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ABSTRACT

In Duchenne muscular dystrophy (DMD) and other rare diseases, recruiting patients into clinical
trials is challenging. Additionally, assigning patients to long-term, multi-year placebo arms raises
ethical and trial retention concerns. This poses a significant challenge to the traditional sequential
drug development paradigm. In this dissertation, we present small sample, sequential, multiple
assignment, randomized trial (snSMART) designs and methods that formally incorporate external
control data under both the non-longitudinal and longitudinal settings.

After introducing the integration of snSMART with external control data in Chapter 1, Chapter
2 proposes an snSMART design that integrates dose selection and confirmatory assessment into
a single trial. This multi-stage design evaluates the effects of multiple doses of a promising
drug, rerandomizing patients to appropriate dose levels based on their stage 1 dose response.
Our approach enhances the efficiency of treatment effect estimates by: (i) enriching the placebo
arm with external control data, and (ii) utilizing data from all stages. We combine data from
external controls and different stages using a robust meta-analytic combined (MAC) approach,
accounting for various sources of heterogeneity and potential selection bias. Upon reanalyzing data
from a DMD trial with our proposed method, MAC-snSMART, we observe that MAC-snSMART
estimators offer improved efficiency over the original trial results. The robust MAC-snSMART
method frequently provides more accurate estimators than traditional analytical methods. Overall,
our proposed methodology provides a promising candidate for efficient drug development in DMD
and other rare diseases.

In Chapter 3, we present Bayesian longitudinal piecewise meta-analytic combined (BLPM), a
notable advancement on the robust MAC-snSMART method from Chapter 2. This enhancement
introduces significant improvements to snSMART research by: (1) enabling longitudinal data
analysis, (2) incorporating patient baseline characteristics, (3) utilizing multiple imputation for
missing data, (4) reducing heterogeneity with propensity score (PS), and (5) managing stage-wise
treatment effect non-exchangeability. These developments significantly increase the snSMART
design’s utility and efficiency in rare disease drug development. BLPM applies PS trimming,
inverse probability treatment weighting (IPTW), and the MAC framework to navigate heterogeneity
and cross-stage treatment effects. Our evaluations, through simulation studies and the reanalysis
of a DMD trial, show that BLPM methods consistently achieve the lowest rMSE across tested
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scenarios, underscoring its potential to enhance rare disease drug development.
In Chapter 4, we propose a multivariate, joint modeling approach to assess the underlying

dynamics of progression-free survival (PFS) components to forecast the death times of trial partici-
pants. Through Bayesian model averaging (BMA), our proposed method improves the accuracy of
the overall survival (OS) forecast by combining joint models developed from each granular com-
ponent of PFS. A case study of a renal cell carcinoma trial is conducted, and our method provides
the most accurate predictions across all tested scenarios. The reliability of our proposed method
is verified through extensive simulation studies, which include a scenario where OS is completely
independent of PFS. Overall, the proposed methodology emerges as a promising candidate for
reliable OS prediction in solid tumor oncology studies.
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CHAPTER 1

Introduction

1.1 Background on snSMART

Conducting a randomized controlled trial (RCT), the most rigorous way of estimating the efficacy or
effectiveness of treatment, can be difficult when the number of individuals affected is small. While
useful in small samples, traditional methods such as crossover and N-of-1 trials have limitations that
restrict their use and often encounter problems with recruitment and retention. In order to address
these challenges, a new approach known as an snSMART (small sample, sequential, multiple
assignment, randomized trial) has been developed in recent years.

The snSMART design is similar to a classic sequential, multiple assignment, randomized
trial (SMART) design in that it first randomizes participants to one of several first-stage treatments
and then conducts a second stage randomization based on the outcome of the first stage. However,
the snSMART design differs in that it measures the same treatment outcome at the end of both
stages and the time length of both stages is equal. Additionally, the goal of an snSMART is to
identify the superior first-stage treatment using data from both stages, as opposed to a SMART’s
goal of identifying an effective personalized two-stage treatment sequence.

The snSMART design is particularly useful for disorders or diseases that affect a small group of
people and remain stable over the duration of the trial. Additionally, the snSMART design allows
for the sharing of data across stages, resulting in more precise estimates of first-stage treatment
effects. However, the snSMART design will have a smaller sample size and be less flexible than a
classic SMART design, requiring a different set of analytic methods.

Recent years have seen significant progress in the development of statistical methods for ana-
lyzing trial data from different snSMART designs: an snSMART with three active treatments (Wei
et al. 2018, 2020, Chao, Trachtman, Gipson, Spino, Braun & Kidwell 2020), a group sequential
snSMART with three active treatments (Chao, Braun, Tamura & Kidwell 2020), an snSMART
with placebo and two dose levels of one treatment (Fang et al. 2021, 2023), and an snSMART with
continuous outcomes (Hartman et al. 2021).
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1.2 Background on External Control Data Integration

Integrating external control data in clinical trials is a topic of growing importance in the field of
biostatistics. The ability to incorporate historical control data can improve the efficiency and power
of clinical trials, allowing for smaller sample sizes and more precise estimation of treatment effects.

Rosenbaum & Rubin (1983) proposed using propensity score methods in observational studies
to account for potential confounders. This approach has been extended to using historical control
data in clinical trials (Viele et al. 2014, Pocock 1976). Propensity score methods are useful in
adjusting for any observed covariates that may lead to bias in the treatment effect estimates.

Ibrahim & Chen (2000) proposed using power prior distributions for regression models, which
can be useful for incorporating historical control data. Power priors allow for the incorporation
of historical information in a Bayesian framework, which can help to improve the precision of
treatment effect estimates.

Hobbs et al. (2011) developed hierarchical commensurate and power prior models for adaptive
incorporation of historical information in clinical trials. This approach can be useful for trials
where the historical data may not be directly comparable to the current trial.

Spiegelhalter et al. (2004) discussed Bayesian approaches to clinical trials and health-care
evaluation, which emphasizes the use of prior information to improve the precision of treatment
effect estimates. Neuenschwander et al. (2010) proposed methods for summarizing historical
information on controls in clinical trials. These methods can be used to extract relevant information
from historical data to improve the power and precision of current trials.

Schmidli et al. (2014) proposed robust meta-analytic predictive (MAP) priors in clinical trials
with historical control information. This approach combines historical data with current data in a
meta-analytic framework to improve the precision of treatment effect estimates. Neuenschwander
et al. (2016) discussed the use of co-data in clinical trials through MAC. This approach utilizes
both historical and concurrent control data to improve the precision of treatment effect estimates.

Overall, there is a growing body of literature on integrating external control data in clinical
trials. The use of propensity scores, power prior distributions, hierarchical models and meta-
analytic approach are promising approaches for incorporating historical control data in a statistically
rigorous manner. With the growing focus on efficiency and precision in clinical trials, the use of
historical control data is likely to become increasingly important in the field of biostatistics. Thus
far, there are no formal methods to incorporate external control data in the analysis of an snSMART
design.
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1.3 Summary of Objectives

None of the existing snSMART designs take into account external control data, and there is no
established method for integrating control data from multiple sources in a robust manner. In Chapter
2, we aim to fill this gap by introducing a new snSMART design that incorporates external control
data, allowing for a reduction in the number of participants on the placebo arm. In our proposed
study design, eligible patients have a chance of 1:2:2 or 1:3:3 to be assigned to the placebo, low-dose
or high-dose treatment group in the first stage of the trial. In the second stage, patients are either
re-assigned or re-randomized to the same or a different dose depending on their initial treatment
and the outcome of the first stage. For example, patients who received placebo in stage 1 will
be re-randomized with an equal probability to either the low-dose or high-dose treatment group,
regardless of their stage 1 response. Those who received the low-dose in stage 1 will continue on
that dose if they responded positively or switch to the high-dose if they did not respond. Participants
who first received high-dose and responded are re-randomized between low and high-dose, whereas
those who did not respond to high-dose are taken off the trial in the second stage to discuss further
treatment options with their physician. To utilize all external control data and information from both
stages of the snSMART to enhance the accuracy of treatment effect estimations, we propose the
MAC-snSMART method, which is a robust, flexible, hierarchical model to make inferences about
stage 1. We simulated trials to compare results from the MAC-snSMART method to a traditional
method where only stage 1 data is used for analysis. We compare the accuracy and efficacy of the
treatment effect estimates. This work is published in Biometrics Practice (Wang et al. 2023).

In Chapter 3, we apply a trial design similar to that in Chapter 2, but with the addition of
longitudinal data collected at each stage. Our goal remains the same: to efficiently estimate the
stage 1 treatment effect by utilizing data from both stages of the trial and incorporating external
data. This design is more versatile, accommodating a larger volume of longitudinal data from DMD
natural history studies. To evaluate the treatment effect in our proposed study design, we employ
a Bayesian longitudinal piecewise meta-analytic combined model (BLPM) and address between-
study heterogeneities through PS trimming, IPTW weighting, and the MAC framework. BLPM
is a statistical model designed for analyzing repeated measures data, accounting for correlations
between measurements on the same subject. IPTW is a technique aimed at balancing covariate
distributions across treatment groups, thus reducing bias from confounding variables. The MAC
framework allows consideration of various sources of heterogeneity and potential selection bias
when combining external control data with data from different trial stages. To assess our method’s
performance, we conducted both simulation studies and an example data analysis, comparing it to
traditional analytic methods. These evaluations provide insights into our approach’s strengths and
limitations, highlighting conditions under which it excels.
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The next chapter shifts focus from clinical trial design to improving the prediction of overall
survival in solid tumor oncology studies. In oncology clinical trials, the choice of endpoint is
a complex process. Two commonly used endpoints are PFS and OS. PFS is the length of time
during and after treatment in which a patient lives without progressive disease (PD), while OS is
the duration from the start of study treatment to the date of death due to any cause. OS remains
the clinical gold standard for assessing patient benefit, however, powering a trial to show an OS
benefit can be challenging. Factors such as longer duration of OS trials, patients crossing over
to alternative treatment after progression, starting other anti-cancer therapy, or loss to follow-up
can make it difficult. Additionally, OS data are often not mature enough to draw proper statistical
inferences at the time of the primary analysis of PFS. Accurate prediction of OS can aid in resource
allocation, future planning, and understanding the probability of success in oncology trials. It
can also guide patient care and use of limited healthcare resources. In this project, we explore a
model-based approach for forecasting the death times of trial participants using available, mature
PFS data. We propose a multivariate joint modeling approach to assess the underlying dynamics
of the PFS components (i.e., target lesion, non-target lesion, and new lesion) to predict OS. We
build joint/marginal models based on OS and each component of PFS, and obtain real-time OS
predictions based on each model. In total, four groups of intermediate predictions are generated.
The final OS prediction is derived based on all four models simultaneously using BMA (Hoeting
et al. 1999). This topic has gained interest in the statistical and clinical literature and has implications
for both drug development and patient care. In addition, we enhance existing methods like the
copula model and the multi-state model for predicting survival times of ongoing patients in trials
in an unprecedented manner. We conducted extensive simulation studies and analyses of example
data to compare the performance of the multivariate joint modeling approach with various existing
models.
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CHAPTER 2

Dynamic Enrichment of Bayesian Small Sample,
Sequential, Multiple Assignment Randomized Trial
(snSMART) Design Using Natural History Data: A

Case Study from Duchenne Muscular Dystrophy

2.1 Introduction

DMD is a potentially deadly inherited genetic disease with a birth prevalence of 19.8 per 100,000
live male births (Crisafulli et al. 2020). Patients often progressively lose the ability to walk
or function independently and die at a young age from lung or heart problems. There is an
unmet need for effective treatments in this patient population. Given the limited number of
patients affected by DMD, conducting separate dose-finding and randomized confirmatory trials is
nearly impossible. Moreover, variability in disease progression, challenges in maintaining patient
blindness to treatment, and ethical issues with long-term follow-up for placebo controls complicate
trial design in DMD and other rare diseases (Muntoni et al. 2022). This paper aims to address
some of the challenges in DMD and rare disease trial research and is motivated by the SPITFIRE
trial (NCT03039686), a randomized, 2-phase, double-blind, placebo-controlled study (See Figure
2.2a) assessing the efficacy, safety, and tolerability of a new therapy (RO7239361) in 6-11 years
old, ambulatory boys with DMD. We develop statistical methodology that improves the design
and analysis of DMD trials using all relevant information in the trial and external control data (i.e.,
relevant patient information gathered from sources outside of the prospective study).

In the SPITFIRE trial, patients were equally randomized to one of two doses (low and high) of
treatment or a placebo arm in stage 1. After completion of stage 1 (48 weeks after the study entry),
patients in the placebo arm were randomized to either high or low dose in stage 2. The trial’s
primary analysis planned to use only stage 1 data which ignores critical information generated in
stage 2 about the drug. Moreover, the SPITFIRE design did not allow patients who performed
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poorly with low dose in stage 1 to receive high dose in stage 2. Finally, the SPITFIRE trial did
not formally incorporate external control data. Further innovations are necessary to consider a trial
design where patients receive multiple stages of treatment and analytic methods where treatment
effect estimates consider data from all stages and from external controls.

This paper proposes a new snSMART design with an efficient Bayesian analytic approach that
synthesizes all relevant information and provides precise treatment effects for better decision-
making about drugs in rare, life-threatening diseases like DMD. However, combining data from
different sources poses unique challenges, including the choice of relevant external information,
potential conflict between external and concurrent control, and “drift” in clinical outcomes between
the two stages due to differences in the population. Lack of consideration of these factors may
result in biased treatment effect estimates and increase false positive results. We modify existing
snSMART designs and develop a model-based approach that enables the use of external control
data and combines data across trial stages resulting in more precise estimates of the treatment
effects. Given the small sample size, the proposed model must be parsimonious and robust when
there is conflict between different data sources.

2.2 SPITFIRE Trial: A Motivating Example of Phase IIb/III
Trial in DMD

We use the SPITFIRE trial setting and published results to demonstrate the utility of the proposed
design and analytic approaches. Though SPITFIRE was stopped early for futility, it reflects the
development paradigm for a new drug in many rare diseases. For example, a similar design was
used for the ATMOSPHERE (NCT04704921) study. Note that, we have no intention to comment
on or judge the clinical activity of the treatments involved or any decisions by sponsors or regulators
associated with the trial or compound.

In the SPITFIRE trial, a total of 166 participants were randomized to receive one of two doses
of RO7239361 or placebo (1:1:1) for 48 weeks at stage 1. After completion of stage 1, subjects
entered an open-label stage where participants who originally received placebo were randomized
into low or high dose groups, and all other participants stayed on their original treatment for up
to 192 weeks. The primary and one of the secondary outcomes were the change (from baseline
to week 48) of stage 1 North Star Ambulatory Assessment (NSAA) total score and 6-minute walk
distance (6MWD) test.

The original SPITFIRE design is similar to an snSMART (Tamura et al. 2016) but lacks many
fundamental features. SPITFIRE a) re-randomized only the participants in the control group in
stage 2 and b) used only stage 1 data in the primary analysis. This differs from the snSMART
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Figure 2.1: Study design of a standard snSMART. In the study, participants are randomly assigned
to one of three treatment options, referred to as arms A, B, and C, in a 1:1:1 ratio. They are
then monitored for a specified period of time. Stage 1 responders will continue to receive the
same treatment in stage 2, while the non-responders will be re-randomized to one of the other two
treatment options in stage 2.

design used in the ARAMIS study (NCT02939573; as shown in Figure 2.1; Tamura et al. (2016)),
where data from both stages were used to estimate stage 1 treatment effects. There has been notable
progress in snSMART methods (Wei et al. 2018, 2020, Hartman et al. 2021) that have been coded
into an R package (Wang & Kidwell 2022). Other snSMART extensions include a group-sequential
design that allows early stopping of an arm (Chao, Braun, Tamura & Kidwell 2020) and inclusion
of multiple dose levels (Fang et al. 2021, 2023).

In recent years, there has been an increased interest to consider the use of external control data
to expedite the development of a new drug in rare diseases with an unmet medical need. Including
external control data allows more patients to receive potentially more effective treatments than a
placebo aiding in recruitment and retention, a smaller sample size, and therefore faster development.
However, heterogeneity between external control and concurrent trial data is often a limiting factor
in real-life applications. Yet, many approaches have been proposed to leverage external data in
clinical trial while addressing heterogeneity between data sources, different types of available data
(i.e., individual patient data or aggregated data), and outcomes of interest. Bayesian approaches for
borrowing external control information differ in terms of assumptions regarding the relevance and
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exchangeability of external data with current trial data (Wadsworth et al. 2018). Use of the power
prior approach directly down-weights the external control using fixed weights (Ibrahim & Chen
2000). Dynamic methods adjust the informativeness of the prior based on measures of conflict
between external control and the new trial data. Notable dynamic methods include normalized
power prior (Duan 2005, Neuenschwander et al. 2009), commensurate priors (Hobbs et al. 2011),
and robust meta-analytic-predictive priors (Spiegelhalter et al. 2004, Neuenschwander et al. 2010,
Schmidli et al. 2014, Neuenschwander et al. 2016). In the context of basket trials, Ouma et al. (2022)
explored Bayesian treatment effect borrowing and treatment response borrowing models that can be
expanded to enable external control data borrowing. In addition to Bayesian methods, frequentist
methods such as propensity score based matching (Rosenbaum & Rubin 1983), stratification, and
inverse probability weighting (Lin et al. 2018) are widely used when aggregate level information
and baseline covariates are available.

Existing snSMART designs and methods do not incorporate external control data. In DMD, the
Duchenne Natural History Study (DNHS) conducted by the Cooperative International Neuromus-
cular Research Group (CINRG), which along with the PRO-DMD-01 Prospective Natural History
Study (NCT01753804) and the University College London Natural History Study (NCT02780492)
provide rich, external control information that can be combined with concurrent trial placebo data.
Motivated by the DMD setting, we aim to fill this gap with an innovative snSMART design and
Bayesian model as an alternative to the current practice of DMD and rare disease drug development.
The new approach proposes three key improvements to current snSMART and rare disease design
and methods: a) use of external control data to reduce the sample size of the placebo arm, b) allow
stage 1 low dose nonresponders to receive higher dose in stage 2, similar to the design proposed by
Fang et al. (2021, 2023), and c) use a Bayesian hierarchical model that dynamically incorporates
external control data and borrows information across both trial stages. These features are extremely
attractive in the rare disease setting where sample sizes and opportunities to perform clinical trials
are limited. Our proposed design and methods assume a) the study condition remains relatively
stable throughout the trial period (i.e., when there is no treatment effect, patients’ primary out-
comes do not fluctuate dramatically), b) an adequate washout period between the two trial stages, c)
exchangeable treatment effects between stages, and d) similar external control and placebo effects.
An snSMART design is not appropriate for conditions that are not stable during the trial period,
and we offer modifications to the model and sensitivity analyses to address other violations of these
model assumptions.
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2.2.1 Proposed Modification for SPITFIRE Trial Design

Our proposed snSMART design is shown in Figure 2.2b, where eligible patients are randomized
unequally (e.g., 1:2:2 or 1:3:3) between placebo, low dose, and high dose (e.g., of RO7239361)
in stage 1. After 48 weeks, participants are re-assigned or re-randomized to either the same or a
different dose of treatment depending on their initial treatment and post-baseline NSAA total score.
Here, we define a participant as a treatment responder at week 48 if their post-baseline NSAA
total score increases, stays the same, or does not decrease by more than 3.1 (Muntoni et al. 2018).
Participants who received placebo in stage 1 are re-randomized with equal probability to either
the low dose or high dose treatment arm in stage 2, regardless of their stage 1 response. This is
beneficial to participants in the trial because everyone receives a dose of the treatment. This design
differs slightly from the ones proposed by Fang et al. (2021, 2023) in stage 2 for those who received
low or high dose in stage 1. These slight modifications may make the design more patient-centered.
Participants who received low dose in stage 1 are assigned to stay on low dose if they responded in
stage 1 or switch to high dose if they did not respond. Participants who first received high dose and
responded are re-randomized equally between low and high doses. However, the nonresponders
to high dose are discontinued in stage 2. In most settings, the re-randomization of high dose
responders is a viable design option because low dose may continue to be effective and possibly
more tolerable. On the other hand, when the high dose proves ineffective for some participants,
it is unlikely that a lower dose will yield better results for them. Additionally, administering an
ineffective high dose that potentially poses higher toxicity is not ethical. Thus, we chose to exclude
stage 1 high-dose nonresponders in stage 2.

2.3 Methods

The following notation is used in this section. 𝑌 𝑗 𝑘 and \ 𝑗 𝑘 denote the observed and underlying
true mean change in outcome (e.g., NSAA score) from the baseline values for stage 𝑗 = 1, 2 and
treatment 𝑘 = 𝑝 (placebo), 𝑙 (low dose), ℎ (high dose), respectively. 𝑌 ′

𝑖
and \′

𝑖
(𝑖 = 1, 2, ..., 𝑛𝑐) denote

the observed and true placebo mean change in outcome from baseline for external control data.
For example, in the SPITFIRE trial, \1𝑝, \1𝑙 , and \1ℎ represent the true mean change from baseline
in the NSAA total score or 6MWD for placebo, low, and high dose groups, respectively. The key
estimands of interest are the stage 1 differences in effects between each dose and placebo (\1𝑙 − \1𝑝,
\1ℎ − \1𝑝). Traditional analyses for 𝑌1𝑘 (change from baseline in NSAA or 6MWD) in SPITFIRE
or similar studies include analysis of variance (ANOVA), analysis of covariance (ANCOVA), or a
conjugate Bayesian model (normal data and normal prior). Note that a traditional analytic method
excludes external control data and uses only stage 1 outcomes.
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Figure 2.2: (a) Study design of the SPITFIRE trial (NCT03039686). (R) denotes randomization.
(b) Study design of the proposed snSMART design that formally incorporates external control data.
Participants are randomized (R) with 1:2:2 or 1:3:3 chances of receiving placebo, low dose, or high
dose, respectively, in stage 1. At the end of stage 1, participants are assigned or re-randomized to
their stage 2 treatment based on their stage 1 treatment and response status. Outcomes are collected
at the end of stage 1 and 2.
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2.3.1 Bayesian joint stage model

A modified version of the existing Bayesian joint stage model (BJSM) by Fang et al. (2023) may
be used to analyze our snSMART design. Though it uses data from both stages, the existing BJSM
has not previously been presented to formally incorporate external data. One indirect or crude way
to incorporate external control data is to use informative normal distribution priors for the model
parameter associated with the placebo effect. For the BJSM, normal distribution prior parameters
may be derived using the method of moments approximation using external data, where the variance
is further adjusted to ensure the desired prior effective sample size.

