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ABSTRACT

This thesis considers the problem of computing the cobordism groups associated to mani-

folds with self-conjugate and double-real structures. In the first two chapters, we discuss the

historical and mathematical background relevant to the problem, and highlight the parallels

with our own arguments. In Chapter 3, we introduce a new spectral sequence, called the

rectified Adams-Novikov spectral sequence, which we show converges to the relevant cobor-

dism groups. This is a further generalization of both the classical Adams spectral sequence

and the generalized Adams-Novikov spectral sequence. In particular, our spectral sequence

relies on the resolution of the classical complex cobordism group as a comodule over two

specific Hopf algebroids, one for each of self-conjugate and double-real cobordism. We give

a complete computation of the algebraic structure of these Hopf algebroids, showing each is

polynomial and giving a determination of the respective coproduct structures. Additional

useful properties of these Hopf algebroids are also shown. In the case of self-conjugate cobor-

dism, we show that our spectral sequence collapses, and we discuss the potential for collapse

of the spectral sequence associated to double-real cobordism.

In Chapter 4, we discuss Sage computations which allow us to compute the self-conjugate

and double-real cobordism groups to degree 16, which doubles the height of previous com-

putations. We produce code which symbolically solves for the image of each polynomial

generator in our given Hopf algebroids under their coproduct maps. We construct the re-

duced cobar complex and associated differentials coming from our spectral sequence, and

compute the homology to recover the homotopy groups. Additional intermediate computa-

tions are also included. We conclude by including a list of tables containing the result of the

computations given in Chapter 4.
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CHAPTER 1

Introduction

The field of algebraic topology has shaped and been shaped by the development of cobordism

theory. Implicit in the work in the work of Poincaré, the first definitions of cobordism was

made explicit by Pontryagin in [Pon50]. At its simplest, cobordism relates n-dimensional

manifolds which form the boundary of manifolds in dimension n+1. René Thom was the first

to observe that cobordism classes of manifolds (originally a purely geometric construction)

were in bijection with certain homotopy classes of maps [Tho54]. Thom’s work specifically

concerned smooth manifolds, both with and without orientation, but generalizations due

to the independent work of Pontryagin [Pon50, Pon59], and later Lashof [Las63], solidified

the connection between homotopy classes of maps and cobordisms of smooth manifolds with

more general stable normal structures.

These results motivated Milnor [Mil60] and Novikov [Nov60] to independently compute

the cobordism ring associated to manifolds with stable complex structure on their nor-

mal bundle, denoted ΩC
∗ . Both answered the problem conclusively, providing a complete

calculation of ΩC
∗ along with the image under the Hurewicz homomorphism. Each proof

hinged on the application of a recently developed computational tool of Adams. His work

in [Ada58, Ada59], on mod p singular homology operations and the Steenrod Algebra A∗

motivated his introduction of the Adams Spectral Sequence:

CotorA∗(H∗(S;Fp), H∗(X;Fp)) ⇒ π∗(X)⊗ Fp.
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The application of this tool by Milnor and Novikov is particularly notable as it is a

complete solution to a geometric problem that uses strictly algebraic techniques. The relevant

geometry simply provides context for the existence of the module structure maps. This result

showed that there was room for a more unified approach to these geometrically motivated

problems, and along with Atiyah’s work on K-theory and generalized cohomology theories,

began to steer homotopy theory towards developing exactly this approach, which would come

to be called spectral algebra.

The seeds of this idea were contained in Thom’s original work. His result (and its sub-

sequent generalizations) utilized the Pontryagin-Thom construction, a certain quotient of

the universal classifying bundle determined by the tangential structure being classified. The

resulting space, called the Thom space, carried a large amount of homotopical information.

Additionally, this construction was done dimension-wise, meaning there were a sequence of

Thom spaces, each related to the next by a series of connecting maps coming from geometric

suspension. These connecting maps allowed for the study of so-called "stable" homotopical

data, i.e. the information that persists as dimension was increased.

Milnor points out that this structure could be encoded by the recently defined "spectrum",

a term introduced by Lima in [Lim59], with further revisions of the definition due to Spanier

[Spa59] to solve problems related to stable duality as recounted in [May99]. Additionally,

Milnor also mentions that the structure is similar to Adams "stable object", mentioned

in [Ada59]. Since these foundational observations, the accepted definition of spectra and

stability have been significantly overhauled. In particular, we want to make important note

that, despite the similarities highlighted by Milnor, the "spectrum" of Lima and Spanier and

the "stable object" of Adams are distinct, and neither align with the modern perspective

of spectra as the objects in the stable homotopy category as noted in [May80], where a

more complete and thorough account of the historical development can be found. With the

modern context of spectra, the computations of Thom can be viewed as computing π∗(MO),

the homotopy groups associated to the spectra real unoriented cobordism spectrum MO,
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while Milnor-Novikov computed π∗(MU), the groups associated to the complex cobordism

spectrum MU . Atiyah’s work on complex and real K-theory computes the homotopy groups

of the spectra KU and KO. Singular homology is computed utilizing the Eilenberg-Maclane

spectrum HFp, and Atiyah’s work on generalized homology theories, when combined with

Brown’s Representability Theorem [Bro82], allow any generalized homology theory to be

studied by studying the representing spectra.

The spectral perspective on cobordism can also be extended to other flavors of cobordism,

including oriented cobordism (MSO), symplectic cobordism (MSp), and framed cobordism

(Mfr). Additionally, this thesis treats the theories of self-conjugate cobordism (MSC) and

double-real cobordism (MO[2]). While the computation of π∗(MU) mentioned above is the

most celebrated, the initial work of Thom showed MO and MSO were quite tractable, giving

a complete computation of π∗(MO), and π∗(MSO) ⊗ Q, with work by Milnor and others

further characterizing the torsion of π∗(MSO). Given how accessible real and complex

cobordism are, one might expect symplectic cobordism to follow similarly. However, the

work of Kochman in [Koc80, Koc82, Koc93] shows that MSp is highly complex, with [Koc93]

specifically highlighting that in the classical Adams Spectral Sequence, the differentials dr are

non-trivial for all r ≥ 2. The spectrum Mfr is even more intractable. Pontryagin’s initial

work in [Pon50] showed that π∗(Mfr) ∼= π∗(S), or equivalently, computing framed cobordism

groups is equivalent to computing the stable homotopy groups of spheres, a problem which

has been at the center of stable homotopy theory since its creation.

The self-conjugate cobordism ring walks the line between the tractable and intractable.

Smith and Stong [SS68b] computed π∗(MSC)⊗Z[1
2
] to be polynomial, showing that the only

torsion for π∗(MSC) will be of the form Z/2nZ. Some multiplicative relations were derived

by Gozman [Goz77], motivated by the work of Buchstaber-Novikov[BN71], but ultimately

the computation of π∗(MSC) resisted a complete solution until now. This thesis presents

original computer computations and observations which contributed to the complete alge-

braic characterization of π∗(MSC), which is joint with Hu, Kriz, and Somberg, [HKRS23].
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This includes the observation that the spectral sequence presented in Theorem 3.1.1 is dis-

tinct from the generalized Adams-Novikov spectral sequence. In particular, we note that

the rectified Adams-Novikov spectral sequence we present here utilizes advances in spectral

algebra and the collapse leverages results in motivic homotopy theory, both of which were

unavailable at the time of the original work on MSC.

As mentioned above, since Lima’s initial definition of a spectrum, decades of work has

gone into developing the theory of spectra, including the construction of the derived category

of spectra and the introduction of a symmetric monoidal smash product. This acts as a tensor

product for spectra, allowing for more explicit adaptations of algebraic constructions in the

category of spectra and would making the transition from topology to algebra more natural.

Developing these tools required modifications of the classical definitions as naïve spectra fail

to admit such a suitable smash product as shown in [Lew91]. Specifically, the categories of

orthogonal spectra [May80, MM02], symmetric spectra [HSS00], and S-modules [EKMM97]

were each introduced, along with a corresponding smash product, to alleviate certain defects

in the naïve category. Each of these categories admits a model structure which were shown

to be Quillen equivalent, and therefore independent of the choice of model when working in

the derived setting. We ultimately work in the derived category, but at the strict spectral

level, we chose to work in the category of S-modules. This is primarily for the convenience

offered when working with the smash product over certain ring spectra, but we do highlight

the involvement of the author’s advisor in its development [EKMM97].

By taking advantage of the increased algebraic freedom granted by the development of a

symmetric monoidal smash product, we produce the spectrum MU ∧MSC MU , which when

paired with MU , allow us to consider the Hopf algebroid (π∗(MU), π∗(MU ∧MSC MU)). We

use this to produce the spectral sequence:

Cotorπ∗(MU∧MSCMU)(π∗(MU), π∗(MU)) ⇒ π∗(MSC)

4



which we show collapses in Theorem 3.5.1 without extensions, in a spectral analog of the

algebraic resolution in [GM74]. We note the parallel with the generalized Adams-Novikov

spectral sequence

CotorE∗(E)(E∗(S), E∗(X)) ⇒ π∗(X)

which for certain spectrum E, produces a spectral sequence over the Hopf algebroid

(π∗(E), π∗(E ∧E)), more commonly denoted (E∗, E∗E). As such, we call the above spectral

sequence the rectified Adams-Novikov spectral sequence.

We also want to note that when E is taken to be MU or the Brown-Peterson spectrum

BP , we have an alternative perspective coming from the study of formal groups laws. The

work of Quillen [Qui69] and Landweber[Lan75] show that there exists natural isomorphisms

between the Lazard ring admitting the universal formal group law L, and MU∗, while also

showing the associated Hopf algebroid characterizing strict isomorphisms of formal group

laws, LB, is isomorphic as Hopf algebroids to MU∗MU , with equivalent results holding for

p-typical formal groups and the BP∗ analogous statements. Our characterization of the Hopf

algebroid (MU∗, π∗(MU ∧MSC MU)) takes advantage of this perspective, further motivated

by results of [BN71].

The rest of thesis is organized as follows. In Chapter 2, we fully give the definitions which

parallel the historical introduction given in this chapter. We give the concrete definitions

needed to construct the spectral sequence of Theorem 3.1.1 , and we provide the context

via formal group laws for our discussion of the Hopf algebroid ((MU∗), π∗(MU ∧MSC MU)).

In Chapter 3, we give the general construction of the rectified Adams-Novikov spectral

sequence. We characterize ((MU∗), π∗(MU ∧MSC MU)) algebraically. We prove the collapse

of this spectral sequence over ((MU∗), π∗(MU ∧MSC MU)) is obtained by using the "motivic

loop", via the motivic homotopy theory over C introduced by Hu, Kriz, and Ormsby in

[HKO11]. The collapse follows using results of [GWX21] and [IWX20].

Additionally, to simplify the above concrete calculations stemming from MSC, we find

it useful to work with the spectrum MO[2], the double-real cobordism ring, first intro-
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duced by Kitchloo and Wilson in [KW15]. In some sense, this spectrum considers the

"real" part of MSp, but was significantly less studied. We produce a similar Hopf algebroid

(MU∗, π∗(MU ∧MO[2] MU)), which is easier to characterize, but whose associated rectified

Adams-Novikov spectral sequence is harder to compute. This characterization is also ob-

tained via the same formal group methods discussed for (MU ∧MSC MU)∗.

We use the simplified algebraic structure to produce an alternative characterization of the

rectified Adams-Novikov spectral sequence associated to MSC, whose E2-term reduces to

the cohomology of a polynomial algebra (whose generators correspond to permanent cycles

in Ext1), acting on MU∗. The action is complicated but can be characterized using the con-

nections to formal groups described above, allowing concrete computer computations, given

in Chapter 4. Finally, Chapter 5 contains the results of these computations, in addition to

intermediate computational results. These intermediate computations include characteriza-

tion of the right unit associated to each Hopf algebroid, and the determination of primitive

generators for π∗(MU ∧MO[2] MU).
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CHAPTER 2

Cobordism, Algebra, and Spectra

Here we recall the necessary background material needed to proceed with Chapter 3 and

Chapter 4. If the reader is interested in deeper context, we direct the reader to the following

references. For Section 2.1, we refer the reader to [Ada69, LMSM86] for details related to the

foundations of spectra, and for further details on the symmetric monoidal smash product,

we refer to [EKMM97] . For Section 2.2, we refer to [Sto68], although for the generalized

result in Theorem 2.2.1 the original reference of [Las63] is particularly readable. For the

information of Sections 2.4 and 2.5, we refer to Appendices A and B of [Rav86] respectively.

For Section 2.3, the original definition of MO[2] is given in [KW15], while a definition of

MSC and related results are given in [SS68b].

