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ABSTRACT

Recently, reinforcement learning methodologies have been applied to solve sequential decision-
making problems in various fields, such as robotics and autonomous control, communication and
networking, and resource allocation and scheduling. Despite great practical success, there has been
less progress in developing theoretical performance guarantees for such complex systems. This
dissertation aims to address the limitations of current theoretical frameworks and extend the ap-
plicability of learning-based control methods to more complex, real-life domains discussed above.
This objective is achieved in two different settings using the inherent structural properties of the
Markov decision processes used to model such systems. For admission control in systems mod-
eled by the Erlang-B blocking model with unknown arrival and service rates, in the first setting,
we use model knowledge to compensate for the lack of reward signals. Here, we propose a learn-
ing algorithm based on the self-tuning adaptive control and not only prove that our algorithm is
asymptotically optimal but also provide finite-time regret guarantees. The second setting develops
a framework to address the challenge of applying reinforcement learning methods to Markov de-
cision processes with countably infinite state spaces and unbounded cost functions. An existing
learning algorithm based on Thompson sampling with dynamically-sized episodes is extended to
countably infinite state space using the ergodicity properties of Markov decision processes. We
establish asymptotic optimality of our learning-based control policy by providing a sub-linear (in
time-horizon) regret guarantee. Our framework is focused on models that arise in queueing sys-
tem models of communication networks, computing systems, and processing networks. Hence, to
demonstrate the applicability of our method, we also apply it to the problem of controlling two
queueing systems with unknown dynamics.
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CHAPTER 1

Introduction

1.1 Motivation

Recent advances in reinforcement learning (RL) have demonstrated its great potential for address-
ing complex real-world challenges [58, 82, 63, 74]. Despite the computational success, the current
theoretical understanding of various reinforcement learning algorithms is limited, and the under-
lying reasons for their empirical success are not well understood. These theoretical limitations are
particularly evident in the context of learning in Markov decision processes (MDPs) with infinite
state or action spaces. The theorectical analysis of RL methods is mainly carried out for finite-state
and finite-action MDPs (using tabular methods [80]) and linear MDPs (using functional approxi-
mation methods [110, 41]). Another limitation in current reinforcement learning methods is that
these methods need dense reward signals to perform efficiently, which may not exist in many prob-
lems (heuristic solutions are employed in practice by constructing reward functions [33]).

Communication networks [62], computing systems [67, 95], supply chains [35, 83] and manu-
facturing systems [81] are important application domains with significant real-world impacts. In
these application domains, admission control, rate control, server speed scaling, scheduling, re-
source allocation, and matching must be carried out effectively for efficient operation. Queueing
models are commonly used to design and analyze algorithms employed for these tasks [20, 15, 26].
Knowing the underlying system parameters, queueing theoretic methods allow us to predict and
optimize various performance measures, such as latency or loss, and determine the sensitivity of
these measures to system parameters and algorithms. In practice, however, some or all of the sys-
tem parameters may not be known, but efficient system operation is still required. As a result, it is
essential to adapt existing learning algorithms or design new algorithms to address learning-based
control in queueing systems when some or all system parameters are unknown. The unknown
parameter assumption is also necessary for covering scenarios where it may not be possible to ob-
serve system parameters or where the parameters may (slowly) vary over time, such as in server
processing times in large-scale server farms or treatment times in hospitals.
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Developing learning algorithms applicable to real-world queueing models presents several chal-
lenges. This thesis focuses on overcoming two of these challenges, namely, limited information
structure and large state spaces:

1. Limited information structure: In certain settings, reward functions are either not observed
(neither perfectly nor directly) [104], costly to observe accurately [52], or too complex to
characterize [46]. If the class of applicable models is known, then an alternative to the
(dense) reward signals used in RL is the use of information rewards via likelihood values.
We explore this direction to develop learning-based optimal control for a specific Markov
decision process.

2. Large state spaces: Many queueing networks are modeled using infinite buffers and are natu-
rally modeled using infinite state space MDPs. As a result, reinforcement learning schemes
designed for learning unknown transition kernels in finite state spaces are not applicable.
To tackle the challenge of learning for queueing systems with infinite buffers, we study the
problem of learning within countable state space Markov decision processes with unbounded
cost functions.

To overcome the aforementioned challenges, in this dissertation, I present two possible direc-
tions in which problem structure can be exploited to develop approximately optimal learning-based
control methods. The first direction explores the utilization of model knowledge to augment the
lack of dense reward signals and contrasts dense reward-based approaches versus methods using
information signals based on model class knowledge. Motivated by the broad applicability of the
Erlang-B blocking model, admission control for such a system is studied with unknown arrival and
service rates with the aim of designing a dispatching policy that maximizes the long-term average
reward by observing arrival times and system state at arrivals. The dispatcher observes neither
service times nor departure epochs, precluding the use of reward-based reinforcement learning
approaches. In contrast to the model-agnostic viewpoint in RL, the knowledge of the queueing
dynamics is used to design an algorithm matched to our setting. We develop our learning-based
dispatch scheme as a parametric learning problem a’la self-tuning adaptive control [55]. We prove
that our proposed algorithm asymptotically converges to the optimal policy and present finite-time
regret guarantees.

The second contribution of this thesis comes from utilizing the intrinsic ergodicity structure of
specific Markov decision processes to extend learning schemes from finite state space settings to
countably infinite state space with unbounded cost functions. Algorithmic and learning procedures
developed to produce optimal policies mainly focus on finite state settings and do not directly
apply to these models. We focus on a Bayesian framework and assume that the unknown transition
probabilities are generated from a given prior distribution. In the countably infinite state-space
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setting, it is crucial to establish certain assumptions regarding the class of models from which
the unknown system is drawn to avoid many technical difficulties. To start with, the number of
deterministic stationary policies is no longer finite. Moreover, in average cost optimal control
problems, without stability assumptions or unbounded cost functions, the optimal policy may not
exist or be stationary or deterministic [10]. With that in mind, we assume that for any state-action
pair, the transition kernels in the model class are categorical and skip-free to the right, which is a
common feature of many applications where an increase in some state corresponds to arrivals to
the system. In addition, another set of assumptions ensures stability by assuming that the Markov
process obtained by trying out different policies in the policy class is geometrically ergodic with
some uniformity imposed over the entire parameter class. From these assumptions, moments on
hitting times are derived in terms of another Lyapunov function that ensures polynomial ergodicity.
The existence of the Lyapunov function for polynomial ergodicity is guaranteed by the assumed
geometric ergodicity. However, to derive a useful bound for the moments of hitting times, we need
the polynomial Lyapunov function to have certain properties, which we will discuss in Chapter 2.
Using our assumptions, we show that a solution to the average cost optimality equation exists and
provide a characterization of it.

To optimally control the unknown Markov decision process, we propose an algorithm based
on Thompson sampling with dynamically-sized episodes. To evaluate the performance of our
proposed algorithm, we utilize the metric of regret, which is defined as the expected total cost
attained by a learning policy until time horizon T compared to the policy that achieves the optimal
infinite-horizon average cost in a given policy class. Finally, using the solution of the average cost
Bellman equation, we provide an upper bound on the Bayesian regret of our algorithm.

Collectively, these results help us improve the performance of existing reinforcement learning
algorithms by using the structural properties inherent in specific Markov decision processes and
establishing theoretical performance guarantees for these methodologies. Specifically, we intro-
duce two distinct settings that use model knowledge to design learning algorithms matched to each
setting. We further show theoretical performance guarantees for our proposed schemes and argue
that the proposed learning algorithms attain asymptotically optimal performance.

1.2 Relevant literature

This section reviews three directions within the broader research domain of planning and learning
in stochastic dynamical systems, outlined as follows:

1. Stochastic control: In this direction, the focus is on planning when the model is known.

2. Adaptive control: This approach involves learning within a parametric setting, where like-
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lihood values function as informative rewards.

3. Reinforcement learning: This direction studies learning when the model is unknown by
adopting a model-agnostic perspective, but where (dense) reward signals are available.

1.2.1 Stochastic control

This research direction studies a given stochastic dynamical system where the transition kernels are
fully known and considers the problem of designing an admissible control strategy that optimizes
a specified performance criterion, such as a cost function, within that framework [14, 11, 55].
In the finite-horizon setting, an optimal or ε-optimal policy for this optimization problem can be
determined in a finite number of steps by the dynamic programming principle and solving the
corresponding Bellman equation [13]. In the infinite-horizon version of this problem, assuming
certain contraction assumptions hold, the optimal cost function is the solution to a fixed point
equation, satisfies the Bellman equation, and a stationary optimal policy exists. Computationally,
the optimal policy can be computed by successive application of the Bellman operator or other
iterative methods, such as policy iteration. Under certain conditions, in the finite state and action
space, it can be shown that these methods converge in a finite number of steps.

In this thesis, we consider a specific class of Markov decision processes with unknown transition
kernels with the goal of simultaneous learning and control. At each stage of our learning algorithm,
we estimate the unknown transition kernels, and assuming the estimate reflects the true dynamics,
we apply the optimal policy according to this estimate. To derive this optimal policy, we utilize the
existing stochastic control results and algorithms that provide us with the optimal or approximately
optimal control law.

1.2.2 Adaptive control

The adaptive control literature studies the problem of asymptotic learning-based control of a
stochastic dynamical system governed by an unknown parameter; for a detailed discussion, re-
fer to Section 2.1.1. These classes of problems can be studied within two settings: a Bayesian
setting, in which a prior distribution is given for the unknown parameter, or a non-Bayesian set-
ting, in which the parameter is generated arbitrarily or there is no knowledge of the underlying
prior distribution. We will focus on the latter setting, also referred to as self-tuning adaptive con-
trol [55]. The standard solution to this problem consists of two steps: first, the unknown parameter
is estimated using an estimation method such as maximum likelihood estimation (MLE). Secondly,
the optimal control law according to this parameter is applied. In [55], it is argued that in an MDP
with finite state and action spaces, under certain identifiability conditions, the MLE converges to
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the true parameter almost surely. To extend this result to the MDPs in which the restrictive iden-
tifiability conditions do not hold, forced exploration schemes are used, in which every admissible
action is applied infinitely often. Another common solution is Reward-Biased MLE [53], wherein,
instead of maximizing the likelihood function, a biased version that favors parameters with less
optimal cost is maximized.

One challenge associated with implementing the discussed methods is that the theoretical results
mainly hold when certain conditions, such as the mentioned identifiability conditions hold, or the
probability distributions are uniformly bounded away from zero. However, these conditions may
not hold in certain settings. In the seminal work on the self-tuning adaptive control, [66] shows that
under identifiability, MLE converges to the true parameter under any control law, but [16] shows
via an example that in the absence of identifiability such a conclusion may not hold. Additionally,
in the context of queueing systems, the transition probabilities are not bounded away from zero;
thus, the adaptive control literature results do not directly apply and modifications are needed [70].
In Chapter 3, we study the problem of learning-based control in such a queueing model, in which,
at each arrival, the dispatcher can either accept (subject to availability) or reject the arrival. In
the case of rejection in an empty queue, the queue will remain empty and states other than the
empty state are visited with probability zero, which precludes the use of the methods introduced
in the adaptive control literature. Another important point is that until recently the self-tuning
adaptive control literature mainly focuses on asymptotic results. In contrast, we show finite-time
performance guarantees for our proposed learning schemes in two different settings in Chapters 2
and 3.

1.2.3 Reinforcement learning

This line of research studies the problem of learning for sequential decision-making problems
modeled by Markov decision processes with unknown models. The goal is to propose a model-
agnostic learning algorithm to control the system such that a given measure of accumulated reward
is maximized while receiving feedback via observed reward signals. One main category of re-
inforcement learning algorithms relies heavily on the reward signal and the associated Bellman
equation. An instance of this general class of algorithms is the temporal-difference methodology,
wherein a value function is learned to estimate the expected long-term reward for taking a specific
action in a given state [92].

Another important category of learning algorithms in this context employs Bayesian learning,
where a prior distribution is imposed on the unknown transition probabilities. These algorithms
form and update a posterior distribution iteratively based on the received samples of the system.
Using this posterior distribution, an estimate of the unknown transition probabilities is formed. It is
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important to note that Thompson sampling schemes naturally balance the exploration/exploitation
trade-off by maintaining a distribution of unknown parameters. Another advantage of these learn-
ing schemes is that the model knowledge can be encoded through the choice of prior distribution,
and, as a result, the sample complexity of the learning algorithm can be improved. Character-
izing the evolution of the posterior distribution during the learning process can be challenging.
Hence, the learning problem is usually formulated and analyzed in an episodic framework. An-
other method to overcome the analysis challenges is that the learning problem is usually analyzed
by assuming that the MDP has certain properties. As an example of the related work in this
domain, [80] considers the problem of learning in an infinite-horizon MDP with finite state and
action space. Using an algorithm based on Thompson sampling, called Thompson Sampling with
Dynamically-sized Episodes (TSDE), they show an Õ(S

√
AT ) Bayesian regret bound, where S

and A are the sizes of state and action space, and T is the time-horizon. Similarly, [36], under
recurrence assumptions, bounded likelihood ratios, and other technical conditions, establishes a
sublinear frequentist regret bound in a finite state and action space MDP.

This thesis aims to extend the existing theoretical results to countable state space MDPs, par-
ticularly to achieve learning in unknown queueing systems with infinite buffers. To overcome
the challenges inherent in countable state space MDPs with unbounded cost functions, we im-
pose ergodicity assumptions uniformly throughout the parameter and policy classes. From these
assumptions and other technical details, we prove a sublinear regret for our proposed algorithm
based on Thompson sampling with dynamically-sized episodes algorithm.

1.3 Thesis overview

We next present an overview of our results and contributions.

1.3.1 Chapter 2: Self-tuning Adaptive Control for Admission Control in
Erlang-B Systems

Motivated by applications of the Erlang-B blocking model beyond communication networks to
sizing and pricing in production, messaging, and app-based parking systems, we study admission
control for it with unknown arrival and service rates. In our model, a dispatcher assigns every
arrival to an available server or blocks it. Every served job yields a fixed reward but incurs a per
unit time holding cost. We aim to design a dispatching policy that maximizes the long-term average
reward by observing arrival times and system state at arrivals, a realistic sampling of such systems.
The dispatcher observes neither service times nor departure epochs, precluding the use of reward-
based reinforcement learning approaches. We develop our learning-based dispatch scheme as a
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parametric learning problem a’la self-tuning adaptive control. In our problem, certainty equivalent
control switches between always admit if room (explore infinitely often) and never admit (terminate
learning), so at judiciously chosen times, we avoid the never admit recommendation. We prove that
our proposed policy asymptotically converges to the optimal policy and present finite-time regret
guarantees. The extreme contrast in the control policies shows up in our regret bounds for different
parameter regimes: constant in one versus logarithmic in another.

1.3.2 Chapter 3: Bayesian Learning in Countable State Space Markov De-
cision Processes

Models of many real-life applications, such as queueing models of communication networks or
computing systems, have a countably infinite state-space. Algorithmic and learning procedures
developed to produce optimal policies mainly focus on finite state settings and do not directly
apply to these models. To overcome this lacuna, we study the problem of optimal control of a
family of discrete-time countable state-space Markov decision processes governed by an unknown
parameter θ ∈ Θ and defined on a countably-infinite state-space X = Zd+, with finite action space
A and an unbounded cost function. We take a Bayesian perspective with the random unknown
parameter θ∗ generated via a given fixed prior distribution on Θ. To optimally control the unknown
MDP, we propose an algorithm based on Thompson sampling with dynamically-sized episodes: at
the beginning of each episode, the posterior distribution formed via Bayes’ rule is used to produce
a parameter estimate, which then decides the policy applied during the episode. To ensure the
stability of the Markov chain obtained by following the policy chosen for each parameter, we
impose ergodicity assumptions. From this condition and using the solution of the average cost
Bellman equation, we establish an Õ(dhd

√
|A|T ) upper bound on the Bayesian regret of our

algorithm, where T is the time-horizon, and h determines the skip-free to the right property.
Finally, to provide examples of our framework, we consider two different queueing models that

meet our technical conditions and show that our algorithm can be applied to develop approximately
optimal control algorithms even though the underlying dynamics are unknown. The first example
is a continuous-time queueing system with two heterogeneous servers with unknown service rates
and a common infinite buffer. In this setting, the optimal policy that minimizes the average waiting
time is a threshold policy given in [54]. We verify our assumptions for a class of optimal policies
corresponding to different service rates and conclude that our algorithm is well-suited for this
setting. The second model is a two-server queueing system, each with separate infinite buffers. In
this setting, the optimal policy to minimize the waiting time is unknown, so we aim to find the best
policy among policies that assign the arrival to the queue with minimum weighted queue length.
Similarly, we show that our assumptions hold for this model, and our algorithm can be used to
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learn the best-in-class policy.

1.4 Summary of contributions

In summary, the major contributions of this thesis are as follows:

• Chapter 2: We study the problem of learning the unknown service rate of an M/M/k/k queue-
ing system. We design a dispatching policy based on maximum likelihood estimation and the
certainty equivalent law coupled with forced exploration. We show the convergence of our pro-
posed policy to the optimal policy, which is a threshold policy. Specifically, when the true service
rate is above the threshold value, after a random finite time, all job arrivals are accepted (subject
to availability). In contrast, when the true service rate is equal to or below the threshold value, all
new arrivals are rejected after a random finite time. Moreover, in one parameter regime, we show
a finite regret bound for an exploration function growing slower than exponential. Additionally,
we prove O(log(n)) regret for a specific exploration function in the other regime, where n is the
number of arrivals to the system. Consequently, we conclude that by using model knowledge and
designing a learning algorithm tailored to our specific problem structure, we can compensate for
the absence of direct access to the reward function. Furthermore, model knowledge can be used
to enhance learning performance, even compared to generic learning algorithms that observe
reward signals.

• Chapter 3: We generalize the existing learning algorithm, Thompson sampling with
dynamically-sized episodes [80], from finite state space setting to countably infinite state space
setting. We further provide a finite-time performance guarantee by proving a sublinear regret for
our algorithm. Specifically, we explore the following three cases:

1. We demonstrate that our algorithm can be used to learn the optimal policy with an
Õ(dhd

√
|A|T ) Bayesian regret.

2. We illustrate that our algorithm learns the optimal policy within a specified policy class
with an Õ(dhd

√
|A|T ) Bayesian regret.

3. We argue that our proposed algorithm and finite-time regret guarantees can be extended to
scenarios in which we do not have access to an oracle providing us with the optimal/best-
in-class policy. Instead, in cases where we only have access to approximately optimal
policies, we show that our learning algorithm can be employed under specific conditions
to identify the best policy within a given policy class, and the same sublinear regret order
carries through.
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Moreover, we demonstrate that our learning algorithm can be applied to two different queueing
models with infinite buffers with the goal of learning unknown service rates.

Notation of the Thesis: Notation varies across chapters. However, each chapter is self-contained,
and the notation of each chapter is defined in that chapter. Appendices follow the notation of the
corresponding chapter.
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CHAPTER 2

Self-tuning Adaptive Control for Admission Control
in Erlang-B Systems

2.1 Introduction

Queueing systems are widely applicable models used to study resource allocation problems in
communication networks, distributed computing systems, semiconductor manufacturing, supply
chains, and many other dynamic systems. Queueing models are analyzed under various system
information settings, but a common assumption is that the core system parameters like arrival
rates, service rates and distributions are available to the system designer (e.g., [87, 40]). However,
there are various applications where these parameters are unknown, and the designer needs to learn
them to be able to optimally assign jobs to the servers or block them. For example, the service rate
of every server in large-scale server farms may be unknown, or the treatment times in hospitals
may be unpredictable and time-varying.

The focus of this chapter is the Erlang-B system ([47, 87]). The traditional use of this system
has been for sizing and analyzing voice and circuit-switched systems, i.e., loss systems. It is also
used for sizing and analyzing call-center systems ([32]) with no waiting room and no reneging.
Furthermore, it has been employed to study multiple-access schemes in wireless networks ([68]).
More recently, these systems have been used to design and size production systems; for instance,
by Amazon for its SimpleDB database service, Facebook for the back-end of its chat service,
WhatsApp for its messaging servers, Motorola in call processing products used for public safety,
etc. These applications motivate us to consider learning for the Erlang-B queuing system. Specifi-
cally, our problem formulation aligns with the call-center systems mentioned above, assuming the
call center is operated by a third-party entity and the servers are homogeneous. It also extends to
applications such as the pricing of parking lots in app-based parking systems or messaging systems
implemented using third-party cloud servers.

Motivated by these applications and to highlight challenges in learning-based optimal control,
we study optimal admission control in an Erlang-B queueing system with exponentially distributed
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service times, and unknown arrival and service rates, denoted by λ and µ, with the goal of designing
an optimal learning-based dispatching policy. At every arrival, the dispatcher can accept or block
the arrival. Accepted jobs incur a service cost c per unit time, and yield a fixed rewardR. Assuming
that the service rate is known, the dispatcher can maximize its expected reward using a threshold
policy: if the service rate exceeds c/R, all arrivals are admitted subject to availability; otherwise,
all arrivals are rejected. When the service rate equals c/R, the dispatcher is indifferent between
admitting or rejecting arrivals.

A key aspect of our problem setting is that the information available to the dispatcher consists
only of the inter-arrival times and the number of busy servers at each arrival, as the system is
sampled at arrivals. Contrarily, the service rate, departure times, and service times are not known
to the dispatcher. Hence, the dispatcher cannot form a direct estimate of the service rate (e.g., by
taking an empirical average of the observed service times) to then choose its policy, and instead has
to use the queueing dynamics to estimate the service time for policy determination. This facet of
the problem brings it closer to practice but also complicates the analysis. Based on this information
structure, our focus is to design an optimal policy that maximizes the long-term average reward.

We study the problem of learning the service rate in the framework of parametric learning of a
stochastic dynamical system. Specifically, consider a stochastic system governed by parameter θ:

Xt+1 = Ft(Xt, Ut,Wt; θ), t = 0, 1, . . . (2.1)

where Xt ∈ X , Ut ∈ U , Wt ∈ W are the state of the system, control input, and noise at time t and
Ft is any measurable function. Further, θ ∈ Θ is a fixed but unknown parameter, and the initial
state and noise process are mutually independent. In line with the literature, we study a system
where our controller perfectly observes the state Xt and uses its history of observations to choose
the control Ut. For a specified reward function rt(x, u) for (x, u) ∈ X × U , the objective is to
maximize the long-term reward. We also assume that the optimal policy G∗(.; θ) is known for each
θ ∈ Θ.

To achieve the optimization objective whilst learning the unknown parameter θ, an adaptive
control law is applied: using past observations X1:t, an estimate θ̂t+1 is formed, and then by cer-
tainty equivalent control law, the optimal policy according to θ̂t+1, or G∗(.; θ̂t+1), is applied. One
approach to form the estimate θ̂t+1 is to use the maximum likelihood estimate (MLE). [66] prove
that under identifiability, the MLE converges to the true parameter. When these conditions do
not hold, to guarantee convergence, [53, 54] use reward bias-based exploration schemes to ensure
asymptotic optimality. Our problem fits the above paradigm: the system state Xt is the number of
busy servers at time t with the dispatcher observing the (continuous-time) system state at arrivals,
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Figure 2.1: Comparison of regret performance of Algorithm 1 for different functions f(n) in a
5 server system with λ = 5 and c/R = 1.3. Different service rates are considered. The shaded
region indicate the ±σ area of mean regret. In (a), the y axis is plotted on a logarithmic scale to
display the differences clearly.

and the unknown parameter is the service rate µ, so Θ = R+
1. Using an adaptive control law with

forced exploration, we propose a dispatching policy to maximize the long-term average reward.
Our main analysis-related contributions are:

1. Asymptotic optimality. We prove the convergence of our learning-based policy to the optimal
policy. We first focus on a single-server Erlang-B queueing system; see Section 2.4.1. An un-
derlying independence structure lets us establish asymptotic optimality using the strong law of
large numbers. For the multi-server setting, the independence structure does not hold anymore,
so in Section 2.5.1, a more intricate argument based on martingale sequences is used for the
proof to prove convergence.

2. Finite-time performance analysis. In Section 2.4.2, we characterize the finite-time regret for
the single-server system in two distinct service rate regimes. In the first regime, we show finite
regret using independence and concentration inequalities. However, in the other regime, the
exploration done by our policy leads to a regret upper bound that scales as log(n), where n is the
number of arrivals. We also generalize our results to the multi-server setting to observe that the
regret exhibits similar behavior as in the single-server setting; see Section 2.5.2. The analysis
for the multi-server setting is based on Doob’s decomposition and concentration inequalities
for martingale sequences.

1More generally, we can take both the arrival and service rates, λ and µ, to be the unknown parameters.
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We end by contrasting our work with the literature on learning in stochastic dynamical sys-
tems. We study an example of a parametric learning problem for which we do not expect a
single policy to achieve minimum regret in all regions of the parameter space. Whereas we
don’t have an explicit proof of such a claim, the contrasting behavior an optimal adaptive con-
trol scheme must exhibit in different parameter regimes—quickly converging to always admit-
ting arrivals if room versus quickly rejecting all arrivals—gives credence to the claim. We dis-
cuss the above point in Figure 2.1, which depicts the performance of our algorithm for functions
f(n) ∈ {n2.5, exp (n0.6) , exp(n)} where 1/f(n) is proportional to the (forced) exploration prob-
ability. For f(n) = n2.5, exploration is employed aggressively, causing better performance for
µ ∈ (c/R,+∞), and higher regret in the other regime. Conversely, when f(n) = exp(n), ag-
gressive exploitation is enforced, leading to the opposite behavior. For µ ∈ (c/R,+∞), we show
finite regret for f(n) ∈ {n2.5, exp (n0.6)} in Section 2.5.2, but finite regret is not guaranteed for
f(n) = exp(n) in our analysis. In Section 2.5.2, when µ ∈ (0, c/R), we establish an O(log5/3(n))

regret bound for f(n) = exp (n0.6). Similar arguments lead to a O(log(n)) upper bound for
f(n) = exp(n) in the same regime. From this discussion, we expect big differences in perfor-
mance of any algorithm based on the parameter regime. Based on our numerical results, we also
conjecture that for µ ∈ (0, c/R), there is an Ω(log(n)) regret lower bound. This is consistent with
the lower bound on the asymptotic growth of regret from the literature on learning in unknown
stochastic systems under the assumption that the transition kernels of the underlying controlled
Markov chains are strictly bounded away from 0; see [5, 37].

Furthermore, our simulation results in Section 2.6 investigate other aspects that highlight the
subtleties in designing learning schemes. For example, they provide evidence that depending on
the relationship between the arrival rate and the service rate, sampling our continuous-time system
at a faster rate than the arrivals could reduce the regret. We also show that subtle differences in
variable updates in the learning scheme have a substantial impact on the regret achieved. Thus, the
choice of the trade-off of regret between the different parameter regimes determines the learning
scheme.

2.1.1 Related work

Adaptive control. The self-tuning adaptive control literature studies asymptotic learning in the
parametric or non-parametric version of the problem described in (2.1), and the study was initi-
ated by Mandl. [66] showed that the MLE converges to the true parameter under an identifiability
condition. Since then, the adaptive control problem has been vastly studied in great generality; see
[16, 53, 54, 5, 37, 36]. The work in [16] studied the adaptive control problem when the identifia-
bility condition need not hold and proved that for a finite-state controlled Markov chain with finite

13



parameter space, the maximum likelihood estimate converges almost surely to a parameter with
the same transition probabilities of the true parameter, if the transition probabilities are uniformly
lower bounded. In [53, 54], a finite-state and finite-control Markov process with finite parameter
space is considered, and an adaptive control law is presented that optimizes the long-term average
cost using a combination of biased maximum likelihood estimation and certainty equivalent con-
trol law. Reference [5] view the problem of learning in an unknown controlled Markov chain with
finite state, action, and parameter space as a multi-armed bandit problem and introduce a control
scheme to minimize the rate of increase on the expected regret. In [37], a controlled Markov pro-
cess is considered on a general state space and a compact parameter space, and an adaptive control
law is presented that minimizes the expected regret in a particular class of control laws. Reference
[56] develops adaptive control schemes in the non-parametric setting by working with a set of poli-
cies. Finally, [36] take a Bayesian viewpoint and develop expected regret bounds for Thompson
sampling based schemes. Additionally, learning in queueing systems is one of the applications in
this literature; see [56, 55].

A core assumption in the above literature is that the transition kernels of the underlying con-
trolled Markov chains are strictly bounded away from 0 and 1, with the bound uniform in the
parameter and the class of (optimal) policies. This core assumption does not hold in our problem:
the controlled Markov chain found by sampling the queueing system at arrivals has drastically dif-
ferent behavior under the available class of policies—admit if room or never admit—, and thus the
conclusions of this literature do not apply. Furthermore, in the above literature, most of the results
are on asymptotic learning, and only recently, finite-time regret guarantees have been obtained. The
existing finite-time regret guarantees are largely for certain discrete-time queueing systems with
geometrically distributed service times and unknown parameters, which we will discuss below.

Queueing systems. There is a growing body of work on learning-based control in discrete-
time queueing systems; see [103] for a recent survey. References [50, 51] studied a discrete-time
multi-class, multi-server queueing system with unknown service rates. After imposing stability
conditions on the problem parameters, [50] used a forced exploration-based learning scheme to
prove finite regret compared to the cµ rule in a system with service rates known. In another
work, [51] used UCB and Thompson sampling-based algorithms to prove a polylogarithmic regret
bound. Reference [22] proved an Õ(

√
T ) regret over time horizon T using a queue-length agnostic

randomized-routing-based algorithm for a multi-server discrete-time queueing system. All of these
works form empirical service rate estimates by observing and averaging service successes and
failures.

Furthermore, [88] studied the problem of finding the optimum server for service in a discrete-
time multi-server system with unknown service rates and a single queue and proves constant regret
by sampling service rates during idle periods. In another work, [75] employed generative adver-
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sarial networks to numerically learn the unknown service time distributions in a G/G/∞ queuing
system. In a recent work, [109] studied scheduling in a multi-class queue with abandonment with
unknown arrival, service, and abandonment rates. By using service and patience times and forming
estimates of the service and abandonment rates, logarithmic regret is shown against the cµ/θ rule
using an exploration-exploitation based scheme. Reference [108] studied social-welfare maximiz-
ing admission control in an M/M/1 queuing system with unknown service and arrival rates; with
system parameters known a threshold-based admission control scheme is optimal. By observing
the queueing system at all times, they propose a dispatching algorithm that achieves constant regret
for one set of parameters, and O(log1+ε(n)) regret for any ε > 0 for another set of parameters (n
is the number of arrivals).

In all these works, all completed service times or entire queueing processes are observed and
used for learning. Such observations may not be feasible in real-world queueing systems due to
increased computation and memory requirements: see [89, 40]. Multi-server settings introduce
other complications: to correctly identify completed service times, server assignments need to be
tracked from the entire process history (even for homogeneous servers). In our work, observations
are the (minimal) Markov state of the system at each arrival, which despite being a nonlinear
function of service times, aligns better with real-world systems. In Section 2.6, using simulations,
we also show that sampling of such continuous-time systems needs careful design.

Learning-based decision-making has also been studied in inventory control and dynamic pric-
ing. Reference [8] studies an inventory control problem with unknown demand distribution. The
goal is to minimize the total cost associated with inventory holding and lost sales penalties over
T periods by observing the minimum of demand and inventory. A learning algorithm is proposed
based on the convexity of the average cost function under the benchmark base-stock policies, and
a O(
√
T ) regret is established. Reference [21] studies a dynamic pricing problem in a GI/GI/1

queue with the objective of determining the optimal service fee and service capacity that maximize
the expected total profit. A gradient-based online-learning algorithm is proposed that estimates the
gradient of the objective function from the history of arrivals, waiting times, and the server’s busy
times and a logarithmic regret bound in the total number of served customers is established. In an-
other work, [45] study a price-based revenue management problem with finite reusable resources
under price-dependent unknown arrival and service rates. The goal is to find the optimal pricing
policy that maximizes the total expected revenue by observing the inter-arrival and service times.
Two different online algorithms based on Thompson Sampling and Upper Confidence Bound are
proposed, and a regret upper bound of Õ(

√
T ) is proved, where T is the time-horizon.

Another related line of work focuses on the use of pricing strategies to regulate queue sizes
and studies differences between individually optimal and socially optimal strategies (with model
parameters known). Reference [72] studied regulating an M/M/1 queue with fixed reward and

15



linear holding cost, which was then generalized in [48] to an M/M/k queuing model with fixed
reward and nonlinear holding cost. In both, to ensure social optimality, customers are subject to a
toll upon joining the queue to counteract the increased congestion when agents selfishly optimize.
Similarly, [61] investigated a stochastic congestion system with random reward and linear holding
cost and argued that individuals acting in self-interest over-congest a system relative to the socially
optimal rule. Similar to [72, 48], a toll can be charged to induce customers to act in a socially
optimal way. In these works, to ensure social optimality, customers are subject to a toll upon
joining the queue to counteract the increased congestion when agents selfishly optimize.

Reinforcement learning (RL). Recently, RL methods have been applied to queueing problems
with the goal of finding the average cost optimal policy, in both known model and cost parameter
cases ([27]), and unknown parameter cases with available rewards ([69]). These methods do not
apply to our setting as we neither observe the reward sequence nor know the expected rewards:
the random reward is a linear function of the service times of accepted jobs which are not ob-
served, and the expected reward is a function of the unknown arrival and service rates. We only
observe the system state: a nonlinear and complex function of the reward. In contrast to the model-
agnostic viewpoint in RL, we use the knowledge of the queueing dynamics to design an algorithm
matched to our setting. Although RL methods do not apply to our setting, in Section 2.6, we
consider a fictitious setup wherein the service times are observed ahead of time and implement
an average reward RL algorithm, R-learning ([92]). Despite not observing the service times, our
policy outperforms R-learning, providing evidence that model-class knowledge can be as effective
as observing the reward signal; see Figure 2.4. In Figure 2.4, we also compare our algorithm
to a Thompson sampling-based algorithm ([36]), showing that our algorithm using model-class
knowledge is again as effective as Thompson sampling.

The rest of this chapter is organized as follows. In Section 2.2, we introduce the problem and
the learning objective. Section 2.3 discusses our learning-based dispatching policy and Section 2.4
shows the asymptotic optimality of our proposed policy in a single-server Erlang-B system. More-
over, we characterize the regret of our proposed policy compared to the system with knowledge
of the service rate. Section 2.5 extends the results of Section 2.4 to the multi-server setting. In
Section 2.6, we study the performance of our proposed policy through experiments and verify our
theoretical analysis.

2.2 Problem formulation

We consider an M/M/k/k queueing system with k identical servers. Arrivals to the system are
according to a Poisson process with rate λ, and at each arrival, a dispatcher decides between
admitting the arrival or blocking it. If admitted, the arrival is dispatched to the first available server
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and serviced with exponentially distributed service times with parameter µ. Otherwise, if blocked,
it leaves the system. Each time an arrival is accepted, the dispatcher receives a fixed reward R
(after service completion), but incurs a cost of c per unit time service; we assume that rejecting
an arrival has no penalty. In our setting, we assume that the dispatcher knows the parameters R
and c but does not know either the service rate µ or the arrival rate λ. We also assume that the
dispatcher observes the arrival times to the system and the system state upon arrivals. In contrast
to the inter-arrival times, the service times of completed services are unknown.

Consider the queueing system sampled at arrival i for i ∈ {0, 1, . . .}, and let Ai denote the
action of the dispatcher to admit or block arrival i. If arrival i is blocked, Ai = 0; otherwise, if
arrival i is admitted (when there’s room), Ai = 1. We define Ni as the number of busy servers just
before arrival i, and the system starts with empty servers, i.e., N0 = 0. Let Ti be the inter-arrival
time between arrival i−1 and i, and Mi be the number of departures during inter-arrival Ti. Notice
that

Ni−1 + Ai−1 = Mi +Ni

and the value of Mi can be found with the knowledge of {Ni−1, Ni, Ai−1}. The
dispatcher chooses Ai based on past observations up to arrival i, i.e., Hi =

{T1, . . . , Ti, A0, A1, . . . , Ai−1, N0, N1, . . . , Ni}. Using this history, the dispatcher’s goal is
to choose action sequence {An}∞n=0 to maximize the expected average reward per unit time, which
by PASTA ([87]) is

lim sup
n→∞

1

n

n−1∑
i=0

E[K(Ai, σi)],

where σi is the service time of arrival i, and the reward function K (·, ·) is given by K(a, s) =

a(R− cs).
In a system with known service rate µ, the optimal policy of the dispatcher is to accept all

arrivals if µ > c/R (subject to availability) and block all arrivals if µ < c/R. The dispatcher is
indifferent between accepting or rejecting when µ = c/R. We evaluate the performance of a
candidate policy with respect to the optimal policy, denoted by Π∗. In Section 2.3, we propose a
dispatching policy that uses past observations to estimate the service rate µ, and in Sections 2.4.1
and 2.5.1, we show the asymptotic optimality of our policy by proving its convergence to Π∗.
Further, in Sections 2.4.2 and 2.5.2, the finite-time performance of our policy is evaluated using
the following definition.

Definition 1. SetAΠ
i as the action taken at arrival i in a system that follows policy Π. The expected
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regret of a policy Π with respect to the optimal policy Π∗ after n arrivals is defined as

E [R (n) ; Π] =
∣∣∣E [ n−1∑

i=0

(AΠ
i − AΠ∗

i )
]∣∣∣.

2.3 Proposed maximum likelihood estimate-based dispatching
policy

In our problem setting, both the arrival and service rates, λ and µ, are unknown, but for the optimal
dispatching policy it is sufficient to estimate the service rate. We would like a dispatching policy
that (asymptotically) performs optimally, and further, (if possible) we want to minimize the regret
of this system with respect to the system with known µ. As mentioned in Section 2.1, we take a
self-tuning adaptive control viewpoint: we consider the system as being driven by parameter µ,
and the learning problem as a parameter estimation problem using system measurements given
by the sequence of policies chosen. Specifically, we use maximum likelihood (ML) estimation to
estimate parameter µ, and then select the certainty equivalent control but with forced exploration.

