Z component is generated by a Dehn twist along a boundary component. This

means that there is a some Dehn twist D along the boundary component p̃0 such that Dq̃1

is homotopic to q̃2 relative to its endpoints. Let q̃2 now denote Dq̃1.

We claim that after quotienting p̃0 by the antipodal map, q̃1 and q̃2 map to homotopic

curves. The homotopy is obtained by moving the point of intersection of q̃2 and p0 twice

around the curve p0.

Figure 2.6 shows the two arcs on P and Figure 2.7 shows the homotopy on the quotient

that takes q̃2 to q̃1 (the movement of the blue arc is indicated by the blue arrows in Figure 2.7).

q̃1q̃2

Figure 2.6: The arcs q̃1 and q̃2.

We have thus constructed the desired homotopy from q1 to q2. The example in Figure 2.6

also shows there is at least one such curve, proving the claim.

Let p3 be the geodesic representative of the curve described in Claim II.26. We also define

p4 to be the orthogeodesic arc from p0 to itself. We make the following claim about p3 and

p4.

Claim II.27. The arc p4 and the curve p3 intersect at most once.
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Figure 2.7: Homotopy taking q2 to q1.

Proof. We know from Claim II.26 that p3 is homotopic to any other curve which intersects

p0 exactly once and does not intersect p1 and p2. It then suffices to construct a curve q that

intersects p4 at most once: since p3 is the geodesic representative of q, it will also intersect

p4 at most once. We construct q by starting along p0, near the point where p4 intersects p0,

and then travel parallel to p4. When the curve reaches p0 again, it will need to turn left or

right to close up. In one of these cases, it will have to intersect p4 once, and in the other

case, it will not intersect p4 at all.

With claims II.26 and II.27, we have the following picture of {p0, p1, p2, p3, p4} on the

pair of pants.

p1

p2

p0p3

p4

Figure 2.8: The curves restricted to a pair of pants.

Since i(p3, p0) = 1, and p0 is a component of the limiting foliation, the length of p3 must

go to ∞. On the other hand, we can bound the length of p3 above and below via the lengths

of the orthogeodesic p4 and the length of p0.

(II.3.1) ℓ(p3) ≤ ℓ(p4) + ℓ(p0)
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Observe that the upper bound follows from Theorem II.27 and the fact that the red and

cyan arcs are isotopic to p3 relative to their endpoints being fixed. The cyan arcs have length

at most ℓ(p0) in this setting; if one allowed a twist parameter, the length of the cyan arcs

would be proportional to the twist parameters. The point of this inequality is that we can

estimate ℓ(p4) using ℓ(p0), ℓ(p1) and ℓ(p2) via hyperbolic trigonometry. Cut the pair of pants

along the seams, to get a hyperbolic right-angled hexagon, pictured in Figure 2.9.

ℓ(p4)
2

ℓ(p1)
2

ℓ(p2)
2

f · ℓ(p0)

(1− f) · ℓ(p0)

Figure 2.9: The right angled hexagon obtained by cutting the pants along the seams.

To get good estimates on ℓ(p4), we need a universal lower bound on the fraction f as we

move in the Teichmüller space. The analysis splits up into two cases, but it is not a priori

clear that these two cases are exhaustive. We will deal with the two cases, and then show

that any other case can be reduced to the second case by changing p1 and p2.

Case I

We’re in this case if p1 and p2 don’t intersect the foliation λ at all.

i(p1, λ) = 0

i(p2, λ) = 0

In this case, we can pass to a subsequence of {mi} such that the corresponding values of

f are always greater than 1
2
or less than 1

2
. In the former case, we focus on p1, and in the

latter case, we focus on p2. Without loss of generality, we’ll suppose f ≥ 1
2
. In that case,

we cut along the orthogeodesic p4, and get a hyperbolic right-angled pentagon, which is the

top half of Figure 2.9.

Let ℓi(pk) denote the length of pk on the hyperbolic surface corresponding to mi. We

can relate ℓi(p0), ℓi(p1), and ℓi(p4) using the following identity for hyperbolic right-angled
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pentagons (see [Thu79] for the proof of the identity).

sinh (f · ℓi(p0)) · sinh
(
ℓi(p4)

2

)
= cosh

(
ℓi(p1)

2

)
(II.3.2)

Now suppose for contradiction’s sake that ℓi(p0) does not go to 0. Then we must have that

for all i, ℓi(p0) ≥ 2ε for some ε > 0. By the lower bound on f , we have that the first term

on the left hand side of the above expression is bounded below by ε. Rearranging the terms

gives us the following upper bound on ℓi(p4).

(II.3.3) ℓi(p4) ≤ 2 · sinh−1

cosh
(

ℓi(p1)
2

)
ε


Using (II.3.1) and (II.3.3), we get an upper bound for ℓi(p3).

(II.3.4) ℓi(p3) ≤ ℓi(p0) + 2 sinh−1

cosh
(

ℓi(p1)
2

)
ε


Since i(p0,λ)

i(p3,λ)
= 0, as {mi} approaches λ, the ratio of lengths of p0 and p3 approach 0.

(II.3.5) lim
i→∞

ℓi(p0)

ℓi(p3)
= 0

Using (II.3.4), we have the lower bound for ℓi(p0)
ℓi(p3)

.

(II.3.6)
ℓi(p0)

ℓi(p0) + 2 sinh−1

(
cosh

(
ℓi(p1)

2

)
ε

) ≤ ℓi(p0)

ℓi(p3)

By (II.3.5), the left hand side of (II.3.6) must go to 0, or equivalently, the following holds.

lim
i→∞

ℓi(p0)

2 sinh−1

(
cosh

(
ℓi(p1)

2

)
ε

) = 0(II.3.7)

But we also have that ℓi(p0) > ε: that means the only way that the above limit is 0 if ℓi(p1)

goes to ∞. This is where the hypotheses of the Case I come in. Since i(p1, λ) is 0, the
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following equality must hold.

(II.3.8) lim
i→∞

ℓi(p1)

ℓi(p3)
= 0

This means the lower bound for ℓi(p1)
ℓi(p3)

must go to 0.

(II.3.9) lim
i→∞

ℓi(p1)

ℓi(p0) + 2 sinh−1

(
cosh

(
ℓi(p1)

2

)
ε

) = 0

From (II.3.7), we have the following.

(II.3.10) lim
i→∞

ℓi(p1)

ℓi(p0) + 2 sinh−1

(
cosh

(
ℓi(p1)

2

)
ε

) = lim
i→∞

ℓi(p1)

2 sinh−1

(
cosh

(
ℓi(p1)

2

)
ε

)
But as ℓi(p1) approaches ∞, the right hand side of (II.3.10) approaches a non-zero con-

stant value, which contradicts the identity in (II.3.9). This contradiction means our assump-

tion that ℓi(p0) was bounded away from 0 must be wrong, and thus proves the result in Case

I.

Case II

We’re in this case if the following inequality holds.

(II.3.11) 0 < i(p1, λ) < 1

The picture in this case looks similar to Figure 2.9. However, we can’t necessarily pass to a

subsequence where f ≥ 1
2
(and the trick of working with 1 − f won’t work, since we know

nothing about p2). This is one of the points where the hypothesis on p1 comes in. Since
i(p2,λ)
i(p1,λ)

is finite, we must have that the ratio of lengths ℓi(p2)
ℓi(p1)

approaches some finite value

as well. The fraction f is a continuous function of ℓi(p2)
ℓi(p1)

, approaching 0 only as the ratio

approaches ∞ (this follows from the same identity as (II.3.2)). Since the ratio approaches a

finite value, we have a positive lower bound f0 for f .

Assuming as before that ℓi(p0) is bounded away from 0, and τ(p0) bounded away from

±∞, and repeating the calculations of the previous case, we get the following two inequalities.

(II.3.12)
ℓi(p1)

ℓi(p3)
≥ ℓi(p1)

ℓi(p0) + 2 sinh−1

(
cosh

(
ℓi(p1)

2

)
f0ε

)
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(II.3.13)
ℓi(p0)

ℓi(p3)
≥ ℓi(p0)

ℓi(p0) + 2 sinh−1

(
cosh

(
ℓi(p1)

2

)
f0ε

)
The right hand side of (II.3.13) must approach 0, and that forces either ℓi(p1) or ℓi(p0) to

approach∞. But that means the right hand term of (II.3.12) must approach 1, which cannot

happen, by the hypothesis of case II. This means ℓi(p0) goes to 0, proving the result in case

II.

Reducing to case II

Suppose now that both p1 and p2 have an intersection number larger than 1 with λ. We can

modify one of them to have a small intersection number with λ. First, we assume that λLeb

is supported on a single minimal component, i.e. every leaf of λLeb is dense in the support.

We now perform a local surgery on p1: starting at a point on p1 not contained in the support

of λLeb, we follow along until we intersect λLeb for the first time. We denote this point by

α. We now go along p1 in the opposite direction, until we hit the support of λLeb again,

but rather than stopping, we keep going until the arc has intersection number 0 < δ < 1

with λLeb. We then go back to α, and follow along a leaf of λLeb rather than p1, until we hit

the arc. This is guaranteed to happen by the minimality of λLeb. Once we hit the arc, we

continue along the arc, and close up the curve. This gives a new simple closed curve which

intersection number with λ is at most δ. This curve is our replacement for p1. If λLeb is not

minimal, we repeat this process for each minimal component. We pick p2 in a manner such

that p0, p1, and p2 bound a pair of pants. Since δ < 1, we have reduced to case II. This

concludes the proof of the theorem.

Remark (On the orientable version of Theorem II.25). The same idea also works in the

orientable setting, although the analysis of the various cases gets a little more delicate. The

first change one needs to make is in the statement of the proposition: we no longer need to

require p to be a one-sided atom, and correspondingly, either the length coordinate ℓi(p) can

go to 0, or the twist coordinate τ(p0) can go to ±∞. To see how the twist coordinate enters

the picture, observe that (II.3.1), which was the main inequality of the proof, turns into the

following in the orientable version.

(II.3.14) ℓi(p4) ≤ ℓi(p3) ≤ τ(p0) + ℓi(p4)

Here, τ(p0) is the twist parameter about p0, and p4 is the orthogeodesic multi-arc (there may

be one or two orthogeodesics, depending on the two cases described below).
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The proof splits up into two cases, depending on whether both sides of p are the same

pair of pants, or distinct pairs of pants. This was not an issue in the non-orientable setting,

since p was one-sided. If both sides of p are the same pair of pants, then the analysis is

similar to what we just did, since the curve p3 stays within a single pair of pants. In the

other, p3 goes through two pair of pants, and its length is a function of the twist parameters,

as well the cuff lengths of four curves, rather than two curves, the four curves being the two

remaining cuffs of each pair of pants. The analysis again splits up into two cases, depending

on the intersection number of the cuffs with λ, but reducing all the other cases to case II

becomes tricky because we need to simultaneously reduce the intersection number of two

curves, rather than one, as in the non-orientable setting. This added complication obscures

the main idea of the proof, which is why we chose to only prove the non-orientable version.

This quantitative estimate of Theorem II.25 gives us a proof for Theorem II.24.

Proof of Theorem II.24. Suppose that the theorem were false, and there was a foliation

[λ] ∈ PMF−(Ng) in the closure of T −
εt (Ng). Suppose p is a one-sided atom in λ. Then

Theorem II.25 tells us that the hyperbolic length of p goes to 0, but the length of p must

be greater than ε in T −
εt (Ng). This contradicts our initial assumption, and the closure of

T −
εt (Ng) can only intersect PMF(Ng) in the complement of PMF−(Ng).

Corollary II.28. The geometric limit set Λgeo(MCG(Ng)) is contained in PMF+(Ng).

Proof. Every point p ∈ T (Ng) is contained in T −
εt (Ng) for some small enough ε. This means

Λgeo,p(MCG(Ng)) is contained in PMF+(Ng) by Theorem II.24. Taking the union over all

p proves the result.

II.4: Failure of Quasi-Convexity for T −
εt

In the setting of Teichmüller geometry, convexity is usually too strong of a requirement.

For instance, metric balls in Teichmüller space are not convex, but merely quasi-convex (see

[LR11]).

Definition II.29 (Quasi-convexity). A subset S of T (S) is said to be quasi-convex if there

is some uniform constant D > 0 such that the geodesic segment joining any pair of points

in S stays within distance D of S.

Our goal for this section will be to prove the following theorem.

Theorem II.30. For g ≥ 8, any ε > 0, and all D > 0, there exists a Teichmüller geodesic

segment whose endpoints lie in T −
εt (Ng) such that some point in the interior of the geodesic

is more than distance D from T −
εt .
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Remark. Our methods actually prove the result for all non-orientable hyperbolic surfaces

except genus 5 and 7. This is not because genus 5 and 7 are special, but it is rather an

artifact of our construction. We construct two families of counterexamples, one for genera

4 + 2j, and one for genera 9 + 2j: it turns out there isn’t enough “room” on a genus 5

surface to replicate our genus 9 construction, but it’s quite likely an alternate construction

will work.

We begin by finding Teichmüller geodesic segments whose endpoints lie in T −
εt such that

at a point in the interior, some one-sided curve gets very short. Once we have arbitrarily

short one-sided curves in the interior of the geodesic segments, estimates relating Teichmüller

distance and ratios of hyperbolic lengths of curves will give us the result.

Proposition II.31. For all g ≥ 8 and any δ > 0, there exists a Teichmüller geodesic segment

l whose endpoints lie in T −
εt (Ng), and a point p in l such that some one-sided curve has length

less than δ with respect to the hyperbolic metric on p.

To prove this result, we will need two lemmas relating hyperbolic and flat lengths.

Lemma II.32. Let q be any area 1 DQD on Ng, and let γ be a simple closed curve of q.

Suppose that ℓhyp(γ) ≤ δ (with respect to the unique hyperbolic metric coming from the flat

structure q). Then ℓflat(γ) ≤ k
√
δ, where k is some absolute constant.

Sketch of proof. If ℓhyp(γ) ≤ δ, then there exists an annulus around γ of modulus propor-

tional to 1
δ
. By the results in [Min92], this annulus can be homotoped to be a primitive

annulus, i.e. an annulus that does not pass through a singularity of the flat metric. Such

annuli are either expanding, i.e. concentric circles in the flat metric, or flat, and in either

case, we have an upper bound on the flat length of the core curve in terms of the modulus.

This proves the result.

Lemma II.33. Let q be an area 1 DQD on Ng, and consider the unique hyperbolic metric

with the same conformal structure. Let A be a primitive annulus in q, i.e. an annulus whose

interior does not pass through a singularity of the flat metric. Let the modulus of A be m.

Then the hyperbolic length of the isotopy class of the core curve of the annulus is at most π
m
.

Sketch of proof. Without loss of generality, we can pass to the orientable double cover. This

changes the hyperbolic lengths by at most a factor of two. Consider the interior of the

annulus as a Riemann surface, and put the unique hyperbolic metric on that surface. With

respect to this hyperbolic metric, the length of the core curve is π
m
. Since the interior

doesn’t contain any singularities, the inclusion map is holomorphic, and holomorphic maps

are distance reducing with respect to the hyperbolic metric. This proves the result.
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To find a geodesic segment whose endpoints lie in T −
εt , we will construct a DQD q, and

use Theorem II.32 to find large enough t such that both gt(q) and g−t(q) are in T −
εt . We

will then show that some one sided curve on q is very short using Theorem II.33, which will

prove Theorem II.31.

Proof of Theorem II.31. We will prove the result by constructing explicit examples in genus

4 and 9, and then connect summing orientable surfaces of genus j to get examples in genus

4 + 2j and 9 + 2j.

We first list the two properties we require from the DQD q we want to construct, and

show that having those properties proves the result.

(a) There exists an embedded annulus in q with a very large modulus whose core curve is

the square of a one-sided curve in π1(Ng).

(b) The vertical and horizontal foliations decompose as a union of cylinders, i.e. the vertical

and horizontal flow is periodic, and no closed orbit is a one-sided curve. Furthermore,

deleting the core curves of the cylinders in the horizontal or vertical direction result in

a disjoint union of orientable subsurfaces.

We now show why having these two properties proves the result. Suppose we have a

DQD q satisfying (a) and (b). Theorem II.33 tells us that satisfying (a) means that the

one-sided curve whose square is the core curve of the annulus will be very short. To find a

large enough t such that gt(q) has no one-sided curves shorter than ε, pick a t enough such

that each vertical cylinder in gt(q) is at least 2k
√
ε wide. Consider now any closed curve who

flat length is less than k
√
ε. It must either be homotopic to one of the core curves of the

vertical cylinders, or can be homotoped to be completely contained in one of the subsurfaces

obtained by deleting all the core curves. That is because it was neither of these cases, it

would cross at least one of these cylinders, and since the cylinders are at least 2k
√
ε wide,

the flat length of the curve would exceed k
√
ε. If the curve is the core curve of a cylinder,

or completely contained in one of the subsurfaces, it must be two-sided, by condition (b).

This proves that all one-sided curves have flat length exceeding k
√
ε, and therefore hy-

perbolic length exceeding ε. The same argument also works for g−t(q), proving the result.

We now construct explicitly the DQDs satisfying conditions (a) and (b) in genus 4, 9,

and above.

The g = 4 case

Consider the area 1 DQD on N4 depicted in Figure 2.10. We impose the following constraint
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Figure 2.10: A DQD on N4.

on the depicted DQD: the edges {c, c′, d, d′} are all oriented at an angle of ±π
4
, and have the

same length.

Observe that by making the length of c (and correspondingly c′, d, and d′) go to 0, while

keeping the area 1 lets us embed an annulus of high modulus (pictured as dotted semi circle

in Figure 2.10) around any curve in {c, c′, d, d′}. This shows that the DQD we constructed

satisfies condition (a).

Checking condition (b) is easy, but tedious. For convenience, we have labelled the core

curves of the vertical cylinders in red, blue, and green: the reader can check that they are

all two-sided, and deleting them results in orientable subsurfaces. In fact, deleting the core

curves results in 2 pairs of pants.

The g = 9 case

Consider the area 1 DQD on N9 depicted in Figure 2.11. To keep the picture from getting

cluttered, we describe the edge gluing maps in words: the edges labelled c are glued via the

map z 7→ −z + k, the edges labelled b and e are glued via z 7→ −z + k, where k is some

constant. All the other gluings are translation gluings. We impose the following constraints

on the DQD.

(i) The edges labelled c are oriented at an angle of ±π
4
, and the lengths of {xh, yh, xv, yv}

are ℓflat(c)

4
√
2
.

(ii) The left edge of xv is aligned with the left edge of c, the left edge of yv is aligned with

the midpoint of c, the top edge of xh is aligned with the top edge of c, and the top edge

of yh is aligned with the midpoint of c.

By making c smaller, while keeping the area equal to 1, one can embed an annulus of high
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Figure 2.11: A DQD on N9. To display the gluing maps on the small slits, we have a zoomed
in picture in the ellipses.

modulus in the DQD, pictured in dotted olive green in Figure 2.11. This shows that our

construction satisfies condition (a).

To see that deleting the core curves of the horizontal cylinders results in orientable

subsurfaces, note that deleting the core curves passing through c results in 2 pairs of pants,

and a genus 3 orientable surface with one boundary component. This is again easy, but

tedious to verify, so we leave the verification to the reader. This shows that the example

satisfies condition (b).

The induction step

To get higher genus DQDs satisfying conditions (a) and (b), we start with the g = 4 and

g = 9 examples and connect-sum an orientable surface using the slit construction. To ensure

that the new surfaces still satisfy conditions (a) and (b), we need to ensure that the slit

we construct if far away from the annulus of condition (a), as well as all the vertical and

horizontal leaves passing through {c, c′, d, d′} in the g = 4 example, and the vertical and

horizontal leaves passing through c in the g = 9 example. This will ensure that the resulting
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higher genus surface still satisfies conditions (a) and (b).

To relate Teichmüller distance to hyperbolic lengths, we need Wolpert’s lemma ([Wol79])

Lemma II.34 (Wolpert’s Lemma). Let M and M ′ be two points in T (Sg), and let γ be a

simple closed curve on Sg. Let R be the Teichmüller distance between M and M ′. Then the

ratio of the hyperbolic length of γ and R are related by the following inequalities.

exp(−2R) ≤ ℓhyp(M,γ)

ℓhyp(M ′, γ)
≤ exp(2R)

Using Proposition II.31 and Wolpert’s lemma, we can prove Theorem II.30.

Proof of Theorem II.30. Suppose that T −
εt (Ng) was indeed quasi-convex. That would mean

that there exists some R > 0, depending on ε such that every point in the interior of any

geodesic segment with endpoints in T −
εt was within R distance of some point in T −

εt (Ng).

Proposition II.31 lets us construct a sequence of Teichmüller geodesic segments such that

for on some interior point, the length of a given one-sided curve γ goes to 0. If those points

were within distance R of T −
εt , there would be some point in T −

εt where the length of γ was

at most exp(2R) times the length of γ in the geodesic, by Wolpert’s lemma. But since the

length of γ in the geodesic goes to 0, the length in the corresponding closest point in T −
εt

must also go to 0. This violates the definition of T −
εt , giving us a contradiction, and proving

the result.
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CHAPTER III

Towards Patterson-Sullivan Theory

III.1: Preliminaries

III.1.1: Non-Orientable Surfaces

Similar to orientable surfaces, compact non-orientable surfaces with (possibly empty) bound-

ary are classified by their demigenus and number of boundary components. The demigenus

of a non-orientable surfaces is the number of copies of RP2 that need to be connect-summed

in order to get the non-orientable surface. An alternative way to construct non-orientable

surfaces is to start with an orientable surface, and attach crosscaps : a crosscap is attached

by deleting the interior of an embedded disc, and gluing the S1 boundary of that disc to

itself via the antipodal map.