Here, we use the summary-level DNHS data to demonstrate the derivation of normal distribution
prior parameters for BJSM:

Data source: Carefully matched DNHS data as external controls.
Mean test outcome change (from baseline to week 48):

NSAA Score 6MWD
Mean -1.04 -22.36
SD 0.77 27.98

Step 1:
According to method of moments approximation, the normal priors for true placebo mean

change in outcome (\1𝑝) should be 𝑁 (` = −1.04, 𝑠𝑑 = 0.77) under NSAA Score, and 𝑁 (` =

−22.36, 𝑠𝑑 = 27.98) under 6MWD.
Step 2:

Decide on an effective sample size (ESS) we want to use. If ESS = 𝐸 , then the final normal priors
for placebo should be 𝑁 (` = −1.04, 𝑠𝑑 = 0.77/

√
𝐸) under NSAA Score, and 𝑁 (` = −22.36, 𝑠𝑑 =

27.98/
√
𝐸).

2.3.2 Meta-analytic combined (MAC) approaches

The meta-analytic combined, or MAC-snSMART, approach is a novel and unified analytic frame-
work that incorporates “all” relevant information for efficient estimation of stage 1 treatment effects,
\1𝑝, \1𝑙 , and \1ℎ. We use a Bayesian hierarchical model framework to dynamically borrow infor-
mation from different sources (e.g., external control, stage 2). The framework consists of a series of
models that link different sets of parameters (as shown in Figure 2.3). However, implementation of
such a framework in the snSMART setting requires innovation to a) handle heterogeneity between
different sources of placebo data, b) account for the potential conflict between internal and external
placebo data despite careful selection of external data, and c) account for selection bias due to
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Figure 2.3: Borrowing among treatment effects (\) in MAC-snSMART

non-randomized treatment assignments in stage 2 for participants who received low dose or did not
respond to high dose in stage 1.

2.3.2.1 Use of external information for placebo

Controlling for potential bias is a primary concern when considering external control data in a
clinical trial. To handle bias due to potential unmeasured confounders in the design phase and
increase the validity of results, statistical methods should be prespecified. To account for measured
confounders, a first and critical step is careful selection of relevant external control data. Pocock
(1976) and Lim et al. (2018) proposed a set of criteria to assess the similarity between external and
trial control data based on key aspects, including inclusion/exclusion criteria, endpoint definition,
relevance of control treatment, distribution of demographic criteria, etc. Furthermore, matching
techniques (e.g., propensity score matching) can be conducted to select external control patients
used in the analysis to ensure appropriate balance of important prognostic factors. Irrespective
of careful selection, the clinical outcome of interest may be variable across different sources due
to associated intrinsic and extrinsic factors. A model-based approach is required to address these
issues.

For illustration we use summary level, external control data for this paper. However, the
methodology is also applicable to patient-level data with important baseline covariates. Let, 𝑌 ′

𝑖

be the observed mean change from baseline for external placebo data source 𝑖. Furthermore,
𝑌 ′
𝑖
|\′
𝑖
∼ 𝑁 (\′

𝑖
, 𝑠′2
𝑖
), where 𝑖 = 1, 2, ...𝑛𝑐, and 𝑠′

𝑖
is known or derived from the 𝑛𝑐 external control

data samples. Similarly, we assume 𝑌1𝑝 |\1𝑝 ∼ 𝑁 (\1𝑝, 𝑠
2
1𝑝). For dynamic borrowing across

different sources, we need a model that connects \′
𝑖

and \1𝑝. A generic approach that connects \′
𝑖

and \1𝑝 is a generalized hierarchical model which assumes exchangeability between internal and
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external control. This implies \′
𝑖
|`𝑝, 𝜏′𝑖 ∼ 𝑁 (`𝑝, 𝜏′2𝑖 ) and \1𝑝 |`𝑝, 𝜏1𝑝 ∼ 𝑁 (`𝑝, 𝜏2

1𝑝). If patient-level
information about important predictors is available, the model can be extended via meta-regression.
In contrast to the classical exchangeability assumption which assumes the same variance for \′

𝑖
and

\1𝑝, this structure accounts for external control data outliers by allowing for different between-
trial standard deviations. However, the exchangeability assumption results in overly optimistic
borrowing and causes biased estimates when information from different sources conflicts.

The amount of information borrowed from external control data while estimating the treatment
effects for control, low, and high dose groups can be quantified. This amount of borrowed infor-
mation can be expressed as the ESS. Here, we use the expected local-information-ratio, which
fulfills a basic predictive consistency requirement, as introduced by Neuenschwander et al. (2020).
We, like Neuenschwander et al. (2020), recommend that the ESS of each external control data set
should not exceed the number of participants on the placebo arm in the trial.

2.3.2.2 Robustification

To avoid overly optimistic borrowing, we include a mixture model adopted from Neuenschwander
et al. (2016) for \′

𝑖
and \1𝑝. The proposed model allows for non-exchangeability of any of the

parameters associated with the placebo effect:

\′𝑖 ∼ 𝑝𝑖 ∗ 𝑁 (`𝑝, 𝜏′2𝑖 ) + (1 − 𝑝𝑖) ∗ 𝑁 (𝑚′
𝑖, 𝑣

′2
𝑖 )

\1𝑝 ∼ 𝑝1𝑝 ∗ 𝑁 (`𝑝, 𝜏2
1𝑝) + (1 − 𝑝1𝑝) ∗ 𝑁 (𝑚1𝑝, 𝑣

2
1𝑝)

𝑝𝑖 and 𝑝1𝑝 are fixed a priori to reflect confidence about the similarity between external and
concurrent control data. The values of 𝑚′

𝑖
, 𝑚1𝑝, 𝑣

′
𝑖

and 𝑣1𝑝 are chosen based on expert knowledge.
Weakly informative priors, such as priors worth approximately one observation (Kass & Wasserman
1995), are used for non-exchangeability parameters (𝑚′

𝑖
, 𝑚1𝑝, 𝑣′

𝑖
, and 𝑣1𝑝).

The mixture model introduced in here is a mixture of normal priors. For \1𝑝, we have
𝑓 (\1𝑝 |𝑝1𝑝, `𝑝, 𝜏1𝑝, 𝑚1𝑝, 𝑣1𝑝) = 𝑝1𝑝𝑁 (\1𝑝 |`𝑝, 𝜏2

1𝑝) + (1 − 𝑝1𝑝)𝑁 (\1𝑝 |𝑚1𝑝, 𝑣
2
1𝑝). Given that only

summary-level treatment effect 𝑌1𝑝 is used to conduct Bayesian inference, the likelihood function
is the same as above. Here, we introduce the latent variable 𝑍1𝑝, such that 𝑃(𝑍1𝑝 = 1) = 𝑝1𝑝 and
𝑃(𝑍1𝑝 = 0) = 1 − 𝑝1𝑝, where 𝑝1𝑝 is the probability that \1𝑝 is fully exchangeable with external
controls, and 1 − 𝑝1𝑝 is the probability that \1𝑝 is non-exchangeable with external controls. The
robustification component for stage 1 placebo arm can be expressed as \1𝑝 | (𝑍1𝑝 = 1) ∼ 𝑁 (`𝑝, 𝜏2

1𝑝)
and \1𝑝 | (𝑍1𝑝 = 0) ∼ 𝑁 (𝑚1𝑝, 𝑣

2
1𝑝). Therefore, 𝑍1𝑝 provides the label indicating the mixture com-

ponents from which the observations have been generated. Now the posterior probability that \1𝑝
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has been generated from 𝑁 (`𝑝, 𝜏2
1𝑝) is:

𝑃(𝑍1𝑝 = 1|\1𝑝, `𝑝, 𝜏1𝑝, 𝑚1𝑝, 𝑣1𝑝) =
𝑝1𝑝𝑁 (`𝑝, 𝜏2

1𝑝)
𝑝1𝑝𝑁 (`𝑝, 𝜏2

1𝑝) + (1 − 𝑝1𝑝)𝑁 (𝑚1𝑝, 𝑣
2
1𝑝)

.

Similarly, we could create latent variables 𝑍𝑖 for \𝑖, where 𝑖 = 1, 2, ...𝑛𝑐, and use the same structure
as above to obtain the posterior probability that \′

𝑖
has been generated from 𝑁 (`𝑝, 𝜏′2𝑖 ).

Based on conjugate priors, the posterior distribution of \′
𝑖

and \1𝑝 are mixtures of normal
distributions. Specifically, for \1𝑝, when equation 1 is not considered, the posterior mean is:

𝑝1𝑝 ([1𝑝 ˆ̀𝑝 + (1 − [1𝑝)𝑌1𝑝) + (1 − 𝑝1𝑝)
𝑚1𝑝 (𝑠2

1𝑝 + 𝜏1𝑝) + 𝑌1𝑝𝑣
2
1𝑝

𝑠2
1𝑝 + 𝜏1𝑝 + 𝑣2

1𝑝

where ˆ̀𝑝 = (𝜔1𝑝𝑌1𝑝 +
∑
𝑖 𝜔

′
𝑖
𝑌 ′
𝑖
)/𝜔𝑠𝑢𝑚 is the posterior mean of `𝑝, 𝜔′

𝑖
= (𝑠′2

𝑖
+ 𝜏′2

𝑖
)−1 and 𝜔1𝑝 =

(𝑠2
1𝑝 + 𝜏1𝑝)−1 are inverse variance weights, 𝜔𝑠𝑢𝑚 is the sum of all inverse variance, and [1𝑝 =

𝑠2
1𝑝/(𝑠

2
1𝑝 + 𝜏1𝑝).

We refer to the method as “robust MAC-snSMART” if the robustification component is included
in addition to the structure outlined in Section 2.3.2.1. If this component is not included (𝑝𝑖 =
𝑝1𝑝 = 1), the method is simply referred to as “MAC-snSMART”.

2.3.2.3 Combining evidence for low and high dose groups

According to the proposed snSMART design, a participant may follow one of seven different
treatment sequences: (1𝑝, 2𝑙), (1𝑝, 2ℎ), (1𝑙, 2𝑙), (1𝑙, 2ℎ), (1ℎ, 2𝑙), (1ℎ, 2ℎ), and (1ℎ, No stage 2
treatment). For each of the first six groups, the joint distribution of outcomes from stages 1 and 2,
𝑌1𝑘 and 𝑌2𝑘 ′ , follows:[

𝑌1𝑘

𝑌2𝑘 ′

]
∼ 𝑀𝑉𝑁

( [
\1𝑘 + 𝐵
\2𝑘 ′

]
,

[
𝑠2

1𝑘 𝑠𝑘𝑘 ′𝑠1𝑘 𝑠2𝑘 ′

𝑠𝑘𝑘 ′𝑠1𝑘 𝑠2𝑘 ′ 𝑠2
2𝑘 ′

])
, (2.1)

where 𝑘 = 𝑝, 𝑙, ℎ; 𝑘′ = 𝑙, ℎ. 𝑠 𝑗 𝑘 can be estimated based on observed data in the snSMART. 𝑠𝑘𝑘 ′
denotes the correlation between stage 1 treatment 𝑘 outcomes and stage 2 treatment 𝑘′ outcomes.
Note, 𝐵 is a selection bias correction term. This selection bias is due to design since those who
receive low dose in stage 1 are not re-randomized and those who do not respond to high dose in
stage 1 are excluded in stage 2. Given that we know which treatment sequences the participants
follow, to account for the difference from the stage 1 mean, the bias correction term is defined
as: 𝐵 = 𝐼 (𝑘 = 𝑙, 𝑘′ = 𝑙)𝐵𝑙𝑙 − 𝐼 (𝑘 = 𝑙, 𝑘′ = ℎ)𝐵𝑙ℎ − 𝐼 (𝑘 = ℎ)𝐵ℎ. Explicitly, 𝐵𝑙𝑙 denotes the
expected difference between the stage 1 mean treatment effect of group (1𝑙, 2𝑙) and the overall
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stage 1 low dose mean treatment effect, 𝐵𝑙ℎ denotes the expected difference between the stage 1
mean treatment effect of group (1𝑙, 2ℎ) and the overall stage 1 low dose mean treatment effect,
and 𝐵ℎ denotes the expected difference between the stage 1 mean treatment effect of high dose
responders and the overall stage 1 high dose mean treatment effect. 𝑏𝑙𝑙 , 𝑏𝑙ℎ and 𝑏ℎ, the observed
differences corresponding to 𝐵𝑙𝑙 , 𝐵𝑙ℎ and 𝐵ℎ, follow normal distributions 𝑁 (𝐵𝑙𝑙 , b2

𝑙𝑙
), 𝑁 (𝐵𝑙ℎ, b2

𝑙ℎ
)

and 𝑁 (𝐵ℎ, b2
ℎ
), respectively. A similarly structured but more complex bias-corrected meta-analysis

model has been proposed by Verde (2021).
Under the MAC-snSMART approach, the conditional distribution of \ 𝑗 𝑘 follows \1𝑘 , \2𝑘 ∼

𝑁 (`𝑘 , 𝜏2
𝑘
), where 𝑘 = 𝑙, ℎ, given that we assume stage 1 and stage 2 expected outcomes for

the same treatment follow the same normal distribution. That is, the treatment effects of the
same dose level are fully exchangeable across trial stages. Since the snSMART design is most
appropriate for relatively stable conditions and requires a washout period between stages, we
believe this assumption of exchangeable treatment effects is valid in rare disease settings where
an snSMART would be applied. In cases where stage-wise non-exchangeability is likely to occur,
the robustification component described in Section 2.3.2.2 can be easily incorporated into \2𝑘 ′ in
Formula 2.1 to account for non-exchangeable treatment effects across trial stages.

2.3.2.4 Prior specification

We suggest generalizable, weakly informative normal distributions as priors for `𝑝 and `𝑘 , i.e.,
priors that are worth approximately one observation (Kass & Wasserman 1995). To ensure the iden-
tifiability of the bias parameters 𝐵𝑙𝑙 , 𝐵𝑙ℎ and 𝐵ℎ, we use weakly informative uniform distributions
or normal distributions that cover all possible bias values as their priors (Verde 2021). We suggest
using non-informative 𝑈𝑛𝑖 𝑓 (−1, 1) prior distributions for 𝑠𝑘𝑘 ′ since the correlation between stage
1 treatment 𝑘 and stage 2 treatment 𝑘′ outcomes ranges from -1 to 1 and is uncertain.

Half-normal priors with standard deviations roughly equal to 𝑠′
𝑖
/2, 𝑠1𝑝/2 and 𝑠 𝑗 𝑘/2 for 𝜏′

𝑖
, 𝜏1𝑝

and 𝜏𝑘 , respectively, are used to cover very small to large between-trial heterogeneity (Spiegelhalter
et al. 2004). According to the bias-corrected meta-analysis model proposed by Verde (2021),
roughly four participants worth of information is provided by the priors of the bias parameter.
Hence, we recommend half-normal priors with standard deviation roughly equal to 𝑠1𝑙/4, 𝑠1𝑙/4 and
𝑠1ℎ/4 for b𝑙𝑙 , b𝑙ℎ and bℎ, respectively. Then, the treatment effects of low dose in stage 1 and stage
2 follow the same normal distribution and are therefore exchangeable. Similarly, the high dose
treatment effects in stages 1 and 2 are exchangeable.
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2.4 Simulation Settings

We assess the sensitivity of our proposed MAC-snSMART methods under various data generating
settings, treatment effects, sample sizes, and lack of exchangeability between external control and
current snSMART data. We assess two different data generation processes, the first one matches
with the proposed model, and the second one allows violation of exchangeability between stage 1
and stage 2. The first data generation process follows the assumption of the MAC-snSMART so that
\1𝑘 is set to a predetermined treatment effect and \2𝑘 is randomly generated from 𝑁 (\1𝑘 , 0.252).
Thus, the summary level stage 1 treatment outcomes are generated based on 𝑁 (\ 𝑗 𝑘 , 0.52), the stage
2 outcomes are randomly generated according to formula 2.1, and 𝑠𝑘𝑘 ′ are randomly chosen within a
certain range, i.e., 𝑠𝑝𝑙 ∈ (−0.20, 0.20), 𝑠𝑝ℎ ∈ (−0.15, 0.15), 𝑠𝑙𝑙 ∈ (0.70, 1), 𝑠𝑙ℎ ∈ (−0.50, 0), 𝑠ℎ𝑙 ∈
(−0.30, 0.30), and 𝑠ℎℎ ∈ (0.70, 1). In the second data generation process \1𝑘 and \2𝑘 are not
exchangeable. We set \1𝑘 to a predetermined treatment effect, and let \2𝑘 = \1𝑘 + 1. Formula 2.1
is used to randomly generate stage 1 and stage 2 treatment outcomes. This type of data may result
from an snSMART where a washout period between stages 1 and 2 is inadequate.

In addition to testing different data generation processes, we investigate the performance of our
proposed models considering four treatment effect scenarios. Here, considering the DMD context,
we use an NSAA score of four as the threshold for categorizing responders and nonresponders at the
end of stage 1. In scenario 1, we assume that the new drug is ineffective (\1𝑝 = \1𝑙 = \1ℎ = 0). In
scenario 2, we assume that only the high dose is effective (\1𝑝 = \1𝑙 = 0 < \1ℎ = 6). For scenario 3,
the low dose has a small, but not clinically meaningful treatment effect and high dose has a clinically
meaningful treatment effect (\1𝑝 < \1𝑙 = 2 < \1ℎ = 6). In contrast, both low and high doses are
assumed to have a clinically meaningful effect for scenario 4 (\1𝑝 = 0 < \1𝑙 = 4 < \1ℎ = 8).
The last two scenarios assess the sensitivity of our model to the alignment of external control and
current data (scenario 5: \′

𝑖
≠ \1𝑝 for some 𝑖; scenario 6: \′

𝑖
≠ \1𝑝 for all 𝑖). A summary of all

simulation scenarios can be found in Table 2.1.
Under each data generating process, 10,000 realizations per scenario were simulated. Each

realization includes five sets of summary-level (mean and standard deviation) external control data
and one concurrent snSMART data set. Estimations from the MAC-snSMART, robust MAC-
snSMART, traditional analysis, and BJSM are compared. We calculate coverage rate (CR) , rMSE,
average bias, and average width of the 95% credible interval (CI) of each estimator. Note that
the Monte Carlo error for all average bias and CI width is less than 0.005. Finally, type I error
(under scenario 1) and power (under scenarios 2-6) of different methods are also calculated using
the probability that the 95% credible intervals of \̂1𝑙 − \̂1𝑝 and \̂1ℎ − \̂1𝑝 do not include 0. Results
are provided for sample size of 25 and 50 randomized with a 1:2:2 ratio to the placebo, low dose,
and high dose arms respectively. All computations are done via the R function jags in R package
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Table 2.1: Simulation parameters and scenarios.

\′
𝑖

denote the expected mean placebo treatment effect in external control data 𝑖, where 𝑖 = 1, 2, ...𝑛𝑐. \ 𝑗𝑘
is treatment effect of treatment 𝑘 in stage 𝑗 , where 𝑗 = 1, 2, 𝑘 = 𝑝, 𝑙, ℎ, 𝑝 = placebo, 𝑙 = low dose, and
ℎ = high dose. External control data and patient-level treatment outcomes in both stages are generated
according to the formula introduced in the Method section of the manuscript.

Data Generating Process 1 Data Generating Process 2

Scenario 1
\′
𝑖
∼ 𝑁 (0, 0.25), \1𝑝 = 0, \′

𝑖
∼ 𝑁 (0, 0.25), \1𝑝 = 0,

\1𝑙 = 0, \2𝑙 ∼ 𝑁 (0, 0.25), \1𝑙 = 0, \2𝑙 = 1,
\1ℎ = 0, \2ℎ ∼ 𝑁 (0, 0.25) \1ℎ = 0, \2ℎ = 1

Scenario 2
\′
𝑖
∼ 𝑁 (0, 0.25), \1𝑝 = 0, \′

𝑖
∼ 𝑁 (0, 0.25), \1𝑝 = 0,

\1𝑙 = 0, \2𝑙 ∼ 𝑁 (0, 0.25), \1𝑙 = 0, \2𝑙 = 1,
\1ℎ = 6, \2ℎ ∼ 𝑁 (6, 0.25) \1ℎ = 6, \2ℎ = 7

Scenario 3
\′
𝑖
∼ 𝑁 (0, 0.25), \1𝑝 = 0, \′

𝑖
∼ 𝑁 (0, 0.25), \1𝑝 = 0,

\1𝑙 = 2, \2𝑙 ∼ 𝑁 (2, 0.25), \1𝑙 = 2, \2𝑙 = 3,
\1ℎ = 6, \2ℎ ∼ 𝑁 (6, 0.25) \1ℎ = 6, \2ℎ = 7

Scenario 4
\′
𝑖
∼ 𝑁 (0, 0.25), \1𝑝 = 0, \′

𝑖
∼ 𝑁 (0, 0.25), \1𝑝 = 0,

\1𝑙 = 4, \2𝑙 ∼ 𝑁 (4, 0.25), \1𝑙 = 4, \2𝑙 = 5,
\1ℎ = 8, \2ℎ ∼ 𝑁 (8, 0.25) \1ℎ = 8, \2ℎ = 9

Scenario 5

\′1, \
′
2, \

′
3 ∼ 𝑁 (0, 0.25), \′1, \

′
2, \

′
3 ∼ 𝑁 (0, 0.25),

\′4, \
′
5 ∼ 𝑁 (1, 3), \′4, \

′
5 ∼ 𝑁 (1, 3),

\1𝑝 = 0, \1𝑝 = 0,
\1𝑙 = 4, \2𝑙 ∼ 𝑁 (4, 0.25), \1𝑙 = 4, \2𝑙 = 5,
\1ℎ = 8, \2ℎ ∼ 𝑁 (8, 0.25) \1ℎ = 8, \2ℎ = 9

Scenario 6
\′
𝑖
∼ 𝑁 (3, 1), \1𝑝 = 0, \′

𝑖
∼ 𝑁 (3, 1), \1𝑝 = 0,

\1𝑙 = 4, \2𝑙 ∼ 𝑁 (4, 0.25), \1𝑙 = 4, \2𝑙 = 5,
\1ℎ = 8, \2ℎ ∼ 𝑁 (8, 0.25) \1ℎ = 8, \2ℎ = 9
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Table 2.2: Simulated type I error. Note: The type I error of all presented methods is defined as
the probability that the credible intervals of \̂1𝑙 − \̂1𝑝 and \̂1ℎ − \̂1𝑝 do not include 0 when there
are no treatment effect differences between low dose and placebo and high dose and placebo. Data
generating process 1 generates data sets under the assumption that the expected treatment effect of
the same dose level follows the same normal distribution across stages, and data generating process
2 generates data sets without a hierarchical structure or exchangeability between stages. 𝑁 denotes
the total number of participants in the trial. Two hierarchical models: MAC-snSMART (MS) and
robust MAC-snSMART (RMS) are compared against the traditional method and the Bayesian Joint
Stage Model (BJSM)

Sample Size Traditional BJSM MS RMS
Low High Low High Low High Low High

Data generating process 1
𝑁 = 50 0.070 0.059 0.032 0.028 0.039 0.018 0.042 0.022
𝑁 = 25 0.077 0.076 0.035 0.031 0.056 0.026 0.059 0.030

Data generating process 2
𝑁 = 50 0.057 0.059 0.031 0.026 0.061 0.056 0.065 0.060
𝑁 = 25 0.076 0.080 0.036 0.030 0.070 0.053 0.075 0.058

rjags (Plummer 2022).