2.3.1 Maximum likelihood estimate derivation

In this section, we derive the log-likelihood function and the corresponding MLE. The probability
of mi departures and ni incomplete services at inter-arrival ti given mi + ni = Ni−1 + Ai−1 is

p (mi, ni, ti;µ) =

(
ni +mi

ni

)
(1− exp (−µti))mi (exp (−µti))ni . (2.2)

The above equation follows from the exponential distribution of the service times. From (2.2),
the conditional probability of observing sequences {mi}ni=1 and {ni}ni=1 for a fixed µ given the
inter-arrival sequence {ti}ni=1 is given by

P
(
M1 = m1, . . . ,Mn = mn, N1 = n1, . . . , Nn = nn

∣∣∣µ, {ti}ni=1

)
=

n∏
i=1

p (mi, ni, ti;µ) . (2.3)

In our problem formulation, no prior distribution is assumed for µ, and thus, the posterior proba-
bility of a fixed µ given observations of {mi}ni=1,{ni}ni=1 and {ti}ni=1 is proportional to (2.3). From
(2.2) and (2.3), we form the likelihood function of the past observationsHn under parameter µ as

L (Hn;µ) := cb

n∏
i=1

(1− exp (−µTi))Mi (exp (−µTi))Ni , (2.4)
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where cb is the product of the binomial coefficients found in (2.2) and independent of µ. Maxi-
mization of likelihood function L (Hn;µ) is equivalent to maximization of log-likelihood function
l (Hn;µ) defined as

l (Hn;µ) := logL (Hn;µ) = log cb +
n∑
i=1

Mi log (1− exp (−µTi))− µ
n∑
i=1

NiTi. (2.5)

If Mi = 0 for all i, the maximum of l (Hn;µ) in [0,+∞) is obtained for µ = 0, and if Ni = 0 for
all i, the maximum is reached at +∞. Otherwise, from differentiability and strict concavity of the
log-likelihood function, it follows that it has at most one maximizer, and as

lim
µ→0

l (Hn;µ) = lim
µ→+∞

l (Hn;µ) = −∞,

there exists a unique µ̂n > 0 that maximizes l (Hn;µ), which can be found by taking the derivative
with respect to µ and setting it equal to 0. The derivative of l (Hn;µ) is given by

l′ (Hn;µ) =
n∑
i=1

MiTi exp (−µTi)
1− exp (−µTi)

−
n∑
i=1

NiTi. (2.6)

From (2.6), the maximum likelihood estimate µ̂n is the solution to the following equation:

n∑
i=1

g (Ti,Mi, µ̂n) =
n∑
i=1

h (Ti, Ni, µ̂n) , (2.7)

where

g (t,m, µ) :=
mt exp (−µt)
1− exp (−µt)

, h (t, n, µ) := nt.

It is easy to verify that
∑n

i=1 g (Ti,Mi, µ) is a positive and decreasing function of µ. Moreover,

lim
µ→0

n∑
i=1

g (Ti,Mi, µ) = +∞, lim
µ→+∞

n∑
i=1

g (Ti,Mi, µ) = 0.

Since
∑n

i=1 h (Ti, Ni, µ) is a positive constant independent of µ, Equation (2.7) has a unique pos-
itive solution µ̂n. However, given the simple set of optimal policies for our problem, we do not
need to solve this equation to determine our policy. For a given estimate µ̂n, the optimal policy
only requires a comparison of µ̂n and c/R, and, based on the properties of g and h, to compare µ̂n
with c/R, it suffices to compare

∑n
i=1 g (Ti,Mi, c/R) with

∑n
i=1 h (Ti, Ni, c/R).
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Algorithm 1 Proposed ML estimate-based Policy for Learning the Optimal Dispatching Policy

1: Input: f : N ∪ {0} → [1,∞), increasing, and limn→+∞ f (n) = +∞.
2: Initialize N0 = 0, α0 = 0.
3: At arrival n ≥ 0, do
4: Update αn using (2.8), and find S(n) = max{0 ≤ i ≤ n : Ni = 0}.
5: if Nn = k then
6: Block the arrival.
7: else if Nn < k and

∑S(n)
i=1 g (Ti,Mi, c/R) >

∑S(n)
i=1 h (Ti, Ni, c/R) then

8: Admit the arrival.
9: else if Nn < k and

∑S(n)
i=1 g (Ti,Mi, c/R) ≤

∑S(n)
i=1 h (Ti, Ni, c/R) then

10: Admit the arrival with probability pαn = 1/f (αn).
11: end if

2.3.2 The learning algorithm

The discussion at the end of the previous subsection leads to the following two cases:

1.
∑n

i=1 g (Ti,Mi, c/R) >
∑n

i=1 h (Ti, Ni, c/R) implies that µ̂n > c/R.

2.
∑n

i=1 g (Ti,Mi, c/R) ≤
∑n

i=1 h (Ti, Ni, c/R) implies that µ̂n ≤ c/R.

In Case 1, the MLE indicates the always admit if room policy is optimal. In our proposed policy,
we follow the MLE whenever Case 1 applies and admit the arrival (if there is a free server). In
contrast to Case 1, the MLE in Case 2 suggests blocking all arrivals. However, if we follow the
MLE in both cases, we may falsely identify the service rate and incur linear regret. Notably,
using the optimal policy in Case 2 results in no arrivals and new system samples. Thus, to ensure
learning, in Case 2, our policy will not use the certainty equivalent control with a small probability
that converges to 0. Finally, we introduce Algorithm 1 for optimal dispatch in an Erlang-B system
with unknown service rate.

We label the policy in Algorithm 1 as ΠAlg1. Then S(n) is defined as the last arrival instance
before or at arrival n when the system is empty, i.e., all servers are available. The probability
of using the sub-optimal policy in Case 2 is equal to pαn = 1/f (αn), where a valid function
f : N∪{0} → [1,∞) is increasing and converges to infinity as αn goes to infinity. Further, α0 = 0

and αn is defined as below for n ≥ 1

αn =

αn−1 + 1, if
∑n−1

i=1 g (Ti,Mi, c/R) ≤
∑n−1

i=1 h (Ti, Ni, c/R) , An−1 = 1, Nn−1 = 0,

αn−1, otherwise.
(2.8)

In other words, αn is the number of accepted arrivals 0 ≤ l < n such that
∑l

i=1 gi (c/R) ≤
∑l

i=1 hi

and the system is empty right before arrival l. In the following remark, we clarify the effect of
function f on the performance of ΠAlg1.
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Remark 1. Any choice of f ≥ 1 that increases to infinity leads to asymptotic optimality of ΠAlg1

and convergence to Π∗, as proved in Sections 2.4.1 and 2.5.1. However, the class of admissible

functions is restricted in Sections 2.4.2 and 2.5.2 to provide finite-time guarantees.

The parameters of policy ΠAlg1 are only updated when the system becomes empty, i.e., at busy
period boundaries, rather than at all arrivals. The reason for this modification is that the busy pe-
riod boundary is a regenerative epoch that provides sufficient independence needed in the analysis,
whereas the regret of the policy that updates its parameters at all arrivals is hard to analyze. How-
ever, this alternate policy, called ΠAlg3, is also asymptotically optimal, and we empirically compare
it to ΠAlg1 in Section 2.6.

Remark 2. In the single-server setting, the two policies ΠAlg1 and ΠAlg3 coincide. In other words,

the proposed policy in Algorithm 1 is equivalent to the policy for which the parameters are updated

at every arrival. In Sections 2.4 and 2.5, to provide intuition for the more general setting of the

multi-server system, we initially discuss the case of the single-server system, and then extend our

results to the multi-server setting.

2.4 Single-server queueing model

We initially focus on the single-server Erlang-B queueing system to provide a simpler pathway
to the multi-server setting. In Section 2.4.1, we first prove that asymptotic learning holds for the
proposed policy ΠAlg1 for any µ ∈ (0,+∞) and valid function f . In Section 2.4.2, we evalu-
ate the finite-time performance of our proposed policy in terms of the expected regret defined in
Definition 1.

2.4.1 Asymptotic optimality

In the single-server setting, the policy ΠAlg1 is equivalent to the policy ΠAlg3 that updates at each
arrival, so S(n) = n in Algorithm 1. With this in place, we describe a stochastic process whose
limiting behavior will determine the performance of our learning scheme. Define {X̃n}∞n=0 as

X̃n = (Xn, Nn, αn) =
( n∑
i=1

(g (Ti,Mi, c/R)− h (Ti, Ni, c/R)) , Nn, αn

)
. (2.9)

We note that the action at arrival n defined by ΠAlg1 is uniquely determined by X̃n: if the server
is available and Xn > 0, the arrival will be accepted. Otherwise, if Xn < 0, the arrival will be
admitted with probability pαn . To prove asymptotic optimality, we show that eventually, Xn will
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always be positive for µ > c/R, and negative for µ < c/R. In the process {X̃n}∞n=0, Xn is updated
as

Xn −Xn−1 = g (Tn,Mn, c/R)− h (Tn, Nn, c/R) . (2.10)

In (2.10), random variablesNn andMn only depend on the history through the previous state X̃n−1

and αn is updated from the previous state X̃n−1 by (2.8). Thus, the stochastic process {X̃n}∞n=0

forms a Markov process (with a continuous-state component). Random variables {Xn−Xn−1}∞n=1

are not independent since values of Nn and Mn depend on the previous state X̃n−1. Hence, it is
not straightforward to analyze the asymptotic behavior of the Markov process {X̃n}∞n=0. We will
define a new stochastic process that will address this issue and establish convergence results for
this process. Define {βn}∞n=0 as the sequence of the indices of accepted arrivals and Y := Xβn . We
down-sample the Markov process {X̃n}∞n=0 using sequence {βn}∞n=0 to get the stochastic process
{Ỹn}∞n=0 given by

Ỹn = X̃βn = (Xβn , Nβn , αβn) =: (Yn, 0, αβn) . (2.11)

Note that Nβn = 0 as the server is empty just before an arrival is accepted. To ensure process
{Ỹn}∞n=0 is well-defined, in Lemma 17, we prove that the number of accepted arrivals following
ΠAlg1 is almost surely infinite; see Appendix A.1.1. Let En be the potential service time of arrival
n; it is exponentially distributed with parameter µ and is independent of the inter-arrival times.
We define ln as the first arrival after βn that the server is available, i.e., the service of the accepted
arrival βn is complete. Equivalently,

ln = min
m

{
m ≥ 1 :

m∑
j=1

Tβn+j ≥ Eβn

}
. (2.12)

In the following lemma, using the memoryless property of the exponentially-distributed service
times and inter-arrival times, we investigate the behavior of ln by constructing an alternate repre-
sentation of the process {Ỹn}∞n=0.

Lemma 1. Random variables {ln}∞n=0 defined in (2.12) are geometric, independent, and identically

distributed.

Proof of Lemma 1 is given in Appendix A.1.2. From the above observation, in Lemma 2 we
prove that random variables {Yn − Yn−1}∞n=1 are independent and identically distributed (i.i.d.).

Lemma 2. Random variables {Yn − Yn−1}∞n=1 are i.i.d..

Proof of Lemma 2. Using (2.10), we can write Yn − Yn−1 as follows

Yn−Yn−1 =

βn−βn−1∑
j=1

(Xβn−1+j−Xβn−1+j−1) = −
ln−1−1∑
j=1

Tβn−1+j +g
(
Tβn−1+ln−1 , 1, c/R

)
, (2.13)
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where we have used the fact that for j < ln−1, Nβn−1+j = 1 (the server is busy); otherwise,
Nβn−1+j = 0. Also, Mβn−1+j = 1 for j = ln−1, and 0 otherwise, as the arrival departs in inter-
arrival Tβn−1+ln−1 . As the server remains empty until an arrival is accepted, Mβn−1+j and Nβn−1+j

are both equal to 0 for ln−1 + 1 ≤ j ≤ βn − βn−1. Finally, since {ln}∞n=0 and {Tn}∞n=0 are i.i.d.,
Lemma 2 follows.

Notice that {Yn}∞n=0 is the partial sums process of i.i.d. random variables. As a result, by
the strong law of large numbers (SLLN), we observe that Yn converges to infinity with the sign
depending on E[Yn − Yn−1]. We now present the main result of this subsection in Theorem 1,
which proves the asymptotic optimality of policy ΠAlg1 for any µ > 0 in the single-server setting
and argues that convergence of Yn results in the convergence of ΠAlg1 to the optimal policy.

Theorem 1. Consider a single-server Erlang-B queueing system with service rate µ. For any µ ∈
(0,+∞), policy ΠAlg1 converges to the true optimal policy Π∗. Specifically, for µ ∈ (c/R,+∞),

we have limn→+∞ Yn = +∞ a.s., and the proposed policy admits all arrivals if room after a

random finite time. Similarly, for µ ∈ (0, c/R), we have limn→+∞ Yn = −∞ a.s., and after a

random finite time, an arrival is only accepted with a probability that converges to 0 as n→ +∞.

Proof of Theorem 1. We assume that µ > c/R, and prove Theorem 1. The proof when µ < c/R

follows similarly. We first find E [Yi+1 − Yi] using (2.13) as below

E [Yi+1 − Yi] =
∞∑
m=1

P (li = m)E
[
−

li−1∑
j=1

Tβi+j + g
(
Tβi+li , 1,

c

R

) ∣∣∣ li = m
]
. (2.14)

We have

E
[
g
(
Tβi+li , 1,

c

R

) ∣∣∣ li = m
]

=
µ+ λ

µ

∫ +∞

t=0

∫ t

x=0

g
(
t, 1,

c

R

)
µ exp (−µx)λ exp (−λt) dxdt

=
µ+ λ

µ

∫ +∞

t=0

λt exp
(
−t
(
λ+

c

R

))
(1− exp (−µt))

( +∞∑
s=0

exp
(
−st c

R

))
dt

=
µ+ λ

µ

( ∞∑
s=1

λ(
λ+ s c

R

)2 −
∞∑
s=1

λ(
λ+ µ+ s c

R

)2

)
, (2.15)

where the second line follows by 1

1−exp(−t cR)
=
∑+∞

s=0 exp
(
−st c

R

)
. Furthermore,

E
[
Tβi+j

∣∣∣ li = m, j < li

]
=
µ+ λ

λ

∫ +∞

t=0

∫ +∞

x=t

tµ exp (−µx)λ exp (−λt) dx dt =
1

λ+ µ
.
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As µ > c/R, using (2.14)

E [Yi+1 − Yi]

=
−1

λ+ µ

∞∑
m=1

P (li = m) (m− 1) +
µ+ λ

µ

( ∞∑
s=1

λ(
λ+ s c

R

)2 −
∞∑
s=1

λ(
λ+ µ+ s c

R

)2

)
=
−1

λ+ µ

λ

µ
+
µ+ λ

µ

( ∞∑
s=1

λ(
λ+ s c

R

)2 −
∞∑
s=1

λ(
λ+ µ+ s c

R

)2

)
>

−λ
µ (λ+ µ)

+
µ+ λ

µ

λ(
λ+ c

R

)2

>
−λ

µ (λ+ µ)
+

λ

µ
(
λ+ c

R

) > 0. (2.16)

From (2.16) and Lemma 2, {Yi+1 − Yi}∞i=0 are i.i.d. with E[Yi+1 − Yi] > 0. Thus, by the SLLN,

lim
n→+∞

Yn = lim
n→+∞

n−1∑
i=0

(Yi+1 − Yi) = +∞ a.s.

Consider the process {Xi}∞i=0 from i = βn to i = βn+1. For ln + 1 ≤ j ≤ βn+1 − βn, we have

Nβn+j = Mβn+j = 0

and in the inter-arrivals after the departure of arrival βn, the server remains empty. Hence, for
ln + 1 ≤ j ≤ βn+1 − βn,

Xβn+j = Xβn+ln +

j∑
i=1

(
g
(
Tβn+j, 0,

c

R

)
− h
(
Tβn+j, 0,

c

R

))
= Xβn+ln .

Specifically, for j = βn+1 − βn, we have

Xβn+1 = Xβn+ln = Yn+1,

meaning that from arrival βn + ln at which the system is empty for the first time after βn, the
decision to accept or reject the following arrivals is made based on the sign of Yn+1, which is
eventually always positive. Thus, after a (random) finite time, the arrival is accepted whenever the
server is available.
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2.4.2 Finite-time performance analysis

To study the finite-time performance of ΠAlg1, we characterize the regret in terms of the processes
{X̃n}∞n=0 and {Ỹn}∞n=0. As the sign of {Yn}∞n=0 determines the acceptance law, we would like to
upper bound the expected number of times Yn has an undesirable sign—specifically, being non-
positive when µ > c/R and non-negative in the other regime. In Lemma 2, we showed that random
variables {Yn+1 − Yn}∞n=0 are i.i.d. We further show Yn+1 − Yn is sub-exponentially distributed in
Lemma 3. The definition of a sub-exponential random variable and its properties are also given in
Appendix A.1.3.

Lemma 3. Random variables {Yn+1 − Yn}∞n=0 are sub-exponentially distributed.

The intuition behind Lemma 3 is the following: from (2.13), random variable Yn+1−Yn can be
written as the sum of exponential random variables and a bounded random variable; see proof in
Appendix A.1.3. The results of Lemmas 2 and 4 allow us to use Bernstein’s concentration inequal-
ity for the sum of independent sub-exponential random variables and establish an exponentially
decaying upper bound for the probability of a suboptimal action resulting from the value of Yn.

Lemma 4. Consider a single-server Erlang-B queueing system with service rate µ following policy

ΠAlg1. For µ ∈ (c/R,+∞) , there exists a positive problem-dependent constant c1 such that the

process {Yn}∞n=0 satisfies

P (Yn ≤ 0) ≤ exp (−c1n) ,

and for any µ ∈ (0, c/R), for a positive problem-dependent constant c2, the following holds

P (Yn ≥ 0) ≤ exp (−c2n) .

Lemma 4 is proved in Appendix A.1.4. We first give an upper bound for the expected regret
when µ > c/R. In this regime, when Yn is positive, ΠAlg1 follows the optimal policy Π∗ and admit
the arrivals (as long as there is an available server). However, for non-positive Yn, the arrival is
only admitted with a given probability. We quantify the impact of the arrival instances for which
Yn is non-positive using the exponentially decaying probability established in Lemma 4. Finally,
in Theorem 2, we prove that for µ ∈ (c/R,+∞), the expected regret is finite.

Theorem 2. Consider a single-server Erlang-B queueing system with service rate µ. For any µ ∈
(c/R,+∞) and (valid) function f such that log(f) = o(n), the expected regret E [R (n) ; ΠAlg1]

under policy ΠAlg1 is upper bounded by a constant independent of n.

Proof of Theorem 2. We define Hn as the number of times an arrival is rejected between arrival
βn and βn+1 when the server is available. Consider the system that accepts all arrivals subject to
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availability, i.e., follows the optimal policy for µ > c/R; call this system Q(0). We couple Q(0)

with our system from the first arrival so that we can ensure whenever our system is busy, Q(0) is
also busy and rejects the arrival. Thus, we have the following upper bound for the expected regret:

E [R (n) ; ΠAlg1] ≤ E
[ ∞∑
i=0

Hi

]
=
∞∑
i=0

E
[
Hi

∣∣∣Yi+1 < 0
]
P (Yi+1 ≤ 0) ,

which holds because when Yi+1 > 0, the number of rejected arrivals, Hi, is zero. Conditioned
on the event {Yi+1 ≤ 0}, Hi is geometric with parameter 1/f(αβi+li), where αβi+li is less than or
equal to the number of admitted arrivals up to βi+ li, which is equal to i+1. Thus, using Lemma 4,

E [R (n) ; ΠAlg1] ≤
∞∑
i=0

f (i+ 1)P (Yi+1 ≤ 0) ≤
∞∑
i=0

f (i+ 1) exp (−c1 (i+ 1)) .

The above summation converges if f grows slower than the exponential function, and we conclude
that the expected regret is bounded by a constant independent of n.

Next, we present the finite-time performance guarantee for a single-server system with service
rate µ < c/R. In this regime, the expected regret consists of two terms. The first term arises from
the arrivals for which the corresponding Yn > 0, and we use the exponentially decaying probability
of Lemma 4 to bound this term. The second term results from the arrivals accepted with a given
probability when Yn ≤ 0. We will use Lemma 5 presented below to address this term; proof is
given in Appendix A.1.5. In conclusion, Theorem 3 proves a polynomial in log(n) upper bound
for the expected regret in the case of µ ∈ (0, c/R).

Lemma 5. Let f(n) = exp(n1−ε) and d = d3(log
1

1−ε (n+ 1))e for a fixed ε ∈ (0, 1). Then,

for independent geometric random variables {yi}ni=1 with corresponding success probabilities

{f(i)−1}ni=1, the sum
∑n−1

i=d iP(y1 + · · · + yi < n, y1 + · · · + yi+1 ≥ n) is bounded by a con-

stant determined by ε.

Theorem 3. Consider a single-server Erlang-B queueing system with service rate µ ∈
(0, c/R). For f(n) = exp (n1−ε), the expected regret under policy ΠAlg1 is E [R (n) ; ΠAlg1] =

O
(

log
1

1−ε (n)
)
.

Proof of Theorem 3. For µ ∈ (0, c/R), the optimal policy rejects all arrivals, and thus, the expected
regret of the proposed policy is equal to the expected number of accepted arrivals up to arrival n,
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or

E [R (n) ; ΠAlg1] = E
[ n−1∑
i=0

1 {Ai = 1}
]

= E
[ n−1∑
i=0

1 {Ai = 1, Xi > 0}
]

+ E
[ n−1∑
i=0

1 {Ai = 1, Xi ≤ 0}
]
,

whereXi is the first component of the state of the Markov chain defined in (2.9). Using the sampled
process {Ỹn}∞n=0 and Lemma 4, we simplify the first term on the RHS of the above equation as,

E
[ n−1∑
i=0

1 {Ai = 1, Xi > 0}
]
≤

+∞∑
i=0

P (Yi > 0) ≤
+∞∑
i=1

exp (−c2i) <∞. (2.17)

We next upper bound the expected number of arrivals accepted whenXi ≤ 0. We consider a system
that has infinite servers (to avoid rejecting arrivals) and regardless of the sign of Xi, accepts with
probability 1/f(i), if i arrivals have already been accepted (the acceptance rule is compatible with
the original system whenXi ≤ 0). By coupling this system with the system following Algorithm 1,
taking d = d3 log

1
1−ε (n)e and {yi}ni=1 as defined in Lemma 5,

E
[ n−1∑
i=0

1 {Ai = 1, Xi ≤ 0}
]
≤ E

[ d−1∑
i=0

1 {Ai = 1, Xi ≤ 0}
]

+ E
[ n−1∑
i=d

1 {Ai = 1, Xi ≤ 0}
]

≤ d+
n−1∑
i=d

iP (y1 + · · ·+ yi < n, y1 + · · ·+ yi+1 ≥ n) .

Finally, By Lemma 5 and (2.17), for µ ∈ (0, c/R), the expected regret is bounded by a polyloga-
rithmic function.

Remark 3. There is an exploration-exploitation trade-off in selecting f(n) on the two sides of

µ = c/R. When admitting is optimal, we want f(n) to increase to infinity as slow as possible. Also,

based on the proof of Theorem 2, for our current bound, we cannot take f(n) to grow exponentially

fast since its exponent needs to depend on unknown µ to ensure constant regret. Conversely, when

blocking all arrivals is optimal, we need f(n) to converge to infinity as fast as possible. As the

learning algorithm needs to be agnostic about the parameter regime, f(n) = exp (n1−ε) is a good

choice: it ensures constant regret in one regime and polynomial regret in log(n) in the other.

We next consider a decreasing sequence of ε values by choosing εn := ε√
1+log(n+1)

for n ≥ 1,

where ε ∈ (0, 1). The algorithm corresponding to the exploration function f(n) = exp (n1−εn) is
asymptotically optimal from Theorem 1. To determine the regret when µ > c/R, we observe that
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log(f) = o(n) and the regret in this regime remains finite. For the case of µ < c/R, we are able to
reduce the order of regret further to log(n), as shown in Corollary 1 with proof in Appendix A.1.6.

Corollary 1. Consider a single-server Erlang-B queueing system with service rate µ ∈ (0, c/R).

For f(n) = exp (n1−εn) where εn = ε√
1+log(n+1)

for all n ≥ 1 and ε ∈ (0, 1), the expected regret

under policy ΠAlg1 is E [R (n) ; ΠAlg1] = O
(

log(n)
)
.

Remark 4. For some parameters, our problem setting overlaps with the setting of [108]: when

µ ≤ c/R, our setting can be viewed as learning in an M/M/1 system with the optimal admission

threshold of 0, and when c/R < µ ≤ h(λ, c/R) < +∞ (for a function h), our setting corresponds

to an M/M/1 system with an optimal threshold of 1. However, our work samples the system only

at arrivals, in contrast to [108] which samples the system at all times (so service times of departed

jobs are known). Despite observing less information, our proposed policy exhibits the same regret

behavior as [108] as shown in Corollary 1 and Theorem 2.

2.5 Multi-server queueing model

In this section, we extend the results of Section 2.4 to a multi-server setting. In Section 2.5.1, the
convergence of ΠAlg1 to the optimal policy is shown by a martingale-based analysis coupled with
SLLN for martingale sequences. Moreover, in Section 2.5.2, we prove that the regret bounds of the
single-server model extend to the multi-server setting using martingale concentration inequalities.

2.5.1 Asymptotic optimality

First, we extend the processes defined in Section 2.4.1 to the multi-server setting. We define the
stochastic process {X̃n}∞n=0 as

X̃n = (Xn, Nn, αn) =
( n∑
i=1

(
g (Ti,Mi, c/R)− h (Ti, Ni, c/R)

)
, Nn, αn

)
. (2.18)

As in the single-server case, {X̃n}∞n=0 forms a Markov process (with a continuous-state compo-
nent). Our goal is to down-sample the Markov process {X̃n}∞n=0 at arrival acceptances for which
the system is empty and establish convergence results for the resulting process. Similar to the
single-server case, we first argue that these instances happen infinitely often (almost surely) in Ap-
pendix A.2.1. Let {βn}∞n=0 be the sequence of the indices of accepted arrivals when the system is
empty. We down-sample the Markov process {X̃n}∞n=0 using the sequence {βn}∞n=0 to get process
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{Ỹn}∞n=0 where Yn is defined as Yn := Xβn , and

Ỹn := X̃βn := (Xβn , Nβn , αβn) = (Yn, 0, αβn) . (2.19)

In the single-server setting, the processes depicted in (2.18) and (2.19) are equivalent to the pro-
cesses defined in (2.9) and (2.11), as the single-server system is empty whenever an arrival is
accepted. In contrast to the single-server case, random variables {Yn − Yn−1}∞n=1 are not indepen-
dent in the multi-server setting, as here, unlike the single-server setting, Yn − Yn−1 depends on the
acceptance probabilities. We will argue that process {Yn}∞n=0 is a submartingale (or supermartin-
gale), and using this result, we will analyze its convergence. We define random variable Di as the
change in Xi at inter-arrival Ti, i.e., Di := Xi − Xi−1. Next, for any n ≥ 0, we define process
{Wn,m}∞m=0 as

Wn,m = Yn +
m∑
i=1

Dβn+i = Xβn+m. (2.20)

We define the random variable τn as the index of the first arrival after βn that finds the system
empty, i.e.,

τn = min {i ≥ 1 : Nβn+i = 0} .

Note that by (2.20),Wn,τn = Xβn+τn . We claim that process {Xn}∞n=0 at the first arrival acceptance
after τn, i.e., Xβn+1 , is equal to Wn,τn . Indeed, process {Xn}∞n=0 does not change when there are
no departures or ongoing services. Hence,

Wn,0 = Yn, Wn,τn = Xβn+1 = Yn+1, (2.21)

and random variable Yn+1 is equivalent to the process {Wn,m}∞m=0 stopped at τn. Thus, to an-
alyze the convergence of process {Yn}∞n=0, we study the properties of process {Wn,m}∞m=0 and
random variable τn for n ≥ 1. We determine the behavior of τn by coupling the system that runs
Algorithm 1 with a system that accepts all arrivals (subject to availability) as follows.

Let Q(n) denote the system that accepts all arrivals as long as it has at least one available server.
We also define random variable ζn as the first arrival after arrival βn that finds Q(n) empty, starting
from an empty state. Starting from arrival βn, we couple this system with the system that follows
Algorithm 1 such that at each arrival, the number of busy servers in Q(n) is greater than or equal
to our system. We couple the arrival sequences in both systems such that the inter-arrival times
are equal. Moreover, when an arrival is accepted in both systems, we assume that its service time
is identical in both. System Q(n) will accept all arrivals unless none of its servers are available.
Suppose all of the servers of Q(n) are busy, and our system accepts an arrival. In this case, we
assume that the service time of the accepted arrival in our system equals the remaining service
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time of the kth server in Q(n), which has an exponential distribution with parameter µ due to the
memoryless property. Using this coupling, we verify that all moments of τn are finite in Lemma 6.

Lemma 6. All moments of random variable τn are bounded by a constant independent of n.

Proof of Lemma 6. By the above coupling of Q(n) with the system that follows our proposed pol-
icy, we ensure that at each arrival, the number of busy servers in Q(n) is greater than or equal to our
system. Hence, the moments of τn are bounded by the moments of ζn. In system Q(n), the number
of busy servers just before each arrival forms a finite-state irreducible Markov chain, and random
variable ζn is the first passage time of the state zero starting from zero, and has moments bounded
by a constant which only depends on λ, µ and the number of servers.

After characterizing the behavior of τn, in Lemma 7, we show that the process {Wn,m}∞m=0 is a
submartingale or supermartingale depending on the sign of µ− c/R.

Lemma 7. Fix n ≥ 0. For µ ∈ (c/R,+∞), the stochastic process {Wn,m}∞m=0 forms a submartin-

gale sequence with respect to the filtration {Gn,m}∞m=0, wherein the σ-algebra Gn,m is defined as

Gn,m := σ (Tβn+1, . . . , Tβn+m, Nβn+1, . . . , Nβn+m, αβn , . . . , αβn+m, Aβn+1, . . . , Aβn+m, Yn) .

For µ ∈ (0, c/R), the process {Wn,m}∞m=0 is a supermartingale with respect to filtration

{Gn,m}∞m=0.

Proof of Lemma 7. We show the proof for the case of µ > c/R. The other region follows similarly.
To prove {Wn,m}∞m=0 is a submartingale sequence, we first show E [|Wn,m|] <∞. From (2.20),

E [|Wn,m|] ≤ E
[
|Yn|+

m∑
i=1

|Dβn+i|
]

≤ E
[
|Yn|+

m∑
i=1

∣∣∣g(Tβn+i,Mβn+i,
c

R

)
− h
(
Tβn+i, Nβn+i,

c

R

)∣∣]
≤ E [|Yn|] + k

m∑
i=1

(
E
[
g
(
Tβn+i, 1,

c

R

)]
+ E [Tβn+i]

)
, (2.22)

where (2.22) holds as 0 ≤ Mβn+i, Nβn+i ≤ k. For t > 0, we have g (t, 1, x) ≤ 1
x
, and thus, the

summation in (2.22) is finite. To show that E [|Yn|] < ∞, it suffices to show E [|Yn+1 − Yn|] is
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finite for all n:

E [|Yn+1 − Yn|] = E [|Wn,τn − Yn|]

= E
[∣∣∣ τn∑

i=1

Dβn+i

∣∣∣]
≤ kE

[ τn∑
i=1

(
Tβn+i + g

(
Tβn+i, 1,

c

R

)) ]
(2.23)

≤ kE
[ ζn∑
i=1

(
Tβn+i + g

(
Tβn+i, 1,

c

R

)) ]
= kE [ζn]E

[
Tβn+1 + g

(
Tβn+1, 1,

c

R

)]
, (2.24)

where (2.23) is derived similar to (2.22) and (2.24) follows from couplingQ(n) with the system that
runs Algorithm 1. Hitting time ζn is a stopping time for the finite-state irreducible Markov chain
found by sampling Q(n) at arrivals and E[ζn] < ∞. Also, {Tβn+i}∞i=1’s are independent and iden-
tically distributed. Hence, (2.24) follows from Wald’s equation ([28]), and E [|Yn+1 − Yn|] < ∞,
which implies that E [|Yn|] <∞, and by (2.22), E [|Wn,m|] <∞. We next verify the submartingale
property of {Wn,m}∞m=0. From the Markov property of {X̃n}∞n=0,

E
[
Wn,m+1 −Wn,m

∣∣∣Gn,m] = E
[
Xβn+m+1 −Xβn+m

∣∣∣Xβn+m, Nβn+m, αβn+m, Aβn+m

]
, (2.25)

which is equal to the expected change in Xi during inter-arrival Tβn+m+1. To show E[Wn,m+1 −
Wn,m

∣∣∣Gn,m] ≥ 0, we argue that E[Xi+1 −Xi

∣∣∣Xi, Ni, αi, Ai] is non-negative for all i as follows,

E
[
Xi+1 −Xi

∣∣Xi, Ni, αi, Ai
]

= E
[
g
(
Ti+1, Ni + Ai −Ni+1,

c

R

)
− h
(
Ti+1, Ni+1,

c

R

)∣∣Ni, Ai
]

= E
[(
Ni + Ai −Ni+1

)
g
(
Ti+1, 1,

c

R

)∣∣Ni, Ai
]
− E

[
Ti+1Ni+1

∣∣∣Ni, Ai

]
=
(
Ni + Ai

)
E
[
g
(
Ti+1, 1,

c

R

)]
− E

[
Ni+1g

(
Ti+1, 1,

c

R

)∣∣Ni, Ai
]
− (Ni + Ai)E [Ti+11A] ,

(2.26)

where A is the event that a fixed server from the Ni + Ai busy servers remains busy during inter-
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arrival Ti+1. The second term of (2.26) can be simplified as follows

E
[
Ni+1g

(
Ti+1, 1,

c

R

) ∣∣∣Ni, Ai
]

= (Ni + Ai)E
[
g
(
Ti+1, 1,

c

R

)
1A

]
= (Ni + Ai)

∫ +∞

t=0

t exp
(
−t c

R

)
1− exp

(
−t c

R

)λ exp (−λt) exp (−µt) dt

= (Ni + Ai)
∞∑
j=0

λ(
λ+ µ+ (j + 1) c

R

)2 , (2.27)

We derive E [g (Ti+1, 1, c/R)] using the same calculations as in (2.15),

E
[
g
(
Ti+1, 1,

c

R

)]
=

∫ +∞

t=0

t exp
(
−t c

R

)
1− exp

(
−t c

R

)λ exp (−λt) dt =
∞∑
j=0

λ(
λ+ (j + 1) c

R

)2 . (2.28)

Next, we simplify the third term of (2.26):

(Ni + Ai)E [Ti+11A] = (Ni + Ai)

∫ +∞

t=0

∫ +∞

x=t

tµ exp (−µx)λ exp (−λt) dxdt

= (Ni + Ai)
λ

(λ+ µ)2 . (2.29)

Substituting the terms found in the above equation, (2.28), and (2.27), in Equation (2.26), we have

E
[
Xi+1 −Xi

∣∣∣Xi, Ni, αi, Ai
]

= δ̃ (Ni + Ai) , (2.30)

where

δ̃ := − λ

(λ+ µ)2 +
∞∑
j=0

λ(
λ+ (j + 1)

c

R

)2 −
λ(

λ+ µ+ (j + 1)
c

R

)2 .

and is positive for µ ∈ (c/R,+∞). Hence, from (2.25),

E
[
Wn,m+1 −Wn,m

∣∣∣Gn,m] = δ̃ (Nβn+m + Aβn+m) ≥ 0, (2.31)

and we conclude that {Wn,m}∞m=0 is a submartingale sequence with respect to {Gn,m}∞m=0.

Next, in Proposition 1 we argue that the stopped sequence {Wn,τn}∞n=0 or {Yn}∞n=0 also forms a
submartingale or supermartingale sequence depending on the problem parameters.

Proposition 1. Sequence {Yn}∞n=0 forms a submartingale or supermartingale (depending on the

sign of µ− c/R) with respect to filtration {Fn}∞n=0 defined as

Fn = σ (Y0, . . . , Yn, αβ0 , . . . , αβn) .
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Specifically, {Yn}∞n=0 is a submartingale sequence if µ > c/R and a supermartingale sequence

otherwise.

Proof of Proposition 1. We show the proof for the case of µ > c
R

, and the other regime follows
similarly. Note that Yn+1 is equal to submartingale {Wn,m}∞m=0 stopped at τn; in other words,

Yn+1 = Wn,τn = Yn +
τn∑
i=1

Dβn+i.

In Lemma 6, we argued that E [τn] <∞. Moreover,

E
[
|Wn,m+1 −Wn,m|

∣∣∣Gn,m] = E
[
|Dβn+m+1|

∣∣∣Gn,m]
≤ kE

[
g
(
Tβn+1, 1,

c

R

)]
+ kE [Tβn+1] . (2.32)

As g is bounded, the RHS of (2.32) is also finite. Hence, we can use Doob’s optional stopping
theorem [28, Theorem 4.8.5] for submartingale {Wn,m}∞m=0 and stopping time τn with a finite
expected value to get

E
[
Yn+1

∣∣∣Gn,0] = E
[
Wn,τn

∣∣∣Gn,0] ≥ E
[
Wn,0

∣∣∣Gn,0] = Yn.

Thus, we have
E
[
Yn+1 − Yn

∣∣∣Gn,0] = E
[
Yn+1 − Yn

∣∣∣Fn] ≥ 0.

As E [|Yn|] is finite, {Yn}∞n=0 is a submartingale sequence with respect to {Fn}∞n=0.

Now that we proved the submartingale (or supermartingale) property of {Yn}∞n=0, we can exam-
ine the convergence of this process. We will achieve this using Doob’s decomposition and studying
the convergence of the derived martingale and the predictable sequence. From Proposition 1 and
Doob’s decomposition of {Yn}∞n=0, we have

Yn = Y A
n + Y M

n , (2.33)

where Y M
n is a martingale sequence, and Y A

n is a predictable and almost surely increasing (or
decreasing) sequence with Y A

0 = 0. In Lemmas 8 and 9, we examine the limiting behavior of
sequences {Y A

n }∞n=0 and {Y M
n }∞n=0. The basic idea is to show that {Y A

n }∞n=0 converges to infinity,
and {Y M

n }∞n=0 is well-behaved in a way that their sum, {Yn}∞n=0, converges to infinity.

Lemma 8. For µ ∈ (c/R,+∞), there exists a positive problem-dependent constant δ̃1 such that
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the predictable increasing process {Y A
n }∞n=0 from Doob’s decomposition of {Yn}∞n=0 satisfies

Y A
n ≥ δ̃1n a.s.

Similarly, for µ ∈ (0, c/R), there exists a negative problem-dependent constant δ̃2 such that the

predictable decreasing process {Y A
n }∞n=0 satisfies

Y A
n ≤ δ̃2n a.s.

Proof of Lemma 8. WLOG, we assume µ ∈ (c/R,+∞). By Proposition 1, sequence {Yn}∞n=0 is a
submartingale with respect to filtration {Fn}∞n=0. Hence, the increasing sequence is given as below

Y A
n =

n−1∑
m=0

E
[
Ym+1 − Ym

∣∣∣Fm] =
n−1∑
m=0

(
E
[
Wm,τm

∣∣∣Fm]− Ym) . (2.34)

In Lemma 7, we argued {Wn,m}∞m=0 is a submartingale with respect to {Gn,m}∞m=0. From Doob’s
decomposition, we get

Wn,m = WA
n,m +WM

n,m.

For the predictable process {WA
n,m}∞m=0, from (2.31),

WA
n,m =

m−1∑
i=0

E
[
Wn,i+1 −Wn,i

∣∣∣Gn,i] =
m−1∑
i=0

δ̃ (Nβn+i + Aβn+i) . (2.35)

Next, we use Doob’s optional stopping theorem for the martingale sequence {WM
n,m}∞m=0 to find

E
[
WM
n,τn

∣∣∣Fn]. The stopping time τn has finite expectation as argued in Lemma 6, and

E
[∣∣WM

n,i+1 −WM
n,i

∣∣ ∣∣∣Gn,i] = E
[∣∣Wn,i+1 −Wn,i −

(
WA
n,i+1 −WA

n,i

)∣∣ ∣∣∣Gn,i]
= E

[∣∣∣Dβn+i+1 − E
[
Dβn+i+1

∣∣∣Gn,i]] ∣∣∣Gn,i]
≤ E

[
|2Dβn+i+1|

∣∣∣Gn,i] , (2.36)

where (2.36) is bounded by a constant, as argued in (2.32). After verifying the conditions of the
optional stopping theorem, we are able to use this theorem to get

E
[
WM
n,τn

∣∣∣Fn] = E
[
WM
n,0

∣∣∣Fn] = Yn. (2.37)
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From (2.34) and (2.35), we can find Y A
n as follows

Y A
n = δ̃

n−1∑
m=0

E
[ τm−1∑

i=0

(Nβm+i + Aβm+i)
∣∣∣Fm]. (2.38)

Note that Aβm = 1, as arrival βn is accepted by the definition of the sampling times {βn}∞n=0.
Hence, E

[∑τm−1
i=0 (Nβm+i + Aβm+i)

∣∣∣Fm] ≥ 1, which gives Y A
n ≥ δ̃n.

