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ABSTRACT

This thesis explores two areas of algebraic statistics: tropical phylogenetics and likelihood

geometry. Part I concerns the space of equidistant phylogenetic trees, which is a convex

tropical variety. Specifically, I classify the tree topology changes that can occur along a

tropical line segment between two tree data points and compute the tropical geometric

median (Fermat-Weber points) of weighted tree data. Part II is concerned with the maximum

likelihood degree of Brownian motion tree models. The main result is that the maximum

likelihood degree of a Brownian motion tree model on the star tree with n leaves is 2n+1−2n−
3. Another important result in this part is a generalization of the Cayley-Prüfer Theorem

to complete graphs with a weighting determined by the paths in a tree.
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CHAPTER 1

Introduction

This thesis spans three papers in mathematical phylogenetics. Phylogenetics is a field of

computational biology concerned with studying the evolutionary relationships among a group

of biological units (genes, individuals, species, taxa, etc.). Recently, it has become evident

that tools from tropical geometry and algebraic geometry can be useful in studying problems

that arise in phylogenetics, and in computational biology and statistics more broadly. One

central insight is that the geometric spaces that arise from studying phylogenetics can be

interpreted as tropical or algebraic varieties. In this thesis, I focus on two geometric objects

arising in phylogenetics: the (tropical) space of phylogenetic trees and an (algebraic) model

for Brownian motion along a phylogenetic tree.

Part I concerns averages in the space of phylogenetic trees. The space of phylogenetic

trees, Treen, is a geometric space where each phylogenetic tree on n leaves is represented by a

point. Specifically, each tree corresponds to the vector of pairwise distances among its leaves.

Treen is not a Euclidean space and it is not classically convex, which means that standard

approaches to computing averages, variances, distributions, random samples, and confidence

intervals are not available. For example, simply averaging the pairwise leaf distances of

two trees will usually yield a vector that is not a vector of pairwise leaf distances for any

tree. However, under a certain embedding, the space of phylogenetic trees is tropically

convex, meaning that every point on the tropical line segment between two phylogenetic

trees itself represents a phylogenetic tree. This fact opens the door to several new methods

for computing averages of phylogenetic trees using polyhedral complexes. Averages can be

used as a tool to create consensus trees, which is important for phylogenetic reconstruction,

a central problem in phylogenetics.

One way to compute an average of phylogenetic trees is to move along the geodesic (i.e.,

shortest path) between them in the space of phylogenetic trees. In Chapter 2, I classify

the tree topologies (i.e., tree structures) that occur along the tropical line segment between

two trees, which is one of many geodesics in tropical tree space [32]. Thus, the results of
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Chapter 2 inform our understanding of a tropical average of two phylogenetic trees. To

average more than two phylogenetic trees, Chapter 3 studies weighted Fermat-Weber points.

Part II is concerned with likelihood inference for a certain evolutionary model, called

a Brownian motion tree model. A Brownian motion tree model is a family of Gaussian

probability distributions that describe the evolution of a continuous, real-valued trait over

a phylogenetic tree. Brownian motion tree models are canonical models of genetic drift,

which refers to the accumulation of random (non-selective) genetic mutations over time,

and they also have a nice algebraic interpretations. Likelihood geometry uses tools from

algebraic geometry to infer the parameters of an algebraic model that maximize the likelihood

of observing some fixed data. In the context of Brownian motion tree models, likelihood

geometry can be used to infer a phylogenetic tree, or to infer edge lengths of a known

phylogenetic tree, from biological data. Unlike purely combinatorial methods for inferring

a phylogenetic tree, with this method it is relatively easy to compute standard errors and

confidence in the estimate [17]. In Chapter 4, I use results from intersection theory to

compute the complexity of inferring the parameters (edge lengths in the tree) for certain

Brownian motion tree models.

The following sections introduce the background material for the following three chap-

ters. Section 1.1 describes phylogenetic trees and tree spaces from a mathematical point of

view. Section 1.2 and Section 1.5 contain brief introductions to the concepts in convexity

and computational algebraic geometry that are used in this thesis. Section 1.3 introduces

tropical geometry, tropical convexity, and the space of phylogenetic trees as a tropical vari-

ety. Section 1.4 defines statistical models, maximum likelihood, and Brownian motion tree

models, the topics of Chapter 4. Finally, Section 1.6 includes a summary of results and

contributions.

1.1 Phylogenetics

Trees are the central information structures in phylogenetics. Below, I briefly define the

the data that accompanies a phylogenetic tree. In the following subsections, I introduce

notation associated to phylogenetic trees and rigorously define tree spaces, including the

Nearest Neighbor Interchange graph and the Billera-Holmes-Vogtman space of trees. Parts

of this section are from [12], which was first published by MSP in Algebraic Statistics in

volume 14(1), pages 71-90.

Definition 1.1.1. A phylogenetic tree is a metric leaf-labeled tree with no degree two ver-

2



tices. Internal edge1 lengths must be real and non-negative; edges adjacent to leaves can

have any real length. A rooted phylogenetic tree is a phylogenetic tree where one leaf is

distinguished as the root of the tree. The edges of a rooted phylogenetic tree are implicitly

directed away from the root.

Phylogenetic trees are used for a wide variety of models, and so the vertices of the tree may

represent a range of data, which may be discrete or continuous. Genetic data and discrete

traits are examples of discrete data. Genetic data may refer to individual bases from the set

{A,C,G, T}, or it may refer to an alignment, which is a sequence of genes. Discrete traits

refer to the presence, absence, or (whole) number of a certain discrete observable feature. For

example, the presence, absence, or number of legs an individual millipede has is a discrete

trait. Continuous biological data includes gene expression data and continuous traits like

mass, length, etc. Gene expression data is a continuous measure of the quantity of genetic

products (proteins or RNA) at the cellular level; it is the first level at which the phenotype

can be measured. Depending on the model and experiment, the source of the data also

varies. Thus, vertices of the tree may correspond to data from individual cells, data from

individuals within the same species, or an average across a larger group of individuals – a

species, family, genus, etc.

When I wish to be agnostic about the data on the vertices of the tree and at what level

it is measured, I will refer to it as biological data measured on biological units. Edge lengths

in a phylogenetic tree, called the speciation times, represent the amount of mutation that

has occurred along the branch in the observed biological data between the biological units

on either end of the branch.

1.1.1 Notation

I will briefly introduce some notation for graphs and trees that will be used throughout the

thesis. For unrooted trees, I will often identify the leaf labels with the set [n] = {1, 2, . . . , n};
for rooted trees, I will usually use the leaf labels {0} ∪ [n], where 0 is the root, unless stated

otherwise. The non-root leaves are called species leaves. The vertex directly below the root

leaf is denoted by ρ.

Let G be any graph, and let v be a vertex of G. The vertices and edges of G are denoted

Ver(G) and E(G) respectively. The degree of v in G is degG(v). For a phylogenetic tree

T , the internal vertices and (non-root) leaves of T are Int(T ) and Lv(T ) respectively. Let

T0 is the tree in Figure 1.1. Then Int(T0) = {5, 6} and Lv(T0) = {1, 2, 3, 4}. The notation

i ↭T j, or simply i ↭ j when T is clear from context, refers to the unique path in T

1An internal edge is an edge that is not connected to a leaf.

3
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Figure 1.1: A rooted phylogenetic tree with 4 species leaves, T0.

between i, j ∈ Ver(T ). The distance between u, v ∈ Ver(T ), denoted dT (u, v), is the sum of

the edge lengths over edges in u↭ v. For example, dT0(1, 4) = t1 + t5 + t4.

The descendants of a vertex v ∈ Ver(T ) are all the vertices u ∈ Ver(T ) that lie below v

in T , meaning that the path v ↭ u does not intersect the path v ↭ ρ. The ancestors of v

are all vertices on the path v ↭ ρ. The adjacent descendants are called the children of v,

and the adjacent ancestor is called the parent of v. For example, the descendants of vertex

5 in T0 (which are also the children of 5) are 1, 2 and 3. The parent and only ancestor of 5

in T0 is 6 = ρ.

Note that the internal vertices of T , while unlabeled by definition, are uniquely identified

by their set of descendants leaves, which is called a clade. Conversely, given a pair of leaves

i, j of T , there is a unique closest vertex that is an ancestor of both i and j, which is called

the least common ancestor of i and j. For example, lcaT0(1, 2) = 5, and lca(T0)(1, 4) = 6.

Definition 1.1.2. Given two leaves i, j of T , the least common ancestor of i and j, denoted

lcaT (i, j), is the internal vertex in the intersection of the paths i↭ j, ρ↭ i, and ρ↭ j.

A tree is fully resolved or binary if every interior vertex has degree exactly three. A tree

with exactly one internal node is a star tree. The tree in Figure 1.1 is only partially resolved

(it is not a binary tree nor is it a star tree).

1.1.2 Tree Topology

Informally, the topology of a phylogenetic tree encodes its combinatorial (and sometimes,

metric) structure. Edge splits, defined below, are a key tool in determining the topology of

a tree.
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Definition 1.1.3. Given a phylogenetic tree T and an edge e ∈ E(T ), the edge split for T

at e is the bipartition that the removal of e induces on the leaves of T .

I will use several versions of tree topology, which may or may not depend on the the edge

lengths. Without using the edge lengths, there are two types of (unrooted) tree topology.

First, the (leaf-labeled) tree topology of T is the data of the edge splits of T . This is the

most common tree structure in this thesis, so I will refer to it as the tree topology of T from

now on. Second, the unlabeled tree topology of T is the data of the edge splits of T up to a

permutation of the leaf labels. Note that if T and T ′ have the same tree topology, then they

also have the same unlabeled tree topology, but the converse is not necessarily true. Thus,

we say that the tree topology is a finer tree structure than the unlabeled tree topology.

Taking the edge lengths into account allows for even finer distinctions between tree struc-

tures. Specifically, the internal vertices in each tree are ranked according to their distance

from the root. Recall that the internal vertices are canonically labeled by the set of their

descendants, so it is possible to compare the internal vertex rankings between two trees with

the same leaf-labeled tree topology. The ranked tree topology of T is the data of the (leaf-

labeled) topology and the ranking on the internal vertices of T by distance from the root.

Definition 1.1.4 contains a summary of the different tree structures.

Definition 1.1.4. Let T and T ′ be phylogenetic trees. Three versions of tree topology are

summarized below, from coarsest to finest.

1. If T and T ′ have the same set of edge splits after a permutation of the leaf labels, then

they have the same unlabeled tree topology ;

2. If T and T ′ have exactly the same set of edge splits, then they have the same tree

topology ;

3. If T and T ′ have exactly the same set of edge splits, and the same ranking on internal

vertices, then they have the same ranked tree topology.

We can also use the tree metric to determine the tree topology. If T is a tree and S ⊂
(
[n]
2

)
,

define argmax1T = argmaxT to be the subset of index pairs {i, j} ∈ S which maximize dT (i, j).

Then define argmaxmT {S} to be the subset of indices of S which achieve the mth largest value

of dT (i, j) among indices in S. Tree topology can be tested using the argmax function.

Lemma 1.1.5. Two phylogenetic trees T , T ′ have the same topology if

argmaxT{ij, ik, jk} = argmaxT ′{ij, ik, jk}

for all i < j < k ∈ [n].

5
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BCD
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Figure 1.2: Possible NNI moves.

1.1.3 Rearrangement Graphs

The collection of phylogenetic trees on n leaves can be realized discretely or continuously.

The discrete realizations forget the edge lengths of the tree and rely only on the tree topology.

A rearrangement move, R, is a rule that changes the connectivity of subtrees within a binary

branching tree T . A rearrangement graph, Rn, has one vertex for each binary branching tree

topology on n leaves. Vertices inRn are connected by an edge if and only if the corresponding

tree topologies differ by exactly one rearrangement by R. The possible topologies of trees

along the tropical line segment between two trees are closely related to a rearrangement

move called Nearest Neighbor Interchange (NNI).

Definition 1.1.6. Let T be a binary phylogenetic tree. Let A, B, C, and D be the four

subtrees connected to an internal edge e ∈ T . A Nearest Neighbor Interchange move (NNI),

illustrated in Figure 1.2, is a rearrangement of A, B, C, and D around e.

NNI was introduced independently in [33] and [37], and the NNI graph is a well-studied

graph. In 1997, DasGupta et al showed that computing shortest paths in the NNI graph

is NP-complete, and [28] provide a polynomial time O(n2) algorithm that approximates the

length of the shortest NNI path up to a factor of 4 log(n) + 4. The diameter of the NNI

graph is known to be O(n log n), and the expected distance between two randomly chosen

6
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Figure 1.3: Possible four clade rearrangements.

vertices is also O(n log n). In Chapter 2, I will compare the number of NNI along a tropical

line segment between two trees to the polynomial time approximation to the NNI distance

given in [28].

Another relevant rearrangement move is a four clade rearrangement.

Definition 1.1.7. Let T be a rooted binary branching tree with w ∈ Int(T ), and let u, v

be the children of w. A four clade rearrangement (FCR), illustrated in Figure 1.3, is any

rearrangement of the four subtrees below u and v. More precisely, if A,B are the subtrees

descending from the children of u, and C,D are the two subtrees descending from the children

of v, then an FCR swaps either A or B with either C or D.

Note that an FCR is equivalent to a sequence of three NNI moves.

1.1.4 The Space of Phylogenetic Trees

In this subsection, I begin by defining the space of unrooted phylogenetic trees using pairwise

distances on the leaves. This first space is the Billera-Holmes-Vogtman (BHV) space of trees

[3], which has been extensively studied by mathematicians [31, 36], statisticians [22, 35, 50],

and biologists [2, 52]. Next, I define the space of equidistant (rooted) phylogenetic trees,
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which is homeomorphic to a BHV space and is tropically convex. Tropical convexity of

equidistant phylogenetic tree space will be addressed fully in Section 1.3.

An unrooted phylogenetic tree, T , is completely determined by the pairwise distances

between its leaves. We denote this vector of distances by dT

dT := (dT (i, j))i,j∈Lv(T )
i ̸=j

.

The constraints that a tree imposes on its distance vector are summarized in the four point

condition, which is defined below.

Theorem 1.1.8 (Four Point Condition [29]). A vector u ∈ R(
n
2) is equal to dT for some

phylogenetic tree if and only if

max{uij + ukl, uik + ujl, uil + ujk}

is achieved at least twice for all distinct i, j, k, l ∈ [n].

Definition 1.1.9. The space of phylogenetic trees on n leaves is the collection of vectors

u ∈ R(
n
2) that satisfy the 4-point condition. This is the space of phylogenetic trees introduced

by Billera, Holmes, and Vogtman in [3], so we denote it by BHVn.

BHVn :=
{
u ∈ R(

n
2) : u = dT , for some phylogenetic tree T on n leaves

}
=
{
u ∈ R(

n
2) : u satisfies the 4-point condition

}
.

Geometrically, BHVn is a fan in R(
n
2), with the subspace metric inherited from Euclidean

space [3]. Each cone, Cτ , corresponds to a tree topology, τ , and the points in the interior of

Cτ parameterize all unrooted phylogenetic trees with topology τ [3]. The dimension of Cτ

is the number of edges τ has, so more resolved topologies correspond to higher dimensional

cones. For example, BHV5, depicted in Figure 1.4, is R5 times the cone over the Petersen

graph. Each edge of the Petersen graph represents a 7-dimensional cone (a two-dimensional

orthant, R2
≥0, times R5), which corresponds to a fully resolved tree topology with two internal

edges and 5 edges adjacent to leaves.

Next, I define the space of equidistant trees (rooted at 0). Recall that a rooted phyloge-

netic tree on [n] species leaves is a tree with leaf set {0} ∪ [n], where the leaf labeled 0 is

distinguished as the root of the tree. The vertex directly below 0 is denoted ρ, and I will

assume for simplicity that the length of the edge from 0 to ρ is 0.

Definition 1.1.10. A rooted phylogenetic tree, T , is equidistant if dT (0, •) is constant on
Lv(T ). That is, if the distance from the root to any leaf is the same.
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Figure 1.4: BHV5 is the cone over the Petersen graph.

For a rooted equidistant tree, the height of an internal vertex (from the leaves) is well-

defined and it will be useful to have a notation for it.

Definition 1.1.11. Let x be an internal vertex of T . For any i, j ∈ [n] such that lcaT (i, j) =

x,

hT (x) =
1

2
dT (i, j).

Note that dT ∈ R(
n+1
2 ), but the distances dT (0, i), between 0 and each other leaf are

redundant. This is because dT (0, i) is the height of ρ, which is the maximum of the heights

of internal vertices. I will denote the vector with the distances dT (0, •) omitted by uT ∈ R(
n
2).

Vectors that arise in this way are also called ultrametrics, and they are characterized by the

3-point condition, which is defined below.

Theorem 1.1.12 (Three Point Condition [29]). A vector u ∈ R(
n
2) is equal to uT for some

equidistant tree T on n species leaves (i.e., is an ultrametric) if and only if max{uij, uik, ujk}
is achieved at least twice for all distinct leaves i, j, k ∈ [n].

Definition 1.1.13. The space of ultrametrics is the is the collection of all ultrametrics

u ∈ R(
n
2); equivalently, it is the collection of equidistant trees on n species leaves

U tr
n :={u ∈ R(

n
2) | u is an ultrametric}

={u ∈ R(
n
2) | u = uT for some equidistant tree T rooted at 0}.

Biologically, equidistant trees follow a molecular clock hypothesis, which assumes that

genetic mutation occurs at a roughly constant rate across species and over time [27, 25, 30].
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This assumption is especially useful when studying viral and bacterial evolution over short

periods of time, and it was used early in the COVID-19 pandemic to identify the origins of

various strains of COVID-19 [53].

1.2 Convexity

In this subsection briefly introduce objects from convex geometry that play key roles in

Chapters 2 and 3. The majority of the material in this section comes from the preprint “The

tropical polytope is the set of all weighted tropical Fermat-Weber points” [13], which is joint

work with Mark Curiel.

A set S ∈ Rn is (classically) convex if for every pair of points x, y in S, the line segment

between x and y also lies in S. We are particularly interested in convex sets with linear

boundaries.

A polyhedron P ⊂ Rn is an intersection of finitely many half spaces. We call P a polytope

if this intersection is bounded. In this case, we write P = conv(A) to mean P is the convex

hull of some finite set A ⊂ Rn. For instance, the standard simplex is the convex hull of the

n standard basis vectors in Rn and we denote it by ∆n−1. A face of a polytope P is the

collection of points in P that minimizes the dot product with a fixed vector u, specifically

faceu(P ) := {x ∈ P | u · x ≤ u · y,∀y ∈ P}. (1.1)

A polyhedral complex is a collection of polyhedra S = {Ci} with the following properties:

(1) S is closed under taking faces, and (2) Ci ∩ Cj is a face of both Ci and Cj, or is empty.

The normal cone to F in P , denoted σF , is the set of all vectors u ∈ (Rm)∗ such that

faceu(P ) ⊇ F . Alternatively, σF is the closure of {u ∈ (Rm)∗ | faceu(P ) = F}. The normal

fan of a polytope P is the collection of cones {σF | F is a face of P}.
For the remainder of this section we are concerned with subdivisions of polytopes. Con-

sider m polytopes P1, . . . , Pm ⊂ Rn where Pi = conv(Ai) for some finite sets Ai ⊂ Rn. A

subdivision of a polytope P is a polyhedral complex S = {Ci} such that P =
⋃
iCi.

Definition 1.2.1. Given a polytope P = conv{v1, . . . ,vk} ⊂ Rn, and weight wi ∈ R on vi,

the lift of P with respect to w is

P̃ := conv{(vi, wi) | i = 1, . . . , k} ⊂ Rn+1 (1.2)

A face F = faceu(P̃ ) of P̃ is an upper face if un+1 < 0. The regular subdivision of P with

respect to w is the projection of the upper faces of P̃ onto P (forgetting the last coordinate).
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An example is given in Example 1.3.11.

Definition 1.2.2. The normal complex of a regular subdivision is the projection of the cones

of the normal fan of P̃ that are normal to upper faces of P̃ .

Notation: A subdivision of P will be denoted P . Regular subdivisions induced by a

piecewise-linear convex function λ will be denoted P λ.

1.3 Tropical Geometry

Tropical geometry is the study of the polyhedral skeletons of algebraic varieties. While

algebraic geometry is the study of solutions to polynomial equations, tropical geometry is

the study of regions of non-linearity of piece-wise linear functions, which are defined over a

tropical semi-ring. This section uses material from [12] and [13].

1.3.1 Tropical Arithmetic

There are two tropical semi-rings which I will use in this thesis. In the tropical max-plus

semi-ring R+ := (R ∪ {−∞},⊕,⊙), tropical addition ⊕ and tropical multiplication ⊙ are

defined to be max and + respectively

a⊕ b = max{a, b}, a⊙ b = a+ b where a, b ∈ R ∪ {−∞}.

The max-plus multiplicative identity is 0, and the additive identity is −∞. The tropical

min-plus semi-ring is R− := (R ∪ {+∞},⊕,⊙), where ⊕ = min and ⊙ = +. The min-

plus multiplicative identity is also 0, and the min-plus additive identity is +∞. The max-

and min-plus semi-rings are equivalent up to a sign, but for certain applications it is more

convenient to use one or the other. For example, when taking the tropical average of two

trees, the max-plus semi-ring is the most natural; when tropicalizing an algebraic variety, it

is sometimes easier use the min-plus semi-ring. The max-plus semi-ring will be the default

when max/min is unspecified.