2.1 Spectra and Spectral Algebra

We present the the present settled definitions of the core constructions as a reference.

Definition 2.1.1. A prespectrum is a collection of based topological spaces (En)
∞
n=0, and

based maps σn : ΣEn → En+1. If the the corresponding adjoint map σ̃ : En → ΩEn+1 is

an homeomorphism, then we say E is a spectrum. A map of (pre)spectra f : E → F is a

7



collection of maps fn : En → Fn such that the diagram:

En ΩEn+1

Fn ΩFn+1

σ̃E,n

fn Ωfn+1

σ̃F,n

commutes (strictly).

Importantly, given any space X, we can produce a prespectrum by letting Xn = ΣnX,

and letting the σn be the trivial homeomorphism. This is called the suspension prespectrum

of X, and is denoted Σ∞X. If one attempts this with S0, we obtain the sphere prespectrum.

However, the corresponding adjoints σ̃n are not homeomorphisms, meaning that the naive

construction of a "sphere spectrum" fails. As such, we recall that the forgetful functor from

spectra to prespectra has a left adjoint, called "spectrification" which suitably produces

a spectrum given any prespectrum. Therefore, the sphere spectrum S is defined as the

spectrification of the suspension prespectrum Σ∞S0.

With these definitions in mind, the concept of the n-sphere spectrum Sn, homotopy classes

of maps [E,F ], and homotopy groups of a spectrum πn(E) := [Sn, E] can be intuited based

on their traditional topological analogs, or their existence can be taken on faith for the

purposes of this thesis. The following notion of weak equivalence is space-level construction

that has been adapted to the category of spectra.

Definition 2.1.2. A weak equivalence of spectra f : E → F is a map of spectra such that

f∗ : πn(E) → πn(F ) is an isomorphism for all n.

For suitably chosen fibrations and cofibrations, and with the definition of weak equiva-

lence provided above, the category of spectra can be given a model category structure. The

resulting derived category is the setting for most of modern homotopy theory. Additionally,

as referenced in the introduction, there was significant work done to produce a symmetric

monoidal smash product in this setting, allowing for more explicit adaptations of algebraic
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constructions in the category of spectra. It should not surprise the reader that the definition

and construction of such a stable smash product is quite technical and dependant on the

initial model category. Specifically, we note that the constructions given below require work-

ing with L-spectra. Briefly, L-spectra generalize spectra as defined above by indexing over

all finite dimensional subspaces of R∞ as opposed to the natural numbers. This indexing is

required to satisfy additional coherence conditions enabling the construction of the desirable

smash product. A more complete description can be found in [EKMM97]. Therefore, for the

purposes of this thesis, we simply assert the existence and give the following properties:

Theorem 2.1.1. There exists a smash product ∧ on (L)-spectra, such that when restricted

to an appropriate full subcategory, the operation ∧ is a symmetric monoidal product in the

derived setting.

At this point, we note that for our purposes, the suitable subcategory we will work in is

the category of S-modules, defined as follows:

Definition 2.1.3. A (L)-spectrum E is an S-module if there exists a map λ : S ∧ E → E

which is a strict isomorphism of spectra.

Now, that a smash product is given, we can begin strengthening the analogy with algebra.

As such, let us introduce the following definition:

Definition 2.1.4. A spectrum R is a ring spectrum if there exists a map µ : R ∧ R → R,

and unit map η : S → R. The spectrum R is A∞ if µ is associative up to arbitrary higher

homotopies. R is E∞ if it is A∞ and µ commutes up to arbitrary higher homotopies.

It should also be noted that our results in later chapters are in the derived stetting.

In light of the Quillen equivalences (which preserve smash products) between orthogonal

spectra, symmetric spectra and S-modules, these results are therefore are independent of the

setting, and S-modules have been chosen strictly for convenience. Now, that we have defined

9



Definition 2.1.5. Let R be an S-module. R is an S-algebra if it also an A∞-ring spectrum.

If R is E∞, then we say R is an commutative S-algebra.

Now that we have the notion of an algebra, left and right modules over an algebra are de-

fined by asking that the spectral analogs simply satisfy the necessary commutative diagrams.

This leads to the following:

Definition 2.1.6. Given an S-algebra R and left and right R-module spectra M and N

respectively, M ∧R N is the R-module spectrum defined as the coequalizer of the diagram:

M ∧R ∧N M ∧N M ∧R N

where the maps are defined analogously to the maps in the traditional tensor product.

The category of S-modules admits all limits and colimits, making this construction well-

defined. It is relevant for later that the functors (−)∧E and the generalized (−)∧RE define

monads in the category of S-modules. We will leverage this fact in Chapter 3 to construct

and define the Rectified Adams-Novikov spectral sequence.

2.2 Cobordism and the Pontryagin-Thom Isomorphism

Now that we have discussed the spectral background of this thesis, we shall proceed to

background on cobordism.

Definition 2.2.1. Given two n-dimensional manifolds M and N , we say that M and N are

cobordant if there exists an (n + 1)-dimensional manifold W such that M and N form the

boundary of W , or more precisely: ∂W = M ⊔N .

This is a loose definition of cobordism, and does not consider any underlying structure

on the manifolds, such as orientation, almost-complex structure, or framing. However, this

definition proves to be an equivalence relation amongst manifolds, allowing us to classify n-

dimensional manifolds up to cobordism. Additionally, if we let ∅ be the empty manifold in

10



each dimension, then the disjoint union operator defines an addition on cobordant manifolds

whose zero is the class [∅], yielding a group structure. The cross product on manifolds

produces a well-defined multiplication operation, transforming our collection of manifolds

into a ring.

Next, we see that our definition of cobordism can be adapted to more specialized classes

of manifolds. Since our definition is largely structure agnostic, it suffices to introduce the

right notion of structure, and then check compatibility. As alluded to in Chapter 1, this

formalization of structure is due Lashof:

Definition 2.2.2. Let M be a manifold with normal bundle ν, and let ν(i) denote the map

M → BO classifying ν. Fix a collection of spaces (Bn) and fibrations fn : Bn → BO(n)

indexed over n ∈ N. Then, a (B, f)-structure on a manifold M is the collection of homotopy

classes of lifts
Bn

M BO(n)

fn

ν(i)

ν̃(i)

for all sufficiently large n, along with maps gn : Bn → Bn+1 making the diagram:

Bn Bn+1

BO(n) BO(n+ 1)

fn

gn

fn+1

commute, where the lower map is the standard inclusion. Additionally, we ask that gn ◦

ν̃(i)n = ν̃(i)n+1. If such maps exist, we say M is a (B, f)-manifold.

The notation ν(i) is indicative of this construction arising from an embedding of M ↪→ Rn

for sufficiently large n. Considerations about choice of embedding are treated in Lashof’s

original text and notably, the (B, f)-structure of a given manifold is shown to be depend

only on homotopy class of the embedding. As such, for a given (B, f)-structure, we can

consider the collection of all closed (B, f)-manifolds. Note that given a (B, f)-manifold M ,
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we can consider the “opposite” (B, f)-manifold −M . This space is the underlying manifold

M , but whose (B, f)-structure is the one induced by the outer normal from the inclusion

M ∼= M×1 ⊂ M×[0, 1]. Examples include orientable manifolds with the opposite orientation

or the conjugate complex structure. For non-orientable manifolds the structure on −M

coincides with the structure on M . This lets us proceed as with the following definition

Definition 2.2.3. Given two n-dimensional closed (B, f)-manifolds M and N , we say that

M and N are (B, f)-cobordant if there exists a (n+1)-dimensional (B, f)-manifold W such

that M and −N form the boundary of W , or more precisely: ∂W = M ⊔−N . Let ΩB
n denote

the group of cobordism classes of n-dimensional (B, f)-manifolds by ΩB
n (where the operation

is given by disjoint union and inverses are given by the equivalence class [−M ]). If there is

an induced (B, f)-structure on M ×N for any (B, f)-manifolds M , N , then we denote the

graded ring of (B, f)-manifolds by ΩB
∗ .

Our original definition applies to the trivial (B, f)-structure with B = BO. New examples

of (B, f)-structures include manifolds with stable complex normal bundles (B = BU) and

orientable manifolds (B = BSO), with the usual identifications between BU , BSO and BO

serving as the structure maps.

At this point, we note that the additional structure we have placed on these manifolds

can also be encoded as structures on the tangent bundles of each manifold. These bundles

can be classified as pullbacks of the universal bundle γn
C, γn

R and γn
SO. Namely, we always

have a pullback diagram:
τM γn

C

M BU(n)

which is unique up to the homotopy class of the map M → BU(n). The situation is

analogous for BO(n) and BSO(n) for real unoriented and oriented cobordism respectively.
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Additionally, there are embeddings:

BU(1) ↪→ · · · ↪→ BU(n) ↪→ BU(n+ 1) ↪→ . . .

inducing pullbacks:
γn
C ⊕ 1C γn+1

C

BU(n) BU(n+ 1)

Applying the Thom space to this construction we get a series of maps:

Th(γn
C ⊕ 1C) ∼ Th(γn

C) ∧ S2 → Th(γn+1
C ).

However, this is precisely the definition of a prespectrum D, with D2n = Th(γn
C). The

spectrum associated to this prespectrum we denote by MU . Analogous constructions give

MO and MSO. At this point, it seems that this construction has left our original motivation

of cobordism far behind. However, the following theorem allows us to use the tools of spectral

algebra to study and in some cases, completely classify manifolds up to cobordism.

Theorem 2.2.1 (Pontryagin-Thom). For manifolds with (B, f)-structure, where Bi = BGi.

ΩG
∗
∼= π∗(MG)

Namely, we have MU∗ = ΩU
∗ , MO∗ = ΩO

∗ and MSO∗ = ΩSO
∗ .

2.3 Double-Real and Self-Conjugate Cobordism

Let us now introduce the additional structures on manifolds we will study.

Definition 2.3.1 (Double Real Manifold 1)). A manifold has a double-real structure if its

stable normal bundle, νM , splits as 2ξM for some real bundle ξM . Formally, there is some
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N large enough such that τM and ξM satisfy:

τM ⊕ 2ξM = τM ⊕ νM = N

Definition 2.3.2 (Self-Conjugate Manifold 1)). A manifold is self conjugate if its stable

normal bundle ν is isomorphic to its own complex conjugate. Formally:

ν ∼= ν

These structures give rise to double-real and self-conjugate cobordism theories Ω
O[2]
∗ and

ΩSC
∗ , respectively. Additionally, these structures can be characterized as pull-backs, just as

real and complex cobordism were in Section 2.2. In the case of MO[2], we have the pullback:

2ξ 2γn
R

M BO(n)

The embeddings BO(n) ↪→ BO(n + 1) induce maps 2γn
R ⊕ 2 → 2γn+1

R , allow us to form

a prespectrum with D2n = Th(2γn
R). The resulting spectrum is denoted MO[2]. This

characterization lets us make the following equivalent definition to the one above

Definition 2.3.3 (Double Real Manifold 2)). Let G2i = G2i+1 = O(i). Then, the (B, f)-

structure corresponding to manifolds with a double real structure is given by Bn = BGn with

maps f2i : BO(i) → BO(2i) induced by the map O(i) → O(2i) given by

A 7→

A 0

0 A


and the map f2i+1 : BO(i) → BO(2i+ 1) is similarly given by appending a final 1.

When treating self-conjugate cobordism, we note that we have two maps idn : U(n) →
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U(n) and conjugation cn : U(n) → U(n), and can form the homotopy equalizer, here denoted

SC(n).

SC(n) U(n) U(n)
idn

cn

We note that the homotopy equalizer of a topological group remains a topological group.

Therefore, we can take the classifying space to obtain BSC(n), which classifies the virtual

bundle γC−γC. Letting γn
SC denote the universal self-conjugate n-bundle, we get the diagram

ν γn
SC

M BSC(n)

which allows us to perform the construction of the spectrum MSC, again by taking iterated

Thom spaces of γn
SC . Additionally, we can present the (B, f)-structure associated to self

conjugate manifolds.

Definition 2.3.4 (Self-Conjugate Manifold 2)). Let B2n = B2n+1 = BSC(n), and maps

f2n : BSC(n) → BU(n) → BO(2n) given by composing the map induced by the equalizer

with the standard inclusion of BU(n) into BO(2n), and f2n+1 given by the trivial inclusion.

The maps g2n are induced by pulling back the inclusions BU(n) ↪→ BU(n + 1) and g2n+1 is

again taken to be the trivial inclusion. This defines the self-conjugate (B, f)-structure.

We see that in the cases of both MSC and MO[2], we satisfy the necessary conditions to

apply the Pontryagin-Thom isomorphism, and solidify our approach to classify cobordism

classes of self-conjugate and double-real manifolds by computing π∗(MSC) and π∗(MO[2]).