We next state the strong law of large numbers for martingale sequences in Theorem 4 and then,
using this result, prove Lemma 9.

Theorem 4. [86, Corollary 7.3.2] let {Mn}∞n=0 be a martingale sequence with M0 = 0 and

E
[
|Mn|2r

]
<∞ for some r ≥ 1, and it satisfies

∑∞
n=1 n

−(1+r)E [|Mn −Mn−1|2r] <∞. Then, we

have the strong law of large numbers for martingales, which states that

lim
n→∞

Mn

n
= 0. a.s.

Lemma 9. The martingale process {Y M
n }∞n=0 found by Doob’s decomposition of {Yn}∞n=0 satisfies

lim
n→∞

Y M
n

n
= 0. a.s.

Proof of Lemma 9. We prove Lemma 9 for µ > c/R. The result in the other region is proved
similarly. We first derive upper and lower bounds for the martingale difference sequence Y M

n+1 −
Y M
n . We have

Y M
n+1 − Y M

n

= Yn+1 − Yn −
(
Y A
n+1 − Y A

n

)
=

τn∑
i=1

Dβn+i − E
[
δ̃

τn−1∑
i=0

(Nβn+i + Aβn+i)
∣∣∣Fn] (2.39)

=
τn∑
i=1

(
g
(
Tβn+i,Mβn+i,

c

R

)
− h
(
Tβn+i, Nβn+i,

c

R

))
− E

[
δ̃
τn−1∑
i=0

(Nβn+i + Aβn+i)
∣∣∣Fn],

(2.40)

where (2.39) is true by (2.38), and (2.40) follows from the definition of Di. To derive an upper
bound for the martingale difference sequence, we only consider the non-negative terms in (2.40)
as below

Y M
n+1 − Y M

n ≤
τn∑
i=1

g
(
Tβn+i,Mβn+i,

c

R

)
≤ k

R

c
τn, (2.41)
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which holds as for t > 0, we have g (t, 1, x) ≤ 1
x
. To find a lower bound, using the non-positive

terms,

Y M
n+1 − Y M

n ≥ −
τn∑
i=1

h
(
Tβn+i, Nβn+i,

c

R

)
− E

[
δ̃
τn−1∑
i=0

(Nβn+i + Aβn+i)
∣∣∣Fn]

≥ −k
τn∑
i=1

Tβn+i − δ̃kE
[
τn

∣∣∣Fn] , (2.42)

where we have used the definition of function h. From Lemma 6, δ̃kE
[
τn

∣∣∣Fn] is bounded by a
constant, which we call cδ̃. By (2.41) and (2.42), we have

−k
τn∑
i=1

Tβn+i − cδ̃ ≤ Y M
n+1 − Y M

n ≤ k
R

c
τn. (2.43)

We next verify the conditions of Theorem 4 for the martingale sequence Y M
n with r = 1. From

(2.43),

E
[ (
Y M
n+1 − Y M

n

)2 ] ≤ k2R
2

c2
E
[
τ 2
n

]
+ k2E

[( τn∑
i=1

Tβn+i

)2]
+ 2kcδ̃E

[ τn∑
i=1

Tβn+i

]
+ c2

δ̃
. (2.44)

We aim to show the right-hand side of (2.44) is bounded by a constant independent of n. From
Wald’s equation [28, Theorem 4.8.6], we have that E [

∑τn
i=1 Tβn+i] is bounded by a constant. For

the second term, we use Wald’s second equation [28, Exercise 4.8.4] for i.i.d. random variables
{T̃i}ni=1 defined as T̃i := Tβn+i− 1

λ
, with E[T̃i] = 0 for all i. We take S̃n :=

∑n
i=1 T̃i. From Wald’s

second equation, for stopping time τn with finite expectation,

E
[
S̃2
τn

]
=

1

λ2
E [τn] .

In addition, from the definition of S̃n, we have

E
[
S̃2
τn

]
= E

[( τn∑
i=1

Tβn+i −
τn
λ

)2]
.
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Finally, we bound the second term on the right-hand side of (2.44) with a constant as below

E
[( τn∑

i=1

Tβn+i

)2]
=

1

λ2
E[τn] +

2

λ
E
[
τn

τn∑
i=1

Tβn+i

]
− 1

λ2
E
[
τ 2
n

]
≤ 1

λ2
E[τn] +

1

λ
E
[ τn∑
i=1

2τnTβn+i

]
≤ 1

λ2
E[τn] +

1

λ
E
[ τn∑
i=1

T 2
βn+i

]
+

1

λ
E
[
τ 3
n

]
. (2.45)

The last line uses inequality 2xy ≤ x2 + y2. We argued that the moments of τn are bounded by the
moments of the first hitting time to 0 of a finite-state irreducible Markov chain found by sampling
system Q(n), or ζn, and thus, are finite. Hence, the first and third terms of (2.45) are bounded by a
constant. By Wald’s equation, the second term is also bounded by a constant. In conclusion, (2.45)
is bounded by a constant independent of n. Similarly, the first term on the right-hand side of (2.44)
is also bounded by a constant. Now, we verify the condition of Theorem 4 as follows

∞∑
n=1

E
[ (
Y M
n − Y M

n−1

)2 ]
n2

≤ c5

∞∑
n=1

1

n2
<∞,

and the conditions of Theorem 4 are satisfied. Thus, by Theorem 4,

lim
n→+∞

Y M
n

n
= 0 a.s.

We now state Theorem 5, which generalizes Theorem 1 to the multi-server setting and proves
the asymptotic optimality of our proposed policy for the multi-server queueing system. The
proof of this theorem is based on the submartingale (or supermartingale) property of the sequence
{Yn}∞n=0.

Theorem 5. Consider the multi-server Erlang-B queueing system with k servers and service rate

µ. For any µ ∈ (0,+∞), policy ΠAlg1 converges to the true optimal policy Π∗. Specifically, for

µ ∈ (c/R,+∞), Yn converges to +∞ a.s. and the proposed policy admits all arrivals after a

random finite time subject to availability. Similarly, for µ ∈ (0, c/R), Yn converges to −∞ a.s.,
and after a random finite time, an arrival is only accepted with a probability that converges to 0 as

n→ +∞.

Proof of Theorem 5. For µ ∈ (c/R,+∞), by Doob’s decomposition for submartingale {Yn}∞n=0
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and Lemmas 8 and 9,
lim

n→+∞
Yn = +∞ a.s.

In Algorithm 1, XS(n) determines the acceptance rule, and between arrival βn and βn+1, XS(n)

is either equal to Xβn = Yn or Xβn+1 = Yn+1. Hence, the sign of Yn and Yn+1 determines the
acceptance rule between arrival βn and βn+1. Thus, after a finite time, as long as there is an
available server, the arrival is accepted, and the proposed policy converges to the optimal policy
Π∗. The same arguments apply for the regime of µ ∈ (0, c/R).

2.5.2 Finite-time performance analysis

To extend the finite-time results of the single-server queueing system to the more general setting of
the multi-server system, we characterize the regret in terms of the submartingale (or supermartin-
gale) sequence {Yn}∞n=0 and processes {Y A

n }∞n=0 and {Y M
n }∞n=0 found from Doob’s decomposition.

As the sign of {Yn}∞n=0 determines the acceptance rule, we provide an upper bound for the prob-
ability of the event that Yn has an undesirable sign. Without loss of generality, in describing the
methodology we assume that µ ∈ (c/R,+∞) and from Doob’s decomposition and Lemma 8,

P (Yn ≤ 0) = P
(
Y A
n + Y M

n ≤ 0
)
≤ P

(
Y M
n ≤ −δ̃1n

)
for some δ̃1 > 0. (2.46)

Thus, it suffices to bound P
(
Y M
n ≤ −δ̃1n

)
, as done in Lemma 10. The proof of Lemma 10

given in Appendix A.2.2, verifies a conditional sub-exponential property for the martingale dif-
ference sequence {Y M

n+1 − Y M
n }∞n=0, and utilizes a Bernstein-type bound for martingale difference

sequences.

Lemma 10. Consider a multi-server Erlang-B queueing system with service rate µ following pol-

icy ΠAlg1. For µ ∈ (c/R,+∞), there exists a problem-dependent constant c3 such that the martin-

gale process {Y M
n }∞n=0 satisfies

P
(
Y M
n ≤ −δ̃1n

)
≤ exp (−c3n) ,

and for any µ ∈ (0, c/R), there exists a positive problem-dependent constant c4 such that the

following holds

P
(
Y M
n ≥ −δ̃2n

)
≤ exp (−c4n) .

We begin with stating Theorem 6 that extends Theorem 2 to the multi-server setting, and argues
that for the multi-server queueing system with µ ∈ (c/R,+∞) and any (valid) function f(n) such
that log(f) = o(n), finite regret is achieved. The proof is similar to Theorem 2 and bounds the
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expected number of arrivals for which Yn ≤ 0 using the exponentially decaying probability shown
in Lemma 10.

Theorem 6. Consider the multi-server Erlang-B queueing system with k servers and service rate

µ. For any µ ∈ (c/R,+∞) and (valid) function f such that log(f) = o(n), the expected regret

E [R; ΠAlg1 (n)] under policy ΠAlg1 is upper bounded by a constant independent of n.

Proof of Theorem 6. Let Kn be the number of arrivals rejected after or at βn + τn and before the
first acceptance, βn+1, i.e.,

Kn = min {i ≥ 0 : Aβn+τn+i = 1} = βn+1 − βn − τn.

Note that if Yn > 0, the proposed policy will accept all arrivals from βn−1 + τn−1 up to βn + τn

(subject to availability). In this case, βn−1 + τn−1 = βn. But, if Yn ≤ 0, the arrivals are accepted
with a certain probability and can contribute to the expected regret. Thus, we upper bound the
regret as below

E [R (n) ; ΠAlg1] ≤ E [τ0] + E
[ ∞∑
i=1

(τi +Ki−1)1{Yi ≤ 0}
]

=
∞∑
i=0

E [τi1 {Yi ≤ 0}] +
∞∑
i=1

E [Ki−11 {Yi ≤ 0}]

≤
∞∑
i=0

E
[
τi

∣∣∣Yi ≤ 0
]
P (Yi ≤ 0) +

∞∑
i=1

f (i)P (Yi ≤ 0)

≤
∞∑
i=0

E
[
τi

∣∣∣Yi ≤ 0
]

exp (−c3i) +
∞∑
i=1

f (i) exp (−c3i) .

In the second line, we used the fact that given Yi ≤ 0, Ki is geometric with E[Ki] ≤ f(i). The
last inequality follows from (2.46) and Lemma 10. In Lemma 6, we argued that E[τi|Yi−1 ≤ 0]

is bounded by a constant. Hence, for any function f with log(f) = o(n), the expected regret is
finite.

Lastly, we argue that the expected regret for a multi-server queueing system with µ ∈ (0, c/R)

grows polylogarithmically in n. Analogous to Theorem 3, we bound the expected number of
arrivals wherein Yn > 0 using Lemma 10. Moreover, we capture the effect of the arrivals being
accepted with a given probability by Lemma 5, leading to a polynomial bound in log(n). Further,
in Corollary 2, following the same ideas as in Corollary 1, we improve the regret to achieve a
O(log(n)) regret.
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Theorem 7. Consider the multi-server Erlang-B queueing system with k servers and service rate

µ ∈ (0, c/R). For f(n) = exp (n1−ε), the expected regret under policy ΠAlg1 is E [R (n) ; ΠAlg1] =

O
(

log
1

1−ε (n)
)
.

Proof of Theorem 7. In this case, the expected regret up to arrival n equals the expected number of
arrivals accepted from the first n arrivals. Hence, we have

E
[
R (n) ; ΠAlg1

]
= E

[ n−1∑
i=0

1 {Ai = 1}
]

= E
[ n−1∑
i=0

1
{
Ai = 1, XS(i) > 0

} ]
+ E

[ n−1∑
i=0

1
{
Ai = 1, XS(i) ≤ 0

} ]
. (2.47)

We first upper bound the first term using (2.46) and Lemma 10 as follows

E
[ n−1∑
i=0

1
{
Ai = 1, XS(i) > 0

} ]
≤

∞∑
i=0

E
[
1 {Yi > 0} τi

]
≤

∞∑
i=0

E
[
τi

∣∣∣Yi > 0
]

exp(−c4i). (2.48)

By Lemma 6, the above summation is bounded by a constant cp. Next, we upper bound the second
term of (2.47). As defined before, τi is the first j > βi such that Nβi+j = 0 and Ki is equal to
βi+1 − βi − τi, i.e., the number of rejected arrivals before arrival βi+1 and after or at βi + τi. If
Xβi+τi ≤ 0, then Ki is geometric with parameter 1/αβi+τi . We define G(i) as the index of the first
accepted arrival after i− 1 arrivals, or

G(i) := min
m

{
m ≥ 0 :

m∑
j=0

(τj +Kj) ≥ i
}
.

We also take F (i) to be the smallest m such that the sum of the first m+1 geometric trials exceeds
i− 1, i.e.,

F (i) := min
m

{
m ≥ 0 :

∑
j∈Bm

(Kj + 1) ≥ i
}
,

where Bm = {j : 0 ≤ j ≤ m,Xβj+τj ≤ 0}. From these definitions, it follows that G(i) ≤ F (i).
The second term of (2.47) is less than or equal to the expected number of times an arrival i < n
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with XS(i) ≤ 0 is accepted until arrival βG(n)+1. Therefore, we have

E
[ n−1∑
i=0

1
{
Ai = 1, XS(i) ≤ 0

} ]
≤ E

[ G(n)∑
i=0

τi1 {Xβi ≤ 0}
]

≤ E
[ F (n)∑
i=0

τi1 {Xβi ≤ 0}
]

≤
n−1∑
j=0

E
[ F (n)∑
i=0

τi

∣∣∣F (n) = j
]
P (F (n) = j)

≤ cτ

d∑
j=0

(j + 1)P (F (n) = j) + cτ

n−1∑
j=d+1

(j + 1)P
( j−1∑
i=1

yi < n,

j∑
i=1

yi ≥ n
)

(2.49)

≤ cτ E [(F (n) + 1)1{F (n) ≤ d}] + cτ

n−2∑
j=d

(j + 2)P
( j∑
i=1

yi < n,

j+1∑
i=1

yi ≥ n
)
, (2.50)

where {yi}ni=1 are defined in Lemma 5, d = d3(log
1

1−ε (n+ 1))e, cτ is found using Lemma 6 and
is proportional to

∑k
j=0

λj

µjj!
. Furthermore, (2.49) follows from the fact that the event {F (n) = j}

is equivalent to the event {
∑j−1

i=1 yi < n,
∑j

i=1 yi ≥ n}. From Lemma 5, (2.50) is bounded by
cτ (d+ 3 + cε), where cε is a constant determined by ε. Finally, from (2.48) and (2.50), Theorem 7
follows.

Corollary 2. Consider the multi-server Erlang-B queueing system with k servers and service rate

µ ∈ (0, c/R). For f(n) = exp (n1−εn) where εn = ε√
1+log(n+1)

for all n ≥ 1 and ε ∈ (0, 1), the

expected regret under policy ΠAlg1 is E [R (n) ; ΠAlg1] = O
(

log(n)
)
.

We conclude by noting that the finite-time performance guarantees of the single-server setting
hold for the general setting of multiple servers. Particularly, for µ ∈ (0, c/R), the expected regret
is upper bounded as shown in Theorem 7 and Corollary 2; whereas, in the case of µ ∈ (c/R,+∞),
a finite regret bound is achieved following our proposed policy in Algorithm 1 as argued in Theo-
rem 6.

2.6 Simulation-based numerical results

In this section, we empirically evaluate the performance of policy ΠAlg1. We calculate the regret by
finding the difference in the number of sub-optimal actions taken by ΠAlg1 compared to the optimal
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Figure 2.2: Variations of regret for different service rates in a 5 server system with λ = 5, c/R =
1.3, ε = 0.4, 1

1−ε = 5/3, and f(n) = exp (n1−ε) following Algorithm 1.

policy with the knowledge of the true service rate. The regret is averaged over 2500 simulation
runs and plotted versus the number of incoming jobs. From our simulations, it can be observed that
the proposed policy achieves finite regret for µ > c/R, as predicted by our analysis. Further, the
finite-time performance in the other regime corroborates our theoretical bound. We demonstrate
the finite-time performance under various service rates and compare the performance of ΠAlg1

against the dispatching scheme that updates the acceptance rule at every arrival. Furthermore,
we compare the performance of Algorithm 1 with two RL algorithms: R-learning and Thompson
sampling. In the plots of this section, we use a logarithmic scale for the x-axis when µ > c/R

to display the variations clearly. Moreover, when µ < c/R, we plot log log(x) versus log(y) as
the regret is bounded by a polynomial in log(n), where n is the number of arrivals, and this axes
scaling provides a clearer depiction of the regret. Furthermore, the shaded regions in all plots
indicate the ±σ area of the mean regret.

Figure 2.2 shows the regret performance for different service rates in a system with 5 servers,
λ = 5, c/R = 1.3, and f(n) = exp (n0.6). We can see that the regret grows as the service
rate approaches the boundary value c/R (from either direction). In addition, as the gap between
the service rate and the boundary value narrows, the regret converges more slowly to its final
value when µ > c/R. The results of Figures 2.2a and 2.2b corroborate the theoretical bounds of
Theorems 6 and 7.

In Figure 2.3, we compare the performance of Algorithm 1 with an algorithm that updates the
policy parameters at every arrival, called Algorithm 3. The problem parameters λ, k, c, R, ε are
the same as the setting of Figure 2.2. In Algorithm 3, the admission probability decays faster than
Algorithm 1, resulting in less exploration and better regret performance when µ < c/R. From
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Figure 2.3: Comparison of regret performance of Algorithm 1 against Algorithm 3 in a 5 server
system with λ = 5, c/R = 1.3, ε = 0.4, 1

1−ε = 5/3, and f(n) = exp (n1−ε).

Figure 2.3a, Algorithm 1 outperforms Algorithm 3 for µ > c/R due to its slower decaying admis-
sion probability and the greater number of arrivals accepted. Another intuitive justification is that
Algorithm 1 updates the policy parameters after observing a collection of arrivals, not prematurely
after one sample, and the resulting averaging (and variance reduction) is useful in this regime.
Conversely, in the case of µ ∈ (0, c/R), as suggested in Figure 2.3b, the additional exploration of
Algorithm 1 leads to a worse regret performance.

In Figure 2.4, we compare the performance of Algorithm 1 with two other algorithms: R-
learning ([92]) and Thompson sampling ([36]). We consider a system with k = 5, λ = 5, and
c/R = 1.3. We also assume f(n) = exp (n1−εn) with εn = ε√

1+log(n+1)
and ε = 0.2. As noted

in Section 2.1, the R-learning algorithm assumes that the service times are known ahead of the
time when an arrival is accepted. Despite not observing the service times, Figure 2.4 depicts that
Algorithm 1 outperforms R-learning in both regimes. Furthermore, empirically R-learning seems
to have growing regret in both regimes. To implement the Thompson sampling algorithm, we use
a uniform prior distribution defined on the two-point support {µ1, µ2}, where µ1 = c

2R
< c

R
and

µ2 = 3c
2R

> c
R

, and update the posterior using (2.4) upon every arrival. As shown in Figure 2.4a,
when µ > c/R, the Thompson sampling algorithm has a better final regret value compared to
our algorithm, but both algorithms have constant regret. However, when µ < c/R, Algorithm 1
outperforms Thompson sampling; empirically, the asymptotic behavior of regret of both algorithms
seem similar. We end by noting that theoretical analysis characterizing the regret performance for
R-learning and Thompson sampling algorithms is not available in the literature.

In Figure 2.5, we compare the performance of Algorithm 1 in a 5−server system with λ = 5

and c/R = 1.3 for two different exploration functions f(n) = exp (n1−ε) and f(n) = exp (n1−εn),
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(a) µ = 2.5, µ ∈ (c/R,+∞) (b) µ = 1.05, µ ∈ (0, c/R)

Figure 2.4: Comparison of regret performance of Algorithm 1 against RL algorithms in a 5 server
system with λ = 5, c/R = 1.3, ε = 0.2, and f(n) = exp (n1−εn).

where εn = ε√
1+log(n+1)

and ε = ε = 0.55. In Corollary 2, employing f(n) = exp (n1−εn) allows

us to improve the order of the expected regret from O(log
1

1−ε (n)) to O(log(n)). This improvement
is shown in the numerical results of Figure 2.5b. Since εn decreases with n, the arrival acceptance
due to exploration decreases faster, leading to slightly inferior performance when µ > c/R, as
shown in Figure 2.5a.

We next discuss a variant of our setting in which we can sample the system at other instances
rather than only at the arrivals. One feasible approach is to modify the learning process as follows.
Set a fixed sampling duration d. At each sampling time t, update functions g and h and the admit-
tance probability accordingly. From any sampling time t, if an arrival occurs before d units of time,
sample the system at the arrival and decide admission according to updated parameters. Otherwise,
if d units of time pass without an arrival, sample the system at t+ d. After a new sampling is done,
repeat the previous steps. Note that (as a rule of thumb) for sampling to contribute to the learning,
sampling duration d should be less than 1/λ; setting d = +∞ corresponds to policy ΠAlg1. In
Figure 2.6, in a 2−server system with λ = 2, c/R = 1.5, f(n) = exp (n1−ε), and ε = 0.4, we
depict the performance of the sampling scheme. When µ > λ, the performance of Algorithm 1 can
be improved by sampling; see Figure 2.6a. However, as shown in Figure 2.6b, when sampling ac-
cording to the arrival rate is fast enough, performance does not improve with additional sampling.
Moreover, Figure 2.6 suggests that an adaptive sampling scheme might achieve the best trade-off.
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Figure 2.5: Comparison of regret performance of Algorithm 1 for different functions f(n) in a 5
server system with λ = 5, c/R = 1.3, and ε = ε = 0.55.
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Figure 2.6: Regret performance for different sampling durations in a 2 server system with λ = 2,
c/R = 1.5, ε = 0.4, 1

1−ε = 5
3
, and f(n) = exp (n1−ε).
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CHAPTER 3

Bayesian Learning in Countable State Space Markov
Decision Processes

3.1 Introduction

Many real-life applications, such as communication networks, supply chains, and computing sys-
tems, are modeled using queueing models with countably infinite state-space. In the existing anal-
ysis of these systems, the models are assumed to be known, but despite this, developing optimal
control schemes is hard, with only a few examples worked out [55, 10, 90]. However, knowing
the model, algorithmic procedures exist to produce approximately optimal policies [55] (such as
value iteration and linear programming). Given the success of data-driven optimal control design,
in particular Reinforcement Learning (RL), we explore the use of such methods for the countable
state-space controlled Markov processes. However, current RL methods that focus on finite-state
settings do not apply to the mentioned queueing models. With the model unknown, our goal is to
develop a meta-learning scheme that is RL-based but obtains good performance by utilizing algo-
rithms developed when models are known. Specifically, we study the problem of optimal control of
a family of discrete-time countable state-space MDPs governed by an unknown parameter θ from
a general space Θ with each MDP evolving on the countable state-space X = Zd+ and finite action
space A. The cost function is unbounded and polynomially dependent on the state, following the
examples of minimizing waiting times in queueing systems. Taking a Bayesian view, we assume
the model is governed by an unknown parameter θ∗ ∈ Θ generated from a fixed and known prior
distribution. We aim to learn a policy π that minimizes the optimal infinite-horizon average cost
over a given class of policies Π with low Bayesian regret with respect to the (parameter-dependent)
optimal policy in Π.

To avoid many technical difficulties in countably infinite state-space settings, it is crucial to
establish certain assumptions regarding the class of models from which the unknown system is
drawn; some examples are: i) the number of deterministic stationary policies is not finite; and
ii) in average cost optimal control problems, without stability/ergodicity assumptions, an optimal
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policy may not exist [64], and when it exists, it may not be stationary or deterministic [30]. With
these in mind, we assume that for any state-action pair, the transition kernels in the model class
are categorical and skip-free to the right, i.e., with finite support with a bound depending on the
state only in an additive manner; both are common features of queueing models where an increase
in state is due to arrivals (with only a finite number of arrivals possible at any arrival instance).
A second set of assumptions ensure stability by assuming that the Markov chains obtained by
using different policies in Π are geometrically ergodic with uniformity across Θ. From these
assumptions, moments on hitting times are derived in terms of Lyapunov functions for polynomial
ergodicity, which exists due to geometric ergodicity. These assumptions also yield a solution to
the average cost optimality equation (ACOE) [10] and provide a characterization of this solution.

3.1.1 Contributions

To optimally control the unknown MDP, we propose an algorithm based on Thompson sampling
with dynamically-sized episodes; posterior sampling is used based on its broad applicability and
computational efficiency [77, 78]. At the beginning of each episode, a posterior distribution is
formed using Bayes’ rule, and an estimate is realized from this distribution which then decides the
policy used throughout the episode. To evaluate the performance of our proposed algorithm, we
use the metric of Bayesian regret, which compares the expected total cost achieved by a learning
policy πL until time horizon T with the policy achieving the optimal infinite-horizon average cost
in the policy class Π. We consider regret guarantees in three different settings as follows:

1. In Theorem 8, for Π being the set of all policies and assuming that we have oracle access to the
optimal policy for each parameter, we establish an Õ(dhd

√
|A|T ) upper bound on the Bayesian

regret of this algorithm compared to the optimal policy, where T is the time-horizon, d is the
dimension of the state space, and Õ hides logarithmic factors inproblem parameters.

2. In Corollary 3, where class Π is a subset of all stationary policies and where we know the best
policy within this subset for each parameter via an oracle, we prove an Õ(dhd

√
|A|T ) upper

bound on the Bayesian regret of our proposed algorithm, relative to the best-in-class policy.

3. In Theorem 9, we explore a scenario where we have access to an approximately optimal policy,
rather than the optimal policy in set Π (which are all assumed to be stationary policies). When
the approximately optimal policies satisfy Assumptions 3-4, we prove an Õ(dhd

√
|A|T ) regret

bound, relative to the optimal policy in set Π.

Finally, to provide examples of our framework, we consider two different queueing models that
meet our technical conditions, showing the applicability of our algorithm in developing approxi-
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mately optimal control algorithms for stochastic systems with unknown dynamics. The first exam-
ple is a continuous-time queueing system with two heterogeneous servers with unknown service
rates and a common infinite buffer with the decision being the use of the slower server. Here,
the optimal policy that minimizes the average waiting time is a threshold policy [59] which yields
a queue-length after which the slower server is always used. The second model is a two-server
queueing system, each with separate infinite buffers, to one of which a dispatcher routes an incom-
ing arrival. Here, the optimal policy minimizing the waiting time is a switching curve [39] with the
specifics unknown for general parameter values, so we aim to find the best policy within a com-
monly used set of switching-curve policies (Max-Weight policies [96, 97]), and assign the arrival
to the queue with minimum weighted queue length. For both models, we verify our assumptions
for the class of optimal/best-in-class policies corresponding to different service rates and conclude
that our proposed algorithm can be used to learn the optimal/best-in-class policy.

3.1.2 Related work

Thompson sampling [100], or posterior sampling, has been applied to RL in many contexts of
unknown MDPs [91, 76] and partially observed MDPs [43]; see tutorials [34, 84] for a com-
prehensive survey. It has been used in the parametric learning context [7] to minimize either
Bayesian [77, 78, 80, 1, 98, 99] or frequentist [6, 36] regret. The bulk of the literature, including
[6, 36, 80], analyzes finite-state and finite-action models but with different parameterizations such
that a general dependence of the models on the parameters is allowed. The work in [99] studies
general state-space MDPs but with a scalar parameterization with a Lipschitz dependence of the
underlying models. Our problem formulation specifically considers countable state-space models
with the models related via ergodicity, which we believe is a natural choice. Our focus on paramet-
ric learning is also connected to older work in adaptive control [3, 37] which studies asymptotically
optimal learning for general parameter settings but with either a finite or countably infinite number
of policies. Learning-based asymptotically optimal control in queues has a long history [56, 55] but
recently there is increased work that also characterizes finite-time regret performance with respect
to a well-known good policy or the optimal policy; see [103] for a survey. A series of work has
studied learning with Max-Weight policies to get stability and linear regret [73, 49] or just stabil-
ity [106]. A recent related work [27] considers learning optimal paramterized policies in queueing
networks when the MDP is known. In a finite or countable state-space setting of specific queueing
models where the parameters can be estimated, several works [50, 88, 51, 23, 31, 2, 25] have used
forced exploration type schemes to obtain either regret that is constant or scaling logarithmically
in the time-horizon.

Another line of work studies the problem of learning the optimal policy in an undiscounted
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finite-horizon MDP with a bounded reward function. Reference [107] uses a Thompson sampling-
based learning algorithm with linear value function approximation to study an MDP with a
bounded reward function in a finite-horizon setting. Reference [24] considers an episodic finite-
horizon MDP with known bounded rewards but unknown transition kernels modeled using linearly
parameterized exponential families with unknown parameters. A maximum likelihood (ML) based
algorithm coupled with exploration done by constructing high probability confidence sets around
the ML estimate is used to learn the unknown parameters. In another work, [79] extends the
problem setting of [24] to an episodic finite-horizon MDP with unknown rewards and transitions
modeled using parametric bilinear exponential families. To learn the unknown parameters, they use
a ML based algorithm with exploration done with explicit perturbation. To compare these works
with our problem, we note that all mentioned works consider a finite-horizon problem. In contrast,
our work considers an average cost problem, an infinite-horizon setting, and provides finite-time
performance guarantees. In addition, these works focus on an MDP with a bounded reward func-
tion. Our focus, however, is learning in MDPs with unbounded rewards with the goal of covering
practical queueing examples. We note that the parameterization of transitions used in [79, 24] can
be used within our framework. However, similar to our work, additional stability assumptions are
necessary to guarantee asymptotic learning and sub-linear regret. Another issue with exponential
transition families is that they do not allow for 0 entries, which limits their applicability in queueing
models such as our examples.

In another work, [85] studies discounted MDPs with unknown dynamics, and unbounded state-
space, but with bounded rewards, and learns an online policy that satisfies a specific notion of
stability. It is also assumed that a Lyapunov function ensuring stability for the optimal policy ex-
ists. We note that [85] ignores optimality and focuses on finding a stable policy, which contrasts
with our work that evaluates performance relative to the optimal policy. Secondly, [85] considers
a discounted reward problem, essentially a finite-time horizon problem (given the geometrically
distributed lifetime). Average cost problems, such as ours, are infinite-time horizon problems,
so connections to discounted problems can only be made in the limit of the discount parameter
going to 1 and after normalizing the total discounted reward by 1 minus the discount parameter.
Moreover, [85] considers a bounded reward function, simplifying their analysis but not practical
for many queueing examples. Further, the assumption of a stable optimal policy with a Lyapunov
function (as in [85]) is highly restrictive for bounded reward settings with discounting. For ex-
ample, if the rewards increase to a bounded value as the state goes to infinity, then the stationary
optimal policy (if it exists) will likely be unstable as the goal will be to increase the state as much
as possible. Additionally, average cost problems with bounded costs need strong state-independent
recurrence conditions for the existence of (stationary) optimal solutions, which many queueing ex-
amples don’t satisfy; see [18]. Further complications can also arise with bounded costs: e.g., [30]
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shows that a stationary average cost optimal policy may not exist.

3.2 Problem formulation

We consider a family of discrete-time Markov Decision Processes (MDPs) governed by parameter
θ ∈ Θ with the MDP for parameter θ described by (X ,A, c, Pθ). For exposition purposes, we
assume that all the MDPs are on (a common) countably infinite state-space X = Zd+. We denote
the finite action space by A, the transition kernel by Pθ : X ×A → ∆(X ), and the cost function
by c : X × A → R+. As mentioned earlier, we will take a Bayesian view of the problem and
assume that the model is generated using an unknown parameter θ∗ ∈ Θ, which is generated from
a given fixed prior distribution ν(·) on Θ. Our goal is to find a policy π : X → A that tries to
achieve Bayesian optimal performance in policy class Π, i.e., minimizes the expected regret with
θ∗ chosen from the prior distribution ν(·). For each value θ ∈ Θ, the minimum infinite-horizon
average cost is defined as

J(θ) = inf
π∈Π

lim sup
T→∞

1

T
E
[ T∑
t=1

c(X(t), A(t))
]
, (3.1)

where we optimize over a given class of policies Π and X(t) = (X1(t), . . . , Xd(t)) ∈ X and
A(t) ∈ A are the state and action at t ∈ N. Typically, we set this class to be all (causal) policies,
but it is also possible to consider Π to be a proper subset of all policies as we will explore in our
results. For a learning policy πL that aims to select the optimal control without model knowledge
but with knowledge of Θ and the prior ν, the Bayesian regret until time horizon T ≥ 2 is defined
as

R(T, πL) = E
[ T∑
t=1

[
c(X(t), A(t))− J(θ∗)

]]
, (3.2)

where the expectation is taken over θ∗ ∼ ν and the dynamics induced by πL. Owing to underlying
challenges in countable state-space MDPs, we require the below assumptions on the cost function.
The assumptions listed below are one potential general means to address the challenges.

Assumption 1. The cost function c : X × A → R+ is assumed to satisfy the following two

conditions:

1. (Coercive) For every number z ≥ 0 and for every valid action a in state x, we assume that

the cost function c(x, a) is greater than or equal to z outside a finite subset of X .

2. (Polynomially bounded growth-rate) The cost function is upper-bounded by a multivariate

polynomial fc : Zd+ → R+ which is increasing in every component on x ∈ Zd+ and has
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maximum degree of r (≥ 1) in any dimension. We can assume that fc(x) = K
∑d

i=1(xi)
r

for some K > 0, where x = (x1, . . . , xd).

Thus, the cost function increases without bound (in the state) at a polynomial rate. Many
examples of cost functions used in practice, say in queueing models of communication networks
or manufacturing systems, depend polynomially on the state and fall under this setting; we will
discuss a few in our evaluation section. To avoid technical issues the infinite state-space setting
also necessitates some assumptions on the class from which the unknown model is drawn. For
instance, irreducibility of Markov chains on such state-spaces (by using Markov or stationary
policies) does not ensure positive recurrence (and ergodicity); thus, positive recurrence needs to be
ensured using additional conditions. Moreover, for average cost optimal control problems, without
stability even the existence of an optimal policy is not guaranteed, and we need more conditions.
Other issues can also arise: an optimal control policy may not exist [64], and when it exists, it
may not be stationary or deterministic [30], the average cost optimality equation (ACOE) may
not have a solution [10, Section 5], and many others. The following assumption ensures a skip-
free behaviour for transitions, which holds in many queueing models, where an increase in state
corresponds to (new) arrivals (either external or internal), and this increment being bounded is thus
reasonable. More generally, we can encapsulate this property as a maximum bound on the distance
of the transitions instead of just being in one direction.

Assumption 2. (Skip-free to the right) From any state-action pair (x, a), we assume that the

transition is to a finite number of states; in essence, each such distribution is assumed to be a

categorical distribution. We also assume that all transition kernels are skip-free to the right: for

some h ≥ 1 which is independent of θ ∈ Θ and (x, a) ∈ X ×A, we have Pθ(x′;x, a) = 0 for all

x′ ∈ {x̃ ∈ Zd+ : ‖x̃‖1 > ‖x‖1 + h}.

Learning necessitates some commonalities within the class of models so that using a policy
well-suited to one model provides information on other models too. For us, these are in the form
of constraints on the transition kernels of the models and stability assumptions for the policies
that will be used; these stability assumptions will also ensure the existence of moments of certain
functionals. As simple union bound arguments don’t work in the countably infinite state-space
setting, we will use the stability assumptions instead. In our setting, we consider a class of models,
each with a policy being well-suited to at least one model in the class, and use the set of policies
to search within. Using a reduced set of policies is necessary as the number of deterministic
stationary policies is infinite. To learn correctly while restricting attention to this subset policy
class, requires some regularity assumptions when a policy well-suited to one model is tried on a
different model. Our ergodicity assumptions are one convenient choice; see Appendix B.1.1 for
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details. These assumptions let us characterize the distributions of the first passage times or hitting
times of the Markov processes via stability conditions; see Lemmas 23 and 24.

Assumption 3. (Geometric ergodicity) For any MDP (X ,A, c, Pθ) with parameter θ ∈ Θ, there

exists a unique optimal policy π∗θ that minimizes the infinite-horizon average cost within the class

of policies Π. Furthermore, for any θ1, θ2 ∈ Θ, the Markov process with transition kernel P
π∗θ2
θ1

ob-

tained from the MDP (X ,A, c, Pθ1) by following policy π∗θ2 is irreducible, aperiodic, and geometri-

cally ergodic with geometric ergodicity coefficient γgθ1,θ2 ∈ (0, 1) and stationary distribution µθ1,θ2 .

This is equivalent to the existence of finite set Cg
θ1,θ2

and Lyapunov function V g
θ1,θ2

: X → [1,+∞)

satisfying

∆V g
θ1,θ2

(x) ≤ −
(
1− γgθ1,θ2

)
V g
θ1,θ2

(x), x ∈ X \ Cg
θ1,θ2

and P
π∗θ2
θ1
V g
θ1,θ2

(x) < +∞, x ∈ Cg
θ1,θ2

,

where ∆V g
θ1,θ2

(x) := P
π∗θ2
θ1
V g
θ1,θ2

(x) − V g
θ1,θ2

(x). Setting bgθ1,θ2 := maxx∈Cgθ1,θ2
P
π∗θ2
θ1
V g
θ1,θ2

(x) +

V g
θ1,θ2

(x) yields

∆V g
θ1,θ2

(x) ≤ −
(
1− γgθ1,θ2

)
V g
θ1,θ2

(x) + bgθ1,θ2ICgθ1,θ2 (x), x ∈ X . (3.3)

Then, we have the following assumptions relating all the models in Θ:

1. The geometric ergodicity coefficient is uniformly bounded below 1: γg∗ := supθ1,θ2∈Θ γ
g
θ1,θ2

<

1.

2. We assume that {0d} ⊆ ∩θ1,θ2∈ΘC
g
θ1,θ2

, that is, 0d is a common state to all Cg
θ1,θ2

. Further-

more, Cg
∗ = ∪θ1,θ2∈ΘC

g
θ1,θ2

is a finite set. We further assume that bg∗ := supθ1,θ2 b
g
θ1,θ2

< +∞.

Remark 5. An implication of the assumptions above is that for every θ1, θ2 ∈ Θ

µθ1,θ2(V
g
θ1,θ2

) ≤
bgθ1,θ2

1− γgθ1,θ2
≤

supθ1,θ2 b
g
θ1,θ2

1− γg∗
< +∞.

Remark 6. The uniqueness of the optimal policy is not essential for the validity of our results,

provided that all optimal policies satisfy our assumptions. When this condition is not met, we need

to select an optimal policy that is geometrically ergodic for all θ ∈ Θ. This could entail searching

over all optimal policies when non-uniqueness holds. This issue can be avoided by using a smaller

subset of policies for which ergodicity can be shown, such as Max-Weight policies for scheduling,

for which the ergodicity can be established for all policies.