2.4.1 Results

For the data generation process where assumptions of exchangeability are upheld (data generating
process 1), the rMSE, average bias, CR , and average CI width for estimators of the expected
treatment effects are shown in the left columns of Figure 2.4, 2.5, 2.6, and 2.7 respectively.
The estimators from the robust MAC-snSMART method have smaller rMSEs than the traditional
method and BJSM. The robust MAC-snSMART method provides similar coverage compared with
the traditional method while having smaller 95% CI width. Even though the robust MAC-snSMART
method has slightly higher average biases, the biases are negligible.

A comparison of all metrics among the traditional method, BJSM, and the MAC-snSMART
methods clearly shows that estimation of the placebo effect is improved by including external
control data, even when external control data are not entirely aligned with the placebo data in the
current snSMART (\′

𝑖
≠ \1𝑝 for some 𝑖). However, when external control data are not completely

aligned with the current trial data (simulation scenarios 5 and 6), the placebo effect estimate is
less biased under the robust MAC-snSMART method. Scenario 6 verifies that the robustification
component introduced in Section 2.3.2.2 is effective in avoiding overly optimistic external control
borrowing, even when the external controls are completely unaligned with the current trial data.
The robust MAC-snSMART and the MAC-snSMART methods estimate low and high dose effects
adequately under all scenarios.
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Figure 2.4: Simulated root-mean-square error (rMSE) for the estimators of \1𝑘
\ 𝑗 𝑘 is the stage 𝑗 treatment effect of treatment 𝑘 , where 𝑗 = 1, 2, 𝑘 = 𝑝, 𝑙, ℎ, p = placebo, l =
low dose, and h = high dose. Two hierarchical models: MAC-snSMART (MS) and robust MAC-
snSMART (RMS) methods are compared against the traditional method and the Bayesian Joint
Stage Model (BJSM). The results of total sample size 50 are shown as the colored bars, while the
results of total sample size 25 are shown as the overlaying gray bars. The simulation settings are
described on the top of each graph, where \ 𝑗 𝑘 denotes the true value of the expected treatment
effects of treatment 𝑘 in stage 𝑗 , 𝑗 = 1, 2, 𝑘 = 𝑝, 𝑙, ℎ, and some/cmplt unaligned means some/all
of the placebo treatment effects in external control data are inconsistent with the placebo treatment
effect in the current trial. This figure appears in color in the electronic version of this article, and
color refers to that version.
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Figure 2.5: Simulated bias for the estimators of \1𝑘 .
\ 𝑗 𝑘 is the stage 𝑗 treatment effect of treatment 𝑘 , where 𝑗 = 1, 2, 𝑘 = 𝑝, 𝑙, ℎ, p = placebo, l =
low dose, and h = high dose. Two hierarchical models: MAC-snSMART (MS) and robust MAC-
snSMART (RMS) are compared against the traditional method and the Bayesian Joint Stage Model
(BJSM). The results of total sample size 50 are shown as the colored bars, while the results of total
sample size 25 are shown as the overlaying grey bars. The simulation settings are described on the
top of each graph, where \ 𝑗 𝑘 denotes the true value of the expected treatment effects of treatment 𝑘
in stage 𝑗 , 𝑗 = 1, 2, 𝑘 = 𝑝, 𝑙, ℎ, and some/cmplt unaligned means some/all of the placebo treatment
effects in external control data are inconsistent with the placebo treatment effect in the current trial.
Monte Carlo error (MCE) is smaller than 0.005 for all estimators.
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Figure 2.6: Simulated 95% coverage rate (CR) for the estimators of \1𝑘 .
\ 𝑗 𝑘 is the stage 𝑗 treatment effect of treatment 𝑘 , where 𝑗 = 1, 2, 𝑘 = 𝑝, 𝑙, ℎ, p = placebo, l =
low dose, and h = high dose. Two hierarchical models: MAC-snSMART (MS) and robust MAC-
snSMART (RMS) are compared against the traditional method and the Bayesian Joint Stage Model
(BJSM). The results of total sample size 50 are shown as the colored bars, while the results of total
sample size 25 are shown as the overlaying grey bars. The simulation settings are described on the
top of each graph, where \ 𝑗 𝑘 denotes the true value of the expected treatment effects of treatment
𝑘 in stage 𝑗 , 𝑗 = 1, 2, 𝑝, 𝑙, ℎ, and some/cmplt unaligned means some/all of the placebo treatment
effects in external control data are inconsistent with the placebo treatment effect in the current trial.
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Figure 2.7: Simulated width for the estimators of \1𝑘 .
\ 𝑗 𝑘 is the stage 𝑗 treatment effect of treatment 𝑘 , where 𝑗 = 1, 2, 𝑘 = 𝑝, 𝑙, ℎ, p = placebo, l =
low dose, and h = high dose. Two hierarchical models: MAC-snSMART (MS) and robust MAC-
snSMART (RMS) are compared against the traditional method and the Bayesian Joint Stage Model
(BJSM). The results of total sample size 50 are shown as the colored bars, while the results of total
sample size 25 are shown as the overlaying grey bars. The simulation settings are described on the
top of each graph, where \ 𝑗 𝑘 denotes the true value of the expected treatment effects of treatment
𝑘 in stage 𝑗 , 𝑗 = 1, 2, 𝑘 = 𝑝, 𝑙, ℎ, and external unaligned means the placebo treatment effects in
external control data are inconsistent with the placebo treatment effect in the current trial. Monte
Carlo error (MCE) is smaller than 0.005 for all estimators.
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Figure 2.8: Simulated power of the MAC-snSMART methods.
In this paper, the power is defined as the probability that the credible intervals of \̂1𝑙 − \̂1𝑝 and
\̂1ℎ − \̂1𝑝 do not include 0 when there are treatment effect difference between low dose and placebo
and high dose and placebo. Two hierarchical models: MAC-snSMART (MS) and robust MAC-
snSMART (RMS) are compared against the traditional method and the Bayesian Joint Stage Model
(BJSM). The results of total sample size 50 are shown as the colored bars, while the results of total
sample size 25 are shown as the overlaying grey bars. The simulation settings are described on
the top of each graph. \ 𝑗 𝑘 denotes the true value of the expected treatment effects of treatment 𝑘
in stage 𝑗 , where 𝑗 = 1, 2, 𝑘 = 𝑝, 𝑙, ℎ, p = placebo, l = low dose, and h = high dose. some/cmplt
unaligned means some/all of the placebo treatment effects in external control data are inconsistent
with the placebo treatment effect in the current trial.

The right columns of Figure 2.4, 2.5, 2.6, and 2.7 present the rMSE, average bias, CR , and
average CI width for estimators of the treatment effects when data are generated violating the
exchangeability assumption between stage 1 and 2 (data generating process 2). Due to information
borrowing across both stages, the MAC-snSMART leads to larger positive average biases and
subsequently lower coverage rates and higher rMSE values compared to the traditional method.
The decrease in CR can be mitigated by setting a larger standard deviation for the half-normal prior
of 𝜏𝑘 or incorporating the robustification component (Section 2.3.2.2) into the distribution of \2𝑘 ′ in
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Formula 2.1. The BJSM is less susceptible to this issue since a “shift” parameter 𝛼 is incorporated
in the model (Fang et al. 2023). Under this data generation setting, the traditional method provides
the best placebo treatment effect estimators among the presented methods, and the BJSM provides
the best low and high dose treatment effect estimators. Conclusions were consistent for sample size
25 under both data generation processes and all scenarios.

Table 2.2 and Figure 2.8 present the type I error and power of each model. The MAC-
snSMART methods have smaller type I errors than the traditional method when its assumption of
full exchangeability between stages is upheld, and the type I error is still reasonable (below 0.1)
when this assumption is violated. The BJSM has the smallest type I error when the exchangeability
assumption between two stages is violated. When the treatment effect is clinically meaningful (i.e.,
⩾ 4), all methods have power close to 1 under all scenarios and sample sizes. The MAC-snSMART
methods have a significant increase in power compared to the traditional method and the BJSM
when the treatment effect is equal to 2. The power gain is even greater for a smaller sample size
(𝑛 = 25). Overall, the robust MAC-snSMART is the best-performing model when exchangeability
of stage-wise treatment effects is upheld.

2.5 Re-analysis of SPITFIRE trial

To illustrate the practical utility of the proposed snSMART design and MAC-snSMART methods,
we conducted a reanalysis of the SPITFIRE study. Given that the trial stopped for futility after
stage 1, we only have summary-level NSAA total scores and 6MWD at baseline and week 48
(details in Table 2.3). To create a data set that matches our proposed trial design, we simulated
stage 1 patient-level data by randomly drawing from normal distributions based on the SPITFIRE
data. NSAA outcome data for placebo (𝑛 = 30), low dose (𝑛 = 29) and high dose (𝑛 = 33)
were generated using 𝑁 (−2.99, 0.652 ×

√
30), 𝑁 (−3.44, 0.672 ×

√
29), and 𝑁 (−2.41, 0.642 ×

√
33),

respectively. As per study protocol, we set a change of ⩾ −3.1 points from baseline as the
threshold for a clinically meaningful treatment effect (Muntoni et al. 2018) and to categorize stage
1 responders and nonresponders. Stage 2 patient-level treatment outcomes were again randomly
generated using formula 2.1 with 𝑠𝑘𝑘 ′ randomly chosen between -1 and 1, and low and high dose
outcomes drawn from 𝑁 (−3.44, 0.672√𝑛2𝑙) and 𝑁 (−2.41, 0.642√𝑛2ℎ), respectively. Our proposed
snSMART design and randomly generated stage 1 outcomes dictated 𝑛2𝑙 and 𝑛2ℎ. We followed the
same procedure to simulate stage 1 and stage 2 6MWD data.

We used CINRG DNHS data as the source of external control in this re-analysis. Data from
DNHS participants who met the SPITFIRE trial eligibility criteria and had NSAA total score or
6MWD records were used for the external control group. Our model assumption of exchangeability
between external and current trial controls seems valid due to careful selection of control data and
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Table 2.3: The SPITFIRE trial study measures. Summary statistics are reported as mean (SD) for
NSAA and 6MWD.

Placebo RO7239361 Low
Dose

RO7239361 High
Dose

Baseline
Sample Size 56 55 55

NSAA 23.1 (6.4) 24.5 (5.5) 22.7 (6.7)
6MWD 388.33 (69.59) 399.73 (68.35) 370.73 (93.35)

Week 48
Sample Size - NSAA 30 29 33

Changes in NSAA -2.99 (0.65) -3.44 (0.67) -2.41 (0.64)
Sample Size - 6MWD 29 25 31

Changes in 6MWD -41.3 (8.7) -39.6 (9.0) -30.0 (8.7)

similarity of demographics and disease severity in patients. Since the participant visit schedule of
DNHS was different from the SPITFIRE trial, for each participant, we picked the test record with
“days from baseline” closest to 336 (48 × 7) as their “Week 48” record. Alternatively, we could
impute “Week 48” observations, a method that will be described in Chapter 3. In the end, for
NSAA total score, data from 25 participants were used for the external control data with a mean
NSAA total score change from baseline being -1.04 and its standard deviation being 0.77. The
same data were used for 6MWD with a mean 6MWD change from baseline being -22.36 and its
standard deviation being 27.98.

Considering the wide variation in outcomes, 30,000 realizations were simulated for both 6MWD
and NSAA total score to assess model performance. When implementing the robust MAC-
snSMART method, we carefully followed the prior specification rules outlined in Section 2.3.2.4.
For example, based on the SPITFIRE stage 1 NSAA total scores, most of the observed biases 𝑏𝑙𝑙 , 𝑏𝑙ℎ
and 𝑏ℎ should range between 0 and 7. Therefore, we used a conservative uniform distribution
𝑈𝑛𝑖 𝑓 (0, 15) as the priors for 𝐵𝑙𝑙 , 𝐵𝑙ℎ, and 𝐵ℎ to cover the range. The details of all other prior
specifications can be found in the R code provided.

We fitted the traditional analytic method, BJSM, and robust MAC-snSMART method, with
results shown in Table 2.4. Notice that the estimators obtained from the robust MAC-snSMART
method and BJSM are consistent with each other and have significantly smaller CI widths than the
traditional method because of the efficient use of data across both stages. Thus, even though the
BJSM and the robust MAC-snSMART reached the same conclusion as the SPITFIRE trial, i.e.,
failing to reject the null hypothesis, more precise treatment effects estimations were provided by
these two methods.
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Table 2.4: Example data analysis result comparison. Note: \̂1𝑘 is the estimated stage 1 treatment
effect or change from baseline to 48 weeks in the NSAA or 6MWD for treatment 𝑘 , where 𝑘 = 𝑝, 𝑙, ℎ,
𝑝 = placebo, 𝑙 = low dose, and ℎ = high dose. Four analytic methods: original SPITFIRE trial
results, traditional analytic method, robust MAC-snSMART (RMS), and Bayesian joint stage
modeling (BJSM) are compared. “NSAA” stands for “North Star Ambulatory Assessment total
score”, and “6MWD” stands for “6-minute walk distance”. The 95% confidence or credible
intervals of the estimates are shown in the parenthesis.

Estimator Original Result Traditional RMS BJSM
NSAA

\̂1𝑝 -2.99 (-4.26, -1.71) -2.98 (-4.24, -1.73) -2.89 (-3.68, -2.10) -2.91 (-4.01, -1.82)
\̂1𝑙 -3.44 (-4.75, -2.13) -3.44 (-4.74, -2.14) -3.40 (-4.49, -2.31) -3.38 (-4.34, -2.41)
\̂1ℎ -2.41 (-3.66, -1.16) -2.41 (-3.65, -1.17) -2.49 (-3.56, -1.42) -2.42 (-3.35, -1.48)

\̂1𝑙 − \̂1𝑝 -0.45 (-2.17, 1.27) -0.46 (-2.27, 1.36) -0.52 (-1.88, 0.83) -0.46 (-1.91, 0.98)
\̂1ℎ − \̂1𝑝 0.58 (-1.10, 2.26) 0.58 (-1.20, 2.35) 0.40 (-0.94, 1.74) 0.50 (-0.93, 1.92)
6MWD

\̂1𝑝 -41.3 (-58.4, -24.2) -41.3 (-58.2, -24.5) -41.0 (-52.5, -29.3) -41.1 (-54.4, -27.8)
\̂1𝑙 -39.6 (-57.2, -22.0) -39.6 (-57.0, -22.2) -39.4 (-53.2, -26.1) -39.3 (-51.6, -27.6)
\̂1ℎ -30.0 (-47.1, -12.9) -30.0 (-46.7, -13.0) -30.2 (-42.1, -18.0) -29.7 (-40.8, -18.7)

\̂1𝑙 − \̂1𝑝 1.7 (-21.1, 24.6) 1.8 (-22.6, 26.0) 1.6 (-15.6, 19.1) 1.8 (-16.6, 19.5)
\̂1ℎ − \̂1𝑝 11.3 (-11.0, 33.6) 11.5 (-12.5, 35.4) 10.9 (-6.4, 28.1) 11.4 (-5.8, 28.6)

2.6 Discussion

In this paper, we were motivated by the current drug development paradigm for DMD and other
similar rare diseases to present an alternative design and Bayesian methods with efficient use of all
available evidence including data from both stages and external control. We have proposed a new
snSMART design and robust MAC-snSMART method to estimate the treatment effect of placebo,
low and high doses with a continuous outcome of interest. The robust MAC-snSMART method
provides accurate and robust estimators when the expected treatment effect of the same dose level
across stages are similar. Our proposed snSMART design and robust MAC-snSMART methods
are aligned with the mission of US Food and Drug Administration (FDA)’s Complex Innovative
Design program (2020). We have provided guidelines for prior distributions and alternative models
for sensitivity analyses in practical implementation. At the planning stage, it is critical to consider
a wide number of scenarios (like those presented in Section 2.4) to understand the impact of model
assumptions, prior choice, and sample size for the proposed design and analytic method. This
exercise is crucial for sponsors and regulators to understand the practical efficiency and robustness
of the model.

The proposed robust MAC-snSMART method assumes treatment effects from stages 1 and 2
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are exchangeable, which relies on this assumption of stable disease (and an adequate washout
period) to assume stable treatment effects across stages. Diseases like DMD used as motivation
here, corticobasal degeneration (CBD), and familial Mediterranean fever (FMF), which are slower
to progress, are good candidates for the proposed snSMART design and analytic methods. If
first and second stage treatment effects are not similar or there is not an adequate washout period,
a multi-stage design and robust exchangeable model may not be appropriate and lead to biased
estimation of treatment effects. At the end of the trial, sensitivity analyses that compare results
from a traditional analytic method and the robust MAC-snSMART method can be conducted to
assess these assumptions.

The proposed model is tested with extensive simulation studies across various scenarios. The
scenarios include incorporating external control data which are consistent and inconsistent with
the current trial placebo arm. Note that, this is not equivalent to a simple pooled analysis of
external and concurrent control data as the MAC-snSMART model takes into account between-
trial heterogeneity. For example, in the SPITFIRE trial re-analysis, the ESS for the robust MAC-
snSMART analysis is 12, which is less than the sample size of external placebo data (𝑛 = 25).
Thus, more data contributing to the placebo will not always be useful for decreasing the number of
patients needed on the placebo arm. It depends on the degree of heterogeneity between different
data sources.

While, this manuscript concentrates on enriching the control arm, the MAC framework permits
enrichment of treatment arms. However, we believe relevant treatment data are less likely to be
available for use in dose-finding studies. An exception may be the use of adult data in pediatric
drug development, but there is debate and uncertainty surrounding the validity and reliability of
extrapolating safety and efficacy data from adult populations to pediatric populations.

It is possible that even a high dose of the investigative treatment cannot provide a clinically
meaningful treatment effect by the end of stage 1. Under this scenario, it is not ethical to continue
the trial for those who received high dose in stage 1. Hence, in practice, we recommend a stopping
rule such that if less than 30% of patients respond to high dose in stage 1, stage 2 will not be
conducted, and all treatment effects will be calculated based on stage 1 data only. There may be
additional trade-offs between efficacy and toxicity which are beyond the scope of this manuscript
and the subject of some of our future work.

The SPITFIRE trial and many other DMD trials incorporate participant demographic and base-
line characteristic covariates into their analysis. In the future, we hope to extend the robust
MAC-snSMART method to include patient-level covariates. The use of patient-level covariates is
discussed in Kotalik et al. (2021) as a way to assess covariate-adjusted exchangeability. The study
uses a linear model and the existing multi-source exchangeability models framework to enable
borrowing even when marginal treatment effects are different, but covariate-adjusted exchangeabil-
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ity is maintained. Integrating this feature into the snSMART approach would broaden borrowing
opportunities. In addition, data in DMD trials are usually collected in a longitudinal manner with
3 or more visits. In our study, like in SPITFIRE, we employed the commonly used “change from
baseline” as the primary endpoint, which is in line with regulatory standards. The placebo group
in our study allows us to assess the possible “regression to the mean” effect. Although commonly
used, it’s worth noting that “change from baseline” may not always be the most appropriate mea-
sure. Our approach remains valid if using the absolute outcome at the end of each stage, and the
performance of our method is not affected. If absolute outcomes are used, we can examine the
credible intervals in the difference of the differences among the high dose, low dose, and placebo
groups. Alternatively, it is important for future work to investigate ways to incorporate longitudinal
data into our analytic methods.
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CHAPTER 3

Integrating Inverse Probability Weighted External
Control Data into a Bayesian Longitudinal Small

Sample, Sequential, Multiple Assignment
Randomized Trial (snSMART) Design

3.1 Introduction

DMD is a severe genetic disorder inherited in an X-linked manner, affecting approximately 19.8
per 100,000 live male births (Crisafulli et al. 2020). Characterized by a progressive loss of muscle
function, DMD leads to severe physical disability, loss of mobility, and premature death due to
cardiac or respiratory failure. The average life expectancy for patients with DMD hovers around
30 years, underscoring a pressing need for effective therapeutic interventions.

The complexity of conducting clinical research in rare diseases such as DMD is multifaceted.
Traditional trial designs face substantial hurdles due to the limited pool of available participants,
the wide variability in disease progression, and the ethical dilemmas posed by requiring long-term
placebo control follow-ups. These challenges underline the necessity for innovative approaches to
trial design that can accommodate the unique constraints of rare disease research, ensuring that
potential therapies are evaluated efficiently and ethically.

This paper introduces a novel methodological framework aimed at enhancing the efficiency of
clinical trials for DMD and similar rare diseases. Our approach leverages the integration of external
controls within longitudinal study designs, addressing key obstacles traditionally associated with
this realm of research. Drawing inspiration from the tadalafil trial (NCT01865084)—a randomized,
double-blind, placebo-controlled study that assessed the efficacy, safety, and side effects of tadalafil
in treating DMD —this paper elucidates how to effectively address heterogeneities between data
sources and trial stages in order to provide a viable solution to the ethical, logistical, and analytical
challenges of conducting rigorous clinical trials in rare disease populations.
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The tadalafil trial, one of the largest DMD clinical studies to date, enrolled 331 patients at
baseline. During the first 48 weeks, participants were randomized to receive either a placebo, a low
dose, or a high dose of tadalafil. After week 48, those initially given a placebo were randomized
to receive either a high or low dose, and those who began with either the low or high dose of
tadalafil were not allowed to adjust their dose if it proved ineffective. The primary analysis of
the trial planned to focus solely on data from the first 48 weeks, thereby overlooking valuable
insights gathered after week 48. We suggest enhancements to the trial design, such as facilitating
dose adjustments and reducing the number of patients assigned to the placebo group by integrating
external control data. The efficiency of the primary analysis can also be enhanced by adopting a
statistical model that considers data from all current trial stages and external controls.