Before moving onto the algebraic background relevent to this thesis, we first want to con-

sider an example of a family of manifolds with both double-real and self-conjugate structure.

Namely, we can equip RP 4k+1 (and by extension RP∞ ) with these structures. In the case

of RP 4k+1 we note that this exists as a subspace of CP 2k+1, and therefore we can pullback

the canonical complex stable normal bundle over CP 2k+1, γC to the stable normal bundle

overRP 4k+1. As our projective space is a real manifold, the pullback i∗γC bundle splits as
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2γR. This gives RP 4k+1 a natural double-real structure. Additionally, we can note that as

conjugation fixes the real subspaces, the normal bundle of RP 4k+1 is classified over BSC by

the construction described above as well.

2.4 Hopf Algebras and Algebroids

Now that we have connected the geometric origins of cobordism to the modern spectral

approach, we might be asking why this approach is preferred. We see quite quickly that the

extra structure provided by working spectrally allow us to completely compute MU∗. We

now give the result due to Milnor and Novikov:

Theorem 2.4.1 (Milnor-Novikov). MU∗ = Z[x1, x2, . . . ] where |xi| = 2i. Under the

Hurewicz homomorphism,

h : MU∗ = Z[x1, x2, . . . ] → H∗(MU,Z) = Z[b1, b2 . . . ]

we have

h(xi) =


−pbi i = pk − 1

−bi else

modulo decomposable elements.

As mentioned in Chapter 1, this computation relies on the Adams spectral sequence, a

computational tool which computes the homotopy groups of a spectrum X by producing a

resolution of X as a fibered sequence of spectra, and iteratively computing the homotopy

groups of the fibers associated to the resolution. One obtains a long exact sequence on

homotopy groups which we use to define an exact couple which defines a spectral sequence.

Specifically, with the Adams spectral sequence, the spectrum X is resolved as HFp-comodule

spectrum for a prime p. Then, given the map X → HFp, we note that by taking homology,

we get that H∗(X;Fp) is a H∗(HFp)-comodule. From here, we can identify the spectral

16



sequence as depicted in Chapter 1 with the sequence:

ExtH∗(HFp)(H∗(S), H∗(X)) ⇒ π∗(X)⊗ Fp

where coefficients have been omitted for clarity. At this point, it is important to point out

that H∗(HFp) admits the structure of a Hopf algebra, which makes the computations of

certain families of Ext groups more tractable.

Definition 2.4.1. A Hopf algebra over a commutative ring K is an algebra A, along with

additional structure maps:

• The coproduct ∆ : A → A⊗K A

• The conjuguation c : A → A

such that the dual coalgebra A∗ is an algebra with respect to ∆∗, making A a bialgebra, and

c makes the expected diagrams commute.

The importance H∗(HFp) plays in homotopy theory relates specifically to its role describ-

ing the stable cohomology operations for HFp-cohomology. This motivates the following

definition:

Definition 2.4.2. The mod p Steenrod Algebra A∗ is the algebra of mod p cohomology

operations. Specifically, A∗ = H∗(HFp) and its dual A∗ = H∗(HFp).

The role A∗ plays in the classical Adams spectral sequence can be generalized, provided

the algebraic structure given by the Hopf algebra is also generalized. We introduce an

abridged definition of a Hopf algebroid to provide a suitably general context. The following

is adapted from [Rav86].

Definition 2.4.3 (Abridged). A Hopf algebroid over a commutative ring K is a cogroupoid

object in the category of K-algebras. Concretely, this is a pair of K-algebras (A,Γ) with the

following structure maps:
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1. The left unit ηL : A → Γ, making Γ a left A-module.

2. The right unit ηR : A → Γ making Γ a right A-module

3. The coproduct ∆ : Γ → Γ ⊗A Γ, (as the tensor product of bimodules), where ∆ is an

A-bimodule map.

4. The counit ϵ : Γ → A, as an A-bimodule map.

5. and the conjugation c : Γ → Γ

These maps satisfy the compatibility conditions for a cogroupoid object, namely those which

turn Hom(A,B) and Hom(Γ, B) into the objects and morphisms of a groupoid for any K-

algebra B.

As an example, we note that by replacing HFp with MU or the p-local Brown-Peterson

spectrum BP , we produce MU∗MU (or respectively BP∗BP ). These are not Hopf algebras,

but do satisfy the conditions of a Hopf algebroid.

In general, when a spectrum E satisfies certain technical conditions, we can construct the

generalized Adams-Novikov spectral sequence over the Hopf algebroid E∗E given by:

CotorE∗(E)(E∗(S), E∗(X)) ⇒ π∗(X).

This generalizes the Adams spectral sequence by resolving X as a series of E∗E-comodules.

When E is taken as MU or BP , the Hopf algebroid structure maps can be derived spectrally,

but the following section gives a more concrete description, allowing us to proceed with

concrete calculations.

2.5 Formal Group Laws and (MU∗,MU∗MU)

As we saw above, cobordism admits a classically geometric definition, but intersects conve-

niently with the tools used in homotopy theory. To fully study the cobordism rings MSC∗
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and MO[2]∗, we present another surprising connection between cobordism and algebra. This

perspective makes strong use of the notion of a formal group law, which we now define.

Definition 2.5.1. A formal group law over a ring R is a power series F (x, y) ∈ R[[x, y]]

which satisfies the following properties:

1. F (x, 0) = F (0, x) = x

2. F (x, y) = F (y, x)

3. F (x, F (y, z)) = F (F (x, y), z)

It is convenient to write x+F y for F (x, y).

The language "formal group law" is suggestive of these desired conditions, having clear

identity, commutativity and associativity conditions (and indeed the historical origin makes

the connection explicit). The following proposition gives some useful constructions which

allow us to simplify the notation of working with formal group laws:

Proposition 2.5.1. Given a formal group law F over R, there is a formal power series

iF (x) ∈ R[[x]] such that x +F iF (x) = 0. We let x +F x := [2]F (x), iF (x) := [−1]F (x),

and inductively define [n]F (x) := x +F [n − 1]F (x), for n ≥ 0. We can define [−n]F (x) :=

[n]F ([−1]F (x)). It is clear from these constructions that for any two integers r1 and r2,

[r1r2]F (x) = [r1]F ([r2]F (x)) and [r1 + r2]F (x) = [r1]F (x) +F [r2]F (x)

An important note about [−1]F (x) which we need for Chapter 4 is that this power series

can be recursively determined for given F . A more important construction due to Lazard

will help us characterize all formal group laws over commutative rings with unit.

Definition 2.5.2. Let F (x, y) = x + y +
∑

ai,jx
iyj be a power series with indeterminate

coefficients ai,j. Let I be the ideal of Z[ai,j] generated by the relations obtained from requiring

F (x, y) satisfy the definition of a formal group law. We define the Lazard ring to be L :=

Z[ai,j]/I.
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The following lemma characterizes F (x, y) as the universal formal group law.

Lemma 2.5.1. Given a formal group law (R,G), where R is a commutative ring with unit,

there is a unique ring homomorphism θR : L → R such that G(x, y) = x+y+
∑

θR(ai,j)x
iyj.

Lazard went beyond the above universal characterization, and characterized the ring L

concretely. The following modern statement of the theorem is adapted from [Rav86], with

the original French proof given in [Laz55].

Theorem 2.5.1 (Lazard). Let L be the Lazard Ring. Then

1. L = Z[x1, x2, . . . ] with |xi| = 2i for i ≥ 0.

2. The xi can be chosen such that their image in L⊗Q = Q[m1,m2, . . . ] is defined by


pmi i = pk − 1

mi else

modulo decomposables.

3. L is a subring of Z[m1,m2, . . . ]

If we compare this with the statement of Theorem 2.4.1, we see a surprising similarity.

Quillen was the first to make the connection concrete with the following result.

Theorem 2.5.2 ([Qui69]). The natural map θMU∗ : L → MU∗ is an isomorphism.

Now, one can consider maps between formal group laws over a fixed ring R. As we ulti-

mately want to connect formal group laws to Hopf algebroids, we only define the morphisms

between formal group laws which are invertible.

Definition 2.5.3. A strict isomorphism of formal group laws F,G over a ring R, is a power

series f(x) ∈ R[[x]] of the form f(x) = x+
∑∞

i=1 rix
i+1, such that F (f(x), f(y)) = f(G(x, y)).
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In the same way L characterizes formal group laws, we can define another object which

characterizes these strict isomorphisms.

Definition 2.5.4. Define the ring LB = L ⊗ Z[b1, b2, . . . ]. For a strict isomorphism of

formal group laws f = x+
∑

fix
i+1 ∈ R[[x]], there is a map θ : LB → R such that θ(bi) = fi

In addition to the above, as discussed in [Rav86], one can say that L represents the

functor FGL(−), assigning to a ring R the set of formal group laws over R, FGL(R). In

turn, LB represents the functor SI(−), assigning to R the set, SI(R), whose elements are

strict isomorphisms between objects in FGL(R). In this way, we can see L and LB form

a pair (L,LB) such that Hom(L,R) and Hom(LB,R) are the objects and morphisms of

a groupoid for any K-algebra R. By definition, this endows the pair (L,LB) with the

structure of a Hopf algebroid. The connections between (L,LB) and (MU∗,MU∗MU) are

made concrete with the following result:

Theorem 2.5.3 ([Lan67], [Nov67]). The map θMU∗ : L → MU extends to a Hopf algebroid

isomorphism between (L,LB) and (MU∗, (MU ∧MU)∗)

Now that we have connected cobordism to the language of formal groups, and noted how

much structure is gained by working over a Hopf algebroid, we may proceed to our main

results.
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CHAPTER 3

The Rectified Adams-Novikov Spectral Sequence

and its Applications

Now that we have covered the prerequisite material, we can finally construct the recti-

fied Adams-Novikov spectral sequence and characterize the Hopf algebroids over which our

spectral sequence will converge to π∗(MO[2]) and π∗(MSC). In particular, in the coming

sections, we show that both LS = π∗(MU ∧MO[2] MU) and LSC = π∗(MU ∧MSC MU) are

polynomial, and in the case of π∗(MU ∧MO[2] MU) primitively generated with respect to its

coproduct structure. Additionally, we aim to present our results in a way which highlights

the parallels with the Hopf algebroid (MU∗, π∗(MU ∧MU)) = (L,LB).

3.1 Constructing the Spectral Sequence

We can now finally begin exploring the tools needed to compute MSC∗ and MO[2]∗. The

principle object of interest is the following spectral sequence.

Theorem 3.1.1. Fix an E∞-ring spectrum E, over which MU is an E∞-algebra, and let

Γ := π∗(MU ∧E MU)∗. If Γ is flat over MU∗, then there is a spectral sequence

CotorΓ(MU∗,MU∗) ⇒ π∗(E).

This is the descent spectral sequence associated to the monad X 7→ X ∧E MU .
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Proof. While the following general construction is not new, the specifics warrant a closer

examination. Given a monad T : C → C, and object E, there is an associated cosimplicial

object, G(E), given by the Godement construction:

TX T2X T3X . . .

whose face maps are given by Tn−kηTk for 0 ≤ k ≤ n, where η is the unit of the monad.

The unshown degeneracy maps are those given similarly by Tn−kµTk, where µ is the mul-

tiplication of the monad. By taking the total space of the cosimplicial object, we obtain a

spectrum Tot(G(X)), where we have a canonical map X → Tot(G(X)), which we recall is

an equivalence when X is connected and of finite type. (One can see this by decomposing

X as a colimit of finite cell spectrum and mimicking argument of the simplicial equivalence

|SSet(X)| → X in spaces.) Therefore, we have π∗(Tot(G(X))) ∼= π∗(X). From here, what

remains is to compute π∗(Tot(G(X))). For us, the monad is given by X 7→ MU ∧E X, and

by taking X = E, the construction above simplifies to:

MU MU ∧E MU MU ∧E MU ∧E MU . . .

This reduces to computing the cohomology of the following cochain complex:

MU∗ → (MU ∧E MU)∗ → (MU ∧E MU ∧E MU)∗ → . . .

By letting Γ = π∗(MU ∧E MU), and noting that Γ is flat over MU∗, this above complex

becomes:

MU∗ → Γ⊗MU∗ MU∗ → Γ⊗MU∗2 ⊗MU∗ MU∗ → Γ⊗MU∗3 ⊗MU∗ . . . . . .