Geometric ergodicity implies that all moments of the hitting time of state 0d, say τ0d , from
any initial state x 6= 0d are finite as Ex[κτ0d ] ≤ c1V

g(x) (for specific κ > 1 and c1), and so,
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Ex[τ k
0d

] ≤ c1V
g(x)k!/ logk(κ) < +∞ for all k ∈ N; see Appendix B.1.2. Function V g is typically

exponential in some norm of the state and yields an exponential bound for moments of hitting
times, and a poor regret bound. To improve the regret bound, we need a different drift equation with
function V p with polynomial dependence on a norm of the state that bounds certain polynomial
moments of τ0d .

Assumption 4. (Polynomial ergodicity) Given θ1, θ2 ∈ Θ, Markov process with transition ker-

nel P
π∗θ2
θ1

obtained from MDP (X ,A, c, Pθ1) by following policy π∗θ2 is irreducible, aperiodic,

and polynomially ergodic (with stationary distribution µθ1,θ2) through the Foster-Lyapunov cri-

teria: there exists a finite set Cp
θ1,θ2

, constants βpθ1,θ2 , bpθ1,θ2 > 0, αpθ1,θ2 ∈ [ r
r+1

, 1), and function

V p
θ1,θ2

: X → [1,+∞) satisfying (r is defined in Assumption 1)

∆V p
θ1,θ2

(x) ≤ −βpθ1,θ2
(
V p
θ1,θ2

(x)
)αpθ1,θ2 + bpθ1,θ2ICpθ1,θ2 (x), x ∈ X . (3.4)

Then, we have the following assumptions relating all the models in Θ:

1. V p
θ1,θ2

is a polynomial with positive coefficients, maximum degree (in any dimension) rpθ1,θ2 ,

and sum of coefficients spθ1,θ2 . We assume rp∗ = supθ1,θ2 r
p
θ1,θ2

<∞ and sp∗ = supθ1,θ2 s
p
θ1,θ2

<

∞.

2. We assume that {0d} ⊆ ∩θ1,θ2∈ΘC
p
θ1,θ2

, that is, 0d is common to all Cp
θ1,θ2

. Furthermore,

Cp
∗ = ∪θ1,θ2∈ΘC

p
θ1,θ2

is a finite set. We further assume that βp∗ := infθ1,θ2 β
p
θ1,θ2

> 0 and

bp∗ := supθ1,θ2 b
p
θ1,θ2

<∞.

3. Let Kθ1,θ2(x) :=
∑∞

n=0 2−n−2
(
P
π∗θ2
θ1

)n
(x, 0d), which is positive for any pair θ1, θ2 ∈ Θ by

irreducibility. We assume that it is strictly positive in Θ: K∗ := infθ1,θ2 minx∈Cp∗ Kθ1,θ2(x) >

0.

Remark 7. An implication of the assumptions above is that for every θ1, θ2 ∈ Θ

µθ1,θ2

(
(V p

θ1,θ2
)α

p
θ1,θ2

)
≤
bpθ1,θ2
βpθ1,θ2

≤
supθ1,θ2 b

p
θ1,θ2

βp∗
< +∞. (3.5)

Note that V g
θ1,θ2

satisfies the Foster-Lyapunov criterion in Assumption 4 for every αpθ1,θ2 ∈ (0, 1).
Assumptions 3-4 hold in many models of interest; see Appendix B.5. As average cost optimality
is our design criterion, we need to ensure the existence of solutions to ACOE when Π is the set
of all policies, or Poisson equation when Π is a subset of all policies. We discuss these two cases
separately.
Case 1: Π is the set of all policies. For any parameter θ ∈ Θ, the MDP (X ,A, c, Pθ) is said to
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satisfy the ACOE if there exists a constant J(θ) and a unique function v(·; θ) : X → R such that

J(θ) + v(x; θ) = min
a∈A

{
c(x, a) +

∑
y∈X

Pθ(y|x, a)v(y; θ)
}

with v(0d; θ) = 0.

From [19] if the following conditions hold, ACOE has a solution, Jθ is the optimal infinite-horizon
average cost, and there is an optimal stationary policy with ACOE becoming (3.6):

1. for every (x, a) and z ≥ 0, cost function c(x, a) ≥ z outside a finite subset of X ;

2. there is a stationary policy with an irreducible and aperiodic Markov process with finite
average cost;

3. from every (x, a) transition to a finite number of states is possible.

From Assumptions 1-3, the above conditions hold, there exists an average cost optimal stationary
policy, and the ACOE has a solution.
Case 2: Π is a proper subset of all policies. Here, we posit that for every θ ∈ Θ and its best in-
class policy π∗θ , there exists a constant J(θ), the average cost of π∗θ , and a function v(·; θ) : X → R
with

J(θ) + v(x; θ) = c(x, π∗θ(x)) +
∑
y∈X

Pθ(y|x, π∗θ(x))v(y; θ). (3.6)

This holds by the solution of the Poisson equation with the appropriate forcing function. For a
Markov process X on the space X with time-homogeneous transition kernel P and cost function
c̄(·) (which will be the forcing function below), a solution to the Poisson equation [65] is a scalar
J and function v(·) : X 7→ R such that

J + v = c̄+ Pv, (3.7)

where v(z) = 0 for some z ∈ X . Just like for the ACOE, if (v, J) is a solution to the Poisson
equation, then so is (v + b, J) for any scalar b. Hence, it is common to seek solutions such that
v(z) = 0 for some specific z ∈ X . In our setting using [65, Sections 9.6-9.8], for a model
governed by θ ∈ Θ following policy π∗θ , we show a solution to the Poisson equation exists and is
given by vπ∗θ (0d) = 0 and

J(θ) = C̄π∗θ (0d)
(
Eπ
∗
θ

0d
[τ0d ]

)−1 and vπ
∗
θ (x) = C̄π∗θ (x)− J(θ)Eπ

∗
θ
x [τ0d ], ∀x ∈ X , (3.8)

where C̄π∗θ (x) = Eπ
∗
θ
x

[∑τ
0d
−1

i=0 c(X(i), π∗θ(X(i)))
]
, and expectation is over trajectories of Markov

chain X with transition kernel P π∗θ
θ starting in state x. In Appendix B.1.3, we present related def-

initions and show that from Assumptions 3-4, the requirements for the existence and finiteness of

54



Algorithm 2 Thompson Sampling with Dynamically-sized Episodes (TSDE)
1: Input: ν0

2: Initialization: X(1) = 0d, t← 1
3: for episodes k = 1, 2, ... do
4: tk ← t
5: Generate θk ∼ νtk
6: while t ≤ tk + T̃k−1 and Nt(x, a) ≤ 2Ntk(x, a) for all (x, a) ∈ X ×A do
7: Apply action A(t) = π∗θk (X (t))
8: Nt (X (t) , A (t))← Nt (X (t) , A (t)) + 1
9: Observe new stateX (t+ 1)

10: Update νt+1 according to (3.9)
11: t← t+ 1
12: end while
13: T̃k ← t− tk
14: whileX (t) 6= 0d do
15: Apply action A(t) = π∗θk (X (t))
16: Observe new stateX (t+ 1)
17: end while
18: Tk ← t− tk
19: end for

the solutions to Poisson equation are satisfied. Finally, we assume supθ∈Θ J(θ) is finite, which typ-
ically holds as a result of the boundedness assumptions over all models in Θ stated in Asumptions
3 or 4, along with Assumption 1; this will be clear in our evaluation examples, but we mention it
separately for completeness.

Remark 8. In Assumption 4 we can use any other policy πθ2 such that the Markov process ob-

tained from MDP (X ,A, c, Pθ1) by following policy πθ2 is irreducible and polynomially ergodic

via the Foster-Lyapunov criteria with the uniformity discussed. Irreducibility is important as the

policy will be used at times when the state is not known in advance, specifically at Steps 14-17 in

Algorithm 2.

Assumption 5. We assume that J∗ := supθ∈Θ J(θ) < +∞.

3.3 Learning algorithm: Thompson sampling with
dynamically-sized episodes

We will use the learning algorithm Thompson sampling with dynamically-sized episodes from
[80] to learn the unknown parameter θ∗ ∈ Θ and the corresponding policy, π∗θ∗ , but suitably modify
it for our countable state-space setting. Consider the prior distribution ν0 = ν defined on Θ from
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which θ∗ is sampled. At each time t ∈ N, the posterior distribution νt is updated according to
Bayes’ rule as

νt+1(dθ) =
Pθ (X (t+ 1) |X (t) , A (t)) νt(dθ)∫

θ′∈Θ
Pθ′ (X (t+ 1) |X (t) , A (t)) νt(dθ′)

, (3.9)

and the posterior estimate θt+1, if generated, is from the posterior distribution νt+1. The modi-
fied Thompson-sampling with dynamically-sized episodes algorithm (TSDE) is presented in Algo-
rithm 2. The TSDE algorithm operates in episodes: at the beginning of each episode k, parameter
θk is sampled from the posterior distribution νtk and during episode k, actions are generated from
the stationary policy according to θk, i.e., π∗θk . Notice that π∗θk is the optimal policy that minimizes
the average expected cost of (3.1) in MDP (X ,A, c, Pθk) either over all policies or a given set of
policies. Let tk be the time the k-th episode begins. Define t̃k+1 as the first time after tk that the
conditions of Line 6 of Algorithm 2 is triggered and tk+1 as the first time at or after t̃k+1 where
state 0d is visited; for the last episode started before or at T , we ensure that tk and t̃k are less than
or equal T + 1. Explicitly, t1 = 1 and for k > 1,

tk = min{t ≥ t̃k : X (t) = 0d or t > T}.

Let Tk = tk+1 − tk be the length of the k-th episode and set T̃k = t̃k+1 − tk with the convention
T̃0 = 1. The length of each episode k is determined in Line 6 of Algorithm 2 and is not fixed as
it depends on the evolution of the Markov process determined by the true parameter θ∗ and the
policy π∗θk being used. For any state-action pair (x, a), we define N1(x, a) = 0 and for t > 1,

Nt(x, a) =
∣∣{tk ≤ i < t̃k+1 ≤ t for some k ≥ 1 : (X(i), A(i)) = (x, a)}

∣∣.
Notice that for all state-action pairs (x, a) and t̃k+1 ≤ t ≤ tk+1, we have Nt(x, a) = Nt̃k+1

(x, a).
We denote KT as the number of episodes started by or at time T , or KT = max{k : tk ≤ T}. The
length of episode k < KT is not fixed and is determined according to two stopping criteria: (1)
t > tk + T̃k−1, (2) Nt(x, a) > 2Ntk(x, a) for some state-action pair (x, a). After either criterion
is met, the system will still follow policy π∗θk until the first time at which state 0d is visited; see
Line 14 and Figure 3.1. We use this settling period to 0d because the system state can be arbitrary
when the first stopping criterion is met. As the countable state-space setting precludes a simple
union-bound argument to overcome this uncertainty (as in the literature for finite state settings), we
let the system reach the special state 0d. Another (essentially equivalent) option is to wait until the
state hits the finite set Cg

∗ or Cp
∗ and then use a union bound argument for all states in either set. For

analytical convenience, we only use the state samples observed before arrival t̃k+1 to update the
posterior distribution, and not the samples of the system after time t̃k+1 and before the beginning of
episode k + 1, i.e., tk+1. The posterior update is halted during the settling period to 0d as we have
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tk t̃k+1
tk+1

X(tk) = 0d X(tk+1) = 0d

start of episode k end of episode k

νt updated

T̃k

νt not updated

Tk

Figure 3.1: MDP evolution in episode k < KT .

no control on the states visited during it, despite it being finite in duration (by our assumptions).

3.4 Regret analysis of Algorithm 2

The performance of any learning policy πL is evaluated using the metric of expected regret com-
pared to the optimal expected average cost of true parameter θ∗, namely, J(θ∗). In this section, we
evaluate the performance of Algorithm 2 and derive an upper bound for R(T, πTSDE), its expected
regret up to time T . In Section 3.2, we argued that at time t in episode k (tk ≤ t < tk+1), there
exist a constant J(θk) and a unique function v(·; θk) : X → R such that v

(
0d; θk

)
= 0 and

J(θk) + v(X(t); θk) = c(X(t), π∗θk(X(t))) +
∑
y∈X

Pθk(y|X(t), π∗θk(X(t)))v(y; θk), (3.10)

in which π∗θk is the optimal or best-in-class policy (depending on the context) according to param-
eter θk and J(θk) is the average cost for the Markov process obtained from MDP (X ,A, c, Pθk) by
following π∗θk . We derive a bound for the expected regret R(T, πTSDE) following the proof steps
of [80] while extending it to the countable state-space setting of our problem. Using (3.10), the
regret is decomposed into three terms and each term is bounded separately:

R(T, πTSDE) = E
[ KT∑
k=1

tk+1−1∑
t=tk

c(X(t), π∗θk(X(t)))
]
− T E [J (θ∗)] = R0 +R1 +R2, (3.11)

with R0 =E
[ KT∑
k=1

TkJ(θk)
]
− T E[J(θ∗)], (3.12)

R1 =E
[ KT∑
k=1

tk+1−1∑
t=tk

[
v(X(t); θk)− v(X(t+ 1); θk)

]]
, (3.13)

R2 =E
[ KT∑
k=1

tk+1−1∑
t=tk

[
v(X(t+ 1); θk)−

∑
y∈X

Pθk(y|X(t), π∗θk(X(t)))v(y; θk)
]]
. (3.14)
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Before bounding the above regret terms, we address the complexities arising from the countable
state-space setting. Firstly, we need to study the maximum state (with respect to the `∞-norm) vis-
ited up to time T in the MDP (X ,A, c, Pθ∗) following Algorithm 2; we denote this maximum state
by MT

θ∗ . We state the results that characterize the maximum l∞-norm of the state vector achieved
up until and including time T , and the resulting bounds on the number of episodes executed until
time T . The results are listed as below:

1. In Lemma 11, we bound the moments of the maximum length of recurrence times of state
0d, or max1≤i≤T τ

(i)

0d
, using the ergodicity assumptions 3 and 4. This, along with the skip-free

property, allows us to prove that the p-th moment of max1≤i≤T τ
(i)

0d
and MT

θ∗ are both of order
O(logp T ).

2. In Lemma 12, we find an upper bound for the number of episodes in which the second stopping
criterion is met or there exists a state-action pair for which Nt(x, a) has increased more than
twice in terms of random variable MT

θ∗ and other problem-dependent constants.

3. In Lemma 13, we bound the total number of episodes KT by time T by bounding the number
of episodes triggered by the first stopping criterion, using the fact that in such episodes, T̃k =

T̃k−1+1. Moreover, to account for the settling time of each episode, we use geometric ergodicity
and Lemma 11. It follows that the expected value of the number of episodes KT is of the order
Õ(hd

√
|A|T ).

Another challenge in analyzing the regret is that the relative value function v(x; θ) is unlikely
to be bounded in the countable state-space setting. Hence, in (3.16) and (3.17), we find bounds
for the relative value function in terms of hitting time τ0d from the initial state x. Based on these
results, we provide an upper bound for the regret of Algorithm 2 in Theorem 8.

3.4.1 Maximum state norm under polynomial and geometric ergodicity

We start with deriving upper bounds on the hitting times of state 0d using the ergodicity conditions
of Assumptions 3 and 4. Previous works [38, 42, 44] have already established bounds on hitting
times in geometrically and polynomially ergodic chains in terms of their corresponding Lyapunov
function. However, our objective is to provide a precise characterization of all constants included
in these bounds in terms of the constants of the drift equations 3.3 and 3.4. This characterization
allows us to derive uniform bounds across the model class. In Appendix B.3.1, using the polyno-
mial Lyapunov function provided in Assumption 4, we establish upper bounds on the i-th moment
of hitting time of state 0d from any state x ∈ X and for 1 ≤ i ≤ r + 1. Importantly, the derived
bound is polynomial in terms of any component of the state xi. Additionally, in Appendix B.3.2,
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we characterize the tail probabilities of the return time to state 0d starting from 0d in terms of the
geometric Lyapunov function of Assumption 3. The derived tail bounds will be used in Lemma 11
to derive upper bounds for all moments of hitting times in the model class. These bounds, along
with the skip-free behavior of the model, allow us to study the maximum state (with respect to
`∞-norm) achieved up to time T in MDP (X ,A, c, Pθ∗) following Algorithm 2 as follows.

Lemma 11. For p ∈ N, the p-th moment of max1≤i≤T τ
(i)

0d
and MT

θ∗ , that is the maximum `∞-norm

of the state vector achieved up until and including time T is O(logp T ).

In the proof of Lemma 11 given in Appendix B.2.1, we make use of geometric ergodicity of the
chain and the fact that hitting times have geometric tails to find an upper bound for moments of
MT
θ∗ . Using this, we aim to bound the number of episodes started before or at T , denoted by KT .

We first find an upper bound for the number of episodes in which the second stopping criterion
is met or there exists a state-action pair for which Nt(x, a) has increased more than twice. In
the following lemma, we bound the number of such episodes, which we denote by KM , in terms
of random variable MT

θ∗ and other problem-dependent constants. Proof of Lemma 12 is given in
Appendix B.2.2.

Lemma 12. The number of episodes triggered by the second stopping criterion and started before

or at time T , denoted by KM , satisfies KM ≤ 2|A|(MT
θ∗ + 1)d log2 T a.s.

We next bound the total number of episodes KT by bounding the number of episodes triggered
by the first stopping criterion, using the fact that in such episodes, T̃k = T̃k−1 + 1. Moreover,
to address the settling time of each episode k, shown by Ek = Tk − T̃k, we use the geometric
ergodicity property and Lemma 11. Finally, the proof of Lemma 13 is given in Appendix B.2.3.

Lemma 13. The number of episodes started by T satisfies KT ≤ 2
√
|A|(MT

θ∗ + 1)dT log2 T a.s.

From Lemma 13, the upper bound given in Lemma 11 for moments of MT
θ∗ , and

Cauchy–Schwarz inequality, it follows that the expected value of the number of episodes KT is
of the order Õ(hd

√
|A|T ). This term has a crucial role in determining the overall order of the total

regret up to time T .

Remark 9. The skip-free to the right property in Assumption 2 yields a polynomially-sized subset

of the underlying state-space that can be explored as a function of T . This polynomially-sized

subset can be viewed as the effective finite-size of the system in the worst-case, and then, directly

applying finite-state problem bounds [80] would result in a regret of order Õ(T d+0.5); since d ≥ 1,

such a coarse bound is not helpful even for asserting asymptotic optimality! However, to achieve

a regret of Õ(
√
T ), it is essential to carefully understand and characterize the distribution of MT

θ∗

and then its moments, as demonstrated in Lemma 11.
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Remark 10. The derived regret bound can be extended to a larger class of MDPs which consist

of transient states in addition to the single irreducible class. Specifically, for any θ1, θ2 ∈ Θ, the

Markov process with transition kernel P
π∗θ2
θ1

obtained from the MDP (X ,A, c, Pθ1) by following

policy π∗θ2 has a single irreducible class Iθ1,θ2 and a set of transient states Tθ1,θ2 . Furthermore,

Assumptions 3 and 4 hold for the single irreducible class. The reasoning behind the proof re-

mains true in this case using the following argument: each episode k starts at 0d which is in the

irreducible set for the chosen policy π∗θk , hence, throughout the episode the algorithm remains in

the irreducible set that is positive recurrent and never visits any transient states. In other words,

episodes starting and ending at 0d with a fixed episode dependent policy implies that reachable

set of 0d is all that can be explored, which is positive recurrent by our assumptions. As a result,

we can restrict our proof derivations to the subset that is reachable from 0d in each episode and

follow the same analysis. The Lyapunov function based bounds apply to the positive recurrent

states, and hence, restricting attention to states reachable from 0d within each episode, we can use

these bounds for our assessment of regret using norms of the state. Thereafter, the coarse bounds

on the norms of the state can be applied as carried out in our proof.

Remark 11. By problem-dependent parameters, we refer to the parameters that characterize the

complexity or size of the model class Θ. These parameters are not just a function of the size of the

state-space and diameter of the MDP (as mentioned in the literature on finite-size problems[6, 36,

80]), as stability needs to be accounted for in the countable state-space setting. The dependence is,

thus, more complex and requires the inclusion of stability parameters, such as Lyapunov functions,

petite sets, and ergodicity coefficients that are discussed in Assumptions 1-4.

3.4.2 Regret analysis

We first note a key property of Thompson sampling from [80], which states that for any episode k,
measurable function f , andHtk−measurable random variable Y , we have

E
[
f(θk, Y )

]
=E

[
f(θ∗, Y )

]
, (3.15)

where Ht := σ (X (1) , . . . ,X (t) , A (1) , . . . , A (t− 1)) for all t ∈ N. Next, we bound regret
terms R0, R1 and R2 using the approach of [80] along with additional arguments to extend their
result to a countably infinite state-space. We consider the relative value function v(x; θ) of policy
π∗θ introduced for the optimal policy in ACOE or for the best in-class policy in the Poisson equation.
In either of these cases, policy π∗θ satisfies (3.6), which is the corresponding Poisson equation with
forcing function c(x, π∗θ(x)) in a Markov chain with transition matrix P π∗θ

θ . In (3.8), we presented
the solution (J, v) to the Poisson equation, which yields the following upper bound for the relative

60



value function, as argued in Appendix B.1.3:

v(x; θ) ≤ C̄π∗θ (x) ≤ Eπ
∗
θ
x [Kd (‖x‖∞ + hτ0d)

r τ0d ] . (3.16)

We can similarly lower bound the relative value function using Assumption 5 as

v(x; θ) ≥ −J(θ)Eπ
∗
θ
x [τ0d ] ≥ −J∗E

π∗θ
x [τ0d ]. (3.17)

From Assumption 3, all moments of τ0d and thus, the derived bounds are finite. Also, in Lemma 23
we bound the moments of τ0d of order i ≤ r + 1 using the polynomial Lyapunov function V p

θ1,θ2
,

which is then used to bound the expected regret. We next bound the first regret term R0 from the
first stopping criterion in terms of the number of episodes KT and the settling time of each episode
k.

Lemma 14. The first regret term R0 satisfies R0 ≤ J∗ E[KT (max1≤i≤T τ
(i)

0d
+ 1)].

Proof of Lemma 14 is given in Appendix B.2.4. From Lemma 11, all moments of max1≤i≤T τ
(i)

0d

are bounded by a polylogarithmic function. Futhermore, as a result of Lemma 13, expected value
of the number of episodes KT is of the order Õ(hd

√
|A|T ), which leads to a Õ(hd

√
|A|T ) regret

term R0. Next, an upper bound on R1 defined in (3.13) is derived. In the proof of Lemma 15 we
argue that as the relative value function is equal to 0 at all time instances tk for k ≤ KT , the only
term that contributes to the regret is the value function at the end of time horizon T . We use the
lower bound derived in (3.17) to show that the second regret term R1 is Õ(1); the proof is given in
Appendix B.2.5.

Lemma 15. The second regret term R1 satisfies R1 ≤ c2 E[(MT
θ∗)

rp∗ ] + c3, where c2 =

J∗2r
p
∗sp∗(β

p
∗)
−1 and c3 = J∗(βp∗)

−1
(
sp∗ (2h)r

p
∗ + bp∗(K∗)

−1
)
.

From Lemma 11, E[(MT
θ∗)

rp∗ ] is O(logr
p
∗ T ); hence, R1 is upper bounded by a polylogarithmic

function of the order rp∗. Finally, in Lemma 16, we derive an upper bound for the third regret
term R2 defined in (3.14) using the bound derived for the relative value function in (3.16). To
bound R2, we characterize it in terms of the difference between the empirical and true unknown
transition kernel and following the concentration method used in [105, 12, 80, 9], we argue that
with high probability the total variation distance between the two distributions is small; for proof,
see Appendix B.2.6.

Lemma 16. For problem-dependent constant cp3 and polynomial Q(T ) = cp3(Th)r+r
p
∗/48, the

second regret term R2 satisfies

R2 ≤ (log(hT + h) + 1)d + cp3
√
|A|T log2

(
2|A|T 2Q(T )

)
E
[
(MT

θ∗ + h)d+r+rp∗
(

max
1≤i≤T

τ
(i)

0d

)]
.

61



The above Lemma results in a Õ(KrdJ∗hd+2r+rp∗
√
|A|T ) regret term as a result of Lemma 11,

where h is the skip-free parameter defined in Assumption 2, d is the dimension of the state-space,
K and r are the cost function parameters defined in Assumption 1, J∗ is the supremum on the
optimal cost, rp∗ is defined in Assumption 4, and where Õ hides logarithmic factors in problem pa-
rameters one of which is logd+r+rp∗+2(T ). For simplicity, we have not included the Lyapunov func-
tions related parameters in the regret. Finally, from Lemmas 14, 15, 16, along with the Cauchy-
Schwarz inequality, we conclude that the regret of Algorithm 2 R(T, πTSDE)(= R0 +R1 +R2) is
Õ(KrdJ∗hd+2r+rp∗

√
|A|T ); for brevity, we will state that regret is of the order Õ(dhd

√
|A|T ).

Theorem 8. Under Assumptions 1-5, the regret of Algorithm 2, R(T, πTSDE), is Õ(dhd
√
|A|T ).

Theorem 8 can be extended to the problem of finding the best policy within a sub-class of
policies in set Π, which may or may not contain the optimal policy. In Section 3.2, we stated that
Assumptions 3 and 4 hold for policies in Π and we used this to argue that the Poisson equation
has a solution given in (3.8). As a result, repeating the same arguments as in Theorem 8 with the
modification that π∗θ is the best in-class policy of the MDP governed by parameter θ, yields the
following corollary.

Corollary 3. Under Assumptions 1 through 5, the regret of Algorithm 2 when using the best in-

class policy is Õ(dhd
√
|A|T ).

3.4.3 Requirement of an optimal policy oracle

To implement our algorithm, we need to find the optimal policy for each model sampled by the
algorithm—optimal policy for Theorem 8 and optimal policy within policy class Π for Corollary 3.
In the finite state-space setting, [80] provides a schedule of ε values and selects ε-optimal policies
to obtain Õ(

√
T ) regret guarantees. The issue with extending the analysis of [80] to the count-

able state-space setting is that we need to ensure (uniform) ergodicity for the chosen ε-optimal
policies. In other words, we must verify ergodicity assumptions for a potentially large set of close-
to-optimal algorithms whose structure is undetermined. Another issue is that, to the best of our
knowledge, there isn’t a general structural characterization of all ε-optimal stationary policies for
countable state-space MDPs or even a characterization of the policy within this set that is selected
by any computational procedure in the literature; current results only discuss characterization of
the stationary optimal policy. In the absence of such results, stability assumptions with the same
uniformity across models as in our submission will be needed, which are likely too strong to be
useful. However, if we could verify the stability requirements of Assumptions 3 and 4 for a sub-
set of policies, the optimal oracle is not needed, and instead, by choosing approximately optimal
policies within this subset, we can follow the same proof steps as [80] to guarantee regret perfor-
mance similar to Corollary 3 (without knowledge of model parameters). Thus, in Theorem 9 we

62



extend the previous regret guarantees to the algorithm employing ε-optimal policy; proof is given
in Appendix B.2.8.

Theorem 9. Consider a non-negative sequence {εk}∞k=1 such that for every k ∈ N, εk is bounded

above by 1
k+1

and an εk-optimal policy satisfying Assumptions 3 and 4 is given. The regret incurred

by Algorithm 2 while using the εk-optimal policy during any episode k is Õ(dhd
√
|A|T ).

3.5 Evaluation: Application of Algorithm 2 to queueing models

Next, we present an evaluation of our algorithm. We study two different queueing models shown in
Figure 3.2, each with Poisson arrivals at rate λ, and two heterogeneous servers with exponentially
distributed service times with unknown service rate vector θ∗ = (θ∗1, θ

∗
2). Vector θ∗ is sampled

from the prior distribution ν defined on the space Θ given as

Θ =
{

(θ1, θ2) ∈ R2
+ :

λ

θ1 + θ2

≤ 1− δ
1 + δ

, 1 ≤ θ1

θ2

≤ R
}
,

for fixed R ≥ 1 and δ ∈ (0, 0.5). The first condition ensures the stability of the queueing models,
while the second guarantees the compactness of the parameter space of the parameterized policies.
In both systems, the goal of the dispatcher is to minimize the expected sojourn time of jobs, which
by Little’s law [87] is equivalent to minimizing the average number of jobs in the system. After
verifying Assumptions 1-5 in Appendix B.5 for the cost function c(x) = ‖x‖1, Theorem 8 yields
a Bayesian regret of order Õ(

√
|A|T ) for Algorithm 2.

Model 1. Two-server queueing system with a common buffer. We consider the continuous-
time queueing system of Figure 3.2a, where the countable state-space is X = {x = (x0, x1, x2) ∈
Z+ × {0, 1}2}, where x0 is the queue length, and xi, i = 1, 2 equal 1 if server i is busy. The
action space is A = {h, b, 1, 2}, where h means no action, b sends a job to both servers, and
i = 1, 2 assigns a job to server i. In [59], when the system parameters are known, it is shown that
by uniformization [60] and sampling the continuous-time Markov process at rate λ + θ∗1 + θ∗2, a
discrete-time Markov chain is obtained, which converts the original continuous-time problem to
an equivalent discrete-time problem where we need to minimize lim supT→∞ T

−1
∑T−1

t=0 ‖X(t)‖1.
Further, [59] shows that the optimal policy achieving the infimum average number of jobs is a
threshold policy πt(θ∗) with optimal finite threshold t(θ∗) ∈ N: always assign a job to the faster
(first) server when free, and to the second server if it is free and ‖x‖1 > t(θ∗), and take no
action otherwise. In Appendix B.5.1, we argue that the discrete-time Markov process governed by
θ ∈ Θ and following threshold policy πt for any threshold t belonging to a compact set satisfies
Assumptions 1-5.
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(a) Queueing system with a common buffer.

θ∗1

θ∗2

Dispatcher
λ

Infinite queue

(b) Two parallel queues.

Figure 3.2: Two-server queueing systems with heterogeneous service rates.

(a) Queueing system of Figure 3.2a. (b) Queueing system of Figure 3.2b.

Figure 3.3: Regret performance for λ = 0.3, 0.5, 0.7. Shaded region shows the ±σ area of mean
regret.

Model 2. Two heterogeneous parallel queues. We consider the continuous-time queueing
system of Figure 3.2b with countable state-space X = {x = (x1, x2) ∈ Z2

+}, where xi is the
number of jobs in the server-queue pair i. The action space is A = {1, 2}, where action i sends
the arrival to queue i. We obtain the discrete-time MDP by sampling the queueing system at the
arrivals, and then aim to find the average cost minimizing policy within the class Π = {πω;ω ∈
[(cRR)−1, cRR]}, cR ≥ 1. Policy πω : X → A routes arrivals based on the weighted queue lengths:
πω(x) = arg min (1 + x1, ω (1 + x2)) with ties broken for 1. Even with the transition kernel fully
specified (by the values of arrival and service rates), the optimal policy in Π is not known except
when θ1 = θ2 where the optimal value is ω = 1, and so, to learn it, we will use Proximal Policy
Optimization for countable state-space MDPs [27]. Note that [27] requires full model knowledge,
which holds in our scheme as we use parameters sampled from the posterior for choosing the
policy at the beginning of each episode. In Appendix B.5.2, we argue that the discrete-time Markov
process governed by parameter θ ∈ Θ and following policy πω for ω ∈ [(cRR)−1, cRR] satisfies
Assumptions 1-5.
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Next, we report the numerical results of Algorithm 2 in the two queueing models of Figure 3.2
and calculate regret using (3.2). The regret is averaged over 2000 simulation runs and plotted
against the number of transitions in the sampled discrete-time Markov process. Figure 3.3 shows
the behavior of the regret of the two queueing models for three different arrival rates and service
rates distributed according to a Dirichlet prior over [0.5, 1.9]2. We observe that the regret is sub-
linear in time and grows as the arrival rate increases. For the queueing model of Figure 3.2a, the
minimum average cost J(θ) and optimal policy π∗θ are known explicitly [59] for every θ ∈ Θ,
which are used in Algorithm 2 and for regret calculation. Conversely, for the second queueing
model, J(θ) and π∗θ are not known. The PPO algorithm [27] is used to empirically find both the
optimal weight and the policy’s average cost. As expected from our theoretical guarantees, we
observe that the regret is sub-linear in time. Furthermore, it grows as the arrival rate increases and
the normalized load on the system converges to 1, which is expected since the system gets closer
to the stability boundary. As discussed in Section 3.4, our bound on the expected regret is linearly
dependent on J∗ and, thus, will increase with the arrival rate. Additional details of the simulations
and more plots are presented in Section 3.5.2.

3.5.1 Comparison of Algorithm 2 with other learning algorithms

We first note that due to the countably infinite state-space setting of our problem, we are unable
to directly compare our algorithm to other learning algorithms proposed in the literature. One
potential candidate algorithm uses the reward biased maximum likelihood estimation (RBMLE)
[53, 54, 17, 70], which estimates the unknown model parameter with the likelihood perturbed a
vanishing bias towards parameters with a larger long-term average reward (i.e., optimal value).
This scheme also uses the principle of “optimism in the face of uncertainty” in how it perturbs the
maximum likelihood estimate. The naive version of the RMBLE algorithm does not apply to our
examples due the following key assumption: over all parameters (and the control policies used for
them), the transition probabilities are assumed to be mutually absolutely continuous; this is critical
for the proofs and also allows the use of log-likelihood functions for computations. Similarly, naive
use of the algorithms in [56] and [37] is not possible, again due to a similar absolutely continuity
assumption which is critical for the proofs. Our posterior computations avoid such issues as the
true parameter always has non-zero mass during the execution of the algorithm: episode k always
starts in state 0d which is positive recurrent for the Markov chain with true parameter θ∗ and policy
used π∗θk . The RBMLE algorithm has yet another issue in that it requires knowledge of the optimal
value function, and hence, for our examples, it may only apply to Model 1 for which the value
function is known analytically. Finally, whereas we do get to observe inter-arrival times for both
model, we never directly observe completed service times owing to the sampling employed, and

65



(a) Queueing system of Figure 3.2a. (b) Queueing system of Figure 3.2b.

Figure 3.4: Comparison of the regret performance of Algorithm 2 (referred to as TSDE) with the
algorithm proposed by [4] (denoted as AgrawalTeneketzis) and the algorithm proposed by [53]
(denoted as RBMLE) for the queueing models of Figure 3.2.

this precludes the direct use of Upper-Confidence-Bound based parameter estimation followed by
certainty equivalent control algorithms. Owing to these issues, at this point in time, we’re unable
to perform empirical comparisons of Algorithm 2 to other candidate algorithms with theoretical
performance guarantees in a countable state setting.

As discussed in the previous paragraph, learning algorithms with theoretical performance guar-
antees are established in the finite state setting. One such algorithm is the certainty equivalence
control with forcing, which is proposed and discussed in detail in [4]. To assess the finite-time per-
formance of our algorithm, in Figure 3.4, we compare the performance of our proposed learning
algorithm, denoted as TSDE, with the algorithm introduced in [4], referred to as AgrawalTeneket-
zis. Reference [4] proposes a certainty equivalence control law with forced exploration, which
operates in episodes with increasing lengths and a priori fixed sequences of forcing times. Specif-
ically, at the beginning of each episode, all possible stationary control laws are explored for one
recurrence interval of state (0, 0). Subsequently, based on this exploration, an empirical estimate
of the average collected reward is formed, and the control law resulting in the maximum average
reward is implemented for the remainder of the episode. The length of the episodes are determined
according to sequence {ai}∞i=0 defined as following:

a0 = 0,

ai =
i∑

k=1

bk + ip, for i ≥ 1,
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(a) Queueing system of Figure 3.2a. (b) Queueing system of Figure 3.2b.

Figure 3.5: Total variation distance between the posterior and real distribution for λ = 0.3, 0.5, 0.7.
The y axis is plotted on a logarithmic scale to display the differences clearly.

where p is the number of possible stationary control laws and bi =
⌊

exp
(
i

1
1+δ

)⌋
for any δ > 0.

Specifically, episode i terminates after completing additional ai−ai−1 recurrence intervals to state
(0, 0).

Another algorithm implemented in Figure 3.4 is Reward Biased MLE (RBMLE), which biases
the maximum likelihood estimate towards the parameter with a smaller optimal average cost. In
our setting, at each arrival t, we choose the estimate for unknown parameter θ as follows:

θt ∈ arg max
Θ

t−1∑
i=1

log
(
Pθ
(
X(i+ 1)|X(i), π∗θi(X(i))

))
− αJ(θ) log(t),

where α is a positive constant. A closed-form expression for the optimal average cost J(θ) is not
available in the second model; instead, we rely on the estimated average cost obtained through the
PPO algorithm (refer to Table 3.1).

Both algorithms are implemented in the two queueing systems of Figure 3.2, where the arrival
rate is λ = 0.5 and service rates are distributed according to a Dirichlet prior over [0.5, 1.9]2. In
Figures 3.4a and 3.4b, we set δ = 3.5 and δ = 3, respectively, and α = 0.5. These parameters are
chosen to optimize the performance of the corresponding algorithms. Moreover, in Figure 3.4b, the
goal is to find the optimal weight w in the set {1.5, 2, 2.5, 3, 3.5}. The results in Figure 3.4 show
that both algorithms exhibit a sublinear regret performance. Specifically, Algorithm 2, TSDE,
achieves an Õ(

√
T ) as predicted in our theoretical results of Theorem 8 and Corollary 3. Further-

more, in both queueing models, our proposed algorithm either outperforms the other algorithms
(AgrawalTeneketzis and RBMLE) in terms of regret order or attains the same regret order.
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(a) Queueing system of Figure 3.2a. (b) Queueing system of Figure 3.2b.

Figure 3.6: Optimal policy parameters for different service rate vectors in the two exemplary
queuing systems in Model 1 and Model 2 with λ = 0.5.

3.5.2 Additional simulation details and discussion

Model 1: Two-server queueing system with a common buffer. Figure 3.3b illustrates the behav-
ior of the regret of Model 1 for three different arrival rate values and averaged over 2000 simulation
runs. In these simulations, the parameter space is selected as

Θ =
{

(θ1, θ2) ∈ [0.5, 0.6, . . . , 1.9]2 : λ < θ1 + θ2, θ2 < θ1

}
,

which results in a prior size of 105. As depicted in Figure 3.3a, the regret has a sub-linear be-
havior and increases with the arrival rate. The total variation distance between the posterior and
real distribution, a point-mass on the random θ∗, are plotted in Figure 3.5a. As expected, the
distance diminishes towards 0, indicating the learning of the true parameter. As mentioned in Ap-
pendix B.5.1, the optimal policy minimizing the average number of jobs in a system with parameter
θ, is a threshold policy πt(θ) with optimal finite threshold t(θ) ∈ N, which can be numerically de-
termined as the smallest i ∈ N for which J i(θ) < J i+1(θ), calculated in [59]. We compute the
optimal threshold t(θ) for every θ ∈ Θ and present the results in Figure 3.6a. We can see that the
threshold increases as the ratio of the service rates grows. Specifically, this is why in Section 3.5.2,
we imposed conditions on Θ to ensure that the ratio between the service rates is both upper and
lower bounded.