In this paper, we propose a robust Bayesian analytic method that leverages external control
data alongside current trial data to accurately estimate the effects of experimental drugs tested
in snSMART as outlined by Wang et al. (2023). We build upon the MAC-snSMART approach
proposed by Wang et al. by incorporating patient baseline characteristics. This enhancement allows
for a more nuanced comparison of heterogeneities between the external controls and the current
trial, and facilitates the use of longitudinal data for a more precise estimation of treatment effects.
Our methodology not only addresses potential discrepancies between external and current trial
controls but also navigates the issue of “drift” in clinical outcomes across different stages of the
trial.

3.2 Motivating example: a phase 3 study of tadalafil for DMD

Our motivating example is a randomized, double-blind, placebo-controlled, parallel 3-arm, phase 3
trial of tadalafil for DMD (NCT01865084, Figure 3.1a). This trial aims to explore whether tadalafil
can effectively slow the progression of walking impairment in boys with DMD . During the initial
48 weeks (stage 1), participants were given either one of two doses of tadalafil or a placebo (1:1:1).
Following this stage, they had the opportunity to join open-label extension (OLE) (stage 2), which
included two periods. In the first period of OLE, all participants were treated with tadalafil for 48
weeks. Patients who were given tadalafil in the double-blind treatment stage started OLE on the
same dosage of tadalafil. Those who received a placebo in the double-blind treatment stage were
randomly assigned to one of the tadalafil doses for the OLE period. Those who completed the first
period of OLE proceeded to the second period, receiving tadalafil for a minimum of another 48
weeks. The primary outcome was change from baseline in 6-minute walk distance (6MWD), which
was measured twice at baseline and once every 12 weeks thereafter. Secondary outcomes included
the North Star Ambulatory Assessment (NSAA) and other timed function tests (Victor et al. 2017).
The trial’s primary analysis only used data gathered during stage 1. To assess the primary null
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hypothesis, which stated no difference between each treatment and placebo, a repeated measures
analysis was conducted using a mixed-effects model of repeated measures (MMRM). This trial
represents a typical development scenario for new drugs in many rare diseases. The conclusion
of the trial is that 48 weeks of tadalafil treatment did not show improvement in the 6MWD or
other indicators of walking ability in boys aged 7 to 14 with DMD who were receiving standard
glucocorticoid therapy (Victor et al. 2017). It is important to clarify that, in this paper, our objective
is not to critique or assess the clinical efficacy of the treatments used, nor to comment on decisions
made by the sponsors or regulatory authorities regarding the trial or the drug involved. Instead, the
goal is to use its trial setting and published results to illustrate the effectiveness of our proposed
design modification and analytical methods.

Just like the SPITFIRE design (NCT03039686) discussed in Wang et al. (2023), the tadalafil trial
is similar to an snSMART (Tamura et al. 2016) (Figure 2.1) but includes no re-randomization for
patients started on low or high dose of tadalafil after the end of stage 1 and used only the stage 1 data
in the primary analysis. Similar trials could gain advantages from incorporating external control
data, enabling more patients to receive the investigational drug, thereby assisting in recruitment
and retention. However, there is one aspect present in the tadalafil trial that snSMART researchers
have not yet investigated: the analysis of longitudinal trial data. We aim to fill this gap with a
Bayesian longitudinal piecewise model as an alternative to the traditional MMRM. In recent years,
there has been considerable advancement in snSMART methods (Wei et al. 2018, 2020, Hartman
et al. 2021) that are now implemented in an R package (Wang & Kidwell 2022). Further extensions
of snSMART include a group-sequential design for early termination of an arm (Chao, Braun,
Tamura & Kidwell 2020) and the inclusion of various dose levels (Fang et al. 2021, 2023). In
Wang et al. (2023), an snSMART design is proposed that formally incorporates external control
data, and a robust MAC approach, termed robust MAC-snSMART, is developed to provide accurate
and robust estimators of treatment effects. A detailed literature review on incorporating external
control data is provided by Wang et al. (2023). In short, clinical trials can utilize external data
through Bayesian methods like power priors (Ibrahim & Chen 2000) and dynamic methods (Duan
2005, Neuenschwander et al. 2009, 2010, 2016, Hobbs et al. 2011, Schmidli et al. 2014), as well
as frequentist approaches such as propensity score matching (Rosenbaum & Rubin 1983, Lin et al.
2018).

Our proposed approach in this manuscript represents a significant enhancement of the robust
MAC-snSMART method, offering major improvements to the existing snSMART research: 1)
enabling the analysis of longitudinal data, 2) allowing for the inclusion of patient baseline char-
acteristics, 3) handling missing data through multiple imputation, 4) limiting the heterogeneity
between data sources through PS, and 5) addressing the possible stage-wise treatment effect non-
exchangeability caused by unexpected disease progression or ineffective washout period in-between
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stages. These enhancements significantly broaden the applicability of the innovative snSMART
design and increase efficiency in rare disease drug development. However, to model the disease
progression of rare diseases like DMD longitudinally and across multiple trial stages, innovative
modeling methods need to be developed.

In recent years, there has been a surge in interest in modeling non-traditional treatment effects
and disease progression for more effective and interpretable estimators. Raket (2022) introduced
progression models for repeated measures (PMRM), non-linear mixed-effects models for analyz-
ing time-based treatment effects like slowing disease progression. For rare diseases, Lennie et al.
(2020) proposed a latent process model to study DMD progression using 6MWD results, employing
a Bayesian hierarchical nonlinear mixed-effects model. Quintana et al. (2019) utilized a Bayesian
approach for longitudinal data from GNE myopathy patients, developing a model that aligns sub-
jects by latent disease age to predict long-term progression. Some studies have also focused on
incorporating natural history studies data or other types of external control data in addition to
innovatively modeling disease progression. For instance, Fouarge et al. (2021) adopted a hierarchi-
cal Bayesian mixed-effects model to reliably simulate the progression of centronuclear myopathy
patients over time and to compare the simulated trajectories with actual observed post-treatment
outcomes probabilistically. Zhou & Ji (2021) proposed a method for incorporating external data
into the analysis of clinical trials using Bayesian additive regression trees (BART), specifically
aimed at estimating the conditional or population average treatment effect. Kiran Chandra et al.
(2021) proposed a novel Bayesian nonparametric mixture model to create synthetic control groups
with electronic health records (EHR) in single-arm treatment-only clinical trials. Our method is
specific to the snSMART design and, therefore, differs from the papers discussed above.

Like many of the abovementioned methods, we also adopt a Bayesian statistical method. Our
approach not only flexibly models disease progression across trial stages in a piecewise manner
but also greatly enhances the efficiency of estimating treatment effects through the use of trial data
across various stages. Our snSMART design and methodology presuppose a) consistent study
conditions throughout the trial (meaning, in the absence of treatment effects, patients’ primary
outcomes remain largely unchanged, or decline in a stable manner), b) a sufficient washout period
between the trial’s two stages, and c) exchangeable treatment effects across these stages. The
snSMART design is unsuitable for conditions that lack stability during the trial. We propose model
adjustments and sensitivity analyses to accommodate potential deviations from these assumptions.

3.2.1 Proposed Modification for Tadalafil Trial Design

In the snSMART design (Wang et al. 2023), illustrated in Figure 3.1b, patients are initially ran-
domized in a 1:2:2 ratio to receive either a placebo, a low dose, or a high dose (e.g., of tadalafil)
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Figure 3.1: (a) Study design of the tadalafil trial (NCT01865084). (R) denotes randomization. (b)
Study design of the snSMART design (Wang et al. 2023) that formally incorporates external control
data. Participants are randomized (R) with 1:2:2 chances of receiving placebo, low dose, or high
dose, respectively, in stage 1. At the end of stage 1, participants are assigned or re-randomized to
their stage 2 treatment based on their stage 1 treatment and response status. Outcomes are collected
at the end of stage 1 and 2.
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in stage 1. After 48 weeks, participants are re-assigned or re-randomized based on their initial
treatment and post-baseline 6MWD. According to the protocol of the tadalafil trial, a participant is
considered a responder at week 48 if their post-baseline 6MWD does not decrease by more than
10%. Those who received a placebo in stage 1 are equally re-randomized to either a low or high
dose in stage 2, independent of their stage 1 response, ensuring all participants receive treatment.
For participants initially on a low dose, responders remain on it, while non-responders switch to a
high dose. High dose responders in stage 1 are equally re-randomized to either low or high dose,
considering the potential efficacy and tolerability of a lower dose. However, non-responders to
the high dose are excluded from stage 2 to avoid unnecessary toxicity and ethical concerns, as a
lower dose is unlikely to be effective if a higher dose proved ineffective. This design choice aims
to optimize treatment effectiveness and ethical considerations in the trial.

3.3 Methods

3.3.1 Mixed Model Repeated Measures (MMRM)

Traditionally, longitudinal data are most commonly analyzed using a MMRM analysis to test the
primary null hypothesis of no difference between each treatment (i.e., low and high dose tadalafil)
and placebo in mean change in treatment outcomes. The MMRM model typically includes a fixed
effect for baseline primary outcomes, in our case, 6MWD, as well as fixed effects for treatment
group assignment, visit, treatment group-by-visit interaction, and a random effect for subjects. An
unstructured covariance matrix is typically used to model the within-subject errors. Note that
a traditional analytic method does not incorporate external control data and uses only stage 1
outcomes in the analysis.

3.3.2 Bayesian joint stage model (BJSM)

The snSMART design can be analyzed with a customized BJSM. Unlike the dose level BJSM
proposed by Fang et al. (2023), which uses data from two stages without incorporating external
data, our approach involves integrating external control data using informative normal distribution
priors for the placebo effect parameter. This involves estimating the prior’s parameters through
a method of moments approximation from external data and adjusting the variance to reach the
desired effective sample size (ESS).
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3.3.3 Bayesian longitudinal piecewise meta-analytic combined (BLPM) ap-
proaches

The primary analysis using our proposed BLPM approach involves a two-step procedure: 1)
calculating the PS (Rosenbaum & Rubin 1983) for all external control patients by fitting a logistic
regression model to all patients from external control data and current trial data, and 2) fitting
the BLPM model to external controls and current trial data to estimate the treatment effects. The
structure of the BLPM approach is illustrated in Figure 3.2. More details on each step will be
provided in the following sections.

3.3.3.1 Notation

The following notation is used in this section. 𝑌𝑑 (𝑖) 𝑗 𝑘 and `𝑑 (𝑖) 𝑗 𝑘 denote the observed and underlying
true outcome (e.g., NSAA score or 6MWD) for patient 𝑖 at visit 𝑗 = 1, ..., 𝑛 𝑗 in stage 𝑘 = 1, 2 of
trial 𝑑 = 1, ..., 𝑛𝑑 , ★. Here, we use 𝑑 = ★ to denote current trial, and use 𝑑 = 1, ..., 𝑛𝑑 to denote the
𝑛𝑑 external controls we collected. We use 𝑙 and ℎ to denote low dose and high dose, respectively.
Thus, 𝑌★(10)31 denotes the observed outcome of current trial patient 10 at third visit in stage 1, and
𝑌3(1)41 denotes the observed outcome of patient 1 in the 3rd external control data at fourth visit
in stage 1. We use 𝑿 or 𝒁 to denote the baseline covariate matrix, and use 𝛽s and 𝑏s to denote
the fixed effect coefficients and random effects, respectively. 𝑇1𝑖 and 𝑇2𝑖 are used to denote stage 1
treatment and stage 2 treatment received by subject 𝑖 in current trial ★. 𝜔𝑖s stands for the IPTW of
subjects.

3.3.3.2 PS and IPTW calculation

Controlling for potential bias is essential when using external control data in clinical trials. To
combat bias, especially from unmeasured confounders, it’s important to prespecify statistical meth-
ods. Addressing measured confounders starts with carefully selecting external control data. Pocock
(1976) and Lim et al. (2018) have outlined criteria for assessing the similarity between external and
trial control data.

In our context, after excluding subjects from the external controls who do not meet the inclusion
and exclusion criteria of the current trial, and after collecting all baseline covariates for those
retained in the external controls and those enrolled in the current trial, the PS can be calculated.
The PS is defined as the probability of a subject being from the current study rather than from
external data sources. The logistic regression used to obtain the PS estimates can be formulated
as: 𝑙𝑜𝑔𝑖𝑡{𝑃(𝑆𝑡𝑢𝑑𝑦𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑑𝑖 = 1)} = 𝑿𝑑𝑖𝜷, where 𝑆𝑡𝑢𝑑𝑦𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟★𝑖 = 1 if the patient is from
the current trial, and 𝑆𝑡𝑢𝑑𝑦𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑑𝑖 = 0 if patient 𝑖 is from one of the external control datasets
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Figure 3.2: Structure of the standard BLPM approach

𝑑. Specifically for the tadalafil trial, covariates may include variables such as age, race, ethnicity,
height, weight, baseline NSAA and baseline 6MWD.

The IPTW for participants is determined using the stabilized weighting method, which facilitates
the calculation of the average treatment effect in the treated (ATT). In this approach, subjects
from the current trial are assigned a weight of 1 to maximize the utilization of the current trial
data. For subjects in the external control group, weights are computed using the formula 𝜔′

𝑑𝑖
=

𝑃𝑆𝑑𝑖/(1 − 𝑃𝑆𝑑𝑖), and then normalized to 𝜔𝑑𝑖 = 𝜔′
𝑑𝑖
/(∑𝑖∈𝑡𝑟𝑖𝑎𝑙 𝑑 𝜔

′
𝑑𝑖
/𝑁𝑑), where 𝑁𝑑 represents the

total number of subjects in trial 𝑑.
Next, we trim the external controls to retain only those subjects whose PS fall within the range

of the PS of all subjects in the current trial. This step further reduces heterogeneity between data
sources. However, despite careful selection and PS trimming, clinical outcomes may vary across
sources due to various intrinsic and extrinsic factors, necessitating a model-based approach for
proper analysis.

3.3.3.3 Structure the Bayesian longitudinal piecewise model across trial stages

Given the relatively stable rate of decrease in observed 6MWD and NSAA over time in the tadalafil
trial (Victor et al. 2017), we adopt a piecewise linear regression model (Nahum-Shani et al.
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2020). This model fits a separate line segment for different trial stages, allowing the linear trend
in the outcome during stage 1 to differ from that during stage 2. If the rate of decrease varies
significantly between visits, shorter time intervals for each line segment can be applied. Under
the proposed snSMART design, a subject in the current trial could follow one of seven distinct
treatment sequences: (𝑝 then 𝑙), (𝑝 then ℎ), (𝑙 then 𝑙), (𝑙 then ℎ), (ℎ then 𝑙), (ℎ then ℎ), and (ℎ with
No stage 2 treatment). In contrast, a subject in the external controls can be considered as being in
the placebo arm in stage 1 only. Consequently, our piecewise linear model for both current trial
and external control subjects can be formulated as follows:

𝑌𝑑 (𝑖) 𝑗 𝑘 ∼ 𝑁 (`𝑑 (𝑖) 𝑗 𝑘 , 𝜎2
𝑑/𝜔𝑑𝑖),

`𝑑 (𝑖) 𝑗 𝑘 =𝛽0,𝑑 + 𝛽1𝑡,𝑑 × 𝑡𝑑 + 𝑏1𝑖,𝑑 + 𝑏2𝑖,𝑑 × 𝑡𝑑 + 𝒁𝑖,𝑑𝜷𝑧,𝑑 + (𝛽1𝑙 𝐼 [𝑇1𝑑𝑖 = 𝑙] + 𝛽1ℎ𝐼 [𝑇1𝑑𝑖 = ℎ]) × 𝑡1+
(𝛽2𝑙1𝐼 [𝑇1𝑑𝑖 = 𝑝, 𝑇2𝑑𝑖 = 𝑙] + 𝛽2ℎ1𝐼 [𝑇1𝑖 = 𝑝, 𝑇2𝑖 = ℎ] + 𝛽2𝑙2𝐼 [𝑇1𝑖 = 𝑙, 𝑇2𝑖 = 𝑙]+
𝛽2ℎ2𝐼 [𝑇1𝑖 = 𝑙, 𝑇2𝑖 = ℎ] + 𝛽2𝑙3𝐼 [𝑇1𝑖 = ℎ, 𝑇2𝑖 = 𝑙] + 𝛽2ℎ3𝐼 [𝑇1𝑖 = ℎ, 𝑇2𝑖 = ℎ]) × 𝑡2,

(3.1)

where 𝒁s are the baseline covariates, and 𝜔𝑑𝑖, introduced previously in Section 3.3.3.2, is included
to further reduce the impact of external control subjects who are dissimilar to those in the current
trial. 𝛽0,𝑑 and 𝛽1𝑡,𝑑 are trial-specific and represent the model intercept and the natural DMD
disease progression time (placebo) effect, respectively. 𝛽1𝑙 , and 𝛽1ℎ represent the treatment effect
difference between stage 1 low dose and the time (placebo) effect, and the treatment effect difference
between stage 1 high dose and the time (placebo) effect, respectively. Similarly, 𝛽2𝑙1 denotes the
treatment effect difference between stage 2 low dose and the time (placebo) effect when the subject
received placebo in stage 1, 𝛽2ℎ1 denotes the treatment effect difference between stage 2 high
dose and the time (placebo) effect when the subject received placebo in stage 1, 𝛽2𝑙2 denotes the
treatment effect difference between stage 2 low dose and the time (placebo) effect when the subject
received low dose in stage 1, and so on. The key estimands of interest are the stage 1 differences
in treatment effects between each dose and placebo (𝛽1𝑙 , 𝛽1ℎ). In this model, 𝑡★ = 𝑡1 + 𝑡2, where
𝑡1 = 1, . . . , 𝑛 𝑗 and 𝑡2 = 0, . . . , 𝑛 𝑗 . For example, when an observation gathered at stage 1 visit 1
is fitted, 𝑡1 = 1, 𝑡2 = 0, and 𝑡★ = 1; similarly, when observations gathered at stage 2 visit 2 are
fitted, 𝑡1 = 4, 𝑡2 = 2, and 𝑡★ = 6. To account for between-individual heterogeneity in the model,
both a trial-specific subject-level random slope, denoted as 𝑏2𝑖,𝑑 , and a random intercept, 𝑏1𝑖,𝑑 , are
included. (𝑏1𝑖,𝑑 , 𝑏2𝑖,𝑑) are zero-mean bivariate Gaussian variables with variances 𝜎2

𝑏1,𝑑 and 𝜎2
𝑏2,𝑑

respectively, and a correlation coefficient 𝜌1,𝑑 .
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3.3.3.4 Use of external information for 𝛽0,★, 𝛽1𝑡,★, 𝜎𝑏1,★ and 𝜎𝑏2,★

To more effectively utilize the external control data, we employ the robust MAC approach, detailed
in Neuenschwander et al. (2016) and Wang et al. (2023), to assist in estimating the coefficients 𝛽0,★,
𝛽1𝑡,★, 𝜎𝑏1,★, and 𝜎𝑏2,★. The robust MAC structure for 𝛽0,★ and 𝛽1𝑡,★ of current trial and 𝛽0,𝑑 and
𝛽1𝑡,𝑑 of external control 𝑑 is specified as below:[

𝛽0,𝑑

𝛽1𝑡,𝑑

]
∼ 𝑝𝑑 × 𝐵𝑉𝑁

( [
`0

`1

]
,𝑽 (𝜏0,𝑑 , 𝜏1,𝑑)

)
+ (1 − 𝑝𝑑) × 𝐵𝑉𝑁

( [
𝑚0,𝑑

𝑚1,𝑑

]
,𝑽 (𝑣0,𝑑 , 𝑣1,𝑑)

)
, (3.2)

[
𝛽0,★

𝛽1𝑡,★

]
∼ 𝑝★ × 𝐵𝑉𝑁

( [
`0

`1

]
,𝑽 (𝜏0,★, 𝜏1,★)

)
+ (1 − 𝑝★) × 𝐵𝑉𝑁

( [
𝑚0,★

𝑚1,★

]
,𝑽 (𝑣0,★, 𝑣1,★)

)
, (3.3)

where

𝑽 (𝜏0,𝑑 , 𝜏1,𝑑) =
[

𝜏2
0,𝑑 𝜌01𝜏,𝑑𝜏1,𝑑𝜏0,𝑑

𝜌01𝜏,𝑑𝜏1,𝑑𝜏0,𝑑 𝜏2
1,𝑑

]
,𝑽 (𝑣0,𝑑 , 𝑣1,𝑑) =

[
𝑣2

0,𝑑 𝜌01𝑣,𝑑𝑣1,𝑑𝑣0,𝑑

𝜌01𝑣,𝑑𝑣1,𝑑𝑣0,𝑑 𝑣2
1,𝑑

]
,

𝑽 (𝑣0,★, 𝑣1,★) =
[

𝑣2
0,★ 𝜌01,★𝑣1,★𝑣0,★

𝜌01,★𝑣1,★𝑣0,★ 𝑣2
1,★

]
.

𝑝𝑑 and 𝑝★ determine the resemblance between 𝛽0,𝑑 and 𝛽1𝑡,𝑑 of the external control dataset 𝑑
and the current trial 𝛽0,★ and 𝛽1𝑡,★. The selection of values for 𝑚0,𝑑 , 𝑚1,𝑑 , 𝑚0,★, 𝑚1,★, 𝑣0,𝑑 , 𝑣1,𝑑 , 𝑣0,★,
and 𝑣1,★ relies on expert insights. If no expert insights are available, weakly informative values can
be used (Kass & Wasserman 1995). In doing so, we further down-weight the non-exchangeable
external data based on variability between data sources. In addition to 𝛽0,★ and 𝛽1𝑡,★, a similar
mixture of bivariate normal distributions can also be used to incorporate external information into
the estimation of 𝜎𝑏1,★ and 𝜎𝑏2,★.

3.3.3.5 Combining evidence for low and high dose groups

Given that our model assumes exchangeable treatment effects across trial stages, and since the
original purpose of designing stage 2 of the current trial is to gather more data to assess the
treatment effect in stage 1, it is logical to add a component to the method that combines the data
from all low dose and high dose groups to achieve better estimation efficiency. Therefore, we
assume that

𝛽𝛾𝑙 ∼ 𝑁 (`𝑙 , 𝜏2
𝛾𝑙
); 𝛽𝛾ℎ ∼ 𝑁 (`ℎ, 𝜏2

𝛾ℎ
), (3.4)
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where 𝛾𝑙 = 1𝑙, 2𝑙1, 2𝑙2, 2𝑙3 and 𝛾ℎ = 1ℎ, 2ℎ1, 2ℎ2, 2ℎ3. The snSMART design, suitable for
stable conditions with a required washout period between stages, supports the assumption of
exchangeable treatment effects. If stage-wise non-exchangeability is a concern, the robustification
(mixture) component outlined in Section 3.3.3.4 can be integrated into the distribution of treatment
effect 𝛽s to address non-exchangeable treatment effects across trial stages. We name this version
of the model as the robust BLPM model. In this paper, we implement both the standard BLPM
method and the robust BLPM in simulation studies (Section 3.4) and the reanalysis of tadalafil trial
(Section 3.5).