These tropical operations can be extended component-wise to the tropical projective torus,

Rn/R1. For vectors v,u ∈ Rn/R1, the notation u ⊕ v and u ⊙ v denotes component-wise

max and addition, respectively. Tropical scalar multiplication of a vector amounts to adding

a (classical) multiple of the all ones vector 1n, namely λ⊙v = λ1+v = (λ+ v1, . . . , λ+ vn)

for any λ ∈ R.
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Example 1.3.1. If v1 = (1, 2,−3) and v2 = (−5, 3, 2) are points in R3/R1, then

v1 ⊕ v2 = (max{1,−5},max{2, 3},max{−3, 2})
= (1, 3, 2) = (−1, 1, 0)

v1 ⊙ v2 = (1− 5, 2 + 3,−3 + 2)

= (−4, 5,−1)

3⊙ v2 = (3− 5, 3 + 3, 3 + 2)

= (−2, 6, 5)

When I draw pictures in Rn/R1, I will tropically scale points to have last coordinate

zero, then project away the last coordinate and draw the point in Rn−1. For example,

(3, 1, 2) ≡ (1,−1, 0) will be drawn in the plane at the location (1,−1).

1.3.2 Tropical Polynomials

Let x, a ∈ Rn, and define the tropical monomial: xa :=
⊕n

i=1 ai ⊙ xi. Note that when the

entries of a are non-negative integers, we have

xa11 ⊙ · · · ⊙ xann = x1 ⊙ · · · ⊙ x1︸ ︷︷ ︸
a1 times

⊙ · · · ⊙ xn ⊙ · · · ⊙ xn︸ ︷︷ ︸
an times

,

which explains the notation. Note that for a ∈ Rn, xa is still a well-defined tropical function,

but not a tropical polynomial.

Definition 1.3.2. Let x ∈ Rn/R1. A tropical signomial in x is a finite linear combination

of tropical monomials, i.e.

f(x) =
⊕
a∈A

λa ⊙ xa

where A ⊂ Rn
≥0 is finite and λa ∈ R If A ⊂ Zn≥0, then f(x) is a tropical polynomial.

Example 1.3.3. Let f(x) = 1⊕3⊙x⊕−1⊙x
√
2. In terms of classical arithmetic operations:

f(x) = max{1, 3 + x,−1 +
√
2x}.
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Figure 1.5: The graph of f(x) = 1 ⊕ 3 ⊙ x ⊕ −1 ⊙ x
√
2. The connection to the Newton

polytope of f is explained in section 1.3.3.

The graph of f(x) is depicted in fig. 1.5; it has three linear pieces:

f(x) =


1 if x ≤ −2,

3 + x if − 2 ≤ x ≤ 4√
2−1

,

−1 +
√
2x if 4√

2−1
≤ x.

1.3.3 Tropical Varieties

I begin by defining the tropical hypersurface of a tropical polynomial, and briefly describe

tropical varieties more generally. Then, I explain how a tropical hypersurface is encoded by

a subdivision of the Newton polytope of its defining polynomial. Later, in Section 1.3.5,

I introduce two relevant examples of tropical varieties: the tropical Grassmannian and the

space of ultrametrics.

Definition 1.3.4. The tropical vanishing set or tropical hypersurface of a tropical signomial

f =
⊕

i ci⊙xαi , denoted tropV(f), is the set of x ∈ Rn for which the max in f(x) is achieved

at least twice,

tropV(f) = {x ∈ Rn | max in f(x) is achieved at least twice}. (1.3)
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A tropical variety is an intersection of finitely many tropical hypersurfaces.

Remark 1.3.5. Tropicalization is a process that transforms polynomials and algebraic va-

rieties (i.e., the solutions to a finite set of polynomial equations) into their tropical coun-

terparts. Under tropicalization, polynomials become piece-wise linear functions (tropical

polynomials) and algebraic varieties become polyhedral complexes (tropical varieties). [In

this thesis I will only describe the tropical hypersurfaces and varieties using tropical poly-

nomials]. For details on the process of tropicalization see [29, §3].

When f is a product of tropical polynomials fi, tropV(f) is the union of the tropical

hypersurfaces tropV(fi). A more general result is the following.

Lemma 1.3.6. The tropical vanishing set of a product of real positive powers of polynomials,

fwi
i , is (as a set) the union of tropical vanishing sets of the fi. That is,

tropV

(
m⊙
i=1

fwi
i

)
=

m⋃
i=1

tropV(fi), for wi > 0.

Proof. Let fi =
⊕

α∈Ai
cα ⊙ xα, Ai ⊂ Rn

>0. If the maximum in fj is achieved twice by x,

then f
wj

j (x) = wj(cα1 + α1 · x) = wj(cα2 + α2 · x) for some α1 ̸= α2 ∈ Aj. It follows that the

maximum in
⊙m

i=1 f
wi
i is also achieved at least twice:

m⊙
i=1

fwi
i = wj(cα1 + α1 · x) +

∑
i ̸=j

fwi
i (x) = wj(cα2 + α2 · x) +

∑
i ̸=j

fwi
i (x).

On the other hand, if the maximum is achieved twice in
⊙m

i=1 f
wi
i at x, then we must be able

to write the maximum as two distinct sums:
∑m

i=1wi(cα1
i
+ α1

i · x) =
∑m

i=1wi(cα2
i
+ α2

i · x),
where α1

i , α
2
i ∈ Ai. It follows that for some j ∈ [m], α1

j ̸= α2
j , so the maximum in f

wj

j is

achieved at least twice.

A tropical hypersurface is a polyhedral complex, and it can be understood combinatorially

in terms of the Newton polytope of f , defined below.

Definition 1.3.7 (Newton polytope). Suppose f(x) =
⊕

a∈A ca⊙xa is a multivariate poly-

nomial for some finite A ⊂ Rn and ca ∈ R. The support of f(x) is the set, denoted supp(f),

containing all a ∈ A such that ca ̸= −∞. The Newton polytope Newt(f) of the polynomial

f(x) is the convex hull of its support, i.e. Newt(f) = conv(supp(f)). If f, g are polynomials,

then Newt(fg) = Newt(f) + Newt(g).

Proposition 1.3.8 (Proposition 3.1.6, [29]). Given a tropical signomial f =
∑

i cix
αi, let

N f denote the regular subdivision of Newt(f) induced by the weighting w(ai) = ci. Then

tropV(f) is the codimension-1 skeleton of the normal complex of N f .
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Figure 1.6: Left: A lift of 2∆2 = Newt(f) with weights given by the coefficients of f , overlaid
with tropV(f) in black; right: tropV(f).

Remark 1.3.9. Although Proposition 3.1.6 in [29] is originally stated for tropical polynomials,

the arguments clearly hold for tropical signomials as well.

Definition 1.3.10. Given a tropical polynomial f , let N be the regular subdivision of

Newt(f) induced by the coefficients of f . The normal complex of f is normal complex of N ;

it is a subdivision of Rn.

Example 1.3.11. The following is an example of Proposition 1.3.8. Let

f = x2 ⊕ 4⊙ xy ⊕ 3⊙ xz ⊕ y2 ⊕ 4⊙ yz ⊕ 3⊙ z2. (1.4)

Figure 1.6 depicts tropV(f), the subdivision of the Newton polytope dual to it, and the

lift of the Newton polytope that induces that subdivision.

1.3.4 Tropical Convexity

Definition 1.3.12. The min-tropical convex hull (or max-tropical convex hull) of a set of

points A ⊂ Rn/R1, denoted tconvmin(A) (respectively, tconvmax(A)), is the set of all tropical

linear combinations of points in A, that is,

tconv(A) := {λ1 ⊙ a1 ⊕ · · · ⊕ λk ⊙ ak | λi ∈ R, ai ∈ A, k ∈ N}. (1.5)

If A is a finite set, then tconv(A) is called a tropical polytope.

Note that the tropical convex hull is independent of the representatives in Rn/R1 we
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choose for the points in A. That is, if v′
i = αi ⊙ vi, λi ∈ R, then with λ′i = λi − αi

λ1 ⊙ v1 ⊕ · · · ⊕ λm ⊙ vm = (λ1 − α1)⊙ v′1 ⊕ · · · ⊕ (λm − αm)⊙ vm = λ′1 ⊙ v′1 ⊕ · · · ⊕ λ′m ⊙ v′m.

Example 1.3.13. Let v1 = (0, 0, 0), and v2 = (1,−1, 0). The tropical line segment

tconv(v1, v2) consists of points of the form λ1⊙v1⊕λ2⊙v2, and tconvmin(v1, v2) is illustrated

in Figure 1.7. The tropical polytope tconvmin(v1, v2) consists of three points, connected by

two classical line segments.

v1

v2

λ1 − λ2 ≥ 1 →
1 > λ1 − λ2 > 0 →

λ1 − λ2 = 0 →

Figure 1.7: The tropical line segment between v1 = (0, 0, 0) and v2 = (1,−1, 0).

A subset S of the tropical projective torus is tropically convex if the tropical line segment

between any two points of S is fully contained in S. Tropical line segments are discussed in

greater detail in Chapter 2.

1.3.5 Tropical Phylogenetic Tree Space

In Section 1.1.4 I defined BHV space and the space of equidistant trees. These spaces, when

embedded in the tropical projective torus, are also tropical varieties. The tropical space of

equidistant trees is particularly interesting because it is tropically convex.

The (rank 2) tropical Grassmannian, tropGr◦(2, n), encodes unrooted trees on n leaves.

Recall that a point x in Gr(2, n) corresponds to a rank 2 linear subspace of Pn, which may

be represented by a 2 × n matrix Mx. The 2 × 2 minors of Mx, pij, are called the Plücker

coordinates of x, and they give an embedding of the Grassmannian into a large projective

space, P(
n
2). The subset Gr◦(2, n) consists of all points x ∈ Gr(2, n) all of whose Plücker

coordinates are non-vanishing.

The Plücker relations are polynomial equations in the pij that cut out this embedding of

the Grassmannian. The tropical Plücker relations are

(pij ⊙ pkl)⊕ (pik ⊙ pjl)⊕ (pil ⊙ pjk), for all distinct i, j, k, l ∈ [n].

This is exactly the 4-point condition (see Theorem 1.1.8). Thus, the tropical Grassmannian

(which is tropically cut out by the tropical Plücker relations) is the tropical embedding of
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the space of unrooted phylogenetic trees [42]. The following example shows that the tropical

Grassmannian is not tropically convex.

Example 1.3.14. The two vectors below satisfy the 4-point condition. However, their

tropical sum does not.

(u12, u34, u13, u24, u14, u23)

A =(3, 9, 8, 10, 9, 9)

B =(10, 8, 3, 9, 9, 9)

A⊕B =(10, 9, 8, 10, 9, 9).

The tropical embedding of the space of equidistant trees arises as the tropicalization of

the complete graph, Kn. The tropicalization of a graph G lies in R|E(G)|/R1 and is cut out

by the tropical polynomials of the form
⊕

e∈C xe, where C is a cycle of G. These tropical

polynomials are the tropical circuit relations of G. For more details on this construction,

see [29, §4]. In a complete graph, every triangle is a circuit. Therefore, the tropical circuit

relations of Kn are

xij ⊕ xjk ⊕ xik, for all distinct i, j, k ∈ [n].

The above relations exactly describe the 3-point condition, so trop(Kn) is the space of ul-

trametrics (i.e., equidistant phylogenetic trees) [1]. I will denote this space by Un.
Tropical varieties that arise from graphs in the way described above are linear tropical

varieties, and therefore, they are always tropically convex [29, Theorem 5.2.8]. For the space

of ultrametrics, it is also possible to give an explicit argument for tropical convexity using

the tropical circuit relations of Kn.

Theorem 1.3.15 ([29]). The space of ultrametrics is (max)-tropically convex.

Proof. A space is tropically convex if it contains the tropical line segment between any two

points in the space. I will show that for any ultrametrics, u, v ∈ Un, the space Un contains

u⊕v; this implies that Un contains the entire tropical line segment tconv(u, v). By definition,

u⊕ v = (max{uij, vij})ij∈([n]
2 )
.

We want to prove that this vector satisfies the 3-point condition, i.e. we want to show that

for distinct i, j, k ∈ [n], max{max{uij, vij},max{uik, vik},max{ujk, vjk}} is achieved at least

twice. Since u itself satisfies the 3-point condition, suppose without loss of generality that

uij = uik ≥ ujk. If max{vij, vik, vjk} ≤ uij, then max{uij, vij} = max{uik, vik} = uij =
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uik ≥ max{ujk, vjk} and we are done. On the other hand, if max{vij, vik, vjk} ≥ uij =

max{uij, uik, ujk}, then by a symmetric argument we are also done.

Remark 1.3.16. In terms of trees, tropical shifting by λ1 means adding λ/2 to the length of

each edge that is adjacent to a leaf. Thus, lengths of edges adjacent to leaves are no longer

well-defined.

Remark 1.3.17. Another fan structure on the tropical Grassmannian is described by Ardila

and Klivans in [1]. It is finer than the fan structure we described above; two trees u, v lie

in the same cone of the finer structure and have the same ranked tree topology if they are

combinatorially isomorphic, and the chronological order of all n − 1 internal vertices is the

same in both trees, or equivalently if

argmaxku

(
[n]

2

)
= argmaxkv

(
[n]

2

)
, for all k ∈ N,

where argmaxku(S) denotes the elements of S where u achieves its kth largest value over

elements in S.

Note that in Figure 2.2, the second tree, w = u⊕−1⊙ v, lies in a codimension 1 cone in

the fine fan structure (since the tree is binary branching, but two internal vertices are at the

same height). More precisely, the line segment between w and u ⊕ v (the second and third

trees in Figure 2.2) lies in the intersection of two cells representing distinct ranked tree

topologies: w12 ≤ w34 ≤ w13 = w14 = w23 = w24 and w34 ≤ w12 ≤ w13 = w14 = w23 = w24.

The number of turning points is close to the NNI distance, because each turning point

sits in a coarse cone of codimension at most two, hence uses at most three NNI moves. In

the finer fan structure, the tropical line segment can pass through cones of codimension up

to n/2, which indicates that many ranked NNI moves may be required at a single turning

point. Additionally, in the coarse fan structure, the tropical line segment only intersects

non-maximal cones at points, but in the finer fan structure, the tropical line segment may

intersect non-maximal cones in a whole classical line segment.

1.4 Statistical Models

In this section, I begin by defining models and then introduce two relevant examples: Gaus-

sian models and Brownian motion tree models, the latter of which are the topic of Chapter 4.

Afterwards, I define the maximum likelihood estimator, which is a method for fitting a prob-

ability distribution to observed data. The primary reference for the general material on

models is Algebraic Statistics by Seth Sullivant [47]; for Brownian motion tree models a
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reference is [21].

A statistical model, M, is a collection of probability distributions or density functions

which all share some underlying assumptions. Models may be explicitly parameterized, or

they may be defined implicitly, for example by specifying independence constraints on a

collection of random variables. Brownian motion tree models, and linear Gaussian models

more generally, are parameterized, so this introduction will be limited to parameterized

models, which are defined formally below.

Definition 1.4.1 (Definition 5.1.1, [47]). A (parametric) statistical model is a mapping, θ 7→
pθ, from a finite dimensional parameter space Θ ⊆ Rd to a space of probability distributions

or density functions.

One example of a model is the binomial random variable model, defined below; this will

be the running example throughout this section.

Example 1.4.2 (Binomial variable with r trials. Example 5.1.2, [47]). Let X be a random

variable that records the number of successes in r trials of an experiment with two possible

outcomes – “success” and “failure”. The binomial random variable model consists of all

probability distributions of the form

Pθ(X = i) =

(
r

i

)
θi(1− θ)r−i.

The model has a single parameter, θ, which is the probability of success; the parameter space

of the model is Θ = [0, 1].

1.4.1 Gaussian Models

A Gaussian probability distribution on m variables has two parameters: the mean, µ ∈ Rm,

and the covariance matrix, Σ ∈ PDm(R), where PDm(R) denotes the set of all real positive

definite symmetric matrices. A vector of random variables, x, which is distributed according

to a normal distribution with mean µ and covariance Σ, is denoted x ∼ N (µ,Σ). The

probability density function of for a vector of jointly distributed Gaussian variables is then

given by the following function

QΣ,µ(x1, . . . , xm) :=
1

(2π)k/2 |Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
. (1.6)

A Gaussian model is a collection of Gaussian probability distributions. For the Gaussian

models in this thesis, every probability distribution in the model is mean zero (i.e. µ = 0).
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Such Gaussian models are frequently defined by specifying polynomial constraints on their

covariance matrices or concentration matrix (i.e., inverse covariance matrix). In this case,

the model is referred to as a covariance model (resp. concentration model). Since a mean

zero Gaussian model is completely determined by the admissible covariance (or, concentra-

tion) matrices, I will identify it with the collection of admissible covariance (concentration)

matrices. An important class of Gaussian models are linear covariance models.

Definition 1.4.3. Given a linear space L ⊆ Rm×m, the associated linear covariance model,

ML, is the collection of mean zero Gaussian density functions whose covariance matrices lie

in L ∩ PDm(R),
ML := {QΣ,0 : Σ ∈ L ∩ PDm(R)}.

I may also simply write ML = L∩PDm(R), identifying the model with its set of covariance

matrices.

Brownian motion tree models, defined in the next section, are an example of a linear

covariance model.

1.4.2 Brownian Motion Tree Models

Brownian motion is a stochastic process that models the movement of an object subject to a

large number of very small forces. While these models were motivated by understanding the

movement of a small particle in air or liquid, they have also found applications in a variety of

fields. In phylogenetics, Brownian motion can be used to model the evolution of real-valued

continuous traits through genetic drift2, which refers to the accumulation of purely random

genetic mutations over time. Brownian motion tree models have been used to determine how

quickly certain traits evolved, and whether a continuous trait evolved because of selective

pressure or genetic drift [21, 40].

For a single variable, a Brownian motion is a family of normal distributions, Bt, whose

variance is proportional to (time) t

Bt ∼ N (µ, σ2t).

For a group of biological units, Brownian motion can be modeled continuously, discretely, or

algebraically along a phylogenetic tree T . These models, called Brownian motion tree models,

were introduced in [17]; recently, these models have been studied as algebraic statistical

models [46, 4, 45].

2Brownian motion tree models can also be used to model evolution due to selective pressure, with some
additional assumptions [19].
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x z

v
Yx = Yv +Bdist(x,v)

Yz = Yv +Bdist(z,v)

Figure 1.8: Brownian motion along a phylogenetic tree at a branch point.

In the continuous version of a Brownian motion tree model, which is illustrated in Fig-

ure 1.8, each point x along the tree (including vertices and all the points on edges between

them) corresponds to a random variable Yx, which is normally distributed. Starting at the

top, the distribution assigned to the root is 0. Moving downwards towards the leaves, the

distribution evolves as a mean zero Brownian motion along each branch with variance σ2
T

and splits into two independent mean zero Brownian motions at each internal vertex. The

normal distribution assigned to an arbitrary point z on the tree is normal distribution of its

parent vertex, plus the Brownian motion of the current branch up to z. Thus, if x, z are

points on different edges directly below an internal vertex v, we have Yx = Yv + Bt1 , and

Yz = Yv+Bt2 , where t1, t2 are the distances between the vertices v and x and between v and

z when T is considered as a metric tree. Note that σT is constant over the whole tree; thus,

we may only estimate the ti up to a factor of σ2
T .

In the discrete version of a Brownian motion tree model, only the distributions at vertices

(both internal and leaves) are recorded. The distribution at each vertex is a sum of mean-

zero normal distributions, hence the discrete Brownian motion tree model is a vector of

normal distributions, (Yv)v∈V (T ). The algebraic version of a Brownian motion tree model is

a joint normal distribution on the leaf variables only. The following proposition computes

the covariances among leaf variables.

Proposition 1.4.4 (Proposition 2.1, [46]). The random vector (Y1, . . . , Yn) is normally dis-

tributed with mean zero, and the entries σij = cov(Yi, Yj) of its covariance matrix Σθ are

σij =
∑

v≤lca(i,j)

θv, for i, j = 1, . . . , n. (1.7)

Thus, the (algebraic) Brownian motion tree model is a linear covariance model where the

covariance matrix is constrained by least common ancestry in a fixed evolutionary tree T .
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A more precise definition is given below.

Definition 1.4.5. Given a rooted tree T with n + 1 leaves (where one leaf is the root),

the associated linear space LT ⊆ PDn consists of Σ = (σij)1≤i,j≤n satisfying σij = σkl if

lcaT (i, j) = lcaT (k, l).

In the example below, I provide the Brownian motion tree model for the tree in Figure 1.1.

Example 1.4.6. For the tree in Figure 1.1, the corresponding linear space is

LT (R) =




t1 t5 t5 t6

t5 t2 t5 t6

t5 t5 t3 t6

t6 t6 t6 t4

 : t1, . . . , t6 ∈ R

 .

The Brownian motion tree model for T is MT = LT (R) ∩ PD4.

1.4.3 Maximum Likelihood Estimation

Given a model M and independent, identically distributed data (iid) data set S, we may

ask:

Question 1.4.7. Which model in M maximizes the likelihood of S being observed?