Notice that the objects in this complex coincide with the objects in the cobar complex asso-
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ciated to CotorΓ(MU∗,MU∗). The differentials of our complex are induced by the structure

maps of the monad, giving:

dn(γ1| . . . |γn|x) = id1 ⊗ · · · ⊗ idn ⊗ ηR(x) +
n∑

j=1

(−1)j+1id1 ⊗∆j(γj)⊗ idn ⊗ id0.

where ηR and ∆ correspond to the place of η and µ in the monadic construction. This is pre-

cisely the definition of the differential associated to the cobar complex of CotorΓ(MU∗,MU∗).

Therefore, we have

CotorΓ(MU∗,MU∗) ⇒ π∗(Tot(G(X)) ∼ π∗(E)

which is our desired result.

We will see below that the spectra MO[2] and MSC both satisfy the hypothesis of this

theorem, and so the spectral sequences specialize to

CotorLSC(MU∗,MU∗) ⇒ π∗(MSC) and CotorLS(MU∗,MU∗) ⇒ π∗(MO[2]).

We present computations of π∗(MSC) and π∗(MO[2]) for a limited range obtained using

the techniques described in Chapter 4 in Table 3.1. A larger table can be found in Chapter 5.

Table 3.1: Limited computations of π∗(MSC)

s\t− s 0 1 2 3 4 5 6 7 8 9 10 11 12

0 Z 0 Z 0 Z2 0 Z3

1 (4) Z (2, 16) Z2 (8, 64) Z4

2 0 (2) (4) (2, 4, 8) (Z, 2, 4) (2, 42, 8, 32)

3 0 0 0 (2) (2)

4 0 0 0 0 0

We want to remark that this spectral sequence is distinct, yet related, to the classical
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Adams-Novikov spectral sequence. We examine the Hurewicz homomorphism for MSC

π∗(MSC) → MU∗MSC → H∗MSC.

We say more in Section 3.3 (and described concretely for MO[2] in Lemma 3.2.4), but assert

that for odd primes, there is a Thom isomorphism giving the identification

H∗(MSC;Fp) ∼= H∗(MO;Fp)⊗ Λ[e1, e2, . . . ]

We see that the element a1 ∈ π1(MSC) is represented by a class (s1) in (t, s)-Ext degree

(2, 1). Geometrically, this map sends a1 to the first Stiefel-Whitney class for the stable

normal bundle of RP 1 in H∗(MO), and therefore survives all maps. As it is 4-torsion, there

must be 4-torsion in MU∗MSC. Analogous statements hold in the case of MO[2]. However,

under the induced maps of the classical Adams-Novikov spectral sequence, the image of

this element does not survive. Therefore, we can see that the classical cobar complex has

torsion, while the new cobar complex is torsion-free with respect to this element. As our

construction is distinct from the classical Adams-Novikov spectral sequence, we make the

following definition:

Definition 3.1.1. The spectral sequence given in Theorem 3.1.1 is called the rectified Adams-

Novikov spectral sequence.

To determine if the rectified Adams-Novikov spectral sequence collapses and to perform

the computational calculations of π∗(MSC) and π∗(MO[2]), we need to determine the alge-

braic structure of the Hopf algebroids (MU∗, π∗(MU ∧MO[2] MU)) and (MU∗, π∗(MU ∧MSC

MU)).
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3.2 Structure of π∗(MU ∧MO[2] MU)

We now want to introduce the Hopf algebroids (MU∗, π∗(MU ∧MO[2] MU)) and

(MU∗, π∗(MU ∧MSC MU)). Before beginning with the algebraic characterization, we first

want to take a moment to note that both of these naturally inherit a Hopf algebroid structure

from (MU∗, π∗(MU∧MU)), induced by the natural coequalizer map defining MU∧MO[2]MU

and MU ∧MSC MU and then taking homotopy groups.

Lemma 3.2.1. As an MU∗-algebra,

π∗(MU ∧MO[2] MU) = MU∗[s1, s3, s5, . . . ]

for indeterminants si, where |s2i+1| = 4i+ 2.

Proof. We first show the result locally at a prime p. For an odd prime, we start by computing

π∗(MO[2])⊗ Fp. The Thom isomorphism gives us that

H∗(MO[2];Fp) ∼= H∗(BO;Fp) ∼= Fp[p1, p2, . . . ]

where pi are the symplectic Pontryagin classes, with |pi| is in degree |4i| [Bro82]. Then,

we note that as H∗(MO[2];Fp) is concentrated in even dimension and is a module over the

dual Steenrod Algebra A∗. By [Rav86], it is a module over a certain polynomial subalgebra,

P∗ ⊂ A∗. In our case, as p is an odd prime, we have

P∗ = Fp[ξ1, ξ2, . . . ],

where |ξi| = 2(pi − 1), where we note that as p is odd, this is divisible by 4. Then, we note

that there is a surjection H∗(MU,Fp) ↠ P∗ induced by the map MU → HFp. We recall

now that the map t : MO[2] → MU (induced by complexification BO → BU) itself induces

a map t∗ : H∗(MU) → H∗(MO[2]), such that t∗(c2i) = (−1)ipi, where ci denotes the ith
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Chern class. The dual of this map therefore composes to a surjection: H∗(MO[2];Fp) ↠ P∗.

This surjection is sufficient to apply the result in [Rav86, A1.1.17] to decompose

H∗(MO[2];FP ) as the following tensor product

H∗(MO[2];Fp) = P∗ ⊗Fp C

where C = Fp[u
′
1, u

′
2, . . . ] where |u′

i| = 4i and i is not of the form (pk−1)/2. By [SS68a], this

is then sufficient for us to conclude that there is a homotopy equivalence between MO[2]

and a wedge of BP , and so in the derived setting, we have MO[2] =
∨
Σ2niBP . This tells

us that π∗(MO[2])⊗Fp = Fp[u
′′
1, u

′′
2, . . . ] where |u′′

i | = 4i. Additionally, these BP -summands

map equivalently to the BP -summands of MU under the map MO[2] → MU described

above. Therefore, these copies are identified in MU ∧MO[2] MU . Over p, MU is a free

MO[2]-module, so we get that

π∗(MU ∧MO[2] MU) ∼= π∗(MU)⊗π∗(MO[2]) π∗(MU).

Finally, we want to note that since π∗(MO[2])⊗Fp is polynomial on generators u′′
i in dimen-

sion 4i, which coincide with the BP -summands giving the elements x2i, we get that

π∗(MU ∧MO[2] MU) ∼= MU∗[s1, s3, s5, . . . ].

where we see that the polynomial generators si are in degree 4k + 2, and so we have the

desired form.

For an even prime, we need to work a little harder. We start similarly, by recalling the

F2-homologies of MU and MO[2]. Again, by the Thom isomorphism we have

H∗(MO[2];F2) ∼= H∗(BO;F2) ∼= F2[a1, a2, . . . ]
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and for MU we have:

H∗(MU ;F2) ∼= F2[a2, a4, . . . ]

where the elements ai are dual to the universal Stiefel-Whitney classes wi
1. Then, we leverage

the F2-Eilenberg-Moore spectral sequence.

TorH∗(MO[2])(H∗(MU), H∗(MU)) ⇒ H∗(MU ∧MO[2] MU)

The E2-page of this becomes ΛF2 [b1, b3, . . . ], where the b2i+1 is in topological degree 2i+1

and algebraic degree 1, for a total degree of 2i+ 2. Then, we can leverage the Dyer-Lashoff

operations described in [Pri75], to get that b4i+3 is identified with b22i+1 in total degree 4i+4,

and will therefore vanish after taking homology. Therefore, we can conclude the above E2-

page collapses to give F2[b4i+1], where |b4i+1| is in total dimension 4i+2. We are now able to

leverage [Rav86, A1.1.17] and [SS68a] again, by noting we are concentrated in even dimension

and surject onto P∗ = F2[ζ
2
1 , ζ

2
2 , . . . ], to conclude that at p = 2, MU ∧MO[2] MU is also a

wedge of copies of BP , with the same number in each degree as at odd primes. Finally,

we note that the above constructions respect multiplicative structure, so we can obtain the

desired ring structure and conclude π∗(MU ∧MO[2] MU) = MU∗[s1, s3 . . . ].

We also have the following corollary, showing that MO[2] satisfies the conditions on

Theorem 3.1.1.

Corollary 3.2.1. π∗(MU ∧MO[2] MU) is a free MU∗-module.

The specifics of the coproduct for (MU∗, π∗(MU ∧MO[2] MU)) are saved until after we

have defined our next object. In fact, this next object will give us the foothold we need to

parse the induced Hopf algebroid structure on (MU∗, π∗(MU ∧MO[2] MU)). Following the

parallels with (L,LB), we introduce the following:

Definition 3.2.1. Let (L,LB) be as in Lazard’s Theorem. Let s(x) =
∑

i≥1 six
i be the power

series on indeterminants si. We define LS as a quotient of L{s1, s2, . . . }, (the free algebra
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over L generated by words in the si) determined by the identifications of si with polynomials

fi(b1, . . . , bi) ∈ LB ⊗Q as determined by the relations

b(x) = x+ [2]F (x) · s(x) x · iF (x) = b(x) · b(iF (x))

The above definition can be greatly simplified with the following lemma.

Lemma 3.2.2. LS = L[s1, s3, s5, . . . ]

Proof. First, we note that the first relation implies that each bi ≡ 2si modulo decomposable

elements of strictly lower degree. We see this by replacing with definitions:

x+
∑
i≥1

bix
i+1 = x+ [2]F (x) · s(x)

∑
i≥1

bix
i+1 = [2]F (x) · s(x)

∑
i≥1

bix
i+1 = (2x+

∑
j≥2

cjx
j)(
∑
i≥1

six
i)

∑
i≥1

bix
i+1 =

∑
i≥1

2six
i+1 + (

∑
j≥2

cjx
j)(
∑
i≥1

six
i)

This implies that each si is linearly independent, and indeed form a polynomial basis for

L[s1, s2, . . . ]. We now show that

s2i ≡ (−1)i−1s2i + 2
i−1∑
k=1

(−1)k−1si−ksk mod I,

where I is the augmentation ideal of LS. This follows again from a manipulation of the

underlying power series. If we replace iF (x) by [−1]F (x) and compose the first relation with
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the second, we get:

x · [−1]F (x) = (x+ [2]F (x) · s(x)) · ([−1]F (x) + [2]F ([−1]F (x)) · s([−1]F (x)))

x · [−1]F (x) = x · [−1]F (x) + [−1]F (x) · [2]F (x) · s(x) + x · [−2]F (x)s([−1]F (x))

+ [2]F (x) · [−2]F (x) · s(x) · s([−1]F (x))

0 = [−1]F (x) · [2]F (x) · s(x) + x · [−2]F (x)s([−1]F (x))

+ [2]F (x) · [−2]F (x) · s(x) · s([−1]F (x)).

This reduction gives the following:

[−1]F (x) · [2]F (x) · s(x) + x · [−2]F (x)s([−1]F (x)) = −[2]F (x) · [−2]F (x) · s(x) · s([−1]F (x)).

We see that the right hand side features the factor s(x) · s([−1]F (x)), which we will soon see

allows us to relate s2n on the left to s2n on the right. We note that it suffices to reduce the

series [2]F (x), [−2]F (x), and [−1]F (x) to their leading terms only, as the higher terms are

in the augmentation ideal. These terms are 2x, −2x and −x respectively. Then our above

greatly relation simplifies to

−2x2 · s(x)− 2x2 · s(−x) ≡ 4x2s(x) · s(−x).

From here, if we substitute the definition of s(x),

−2x2

(∑
i≥1

six
i

)
− 2x2

(∑
i≥1

si(−x)i

)
≡ 4x2

(∑
i≥1

six
i

)(∑
i≥1

si(−x)i

)

−4x2

(∑
i≥1

s2ix
2i

)
≡ 4x2

∑
i≥2

(
i∑

1≤k≤i

(−1)ksi−ksk

)
xi.
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By comparing coefficients, we get

s2i ≡
2i∑

1≤k≤2i

(−1)k−1si−ksk

s2i ≡ (−1)i−1s2i + 2
i−1∑
k=1

(−1)k−1si−ksk

which is the desired result.

Now that we have defined our objects (MU∗, π∗(MU∧MO[2]MU)) and (L,LS) analogously

to (MU∗, π∗(MU ∧MU)) and (L,LB), we can prove the analogous isomorphism.

Theorem 3.2.1. The pair (L,LS) form a Hopf algebroid.

Proof. We give (L,LS) the Hopf algebroid structure induced by (L,LB). Define

∆(si) := ∆(f(b1, . . . bi)) = f(∆(b1), . . .∆(bi))

where we then re-express the bi as polynomials in the si. We define the conjugation and

counit maps similarly. The unit remains the same. These satisfy the necessary axioms as a

consequence of satisfying them over LB ⊗Q.