3.3.3.6 Missing data imputation

Sometimes, data from the external controls have missing values due to different visiting schedules
from the current trial or have been lost to follow-up because the external control trial was stopped.
Although the BLPM model code can run smoothly with missing data, we recommend conducting
multiple imputations to obtain more convincing estimators when the data is missing completely at
random (MCAR) or missing at random (MAR). We perform multiple imputation using a Bayesian
linear mixed model (LMM) incorporating fixed effects for the intercept, received treatment, visit,
baseline outcomes, and various other baseline covariates. Additionally, this model includes subject-
level random effects for visits and random intercepts.

We generate imputed datasets using the posterior predictive distribution (PPD) technique (Gel-
man et al. 2014). The PPD illustrates the distribution of potential unobserved values derived from
the observed values, and it adheres to the following structure:

𝑝(𝑦𝑝𝑟𝑒𝑑 |𝑦) =
∫

𝑝(𝑦𝑝𝑟𝑒𝑑 , \ |𝑦)𝑑\ =
∫

𝑝(𝑦𝑝𝑟𝑒𝑑 |\, 𝑦)𝑝(\ |𝑦)𝑑\ =
∫

𝑝(𝑦𝑝𝑟𝑒𝑑 |\)𝑝(\ |𝑦)𝑑\,

This formulation takes advantage of the conditional independence between the observed data 𝑦,
unobserved data 𝑦𝑝𝑟𝑒𝑑 , and model parameters \. The PPD can be conceptualized as an averaging of
conditional predictions across the posterior distribution of \. For each sampled \ from the posterior
distribution, a corresponding sample of 𝑦𝑝𝑟𝑒𝑑 is acquired.

In total, more than 100 imputed datasets should be generated, and to obtain the final estimators,
we should combine all the sampled draws from the Markov chain Monte Carlo (MCMC) run on
each imputed dataset (Zhou & Reiter 2010).

3.3.3.7 Prior specification

We suggest generalizable, weakly informative normal distributions as priors for all the ` parameters,
i.e., priors that are worth approximately one observation (Kass & Wasserman 1995). We suggest
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using non-informative𝑈𝑛𝑖 𝑓 (−1, 1) prior distributions for all the correlation parameters (𝜌).
Half-normal priors with standard deviations roughly equal to half of the standard deviation

of the estimated parameter, i.e., 𝛽0,★, 𝛽1𝑡,★, 𝜎𝑏1,★ and 𝜎𝑏2,★, are recommended for all the 𝜏s,
aiming to cover very small to large between-trial heterogeneity. More details about how to specify
prior for 𝜏 can be found in Spiegelhalter et al. (2004) and Gelman (2006). We suggest weakly
informative normal and half-normal distributions for covariates in the 𝜷𝑧,𝑑 vector and 𝜎 in Formula
3.1, respectively.

3.4 Simulation settings

We assess the sensitivity of our proposed BLPM and robust BLPM methods similarly to the
simulation studies conducted by Wang et al. (2023). The simulation scenarios cover a range of data
generating settings, treatment effects, sample sizes, and instances of non-exchangeability between
external control and current snSMART data. We evaluate two distinct data generation processes:
the first adheres to the proposed model, while the second allows for deviations from exchangeability
between stages 1 and 2. The first data generation process assumes stage-wise exchangeability: at
the subject level, the placebo, low dose, and high dose treatment effects between visits in stage 1 are
generated through normal distributions with predetermined mean and standard deviation values.
For stage 2, the low dose and high dose treatment effects for subjects between visits are generated
using the same distributions as in stage 1. In the second data generation process, treatment effects
for stage 1 and stage 2 are not exchangeable. Specifically, the stage 2 low dose and high dose
treatment effects are generated using the same normal distributions as stage 1, but with their means
set 1 unit higher than those in stage 1. This type of data could occur in an snSMART where the
washout period between stages 1 and 2 is inadequate or unexpected disease progression is observed.
In addition to treatment effects, we also generated subject-level baseline age, baseline outcome,
and the time effect on disease progression using normal distributions. To generate longitudinal
data at each visit, it is necessary to sum up all the baseline effects, accumulated time effects, and
accumulated treatment effects by each visit. In the simulated datasets, 4 visits are included in both
stage 1 and stage 2.

Alongside evaluating various data generation processes, we also explore the efficacy of our pro-
posed models across six distinct treatment effect scenarios, particularly in the context of DMD. In
this setting, a NSAA score of 4 serves as the criterion to distinguish responders from nonresponders
at the conclusion of stage 1. For this purpose, we define 𝛿1𝑝, 𝛿1𝑙 , and 𝛿1ℎ as the absolute accu-
mulated treatment effects (e.g., NSAA score) for placebo, low dose, and high dose, respectively,
by the end of stage 1, and 𝛿𝑑 represents the absolute placebo treatment effect in external control
𝑑. Scenario 1 posits the new drug’s ineffectiveness (𝛿𝑑 = 𝛿1𝑝 = 𝛿1𝑙 = 𝛿1ℎ = 0). In scenario
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Table 3.1: Simulation parameters and scenarios. Note: 𝛿𝑑 denotes the mean absolute placebo
treatment effect (e.g., NSAA score) in external control 𝑑 at the end of stage 1, where 𝑑 = 1, 2, ...𝑛𝑑 .
𝛿𝑘𝑇 is the mean absolute treatment effect of treatment 𝑇 at the end of stage 𝑘 , where 𝑇 = 𝑝, 𝑙, ℎ, 𝑘 =

1, 2, 𝑝 = placebo, 𝑙 = low dose, and ℎ = high dose.

Data Generating Process 1 Data Generating Process 2

Scenario 1
𝛿𝑑 = 𝛿1𝑝 = 0, 𝛿𝑑 = 𝛿1𝑝 = 0,
𝛿1𝑙 = 𝛿2𝑙 = 0, 𝛿1𝑙 = 0, 𝛿2𝑙 = 1,
𝛿1ℎ = 𝛿2ℎ = 0 𝛿1ℎ = 0, 𝛿2ℎ = 1

Scenario 2
𝛿𝑑 = 𝛿1𝑝 = 0, 𝛿𝑑 = 𝛿1𝑝 = 0,
𝛿1𝑙 = 𝛿2𝑙 = 0, 𝛿1𝑙 = 0, 𝛿2𝑙 = 1,
𝛿1ℎ = 𝛿2ℎ = 6 𝛿1ℎ = 6, 𝛿2ℎ = 7

Scenario 3
𝛿𝑑 = 𝛿1𝑝 = 0, 𝛿𝑑 = 𝛿1𝑝 = 0,
𝛿1𝑙 = 𝛿2𝑙 = 2, 𝛿1𝑙 = 2, 𝛿2𝑙 = 3,
𝛿1ℎ = 𝛿2ℎ = 6 𝛿1ℎ = 6, 𝛿2ℎ = 7

Scenario 4
𝛿𝑑 = 𝛿1𝑝 = 0, 𝛿𝑑 = 𝛿1𝑝 = 0,
𝛿1𝑙 = 𝛿2𝑙 = 4, 𝛿1𝑙 = 4, 𝛿2𝑙 = 5,
𝛿1ℎ = 𝛿2ℎ = 8 𝛿1ℎ = 8, 𝛿2ℎ = 9

Scenario 5

𝛿𝑑 = 1 𝑜𝑟 0, 𝛿𝑑 = 1 𝑜𝑟 0,
𝛿1𝑝 = 0, 𝛿1𝑝 = 0,

𝛿1𝑙 = 𝛿2𝑙 = 4, 𝛿1𝑙 = 4, 𝛿2𝑙 = 5,
𝛿1ℎ = 𝛿2ℎ = 8 𝛿1ℎ = 8, 𝛿2ℎ = 9

Scenario 6
𝛿𝑑 = 1, 𝛿1𝑝 = 0, 𝛿𝑑 = 1, 𝛿1𝑝 = 0,
𝛿1𝑙 = 𝛿2𝑙 = 4, 𝛿1𝑙 = 4, 𝛿2𝑙 = 5,
𝛿1ℎ = 𝛿2ℎ = 8 𝛿1ℎ = 8, 𝛿2ℎ = 9

2, effectiveness is attributed solely to the high dose (𝛿𝑑 = 𝛿1𝑝 = 𝛿1𝑙 = 0 < 𝛿1ℎ = 6). Scenario
3 suggests a modest effect for the low dose and a clinically significant effect for the high dose
(𝛿𝑑 = 𝛿1𝑝 = 0 < 𝛿1𝑙 = 2 < 𝛿1ℎ = 6). Lastly, scenario 4 assumes both low and high doses yield
clinically meaningful effects (𝛿𝑑 = 𝛿1𝑝 = 0 < 𝛿1𝑙 = 4 < 𝛿1ℎ = 8). We also created two more
scenarios to evaluate our model’s sensitivity regarding the alignment between external control and
current data (scenario 5: 𝛿𝑑 ≠ 𝛿1𝑝 for some 𝑑; scenario 6: 𝛿𝑑 ≠ 𝛿1𝑝 for all 𝑑). A comprehensive
overview of all simulation scenarios is available in Table 3.1.

Under each data generating process, 1,000 realizations per scenario were simulated. Each
realization includes one external control data set and one current snSMART data set. Estimations
from the traditional MMRM analysis, BJSM, BLPM, and robust BLPM are compared. We calculate
CR, rMSE, average bias, and average width of the 95% CI of each estimator. Note that the Monte
Carlo error for all average bias and CI width is less than 0.005. Finally, type I error (under scenario
1) and power (under scenarios 3-6) of different methods are also calculated using the probability
that the 95% credible intervals of 𝛽1𝑙 and 𝛽1ℎ do not include 0. Results are provided for sample
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Table 3.2: Simulated type I error. Note: The type I error of all presented methods is defined as the
probability that the credible intervals of 𝛽1𝑙 and 𝛽1ℎ do not include 0 when there are no treatment
effect differences between low dose and placebo and high dose and placebo. Data generating
process 1 generates data sets under the assumption that the expected treatment effect of the same
dose level is exchangeable across trial stages, and data generating process 2 generates data stage-
wise non-exchangeability. 𝑁 denotes the total number of participants in the trial. We compared
results obtained from the traditional MMRM, the Bayesian Joint Stage Model (BJSM), the standard
BLPM, and the robust BLPM.

Sample Size MMRM BJSM BLPM RBLPM
Low High Low High Low High Low High

Data generating process 1
𝑁 = 250 0.05 0.03 0.06 0.05 0.06 0.04 0.06 0.04
𝑁 = 50 0.04 0.05 0.04 0.03 0.06 0.04 0.06 0.04
𝑁 = 25 0.07 0.08 0.04 0.04 0.06 0.05 0.06 0.05

Data generating process 2
𝑁 = 250 0.04 0.03 0.04 0.03 0.04 0.04 0.04 0.04
𝑁 = 50 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.04
𝑁 = 25 0.07 0.07 0.06 0.04 0.06 0.05 0.05 0.04

size of 25, 50 and 250 randomized with a 1:2:2 ratio to the placebo, low dose, and high dose arms
respectively. All computations are done via the R function jags in R package rjags (Plummer
2022).

3.4.1 Results

In data generation process 1, which satisfies stage-wise exchangeability, the left columns of Figure
3.3, as well as Figures 3.4, 3.5, and 3.6, display the rMSE, average bias, CR, and average CI
width for 𝛽1𝑙 and 𝛽1ℎ. Compared to MMRM and BJSM, estimators from the BLPM methods
exhibit notably lower rMSEs. The BLPM methods achieve similar coverage rates to traditional
methods, with a slightly lower CR than MMRM at 𝑛 = 50 and a slightly higher CR when 𝑛 = 25,
while offering significantly narrower 95% CI widths in all scenarios. Despite the BLPM methods
displaying marginally increased average biases in scenario 6, due to completely non-exchangeable
external controls, these biases are negligible.

A comparison across all metrics between the traditional method, BJSM , and the BLPM methods
demonstrates the superior efficiency and accuracy of the BLPM methods. Incorporating external
control data and stage 2 data from the current trial significantly enhances the estimation of treatment
effects. The BLPM models adeptly manage the heterogeneity between external controls and current
trial data, as evidenced by the minimal increase in rMSEs and average biases in Scenarios 5 and
6 compared to Scenario 4. This confirms the effectiveness of PS trimming, IPTW weighting,
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Figure 3.3: Simulated root-mean-square error (rMSE) for the estimators of 𝛽1𝑙 and 𝛽1ℎ.
Note: 𝛽1𝑙 (𝛽1ℎ) is the treatment effect difference between stage 1 low (high) dose and placebo.
We compared the traditional MMRM model, the Bayesian joint stage model (BJSM), the standard
BLPM, and the robust BLPM. The results of total sample size 50 are shown as the colored bars,
while the results of total sample size 25 are shown as the overlaying grey bars. The simulation
settings are described on the top of each graph, where 𝛿𝑘𝑇 denotes the true value of the expected
treatment effects of treatment 𝑇 in stage 𝑘 , 𝑇 = 𝑝, 𝑙, ℎ, 𝑘 = 1, 2, and some/cmplt unaligned
means some/all of the placebo treatment effects in external control data are inconsistent with the
placebo treatment effect in the current trial. Monte Carlo error (MCE) is smaller than 0.005 for all
estimators.
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Figure 3.4: Simulated average bias for the estimators of 𝛽1𝑙 and 𝛽1ℎ
𝛽1𝑙 (𝛽1ℎ) is the treatment effect difference between stage 1 low (high) dose and placebo. We
compared the traditional MMRM model, the Bayesian joint stage model (BJSM), the standard
BLPM, and the robust BLPM. The results of total sample size 50 are shown as the colored bars,
while the results of total sample size 25 are shown as the overlaying grey bars. The simulation
settings are described on the top of each graph, where 𝛿𝑘𝑇 denotes the true value of the expected
treatment effects of treatment 𝑇 in stage 𝑘 , 𝑇 = 𝑝, 𝑙, ℎ, 𝑘 = 1, 2, and some/cmplt unaligned
means some/all of the placebo treatment effects in external control data are inconsistent with the
placebo treatment effect in the current trial. Monte Carlo error (MCE) is smaller than 0.005 for all
estimators.
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Figure 3.5: Simulated 95% coverage rate (CR) for the estimators of 𝛽1𝑙 and 𝛽1ℎ
𝛽1𝑙 (𝛽1ℎ) is the treatment effect difference between stage 1 low (high) dose and placebo. We
compared the traditional MMRM model, the Bayesian joint stage model (BJSM), the standard
BLPM, and the robust BLPM. The results of total sample size 50 are shown as the colored bars,
while the results of total sample size 25 are shown as the overlaying grey bars. The simulation
settings are described on the top of each graph, where 𝛿𝑘𝑇 denotes the true value of the expected
treatment effects of treatment 𝑇 in stage 𝑘 , 𝑇 = 𝑝, 𝑙, ℎ, 𝑘 = 1, 2, and some/cmplt unaligned
means some/all of the placebo treatment effects in external control data are inconsistent with the
placebo treatment effect in the current trial. Monte Carlo error (MCE) is smaller than 0.005 for all
estimators.
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Figure 3.6: Simulated average credible interval width for the estimators of 𝛽1𝑙 and 𝛽1ℎ
𝛽1𝑙 (𝛽1ℎ) is the treatment effect difference between stage 1 low (high) dose and placebo. We
compared the traditional MMRM model, the Bayesian joint stage model (BJSM), the standard
BLPM, and the robust BLPM. The results of total sample size 50 are shown as the colored bars,
while the results of total sample size 25 are shown as the overlaying grey bars. The simulation
settings are described on the top of each graph, where 𝛿𝑘𝑇 denotes the true value of the expected
treatment effects of treatment 𝑇 in stage 𝑘 , 𝑇 = 𝑝, 𝑙, ℎ, 𝑘 = 1, 2, and some/cmplt unaligned
means some/all of the placebo treatment effects in external control data are inconsistent with the
placebo treatment effect in the current trial. Monte Carlo error (MCE) is smaller than 0.005 for all
estimators.
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Figure 3.7: Simulated power of the traditional MMRM, the Bayesian joint stage model (BJSM),
the standard BLPM, and the robust BLPM methods. In this paper, the power is defined as the
probability that the credible intervals of 𝛽1𝑙 and 𝛽1ℎ do not include 0 when there are treatment
effect difference between low dose and placebo and high dose and placebo. We compared the
traditional MMRM model, the Bayesian joint stage model (BJSM), the standard BLPM and the
robust BLPM. The results of total sample size 50 are shown as the colored bars, while the results of
total sample size 25 are shown as the overlaying grey bars. The simulation settings are described
on the top of each graph. 𝛿𝑘𝑇 denotes the true value of the expected treatment effects of treatment
𝑇 in stage 𝑘 , where 𝑇 = 𝑝, 𝑙, ℎ, 𝑘 = 1, 2, and some/cmplt unaligned means some/all of the placebo
treatment effects in external control data are inconsistent with the placebo treatment effect in the
current trial.
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and the MAC borrowing structure in addressing discrepancies between data sources, ensuring that
the borrowing of external controls remains prudent, even when external controls are completely
misaligned with the data from the current trial.

The right columns of Figure 3.3, 3.4, 3.5, and 3.6 reveal the rMSE, average bias, CR, and average
CI width for 𝛽1𝑙 and 𝛽1ℎ under data generation process 2, where the assumption of exchangeability
between stages 1 and 2 is breached. Owing to the cross-stage information borrowing, BLPM
methods exhibit larger positive average biases and, as a consequence, reduced CR. Nonetheless,
their rMSE values remain notably lower than those of MMRM and BJSM. The impact on the
CR can be lessened by choosing a larger standard deviation for the half-normal prior of 𝜏s, which
allows the model to accommodate greater stage-wise discrepancies. Compared to the robust BLPM
approach, the standard BLPM method displays greater biases under data generation process 2,
aligning with expectations and underscoring the MAC structure’s effectiveness in managing stage-
wise non-exchangeability. While the enhancements from the robust BLPM are subtle under our
simulation, due to the already high performance of the standard BLPM model, it is anticipated
to show significant improvement under more pronounced non-exchangeability. The BJSM model
that incorporates a “shift” parameter 𝛼 (Fang et al. 2023), shows resilience to stage-wise non-
exchangeability. Consequently, under data generating process 2, we still recommend the BLPM
methods for their consistently lower rMSE and negligible biases. This conclusion holds true across
all tested sample sizes, with results for 𝑁 = 250 detailed in Figure 3.8, 3.9, 3.10, 3.11, and 3.12.

Table 3.2 displays the Type I error rates for each model. Across all tested scenarios, the Type
I error rates for all models approximate 0.05. We have also calculated the power for each model
(Figure 3.7 and 3.12). When the treatment effect is clinically significant (i.e., ⩾ 4), all methods
demonstrate power nearing 1, regardless of the scenario or sample size. The BLPM methods and
the BJSM show a notable increase in power compared to the traditional method when the treatment
effect is equal to 2 and 𝑁 = 25.

3.5 Re-analysis of tadalafil trial

To demonstrate the practical application of the snSMART design and BLPM methods, we conducted
a reanalysis of the tadalafil study, obtaining patient-level trial data through Vivli. The summary-
level NSAA total scores and 6MWD at baseline and week 48 are shown in Table 3.3. Considering
that stage 2 of the tadalafil trial assigned or re-randomized treatments differently from an snSMART
design, and the trial was stopped for futility after stage 1, it was necessary to reassign or rerandomize
subjects in stage 2 according to the snSMART trial design and impute stage 2 data based on the
new treatment assignment. Following Zhou & Reiter (2010), 100 sets of stage 2 data were imputed
using the methods outlined in Section 3.3.3.6. We assumed that the treatment effects in stage 2 and
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Figure 3.8: Simulated root-mean-square error (rMSE) for the estimators of 𝛽1𝑙 and 𝛽1ℎ under
𝑁 = 250.
Note: 𝛽1𝑙 (𝛽1ℎ) is the treatment effect difference between stage 1 low (high) dose and placebo.
We compared the traditional MMRM model, the Bayesian joint stage model (BJSM), the standard
BLPM and the robust BLPM. The simulation settings are described on the top of each graph, where
𝛿𝑘𝑇 denotes the true value of the expected treatment effects of treatment 𝑇 in stage 𝑘 , 𝑇 = 𝑝, 𝑙, ℎ,
𝑘 = 1, 2, and some/cmplt unaligned means some/all of the placebo treatment effects in external
control data are inconsistent with the placebo treatment effect in the current trial. Monte Carlo
error (MCE) is smaller than 0.005 for all estimators.
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Figure 3.9: Simulated average bias for the estimators of 𝛽1𝑙 and 𝛽1ℎ under 𝑁 = 250
𝛽1𝑙 (𝛽1ℎ) is the treatment effect difference between stage 1 low (high) dose and placebo. We
compared the traditional MMRM model, the Bayesian joint stage model (BJSM), the standard
BLPM and the robust BLPM. The simulation settings are described on the top of each graph, where
𝛿𝑘𝑇 denotes the true value of the expected treatment effects of treatment 𝑇 in stage 𝑘 , 𝑇 = 𝑝, 𝑙, ℎ,
𝑘 = 1, 2, and some/cmplt unaligned means some/all of the placebo treatment effects in external
control data are inconsistent with the placebo treatment effect in the current trial. Monte Carlo
error (MCE) is smaller than 0.005 for all estimators.
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Figure 3.10: Simulated 95% coverage rate (CR) for the estimators of 𝛽1𝑙 and 𝛽1ℎ under 𝑁 = 250
𝛽1𝑙 (𝛽1ℎ) is the treatment effect difference between stage 1 low (high) dose and placebo. We
compared the traditional MMRM model, the Bayesian joint stage model (BJSM), the standard
BLPM and the robust BLPM. The simulation settings are described on the top of each graph, where
𝛿𝑘𝑇 denotes the true value of the expected treatment effects of treatment 𝑇 in stage 𝑘 , 𝑇 = 𝑝, 𝑙, ℎ,
𝑘 = 1, 2, and some/cmplt unaligned means some/all of the placebo treatment effects in external
control data are inconsistent with the placebo treatment effect in the current trial. Monte Carlo
error (MCE) is smaller than 0.005 for all estimators.
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Figure 3.11: Simulated average credible interval width for the estimators of 𝛽1𝑙 and 𝛽1ℎ under
𝑁 = 250
𝛽1𝑙 (𝛽1ℎ) is the treatment effect difference between stage 1 low (high) dose and placebo. We
compared the traditional MMRM model, the Bayesian joint stage model (BJSM), the standard
BLPM and the robust BLPM. The simulation settings are described on the top of each graph, where
𝛿𝑘𝑇 denotes the true value of the expected treatment effects of treatment 𝑇 in stage 𝑘 , 𝑇 = 𝑝, 𝑙, ℎ,
𝑘 = 1, 2, and some/cmplt unaligned means some/all of the placebo treatment effects in external
control data are inconsistent with the placebo treatment effect in the current trial. Monte Carlo
error (MCE) is smaller than 0.005 for all estimators.
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Figure 3.12: Simulated power of the traditional MMRM, the Bayesian joint stage model (BJSM),
the standard BLPM, and the robust BLPM methods under 𝑁 = 250. In this paper, the power is
defined as the probability that the credible intervals of 𝛽1𝑙 and 𝛽1ℎ do not include 0 when there are
treatment effect difference between low dose and placebo and high dose and placebo. We compared
the traditional MMRM model, the Bayesian joint stage model (BJSM), the standard BLPM and the
robust BLPM. The simulation settings are described on the top of each graph. 𝛿𝑘𝑇 denotes the true
value of the expected treatment effects of treatment 𝑇 in stage 𝑘 , where 𝑇 = 𝑝, 𝑙, ℎ, 𝑘 = 1, 2, and
some/cmplt unaligned means some/all of the placebo treatment effects in external control data are
inconsistent with the placebo treatment effect in the current trial.
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Table 3.3: The tadalafil trial study measures. Summary statistics are reported as mean (SD) for
6MWD and NSAA.