A distribution that answers this question is called a maximum likelihood estimator (MLE).

The assumption that S is independent and identically distributed means that the probability,

or likelihood, of observing S is the product of probabilities of observing each data point in S.

Assuming the probability density function for x is pθ, we denote this likelihood by L(θ|S).
That is,

LM(θ|S) :=
∏
x∈S

pθ(x).

It is often easier to work with the log-likelihood function, denoted ℓ(θ|S) and defined

below, which has extrema at the same locations as L(θ|S).

ℓM(θ|S) = logLM(θ|S) =
k∑
i=1

logLM(θ|ti). (1.8)

Given a parameterized model M, the problem of computing the maximum likelihood

estimator is equivalent to finding the parameters θ that maximize LM(θ|S) (or ℓM(θ|S))
when S is fixed. This can be done by finding the points where all θ partial derivatives
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of ℓ(θ|S) are set to zero. These partial derivatives are called the score equations. The

maximum likelihood estimates are critical points of the likelihood function, so the number of

critical points is an algebraic measure of the complexity of the problem, called the maximum

likelihood degree.

Definition 1.4.8. The maximum likelihood degree of a model, M, is the number of complex

critical points of ℓ(θ|S) over M.

Remark 1.4.9. Although linear Gaussian models usually require real, positive definite co-

variance matrices, the ML degree usually refers to the number of critical points to the

likelihood function over the complex linear space model, intersected with invertible matrices

L(C) ∩GLn(C). This is because tools from algebraic geometry are naturally suited to com-

pute all complex solutions, and the condition that a matrix is invertible is easier to enforce

than positive definite. However, an MLE is always a real, positive definite matrix, if it exists.

In Chapter 4, we compute this modified ML degree.

Chapter 3 of this thesis is concerned with computing the maximum likelihood degree for

Brownian motion tree models. Below is an example where the maximum likelihood degree

and estimate are computed for the running example.

Example 1.4.10 (MLE of a binomial random variable. Example 5.3.6, [47]). Let Mr be

the model of r trials of a binomial random variable. Each probability distribution in Mr

takes the form pθ(i) =
(
r
i

)
θi(1 − θ)r−i for some θ ∈ (0, 1). The domain pθ is {0} ∪ [r],

which represents the number of successes among the r trials. The sample is a vector of

counts s = (si), where si is the number of times the experiment resulted in i successes for

i = 0, . . . , r. The likelihood function is

L(θ|s) =
r∏
i=0

pθ(i)
si =

r∏
i=0

((
r

i

)
θi(1− θ)r−i

)si
.

And the log-likelihood function is

ℓ(θ|s) =
r∑
i=0

(
log

(
r

i

)
+ si (i log θ + (r − i) log(1− θ))

)
.

Thus, the (one) score equation for this model is

∂ℓ

∂θ
=

r∑
i=0

isi
θ

−
r∑
i=0

(r − i)si
1− θ

= 0.
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In this example, the only critical point is at θ̂ =
∑r

i=0 isi
rn

, where n is the sum of the entries

of s. Hence the ML degree is one, and the MLE is the distribution pθ̂(x). Note the the

optimal parameter θ̂ is the sample probability of success, i.e. the total number of successes

in the sample divided by the total number of trials.

1.5 Computational Algebraic Geometry

A classical problem in algebraic geometry is to compute the number of solutions to a system

of n homogeneous polynomials in n + 1 variables. For a statistical model, M, computing

the ML degree means finding the number of solutions to the system of score equations over

M. In this section, I introduce the tools from algebraic geometry needed to carry out this

computation for Brownian motion tree models, where the score equations are rational. First,

I explain how to transform the rational system of score equations into a polynomial system of

equations by clearing denominators and saturating. In the following subsections, I introduce

Bézout’s Theorem and standard bases, which we use in Chapter 4 to compute the solutions

to this new polynomial system.

Given a system of rational functions, F̄ = {p1(x)/q1(x), . . . , pk(x)/qk(x)}, a solution to

the system is a point x so that pi(x) = 0 and qi(x) ̸= 0 for i = 1, . . . , k. Let F be denote the

system after clearing denominators, i.e., F = {p1(x), . . . , pk(x)}. F is a polynomial system.

The solutions to F̄ are contained in V (F ), but V (F ) is generally bigger. The excess solutions

in V (F ) are points where qi vanishes for some i. Thus, it is possible to find the solutions to

F̄ by first finding solutions to F , and then removing solutions to the qi. That is,

solutions(F̄ ) = V (F ) \ V (q1, . . . , qk).

1.5.1 Bézout’s Theorem

Consider the following statements about intersections of algebraic curves in the affine plane:

1. Any two distinct lines intersect in one point, unless they are parallel.

2. A parabola and a line intersect in 0, 1, or 2 points.

Three assumptions allow us to simplify the statements above. First, we compute intersec-

tions in a topologically compact space, like Pn. This addresses the issue in the first statement

– in Pn, parallel lines intersect “at infinity”, so any two lines intersect in exactly one point.

Next, we work over an algebraically closed field, like C, to avoid the issue that arises for

the first picture in Figure 1.9. Finally, we count with multiplicity. Multiplicity is a rigorous
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Figure 1.9: Parabolas intersecting the line y = −1 in 0, 1, or 2 points.

way of assigning an integer weight to each intersection point, which addresses the middle

picture in Figure 1.9. In the parabola and line intersection, the multiplicity arises intuitively

by studying a family of parabolas ft(x) = x2 + t. For t < −1, ft(x) = 0 intersects the line

g(x) = −1 in exactly two points, which we will call a and b. As t increases, the parabola

moves upwards, and as t approaches −1, the points a and b come together. Thus, the single

intersection point of f−1(x) = x2 − 1 and g(x) = −1 should have 2, since the two points a

and b collided.

With these additional assumptions, we can simplify the intersection statements as follows:

1. Any two distinct lines intersect in exactly one point.

2. A parabola and a line intersect in exactly two points.

These additional assumptions permit statements that talk about the number of intersec-

tion points without knowing the coefficient of the polynomials involved nor ever explicitly

solving for the intersection points. For example, for a system of homogeneous polynomial

equations over an algebraically closed field, the number of solutions in Pn can be found using

Bézout’s Theorem (Theorem 1.5.1).

Theorem 1.5.1 (Bézout’s Theorem [41, §II.2]). Given n projective hypersurfaces of degrees

d1, . . . , dn in a projective space of dimension n over an algebraically closed field, if the in-

tersection of the hypersurfaces is zero dimensional, then the number of intersection points,

counted with multiplicity, is equal to the product of the degrees d1 · · · dn.
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We will now formally define multiplicity. Let I ⊆ k[x1, . . . , xn] be an ideal in a polynomial

ring with finitely many variables, x1, . . . , xn, over an algebraically closed field k. Then I is

zero-dimensional if the corresponding variety V (I) ⊆ Pnk contains only finitely many points,

or equivalently, if k[x1, . . . , xn]/I is finite dimensional. For a zero-dimensional ideal I, we can

assign to each point p ∈ V (I) a positive integer, mI(p), called the multiplicity. Multiplicities

are formally defined using local rings.

Definition 1.5.2 ((2.1), [11]). Let I be a zero-dimensional ideal in k[x1, . . . , xn], and assume

that p = (p1, . . . , pn) ∈ V (I). Then the multiplicity of p as a point in V (I) is

dimk k[x1, . . . , xn]⟨x1−p1,...,xn−pn⟩/Ik[x1, . . . , xn]⟨x1−p1,...,xn−pn⟩.

Let X(I) denote the vanishing of a homogeneous ideal I in complex projective space, PnC.
When counted with multiplicity, the number of points in X(I) is always the expected count∑

p∈V (I)

mI(p) = dimk k[x1, . . . , xn]/I.

This expected count is also referred to as the degree of I, denoted deg I. If f1, . . . , fn are

generators for I, Bézout’s Theorem tells us the degree of I is the product of the degrees of

the fi.

1.5.2 Standard Bases

In Chapter 4, we compute the multiplicity of specific points which are counted by Bézout’s

Theorem, but which do not lie in the model. It can be difficult in general to compute

dimensions of quotient rings, but it is much simpler when I is generated by monomials. In

this case I is called a monomial ideal, and the dimension of R/I is the number of monomials

not in I. Monomial orders and Gröbner bases provide the tools needed to convert any

computation dimk R/I in a polynomial ring into a computation with monomial ideals by

taking leading terms. The leading term of a polynomial f under the monomial order > is

the term of f whose monomial is largest according to >. The leading term ideal of I is

generated by the leading terms of all elements of I; if G = {g1, . . . , gk} is a Gröbner basis of

I, then the leading term ideal is generated by the leading terms of G. That is,

LT>(I) = ⟨LT>(f) | f ∈ I⟩ = ⟨LT>(g1), . . . ,LT(gk)⟩.
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The operation of taking leading terms preserves the dimension but replaces I with a mono-

mial ideal,

dimk R/I = dimk R/LT>(I).

Local orders and standard bases, which I introduce below, are the analog for local rings

and counting the multiplicity of a point. Let R be a local ring. For example, let R be a

polynomial ring localized at a point, k[x1, . . . , xn]⟨x1−p1,...,xn−pn⟩, or a ring of power series

k[[x1, . . . , xn]]. Analogous to a monomial order for a polynomial ring, on a local ring can have

a local order.

Definition 1.5.3. A local order is any total order > such that

1. > is compatible with multiplication, meaning xa > xb implies xaxc > xbxc, and

2. 1 > xi for 1 ≤ i ≤ n.

In analogy to a Gröbner basis, a generating set {f1, . . . , fk} of an ideal I is a standard

basis for I under local order > if {LT>(f1), . . . ,LT>(fk)} is a generating set for LT>(I).

With a local order, an analogous dimension counting theorem holds:

Theorem 1.5.4 (§4(4.3), [11]). Let R̂ = C[[x0, . . . , xn]]. Let Ĵ ⊂ R̂ be an ideal, > a local

order, and ⟨LT>(Ĵ)⟩ be the leading term ideal for Ĵ with respect to >. If R̂/Ĵ contains

finitely many standard monomials; that is, monomials xα ∈ R̂ such that xα /∈ ⟨LT>(Ĵ)⟩,
then

dimC(R̂/Ĵ) = dimC(R̂/LT>(Ĵ)).

The analogs of the polynomial division algorithm and Buchburger’s criterion, which give

algorithms to compute standard bases, are the following.

Theorem 1.5.5 (Mora’s Normal Form Algorithm §4 (3.10), [11]). Given homogeneous poly-

nomials F, F1, . . . , Fs in K[t, x1, . . . , xn] and the monomial order >′ extending the semigroup

order > on monomials in the xi, there is an algorithm for producing homogeneous polyno-

mials H,U,A1, . . . , As ∈ k[x1, . . . , xn] satisfying

U · F = A1F1 + · · ·+ AsFs +H,

where LT>′(U) = ta for some a, a + degF + degAi + degFi = degH whenever Ai, H ̸= 0,

and no LT>′(Fi) divides t
bLT>′(H) for any b ≥ 0.
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Theorem 1.5.6 (Analog of Buchburger’s Criterion [11, §4 (4.2)b]). A subset S =

{g1, . . . , gt} ⊂ I is a standard basis for I if and only if applying the Mora normal form

algorithm Theorem 1.5.5 to every S-polynomial formed from the elements of the set of ho-

mogenizations Sh = {gh1 , . . . , ght } yields a zero remainder.

We will use the following shortcut when computing a standard basis in Chapter 4, which

applies when R is a a polynomial ring, power series ring, or a localization of a polynomial

ring.

Lemma 1.5.7. Let f, g ∈ R, and let > be a local order (or monomial order) on R. If f, g

have relatively prime leading terms, then S(f, g) = 0. Thus, generators of an ideal whose

leading terms are relatively prime form a standard basis (Gröbner basis) for the ideal.

Proof. S-pairs of elements with relatively prime leading terms vanish. Therefore, Buch-

burger’s algorithm immediately terminates, and we conclude that the generators form a

standard basis.

1.6 Results and Contributions

Part 1 of this thesis is concerned with tropical phylogenetics, i.e., problems in phylogenetics

involving the tropical space of phylogenetic trees. In Chapter 2, I study the tree topology

changes that occur along the tropical line segment between two phylogenetic trees. The main

theorem is Theorem 2.3.1, which states that trees along the tropical line segment can only

change by Nearest Neighbor Interchange and Four Clade Rearrangement. This disproves

an earlier conjecture that the topology changes are only NNI illustrates that tropical tree

space is very different from BHV space – the trees along geodesic in BHV space can be

less resolved or even star trees [3, Corollary 4.1]. In addition, I show that the number of

NNI moves occurring along the tropical line segment can be as large as n2, but the average

number of moves when the two endpoint trees are chosen at random is O(n(log n)4). This

is in contrast with O(n log n), the average number of NNI moves needed to transform one

tree into another. This chapter was first published by MSP in Algebraic Statistics in volume

14(1), pages 71-90 [12], and builds off an earlier joint work with Ruriko Yoshida [51].

Chapter 3 concerns geometric medians of weighted tropical data points. Specifically, let

V = {v1, . . . , vm} be points in Rn, and let w1, . . . , wm be positive real weights. A weighted

geometric median of V with respect to w is a point z which minimizes
∑
wid(vi, z). Such

a point is called a Fermat-Weber point. Fermat-Weber points in tropical space were first

studied by Comăneci and Joswig [7], in the case where all the weights are equal, i.e., w1 =

· · · = wm. Comăneci and Joswig showed that the set of (unweighted) Fermat-Weber points
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is the “central” cell of the tropical convex hull of v1, . . . , vm. In Theorem 3.1.1, we show

that for any fixed data points v1, . . . , vm, as the weights wi vary, the set of all Fermat-Weber

points is the entire tropical convex hull of the vi. This chapter appears in “The tropical

polytope is the set of all weighted tropical Fermat-Weber points” [13], which is joint work

with Mark Curiel.

Part 2 is about likelihood inference for Brownian motion tree models. We study the

complexity of inferring the maximum likelihood estimator for a Brownian motion tree model

by computing its maximum likelihood degree. Our goal is to obtain the maximum likelihood

degree solely from the unlabeled topology of T . Our main result is that the maximum

likelihood degree of the Brownian motion tree model on a star tree with n + 1 leaves is

2n+1 − 2n − 3. This result was previously conjectured by Améndola and Zwiernik. In

addition, we find a combinatorial formula for the determinant of the concentration matrix of

a Brownian motion tree model (for any tree T ), which generalizes the Cayley-Prüfer theorem.

We also prove that the maximum likelihood of a Brownian motion tree model is independent

of the choice of root. This work will appears in the preprint “ML Degrees of Brownian

Motion Tree Models: Star Trees and Root Invariance”, which is joint work with Jane Ivy

Coons, Aida Maraj, and Ikenna Nometa.
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Part I

Tropical Phylogenetics

CHAPTER 2

Classifying Tree Topologies along Tropical

Line Segments

This chapter was first published by MSP in Algebraic Statistics in volume 14(1), p. 71-90 [12].

2.1 Introduction

Tropical polytopes in tree space play a critical role in understand sampling methods, yet it

is poorly understood which trees appear in a tropical polytope with tree vertices. Therefore,

the first goal of this chapter is to answer the following question:

Question 2.1.1. How do tree topologies (i.e. tree structures) change along the tropical line

segment?

It was conjectured previously that the trees along the tropical line segment change by

Nearest Neighbor Interchange (NNI). This is not quite true. For example, in [51] it was

shown that the tropical line between two trees on four leaves may pass through the star tree

with probability greater than 0, and this is not an NNI move. However, the behavior does

not get much worse.

The tropical line segment is a concatenation of classical line segments. The tree topology

can change at the points where the classical line segments connect, but not on the interior

of any of the classical line segments. We call these points turning points (whether or not the

tree topology changes). In Section 2.3, we prove the following result:
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Figure 2.1: The turning points on a tropical line segment with a single NNI move.

1

2

3

4

1 2 3 4

u

1 2 3 4

u ⊕−1⊙ v

1 2 3 4

u ⊕ v

1 23 4

u ⊕ 1⊙ v

1 23 4

v

Figure 2.2: The turning points on a tropical line segment with a four clade rearrangement.

Theorem 2.3.1. Tree topology changes only occur at turning points; at each turning point,

one of three things can happen:

1. (Nearest Neighbor Interchange) One internal vertex has three children, see Figure 2.1.

2. (Four Clade Rearrangement) One internal vertex has four children, see Figure 2.2.

3. (No Topology Change) All internal vertices have two children, see Figure 2.3.

The four clade rearrangement move can be achieved by three nearest neighbor interchange

moves, so it makes sense to ask how many NNI moves occur along the tropical line segment

between two general trees – each turning point can contribute 0, 1, or 3 NNI moves. We

will refer to the number of NNI moves occurring along the tropical path as the tropical NNI

number (counting a four-clade rearrangement as three NNI moves).
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Figure 2.3: Left: the turning points on a tropical line segment with constant tree topology.
Right: the tropical line segment (solid), and straight line segment (dashed) between u and
v.
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Question 2.1.2. What is the tropical NNI number between a random pair of trees on

n leaves? How does it compare to the NNI distance, the minimal number of NNI moves

required to transform one tree into the other?

By a pair of randomly chosen phylogenetic trees on [n] leaves, we mean that the topologies

of the trees are uniformly randomly chosen from the (finitely many) binary tree topologies

on [n] leaves, and whose corresponding tree metrics are sufficiently general, in a way that

is made precise in Section 2.2. For a random pair of phylogenetic trees on n leaves, it is

known that the average NNI distance is O(n log n), and the minimal number of NNI moves

is NP-hard to compute [14]. Theorem 2.3.1 implies that the number of turning points is

an upper bound on triple the number of NNI moves on the tropical line segment. First we

provide an example where the tropical NNI number can be much larger than the minimal

number of NNI moves.

Theorem 2.4.1. For each n, there exist generic pairs of trees, T1, T2, on n leaves such that

that the tropical NNI number from T1 to T2 is
(
n−1
2

)
.

Then we prove an upper bound for the average case.

Corollary 2.5.2. The expected number of NNI moves occurring along the tropical line seg-

ment between two randomly chosen trees on n leaves is O(n(log(n))4).

This chapter is structured as follows. In Section 2.2, we derive a non-standard definition

of turning points, which will be useful throughout the rest of the chapter. In Section 2.3

we classify tree topology changes occurring along the tropical line segment between two

generic trees, proving Theorem 2.3.1. In Section 2.4, we describe a family of generic pairs

of trees whose tropical NNI number far exceeds the expected tropical NNI number (proving

Theorem 2.4.1). In Section 2.5, we bound the expected NNI distance along the tropical line

segment between two randomly chosen trees on n leaves (proving Theorem 2.5.1).

2.2 Redefining Turning Points for Trees

The tropical line segment between two points in the tropical projective torus can be found

using the following algorithm.

Definition 2.2.1 (Algorithm for the Tropical Line Segment).

1. input: u, v ∈ Rn.

2. Λ(u, v) = [ui − vi | i ∈ [n]], sorted from least to greatest.
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u = u⊕ (−2⊙ v)

w2 = u⊕ (0⊙ v)u⊕ (1⊙ v) = v

Figure 2.4: The tropical line segment from u to v.

3. wi = u⊕ (λi ⊙ v), where λi is the ith smallest element of Λ.

4. output: the concatenation of Euclidean line segments from wi to wi+1.

Definition 2.2.2. In the algorithm above, Λ(u, v) = {ui − vi | i ∈ [n]} is the set of turning

point scalars, and wi is a turning point for the tropical line segment from u to v.

Example 2.2.3. Let u = (3, 3, 1) and v = (3, 2, 3). Then Λ = [−2, 0, 1], and the turning

points on the tropical line are:

u⊕ (−2⊙ v) = (3, 3, 1)⊕ (1, 0, 1) = (3, 3, 1) = u

u⊕ (0⊙ v) = (3, 3, 1)⊕ (3, 2, 3) = (3, 3, 3) = (0, 0, 0)

u⊕ (1⊙ v) = (3, 3, 1)⊕ (4, 3, 4) = (4, 3, 4) = v.

This tropical line segment is depicted in Figure 2.4.

Now we will reinterpret the turning point scalars in the tropical line segment algorithm

(Definition 2.2.1) in terms of internal vertices of the endpoint trees, which will allow us to

describe turning points without referring to the tree metrics.

Definition 2.2.4. Given a pair of phylogenetic trees T1, T2 on n leaves, define the essential

pairs of T1, T2 to be

Π(T1, T2) := {(x1, x2) | xk ∈ Tk,∃i, j ∈ [n], i ̸= j s.t. xk = lcaTk(i, j)}.

In the sections that follow, we will find that the results are much nicer if we consider trees

with sufficiently generic ultrametrics. We qualify “sufficiently generic ultrametric” with the

definition of generic below.

Definition 2.2.5. An equidistant tree T on n leaves with distance vector u is generic if any

of the following equivalent conditions hold:

1. u lies in the relative interior of a full-dimensional cone of Treetrn ,
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2. T has exactly n− 1 internal vertices (including the root), and

3. all internal vertices of T have degree 3, except the root, which has degree 2.

Note that if u is generic, then so is λ ⊙ u for any λ ∈ R, since tropical multiplication

affects only pendant edge lengths. A tree that is not generic is unresolved.