To unify notation between orientable and non-orientable surfaces, we will denote a com-

pact surface with boundary using Sg,b,c, which denotes a surface of genus g, with b boundary

components, and c crosscaps attached. With this notation, a non-orientable surface Ng,b of

demigenus g with b boundary components is S g−1
2

,b,1 if g is odd, and S g−2
2

,b,2 if g is even.

One can classify simple closed curves on a non-orientable surface into two categories

based on the topology of their tubular neighbourhoods.

Two-sided curves These are curves whose tubular neighbourhoods are homeomorphic to

cylinders.

One-sided curves These are curves whose tubular neighbourhoods are homeomorphic to

Möbius bands.

The orientation double cover of Ng is Sg−1, where p denotes the covering map: the one-

sided curves onNg lift to a single curve on Sg−1 that is twice as long, and the two-sided curves

on Ng lift to two disjoint curves on Sg−1, both of which are the same length as the original

curve. We also have an orientation reversing deck transformation ι on Sg−1 corresponding
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to the covering map. The map ι swaps the lifts of the two-sided curves, and leaves the lifts

of the one-sided curves invariant.

The subgroup π1(Sg−1) < π1(Ng) is a characteristic subgroup, i.e. left invariant by an au-

tomorphism of π1(Ng) induced by a homeomorphism, and consequently, self-homeomorphisms

of Ng have a unique orientation preserving lift to self-homeomorphisms of Sg−1, giving us an

embedding p∗ of mapping class groups, induced by the covering map p.

p∗ : MCG(Ng) ↪→ MCG(Sg−1)

The image of MCG(Ng) is an infinite-index subgroup of MCG(Sg−1). The lifting map also

induces an embedding of the corresponding Teichmüller spaces, where the image of T (Ng) is

the locus left invariant by ι∗, where ι∗ is the deck transformation induced map on T (Sg−1).

p∗ : T (Ng) ↪→ T (Sg−1)

This embedding is isometric, i.e. Teichmüller geodesics joining points in the image of T (Ng)

stay within the image of T (Ng).

These facts present an alternative way of thinking about mapping class groups and Te-

ichmüller spaces of non-orientable surfaces. They can be thought of as a special infinite

index subgroup of MCG(Sg−1), and a isometrically embedded totally real submanifold of

T (Sg−1). We will use this point of view to prove some of the metric properties of T (Ng) we

will require, but for most other applications, we prefer to think of T (Ng) and MCG(Ng) as

independent objects, without embedding them in other spaces.

The Teichmüller space for non-orientable surfaces can be given Fenchel-Nielsen coordi-

nates using a pants decomposition for Ng: the only difference from the orientable setting is

that for all the one-sided curves in the pants decomposition, there is only one coordinate,

associated to the length of the one-sided curve, rather than both the twist and length. This

means that Teichmüller spaces of non-orientable surfaces can have odd R-dimension.

Since these Teichmüller spaces of non-orientable surfaces can have odd dimension, we no

longer have a symplectic structure, and a corresponding volume form. However, the image

of T (Ng) in T (Sg−1) is a Lagrangian submanifold, and consequently a Lagrangian volume

form. This Lagrangian volume form νN has a particularly nice description in terms of a

pants decomposition P , due to Norbury [Nor08].

Let P be a pants decomposition for Ng: νN is defined in terms of the lengths and twists

of curves in P .
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νN =

( ∧
γi one-sided

coth(ℓ(γi))dℓ(γi)

)
∧

( ∧
γi two-sided

dτ(γi) ∧ dℓ(γi)

)

Here ℓ(γi) denotes the length of the curve γi, and τ(γi) denotes the twist, when γi is two-

sided.

Similar to Wolpert’s magic formula, the µN has the following properties.

- The form νN does not depend on the choice of pants decomposition.

- νN is MCG(Ng) invariant, up to sign.

This lets us use the absolute value of νN as a volume form on the quotient T (Ng)/MCG(Ng).

We will, for notational convenience, use νN to mean |νN |.
With respect to νN , the action of MCG(Ng) on T (Ng) is infinite covolume: the same also

holds for the geodesic flow invariant volume on the full1 unit cotangent bundle. Furthermore,

the set of cotangent directions in which the geodesic flow recurs to the MCG(Ng)-cocompact

part of T (Ng) has νN -measure 0: this is due to Norbury [Nor08] (see Gendulphe [Gen17] for

more analogies with infinite covolume Fuchsian groups).

III.1.2: Critical Exponents and Patterson-Sullivan Theory

In this section, we outline techniques that are used to deal with infinite-covolume group

actions on non-positively curved metric spaces, i.e. Patterson-Sullivan theory. For the sake

of concreteness, we will state most results in this section for infinite-covolume geometri-

cally finite Fuchsian groups, and specify a generalized theorem/conjecture for the setting of

mapping class groups.

Let Γ be an infinite-covolume geometrically finite Fuchsian group. Geometric finiteness

in this context means that the surface H/Γ is composed of finitely many components outside

of a large enough compact set, where each component is isometric to one of the following

regions.

(i) Cusps: A cusp is the quotient of a horoball (i.e. {Im(z) > t0} with the upper half plane

model) with respect to an isometry of the form

(
1 t

0 1

)
.

(ii) Flares: A flare is quotient of the region {Re(z) > 0} with respect to an isometry of the

form

(
q 0

0 1
q

)
.

1Full referring to the entire unit cotangent bundle as opposed to the restricted unit cotangent bundle.
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Note that it is the flares of the hyperbolic surface that make its volume infinite: each of the

cusps has finite hyperbolic volume.

The presence of flares also means that the limit set of Γ, i.e. the set Γp ∩ ∂H (for any

p ∈ H) is a measure 0 subset of the boundary (with respect to the usual Lebesgue measure

on S1), as well as forcing the Liouville measure, which is a geodesic flow invariant measure

on the unit tangent bundle S1Γ/H to be infinite.

Since most results from ergodic theory need a finite flow-invariant measure, the Liouville

measure does not work for these infinite-covolume groups. The fix to this problem is to

construct a new (family of) measure(s) {µq} on the boundary, which replaces the Lebesgue

measure, with respect to which the limit set has full measure, and then use that measure to

construct a finite geodesic flow invariant measure on the unit tangent bundle.

The family of measures on the boundary is called the Patterson-Sullivan measure, and

the corresponding measure on the unit tangent bundle is called the Bowen-Margulis-Sullivan

measure.

Construction of Patterson-Sullivan measures

We begin by picking a basepoint p ∈ H, and a parameter h > 0, and consider the measure

µh
q , for q ∈ H.

µh
q :=

∑
γ∈Γ exp(−hd(p, γq))δγq∑
γ∈Γ exp(−hd(p, γp))

Here, δγq denotes the Dirac mass at δγq, and d(p, γq) denotes the hyperbolic distance between

p and γq.

For large enough h, the denominator of the expression is a convergent sum, and the

resulting measure has total mass that only depends on the choice of p and q.

Conversely, for small enough values of h > 0, the sum in the denominator diverges, and

the measure µh
q is not well defined. To see this, one can use the ping pong lemma to embed

a copy of the free group F2 in Γ, and show that for this copy of F2, there is a small enough

h to make the sum diverge. We can now define the critical exponent hΓ of the group Γ.

Definition III.1 (Critical exponent). The critical exponent hΓ is the infimum of all the

values of h for which the following infinite sum converges.∑
γ∈Γ

exp(−hd(p, γp))

Note that for h = hΓ, it is possible for the exponential sum to converge or diverge. If the
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sum converges at the critical exponent, the group Γ is said to be of convergent type, and if

it diverges, the group Γ is of divergent type.

Since the measures µh
q are well-defined for h > hΓ, and their mass is uniformly bounded

(where the bound only depends on q), we have that for some sequence of h ↘ hΓ, the

sequence of measures µh
q converges to some limiting measure µq. This family of limiting

measures {µq} is called a Patterson-Sullivan measure. The Patterson-Sullivan measure {µq}
is not unique a priori, since picking different sequences h ↘ hΓ might lead to different

limiting measures.

In practice, the uniqueness of the Patterson-Sullivan measure follows from the ergodic-

ity of the geodesic flow with respect to the Bowen-Margulis-Sullivan measure constructed

from a given Patterson-Sullivan measure. We will skip the construction of the Bowen-

Margulis-Sullivan measure µBMS, since the specifics of the construction are not relevant for

the remainder of the paper. We refer the reader to Quint [Qui06] for the construction of

µBMS.

Some results in Patterson-Sullivan theory

The question of finiteness and ergodicity of the Bowen-Margulis-Sullivan measure is equiva-

lent to several other conditions, some of which are easier to check in some examples.

Theorem III.2 (Hopf-Tsuji-Sullivan dichotomy; Sullivan [Sul79]). For a geometrically finite

group Γ, the following conditions are equivalent.

(i) The group is of divergent type.

(ii) The Bowen-Margulis-Sullivan measure is finite.

(iii) The geodesic flow is ergodic with respect to the Bowen-Margulis-Sullivan measure.

The ergodicity of the geodesic flow with respect to µBMS can be upgraded to mixing if

the length spectrum of H/Γ generates a dense subgroup of R.

Theorem III.3 (Babillot [Bab02]). If µBMS is finite, and the lengths of the closed geodesics

on H/Γ generate a dense subgroup of R, then the geodesic flow is mixing with respect to

µBMS.

One can then combine Theorem III.3 with the following result of Roblin to count lattice

points where the logarithmic error goes to 0.
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Theorem III.4 (Roblin [Rob03]). Let Bp(R) denote the lattice point counting function.

Bp(R) := # (γ ∈ Γ | d(p, γp) ≤ R)

Then there exists a constant C, which is the µBMS-volume of the unit tangent bundle of H/Γ,

such that Bp(R) can be approximated in the following manner.

lim
R→∞

log

(
C exp(hΓR)

Bp(R)

)
= 0

Extending these results to subgroups of mapping class groups

In [Yan18], Yang outlined a criterion for a non-elementary group with contracting ele-

ment acting on metric space to be of divergent type: the action must be statistically

convex-cocompact. In the context of subgroups of mapping class groups, a subgroup is

non-elementary if it contains two non-commuting pseudo-Anosov elements.

To explain what a statistically convex-cocompact action is, we first need to describe what

is means for a subset of a metric space to be statistically convex.

Let X be a metric space with a group G acting on it, and let Y be a subset of X which

is invariant under the G-action, i.e. we have a G-action on Y as well, and let p be a point in

Y . One can consider two kinds of counting functions for the G-action on Y .

Np(R) := {γ ∈ G | d(p, γp) ≤ R}

The function Np is the standard lattice point counting function. We also want to look at

those lattice points that detect a failure of convexity of Y : we call these points concave

lattice points.

Definition III.5 (s-Concave lattice points). A lattice point γp is s-concave if some geodesic

segment κ starting in a ball of radius s centered at p and ending in ball of radius s centered

at γp stays outside the set Y .

The path obtained by joining p to the starting point of κ, then following κ, and then

joining the end point of κ to γp is called the concavity detecting path for γp.

For our applications, the precise value of s will not be very important: we fix it to be

twice the diameter of the compact set T ±
εt (Ng)/MCG(Ng) (any value larger that the diameter

of T ±
εt (Ng)/MCG(Ng) will work though).
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Let Mp(R) denote the counting function for concave lattice points. Let h and hc be the

exponential growth rates for Np(R) and Mp(R).

h := lim
R→∞

log (Np(R))

R

hc := lim
R→∞

log (Mp(R))

R

Definition III.6 (Statistically convex subset). The subset Y is said to be statistically convex

if hc < h.

Definition III.7 (Statistically convex-cocompact action). The action of G on X is statisti-

cally convex-cocompact if there exists some G-invariant subset Y such that Y is statistically

convex, and the action of G on Y is cocompact.

In [Yan18], Yang shows that when a non-elementary group acts statistically convex-

cocompactly on a space, the group is of divergent type.

Coulon [Cou24] shows that for groups with strongly contracting elements that act statis-

tically convex-cocompactly, a version of the Hopf-Tsuji-Sullivan dichotomy (Theorem III.2)

holds. Combining this with Yang’s result of the group being of divergence type, one can

conclude that the Bowen-Margulis-Sullivan measure on the unit cotangent bundle has finite

mass and the geodesic flow is ergodic.

In the remainder of this paper, we show that the action of MCG(Ng) on T −
εt (Ng) (the

subset of T (Ng) where the one-sided curves cannot be shorter than εt) is statistically convex-

cocompact.

List of notation

- Sg: An orientable surface of genus g.

- Sg,b,c: A surface of genus g with b boundary components, and c crosscaps attached.

- Ng: A non-orientable surface of genus g: this is the same as S g−1
2

,0,1 if g is odd, and

S g−2
2

,0,2 if g is even.

- T (S): The Teichmüller space of the surface S.

- T −
εt (S): The one-sided systole superlevel set in T (S).

- νN : The Lagrangian volume form on T (Ng).

- Bτ (x): A ball of radius τ (with respect to the Teichmüller metric) centered at x.
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- Bεt
τ (x): A ball of radius τ (with respect to the induced path metric on T −

εt (Ng)) centered

at x.

- Aτ : The averaging operator on a ball of radius τ .

- hLP(T (S)): The exponential growth rate for the mapping class group orbit of a point

x in T (S).

- hLP(H): For a subgroup H of MCG(S), this is the exponential growth rate of for the

H-orbit of a point x in T (S).

- N: An (εn, 2εn)-net.

- hNP(core(T (S))): This is the exponential growth rate for the net points in an (εn, 2εn)-

net in the weak convex core of T (S). The value of εn is usually clear from the context.

- ⋔: U ⋔ V denotes that the surfaces U and V are transverse.

- ⋔W : U ⋔W V denotes that U and V are transverse when restricted to any subsurface

of W which intersects both U and V non-trivially.

- U ⋖ V : The Behrstock partial order for transverse subsurfaces U and V .

-
·≍: We say a

·≍ b if a and b are equal up to a multiplicative error of k and an additive

error of c, where k and c are some fixed constants.

III.2: The Weak Convex Core of T (Ng)

III.2.1: Issues with Geometric Finiteness and Statistical Convex-Cocompactness

In order to show that the action of MCG(Ng) on T (Ng) is geometrically finite (in the sense

of Fuchsian groups), we need to exhibit a convex core, i.e. a convex subset of T (Ng) on which

the action of MCG(Ng) is finite covolume. Similarly, to show that the action of MCG(Ng)

on T (Ng) is statistically convex-cocompact, we need to exhibit a statistical convex core,

which is a statistically convex subset (see Definition III.6) of T (Ng) on which MCG(Ng) acts

cocompactly.

A candidate for the convex core was suggested by Gendulphe [Gen17], namely the one-

sided systole superlevel set T −
εt (Ng).

Definition III.8 (One-sided systole superlevel set). The one-sided systole superlevel set is

the subset of T (Ng) where no one-sided curve is shorter than εt. This set is denoted T −
εt (Ng).
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The subset T −
εt (Ng) has several properties that suggest it should be the convex core for

the MCG(Ng) action.

- The space T (Ng) MCG(Ng)-equivariantly deformation retracts onto the subset T −
εt (Ng)

(Proposition 19.2 of [Gen17]).

- The MCG(Ng) action on T −
εt (Ng) has finite νN -covolume, where νN is the non-orientable

analog of the Weil-Petersson volume form (Proposition 19.1 of [Gen17]).

However, the subset T −
εt (Ng) fails to be convex, in a very strong sense, as we show in a

prior paper.

Theorem III.9 (Theorem 5.2 of [Kha23]). For all εt > 0, and all D > 0, there exists a

Teichmüller geodesic segment whose endpoints lie in T −
εt (Ng) such that some point in the

interior of the geodesic is more than distance D from T −
εt (Ng).

With this obstruction, we see that T −
εt (Ng) will not work as a convex core for a geomet-

rically finite action. There are two directions one could go in with this obstruction in mind,

which we phrase as open questions.

If we wish to show that MCG(Ng) acts geometrically finitely, this is the question we need

to answer.

Question III.10. Does there exist some other subset of T (Ng) that is finite νN -covolume,

convex, and an MCG(Ng)-equivariant deformation retract of T (Ng)?

Alternatively, if we wish to show that MCG(Ng) acts statistically convex-cocompactly

on T (Ng), where T ±
εt (Ng) acts as the statistical convex core, this is the question we need to

answer.

Question III.11. Is T ±
εt (Ng) statistically convex?

We suspect the answer to Question III.11 is yes, despite our methods not working. Our

methods for proving statistical convexity rely on proving recurrence of random walks on

T (Ng), and random walks on all of T (Ng) have poor recurrence properties when they enter

regions where one-sided curves are short. When the random walks enter these one-sided thin

regions, they behave like symmetric random walks on Z, which we know do not have very

strong recurrence properties. We explain this in more detail in Section III.3.3, when we set

up the machinery of Foster-Lyapunov-Margulis functions.
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III.2.2: A Weaker Notion of Convexity

Rather than directly answering questions III.10 or III.11, we define an even weaker notion of

convexity as an intermediate goal. In the next subsection, we will show that T −
εt (Ng) satisfies

this weaker notion of convexity. In this section, we define the notion, and explain why this

weaker notion of convexity is still sufficient for the purposes of Patterson-Sullivan theory.

Definition III.12 (Weak convexity). A subset S of a geodesic metric space X is said to be

εd-weak convex (for εd > 0) if there exists a constant t > 0 such that for any pair of points

x and y in S, any geodesic path γ joining x and y longer than t can be homotoped to a path

γ′ joining x and y such that γ′ lies entirely within S, and the lengths of γ and γ′ satisfy the

following inequality.

ℓ(γ′) ≤ (1 + εd)ℓ(γ)

Remark. Strictly speaking, we should call a subset (εd, t)-weak convex, as the constant t is

part of the data that makes a set weak convex. However, the constant t will not matter for

us, so we suppress it in all mentions of weak convexity.

An εd-weak convex subset is a subset which, while not entirely undistorted, has bounded

distortion with respect to the ambient metric space at large enough scale. Weak convexity

also interacts well with results from Patterson-Sullivan theory. Suppose we have a discrete

group G acting properly discontinuously on a metric space X, and let Xεd be an εd-weak

convex subset of X upon which G also acts. If the critical exponent for the G action on X is

δ, and the corresponding exponent for Xεd is δεd , we immediately get the following estimate

for δ.

δ ≤ δεd(1 + εd)

For tangent directions along which the Teichmüller geodesic stays in T −
εt (Ng) for arbi-

trarily large times, we can consider the Teichmüller geodesic flow, and reparameterize the

flow speed such that the following equation holds.

dεt(v, gτv) = τ

If we can establish mixing results for this reparameterized geodesic flow, we can use the

techniques of Roblin [Rob03] to count lattice points in Xεd , the counting results translate
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into estimates for lattice points in X.

# (Lattice points in X within distance R) ≤ #(Lattice points in Xεd within distance R(1 + εd))

We can get even better estimates if rather than having a single εd-weak convex subset,

we have an family of subsets, such that the εd goes to 0, and the union of the weak convex

subsets is the entire space.

Definition III.13 (Exhaustion by weak convex subsets). A metric space X is said to be

exhausted by weak convex subsets if there exists a nested family of subsets {Xi}, such that

Xi is εi-weak convex, where εi goes to 0, and
⋃∞

i=1Xi = X.

When there is an exhaustion by weak convex subsets, one can get arbitrarily good bounds

for the critical exponent for the G action on X.

III.2.3: Weak Convexity for T −
εt (Ng)

In this section, we will show that T −
εt (Ng) is an εd-weak convex subset of T (Ng), and that

T (Ng) can be exhausted by the subsets T −
εt (Ng) as εt goes to 0.

Theorem III.14. For any εd > 0, there exists a εt > 0 such that T −
εt (Ng) is a εd-weak

convex subset of T (Ng).

The key ingredient in the proof of Theorem III.14 is a version of Minsky’s product region

theorem [Min96b, Theorem 6.1] for non-orientable surfaces, which we prove in Section III.6.1.

Let γ = {γ1, . . . , γj, . . . , γk} be a multicurve on a non-orientable surface Ng, where for

i ≤ j, γi is a two-sided curve, and for i > j, γi is a one-sided curve. Let Xγ denote the metric

space obtained as the sup-product T (Ng \ γ) × H1 × · · · × Hj × (R>0)j+1 × · · · × (R>0)k,

where the Hi are copies of the upper half plane with the hyperbolic metric, and R>0 is

the set of positive real numbers, where the distance between x and y is
∣∣∣log (x

y

)∣∣∣. For any

pants decomposition that contains γ, we consider the Fenchel-Nielsen coordinate systems

associated to the pants decomposition. We have a map Π from T (Ng) to Xγ, which is called

the product region projection map.

Definition III.15 (Product region projection map). The product region projection map

Π : T (Ng) → Xγ is defined in the following manner.

• The T (Ng \ γ)-coordinate is obtained by setting the lengths to 0 of all the curves in γ

to get a punctured hyperbolic surface.
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• The Hi-coordinate is
(
t, 1

ℓ

)
, where t is the twist (i.e. the twist coordinate in the

Fenchel-Nielsen coordinate system) of the two-sided curve γi, and ℓ is the hyperbolic

length.