Placebo Tadalafil Low
Dose

Tadalafil High
Dose

Baseline
Sample Size 116 102 113

6MWD 337.5 (51.2) 323.4 (56.1) 327.0 (58.6)
NSAA 20.2 (7.0) 20.1 (7.6) 19.8 (7.2)

Week 48
Sample Size - 6MWD 113 101 111

Changes in 6MWD -51.0 (9.3) -64.7 (9.8) -59.1 (9.4)
Sample Size - NSAA 116 102 112

Changes in NSAA -8.8 (1.1) -9.3 (1.2) -9.0 (1.1)

Table 3.4: Tadalafil trial 6MWD and NSAA percentage of missingness at each visit

Baseline Visit 1 Visit 2 Visit 3 Visit 4
6MWD 0.00% 3.93% 8.46% 12.39% 18.13%
NSAA 0.60% 2.42% 3.63% 4.83% 6.65%

stage 1 are exchangeable.
In line with the study protocol, we identified a change in 6MWD of ⩾ −10% from baseline

as a clinically significant treatment effect for distinguishing between stage 1 responders and non-
responders. We imputed missing 6MWD data in both external controls and the current trial,
applying the same method to impute stage 1 and stage 2 NSAA data. In the tadalafil trial, the
percentages of missingness for the 6MWD and NSAA at each visit are shown in Table 3.4.

For external control in this re-analysis, we used data from the Cure Duchenne project
(NCT01753804) accessed via Vivli. We selected participants from NCT01753804 who matched
the eligibility criteria of the tadalafil trial and had records of NSAA total score or 6MWD for
the external control group. Ultimately, 49 subjects were included in the external control data.
The baseline and week 48 summary statistics of these 49 subjects are shown in Table 3.5. Our
assumption of exchangeability between external and current trial controls appears valid, given the
careful selection of control data and the similarity in demographics and disease severity among
patients (Table 3.3 and 3.5). Since the visit schedule for participants in NCT01753804 was less
frequent than in the tadalafil trial, we imputed two missing visits for each participant. Given that
the snSMART design requires a randomization ratio of 1:2:2 in stage 1, we randomly removed half
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Table 3.5: Summary statistics (mean & SD) for 6-minute walk distance (6MWD) and North
Star Ambulatory Assessment (NSAA) score, derived from external control data of 49 subjects in
NCT01753804.

6MWD NSAA
Baseline 331.1 (47.0) 20.8 (5.0)
Week 48 280.4 (89.9) 15.7 (6.7)

Table 3.6: Example Data Analysis Results. Note: 𝛽1𝑘 represents the estimated difference in
the stage 1 treatment effect between dose level 𝑘 and placebo at week 48 for either NSAA or
6MWD, where 𝑘 can be either 𝑙 for low dose or ℎ for high dose. The analysis compares four
methods: traditional MMRM, Bayesian joint stage modeling (BJSM), BLPM, and robust BLPM
(RBLPM). “6MWD” refers to the 6-minute walk distance, and “NSAA” refers to the total score of
the North Star Ambulatory Assessment. The 95% confidence or credible intervals of the estimates
are displayed in parentheses.

Estimator MMRM BJSM BLPM RBLPM
6MWD

𝛽1𝑙 -0.4 (-22.1, 21.3) -4.9 (-20.0, 10.5) -1.2 (-16.1, 14.3) -0.6 (-15.9, 15.0)
𝛽1ℎ -7.1 (-28.5, 14.2) -11.8 (-27.4, 3.8) -7.9 (-23.2, 7.7) -7.3 (-22.6, 8.0)

NSAA
𝛽1𝑙 0.3 (-1.0, 1.5) 0.3 (-0.8, 1.3) 0.3 (-0.8, 1.3) 0.3 (-0.8, 1.3)
𝛽1ℎ 0.0 (-1.2, 1.2) 0.1 (-1.0, 1.2) 0.1 (-1.0, 1.2) 0.1 (-1.0, 1.1)

of the subjects from the placebo arm of the tadalafil trial before applying the BLPM methods.
We applied the traditional MMRM, BJSM, and BLPM methods, with results displayed in Table

3.6. It is noticeable that the estimators obtained from the BLPM methods and MMRM are consistent
with each other, and BLPM methods exhibit narrower CI widths than the traditional method due to
the efficient use of data across both stages. The BJSM method’s 6MWD estimations slightly deviate
from those of the MMRM and BLPM methods. We believe this deviation is due to the significant
variations in patient-level 6MWD decrease across stages, and the BJSM method’s sensitivity to
irregular stage-wise non-exchangeability. Thus, although the BJSM and BLPM methods arrived
at the same conclusion as the tadalafil trial, i.e., failing to reject the null hypothesis, these two
methods provided more precise estimations of treatment effects.
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3.6 Discussion

This paper introduces a significant advancement in statistical methods for analyzing data from an
snSMART in the context of drug development for DMD and similar rare diseases, with a focus on
integrating external control data. The proposed BLPM methods adeptly manage the heterogeneity
between external controls and the current trial. The BLPM methods also leverage longitudinal
data and baseline characteristics of subjects, a capability previously unavailable in the snSMART
setting. Moreover, BLPM addresses concerns about stage-wise non-exchangeability, a common
issue for practitioners. We offer guidance on selecting prior distributions and alternative models for
sensitivity analyses, emphasizing the importance of assessing a broad spectrum of scenarios during
the planning stage. This evaluation is essential for comprehending the model’s assumptions, the
impact of prior choices, and the effect of sample size on the design and analytical methods, thereby
aiding sponsors and regulators in appreciating the model’s practical efficiency and robustness.

Although our method can manage non-exchangeability of treatment effects across different
stages, we advise applying the snSMART design to conditions with stable disease progression (in-
cluding a sufficient washout period). This ensures relatively consistent treatment effects throughout
the stages, especially since the aim of stage 2 in an snSMART is to collect additional data to refine
the estimation of stage 1 treatment effects. At the end of the trial, conducting sensitivity analyses to
compare outcomes from traditional MMRM with those from the BLPM methods will help evaluate
the validity of our assumptions regarding stage-wise treatment effect exchangeability.

We suggest allowing stage 1 high dose responders the opportunity to be re-randomized to a
lower dose in stage 2, based on the possibility that a patient responding to a high dose might also
respond to a lower, less toxic dose. If this assumption proves unrealistic, the snSMART design
could be adapted to maintain high dose treatment in stage 2 for all stage 1 high dose responders.
The BLPM methods would seamlessly adapt to this modified trial design.

The BLPM methods utilize a MAC framework that models all data sources collectively. Al-
ternatively, the MAP framework could be employed to generate informed priors based on external
controls for current trial estimates. The MAP and MAC equivalence is further elaborated by
Schmidli et al. (2014).

Our proposed BLPM methods employ PS trimming and IPTW weighting prior to fitting the
main BLPM model. As an alternative, we could implement propensity score matching. This
approach would further assist in selecting external control patients for analysis, ensuring a balanced
representation of key prognostic factors.

In this version of the BLPM methods, we treated time as a continuous variable. This decision
was informed by observations from the tadalafil trial, where the decline in 6MWD and NSAA
remained relatively stable throughout the trial period. However, there are instances where trials
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are conducted on diseases with outcomes that exhibit significant fluctuations at each visit. In such
cases, we propose two potential modifications: first, employing categorical time in the model, and
second, adjusting the piecewise treatment effect to include shorter segments, potentially as frequent
as each visit. The primary challenge with this approach is the increased complexity due to the
additional parameters required in the model. Evaluating the effectiveness of this modified model
is an area of future research.

While the BLPM methods effectively address data source heterogeneity, the extent of this
heterogeneity affects the ESS of external controls, which is crucial for ensuring trial power. Future
work will develop methods to assess the ESS of external controls in an snSMART, guiding the
quantity of external control data needed to further enhance trial outcomes.
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CHAPTER 4

Dynamic Prediction of Landmark Survival Time in
Cancer Clinical Trials Using a Joint Modeling

Framework

4.1 Introduction

In recent years, many cancer drugs have received regulatory approvals based on PFS as the primary
endpoint. Although PFS is a well-accepted surrogate endpoint for OS in many cancer types,
improvement in survival remains the clinical gold standard for assessing a patient’s benefit (Tang
et al. 2007, Driscoll & Rixe 2009, Methy et al. 2010, Grigore et al. 2020). However, planning a
statistically well-powered OS analysis in practice often presents challenges due to longer survival
times in early-stage cancers, patients switching to alternative treatments after progression, starting
other anti-cancer therapies, or being lost to follow-up. The timing of the primary analysis for trials
with PFS as the primary endpoint is determined by the number of patients progressed, and survival
data is often not mature enough for meaningful statistical inference due to a low number of deaths.
Hence, if PFS is statistically significant in the final analysis, regulatory agencies often request one
or more updated OS analyses once the survival data are more mature. Updated OS analyses are
crucial for market access and reimbursement decisions. Therefore, proper planning is essential to
ascertain when mature OS data will be available.

Model-based prediction of survival time for trial participants aids research teams in efficiently
allocating resources, accurately planning future OS analyses, and understanding the potential
survival benefit of an experimental drug. It also assists in designing and committing to Phase 3
trials based on disease progression data observed in Phase 2 studies. Moreover, it helps clinicians
and scientists understand the mechanism of a new compound that improves patients’ survival while
reducing disease burden. Besides drug development, mature OS data are crucial for decision-
making by both patients and clinicians, and understanding a drug’s cost-effectiveness. Sborov
et al. (2019) demonstrated that when oncologists inaccurately predict OS, patients with advanced
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cancer are more likely to receive aggressive end-of-life care, often contradicting the patients’
wishes. Mackillop & Quirt (1997) stated that accurate OS prediction facilitates the effective
use of limited healthcare resources and helps patients make suitable plans for their remaining
lives. Henderson et al. (2001) further provides examples of how accurate survival predictions have
financial implications for insurance programs and health authorities.

PFS is defined as the time from randomization until PD or death from any cause. In oncology
studies, progression is evaluated using the Response Evaluation Criteria in Solid Tumors (RECIST)
(Eisenhauer et al. 2009). RECIST provides standardized definitions and procedures for document-
ing how subjects progress, respond, or remain stable in terms of their disease burden during a
treatment course. RECIST offers methods for assessing solid tumor responses using X-ray, CT, and
MRI scans and is recommended by the National Cancer Institute. Note, PFS is viewed as a com-
posite outcome with four components: 1) measurement of the target lesion, which is captured as
longitudinal continuous data, 2) time to non-target lesion progression, 3) time until the emergence
of a new lesion, and 4) time to death from any cause. Depending on the cancer type, each of these
components has a different degree of predictivity for OS. For example, Stein et al. (2013) showed
that the progression of non-target lesions or the appearance of new lesions is more predictive of OS
benefit than the sum of the longest tumor diameters of the target lesions for patients with metastatic
renal cell carcinoma. The current practice of OS prediction often overlooks the disease progression
process and models only the number of deaths.

In this manuscript, we evaluated several model-based approaches to forecast the death times
of trial participants “still alive”, leveraging information about disease progression along with
important baseline factors. The relationship between PFS and OS has garnered interest in both
statistical and clinical literature over time. Notably, Fleischer et al. (2009) employed exponential
time-to-event distributions to describe the dependency structure between OS and PFS. This is
further expanded by Weber & Titman (2019), Fu et al. (2013), Meller et al. (2019) by utilizing
copula and multi-state models to jointly analyze PFS and OS without strict parametric assumptions
for the marginal survival distributions of PFS and OS. Another important work by Shukuya et al.
(2016) investigated the correlation between median PFS and median OS, concluding that both
tumor response and PFS are significant predictors of OS. Other methodologies for OS prediction
include joint modeling of longitudinal tumor size data of the target tumor and survival data (Claret
et al. (2009, 2013), Wang et al. (2009), Bruno et al. (2014), Zecchin et al. (2016), Lim et al. (2019)),
which incorporates baseline survival data into the OS prediction. Meanwhile, Yu et al. (2020)
jointly modeled the dynamics of target lesions and the progression of non-target lesions to predict
PFS. However, most of the literature in this area focuses primarily on improving the estimation of
OS rather than predicting the future survival time of patients ongoing in the trial. Moreover, to our
current knowledge, there is no existing methodology that formally combines all three components
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of disease progression, i.e., target lesion, non-target lesion and new lesion. In this paper, we propose
a joint modeling framework to address these gaps and further enhance the copula model and the
multi-state model for predicting the survival times of ongoing patients.

The rest of the paper is structured as follows: A motivating example from a Phase 3 renal
cell carcinoma study is used to establish the problem in Section 4.2. This is followed by a set of
proposed models that explore the correlation between disease progression and survival as presented
in Section 4.3. The simulation studies conducted to test the properties of our method are presented
in Section 4.4. The renal cell carcinoma example is revisited in Section 4.5 to illustrate the practical
utility of the proposed methodology. Finally, we conclude with a discussion that summarizes the
key messages and lessons learned.

4.2 Motivating Example: Phase 3 Study in Renal Cell Carci-
noma

The methods outlined in this paper are inspired by a phase 3, randomized, open-label, parallel-arm
study. A total of 800 treatment-naive adult participants with advanced renal cell carcinoma were
randomized (1:1) to receive either the experimental drug or the standard of care. A key inclusion
criterion was the presence of at least one measurable lesion, as defined by RECIST version 1.1,
which had not been previously irradiated. Tumor assessments were performed using computed
tomography or magnetic resonance imaging at baseline, every six weeks post-randomization for
the first 18 months, and subsequently every 12 weeks until confirmed disease progression. Important
baseline demographic and disease characteristics were evenly distributed between the two treatment
groups. The study had two primary endpoints: PFS and OS among patients with programmed
death ligand 1 (PD-L1)–positive tumors. The primary analysis was scheduled when at least 397
PFS events occurred (Figure 4.1). At the time of the primary PFS analysis only 146 deaths were
observed which was immature to draw any reasonable conclusion for OS. Therefore, an updated
analysis of OS was planned after 341 deaths. The trial findings indicated that patients administered
the experimental drug experienced a notably extended PFS compared to those given the standard
of care. It is crucial to note that while we have utilized the data structure from a real-life trial,
the actual values presented here are simulated based on published summary statistics, both for
proprietary considerations and to ensure proper protection of patient data.

We aim to use the observed data to construct a predictive tool that provides a reliable estimate
of the time of the 𝑛th death in the trial. Specifically, we utilize data on participants’ baseline
characteristics, treatment group, OS, and the processes underlying PFS, including measurements
of target lesions and the progression of disease in non-target and new lesions. This approach is
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Figure 4.1: Evolution of progression and death data during trial

justified as PFS is known to be a strong predictor of OS in advanced renal cell carcinoma (Heng
et al. 2011)

Figure 4.2 demonstrates significant variability among individuals in the sum of the longest
diameters of target lesions, making it difficult to draw any conclusions about the treatment without
systematic modeling of this variability. Moreover, Kaplan-Meier plots for non-target lesions and
new lesions are shown in Figures 4.3b and 4.3c, respectively. From both plots, we observe
differences between the two treatment arms: patients who received the experimental drug exhibited
a longer time to PD when considering assessments of non-target lesions and new lesions. A similar
trend is also observed in the Kaplan-Meier plots for OS (Figure 4.3d) and PFS (Figure 4.3e)

4.3 Method

In this manuscript, the general process of using Bayesian statistical models to generate OS pre-
dictions is as follows: At any given point during the clinical trial, we collect the current data and
input it into our Bayesian models. Subsequently, a Markov chain Monte Carlo (MCMC) process
is utilized to estimate the parameters. These estimations are then used to generate predicted OS
outcomes by leveraging the posterior predictive distribution (PPD) technique. This process allows
us to create a predictive framework that is both dynamic and reflective of the evolving nature of
trial data, providing timely and robust predictions for OS.
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Figure 4.2: Profile plot of the sum of the longest diameter of target lesions

4.3.1 Bayesian Model-Averaged Joint Modeling Approach

In this section, we outline our proposed model by establishing three distinct joint models between
each of the processes of disease progression and OS. These three joint models include: 1) the
joint model between the sum of the longest diameter of target lesions and OS, 2) the joint model
between the time to non-target lesion PD and OS, and 3) the joint model between the time to new
lesion PD and OS. Furthermore, we incorporate a marginal model directly modeling OS. Three
main steps are included in our model. First, we mitigate “information loss” by considering all
four granular components of PFS. By constructing joint, marginal models for each component, we
derive real-time OS predictions from each trial participants “still alive”. This results in four sets of
intermediate predictions. Second, our proposed methods fully encapsulate the association between
progression and death by incorporating random processes. Third, we enhance the accuracy of
OS predictions from PFS by deriving the final OS prediction from all four models’ intermediate
predictions simultaneously using BMA (Hoeting et al. 1999). Using the BMA technique, we
blend these different predictions to create a final predicted OS, which combines all four individual
forecasts with appropriate weights. Thus, joint modeling represents a promising scientific approach
to overcome the challenges associated with OS prediction, in comparison to existing methods that
will be discussed in the subsequent sections. The structure of the proposed multivariate joint
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Figure 4.3: Kaplan-Meier plots at the time of updated OS analysis considering target lesions
progressive disease (PD) (a), non-target lesions PD (b), new lesions PD (c), overall survival (d),
and progression-free survival (e).
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Figure 4.4: Multivariate joint modeling structure.

modeling approach is illustrated in Figure 4.4, with details provided in the following subsections.

4.3.1.1 Joint Model for the Association between Target Lesion and OS

We consider a set of 𝑛 subjects followed over an interval of time [0,𝜏]. Let 𝑧𝑖 𝑗 be the target lesion
measurement (or % change from baseline) at time 𝑡𝑖 𝑗 (for the 𝑖-th participant at the 𝑗-th visit), where
𝑖 = 1, ..., 𝑛 and 𝑗 = 1, ..., 𝑘𝑖. We assume the target lesion measurement time 𝑡𝑖 𝑗 is non-informative
so that it is independent of the longitudinal measurement and event-time processes for OS. We
define a latent zero-mean Gaussian process 𝑊𝑖 (𝑡) for the 𝑖-th participant, independent of different
participants. The following sub-models link the joint model of lesion measurements and OS:

The observed lesion measurement 𝑌𝑖 (𝑡) = `𝑖 (𝑡) + 𝜖𝑖, where 𝜖𝑖 is the measurement error, and the
lesion measurement process `𝑖1, `𝑖2,... is modeled by the linear model `𝑖 (𝑡) = X𝑖 (𝑡)′𝜷` +𝑊𝑖 (𝑡).
Here, X𝑖 (𝑡) is the time-dependent covariate matrix for subject 𝑖’s lesion measurement. 𝑊𝑖 (𝑡) is
a Gaussian process that has the form 𝑊𝑖 (𝑡) = 𝑏1𝑖 + 𝑏2𝑖𝑡, where (𝑏1𝑖, 𝑏2𝑖) are zero-mean bivariate
Gaussian variables with variances 𝜎2

1 and 𝜎2
2 respectively, and correlation coefficient 𝜌.

The OS process at time t is modeled by _(𝑡) = _0(𝑡) exp(Z′
𝑖𝜷OS +_`𝑖 (𝑡) + 𝑏3𝑖). Under a Weibull

baseline hazard, _(𝑡) has the form _(𝑡) = 𝛼OS,TL𝛾OS𝑡
𝛼OS,TL−1 exp(Z′

𝑖𝜷OS + _`𝑖 (𝑡) + 𝑏3𝑖), where Z𝑖
is the covariate matrix for OS, 𝛾OS and 𝛼OS,TL are the scale and shape parameters of the Weibull
distribution, and 𝑏3𝑖 ∼ 𝑁 (0, 𝜎3)2 are random effects orthogonal to the measurement process. The
construction of the likelihood for this joint model is detailed below:

The marginal distribution of the observed measurements ` is easily obtained. The likelihood for
the observed data can be factorized as the product of this marginal distribution and the conditional
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distribution of OS, given the observed values of `. Let 𝜽1 denote the combined vector of unknown
parameters. Conditional on lesion measurements `, OS is independent of these measurements
`, so we can write the likelihood 𝐿 = 𝐿 (𝜽1, `, 𝑂𝑆) as 𝐿 = 𝐿` (𝜽1, `) × 𝐿𝑂𝑆 |` (𝜽1, 𝑂𝑆 |`), where
𝐿` (𝜽1, `) is of standard form corresponding to the marginal multivariate normal distribution of `
and

𝐿𝑂𝑆 |` (𝜽1, 𝑂𝑆 |`) =
∏
𝑖

{[
_0(𝑡) exp(Z′

𝑖𝜷OS + _`𝑖 (𝑡))
]𝛿𝑂𝑆,𝑖

× exp
[
−

∫ 𝑦𝑂𝑆,𝑖

0
_0(𝑡) exp(Z′

𝑖𝜷OS + _`𝑖 (𝑡))𝑑𝑡
]}
,

here, 𝑦𝑂𝑆,𝑖 = min(𝑡𝑂𝑆,𝑖, 𝑐𝑂𝑆,𝑖) and 𝛿𝑂𝑆,𝑖 = 𝐼 (𝑡𝑂𝑆,𝑖 ≤ 𝑐𝑂𝑆,𝑖). 𝑐𝑂𝑆,𝑖 is the censoring time for the 𝑖th
participant and 𝑡𝑂𝑆,𝑖 is the true event time.