Definition 2.2.6. A tree T is unresolved (at internal vertex v) if v has more than two

children.

It is also possible to encounter highly unresolved trees along the tropical line segment

between T1 and T2 if certain edge lengths in the trees coincide. Therefore, we also require

that T1 and T2 are generic as a pair. We call such a pair a generic pair, and in Definition 2.2.7

we formally define such a pair.

Definition 2.2.7. A pair of equidistant trees T1, T2 on n leaves, with distance vectors u and

v, respectively, is a generic pair if:

1. u and v are each generic, and

2. for all xi, yi distinct internal vertices of Ti, hT1(x1)− hT2(x2) ̸= hT1(y1)− hT2(y2).

For a generic pair of trees, the number of turning points is independent of the specific

choice of ultrametric.

Lemma 2.2.8. Let T1, T2 be phylogenetic trees with leaf set [n]. Then for any sufficiently

general choice of ultrametrics uk on Tk (i.e. u1, u2 is a generic pair),

Λ(u1, u2) = {2(hu1(x1)− hu2(x2)) | (x1, x2) ∈ Π(T1, T2)}.

Proof. According to Definition 2.2.1, the turning points of the tropical line segment between

T1 and T2 occur at u1 ⊕ λij ⊙ u2, where λij = u1ij − u2ij.

We can rewrite the expression above in terms of heights on internal vertices.

λij = 2(hT1(x1)− hT2(x2)), where xk = lcaTk(i, j).

Conversely, given internal vertices x1 ∈ T1 and x2 ∈ T2, µx1x2 = 2(hT1(x1) − hT2(x2)) is

the scalar for a turning point if and only if µx1x2 = λij for some i, j ∈ [n], which happens if

and only if there are i, j ∈ [n] with xk = lcaTk(i, j) for k = 1, 2.

Corollary 2.2.9. Let T1, T2 be phylogenetic trees with leaf set [n]. Then for any sufficiently

general choice of ultrametrics uk on Tk, #Λ(u1, u2) = #Π(T1, T2).
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Therefore, the number of turning points between two combinatorial (non-metric) tree

structures can be defined as:

Definition 2.2.10. The tropical interchange number for trees T1, T2, denoted by tI(T1, T2),

is the number of turning points between T1 and T2 for any choice of generic weights u1, u2

on T1, T2.

2.3 The Tropical Line and NNI

Now we come to the first main question of the paper: what kinds of tree topology changes

can occur along the tropical line segment between two trees T1 and T2?

It turns out that even for a generic pair of trees, there may be a turning point which is

not a single NNI. For example, the endpoint trees in Figure 2.2 are a generic pair, but the

tropical line segment passes through a tree with an internal vertex with four descendants

(and this is independent of the specific choice of metrics on the trees). In this section, we

prove that when the endpoint trees are chosen to be sufficiently general, the only moves that

can occur are: a single NNI, and a single four clade rearrangement.

2.3.1 Possible Turning Points

The main theorem for this section is the following:

Theorem 2.3.1. At each turning point of the tropical line segment between a generic pair

of trees, the intermediate tree takes one of the following three forms:

1. a tree that is trivalent except for one internal vertex with three children (the middle of

an NNI, passing through a co-dimension 1 cell), see Figure 2.1 for an example;

2. a tree that is trivalent except for one internal vertex with four children (the middle of

a four clade rearrangement, passing through a co-dimension 2 cell), see Figure 2.2 for

an example;

3. a generic tree, (remaining in a top-dimensional cell), see Figure 2.3 for an example.

Corollary 2.3.2. On the tropical line between two generic trees u, v, there are no trees with

an internal vertex with five or more children.

The following definition will be useful in proving the theorem:

Definition 2.3.3. For u, v a pair of trees on n leaves, let G(u ≥ v) be the graph with vertices

[n] and edges (i, j) such that uij ≥ vij.
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Note that G(u ≥ v) ∪G(u ≤ v) = Kn.

Lemma 2.3.4. If G and H are subgraphs of K5, with G ∪H = K5, then at least one of G,

H contains an odd cycle.

Proof. Assume G and H each contain no odd cycles. Then G, H are bipartite graphs on the

five vertices. Let A,B,C be distinct vertices of G that share the same color. Then at least

one of the pairs {A,B}, {A,C}, and {B,C} has constant color in H. So neither G nor H

contains an edge between that pair. This contradicts the assumption that G∪H = K5.

Proof of Theorem 2.3.1. Suppose for a contradiction that there is some λ ∈ Λ(u, v) such that

the tree w = u⊕λ⊙v has an internal vertex with five or more children. Denote that internal

vertex w0. Pick one leaf descending from each child of w0, and call them 1, 2, 3, 4, 5, . . .. Then

10 =
(
5
2

)
distances coincide:

max{u12, λ+ v12} = max{u13, λ+ v13} = · · · = max{u45, λ+ v45}.

Lemma 2.3.4 shows that one of G(u ≥ λ + v) and G(u ≤ λ + v) must contain an odd

cycle. This means that for k = 1 or k = 2:

u12 = u23 = · · · = u2k+1,1

(or symmetrically for λ⊙v). Without loss of generality, suppose that the equations involving

u hold. Then all but the last distance tells us that u0 = lcau(i, j) for all i ∈ {1, 3, . . . , 2k+1}
and j ∈ {2, 4, . . . , 2k}, meaning that the odd numbered and even numbered leaves descend

from different children of u0. But then the last distance, u2k+1,1 says that 1, 2k+1 also have

least common ancestor u0, so the internal vertex must have at least three children, which

contradicts the assumption that u is generic.

Therefore, one of u, λ⊙v is not generic. Since λ⊙v is generic if and only if v is generic, this

contradicts our assumption that u, v are generic (i.e. trivalent) trees. Thus, no intermediate

tree on the tropical line between a generic pair u, v has an internal vertex with five or more

children.

Proposition 2.3.5. On the tropical line segment between a generic pair of trees, there are

no intermediate trees with two internal vertices that have three or more children each.

Proof of Proposition 2.3.5. Suppose w = u⊕ (λ⊙ v) has two internal vertices with at least

three children each. Name three of the descendants of the first high-degree internal vertex

1, 2, and 3, and name three descendants of the second high-degree internal vertex 4, 5, and
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6. Then

w12 = w13 = w23 and w45 = w46 = w56.

If we expand w12 = w13 = w23 in terms of u and λ⊙ v, we see

max{u12, λ+ v12} = max{u13, λ+ v13} = max{u23, λ+ v23}. (2.1)

We will show that these equations imply uij = λ+vij for some ij ⊂ {1, 2, 3} and ukℓ = λ+vkℓ

for some kℓ ⊂ {4, 5, 6}, and this implies that uij − vij = λ = ukℓ− vkℓ, which contradicts the

assumption that u, v is a generic pair.

The definition of ultrametric tells us that two of u12, u13, u23 are equal and greater than

the third; without loss of generality, assume u12 = u13 ≥ u23. The fact that u is generic

implies the inequality is strict: u12 = u13 > u23. Using a similar argument for λ ⊙ v, there

are three possibilities:

λ+ v12 = λ+ v13 > λ+ v23 (2.2)

λ+ v12 = λ+ v23 > λ+ v13 (2.3)

λ+ v13 = λ+ v23 > λ+ v12 (2.4)

However, if (2) holds, then w13 = max{u13, λ + v13} > max{u23, λ + v23} = w23, and this

contradicts w13 = w23. Therefore, one of (3) or (4) must hold (and they are equivalent up

to permuting the indices of u and v simultaneously), so without loss of generality assume

λ+ v12 = λ+ v23 > λ+ v13.

Now we must have w13 = u13. If not, then w13 = λ + v13 < λ + v23 ≤ w23, and this

contradicts w13 = w23. Similarly, if w23 ̸= λ+ v23, then w23 = u23 < u13 ≤ w13, which again

contradicts w23 = w13. It follows that:

w12 = w23 = w13 = u13 = u12 > u23, (2.5)

w12 = w13 = w23 = λ+ v23 = λ+ v12 > λ+ v13 (2.6)

=⇒ λ+ v12 = u12 = u13 = λ+ v23 > u23 and λ+ v13. (2.7)

In particular, λ+ v12 = u12. Following the same argument after replacing 123 with 456:

λ+ v45 = u45 = u46 = λ+ v56 > u56 and λ+ v46.

This implies u12 − v12 = λ = u45 − v45, so u12 − v12 = u45 − v45, and this contradicts the

assumption that u, v is a generic pair.
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2.4 A Very Long Tropical Line

Although Theorem 2.5.1 limits the average tropical NNI number to O(n(log n)4), specific

pairs of trees can have a much larger tropical NNI number. Figure 2.5 depicts a pair of

trees on [n] leaves, which differ by n − 2 NNI moves, but whose tropical line segment has(
n−1
2

)
∼ n2 single NNI moves. Denote the trees in Figure 2.5 below by un and vn respectively.

1 2 n− 1 n· · ·

u1

u2

un−1

1 2 n− 1 n· · ·

vn−1

v2

vn

Figure 2.5: un, vn is a generic pair of trees on [n] leaves with tropical NNI number
(
n−1
2

)
,

with uij = n(n −min(i, j)) and vij = max{i, j} − 1. Only n − 2 NNI moves are needed to
transform un into vn.

Theorem 2.4.1. Along the tropical line segment from vn to un, there are
(
n−1
2

)
single NNIs

and no four clade rearrangements.

Proof. First note that (lcau(i, j), lcav(i, j)) =
(
umin(i,j), vmax{i,j}

)
. Thus, #Π(u, v) =

(
n
2

)
.

Furthermore, u, v is a generic pair, so #Λ(u, v) = #Π(u, v) and the only possible turning

points are those outlined in Theorem 2.3.1.

Fix i < j. By definition, uij depends only on min(i, j) = i, and vij depends only on

max{i, j} = j. We will show that at the turning point with scalar λ = uij − vij, there is a

NNI move if |i−j| > 1 and a generic tree if |i−j| = 1. The intermediate tree w is illustrated

in Figure 2.6.

Now let k ∈ [i+ 1, j − 1] ∩ [n]. In tree u, we have

uij = uik > ukj,

i ji+ 1 j − 1· · ·

Figure 2.6: A part of the turning point tree w = u⊕ (λij ⊙ v). When i+1 = j, there are no
leaves in the subtree between i and j, and w is generic.
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and in tree v, we have

vij = vkj > vik.

Recall that we set λ = uij − vij. Let w = u⊕ (λ⊙ v). Then

uik = uij = vij + λ = vjk + λ > vik + λ and ujk

which means wij = wik = wjk, i.e., lcaw(i, j) = lcaw(i, k) = lcaw(j, k). This implies w is

non-generic when |i− j| > 1.

Observe that if k /∈ [i, j] ∩ [n], then lcaw(k, i) ̸= lcaw(i, j). We can see this by comparing

wki or wjk to wij. If k < i, then uij < ujk, and vij = vjk, so

wjk = max{ujk, vjk + λ} = max{ujk, vij + λ} = max{ujk, uij} = ujk > wij.

An analogous argument shows that wjk > wij for k > j. Therefore, w is non-generic only

when |i− j| > 1. We are just left to rule out a four-clade rearrangement.

If k1, k2 ∈ [i+ 1, j − 1] ∩ [n], then

uij = uik2 > uk1k2 , and vij = vk1j > vk1k2

and this implies wk1k2 < wij, so w has a NNI and not a four-clade rearrangement.

Warning: The tropical NNI number is not a metric because it does not satisfy the

triangle inequality. For example, there is a concatenation of tropical line segments from vn

to un, over which n − 2 single NNI moves occur (the minimum possible number), and this

is smaller than the number of NNI moves occurring on the tropical line segment from vn to

un.

2.5 Expected Length of the Tropical Line Segment

Now that we know tree topologies along the tropical line segment change by single NNI or

four clade rearrangement moves, we can ask how many NNI moves occur along the tropical

line segment between two randomly chosen trees. The goal of this section is to prove Theo-

rem 2.5.1 bounding the number of turning points. A pair of randomly chosen phylogenetic

trees on [n] leaves means that the topologies of the trees are uniformly randomly chosen from

the (finitely many) binary tree topologies on [n] leaves, and the corresponding ultrametrics

form a generic pair.
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Theorem 2.5.1. The expected number of turning points of the tropical line segment between

two randomly chosen phylogenetic trees on n leaves is O
(
n (log(n))4

)
.

Corollary 2.5.2. The expected tropical NNI number between two randomly chosen phyloge-

netic trees on n leaves is O
(
n (log(n))4

)
.

2.5.1 Sample Spaces, Notation, and Equivalence of Probabilities

We want to bound the number of turning points of the tropical line segment between two

phylogenetic trees on n leaves. After a series of translations, we reduce this to a question on

the space of unlabeled rooted binary plane trees with one marked internal vertex.

Definition 2.5.3. A rooted tree is a plane tree if the children of each vertex are assigned

an ordering. For rooted binary plane trees, we will refer to the left child and right child of

an internal vertex, and denote the descendants of the left child by L(v) and the descendants

of the right child by R(v). Let ℓ(v) = |L(v)| and r(v) = |R(v)|.

We will consider the following sample spaces of trees:

T[n] := {T : T is a rooted binary tree with n labeled leaves}.
T plane
[n] := {T : T is a rooted binary plane tree with n labeled leaves}.

T plane
[n],v := {(T, v) : T ∈ T plane

[n] , v is an internal vertex of T}.
T plane
n := {T : T is a rooted binary plane tree with n unlabeled leaves}.

T plane
n,v := {(T, v) : T ∈ T plane

n , v is an internal vertex of T}.
T plane
n,v (a, b) := {(T, v) ∈ T plane

n,v : ℓ(v) = a, r(v) = b}.

We now re-frame the number of turning points in terms of the last tree sample space

above. This proposition makes it clear that the number of turning points is reduced from

the naive bound of
(
n
2

)
only because different leaf pairs (i, j) can have the same common

ancestor in T .

Definition 2.5.4. Given Ai, Bi ⊆ [n] with Ai ∩ Bi = ∅ and |Ai| = ai, |Bi| = bi, let

Q(a1, b1, a2, b2) be the probability that the following intersections are non-trivial:

A1 ∩ A2 ̸= ∅, B1 ∩B2 ̸= ∅.
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Proposition 2.5.5.

E
(
#Π(T1, T2) | Tk ∈ T[n]

)
≤ 2(n− 1)2E

(
Q (|L(v1)|, |R(v1)|, |L(v2)|, |R(v2)|) | (Tk,vk)∈T plane

n,v

k=1,2

)
.

Proof. By definition, the left-hand side is the probability that a pair of internal vertices

x1 ∈ T1, x2 ∈ T2 are the least common ancestor of some leaves i, j in their respective trees,

times the number of pairs (x1, x2). There are n− 1 internal vertices of each tree Tk, so there

are (n− 1)2 possible pairs. So we find that (LHS) is equal to:

(n− 1)2P ((x1, x2) ∈ Π(T1, T2) | (Tk, xk) ∈ T plane
[n],v , k = 1, 2). (2.8)

We can further rephrase (2.8) in terms of leaf-labeled plane trees:

(n− 1)2P (L(x1) ∩ L(x2) ̸= ∅, R(x1) ∩R(x2) ̸= ∅
or L(x1) ∩R(x2) ̸= ∅, R(x1) ∩ L(x2) ̸= ∅ | (Tk, xk) ∈ T plane

[n],v ). (2.9)

We can simplify (2.9) by using only one of the conditions. Then, (2.9) is bounded by:

2(n− 1)2P
(
L(x1) ∩ L(x2) ̸= ∅, R(x1) ∩R(x2) ̸= ∅ | (Tk, xk) ∈ T plane

[n],v

)
. (2.10)

Finally, we forget about the leaf-labels and introduce the variable Q, so (2.10) equals the

right-hand side of Proposition 2.5.5.

2.5.1.1 Counting Trees

In this section, we count trees to provide an explicit formula for the expected value bound

that we proved in the last subsection.

Lemma 2.5.6. [43, Example 5.3.12]

|T plane
n | = 1

n

(
2n− 2

n− 1

)
.

Lemma 2.5.7.

|T plane
n,v | = n− 1

n

(
2n− 2

n− 1

)
.
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v

...

...
...

C

...
...

A

...
...

B

Figure 2.7: Splitting a binary tree into three binary trees at an internal vertex.

Proof. A rooted binary tree on n leaves has n− 1 internal vertices (including the root), so

|T plane
n,v | = (n− 1) · 1

n

(
2n− 2

n− 1

)
=
n− 1

n

(
2n− 2

n− 1

)
.

Lemma 2.5.8.

|T plane
n,v (ℓ(v) = a, r(v) = b)| = 1

ab

(
2a− 2

a− 1

)(
2b− 2

b− 1

)(
2(n− a− b)

n− a− b

)
.

Proof. We want to count the number of binary plane trees on n leaves with one marked

internal vertex v, which has a left descendants and b right descendants. We can construct

such a tree by gluing together three binary plane trees A, B, and C on a, b, and c =

(n− a− b) + 1 leaves respectively, as in Figure 2.7. Specifically, we pick a leaf of tree C to

be the marked vertex v, then attach tree A as the left descendants of v and tree B as the

right descendants of B.

It follows that:

|T plane
n,v (a, b)| = |T plane

a ||T plane
b |(n− a− b+ 1)|T plane

n−a−b+1|

=
1

a

(
2a− 2

a− 1

)
1

b

(
2b− 2

b− 1

)
(n− a− b+ 1)

n− a− b+ 1

(
2(n− a− b)

n− a− b

)
=

1

ab

(
2a− 2

a− 1

)(
2b− 2

b− 1

)(
2(n− a− b)

n− a− b

)
.

2.5.2 Bounding the Sum

Let P (a, b;n) be the probability of picking a tree-vertex pair (T, v) from T plane
n,v with L(v) = a,

R(v) = b. In Proposition 2.5.5, we bound the number we want to compute (average tropical

NNI number over pairs of trees on [n] leaves) by the following expectation, which we have
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written in terms of P (ai, bi;n) and Q(a1, b1, a2, b2;n).

Sn :=
∑

ai+bi+ci=n
ai,bi≥1,ci≥0

Q(a1, b1, a2, b2;n)P (a1, b1;n)P (a2, b2;n) (2.11)

We will work to bound (2.11) by bounding P (a, b;n) and Q(a1, b1, a2, b2;n). It will be

useful to have some bounds on the central binomial coefficients.

Proposition 2.5.9 ([38]).

4n√
π
(
n+ 1

3

) ≤
(
2n

n

)
≤ 4n√

π
(
n+ 1

4

)
Lemma 2.5.10. For n ≥ 1, we have the bounds

4n−1

n
√
π
(
n− 2

3

) ≤
∣∣T plane
n

∣∣ ≤ 4n−1

n
√
π
(
n− 3

4

) ,
4n−1(n− 1)

n
√
π
(
n− 2

3

) ≤
∣∣T plane
n,v

∣∣ ≤ 4n−1(n− 1)

n
√
π
(
n− 3

4

) .
Proof. The bounds are obtained by plugging the bounds from Proposition 2.5.9 into the

formula we found for
∣∣T plane
n

∣∣ in Lemma 2.5.6.

∣∣T plane
n

∣∣ = 1

n

(
2n− 2

n− 1

)
≤ 4n−1

n
√
π
(
n− 1 + 1

4

) =
4n−1

n
√
π
(
n− 3

4

)
∣∣T plane
n

∣∣ = 1

n

(
2n− 2

n− 1

)
≥ 4n−1

n
√
π
(
n− 1 + 1

3

) =
4n−1

n
√
π
(
n− 2

3

)
The bounds for

∣∣T plane
n,v

∣∣ are obtained through an analogous argument, observing that as

we saw in Lemma 2.5.7
∣∣T plane
n,v

∣∣ = (n− 1)
∣∣T plane
n

∣∣.
Corollary 2.5.11.

P (a, b;n) ≤ 1

2π

√
n

a
(
a− 3

4

) 1
2 b
(
b− 3

4

) 1
2
(
c+ 1

4

) 1
2

Proof. We can express P (a, b;n) as a fraction of the number of tree-vertex pairs (T, v) ∈

43



T plane
n,v with ℓ(v) = a, r(v) = b over the number of all trees in T plane

n,v .

P (a, b;n) =

∣∣T plane
n,v (a, b)

∣∣∣∣∣T plane
n,v

∣∣∣ =

∣∣T plane
a

∣∣ ∣∣∣T plane
b

∣∣∣ (c+ 1)
∣∣∣T plane
c+1

∣∣∣∣∣∣T plane
n,v

∣∣∣
Applying the bounds from Lemma 2.5.10 to the expression above yields the claimed inequal-

ity.

P (a, b;n) ≤ 1

4π

(n− 1)
√
n

a
(
a− 3

4

) 1
2 b
(
b− 3

4

) 1
2
(
c+ 1

4

) 1
2 n

≤ 1

2π

√
n

a
(
a− 3

4

) 1
2 b
(
b− 3

4

) 1
2
(
c+ 1

4

) 1
2

Lemma 2.5.12. Let A1 and A2 be subsets of [n], chosen uniformly at random from all

subsets of size a1 and a2 respectively. Then,

P (A1 ∩ A2 ̸= ∅) ≤ a1a2
n

Proof. The probability that 1 ∈ A1∩A2 is (a1/n) ·(a2/n). Thus, the probability that at least

one element of [n] lies in the intersection of A1, A2 is at most n(a1/n)(a2/n) = a1a2/n.