Next, we want to identify (L,LS) with (MU∗, π∗(MU ∧MO[2] MU)). This motivates the

theorem:

Theorem 3.2.2. The pairs (L,LS) and (MU∗,MU ∧MO[2] MU) are isomorphic as Hopf

algebroids.

Before proving this, we need the following lemma:

Lemma 3.2.3. There is an isomorphism MU∗(RP∞) ∼= MU∗[[x]]/⟨[2]F (x)⟩, where [2]F (x)

is F (x, x) where F is the universal formal group law over MU∗.
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Proof of Lemma. Our first step is to construct a specific cofiber sequence of the form

RP∞ → CP∞ → CP∞.

We begin by recalling two standard facts. First, we note that MU∗(CP∞) = MU∗[[x]]. Next,

we note that CP∞ admits a canonical normal bundle γC such that when one takes the Thom

Space Th(γC) one obtains an equivalence Th(γC) ∼ CP∞. Next, the Thom space for an

arbitrary bundle ζ is given by the cofiber sequence:

S(ζ) → D(ζ) → Th(ζ).

Now, if we take ζ = γC, we get the cofiber sequence:

S(γC) → D(γC) → Th(γC).

where S(γC) ⊂ D(γC) ⊂ γC are the fiberwise sphere and disc bundles over CP∞. In partic-

ular, we highlight the equivalences D(γC) ∼ CP∞ and Th(γC) ∼ CP∞. Next, we note that

RP∞ includes into CP∞ as

S1 S∞ CP∞

RP∞

.

Therefore, if we consider the Thom space cofiber sequence associated to (γC)
2 over CP∞, we

get

S((γC)
2) → D((γC)

2) → Th((γC)
2).

By considering the inclusion diagram, we see tha S((γC)
2) ∼ RP∞ so up to equivalence of
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spaces, we obtain a cofiber sequence

RP∞ → CP∞ → CP∞.

Then, by applying MU∗(−) to the cofiber sequence, we get a long exact sequence:

· · · → MU∗(CP∞) → MU∗(CP∞) → MU∗(RP∞) → MU∗+1(CP∞) → . . . .

We note that we can equivalently right this as

· · · → MU∗[[x]] → MU∗[[x]] → MU∗(RP∞) → MU∗+1[[x]] → . . . .

This sequence is determined by the image of x. As this arises as the MU∗-orientation of the

bundle γ2
C, this acts by [2]F (x). This is a non-zero divisor in MU∗[[x]], and therefore, the

connecting homomorphism is forced to be zero. This then forces our sequence to be of the

form:

MU∗[[x]] → MU∗[[x]] → MU∗(RP∞) → 0

and therefore MU∗(RP∞) ∼= MU∗[[x]]/⟨[2]F (x)⟩.

Proof of Theorem. To show that these Hopf algebroids are now isomorphic, it suffices to

show that the map MU∗MU → MU ∧MO[2] MU∗ respects and imposes the same relations

given in the definition of LS. We appeal to geometry. If we consider the standard complex

orientation x ∈ MU∗(CP∞) = MU∗[[x]], then we can consider the maps

η∗L, η
∗
R : MU∗[[x]] ∼= MU∗(CP∞) → (MU ∧MU)∗(CP∞) ∼= MU∗[b1, b2, . . . ][[x]].

Under these maps, we get ηL(x) = x in MU∗[b1, b2, . . . ][[x]] and ηR(x) = b(x) in

MU∗[b1, b2, . . . ][[x]]. Now, if we replace CP∞ by RP∞, we obtain a similar result, with
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the difference being

η∗R(x) ≡ b(x) mod [2]F (x)

by Lemma 3.2.3.

Additionally, the orientation RP∞ → MU factors through MO[2], as RP∞ has a double-

real structure. This means that the orientations must coincide in MU ∧MO[2] MU , and so

we get that b(x) = x+ [2]F (x) · s(x), for some some elements si in MU ∧MO[2] MU∗.

To recover the second relation, we examine the second Chern class

c2 : BU(2) → Σ4MU

Now note again the standard fact that CP∞ ∼ BSO(2), defining a map CP∞ → BU(2)

which factors through BO(2). By factoring through BO(2), the resulting Chern class will

factor through MO[2]. The second Chern class gives x · iF (x), and so by comparing the left

and right units, we recover x · iF (x) = b(x) · b(iF (x)), giving the final relation. We may stop

here as the bundle 2γR over RP∞ classifies MO[2]-bundles, and we have determined how

this bundle factors through MU , and therefore any additional relations are generated by the

two discussed. The Hopf algebroid structure is inherited, and so the isomorphism (L,LB) ∼=

(MU∗,MU∗MU) induces the isomorphism (L,LS) ∼= (MU∗, π∗(MU ∧MO[2] MU).

Now that we have shown the isomorphism between (L,LS) and (MU∗, π∗(MU ∧MO[2]

MU)), we see this mirrors the isomorphism (L,LB) ∼= (MU∗,MU∗MU). Due to the con-

nection of (L,LB) with the study of formal groups, it is natural to ask if there is a similar

connection for (L,LS).

Our relations defining LS are motivated by the work of Buchstaber and Novikov. In

[BN71], the pair works closely with the 2-valued formal group laws. Specifically, the 2-valued

formal groups they study are parametrized by the element x · iF (x). We see that our relation

xiF (x) = b(x) · b(iF (x)) can be interpreted as preserving this parameter. Additionally, our

other relation imposes a relation on strict isomorphisms which are congruent to the identity
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up to series [2]F (x). Therefore, we can say that LS represents strict isomorphisms of formal

groups which preserve the coordinate of the 2-valued formal group, and identity on the

2-torsion component of the formal group. However, this result is more metaphorical than

concrete, and should be treated as such.

Now that we have algebraically computed LS, and discussed its connections to (L,LB),

we further expand on its Hopf algebra structure. In particular, we show that we can find an

alternative polynomial basis {s2i+1} which have a nicely characterized coproduct. To that

end, we recall the following definition.

Definition 3.2.2. Let (A,R) be an arbitrary Hopf algebroid. An element s ∈ R, is said to

be primitive if

∆(s) = s⊗ 1 + 1⊗ s.

It is worth noting that a primitive element s represents a permanent cycle (s) in

Cotor1R(A,A), and any permanent cycle will be represented by such an element. With this

in mind, we present the next lemma.

Lemma 3.2.4. (L,LS) is primitively generated. Specifically, there are elements s2i+1 ≡ s2i+1

modulo decomposables such that

∆(s2i+1) = s2i+1 ⊗ 1 + 1⊗ s2i+1.

Proof. We identify the primitive generators s2i+1 as the classes [RP 4k+1]MO[2] as follows. We

start by examining the classical mod 2 Adams Spectral Sequence, given by

E2 = ExtA∗(H
∗MO[2],F2) ⇒ π∗(MO[2])⊗ Z2.

We note that while this will not collapse, we can still examine the elements in filtration

degree 0 to learn about the eventual structure of π∗(MO[2]). Specifically, we see that as

H∗(MO[2],F2) ∼= F2[w1, w2, . . . ], the dual polynomial generator ai such that ⟨ai, wi
1⟩ = 1
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lives in bidegree (i, 0) of the E2-page. Namely, in (4k + 1, 0), we get the generator dual to

a4k+1, which corresponds to w(τRP 4k+1) and so the class represented by [RP 4k+1] exists in

(4k + 1, 0).

Let QnM denote the submodule of M of degree n indecomposables. Next, we recall that

for x ∈ MU∗, there is a class, denoted m(x), called the Milnor class, which detects the

image of x ∈ QnMU∗. This class is constructed as follows. Recall that the universal Chern

classes c1, c2, . . . are the generators H∗(MU,Z) = Z[c1, c2, . . . ]. These can be expressed as

symmetric polynomials ci := σi(b1, b2, . . . ) in H∗(MU ;Z) = Z[b1, b2, . . . ]. The nth Milnor

class is then defined to be the polynomial p(c1, c2 . . . ) such that

mn := p(c1, c2, . . . ) = bn1 + bn2 + . . . .

Then, if we let x ∈ MU∗ be the cobordism class of manifolds with representative M , we

defined the Milnor number on x = [M ] to be mn([M ]) := mn(νM), where νM is the stable

normal bundle of M . Analogously, we have that for double-real manifolds, the Milnor class

mn(x) for x in MO[2]∗ detects the image of x in QnMO[2]∗, where we replace Chern classes ci

by the Stiefel-Whitney classes wi, and the stable normal bundle νM is replaced by ξM , one half

of the normal bundle, for M being a manifold-representative of the class x. Therefore, if we

can show that m4k+1([RP 4k+1]) ̸= 0, then [RP 4k+1]MO[2] is indecomposable in π4k+1(MO[2]).

First, we note that the tangent bundle is subject to the relation

τ[RP 4k+1] ⊕ 1 = (4k + 2)γ1
R.

Therefore, if we work over virtually, our normal bundle νRP 4k+1 is represented by (−4k−2)γ1
R.

Therefore, our half normal bundle is represented by (−2k − 1)γ1
R. As γ1

R has nontrivial first

Stiefel-Whitney number, the Milnor class

m([RP 4k+1] = m(ζ) = m((−2k − 1)γ1
R) = m(γ1

R)
−2k−1 = 1 ̸= 0
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Finally, we note that as these classes are indecomposable, in the context of the rectified

Adams-Novikov spectral sequence, they must also be indecomposable. This forces them

into bi-degree (4k + 1, 0) or (4k + 2, 1). However, as π∗(MU ∧MO[2] MU) is entirely even-

dimensional, [RP 4k+1]MO[2] must persist from a class in (4k + 2, 1). As such this, must be a

permanent cycle, and represented by a primitive element. Since it is indecomposable, there

must be an indecomposable, primitive in (4k + 2, 1) for all k. This is equivalent to the

statement that there exist s2k+1 such that s2k+1 ≡ s2k+1 modulo decomposables.

3.3 Structure of π∗(MU ∧MSC MU)

We now define and prove the analogous statements for MSC.

Lemma 3.3.1.

π∗(MU ∧MSC MU) = MU∗[B1, B2, . . . ]

where |Bi| = 2i.

Proof.

Case 1 (p odd): For MSC, we again proceed by considering the odd prime and even prime

case separately. We suppress coefficients for the sake of brevity. We note that at odd primes,

H∗(MSC) = Fp[p1, p2, . . . ]⊗ ΛFp [e1, e2, . . . ]

where the pi are as described above and |ek| = 4k − 1 [SS68b]. Geometrically, the ek

also transgress from the Chern class c2k. Let R := Fp[p1, p2, . . . ]. Note that this gives

H∗(MSC) = R ⊗ ΛFp [e1, e2, . . . ]. Additionally, we note that as the elements pi are the

image of elements c2i in H∗(MU), we can equivalently decompose H∗(MU) as R⊗F , where

F := Fp[c1, c3, . . . ]. Now, we compute H∗(MU ∧MSC MU) to then apply the classical Adams
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spectral sequence. We start with the Eilenberg-Moore Spectral Sequence which gives:

TorH
∗(MSC)(H∗(MU), H∗(MU)) ⇒ H∗(MU ∧MSC MU)

In light of our above refactoring of H∗(MSC) and H∗(MU), we get

TorR⊗ΛFp [e1,e2,... ](R⊗ F,R⊗ F ) ⇒ H∗(MU ∧MSC MU).

Now, we may apply a change-of-base isomorphism to get:

TorR⊗ΛFp [e1,e2,... ](R⊗ F,R⊗ F ) ∼= R⊗ TorΛFp [e1,e2,... ](F, F )

Now, as ei transgresses from c2i, they will act trivially on the elements c2i+1, and so this

reduces further:

R⊗ TorΛFp [e1,e2,... ](F, F ) = R⊗ F ⊗ F ⊗ TorΛFp [e1,e2,... ](Fp,Fp)

This final term is Tor of an exterior algebra, and is given by Fp[e
′
1, e

′
2, . . . ], where the e′i

transgress from ei and have topological degree 4i − 1 and algebraic degree 1 for overall

degree 4i. Combined with the classes c2i+1 having total degree |4i+ 2|, we conclude that

H∗(MU ∧MSC MU) = H∗(MU)⊗ Fp[u
′
1, u

′
2, . . . ]

for some polynomial generators u′
i where |u′

i| = 2i. Now, as we are concentrated an A∗

comodule and concentrated in even degrees, applying Milnor-Moore lets us conclude

π∗(MU ∧MSC MU) = MU∗[B1, B2, . . . ]

for some polynomial generators Bi.
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Case 2 (p even): Now, moving onto the p = 2 case, we can proceed similarly. Note that in

this case H∗(MSC) = H∗(MU)⊗ Λ(a1, a2, . . . ) [SS68b], where |ai| = 2i− 1. Therefore, we

get another Eilenberg-Moore Spectral Sequence, giving us:

TorH∗(MSC)(H∗(MU), H∗(MU)) ⇒ H∗(MU ∧MSC MU).