4.3.1.2 Joint Model for the Association between Time to Non-Target Lesion and OS

Copulas are commonly used for modeling the dependence between random variables. They are
continuous multivariate cumulative distributions with each random variable following a uniform
marginal distribution on the interval [0, 1]. Sklar’s theorem states that any multivariate joint
distribution can be written using univariate marginal distribution functions and a copula describing
the variables’ dependence structure (Sklar 1959). Therefore, copulas can be used to model the
dependence between these survival times, allowing for more accurate prognostic prediction. Here,
we can use the copula to jointly model time to non-target lesion and OS, where time to non-target
lesion corresponds to the time between randomization and PD of a non-target lesion is observed.
A bivariate copula function 𝐶 : [0, 1]2 → [0, 1] of the endpoints (T, O), where 𝑇 := time to
non-target lesion and 𝑂 := 𝑂𝑆, can be expressed by joint survival function 𝑺(𝑡, 𝑜) = 𝑇 (𝑇 ≥ 𝑡, 𝑂 ≥
𝑜) = 𝐶 (𝑺𝑇 (𝑡), 𝑺𝑂 (𝑜)), where 𝑡, 𝑜 ≥ 0, 𝑺𝑇 and 𝑺𝑂 are the marginal survival functions of 𝑇 and
𝑂, respectively (Weber 2020). To capture various dependency patterns, one can employ different
copula families. Here, we opt for the Clayton copula function (Clayton 1978), which belongs to the
Archimedean copula class and can capture strong dependence in the left tail. By doing so, we can
express the relationship between time to non-target lesion and OS using a single parameter [𝑁𝑇 , a
parameter that can be directly linked to Kendall’s tau, effectively characterizing their dependence.
In the subsequent paragraphs, we formally define the copula model between time to non-target
lesion and OS.

Let 𝑡𝑁𝑇 and 𝑡𝑂𝑆 denote times to non-target lesion and death (OS), respectively, and let Z be
covariates of interest. For a participant with covariates Z, let _NT(𝑡 |Z) denote the hazard function
for the time to non-target lesion. Under the Cox proportional hazards model, we have _NT(𝑡𝑁𝑇 |Z) =
_0,NT(𝑡𝑁𝑇 )exp(Z′𝜷NT). When the baseline hazard _0,NT(𝑡𝑁𝑇 ) is modeled by a Weibull distribution,
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the corresponding survival function is given by 𝑆NT(𝑡𝑁𝑇 |Z) = exp{−𝛾NT𝑡
𝛼NT
𝑁𝑇

exp(Z′𝜷NT)}, such
that 𝛾NT and 𝛼NT are the scale and shape parameters of the Weibull distribution, respectively.
Similarly, for OS we have 𝑆OS(𝑡𝑂𝑆 |Z) = exp{−𝛾OS𝑡

𝛼OS,NT
𝑂𝑆

exp(Z′𝜷OS,NT)}. Hence, the Clayton
copula model can be specified as 𝑆1(𝑡NT, 𝑡OS |Z) = {𝑆NT(𝑡NT |Z)−[NT + 𝑆OS(𝑡OS |Z)−[NT − 1}−1/[NT ,
where [NT > 0 measures the correlation between time to non-target lesion and OS. To take into
account the heterogeneity of the patient population, we introduce random effects for the shape
parameter of the Weibull model denoted as 𝑏𝑁𝑇𝑖 and 𝑏𝑂𝑆𝑖 . Therefore, we have 𝛼𝑁𝑇𝑖 = 𝛼𝑁𝑇 + 𝑏𝑁𝑇𝑖 ,
𝛼𝑂𝑆𝑖 = 𝛼𝑂𝑆 + 𝑏𝑂𝑆𝑖 . The relationship between Kendall’s 𝜏 and the correlation parameter [NT is
𝜏NT = [NT/(2 + [NT). A large value of [NT represents a high correlation. When [𝑁𝑇 goes to 0, the
correlation approaches 0, and when [NT goes to ∞, the correlation converges to 1. For non-target
lesion, we define 𝑦NT = min(𝑡NT, 𝑐NT) and 𝛿NT = 𝐼 (𝑡NT ≤ 𝑐NT), where 𝑐NT and 𝐼 (·) denote the
censoring time and the indicator function, respectively; and define 𝑦OS and 𝛿OS similarly for OS.

Depending on the censoring pattern, the observed data for the 𝑖th participant falls into one of
the following mutually exclusive cases: 1) both 𝑡𝑁𝑇 and 𝑡𝑂𝑆 are observed (𝛿𝑁𝑇=1, 𝛿𝑂𝑆=1), 2) 𝑡𝑁𝑇
is observed and 𝑡𝑂𝑆 is censored (𝛿𝑁𝑇=1, 𝛿𝑂𝑆=0), 3) 𝑡𝑁𝑇 is censored and 𝑡𝑂𝑆 is observed (𝛿𝑁𝑇=0,
𝛿𝑂𝑆=1), and 4) both 𝑡𝑁𝑇 and 𝑡𝑂𝑆 are censored (𝛿𝑁𝑇=0, 𝛿𝑂𝑆=0). Based on these four scenarios, we
can derive the likelihood of the copula model with the following steps:

Let 𝜽2 = (𝜷NT, 𝛼NT, _NT, 𝜷OS,NT, 𝛼OS,NT, _OS, [NT), then the likelihood for the 𝑖th patient with
Data𝑖 = (𝑦NT, 𝑦OS, 𝛿NT, 𝛿OS,Z)𝑖 is given by

𝐿 (𝜽2 |Data𝑖) = 𝐿𝛿NT𝛿OS
1 𝐿

𝛿NT (1−𝛿OS)
2 𝐿

(1−𝛿NT)𝛿OS
3 𝐿

(1−𝛿NT) (1−𝛿OS)
4 ,

where

𝐿1 =
𝜕2 𝑆1(𝑡NT, 𝑡OS |Z)

𝜕𝑡NT𝜕𝑡OS

��
𝑡NT=𝑦NT,𝑡OS=𝑦OS

=

(
[NT + 1

) (
exp{−𝛾NT𝑦

𝛼NT
NT exp(Z′𝜷NT)}exp{−𝛾OS𝑦

𝛼OS,NT
OS exp(Z′𝜷OS,NT)}

)−([NT+1)

×
(
exp{−𝛾NT𝑦

𝛼NT
NT exp(Z′𝜷NT)}−[NT + exp{−𝛾OS𝑦

𝛼OS,NT
OS exp(Z′𝜷OS,NT)}−[NT − 1

)− 2[NT+1
[NT

× 𝛾NT𝛼NT𝑦
𝛼NT−1
NT exp(Z′𝜷NT)exp{−𝛾NT𝑡

𝛼NTexp(Z′𝜷NT)}
× 𝛾OS𝛼OS,NT𝑦

𝛼OS,NT−1
OS exp(Z′𝜷OS,NT)exp{−𝛾OS𝑡

𝛼OS,NTexp(Z′𝜷OS,NT)},

and
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𝐿2 = −𝜕𝑆1(𝑡NT, 𝑡OS |Z)
𝜕𝑡NT

����
𝑡NT=𝑦NT,𝑡OS=𝑦OS

= −
(
exp{−𝛾NT𝑦

𝛼NT
NT exp(Z′𝜷NT)}

)−([NT+1)

×
(
exp{−𝛾NT𝑦

𝛼NT
NT exp(Z′𝜷NT)}−[NT + exp{−𝛾OS𝑦

𝛼OS,NT
OS exp(Z′𝜷OS,NT)}−[NT − 1

)− [NT+1
[NT

× 𝛾NT𝛼NT𝑦
𝛼NT−1
NT exp(Z′𝜷NT)exp{−𝛾NT𝑡

𝛼NTexp(Z′𝜷NT)},

and

𝐿3 = −𝜕𝑆1(𝑡NT, 𝑡OS |Z)
𝜕𝑡OS

����
𝑡NT=𝑦NT,𝑡OS=𝑦OS

= −
(
exp{−𝛾OS𝑦

𝛼OS,NT
OS exp(Z′𝜷OS,NT)}

)−([NT+1)

×
(
exp{−𝛾NT𝑦

𝛼NT
NT exp(Z′𝜷NT)}−[NT + exp{−𝛾OS𝑦

𝛼OS,NT
OS exp(Z′𝜷OS,NT)}−[NT − 1

)− [NT+1
[NT

× 𝛾OS𝛼OS,NT𝑦
𝛼OS,NT−1
OS exp(Z′𝜷OS,NT)exp{−𝛾OS𝑡

𝛼OS,NTexp(Z′𝜷OS,NT)},

and

𝐿4 = 𝑆1(𝑡NT, 𝑡OS |Z)
����
𝑡NT=𝑦NT,𝑡OS=𝑦OS

= {exp{−𝛾NT𝑦
𝛼NT
NT exp(Z′𝜷NT)}−[NT + exp{−𝛾OS𝑦

𝛼OS,NT
OS exp(Z′𝜷OS,NT)}−[NT − 1}−1/[NT .

For a given subject, L1, L2, L3 and L4 correspond to the likelihood components that both NT
and OS are observed, NT is observed but OS is censored, NT is censored but OS is observed, and
both NT and OS are censored, respectively.

4.3.1.3 Joint Model for Time to New Lesion and OS

Similar to Section 4.3.1.2, for the relationship between time to new lesion and OS, we model the
bivariate time-to-event data using the Clayton (1978) model, 𝑆2(𝑡NL, 𝑡OS |Z) = {𝑆NL(𝑡NL |Z)−[NL +
𝑆OS(𝑡OS |Z)−[NL − 1}−1/[NL . The derivation of this copula model’s likelihood is similar to that
specified in section 4.3.1.2.
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Death
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𝜋!#(𝑡) 𝜋"#(𝑠)

Figure 4.5: The three-state illness-death model

4.3.1.4 Marginal Model for OS

As a standard way of modeling time to event data, we model OS with a simple Weibull baseline
hazard model that has the form _(𝑡) = 𝛼OS,M𝛾OS𝑡

𝛼OS,M−1 exp(Z′
𝑖𝜷𝑴), where Z𝑖 is the covariate

matrix for modeling OS.

4.3.2 Semi-Markov Three-State Illness-Death Model

At the time this paper is written, no literature has covered survival time prediction based on a
multi-state model; here, we fill this gap in this section. A multi-state model is another common
approach for modeling the event history of participants in clinical trials (Andersen & Keiding 2002,
Meira-Machado et al. 2009, Putter et al. 2007). Among the various multi-state models, the one
that finds the widest application is the three-state illness-death model, which includes a singular
immediate state denoting “illness” (Figure 4.5). In this paper, we employ the homogeneous semi-
Markov assumption (Cox & Miller 1977) for the illness-death model, which implies that the hazard
of death after progression depends on time since progression rather than time since randomization.
Therefore, for every patient, we examine two distinct periods: the time between randomization
and progression, and the duration from progression to death. Both of these intervals are treated
as separate components and modeled individually. A third scenario occurs when a patient passes
away without experiencing progression. In the following paragraphs, we explain the specific
mathematical details of the illness-death model.

For the illness-death model, transition probabilities represent the probabilities of transition from
one state to another over a given time period. Here, we denote the transition probability as 𝑃𝑘𝑙 (𝑡1, 𝑡2)
from time 𝑡1 to 𝑡2, where 𝑘 , 𝑙 describes the state with 𝑘 ∈ 0, 1, 2 and 𝑙 ∈ 0, 1, 2. The expression of
the transition probabilities are given by (Meira-Machado et al. 2009):

𝑃00(𝑡1, 𝑡2) = 𝑆0(𝑡2 − 𝑡1) = 𝑒𝑥𝑝(−
∏
01

(𝑡2 − 𝑡1) −
∏
02

(𝑡2 − 𝑡1)),
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𝑃11(𝑡1, 𝑡2) = 𝑆1(𝑡2 − 𝑡1) = 𝑒𝑥𝑝(−
∏
12

(𝑡2 − 𝑡1)),

𝑃12(𝑡1, 𝑡2) = 𝑆1(𝑡2 − 𝑡1) =
∫ 𝑡2

𝑡1

𝑃11(𝑡1, 𝑢)𝜋12(𝑢; F𝑢)𝑃22(𝑢, 𝑡2)𝑑𝑢,

where
∏
𝑘𝑙 (𝑡1, 𝑡2) =

∫ 𝑡2
𝑡1
𝜋𝑘𝑙 (𝑡, F𝑡)𝑑𝑡 is the cumulative transition intensity between states 𝑘 and 𝑙,

where 𝑘 ≤ 𝑙. If we consider the transition intensities 𝜋𝑘𝑙 (𝑡; F𝑡) to follow Weibull distributions, they
can be expressed as 𝜋01(𝑡) = 𝛼

(
1
𝛾01

)𝛼
𝑡𝛼−1, 𝜋02(𝑡) = 𝛼

(
1
𝛾02

)𝛼
𝑡𝛼−1, and 𝜋12(𝑠) = 𝛼

(
1
𝛾12

)𝛼
𝑠𝛼−1,

where 𝛾01, 𝛾02 and 𝛾03 are the scale parameters, 𝛼 is the shape parameter, 𝑡 refers to time since
randomization and 𝑠 refers to time since progression. 𝛾01, 𝛾02 and 𝛾03 for each patient are further
defined as 𝛾01,𝑖 = �̃�01𝑒𝑥𝑝(𝜷01𝑿𝑖), 𝛾02,𝑖 = �̃�02𝑒𝑥𝑝(𝜷02𝑿𝑖), and 𝛾12,𝑖 = �̃�12𝑒𝑥𝑝(𝜷12𝑿𝑖), respectively,
where 𝑖 ∈ 𝑁 , 𝑿𝑖 is the vector of covariates, and 𝜷01, 𝜷02 and 𝜷12 are the regression coefficients.
�̃�01, �̃�02, and �̃�12 are the baseline hazards. To guarantee the convergence of MCMC , a uniform
shape parameter 𝛼 is employed for all three Weibull functions. The multi-state model’s likelihood
construction is as follows:

Here, we aim to estimate the parameter vector \ = (𝛼, 𝛾01, 𝛾02, 𝛾12) using maximum likelihood
estimation. Firstly, we need to model the survival experiences of individuals, which can be
characterized by four distinct cases based on a patient’s progression through the illness-death
model: 1) Patients progress and are then censored, 2) Patients progress and subsequently die,
3) Patients die without prior progression, 4) Patients are censored without experiencing either
progression or death. If for every individual 𝑖 in the set (1, ..., 𝑁), we let 𝑡𝑖1 indicate the duration
from the initial state to either progression or death and let 𝑡𝑖2, which is conditioned on progression,
represents the time from progression to death, then the individual likelihood for these 4 experiences,
denoted as 𝐿 (𝑘)

𝑖
(\) where 𝑘 varies from 1 to 4, can be described as: 𝐿 (1)

𝑖
(\) = 𝑓1(𝑡𝑖1)𝑆2(𝑡𝑖1)𝑆3(𝑡𝑖2),

𝐿
(2)
𝑖

(\) = 𝑓1(𝑡𝑖1)𝑆2(𝑡𝑖1) 𝑓3(𝑡𝑖2), 𝐿 (3)
𝑖

(\) = 𝑆1(𝑡𝑖1) 𝑓2(𝑡𝑖1), and 𝐿 (4)
𝑖

(\) = 𝑆1(𝑡𝑖1)𝑆2(𝑡𝑖1). Here, 𝑓1(·)
and 𝑆1(·) are density and survival function for time to progression, 𝑓2(·) and 𝑆2(·) are density
and survival function for time to death without progression, and 𝑓3(·) and 𝑆3(·) are density and
survival function for time to death post progression. Therefore, comprehensive log-likelihood for
all subjects can be formulated as:

log(𝐿 (\)) =
𝑁∑︁
𝑖=1

[(𝑑1) (1 − 𝑑2) (1 − 𝑑3)𝐿 (1)
𝑖

(\) + (𝑑1) (1 − 𝑑2) (𝑑3)𝐿 (2)
𝑖

(\)

+ (1 − 𝑑1) (𝑑2)𝐿 (3)
𝑖

(\) + (1 − 𝑑1) (1 − 𝑑2)𝐿 (4)
𝑖

(\)],

where 𝑑1 is the indicator for progression, 𝑑2 is the indicator for death without preceding
progression, and 𝑑3 is the indicator for death post progression. Note: here, an indicator value of 0
represents censoring, whereas a value of 1 indicates the event’s occurrence.
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Figure 4.6: (a) The scatterplot between TTP and OS, (b) the contour plot of TTP vs. OS fitted with
a Clayton copula, (c) the surface plot of TTP vs. OS fitted with a Clayton copula.

4.3.3 Copula Model for Time-to-Progression (TTP) and OS

TTP models disease progression similarly to PFS but specifically excludes deaths from any cause.
If a patient dies without documented disease progression, their TTP is censored at the last follow-up.
Similar to the model defined in 4.3.1.2, we use _TTP(𝑡 |Z) to denote the hazard function for TTP.
Under the Cox proportional hazards model, we have _TTP(𝑡 |Z) = _0,TTP(𝑡)exp(Z′𝜷TTP), and the
corresponding survival function is given by 𝑆TTP(𝑡 |Z) = exp{−𝛾TTP𝑡

𝛼TTPexp(Z′𝜷TTP)}, such that
𝛾TTP and 𝛼TTP are the scale and shape parameters of the Weibull distribution, respectively. The
Clayton model between time-to-progression (TTP) and OS is specified as

𝑆1(𝑡TTP, 𝑡OS |Z) = {𝑆TTP(𝑡TTP |Z)−[TTP + 𝑆OS(𝑡OS |Z)−[TTP − 1}−1/[TTP ,

where [TTP > 0 measures the correlation. For TTP, define 𝑦TTP = min(𝑡TTP, 𝑐TTP) and
𝛿TTP = 𝐼 (𝑡TTP ≤ 𝑐TTP), where 𝑐TTP and 𝐼 (·) denote the censoring time and the indicator function,
respectively; and define 𝑦OS and 𝛿OS similarly for OS. Depending on the censoring pattern, the ob-
served data for the 𝑖th participant falls into one of the 4 mutually exclusive cases: (𝛿𝑇𝑇𝑃=1, 𝛿𝑂𝑆=1),
(𝛿𝑇𝑇𝑃=1, 𝛿𝑂𝑆=0), (𝛿𝑇𝑇𝑃=0, 𝛿𝑂𝑆=1), and (𝛿𝑇𝑇𝑃=0, 𝛿𝑂𝑆=0). Figure 4.6 illustrates the Clayton copula
fitted between TTP and OS.

4.3.4 Standard Statistical Analysis

Most commonly, PFS is modeled using a Kaplan-Meier curve or Cox regression. For example, just
like what we discussed previously in Section 4.3.1.4, a simple Weibull baseline hazard model has
the form _(𝑡) = 𝛼𝛾𝑡𝛼−1 exp(Z′𝜷), where Z𝑖 is the covariate matrix for modeling PFS, 𝛼 and 𝛾 are
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the shape and scale parameters of the Weibull distribution, and 𝜷 is the vector of coefficients. Note
that a standard analytic method does not consider the dynamics of the component processes of PFS
and does not take random effects into account.

4.3.5 Prediction

4.3.5.1 Posterior Predictive Distribution (PPD)

Within each of the models outlined in Sections 4.3.4 through 4.3.1, we utilize the PPD tech-
nique (Gelman et al. 2014) to generate OS predictions. The PPD represents the distribution
of potential unobserved values based on the observed values, and it follows this structure:
𝑝(𝑦𝑝𝑟𝑒𝑑 |𝑦) =

∫
𝑝(𝑦𝑝𝑟𝑒𝑑 , \ |𝑦)𝑑\ =

∫
𝑝(𝑦𝑝𝑟𝑒𝑑 |\, 𝑦)𝑝(\ |𝑦)𝑑\ =

∫
𝑝(𝑦𝑝𝑟𝑒𝑑 |\)𝑝(\ |𝑦)𝑑\, This for-

mulation leverages the conditional independence between 𝑦 (observed data), 𝑦𝑝𝑟𝑒𝑑 (unobserved
data), and \ (parameters). The PPD can be understood as an average of conditional predictions over
the posterior distribution of \. During the MCMC process, for each sampled \ from the posterior
distribution, a corresponding 𝑦𝑝𝑟𝑒𝑑 sample is obtained. To produce PPD samples for OS using the
survival time modeling methods discussed, we used the JAGS software (Plummer 2017) along with
the rjags package for implementation in the R environment.

4.3.5.2 Bayesian Model Averaging (BMA)

In Section 4.3.1, we have established the three models governing the relationships between the
target lesion, non-target lesion, new lesion, and OS, along with the marginal model for OS in our
joint model, a BMA approach can be adopted to link all four models under the multivariate joint
modeling approach together, enhancing the overall prediction capability.