Model 2: Two heterogeneous parallel queues Figure 3.3b illustrates the behavior of the regret
of Model 2 for three different arrival rate values and averaged over 2000 simulation runs. We
note that the regret is sub-linear and increases with higher arrival rates. In these simulations, the
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Figure 3.7: Estimated average cost of Model 2 for three different service rate vectors.

parameter space is selected as

Θ =
{

(θ1, θ2) ∈ [0.5, 0.7, . . . , 1.9]2 : λ < θ1 + θ2, θ2 < θ1

}
,

which results in a prior size of 28. As discussed earlier, our goal is to find the average cost
minimizing policy within the class of policies Π = {πω;ω ∈ [(cRR)−1, cRR]}, cR ≥ 1, where
πω(x) = arg min (1 + x1, ω (1 + x2)) with ties broken for 1. As discussed before, even with the
transition kernel fully specified (by the values of arrival and service rates), the optimal policy in
Π is not known except when θ1 = θ2 where the optimal value is ω = 1, and so, to learn it, we
will use Proximal Policy Optimization with approximating martingale-process (AMP) method for
countable state-space MDPs [27]. We run the algorithm for 200 policy iterations, using 20 actors
for each iteration. We take the state (0, 0) as a regeneration state and simulate 1500 independent
regenerative cycles per actor in each algorithm iteration. To approximate the value function, we
employ a fully connected feed-forward neural network with one hidden layer consisting of 10×10

units and ReLU activation functions. The AMP method is also employed for variance reduction in
value function estimation. The optimal ω for every θ ∈ Θ is shown in Figure 3.6b, indicating that
ω increases as the ratio of the service rates grows. Therefore, it is necessary to ensure that the ratio
between the service rates is bounded from above and below. Furthermore, to evaluate the regret
numerically, the value of J(θ) is required for every θ ∈ Θ, which is not known. Thus, after find-
ing the optimal ω using the PPO algorithm, we perform a separate simulation to approximate the
optimal average cost. In Figure 3.7, we plot the estimated average cost for three different service
rate vectors, demonstrating that the optimal average cost decreases as the service rates increase. In
Figure 3.5b we also depict the total variation distance between the posterior and real distribution,
which is a point-mass on the random θ∗, and observe that the distance is converging to zero.
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θ∗1 θ∗2 ω J(θ∗)
0.7 0.5 1.5 1.04
0.9 0.5 1.5 0.82
1.1 0.5 2 0.67
1.3 0.5 2.5 0.56
1.5 0.5 2.5 0.47
1.7 0.5 3.5 0.41
1.9 0.5 3.5 0.35
0.9 0.7 1.5 0.70
1.1 0.7 1.5 0.59
1.3 0.7 2 0.51
1.5 0.7 2 0.44
1.7 0.7 2.5 0.39
1.9 0.7 2.5 0.34
1.1 0.9 1.5 0.54
1.3 0.9 1.5 0.47
1.5 0.9 1.5 0.42
1.7 0.9 2 0.37
1.9 0.9 2 0.33
1.3 1.1 1.5 0.44
1.5 1.1 1.5 0.39
1.7 1.1 1.5 0.35
1.9 1.1 2 0.32
1.5 1.3 1.5 0.37
1.7 1.3 1.5 0.33
1.9 1.3 1.5 0.30
1.7 1.5 1.5 0.32
1.9 1.5 1.5 0.29
1.9 1.7 1.5 0.28

Table 3.1: Optimal values of weight w in set {1.5, 2, 2.5, 3, 3.5} and the corresponding average
cost J(θ∗) for different service rate values (θ∗1, θ

∗
2) ∈ [0.5, 0.7, . . . , 1.9]2.
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CHAPTER 4

Conclusion

Throughout this thesis, we developed and analyzed two different learning schemes that leverage the
inherent structure of a Markov decision process to design efficient learning algorithms with prov-
able performance guarantees. We now proceed to present a few remarks on high-level takeaways
and long-term future research directions.

4.1 High-level takeaways

The main ideas developed in this thesis are as follows:

• Incorporating model knowledge can facilitate learning in the absence of direct observation
of received rewards.
In Chapter 2, we studied the problem of learning-based optimal admission control of an Erlang-
B blocking system with an unknown service rate. We showed that the extreme contrast in the
optimal control schemes in different parameter regimes—quickly converging to always admit-
ting arrivals if room versus quickly rejecting all arrivals—makes learning challenging. With the
system being sampled only at arrivals, we designed a dispatching policy based on the maximum
likelihood estimate of the unknown service rate, followed by using the certainty equivalent law
with forced exploration. We proved the convergence of our proposed policy to the optimal policy
in a system where the service rate is known and established finite-time guarantees for specific pa-
rameter settings: constant regret when µ > c/R and logarithmic regret when µ < c/R. Through
simulations, we also showed that our policy achieves a good trade-off of the regret over all pa-
rameter regimes. In addition to showing the difficulty of obtaining universally optimal learning
algorithms for stochastic dynamic systems, we highlighted the complexity of obtaining lower
bounds on the performance for continuous-time systems owing to issues such as sampling.

• Exploiting inherent properties of certain Markov decision processes enables the adapta-
tion of existing learning algorithms from finite state space to countably infinite state space.
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We studied the problem of learning optimal policies in countable state space Markov decision
processes governed by unknown parameters. We proposed a learning policy based on Thompson
sampling with dynamically-sized episodes and established finite-time performance guarantees
for the Bayesian regret. We highlighted the practicality of our proposed algorithm by consider-
ing two different queueing models with unknown service rates and showing that our algorithm
can be applied to develop optimal control policies. Specifically, we argued that for two differ-
ent queueing models, the ergodicity assumptions of our algorithm are satisfied, and we further
numerically investigated the regret performance of our algorithm.

4.2 Future directions

We conclude by exploring potential future directions related to the two chapters presented in this
thesis.

• Chapter 2. The following questions naturally follow as future research topics. First, we proved a
log(n) upper bound for the regret when µ < c/R. One direction is to explore lower bounds in this
regime; we conjecture that it is Ω(log(n)). Another direction is to allow for different sampling
and update schemes (including by an independent Poisson process) and theoretically analyze the
regret. Yet another direction is to extend our results to other service-time distributions, as the
optimal admission control policy is unchanged due to the insensitivity ([47, 87]) of the Erlang-
B system. Lastly, a broader theory is needed to study problems like ours where the problem
structure changes non-smoothly across parameter choices.

• Chapter 3. For future work, it is worth studying how to extend the applicability of our algorithm
to a broader class of problem settings and generalize it to consider policies that do not necessarily
ensure stability. Additionally, in future work, it is also worth studying how to simplify our
proposed algorithm by incorporating ideas from [99, 94].

In a broader context, we can conclude that the performance of existing learning algorithms can
be enhanced by understanding and using the MDP’s model and policy class knowledge. This ob-
servation points to the value of exploring this direction further and creating more comprehensive
frameworks for utilizing model knowledge to improve the performance of the existing learning
algorithms. Specifically, Chapter 2 highlights the promise of using information rewards; however,
further exploration is required to demonstrate this more broadly, including within the general con-
text assumed in the adaptive control literature. Additionally, within the general area of learning
in queueing systems, the problem of learning-based control can be studied where the model class
is known, but the observed samples from the system are sparse in some given sense; for instance,
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queue lengths are partially observed. In this context, the stability of the queueing system is a cen-
tral issue, and studying learning methodologies in the presence of potentially unstable policies is
an interesting future direction.

Furthermore, recent advancements in the theoretical analysis of RL algorithms have mainly fo-
cused on finite state and action spaces. With the aim of generalizing existing results, Chapter 3
explored a learning problem in a countable state setting but with a finite action space. To further
extend these findings, a potential future direction would be to explore learning in MDPs with in-
finite action spaces. This formulation is particularly relevant in many real-world control scenarios
characterized by smooth and continuous actions, as exemplified in tasks like autonomous driving.
Moreover, there exists potential for studying more complex problem settings (within the domain
of queueing systems and beyond) to understand the implications of imperfectly observing reward
functions during the learning process. Another framework within this direction is to investigate
learning in MDPs where the rewards are not observable unless a query cost is paid. Studying these
directions will provide us with novel tools and frameworks to address the complexity of learning-
based control in real-world systems.
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APPENDIX A

Appendix of Chapter 2

A.1 Analysis of the Single-server Erlang-B Queueing System

A.1.1 Lemma 17

Lemma 17. In a single-server Erlang-B queueing system, the number of accepted arrivals follow-

ing policy ΠAlg1 is almost surely infinite.

Proof of Lemma 17. Let A be the event that the system stops accepting new arrivals after some
finite arrival, A1 the event that the server is always busy after some finite arrival, A2 the event that
the server is available after some finite arrival but rejects all subsequent arrivals according to Line
10 of Algorithm 1, and A2,m as the event that for the first time at arrival m, the server is available
but rejects all arrivals. We have

P (A) = P (A1) + P (A2) = P (A2) =
∞∑
m=0

P (A2,m) ≤
∞∑
m=0

lim
n→+∞

(
1− 1

f(m)

)n
= 0, (A.1)

where the inequality follows from the fact that for n ≥ m, we have αn = αm ≤ m, which means
the acceptance probability is fixed after arrivalm, as no other arrivals are accepted. From (A.1), we
conclude that almost surely an infinite number of arrivals are accepted following Algorithm 1.

A.1.2 Proof of Lemma 1

Proof of Lemma 1. Consider the queueing system sampled at sequence {βn}∞n=0. In the original
representation, at state Ỹn, service time Eβn is realized when arrival βn is accepted. Sequence
{Tβn+j}βn+1−βn

j=1 is also realized until the next accepted arrival βn+1. Based on the definition of ln,
arrival βn departs during Tβn+ln . In the alternate process, instead of realizing Eβn all at once, at
each arrival, we generate two independent exponential random variables T ′βn+j and E ′βn+j , with
parameters λ and µ. Let l′n be the first arrival such that l′n = min{m ≥ 1 : T ′βn+m ≥ E ′βn+m}.
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For j < l′n, the minimum of T ′βn+j and E ′βn+j equals T ′βn+j , and we assume the server is busy.
This event occurs with probability λ

λ+µ
, and T ′βn+j indicates the inter-arrival time between arrival

βn + j − 1 and βn + j. At j = l′n, E ′βn+j is less than T ′βn+j for the first time, and we assume the
service of arrival βn is complete. For the rest of the process, we only generate the inter-arrivals
T ′βn+j until an arrival is accepted. Note that l′n is geometric with parameter µ

λ+µ
. The equivalence of

the process defined using T ′βn+j and E ′βn+j and the original process follows from the memoryless
property of the exponential distribution and we deduce that {ln}+∞

n=0 are i.i.d. and geometric random
variables.

A.1.3 Proof of Lemma 3

Proof of Lemma 3. Instead of directly verifying that the tail decay of random variables {Yn+1 −
Yn}∞n=0 is at least as fast as an exponential distribution, we argue that an equivalent condition holds
[101, Proposition 2.7.1]: there exists a constant b > 0 such that E [exp (b |Yn+1 − Yn|)] ≤ 2. From
(2.13),

E [exp (b |Yn+1 − Yn|)]

≤ E
[

exp
(
b
ln−1∑
j=1

Tβn+j + bg
(
Tβn+ln , 1,

c

R

))]
=
∞∑
s=1

P (ln = s)E
[

exp
(
b
ln−1∑
j=1

Tβn+j + bg
(
Tβn+ln , 1,

c

R

)) ∣∣∣ ln = s
]

=
∞∑
s=1

P (ln = s)
(
E
[

exp (bTβn+1)
∣∣∣ ln = s

])s−1

E
[

exp
(
bg
(
Tβn+ln , 1,

c

R

)) ∣∣∣ ln = s
]
. (A.2)

For s > 1 and b < λ+ µ, we simplify the first expectation to get

E
[
exp (bTβn+1)

∣∣∣ ln = s
]

=
µ+ λ

λ

∫ +∞

t=0

∫ +∞

x=t

exp (bt)µ exp (−µx)λ exp (−λt) dxdt

=
λ+ µ

λ+ µ− b
.
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As g(t, 1, c/R) ≤ R/c for all t > 0, the second expectation term in (A.2) is bounded by exp(bR/c).
Thus,

E [exp (b |Yn+1 − Yn|)] ≤
∞∑
s=1

P (ln = s)

(
λ+ µ

λ+ µ− b

)s−1

exp

(
b
R

c

)
=
∞∑
s=1

(
λ

λ+ µ

)s−1
µ

λ+ µ

(
λ+ µ

λ+ µ− b

)s−1

exp

(
b
R

c

)
=
µ exp

(
bR
c

)
λ+ µ

∞∑
s=1

(
λ

λ+ µ− b

)s−1

For b < µ, the above sum converges, and E [exp (b |Yn+1 − Yn|)] ≤ µ
λ+µ

λ+µ−b
µ−b exp

(
bR
c

)
, which is

less than 2 for small enough b. Thus, the sub-exponential property is proved.

A.1.4 Proof of Lemma 4

Proof of Lemma 4. Without loss of generality, we take µ > c/R. Note that P(Yn ≤ 0) =

P(
∑n−1

i=0 (Yi+1 − Yi) ≤ 0). In Lemmas 2 and 4, we showed that {Yi − Yi−1}n−1
i=0 are i.i.d and

sub-exponential; thus, the centered random variables {Yi+1 − Yi − E [Yi+1 − Yi]}n−1
i=0 are sub-

exponential. We showed E [Yi+1 − Yi] > 0 in (2.16); define E [Yi+1 − Yi] = δ. From Bernstein’s
concentration inequality [101, Theorem 2.8.2],

P
( n−1∑
i=0

(Yi+1 − Yi) < 0
)

= P
( n−1∑
i=0

(Yi+1 − Yi)− nδ < −nδ
)

≤ exp
(
− cB min

(n2δ2

n
, nδ
))

= exp(−c1n).

A.1.5 Proof of Lemma 5

Proof of Lemma 5. We first bound the probability term P
(∑i

j=1 yj < n,
∑i+1

j=1 yj ≥ n
)

using the
probability of the first event. We take pi = 1− qi = exp (−i1−ε) and then use the Chernoff bound
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to get

P (y1 + · · ·+ yi < n, y1 + · · ·+ yi+1 ≥ n) ≤ P (y1 + · · ·+ yi ≤ n)

≤ min
t≥0

etn
i∏

j=1

pj
et − (1− pj)

. (A.3)

Take b = d(log (n+ 1))
1

1−ε e and t ≥ 0 such that et = n+1
n
qi. From (A.3), for i ≥ d ≥ b we have

P (y1 + · · ·+ yi ≤ n) ≤
(
n+ 1

n

)n
qni

i∏
j=1

pj
1
n

(1− pi) + (pj − pi)

≤
(
n+ 1

n

)n
qni

i∏
j=1

pj

b∏
j=1

1

pj − pi

i∏
j=b+1

n

1− pi

≤
(
n+ 1

n

)n
q
n−(i−b)
i ni−b

i∏
j=b+1

pj

b∏
j=1

1

1− exp (− (i1−ε − j1−ε))
. (A.4)

Since qi ≤ 1 and n ≥ i − b, we have
(
n+1
n

)n
q
n−(i−b)
i ≤ e. By concavity and gradient inequality,

for 1 ≤ j ≤ i, we have

i1−ε − j1−ε ≥ 1− ε
iε

(i− j) .

Using this inequality and setting κ := diε/(1− ε)e, we have

b∏
j=1

1

1− exp (− (i1−ε − j1−ε))
≤

b∏
j=1

1

1− exp
(
−1−ε

iε
(i− j)

)
≤
∞∏
t=1

1

1− exp
(
−
(

1−ε
iε

)
t
)

≤
κ−1∏
t=1

1

1− exp
(
−
(

1−ε
iε

)
t
) ∞∏
t=κ

1

1− exp
(
− 1
κ
t
)

≤
κ−1∏
t=1

1

1− exp
(
−
(

1−ε
iε

)
t
) ∞∏
j=1

(j+1)κ−1∏
t=jκ

1

1− exp
(
− 1
κ
t
)

≤
κ−1∏
t=1

1

1− exp
(
−
(

1−ε
iε

)
t
) ∞∏
j=1

(
1

1− exp (−j)

)κ

≤ (cu)
κ

κ−1∏
t=1

1

1− exp
(
−
(

1−ε
iε

)
t
) . (A.5)
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The last inequality is true as follows. For aj = (exp (j)− 1)−1, using the fact that 1+x ≤ exp(x),
we have

∞∏
j=1

1

1− exp (−j)
=
∞∏
j=1

(1 + aj) ≤ exp
( ∞∑
j=1

aj

)
= cu,

For 1 ≤ t ≤ κ− 1, we have
1− ε
iε

t ≤ 1− ε
iε

(κ− 1) < 1,

and 1− exp (−x) ≥ x/2 for x ≤ 1. Therefore, we can write

1− exp
(
−
(1− ε

iε
)
t
)
≥ 1

2

1− ε
iε

t.

As a result, we can further simplify the second product term in (A.4) as follows,

b∏
j=1

1

1− exp
(
−1−ε

iε
(i− j)

) ≤ (cu)
κ

κ−1∏
t=1

2
iε

(1− ε) t
≤ (cu)

κ2κ−1 1

(κ− 1)!

(
iε

1− ε

)κ−1

. (A.6)

For x > 0 and k ∈ N, xk/k! ≤ exp(x). Thus,

ecκu2
κ−1

(κ− 1)! (1− ε)κ−1 ≤ ecu exp(
2cu

1− ε
) =: ce,

which is an ε−dependent constant. Next we upper bound the term
∏i

j=b+1 pj using integral lower
bound as below:

(b+ 1)1−ε + . . .+ i1−ε ≥ 1

2− ε
(
i2−ε − b2−ε) . (A.7)

Thus, using the above discussion, we simplify (A.4) to get

P (y1 + · · ·+ yi ≤ n) ≤ ce exp
(
− 1

2− ε
(
i2−ε − b2−ε) )ni−biε(κ−1). (A.8)
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We upper bound the summation given in the statement of Lemma 5. From (A.8) and using the fact
that d ≥ b,

n∑
i=d

iP (y1 + ...+ yi ≤ n)

≤ ce

n∑
i=d

i exp

(
− 1

2− ε
(
i2−ε − b2−ε)) (n+ 1)i−biε(κ−1)

≤ ce(n+ 1)−b exp

(
b2−ε

2− ε

) ∞∑
i=d

i exp

(
− i2−ε

2− ε
+ i log(n+ 1) +

ε

1− ε
log (i) iε

)
≤ c̃e exp

(
−b log(n+ 1) +

b2−ε

2− ε

)
≤ c̃e exp

(
− b(b− 1)1−ε +

b2−ε

2− ε

)
= c̃e exp

(
− b2−ε

((
1− 1

b

)1−ε

− 1

2− ε

))
,

where we have used b = d(log
1

1−ε (n+ 1))e in the last line. The third inequality holds as for i ≥ d,
the negative term inside the second exponential function is dominating. Further, as n grows, b
converges to infinity; hence, in the final term, the exponential term converges to zero. Thus, we
can bound the sum with a constant.

A.1.6 Proof of Corollary 1

Proof. We follow the same arguments as in Theorem 7 to show aO(log(n)) regret. As a parallel to
Lemma 5, we bound

∑n−1

i=d̃
iP
(∑i

j=1 yj < n,
∑i+1

j=1 yj ≥ n
)

for independent geometric random
variables {yi}ni=1 with success probability {f(i)−1}ni=1 following similar arguments to Lemma 5.
Denote the smallest i that satisfies i1−εi ≥ log(n + 1) as b and let d̃ be the smallest integer i such
that log(n+1) ≤ 1

3
i1−εb+1 . We note that i1−εi is increasing for i ≥ 1 as εi is a decreasing sequence.

Take pi = exp (−i1−εi) and t ≥ 0 such that et = n+1
n

(1− pi), which exists for i > b. From (A.4),
for i > b,

P (y1 + · · ·+ yi ≤ n) ≤ eni−b
i∏

j=b+1

pj

b∏
j=1

1

1− exp (− (i1−εi − j1−εj))
. (A.9)

Moreover, for 1 ≤ j ≤ i, by concavity and gradient inequality, we have εj ≥ εi and

i1−εi − j1−εj ≥ i1−εi − j1−εi ≥ 1− εi
iεi

(i− j) . (A.10)
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We define κ = diεi/(1− εi)e and using (A.6), simplify the second product term in the RHS of
(A.9) to get

b∏
j=1

1

1− exp (− (i1−εi − j1−εj))
≤

b∏
j=1

1

1− exp
(
−1−εi

iεi
(i− j)

)
≤ cκu2

κ−1 1

(κ− 1)!

(
iεi

1− εi

)κ−1

. (A.11)

Furthermore, using an integral lower bound, we find an upper bound for the term
∏i

j=b+1 pj:

(b+ 1)1−εb+1 + . . .+i1−εi ≥ (b+ 1)1−εb+1 + . . .+i1−εb+1 ≥ 1

2− εb+1

(
i2−εb+1 − b2−εb+1

)
. (A.12)

Using (A.11), (A.12), and the fact that ecκu2κ−1

(κ−1)!(1−εi)κ−1 ≤ ecu exp( 2cu
1−ε) =: ce, we simplify (A.9) to

get

P (y1 + · · ·+ yi ≤ n) ≤ ce exp
(
− 1

2− εb+1

(
i2−εb+1 − b2−εb+1

) )
ni−biεi(κ−1). (A.13)

Finally, we can bound
∑n−1

i=d iP (y1 + · · ·+ yi < n, y1 + · · ·+ yi+1 ≥ n) using (A.13) as follows

n∑
i=d̃

iP(y1 + ...+ yi ≤ n)

≤ ce(n+ 1)−b exp
( b2−εb+1

2− εb+1

) ∞∑
i=d̃

i exp
(−i2−εb+1

2− εb+1

+ i log(n+ 1) +
εi

1− εi
log(i)iεi

)
≤ ce(n+ 1)−b exp

( b2−εb+1

2− εb+1

) ∞∑
i=d̃

i exp
(−i2−εb+1

2− εb+1

+
i2−εb+1

3
+

εi
1− εi

log(i)iεi
)

≤ ce(n+ 1)−b exp
( b2−εb+1

2− εb+1

)
, (A.14)

where the second line follows from log(n+ 1) ≤ 1
3
(d̃)1−εb+1 ≤ 1

3
i1−εb+1 for i ≥ d̃. As the negative

term inside the second exponential function is the dominating term, we can bound the summation
with a constant independent of n. From the definition of b, we have

(b− 1)1−εb−1 < log(n+ 1) ≤ b1−εb .
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Thus

(n+ 1)−b exp
( b2−εb+1

2− εb+1

)
= exp

(
b
( b1−εb+1

2− εb+1

− log(n+ 1)
))

≤ exp
(
b
( b1−εb+1

2− εb+1

− (b− 1)1−εb−1

))
= exp

(
− b2−εb+1

(
bεb+1−εb−1

(
1− 1

b

)1−εb−1

− 1

2− εb+1

))
. (A.15)

We note that as b grows to infinity, the term
(
1 − 1

b

)1−εb−1 converges to 1, and the term b2−εb+1

converges to∞. Since εb+1 < εb−1, the term bεb+1−εb−1 is less than 1. However, we also note that
for large enough b,

1 > bεb+1−εb−1

= b
ε√

1+log(b+2)
− ε√

1+log(b)

= exp

(
ε log(b)√

1 + log(b+ 2)
− ε log(b)√

1 + log(b)

)
> exp(

√
log(b+ 2)− 1−

√
log(b) + 1

)
,

which follows from ε < 1 and (log (b))2 > (log (b+ 2))2 − 1 for sufficiently large b (since
(log (b+ 2))2 − (log (b))2 converges to 0 as b grows). Thus, bεb+1−εb−1 converges to 1 as b in-
creases without bound. Using all of these, we can assert that the RHS of (A.15) goes to 0 as b
increases to infinity, and so we can bound it by a constant independent of n. Finally, by repeating
the arguments of Theorem 3, the expected regret is upper bounded by a linear function of d̃ and we
conclude that the expected regret is of the order O(log(n)).

A.2 Analysis of the Multi-server Erlang-B Queueing System

A.2.1 Lemma 18

Lemma 18. In a multi-server Erlang-B queueing system following policy ΠAlg1, the number of

accepted arrivals that find the system empty is almost surely infinite.

Proof. By observing Markov process {X̃n}∞n=0, we first argue that the system becomes empty
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infinitely often following our proposed policy. By coupling the two systems, we get

P
(

returns to state 0 at a finite time
∣∣∣Nn = 0, Xn = x, αn = α

)
≥ P

(
returns to state 0 at a finite time in a system that accepts all arrivals

∣∣∣Nn = 0
)

= 1.

Thus, state 0 is visited infinitely often. Let A be the event that the system admits a finite number
of arrivals at instances when the server is empty, A1 be the event that the system admits a finite
number of arrivals, and A2 be the event that the system gets empty a finite number of times. We
have P (A) ≤ P (A1) + P (A2) = 0, wherein P (A1) = 0 follows from the same arguments as
Lemma 17.

A.2.2 Lemma 10

We first present the following lemma, which is used in the proof of Lemma 10.

Lemma 19. [102, Theorem 2.19 ] let {(Di,Fi)}∞i=1 be a martingale difference sequence such that

for νi, αi > 0, we have E
[

exp(λ̃Di)
∣∣∣Fi−1

]
≤ exp

( λ̃2ν2i
2

)
a.s. for any |λ̃| < 1/αi. Then the sum∑n

i=1Di satisfies the concentration inequality

P
(∣∣∣ n∑

i=1

Di

∣∣∣ ≥ t
)
≤ 2 exp

(
−min

( t2

2
∑n

i=1 ν
2
i

,
t

2 max
i=1,...,n

αi

))
.

Proof of Lemma 10. Without loss of generality, we assume µ > c/R. Note that δ̃1 and δ̃2 are as
defined in Lemma 8. We define the martingale difference sequence {Y D

n }∞n=0 as Y D
n = Y M

n+1−Y M
n .

To verify the conditions of Lemma 19, we argue that E
[

exp(λ̃
∣∣Y D
i

∣∣) ∣∣∣Fi−1

]
is bounded for some

positive λ̃. We show this by proving E
[

exp(λ̃Y D
i )
∣∣∣Fi−1

]
and E

[
exp(−λ̃Y D

i )
∣∣∣Fi−1

]
are bounded

for some positive λ̃. From (2.43),

E
[

exp(λ̃Y D
i )
∣∣∣Fi−1

]
≤ E

[
exp

(
λ̃k
R

c
τi
) ∣∣∣Fi−1

]
≤ E

[
exp

(
λ̃k
R

c
ζi
)]
, (A.16)

where ζi is the first passage time of state zero starting from zero in a finite-state irreducible Markov
chain, and thus, sub-exponential. From [101, Theorem 2.8.2], the moment generating function of ζi
is bounded at some λ̃1 independent of i, which leads to a finite bound. For E

[
exp(−λ̃Y D

i )
∣∣∣Fi−1

]
,
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using (2.43),

E
[

exp(−λ̃Y D
i )
∣∣∣Fi−1

]
≤ E

[
exp

(
λ̃
(
k

τi∑
j=1

Tβi+j + cδ̃

)) ∣∣∣Fi−1

]

≤ E
[

exp
(
λ̃
(
k

ζi∑
j=1

Tβi+j + cδ̃

))]
.

From the above inequality, it suffices to show
∑ζi

j=1 Tβi+j is sub-exponential. From [101, Theorem

2.8.2], we need to argue that for some positive λ̃, E
[

exp
(
λ̃
∑ζi

j=1 Tβi+j

)]
≤ 2. For λ̃ < λ, we

define the martingale sequence {Mi,m}∞m=0 with respect to filtration {Gi,m}∞m=0 as

Mi,m =
exp

(
λ̃
∑m

j=1 Tβi+j

)
E
[
exp

(
λ̃
∑m

j=1 Tβi+j

)] =
exp

(
λ̃
∑m

j=1 Tβi+j

)
(

λ
λ−λ̃

)m .

The passage time ζi is a finite-mean stopping time for the martingale sequence {Mi,m}∞m=0. There-
fore, using the optional stopping theorem for non-negative supermartingale sequences, we have

E [Mi,ζi ] ≤ E [Mi,0] ,

or

E
[
exp

(
λ̃

ζi∑
j=1

Tβi+j
)( λ

λ− λ̃

)−ζi]
≤ 1.

Using Cauchy-Schwarz inequality, we have

E
[

exp
( λ̃

2

ζi∑
j=1

Tβi+j
)]
≤

√
E
[( λ

λ− λ̃
)ζi] =

√
E
[

exp
(

log
( λ

λ− λ̃
)
ζi
)]
. (A.17)

As ζi is a sub-exponential random variable, we can choose λ̃ such that the RHS of (A.17) is less
than or equal to 2 and the conditions of Lemma 19 are verified. Consequently, we apply Lemma 19
to conclude that

P
(
Y M
n ≤ −δ̃1n

)
= P

( n−1∑
i=0

(
Y M
i+1 − Y M

i

)
≤ −δ̃1n

)
≤ exp

(
−min

( δ̃2
1n

2

2nv2
,
δ̃1n

2α

))
= exp (−c3n) ,
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where ν and α are positive constants independent of n.

84



APPENDIX B

Appendix of Chapter 3

B.1 Proofs related to problem formulation

B.1.1 Ergodicity definitions

Suppose that Markov processX onX with transition kernel P is irreducible, aperiodic and positive
recurrent with stationary distribution µ and let f : X 7→ [1,∞) be a measurable function such that
µ(f) := Eµ[f(Y )] < +∞with Y ∼ µ. We are interested in conditions under which for a sequence
of positive numbers ρ := (ρ(n))n≥0,

lim
n→∞

ρ(n)‖P n(x, ·)− µ(·)‖f = 0, ∀x ∈ X , (B.1)

where for a signed measure µ̃ on X , ‖µ̃‖f := sup|g|≤f |µ̃(g)|. The sequence ρ is interpreted as
the rate function, and three different notions of ergodicity are distinguished based on the following
rate functions: ρ(n) ≡ 1, ρ(n) = ζn for ζ > 1, and ρ(n) = nζ−1 for ζ ≥ 1. Further, for each rate
function ρ, we state the Foster-Lyapunov characterization of ergodicity of the Markov process X ,
which provides sufficient conditions for (B.1) to hold.

1. If ρ(n) ≡ 1 for all n ≥ 0, the Markov process X satisfying (B.1) is said to be f -ergodic.
From [71], for an irreducible and aperiodic chain, f -ergodicity is equivalent to the existence
of a function V : X 7→ [0,∞), a finite set C, and positive constant b such that

∆V ≤ −f + bIC , (B.2)

where ∆V := PV −V with PV (x) :=
∑
x′∈X P (x,x′)V (x′). The drift condition (B.2) im-

plies positive recurrence of the Markov process, existence of a unique stationary distribution
µ, and µ(f) ≤ b < +∞ ([71], Theorem 14.3.7).

2. If ρ(n) = ζn for some ζ > 1, the Markov process X satisfying (B.1) is said to be f -
geometrically ergodic. From [71], for an irreducible and aperiodic chain, f -geometric
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ergodicity is equivalent to the existence of a function V : X 7→ [1,∞), a finite set C, a
constant γ ∈ (0, 1) and positive constant b such that

∆V ≤ −(1− γ)V + bIC . (B.3)

The drift condition (B.3) implies positive recurrence of the Markov process, existence of a
unique stationary distribution µ, and µ(V ) ≤ b

1−γ < +∞ ([71], Theorem 14.3.7). Moreover,
if f(·) ≡ 1 in (B.1), then the Markov processX is called geometrically ergodic.

3. If ρ(n) = nζ−1 for some ζ ≥ 1, the Markov process X satisfying (B.1) is said to be f -
polynomially ergodic. From [71, 44], for an irreducible and aperiodic chain, the existence
of a function V : X 7→ [1,∞), a finite set C, a constant α ∈ [0, 1), and positive constants c
and b such that

∆V ≤ −cV α + bIC (B.4)

implies Vζ-polynomial ergodicity of X at rate ρ(n) = nζ−1 for all ζ ∈ [1, 1/(1 − α)] with
Vζ = V 1−ζ(1−α). The drift condition (B.4) implies positive recurrence of the Markov process,
existence of a unique stationary distribution µ, and µ(V α) ≤ b

c
< +∞.

B.1.2 Lemma 20

Lemma 20. For any state x 6= 0d, there exists constants κ > 1 and c1 such that the following

holds for the hitting time of state 0d, τ0d ,

Ex[κτ0d ] ≤ c1V
g(x).

Proof. We define Ṽ :=
∑∞

n=0
0d
P nV g where

0d
P n is the n-step taboo probability [71] defined as

A
P n
xB = Px (Xn ∈ B, τA > n) ,
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for A,B ⊆ X , and τA is the first hitting time of set A. We also let
A
P 0
xB = IB(x). We have

0d
PṼ (x) =

∑
y 6=0d

PxyṼ (y)

=
∞∑
n=0

∑
y,z 6=0d

Pxy
0d
P n
yzV

g(z)

=
∞∑
n=0

∑
z 6=0d

0d
P n+1
xz V g(z)

= Ṽ (x)− V g(x).

In Appendix B.4.3, we argue that there exists b̃g > 1 such that Ṽ (y) ≤ b̃gV g(y) for all y ∈ X ,
which leads to

0d
PṼ = Ṽ − V g ≤ Ṽ − 1

b̃g
Ṽ =

(
1− 1

b̃g

)
Ṽ . (B.5)

Define Lyapunov function

Ṽ g(x) =

(1 + 2b̃g)Ṽ (x), if x 6= 0d,

1 +
(

2b̃g
)−1

, if x = 0d.

From the above equation and (B.5), we get

PṼ g(x) =
∑
y 6=0d

PxyṼ
g(y) + Px0dṼ

g(0d)

=
∑
y 6=0d

Pxy(1 + 2b̃g)Ṽ (y) + Px0d

(
1 +

1

2b̃g

)

≤
(

1− 1

b̃g

)
(1 + 2b̃g)Ṽ (x) + 1 +

1

2b̃g

≤
(

1− 1

b̃g

)
(1 + 2b̃g)Ṽ (x) +

(
1 +

1

2b̃g

)
Ṽ (x)

=

(
1− 1

2b̃g

)
(1 + 2b̃g)Ṽ (x).

Thus,

PṼ g(x) ≤
(

1− 1

2b̃g

)
Ṽ g(x) +

(
1− 1

2b̃g

)
(1 + 2b̃g)Ṽ (0d)I0d(x), x ∈ X .

To find an upper bound for Ex[κτ0d ], we apply [71, Theorem 15.2.5], which is a generalization of
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Lemma 25. For any 1 ≤ κ ≤ 2b̃g

2b̃g−1
, there exists ε > 0 such that

Ex
[ τ0d−1∑

i=0

Ṽ g(X i)κ
i
]
≤ ε−1κ−1Ṽ g(x).

As Ṽ g(y) ≥ 1 for all y ∈ X , we have

Ex[κτ0d ] ≤ κEx
[ τ0d−1∑

i=0

Ṽ g(X i)κ
i
]

≤ ε−1Ṽ g(x)

= ε−1
(

1 + 2b̃g
)
Ṽ (x)

≤ b̃gε−1
(

1 + 2b̃g
)
V g(x),

and the claim holds for any κ ∈ [1, 2b̃g

2b̃g−1
] and c1 = b̃gε−1

(
1 + 2b̃g

)
.

B.1.3 Poisson equation

For an irreducible Markov process on the countably-infinite space X with time-homogeneous tran-
sition kernel P and cost function c̄(·), a solution pair to the Poisson equation [65] is a scalar J and
function v(·) : X 7→ R such that J + v = c̄+Pv, where v(z) = 0 for some z ∈ X . If the Markov
process is also positive recurrent and Ex

[∑τy−1
i=0 |c̄(X(i))|

]
<∞, where τy is the first hitting time

of some state y ∈ X , then solution pair (J, v) given as

J =
Ey
[∑τy−1

i=0 |c̄(X(i))|
]

Ey[τy]
and v(x) = Ey

[ τx−1∑
i=0

|c̄(X(i))|
]
− JEx[τy], ∀x ∈ X ,

is a solution to the Poisson equation J + v = c̄+ Pv with v(z) = 0 [65, Theorem 9.5].

Lemma 21. Consider Markov Decision Processes (X ,A, c, Pθ) governed by parameter θ ∈ Θ

following the best-in-class policy π∗θ . Then the pair
(
J (θ) , vπ

∗
θ

)
given as

J(θ) :=
C̄π∗θ (0d)

Eπ
∗
θ

0d
[τ0d ]

and vπ
∗
θ (x) = C̄π∗θ (x)− J(θ)Eπ

∗
θ
x [τ0d ], ∀x ∈ X ,

is a solution to the Poisson equation v + J = c + P
π∗θ
θ v, where vπ

∗
θ (0d) = 0 and C̄π∗θ (x) =

Eπ
∗
θ
x

[∑τ
0d
−1

i=0 c(X(i), π∗θ(X(i)))
]
.
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Proof. From [65, Theorem 9.5], a solution pair to the Poisson equation exists if Eπ
∗
θ
x [τ0d ] and

C̄π∗θ (x) are finite for all x ∈ X . The former follows from positive recurrence assumed in Assump-
tion 3 and for the latter, from Assumptions 1 and 2,

C̄π∗θ (x) = Eπ
∗
θ
x

[ τ0d−1∑
i=0

c(X (i) , π∗θ(X (i)))
]

≤ Eπ
∗
θ
x

[ τ0d−1∑
i=0

d∑
j=1

K (Xj (i))r
]

≤ Eπ
∗
θ
x

[ τ0d−1∑
i=0

Kd (‖x‖∞ + hi)r
]

≤ Eπ
∗
θ
x [Kd (‖x‖∞ + hτ0d)

r τ0d ] ,

which is finite from geometric ergodicity (Assumption 3) and the discussion following that.

B.2 Proofs of regret analysis

In the subsequent sections, several equalities and inequalities in the proofs are between random
variables and hold almost surely (a.s.). Throughout the remainder, we will omit the explicit men-
tion of a.s., but any such statement should be interpreted in this context.

B.2.1 Proof of Lemma 11

Proof. Let {αi}i≥0 be the sequence of hitting times of state 0d starting from 0d (set α0 = 0).
Define τ (i)

0d
as the length of the i-th recurrence time of state 0d for i ∈ N, i.e., τ (i)

0d
= αi − αi−1.