Corollary 2.5.13.

Q(a1, b1, a2, b2) ≤ min

(
a1a2
n

,
b1b2
n

)
≤ (a1a2b1b2)

1/2

n

Definition 2.5.14.

Q̃(a1, b1, a2, b2;n) :=
(a1a2b1b2)

1/2

n
and Q̃0(a, b;n) :=

(
ab

n

) 1
2

.

Corollary 2.5.13 says

Q(a1, b1, a2, b2;n) ≤ Q̃(a1, b1, a2, b2;n) = Q̃0(a1, b1;n)Q̃0(a2, b2;n).

We are not yet ready to compute the whole sum in (2.11), since we do not have bounds for

P (a, b;n) in some edge cases, but we can bound a significant subsum.
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Proposition 2.5.15.

Sn ≤

 ∑
a+b≤n
a,b≥1

1(
a− 1

2

) (
b− 1

2

) (
c+ 1

4

) 1
2


2

.

Proof. We plug in the bounds we computed in Corollary 2.5.11 and Corollary 2.5.13 and

simplify. The key idea here is that the symmetry of the upper bound for Q allows us to

express the sum in six variables as the square of a sum in three variables.

Sn =
∑

ai+bi+ci=n
ai,bi≥1,ci≥0

Q(a1, b1, a2, b2)P (a1, b1;n)P (a2, b2;n)

≤
∑

ai+bi+ci=n
ai,bi≥1,ci≥0

Q̃(a1, b1, a2, b2;n)P (a1, b1;n)P (a2, b2;n)

=

 ∑
a+b≤n
a,b≥1

Q̃0(a, b;n)P (a, b;n)


2

Now we expand and bound the terms of the sum in the square above using the bound on

P (a, b;n) from Corollary 2.5.11.

Q̃0(a, b;n)P (a, b;n) ≤
a

1
2 b

1
2√
n

√
n

a
(
a− 3

4

) 1
2 b
(
a− 3

4

) 1
2
(
c+ 1

4

) 1
2

=
1

a
1
2

(
a− 3

4

) 1
2 b

1
2

(
b− 3

4

) 1
2
(
c+ 1

4

) 1
2

We can simplify further by applying the arithmetic-geometric mean inequality:

1

a
1
2

(
a− 3

4

) 1
2

≤ 1

a− 1
2

Thus we derive the following bound for Sn.

Sn ≤

 ∑
a+b≤n
a,b≥1

1(
a− 1

2

) (
b− 1

2

) (
c+ 1

4

) 1
2


2

.
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The following lemma will be useful in completing the computation of the sum on the right

hand side of Proposition 2.5.15.

Lemma 2.5.16. ∑
a+b=d
a,b≥1

1(
a− 1

2

) (
b− 1

2

) ≤ 2(2 + log
(
d− 3

2

)
)

d− 1
.

Proof. First, when a+ b = d we have:

1(
a− 1

2

) (
b− 1

2

) =
1

d− 1

(
1

a− 1
2

+
1

b− 1
2

)
.

Also,
d−1∑
a=1

1

a− 1
2

= 2 +
1

2− 1
2

+ · · ·+ 1

d− 3
2

≤ 2 + log

(
d− 3

2

)
.

It follows that ∑
a+b=d
a,b≥1

1(
a− 1

2

) (
b− 1

2

) =
1

d− 1

∑
a+b=d
a,b≥1

(
1

a− 1
2

+
1

b− 1
2

)

=
2

d− 1

d−1∑
a=1

1

a− 1
2

≤ 2(2 + log
(
d− 3

2

)
)

d− 1
.

Recall the following inequality.

Lemma 2.5.17 (Chebyshev’s Sum Inequality, [20]). If an is a decreasing sequence, and bn

is an increasing sequence, then

1

n

n∑
k=1

akbk ≤
(
1

n

n∑
k=1

ak

)(
1

n

n∑
k=1

bk

)

Proposition 2.5.18.
√
Sn is O

(
(log(n))2/n

1
2

)
.
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Proof. We first bound the sum inside the square by applying Lemma 2.5.16.

∑
a+b≤n
a,b≥1

1(
a− 1

2

) (
b− 1

2

) (
c+ 1

4

) 1
2

=
n−2∑
c=0

(
c+

1

4

)− 1
2 ∑
a+b=n−c
a,b≥1

1(
a− 1

2

) (
b− 1

2

)
≤

n−2∑
c=0

2
(
2 + log

(
n− c− 3

2

))(
c+ 1

4

) 1
2 (n− c− 1)

≤
n−2∑
c=0

2 (2 + log (n− c− 1))(
c+ 1

4

) 1
2 (n− c− 1)

(∗)

The sequence
(
c+ 1

4

)− 1
2 is decreasing in c, and the sequence (2+log(n−c−1))/(n−c−1)

is increasing in c on the interval
[
0, n− 1

e
− 1
]
. Therefore, we can apply Chebyshev’s sum

inequality in Lemma 2.5.17 to bound the sum in (∗).

n−2∑
c=0

1(
c+ 1

4

) 1
2

2 (2 + log (n− c− 1))

(n− c− 1)
≤ 1

n− 1

(
n−2∑
c=0

(
c+

1

4

)− 1
2

)

·
(
n−2∑
c=0

2(2 + log(n− c− 1))

(n− c− 1)

)

∼ 1

n− 1

(
n−2∑
c=0

(
c+

1

4

)− 1
2

)

·
(
n−2∑
c=0

log(n− c− 1)

(n− c− 1)

)

∼ n
1
2 (log(n))2

n− 1
∼ (log(n))2

n
1
2

In the third line, we use asymptotics derived by thinking of the sums are left-hand or

right-hand Riemann sums of monotone functions.

∫ n−1

0

(
x+

1

4

)− 1
2

dx ≤
n−2∑
c=0

(
c+

1

4

)− 1
2

≤ 2 +

∫ n−2

0

(
x+

1

4

)− 1
2

dx ∼ n
1
2

∫ n−2

−1

log(n− x− 1)

n− x− 1
dx ≤

n−2∑
c=0

log(n− c− 1)

(n− c− 1)
≤
∫ n−2

0

log(n− x− 1)

n− x− 1
dx ∼ (log(n))2

Proof of Theorem 2.5.1. The results in this section prove the following inequality:

E
(
#Π(T1, T2) | T1, T2 ∈ T[n]

)
≤ 2(n− 1)2Sn.
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Furthermore, Sn is O
(
(log(n))4 /n

)
by Proposition 2.5.18. It follows that (n − 1)2Sn is

O
(
n (log(n))4

)
, as claimed.
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CHAPTER 3

Weighted Tropical Fermat-Weber Points

3.1 Introduction

This chapter is joint work with Mark Curiel and appears in the preprint “The tropical

polytope is the set of all weighted tropical Fermat-Weber points” [13].

The Fermat-Weber problem was first posed by Fermat before 1640 to compute the Fermat-

Weber point when P is a triangle in Euclidean space. It was solved geometrically by Evan-

gelista Torricelli in 1645. We note that the sum
∑m

i=1 d(x, vi) assumes that the distances

are weighted equally. Motivated by unequal attracting forces on particles, a generalization

of the problem was introduced and solved by Thomas Simpson in 1750, later popularized

by Alfred Weber in 1909, by considering weighted distances. In that spirit, this paper is

concerned with generalizing the result by Comăneci and Joswig, namely, we are interested in

locating the specific cells for which the Fermat-Weber points live in P by minimizing the sum∑m
i=1wid(x, vi) for some choice of positive real weights wi. Our main theorem states that

the Fermat-Weber set is a cell of the tropical convex hull P and that, by choosing weights

appropriately, it can be any cell of P .

Theorem 3.1.1. Given data points v1, . . . , vm, the collection of asymmetric tropical weighted

Fermat-Weber points over all possible positive real weights wi is P = tconv{v1, . . . , vm}.

This chapter is organized as follows. In Section 3.2, we begin by formulating the Fermat-

Weber problem in the language of tropical convexity. Then we provide further background

in tropical geometry and polyhedral geometry necessary to understand our approach. Of

particular interest we recall the Cayley trick which gives a correspondence between mixed

subdivisions of the Minkowski sum of polytopes and subdivisions of the corresponding Cay-

ley polytope. In Section 3.3, we prove our main result Theorem 3.1.1 as a corollary to

Theorem 3.3.2.
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3.2 Background

3.2.1 Fermat-Weber Problems

A Fermat-Weber problem is a geometric problem seeking the median of a collection of data

points V = {v1, . . . ,vm} ⊂ X, where X is a metric space with distance d(x,y). We are

particularly interested in the Fermat-Weber points for a collection of data points in Rn/R1,
where the points could represent phylogenetic trees. The goal of this section is to intro-

duce the Fermat-Weber problem, and reframe a tropical version as a problem on Newton

polytopes.

In general, the median of a collection of points is not unique and hence we seek the

set of all such medians, called the called Fermat-Weber set. The medians belonging to the

Fermat-Weber set are called Fermat-Weber points. Formally, the Fermat-Weber points are

the points x ∈ X minimizing the sum in (3.1).

Definition 3.2.1. The Fermat-Weber points on the data V = {v1, . . . ,vm} ⊂ X are the

points x ∈ X minimizing the following sum

FW(V ) :=
1

m

m∑
i=1

d(x,vi). (3.1)

In this paper, we are interested in a variant of the Fermat-Weber problem, called the

weighted Fermat-Weber problem. This new problem seeks the points x minimizing the sum

in Equation (3.2), where the weights wi are positive real numbers.

FW(V,w) :=
1

m

m∑
i=1

wid(x,vi). (3.2)

We will use the asymmetric tropical distance first defined by Comăneci and Joswig in [7].

Definition 3.2.2. The asymmetric tropical distance, d∆(x,y) is:

d∆(x,y) := nmax
i∈[n]

{xi − yi}+
∑
i∈[n]

(yi − xi). (3.3)

When the points x,y ∈ Rn/R1 are given by their unique representative in H0 (the subspace

where the coordinates sum to zero), the metric d∆(x,y) can be simplified to the following

d∆(x,y) := nmax
i∈[n]

{xi − yi}, x,y ∈ H0. (3.4)
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Note that d∆(x, y) is invariant under independent scalar multiplication of the input vec-

tors, so it is well-defined on Rn/R1. From now on, we will assume that all points in Rn/R1
are given by their representative in H0. With this assumption, the distance to a point vi can

be reinterpreted as a power of a tropical linear equations, and the sum in equation 3.2 can

be realized as a tropical product of tropical linear functions (possibly with real exponents).

The distance to a point vi, denote by fvi(x) is

fnvi(x) := d∆(x, vi) = nmax
j

{xj − vij} =

(
n⊕
j=1

−vij ⊙ xj

)n

. (3.5)

It follows that the sum in (eq. (3.2)) for d = d∆ is

1

m

m∑
i=1

wid∆(x,vi) =
1

m

m∑
i=1

wif
nwi
vi

(x) =
n

m

m⊙
i=1

fwi
vi
. (3.6)

Definition 3.2.3. We define the tropical signomial associated to data V with weights w,

fV,w, to be the following tropical function:

fV,w(x) :=
m⊙
i=1

fwi
vi

=
m⊙
i=1

(
n⊕
j=1

−vij ⊙ xj

)wi

.

The tropical hypersurface tropV(fvi) is a tropical hyperplane centered at vi; it is the

codimension-1 skeleton of the normal fan of the standard simplex ∆n−1. By lemma 1.3.6,

the hypersurface tropV(fV,w) is the union of tropical hyperplanes centered at the data points

vi. The Newton polytope of fV,w =
⊙m

i=1 f
wi
vi

is
∑m

i=1wi ·∆n−1.

Example 3.2.4. The polynomial fV,w(x) with x ∈ R3/R1 and w ∈ R2 has nine terms for

generic V and w.

fV,w = (−v11 ⊙ x1 ⊕−v12 ⊙ x2 ⊕−v13 ⊙ x3)
w1

⊙ (−v21 ⊙ x1 ⊕−v22 ⊙ x2 ⊕−v23 ⊙ x3)
w2

= (−v11 ⊙−v21)⊙ xw1+w2
1 ⊕ (−v11 ⊙−v22)⊙ xw1

1 xw2
2 ⊕ (−v11 ⊙−v23)⊙ xw1

1 xw2
3

⊕ (−v12 ⊙−v21)⊙ xw2
1 xw1

2 ⊕ (−v12 ⊙−v22)⊙ xw1+w2
2 ⊕ (−v12 ⊙−v23)⊙ xw1

2 xw2
3

⊕ (−v13 ⊙−v21)⊙ xw2
1 xw1

3 ⊕ (−v13 ⊙−v22)⊙ xw2
2 xw1

3 ⊕ (−v13 ⊙−v23)⊙ xw1+w2
3 .

Its Newton polytope is (w1 +w2) ·∆2, and it is depicted in the lower right of Figure 3.3,

with w2 > w1. The image on the lower left of Figure 3.3 is the Newton polytope in the

special case where w1 = w2 = 1.
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We now apply the results of the previous subsection to translate the problem of optimizing

fV,w into a problem on Newt(fV,w). Since fV,w is a function from 1
⊥ rather than Rn, we

need the following result to apply the results of the previous subsection.

Proposition 3.2.5. Given a max-plus tropical polynomial f : 1⊥ → R, let N be the subdivi-

sion of Newt(f) induced by the coefficients of f . The minimum of f is achieved on the cell

dual to the cell of the Newton polytope containing λ1 for any λ ∈ R \ {0}.

Proof. Consider the following isomorphism Rn/R1 ∼= 1
⊥.

ψ(x1, . . . , xn−1) =

(
x1, . . . , xn−1,−

n−1∑
i=1

xi

)
(3.7)

The Newton polytope of f lives in
(
1
⊥)∗. The dual function of ψ is below.

ψ∗(x1, . . . , xn) = (x1 − xn, . . . , xn−1 − xn) (3.8)

Then ψ∗ (λ1) = λ(1 − 1, . . . , 1 − 1) = 0. Lemma 3.2.7 says that for a tropical function

g : Rn → R, the linear piece of g whose dual cell contains 0 is the linear piece achieving the

minimum. Combining this result with the map ψ, it follows that f : 1⊥ → R achieves its

minimum on the linear piece dual to the cell containing λ1n.

In this chapter, we will use the specific representative of v ∈ Rn/R1 where the sum of the

coordinates is zero. We denote by H0 the hyperplane where these points are located:

H0 :=

{
z ∈ Rn

∣∣∣∣∣ z · 1 =
∑
i

zi = 0

}
⊂ Rn.

Each point in Rn/R1 has a unique representative in H0.

3.2.2 Optimization

A tropical max-plus signomial is a piecewise-linear, continuous, convex function on Rn. For

a convex function, any local minimum is a global minimum. This minimum can be identified

by locating the tangent plane with zero slope, which we formalize using subgradients.

Definition 3.2.6 ([34, §3.1.5]). Given a convex function f : Rn → R, the subdifferential of

f at x is:

∂f (x) := {u ∈ Rn | ∀z ∈ dom(f), f(z) ≥ f(x) + u⊤ · (z − x)}. (3.9)

A subgradient of f at x is any element of ∂f (x).
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The subdifferential of any function is a closed convex set. If f is convex and differentiable

at x, then the subdifferential of f at x is a singleton. In particular, if f is linear then

the subdifferential contains only the slope of f . And if f is piecewise-linear, then ∂f (x) is

constant on the linear pieces of f .

Lemma 3.2.7 ([34, Theorem 3.1.15]). For any function f , the subdifferential at x contains

0 if and only if x is a global minimizer for f .

Proof. By definition, 0 ∈ ∂f (x) if and only if

∀z ∈ dom(f), f(z) ≥ f(x) + 0
⊤ · (z − x) ⇐⇒ ∀z ∈ dom(f), f(z) ≥ f(x),

which is if and only if x is a global minimizer for f .

Example 3.2.8. Let f(x) = 1 ⊕ 3 ⊙ x ⊕ −1 ⊙ x
√
2. The subdifferential of f(x) on each

linear piece is the slope of that piece. The subdifferential at x = −2 is ∂f (−2) = [0, 1], and

the subdifferential at x = 4(1 +
√
2) is [1,

√
2]. Note that 0 is in the subdifferential of the

constant (left-most) linear piece, and this is where the global minimum of f(x) is achieved.

See fig. 1.5.

For a tropical polynomial f : Rn → R, subdifferentials of linear pieces of f are encoded

by a subdivision of Newt(f). It is this connection that will allow us to convert the problem

of optimizing f into a polyhedral geometry problem.

Moreover, the proof in Proposition 3.1.6 in [29] shows that the subdifferential of a linear

piece of f consists of the points in the corresponding cell of N .

Lemma 3.2.9. The minimum of a max-plus tropical polynomial is achieved on the cell dual

to the cell of the Newton polytope containing 0.

Proof. Let f =
∑

i cix
αi be a max-plus tropical polynomial (so f is a piecewise-linear convex

function). Let N be the regular subdivision of Newt(f) induced by the weighting w(αi) = ci.

Let L be a linear piece of f , and let NL be the cell dual to it in N . If 0 ∈ NL, then by

Proposition 1.3.8 0 is in the subdifferential of f at any point in L. It then follows from

Lemma 3.2.7 that the minimum of f is achieved on L.

3.2.3 Cayley Polytopes

Definition 3.2.10. Let P1, . . . , Pm be polytopes in Rn. The Cayley polytope, denoted

Cayley(P1, . . . , Pm), is the convex hull of
⋃m
i=1 ei × Pi in Rm ×Rn. In the special case where

P1 = P2 = · · · = Pm, the Cayley polytope is ∆r−1 × P . For an example see Figure 3.3.
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Definition 3.2.11. The Minkowski sum of P1, . . . , Pm is the set

P = P1 + · · ·+ Pm = {p1 + · · ·pm | pi ∈ Pi} ⊂ Rn.

The Minkowski sum of polytopes is indeed a polytope since its vertices are necessarily sums

of vertices of the summands, hence the Minkowski sum is a convex hull of a finite set.

Example 3.2.12 (Minkowski Sum). Let A1 = {a, b, c, d} and A2 = {e, f, g} be the vertex

sets in R2 of P1 and P2 respectively. The Minkowski sum P1 + P2 is the convex hull of

{a+ e, b+ f, c+ f, c+ g, d+ g} and is shown in Figure 3.1.

a

b c

d e

f

g a+e

b+f c+f

c+g

d+g

Figure 3.1: A square (left), a triangle (middle), and their Minkowski sum (right).

Definition 3.2.13. A cell of the minkowski sum P = P1 + . . . + Pm is a tuple C =

(C1, . . . , Cm) where Ci ⊆ Ai for all i.

Remark 3.2.14. Each cell (C1, C2, . . . , Cm) gives a polytope
∑
Ci ⊆

∑
Pi, and we will often

abuse notation by identifying (C1, C2, . . . , Cm) with this sum. If C and C ′ are two such cells,

then C ∩ C ′ refers to the intersection (
∑

i conv(Ci)) ∩ (
∑

i conv(C
′
i)). Additionally, a cell of

P may be the Minkowski sum of two (or more) different ordered m-tuples, and we would

like to consider these as different cells.

The Cayley trick is a correspondence between mixed subdivisions of the Minkowski sum

P1 + · · · + Pm and subdivisions of Cayley(P1, . . . , Pm), illustrated in Figure 3.3. The top

right polytope in Figure 3.3 is Cayley(∆2,∆2) ∼= ∆1 × ∆2. Explicitly, a subdivision of the

Cayley polytope gives rise to a subdivision of the Minkowski sum after forgetting the first

m coordinates. For more details, see [44, Section 5] for coherent/regular subdivisions, and

[23, Theorem 3.1] for all subdivisions. Although often stated as a theorem, we will use the

Cayley trick to define mixed subdivisions.

Definition 3.2.15. A mixed subdivision of P = (P1, . . . , Pm) is a collection of cells

C1, . . . , Ck so that {Cayley(conv(Cj
1), . . . , conv(C

j
m)) | j = 1, . . . , k} is a subdivision of

Cayley(P1, . . . , Pm).
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a+e

b+f c+f

c+g

d+g a+e

b+f c+f

c+g

d+g

Figure 3.2: A mixed subdivision of P1 + P2 (left) and a subdivision of P1 + P2 that is not
mixed (right).

Example 3.2.16. A subdivision of the polytope P1 + P2 of Example 3.2.12 consists of a

collection of cells {C1, C2, C3, C4} with

C1 = conv{a, b, c, d}+ conv{e} C3 = conv{b, c}+ conv{e, f}
C2 = conv{c, d}+ conv{e, g} C4 = conv{c}+ conv{e, f, g}

It is mixed since the cells Cayley({a, b, c, d}, {e}), Cayley({b, c}, {e, f}),
Cayley({c, d}, {e, g}), Cayley({c}, {e, f, g}) give a subdivision of Cayley(P1, P2). Another

subdivision of P1 + P2 can be achieved with the cells

C1 = conv{a, b, c, d}+ conv{e}
C2 = conv{c, d}+ conv{e, g}
C3 = conv{c}+ conv{e, f, g}
C4 = conv{a, b, c}+ conv{f}
C5 = conv{a, c, d}+ conv{f}

However, it is not mixed since for example the cells Cayley({a, b, c, d}, {e}) and

Cayley({a, b, c}, {f}) intersect on their interior.