• The (R>0)i coordinate is 1
ℓ
, where ℓ is the hyperbolic length of the one-sided curve γi.

We define a metric on the product Xγ as the supremum of the metrics on each of the

components, where the metric on T (Ng \ γ) is the Teichmüller metric, the metric on the

Hi components is the hyperbolic metric, and the metric on the (R>0)i is given by d(x, y) =∣∣∣log (x
y

)∣∣∣, i.e. the restriction of the hyperbolic metric in H to a vertical line.

We consider the restriction of Π to the thin region of Teichmüller space, denoted Tγ≤εt(Ng),

which is the region where all curves in γ have hyperbolic length at most εt.

Theorem III.73 (Product region theorem for non-orientable surfaces). For any c > 0, there

exists ε′t > 0, such that for any εt < ε′t, the restriction of Π to Tγ≤εt(Ng) is an isometry with

additive error at most c, i.e. the following holds for any x and y in Tγ≤εt(Ng).∣∣d(x, y)− dXγ (Π(x),Π(y))
∣∣ ≤ c

We can now prove Theorem III.14.

Proof of Theorem III.14. We begin by picking a small constant ε′t > 0 and δ > 0. We will

fix the values of these constants at the end of the proof. Let [x, y] be a geodesic segment that

starts and ends in T −
ε′t
(Ng). Let {pi} be points on [x, y], such that x = p0, d(pi, pi+1) = δ,

and d(pn, y) ≤ δ, where pn is the last of the pi’s.

The first step of our proof is modifying the path [x, y] and estimating the length of the

modified path. We do so by constructing new points p′i, where p′i is obtained from pi by

increasing the length of any one-sided curve that is shorter than ε′t to ε′t. This ensures that

the endpoints of the segments [p′i, p
′
i+1] are in T −

ε′t
(Ng). Estimating d(p′i, p

′
i+1) splits up into

two cases.

(i) When pi = p′i and pi+1 = p′i+1: In this case d(p′i, p
′
i+1) = δ, by construction.

(ii) When at least one of pi and pi+1 are not equal to p′i and p′i+1: In this case, we can

assume without loss of generality that both pi ̸= p′i and pi+1 ̸= p′i+1. If that is not the

case, and say pi ̸= p′i and pi+1 = p′i+1, we replace pi+1 with the last point y on [pi, pi+1]

that is outside T −
ε′t
(Ng). The interval [y, pi+1] can be treated as in case (i), and we focus

on [pi, y].
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We have that the interior of [pi, pi+1] and [p′i, p
′
i+1] both lie in the region where some

one-sided curve γ is shorter than ε′t. We invoke Theorem III.73 to estimate distances

in this region: we have a constant c(ε′t) that depends on ε′t such that following holds.∣∣∣∣d(pi, pi+1)− sup

(
dT (Ng\γ)(Π(pi),Π(pi+1)),

∣∣∣∣log( ℓpi(γ)

ℓpi+1
(γ)

)∣∣∣∣)∣∣∣∣ ≤ c(ε′t)(III.2.1)

Observe that when we replace pi by p′i and pi+1 by p′i+1, the first argument sup stays

the same, and the second argument becomes 0.

∣∣d(p′i, p′i+1)− sup
(
dT (Ng\γ)(Π(p

′
i),Π(p

′
i+1)), 0

)∣∣ ≤ c(ε′t)(III.2.2)

This leads to the following estimate for d(p′i, p
′
i+1).

d(p′i, p
′
i+1) ≤ δ + 2c(ε′t)(III.2.3)

We construct a new path λ by joining p′i’s, and pn to y. If we let l denote the length of [x, y],

we get the following estimate for ℓ(λ) using (III.2.3).

ℓ(λ) ≤ l

(
1 +

2c(ε′t)

δ

)
We now pick a value of δ small enough such that along each of the segments [pi, pi+1], there

is at least one one-sided curve that stays short throughout, and then we pick ε′t small enough

so that c(ε′t) is small enough to make
2c(ε′t)

δ
< εd.

We now need to show that this new path stays within T −
εt (Ng) for some εt < ε′t. We

already have that x, y and all the p′i are in T −
ε′t
(Ng) and thus in T −

εt (Ng). For the interior

of the geodesic segments [p′i, p
′
i+1], since the endpoints are in T −

ε′t
(Ng), and the length of the

segments is no more than δ(1+ εd), we have that there exists some εt such that [p′i, p
′
i+1] lies

in T −
εt (Ng).

Finally, we have to deal with geodesic segments [w, z] which start or end in T −
εt (Ng) \

T −
ε′t
(Ng). We do so by increasing the lengths of short one-sided curves on w and z to ε′t if

there are any curves shorter than ε′t. Let the modified points be w′ and z′: we first construct

a path joining w′ and z′ that stays within T −
εt (Ng) using our construction, and then prepend

that path with a path joining w with w′ and append a path joining z′ to z. This new path

joining w to z stays entirely withing T −
εt (Ng), but we now incur a fixed additive error along

with our multiplicative error as well. However, if the path is long enough, the additive error

can be absorbed in the multiplicative error, with a slightly worse constant. We do that, and
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the threshold for the path being long enough is the constant t that appears in our definition

of weak convexity. This proves the result.

Remark. We emphasize that the key step in the above proof is going from (III.2.1) to (III.2.2),

where the log

(
ℓpi (γ)

ℓp′
i
(γ)

)
term becomes 0. This is only possible because there cannot be any

twisting around a one-sided curve γ, so the projection map that sends pi to p′i and pi+1 to

p′i+1 is distance reducing. If one tried to use the same proof strategy to show that the thick

part of T (S), for any orientable or non-orientable surface S is weak convex in T (S), the step
we described would be the point of failure. In particular, if there’s a twist along γ, going

from (III.2.1) to (III.2.2) will not be distance reducing, and will exponentially increase the

distance, leading the estimate to fail.

Now that we have established that T −
εt (Ng) is εd-weak convex, we can justifiably call it

the weak convex core of T (Ng). For the remainder of this paper, we fix εd <
(

1
6g−12

)2
, and

a value of εt such that T −
εt (Ng) is εd-weak convex.

Definition III.16 (Weak convex core of T (Ng)). We call T −
εt (Ng) the weak convex core of

T (Ng), and denote it core(T (Ng)).

We now also provide a partial classification of the strongly contracting elements of

MCG(Ng) for the metric space T −
εt (Ng).

Definition III.17 (Strongly contracting element). An infinite order element γ in MCG(Ng)

is said to be strongly contracting if there exists a p ∈ T −
εt (Ng) such that the following two

conditions hold.

(i) {γip}i∈Z quasi-isometrically embeds in T −
εt (Ng).

(ii) For any ball of radius R disjoint from {γip}, its projection onto {γip} has uniformly

bounded diameter.

Lemma III.18 (Partial classification of strongly contracting elements). Let γ be an infinite

order element in MCG(Ng).

(i) If γ is pseudo-Anosov, then γ is strongly contracting.

(ii) If γ leaves a two-sided curve invariant, then γ is not strongly contracting.

Proof. We deal with the two cases separately.
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Case (i) In this case, we pick p to lie along the axis of the pseudo-Anosov γ. Passing to

the orientable double cover, we have that the projection of any ball disjoint from the

axis has bounded diameter, by Minsky [Min96a]. Since T (Ng) isometrically embeds

inside the Teichmüller space of the double cover, we have the claim for T (Ng). To show

now that the result holds for T −
εt (Ng), observe that the induced metric on T −

εt (Ng) is

minimally distorted from the metric on T (Ng), by Lemma III.14. One of two things

can happen: the axis of γ lies in T −
εt (Ng), or it lies outside. In the first case, we project

as usual, and by Lemma refthm:weak-convexity, the size of the projection increases

by a bounded multiplicative factor. In the second case, we first create a new axis,

by projecting the old axis onto T −
εt (Ng). We then get a projection of a ball by first

projecting to the old axis, and then composing that with the second projection. This

composed projection still has bounded diameter because the first projection does, and

the second projection increases distances by a multiplicative factor.

Case (ii) In this case, we need to show there is no choice of p such that the projection onto

{γip} has bounded diameter. Suppose there is such a p: we will construct a family of

balls disjoint from γ with arbitrarily large projections onto γ. We can assume without

loss of generality that at p, one of the invariant two-sided is short. If not, we can create

a new point p′ where this is the case, and the orbits {γip} and {γip′} have unbounded

projections onto each other, and if a family of balls has unbounded projections on

{γip′}, it will also have unbounded projections on {γip}.

Since we have that some two-sided curve κ is short at p, and γ leaves κ invariant, we

have that the entire orbit {γip} lies in the product region associated to κ. In this

product region, it is easy to verify that the projection of a ball of radius R disjoint

from {γip} will have projection diameter approximately 2R, by Minsky’s product region

theorem.

This proves the theorem in the two cases we specified.

Remark. The only case the above classification does not deal with is the case where γ is a

pseudo-Anosov on a subsurface that is the complement of only one-sided curves.

III.3: Geodesics in the Thin Part of core(T (Ng))

Inspired by Theorem III.14, we will focus our attention on core(T (Ng)) instead of the entirety

of T (Ng). In this section, we will begin a proof of the fact that the action of MCG(Ng) on

core(T (Ng)) is statistically convex-cocompact (we abbreviate that to SCC for the remainder

of the paper).
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To show that the MCG(Ng) action is SCC, we need to exhibit a subset of core(T (Ng))

which has the following two properties.

(i) The action of MCG(Ng) on the subset is cocompact.

(ii) The subset is statistically convex.

We claim that the subset T ±
εt (Ng) satisfies these properties.

T ±
εt (Ng) := {z ∈ T (Ng) | No curve on z is shorter than εt}

Although we have defined T ±
εt (Ng) as a subset of T (Ng), it is also a subset of core(T (Ng)) =

T −
εt (Ng): this follows from its very definition, which is a more restrictive version of the defini-

tion of T −
εt (Ng). The action of MCG(Ng) on T ±

εt (Ng) is also cocompact, because the quotient

is the thick part of the moduli space, which is known to be compact.

Showing that T ±
εt (Ng) is a statistically convex subset of core(T (Ng)) requires more work.

We begin by rephrasing what it means for T ±
εt (Ng) to be statistically convex in a form that’s

more convenient for our methods.

Consider the metric dεt on core(T (Ng)), defined by the following formula.

dεt(x, y) := inf (ℓ(λ) | λ is a path in core(T (Ng)) joining x and y)

This metric is not the same as the usual Teichmüller metric d, but by Theorem III.14, we

can make the ratio of these two metrics arbitrarily close to 1 by picking εt small enough.

We now define lattice point entropy, and entropy for concave lattice points.

Definition III.19 (Lattice point entropy for core(T (Ng))). Let p be a point in T ±
εt (Ng),

and let Np(R, εt) be the lattice point counting function.

Np(R, εt) := # (γ ∈ MCG(Ng) | dεt(p, γp) ≤ R)

The lattice point entropy hLP(core(T (Ng)), εt) is the following quantity.

hLP(core(T (Ng)), εt) := lim
R→∞

logNp(R, εt)

R

Remark. The lattice point entropy is a well-defined quantity since we have that Np(R, εt)

is a sub-multiplicative function, and therefore logNp(R, εt) is sub-additive, and the limit is

well defined by Fekete’s lemma.

We define a variable s = 2diam
(
T ±
εt (Ng)/MCG(Ng)

)
, and recall the definition of s-

concave lattice points.
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Definition III.20 (Concave lattice points). A lattice point γp is s-concave if some geodesic

segment κ starting in a ball of radius s centered at p and ending in ball of radius t centered

at γp stays outside the set T ±
εt (Ng).

The path obtained by joining p to the starting point of κ, then following κ, and then

joining the end point of κ to γp is called the concavity detecting path for γp.

Definition III.21 (Entropy for concave lattice points). Let Mp(R, εt) be the counting func-

tion for concave lattice points.

Mp(R, εt) := # (γ ∈ MCG(Ng) | dεt(p, γp) ≤ R and γp is concave )

The entropy for concave lattice points hc
LP(core(T (Ng)), εt) is the following quantity.

hc
LP(core(T (Ng)), εt) := lim

R→∞

logMp(R, εt)

R

The statistical convexity of T ±
εt (Ng) is equivalent to the following statement, which states

that the entropy for concave lattice points is strictly lower than entropy for all lattice points.

Theorem III.22 (Statistical convexity). For εt > 0 small enough, the following inequality

holds.

hc
LP(core(T (Ng)), εt) < hLP(core(T (Ng)), εt)

We prove Theorem III.22 by constructing a random walk on core(T (Ng)) and proving a

similar entropy gap between all random walk trajectories and the random walk trajectories

that spend their time outside T ±
εt (Ng).

III.3.1: Construction of Random Walk

Let p be the projection map from core(T (Ng)) to core(T (Ng))/MCG(Ng), and εn > 0 be a

fixed constant.

Definition III.23 ((εn, 2εn)-net in core(T (Ng))). LetM be a subset of core(T (Ng))/MCG(Ng)

satisfying the following two conditions.

(i) If z1 and z2 lie in M, then dεt(z1, z2) ≥ εn.

(ii) For any z1 in core(T (Ng))/MCG(Ng), there exists z2 ∈ M such that dεt(z1, z2) ≤ 2εn.

An (εn, 2εn)-net N in core(T (Ng)) is p
−1(M) for any subset M satisfying the above condi-

tions.
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The random walk is defined in terms of a net N and a parameter τ > 0: we pick a

starting point r0 (which we call step 0) for the random walk from one of the net points, and

rn is picked uniformly at random amongst all the net points that are within distance τ of

rn−1.

We will be interested in counting the number of n-step trajectories of the random walk as

a function of n and τ . The count will also involve the exponential growth rate of the number

of net points in a ball of radius R, which we call the net point entropy hNP(core(T (Ng)), εt).

Definition III.24 (Net point entropy). LetKp(R, εt) be the counting function for net points,

where p ∈ core(T (Ng)).

Kp(R, εt) := # (y ∈ N | dεt(p, y) ≤ R)

The net point entropy hNP(core(T (Ng)), εt) is the following function defined in terms of Kp.

hNP(core(T (Ng)), εt) := lim
R→∞

logKp(R, εt)

R

Note that hNP(core(T (Ng)), εt) does not depend on the choice of the actual net, nor

does it depend on the parameter εn. Two different nets with different choices of εn will

have counting functions that differ by at most a constant multiplicative term, which will not

change the value of hNP(core(T (Ng)), εt). This follows from Proposition III.74: let n1 and

n2 be the number of net points of two different nets contained in a ball BR(z) of radius R

centered at a point z. We get a lower bound for νN(BR+εn(z)) by adding up the νN volumes

of balls of radius εn around each point in the first net.

n1c1(εn) ≤ νN(BR+εn(z))(III.3.1)

We get an upper bound for νN(BR+εn(z)) by adding up the νN volumes of radius 2εn around

each point in the second net.

νN(BR+εn(z)) ≤ n2c2(2εn)(III.3.2)

Here, c1 and c2 are functions that appear in the statement of Proposition III.74. Combining

(III.3.1) and (III.3.2), as well as using the fact that c1(εn) is positive gives us the claim.

The above argument also shows that the number of net points in a ball of radius R

is equal (up to multiplicative errors) to the Norbury measure νN . In Section III.3.2, we

will focus our attention on averaging functions with respect to this measure, instead of the

uniform measure obtained via the net points.
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We will replicate the proof of Theorem 1.2 of Eskin and Mirzakhani [EM11], where they

construct a random walk on a net, and use that to count concave trajectories. The key

difficulty that comes up in our proof and which does not come up in their proof is the fact

that they get an estimate for the cardinality of concave trajectories (and therefore concave

lattice points) in terms of hNP(T (Sg)), which they know is the same as hLP(T (Sg)) (i.e.

6g − 6) by Theorem 1.2 of Athreya, Bufetov, Eskin, and Mirzakhani [ABEM12].

Since we are working with non-orientable surfaces, we cannot invoke Theorem 1.2 of

Athreya, Bufetov, Eskin, and Mirzakhani [ABEM12], and instead need to relate hLP and

hNP more directly: this is what we do in Sections III.4 and III.5.

III.3.2: Construction of the Foster-Lyapunov-Margulis Function

One of the ways to show that a random walk on a non-compact space avoids the complement

of a compact region with high probability is to construct a proper function fFLM on the space

which satisfies a certain inequality when averaged over one step of the random walk. See

Eskin and Mozes [EM22] for an exposition on the construction of these functions as well as

some applications to dynamics and random walks.

Definition III.25 (Averaging operator). Let τ > 0 be the parameter associated to the

random walk, and f be any real valued function core(T (Ng)). Then the action of the

averaging operator Aτ on f is given by the following formula.

(Aτf)(x) :=
1

νN (Bεt
τ (x))

(∫
B

εt
τ (x)

f(z)dνN(z)

)
Here, Bεt

τ (x) is a ball of radius τ around x with respect to the metric dεt .

A Foster-Lyapunov-Margulis function is a function that has strong decay properties when

the operator Aτ is applied to it.

Definition III.26 (Foster-Lyapunov-Margulis function). A proper function f on core(T (Ng))

quotiented by the MCG(Ng)-action is called a Foster-Lyapunov-Margulis function if, if there

exists a polynomial p, and a compact subset W0 of core(T (Ng)), and functions b(x) and c(x),

such that Aτf satisfies the following inequality.

(Aτf)(x) ≤ c(x)f(x) + b(x)

Furthermore, b(x) is a bounded function that is supported within a compact set W0, and
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c(x) satisfies the following inequality for all x outside of W0.

c(x) ≤ p(τ) · exp(−τ)

Consider the function fFLM, defined on core(T (Ng)) in terms of the length of the shortest

two-sided curve on the surface.

fFLM(x) :=

√
1

infγ two-sided ℓγ(x)

This function is a proper function on T −
εt (Ng)/MCG(Ng), since the sub-level sets of this

function are regions in T −
εt (Ng) where the hyperbolic lengths of all curves are bounded from

below.

Proposition III.27. The function fFLM is a Foster-Lyapunov-Margulis function on core(T (Ng))

with respect to Aτ , for large values of τ .

Proof. Let W0 be the region of core(T (Ng)) where all two-sided curves are longer than εt.

We divide core(T (Ng)) into three regions, and prove the estimate for (AτfFLM)(x) for x in

these three regions. The regions R1, R2 and R3 are defined in the following manner.

- R1: The subset R1 is defined in the following manner.

R1 := {x | Shortest curve for any z ∈ Bεt
τ (x) is γ and ℓz(γ) < εt for z ∈ Bεt

τ (x)}

This is the set of points x such that there exists a unique curve γ which is the shortest

curve at all points in Bεt
τ (x), and the length of γ is less than εt for all points in Bεt

τ (x).

- R2: This subset is R0 \R1, where R0 is defined in the following manner.

R0 := {x | Shortest curve for any z ∈ Bεt
τ (x) shorter than εt}

R2 is the region where multiple curves can be simultaneously short.

- R3: This is all of core(T (Ng)) with R1 and R2 removed.

(i) Proof for x ∈ R1: In this case, the entire ball Bεt
τ is contained in the product region

where γ stays short. By Theorem III.73, there exists a constant c(εt) such that the

ball Bεt
τ (x) contains, and is contained inside a product of balls in core(T (Ng \ γ)) and
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H (which corresponds to length and twist around γ).

Bτ−c(εt)(x, core(T (Ng \ γ)))×Bτ−c(εt)(H) ⊂ Bεt
τ (x)

⊂ Bτ+c(εt)(x, core(T (Ng \ γ)))×Bτ+c(εt)(H)

Instead of computing the average of f over Bεt
τ (x), we can compute it over the product

of the balls as described above. To do so, we need to verify that the measure on the

product of the two balls is the product of the measures on the individual balls: we

do this in the proof of Proposition III.74: specifically (III.6.2). Since the volumes of

these balls grow exponentially with respect to radius, computing the average over the

product of balls will give us an average that differs from the true average by a bounded

multiplicative constant. This constant will be one of the terms that contribute to c′

in Definition III.26. Furthermore, note that the function fFLM is constant along the

core(T (Ng \ γ)) component, since γ is the shortest curve in the product of balls. It

thus suffices to compute the average of fFLM on a ball in H.

Parameterizing H as the upper half plane with coordinates z = (zreal, zim), the function

fFLM(z) is the square root of the second coordinate, i.e. fFLM(z) =
√
zim. The average

of this function over a sphere is well-understood (see [EM22, Lemma 4.2]). We recall

the estimate here for the reader’s convenience: denoting the averaging operator over a

sphere of radius τ in H by Bτ , the estimate is as follows.

(BτfFLM)(z) ≤ c′′ exp(−τ)fFLM(z)

We use the spherical average to compute the average over a ball by taking a weighted

average of the spherical averages. Doing so gives the following estimate for (AτfFLM)(z)

(where c′ is some fixed constant).

(AτfFLM)(z) ≤ c′τ exp(−τ)fFLM(z)

Since we have already established that the value fFLM(x) only depends on depends on

what happens in the H-coordinate, namely z, we get a corresponding inequality for x,

which proves the result in this case.

(AτfFLM)(x) ≤ c′τ exp(−τ)fFLM(x)

(ii) Proof for x ∈ R2: In this case, let {γ1, . . . , γk} be the two-sided curves that become

shorter at some point in Bεt
τ (x). We have that the ball lies in the product region where
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all the curves {γ1, . . . , γk} are short simultaneously. We have that there exists some

constant cg, depending only on g, such that k ≤ cg, since we cannot have too many

curves being short simultaneously.