For simplicity, we take τ0d = τ
(1)

0d
. Each such recurrence time is generated using policy π∗θi that is

determined using the algorithm in operation in an MDP governed by parameter θ∗. Furthermore,
{τ (i)

0d
}i∈N are independent with length at least 1, but they need not be identically distributed. The

time T can be in the middle of one of these recurrence times, hence the current recurrence interval
count is N(T ) = inf{n :

∑n
i=1 τ

(i)

0d
≥ T}. Note that the lower bound of 1 on every τ (i)

0d
says that

N(T ) ≤ T a.s. Further, from the skip-free to the right property, the most any component of state
can increase in during recurrence time τ (i)

0d
is hτ (i)

0d
. Hence, the most any component of the state

(and also the ‖ · ‖∞ norm of the state) can increase is given by hmaxi=1,...,T τ
(i)

0d
where the random

variables are independent with geometrically decaying tails with a worst case rate of

sup
θ1,θ2∈Θ

γ̃gθ1,θ2 = 1−
(

sup
θ1,θ2∈Θ

b̃gθ1,θ2

)−1

;
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see Lemma 24. From Lemma 23, we have

b̃gθ1,θ2 =
3bgθ1,θ2 + 1

1− γgθ1,θ2

(
|Cg

θ1,θ2
|2 max

(
1, max
u∈Cgθ1,θ2\{0

d}
E
π∗θ2
u [τ0d ]

))
≤ 3bg∗ + 1

1− γg∗

(
|Cg
∗ |2 max

(
1, sup
u∈Cg∗\{0d}
θ1,θ2∈Θ

φpθ1,θ2(1)
(
V p
θ1,θ2

(u) + bpθ1,θ2αC
p
θ1,θ2

)))

≤ 3bg∗ + 1

1− γg∗

(
|Cg
∗ |2 max

(
1, sup
u∈Cg∗\{0d}
θ1,θ2∈Θ

1

βpθ1,θ2

(
spθ1,θ2‖u‖

rpθ1,θ2∞ +
bpθ1,θ2

miny∈Cpθ1,θ2
Kθ1,θ2(y)

)))

≤ 3bg∗ + 1

1− γg∗

(
|Cg
∗ |2 max

(
1, sup
u∈Cg∗\{0d}

1

βp∗

(
sp∗‖u‖r

p
∗
∞ +

bp∗
K∗

)))
(B.6)

:= b̃g∗,

and we define γ̃g∗ := 1− (b̃g∗)
−1. From the definition of bgθ1,θ2 in Assumption 3, bgθ1,θ2 is greater than

or equal to 2. Thus, b̃gθ1,θ2 ≥ 7 and we have

sup
θ1,θ2∈Θ

cgθ1,θ2 = sup
θ1,θ2∈Θ

bgθ1,θ2

(
b̃gθ1,θ2

)2

b̃gθ1,θ2 − 1
≤
bg∗

(
b̃g∗

)2

6
:= cg∗,

and as a result of Lemma 24,

P0d(τ
(i)

0d
> n) ≤ cg∗ (γg∗)

n , 1 ≤ i ≤ T. (B.7)
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We upper bound E
[
MT
θ∗
]

using the independence of {τ (i)

0d
}i∈N and the above equation,

E
[
MT
θ∗
]
≤ hE[ max

1≤i≤T
τ

(i)

0d
]

= h
∞∑
n=0

P( max
1≤i≤T

τ
(i)

0d
> n)

= h
∞∑
n=0

(
1− P( max

1≤i≤T
τ

(i)

0d
≤ n)

)

= h

∞∑
n=0

(
1−

T∏
i=1

P
(
τ

(i)

0d
≤ n

))

≤ hn0 + h
∞∑

n=n0

1−
(
1− cg∗ (γg∗)

n0 (γg∗)
n−n0

)T
≤ h(n0 + 1) + h

∞∑
n=n0+1

1−
(
1− (γg∗)

n−n0
)T
,

where n0 is the smallest n ≥ 0 such that cg∗ (γg∗)
n < 1. By Reimann sum approximation, we get

E
[
MT
θ∗
]
≤ h(n0 + 1) + h

∞∑
n=1

1− (1− (γg∗)
n)
T

< h(n0 + 1) + h

∫ ∞
0

1− (1− (γg∗)
u)
T
du

= h(n0 + 1) +
h

log γg∗

∫ 1

0

1− uT

1− u
du

≤ h(n0 + 1) +
h

log γg∗
(log T + 1) ,

where the last inequality follows from
∑T

n=1 n
−1 ≤ log T + 1 and thus E

[
MT
θ∗
]

is O(h log T ). We
now extend the result to moments of order greater than one. From (B.7), for 1 ≤ i ≤ T ,

P0d(τ
(i)

0d
> n) ≤ cg∗ (γg∗)

n = cg∗ (γg∗)
n0 (γg∗)

n−n0 < (γg∗)
n−n0 .

For n ≥ n0, let t = n− n0 ≥ 0 and Yi = max(τ
(i)

0d
− n0, 0) to get

P0d(Yi > t) = P0d(τ
(i)

0d
− n0 > t) < (γg∗)

t ,

which means random variables {Yi}Ti=1 are stochastically dominated by independent and identi-
cally distributed geometric random variables with parameter 1− γg∗ . Furthermore, [93] argues that
the p-th moment of the maximum of T independent and identically distributed geometric random
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variables is O(logp T ). Thus, the p-th moment of max1≤i≤T Yi is O(logp T ) and

max
1≤i≤T

Yi = max(τ
(1)

0d
− n0, . . . , τ

(T )

0d
− n0, 0)

= max(τ
(1)

0d
, . . . , τ

(T )

0d
, n0)− n0

≥ max(τ
(1)

0d
, . . . , τ

(T )

0d
)− n0

≥ h−1MT
θ∗ − n0,

which gives

E
[(
MT
θ∗
)p] ≤ hp E

[(
max
1≤i≤T

τ
(i)

0d

)p]
≤ hp E

[(
max
1≤i≤T

Yi + n0

)p]
.

Since the right-hand side of the above equation is O(hp logp T ), the claim is proved.

B.2.2 Proof of Lemma 12

Proof. Let KM(x, a) be the number of episodes k such that 1 ≤ k ≤ KT and in which the number
of visits to the state-action pair (x, a) is increased more than twice at episode k, or

KM(x, a) = |{k ≤ KT : Nt̃k+1
(x, a) > 2Ntk(x, a)}|.

As for every episode in the above set the number of visits to (x, a) doubles,

KM(x, a) ≤ log2(NT+1(x, a)) + 1,

and we can upper bound KM as follows

KM =
∑

x∈X ,a∈A

KM(x, a)

=
∑

‖x‖∞≤MT
θ∗

a∈A

KM(x, a)

≤
∑

‖x‖∞≤MT
θ∗

a∈A

(1 + log2NT+1(x, a))

≤ |A |
(
MT
θ∗ + 1

)d
(1 + log2 T ).

This completes the proof.
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B.2.3 Proof of Lemma 13

Proof. We define macro episodes with start times tnk , k = 1, 2, . . . , KM + 1 where tn1 = t1,
tnKM+1

= T + 1 (which is equivalent to nKM+1 = KT + 1), and for 1 < k < KM + 1

tnk+1
= min{tj > tnk : Ntj(x, a) > 2Ntj−1

(x, a) for some (x, a)},

which are episodes wherein the second stopping criterion is triggered. Any episode (except for
the last episode) in a macro episode must be triggered by the first stopping criterion; equivalently,
T̃j = T̃j−1 + 1 for all j = nk, nk + 1, . . . , nk+1 − 2. For 1 ≤ k ≤ KM , let TMk =

∑nk+1−1
j=nk

Tj be
the length of the k-th macro episode. We have

TMk =

nk+1−1∑
j=nk

Tj ≥
nk+1−1∑
j=nk

T̃j ≥ 1 +

nk+1−2∑
j=nk

(j − nk + 2) = 0.5(nk+1 − nk)(nk+1 − nk + 1).

Consequently, nk+1 − nk ≤
√

2TMk for all 1 ≤ k ≤ KM . From this, we obtain

KT =nKM+1 − 1 =

KM∑
k=1

(nk+1 − nk) ≤
KM∑
k=1

√
2TMk .

Using the above equation and the fact that
∑KM

k=1 T
M
k = T we get

KT ≤
KM∑
k=1

√
2TMk ≤

√√√√KM

KM∑
k=1

2TMk =
√

2KMT .

Finally, from Lemma 12 we get

KT ≤
√

2KMT ≤ 2

√
| A |

(
MT
θ∗ + 1

)d
T log2 T .

This completes the proof.

93



B.2.4 Proof of Lemma 14

Proof. Let Ek = Tk − T̃k ≥ 0 be the settling time needed to return to state 0d after a stopping
criterion is realized in episode k. We have

R0 = E
[ KT∑
k=1

TkJ(θk)
]
− T E

[
J(θ∗)

]
= E

[ KT∑
k=1

T̃kJ(θk)
]

+ E
[ KT∑
k=1

EkJ(θk)
]
− T E

[
J(θ∗)

]
. (B.8)

We first simplify the first term in the above summation. From the monotone convergence theorem,

E
[ KT∑
k=1

T̃kJ(θk)
]

=
∞∑
k=1

E
[
I{tk≤T}T̃kJ(θk)

]
.

Note that the first stopping criterion of Algorithm 2 ensures that T̃k ≤ T̃k−1 + 1 at all episodes
k ≥ 1. Hence

E
[
I{tk≤T}T̃kJ(θk)

]
≤E

[
I{tk≤T}(T̃k−1 + 1)J(θk)

]
.

Since I{tk≤T}(T̃k−1 + 1) is measurable with respect toHtk , by (3.15) we get

E
[
I{tk≤T}(T̃k−1 + 1)J(θk)

]
=E

[
I{tk≤T}(T̃k−1 + 1)J(θ∗)

]
.

Therefore,

E
[ KT∑
k=1

T̃kJ(θk)
]
≤

∞∑
k=1

E
[
I{tk≤T}(T̃k−1 + 1)J(θ∗)

]
= E

[ KT∑
k=1

(T̃k−1 + 1)J(θ∗)
]
.

Thus,

E
[ KT∑
k=1

T̃kJ(θk)
]
− T E

[
J(θ∗)

]
≤ E

[
J(θ∗)

KT∑
k=1

(T̃k−1 + 1)
]
− E

[
J(θ∗)

KT∑
k=1

Tk

]
= E

[
J(θ∗)

(
KT + 1− TKT −

KT−1∑
k=1

Ek

)]
≤ E

[
J(θ∗)KT

]
. (B.9)
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For the second term in (B.8), from Assumption 5

E
[ KT∑
k=1

EkJ(θk)
]
≤ J∗ E

[ KT∑
k=1

Ek

]
≤ J∗ E[KT max

1≤i≤T
τ

(i)

0d
]. (B.10)

Substitutinh (B.9) and (B.10) in (B.8), we get

R0 ≤ E [KTJ(θ∗)] + J∗ E[KT max
1≤i≤T

τ
(i)

0d
]

≤ J∗ E [KT ] + J∗ E[KT max
1≤i≤T

τ
(i)

0d
]

= J∗ E
[
KT

(
max
1≤i≤T

τ
(i)

0d
+ 1
)]
.

B.2.5 Proof of Lemma 15

Proof. We note that the state of the MDP is equal to 0d at the beginning of all episodes and the
relative value function v(x; θ) is equal to 0 at x = 0d for all θ. Thus,

R1 = E
[ KT∑
k=1

tk+1−1∑
t=tk

[
v (X (t) ; θk)− v (X (t+ 1) ; θk)

]]
= E

[ KT∑
k=1

[
v (X (tk) ; θk)− v (X (tk+1) ; θk)

]]
= E

[KT−1∑
k=1

[
v
(
0d; θk

)
− v

(
0d; θk

) ]
+ v

(
0d; θKT

)
− v (X(T + 1); θKT )

]
= −E[v (X(T + 1); θKT )].

From the lower bound derived for the relative value function in (3.17),

−v(x; θ) ≤ J∗Eπ
∗
θ
x [τ0d ] ≤

J∗

βp∗

(
sp∗‖x‖r

p
∗
∞ +

bp∗
K∗

)
,

where the second inequality follows from (B.6) in the proof of Lemma 11. We also note that
‖X(T + 1)‖∞ ≤MT

θ∗ + h. Thus,

R1 = −E[v (X(T + 1); θKT )] ≤ E
[J∗
βp∗

(
sp∗(M

T
θ∗ + h)r

p
∗ +

bp∗
K∗

)]
.
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From the inequality (a+ b)r ≤ 2r(ar + br), we have

R1 ≤
J∗2r

p
∗sp∗

βp∗
E
[ (
MT
θ∗
)rp∗ ]+

J∗

βp∗

(
sp∗ (2h)r

p
∗ +

bp∗
K∗

)
.

B.2.6 Proof of Lemma 16

Proof. LetZ (t) =
(
X (t) , π∗θk (X (t))

)
be the state-action pair at tk ≤ t < tk+1. R2 can be upper

bounded as

R2 = E
[ KT∑
k=1

tk+1−1∑
t=tk

[
v (X (t+ 1) ; θk)−

∑
y∈X

Pθk

(
y
∣∣∣X (t) , π∗θk (X (t))

)
v (y; θk)

]]

≤ E
[ KT∑
k=1

tk+1−1∑
t=tk

[∑
y∈X

|Pθ∗(y|Z (t))− Pθk(y|Z (t))| |v(y; θk)|
]]

≤
T∑
t=1

E
[(

max
1≤k≤KT
‖x‖∞≤MT

θ∗

|v(x; θk)|
)
‖Pθ∗(·|Z (t))− Pθk(·|Z (t))‖1

]
. (B.11)

We have

‖Pθ∗(·|Z(t))− Pθk(·|Z(t))‖1 ≤ ‖Pθ∗(·|Z(t))− Pθ̂k(·|Z(t))‖1 + ‖Pθk(·|Z(t))− Pθ̂k(·|Z(t))‖1,

where Pθ̂k(y|Z (t)) is the empirical transition probability defined as

Pθ̂k(y|Z (t)) =
Ntk (Z (t) ,y)

max (1, Ntk (Z (t)))
,

and for any tuple (x, a,y), we define N1(x, a,y) = 0 and for t > 1,

Nt(x, a,y) = |{tk ≤ i < t̃k+1 ≤ t for some k ≥ 1 : (X (i) , A (i) ,X (i+ 1)) = (x, a,y)}|.

Thus, from (B.11) and defining random variable vM = max 1≤k≤KT
‖x‖∞≤MT

θ∗

|v(x; θk)|,

R2 ≤
T∑
t=1

E
[
vM‖Pθ∗(·|Z (t))− Pθ̂k(·|Z (t))‖1

]
+

T∑
t=1

E
[
vM‖Pθk(·|Z (t))− Pθ̂k(·|Z (t))‖1

]
.

(B.12)
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We define set Bk as the set of parameters θ for which the transition kernel Pθ(·|z) is close to the
empirical transition kernel Pθ̂k(·|z) at episode k for every state-action pair z = (x, a) ∈ X ×A,
or

Bk =
{
θ : ‖Pθ(·|z)− Pθ̂k(·|z)‖1 ≤ βk(z), z = (x, a) ∈ {0, 1, · · · , hT}d ×A

}
,

where βk(z) =

√
14

∏d
i=1(xi+h)

max(1,Ntk (z))
log
(

2|A|T
δ̃

)
for x = (x1, . . . , xd) and some 0 < δ̃ < 1, which will

be determined later. We simplify the `1-difference of the real and empirical transition kernels as
follows

‖Pθ∗(·|Z (t))− Pθ̂k(·|Z (t))‖1

= I{θ∗ /∈Bk}‖Pθ∗(·|Z (t))− Pθ̂k(·|Z (t))‖1 + I{θ∗∈Bk}‖Pθ∗(·|Z (t))− Pθ̂k(·|Z (t))‖1

≤ 2I{θ∗ /∈Bk} + βk (Z (t)) .

Similarly, we have

‖Pθk(·|Z (t))− Pθ̂k(·|Z (t))‖1 ≤ 2I{θk /∈Bk} + βk (Z (t)) .

Substituting in (B.12), we get

R2 ≤ E
[ KT∑
k=1

tk+1−1∑
t=tk

2vM
[
I{θ∗ /∈Bk} + I{θk /∈Bk}

] ]
+ E

[ KT∑
k=1

tk+1−1∑
t=tk

2vMβk (Z (t))
]
. (B.13)

We first find an upper bound for vM = max 1≤k≤KT
‖x‖∞≤MT

θ∗

|v(x; θk)| using the bounds derived in (3.16)

and (3.17). From (3.16),

v(x; θk) ≤ E
π∗θk
x [Kd (‖x‖∞ + hτ0d)

r τ0d ]

≤ E
π∗θk
x [2rKd (‖x‖r∞ + hr(τ0d)

r) τ0d ]

= Kd(2‖x‖∞)rE
π∗θk
x [τ0d ] +Kd(2h)rE

π∗θk
x

[
(τ0d)

r+1
]

≤ Kd2r (‖x‖r∞ + hr)E
π∗θk
x

[
(τ0d)

r+1
]

≤ Kd(r + 1)2r (‖x‖r∞ + hr)φpθk(r + 1)
(
V p
θk

(x) + bpθkαC
p
θk

)
≤ Kd(r + 1)2r (‖x‖r∞ + hr)φpθk(r + 1)

(
sp∗‖x‖r

p
∗
∞ + bp∗(K∗)

−1
)
, (B.14)
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where the second line follows from the inequality (a + b)r ≤ 2r(ar + br), the fifth line from
Lemma 23, and the last line from Assumption 4 and (B.6). We further have

φpθ1,θ2(r + 1) =
r+1∏
j=1

1

β
ηj
θ1,θ2

(
2j−1 + (j − 1)αCpθ1,θ2

b
ηj
θ1,θ2

)
≤

r+1∏
j=1

r + 1

min(1, βp∗)

(
2j−1 + (j − 1) (K∗)

−1b
ηj
θ1,θ2

)
,

where using the definition of bηjθ1,θ2 in (B.23),

b
ηj
θ1,θ2

=
(
bpθ1,θ2

)ηj
+ ηjβ̃

p
θ1,θ2

max
(

1,
(
β̃pθ1,θ2

)(αpθ1,θ2
+ηj−1)/(1−αpθ1,θ2 ) )

≤ 1 + bp∗ + βp∗ .

We also define

φp∗(r + 1) :=
r+1∏
j=1

r + 1

min(1, βp∗)

(
2j−1 + (j − 1) (K∗)

−1(1 + bp∗ + βp∗)
)
.

We next find a lower bound for v(x; θk) using (3.17) as follows:

v(x; θk) ≥ −J∗E
π∗θk
x [τ0d ] ≥ −

J∗

βp∗

(
sp∗‖x‖r

p
∗
∞ +

bp∗
K∗

)
.

Combining (B.14) and the above equation, we get a uniform upper bound for |v(x; θk)| over Θ,
which we use to upper bound vM = max 1≤k≤KT

‖x‖∞≤MT
θ∗

|v(x; θk)| as below

vM ≤ (J∗ +Kd(r + 1)2r)φp∗(r + 1)
((
MT
θ∗
)r

+ hr
) (
sp∗
(
MT
θ∗
)rp∗ + bp∗(K∗)

−1
)

= cp1
((
MT
θ∗
)r

+ hr
) (
sp∗
(
MT
θ∗
)rp∗ + bp∗(K∗)

−1
)

≤ cp2
(
MT
θ∗
)r+rp∗ , (B.15)

where the constant terms are defined as

cp1 := (J∗ +Kd(r + 1)2r)φp∗(r + 1), cp2 := max
(
1, cp1(h

r + 1)(sp∗ + bp∗(K∗)
−1)
)
.

A deterministic upper bound on vM can also be found from the above equation. Noting that from
Assumption 2, until time T only states with each component less than or equal to hT are visited,
we have

vM ≤ cp2
(
MT
θ∗
)r+rp∗ ≤ cp2(Th)r+r

p
∗ := Q(T ),
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where Q(T ) is a polynomial defined as above. Using the bounds derived for vM , we bound R2

starting with the first term on the right-hand side of (B.13). We have

E
[ KT∑
k=1

tk+1−1∑
t=tk

2vM
[
I{θ∗ /∈Bk} + I{θk /∈Bk}

] ]
≤ 2Q(T )E

[ KT∑
k=1

tk+1−1∑
t=tk

I{θ∗ /∈Bk} + I{θk /∈Bk}
]

≤ 2TQ(T )E
[ KT∑
k=1

I{θ∗ /∈Bk} + I{θk /∈Bk}
]

≤ 2TQ(T )
T∑
k=1

E
[
I{θ∗ /∈Bk} + I{θk /∈Bk}

]
≤ 4TQ(T )

T∑
k=1

P{θ∗ /∈ Bk}, (B.16)

where the last inequality follows from (3.15) and the fact that set Bk is Htk−measurable. To
further simplify the first term in (B.13), we find an upper bound for P {θ∗ /∈ Bk} using [105]. For
a fixed z = (x, a) and n independent samples of the distribution Pθ∗(.|z), the L1-deviation of the
true distribution Pθ∗(.|z) and empirical distribution at the end of episode k, Pθ̂k(.|z), is bounded
in [12] as

P

‖Pθ∗(·|z)− Pθ̂k(·|z)‖1 ≥

√
14
∏d

i=1(xi + h)

n
log

(
2|A|T
δ̃

) ≤ δ̃

20|A|T 7
∏d

i=1(xi + h)
.

Therefore,

P
{
‖Pθ∗(·|z)− Pθ̂k(·|z)‖1 ≥ βk(z)

∣∣∣Ntk(z) = n
}
≤ δ̃

20|A|T 7
∏d

i=1(xi + h)
,

and

P
{
‖Pθ∗(·|z)− Pθ̂k(·|z)‖1 ≥ βk(z)

}
=

T∑
n=1

P
{
‖Pθ∗(·|z)− Pθ̂k(·|z)‖1 ≥ βk(z)

∣∣∣Ntk(z) = n
}
P {Ntk(z) = n}

≤ δ̃

20|A|T 6
∏d

i=1(xi + h)
.
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The probability that at episode k ≤ T , the true parameter θ∗ does not belong to the confidence set
Bk can be bounded using the above and union bound as

P{θ∗ /∈ Bk} ≤
∑

z∈{0,1,··· ,hT}d×A

P
{
‖Pθ∗(·|z)− Pθ̂k(·|z)‖1 ≥ βk(z)

}
≤

∑
z∈{0,1,··· ,hT}d×A

δ̃

20|A|T 6
∏d

i=1(xi + h)

=
∑

x∈{0,1,··· ,hT}d

δ̃

20T 6
∏d

i=1(xi + h)

≤ δ̃

20T 6
(log (h(T + 1)) + 1)d

≤ δ̃

20k6
(log (h(T + 1)) + 1)d .

In the summation in the above equation, we have simplified the expression by summing over
xi ≤ hT instead of considering the more detailed summation over xi ≤ MT

θ∗ . However, this
simplification does not affect the final evaluation of regret, as this term is not dominant and only
contributes to a logarithmic term in the regret bound. Substituting in (B.16),

E
[ KT∑
k=1

tk+1−1∑
t=tk

2vM
[
I{θ∗ /∈Bk} + I{θk /∈Bk}

] ]
≤ 4TQ(T )

T∑
k=1

P{θ∗ /∈ Bk}

≤ δ̃ (log (h(T + 1)) + 1)d TQ(T )

5

∞∑
k=1

1

k6

< δ̃ (log (h(T + 1)) + 1)d TQ(T ). (B.17)

We now upper bound the second term in (B.13). From (B.15),

E
[ KT∑
k=1

tk+1−1∑
t=tk

2vMβk (Z (t))
]
≤ 2cp2 E

[ (
MT
θ∗
)r+rp∗ KT∑

k=1

tk+1−1∑
t=tk

βk (Z (t))
]
. (B.18)
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To bound the regret term resulting from the summation of βk (Z (t)), we note that from the second
stopping criterion, Nt (Z (t)) ≤ 2Ntk (Z (t)) for all tk ≤ t < tk+1 and

KT∑
k=1

tk+1−1∑
t=tk

βk (Z (t))

=

KT∑
k=1

tk+1−1∑
t=tk

√
14
∏d

i=1(X i (t) + h)

max(1, Ntk(Z (t)))
log

(
2|A|T
δ̃

)

≤

√
14 log

(
2|A|T
δ̃

) KT∑
k=1

t̃k+1−1∑
t=tk

√
2
∏d

i=1(X i (t) + h)

max(1, Nt(Z (t)))
+

KT∑
k=1

tk+1−1∑
t=t̃k+1

√√√√ d∏
i=1

(X i (t) + h)

 .
(B.19)

The first summation can be simplified as

KT∑
k=1

t̃k+1−1∑
t=tk

√
2
∏d

i=1(X i (t) + h)

max(1, Nt(Z (t)))
≤
√

2(MT
θ∗ + h)d

KT∑
k=1

t̃k+1−1∑
t=tk

1√
max(1, Nt(Z (t)))

≤ 3
√

2(MT
θ∗ + h)d

∑
z∈{0,1,··· ,MT

θ∗}
d×A

√
NT+1(z)

≤ 3
√

2|A|(MT
θ∗ + h)d

√ ∑
z∈{0,1,··· ,MT

θ∗}
d×A

NT+1(z)
]

≤ 3
√

2|A|T (MT
θ∗ + h)d,

where the second inequality is due to the following arguments,

KT∑
k=1

t̃k+1−1∑
t=tk

1√
max(1, Nt(Z (t)))

=
∑

z∈{0,1,··· ,MT
θ∗}

d×A

I{NT+1(z)>0} +

NT+1(z)−1∑
i=1

1√
i


≤ 3

∑
z∈{0,1,··· ,MT

θ∗}
d×A

√
NT+1(z).
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For the second term in (B.19), we get

KT∑
k=1

tk+1−1∑
t=t̃k+1

√√√√ d∏
i=1

(X i (t) + h) =
√

(MT
θ∗ + h)d

KT∑
k=1

Ek

≤ KT

(
max
1≤i≤T

τ
(i)

0d

)√
(MT

θ∗ + h)d

≤ 2
√
|A|T log2 T

(
max
1≤i≤T

τ
(i)

0d

)
(MT

θ∗ + h)d,

where Ek = Tk − T̃k, and KT is bounded from Lemma 13. Thus
∑KT

k=1

∑tk+1−1
t=tk

βk (Z (t)) is
bounded as

KT∑
k=1

tk+1−1∑
t=tk

βk (Z (t)) ≤ 24

√
|A|T log2 T log

(
2|A|T
δ̃

)(
max
1≤i≤T

τ
(i)

0d

)
(MT

θ∗ + h)d.

Substituting the above bound in (B.18),

E
[ KT∑
k=1

tk+1−1∑
t=tk

2vMβk (Z (t))
]

≤ 48cp2

√
|A|T log2 T log

(
2|A|T
δ̃

)
E
[ (
MT
θ∗
)r+rp∗ (MT

θ∗ + h)d
(

max
1≤i≤T

τ
(i)

0d

)]
≤ cp3

√
|A|T log2 T log

(
2|A|T
δ̃

)
E
[
(MT

θ∗ + h)d+r+rp∗

(
max
1≤i≤T

τ
(i)

0d

)]
,

where cp3 := 48cp2 . Finally, from the above equation, (B.17), and (B.13),

R2 ≤ δ̃ (log (h(T + 1)) + 1)d TQ(T )

+ cp3

√
|A|T log2 T log

(
2|A|T
δ̃

)
E
[
(MT

θ∗ + h)d+r+rp∗
(

max
1≤i≤T

τ
(i)

0d

)]
.

By choosing δ̃ = 1
TQ(T )

, we get

R2

≤ (log(h(T + 1)) + 1)d + cp3
√
|A|T log2 T log(2|A|T 2Q(T ))E

[
(MT

θ∗ + h)d+r+rp∗
(

max
1≤i≤T

τ
(i)

0d

)]
,

≤ (log(h(T + 1)) + 1)d + cp3
√
|A|T log2

(
2|A|T 2Q(T )

)
E
[
(MT

θ∗ + h)d+r+rp∗
(

max
1≤i≤T

τ
(i)

0d

)]
,
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where Q(T ) = cp2(Th)r+r
p
∗ .

B.2.7 Proof of Theorem 8

Proof. Lemmas 14, 15, and 16 along with Cauchy-Schwarz inequality showed that the regret
terms R0 and R2 are of the order Õ(KrdJ∗hd+2r+rp∗

√
|A|T ) and the term R1 is Õ(J∗(h)r

p
∗).

Therefore, from R(T, πTSDE) = R0 + R1 + R2, the regret of Algorithm 2, R(T, πTSDE), is
Õ(KrdJ∗hd+2r+rp∗

√
|A|T ).

B.2.8 Requirement of an optimal policy oracle.

To implement our algorithm, we need to find the optimal policy for each model sampled by the
algorithm—optimal policy for Theorem 8 and optimal policy within policy class Π for Corollary 3;
this has also been used in past work [36, 37, 56]. In the finite state-space setting, [80] provides a
schedule of ε values and selects ε-optimal policies to obtain Õ(

√
T ) regret guarantees. The issue

with extending the analysis of [80] to the countable state-space setting is that we need to ensure
(uniform) ergodicity for the chosen ε-optimal policies; the lim sup or lim inf of the time-average
expected reward (used to define the average cost problem) being finite doesn’t imply ergodicity. In
other words, we must formulate (and verify) ergodicity assumptions for a potentially large set of
close-to-optimal algorithms whose structure is undetermined. Another issue is that, to the best of
our knowledge, there isn’t a general structural characterization of all ε-optimal stationary policies
for countable state-space MDPs or even a characterization of the policy within this set that is se-
lected by any computational procedure in the literature; current results only discuss existence and
characterization of the stationary optimal policy. In the absence of such results, stability assump-
tions with the same uniformity across models as in our submission will be needed, which are likely
too strong to be useful.

If we could verify the stability requirements of Assumptions 3 and 4 for a subset of policies,
the optimal oracle is not needed, and instead, by choosing approximately optimal policies within
this subset, we can follow the same proof steps as [80] to guarantee regret performance similar to
Corollary 3 (without knowledge of model parameters). To theoretically analyze the performance of
the algorithm that follows an approximately optimal policy rather than the optimal one, we assume
that for a specific sequence of {εk}∞k=1, an εk-optimal policy is given, which is defined below.

Definition 2. Policy π ∈ Π is called an ε-optimal policy if for every θ ∈ Θ,

c(x, π(x)) +
∑
y∈X

Pθ(y|x, π(x))v(y; θ) ≤ c(x, π∗θ(x)) +
∑
y∈X

Pθ(y|x, π∗θ(x))v(y; θ) + ε,
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where π∗θ is the optimal policy in the policy class Π corresponding to parameter θ and v(.; θ) is the

solution to Poisson equation (3.6).

Given ε-optimal policies that satisfy Assumptions 3 and 4, in Theorem 9 we extend the regret
guarantees of Corollary 3 to the algorithm employing ε-optimal policy, instead of the best-in-class
policy, and show that the same regret upper bounds continue to apply.

Theorem 10. Consider a non-negative sequence {εk}∞k=1 such that for every k ∈ N, εk is bounded

above by 1
k+1

and an εk-optimal policy satisfying Assumptions 3 and 4 is given. The regret incurred

by Algorithm 2 while using the εk-optimal policy during any episode k is Õ(dhd
√
|A|T ).

Proof. For the εk-optimal policy used in episode k, shown by πεk , we have

c(x, πεk(x)) +
∑
y∈X

Pθk(y|x, πεk(x))v(y; θk)

≤ c(x, π∗θk(x)) +
∑
y∈X

Pθk(y|x, π∗θk(x))v(y; θk) + εk

= J(θk) + v(x; θk) + εk.

Thus,

R(T, πTSDE) = E
[ KT∑
k=1

tk+1−1∑
t=tk

c(X(t), πεk(X(t)))
]
− T E [J (θ∗)]

= R0 +R1 +R2 + E
[ KT∑
k=1

Tkεk

]
with R0 =E

[ KT∑
k=1

TkJ(θk)
]
− T E

[
J(θ∗)

]
,

R1 =E
[ KT∑
k=1

tk+1−1∑
t=tk

[
v(X(t); θk)− v(X(t+ 1); θk)

]]
,

R2 =E
[ KT∑
k=1

tk+1−1∑
t=tk

[
v(X(t+ 1); θk)−

∑
y∈X

Pθk(y|X(t), πεk(X(t)))v(y; θk)
]]
.

We assumed that given ε-optimal policies satisfy Assumptions 3 and 4. As a result, we can utilize
the proof of Theorem 8 to deduce that the term R0 + R1 + R2 is of the order Õ(dhd

√
|A|T ).

Moreover, we can simplify the term E
[∑KT

k=1 Tkεk

]
as below:

E
[ KT∑
k=1

Tkεk

]
= E

[ KT∑
k=1

T̃kεk

]
+ E

[ KT∑
k=1

Ekεk

]
. (B.20)
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From the second stopping condition of Algorithm 2, we have T̃k ≤ T̃k−1 + 1 ≤ . . . ≤ k + 1 and

E
[ KT∑
k=1

Tkεk

]
≤ E[KT ],

where we have used the assumption that εk ≤ 1
k+1

. For the second term of (B.20), from (B.10)

E
[ KT∑
k=1

Ekεk

]
≤ E

[ KT∑
k=1

Ek
k + 1

]
≤ E

[
max
1≤i≤T

τ
(i)

0d

KT∑
k=1

1

k + 1

]
≤ E

[
max
1≤i≤T

τ
(i)

0d
log(KT + 1)

]
, (B.21)

where in the last inequality we have used
∑n

i=1
1
n
≤ 1 + log(n). Finally, as a result of Lemma 11

and Lemma 13, the result follows.

B.3 Bounds on hitting times under polynomial and geometric
ergodicity

B.3.1 Polynomial upper bounds for the moments of hitting time of state 0d

For any θ1, θ2 ∈ Θ, consider the Markov process with transition kernel P
π∗θ2
θ1

obtained from the
MDP (X ,A, c, Pθ1) by following policy π∗θ2 . [44, Lemma 3.5] establishes that if the process is
polynomially ergodic, equivalently satisfies (3.4), then for every 0 < η ≤ 1, there exists constants
βηθ1,θ2 , bηθ1,θ2 > 0 such that the following holds:

∆
(
V p
θ1,θ2

)η
(x) ≤ −βηθ1,θ2

(
V p
θ1,θ2

(x)
)αpθ1,θ2+η−1

+ bηθ1,θ2ICpθ1,θ2 (x), x ∈ X , (B.22)

where for η ∈ (0, 1), β̃pθ1,θ2 := min(βpθ1,θ2 , 1) and

βηθ1,θ2 = ηβ̃pθ1,θ2 , b
η
θ1,θ2

=
(
bpθ1,θ2

)η
+ ηβ̃pθ1,θ2 max

(
1,
(
β̃pθ1,θ2

)(αpθ1,θ2
+η−1)/(1−αpθ1,θ2 )

)
, (B.23)

and for η = 1, βηθ1,θ2 = βpθ1,θ2 and bηθ1,θ2 = bpθ1,θ2 . Consequently, the following result is immediate
from the proof of [44, Theorem 3.6]; for completeness, we provide the proof in Appendix B.4.1.

Lemma 22. Suppose a finite set Cp
θ1,θ2

, constants βpθ1,θ2 , b
p
θ1,θ2

> 0, r/(r + 1) ≤ αpθ1,θ2 < 1, and
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a function V p
θ1,θ2

: X → [1,+∞) exist such that (3.4) holds. Then, there exist a sequence of non-

negative functions V i
θ1,θ2

: X → [1,+∞) for i = 0, . . . , r + 1 that satisfy the following system of

drift equations for finite sets Ci
θ1,θ2

, constants biθ1,θ2 ≥ 0 and βiθ1,θ2 > 0:

∆V i−1
θ1,θ2

(x) ≤ −βiθ1,θ2V
i
θ1,θ2

(x) + biθ1,θ2ICiθ1,θ2 (x), x ∈ X , i = 1, . . . , r + 1. (B.24)

Notice that r is the maximum degree of the cost function c defined in Assumption 1. Following
the proof and approach of [44] and using the set of equations (B.24), we can find an upper-bound
for Ex[τ i

0d
] for i = 1, . . . , r + 1 in Lemma 23. In order to establish upper bounds for the first

r + 1 moments of τ0d , it is crucial to choose the value of αpθ1,θ2 greater than or equal to r
r+1

, as
demonstrated in the proof of Lemma 23 in Appendix B.4.2

Lemma 23. For i = 1, . . . , r + 1, and for all x ∈ X

E
π∗θ2
x [(τ0d)

i] ≤ iφpθ1,θ2(i)
(
V p
θ1,θ2

(x) + bpθ1,θ2αC
p
θ1,θ2

)
,

where φpθ1,θ2(i) :=
∏i

j=1
1

β
ηj
θ1,θ2

(
2j−1 + (j − 1)αCpθ1,θ2

b
ηj
θ1,θ2

)
, ηi = 1 − (i − 1)(1 − αpθ1,θ2) , bηiθ1,θ2

and βηiθ1,θ2 defined in (B.23), and αCpθ1,θ2 =
(

miny∈Cpθ1,θ2
Kθ1,θ2(y)

)−1

.

Based on Lemma 23, we impose the conditions of Assumption 4 to obtain uniform (over model
class) and polynomial (in norm of the state) upper-bounds on the moments of hitting times to 0d.
Moreover, these conditions lead to a uniform characterization of parameters of Lemma 23 over all
models in our class.

B.3.2 Distribution of return times to state 0d

For any θ1, θ2 ∈ Θ, consider the Markov process with transition kernel P
π∗θ2
θ1

obtained from the
MDP (X ,A, c, Pθ1) by following policy π∗θ2 . In the following lemma, we show that the tail prob-
abilities of the return times to the common state 0d, again τ0d , converge geometrically fast to 0,
and characterize the convergence parameters in terms of the constants given in Assumption 3.
Explicitly, we show

P0d(τ0d > n) ≤ cgθ1,θ2
(
γ̃gθ1,θ2

)n
,

for problem and policy dependent constants cgθ1,θ2 and γ̃gθ1,θ2 . We will follow the method outlined
in [42] with the goal to identify problem dependent parameters that will be relevant to our results.
Proof of the following lemma is given in Appendix B.4.3 and follows the methodology of [42].

Lemma 24. For every θ1, θ2 ∈ Θ in the Markov process obtained from the Markov decision process

(X ,A, c, Pθ1) following policy π∗θ2 , the return time to state 0 starting from state 0 satisfies the
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following:

P0d(τ0d > n) ≤ cgθ1,θ2
(
γ̃gθ1,θ2

)n
,

where

cgθ1,θ2 =
bgθ1,θ2

(
b̃gθ1,θ2

)2

b̃gθ1,θ2 − 1
and γ̃gθ1,θ2 = 1− 1

b̃gθ1,θ2
,

with

b̃gθ1,θ2 =
3bgθ1,θ2 + 1

1− γgθ1,θ2

(
|Cg

θ1,θ2
|2 max

(
1, max
u∈Cgθ1,θ2\{0

d}
E
π∗θ2
u [τ0d ]

))
.

Based on Lemma 24, it is necessary to impose the conditions in Assumption 3 to obtain uniform
tail probability bounds on τ0d for all model parameters and policy choices in Θ. Moreover, these
conditions lead to a uniform characterization of cgθ1,θ2 and γ̃gθ1,θ2 over Θ. Furthermore, as a result of

Lemma 23 and uniformity conditions of Assumption 4, E
π∗θ2
u [τ0d ] has a uniform bound over Θ and

Cg
θ1,θ2
\ {0d}, which can be characterized in terms of the polynomial Lyapunov function.

B.4 Proofs of hitting time bounds

B.4.1 Proof of Lemma 22

Proof. In the proof, to avoid cumbersome notation we will drop the indices θ1, θ2. Following the
proof of Theorem 3.6 in [44], we choose ηi = 1 − (i − 1)(1 − αp) for i = 1, . . . , r + 1 and note
that as αp ∈ [ r

r+1
, 1), we have ηi ∈ [ 1

r+1
, 1]. As a result, we can apply (B.22) to each ηi to get

∆ (V p)ηi (x) ≤ −βηi (V p(x))iα
p−i+1 + bηiICp(x), i = 1, . . . , r + 1.