We will refer to Definition 3.2.15 above as the combinatorial Cayley trick. In addition to

the combinatorial correspondence above, there is also an explicit geometric correspondence

between a subdivision of the Cayley polytope and a mixed subdivision, sometimes called the

geometric Cayley trick.

Theorem 3.2.17 ([23, Theorem 3.1]). Let C be a subdivision of

Cayley(P1, . . . , Pm). Then the corresponding mixed subdivision of P =
∑m

i=1 Pi is P =

n · C ∩ { 1
m
1m} × Rn.

Proposition 3.2.18 is essentially stated in [39, §1.3]. It allows us to think about mixed

subdivisions of a weighted Minkowski sum, Pw =
∑m

i=1wiPi, in terms of the Cayley polytope
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without weights, Cayley(P1, . . . , Pm), by slicing at {w} × Rn. We provide a proof that

explicitly states the map that induces the bijection, which we will use later in the paper.

Proposition 3.2.18. Let C = Cayley(P1, . . . , Pm), and let D = cone(C) denote the cone

over it. Let Cw, Dw, and Pw denote the corresponding weighted versions, for w ∈ Rm with

|w| = 1. Let λ be a piecewise-linear convex function on Cayley(w1P1, . . . , wmPm), and let

g(x,y) = (w1x1, . . . , wmxm,y). If λ
′ = λ(g−1(x, y)), then the following diagram commutes.

Dw
λ Dλ′

Cw
λ Cλ′

Pw
λ

g

∩{
∑m

i=1 xi=1}

n·(({ 1
m
}×Rn)∩•) (•∩({w}×Rn))

Proof. The subdivision Cw
λ induces a subdivsion Dw

λ . The function g is an invertible linear

function. In particular, this means g preserves convexity, dimension, and the containment

relations within a polyhedral subdivision. Thus, Dw
λ induces a subdivision Dλ′ via λ

′(z) =

λ(g−1(z)). This in turn induces a subdivision Cλ′ with the weightings λ′(ei, vij) = λ(ei, wivij),

which is combinatorially equivalent to Cw
λ′ . Moreover, n · Cw

λ′ ∩
(
{ 1
m
} × Rn

)
, and Cλ′ ∩

({w} × Rn) give the same subdivision of Pw
λ .

3.2.4 Decomposing Tropical Hypersurfaces

Let f =
⊙m

i=1 fi be a tropical signomial that factors into a product of tropical signomials.

The following theorem tells us how to compute the tropical hypersurface tropV(f) in terms

of a subdivision of they Cayley polytope. Let Pi = Newt(fi), P =
∑

i Pi, and write fi =∑
ci,αx

α.

Theorem 3.2.19 (Corollary 4.9 in [24]). Let C be the regular subdivision of

Cayley(P1, . . . , Pm) induced by the weights w(ei, α) = ci,α. Then the mixed subdivision of

P corresponding to C coincides with the regular subdivsion of P induced by the coefficients

of f .

Recall that in the weighted tropical Fermat-Weber problem, fV,w factors into linear pieces,

and so theorem 3.2.19 applies.

Corollary 3.2.20. Let N be the subdivision of Newt(fV,w) induced by the coefficients of fV,w.

Then N = C ∩ { 1
m
1m} × Rn. In particular, the cell of N containing λ1n corresponds to the

cell of C containing ( 1
m
1m,

|w|
mn
1n).
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Proof. The point ( 1
m
1m,

|w|
mn
1n) is the barycenter of Cayley(P1, . . . , Pm), so in particular, it

lies in Cayley(P1, . . . , Pm)∩{ 1
m
1m}×Rn. Apply theorem 3.2.19 and then theorem 3.2.17.

Proposition 3.2.21. Let Pi = Newt(fvi), and let C ′ be the subdivision of the Cayley polytope,

Cayley(P1, . . . , Pm), induced by w(αj, ei) = −vij. Then the subdivision of Pw =
∑m

i=1wiPi

induced by the coefficients of fV,w is C ′ ∩ {w} × Rn. In particular, the cell of P containing

1n corresponds to the cell of C ′ containing (w, 1
n
1n).

Proof. Apply proposition 3.2.18 to corollary 3.2.20.

v1

v2

w2

w1

1
2

0

1

2

0 1 2

0

w1

w2

w1 + w2

0 w1 w2 w1 + w2

Figure 3.3: Subdivisions with weightings. Clockwise starting on top left: Two tropical
hyperplanes in TR2, the corresponding regular subdivision of ∆1 × ∆2, the corresponding
mixed subdivision of (w1 + w2)∆

2 (weighted FW problem), and the corresponding mixed
subdivision of 2∆2 (unweighted FW problem).

It turns out that the tropical convex hull of the data points coincides with the bounded

part of the tropical hypersurface tropV(fV ).

Theorem 3.2.22 (Theorem 5.2.11 in [29]). The bounded part of the max-plus tropical hy-

persurface fV is tconvmin(v1, . . . , vm).

We now see that fV and fV,w define the same tropical hypersurface. Thus, the bounded

part tropV(fV,w) is the tropical convex hull of the vi’s.

57



Lemma 3.2.23. For any w ∈ Rm, tropV(fV ) = tropV(fV,w).

Proof. By lemma 1.3.6, tropV(fwv ) = tropV(fv) for any v ∈ 1
⊥, and any w > 0. Applying

lemma 1.3.6 to fV and fV,w, it follows that

tropV(fV ) =
m⋃
i=1

tropV(fvi) = tropV(fV,w).

Corollary 3.2.24. The bounded part of the tropical hypersurface fV,w is the min-tropical

convex hull of the vi, tconv
min(v1, . . . , vm).

3.3 Solving the Weighted Tropical Fermat-Weber

Problem

In this section, we use combinatorics and tropical geometry to solve the weighted Fermat-

Weber problem for Rn/R1 equipped with the tropical asymmetric distance. We begin by

discussing the extrema of tropical polynomials.

3.3.1 Containment

Theorem 3.3.1. Given data points v1, . . . , vm ∈ Rn/R1, and weights w1, . . . , wm > 0,

the weighted Fermat-Weber points under the tropical asymmetric metric are a cell of

tconv(v1, . . . , vm).

Proof. According to corollary 3.2.24, tconv(v1, . . . , vm) is the bounded part of the tropical

hypersurface tropV(fV,w). The bounded cells of tropV(fV,w) are exactly those cells dual to

interior cells of the Newton polytope, so by proposition 3.2.5, it suffices to show that λ1 is

in the interior of Newt(fV,w). The vertices of Newt(fV,w) are |w|ei, and their average, |w|
n
1,

is in the interior of the Newton polytope. This proves the Fermat-Weber points are achieved

on a bounded cell of tropV(fV,w), and therefore form a cell of tconv(v1, . . . , vm).

3.3.2 Any Cell Can be the Weighted Fermat-Weber Cell

The following result shows that we can pick weights wi so that the weighted barycenter lies

in any interior cell of the subdivision of the Cayley polytope. This finishes the proof of the

main theorem.
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(e1, e1)

(e1, e2)

(e2, e1)

(e2, e2)

ℓ1

ℓ2

r1

r2

Figure 3.4: Vertices in the product of simplices (left) correspond to the color-coded edges of
the bipartite graph (right).

Theorem 3.3.2. Given some data points v1, . . . ,vm ∈ Rn/R1, and any simplex S in ∆r−1×
∆n−1, which intersects the relative interior of ∆r−1 × ∆n−1, there is a choice of weights

w1, . . . , wm ∈ [0, 1] with
∑
wi = 1, so that S contains the point (w1, . . . , wm,

1
n
1n).

The proof uses a well-known correspondence between subsets of the vertices of ∆m−1 ×
∆n−1 and subgraphs of Km,n (the complete bipartite graph with m left vertices, and n right

vertices), which we now briefly recall (see [15, §6.2.2] for more details). The vertex (ei, ej) in

a simplex S ⊆ ∆r−1 ×∆n−1 corresponds to the edge between left vertex i and right vertex

j in the bipartite graph. Thus, a subset of vertices A ⊆ ∆r−1 × ∆n−1 corresponds to the

subgraph of Km,n.

Example 3.3.3 (Simplex-Forest Correspondence for m = n = 2). The product of two 2-

simplices (i.e. line segments) is a square; the corresponding bipartite graph has two left

vertices and two right vertices. Both are illustrated in fig. 3.4. The vertex (ei, ej) in the

simplex corresponds to the edge (li, rj) in the bipartite graph. For example, the top left

vertex of the shaded gray simplex, (e1, e2), corresponds to the edge (l1, r2). The shaded

simplex is full-dimensional, so it corresponds to a spanning tree of K2,2 (see lemma 3.3.4).

Lemma 3.3.4 (Lemma 6.2.8 in [15]). Let A be a subset of the vertices of ∆m−1 × ∆n−1.

Then,

(a) conv(A) is a simplex if and only if the corresponding subgraph of Km,n is a forest.

(b) conv(A) is full dimensional if and only if the corresponding subgraph of Km,n is spanning

and connected.

Proof of Theorem 3.3.2. Let S be a simplex in ∆r−1×∆n−1, and let F be the corresponding

forest in Kr,n. Assume that S ∩ int (∆r−1 ×∆n−1) ̸= ∅ (so F is a spanning forest).

A point (p,q) ∈ Rm × Rn lies in S if it can be written as a convex combination of the

vertices of S. In terms of the forest F , (p,q) lies in S if there exist λ(e) > 0 for each edge

e ∈ E(F ) such that the sum of edge weights on any left vertex adds up to the corresponding
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p coordinate, and the sum of edge weights on any right vertex adds up to the corresponding

q coordinate. Let r(e) be the node on the right side connected to e, and let ℓ(e) be the node

on the left side connected to e. The choice of λ’s in (3.10) leads to a valid choice of weights

w1, . . . , wm (given in (3.11)) so that S contains the weighted barycenter.

λ(e) :=
1

n · deg r(e) . (3.10)

wi :=
∑

e s.t. ℓ(e)=i

λ(e). (3.11)

The equations in (3.12) show that the weights on any right node sum to 1
n
(since F is

spanning, every vertex has at least one edge); by definition, the weights on the ith left node

sum to wi. It follows that b = (w1, . . . , wm,
1
n
1) lies in the relative interior of S.

∑
r(e)=j

1

n · deg(j) =
1

n

∑
r(e)=j

1

deg(j)
=

1

n
deg(j)

1

deg(j)
=

1

n
. (3.12)

Moreover, w1, . . . , wm is a valid choice of weights for the Fermat-Weber problem. The

weights wi are positive because F is spanning, so the sum in (3.11) is never empty; The

equations in (3.13) show that the wi sum to one.

m∑
i=1

wi =
∑
e

λ(e) =
n∑
j=1

∑
r(e)=j

1

n · deg(j) =
n∑
j=1

1

n

∑
r(e)=j

1

deg(j)
=

n∑
j=1

1

n
= n

1

n
= 1. (3.13)
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Corollary 3.3.5. Given a cell T in the tropical polytope tconv(v1, . . . ,vm), there is a choice

of weights w1, . . . , wm so that T is the set of weighted tropical Fermat-Weber points for

v1, . . . ,vm with weights w1, . . . , wm.
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Part II

Brownian Motion Tree Models

CHAPTER 4

ML Degree of Brownian Motion Tree Models

This chapter is joint work with Jane Ivy Coons, Aida Maraj and Ikenna Nometa. It appears

in the preprint “Maximum Likelihood of Brownian Motion Tree Models” [8].

4.1 Introduction

A Brownian motion tree (BMT) model is a family of multivariate Gaussian distributions that

describe the evolution of a continuous trait in a set of n species along a phylogenetic tree.

A phylogenetic tree is a rooted tree with no degree two vertices. The root is a distinguished

leaf of the tree and each edge is implicitly directed away from it. Non-root leaves correspond

to the extant species of interest, and the other nodes in the tree are the common ancestors of

these species. We investigate the algebraic complexity of the maximum likelihood estimation

problem for these models.

Introduced by Felsenstein [17] in 1973, BMT models enjoy many applications in phyloge-

netics. They have been applied to test for selective pressure [10, 18], often by serving as null

model for evolution under genetic drift [40]. BMT models are commonly used to represent

continuous molecular traits, such as gene expression profiles [5], and have even found use

outside biology, such as in internet network tomography [16, 49]. Recent work in algebraic

statistics [4, 45, 46, 48] uses algebraic geometry to study parameter inference problems for

BMT models.

The BMT model on a tree has a simple description in terms of the covariance matrices

of the densities in the model, stated in Definition 4.1.1 and illustrated in Figure 4.1. For

simplicity, label the root of the phylogenetic tree T by 0 and the rest of the leaves by 1, . . . , n.
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Denote by lca(i, j) the least common ancestor of non-root leaves i and j; that is, lca(i, j) is

the first common node on the paths joining i and j to the root 0. Denote by Int(T ) the set

of all internal nodes of T . Whenever i ̸= j, lca(i, j) belongs to Int(T ). Denote by Sn(R) the
set of n×n symmetric matrices with real entries and let PDn(R) denote the cone of positive
definite matrices within Sn(R). We can now define the BMT model.

Definition 4.1.1. Let T be a phylogenetic tree on n non-root leaves. Consider the linear

space of symmetric matrices

LT (R) := {Σ ∈ Sn(R) | σij = σkl if lca(i, j) = lca(k, l)}. (4.1)

The Brownian motion tree model, MT , specified by T is the set of all multivariate Gaussian

distributions with mean 0 and whose covariance matrices lie in the set LT (R) ∩ PDn(R).

θ0

θ5

θ1
θ2 θ3

θ45

6

0

1 2 3 4

LT (R) =

Σ =


t1 t5 t5 t6
t5 t2 t5 t6
t5 t5 t3 t6
t6 t6 t6 t4

 : t1, . . . , t6 ∈ R

 .

Figure 4.1: An evolutionary tree T on species 1, 2, 3, 4. A covariance matrix in the associated
BMT model must be in the linear space LT (R).

Finding the probability distribution in a fixed model that best fits observed data is a

standard problem in statistics and data science. One popular method for inferring such a

distribution is maximum likelihood estimation. The maximum likelihood estimate (MLE) for

given data is the maximizer of the log-likelihood function (see Section 4.3.1) over the model.

In this paper, we investigate the number of complex critical points of the log-likelihood

function over a BMT model. This number, known to be invariant under a generic choice of

data, is referred to as the maximum likelihood degree (ML degree) of a model. Since the

MLE, if it exists, is one of these critical points, the ML degree of a model measures the

algebraic complexity of this problem.

As BMT models are not exponential families and their likelihood functions are not typi-

cally convex, finding general formulae for their ML degree is challenging. Sturmfels, Timme,

and Zwiernik in [45] use numerical algebraic geometry to compute ML degrees of BMT mod-

els for phylogenetic trees with up to 6 leaves. Améndola and Zwiernik conjectured a formula
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for the ML degree of a star tree model1; that is, of a BMT model whose tree has exactly one

internal node. The main result of this paper positively answers that conjecture, as stated

below.

Theorem 4.1.2. The ML degree of the BMT model on a star tree on n+1 leaves is 2n+1 −
2(n+ 1)− 1.

While computing the ML degree for trees with multiple internal nodes remains challeng-

ing, we are able to consolidate the problem to classes of trees with the same unlabeled,

unrooted tree topology.

Theorem 4.1.3. BMT models on phylogenetic trees with the same unlabeled, unrooted tree

topology have the same ML degree.

The proofs of these theorems rely on the toric geometry of the inverse linear space of

LT under the change of variables given by Sturmfels, Uhler, and Zwiernik [46] (see The-

orem 4.2.2), and monomial parametrization provided previously by Boege et al. [4] (see

Theorem 4.2.3). This parametrization, called the path parametrization, assigns to each edge

e in the tree a parameter θe and allows us to write each concentration matrix KT in L−1
T as

a function of the parameters θe, which we call KT (θ). Towards this end, we compute the

degree of this parametrization in Theorem 4.2.5, which allows us compute the ML degree by

counting the solutions in the new parameters. Though we focus on ML degrees for star trees

in the present work, we envision that Theorem 4.2.5 will be useful for future work towards

computing ML degrees for arbitrary trees.

In order to write the log-likelihood function in terms of the parameters θe, we require an

expression for the determinant ofKT (θ). Our result is a weighted analog of the Cayley-Prüfer

formula, which is a factorization of the sum of the products of edge variables over spanning

trees of an unweighted complete graph. This yields an explicit formula for det(KT (θ)) for

any tree T (see Theorem 4.3.5), which is applicable to future work on the likelihood geometry

of BMT models.

4.1.1 Structure of the Paper

In Section 4.2, we reframe Brownian motion tree models in terms of their concentration

matrices. We recall the toric representation of this space of concentration matrices by the

monomial path map and compute the degree of this map in Theorem 4.2.5. In Section 4.3,

we introduce the maximum likelihood estimation problem for BMT models and define their

1shared at the program “Linear Spaces of Symmetric Matrices” held in Fall 2020 at the Max Planck
Institute for Mathematics in the Sciences
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ML degree via the score equations. In order to better understand these score equations, we

prove Theorem 4.3.5, which writes the determinant of an arbitrary concentration matrix in

the BMT model in terms of the parameters of the path map. Section 4.4 is devoted to the

proof of Theorem 4.1.3, which states that the ML degree is invariant under rerooting. In

Section 4.5, we prove the ML degree formula for the BMT model on a star tree. We end the

paper with a discussion of our results and directions for future work.

4.2 Toric Geometry of Brownian Motion Tree Models

4.2.1 Monomial Parametrizations of Concentration Matrices

Recall that the covariance matrices in the Brownian motion tree model specified by a tree

T are exactly the positive definite matrices in LT , as described in Definition 4.1.1. The

concentration (or precision) matrices for the BMT model are therefore L−1
T ∩PDn(R), where

L−1
T is the Zariski closure of all matrices K ∈ Sn such that K−1 ∈ LT . The algebraic variety

L−1
T is the vanishing locus of the kernel of the rational map

ρT : R[K] → R(Σ), kij 7→
(−1)i+j det(Σij)

det(Σ)
, (4.2)

where Σij is the submatrix of the symmetric matrix Σ with its ith row and jth column

deleted. The ideal ker(ρT ) is referred to as the vanishing ideal of the Brownian motion tree

model MT .

Example 4.2.1. Consider the phylogenetic tree T in Figure 4.1. It is pictured along with a

generic element of its associated linear space LT . The inverse linear space L−1
T has vanishing

ideal

ker(ρT ) = ⟨k12k14 + k14k22 + k14k23 − k11k24 − k12k24 − k13k24,

k13k14 + k14k23 + k14k33 − k11k34 − k12k34 − k13k34,

k13k24 + k23k24 + k24k33 − k12k34 − k22k34 − k23k34,

k12k23 + k12k33 + k12k34 − k13k22 − k13k23 − k13k24,

k12k13 + k12k33 + k12k34 − k11k23 − k13k23 − k14k23,

k12k34 − k13k24, k12k34 − k14k23⟩.

The variety L−1
T is described in detail by Sturmfels, Uhler, and Zwiernik in [46] as a toric

variety. To exhibit the toric structure of the space of concentration matrices, they show
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that ker(ρT ) is generated by binomials after a change of coordinates known as the Farris

transform.

Theorem 4.2.2 ([46], Theorem 1). The vanishing ideal for the Brownian motion tree model

of the phylogenetic tree T is toric in variables pij with i, j distinct elements of {0, . . . , n},
where

pij = −kij for i, j > 0, and

p0i =
∑n

j=1 kij for 1 ≤ i ≤ n.
(4.3)

It is generated by the forms pikpjℓ−piℓpjk, where {i, j} and {k, ℓ} are cherries in the induced

4-leaf subtree on any quadruple i, j, k, ℓ ∈ {0, . . . , n}.

We note that in Theorem 4.2.2, the subscripts on the variables pij are unordered so

that pij = pji. We therefore think of the concentration matrices in the BMT model in the

coordinates pij for 0 ≤ i < j ≤ n for the rest of the paper.

Denote by IT the ideal ker(ρT ) in the coordinates pij. Since the ideal IT is toric, it is the

kernel of a monomial map. Boege et al. [4] connect this ideal to the paths in the tree and

use these paths to give the monomial parametrization φT of this toric variety, called the path

parametrization:

φT : R[pij | 0 ≤ i < j ≤ n] → R[θe | e ∈ E(T )], pij 7→
∏

e∈i↭j

θe, (4.4)

where E(T ) is the set of edges of T and i↭ j is the set of edges in the path between leaf i

and leaf j.

Theorem 4.2.3 ([4], Proposition 3.1). The toric vanishing ideal of the Brownian motion

tree model on the phylogenetic tree T in the pij coordinates defined in Theorem 4.2.2 is the

kernel of the path map φT .

Example 4.2.4. The Brownian motion tree model for T in Figure 4.1 has toric vanishing

ideal

IT = ⟨ p01p24 − p02p14, p01p34 − p03p14, p02p34 − p03p24, p02p13 − p03p12,

p01p23 − p03p12, p12p34 − p13p24, p12p34 − p23p14 ⟩.