Similar to the previous case, changing only the core(T (Ng \
⋃k

i=1 γi)) coordinate will

not change the value of the function fFLM, so it suffices to focus our attention on the

coordinates
∏k

i=1Hi, where each Hi corresponds to the length and twist around γi.

Let zi,im be the imaginary part of the ith copy of H in
∏k

i=1Hi. The function fFLM on∏k
i=1 Hi is given by the following formula.

fFLM(x) = max
i

√
zi,im

Since averaging this function over a product of balls is somewhat tedious, we relate it

to a different function f ′
FLM that is easier to average.

f ′
FLM(x) :=

∑
i

√
zi,im

These two functions are equal, up to a constant multiplicative error.

f ′
FLM(x)

cg
≤ fFLM(x) ≤ f ′

FLM(x)

This means we can prove the averaging estimate for f ′
FLM, and the same estimate will

hold for fFLM, with a slightly worse multiplicative constant.

Furthermore, since zi,im is constant along balls in Hj for j ̸= i, it suffices to average

just each term of the sum in the corresponding Hi. We do so, using the same estimate

from the proof in the R1 case.

(Aτf
′
FLM)(x) ≤ c′τ exp(−τ)f ′

FLM(x)

Replacing f ′
FLM with fFLM gives us the inequality we want, and proves the result in

this case.

(AτfFLM)(x) ≤ (cg · c′)τ exp(−τ)fFLM(x)

(iii) Proof for x ∈ R3: Note that the region R3 is compact, which means the function fFLM

is bounded in this region, and consequently, there exists a uniform upper bound for

AτfFLM as well. Let us denote the uniform upper bounding function by b(x): we can
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modify this function to be compactly supported by multiplying it with a bump function

that is 1 on a τ -neighbourhood of R3, and decays to 0 outside. By construction, we

have for x ∈ R3, (AτfFLM)(x) ≤ b(x). This proves the result for x ∈ R3.

Putting together the estimate from the three cases, we get the standard form of the inequality

(which holds for any x ∈ core(T (Ng))).

(AτfFLM)(x) ≤ c(x)fFLM(x) + b(x)

Here, c(x) := (cg · c′)τ exp(−τ), and b(x) is the function from the proof in case R3.

III.3.3: Recurrence for Random Walks and Geodesic Segments

Recurrence for random walks

In this section, we will count the number of random walk trajectories that are s-concave,

where s = ⌈diam(T ±
εt (Ng))

τ
⌉+ 1.

Definition III.28 (Concave trajectories). A trajectory (r0, r1, . . . , rn−1) is said to be s-

concave if all the points in the trajectory except the first s points and the last s points are

at least τ -distance away from T ±
εt (Ng).

We call these middle points the concave trajectory points.

From Proposition III.27, we have that for any of the concave trajectory points ri, the

following decay estimate for AτfFLM(ri) holds.

(AτfFLM)(ri) ≤ c′τ exp(−τ)fFLM(ri)

If ri is not a concave trajectory point, we only have a weaker estimate in terms of a uniformly

bounded function b(x).

(AτfFLM)(ri) ≤ b(x)

Fix an r0 in T ±
εt (Ng), and let P(n, τ) denote the collection of n-step concave random walk

trajectories which start at r0. We will use the term r to denote trajectories in P(n, τ), and

ri to denote the ith step of the trajectory r.

Proposition III.29. For any εerr > 0, there exists a τ > 0 large enough, and a constant

C ≫ 0, such that the following bound on |P(n, τ)| holds.

|P(n, τ)| ≤ C exp((hNP − 1 + εerr)nτ)
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Here, hNP = hNP(core(T (Ng)), εt).

Proof. Since the fFLM(x) has a positive lower bound Cl as x varies over core(T (Ng)) (which

comes from the Bers constant associated to Ng), we can estimate |P(n, τ)| by summing up

fFLM(rn−1) over all the trajectories in P(n, τ).

|P(n, τ)| ≤ 1

Cl

∑
r∈P(n,τ)

fFLM(rn−1)

It therefore will suffice to estimate
∑

r∈P(n,τ) fFLM(rn−1): we do so by conditioning on the

previous step of the random walk over and over again until we get to the first step r0.

We have the following recursive inequality for
∑

r∈P(n,τ) fFLM(rn−i).

∑
r∈P(n−i+1,τ)

fFLM(rn−1) =
∑

r∈P(n−i,τ)

 ∑
y∈N

dεt(y,rn−i−1)≤τ

fFLM(y)

(III.3.3)

≤
∑

r∈P(n−i,τ)

C

∫
B

εt
τ (rn−i−1)

fFLM(y)dνN(y)(III.3.4)

=
∑

r∈P(n−i,τ)

CνN(B
εt
τ (rn−i−1))(AτfFLM)(rn−i−1)(III.3.5)

Here, we go from (III.3.3) to (III.3.4) by integrating the indicator function supported in a

ball of radius εn
2
around each net point, and using Proposition III.74 to uniformly bound the

integral of the indicator independent of the basepoint.

If n− i− 1 is one of the first s or last s indices, we have the following inequality.

(AτfFLM)(rn−i−1) ≤ b(rn−i−1)fFLM(rn−i−1)(III.3.6)

Otherwise rn−i−1 is a concave trajectory point and we have strong bounds on (AτfFLM)(rn−i−1).

(AτfFLM)(rn−i−1) ≤ c′τ exp(−τ)fFLM(rn−i−1)(III.3.7)

Combining (III.3.3) and (III.3.6) for the case of non concave trajectory points, we get an

estimate we need to repeat 2s times.

∑
r∈P(n−i+1,τ)

fFLM(rn−i) ≤ B exp((hNP + ε′err)τ)

 ∑
r∈P(n−i,τ)

fFLM(rn−i−1)

(III.3.8)
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Here, B is the maximum value the function b takes over its compact support.

Combining (III.3.3) and (III.3.7), we get the estimate we need to repeat n− 2s times.

∑
r∈P(n−i+1,τ)

fFLM(rn−i) ≤ C ′τ exp(−τ) exp((hNP + ε′err)τ)

 ∑
r∈P(n−i,τ)

fFLM(rn−i−1)


(III.3.9)

Here, we upper bound the νN(B
εt
τ (rn−2)) with C ′′ exp((hNP+ ε′err)τ), where ε

′
err is a constant

smaller than εerr, and C ′′ is some large constant. The term C ′ is equal to CC ′′c′.

We now iterate (III.3.8) 2s times and (III.3.9) n− 2s times.∑
r∈P(n,τ)

fFLM(rn−1) ≤ (Be)2s · (C ′τ)
n−2s

exp((hNP − 1 + ε′err)nτ)fFLM(r0)

= fFLM(r0)

· exp

((
hNP − 1 + ε′err +

log (C ′τ)
(
n−2s
n

)
+ log (Be)

(
2s
n

)
τ

)
nτ

)

By picking τ large enough so that s ≤ 4 and ε′err +
log(C′τ)(n−2s

n )+log(Be)( 2s
n )

τ
< εerr, we get the

claimed result.

Proposition III.29 tells us that a random walk on core(T (Ng)) is biased away from the

thin part of core(T (Ng)). It does so by proving strong upper bounds on the probability that

a random walk trajectory with n steps stays in the thin part is less than exp((−1+ εerr)nτ):

in other words, a random walk returns to T ±
εt (Ng) with high probability.

Why the random walk approach fails for T (Ng)

If we wanted to make Proposition III.29 work on T (Ng), we would need to similarly show

the random walk on T (Ng) is recurrent in a similarly strong sense: i.e. the probability of a

length n trajectory staying in the thin part decays exponentially in n. A consequence of this

requirement is that the expected return time to the thick part is finite.

Unlike core(T (Ng)), T (Ng) has two kinds of thin regions.

- Thin region where only two-sided curves get short.

- Thin region where some one-sided curve also gets short.

It is the second kind of thin region that poses a problem for T (Ng). Minsky’s product

region theorem (Theorem III.73) tells us that up to additive error, the metric on these
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thin regions looks like a product of metrics on some copies of R (corresponding to the one-

sided short curves), some copies of H (corresponding to the two-sided short curves), and a

Teichmüller space of lower complexity. Since the random walk is controlled by the metric,

the random walk on this product metric space is a product of random walks on each of the

components.

In particular, the random walk on the R component is a symmetric random walk on a

net in R: i.e. a symmetric random walk on Z. Symmetric random walks on Z are known to

be recurrent, but only in a weak sense: they recur to compact subsets infinitely often, but

the expected return time is unbounded.

This means we cannot hope to prove exponentially decaying upper bounds on the prob-

ability that a long random walk trajectory stays in the thin part, since that would lead to

finite expected return times. This is why the random walk approach fails for T (Ng).

Recurrence for geodesic segments

In this section, we reduce the problem of counting geodesic segments that travel in the thin

part to counting trajectories of random walks that do the same.

Proposition III.30. For any εerr > 0, there exists a constant C ′, and a large enough R,

such that the following estimate holds for the counting function Mr0(R).

Mr0(R) ≤ C ′ exp((hNP − 1 + εerr)R)

Here, Mr0(R) is the number of concave lattice points in a ball of radius R centered at r0, where

r0 is a point in T ±
ε′t
(Ng) at which we start our random walk, and hNP = hNP(core(T (Ng)), εt).

Proof. We first check if τ we picked in the proof of Proposition III.29 satisfies
2εn
τ

<
εerr
2

: if

not, we pick a larger τ .

Let γ be a mapping class such that γp is a concave lattice point. We consider now the

concavity detecting path for γp: recall that this is a path that starts at p, and ends at γp,

and the middle segment obtained by deleting a prefix of length 2 ·diam
(
T ±
εt (Ng)/MCG(Ng)

)
and a suffix of length 2 ·diam

(
T ±
εt (Ng)/MCG(Ng)

)
stays outside T ±

εt (Ng). We turn this path

into an s-concave random walk trajectory by marking off points at distance τ
(
1− 2εn

τ

)
on

the segment, and then replacing those points with the nearest net point. All but the first

s and the last s points in the trajectory lie outside T ±
εt (Ng). Furthermore, the distance

between the adjacent points on the trajectory are at most τ . The number of steps in this

trajectory is n :=

⌈
R

τ

⌉
.
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Let P denote the collection of trajectories obtained via this construction. We apply

Proposition III.29 to count the number of such trajectories.

#P ≤ C exp
((

hNP − 1 +
εerr
2

)
nτ
)

(III.3.10)

≤ C exp
((

hNP − 1 +
εerr
2

)
(R + τ)

)
(III.3.11)

We now determine how many different geodesic segments can map to the same random

walk trajectory. If two geodesic segments [r0, γ1r0] and [r0, γ2r0] map to the same random

walk trajectory, we must have that they fellow travel for most of their length, and as a result,

dεt(r0, γ
−1
2 γ1r0) is bounded above by a constant value that only depends on τ . Combining

the above fact with (III.3.11) gives us a constant C ′ such that the following bound on Mr0(R)

holds.

Mr0(R) ≤ C ′ exp
((

hNP − 1 +
εerr
2

)
(R + τ)

)
= C ′ exp

((
hNP − 1 +

εerr
2

)(
1 +

τ

R

)
(R)
)

Picking a value of R large enough gives us the result.

We can now tie all of these calculations together to state our results on statistical con-

vexity of core(T (Ng)). Proposition III.30 gives us an upper bound on hc
LP(core(T (Ng)), εt)

(by applying the result for smaller and smaller values of εerr).

hc
LP(core(T (Ng)), εt) ≤ hNP(core(T (Ng)), εt)− 1(III.3.12)

To prove Theorem III.22, it will suffice to prove the following equality relating the lattice

point entropy and net point entropy.

hNP(core(T (Ng)), εt)− 1 < hLP(core(T (Ng)), εt)(III.3.13)

For convenience, we also define the undistorted versions of these entropy terms, using the

Teichmüller metric d rather than the induced metric dεt .

Definition III.31 ((Undistorted) lattice point entropy for T (Ng)). Let p be a point in

T ±
εt (Ng), and let Np(R) be the lattice point counting function.

Np(R) := # (γ ∈ MCG(Ng) | d(p, γp) ≤ R)
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The lattice point entropy hLP(T (Ng)) is the following quantity.

hLP(T (Ng)) := lim
R→∞

logNp(R)

R

Definition III.32 ((Undistorted) net point entropy). LetKp(R, εt) be the counting function

for net points, where p ∈ core(T (Ng)).

Kp(R, εt) := # (y ∈ N | d(p, y) ≤ R)

The net point entropy hNP(core(T (Ng))) is the following function defined in terms of Kp.

hNP(core(T (Ng))) := lim
R→∞

logKp(R, εt)

R

Note that the net point entropy does not depend on the precise value of εt, even though

it is counting net-points in core(T (Ng)), since the different values of εt change the counting

function by a multiplicative term that does not depend on R.

Recall now Theorem III.14, which for any εd > 0, provides a εt > 0 such that the ratio

of dεt and d is bounded above by 1 + εd. A consequence of this is that the distorted and

the undistorted versions of the entropy terms differ by at most hNP(core(T (Ng))) · εd and

hLP(T (Ng)) · εd.
In particular, if we show hNP(core(T (Ng))) = hLP(T (Ng)), (III.3.13) will follow (for small

enough εt), and so will Theorem III.22. We package up this result as a theorem, which we

will use in subsequent sections.

Theorem III.33. If hNP(core(T (Ng))) = hLP(T (Ng)), then T ±
εt (Ng) is statistically convex,

and the action of MCG(Ng) on core(T (Ng)) is statistically convex-cocompact.

III.4: Equality of Lattice Point Entropy and Net Point Entropy

In this, and the following section, we will prove that hLP = hNP, which will let us apply

Theorem III.33 to conclude that the MCG(Ng) action on core(T (S)) is SCC for surfaces S

of finite type.

Theorem III.34 (Entropy equality). For any surface S of finite type, the following rela-

tionship holds between the hNP and hLP.

hNP(core(T (S)), εt) = hLP(T (S), εt)
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Remark. In the case where S is an orientable surface, the theorem is a corollary of Athreya,

Bufetov, Eskin, and Mirzakhani [ABEM12, Theorem 1.2]. However, the proof of the stronger

theorem in the orientable setting uses facts about the dynamics of the geodesic flow on the

moduli space, which we don’t have in the non-orientable setting. The proof of the weaker

theorem only uses coarse geometric methods, and works equally well for orientable and

non-orientable surfaces.

III.4.1: Base Case

We will prove this theorem by inducting on the Euler characteristic of the surface S. The

4 base cases we need to check are the 3 non-orientable surfaces, and one orientable surface

with Euler characteristic −1.

• S1,1,0: This is the torus with 1 boundary component and 0 crosscaps attached.

• S1,0,1: This is a torus with 0 boundary components, and 1 crosscap attached.

• S0,2,1: This is a sphere with 2 boundary components, and 1 crosscap attached.

• S0,1,2: This is a sphere with 1 boundary component, and 2 crosscaps attached.

Lemma III.35 (Entropy equality: base case). For a surface S in {S1,1,0,S1,0,1,S0,2,1,S0,1,2},
the following relationship holds between the hNP and hLP.

hNP(core(T (S)), εt) = hLP(T (S), εt)

Proof. For S = S1,1,0, we will directly prove the lemma, and for the remaining three non-

orientable surfaces, we will use a description of their Teichmüller spaces and mapping class

groups from Gendulphe [Gen17] to reduce to the first case, or show that the result follows

trivially.

• S1,1,0: Since S1,1,0 is orientable, we have that core(T (S1,1,0)) = T (S1,1,0), so it suffices

to look at the full Teichmüller space. The Teichmüller space of S1,1,0 is the upper half

plane H2, and the mapping class group is SL(2,Z). In this case, the number of lattice

points in a ball of radius R grows like exp(R). More precisely, we have the following

inequality for some constants c and c′.

c ≤ #(BR(p) ∩ p · SL(2,Z))
exp(R)

≤ c′(III.4.1)

Here, p is a lattice point, and BR(p) is the ball of radius R centered at p.
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To count the net points in the ball of radius, we parameterize the net points by how

far from the orbit of p they lie. Since we’re looking for net points in a ball of radius

R, the furthest away they can be from the orbit is R. We have the following sum

decomposition (for an arbitrary choice of εb > 0) for the cardinality of the net points.

# (BR(p) ∩N) = # (BR(p) ∩N≤εbR) + # (BR(p) ∩N>εbR)(III.4.2)

Here, N≤εbR denotes the net points that lie within distance εbR of the orbit of p, and

N>εbR denotes the net points that lie more than distance εbR of the orbit of p.

We will show that the first term is at most p(R) exp(R(1 + εb)), for some polynomial

p(R), and that the second term grows slower than the first term. Since the choice of

εb was arbitrary, this will prove the equality of the two entropy terms.

Let N≤εbR(γ) denote the subset of N≤εbR whose closest lattice point is γp. Observe

that d(p, γp) is at most R+ εbR, by the triangle inequality. We also have the following

inequality for any γ, and for some polynomial p, by Lemma III.39.

# (BR(p) ∩N≤εbR(γ)) ≤ p(R)

Using the two facts we stated, we get the following upper bound for # (BR(p) ∩N≤εbR).

# (BR(p) ∩N≤εbR) ≤ p(R) · (exp(R(1 + εb)))

This is precisely the bound we needed for the first term in (III.4.2).

Now we show that the second term of (III.4.2) grows slower than exp(R(1− εb
2
)). For

any point x in N>εbR, we can replace the geodesic [p, x] with two shorter segments,

[p, x0] and [x0, x], where x0 is the net point closest to the last point on the [p, x] which

stays within some bounded distance of a lattice point. We also have that d(p, x0) ≤
R(1−εb), by our assumption, which lets us count the number of such points x0. There

are at most exp(R(1− εb)) such points. Now we fix an x0, and we need to estimate the

number of possibilities for x, given that [x0, x] stays entirely within the thin part of

SL(2,R)/SL(2,Z). Note that this reduces to estimating the volume of the intersection

of a ball BεbR(x0) with a horoball H which has x0 in its boundary. Working in the

upper half plane model for H, where x0 = i, and the region H is the set of points

whose imaginary component is greater than 1, we get that the region of integration

is contained in a rectangle, bounded by −C exp
(
εbR
2

)
≤ Re(z) ≤ C exp

(
εbR
2

)
and

1 ≤ Im(z) ≤ exp(εbR), where C is some fixed constant that we do not explicitly write
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down. The volume of this region is given by the following integral.

Vol(BR(x0) ∩H) ≤
∫ exp(εbR)

1

∫ C exp
(

εbR

2

)
−C exp

(
εbR

2

) 1

y2
dxdy(III.4.3)

≤ C ′ exp

(
εbR

2

)
(III.4.4)

We thus have the following upper bound on # (BR(p) ∩N>εbR) for large enough values

of R.

# (BR(p) ∩N>εbR) ≤ exp

(
εbR

2

)
· exp(R(1− εb))

≤ exp
(
R
(
1− εb

2

))
This finishes proving the two claims we made about the terms of (III.4.2), and proves

the result for S1,1,0.

• S1,0,1: This surface is very similar to the previous case: it’s obtained by gluing together

the boundary component of S1,1,0 via the antipodal map. It’s a theorem of Scharle-

mann [Sch82] and also Gendulphe [Gen17] that there is a unique one-sided curve κ

in S1,0,1 whose complement is S1,1,0. As a consequence, MCG(S1,0,1) ∼= MCG(S1,1,0),

and T (S1,1,0) ↪→ T (S1,0,1), where the inclusion map is given by considering a point in

T (S1,1,0), where the boundary component has length εt, and gluing it via the antipodal

map to get a point in T (S1,0,1). The inclusion map is also equivariant with respect to

the action of MCG(S1,1,0) and MCG(S1,0,1).

We consider now core(T (S1,0,1)): the curve κ cannot get shorter than the threshold

specified by the core. We now show that κ cannot be arbitrary long either. At any

point z ∈ core(T (S1,0,1)), let κ′ be the shortest curve that intersects κ exactly once

(see Figure 3.1). We have an upper bound for the length of κ′: namely the length of

the orthogeodesic arc on S1,0,1 \κ that starts and ends at κ. It follows from hyperbolic

trigonometry that if the length of κ goes to ∞, then the length of the orthogeodesic,

hence the length of κ′ will approach 0, the point in T (S1,0,1) will leave core(T (S1,0,1)).

If we consider the pants decomposition of the surface along κ, and any two sided

curve, we see that the length coordinates of κ in core(T (S1,0,1)) are contained in a

compact interval [t1, t2], where t1 > 0. This means that core(T (S1,0,1)) is a bounded

neighbourhood of the image of T (S1,1,0).

From the previous case, we already have hNP(core(T (S1,1,0)), εt) = hLP(T (S1,1,0), εt),
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κ′
κ

Figure 3.1: The curves κ and κ′ on S1,0,1.

and since their mapping class groups are isomorphic, we also have hLP(T (S1,1,0), εt) =

hLP(T (S1,0,1), εt). We now need to prove that hNP(core(T (S1,1,0)), εt) = hNP(core(T (S1,0,1)), εt)

to prove the result for this case. We have that the net for core(T (S1,0,1)) lies in a

bounded neighbourhood of the net for core(T (S1,1,0)): this implies that the cardinali-

ties of the net points in a ball of radius r differ by at most a multiplicative constant.