Thus, the system of drift equations (B.24) hold for

Vi = (V p)1−i(1−αp) , i = 0, . . . , r + 1,

βi = βηi , i = 1, . . . , r + 1,

bi = bηi , i = 1, . . . , r + 1,

Ci = Cp, i = 1, . . . , r + 1,

where βηi and bηi are defined in (B.23).
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B.4.2 Proof of Lemma 23

The proof of Lemma 23 uses the following lemma.

Lemma 25 (Proposition 11.3.2, [71]). Suppose for nonnegative functions f , g, and V on the state

space X and every k ∈ Z+, the following holds:

E[V (Xk+1)|Fk] ≤ V (Xk)− f(Xk) + g(Xk).

Then, for any initial condition x and stopping time τ

Ex

[
τ−1∑
k=0

f(Xk)

]
≤ V (x) + Ex

[
τ−1∑
k=0

g(Xk)

]
.

Proof of Lemma 23. Following [44], the proof uses an induction argument. We will use the no-
tation of Lemma 22 for simplicity. Similarly, in this proof we will also denote φpθ1,θ2(i) as φ(i),
Kθ1,θ2(·) as K(·), and V i

θ1,θ2
, biθ1,θ2 , βiθ1,θ2 , Ci

θ1,θ2
as Vi, bi, βi, Ci.

From irreducibility, for all x ∈ X , K(x) is positive and finite. Considering the system of drift
equations found in Lemma 22, Ci = Cp is a finite set for all i = 1, . . . , r+ 1. Thus, miny∈Ci K(y)

is strictly positive. For all x ∈ X and i = 1, . . . , r + 1, we have

ICi(x) ≤
(

min
y∈Ci

K(y)

)−1

K(x). (B.25)

We set αCp := (miny∈Ci K(y))−1 = (miny∈Cp K(y))−1. From Lemma 22, for j = 1 and x ∈ X

∆V0(x) ≤ −β1V1(x) + b1IC1(x).

By applying Lemma 25, for all x ∈ X we get

β1Ex

τ0d−1∑
k=0

V1 (Xk)

 ≤ V0(x) + b1Ex

τ0d−1∑
k=0

IC1 (Xk)

 . (B.26)

Using (B.25) and (B.26), followed by noting that

K(x) =
∞∑
n=0

2−n−2P n(x, 0d) =
∞∑
n=0

2−n−2Ex[I0d (Xn)],
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we get

Ex

τ0d−1∑
k=0

V1 (Xk)

 ≤ 1

β1

V0(x) +
b1αCp

β1

Ex

 ∞∑
n=0

2−n−2

τ
0d
−1∑

k=0

I0d (Xk+n)


=

1

β1

V0(x) +
b1αCp

β1

Ex

 ∞∑
n=0

2−n−2

τ
0d
−1+n∑
k=n

I0d (Xk)


≤ 1

β1

V0(x) +
b1αCp

β1

Ex

 ∞∑
n=0

2−n−2

τ
0d
−1+n∑

k=n∨τ
0d

I0d (Xk)


≤ 1

β1

V0(x) +
b1αCp

β1

∞∑
n=0

2−n−2(n+ 1)

=
1

β1

V0(x) +
b1αCp

β1

.

As V1(x) ≥ 1, this gives us a bound on Ex[τ0d ] as follows:

Ex[τ0d ] ≤
1

β1

V0(x) +
b1αCp

β1

.

Assume for i ≥ 1, by the induction assumption we have

Ex

τ0d−1∑
k=0

(k + 1)i−1Vi (Xk)

 ≤ φ(i) (V0(x) + b1αCp) . (B.27)

Set j = i+ 1 in (B.24), which yields

∆Vi(x) ≤ −βi+1Vi+1(x) + bi+1ICp(x).

Define Zk = kiVi(Xk). From the above equation, we have

E[Zk+1|Xk] ≤ (k + 1)i (Vi (Xk)− βi+1Vi+1(Xk) + bi+1ICp(Xk))

≤ Zk + 2i(k + 1)i−1Vi (Xk) + (k + 1)ibi+1ICp(Xk)− (k + 1)iβi+1Vi+1(Xk).
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By applying Lemma 25 to the above equation, we get

βi+1Ex

τ0d−1∑
k=0

(k + 1)iVi+1 (Xk)


≤ 2iEx

τ0d−1∑
k=0

(k + 1)i−1Vi (Xk)

+ bi+1Ex

τ0d−1∑
k=0

(k + 1)iICp (Xk)


≤ 2iφ(i) (V0(x) + b1αCp) + αCpbi+1Ex[(τ0d)

i], (B.28)

where the second inequality follows from (B.25) and the induction hypothesis (B.27). Thereafter,
from (B.27) (by using integral lower bound after using Vi ≥ 1), we have

1

i
Ex[(τ0d)

i] ≤ Ex

τ0d−1∑
k=0

(k + 1)i−1Vi (Xk)

 ≤ φ(i) (V0(x) + b1αCp) .

Substituting in (B.28), we get

βi+1Ex

τ0d−1∑
k=0

(k + 1)iVi+1 (Xk)

 ≤ 2iφ(i) (V0(x) + b1αCp) + ibi+1αCpφ(i) (V0(x) + b1αCp)

=
(
2i + ibi+1αCp

)
φ(i) (V0(x) + b1αCp)

= βi+1φ(i+ 1) (V0(x) + b1αCp) .

This completes the proof.

B.4.3 Proof of Lemma 24

Proof. In the proof, to avoid cumbersome notation we will drop the indices θ1, θ2. Based on
Assumption 3, there exists a finite set Cg, constants bg, γg ∈ (0, 1), and a function V g : X →
[1,+∞) satisfying

∆V g(x) ≤ − (1− γg)V g(x) + bgICg(x), x ∈ X . (B.29)

For n ≥ 1, define the n-step taboo probabilities [71] as

A
P n
xB = Px (Xn ∈ B, τA > n) ,
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where A,B ⊆ X , and τA is the first hitting time of set A. We also let
A
P 0
xB = IB(x) and

Ṽ g =
∑∞

n=0
0d
P nV g. Applying the last exit decomposition on Cg \ {0d} for all x ∈ X , we obtain

Ṽ g(x)

=
∞∑
n=0

∑
y∈X

0d
P n
xyV

g(y)

= V g(x) +
∞∑
n=1

∑
y∈X

Cg
P n
xyV

g(y)

+
∞∑
n=1

∑
y∈X

n−1∑
m=1

∑
z∈Cg\{0d}

0d
Pm
xz

Cg
P n−m
zy V g(y) +

∞∑
n=1

∑
y∈X

∑
z∈Cg\{0d}

0d
P n
xz

Cg
P 0
zyV

g(y)

= V g(x) +
∞∑
n=1

∑
y∈X

Cg
P n
xyV

g(y) (B.30)

+
∑
y∈X

∑
z∈Cg\{0d}

(
∞∑
m=1

0d
Pm
xz

)(
∞∑
n=1

Cg
P n
zyV

g(y)

)
︸ ︷︷ ︸

Term 1

+
∞∑
n=1

∑
z∈Cg\{0d}

0d
P n
xzV

g(z)

︸ ︷︷ ︸
Term 2

, (B.31)

where we break up the trajectories starting at state x and reaching state y while avoiding state 0d

into two: ones that never visit the set Cg, and the others that visit Cg \ {0d} up until time m but
not afterwards and exit Cg \ {0d} at time m.

We first bound Term 1 in (B.31) by finding an upper bound for the probability term
∑∞

m=1
0d
Pm
xz

using the first entrance decomposition on Cg \ {0d} while noting that z ∈ Cg \ {0d}:

∞∑
m=1

0d
Pm
xz =

∞∑
m=1

m∑
l=1

∑
u∈Cg\{0d}
v/∈Cg

Cg
P l−1
xv Pvu

0d
Pm−l
uz

=
∑

u∈Cg\{0d}

(
∞∑
l=0

∑
v/∈Cg

Cg
P l
xvPvu

)(
∞∑
m=0

0d
Pm
uz

)

≤
∑

u∈Cg\{0d}

∞∑
m=0

0d
Pm
uz

≤
∑

u∈Cg\{0d}

∞∑
m=0

Pu(τ0d > m)

≤ |Cg| max
u∈Cg\{0d}

Eu[τ0d ], (B.32)
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where the third line follows from the fact that
∑∞

l=0

∑
v/∈Cg Cg

P l
xvPvu is the probability of entrance

to Cg through u ∈ Cg \ {0}, so it is less than 1. Irreducibility and positive recurrence combined
with |Cg| < ∞ imply that maxu∈Cg\{0d} Eu[τ0d ] < ∞, which shows

∑∞
m=0

0d
Pm
xz is finite. Next,

by induction we prove that for n ≥ 1 and z ∈ Cg \ {0d} we have∑
y∈X

Cg
P n
zyV

g(y) ≤ (γg)n−1 bg. (B.33)

For n = 1, we have using Assumption 3 that∑
y∈X

Cg
PzyV

g(y) ≤
∑
y∈X

PzyV
g(y) ≤ bg.

Assuming that (B.33) holds for n, for n+ 1 we have∑
y∈X

Cg
P n+1
zy V g(y) ≤

∑
y∈X
v/∈Cg

Cg
P n
zvPvyV

g(y)

≤ γg
∑
v/∈Cg

Cg
P n
zvV

g(v) (Using (B.29))

≤ γ
∑
v∈X

Cg
P n
zvV

g(v)

≤ (γg)n bg, (By induction step)

so (B.33) is shown. We collect these bounds later on for our result on Term 2.
We now simplify the summation in (B.30). Similar to previous arguments, we will use induction

for n ≥ 1 and show for all x ∈ X∑
y∈X

Cg
P n
xyV

g(y) ≤ (γg)n−1 (γgV g(x) + bg) . (B.34)

For n = 1, we have ∑
y∈X

Cg
PxyV

g(y) ≤
∑
y∈X

PxyV
g(y) ≤ γgV g(x) + bg.
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Assuming that (B.34) holds for n, for n+ 1 we have∑
y∈X

Cg
P n+1
xy V g(y) ≤

∑
z/∈Cg

Cg
P n
xz

∑
y∈X

PzyV
g(y)

≤ γg
∑
z/∈Cg

Cg
P n
xzV

g(z)

≤ γg
∑
z∈X

Cg
P n
xzV

g(z)

≤ (γg)n (γgV g(x) + bg) ,

where the first and second inequalities follow from the definition of taboo probabilities and (B.29).
Thus, (B.34) is proved. Lastly, for Term 2 in (B.31), we note

∞∑
n=1

∑
z∈Cg\{0d}

0d
P n
xzV

g(z) ≤ max
y∈Cg\{0d}

V g(y)
∑

z∈Cg\{0d}

∞∑
n=1

0d
P n
xz

≤ bg|Cg|2 max
u∈Cg\{0d}

Eu[τ0d ] (From (B.32)).

From the above equation, (B.32), (B.33), and (B.34), we bound Ṽ g(x) as follows:

Ṽ g(x)

≤ V g(x) + (γgV g(x) + bg)
∞∑
n=1

(γg)n−1 + |Cg|2bg max
u∈Cg\{0d}

Eu[τ0d ]

(
1 +

∞∑
n=1

(γg)n−1

)

≤ V g(x)

1− γg
+

3|Cg|2bg

1− γg
max

(
1, max
u∈Cg\{0d}

Eu[τ0d ]

)
≤ V g(x)

(
3bg + 1

1− γg

(
|Cg|2 max

(
1, max
u∈Cg\{0d}

Eu[τ0d ]

)))
,

where the last line is due to V g(x) ≥ 1. Taking

b̃g :=
3bg + 1

1− γg

(
|Cg|2 max

(
1, max
u∈Cg\{0d}

Eu[τ0d ]

))
> 1,

we have shown that
Ṽ g(x) ≤ b̃gV g(x), x ∈ X . (B.35)

We now upper-bound P0d(τ0d > n) for all n ≥ 1 in an inductive manner, starting with P0d(τ0d > 1).
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As a part of showing this, for every x 6= 0d we argue that for all n ≥ 1

Px(τ0d > n) ≤ Ṽ g(x)

(
1− 1

b̃g

)n
. (B.36)

First note that
Ṽ g(x) ≥ V g(x) ≥ 1. (B.37)

Thus,

Px(τ0d > 1) =
∑
y∈X

0d
Pxy

≤
∑
y∈X

0d
PxyṼ

g(y)

=
∑
y∈X

0d
Pxy

∞∑
n=0

∑
z∈X

0d
P n
yzV

g(z)

=
∑
z∈X

∞∑
n=1

0d
P n
xzV

g(z). (B.38)

We now apply the bound in (B.35) to get

Px(τ0d > 1) ≤
∑
z∈X

∞∑
n=1

0d
P n
xzV

g(z) = Ṽ g(x)− V g(x) ≤ Ṽ g(x)

(
1− 1

b̃g

)
. (B.39)

With the base of induction established, we assume the statement in (B.36) is true for n, and show
that it continues to hold for n+ 1 as follows:

Px(τ0d > n+ 1) =
∑
y 6=0d

PxyPy(τ0d > n)

≤
(

1− 1

b̃g

)n ∑
y 6=0d

PxyṼ
g(y)

≤ Ṽ g(x)

(
1− 1

b̃g

)n+1

,

where the final inequality uses the same arguments as in (B.38) and (B.39).
Finally, using the tail probabilities of hitting time of state 0d from any state x 6= 0d, we bound
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the tail probability of the return time to state 0d (starting from 0d) as follows

P0d(τ0d > n+ 1) =
∑
x6=0d

P0xPx(τ0d > n)

≤
(

1− 1

b̃g

)n ∑
x6=0d

P0xṼ
g(x)

≤ b̃g
(

1− 1

b̃g

)n ∑
x6=0d

P0xV
g(x)

≤ bg b̃g
(

1− 1

b̃g

)n
,

where the final inequality follows from the definition of bg, and we have

γ̃g = 1− 1

b̃g
, and cg =

bg
(
b̃g
)2

b̃g − 1
,

and the proof is complete.

B.5 Queueing model examples

B.5.1 Model 1: Two-server queueing system with a common buffer

We consider a continuous-time queueing system with two heterogeneous servers with unknown
service rate vector θ∗ = (θ∗1, θ

∗
2) and a common infinite buffer, shown in Figure 3.2a. Arrivals

to the system are according to a Poisson process with rate λ and service times are exponentially
distributed with parameter θ∗i , depending on the assigned server. The service rate vector θ∗ is
sampled from the prior distribution ν0 defined on the space Θ given as

Θ =

{
(θ1, θ2) ∈ R2

+ :
λ

θ1 + θ2

≤ 1− δ
1 + δ

, 1 ≤ θ1

θ2

≤ R

}
, (B.40)

for fixed δ ∈ (0, 0.5) and R ≥ 1. Note that for any (θ1, θ2) ∈ Θ, we have θ1 ≥ θ2

and the stability requirement λ < θ1 + θ2 holds. The countable state space X is defined as
X = {x = (x0, x1, x2) : x0 ∈ N ∪ {0} , x1, x2 ∈ {0, 1}}, in which x0 is the length of the queue,
and xi, i = 1, 2 is equal to 1 if server i is busy serving a job. At each time instance r ∈ R+, the
dispatcher can assign jobs from the (non-empty) buffer to an available server. Thus, the action
space A is equal to

A = {h, b, 1, 2},
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where h indicates no action, b sends a job to both of the servers, and i = 1, 2 assigns a job to
server i. The goal of the dispatcher is to minimize the expected sojourn time of customers, which
by Little’s law [87] is equivalent to minimizing the average number of customers in the system, or

inf
π∈Π

lim sup
T→∞

1

T

∫ T

0

‖X(r)‖1 dr, (B.41)

where X(r) is the state of the system at time r ∈ R+, immediately after the arrival/departure and
just before the action is taken. In [59], it is argued that from uniformization [60] and sampling
the continuous-time Markov process at a rate of λ + θ∗1 + θ∗2, a discrete-time Markov chain is
obtained, which converts the original continuous-time problem shown in (B.41) to an equivalent
discrete-time problem as below:

inf
π∈Π

lim sup
T→∞

1

T

∫ T

0

‖X(r)‖1 dr = inf
π∈Π

lim sup
T→∞

1

T

T−1∑
i=0

‖X(i)‖1. (B.42)

To obtain a uniform sampling rate of λ+θ∗1 +θ∗2, the continuous-time system is sampled at arrivals,
real and dummy customer departures. In [59], it is further shown that the optimal policy that
achieves the infimum in (B.42) is a threshold policy πt with the optimal finite threshold t(θ) ∈ N,
with the policy defined as below:

πt(x) =


h if {x0 = 0} or {‖x‖1 ≤ t, x1 = 1} or {x1 = x2 = 1}

1 if {x0 ≥ 1, x1 = 0}

2 if {x0 ≥ 1, ‖x‖1 ≥ t+ 1, x1 = 1, x2 = 0};

note that action b is not used. Policy πt assigns a job to the faster (first) server whenever there is
a job waiting in the queue and the first server is available. In contrast, πt dispatches a job to the
second server only if the number of jobs in the system are greater than threshold t and the second
server is available. If neither of these conditions hold, no action or h is taken. Consequently, we
can restrict the set of all policies Π in (B.42) to the set Πt, which is the set of all possible threshold
policies corresponding to some t ∈ N.

In the rest of this subsection, our aim is to show that Assumptions 1-5 are satisfied for the
discrete-time Markov process obtained by uniformization of the described queueing system and
hence, conclude that Algorithm 2 can be used to learn the unknown service rate vector θ∗ with the
expected regret of order Õ(

√
T ).

Assumption 1. Cost function is given as c(x, a) = ‖x‖1, which satisfies Assumption 1 with
fc(x) = x0 + x1 + x2 and K = r = 1.

Assumption 2. For any state-action pair (x, a) and θ ∈ Θ, we have Pθ(A(x);x, a) = 0 where
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A(x) = {y ∈ X : |‖y‖1 − ‖x‖1| > 1}; thus, Assumption 2 holds with h = 1.
Assumption 3. Consider a queueing system with parameter θ following threshold policy πt

for some t ∈ N. The uniformized discrete-time Markov chain is irreducible and aperiodic on a
subset of state space given as Xt = X \ ({(i, 0, 0) : i ≥ min(t, 2)} ∪ {(0, 1, 1)}). In [59], it is
proved that for every t, the chain consists of a single positive recurrent class and the corresponding
average number of customers, depicted by J t(θ), is calculated. Moreover, it is shown that for
every θ ∈ Θ the optimal threshold t(θ) can be numerically found as the smallest i ∈ N for which
J i(θ) < J i+1(θ). Define the set T ∗ as the set of all optimal thresholds corresponding to at least
one θ ∈ Θ, or

T ∗ = {t : t = t(θ) for θ ∈ Θ}.

Remark 12. There is a discrepancy between the class of MDPs defined in this section and in

Section 3.2, as in the former the MDPs are not irreducible in the whole state space X . Specifically,

for every Markov process generated by a queueing system with parameter θ following threshold

policy πt, irreducibility holds on Xt ⊂ X . Nevertheless, the results of Section 3.4 are valid as

starting from state (0, 0), the visited states are positive recurrent; see Remark 10.

In the following proposition, we verify the geometric ergodicity of the discrete-time chain gov-
erned by any parameter θ ∈ Θ and obtained by following any threshold policy πt for t ∈ T ∗; proof
is given in Appendix B.6.1.

Proposition 2. The discrete-time Markov process obtained from the queueing system governed by

parameter θ = (θ1, θ2) ∈ Θ and following threshold policy πt for some t ∈ T ∗ is geometrically

ergodic. Equivalently, the following holds

∆V g
θ,t(x) ≤ −

(
1− γgθ,t

)
V g
θ,t(x) + bgθ,tICgθ,t(x), x ∈ Xt,

for

V g
θ,t(x) = exp(− log(1− δ)‖x‖1),

Cg
θ,t = {(x0, x1, 0) : x0 < t} ∪ {(0, 0, 1)}, (B.43)

bgθ,t = max
x∈Cgθ,t

exp (− log(1− δ) (‖x‖1 + 1)) , (B.44)

γgθ,t =
1

2
− 1

2(θ1 + θ2 + λ)

(
(θ1 + θ2)(1− δ) + λ (1− δ)−1) . (B.45)

Having described all the terms explicitly, we verify the rest of the conditions of Assumption 3,
which lead to uniform (over model class) upper-bounds on the moments of hitting time to 0d as
follows:
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1. From (B.45), supθ∈Θ,t∈T ∗ γ
g
θ,t ≤ 1/2 < 1.

2. From (B.43), we can see that state (0, 0) belongs to Cg
θ,t for all θ ∈ Θ and t ∈ T ∗. In order

for Cg
∗ = ∪θ∈Θ,t∈T ∗C

g
θ,t to be a finite set, the supremum of the optimal threshold t(θ) over Θ

should be finite. In [57] with service rate vector (θ1, θ2), it is shown that the optimal threshold
is bounded above by

√
2θ1/θ2, which further gives

t(θ) ≤
√

2
θ1

θ2

≤
√

2R. (B.46)

Thus, supθ∈Θ t(θ) ≤
√

2R, which is finite. To confirm a uniform upper bound for bgθ,t, we note
that from (B.44),

sup
θ∈Θ,t∈T ∗

bgθ,t =
2− δ
1− δ

max
x∈Cg∗

exp(− log(1− δ)‖x‖1),

which is finite as |Cg
∗ | <∞.

Assumption 4. To find an upper bound on the second moment of hitting times, we verify
Assumption 4 and show that there exists a finite set Cp

θ,t, constants βpθ,t, b
p
θ,t > 0, r/(r + 1) ≤

αpθ,t < 1, and a function V p
θ,t : X t → [1,+∞) satisfying

∆V p
θ,t(x) ≤ −βpθ,t

(
V p
θ,t(x)

)αpθ,t + bpθ,tICpθ,t(x), x ∈ Xt. (B.47)

Proposition 3. The discrete-time Markov process obtained from the queueing system governed by

parameter θ = (θ1, θ2) ∈ Θ and following threshold policy πt for some t ∈ T ∗ is polynomially

ergodic. This is true because (B.47) holds for

V p
θ,t(x) = ‖x‖2

1, (B.48)

Cp
θ,t = {(x0, x1, 0) : x0 < t} ∪

{
(x0, x1, x2) : x0 <

2λ

θ1 + θ2 − λ
, x1 + x2 ≥ 1

}
, (B.49)

bpθ,t = max
x∈Cpθ,t

(‖x‖1 + 1)2), (B.50)

βpθ,t = 1− 2λ

θ1 + θ2 + λ
, (B.51)

αpθ,t =
1

2
. (B.52)

Proof of Proposition 3 is given in Appendix B.6.2. We define the normalized rates as λ̃ =
λ

λ+θ1+θ2
and θ̃i = θi

λ+θ1+θ2
, for i = 1, 2. From the choice of parameter space Θ, we have λ̃ ≤

0.5 − 0.5δ, θ̃1 + θ̃2 ≥ 0.5 + 0.5δ, and θ̃1 ≥ 0.25 + 0.25δ. We verify the remaining conditions of
Assumption 4 as follows:
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1. From (B.48), the first condition holds with rp∗ = 2 and sp∗ = 2.

2. From (B.49), we can see that state (0, 0) belongs to Cp
θ,t for all θ ∈ Θ and t ∈ T ∗. Furthermore,

sup
θ∈Θ,t∈T ∗

2λ

θ1 + θ2 − λ
≤ 1− δ

δ
,

which follows from the stability condition λ̃ ≤ 0.5 − 0.5δ. Thus, from the definition of Cp
θ,t

in (B.49), and the fact that supθ∈Θ t(θ) ≤
√

2R as argued in in (B.46), Cp
∗ = ∪θ∈Θ,t∈T ∗C

p
θ,t is

a finite set. We also note that supθ∈Θ,t∈T ∗ b
p
θ,t is finite as |Cp

∗ | < ∞. It remains to show that
infθ∈Θ,t∈T ∗ β

p
θ,t is positive, which is equivalent to verifying that supθ∈Θ,t∈T ∗ λ̃ < 1/2, which

follows from the stability condition λ̃ ≤ 0.5− 0.5δ.

3. We need to show thatKθ,t(x) :=
∑∞

n=0 2−n−2 (P t
θ)
n

(x, 0d) is strictly bounded away from zero.
We notice that from any non-zero state x, the queueing system hits 0d in ‖x‖1 transitions only
if all transitions are real departures. Hence,

Kθ,t(x) ≥ 2−‖x‖1−2
(
P t
θ

)‖x‖1 (x, 0d)

≥ 2−‖x‖1−2
(
θ̃1

)‖x‖1 (
θ̃2

)‖x‖1
≥ 2−‖x‖1−2R−‖x‖1

(
θ̃1

)2‖x‖1

≥ 2−‖x‖1−2R−‖x‖1
(

1

4
+
δ

4

)2‖x‖1
,

where the third and fourth inequalities follow from the definition of Θ in (B.40). Thus, the
infimum of Kθ,t(x) over the finite set Cp

∗ and sets Θ and T ∗ is strictly greater than zero.

Assumption 5. We finally verify Assumption 5, which asserts that supθ∈Θ J(θ) is finite. We
have

J(θ) = EX∼µθ,t(θ) [c(X)] = EX∼µθ,t(θ) [‖X‖1] = EX∼µθ,t(θ)
[√

V p
θ,t(θ) (X)

]
,

where µθ,t(θ) is the stationary distribution of the discrete-time process governed by parameter θ and
following the optimal policy according to θ. From (B.47) and [71, Theorem 14.3.7],

µθ,t(θ)

(√
V p
θ,t(θ) (X)

)
≤ bp∗
βp∗
,
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which is finite from the the previously verified assumption. Consequently,

sup
θ∈Θ

J(θ) ≤ bp∗
βp∗

<∞.

B.5.2 Model 2: Two heterogeneous parallel queues

We consider two parallel queues with infinite buffers, each with its own single server, and unknown
service rate vector θ∗ = (θ∗1, θ

∗
2), shown in Figure 3.2b. The service rate vector θ∗ is sampled from

the prior distribution ν0 defined on the space Θ given as

Θ =

{
(θ1, θ2) ∈ R2

+ :
λ

θ1 + θ2

≤ 1− δ
1 + δ

, 1 ≤ θ1

θ2

≤ R

}
, (B.53)

for fixed δ ∈ (0, 0.5) and R ≥ 1, which ensures the stability of the queueing system. Consider the
discrete-time MDP (X ,A, Pθ∗ , c) obtained by sampling the queueing system at the Poisson arrival
sequence. The countably infinite state space X is defined as below

X = {x = (x1, x2) : xi ∈ N ∪ {0}} ,

where the state of the system is the number of jobs in the server-queue pair i just before an arrival.
Furthermore, the action space A is equal to

A = {1, 2},

where action i ∈ A indicates the arrival dispatched to queue i. The unbounded cost function
c : X ×A → N∪{0} is defined as the total number of jobs in the queueing system, i.e., c(x, a) =

‖x‖1. For every ω ∈ R+, we define policy πω : X → A, which routes the arrival according to the
weighted queue lengths, as

πω(x) = arg min (1 + x1, ω (1 + x2)) ,

where the tie is broken in favor of the first server. We also define policy class Π̃ as the set of
policies πω such that ω belongs to a compact interval; in other words,

Π̃ =

{
πω; ω ∈

[
1

cRR
, cRR

]}
,
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where R is defined in (B.53) and cR ≥ 1. We aim to minimize the infinite-horizon average cost in
the policy class Π̃, that is,

J(θ) = inf
π∈Π̃

lim sup
T→∞

1

T
E

[
T∑
t=1

c (X (t) , A (t))

]
, (B.54)

where X(t) = (X1(t), X2(t)) is the occupancy vector of the queueing system just before arrival
t. Even with the controlled Markov process transition kernel fully-specified (by the values of the
arrival rate and the two service rates), the optimal policy1 that satisfies (B.54) in policy class Π̃ is
not known except when θ1 = θ2 where the optimal value is ω = 1, and so, to learn it, we will use
Proximal Policy Optimization for countable state-space controlled Markov processes as developed
in [27]. Note that [27] requires full knowledge of the controlled Markov process, which holds
in our learning scheme since we use the parameters sampled from the posterior for determining
the policy at the beginning of each episode. Furthermore, for each policy in the set of applicable
policies Π̃, [27] also requires that the resulting Markov process be geometrically ergodic, which
we will establish below.

Proposition 4. The discrete-time Markov process obtained from the queueing system governed by

parameter θ = (θ1, θ2) ∈ Θ and following policy πω ∈ Π̃ is geometrically ergodic. Equivalently,

the following holds

∆V g
θ,ω(x) ≤ −

(
1− γgθ,ω

)
V g
θ,ω(x) + bgθ,ωICgθ,ω(x), x ∈ X , (B.55)

for

V g
θ,ω(x) =

ω

ω + 1
exp

(
agθ,ω

x1 + 1

ω

)
+

1

ω + 1
exp

(
agθ,ω (x2 + 1)

)
,

agθ,ω = min

(
ω log(1 + δ), log(1 + δ), ω log

1− 0.5δ

1− δ
, log

1− 0.5δ

1− δ
,

δ(1− δ2)

4cRR(1− 0.5δ)

)
, (B.56)

Cg
θ,ω =

{
(x1, x2) ∈ X : xi ≤ max

(
x
gj
i,θ,ω, 0

)
, i, j = 1, 2

}
, (B.57)

bgθ,ω = max
x∈Cgθ,ω

(
2ω

ω + 1
exp

(
agθ,ω

x1 + 2

ω

)
+

2

ω + 1
exp

(
agθ,ω (x2 + 2)

))
, (B.58)

γgθ,ω =
1

2
+

1

2
max

(
ζ1,θ,ω, ζ2,θ,ω,

ζ1,θ,ωω

1 + ω
exp

(
agθ,ω
ω

)
+
ζ2,θ,ω

1 + ω
,
ζ1,θ,ωω

1 + ω
+
ζ2,θ,ω

1 + ω
exp

(
agθ,ω
))

,

(B.59)

and problem-dependent constants xgji,θ,ω and ζi,θ,ω for i, j = 1, 2.

1When θ1 = θ2, then the policy with ω = 1 (Join-the-Shortest-Queue) is the optimal policy [29] for the underling
MDP.
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Proof of Proposition 4 is given in Appendix B.6.3. In the rest of this subsection, our aim is to
show that Assumptions 1-5 are satisfied for the discrete-time MDP and conclude that Algorithm 2
can be used to learn the unknown service rate vector θ∗ with expected regret of order Õ(

√
T ).

Assumption 1. Cost function is given as c(x, a) = ‖x‖1, which satisfies Assumption 1 with
fc(x) = x0 + x1 + x2 and K = r = 1.

Assumption 2. For any state-action pair (x, a) and θ ∈ Θ, we have Pθ(A(x);x, a) = 0 where
A(x) = {y ∈ X : ‖y‖1 − ‖x‖1 > 1}; thus, the MDP is skip-free to the right with h = 1.
Moreover, from any (x, a), the finite set {y ∈ X : ‖y‖1 ≤ ‖x‖1 + 1} is only accessible in one
step; thus, Assumption 2 holds.

Assumption 3. In Proposition 4, we verified the geometric ergodicity of the discrete-time
chain governed by parameter θ = (θ1, θ2) ∈ Θ and following policy πω ∈ Π̃ and thus, it only
remains to verify the uniform model conditions. We define the normalized rates as λ̃ = λ

λ+θ1+θ2

and θ̃i = θi
λ+θ1+θ2

, for i = 1, 2. From the choice of parameter space Θ, we have λ̃ ≤ 0.5 − 0.5δ,
θ̃1 + θ̃2 ≥ 0.5 + 0.5δ, and θ̃1 ≥ 0.25 + 0.25δ.

1. We first argue that ζ1,θ,ω is bounded away from 1 as follows

1− ζ1,θ,ω = 1−
λ

θ1+λ

1− exp
(
−agθ,ω

ω

)
θ1

θ1+λ

=

θ1
θ1+λ

(
1− exp

(
−agθ,ω

ω

))
1− exp

(
−agθ,ω

ω

)
θ1

θ1+λ

≥ θ1

θ1 + λ

(
1− exp

(
−
agθ,(cRR)−1

cRR

))

> θ̃1

(
1− exp

(
−
agθ,(cRR)−1

cRR

))

> (0.25 + 0.25δ)

(
1− exp

(
−
agθ,(cRR)−1

cRR

))
,

where the first line follows from the definition of ζ1,θ,ω in Appendix B.6.3, the second
line from (B.56) and the definition of policy class Π̃. As agθ,ω does not depend on θ,
supθ∈Θ,ω∈[ 1

cRR
,cRR] ζ1,θ,ω < 1. Furthermore, by similar arguments it can be shown that ζ2,θ,ω

is bounded away from 1. We next argue that ζ1,θ,ωω
1+ω

exp
(
agθ,ω
ω

)
+

ζ2,θ,ω
1+ω

is bounded away from 1
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using an upper bound found in Appendix B.6.3 as below,

1− ζ1,θ,ωω

1 + ω
exp

(
agθ,ω
ω

)
− ζ2,θ,ω

1 + ω

≥ 1−
λ

1+ω

(
ω + agθ,ωζ4

)
λ+

θ1a
g
θ,ωζ3

ω

−
λ

1+ω

λ+ θ2a
g
θ,ωζ3

=
agθ,ω

(
−agθ,ωζ3θ2

(
λζ4 − ζ3θ1(1+ω)

ω

)
+ λζ3 (θ1 + θ2)− λ2ζ4

)
(1 + ω)(λ+ θ1a

g
θ,ωζ3ω−1)(λ+ θ2a

g
θ,ωζ3)

>
(ζ3a

g
θ,ω)2 θ̃1θ̃2

ω(λ̃+ θ̃1a
g
θ,ωζ3ω−1)(λ̃+ θ̃2a

g
θ,ωζ3)

>
(ζ3a

g
θ,(cRR)−1)

2(0.25 + 0.25δ)2

cRR2(1 + cRRζ3a
g
θ,cRR

)2
, (B.60)

where ζ3 = (1 + δ)−1, ζ4 = 1−0.5δ
1−δ , and we have used the arguments of Appendix B.6.3 and

the definition of Θ. Using a similar argument, we can show that ζ1,θ,ωω

1+ω
+

ζ2,θ,ω
1+ω

exp
(
agθ,ω
)

is
bounded away from one, and finally, we conclude that supθ∈Θ,ω∈[ 1

cRR
,cRR] γ

g
θ,ω < 1.

2. From (B.57), we can see that state (0, 0) belongs to Cg
θ,ω for all θ ∈ Θ and ω ∈ [ 1

cRR
, cRR]. In

order for Cg
∗ to be a finite set, the supremum of xgji,θ,ω over Θ and Π̃ should be finite. From the

definition of xg11,θ,ω in Appendix B.6.3,

xg11,θ,ω =
ω

agθ,ω
log

(cRR + 1) exp(cRRa
g
θ,ω)

(ω + 1)γgθ,ω − ωζ1,θ,ω exp
(
agθ,ω
ω

)
− ζ2,θ,ω

≤ cRR

agθ,(cRR)−1

log
(cRR + 1) exp(cRRa

g
θ,cRR

)

(ω + 1)γgθ,ω − ωζ1,θ,ω exp
(
agθ,ω
ω

)
− ζ2,θ,ω

,

and we can derive a lower bound for the denominator from (B.60). Similarly, we can show
that supθ∈Θ,ω∈[ 1

cRR
,cRR] x

g2
2,θ,ω is finite. We next find a uniform upper bound for xg12,θ,ω from

Appendix B.6.3,

xg12,θ,ω

=
1

agθ,ω
log

(cRR + 1) exp(cRRa
g
θ,ω) + ω exp

(
agθ,ω

x
g1
1,θ,ω+1

ω

)(
ζ1,θ,ω exp

(
agθ,ω
ω

)
− γgθ,ω

)
γgθ,ω − ζ2,θ,ω

≤ 1

agθ,(cRR)−1

log
(2cRR + 1) exp

(
cRRa

g
θ,cRR

(
xg11,θ,ω + 2

))
1− γgθ,ω

,
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which is uniformly bounded as γgθ,ω is unformly bounded away from 1 and the second line
follows from (B.59) and the fact that γgθ,ω−ζ2,θ,ω ≥ 1−γgθ,ω. Arguments verifying the finiteness
of the supremum of xg21,θ,ω follow similarly, and we conclude that |Cg

∗ | < ∞. To confirm a
uniform upper bound for bgθ,ω, we note that from (B.58),

sup
θ∈Θ,ω∈[ 1

cRR
,cRR]

bgθ,ω ≤ max
x∈Cg∗

(
2 exp

(
cRRa

g
θ,cRR

(x1 + 2)
)

+ 2 exp
(
agθ,cRR (x2 + 2)

))
,

which is finite as agθ,cRR is independent of the choice of θ and |Cg
∗ | <∞.

Assumption 4. We next verify Assumption 4 and show that there exists a finite set Cp
θ,ω, con-

stants βpθ,ω, bpθ,ω > 0, r/(r + 1) ≤ αpθ,ω < 1, and a function V p
θ,ω : X → [1,+∞) satisfying

∆V p
θ,ω(x) ≤ −βpθ,ω

(
V p
θ,ω(x)

)αpθ,ω + bpθ,tICpθ,ω(x), x ∈ X . (B.61)

Proposition 5. The discrete-time Markov process obtained from the queueing system governed by

parameter θ = (θ1, θ2) ∈ Θ and following policy πω ∈ Π̃ is polynomially ergodic. This follow

because (B.61) holds for

V p
θ,ω(x) =

x2
1

ω
+ x2

2, (B.62)

Cp
θ,ω =

{
(x1, x2) ∈ X : xi ≤

(
16c2

RR
3−i + 101cRR

) λ+ θi
θi

, i = 1, 2

}
, (B.63)

βpθ,ω = min

(
θ2

2(θ2 + λ)
√
ω + 1

,
θ1 + θ2 − λ

(θ1 + θ2 + λ)
√
ω + 1

,
θ2

2(θ2 + λ)
,

θ1

2(θ1 + λ)
√
ω

)
, (B.64)

bpθ,ω = (βpθ,ω + 1) max
x∈Cpθ,ω

(
(x1 + 1)2

ω
+ (x2 + 1)2

)
, (B.65)

αpθ,ω =
1

2
. (B.66)

Proof of Proposition 5 is given in Appendix B.6.4. Next, we verify the remaining conditions of
Assumption 4.

1. From (B.62) and the fact that ω ∈ [ 1
cRR

, cRR], the first condition holds with rp∗ = 2 and sp∗ =

supθ∈Θ,ω∈[ 1
cRR

,cRR] sθ,ω = cRR + 1.

2. From (B.63), state (0, 0) belongs to Cp
θ,ω for all θ ∈ Θ and ω ∈ [ 1

cRR
, cRR]. Furthermore, for

i = 1, 2,

sup
θ∈Θ,ω∈[ 1

cRR
,cRR]

λ+ θi
θi

≤ sup
θ∈Θ

1

θ̃2

≤ sup
θ∈Θ

R

θ̃1

≤ 4R

1 + δ
, (B.67)
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which follows from the fact that θ1 ≤ Rθ2 and θ̃1 ≥ 0.25 + 0.25δ. Thus, from the definition
of Cp

θ,ω in (B.63), Cp
∗ = ∪θ∈Θ,ω∈[ 1

cRR
,cRR]C

p
θ,ω is a finite set. We next verify that the infimum of

βpθ,ω, found in (B.64), is positive. In (B.67), we showed that infimum of λ+θi
θi

over Θ is lower
bounded by 1+δ

4
. From this, the fact that ω belongs to a compact set, and θ1 + θ2 + λ ≥ δ,

it follows that infθ∈Θ,ω∈[ 1
cRR

,cRR] β
p
θ,ω > 0. Furthermore, it is easy to see that βpθ,ω ≤

√
cRR.