An identical change-of-ring isomorphism gives

TorH∗(MSC)(H∗(MU), H∗(MU)) = H∗(MU)⊗ TorΛ(a1,a2,... )(F2,F2)

Examining the Tor term, we see that this comes from applying the homology of an exterior

algebra over characteristic 2 and so we have:

TorΛ(a1,a3,... )(F2,F2) = F2[a
′
1, a

′
2, . . . ]

where the induced a′i again has topological degree 2i−1 but algebraic degree 1, and therefore

|a′i| = 2i. Combining this, the E2-page of our original spectral sequence becomes:

H∗(MU)⊗ F2[a
′
1, a

′
2, . . . ] ⇒ H∗(MU ∧MSC MU).

We can again note that as this is concentrated in entirely even degree, this is a P∗-comodule

algebra, of the form:

H∗(MU ∧MSC MU) = P∗ ⊗ F2[xi|i ̸= 2k]⊗ F2[a
′
1, a

′
2, . . . ]

Applying Milnor-Moore and [SS68a] gives that:

π∗(MU ∧MSC MU) = MU∗[a
′
1, a

′
2, . . . ] = MU∗[B1, B2, . . . ].
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where the a′i have been relabeled as Bi.

Now, we ensure that the geometric meaning of the Bi is consistent across primes. We

do this by examining the image under the Hurewicz homomorphism. Specifically, note that

H∗(MU ∧MSC MU) satisfies a Thom isomorphism, giving:

H∗(MU ∧MSC MU) = H∗(BU ×BSC BU).

The space BU×BSCBU is homeomorphic to the space BU×(BU/BSC) where the second

factor of BU is the antidiagonal in BU ×BU . Then, we have a homotopy equivalence

BU × (BU/BSC) ∼ BU ×BU

which we obtain after recalling that BSC is as the fiber of

BSC → BU → BU.

Finally, we note that this means the Thom isomorphism identifies H∗(MU ∧MSC MU) with

H∗(MU ∧ BU) = H∗(MU)[b′1, b
′
2, . . . ]. This is a global result, and therefore p-locally, our

generators agree.

Again, we have the corollary showing that MSC satisfies the conditions on Theorem 3.1.1.

Corollary 3.3.1. π∗(MU ∧MSC MU) is a free MU∗-module.

Now, we continue to proceed analogously to Section 3.2.

Definition 3.3.1. Let (L,LB) be as in Lazard’s Theorem. Let B(x) =
∑

i≥1Bix
i+1. We

define LSC := L[B1, B2, . . . ] where Bi = f(b1, . . . , bi) ∈ LB⊗Q as determined by the relation

b(x) =
B(x) · iF (x)
B(iF (x))
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To give (L,LSC) a Hopf algebroid structure, we see that the we need to simply demon-

strate the inherited relations from (L,LB). However, in this case, there is an added layer of

complication due to the lack of clear geometric motivation aligning the generators. Notice

that (L,LB) and (L,LSC) are abstractly isomorphic as algebras, so we take special care to

the characterization of the coproduct structure for (L,LSC).

Theorem 3.3.1. The pair (L,LSC) form a Hopf algebroid.

Proof. First, we need to show LSC inherits the Hopf algebroid structure from LB. We first

recall that the computation of ∆ : LB → LB ⊗ LB is determined by the composition:

∆(b(x)) := br ◦ bl(x)

where bl(x) := (b ⊗ 1)(x) and br(x) = (1 ⊗ b)(x). Therefore, we need to verify that when

composing with the defining relation in Definition 3.3.1, the coproduct axioms still hold.

Now, let Bl(x) denote the analogous series to bl in LSC ⊗LSC, and similarly for Br(x). To

start, let g(x) denote the following:

g(x) :=
Bl(x) · iF (x)
Bl(iF (x))

Additionally, note that as the coefficients iF (x) lie in MU∗, they transform via the right

unit. Therefore ηR(iF (x)) := b(iF (b
−1(x))) in LB. Then, we see that if we aim to compute

∆ : LSC → LSC ⊗ LSC. To simplify the notation, let ig(x) denote the composition:

ig(x) := g(iF (g
−1(x)).

Note that this gives ηR(iF (x)) in LSC. Next, we note that as

b(x) =
B(x)iF (x)

B(iF (x))
,
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we must also have that

∆(b(x)) = ∆

(
B(x)iF (x))

∆(B(iF (x))

)
.

However, as we also have ∆b(x) = br ◦ bl(x) we can obtain the relation

∆(B(x))

∆(B(iF (x)))
· iF (x) =

Br(g(x))ig(g(x))

Br(ig(g(x)))

where again, we note that g(x) is the image of bl(x) in LSC in the following way. If we

expand terms, we see that on the right we obtain

∆(B(x))

∆(B(iF (x)))
· iF (x) =

Br(
Bl(x)·iF (x)
Bl(iF (x))

) · Bl(iF (x))·x
Bl(x)

Br(
Bl(iF (x))·x

Bl(x)
)

=
Br(

Bl(x)·iF (x)
Bl(iF (x))

)

Br(
Bl(iF (x))·x

Bl(x)
)
· Bl(iF (x)) · x

Bl(x)

where we recall that iF (iF (x)) = [−1 · −1](x) = x. Dividing by iF (x), we see that

∆(B(x))

∆(B(iF (x)))
=

Br(
Bl(x)·iF (x)
Bl(iF (x))

)

Br(
Bl(iF (x))·x

Bl(x)
)
· Bl(iF (x)) · x
Bl(x) · iF (x)

leading to the guess that

∆(B(x)) = Br

(
Bl(x) · iF (x)
Bl(iF (x))

)
· Bl(iF (x))

iF (x)
.

It suffices now to verify that this satisfies the necessary axioms. Unity follows clearly by

replacing Bl and Br with x as necessary. Associativity goes as follows. We introduce the

following terms to condense notation. Let B1 := B⊗1⊗1, B2 := 1⊗B⊗1, and B3 := 1⊗1⊗B,

and let z and z be defined as follows:

z :=
B1(x) · iF (x)
B1(iF (x))

z :=
B1(iF (x)) · x

B1(x)
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Then, we see that

(∆⊗ 1)∆(B(x)) = B3

(
B2(z) ·B1(iF (x)) · x

B2(z) ·B1(x)

)
·B2(z) ·

B3(x)

x · iF (x)

(1⊗∆)∆(B(x)) = B3

(
B2(z)z

B2(z)

)
· B2(z)

z
· B1(iF (x))

iF (x)

When the definitions are unwrapped, these are quickly verified to coincide.

We see now that (L,LSC) has inherited a coproduct via its defining relation. The left

unit is given by strict inclusion, and the right unit is given by composing ηR with the defining

relation. The same holds for the conjugation. The counit is determined by sending Bi to

zero, just as the counit in (L,LB) was determined. Therefore, we see that (L,LSC) forms

a Hopf algebroid.

Finally, we may conclude our algebraic description of LSC with the following theorem

Theorem 3.3.2. (L,LSC) and (MU∗,MU ∧MSC MU∗) are isomorphic as Hopf algebroids.

Proof. First, we need to note that the map structure map S → MSC factors through MO[2],

meaning that we have a diagram:

π∗(MU ∧MU)

π∗(MU ∧MO[2] MU)

π∗(MU ∧MSC MU)

MU∗[b1, b2, . . . ]

MU∗[s1, s3, . . . ]

MU∗[B1, B2, . . . ]
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where the algebraic computations are given in the below diagram. Now, we compare the

underlying geometry. We do note that seeing as BSC is the fiber of the map B(id−c) : BU →

BU , the canonical inclusion CP∞ → BU(2) factors through BSC, meaning as discussed in

the proof of Theorem 3.2.1, the Chern class c2 induces the relation xiF (x) = b(x)b(iF (x))

must hold. In particular, we see that if we define the series b(x) := b(x)/x, we see that 1 =

b(x)b(iF (x)). Next, we note that with this notation, we are able to translate the map (id−c)

classifying self-conjugate bundles as a relation on characteristic classes B(x) · B(iF (x))
−1.,

where we note that conjugation sends x to iF (x), since conjugation acts via inversion on

the universal formal group law over MU . Therefore, the vertical map in the diagram sends

b(x) 7→ B(x) ·B(iF (x))
−1. We see that this trivially respects the relation 1 = b(x)b(iF (x)) by

recalling [−1]F ([−1]F (x)) = [(−1)2]F (x) = x, and therefore, we have no additional relations

on generators just as in the case of π∗(MU ∧MO[2] MU).

Unwrapping the definitions shows that this is identical to the defining relation defined in

Definition 3.3.1, which we have already shown gives a Hopf algebroid structure compatible

with the one inherited from LB. As we already know that LB is isomorphic to π∗(MU ∧

MU), and the Hopf algebroid structure of π∗(MU ∧MSC MU), then there must be an onto

Hopf algebroid homomorphism from LSC to π∗(MU ∧MSC MU). It remains to show that

there are no further defining relations in π∗(MU ∧MSC MU). However, as we have already

geometrically identified the generators Bi in the calculation of π∗(MU ∧MSC MU), we see

that the generators are linearly independent and have not introduced anymore relations.

Finally, before proceeding, we would like to make one observation about the 2-local struc-

ture of MU ∧MSC MU∗. This is necessary for Theorem 3.4.1, where we also prove a similar

statement about a construction related to LS.

Lemma 3.3.2. The Hopf algebroid (MU∗,MU ∧MSC MU∗)
∧
2 is bipolynomial, i.e.

Hom(MU ∧MSC MU∗,Z2) is also polynomial.
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Proof. It suffices to consider the formula given by

∆(B(x)) = Br

(
Bl(x) · iF (x)
Bl(iF (x))

)
· Bl(iF (x))

iF (x)
.

We note by a generalized version of the Borel-Hopf structure theorem [Cro00], if ∆(Bi) =

Bi′ ⊗ Bi′ + . . . , where i = 2nk for an odd value k, and i′ = 2n−1k, then our algebra will

be bipolynomial. Therefore, we need to examine the coefficient of xi+1 and show that Bi′ ⊗

Bi′ appears. We note that it again suffices to consider the above equation mod I, the

augmentation ideal. We see this now becomes:

∆(B(x)) ≡ Br

(
Bl(x) · −x

Bl(−x)

)
· Bl(−x)

−x
.

Now, note that we may factor out a copy of −x
Bl(−x)

from inside Br, as our series has no

constant term, and this factor cancels with Bl(−x)
−x

. From here, for degree reasons it suffices

to examine just the term

(1⊗Bi′)(Bl(x))
i′+1

(
−x

Bl(−x)

)i′

Now, we note that the power series −x
Bl(−x)

, is of the form

−x

Bl(−x)
= 1 +

∞∑
j=1

cjx
j,

where cj ≡ (−1)j−1Bj ⊗ 1 modulo terms of the form Bj1 . . . Bjm ⊗ 1. Therefore, Bi′ ⊗ 1

appears in degree i′ + 1 of Bl(x) and in the coefficient of the degree i′ term of −x
Bl(−x)

. With

this in mind, we have reduced computing the Bi′ ⊗Bi′ in degree i+ 2 of the coproduct to a

straightforward counting argument. Note that the leading coefficient of −x
Bl(−x)

was one and

that Bi′ ⊗ 1xi+1 cannot distribute to any higher order terms of −x
Bl(−x)

if we wish to have the

form Bi′ ⊗Bi′ . Therefore, there will be (i′ +1) copies of B′
i ⊗B′

i coming from the expansion
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of

(1⊗Bi′)(Bl(x))
i′+1 (1 + . . . )i

′

Similarly, if we note that the leading term of Bl(x) is x, we analogously obtain i′ terms

of the form (−1)i
′−1Bi′ ⊗Bi′ from the expansion

(1⊗Bi′)(x+ . . . )i
′+1

(
−x

Bl(−x)

)i′

.

By adding these two, we see that the coefficient of Bi′ ⊗ Bi′ will be either 2i′ + 1 or 1.

Both of these are odd, and so as we are 2-local, both are units.

3.4 Primitive Elements and The Witt Construction

We showed at the end of Section 3.2, that the algebra LS is primitively generated with

respect to its coproduct. The algebras LB and LSC are not primitively generated which

can be easily checked by examining ∆(b2) and ∆(B2), and attempting to solve for a primitive

in degree 4. As a consequence, these Hopf algebroids are (from the naïve perspective) much

more difficult to work with. We will see, however, that there is a useful connection between

LS and LSC that allows us to leverage the existence of primitives in LS to show collapse

of the rectified Adams-Novikov spectral sequence associated to MSC∗. To do this, we need

the following construction, generalized from [Sch70].