In prognostic modeling, it is standard to generate predictions by selecting a single model based
on certain metrics. In the context of oncology, different PFS components may be more correlated
with OS under various tumor types or patient groups, thus offering more accurate OS predictions.
Here, we use BMA to calculate the weighted average of the predicted OS under the three joint
models and one marginal model for OS defined above. The weights indicate the plausibility of each
model being the most predictive model. We denote the models defined in Section 4.3.1.1, 4.3.1.2,
4.3.1.3, and 4.3.1.4 by 𝑀𝑇 , 𝑀𝑁𝑇 , 𝑀𝑁𝐿 , and 𝑀𝑂𝑆, respectively. Then by BMA, the final predicted
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probability of OS follows

𝑃(𝑌𝑝𝑟𝑒𝑑 |𝐷𝑎𝑡𝑎) = 𝑃(𝑌𝑝𝑟𝑒𝑑.𝑡 |𝑀𝑇 , 𝐷𝑎𝑡𝑎)𝑃(𝑀𝑇 |𝐷𝑎𝑡𝑎)
+ 𝑃(𝑌𝑝𝑟𝑒𝑑.𝑛𝑡 |𝑀𝑁𝑇 , 𝐷𝑎𝑡𝑎)𝑃(𝑀𝑁𝑇 |𝐷𝑎𝑡𝑎)
+ 𝑃(𝑌𝑝𝑟𝑒𝑑.𝑛𝑙 |𝑀𝑁𝐿 , 𝐷𝑎𝑡𝑎)𝑃(𝑀𝑁𝐿 |𝐷𝑎𝑡𝑎)
+ 𝑃(𝑌𝑝𝑟𝑒𝑑.𝑜𝑠 |𝑀𝑂𝑆, 𝐷𝑎𝑡𝑎)𝑃(𝑀𝑂𝑆 |𝐷𝑎𝑡𝑎),

where 𝑃(𝑀𝑇 |𝐷𝑎𝑡𝑎), 𝑃(𝑀𝑁𝑇 |𝐷𝑎𝑡𝑎), 𝑃(𝑀𝑁𝐿 |𝐷𝑎𝑡𝑎), and 𝑃(𝑀𝑂𝑆 |𝐷𝑎𝑡𝑎) are the model weights. In
general, if we have a total of 𝑄 models, the model weight for model 𝑞 at the 𝑡th MCMC iteration is

𝑤
(𝑡)
𝑞 = 𝑃(𝑀𝑞 |𝐷𝑎𝑡𝑎, \ (𝑡)) =

𝑃(𝑀𝑞, 𝐷𝑎𝑡𝑎, \
(𝑡))

𝑃(𝐷𝑎𝑡𝑎, \ (𝑡))
=
𝑃(𝐷𝑎𝑡𝑎 |𝑀𝑞, \

(𝑡))𝑃(\ (𝑡) |𝑀𝑞)𝑃(𝑀𝑞)
𝑃(𝐷𝑎𝑡𝑎, \ (𝑡))

,

where \ (𝑡) = (\ (𝑡)1 , \
(𝑡)
2 , ..., \

(𝑡)
𝑄
). If we set 𝑃(\ℎ |𝑀ℎ, 𝐷𝑎𝑡𝑎) = 𝑔ℎ, and 𝑞 ≠ ℎ, then according to

Congdon (2007),

𝑃(\ (𝑡) |𝑀𝑞) = 𝑃(\ (𝑡)𝑞 |𝑀𝑞)
𝑄∏

ℎ=1,ℎ≠𝑞
𝑃(\ (𝑡)

ℎ
|𝑀𝑞) = 𝑃(\ (𝑡)𝑞 |𝑀𝑞)

𝑄∏
ℎ=1,ℎ≠𝑞

𝑔ℎ.

Therefore,

𝑤
(𝑡)
𝑞 = 𝑃(𝑀𝑞 |𝐷𝑎𝑡𝑎, \ (𝑡)) =

𝑃(𝐷𝑎𝑡𝑎 |𝑀𝑞, \
(𝑡))𝑃(\ (𝑡)𝑞 |𝑀𝑞)

∏𝑄

ℎ=1,ℎ≠𝑞 𝑔ℎ𝑃(𝑀𝑞)∑𝑄

𝑘=1 𝑃(𝐷𝑎𝑡𝑎 |𝑀𝑘 , \
(𝑡))𝑃(\ (𝑡)

𝑘
|𝑀𝑘 )

∏𝐾
ℎ=1,ℎ≠𝑘 𝑔ℎ𝑃(𝑀𝑘 )

.

We implement the BMA approach using the above formula and calculate the final predicted OS.

4.3.6 Prior Specification

In this section, we provide recommendations for specifying priors for the parameters in the models
discussed in Section 4.3. Our aim is to promote the use of generalizable, weakly informative, or
non-informative priors for all model parameters to ensure robust and interpretable results. We also
emphasize the importance of selecting appropriate priors to maintain parameter identifiability.

4.3.6.1 General Guidelines

For the 𝜷 vector of coefficients, we recommend using weakly informative normal distributions with a
mean of 0. We suggest weakly informative exponential distributions for the shape parameters (𝛼) in
the Weibull distribution. All random effect parameters (𝑏) should follow weakly informative normal
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distributions, denoted as 𝑁 (0, 𝜎2
𝑏𝑘
), where 𝑘 stands for different random variables under different

models. Weakly informative half-normal priors are recommended for the standard deviations
(𝜎𝑏𝑘 ) associated with the random effects. For all Clayton copula parameters ([), we recommend
using weakly informative exponential distributions. These priors can accommodate a wide range
of plausible values. In the following subsections, we provide recommendations for parameters
specific to each model:

4.3.6.2 Three-State Illness-Death Model

In the Three-State Illness-Death Model, we advise using weakly informative half-normal priors for
all �̃� parameters. These priors allow flexibility while constraining extreme values.

4.3.6.3 Multivariate Joint Modeling Approach

In the model assessing the association between target lesion and OS, which is a component of our
proposed multivariate joint modeling approach, we suggest the following priors: For the parameter
_, a weakly informative normal distribution with a mean of 0 is recommended. The correlation
coefficient (𝜌) should have a non-informative prior, such as 𝑈𝑛𝑖 𝑓 (−1, 1), to avoid biasing the
estimation. Additionally, we assume that all 4 submodels are equally weighted before fitting BMA,
that is, 𝑃(𝑀𝑞) = 1/𝑄, for all 𝑞 = 1, ..., 𝑄.

4.4 Simulation

4.4.1 Design

We performed extensive simulations to evaluate the performance of the proposed multivariate joint
modeling approach. All simulated datasets mimic the structure of the renal cell cancer trial data.
Specifically, we assume 400 subjects and 25 visits. Longitudinal measurements of target lesion
and new lesion status are recorded at each visit. For simplicity purposes, non-target lesion status is
not included. Survival status is updated whenever deaths occur. The follow-up visits are scheduled
for every two months within the first two years, then change to every three months until the end
of the 5th year. We censor the subject’s subsequent target lesion measurements and new lesion
status whenever that subject’s death occurs. In addition, we have assumed three scenarios: 1) OS
is independent of target lesion measurements and time to new lesion, 2) OS is correlated with time
to new lesion only, and 3) OS is correlated with target lesion measurements only. In all scenarios,
target lesion measurements and new lesion status are randomly and independently simulated, but
OS is generated under different conditions. We assume a negative correlation between OS and
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Figure 4.7: The bias (a) and rMSE (b) of the last death date predictors of four models: the
multivariate joint modeling approach (JM), a copula model between TTP and OS (Copula), the
marginal Weibull baseline hazard model of OS (Marginal), and a three-state illness-death model
(MS), under three OS scenarios. The 𝑥-axis denotes the number of death at cutoff. The 𝑦-axis
denotes the number of months.

changes in tumor measurements. For each scenario, 100 datasets are generated. To simplify the
simulation process, only 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 is included in the covariate matrices.

We compare predictions under four models: our proposed multivariate joint model (Section
4.3.1), a copula model for TTP and OS (Section 4.3.3), a semi-markov three-state illness-death
model (Weber 2020) (Section 4.3.2), and a marginal Weibull baseline hazard model of OS (Section
4.3.4).

To emulate real trial scenarios and assess the prediction performance of our proposed method,
we generate snapshots of the data such that for each simulated dataset, we have snapshots of what
the data would have looked like if only 100, 200, and 300 death events had occurred. Then, we
predict the time of the last (400th) death event under each snapshot dataset. Note that predictions
may be performed at any time during the trial, and 100, 200, and 300 were selected for illustration
purposes. Predictions from the four methods are compared. Finally, we calculate each predictor’s
CR, rMSE, bias, and width of the 90% CI. The 90% CI is the narrowest interval that includes 90%
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Table 4.1: The coverage rate (CR) and credible interval (CI) width for predictors of the time
of the last death. Comparing the results from the multivariate joint modeling approach (JM), a
copula model between TTP and OS (Cop), a three-state illness-death model (MS), and the marginal
Weibull baseline hazard model of OS (Mrgl). The unit for CI width is month.

Independent OS OS dependent on NL OS dependent on TL
JM Cop MS Mrgl JM Cop MS Mrgl JM Cop MS Mrgl

100 death event
CR 0.49 0.49 0.01 0.00 0.11 0.11 0.03 0.00 0.91 0.91 1.00 0.00

Width 35.9 35.8 24.9 3.4 29.2 29.5 26.8 2.9 24.4 25.4 41.8 3.2
200 death event

CR 0.89 0.86 0.33 0.00 0.45 0.45 0.24 0.00 0.85 0.98 1.00 0.00
Width 35.7 35.3 26.0 5.9 32.2 32.2 26.8 5.6 15.2 17.1 39.6 4.1
300 death event

CR 0.98 0.98 0.98 0.00 0.90 0.89 0.95 0.01 0.97 0.98 1.00 0.00
Width 30.5 30.5 29.6 9.3 32.5 32.6 31.5 9.9 12.0 11.2 36.7 4.6

of the posterior distribution of the predictor.

4.4.2 Results

The bias and rMSE of the predicted time of the last death are shown in Figures 4.7a and 4.7b, and
the corresponding CR and CI width are shown in Table 4.1. The weights of all submodels of the
multivariate joint modeling approach under each simulation scenario are shown in Figure 4.8.

Under scenario 1, where OS is generated independently, the bias and rMSE of all predictors
become smaller as we gather more information from the trial, i.e., more death events are observed.
Overall, the marginal model performs worse than the other three models. This is likely due to the
conservativeness of the Weibull model and the fact that it only utilizes OS data, causing predictions
to concentrate near the observed maximum OS. Given that the proposed model assigned all the
weight to the copula model between new lesion and OS, it is reasonable that the copula model and
the multivariate joint modeling approach have similar bias and rMSE. Having evaluated all the
metrics, the multivariate joint modeling approach and the copula model are the best-performing
method under scenario 1.

In scenario 2, where OS is generated based on new lesion status, the multivariate joint modeling
approach, the copula model, and the three-state illness-death model exhibit similar bias and rMSE
values. Once again, the marginal model lags behind the other models in performance. As with
scenario 1, as the number of observed death events increases, the bias and rMSE of all predictors
decrease. Compared to scenario 1, the improved performance in bias and rMSE of the three-state
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Figure 4.8: The weights of all submodels of the multivariate joint modeling approach for each
snapshot dataset in the simulation studies.

illness-death model can largely be attributed to the fact that the OS observations generated under
scenario 2 more closely resemble a Weibull distribution. However, when only 100 or 200 death
events are observed, the three-state illness-death model has a lower CR than the other two. This
might be due to the conservatives of the standard Weibull model. Consequently, for scenario 2, we
would still recommend either the joint modeling approach or the copula model.

In scenario 3, where OS is derived based on target lesion measurements, the proposed multivari-
ate joint modeling approach begins to surpass the copula model as more death events are observed.
Simultaneously, as the count of observed death events increases, the multivariate joint modeling
approach assigns greater weight to the joint model between the target lesion and OS, which is
anticipated. This is expected as the multivariate joint modeling approach is the only method that
captures the relationship between OS and the target lesion. Differing from the other two scenar-
ios, the bias and rMSE of predictors from the three-state illness-death model do not consistently
diminish with the increase in observed death events. Moreover, the three-state model displays the
widest CI among all the models. This can be attributed to the alteration in OS distributions, as it is
generated based on the target lesion distribution, which does not conform to a Weibull distribution.
The inflexibility of the standard Weibull baseline hazard model, devoid of random effects, further
contributes to this.

According to Figure 4.7, across all scenarios, the proposed multivariate joint modeling approach
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performs either the best or very similar to the copula model, if the copula model is the best-
performing one. This is reasonable as the BMA could assign 𝑤𝑞 = 1 to submodel 𝑞 when
submodel 𝑞 is significantly better than the other 𝑞−1 submodels. If this is the case, the multivariate
joint modeling approach predictions will be the same as the predictions from its submodel 𝑞. The
multivariate joint modeling approach and the copula model are less sensitive to changes in the OS
distribution and still provide relatively reasonable predictions even when OS prediction does not
closely resemble a Weibull distribution. In summary, the multivariate joint modeling approach
provides the most reliable predictions across all tested scenarios.

4.5 Analysis of the Renal Cell Carcinoma Data

We return to the renal cell carcinoma dataset introduced in Section 4.2. Our objective here is to
predict the timing of the last death in this clinical trial by fitting the multivariate joint model we
developed in Section 4.3.1 to all available tumor measurements. We generate snapshots of the
trial data at the 100th, 146th (the time of primary analysis), 200th, and 300th death, and compare
predictions under four models: the multivariate joint model, a copula model for TTP and OS, a
three-state illness-death model, and a marginal model of OS.

We included gender, age, nephrectomy at baseline, Heng prognostic criteria at baseline, and
ECOG Performance Status into the covariates matrix X𝑖 and Z𝑖. Then, we fit each model using two
MCMC chains, each with at least 10,000 MCMC iterations, 1,000 burn-in, and 8,000 adaptation
iterations. Convergence diagnostic tests and autocorrelation plots did not show indications of
convergence failure. Figure 4.9a displays the predicted number of deaths at the time of the primary
analysis. Figure 4.9b presents boxplots of the posterior distributions for the predictors of the last
death date from all tested models compared to the true last death date. The median values of the
boxplots serve as point predictions. Figure 4.9c displays the weights of all submodels for each
recreated dataset. In this specific case study, the new lesion is observed to have the strongest
correlation with OS. Therefore, it makes sense that greater weights are assigned to the new lesion
copula submodel, and the copula model between TTP and OS also performs well. While the
marginal model exhibits significantly smaller CIs, its predictors prove to be less accurate than those
of the multivariate joint modeling approach and the copula model, especially when we observe 100,
146, and 200 deaths. These latter models consistently demonstrate the most reliable performance
improvements as the number of observed deaths increases. When we have 300 deaths observed and
the marginal model performs the best among all submodels, the BMA procedure naturally assigns
more weight to it, as indicated in Figures 4.9b and 4.9c. Considering that the posterior samples
of the three-state illness-death model are derived by combining predictions from two distinct time
periods - randomization to progression and progression to death — it is reasonable for the three-state
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Figure 4.9: (a) Boxplots of the predicted number of deaths at primary analysis when 50 or 100
deaths are observed in the trial, with the true number of deaths being “146”.(b) Boxplots of the
posterior distributions of the last death date by the proposed multivariate joint modeling approach,
the copula model between TTP and OS, the marginal Weibull baseline hazard model of OS, and
the three-state illness-death model. Date “2020-04-19” is the true last death date. (c) The final
weights of each submodel under the proposed multivariate joint modeling approach.
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Table 4.2: Bias and rMSE of the predictors of multivariate joint modeling approach (JM), copula
model, marginal model, and three-state illness-death model (MS).

No. of events Metric JM Copula Marginal MSObserved Predicted

100 241 Bias 0.67 1.71 9.46 1.35
rMSE 3.71 3.94 10.56 3.73

146 195 Bias 1.41 2.11 9.13 2.54
rMSE 2.56 3.13 9.65 3.14

200 141 Bias 0.91 2.15 7.89 3.11
rMSE 2.06 2.91 8.19 3.65

300 41 Bias 6.23 2.97 6.32 4.13
rMSE 8.24 6.14 8.28 7.31

model to exhibit the widest CIs.
Table 4.2 presents the bias and rMSE of the predicted OS when 100, 146, 200, or 300 death

events are observed. In the first three scenarios, the multivariate joint modeling approach performs
similarly to the copula model and the three-state model. In the last scenario, the joint model
performs similarly to the marginal model, consistent with the submodel weights shown in Figure
4.9c. Additionally, the joint model exhibits smaller bias and rMSEs compared to the marginal
model under all scenarios. While the multivariate joint modeling approach may not always have
the smallest bias in this particular case study dataset, its prediction reliability is consistently verified.

We used all four models to forecast the OS of patients with censored OS in the case study
data set. Subsequently, we generated predicted Kaplan-Meier plots for each model (Figure 4.10).
Finally, we estimated the potential gain or loss in life expectancy by calculating the difference
in the area under the curve between the experimental drug and the standard of care (Pak et al.
2017, Uno et al. 2022). The results from Figure 4.10 indicate that all models consistently project
a substantial improvement in life years. In addition, the multivariate joint modeling approach and
the copula model, whose reliability was previously established in this case study, both forecast a
roughly 7.5-month gain in life years for patients who receive the experimental drug, as opposed to
the standard of care.

4.6 Discussion

In this paper, we were motivated by an advanced renal cell carcinoma clinical trial to present how
real-time OS predictions from joint models with different components of PFS can be dynamically
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combined via BMA. This multivariate joint modeling approach provides reliable estimates of the
time of the 𝑛th death in a trial using all available tumor assessment data based on RECIST 1.1.
This is valuable for clinical trial planning and patients’ end-of-life medical care. Furthermore, the
proposed multivariate joint model method provides the most reliable and robust predictions in the
case study and across all the scenarios we tested in the simulation studies. This approach can be
easily applied to other solid tumor types beyond renal cell carcinoma.

The multivariate joint modeling approach is flexible and can easily incorporate a linear model
with time-dependent covariates or a nonlinear mixed-effects model. Although BMA methods
optimally combine multiple models, they typically require extended training time due to their
complexity. In the example data analysis, only five covariates were included. Incorporating
additional baseline characteristics is possible, but doing so would expand the covariate matrix
and further increase the computational demands of the multivariate joint modeling approach.
Considering that the covariates utilized in each submodel may vary, it is beneficial to determine
the most suitable covariates for each submodel before implementation. This covariates selection
process can be guided by expert opinion or variable selection models, potentially reducing the
covariate matrix’s size.

Based on the simulation studies and the example data analysis, it is evident that the copula
model for TTP and OS ranks as the second most reliable model among all those tested. If the
TTP and OS data are well-fitted by Weibull distributions with random effects, the copula model
typically performs better than the marginal OS model. Therefore, fitting only a copula model with
random effects is an excellent option to reduce model training time. Based on our simulations,
without including random effects, high variability between individuals will cause the copula model’s
predictions to be too heavy-tailed.

For a marginal OS model to perform better, it would be beneficial to incorporate more predictive
covariates or use a model offering greater flexibility than the Weibull baseline hazard model, such
as piecewise exponential models. Similarly, to improve the performance of the multi-state model,
we could replace the Weibull baseline hazard model with more flexible models.

During the simulation studies, the data for non-target lesions was not simulated, yet it was
included in the example data analysis. This does not undermine the outcome of our simulation
studies, given that both the non-target lesion and new lesion were modeled using the exact same
joint model, and each component of PFS was modeled separately. If the non-target lesion data
had been included in the simulation dataset, we would anticipate longer training times for the
multivariate joint modeling approach without observing any relative improvement in performance
given the scenarios we defined.

Apart from applying the same model weights for all the patients in the dataset, BMA can
potentially provide personalized model weights, where each patient may have different weights for
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Figure 4.10: Kaplan-Meier plots of the observed and predicted overall survival by the multivariate
joint modeling approach (a), the copula model (b), the marginal model (c), and the three-state
illness-death model (d). The difference in the area under the curve (AUC) and its credible intervals
for the experimental drug (Exp) and the standard of care (SOC) are also included.
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each model. This could further improve the prediction accuracy. Future work can explore how to
implement personalized model weights in a time-efficient manner under the setting of this study.
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CHAPTER 5

Summary and Future Work

Motivated by two phase 2/3 DMD trials, SPITFIRE (NCT03039686) and tadalafil (NCT01865084),
this dissertation proposes innovative trial designs and Bayesian methods for rare diseases, such as
DMD, to formally incorporate external data. Additionally, inspired by a renal cell carcinoma trial,
it introduces Bayesian methods for landmark survival time prediction in oncology trials. Thus,
this work aims to provide promising alternatives to the current drug development paradigm in rare
diseases and a robust method for predicting patient survival times in ongoing trials.

Chapter 2 presents an snSMART design comparing two dose levels with a continuous outcome,
incorporating external controls formally to reduce the number of subjects needed in the placebo
arm. The proposed robust MAC-snSMART method yields the most accurate and robust estimators
among all tested methods when the assumption of stage-wise treatment effect exchangeability
is met. This model leverages summary statistics from both external controls and current trials,
employing “change from baseline” as the outcome measure. This design and method efficiently
utilize “all” available data sources, namely external controls and all stages of the current trial.
It supports subject recruitment and retention and aligns with the goals of the FDA’s Complex
Innovative Design program.

Building on the trial design proposed in Chapter 2, we significantly expand the application area of
snSMART by introducing a Bayesian longitudinal piecewise meta-analytic combined model. This
model not only dynamically incorporates external control data but also utilizes subject-level longi-
tudinal outcomes and baseline characteristics to further enhance the power and efficiency of trial
analysis. Moreover, the proposed BLPM methods address both between-trial non-exchangeability
and stage-wise treatment effect non-exchangeability. This significantly improves the model’s ability
to tackle real-life challenges of trial analysis. We compared the BLPM methods with the BJSM
proposed by Fang et al. (2023) and traditional MMRM methods through simulation studies and
example data analysis. Among all tested scenarios, the BLPM provides the most efficient estimators.

Chapter 4 proposes a multivariate joint modeling approach that provides real-time OS predictions
based on joint models between different components of PFS and OS. This approach has proven
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to provide reliable and robust predictions in our case study and has been validated across various
scenarios in simulation studies. Such predictive power is invaluable for planning oncology trials and
managing end-of-life care for patients. It can also be readily adapted to other types of solid tumors
beyond renal cell carcinoma. Furthermore, this chapter enhances the copula model and the multi-
state model to predict survival times for patients currently undergoing treatment, an application not
previously explored before this work was published. Our proposed innovative modeling approach
holds significant promise for benefiting the drug development process in the realm of solid tumors.

Regarding Chapters 2 and 3, future work may consider adapting the proposed models to handle
various types of outcomes, such as binary or categorical outcomes. Additionally, the proposed
snSMART design could be expanded to include interim analyses that allow for early termination
of the study. Given the enrichment of the placebo arm with external controls, developing a method
to accurately calculate the ESS of external controls is crucial for assisting in the determination of
the sample size needed for the trial.

Regarding Chapter 4, future work may consider incorporating individual-level weights into
the model to provide personalized predictions for each subject. The current model, implemented
in JAGS and run under the rjags package, converges quite slowly. Future efforts could explore
strategies to accelerate model convergence, thereby making its use more time efficient.

In conclusion, this dissertation introduces innovative Bayesian methods for rare disease clinical
trial design and survival time prediction in solid tumor clinical trials. We hope that our proposed
trial design will lead to more approved drugs for patients with rare diseases, inspire future innovative
trial designs, assist in planning oncology clinical trials, and ultimately improve patient well-being.
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