Hence, from (B.65),

sup
θ∈Θ,ω∈[ 1

cRR
,cRR]

bpθ,ω = sup
θ∈Θ,ω∈[ 1

cRR
,cRR]

(βpθ,ω + 1) max
x∈Cpθ,ω

(
(x1 + 1)2

ω
+ (x2 + 1)2

)
≤ (
√
cRR + 1) max

x∈Cp∗

(
CRR(x1 + 1)2 + (x2 + 1)2

)
,

which is finite as |Cp
∗ | <∞.

3. We need to show that Kθ,ω(x) :=
∑∞

n=0 2−n−2 (P πω
θ )n (x, 0d) is strictly bounded away from

zero. We show this using the fact that from any state x, the queueing system hits (0, 0) in one
step with positive probability. Take xi,θ,ω = maxx∈Cθ,ω xi for i = 1, 2. We have

inf
θ∈Θ,ω∈[ 1

cRR
,cRR]

min
x∈Cθ,ω

K(x) ≥ inf
θ∈Θ,ω∈[ 1

cRR
,cRR]

min
x∈Cθ,ω

P (x, 0d)

≥ inf
θ∈Θ,ω∈[ 1

cRR
,cRR]

P
(
(x1,θ,ω, x2,θ,ω) , 0d

)
.

The infimum in the right-hand side of the above equation is attained for the minimum normal-
ized service rates possible for each server, or θ̃1 = 1+δ

4
and θ̃2 = 1+δ

4R
. Therefore, the infimum

of Kθ,ω(x) over the finite set Cp
∗ , Θ, and interval [ 1

cRR
, cRR] is strictly greater than zero.

Assumption 5. We finally verify that supθ∈Θ J(θ) is finite. We first note that for x = (x1, x2),

(x1 + x2)2 ≤ 2 max(ω∗(θ), 1)

(
x2

1

ω∗(θ)
+ x2

2

)
= 2 max(ω∗(θ), 1)V p

θ,ω∗(θ) (x) .

From the above equation,

J(θ) = EX∼µθ,ω∗(θ) [c(X)]

= EX∼µθ,ω∗(θ) [‖X‖1]

≤
√

2 max(ω∗(θ), 1)EX∼µθ,ω∗(θ)
[√

V p
θ,ω∗(θ) (X)

]
,

where µθ,ω∗(θ) is the stationary distribution of the discrete-time process governed by parameter θ
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and following the best in-class policy according to θ, shown by πω∗(θ). From [71], Theorem 14.3.7,

µθ,ω∗(θ)

(√
V p
θ,ω∗(θ) (X)

)
≤

supθ∈Θ,ω∈[ 1
cRR

,cRR] b
p
θ,ω

βp∗
,

which is finite from the the previous verified assumption. Thus,

sup
θ∈Θ

J(θ) ≤

√
2cRR

(
supθ∈Θ,ω∈[ 1

cRR
,cRR] b

p
θ,ω

)
βp∗

<∞.

B.6 Proofs related to the queueing model examples

B.6.1 Proof of Proposition 2

Proof. We define the normalized rates as

λ̃ =
λ

λ+ θ1 + θ2

, θ̃i =
θi

λ+ θ1 + θ2

, (B.68)

for i = 1, 2. From the choice of parameter space Θ, we have λ̃ ≤ 0.5− 0.5δ, θ1 + θ2 ≥ 0.5 + 0.5δ,
and θ1 ≥ 0.25 + 0.25δ. To prove geometric ergodicity, from the discussions of Section 3.2, it
suffices to show that there exists a finite set Cg

θ,t, constants bgθ,t > 0, γgθ,t ∈ (0, 1), and a function
V g
θ,t : X t → [1,+∞) satisfying

∆V g
θ,t(x) ≤ −

(
1− γgθ,t

)
V g
θ,t(x) + bgθ,tICgθ,t(x), x ∈ Xt. (B.69)

Take V g
θ,t(x) = exp(agθ,t‖x‖1) for some agθ,t > 0. For i ≥ 1 and x = (i, 1, 1),

P t
θV

g
θ,t(i, 1, 1) = λ̃V g

θ,t(i+ 1, 1, 1) + θ̃1V
g
θ,t(i, 0, 1) + θ̃2V

g
θ,t(i, 1, 0),

where P t
θ is the corresponding transition kernel. Thus,

P t
θV

g
θ,t(i, 1, 1)− (1− γgθ,t)V

g
θ,t(i, 1, 1)

= λ̃ exp
(
agθ,t (i+ 3)

)
+ (θ̃1 + θ̃2) exp

(
agθ,t (i+ 1)

)
− (1− γgθ,t) exp

(
agθ,t (i+ 2)

)
= exp

(
agθ,t (i+ 1)

) (
λ̃ exp(2agθ,t) + θ̃1 + θ̃2 − (1− γgθ,t) exp(agθ,t)

)
.

Take ãθ,t = exp(agθ,t). We need to find ãθ,t > 1 and 0 < γgθ,t < 1 such that

λ̃ã2
θ,t − (1− γgθ,t)ãθ,t + θ̃1 + θ̃2 < 0. (B.70)
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Take ãθ,t = (1− δ)−1 > 1 and

γ̃θ,t := 1− γgθ,t =
1

2

(
1 + (1− λ̃)(1− δ) + λ̃ (1− δ)−1

)
.

We need to have γ̃θ,t < 1 which follows from the stability condition λ̃ ≤ 0.5− 0.5δ as below:

γ̃θ,t =
1

2
+

1

2

(
(1− λ̃)(1− δ) +

λ̃

1− δ

)

=
1

2
+

1

2

(
1− δ − λ̃(1− δ) +

λ̃

1− δ

)

=
1

2
+

1

2

(
1− δ + λ̃

1− (1− δ)2

1− δ

)
=

1

2
+

1

2

(
1− δ + λ̃

δ(2− δ)
1− δ

)
≤ 1

2
+

1

2

(
1− δ +

δ(2− δ)
2

)
= 1− δ2

4

< 1.

We now verify (B.70):

λ̃ã2
θ,t − (1− γgθ,t)ãθ,t + θ̃1 + θ̃2 =

λ̃

(1− δ)2
− 1

2(1− δ)
− 1− λ̃

2
− λ̃

2(1− δ)2
+ 1− λ̃

=
λ̃

2(1− δ)2
+

1− λ̃
2
− 1

2(1− δ)

=
1

2(1− δ)2

(
λ̃+ (1− λ̃)(1− δ)2 − (1− δ)

)
=

δ

2(1− δ)2

(
δ − 1− λ̃δ + 2λ̃

)
=

δ

2(1− δ)2

(
λ̃ (2− δ) + δ − 1

)
< 0,

where the last line follows from λ̃ ≤ 0.5− 0.5δ < (1− δ)/ (2− δ).
For x = (i, 0, 1) and i ≥ 1, we have

P t
θV

g
θ,t(i, 0, 1) = λ̃V g

θ,t(i, 1, 1) + θ̃1V
g
θ,t(i− 1, 0, 1) + θ̃2V

g
θ,t(i− 1, 1, 0),
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and

P t
θV

g
θ,t(i, 0, 1)− (1− γgθ,t)V

g
θ,t(i, 0, 1)

= λ̃ exp
(
agθ,t (i+ 2)

)
+ (θ̃1 + θ̃2) exp

(
agθ,ti

)
− (1− γgθ,t) exp

(
agθ,t (i+ 1)

)
= exp

(
agθ,ti

) (
λ̃ exp(2agθ,t) + θ̃1 + θ̃2 − (1− γgθ,t) exp(agθ,t)

)
,

which results in the same conditions as previously discussed. When x = (i, 1, 0) and i ≥ t also
same argument holds.

Finally, (B.69) holds for

Cg
θ,t = {(x0, x1, 0) : x0 < t} ∪ {(0, 0, 1)},

agθ,t = − log(1− δ),

γgθ,t =
1

2
− 1

2

(
(1− λ̃)(1− δ) + λ̃ (1− δ)−1

)
,

V g
θ,t(x) = exp(agθ,t‖x‖1),

bgθ,t = max
x∈Cgθ,t

exp(agθ,t‖x‖1)
(
exp(agθ,t) + 1

)
,

where the last line holds because PV g
θ,t(x) ≤ V g

θ,t(y) for y such that ‖y‖1 = ‖x‖1 + 1.

B.6.2 Proof of Proposition 3

Proof. In order to show polynomially ergodicity, we will verify (B.47). We define V p
θ,t(x) = ‖x‖2

1

and αpθ,t = 1/2, which is equal to r/(r+1) for r = 1; r is defined in Assumption 1. Forx = (i, 0, 1)

and i ≥ 1,

P t
θV

p
θ,t(i, 0, 1) = λ̃V p

θ,t(i, 1, 1) + θ̃1V
p
θ,t(i− 1, 0, 1) + θ̃2V

p
θ,t(i− 1, 1, 0),

in which λ̃, θ̃1, and θ̃2 are the normalized rates defined in (B.68). Thus,

P t
θV

p
θ,t(i, 0, 1)− V p

θ,t(i, 0, 1) + βpθ,t

√
V p
θ,t(i, 0, 1)

= λ̃(i+ 2)2 + (θ̃1 + θ̃2)i2 − (i+ 1)2 + βpθ,t(i+ 1)

= i(4λ̃− 2 + βpθ,t) + 4λ̃− 1 + βpθ,t.
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For βpθ,t = 1 − 2λ̃, the right-hand side of above equation is non-positive for i ≥ 2λ̃
1−2λ̃

. For
x = (i, 1, 0) and i ≥ t,

P t
θV

p
θ,t(i, 1, 0) = λ̃V p

θ,t(i, 1, 1) + θ̃1V
p
θ,t(i− 1, 0, 1) + θ̃2V

p
θ,t(i− 1, 1, 0).

Thus,

P t
θV

p
θ,t(i, 1, 0)− V p

θ,t(i, 1, 0) + βpθ,t

√
V p
θ,t(i, 1, 0)

= λ̃(i+ 2)2 + (θ̃1 + θ̃2)i2 − (i+ 1)2 + βpθ,t(i+ 1)

= i(4λ̃− 2 + βpθ,t) + 4λ̃− 1 + βpθ,t,

which is also non-positive under the same conditions as the previous case. For i ≥ 1 and x =

(i, 1, 1),
P t
θV

p
θ,t(i, 1, 1) = λ̃V p

θ,t(i+ 1, 1, 1) + θ̃1V
p
θ,t(i, 0, 1) + θ̃2V

p
θ,t(i, 1, 0).

Thus,

P t
θV

p
θ,t(i, 1, 1)− V p

θ,t(i, 1, 1) + βpθ,t

√
V p
θ,t(i, 1, 1)

= λ̃(i+ 3)2 + (θ̃1 + θ̃2)(i+ 1)2 − (i+ 2)2 + βpθ,t(i+ 2)

= i(4λ̃− 2 + βpθ,t) + 8λ̃− 3 + 2βpθ,t,

which is non-positive under the same conditions as the first case. Finally, (B.47) holds for

Cp
θ,t = {(x0, x1, 0) : x0 < t} ∪

{
(x0, x1, x2) : x0 <

2λ̃

1− 2λ̃
, x1 + x2 ≥ 1

}
,

βpθ,t = 1− 2λ̃,

αpθ,t =
1

2
,

V p
θ,t(x) = ‖x‖2

1,

bpθ,t = max
x∈Cpθ,t

(‖x‖1 + 1)2),

where the last line holds because PV p
θ,t(x) ≤ V p

θ,t(y) for y such that ‖y‖1 = ‖x‖1 + 1.
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B.6.3 Proof of Proposition 4

Proof. To show geometric ergodicity of the chain that follows πω, we verify (B.55). Take agθ,ω > 0

and
V g
θ,ω(x) =

ω

ω + 1
exp

(
agθ,ω

x1 + 1

ω

)
+

1

ω + 1
exp

(
agθ,ω (x2 + 1)

)
. (B.71)

First, we find PV g
θ,ω(x) for the function defined above. We have

PV g
θ,ω(x) = Eπωx

[
ω

ω + 1
exp

(
agθ,ω

X1(2) + 1

ω

)]
+ Eπωx

[
1

ω + 1
exp

(
agθ,ω (X2(2) + 1)

)]
,

(B.72)
where X(2) = (X1(2), X2(2)) is the state of the system at the second arrival, starting from state
x. To find the above expectations, we first find the corresponding transition probabilities. If the
number of departures from server i during a fixed interval with length t is less than the total number
of jobs in the queue of that server, the number of departures follows a Poisson distribution with
parameter θit. Let P ((x1, x2)→ (x′1,X )) be the probability of transitioning from a system with xi
jobs in server-queue pair i (just after the assignment of the arrival) to a queueing system with x′1
jobs in the first server-queue pair (just before the upcoming arrival). For 1 ≤ x′1 ≤ x1, we have

P ((x1, x2)→ (x′1,X )) =

∫ ∞
0

λ exp(−λt) (θ1t)
x1−x′1

(x1 − x′1)!
exp(−θ1t) dt

=
λ

θ1 + λ

(
θ1

θ1 + λ

)x1−x′1
, (B.73)

and

P ((x1, x2)→ (0,X )) = 1−
x1∑
i=1

λ

θ1 + λ

(
θ1

θ1 + λ

)x1−i
=

(
θ1

θ1 + λ

)x1
. (B.74)
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Assume 1 + x1 ≤ ω(1 + x2), which results in the new arrival being assigned to the first server. For
the first term in (B.72), we have

Eπωx
[
exp

(
agθ,ω

X1(2)

ω

)]
=

x1+1∑
i=0

P ((x1 + 1, x2)→ (i,X )) exp

(
agθ,ω

i

ω

)

=

(
θ1

θ1 + λ

)x1+1

+

x1+1∑
i=1

exp

(
agθ,ω

i

ω

)
λ

θ1 + λ

(
θ1

θ1 + λ

)x1+1−i

=

(
θ1

θ1 + λ

)x1+1

+
λ

θ1 + λ
exp

(
agθ,ω

x1 + 1

ω

) 1− exp
(
−agθ,ω x1+1

ω

) (
θ1

θ1+λ

)x1+1

1− exp
(
−agθ,ω

ω

)
θ1

θ1+λ

,

<

(
θ1

θ1 + λ

)x1+1

+
λ

θ1 + λ
exp

(
agθ,ω

x1 + 1

ω

)
1

1− exp
(
−agθ,ω

ω

)
θ1

θ1+λ

. (B.75)

Similarly, for the second term in (B.72), we have

Eπωx
[
exp

(
agθ,ωX2(2)

)]
≤
(

θ2

θ2 + λ

)x2
+

λ

θ2 + λ
exp

(
agθ,ωx2

) 1

1− exp
(
−agθ,ω

)
θ2

θ2+λ

. (B.76)

To satisfy (B.55), for some 0 < γgθ,ω < 1 and all but finitely many x, the following should hold,

PV g
θ,ω(x) ≤ γgθ,ωV

g
θ,ω(x),

or from (B.71) and (B.72),

Eπωx
[
ω exp

(
agθ,ω

X1(2) + 1

ω

)]
+ Eπωx

[
exp

(
agθ,ω (X2(2) + 1)

)]
≤ γgθ,ω

(
ω exp

(
agθ,ω

x1 + 1

ω

)
+ exp

(
agθ,ω (x2 + 1)

))
.

Notice that

ω

(
θ1

θ1 + λ

)x1+1

+

(
θ2

θ2 + λ

)x2
≤ cRR + 1.
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From (B.75) and (B.76), it suffices to have

(cRR + 1) exp(cRRa
g
θ,ω) +

ω λ
θ1+λ

exp
(
agθ,ω

x1+2
ω

)
1− exp

(
−agθ,ω

ω

)
θ1

θ1+λ

+
λ

θ2+λ
exp

(
agθ,ω (x2 + 1)

)
1− exp

(
−agθ,ω

)
θ2

θ2+λ

≤ γgθ,ω

(
ω exp

(
agθ,ω

x1 + 1

ω

)
+ exp

(
agθ,ω (x2 + 1)

))
. (B.77)

Define

ζ1,θ,ω =
λ

θ1+λ

1− exp
(
−agθ,ω

ω

)
θ1

θ1+λ

, ζ2,θ,ω =
λ

θ2+λ

1− exp
(
−agθ,ω

)
θ2

θ2+λ

.

Simplifying (B.77), we need the following to hold

(cRR + 1) exp(cRRa
g
θ,ω) + ω exp

(
agθ,ω

x1 + 1

ω

)(
ζ1,θ,ω exp

(
agθ,ω
ω

)
− γgθ,ω

)
+ exp

(
agθ,ω (x2 + 1)

) (
ζ2,θ,ω − γgθ,ω

)
≤ 0. (B.78)

As ζi,θ,ω < 1, there exists γgθ,ω such that

ζ2,θ,ω < γgθ,ω < 1.

From the assumption 1 + x1 ≤ ω(1 + x2) and the above equation, (B.78) can be further simplified
as

(cRR + 1) exp(cRRa
g
θ,ω) + exp

(
agθ,ω

x1 + 1

ω

)(
ωζ1,θ,ω exp

(
agθ,ω
ω

)
+ ζ2,θ,ω − (ω + 1)γgθ,ω

)
≤ 0.

(B.79)

For the above to hold outside a finite set, we need to have

ζ1,θ,ωω

1 + ω
exp

(
agθ,ω
ω

)
+
ζ2,θ,ω

1 + ω
< γgθ,ω. (B.80)

Define

ζ3 =
1

1 + δ
, ζ4 =

1− 0.5δ

1− δ
. (B.81)

Note that ζ3 < 1 and ζ4 > 1. Defining function f(y) := 1 + ζ4y − exp(y), we note that for
y ≤ log ζ4, f(y) > 0, where log ζ4 is the maximizer of f(y). Similarly, taking g(y) := 1 − ζ3y −
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exp(−y), for y ≤ − log ζ3, g(y) > 0, where − log ζ3 is the maximizer of g(y). Thus, we conclude
that for agθ,ω ≤ min (−ω log ζ3,−log ζ3, ω log ζ4),

exp(−y) ≤ 1− ζ3y holds for y ≤ max

(
agθ,ω
ω
, agθ,ω

)
, (B.82)

exp(y) ≤ 1 + ζ4y holds for y ≤
agθ,ω
ω
. (B.83)

To guarantee the existence of 0 < γgθ,ω < 1 that satisfies (B.80), we need to ensure the left-hand
side of (B.80) is strictly less than 1. Using the bounds found in (B.82) and (B.83) and the definition
of ζ1,θ,ω and ζ2,θ,ω, we simplify (B.80) to get

λ
1+ω

(
ω + agθ,ωζ4

)
λ+

θ1a
g
θ,ωζ3

ω

+
λ

1+ω

λ+ θ2a
g
θ,ωζ3

< 1,

which is equivalent to

agθ,ωζ3θ2

(
λζ4 −

ζ3θ1(1 + ω)

ω

)
< λζ3 (θ1 + θ2)− λ2ζ4. (B.84)

To make sure there exists agθ,ω > 0 that satisfies (B.84), the right-hand side of (B.84) needs to be
positive, which follows as below:

λζ3 (θ1 + θ2)− λ2ζ4 = λ

(
θ1 + θ2

1 + δ
− λ1− 0.5δ

1− δ

)
= λ(θ1 + θ2 + λ)

(
1− λ̃
1 + δ

− λ̃1− 0.5δ

1− δ

)

= λ(θ1 + θ2 + λ)

(
1

1 + δ
− λ̃

(
1

1 + δ
+

1− 0.5δ

1− δ

))
≥ λ(θ1 + θ2 + λ)

(
1

1 + δ
− 1− δ

2

(
1

1 + δ
+

1− 0.5δ

1− δ

))
=
δ

4
λ(θ1 + θ2 + λ) (B.85)

where λ̃, θ̃1, and θ̃2 are the normalized rates defined in (B.68) and we have used the stability
condition λ̃ ≤ 0.5− 0.5δ. We further simplify the left-hand side of (B.84) as

ζ3θ2

(
λζ4 −

ζ3θ1(1 + ω)

ω

)
< θ2λζ3ζ4 <

1− 0.5δ

1− δ2
(θ1 + θ2 + λ)λ.
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From the above equation and (B.85), agθ,ω needs to satisfy

agθ,ω ≤
δ(1− δ2)

8(1− 0.5δ)
.

Finally, we take agθ,ω as

agθ,ω = min

(
−ω log ζ3,−log ζ3, ω log ζ4,

δ(1− δ2)

8(1− 0.5δ)

)
.

After finding an appropriate agθ,ω, we can choose 0 < γgθ,ω < 1 such that (B.80) holds or

γgθ,ω ≥
1

2

(
1 +

ζ1,θ,ωω

1 + ω
exp

(
agθ,ω
ω

)
+
ζ2,θ,ω

1 + ω

)
.

Moreover, from (B.79) a lower bound xg11,θ,ω for x1 is derived; In other words,(B.79) holds for
x1 > xg11,θ,ω. From (B.78), we can find the corresponding xg12,θ,ω and take xg1θ,ω = (xg11,θ,ω, x

g1
2,θ,ω). By

repeating the same arguments when 1 + x1 < ω(1 + x2), we finally conclude that

∆V g
θ,ω(x) ≤ −

(
1− γgθ,ω

)
V g
θ,ω(x) + bgθ,ωICgθ,ω(x), x ∈ X ,
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for

V g
θ,ω(x) =

ω

ω + 1
exp

(
agθ,ω

x1 + 1

ω

)
+

1

ω + 1
exp

(
agθ,ω (x2 + 1)

)
,

agθ,ω = min

(
ω log(1 + δ), log(1 + δ), ω log

1− 0.5δ

1− δ
, log

1− 0.5δ

1− δ
,

δ(1− δ2)

4cRR(1− 0.5δ)

)
,

Cg
θ,ω = {(x1, x2) ∈ X : xi ≤ max

(
x
gj
i,θ,ω, 0

)
, i, j = 1, 2},

γgθ,ω =
1

2
+

1

2
max

(
ζ1,θ,ω, ζ2,θ,ω,

ζ1,θ,ωω

1 + ω
exp

(
agθ,ω
ω

)
+
ζ2,θ,ω

1 + ω
,
ζ1,θ,ωω

1 + ω
+
ζ2,θ,ω

1 + ω
exp

(
agθ,ω
))

,

bgθ,ω = max
x∈Cgθ,ω

(
2ω

ω + 1
exp

(
agθ,ω

x1 + 2

ω

)
+

2

ω + 1
exp

(
agθ,ω (x2 + 2)

))
,

ζ1,θ,ω =
λ

θ1+λ

1− exp
(
−agθ,ω

ω

)
θ1

θ1+λ

,

ζ2,θ,ω =
λ

θ2+λ

1− exp
(
−agθ,ω

)
θ2

θ2+λ

,

xg11,θ,ω =
ω

agθ,ω
log

(cRR + 1) exp(cRRa
g
θ,ω)

(ω + 1)γgθ,ω − ωζ1,θ,ω exp
(
agθ,ω
ω

)
− ζ2,θ,ω

,

xg12,θ,ω =
1

agθ,ω
log

(cRR + 1) exp(cRRa
g
θ,ω) + ω exp

(
agθ,ω

x
g1
1,θ,ω+1

ω

)(
ζ1,θ,ω exp

(
agθ,ω
ω

)
− γgθ,ω

)
γgθ,ω − ζ2,θ,ω

,

xg22,θ,ω =
1

agθ,ω
log

(cRR + 1) exp(cRRa
g
θ,ω)

(ω + 1)γgθ,ω − ωζ1,θ,ω − ζ2,θ,ω exp
(
agθ,ω
) ,

xg21,θ,ω =
ω

agθ,ω
log

(cRR + 1) exp(cRRa
g
θ,ω) + exp

(
agθ,ω(xg22,θ,ω + 1)

) (
ζ2,θ,ω exp

(
agθ,ω
)
− γgθ,ω

)
ω
(
γgθ,ω − ζ1,θ,ω

) .

B.6.4 Proof of Proposition 5

Proof. Define V p
θ,ω(x) =

x21
ω

+ x2
2, and αpθ,ω = 1/2. Assume that x1 = 0 and x2 > (1 − ω)/ω;

which means the new job will be assigned to the first server. The transition probabilities of the
discrete-time chain sampled at Poisson arrivals is given in (B.73) and (B.74), and we calculate
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PV p
θ,ω(x) as

PV p
θ,ω(x) =

λ

ω(λ+ θ1)
+

x2∑
i=1

i2
λ

λ+ θ2

(
θ2

θ2 + λ

)x2−i
< cRR +

x2∑
i=1

i2
λ

λ+ θ2

(
θ2

θ2 + λ

)x2−i
. (B.86)

We define di := θi/(θi + λ) for i = 1, 2 and

x2∑
i=1

i2
λ

λ+ θ2

(
θ2

θ2 + λ

)x2−i
=

1

(1− d2)2

(
−dx22

(
d2 + d2

2

)
+ d2

2

(
x2

2 + 2x2 + 1
)

+ d2

(
−2x2

2 − 2x2 + 1
)

+ x2
2

)
=

1

(1− d2)2

(
(1− dx22 )

(
d2 + d2

2

)
+ x2

2

(
d2

2 − 2d2 + 1
)

+ x2

(
2d2

2 − 2d2

))
= x2

2 −
2d2

1− d2

x2 +
(1− dx22 ) (d2 + d2

2)

(1− d2)2
. (B.87)

From (B.86),

PV p
θ,ω(x)− V p

θ,ω(x) + βpθ,ωx2 <

(
− 2d2

1− d2

+ βpθ,ω

)
x2 +

(1− dx22 ) (d2 + d2
2)

(1− d2)2
+ cRR.

Outside a finite set, we need the above equation to be non-positive; which is equivalent to(
−2 + βpθ,ω

1− d2

d2

)
x2 +

(1− dx22 ) (1 + d2)

1− d2

+ cRR
1− d2

d2

≤ 0.

As d2 < 1,
1− dy2
1− d2

= 1 + d2 + . . .+ dy−1
2 ≤ y for y ≥ 1. (B.88)

Thus, (
−2 + βpθ,ω

1− d2

d2

)
x2 +

(1− dx22 ) (1 + d2)

1− d2

+ cRR
1− d2

d2

≤
(
d2 − 1 + βpθ,ω

1− d2

d2

)
x2 + cRR

1− d2

d2

.

By taking βpθ,ω ≤ d2/2, it suffices for the following to be non-positive,

−1− d2

2
x2 + cRR

1− d2

d2

≤ 0,
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which holds for x2 ≥ 2cRR/d2. Thus, for x1 = 0 and x2 ≥ max (2cRR(λ+ θ2)/θ2, (1− ω)/ω) =

2cRR(λ + θ2)/θ2, (B.61) holds. The case of x2 = 0 and non-zero x1 follows same arguments and
(B.61) holds for βpθ,ω ≤ d1/2

√
ω, x2 = 0, and x1 ≥ max (2cRR(λ+ θ1)/θ1, ω − 1) = 2cRR(λ +

θ1)/θ1. We now consider the case of x1, x2 > 0 and x1 + 1 ≤ ω(x2 + 1), and note that

√
V p
θ,ω(x) =

√
x2

1

ω
+ x2

2 ≤
√

(x1 + 1)2

ω
+ (x2 + 1)2 ≤

√
ω + 1(x2 + 1).

Hence, it suffices to find finite set Cp
θ,ω, constants bpθ,ω and βpθ,ω > 0, such that the following holds

for V p
θ,ω(x) =

x21
ω

+ x2
2,

∆V p
θ,ω(x) ≤ −

√
ω + 1βpθ,ω(x2 + 1) + bpθ,ωICpθ,ω(x).

As x1 + 1 ≤ ω(x2 + 1), the new arrival is assigned to the first queue and we find ∆V p
θ,ω(x) +

√
ω + 1βpθ,ω(x2 + 1) using the same calculations as (B.87).

∆V p
θ,ω(x) +

√
ω + 1βpθ,ω(x2 + 1)

=
1

ω

(
(x1 + 1)2 − 2d1

1− d1

(x1 + 1) +

(
1− dx1+1

1

)
(d1 + d2

1)

(1− d1)2
− x2

1

)

− 2d2

1− d2

x2 +
(1− dx22 ) (d2 + d2

2)

(1− d2)2
+
√
ω + 1βpθ,ω(x2 + 1)

=
x1

ω

(
2− 2d1

1− d1

)
+

1− 3d1

ω(1− d1)
+

(
1− dx1+1

1

)
(d1 + d2

1)

ω(1− d1)2
(B.89)

+ (x2 + 1)

(
− 2d2

1− d2

+
√
ω + 1βpθ,ω

)
+

2d2

1− d2

+
(1− dx22 ) (d2 + d2

2)

(1− d2)2
. (B.90)

We next consider two different cases based on the value of d1 and analyze them separately.
One. 0.8 ≤ d1 < 1 : We first notice that the coefficient of x1 in (B.89) is negative, as d1 > 1/2.
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For x1 ≥ 1, (B.89) is equal to

1

ω(1− d1)

(
(2− 4d1)x1 + 1− 3d1 + (d1 + d2

1)

x1∑
i=0

di1

)

=
1

ω(1− d1)

(
(2− 4d1)(x1 − 1) + d3

1(1 + d1)

x1−2∑
i=0

di1 + d1(1 + d1)2 + 3− 7d1

)
≤ 1

ω(1− d1)

(
(2− 4d1)(x1 − 1) + d3

1(1 + d1)(x1 − 1) + d1(1 + d1)2 + 3− 7d1

)
=

1

ω(1− d1)

(
(d4

1 + d3
1 − 4d1 + 2)(x1 − 1) + d1(1 + d1)2 + 3− 7d1

)
=
−d3

1 − 2d2
1 − 2d1 + 2

ω
(x1 − 1) +

−d2
1 − 3d1 + 3

ω

< 0,

where the third line follows from (B.88), and the last line from the fact that when 0.8 ≤ d1 < 1,
both terms −d3

1 − 2d2
1 − 2d1 + 2 and −d2

1 − 3d1 + 3 are negative. Next, we notice that (B.90) is
equal to

x2

(
− 2d2

1− d2

+
√
ω + 1βpθ,ω

)
+
√
ω + 1βpθ,ω +

(1− dx22 ) (d2 + d2
2)

(1− d2)2

≤ x2

(
− 2d2

1− d2

+
√
ω + 1βpθ,ω

)
+
d2 + d2

2

1− d2

x2 +
√
ω + 1βpθ,ω

= x2

(
− 2d2

1− d2

+
d2 + d2

2

1− d2

+
√
ω + 1βpθ,ω

)
+
√
ω + 1βpθ,ω

= x2

(
−d2 +

√
ω + 1βpθ,ω

)
+
√
ω + 1βpθ,ω,

where the second line follows from (B.88). Taking βpθ,ω ≤ d2/2
√
ω + 1, we get

x2

(
− 2d2

1− d2

+
√
ω + 1βpθ,ω

)
+
√
ω + 1βpθ,ω +

(1− dx22 ) (d2 + d2
2)

(1− d2)2
≤ −d2

2
x2 +

d2

2
,

which is non-positive for x2 ≥ 1. Finally, when 0.8 ≤ d1 < 1, x1, x2 > 0, and x1 + 1 ≤ ω(x2 +1),
(B.61) holds for βpθ,ω ≤ d2/2

√
ω + 1.

Two. d1 < 0.8 : Taking βpθ,ω ≤ d2√
ω+1(1−d2)

, we note that the coefficient of x2 in (B.90) is
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negative. Thus, from x1 + 1 ≤ ω(x2 + 1), (B.89) and (B.90),

∆V p
θ,ω(x) +

√
ω + 1βpθ,ω(x2 + 1)

≤ x1 + 1

ω

(
2− 2d1

1− d1

)
− 1

ω
+

(
1− dx1+1

1

)
(d1 + d2

1)

ω(1− d1)2

+
x1 + 1

ω

(
− 2d2

1− d2

+
√
ω + 1βpθ,ω

)
+

2d2

1− d2

+
(1− dx22 ) (d2 + d2

2)

(1− d2)2

<
x1 + 1

ω

(
2− 2d1

1− d1

− 2d2

1− d2

+
√
ω + 1βpθ,ω

)
+

2d2

1− d2

+
d1 + d2

1

ω(1− d1)2
+

d2 + d2
2

(1− d2)2
.

(B.91)

As di = θ̃i/(θ̃i + λ̃) in terms of the normalized rates, we get

2− 2d1

1− d1

− 2d2

1− d2

= 2− 2θ̃1

λ̃
− 2θ̃1

λ̃
=
−2(θ̃1 + θ̃2 − λ̃)

λ̃
,

which is negative from the stability condition. For βpθ,ω ≤ θ̃1+θ̃2−λ̃
λ̃
√
ω+1

, from (B.91) we get

∆V p
θ,ω(x) +

√
ω + 1βpθ,ω(x2 + 1)

<
−(θ̃1 + θ̃2 − λ̃)

ωλ̃
(x1 + 1) +

2d2

1− d2

+
d1 + d2

1

ω(1− d1)2
+

d2 + d2
2

(1− d2)2

=
−(θ̃1 + θ̃2 − λ̃)

ωλ̃
(x1 + 1) +

2θ̃2

λ̃
+
θ̃1(2θ̃1 + λ̃)

ωλ̃2
+
θ̃2(2θ̃2 + λ̃)

λ̃2
,

which is non-positive for

x1 + 1 ≥ θ̃1(2θ̃1 + λ̃) + ωθ̃2(2θ̃2 + 3λ̃)

λ̃(θ̃1 + θ̃2 − λ̃)
.

As d1 < 0.8, we can see that λ̃ > θ̃1/4; thus,

θ̃1(2θ̃1 + λ̃) + ωθ̃2(2θ̃2 + 3λ̃)

λ̃(θ̃1 + θ̃2 − λ̃)
<

4θ̃1(2θ̃1 + λ̃) + 4ωθ̃2(2θ̃2 + 3λ̃)

θ̃1(θ̃1 + θ̃2 − λ̃)
<

4cRR(1 + 2λ̃)

δ
≤ 4cRR,

where we have used the fact that θ̃1 ≥ θ̃2, ω ≤ cRR, θ̃1 + θ̃2 − λ̃ ≥ δ, and λ̃ ≤ 0.5 − 0.5δ and it
suffices for x1 to be greater than or equal to 4cRR. For x1 < 4cRR, (B.89) can be upper bounded
as

8cRR

ω
+

1− 3d1

ω(1− d1)
+

d1 + d2
1

ω(1− d1)2
≤ 8cRR

ω
+

2

ω(1− d1)2
<

8cRR + 50

ω
,
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where in the last inequality we have used d1 < 0.8. From (B.90) and taking βpθ,ω ≤ d2/2
√
ω + 1,

∆V p
θ,ω(x) +

√
ω + 1βpθ,ω(x2 + 1)

≤ 8cRR + 50

ω
+

(
− 2d2

1− d2

+
d2

2

)
(x2 + 1) +

2d2

1− d2

+
(1− dx22 ) (d2 + d2

2)

(1− d2)2

≤
(
− 2d2

1− d2

+
d2

2
+
d2 + d2

2

1− d2

)
x2 +

d2

2
+

8cRR + 50

ω

= −d2

2
x2 +

d2

2
+

8cRR + 50

ω
,

which is negative for

x2 ≥ 1 +
16cRR + 100

ωd2

.

Finally, when x1 + 1 ≤ ω(x2 + 1) and x1, x2 > 0, (B.61) holds for βpθ,ω ≤
1√
ω+1

min
(

θ̃2
2(θ̃2+λ̃)

, θ̃1 + θ̃2 − λ̃
)

, x1 ≥ 4cRR, and x2 ≥ 1 + 16cRR+100
ωd2

. Repeating the
same arguments when x1, x2 > 0 and x1 + 1 > ω(x2 + 1), (B.61) holds for βpθ,ω ≤

1√
ω+1

min
(

θ̃1
2(θ̃1+λ̃)

, θ̃1 + θ̃2 − λ̃
)

, x1 ≥ 1 + ω(16cRR
2+100)

d1
, and x2 ≥ 4cRR

2. Finally, (B.61) holds
with

V p
θ,ω(x) =

x2
1

ω
+ x2

2,

Cp
θ,ω =

{
(x1, x2) ∈ X : xi ≤

(
16c2

RR
3−i + 101cRR

) λ+ θi
θi

, i = 1, 2

}
,

βpθ,ω = min

(
θ̃2

2(θ̃2 + λ̃)
√
ω + 1

,
θ̃1 + θ̃2 − λ̃√

ω + 1
,

θ̃2

2(θ̃2 + λ̃)
,

θ̃1

2(θ̃1 + λ̃)
√
ω

)
,

bpθ,ω = (βpθ,ω + 1) max
x∈Cpθ,ω

(
(x1 + 1)2

ω
+ (x2 + 1)2

)
,

αpθ,ω =
1

2
,

where the fourth line holds since PV p
θ,ω(x) ≤ V p

θ,ω(y) for y = (y1, y2) such that yi = xi + 1 for
i = 1, 2.

140



BIBLIOGRAPHY

[1] Yasin Abbasi-Yadkori and Csaba Szepesvari. Bayesian optimal control of smoothly param-
eterized systems: The lazy posterior sampling algorithm. arXiv preprint arXiv:1406.3926,
2014.

[2] Saghar Adler, Mehrdad Moharrami, and Vijay Subramanian. Learning a discrete set of
optimal allocation rules in queueing systems with unknown service rates. arXiv preprint
arXiv:2202.02419, 2022.

[3] R. Agrawal, D. Teneketzis, and V. Anantharam. Asymptotically efficient adaptive alloca-
tion schemes for controlled Markov chains: Finite parameter space. IEEE Transactions on
Automatic Control, 34(12):1249–1259, 1989.

[4] Rajeev Agrawal and Demosthenis Teneketzis. Certainty equivalence control with forcing:
Revisited. Systems & control letters, 13(5):405–412, 1989.

[5] Rajeev Agrawal, Demosthenis Teneketzis, and Venkatachalam Anantharam. Asymptotically
efficient adaptive allocation schemes for controlled Markov chains: Finite parameter space.
IEEE Transactions on Automatic Control, 34(12):1249–1259, 1989.

[6] Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning:
Worst-case regret bounds. Advances in Neural Information Processing Systems, 30, 2017.

[7] Shipra Agrawal and Randy Jia. Learning in structured MDPs with convex cost functions:
Improved regret bounds for inventory management. In Proceedings of the 2019 ACM Con-
ference on Economics and Computation, pages 743–744, 2019.

[8] Shipra Agrawal and Randy Jia. Learning in structured MDPs with convex cost functions:
Improved regret bounds for inventory management. Operations Research, 70(3):1646–
1664, 2022.

[9] Nima Akbarzadeh and Aditya Mahajan. On learning Whittle index policy for restless bandits
with scalable regret. arXiv preprint arXiv:2202.03463, 2022.

[10] Aristotle Arapostathis, Vivek S Borkar, Emmanuel Fernández-Gaucherand, Mrinal K
Ghosh, and Steven I Marcus. Discrete-time controlled Markov processes with average cost
criterion: A survey. SIAM Journal on Control and Optimization, 31(2):282–344, 1993.
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