#
(
BR(p) ∩Ncore(T (S1,0,1))

)
≤ c ·#

(
BR(p) ∩Ncore(T (S1,1,0))

)
Since the two cardinalities differ by at most a multiplicative constant, they have the

same exponential growth rate.

• S0,2,1: The mapping class group of this surface is finite: in fact, it is isomorphic to

Z/2Z × Z/2Z (see Gendulphe [Gen17]). This means hLP(T (S0,2,1), εt) = 0. This

surface has exactly two simple geodesics κ and κ′, which intersect each other exactly

once, such that deleting either one of them results in a pair of pants (see Figure 3.2).

κ
κ′

Figure 3.2: The curves κ and κ′ on S0,2,1.

Picking a pants decomposition along either κ or κ′, we see that T (S0,2,1) is homeomor-

phic to R>0, where the homeomorphism is given by the length coordinate.
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If we now consider core(T (S0,2,1)), the lengths of κ and κ′ are bounded below by the

threshold. But they are also bounded above, by an argument similar to the previous

case, namely is either κ or κ′ are very long, the other one sided curve must be very short.

This proves that core(T (S0,2,1)) is compact, and as a result hNP(core(S0,2,1), εt) = 0.

This proves the lemma for S0,2,1.

• S0,1,2: This surface has a unique two-sided element, which we denote by γ∞. The one

sided curves on this surface are indexed by Z, where γn = Dnγ0, and Dn is the Dehn

twist about γ∞ (see Figure 3.3).

γ∞

γ0
γ1

Figure 3.3: The curves γ∞, γ0 and γ1 on S0,1,2.

The mapping class group of this surface is also virtually generated byDn. If we consider

the pants decomposition along γ∞, we get a Fenchel-Nielsen map from T (S0,1,2) to the

upper half plane H2, where the y-coordinate is 1
ℓ(γ∞)

, and the x-coordinate is the twist

around γ∞. Furthermore, this map is also an isometry, and with respect to these

coordinates, Dn is the action of

(
1 1

0 1

)
on H2.

If we now consider core(T (S0,1,2)), that consists of the points in H2 whose y-coordinate

is greater than some threshold value, i.e. a horoball in H2. We showed in (III.4.3)

that for the action of Dn on a horocycle, the volume growth entropy and the lat-

tice point growth entropy are both equal to 1
2
. The former entropy is precisely

hNP(core(T (S0,1,2)), εt), and the latter entropy is hLP(T (S0,1,2), εt).

This concludes the proof of the lemma for the 4 surfaces with χ(S) = −1.

III.4.2: Good Points and Bad Points

The proof of Theorem III.34 will split up into counting two kinds of net points, which we

will call good points and bad points.

Definition III.36 (Good points). A point in BR(p)∩N is good if it is at most distance εbR

away from a lattice point γp. The set of good points is denoted by Ng(p,R, εb).
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Definition III.37 (Bad points). A point in BR(p)∩N is bad if it is more than distance εbR

away from the nearest lattice point. The set of bad points is denoted by Nb(p,R, εb).

Observe that the classification of a point as good or bad depends on the choice of R, p,

and an additional parameter εb > 0.

We also further subdivide Ng(p,R, εb) based on what the closest lattice point is.

Definition III.38 (Good point in the domain of γ). For γ ∈ MCG(S), the setNg(γ, p, R, εb)

denotes the subset of Ng(p,R, εb) whose closest lattice point is γp.

We will now prove a lemma that provides an upper bound on the number of good points

when restricted to a fundamental domain.

Lemma III.39. There exists a polynomial function q, whose degree only depends on the

topological type of S, such that for any γ ∈ MCG(S), the following inequality holds for the

cardinality of points in Ng(γ, p, R, εb).

#(Ng(γ, p, R, εb) ∩BR(γp)) ≤ q(R)

Remark. Eskin and Mirzakhani [EM11, Lemma 3.2] prove this lemma for Teichmüller spaces

of orientable surfaces, by comparing the extremal lengths of various curves on the underlying

surfaces. We adapt the same proof for non-orientable surfaces, replacing extremal length for

hyperbolic lengths instead.

Before we prove Lemma III.39, we will need the following lemma on packing an εn-

separated set into a ball of fixed radius in Teichmüller space (where εn is the parameter

associated to our net N).

Lemma III.40 (Packing bound). For an constants C > 0 and εn > 0, there exists a constant

D(C, εn, S) depending on the constants C, εn, and the topological type of the surface S such

that any ball BC(p) (independent from the choice of p) in T (S) cannot contain more than D

points that are pairwise distance at least εn apart.

Proof. First of all, note that the above lemma holds for S = S1,1,0, since T (S1,1,0) is H2,

which is homogeneous.

Next, note that the lemma also holds for compact metric spaces, because we can express

D as a upper semi-continuous function of the point p, which will achieve a maximum on a

compact metric space.

Next, note that if the lemma holds for metric spaces X and Y , it also holds for X × Y ,

where the metric on X × Y is the sup product without an additive error. To see this, we

75



consider the minimal number of balls E(C, εn, X×Y ) of radius εn
2
needed to coverX×Y . The

covering number and the packing number D are related by the following standard inequality.

D(C, εn, X × Y ) ≤ E(C, εn, X × Y ) ≤ D(C, 2εn, X × Y )

Furthermore, one can easily see that for a sup-product X × Y , we can bound the covering

number of X × Y by a product of the covering number for X and Y , by taking a product of

coverings for X and Y .

E(C, εn, X × Y ) ≤ E(C, εn, X)× E(C, εn, Y )

Combining the two inequalities, get a bound for D(C, εn, X × Y ) in terms of D(C, 2εn, X)

and D(C, 2εn, Y ).

D(C, εn, X × Y ) ≤ D(C, 2εn, X)×D(C, 2εn, Y )

We now show that the lemma also holds, with a worse constant, for metric spaces that

are sup-products with an additive error c, where c is a constant smaller than εn. Let Z be a

metric space for which the lemma holds, and Z ′ be a metric space with the same underlying

points, but whose metric differs from Z by an additive error c.

|dZ(x, y)− dZ′(x, y)| ≤ c

Let Z be a set of points in a ball of radius C in Z ′ that are pairwise distance at least εn apart.

Consider Z as a subset of Z instead, we have that they are contained in a ball of radius

at most C + c, and are pairwise distance at least εn − c apart. We thus get the inequality

relating the packing numbers for Z and Z ′.

D(C, εn, Z
′) ≤ D(C + c, εn − c, Z)

Suppose now that we have the lemma for the Teichmüller spaces of all surfaces with Euler

characteristic at least −n. To show the lemma for a Teichmüller space of a surface S with

Euler characteristic −n − 1, we break up the Teichmüller space into the thick part, where

all curves are at least ε or longer, and the thin part. We pick ε such that the metric thin

part on the thin part is equal to the sup-product metric, up to an additive error c, where

c < εn, by Minsky’s product region theorem [Min96b, Theorem 6.1] (or Theorem III.73).

The mapping class group acts co-compactly on the thick, so the first reduction applies, and

on the thin part, the metric is the sup product up to an additive error of c, so the second
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reduction applies.

Proof of Lemma III.39. We begin by making three simplifying reductions. First, it will

suffice to prove the following stronger claim instead.

# (N(γ) ∩BR(γp)) ≤ q(R)(III.4.5)

Here, N(γ) denotes the set of net points whose closest lattice point is γp: N(γ) is therefore

a superset of Ng(γ, p, R, εb).

Next, note that it suffices to prove (III.4.5) for γ = 1, since our choice of basepoint p was

arbitrary.

And finally, it will suffice to prove the following claim.

Claim. There exists a set Z ⊂ T (S) such that #Z ≤ Rf(S), and for y ∈ BR(p), there exists

a z ∈ Z and κ ∈ MCG(S) such that d(y, κz) ≤ C, for some value f(S) that only depends

on the topological type of S, and some fixed constant C.

To see why this suffices, suppose we have such a Z. Without loss of generality, we

can assume that for all points z ∈ Z, the closest lattice point is p: otherwise we could

replace such a point z by κz for an appropriate choice of κ. We then have that for any

n ∈ N(1) ∩ Bp(R), there exists some z ∈ Z, such that d(z, n) ≤ 2C. Since #Z ≤ Rf(χ(S)),

we have that # (N(1) ∩Bp(R)) ≤ C ′Rf(χ(S)), for some other constant C ′, by Lemma III.40.

Proof of claim: We consider short markings on the point p ∈ teich(S). Given a pants

decomposition {α1, . . . , αk} of a surface, a set of short transverse curves is a collection of

curves {β1, . . . , βk}, such that βi only intersects αi, and is the shortest such curve amongst

all the curves intersecting only αi. The set {α1, . . . , αk, β1, . . . , βk} is called a marking. A

marking is said to be short if the total length of the pants curves αi is minimized amongst

the mapping class group orbit of {α1, . . . , αk}.
Note that there are only many short markings at point p. We know that for each of these

short markings, the lengths of the pants curves are bounded above by some constant T .

Each of these pants multicurves have N = −3χ(S)− b pants curves on them, where b is the

number of boundary components of S. Let {M1, . . . ,Mj} denote the set of short markings.

We construct the points z ∈ Z by just varying the lengths of these pants curves: the set

of lengths we will allow are the following.

Acceptable lengths = {T, T exp(−1), T exp(−2), . . . , T (exp(−⌈R⌉)− log(s))}

Here s is the length of the shortest curve on the point p in T (S). We define the point

zj,i1,i2,...,iN to be the point in T (S) obtained by considering the marking Mj at p, and setting
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the length of the kth pants curve to be ik, where the ik is one of the acceptable lengths. It’s

clear that the cardinality of Z is at most J · RN , which is a polynomial only depending on

the topological type of the surface S and the basepoint p.

Suppose now that y is some other point in BR(p). We pick a κ ∈ MCG(S) such that the

shortest marking on κy is one of the markings Mj for 1 ≤ j ≤ J . We now need to show

that one of the z ∈ Z is close to κy. Pick the z such that the corresponding lengths of

the pants curves are closest to the lengths of the pants curves on κy. We can now invoke

the combinatorial distance formula for Teichmüller metric (proved by Rafi [Raf07] for the

orientable setting, and Theorem III.76 for the non-orientable case).

d(z, κy)
·≍
∑
Y

[dY (z, κy)]k +
∑
α ̸∈Γ

log [dα(z, κ)]k +max
α∈Γ

dHα(z, κy)

In the above formula, the first term is the distance between the short markings when pro-

jected to non-annular subsurfaces, the second term is the distance between the short mark-

ings when projected to annular subsurfaces whose core curves are not the pants curves in

the marking, and the third term corresponds to the length and twist parameters of the short

curves.

Since both z and κy have the same short markings, the first two terms in the above sum

become 0. Also, since we picked z to be the element of Z such that the lengths were closest

to those on κy, the third term is bounded by some constant, which proves the result.

III.4.3: Using Complexity Length to Count Bad Points

In this section we introduce an alternative to the Teichmüller metric, called the complexity

length (see Definition III.68). Complexity length (denoted by L) was constructed by Dowdall

and Masur [DM23], in order to get better estimates on net points contained in the thin part

of Teichmüller space (for orientable surfaces). We adapt the construction of complexity to

the Teichmüller space of non-orientable surfaces in Section III.5. In this section, we state

the main results about complexity length we need in order to prove Theorem III.34.

For this section, we will state the results with a rescaled version of complexity length, in

order to compare it with Teichmüller length.

Definition III.41 (Rescaled complexity length). Let S be a surface of finite type. The

rescaled complexity length dcomp on core(T (S)) is given by the following formula.

dcomp(x, y) =
L(x, y)

hNP(core(T (S)), εt)
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Here, L(x, y) is the complexity length between points x and y.

The first result we will need is a count of the net points with respect to the rescaled

complexity length.

Theorem III.42 (Theorem 12.1 of [DM23], Theorem III.69). There exists a polynomial

function p(R) that depends on the net N, and a parameter εerr > 0, such that the following

inequality holds for any εerr > 0.

#(y ∈ N | dcomp(p, x) ≤ R) ≤ p(R) exp((hNP(core(T (S)), εt) + εerr) ·R)

The next result, which is the main theorem of Section III.5, is that if y is a bad point that

is Teichmüller distance R away from p, then its rescaled complexity distance to p is smaller

than R by a definite amount. We state this theorem with an additional hypothesis on the

net point entropy of subsurfaces. We will establish that this hypothesis holds inductively in

Section III.4.5.

Theorem III.43 (Linear gap in complexity length, Theorem III.70). Suppose that for all

proper subsurfaces V of S, the following inequality holds.

hNP(core(T (V )), εt) < hNP(core(T (S)))

Then for any εb > 0, there exists c > 0, such that for all R > 0, and for any bad point y,

i.e. a point in Nb(p,R, εb), the following upper bound on the complexity distance between p

and y holds.

dcomp(p, y) ≤ R(1− c)

Remark. We give a brief outline of why the above result should hold. Complexity length

can be thought of as a weighted version of Teichmüller length, where a specific segment is

assigned a weight based on whether it’s traveling in the thick part of Teichmüller space, or

the thin part. In the latter case, it is assigned a smaller weight that is proportional to the net

point entropy of the product region it is traveling in. The Teichmüller geodesics associated

to bad points spend a significant fraction traveling in the thin part, by the very definition of

bad points. It stands to reason then that the complexity length assigned to them is smaller

by a definite amount, due to the time they spend in the thin part.

Combining Theorems III.42 and III.43, it follows that as R goes to ∞, the proportion of

bad points goes to 0, which is what we need for Theorem III.34.
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III.4.4: Entropy Gap

In the previous section, we saw that the key hypothesis we need for the complexity length

estimate was that for any proper subsurface V of S, the following strict inequality held.

hNP(core(T (V )), εt) < hNP(core(T (S)), εt)(III.4.6)

In this section, we will prove that (III.4.6) holds by proving a similar inequality for the

lattice point entropy, and using the fact that Theorem III.34 holds for all proper subsurfaces

V , by the inductive hypothesis.

Lemma III.44 (Lattice point entropy gap). Let S be a surface, and χ(S) ≤ −2. If V

is a proper subsurface and Theorem III.34 holds for V , then we have the following strict

inequality between their lattice point entropy.

hLP(T (V ), εt) < hLP(T (S), εt)

Remark. We do actually need the hypothesis χ(S) ≤ −2 in the statement of the lemma

for two reasons. The first reason is that the lemma is actually false for S1,0,1. Recall that

this surface has the torus with one boundary component as a subsurface, but their mapping

class groups are isomorphic, and have the same lattice point growth entropy. Another reason

why we need the hypothesis is that the proof of the lemma proceeds via a construction of

pseudo-Anosov elements on S, and S1,0,1 does not admit any pseudo-Anosov mapping classes.

Proof of Lemma III.44. Observe that MCG(V ) is a subgroup of MCG(S). We will first con-

struct an intermediate subgroup H = Z ∗MCG(V ), which is the free product of a pseudo-

Anosov element in MCG(S) with MCG(V ), and show that hLP(H, εt) > hLP(MCG(V ), εt).

This is enough to prove the result, since H is a subgroup of MCG(S), we have that

hLP(MCG(S), εt) ≥ hLP(H, εt).

We now need to show that MCG(S) contains a pseudo-Anosov element. We can invoke

Penner’s construction of pseudo-Anosov mapping classes ([Pen88, Theorem 4.1]), as long

as we can construct a filling collection of two-sided curves in S. This may not be always

possible for S where χ(S) = −1, but for S with χ(S) ≤ −2, this is always possible (see

[LS18] and [KPW23] for explicit constructions). Let κ denote the pseudo-Anosov mapping

class we construct.

By [Yan18, Proposition 6.6], there exists a large enough n such that κn and MCG(V )

generate their free product in MCG(S): call this subgroup H.

We now need to show that the lattice point entropy for H is strictly larger than the

MCG(V ). To see this, we recall an equivalent definition of the lattice point entropy. The
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lattice point entropy is the infimum of the set of exponents h such that the following Poincaré

series transitions converges for any x ∈ T (S).∑
γ∈H

exp (−h · dεt(x, γx))(III.4.7)

Since H = Z ∗MCG(V ), we can represent γ ∈ H as a1 · b1 · a2 · · · ak · bk, where ai belong in

Z and bi belong in MCG(V ). We use this along with the triangle inequality to get an upper

bound for d(x, γx).

dεt(x, γx) ≤
k∑

i=1

dεt(x, aix) + dεt(x, bix)(III.4.8)

We plug inequality (III.4.8) into (III.4.7) to get a lower bound.

∑
γ∈H

exp (−h · dεt(x, γx)) =
∞∑
k=1

(∑
a1

· · ·
∑
ak

∑
b1

· · ·
∑
bk

exp(−h · dεt(x, a1 · b1 · · · ak · bkx))

)(III.4.9)

≥
∞∑
k=1

(∑
a∈Z

exp(−h · dεt(x, ax))

)k
 ∑

b∈MCG(V )

exp(−h · dεt(x, bx))

k

(III.4.10)

We have that Theorem III.34 holds for V , which means that core(T (V )) is SCC. Corollary

5.4 of [Yan18] states that group actions that are SCC have Poincaré series that diverge at the

critical exponent. This means there’s small enough ε > 0 such that for h = hLP(T (V ), εt)+ε,

the series converges to a value greater than 1. But that means the Poincaré series for H

diverges at hLP(T (V ), εt)+ ε, since we have a lower bound by a geometric series whose ratio

is greater than 1. This proves that the critical exponent for H is strictly greater than the

critical exponent for MCG(V ).

We can now prove the entropy gap result for hNP.

Lemma III.45 (Net point entropy gap). Let S be a surface, and χ(S) ≤ −2. If V is a

proper subsurface and Theorem III.34 holds for V , then we have the following strict inequality

between their net point entropy.

hNP(core(T (V )), εt) < hNP(core(T (S)), εt)

Proof. We have the following inequality, which follows trivially from the definition of hLP
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and hNP.

hLP(T (S), εt) ≤ hNP(core(T (S)), εt)(III.4.11)

From Lemma III.44, we get the following inequality.

hLP(T (V ), εt) < hLP(T (S), εt)(III.4.12)

Finally, since we have Theorem III.34 for V , we have the following equality.

hLP(T (V ), εt) = hNP(core(T (V )), εt)(III.4.13)

Chaining together (III.4.11), (III.4.12), and (III.4.13) gives us the result.

III.4.5: Proof of Theorem III.34

We now have all the lemmas we need in order to prove Theorem III.34.

Proof of Theorem III.34. We will prove this lemma by inducting on the complexity of the

surface S. Lemma III.35 proves the result for surfaces with Euler characteristic equal to −1,

which serves as the base case of the theorem.

We now assume that Theorem III.34 already holds for all proper subsurfaces V of S: it
will suffice to show that the result holds for S.

We will establish that for any εb > 0, there exists a polynomial q(R), and R large enough,

such that the following bound holds.

# (BR(p) ∩N) ≤ q(R) · exp(hLP(T (S), εt) ·R · (1 + 2εb))

We first count the good points in BR(p), by partitioning them according to the nearest

lattice point.

Ng(p,R, εb) =
⊔

γ∈MCG(S)

Ng(γ, p, R, εb)(III.4.14)

Observe that if y ∈ Ng(γ, p, R, εb), then d(p, γp) ≤ R(1+εb), since d(p, y) ≤ R and d(y, γp) ≤
εbR. This observation leads to the following upper bound on # (Ng(p,R, εb)).

# (Ng(p,R, εb)) ≤
∑

γ∈MCG(S)
d(p,γp)≤R(1+εb)

#(BεbR(γp) ∩Ng(γ, p, R, εb))(III.4.15)
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By Lemma III.39, there exists a polynomial q(R) such that each term in the above sum is

at most q(R).

# (Ng(p,R, εb)) ≤
∑

γ∈MCG(S)
d(p,γp)≤R(1+εb)

q(R)(III.4.16)

≤ q(R) · exp(hLP(T (S), εt) ·R · (1 + 2εb))(III.4.17)

Here, we estimated the cardinality of γ such that d(p, γp) ≤ R(1+εb) as at most exp(hLP(T (S), εt)·
R · (1 + 2εb)), for large enough R. We have the desired upper bound on the cardinality for

the good points. Now we show that the number of bad points is much smaller than the total

number of points in the ball, which will then prove the result.

From the inductive hypothesis, we have that Theorem III.34 holds for all proper subsur-

faces V . By Lemma III.45, we have that hNP(core(T (V )), εt) < hNP(core(T (S)), εt): this

is precisely the hypothesis we need to apply Theorem III.43. Applying the theorem, we see

that if y is a bad point, dcomp(p, y) ≤ R(1 − c). We then apply Theorem III.42 to get an

upper bound on the number of bad points.

# (Nb(p,R, εb)) ≤ kRk · exp((hNP(core(T (S)), εt) + εerr) ·R · (1− c))

We pick εerr small enough such that the above term satisfies the following inequality for large

enough R.

exp((hNP(core(T (S)), εt) + εerr) ·R · (1− c)) < exp

(
hNP(core(T (S)), εt) ·R ·

(
1− 2c

3

))
On the other hand, we have that for large enough R, the total number of net points is

at least exp
(
hNP(core(T (S)), εt) ·R ·

(
1− c

2

))
. Combining these two facts, we see that the

proportion of bad points goes to 0 as R goes to ∞, which proves the result.