Note that the seven generators in the kij coordinates given in Example 4.2.1 can be obtained

by applying the change of coordinates in Theorem 4.2.2 to each of these binomials. This
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ideal is the kernel of the path map φT whose exponent matrix is

AT =



p01 p02 p03 p04 p12 p13 p14 p23 p24 p34

θ0 1 1 1 1 0 0 0 0 0 0

θ1 1 0 0 0 1 1 1 0 0 0

θ2 0 1 0 0 1 0 0 1 1 0

θ3 0 0 1 0 0 1 0 1 0 1

θ4 0 0 0 1 0 0 1 0 1 1

θ5 1 1 1 0 0 0 1 0 1 1


.

The path parametrization proved to be essential in the computation of reciprocal (dual)

maximum likelihood degree of BMT models [4]. It will continue to be instrumental in all of

the proofs of the present work.

4.2.2 Degree of the Path Parametrization

Let T be a tree on n+1 leaves with edge set E(T ). Let Lv(T ) := {0, . . . , n} denote the leaf

set of T . Consider the pullback of the path parametrization:

φ∗
T : C#E(T ) → C(

n+1
2 ), (θe)e∈E(T ) 7→

( ∏
e∈i↭j

θe

)
i ̸=j∈Lv(T )

.

In the following proposition, we compute the degree of φ∗
T by explicitly describing elements

in its fibers. For each S ⊆ Int(T ), let

ϵS ∈ {−1, 1}#E(T ) such that ϵSe = (−1)#(S∩e) for each edge e ∈ E(T ).

For any two vectors u, v of the same length k, denote by u ∗ v their componentwise product;

that is, u ∗ v = (uivi)
k
i=1.

Theorem 4.2.5. Let T be a rooted tree with no degree two nodes. Let p ∈ im(φ∗
T ), with all

coordinates non-zero. Let θ̂ ∈ C#E such that φ∗
T (θ̂) = p. Then (φ∗

T )
−1(p) = {ϵS ∗ θ̂ | S ⊆

Int(T )}. In particular, the degree of φ∗
T is 2#Int(T ).

Proof. For ease of readability, we split the proof into two parts. In the first part, we show

that the coordinates of any point θ in the fiber (φ∗
T )

−1(p) agree with the coordinates of θ̂

up to a sign. In the second part, we show that θ must be exactly of form ϵS ∗ θ̂ for some

S ⊆ Int(T ).
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Part 1. Consider an edge {u, v} ∈ E(T ), and the associated coordinate θuv of θ ∈
(φ∗

T )
−1(p). At least one of the nodes, say v, is an internal node. Let i be a leaf such that

the path v ↭ i contains edge {u, v}. Let j, k be two other leaves with property that {u, v}
is not in the paths v ↭ j or v ↭ k. The existence of distinct leaves i, j, k is guaranteed

since v has degree at least three. The condition θ ∈ (φ∗
T )

−1(p) implies that

pij =
∏

e∈i↭v

θe
∏

e∈v↭j

θe =
∏

e∈i↭v

θ̂e
∏

e∈v↭j

θ̂e (4.5)

pik =
∏

e∈i↭v

θe
∏

e∈v↭k

θe =
∏

e∈i↭v

θ̂e
∏

e∈v↭k

θ̂e (4.6)

pjk =
∏

e∈j↭v

θe
∏

e∈v↭k

θe =
∏

e∈j↭v

θ̂e
∏

e∈v↭k

θ̂e. (4.7)

Since each pij ̸= 0, each of the products in the above equations is nonzero. Solving for∏
e∈v↭j

θe in (4.5), for
∏

e∈v↭k

θe in (4.6), and substituting these expressions in (4.7), gives

( ∏
e∈i↭v

θe

)2

=

( ∏
e∈i↭v

θ̂e

)2

. (4.8)

Therefore, the product of θe’s over the path v ↭ i from an internal vertex v to any

leaf i is equal to the product of θ̂e’s over v ↭ i up to a sign. Factoring out the terms

corresponding to the edge {u, v} gives

θuv
∏

e∈i↭u

θe = ±θ̂uv
∏

e∈i↭u

θ̂e. (4.9)

If u = i is a leaf, then we immediately obtain θuv = ϵuvθ̂uv for some ϵuv ∈ {−1, 1} and we

are done. If u is an internal node, then analogously to Equation (4.8) we have∏
e∈i↭u

θe = ±
∏

e∈i↭u

θ̂e, (4.10)

and Equation (4.9) and Equation (4.10) imply θuv = ϵuvθ̂uv for some ϵuv ∈ {−1, 1}, as

desired.

Part 2. We will use induction on the number of internal nodes to show that

(φ∗
T )

−1(p) = {ϵS ∗ θ̂ | S ⊆ Int(T )}. (4.11)
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The following observation will be useful:

“if ϵ ∗ θ̂ ∈ (φ∗
T )

−1(p), then ϵiu is fixed for all leaves i with same parent u”. (4.12)

Indeed, let i, j be leaves with the same parent u. The path between i and j in T consists

of the edges iu and ju. Since ϵ ∗ θ̂ and θ̂ belong to the same fiber of φ∗
T , by definition of the

path map we have (ϵiuθ̂iu)(ϵjuθ̂ju) = θ̂iuθ̂ju. Hence, ϵiu = ϵju.

Now we prove Equation (4.11) for a tree T whose internal nodes have a degree of at least

three by inducting on the number of internal nodes. First, if T has no internal nodes, then

(φ∗
T )

−1(p) = {ϵ∅ ∗ θ̂}. Let T have one internal node, u. Let ϵ ∗ θ̂ ∈ (φ∗
T )

−1(p) be a point

in the fiber. Suppose ϵiu = −1 for some leaf i. Since all leaves have the same parent u, by

Observation 4.12, ϵju = −1 for any other leaf j. So, ϵ = ϵ{u} and (φ∗
T )

−1(p) = {ϵ∅∗ θ̂, ϵ{u}∗ θ̂}.
Now suppose that Equation (4.11) holds for any tree whose internal nodes have degree at

least three and with less than m > 1 internal nodes, and let T have m internal nodes. Select

an internal node, u, in T whose children are all leaves which we label 1, 2, . . . , k without loss

of generality. Note that since T is not a star tree, any such u must have a parent v that is

an internal node.

Let T ′ be the tree obtained by removing from T the leaves 1, . . . , k along with the edges

{u, i} and the edge {u, v}. The new tree has m − 1 internal nodes and Lv(T ′) ⊂ Lv(T ).

Take p′ to be the projection of p in C(
n+1−k

2 ). The projection (ϵ ∗ θ̂)|E(T ′) ∈ C#E(T ′) of any

ϵ ∗ θ̂ ∈ (φ∗
T )

−1(p) is in (φ∗
T ′)−1(p′). Hence the projection of the fiber of p must lie in the fiber

of p′. Denote by θ̂′ the projection of θ̂ onto the coordinates corresponding to edges of T ′.

We consider two cases dependent on if the degree of v in T ′ is 2 or greater.

Case 1. Suppose v is of degree greater than two in T ′. Then Equation (4.11) holds for

T ′, points p′ and (θ̂e)e∈E(T ′). From Observation 4.12, any point ϵ ∗ θ̂ in the fiber of p has

fixed ϵiu = ϵu for i = 1, . . . , k. Now, any choice of ϵu and any point ϵS
′ ∗ θ̂′ ∈ (φ∗

T ′)−1(p′) for

S ′ ⊆ Int(T ) \ {u} extend to the unique point θ in C#E(T ):

θe =


ϵS

′
e · θ̂e for e ∈ E(T ′)

ϵu · θ̂e for e = {i, u}, i = 1, . . . , k(
ϵu

∏
e∈0↭v

ϵS
′

e

)
θ̂e for e = {u, v}.

(4.13)

Note that by construction, θ = ϵS ∗ θ̂ where S = S ′ when ϵu = 1 and S = S ′ ∪ {v} when

ϵu = −1.

Case 2 . Suppose v is of degree two. Let v1, v2 be the other nodes adjacent to v in

T ′. Consider the tree T ′′ obtained by merging edges {v1, v} and {v, v2} into edge {v1, v2}.
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The new tree T ′′ has m − 2 internal nodes, all of degree at least three. The trees T ′ and

T ′′ have the same set of leaves. The point p′ = φ∗
T ′′(θ̂′′), where θ̂′′ ∈ C#E(T ′′) has entries

θ̂′′v1v2 = θ̂vv1 θ̂vv2 , and otherwise θ̂′′e = θ̂e. By the induction hypothesis, (φ∗
T ′′)−1(p′) = {ϵ′′ ∗ θ̂′′ |

S ′′ ⊂ Int(T ) \ {u, v}}.
Since any point ϵS

′′ ∗ θ̂′′ in this fiber has

(−1)S
′′∩{v1,v2}θ′′v1v2 = ϵS

′′
θ̂vv1 θ̂vv2

we construct two points in the fiber (φ∗
T ′)−1(p′). These are precisely, ϵS

′′ ∗ θ̂′ and ϵS′′∪{v} ∗ θ̂′,
which differ only by the signs of the {v, v1} and {v, v2} coordinates. Since all points of the

form ϵ ∗ θ̂′ in (φ∗
T ′)−1(p′) are of one of the two forms above, we conclude that solutions in T ′

of the form ϵ ∗ θ̂′ arise from ϵS
′
for S ′ ⊂ Int(T ) \ {u}. Proceed as in Case 1 to conclude the

fiber of (φ∗
T )

−1(p).

Theorem 4.2.5 deduced the following results, ready to be used when solving polynomials

systems on a Brownian motion tree model.

Corollary 4.2.6. Let F = {f1(K), . . . , fℓ(K)} be a polynomial system in the variables pij.

Let F ◦ φT = {f1(K(θ)), . . . , fℓ(K(θ))} be these polynomials written in variables θe. Then,

a. the solutions K ∈ L−1
T to system F are precisely K(θ) for θ a solution of F ◦ φT ,

b. deg
(
⟨F ⟩+ IT

)
=

deg
(
⟨F ◦ φT ⟩

)
2#Int(T )

.

4.3 Score Equations

4.3.1 Maximum Likelihood Estimation in Brownian Motion Tree

Models

Maximum likelihood estimation is a method for inferring the distribution in a statistical

model that best explains a data set. Let u1, . . . ,um ∈ Rn be independent, identically

distributed data which we assume are sampled from a distribution in the BMT model on a

tree T . The observed data has sample covariance matrix

S :=
1

m

m∑
j=1

uiu
T
i ∈ PSDn. (4.14)

A maximum likelihood estimate (MLE) for this data in the BMT model MT is a concen-

tration matrix K̂ ∈ L−1
T ∩ PDn(R) that maximizes the value of the density function for the
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normal distribution N (0, K−1) on this data, if such a maximizer exists. Equivalently, K̂ is

a global maximizer of

ℓ(K|S) := log det(K)− trace(SK). (4.15)

We note that, as written, the expression ℓ(K|S) is not exactly the logarithm of the likelihood

function. However, they only differ by constant addition and multiplication and hence have

the same critical points. So we slightly abuse terminology and refer to ℓ(K|S) as the log-

likelihood function. We refer the reader to [47, Chapter 7] for background on algebraic

geometry and maximum likelihood estimation. Section 2 of [9] also thoroughly introduces

maximum likelihood estimation, specifically in linear covariance models.

The MLE is a critical point of the log-likelihood function. Hence, we may compute it by

finding the common zeros of the partial derivatives of ℓ(K|S) and computing the likelihood

at each critical point. Thus, the number of critical points of ℓ(K|S), called the maximum

likelihood degree (ML degree), measures the algebraic complexity of computing the MLE.

We now define the ML degree more precisely.

Definition 4.3.1. The maximum likelihood degree of the BMT model, which is denoted

mld(MT ), is the number of complex critical points ℓ(K|S) over MT , counted with multi-

plicity, for a generic sample covariance matrix S.

In order to compute the ML degree of a Gaussian model, we begin by writing the log-

likelihood ℓ(K|S) in terms of the parameters θe of the path map. Since we are interested

in the critical points of the log-likelihood, we take the partial derivatives of ℓ(K|S) with

respect to each θe and set these equal to zero. These partial derivatives are called the score

equations. In the case of a linear Gaussian covariance model, they are rational functions. In

fact, they are of the form

∂ℓ

∂θ
=

1

det(K)

∂

∂θ
(det(K))− ∂

∂θ
(trace(SK)).

We can compute the vanishing locus of the rational score equations by finding the variety

of their numerators and removing the variety of the product of their denominators. In the

Gaussian case, note that since det(K) and trace(SK) are both polynomials in the θe param-

eters, the only denominator that appears in any score equation is det(K). Hence, removing

the vanishing locus of the denominators simply corresponds to removing any solutions for

which the resulting concentration matrix would be singular. Next, we count the critical

points in this variety in the θe coordinates, including their multiplicities. Finally, Theorem

4.2.5 allows us to divide the number of solutions in the θe parameters by 2#Int(T ) to obtain

71



the desired ML degree.

Example 4.3.2. Consider the tree T in Figure 4.1. Via the Farris transform and the path

map, the concentration matrices in the BMT model on T are of the following form in the θe

parameters:(
θ1 (θ5 (θ0 + θ4) + θ2 + θ3) −θ1θ2 −θ1θ3 −θ5θ1θ4

−θ1θ2 θ2 (θ5 (θ0 + θ4) + θ1 + θ3) −θ2θ3 −θ5θ2θ4

−θ1θ3 −θ2θ3 θ3 (θ5 (θ0 + θ4) + θ1 + θ2) −θ5θ3θ4

−θ5θ1θ4 −θ5θ2θ4 −θ5θ3θ4 θ4 (θ0 + θ5 (θ1 + θ2 + θ3))

)
.

Consider a generic sample covariance matrix S = (sij)1≤i,j≤4. The log-likelihood function for

S in this BMT model is

ℓ(K|S) = log det(K)− trace(SK)

= log(θ0θ1θ2θ3θ4θ5(θ1θ5 + θ2θ5 + θ0 + θ4)(θ0θ5 + θ4θ5 + θ1 + θ2 + θ3)
2)

− s11θ1 (θ5 (θ0 + θ4) + θ2 + θ3)− s22θ2 (θ5 (θ0 + θ4) + θ1 + θ3)

− s33θ3 (θ5 (θ0 + θ4) + θ1 + θ2)− s44θ4 (θ0 + θ5 (θ1 + θ2 + θ3))

+ 2s12θ1θ2 + 2s13θ1θ3 + 2s14θ1θ4θ5 + 2s23θ2θ3 + 2s24θ2θ4θ5 + 2s34θ3θ4θ5.

To find the ML degree, we need to set the system of score equations equal to zero and solve.

Using HomotopyContinuation.jl [6] in Julia with generic values for the entries of S, we

see that the system has 44 solutions in the torus. By Theorem 4.2.5, the degree of the path

map in this case is 4. Hence, dividing by 4 gives that mld(MT ) = 11.

4.3.2 A Generalization of the Cayley-Prüfer Theorem

The classical Cayley-Prüfer Theorem provides an enumeration of the spanning trees of a

complete graph in factored form.

Theorem 4.3.3 (Classical Cayley-Prüfer Theorem). Let Kn be the complete graph on n

vertices. Then, ∑
Γ⊆Kn

spanning
tree

∏
v∈V (Kn)

xdegΓ(v)v = x1 · · ·xn (x1 + · · ·+ xn)
n−2 , (4.16)

where V (Kn) is the vertex set of Kn and degΓ(v) is the number of edges adjacent to v in tree

Γ.

The goal of this section is to prove Theorem 4.3.5, which factorizes det(KT (θ)) and spe-

cializes to the classical Cayley-Prüfer Theorem when T is a star tree. We begin by recalling

Kirchoff’s Matrix-Tree Theorem. Let G be a weighted graph with vertex set [n] := {1, . . . , n}.
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Let wij be the weight for the edge {i, j} ∈ E(G). One naturally extends w to all pairs of

vertices in G by setting wij = 0 when {i, j} is not an edge of G. The Laplacian of G, denoted
LG, is an n× n matrix which encodes the weights of G as follows:

(LG)ij =


n∑
k=1
k ̸=i

wik if i = j,

−wij if i ̸= j.

Kirchoff’s Matrix-Tree Theorem [26], applied to a complete graph, states that the left

hand-side sum in Equation (4.16) is the determinant of any principal submatrix of the

Laplacian of Kn. Our concentration matrix, KT (θ), is a principal submatrix of the Laplacian

of a weighted complete graph, KT with weights determined by the paths in tree T .

Definition 4.3.4. Let T be a phylogenetic tree on n + 1 leaves. Define KT to be the

weighted complete graph on n + 1 vertices, where the weight of an edge {i, j} is equal to

φT (pij) =
∏

e∈i↭j

θe.

φT (p04) = θ0θ4φT (p01) = θ0θ1θ5

φT (p12) = θ1θ2

0

1

2 3

4

Figure 4.2: The weighted complete graph, KT
5 , for the tree from Figure 4.1.

The Laplacian of KT is the n× n matrix with entries

(LKT )0≤i,j,≤n =



n∑
k=0
k ̸=i

∏
e∈i↭k

θe if i = j,

−
∏

e∈i↭j

θe if i ̸= j.
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Note that KT (θ) is the submatrix of LKT with row and column corresponding to vertex 0

removed. By the Matrix-Tree Theorem, det(KT (θ)) enumerates the weighted spanning trees

of KT . The following theorem provides a factorization for this enumeration.

Theorem 4.3.5. The determinant of a concentration matrix KT (θ) in the BMT model on

T is

det(KT (θ)) =

 ∏
e∈E(T )

θe

 ∏
v∈Int(T )

 ∑
ℓ∈Lv(T )

∏
e∈v↭ℓ

θe

degT (v)−2

. (4.17)

Proof. Note that since KT is a principal submatrix of the Laplacian of a complete graph, its

determinant is described by the matrix-tree theorem:

det(KT (θ)) =
∑
Γ⊂KT

spanning
tree

∏
{i,j}∈E(Γ)

φT (pij).

Observe that θe divides det(KT (θ)) for all edges e ∈ E(T ). Indeed, each spanning tree of

KT must contain at least one edge {i, j} where the leaves i and j are in different connected

components of T \ {e}, for every e ∈ E(T ). Thus, θe divides each term of the sum in

det(KT (θ)). Now define

D(T ) :=
∏

v∈Int(T )

 ∑
ℓ∈Lv(T )

∏
e∈v↭ℓ

θe

degT (v)−2

and

∆(T ) :=
det(KT (θ))∏
e∈E(T )

θe
−D(T ).

We want to show that ∆(T ) = 0 by induction on the number of leaves. Specifically, we show

that ∆(T ) is divisible by each of the n+1 variables θe where e contains a leaf; we call these

variables leaf variables and denote by θi the leaf variable i. Since ∆(T ) is homogeneous of

degree
∑

v∈Int(T )(degT (v)−2) = n−1 in the leaf variables, this shows that ∆(T ) is identically

zero. If T has two leaves, then it is easy to check that ∆(T ) = 0. Now let T be a tree with

n + 1 leaves (including the root leaf), and fix a leaf i ∈ Lv(T ). We show that θi divides

∆(T ), or equivalently, ∆(T )|θi=0 = 0. We claim that

∆(T )

∣∣∣∣
θi=0

= ∆(T \ {i})

 ∑
j∈Lv(T )\{i}

φT (pij)

θi

 .

The tree T \{i} has fewer leaves than T , so by induction, ∆(T \{i}) = 0. Thus, if the above
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equation holds, θi divides ∆(T ). To prove the equation above, we will show the following:

det(KT )∏
e∈E(T )

θe

∣∣∣∣∣
θi=0

=
det(KT\{i})∏
e∈E(T )\{i}

θe
·

 ∑
j∈Lv(T )\{i}

φT (pij)

θi

 and (4.18)

D(T )

∣∣∣∣
θi=0

= D(T \ {i}) ·

 ∑
j∈Lv(T )\{i}

φT (pij)

θi

 . (4.19)

On the left-hand side of Equation (4.18), the term corresponding to Γ has degree degΓ(i)−
1 in θi. Therefore, the terms on the left-hand side that remain after setting θi = 0 are those

where i is a leaf in Γ. The factorization on the right says that any such spanning tree is

obtained by first finding a spanning tree on KT \{i}, and then adding i as a leaf. This proves

Equation (4.18).

To prove Equation (4.19), let vi be the internal vertex of T adjacent to i. Then

D(T ) =

θi + ∑
ℓ∈Lv(T )\{i}

φT (piℓ)

θi

deg(vi)−2

·
∏

v∈Int(T )\{vi}

 ∑
ℓ∈Lv(T )

∏
e∈v↭ℓ

θe

deg(v)−2

.

When θi = 0, the leftmost factor is

∑
j∈Lv(T )\{i}

φT (pij)

θi
,

and the product of the rest of the factors is D(T \ {i}), which proves Equation (4.19). We

conclude that θi divides ∆(T ) for every i ∈ Lv(T ). Now if ∆(T ) ̸= 0, it contains at least

one monomial term m · θa00 θa11 · · · θann , where
∑n

i=0 ai = n − 1, ai ≥ 0 for all i, and m is a

monomial in the non-leaf variables, We must have ai = 0 for some i. But that contradicts

that θi divides ∆(T ), so we conclude that ∆(T ) is identically zero.