Definition 3.4.1. Given a Hopf algebroid (A,R), and a collection of primitives S ⊂ R such

that R = R0[S], the Witt construction (A,WS(R)) at a prime p is a Hopf algebroid defined

by:

WS(R) := R[si|s ∈ S, i ≥ 0].

The coproduct ∆(si) is determined by the requirement that the "ghost component" wi be
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primitive, where

wi := pisi + pi−1spi−1 + . . . pi−2sp
2

i−2 + . . . psp
i−1

1 + sp
i

.

where |si| = pi|s|.

Next, as this construction is dependent on the choice of set S, we show there is a certain

amount of independence

Lemma 3.4.1. The Hopf algebroid (A,WS(R)), up to isomorphism, is dependent only on

the permanent cycle a primitive element s ∈ S ⊂ R represents in Cotor1R(A,A).

Proof. Suppose s and s′ are two primitives, such that they both converge to (s) at E∞

of Cotor1R(A,A). As they are permanent cycles already, we know that s − s′ ∈ im d1.

If we examine the differential in the associated cobar complex we see that this is given

precisely by (ηL − ηR) : A → R. As they represent the same permanent cycle, we obtain

s = s′ + (ηL − ηR)(a). Now, we show that ∆(s) = ∆(s′), and therefore determine the

same coproduct on the interated si and s′i, implying the Hopf algebroid structures will be

isomorphic. The calculation is as follows. First, we apply ∆:

∆(s) = ∆(s′ + (ηL − ηR)(a))

s⊗ 1 + 1⊗ s = ∆(s′) + ∆((ηL − ηR)(a))

s⊗ 1 + 1⊗ s = s′ ⊗ 1 + 1⊗ s′ +∆((ηL − ηR)(a))

noting that s and s′ are primitive by definition. Now that we have applied the coproduct,

we substitute s for s′ + (ηL − ηR)(a) as appropriate, and cancel terms which appear on both
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sides:

(s′ + (ηL − ηR)(a))⊗ 1 + 1⊗ (s′ + (ηL − ηR)(a)) = s′ ⊗ 1 + 1⊗ s′ +∆((ηL − ηR)(a))

s′ ⊗ 1 + (ηL − ηR)(a)⊗ 1 + 1⊗ s′ + 1⊗ (ηL − ηR)(a) = s′ ⊗ 1 + 1⊗ s′ +∆((ηL − ηR)(a))

(ηL − ηR)(a)⊗ 1 + 1⊗ (ηL − ηR)(a) = ∆((ηL − ηR)(a))

At this point, we note that passing over the tensor transforms the left unit into the right

unit. Therefore, we can unpack the above to get:

ηL(a)⊗ 1− ηR(a)⊗ 1 + 1⊗ ηL(a)− 1⊗ ηR(a) = ∆((ηL − ηR)(a))

ηL(a)⊗ 1− ηR(a)⊗ 1 + ηR(a)⊗ 1− ηL(a)⊗ 1 = ∆((ηL − ηR)(a))

0 = ∆((ηL − ηR)(a))

Knowing this, we see that ∆(s) = ∆(s′) + ∆((ηL − ηR)(a)) becomes ∆(s) = ∆(s′) + 0.

Now, we apply this Witt construction to our Hopf Algebra LS, where we take the set S

to be the basis of primitives S = {s1, s3, . . . }. The properties of the resulting Hopf algebroid

(L,WS(LS)) are desirable as we shall soon see, but first we address a matter of notation. The

new elements in WS(LS) are denoted s2i+1,j. The degree of these elements is 2 · 2j(2i + 1),

meaning we can uniquely relabel s2i+1,j as s′n for n = 2j(2i + 1). This lets us conclude

WS(LS) = MU∗[s
′
1, s

′
2, s

′
3, . . . ]. Next, we highlight how the addition of the induced elements

modifies the structure of LS.

Lemma 3.4.2. For p = 2, the Hopf algebroid WS(LS)
∧
2 is bipolynomial.

Proof. Again, by [Cro00], if ∆(si,j) ≡ si,j−1 ⊗ si,j−1, then WS(LS) will be bipolynomial.

Therefore, it suffices to examine the coproduct of the additional Witt elements. First, we

note that the elements s′2i+1 remain primitive. Next, we note that the coproduct for elements

s′n where n = 2j ·(2i+1) depends only on j. Therefore, we need to determine just the structure
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of a generic sj, induced by a primitive s. We proceed by induction. To deduce s1, we have

the following condition:

∆(2s1 + s20) = (2s1 + s20)⊗ 1 + 1⊗ (2s1 + s20)

Therefore we have:

2∆(s1) + (s0 ⊗ 1 + 1⊗ s0)
2 = (2s1 + s20)⊗ 1 + 1⊗ (2s1 + s20)

2∆(s1) + s20 ⊗ 1 + 1⊗ s20 + 2s0 ⊗ s0 = (2s1 + s20)⊗ 1 + 1⊗ (2s1 + s20)

2∆(s1) + 2s0 ⊗ s0 = 2s1 ⊗ 1 + 1⊗ 2s1

∆(s1) = s1 ⊗ 1 + 1⊗ s1 − s0 ⊗ s0.

Next, we assume that ∆(sj−1) = sj−1 ⊗ 1 + sj−1 ⊗ 1 ± sj−2 ⊗ sj−2 ± . . . , where we have

omitted terms of higher algebraic order. Then to determine ∆(sj), we get:

2j∆(sj) + 2j−1∆(sj−1)
2 + · · · = (2jsj + 2j−1s2j−1 + . . . )⊗ 1 + 1⊗ (2jsj + 2j−1s2j−1 + . . . )

By induction hypotheses, we get

2j∆(sj) + 2j−1(s2j−1 ⊗ 1 + 2sj−1 ⊗ sj−1 + 1⊗ s2j−1) + . . . = (2jsj + 2j−1s2j−1 + . . . )⊗ 1

+ 1⊗ (2jsj + 2j−1s2j−1 + . . . )

This gives

2j∆(sj) = 2jsj ⊗ 1 + 1⊗ 2jsj − 2jsj−1 ⊗ sj−1 + . . .

and so we see that ∆(sj) = sj ⊗ 1 + 1 ⊗ sj − sj−1 ⊗ sj−1 + . . . satisfies the form of the

induction hypothesis.
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Theorem 3.4.1. There is an isomorphism

(L,WS(LS))
∧
2
∼= (L,LSC)∧2

Proof. This is a corollory of Ravenel and Wilson. By Lemma 3.3.2 and Lemma 3.4.2, both

Hopf algebroids are bipolynomial. Therefore by [RW74], they are isomorphic.

3.5 Collapse for MSC∗ and Notes on MO[2]∗

Now, we can now present the main result.

Theorem 3.5.1. The E2-page of the rectified Adams-Novikov spectral sequence for MSC:

CotorLSC(MU∗,MU∗) ⇒ π∗(MSC)

collapses.

This proof deviates from the classical techniques, and relies on the work of [GWX21]. We

rely on the underlying algebraicity of BSC and BU to generalize to the motivic setting and

note that after change-of-base, we specialize to our desired result.

Proof. First, we consider the permanent cycles α2k and α2k+1, for k ≥ 0, with α0 = 1. These

classes are represented by the manifolds α2k+1 := [RP 4k+1], and α2k = [N4k+3], where N4k+3

are the Landweber manifolds detailed in [SS68b]. These are known permanent cycles and

therefore represent classes in MSC∗. Importantly, this means we can form an MSC-module

spectrum

F(α1,...,αn,... )MSC = holimnΣ
1−nMSC/(α1, . . . , αn).

By smashing with MU , we can construct the spectrum

F(α1,...,αn,... )MU = holimnΣ
1−nMU ∧MSC MSC/(α1, . . . , αn).
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Additionally, we have the equivalence

MU ∧MSC F(α1,...,αn,... )(MSC) ∼ F(α1,...,αn,... )(MU) (3.5.1)

Now, we see that this construction gives us a map from F(α1,...,αn,... )(MU) to the cobar MSC-

resolution constructed in Theorem 3.1.1. In fact, as the elements αi were chosen to be those

representing permanent cycles of our descent spectral sequence, this induces an isomorphism

on the E2-page of the corresponding spectral sequences. This implies an isomorphism of the

corresponding homotopy groups, and therefore an equivalence F(α1,...,αn,... )(MU) ∼ MSC in

the category of MSC-modules. Additionally when combined with Eq. (3.5.1), we see that

MU and F(α1,...,αn,... )(MSC) are strongly dual in the derived category. More importantly,

the dual structure implies they are inverse objects in this setting.

To make use of this, we now transition to the motivic setting. As it is known there is no

p-torsion in π∗(MSC) for odd p by [SS68b], we make work in the 2-complete setting over

C. By leveraging the algebraicity of the maps BSC → BU → BU , and noting that BU

is equivalent to BGL, we produce a motivic analog of MSC, denoted MSCMot. Then, we

note the results of Levine and Morel in [LM01], which gives

MGL⋆
∼= MU∗[τ ].

Therefore, if we apply our previous constructions to this 2-complete motivic setting, we

get a motivic analog of the rectified Adams-Novikov spectral sequence we constructed above.

Namely, we obtain

π⋆(MGL ∧MSCmot MGL) ∼= LSC[τ ].

This yeilds the spectral sequence:

CotorLSC(MU∗,MU∗)[τ ] ⇒ MSCmot
∗
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Now, we apply the work of [GWX21] to conclude that by change-of-base from Smot to S/τ ,

we get that the spectral sequence

CotorLSC(MU∗,MU∗) ⇒
(
MSCmot/τ

)
∗ .

collapses. Therefore, we now need to show MSCMot has no τ -torsion or Z-multiplicative

τ -extensions. Showing this will imply that (MSCMot/τ)∗ ∼= MSC∗ and therefore will be

done. To start, we note that our construction giving F(αi)MSC ∼= MU holds in the motivic

setting, and therefore F(αi)MSCMot ∼= MGL are inverse in the motivic derived setting.

Then, suppose there is an non-zero element β ∈ MSCMot
∗ which is τ -torsion. Then, β must

act as 0 on MGL∗. However, as we have already noted, as these spectra are invertible and

inverse to one another, implying that β must also act as zero on MSCMot
∗ . Since β was a

non-zero element, we see that this implies a contradiction, and so there can be no τ -torsion

in MSCMot
∗ .

To show the absence of multiplicative extensions, we proceed similarly. As we are 2-

complete, suppose there is some x, y ∈ MSCMot
∗ such that 2mx = τy. Again, by strong

duality, there must be corresponding some action on MU∗[τ ]. However, as we have already

noted, the operations here are MU∗MU [τ ], which has no τ -extensions. Therefore, we see

that ExtLSC(MU∗,MU∗) collapses. This was our original spectral sequence of interest, and

given the extensions and torsion are independant of τ , we have the necessary result by the

canonical comparison map to the non-motivic setting.

We now note that the above is insufficient to generalize when MSC is replaced with

MO[2]. Specifically, we do not have the isomorphism onto the E2 page of the necessary

spectral sequences implied by Eq. (3.5.1) in the MSC context.
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CHAPTER 4

Implementing CotorΓ(MU∗,MU∗) in Sage

Having spent the previous portions of this thesis detailing the underlying algebraic struc-

ture of the rectified Adams-Novikov spectral sequence, and how it allows us to compute

π∗(MSC) and π∗(MO[2]), it is time to actually present computations of π∗(MSC) and

π∗(MO[2]). While we have showed the RANSS collapses for MSC, we do not have a sim-

ple characterization of the E∞-page of this spectral sequence. Therefore, we have written

code which allows for the computation of homology of the reduced cobar complex associ-

ated to the RANSS for MSC and MO[2]. We highlight some of the technical results from

Chapter 3 which allow us to (somewhat) simplify the computation and allow for the solving

of extensions. Our computations are implemented in Sage [S+YY]. Before beginning our

computations, the following declarations are made, which initialize our symbolic variables.

1 #steps necessary to compute the right unit in MO2 and subsequently WLSC.