III.5: Linear Gap in Complexity Length

III.5.1: An Example of Counting in Product Regions

Before we define complexity length, we will look at an example that illustrates why we need

complexity length. Theorem 1.3 of Athreya, Bufetov, Eskin, and Mirzakhani [ABEM12]

proves an estimate on the volume of balls in Teichmüller space. From this volume estimate,

we can obtain an estimate on the cardinality of net points of an (εn, 2εn)-net N.
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Theorem III.46 (Theorem 1.3 of [ABEM12]). For a point p in T (S) (where S is a genus g

surface with b boundary components), the number of net points in a ball of radius R centered

at the origin satisfies the following asymptotic as R goes to ∞.

#(N ∩BR(p))
·≍ exp((6g − 6 + 2b)R)

Here, the multiplicative and additive constants showing up in
·≍ only depend on p and εn.

Suppose now that we want to use the above theorem to count net points in a product

region. More concretely, let p be a point in T (S) such that a non-separating curve γ is very

short: ℓγ(p) ≤ δ · exp(−R0), for some δ > 0, and some large R0, and we want to estimate

the cardinality of N ∩ BR(p) for R < R0. Note that since R < R0, the ball BR(p) is still

contained in the product region of Teichmüller space where ℓγ ≤ δ.

Since the entire ball BR(p) is in a product region, we have by Minsky’s product region

theorem (see Theorem III.73 for a precise statement) that the ball decomposes (up to an

additive error) as the product of a ball in T (S \ γ) and ball in H (which corresponds to the

length and twist around γ). This gives us an alternative estimate for # (N ∩BR(p)).

# (N ∩BR(p)) ≤ C · (N1 ∩BR(p, S \ γ)) · (N2 ∩BR(p,H))(III.5.1)

Here N1 and N2 are (εn, 2εn) nets for T (S \ γ) and H, and BR(p, S \ γ) and BR(p,H) are

projections on the ball BR(p) to the two components. Applying Theorem III.46 to the right

hand side of (III.5.1), we get a better estimate than we would have gotten with a direct

application of Theorem III.46.

# (N ∩BR(p)) ≤ C · (N1 ∩BR(p, S \ γ)) · (N2 ∩BR(p,H))
·≍ exp((6(g − 1)− 6 + 2(b+ 2))R) · exp(R)

= exp((6g − 6 + 2b− 1)R)

This example illustrates that in order to count net points accurately, it’s not sufficient to

just estimate the distance the between the base point p and the net point n: if the geodesic

segment [p, n] travels in a product region, the count will be lower than what Theorem III.46

predicts. In fact, the count will also depend on the type of the product region. In the above

example, the product region had just one curve γ becoming short, but in general, a product

region can have multiple curves getting short, in which case, the net point count will be even

smaller.

We now consider a geodesic [x, y] (where x and y are net points) that travels through
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several product regions πi, and possibly the thick part, which we will also consider a product

region, albeit a trivial one. Let hi be the exponent associated to the product region πi: this

is the exponent that will appear when we invoke Theorem III.46 to count net points in the

product region πi. The order in which [x, y] travels through the product region is specified

in Figure 3.4.

x z1 z2 z3 z4 z5 z6 z7 z8 y

p1

p2

p3

p4

p5

Figure 3.4: A schematic of the geodesic [x, y] traveling through several product regions.

Let zi denote the points on the geodesic segment that correspond to the times when the

geodesic enters or exits a product region: in Figure 3.4, we have labeled zi for 1 ≤ i ≤ 8.

Let Ji denote the interval [x, z1] for i = 0, the interval [zi, zi+1] for 1 ≤ i ≤ 7, and [z8, y] for

i = 8. Let ℓi be the length of Ji, and ei be the sum of the hi for each of the product regions

that the interval Ji is in. Also, for each zi, let z
′
i denote the nearest net point.

Keeping x fixed, we can try to count the number of net points y that satisfy the configu-

ration we have described. We have about O(exp(e0ℓ0)) possibilities for z
′
1, and then keeping

a z′1 fixed, O(exp(eiℓ1)) possibilities for z′2 and so on. Multiplying all these estimates, we

have the following upper bound for cardinality of y.

# (y) ≤ exp

(
8∑

i=0

eiℓi

)

The quantity
∑

eiℓi serves as a re-weighted version of length of the geodesic in manner

that works well with the counting function. This is a primitive version of the complexity

length of [x, y], and motivates the actual definition.

Before we define complexity length, we note two ways in which the above estimate over-

estimates the actual number of net points: that happens when a point in the geodesic is

simultaneously in two or more product regions, which can happen in two ways.

(i) The active subsurfaces associated to product regions are disjoint: In this case, we are

accounting the length of the geodesic segment multiple times: once for each product

region we are in. However, this overcounting is still better than directly invoking

Theorem III.46, since the sums of the exponents hi associated to each of the disjoint

product regions are smaller than the exponent associated to the entire surface.

(ii) The active subsurfaces associated toproduct regions are nested: In this case as well,
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we are accounting for the length of a geodesic multiple times, once for each product

region we are in. Unlike in the previous case, in this case, the exponents associated

to each product region can add up to a quantity larger than the exponent associated

to the entire surface, which means the presence of nested product regions can give a

worse estimate than Theorem III.46. We will get around this problem by looking only

at product regions associated to special subsurfaces which are called witnesses.

III.5.2: An Overview of Complexity Length

Now that we have motivated the need for complexity length, as well as considering special

subsurfaces called witnesses, we formally define them in this section. This section is a

summary for Sections 7 through 12 of Dowdall and Masur [DM23], so we refer the reader to

those sections for details we elide. One difference in our presentation is that we care about

these constructions for both orientable and non-orientable surfaces, while the original authors

only work with orientable surfaces. However, their constructions and proofs go through for

non-orientable surfaces, as long as we provide a proof of the non-orientable versions of some

of the foundational results they use. We list those theorems here, and link to the proof of

the non-orientable version that appears in Section III.6.

(i) Minsky’s product region theorem (see Theorem III.73).

(ii) Distance formula for Teichmüller space (see Theorem III.76).

(iii) Active intervals for subsurfaces (see Proposition III.77).

(iv) Consistency and realization (see Theorem III.79).

Let S be a surface (not necessarily orientable), and C some large arbitrary constant, and

εt > 0 a small constant we pick later. We also pick constants NV , for each V ⊏ S, such that

NV only depends on the topological type of V . The precise values of the NV ’s is specified via

Proposition 10.13 of [DM23]. We will also abuse notation slightly and use hNP(V ) to refer

to hNP(core(T (V ))) whenever V is a non-orientable surface: when V is orientable, hNP(V )

will refer to hNP(T (V )).

Let [x, y] be a geodesic segment in T (S): we describe the set Υ(x, y) of subsurfaces along

which [x, y] has large projections.

Definition III.47 (Active subsurfaces). A subsurface V ⊏ S is an active subsurface, i.e. in

Υ(x, y), if one of the following two conditions hold.

(i) The projection to C(V ) has diameter at least NV .
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(ii) If V is annular with core curve γ, then

min (ℓγ(x), ℓγ(y)) < εt

Associated to each active subsurface V , there is a non-empty connected sub-interval of

[x, y], which we call an active interval, and denote Iεt
V , which we obtain via an application of

Proposition III.77. The active intervals associated to active subsurfaces enjoy the following

properties.

(i) ℓα(z) < εt for z ∈ Iεt
V and α ∈ ∂V .

(ii) For z ̸∈ Iεt
V , ℓα(z) > εt

′ for some z ∈ ∂V , and some εt
′ < εt that only depends on εt.

(iii) For [w, z] ⊂ [x, y] with [w, z]∩Iεt
V = ∅, dV (w, z) ≤ Mεt for some Mεt that only depends

on εt.

(iv) For U ⋔ V , Iεt
U ∩ Iεt

V = ∅.

For pairs of transverse subsurfaces U ⋔ V , since Iεt
U ∩ Iεt

V = ∅ we can also determine

which of the subsurfaces are active first.

Definition III.48 (Behrstock partial order). If U and V are a pair of transverse subsurfaces

in Υ(x, y), we say U ⋖ V if Iεt
U appears to the left of Iεt

V in [x, y].

Observe that when restricted to Iεt
V , the geodesic is traveling in a product region, one of

whose components is T (V ), but trying to apply the technique from the previous subsection

leads to the problem of overcounting, namely overcounting arising from subsurfaces either

nested in V , or subsurfaces V is nested in.

To deal with this issue, we will consider a subset of Υ(x, y), called a witness family. How-

ever, to avoid overcounting, some additional properties are required of the witness families.

Rather than defining all of those properties without context, we introduce them one at a

time, after motivating the need for the property.

Definition III.49 (Witness family). A witness family Ω(x, y) associated to the geodesic

[x, y] is a subset of Υ(x, y) satisfying the following properties.

(i) For any Z ∈ Υ(x, y), Z ⊏ W for some W ∈ Ω(x, y).

(ii) If Z ⊏ W , and Z ∈ Ω(x, y) and W ∈ Υ(x, y), then W must also either be a witness,

or must be transverse to a witness V ∈ Ω(x, y) such that Z ⊏ V .
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The first condition of the definition ensures that when we restrict our attention from

all active subsurfaces to witnesses, we do not lose information, i.e. every active subsurface

contributes to whichever witness it is contained in. The second condition is a more technical

requirement that is required to ensure that the other properties we define later work nicely.

We now make the notion of an active subsurface contributing to a witness more precise.

Definition III.50 (Complete witness family). For an active subsurface V , a witness W is

said to be the Ω-completion of V , denoted V
Ω
if W is the minimal (by inclusion) witness

containing V . If W = V
Ω
, we say V contributes to W . Furthermore, a witness family is

complete if every active subsurface has a unique Ω-completion.

By partitioning off the collection active subsurfaces into classes, where each class is rep-

resented by a witness, and only considering the product regions associated to the witnesses,

rather than all the active subsurfaces, we can cut down on the overcount we obtain by

considering all active subsurfaces.

We now look at an extreme example of a complete witness families to motivate further

properties that we will need from the witness families in order to count well.

Example III.51 (Trivial witness family). Let γ be a pseudo-Anosov mapping class on S,
such that γ has large translation distance on C(S), and δ a reducible mapping class, acting

on a subsurface V such that the action of δ on C(V ) has large translation distance as well.

Let x be a point in T (S), and y = δγδ−1x. The active subsurfaces for [x, y] contain

the surfaces S, V , and γV : however, we can pick Ω(x, y) = {S}, and check that this is a

complete witness family.

In the above example, since we only have one subsurface in our witness family, we cer-

tainly do not overcount via overlapping product regions, but we do end up ignoring the fact

that the geodesic [x, y] travels in a smaller product region near the beginning of the segment,

as well as the end. For the initial and the final segment of the geodesic, the witness S is too

big for the subsurface the geodesic is actually traveling in. This suggest that a better choice

of a witness family would be to include both V and γV as witnesses too. We can take this

approach further, and include every subsurface in Υ(x, y) as a witness: this will still form

a complete witness family. However, this approach also leads to multiple witnesses nested

within one another, which is something we want to avoid as much as possible.

The drawback of Example III.51 motivates the next property we will require from witness

families, which is the notion of being insulated. Informally, a witness family Ω(x, y) is

insulated if all the maximal active subsurfaces that are active near the beginning or end of

[x, y] are also witnesses.
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Definition III.52 (Insulated witness family). A witness family Ω(x, y) is insulated if for

every E ∈ Ω(x, y), all subsurfaces V ⊏ E satisfying the following properties are also wit-

nesses.

(i) V ∈ Υ(x, y).

(ii) dE(C(V ), x) ≤ 9C, or dE(C(V ), y) ≤ 9C, where we consider C(V ) to be a subset of

C(E).

(iii) V is topologically maximal among the subsurfaces that satisfy (i) and (ii).

Once we have an insulated witness family, we can order a nested pair of witnesses W ⊏ V

based on whether W is active near the beginning or the end of the geodesic [x, y] projected

to C(V ).

Definition III.53 (Subordering). Let [x, y] be a geodesic in T (S) and Ω(x, y) a complete

insulated witness family associated to [x, y]. Then for each nested pair of witnesses W ⊏ V ,

a subordering is an assignment of exactly one of the following two possibilities:

(i) W ↙ V

(ii) V ↘ W

The orderings ↙ and ↘ satisfy the following properties.

(i) If Z, V , and W are witnesses such that Z ⊏ V ⊏ W , then Z ↙ W iff V ↙ W

(equivalently, W ↘ Z iff W ↘ V ).

(ii) If Z, V and W are witnesses such that Z ↙ V ↘ W , then Z ⋔V W and Z ⋖W .

(iii) If Z and V are witnesses, and W an active subsurface such that Z ↙ V ⋖ W , or

W ⋖ V ↘ Z, then Z ⋔V W .

(iv) If Z and V are witnesses, such that Z ↙ V (or Z ↘ V ), then there does not exist any

active subsurface W such that the Ω-closure of W is V and W ⋖ Z (or Z ⋖W ).

Here Z ⋔V W refers to notion of two subsurfaces cutting each other relative to V .

Definition III.54 (Relative cutting). Given a subsurface V of S, we say two subsurfaces Z

and W of S cut relative to V if for any subsurfaces Z ′ ⊏ Z and W ′ ⊏ W that intersect V ,

Z ′ ⋔ W ′.
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We now provide some motivation for the various conditions that appear in the above

definition. First of all, when we see Z ↙ W , we are to read that as the geodesic [x, y]

makes progress in the nested subsurface Z, before making progress in the supersurface W .

Similarly, when we see W ↘ Z, we are to read that as the geodesic [x, y] make progress in

the supersurface W before making progress in the nested subsurface Z. With this description

of the subordering, conditions (i) and (iv) of the definition are easy to understand. The

conditions (ii) and (iii) let us upgrade ↙ and ↘ to transversality and time-ordering. A

more intuitive reading of condition (ii) for instance would be, if Z ↙ V ↘ W , that means

the geodesic makes progress in Z before V , and then makes progress in W . That means if

we just look at V and W , it makes progress in V and then W . And since neither of them

are nested in the other, the only way they can be time-ordered is by cutting relative to V .

We can also see how the subordering on a witness family interacts with the witness family

being insulated: recall the pair of witnesses V ⊏ E from Definition III.52.

• If dE(C(V ), x) ≤ 9C, then V ↙ E, since the geodesic makes progress in V before E.

• If dE(C(V ), Y ) ≤ 9C, then E ↘ V , since the geodesic makes progress in E before V .

However, the above example does not capture all the ways in which we can have V ↙ E

or E ↘ V . Consider a decomposition of a Teichmüller geodesic by the active intervals

corresponding to witnesses illustrated in Figure 3.5.

x yIE

IV1

IV2
IV3 IW1

IW2
IW3

Figure 3.5: Examples of Vi ↙ E and E ↘ Wi.

In this example, all of the witnesses Vi satisfy Vi ↙ E, and all of the witnesses Wi satisfy

E ↘ Wi, but dE(C(Vi), x) need not be less than 9C for i = 2 or i = 3, and similarly,

dE(C(Wi), y) need not be less than 9C for i = 2 or i = 3.

In fact, the above example illustrates that for witnesses V that are not within distance 9C

from one of the endpoints, the choice between assigning V ↙ E and E ↘ V is ambiguous,

which is what the property of being wide tries to fix. The property of being wide also tells

when an active subsurface V nested in a witness E contributes to E: this happens when V

appears in the “middle” of the segment [x, y].

Definition III.55 (Wide witness families). An insulated complete subordered witness family

is wide if for each V in the witness family, both of the following quantities are at most NV

3
.
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• For W a witness such that W ↙ V , the quantity diamV (x, C(W )).

• For W a witness such that V ↘ W , the quantity diamV (y, C(W )).

The idea behind a wide witness family is to create a buffer zone of length at least NV

3
in

the middle of the projection of the geodesic to C(V ) for any witness V such that:

• If any subsurfaceW is active to the left of the buffer zone, it contributes to a subsurface

Z such that Z ↙ V .

• If any subsurface W is active to the right of the buffer zone, it contributes to a sub-

surface Z such that V ↘ Z.

• If a subsurface W is active within the buffer zone, it contributes to V .

The upshot of defining wide, insulated, subordered, and complete witness families (which

will be abbreviated to WISC witness families) is that it gives us a better idea the order in

which progress is made in various active subsurfaces. If we were working with just the

collection of active subsurfaces, the only time we can tell if a geodesic makes progress in a

subsurface V followed by the subsurface W is when V ⋔ W . When working with a WISC

witness family, we can do that, but we can also make similar statements about pairs of nested

witnesses V ⊏ W , namely we can have either V ↙ W or W ↘ V .

The following lemma asserts that WISC witness families exist, and their cardinality can

be uniformly bounded.

Lemma III.56 (Lemmas 7.29 and 7.30 from [DM23]). Let S be surface, and [x, y] a geodesic

segment in T (S). Then there exists a WISC witness family Ω(x, y) for [x, y]. Furthermore,

the cardinality of Ω(x, y) depends only on S, and not the points x and y.

Remark. While the statements of Lemmas 7.29 and 7.30 in Dowdall and Masur [DM23] are

for orientable surfaces, they go through without any changes for non-orientable surfaces as

well.

We now get to the raison d’être of witness families: turning points on the geodesic

segment [x, y] in T (S) into points in T (V ), where V is a witness in Ω(x, y). We will do so by

assigning to each point w in a neighbourhood of [x, y] a point w̃Z in C(Z) for all subsurfaces
Z contained in V , and then showing this assignment is consistent. Then the realization

theorem (Theorem III.79) will give us a point ŵΩ
V in T (V ) which has the same projections

in C(Z) as the original point W .
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Definition III.57 (Projection tuple). Let Ω(x, y) be a WISC witness family for a Te-

ichmüller geodesic [x, y] in T (S). Let w be a point in T (S) satisfying the following bound

for every subsurface V .

dV (x,w) + dV (w, y) ≤ dV (x, y) + 9C

Then for any U ∈ Ω(x, y), the projection tuple w̃ of w is the point in
∏

Z⊑U C(Z) given by

the following formula (where πZ is the usual projection map from T (S) to C(Z)).

w̃Z =


πZ(y), if Z ∈ Υ(x, y) and Z

Ω ↙ U

πZ(x), if Z ∈ Υ(x, y) and U ↘ Z
Ω

πZ(w), otherwise

Observe that this is different from the usual projection map from T (S) to C(Z): for

subsurfaces Z that contribute to a witness nested in U , and consequently, Z
Ω ↙ U or

U ↘ Z
Ω
, we change the projection from πZ(w) to πZ(y) or πZ(x) respectively.

This new projection map, despite being a modification of the usual projection map, is

still consistent.

Proposition III.58 (Proposition 8.4 of [DM23]). The projection tuple w̃Z is k-consistent

for some k depending only on C.

Using the above proposition, and the realization theorem for non-orientable surfaces

(Theorem III.79), we can turn a projection tuple into a point in T (U), which Dowdall and

Masur [DM23] refer to as resolving a point w in T (U).

Definition III.59 (Resolution point). Let [x, y] be a geodesic segment in T (S), and Ω(x, y)

an associated WISC witness family. For w ∈ {x, y}, and U ∈ Ω(x, y), we define ŵΩ
U as

follows.

• If U is non-annular, then ŵΩ
U ∈ T (U) is the thick point whose projections to C(V )

for V ⊑ U are coarsely equal to the projection tuple ŵU (which exists due to the

Realization theorem (Theorem III.79)).

• If U is annular, then w̃U is an element of Z, and we set ŵΩ
U to be the point in H whose

twist coordinate is w̃U , and whose length coordinate is
1

min (εt, ℓ∂U(w))
.

We can now define the complexity length associated to a witness family Ω.
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Definition III.60 (Complexity of witness family). Let [x, y] be a geodesic segment in T (S),
and Ω an associated WISC witness family. The complexity LΩ(x, y) of Ω is the following

quantity.

LΩ(x, y) :=
∑
U∈Ω

h∗
NP(U) · dT (U)(x̂

Ω
U , ŷ

Ω
U)

Here, h∗
NP(U) is the net point growth entropy for T (U) when U is non-annular, and when U

is annular, h∗
NP(U) is 1 when both x̂Ω

U and ŷΩU are εt-thick, and 2 if not.

We now address why we used a modified version of the projection map in Definition III.57

instead of the usual projection map to curve complexes, by revisiting Example III.51.

Example III.61. Let γ be a pseudo-Anosov mapping class on S, with large translation

distance on C(S) and small projections elsewhere. Let δ be a reducible mapping class, which

is psuedo-Anosov on a subsurface V , with large translation distance on C(V ) and small

translation distance everywhere. Let x be a point in T (S) such that ∂V is a component of

the short marking on x, and y = δγδ−1x. We first verify that Υ(x, y) = {S, V, δγV }. To

see this, we consider the following tuple of points (x, δx, δγx, δγδ−1x). We claim that each

of the points in the tuple lies coarsely on the geodesic [x, y]. To see this, we compute the

projections of adjacent pairs of points in tuple to various curve complexes.

- [x, δx] has large projections on C(V ) and small projections on other curve complexes.

- [δx, δγx] has large projections on the C(δS), which is the same as C(S), and small

projections elsewhere.

- [δγx, δγδ−1x] has large projections on C(δγV ), and small projections elsewhere.

Consider the path κ obtained by concatenating Teichmüller geodesics between x and δx,

δx and δγx, and δγx and δγδ−1x. The curve complex calculations above show that the

projection of this path to any curve complex is a quasi-geodesic. That indicates this path

is a hierarchy path, in the language of hierarchically hyperbolic spaces. Furthermore, κ does

not have large projections on disjoint subsurfaces: this indicates the hierarchy path κ fellow

travels the geodesic [x, y].