We note that when T is a star tree, Theorem 4.3.5 recovers the classical Cayley-Prüfer

theorem.

Corollary 4.3.6. Let T be the star tree on n + 1 leaves, with each edge is weighted by θi,

where i is the adjacent leaf. Then,

det(KT (θ)) =
n∏
i=0

θi

(
n∑
i=0

θi

)n−1

. (4.20)
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4.4 Equivalence of Phylogenetic Trees up to Re-

Rooting

In this section, we show that the ML degree of a Brownian motion tree model depends only

on the (unlabeled) unrooted tree topology. In particular, we show that the ML degree does

not depend on which of the n+ 1 leaves is chosen to be the root. Moreover, we show that if

T and T ′ are two trees with the same unrooted tree topology, the MLE of T ′ can be easily

obtained from the MLE of T .

Let T be a phylogenetic tree on leaves Lv(T ) = {0, . . . , n} with 0 as its root. Let r ∈ [n]

and let T ′ be the rooted phylogenetic tree with the same unrooted topology as T obtained

by rerooting at r. The non-root leaves of T ′ are then Lv(T ) \ {r}. We consider them in the

order 1, . . . , r−1, 0, r+1, . . . , n. With this order, an arbitrary element K ′ of L−1
T ′ has entries

k′ij =



n∑
t=1

p0t for i = j = r,

−p0j for i = r and j ̸= r,
n∑
t=0
t̸=i

pit for i = j ̸= r,

−pij for i ̸= j and i, j ̸= r,

(4.21)

where pij are as in Equation (4.3). This gives an invertible linear transformation between L−1
T

and L−1
T ′ .

Given a symmetric matrix S, construct the symmetric matrix S ′ by applying the following

invertible linear transformation to the entries of S:

s′rr = srr,

s′rj = srr − srj for j ̸= r,

s′ii = srr + sii − 2sri for i ̸= r,

s′ij = srr − sri − srj + sij for i ̸= j and i, j ̸= r.

(4.22)

Note that this linear transformation is visibly invertible since each sij can be written as a

linear function of the entries of S ′. Let mle(MT , S) denote the MLE for sample covariance

matrix S in MT . We consider mle(MT , S) to be written in the coordinates (pij)0≤i<j≤n.

Theorem 4.1.3. Let T and T ′ be phylogenetic trees with the same unlabeled, unrooted tree

topology as T . Then

(a) mld(MT ) = mld(MT ′) and
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(b) mle(MT , S) = mle(MT ′ , S ′) for S and S ′ as in Equation (4.22), if both MLEs exist.

Proof. Assume without loss of generality that T has root 0 and non-root leaf set [n] and T ′

has root r ∈ Lv(T ) and the same unlabeled, unrooted topology as T . Let K ∈ L−1
T in the pij

coordinates as in Equation (4.3). Let K ′ be as Equation (4.21). Let S be a sample covariance

matrix for MT and let S ′ be as in Equation (4.22). The transformation Equation (4.22) was

chosen so that tr(SK) = tr(S ′K ′). Indeed, we can compare the coefficients of each sij in

tr(SK) and tr(S ′K ′), denoted coeff(sij, tr(SK)) and coeff(sij, tr(S
′K ′)) respectively. For the

diagonal entries corresponding to leaves i ∈ Lv(T ) \ {r}, we have

coeff(sii, tr(S
′K ′)) =

n∑
t=0
t̸=i

pit = coeff(sii, tr(SK)).

For srr, we have

coeff(srr, tr(S
′K ′)) =

n∑
t=1

p0t +
n∑
i=1
i ̸=r

n∑
t=0
t̸=i

pit − 2
n∑
j=1

p0j − 2
∑
i<j

i,j ̸=0,r

pij

= 2
n∑
i=0
i ̸=r

n∑
j=0
j ̸=i,r

pij +
n∑
j=0
j ̸=r

prj − 2
n∑
i=0
i ̸=r

n∑
j=0
j ̸=i,r

pij

=
n∑
j=0
j ̸=r

prj = coeff(srr, tr(S
′K ′)).

Similar algebraic manipulations show that the coefficients of sij for i ̸= j are also equal.

Hence the traces are the same.

By Theorem 4.3.5, the term log det(K) in the log-likelihood function depends only on the

unrooted topology of the tree. So,

ℓT (θ|S) = ℓT ′(θ|S ′). (4.23)

The map sending S to S ′ is invertible. Since the number of complex critical points of the

log-likelihood function is fixed and equal to the ML degree for a generic choice of sample

covariance matrix, (a) follows.

The map in Equation (4.21) sending K to K ′ and its inverse sending K ′ to K map the

positive semidefinite cone to itself. Indeed, by the construction of the Farris transform,

a matrix K ∈ L−1
T is diagonally dominant with positive diagonal if and only if its image

K ′ ∈ L−1
T is diagonally dominant with positive diagonal. Equation (4.23) implies that the
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maximizer of ℓT (θ|S) is equal to the maximizer of ℓT ′(θ|S ′), and hence (b).

4.5 ML Degrees of BMT Models on Star Trees

Let Tn be the star tree on leaves {0, 1, . . . , n} with unique internal node x. We prove

Theorem 4.1.2, which states that the maximum likelihood degree of its associated BMT

model is 2n+1 − 2n− 3. We will use Bézout’s Theorem.

Theorem 4.5.1 (Bézout’s Theorem [41, §II.2]). Given n hypersurfaces of degrees d1, . . . , dn

in a projective space of dimension n over an algebraically closed field, if the intersection of

the hypersurfaces is zero-dimensional, then the number of intersection points, counted with

multiplicity, is equal to the product of the degrees d1 · · · dn.

For ease of notation, denote by θi the parameter for edge {i, x} in the path parametrization

of L−1
T . Let KTn(θ) denote the image of θ under the pullback of the path parametrization.

Let S ∈ PSDn(R) be sample covariance matrix. We start by setting up the system of score

equations of ℓTn(θ|S). Then we count, with multiplicity, the solutions θ ∈ Cn+1 that have

det(KTn(θ)) ̸= 0.

Proposition 4.5.2. The score equations of ℓTn(θ|S) have the form

∂ℓTn(θ|S)
∂θi

=
1

θi
+

n− 1

θ0 + θ1 + · · ·+ θn
−

n∑
j=0
j ̸=i

cijθj, for i = 0, . . . , n, (4.24)

where c0j = sjj, and cij = sii + sjj − 2sij for i > 0.

Proof. Expanding out the expression for the trace of SKTn(θ) and applying Theorem 4.3.5

to Tn gives

tr(SKTn(θ)) =
n∑
i=0

∑
j>i

cijθiθj and det(KTn(θ)) =
n∏
i=0

θi

(
n∑
i=0

θi

)n−1

.

Substituting these expressions into ℓTn(θ|S) and taking its partial derivatives gives Equations

in (4.24).

For a system F of polynomials, we denote by V (F ) its complex affine variety. In the

following steps, we will restate the problem of computing the ML degree as counting solutions

to a polynomial system Fn (Lemma 4.5.3) and then as counting solutions to a homogeneous
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polynomial system F̃n in projective space (Lemma 4.5.6). In all the steps, we need to remove

solutions for which det(K(θ)) = 0.

We introduce a new variable ψ which plays the role of the inverse of θ0 + θ1 + · · · + θn

by adding the equation 1 − ψ
∑n

i=0 θi = 0 to the set of the score equations. For a fixed

sample covariance matrix S = (sij) and values cij as in (4.24), let Fn = {f0, . . . , fn+1} be

the following system of n+ 2 polynomials in C[θ0, . . . , θn, ψ]:

Fn : fi = 1 + θi

(
(n− 1)ψ +

∑
j ̸=i

cijθj

)
, for i = 0, . . . , n

and fn+1 = 1− ψ

(
n∑
i=0

θi

)
. (4.25)

Note that for i = 0, . . . , n, the polynomial fi is
∂ℓTn(θ|S)

∂θi
with its denominator cleared. The

goal of Lemma 4.5.3 is to show that the degree of the affine variety of this system intersected

with the algebraic torus is exactly the maximum likelihood degree of MTn . Let C∗ denote

the complex numbers without zero.

Lemma 4.5.3. The maximum likelihood degree of the BMT model on Tn is the degree of the

ideal generated by Fn; that is mld(MTn) = deg V (Fn).

Proof. Let Ln denote the ideal generated by the score equations in the ring

An = C[θ±0 , . . . , θ±n , (θ0 + · · ·+ θn)
−1].

By definition, the ML degree of MTn is deg V (Ln). We use the variable ψ to represent

(
∑n

i=0 θi)
−1
. By the first isomorphism theorem,

An/Ln ∼= C[θ±0 , . . . , θ±n , ψ]/ (Ln + ⟨1− ψ (θ0 + · · ·+ θn)⟩) .

By clearing denominators in the score equations, we see that the vanishing locus of

Ln + ⟨1 − ψ (
∑n

i=0 θi)⟩ is isomorphic to that of the saturated ideal, ⟨Fn⟩ : (det(KTn))
∞

in C[θ0, . . . , θn, ψ]. Using the factorization of det(KTn) given in Corollary 4.3.6, we see

that this is the same as V (Fn) ∩ (C∗)n+2. But if θi = 0, then fi = 1 ̸= 0, and

if ψ = 0, then fn+1 = 1 ̸= 0. It follows that V (Fn) ∩ (C∗)n+2 = V (Fn). Thus,

mld(MTn) = deg V (Ln) = deg V (Fn).

In order to apply Bézout’s Theorem, we consider the homogenization of the system Fn.

Given a system G of homogeneous polynomials in m variables, let X(G) ⊂ PCm−1 denote its
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complex projective variety. The homogenization of the system Fn is the system F̃n of n+ 2

homogeneous polynomials in the n+ 3 variables θ0, . . . , θn, ψ, z:

F̃n : f̃i = z2 + θi

(
(n− 1)ψ +

∑
j ̸=i

cijθj

)
, for i = 0, . . . , n,

and f̃n+1 = z2 − ψ
n∑
i=0

θi. (4.26)

Its solution set X(F̃n) lives in (n + 2)-dimensional complex projective space. In the next

lemma, we consider the standard points in PCn+2:

ei = X(⟨z, ψ, θj, | j ̸= i⟩) for i = 0, . . . , n, and en+1 = X(⟨z, θi | i = 0, . . . , n⟩).

We show that the maximum likelihood degree of MTn is exactly the degree of the projective

variety X(F̃n) with these standard points removed.

Lemma 4.5.4. The number of affine solutions to Fn, counted with multiplicity, in the al-

gebraic torus is equal to the number of projective solutions, counted with multiplicity, to F̃n

that are not standard points; that is, deg
(
V (Fn) ∩ (C∗)n+2) = deg

(
X(F̃n) \ {e0, . . . , en+1}

)
.

Proof. We prove the lemma by showing that

X(F̃n) \ (PC∗)n+2 = X(F̃n, z) = {e0, . . . , en+1}.

The bijection (C∗)n+2 −→ (PC∗)n+2 sending (θ0, . . . , θn, ψ) 7→ [θ0 : · · · : θn : ψ : 1] concludes

the rest.

Take P = [θ0 : · · · : θn : ψ : z] ∈ X(F̃n). We first show that z = 0 if and only if ψ = 0 or

θi = 0 for some i ∈ {0, . . . , n}. Points not in the torus (PC∗)n+2 have at least one coordinate

equal to zero. If any of the θi are zero, then f̃i(P ) = z2, so z = 0 as well. When ψ = 0, we

have f̃n+1(P ) = 0, so again z = 0. Conversely, suppose P has z = 0. Our system becomes

f̃i(P ) = θi

(
(n− 1)ψ +

∑
j ̸=i

cijθj

)
for i = 0, . . . , n, and f̃n+1(P ) = ψ

(
n∑
i=0

θi

)
.

If none of the remaining coordinates are zero, then we have the linear conditions

(n− 1)ψ +
∑
j ̸=i

cijθj =
n∑
i=1

θi = 0.
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This is equivalent to the singularity of the matrix of coefficients,

C =



0 c01 · · · c0n n− 1

c01 0 · · · c1n n− 1
...

...
. . .

...
...

c0n c1n · · · 0 n− 1

n− 1 n− 1 · · · n− 1 0


.

The matrix C being singular is a polynomial condition in the cij’s. Moreover, we may assume

that any principal minor, except the diagonal entries themselves, has full rank by the same

argument. Since the sample covariance S is generic, so are the values cij. It follows all

but one of ψ and θj for j = 0, . . . , n must be zero. There are n + 2 such points, precisely

e0, . . . , en+1, and they clearly all lie in X(F̃n).

To finish our proof, we must compute the multiplicities of points e0, . . . , en+1 inX(F̃n), and

subtract them from degX(F̃n). Let C[[x0, . . . , xn]] denote the ring of formal power series in

variables x0, . . . , xn. In order to compute these multiplicities, we make use of Theorem 4.5.5.

The standard monomials of an ideal I with respect to a local order are the monomials xα

such that xα does not belong to the leading term ideal LT(I) with respect to this order.

Theorem 4.5.5 ([11], Theorem 4.3). Let R̂ = C[[x0, . . . , xn]]. Let Ĵ ⊂ R̂ be an ideal, > a

local order, and LT(Ĵ) the leading term ideal for Ĵ with respect to >. If R̂/Ĵ contains finitely

many standard monomials, then dimC(R̂/Ĵ) is the number of standard monomials.

In the proof of the next lemma, we define a local order on a given power series ring. We

set a variable θi or ψ equal to 1 to localize at the prime ideal of the corresponding standard

point ei. Then we use the polynomials f̃0, . . . , f̃n+1 to expand each θi and ψ as a power series

in z. This allows us to find the standard monomials and compute the multiplicity ei.

Lemma 4.5.6. 1. The multiplicity of the standard point ei for i = 0, . . . , n in X(F̃n) is

four.

2. The multiplicity of the standard point en+1 in X(F̃n) is two.

Proof of (1). By symmetry, we only need to prove the lemma for e0. Let R =

C[θ1, . . . , θn, ψ, z] and R̂ = C[[θ1, . . . , θn, ψ, z]]. Substituting θ0 = 1 to Equation (4.26), we
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obtain

f̄0 = z2 + (n− 1)ψ +
∑
j ̸=0

c0jθj,

f̄i = z2 + θi

(
(n− 1)ψ + c0i +

∑
j ̸=i,0

cijθj

)
for i = 1, . . . , n,

f̄n+1 = z2 − ψ

(
1 +

n∑
i=1

θi

)
.

Denote J = ⟨f̄0, . . . , f̄n, f̄ψ⟩ ⊆ R and p = ⟨θ1, . . . , θn, z, ψ⟩ ⊆ R. Let (R/J)p be the local ring

at p. By definition, the multiplicity of e0 is the length of (R/J)p. So, to show that mult(e0) =

4, we prove that length (R/J)p = 4. Since (R/J)p is a Noetherian local ring, we have

that length (R/J)p = dimC (R/J)p. Since completion preserves dimension, we reduce to

computing dimC(R̂/Ĵ), where Ĵ is ideal of the embedding of J in R̂.

First, we use the functions f̄1, . . . , f̄n+1 to write power series expansions for ψ and θj for

j = 1, . . . , n in terms of z. Since f̄j = 0 for j = 1, . . . , n, we have

θj =
− 1
c0j
z2

1 + (n− 1)ψ +
∑
i ̸=0,j

cij
c0j
θi

= − 1

c0j
z2

(
1− n− 1

c0j
ψ −

∑
i ̸=0,j

cij
c0j
θi + · · ·

)
.

Similarly, since f̄n+1 = 0, we have

ψ =
z2

1 +
∑
i ̸=0

θi
= z2

(
1−

∑
i ̸=0

θi + · · ·
)
.

By substitution, we obtain power series expansions for θj, j ̸= 0, and ψ up to degree 4 in z.

θj = − 1

c0j
z2 +

(
−n− 1

c0j
+
∑
i ̸=0,j

cij
c20j

)
z4 +O(z6), (4.27)

ψ = z2 +

(∑
i ̸=0

1

c0i

)
z4 +O(z6).

Denote by ḡ0 the equation obtained by writing all the variables in f̄0 in terms of z using the
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equations in (4.27), so that

ḡ0 = z2 + (n− 1)

z2 +

∑
i ̸=0

1

c0i

 z4 +O(z6)


+
∑
i ̸=0

c0i

− 1

c0i
z2 +

−n− 1

c0i
+
∑
k ̸=0,i

cik
c20i

 z4 +O(z6)


=

∑
i ̸=0

1

c0i

1 +
∑
k ̸=0,i

cik

− n(n− 1)

 z4 +O(z6).

By the genericity of the cij’s, the coefficient of z4 in the power series g0 is generically

non-zero. Let G = {ḡ0, f̄1, . . . , f̄n, f̄n+1}. Note that Ĵ = ⟨G⟩. We further claim that G

is a standard basis for Ĵ . Indeed, take < to be a negative graded monomial order, i.e.

1 > θ1, . . . , θj, ψ, z > θiθj, . . ., and so on. Since the <-leading terms of ḡ0, f̄j, . . . , f̄n+1

are relatively prime, the set G is a standard basis for Ĵ . Thus, LT(Ĵ) = ⟨θ1, . . . , θn, ψ, z4⟩.
There are four standard monomials, 1, z, z2, z3, not in LT(Ĵ). By Theorem 4.5.5, dimC R̂/Ĵ =

length(R/J)p = mult(e0) = 4.

Proof of (2). After dehomogenizing by ψ = 1, we obtain the system

f̄i = z2 + θi

(
(n− 1) +

∑
j ̸=i

cijθj

)
for i = 1, . . . , n,

f̄n+1 = z2 −
(

n∑
i=0

θi

)
.

As in the previous case, let R = C[θ0, . . . , θn, z], J = ⟨f̄0, . . . , f̄n, f̄n+1⟩ and p = ⟨θ0, . . . , θn, z⟩.
Consider the localization (R/J)p and its completion R̂/Ĵ . We want to show that

dimC(R̂/Ĵ)p = 2. Since f̄i = 0 for i = 0, . . . , n, we may again solve for θi in terms of z

and obtain

θi =
−z2

(n− 1) +
∑
j ̸=i

cijθj
= − z2

n− 1

(
1−

∑
j ̸=i

cijθj

)
= z2

(
− 1

n− 1
+O(z4)

)
.

Substituting the relations derived above into f̄n+1, the power series,

ḡψ = z2 +
n+ 1

n− 1
z2 +O(z4) =

2n

n− 1
z2 +O(z4).

Note that Ĵ = ⟨f̄0, . . . , f̄n, ḡψ⟩. For any negative graded monomial order <, the leading
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terms of f̄0, . . . , f̄n, ḡψ are relatively prime. Thus, f̄0, . . . , f̄n, ḡψ form a standard basis of Ĵ .

It follows that

LT(Ĵ) = ⟨θ0, . . . , θn, z2⟩.

By Theorem 4.5.5, dimC R̂/Ĵ = mult(en+1) = 2.

We are ready to prove the main result.

Theorem 4.1.2. The maximum likelihood degree of the Brownian motion star tree model

on n+ 1 leaves is 2n+1 − 2n− 3.

Proof. Since F̃n is a homogeneous system of n+2 quadratic polynomials satisfying the con-

ditions of Bézout’s Theorem, it has 2n+2 solutions, considering multiplicity. By Lemma 4.5.3

and Lemma 4.5.4, we have

mld(MTn) =
1

2
deg

(
X(F̃n) \ {e1, . . . , en+2}

)
.

Applying Lemma 4.5.6 to remove these standard points with their multiplicities, we obtain

mld(MTn) =
1

2

(
degX(F̃n)−

n+2∑
i=1

mult(ei)

)
=

1

2

(
2n+2 − 4(n+ 1)− 2)

)
= 2n+1 − 2n− 3.

4.6 Discussion

In this paper, we use algebraic techniques to give a formula for the ML degree of the BMT

model on a star tree. Theorem 4.3.5 is a generalization of the Cayley-Prüfer Theorem, which

gives a formula for the determinant of a matrix in L−1
T . We used this result to show that the

ML degree of the BMT model is the same for all trees with the same unrooted topology.

Computational results show that our formula does not generalize to other BMT models.

For example, the table in Figure 4.3 lists all possible non-star tree topologies in 7 leaves,

the degree of the vanishing ideal (deg), reciprocal maximum likelihood degree (rmld), and

the maximum likelihood degree (mld). We computed the ML degrees using the software

HomotopyContinuation.jl [6]. Unlike in the case of the reciprocal ML degree (see [4]),

there is not an obvious way to extend the formula for the ML degree of a star tree to a

formula for trees of any topology. The methods that we use in Section 4.5 also do not

directly extend to arbitrary trees. In many cases, the common vanishing locus of det(KT (θ))
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and the score equations with denominators cleared is positive dimensional, so one cannot

directly apply Bézout’s theorem. However, we are hopeful that our formulas for det(KT (θ))

and the degree of the path map will be useful in future approaches to this problem.

tree topology deg rmldeg mldeg tree topology deg rmldeg mldeg

93 44 259 95 26 53

90 16 221 51 4 83

77 16 181 47 11 81

61 4 115 42 4 63

60 11 101 42 1 61

61 4 99 53 1 61

Figure 4.3: ML degrees, reciprocal ML degrees and algebraic degrees of BMT models on
phylogenetic trees with 7 leaves.
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