Let Ω(x, y) = Υ(x, y) = {S, V, δγV }. One can verify that this is a WISC witness family

for [x, y]. Furthermore, we have that V ↙ S and S ↘ γV .

We now compute the resolution of the points x and y in T (V ), T (γV ), and T (S). Observe

that the geodesic [x, y] almost immediately moves into a product region associated to V at

the beginning, leaves that product region at some point w along the geodesic, and then
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enters the product region associated to γV at some point z, and then stays in that product

region almost all the way up to the end. We will abuse notation slightly, and refer to x and

w as points in T (V ), when we mean their projection via the product region map, and z and

y will refer to points in T (γV ) Resolving points in T (V ) and T (γV ) is easy, since there’s

no other witnesses nested in them, which means the projection tuple for those subsurfaces

is the usual projection map.

x̂Ω
V = x

ŷΩV = w

x̂Ω
γV = z

ŷΩγV = y

To resolve points in T (S), we have to use our modified projection map, instead of the usual

one. Doing so, the points x and y resolve in the following manner.

x̂Ω
S = w

ŷΩS = z

With these resolutions, we get the following estimate for complexity in terms of Te-

ichmüller distance.

LΩ(x, y) = h∗
NP(V ) · dT (V )(x,w) + h∗

NP(S) · dT (S)(w, z) + h∗
NP(γV ) · dT (γV )(z, y)

< h∗
NP(S) · dT (S)(x, y)

Compare this to the complexity L′
Ω we would have gotten if we used the usual projection

map instead of the modified projection map.

L′
Ω(x, y) = h∗

NP(V ) · dT (V )(x,w) + h∗
NP(S) · dT (S)(x, y) + h∗

NP(γV ) · dT (γV )(z, y)

> h∗
NP(S) · dT (S)(x, y)

If we use Rafi’s distance formula to estimate the distance between the resolution points x̂Ω
V

and x̂Ω
V we do not get very good bounds for dT (V )(x̂

Ω
V , x̂

Ω
V ): at best, we accrue multiplicative

and additive errors. For our applications however, the most we can tolerate is additive error.

To do this, we will need to refine to notion of active interval for a subsurface to something

more useful for the estimate: the contribution set AΩ
V of a witness V . We first define two
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intermediate collections of subintervals of a geodesic segment [x, y].

M(V ) :=
⋃

{Iεt
W | W ∈ Ω with W ⊏ V }

C(V ) :=
⋃

{Iεt
Z | Z contributes to V }

Definition III.62 (Contribution set). For a witness V ∈ Ω, the contribution set AΩ
V is a

subset of the geodesic segment [x, y] defined in the following manner.

AΩ
V := (Iεt

V \M(V )) ∪ C(V )

Remark. The reason we remove M(V ) and then later add C(V ) again is because it is possible

for several different subsurfaces to be active at the same time: orthogonal subsurfaces for

instance. One can have V and W as witnesses, with W ⊏ V , and Z ⊏ V an active subsurface

but not a witness, such that W ⊥ Z with Iεt
W and Iεt

Z overlapping. In that case, removing

M(V ) would also remove part of Iεt
Z , and adding back C(V ) would add back the deleted

portion.

The following theorem estimates dT (V )(x̂
Ω
V , ŷ

Ω
V ) using AΩ

V .

Theorem III.63 (Theorem 9.4 of [DM23]). There exists a uniform constant C such that

the following bound holds for any x, y, and witness V .

dT (V )(x̂
Ω
V , ŷ

Ω
V ) ≤

∫ y

x

1AΩ
V
+ C

Contribution sets help us make precise the notion of “overcounting” when multiple prod-

uct regions are active at the same time. More precisely, when a segment of [x, y] is a part

of two or more contribution sets, that segment shows up multiple times when computing

LΩ(x, y), thanks to Theorem III.63. If the overlapping segment is sufficiently long, one could

even end up having LΩ(x, y) > h∗
NP(S) · dT (S)(x, y), which as we will see, leads to a worse

count for net points than the usual methods. This phenomenon of contribution sets overlap-

ping is called badness, and while we will not be able to eliminate it entirely, we will be able

to minimize it.

Definition III.64 (Bad set). We say a point p in AΩ
V is bad if there exists some other

witness W such that p also belongs in AΩ
W . The bad set BΩ

V denotes the set of all bad points

in AΩ
V , and

∣∣BΩ
V

∣∣ denotes the total length of this set, when we think of BΩ
V as a subset of the

geodesic segment [x, y].

For our applications, we won’t need to eliminate badness entirely, or even bound the
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length of the bad set uniformly: it will suffice to show that the length of the bad set is a

very small multiple of dT (S)(x, y).

Definition III.65 (Admissible and limited). A witness family Ω associated to a geodesic

segment [x, y] is said to be:

• admissible if
∣∣BΩ

V

∣∣ ≤ dT (S)(x, y)

KVC
, for all V ∈ Ω, and some constants KV that only

depend on the topological type of V .

• limited if |Ω| is uniformly bounded, independent of x and y.

Remark. Our definition of limited is a weaker version of Definition 10.7 from Dowdall and

Masur [DM23], but since we don’t need the stronger version, we present this version instead.

Dowdall and Masur [DM23] prove that WISC witness families that are admissible and

limited exist. They call these witness families WISCAL witness families.

Proposition III.66 (Section 10.3 of [DM23]). For all [x, y], there exists an associated WISC

witness family that is also admissible and limited.

For WISCAL witness families, the following result relating complexity and Teichmüller

distance follows easily from Theorem III.63 and the definition of admissible.

Proposition III.67. If Ω is a WISCAL witness family associated to [x, y], then the following

inequality holds.

LΩ(x, y) ≤
(
hNP(S) +

K

C

)
dT (S)(x, y) +KC

Here, K is some uniform constant depending only on S.

We now define complexity length, which follows from the definition of the complexity of

a witness family.

Definition III.68 (Complexity length). For a pair of points x and y in T (S), the complexity

length L(x, y) is defined to be the following.

L(x, y) := inf
Ω

LΩ(x, y)

Here, we take the infimum over all WISCAL witness families for [x, y].

With the machinery of complexity length set up, it is now possible to count net points

with respect to complexity length.
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Theorem III.69 (Theorem 12.1 of [DM23]). For any large enough C > 0, and any εerr > 0,

there exists an polynomial function p(r), and r > 0 large enough such that the following

bound holds for net points in T (S).

#(y ∈ N | L(x, y) ≤ r) ≤ p(r) · exp ((1 + εerr)r)

Remark. The above theorem is a weaker version of the theorem that appears in Dowdall and

Masur [DM23]: their version does not have the εerr. The reason we have the weaker version

is that in the proof of their theorem, they count the number of net points in T (V ) in a ball

of radius R, where V is a witness, using Theorem III.46, which gives them that the number

of net points is equal, up to multiplicative error, to exp(hNP(U)R). Since Theorem III.46

only holds orientable surfaces, and we want to state our results for non-orientable surfaces

as well, we will need to use a weaker counting result to count net points in T (V ), namely

the following bound, which holds for any εent > 0 and large enough R.

#
(
y ∈ N | dT (V )(x, y) ≤ R

)
≤ exp ((hNP(V ) + εent)R)

We sketch out a proof of Theorem III.69 below: the proof proceeds identically to the

proof in Dowdall and Masur [DM23], except at one point, where we plug in our weaker

bound for net points in T (V ) for witnesses V .

Sketch of proof for Theorem III.69. For each y ∈ N such that L(x, y) ≤ r, we have a WIS-

CAL witness family Ω such that LΩ(x, y) ≤ r. We can turn that witness family into a graph

in the following manner.

• Add a vertex for every witness V ∈ Ω.

• Label the vertex associated with V with the tuple (h∗
NP(V ), ⌊dT (V )(x̂

Ω
V , ŷ

Ω
V )⌋).

• If we have a pair of witnesses V ↙ W , we join the vertices associated to them with a

directed edge labeled “SW”: V
SW−−→ W .

• If we have a pair of witnesses W ↘ V , we join the vertices associated to them with a

directed edge labeled “SE”: W
SE−−→ V .

• If we have a pair of witnesses W ⋔ V , with W ⋖ V , we join the vertices associated to

them with a directed edge labelled “P”: W
P−→ V .

We first count how many distinct possibilities are there for such labeled graphs that

correspond to y for which L(x, y) ≤ r. Since the cardinality of a WISCAL family is uniformly
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bounded, there are at most k many vertices, for some constant k. As for the labels on the

vertices, there are at most r
h∗
NP(V )

possibilities for a label on vertex which corresponds to a

subsurface which is homeomorphic to V . From this, we conclude that there are at most p(r)

possibilities for the combinatorial type of the graph, where p(r) is a polynomial in r.

It will suffice to compute how many distinct net points give rise to witness families whose

graph is of a given type. To do so, we consider initial subsets of the graph, i.e. a subset W
of the vertices V of the graph such that there is no directed edge from V \W to W .

Given an initial subset W of the graph, we construct points y such that the witness

family associated to [x, y] has the combinatorial type W . We then consider an enlargement

of W by one-additional vertex v, such that the enlargement is still an initial subset.

Claim. The entire graph V can be built up from such one-step enlargements.

We then count the number of net points whose associated witness families have the

combinatorial typeW∪{v}, after we fix one witness family associated toW . More concretely,

let w be a point such that the combinatorial type of the witness family associated to [x,w]

is W . Suppose now that we add a vertex (h, r0) to the graph W . To extend Ω(x,w) so that

its combinatorial type is W ∪{(h, r0)}, we need to add a witness U whose net point entropy

is h, and a point y ∈ T (U) such that the following holds.

dT (U)(x̂
Ω
U , y) ≤ r0

There are only finitely many choices for such subsurfaces U (because their boundary

curves must get short near w), and once we’ve made a choice of U , we have a choice

exp ((hNP(V ) + εent)r0) points for y.

Multiplying out the counts for each vertex added, we get the following estimate for the

cardinality associated to each combinatorial type.

# (y | Ω(x, y) has combinatorial type V) =
∑

(h,s)∈V

exp ((h+ εent)s)

≤ exp ((1 + εerr)r)

We get the second inequality by picking εent small enough, and observing that
∑

hs ≤ r.

III.5.3: Linear Gap for Bad Points

In this subsection, we will prove our main result involving complexity length: on the com-

plexity length of bad points.
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Theorem III.70. Suppose that for all proper subsurfaces V of S, the following inequality

holds.

hNP(V ) < hNP(S)

Then for any εb > 0, there exists c > 0, and R large enough, such that for any bad point y,

i.e. a point in Nb(p,R, εb), the following upper bound holds for the complexity length between

p and y.

L(p, y) ≤ hNP(S)(1− c)R

Proof. Let Ω be a WISCAL witness family for [p, y]: the proof of Theorem III.70 splits into

two cases depending on whether the surface S is a witness in Ω or not.

The case where S is a witness is harder, so we deal with that first.

We consider the triple of points (p, ŷΩS , y), and first estimate L(p, ŷΩS ).

By applying Proposition III.67, we get a bound for L(p, ŷΩS ).

L(p, ŷΩS ) ≤
(
hNP(S) +

K

C

)
(dT (S)(p, ŷ

Ω
S )) +KC(III.5.2)

We next estimate L(ŷΩS , y): we claim that there exists a WISCAL witness family Ω′ for

[ŷΩS , y] that does not have S as a witness. The first thing we need in order to get such a

witness family is verify that on the Teichmüller geodesic [ŷΩS , y], S is not an active subsurface.

This follows from the fact that the S-coordinate in the projection tuple of y is equal to the

S-coordinate of the projection of ŷΩS to C(S), by construction of ŷΩS . We now use Proposition

III.66 to get a witness family which does not contain S, since S is not an active subsurface.

Since the witness family Ω′ does not have S as a witness, we can do better than Proposi-

tion III.67 when estimating L(ŷΩS , y). We have from our hypothesis that hNP(S) > hNP(V ),

so there exists a constant h such that h < hNP(S) but h > hNP(V ). Using Theorem III.63,

we get the following estimate for L(ŷΩS , y).

L(ŷΩS , y) ≤
(
h+

K

C

)
dT (S)(ŷ

Ω
S , y) +KC(III.5.3)

From the triangle inequality for complexity length, we also have the following

L(p, y) ≤ L(p, ŷΩS ) + L(ŷΩS , y)(III.5.4)
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We plug in (III.5.2) and (III.5.3) into (III.5.4).

L(p, y) ≤
(
hNP(S) +

K

C

)
(dT (S)(p, ŷ

Ω
S )) +

(
h+

K

C

)
dT (S)(ŷ

Ω
S , y) + 2KC

=

(
hNP(S) +

K

C

)
(dT (S)(p, ŷ

Ω
S ) + dT (S)(ŷ

Ω
S , y))

− (hNP(S)− h) dT (S)(ŷ
Ω
S , y)

+ 2KC

We now claim that ŷΩS is within a bounded distance of a point q on [p, y]. Consider the

triple (x, ŷΩS , y): this is a strongly aligned tuple, i.e. its projections onto all curve complexes

satisfy a coarse reverse triangle inequality (see Definition 3.21 of [DM23]). Lemma 9.10 of

[DM23] asserts the existence of q on [x, y] that satisfies the following properties.

- For any subsurface V such that V
Ω
= S, dV (ŷΩS , q) ≤ M for some fixed constant M .

- For any subsurfaces V such that V
Ω ↙ S or S ↘ V

Ω
, q lies outside the active interval

for V .

In the case where V
Ω ↙ S, we have that dV (q, y) ≤ M , since q lies outside the active

interval for V . But note that by construction of the projection tuple, πV (ŷ
Ω
S ) = y, thus

dV (ŷ
Ω
S , q) ≤ M . Similarly, we have dV (ŷ

Ω
S , q) ≤ M for S ↘ V

Ω
as well. Thus, by Rafi’s

distance formula, we have that ŷΩS is within a bounded distance of q on [p, y]: we have

dT (S)(p, ŷ
Ω
S ) + dT (S)(ŷ

Ω
S , y) ≤ R + J , for some constant J . Furthermore, dT (S)(ŷ

Ω
S , y) ≥ εbR,

by the hypothesis of y being a bad point, since ŷΩS is in the thick part of Teichmüller space.

This simplifies the expression for L(x, y).

L(x, y) ≤
(
hNP(S) +

K

C

)
R− (hNP(S)− h)(εb)R + 2KC

= R

(
hNP(S)− d+

K

C

)
+ 2KC

Here, d = εb (hNP(S)− h), which is a positive constant, since hNP(S) > h. By picking C

and R large enough, we get the statement of the theorem, which proves the result in the first

case of S being in the witness family.

When S is not in the witness family, we set ŷΩS = p, and the rest of the proof follows

identically.
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III.6: Geometry of T (Ng)

In this section, we prove some standard results about the geometry of Teichmüller spaces

of non-orientable surfaces that we use in Section III.5. We do so by lifting the hyperbolic

structures and markings on the non-orientable surfaces to their double covers, which give us

points in the Teichmüller space and curve complex of the double cover.

The fact that these lifts are well-defined and respect the metric properties are encapsu-

lated in the following two theorems.

Theorem III.71 (Isometric embedding of Teichmüller spaces (Theorem 2.1 of [Kha23])).

The map i : T (Ng) → T (Sg−1) given by lifting the hyperbolic structure and marking from

Ng to Sg−1 is an isometric embedding. Furthermore, the image of T (Ng) in T (Sg−1) is the

subset of T (Sg−1) is fixed by ι∗, where ι∗ is the map induced by the orientation reversing deck

transformation ι on Sg−1.

Theorem III.72 (Quasi isometric embedding of curve complexes (Lemma 6.3 from [MS13])).

The map C(Ng) → C(Sg−1) obtained by lifting curves in Ng to Sg−1 is a quasi-isometric em-

bedding.

We will use the above two theorems, along with Lemma III.75, to reduce statements

about the geometry of T (Ng) to statements about the geometry of T (Sg−1). However, we

postpone the statement and the proof of Lemma III.75 until Section III.6.3, since it’s not

required for Section III.6.1.

We set up some notation for this section.

- d(x, y) and d(x̃, ỹ): Given points x and y in T (Ng), d(x, y) is the distance in Teichmüller

metric between them, and d(x̃, ỹ) is the distance in T (Sg−1) between their images, x̃

and ỹ.

- πV (µx) and πV (x): If µx is a marking/curve on a surface, the πV (µx) denotes the

subsurface projection to the subsurface V . If x is a point in the Teichmüller space, the

πV (x) = πV (µx), where µx is the Bers marking on x.

- dV (µx, µy) and dV (x, y): If µx and µy are markings/curves on a surface, and V is a

subsurface, then dV (µx, µy) refers to the curve complex distance between the subsurface

projections of µx and µy in C(V ). When x and y are points in Teichmüller space,

dV (x, y) refers to dV (µx, µy), where µx and µy are the Bers marking on x and y.
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III.6.1: Minsky’s Product Region Theorem

In this section, we prove a version of Minsky’s product region theorem [Min96b, Theorem

6.1] for non-orientable surfaces.

We recall the following objects that were defined in Section III.2.3.

(i) The multicurve γ on Ng.

(ii) The metric space Xγ, and the projection map Π.

(iii) The thin region Tγ≤εt(Ng).

Theorem III.73 (Product region theorem for non-orientable surfaces). For any c > 0, there

exists a small enough εt > 0, such that the restriction of Π to Tγ≤εt(Ng) is an isometry with

additive error at most c, i.e. the following holds for any x and y in Tγ≤εt(Ng).∣∣d(x, y)− dXγ (Π(x),Π(y))
∣∣ ≤ c

Proof. We will prove this result by reducing the distance calculation in T (Ng) to a distance

calculation in T (Sg−1), where Sg−1 is the orientation double cover, and invoking the classical

product region theorem in that setting.

We begin the proof by constructing some points in T (Sg−1) and a multicurve on Sg−1.

Recall that T (Ng) isometrically embeds inside T (Sg−1): let x̃ and ỹ denote the points in

T (Sg−1) that are the images of x and y under the embedding. Let γ̃ denote the lift of the

multicurve γ: if γi is a two-sided curve, it will have two disjoint lifts in the cover, and if

γi is a one-sided curve, it will have single lift in the double cover. We have that the region

Tγ̃≤εt(Sg−1) ⊂ T (Sg−1) intersects the image of T (Ng) at the image of Tγ≤εt(Ng) ⊂ T (Ng).

Let ι denote the orientation reversing deck transformation on Sg−1 which corresponds to the

covering map.

Claim. Let Πk denote the projection map from T (Ng) to the kth component of Xγ, and Π̃k

denote the projection map from T (Sg−1) to the lift of the kth component of γ to Sg−1. This

map is an isometric embedding.

d(Πk(x),Πk(y)) = d(Π̃k(x̃), Π̃k(ỹ))

Proof of claim. We need to verify the claim on the three kinds of factors of Xγ.

(i) Ng \ γ: The lift of Ng \ γ to Sg−1 will have two components if Ng \ γ is orientable,

which we call S1 and S2. Both S1 and S2 are homeomorphic to Ng \ γ. If Ng \ γ is

non-orientable, then its lift in Sg−1 is the orientation double cover.
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In the first case, T (Ng \ γ) maps to the diagonal subspace in T (S1)× T (S2), and the

metric on T (S1) × T (S2) is the sup metric. The space T (Ng) maps to the diagonal

subspace because its image must be invariant under the map ι, which isometrically

swaps S1 and S2. This map is an isometric embedding, and thus for any points x and

y in T (Ng \ γ), the distance between their images in T (S1)×T (S2) is the same as the

distance in T (Ng \ γ).

In the second case, we have that T (Ng \ γ) also isometrically embeds inside the Te-

ichmüller space of its double cover, by Theorem III.71, so the claim follows.

(ii) γi (for γi two-sided): The lift of γi in this case are two disjoint curves on Sg−1, which

are swapped by the deck transformation ι. This means the H-coordinate given by

length and twist of γi maps to the diagonal in H×H, which correspond the length and

twist around the two lifts. Since H mapped to the diagonal in H × H is an isometric

embedding with sup metric, the claim follows in this case.

(iii) γi (for γi one-sided): The lift of γi in this case is a single curve γ̃i on Sg−1 which is left

invariant by the deck transformation ι. We will show that the twist coordinate around

γ̃i cannot be changed without leaving the image of T (Ng) in T (Sg−1), i.e. any x̃ and

ỹ have the same twist coordinate around γ̃i. Once we have established that, the claim

will follow, since only the length coordinate of γi can be changed, which corresponds

to R>0.

Suppose now that x is a point in T (Ng) and x̃ the corresponding point in T (Sg−1).

Consider a pants decomposition on Ng that contains γi as one of the curves. There is

a unique one-sided curve κ that intersects γi and does not intersect any of the other

pants curves. Let κ̃ be the lift of κ to Sg−1: we will use this curve to measure twisting

around γ̃i. Let x′ be another point in T (Sg−1) obtained by taking x̃, and twisting by

some amount around γ̃i, without changing the length of γ̃i. On x′, the length of κ̃ will

be different from the length on x̃. However, this means that x′ is not contained in the

image of T (Ng), since if it were, the length of κ̃ would have to be the same, since that’s

the lift of the curve κ, whose length only depends on the length of γi.

The following equality follows from the claim.

dXγ̃
(Π(x̃),Π(ỹ)) = dXγ (Π(x),Π(y))
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We also have that T (Ng) isometrically embeds into T (Sg−1).

d(x̃, ỹ) = d(x, y)

And finally, have that the region Tγ̃≤εt(Sg−1) ⊂ T (Sg−1) intersects the image of T (Ng) at the

image of Tγ≤εt(Ng) ⊂ T (Ng). Combining these three facts, and applying Minsky’s product

region theorem for orientable surfaces, the result follows.

III.6.2: Uniform Bounds for the Volume of a Ball

In this section, , we show that the for balls of fixed radius in core(T (Ng)), the νN volume of

the ball is bounded above and below by constants that are independent of the center of the

ball.

Let P be a pants decomposition for Ng: recall the formula for νN .

νN =

( ∧
γi one-sided

coth(ℓ(γi))dℓ(γi)

)
∧

( ∧
γi two-sided

dτ(γi) ∧ dℓ(γi)

)

Here ℓ(γi) denotes the length of the curve γi, and τ(γi) denotes the twist, when γi is two-

sided.

Proposition III.74. For any κ > 0, and εt > 0 small enough, there exist positive constants2

c1 and c2 (depending only on κ and εt) such the νN volume of a ball Bεt
κ (x) of radius κ centered

at x ∈ T −
εt (Ng) are bounded below and above by c1 and c2.

c1 ≤ νN(B
εt
κ (x)) ≤ c2

Proof. Note that since the points we are considering lie in T −
εt (Ng), we have the following

upper bound and lower bound for coth(ℓ(γi)), where γi is a one sided curve.

1 ≤ coth(ℓ(γi)) ≤ coth(εt)(III.6.1)

In particular, the νN volume of a ball can be bounded above and below by coth(εt)ν
′
N and

ν ′
N , where ν ′

N =
(∧

γi one-sided dℓ(γi)
)
∧
(∧

γi two-sided dκ(γi) ∧ dℓ(γi)
)
.

We now split up T −
εt (Ng) into two regions: T ±

εt (Ng), and the complementary region.

Since MCG(Ng) acts cocompactly on T ±
εt (Ng), and νN(B

εt
κ (x)) is continuous in x, the desired

2We will also consider c1 and c2 as functions of κ elsewhere in the paper.
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bounds hold in this region. It will therefore suffice to prove the bounds in the complementary

region.

Note that for any x in the complementary region, there is some two-sided curve γ that

is short. By Theorem III.73, the ball Bεt
κ (x) is contained in a product of balls, one in H,

and one in T −
εt (Ng \ γ). We pick γ to be part of a pants decomposition P , and write νN as

follows.

νN = (dκ(γ) ∧ dℓ(γ)) ∧ ν
Ng\γ
N(III.6.2)

Here, ν
Ng\γ
N denotes the volume form on T (Ng \γ). As a result, we have that the νN measure

of a product of the two balls is the product of the corresponding measures of those balls.

The measure of any ball of a fixed radius in H is constant, since H is homogeneous. The

ν
Ng\γ
N measure of a ball in T −

εt (Ng \ γ) is again bounded above and below by fixed constants,

by inducting on a surface of lower complexity.

Since we have uniform bounds for both the terms in the product, we get uniform bounds

for the measure of a ball in T −
εt (Ng).

III.6.3: Teichmüller Geodesics and Geodesics in the Curve Complex

In this section, we will deduce some standard results about Teichmüller geodesics and the

corresponding curve complex geodesics for non-orientable surfaces by reducing to the ori-

entable case. The following lemma will be the main tool for the reduction to the orientable

case.

Lemma III.75. Let [x, y] be a Teichmüller geodesic segment in T (N ), where N is a non-

orientable surface, and [x̃, ỹ] be its image in T (S), where S is the orientable double cover of

N . Let V be a subsurface of S: then the following statements hold for dV (x̃, ỹ).

(i) If V is the lift of an orientable subsurface W in N , then dV (x̃, ỹ) = dι(V )(x̃, ỹ) =

dW (x, y).

(ii) If V is the lift of a non-orientable subsurface W in N , then dV (x̃, ỹ)
·≍ dW (x, y).

(iii) If V is not a lift of a subsurface in N , then there exists a uniform constant k0, inde-

pendent of x, y, and V , such that dV (x̃, ỹ) ≤ k0.

Proof. We deal with the proof in cases.

(i) If V is the lift of an orientable surface, we have that the covering map restricted to V

is a homeomorphism, and the same holds for ι(V ), so the result follows in this case as

well.
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(ii) If V is the lift of a non-orientable subsurface W , then by Theorem III.72, we have that

C(W ) quasi-isometrically embeds into C(V ), and the result follows.

(iii) If V is not a lift at all, that means V and ι(V ) are transverse subsurfaces. By the

Behrstock inequality, there exists a k0 such that the following holds.

min
(
dV (x̃, ∂ι(V )), dι(V )(x̃, ∂V )

)
≤ k0

2
(III.6.3)

But we also have that x̃ is fixed by ι, which gives us the following equality of curve

complex distances.

dV (x̃, ∂ι(V )) = dι(V )(x̃, ∂V )(III.6.4)

Combining (III.6.3) and (III.6.4), we get the following bound on the C(V ) distance

between x̃ and ∂ι(V ).

dV (x̃, ∂ι(V )) ≤ k0
2

We have that the same bounds also hold for ỹ, so the result follows from the above

inequality and the triangle inequality.

This shows the result for all the cases and concludes the proof.

We begin by proving the distance formula for points in Teichmüller space. Let x and y

be a pair of points in T (Ng), and let Γ be the set of curves that are short on both x and y,

Γx the set of curves that are only short on x, and Γy the set of curves that are only short

on y. Let µx and µy be short markings on x and y respectively. Let C+ and C− denote the

set of two-sided and one-sided curves on Ng. Finally, let [x]k be the function which is 0 for

x ≤ k, and identity for x > k.

Theorem III.76 (Distance formula). The distance between x and y in T (Ng) is given by

the following formula.

(III.6.5)

d(x, y)
·≍
∑
Y

[dY (µx, µy)]k +
∑

α∈Γc∩C+

[log(dα(µx, µy))]k

+ max
α∈Γ∩C+

dHα(x, y) + max
α∈Γ∩C−

d(R>0)α(x, y)

+ max
α∈Γx

log
1

ℓx(α)
+ max

α∈Γy

log
1

ℓy(α)
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Proof. Let x̃ and ỹ be the images of x and y in T (Sg−1) under the isometric embedding

map. Since d(x, y) = d(x̃, ỹ), it will suffice to estimate d(x̃, ỹ) using distances in the curve

complexes. Let µ̃x and µ̃y be the lifts of µx and µy. Both µ̃x and µ̃y are short markings on x̃

and ỹ respectively. We have by Rafi’s distance formula [Raf07, Theorem 6.1], the following

estimate on d(x̃, ỹ).

(III.6.6)

d(x̃, ỹ)
·≍
∑
Y

[dY (µ̃x, µ̃y)]k +
∑
α∈Γ̃c

[log(dα(µ̃x, µ̃y))]k

+max
α∈Γ̃

dHα(x̃, ỹ)

+ max
α∈Γ̃x̃

log
1

ℓx̃(α)
+ max

α∈Γỹ

log
1

ℓỹ(α)

Here, Γ̃, Γ̃x̃, and Γ̃ỹ are curves on x̃ and ỹ that are simultaneously short, short on x̃ and not

on ỹ, and short on ỹ and not on x̃ respectively.

It will suffice to show that for a large enough choice of k, the right hand side of (III.6.5)

is equal to the right hand side of (III.6.6), up to an additive and multiplicative constant.

We consider the first term in the right hand side of (III.6.6), namely the sum over the non-

annular subsurfaces Y . There are three possibilities for Y in Sg−1, which we deal with using

Lemma III.75.

(i) Y is one component of a lift of an orientable subsurface Z of Ng: In this case we have

dY (µ̃x, µ̃y) = dZ(µx, µy) (and the same equality with Y replaced with ι(Y )). Thus, for

every term associated to an orientable non-annular subsurface Z in (III.6.5), we get

two corresponding equal terms in (III.6.6).

(ii) Y is the lift of a non-orientable subsurface Z of Ng: In this case, we have dY (µ̃x, µ̃y)
·≍

dZ(µx, µy).

(iii) Y is not a lift of a subsurface of Ng: In this case, we have the following for some k0.

dY (µ̃x, µ̃y) ≤ k0

If we pick a threshold k > k0, the subsurfaces Y that do not arise from lifts will not

contribute to the right hand side of (III.6.6).

We now do the same case analysis for annular subsurfaces: consider a curve α on Sg−1

that is contained in Γc, i.e. it is not simultaneously short on x̃ and ỹ. There are three

possibilities for α.
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(i) α is one component of a lift of a two-sided curve γ on Ng: In this case, α and ι(α) are

disjoint, and the restriction of the covering map to these curves is a homeomorphism.

We have dα(µ̃x, µ̃y) = dγ(µx, µy): consequently, for every term in Γc ∩ C+ in (III.6.5),

we have two equal terms in (III.6.6).

(ii) α is the lift of a one-sided curve on Ng: In this case α = ι(α), but the transformation ι

reverses orientation on the surface Sg−1. That means (̃µx) and µ̃y cannot have a relative

twist between them along α, because if they did, ι(̃(µx)) and ι(̃(µy)) would have the

opposite twist. On the other hand µ̃i = ι(µ̃i) for i = x and i = y, which means the

relative twist must be 0. This proves that the α which are lifts of one-sided curves do

not contribute to the second term of (III.6.6).

(iii) α is not a lift of a curve on Ng: In this case α and ι(α) intersect each other, and are

not equal, which means they are transverse. We deal with this the same way we dealt

with transverse non-annular subsurfaces, i.e. via the Behrstock inequality.

This case analysis proves that the second terms on the right hand side of (III.6.5) and

(III.6.6) are equal, up to an additive and multiplicative constant.

We now deal with the last three terms of (III.6.6). These terms deal with short curves on

x or y: we claim that the short curves must be lifts of either one-sided or two-sided curves in

Ng. Suppose a curve α is short and not a lift. Then α has positive intersection number with

ι(α), but since ι is an isometry, ι(α) must also be short. For a sufficiently small threshold

for what we call short, we can’t have a short curve intersecting another short curve, which

proves the claim that all the short curves arise as lifts.

Since the curves in Γ̃ are all lifts, the third term of (III.6.6) can be split up into two

terms: the lifts of the two-sided and one-sided curves. For the two-sided curves, the distance

calculation involves both the length and twist coordinate, and for the one-sided curves, only

the length coordinate is involved. This follows from Theorem III.73.

Finally, the last two terms in (III.6.6) are the same as the last two terms of (III.6.5), up

to an additive error of (6g) · log(2), since the lift of a short curve can double its length, and

there are no more than 6g short curves.

We have shown that the right hand sides of (III.6.5) and (III.6.6) are equal, up to a

multiplicative and additive constant, which proves the result.

We now verify that Teichmüller geodesics can be broken up into active intervals associated

to subsurfaces, which are subintervals of the geodesic associated to each subsurface V , along

which the projection to V is large, and outside of which, the projection is bounded. The

following lemma of Dowdall and Masur [DM23, Lemma 3.26] (which itself is a generalization
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of Rafi [Raf07, Proposition 3.7]) describes the subsegments of [x, y] along which the geodesic

makes progress in the curve complex of a subsurface.

Proposition III.77. For each sufficiently small εt > 0, there exists 0 < εt
′ < εt and Mεt ≥ 0

such that for any subsurface V ⊏ S, there’s a (possibly empty) connected interval Iεt
V ⊂ [x, y]

such that the following five conditions hold.

(i) If dV (x, y) ≥ Mεt, then Iεt
V is a non-empty subinterval of [x, y].

(ii) ℓα(z) < εt for all z ∈ Iεt
V and α ∈ ∂V .

(iii) For all z ∈ [x, y] \ Iεt
V , some component α of ∂V has ℓα(z) > εt

′.

(iv) dV (w, z) ≤ Mεt for every subinterval [w, z] ⊂ [x, y] if [w, z] ∩ Iεt
V = ∅.

(v) For a pair of traverse subsurfaces U and V , Iεt
U ∩ Iεt

V = ∅.

Proof of Theorem III.77 for non-orientable surfaces. Let N be the non-orientable surface,

and S its double cover. We consider the image [x̃, ỹ] of the geodesic [x, y] in T (S). We know

that the result holds for [x̃, ỹ], although with εt
′ replaced with εt′

2
, since lifting can double

the lengths of some curves.

The main fact we need to verify is that the only subsurfaces V that have non-empty Iεt
V

come from lifts. If V is a subsurface of S that is not a lift, we use case (iii) of Lemma III.75

to conclude that dV (x, y) ≤ k0 for some fixed constant k0. Picking Mεt > k0 guarantees that

the only subsurfaces for which Iεt
V is non-empty arise from lifts, which proves the result for

non-orientable surfaces.

Finally, we show that the consistency and the realization results (Behrstock, Kleiner,

Minsky, and Mosher [BKMM12]) hold for Teichmüller spaces of non-orientable surfaces as

well. We begin by recalling the definition of consistency.

Definition III.78 (Consistency). For a connected surface S, and a parameter θ ≥ 1, we say

a tuple (zV ) ∈
∏

V ⊏S C(V ) is θ-consistent if the following two conditions holds for all pairs

of subsurfaces U and V .

(i) If U ⋔ V , then

min(dU(zU , ∂V ), dV (zV , ∂U)) ≤ θ

(ii) If U ⊏ V , then

min(dU(zU , πU(zV )), dV (zV , ∂U)) ≤ θ
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The following theorem (Behrstock, Kleiner, Minsky, and Mosher [BKMM12, Theorem

4.3]) states that the projection from Teichmüller space to the curve complexes of all the

subsurfaces is coarsely surjective onto the set of consistent tuples.

Theorem III.79 (Consistency and realization). There is a constant K ≥ 1, and function

C : R+ → R+ such that the following holds for any surface S.

• (Consistency) For every x ∈ T (S), the projection tuple (πV (x))V ⊏S is K-consistent.

• (Realization) For every θ-consistent tuple (zV )V ⊏S, there exists a point z ∈ T (S) such

that dV (πV (z), zV ) ≤ C(θ) for all V .

Proof sketch of Theorem III.79 for non-orientable surfaces. We first show that the projec-

tion map is consistent, and then show consistent tuples lie coarsely in the image of the

projection map.

• (Consistency) We map x to x̃ in the Teichmüller space of the double cover S̃. By

applying the theorem for orientable surfaces, we have the (πW (x̃))W⊏S̃, and we restrict

to the subsurfaces in the tuple which arise as lifts. These points lie in the image of the

quasi-isometric embedding map from Theorem III.72, which means consistency also

holds for the tuples in S.

• (Realization) Given a θ-consistent tuple (zV )V ⊏S, we construct a θ′-consistent tuple

in the double cover S̃. For subsurfaces of S̃ that arise as lifts, we use the map from

Theorem III.72. For the subsurfaces W that are not lifts, we set zW = πW (∂(ι(W ))).

The fact that this is a θ′-consistent tuple follows from the Behrstock inequality (for

some θ′ > θ)3. We now use this point to construct y ∈ T (S̃), and deduce that y is

coarsely fixed by ι∗, i.e. the distance between y and ι∗(y) is bounded above by a uniform

constant C. Consider the midpoint x̃ of the Teichmüller geodesic segment joining y

and ι∗(y): by Teichmüller’s uniqueness theorem, x̃ is fixed under the ι∗-action. This

means there is some x ∈ T (S) whose image is x̃, and therefore the projection maps

are coarsely (zV ).

3A longer but a more thorough way of seeing this would be to verify that the Teichmüller space of a
non-orientable surface satisfies the 9 axioms for hierarchical hyperbolicity that are enumerated in Behrstock,
Hagen, and Sisto [BHS19].
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CHAPTER IV

Future Directions

In this chapter, we list some stronger results that we tried to prove, but still remain open,

as well as alternative approaches to some of the techniques we used.

IV.1: Statistical Convex Core of T (Ng)

Recall that in this thesis, we showed that the action of MCG(Ng) on T −
εt (Ng) is statistically

convex-cocompact for arbitrarily small εt. While this is good enough to get many of the

Patterson-Sullivan theoretic results, since the limit set of the MCG(Ng) action on T −
εt (Ng)

is the same as the limit set of MCG(Ng) action on T (Ng), and T −
εt (Ng) is distorted by an

arbitrarily small amount in T (Ng). However, having the action of MCG(Ng) on all of T (Ng)

be statistically convex-cocompact would provide us better error terms for the counting results

we obtain from Patterson-Sullivan theory.

The main issue with showing statistical convex-cocompactness for T (Ng) is that the

random walk methods no longer work. We outline why that is the case in Section III.3.3,

but we reproduce the argument here for the reader’s convenience.

If we wanted to make Proposition III.29 work on T (Ng), we would need to similarly show

the random walk on T (Ng) is recurrent in a similarly strong sense: i.e. the probability of

a length n trajectory staying in the thin part decays exponentially in n. A consequence of

this requirement is that the expected return time to the thick part is finite.

Unlike core(T (Ng)), T (Ng) has two kinds of thin regions.

- Thin region where only two-sided curves get short.

- Thin region where some one-sided curve also gets short.

It is the second kind of thin region that poses a problem for T (Ng). Minsky’s product

region theorem (Theorem III.73) tells us that up to additive error, the metric on these

thin regions looks like a product of metrics on some copies of R (corresponding to the one-

sided short curves), some copies of H (corresponding to the two-sided short curves), and a
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Teichmüller space of lower complexity. Since the random walk is controlled by the metric,

the random walk on this product metric space is a product of random walks on each of the

components.

In particular, the random walk on the R component is a symmetric random walk on a

net in R: i.e. a symmetric random walk on Z. Symmetric random walks on Z are known to

be recurrent, but only in a weak sense: they recur to compact subsets infinitely often, but

the expected return time is unbounded.

This means we cannot hope to prove exponentially decaying upper bounds on the prob-

ability that a long random walk trajectory stays in the thin part, since that would lead to

finite expected return times. This is why the random walk approach fails for T (Ng).

Despite the failure of the random walk methods, we still believe that the action of

MCG(Ng) on T (Ng) is statistically convex-cocompact. To see why that might be true,

we consider our examples of geodesic segments that leave T −
εt (Ng): they are coarsely of the

form [p, γp], where γ is a psuedo-Anosov on a subsurface where some boundary component

is one-sided. As a result of that, the boundary component gets short, and the geodesic

segments leaves T −
εt (Ng). However, we have seen that the number of mapping classes has a

lower exponential growth rate than the exponential growth rate of the entire mapping class

group (this is the content of Section III.4.4). If we can show that all the geodesic segments

that leave T −
εt (Ng) are of this form, we will have established statistical convex-cocompactness

for T (Ng).

IV.2: Upgrading Random Walk Phenonomena to Uniform Measure

Recall that in order to prove equality of net point entropy and lattice point (i.e. the contents

of Sections III.4 and III.5), we needed to show that the proportion of bad points (see Defini-

tion III.37) goes to 0 with respect to the uniform measure on a ball of radius R as R goes to

∞. If one replaces the requirement that the net points be sampled from the uniform measure

on a ball of radius R, and instead allow them to sampled from an n-fold convolution of a

finitely supported measure (i.e. the random walk measure associated to an n-step random

walk), the result is easier to prove.

In fact, in the random walk measure setting, the following result of Taylor and Sisto

holds.

Theorem IV.1 (Theorem 1.1 of [ST19]). Let µ be a finitely supported measure on MCG(S),
where S is a surface of finite type. Let wn be the random walk on MCG(S) driven by the
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measure µ. Then there exists a constant C such that the following holds with high probability.

log n

C
≤ sup

V ⊏S
dC(V )(1, wn) ≤ C log n

Inspired by the above result, we can make a similar statement (and pose a question)

about net points with respect to the uniform measure on a ball of radius R.

Question IV.2. Let wR be a net point picked uniformly at random from a ball of radius R.

Does there exist a constant C > 0 such that the following holds with high probability?

log n

C
≤ sup

V ⊏S
dC(V )(1, wn) ≤ C log n(IV.2.1)

How does the above question relate to bad points? Recall that for a geodesic segment

joining a bad point that is within distance R of the base point p to the base point spends at

least εbR time in the thin part of T (S). If a geodesic segment spends εbR time in the thin

part, then its subsurface projection to some subsurface grows faster than logR, i.e. it grows

linearly in R.

If we can answer a version of Question IV.2, we can prove the results of Section III.4

without reducing to the complexity length arguments in Section III.5.

More generally, it is easier to prove statistical results with respect to n-fold random walk

measures, as opposed to uniform measures, since we can exploit independence between the

steps of the random walk. One can in such situations ask whether a statement made with

respect to the random walk measure continues to hold with respect to the uniform measure.

An example of such a random walk measure to uniform measure upgrade appears in Choi

[Cho22]. They show that in a ball of radius R in the mapping class group (with respect to

the word metric), the proportion of elements that are not pseudo-Anosov goes exponentially

decays to 0, by showing a similar result holds when counting with respect to the n-fold

convolution of the random walk generating measure, and transferring the estimate (with a

worse exponential decay constant) to the uniform measure case.

Performing such a transformation from random walk phenomena to uniform measure

phenomena in a very general setting might be quite hard, since it is known that the hitting

measure of the random walk on the boundary is mutually singular with respect to the

limiting measure of the uniform measure, at least in the orientable case (see Gadre, Maher,

and Tiozzo [GMT15]).
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