2 var('y z');

3 degree =10; #sets n for m_n , coefficient of m_i x^(i+1)

4 m_var=var(['m_{}'.format(i) for i in (1.. degree)]);

5 b_var=var(['b_{}'.format(i) for i in (1.. degree)]);

6 x_var=var(['x_{}'.format(i) for i in (1.. degree)]);

7 s_var=var(['s_{}'.format(i) for i in (1.. degree)]);

8 cb_var=var(['cb_{}'.format(i) for i in (1.. degree)]);

9 nb_var=var(['nb_{}'.format(i) for i in (1.. degree)]);

10 nm_var=var(['nm_{}'.format(i) for i in (1.. degree)]);

11 nx_var=var(['nx_{}'.format(i) for i in (1.. degree)]);
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12 ns_var=var(['ns_{}'.format(i) for i in (1.. degree)]);

13 all_var=m_var+b_var+x_var+nb_var+nm_var+cb_var+s_var+ns_var;

14

15 M=PolynomialRing(QQ, all_var);

16 MU.<y,z>= PolynomialRing(M); # Creates a ring Q[m_1 , b_1 , m_2 , b_2 , ...]

17 P=LazyPowerSeriesRing(MU);

18

19 m_list =[0, 1]+ list(m_var);

20 b_list =[0, 1]+ list(b_var);

21 cb_list =[0, 1]+ list(cb_var);

22 nm_list =[0, 1]+ list(nm_var);

23 s_list =[0]+ list(s_var);

24 m_yz_list =[0,y+z];

4.1 Structure Maps for (L,LB)

To proceed with a direct calculation of π∗(MO2) and π∗(MSC), we need formulas for the

differentials of the Cobar complex associated to the respective Cotor groups. To compute

these differentials, we need formulas for the right unit and coproducts of LS and LSC.

As described in the Chapter 3, the Hopf algebroid structures of both LS and LSC are

determined by the structure of LB. As such, we must first compute these maps for (L,LB),

and then make the appropriate substitutions for LS and LSC respectively.

We start by computing the right unit. Recall the relevant structure formulas for (L,LB)

as given in [Rav86]:

∑
i≥0

ηR(mi) =
∑
i≥0

mi

(∑
j≥0

c(bj)

)i+1 ∑
i≥0

c(bi)

(∑
j≥0

bj

)i+1

= 1

where bi and mi are the coefficients of the power series:

expF (x) := x+ Σ∞
i=1bix

i+1 logF (x) := x+ Σ∞
i=1mix

i+1.
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These functions denote the power series which define the Q-isomorphism of the universal

and additive formal group laws. We should note that the bi here are distinct from the bi

used in the definition of LB.

Notice that the structure formulas determining ηR do not involve the elements xi. There-

fore, if we wish to proceed, we need to first express the polynomial generators xi of MU∗ as

polynomials in Z[mi], such that up to decomposables, xi satisfies the conditions of Lazard’s

Theorem, Theorem 2.5.1. The choice of xi is not unique, and our method simply computes

one of many compatible choices. Note that by this theorem, while expF and logF (x) are

power series over base rings with rational coefficients, the images of the associated coprod-

uct and right unit for L → LB consist entirely of Z-coefficients. Therefore, we are free to

perform our operations over Q, and provided we satisfy the conditions of Lazard’s Theorem,

we will have suitable choices.

Given expF and logF are inverses, by composing the series and matching coefficients, we

may solve for bi in terms of mi over Q. The following snippet of code initializes all variables,

and then utilizing the LazyPowerSeries package in Sage, creates two functions, log and

exp, composes them, extracts the coefficients, sets them equal to zero and solves for each bi

as a polynomial in the mi.

1 def compute_b_as_m(m_list , b_list , P):

2 log=P(m_list +[0]);

3 exp=P(b_list +[0]);

4 logexp=log(exp);

5 coeffs=logexp.coefficients(degree +2);

6 relation_eqs =[];

7 for i in range(degree):

8 relation_eqs.append(SR(coeffs[i+2]) ==0)

9

10 b_sol=solve(relation_eqs , b_var);

11 b_as_m =[];

12 for i in range(degree):
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13 b_as_m.append(SR(b_sol [0][i].left()== b_sol [0][i].right ().expand ())

);

14

15 return b_as_m

Next, we note that the universal formal group law F (x, y) =
∑

ai,jx
iyj can also be

expressed as expF (logF (x) + logF (y)). Again, by comparing coefficients, it is now possible

to collect the ai,j entirely in terms of the mk, as we have already expressed the bk′ in terms

of mk. This is shown in the following snippet, where expF (x) and logF (x) are denoted by

b(x) and m(x) respectively:

1 def compute_aij_as_m(m_yz_list , b_list , b_as_m , P, MU):

2 b_poly=P(b_list +[0]);

3 m_yz=P(m_yz_list +[0]);

4 an_coeffs_sim =[0];

5 F=b_poly(m_yz);

6 for i in range(degree):

7 an_coeffs_sim.append(F.coefficient(i+2));

8

9 an_coeffs_new =[];

10 for i in range(degree):

11 an_coeffs_new.append(SR(an_coeffs_sim[i+1]).subs(b_as_m));

12 aij_as_m_array =[];

13 for i in range(degree):

14 aij_as_m_array.append(MU(an_coeffs_new[i]).coefficients ());

15

16 return aij_as_m_array

Specifically, we now have a collection of expressions

ai,j =

(
i+ j

j

)
mk + decomposables

for all i + j − 1 = k Then, as we know the leading coefficients of mk, we can perform an
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extended Euclidean algorithm with all terms for i < j < k to determine the coefficients pi,j

such that:

xk :=
∑

i+j=k+1,i<j

pi,jai,j ≡ ukmk.

where uk is as determined in Theorem 2.5.1. This is detailed as follows:

1 def compute_x_as_m_m_as_x(aij_as_m):

2 xi_list =[]

3 for i in range(degree):

4 xi_eq_list=aij_as_m[i];

5 mi_coeffs =[];

6 gcd =[];

7 euc_coeffs =[];

8 for j in range(len(xi_eq_list)):

9 eq=xi_eq_list[j];

10 monomial=eq.monomials ()[len(eq.monomials ()) -1]

11 mi_coeffs.append(eq.monomial_coefficient(monomial));

12 for k in range(floor(len(mi_coeffs)+1/2)):

13 if k==0 and floor(len(mi_coeffs)+1/2) !=1:

14 gcd=xgcd(mi_coeffs [0], mi_coeffs [1]);

15 euc_coeffs.append ([gcd[1],gcd [2]]);

16 elif k==0 and floor(len(mi_coeffs)+1/2) ==1:

17 euc_coeffs.append (-1);

18 else:

19 gcd=xgcd(gcd[0], mi_coeffs[k]);

20 euc_coeffs.append ([gcd[1],gcd [2]]);

21 xi=0

22 for k in range(floor(len(mi_coeffs)+1/2)):

23 if k==0 and floor(len(mi_coeffs)+1/2) !=1:

24 xi=euc_coeffs[k][0]* xi_eq_list[k]+ euc_coeffs[k][1]*

xi_eq_list[k+1]

25 elif k==0 and floor(len(mi_coeffs)+1/2) ==1:

26 xi=euc_coeffs [0]

57



27 else:

28 xi=euc_coeffs[k][0]*xi+euc_coeffs[k][1]* xi_eq_list[k];

29 xi_list.append(xi);

30 xi_list [0]=2* m_1;

31

32 x_as_m =[]

33 for i in (1.. degree):

34 x_as_m.append(SR(x_var[i-1]== xi_list[i-1]))

35

36 m_as_x_sol=solve(x_as_m , m_var);

37 m_as_x =[];

38 for i in range(degree):

39 m_as_x.append(SR(m_as_x_sol [0][i].left()== m_as_x_sol [0][i]. right()

.expand ()));

40

41 return x_as_m , m_as_x

Next, as we know know xi in terms of mi, it is possible to compute the ηR(xi) using the

formula listed above for ηR(mi). This requires us to first compute the c(bj) in terms of bi.

We present the code:

1 def compute_cb_as_b(b_list , cb_list , P):

2 cb_poly=P(cb_list +[0])

3 b_poly=P(b_list +[0])

4 b_cb_poly=cb_poly(b_poly)

5 b_cb_coeffs=b_cb_poly.coefficients(degree +2)

6 b_cb_coeffs_list =[]

7 for i in range(degree +2):

8 b_cb_coeffs_list.append(SR(b_cb_coeffs[i])==0)

9 b_cb_eqs=b_cb_coeffs_list [2::]

10 b_cb_solved=solve(b_cb_eqs , cb_var)

11 cb_as_b =[]

12 for i in range(len(b_cb_solved [0])):
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13 cb_as_b.append(SR(cb_var[i]==(SR(b_cb_solved [0][i].right ()).expand

())))

14 return cb_as_b

We can then take this and immediately use it to compute ηR(mi).

1 def compute_nm_as_m(m_list , nm_list , cb_list , cb_as_b , P):

2 m_poly=P(m_list +[0]);

3 nm_poly=P(nm_list +[0])

4 cb_poly=P(cb_list +[0])

5 nm_def_poly=m_poly(cb_poly)

6 nm_rel_poly=nm_poly -nm_def_poly

7 nm_m_coeffs=nm_rel_poly.coefficients(degree +2)

8 nm_m_coeffs_list =[]

9 for i in (0.. degree +1):

10 nm_m_coeffs_list.append(SR(nm_m_coeffs[i])==0)

11

12 nm_m_coeffs_list=nm_m_coeffs_list [2::]

13 nm_m_solved=solve(nm_m_coeffs_list , nm_var)

14 nm_as_m =[]

15 for i in range(len(nm_m_solved [0])):

16 nm_as_m.append(SR(nm_var[i]==(SR(nm_m_solved [0][i].right ()).expand

())).subs(cb_as_b).expand ())

17 return nm_as_m

We are now free to make the final substitutions to compute ηR(xi), by applying ηR to

our relations of xi in terms of mi, substituting our solved values for ηR(mi), and then again

substituting our relations for mi in terms of the x. Again, we note that the final relations

only make sense a priori over Q, but as shown by Lazard, in combination with the rest of

the relations, will give us formula with with coefficients in LB. The code is given here:

1 def compute_nx_as_b(m_as_x , x_as_m , nm_as_m):

2 temp_var =[]

3 nx_as_nm =[]
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4 nx_as_m =[]

5 nx_as_b =[]

6 for i in range(len(list(nm_var))):

7 temp_var.append(SR(m_var[i]== nm_var[i]))

8 for i in range(len(x_as_m)):

9 nx_as_nm.append(SR(nx_var[i]== x_as_m[i].right ().subs(temp_var)).

expand ())

10 for i in range(len(nx_as_nm)):

11 nx_as_m.append(SR(nx_var[i]== nx_as_nm[i]. right().subs(nm_as_m)).

expand ())

12 for i in range(len(nx_as_m)):

13 nx_as_b.append(SR(nx_var[i]== nx_as_m[i]. right().subs(m_as_x)).

expand ())

14 return nx_as_b

Next, we want to compute the coproduct ∆ : LB → LB ⊗ LB. As described in [Rav86],

we have a polynomial which defines the generating relations:

∑
i≥0

∆(bi)x
i+1 =

∑
j≥0

b′′j

(∑
i≥0

b′ix
i+1

)j+1

where b′i becomes bi⊗1 and b′′j becomes 1⊗ bj. For computational notation, we denote bi⊗1

as bl_i and 1⊗ bi by br_i (for left and right respectively). We again compose the necessary

series and collect coefficients. We include the code:

1 def compute_cob_as_blr(cob_var , bl_list , br_list , degree , R):

2 cob_list =[0 ,1]+ list(cob_var)

3 cob_poly=R(cob_list +[0])

4 bl_poly=R(bl_list +[0])

5 br_poly=R(br_list +[0])

6 cob_as_blr_poly=cob_poly -br_poly(bl_poly)

7 cob_as_blr_relations=cob_as_blr_poly.coefficients(degree +2)

8 cob_as_blr_relation_eqs =[]

9 for i in range(degree +2):
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10 cob_as_blr_relation_eqs.append(SR(cob_as_blr_relations[i])==0)

11 cob_as_blr_solved=solve(cob_as_blr_relation_eqs , cob_var)[0]

12 cob_as_blr =[]

13 for cob in cob_as_blr_solved:

14 cob_as_blr.append(cob.left()==cob.right ().expand ())

15 return cob_as_blr

4.2 Structure Maps for (L,LS) and Solving for Primitives

Just as before, we detail the necessary initializions to proceed with the computations.

1 #steps necessary to compute the coproduct in MO2 , and subsequently WLSC

2 cob_var=var(['cob_{}'.format(i) for i in (1.. degree)]);

3 cos_var=var(['cos_{}'.format(i) for i in (1.. degree)]);

4 br_var=var(['br_{}'.format(i) for i in (1.. degree)]);

5 bl_var=var(['bl_{}'.format(i) for i in (1.. degree)]);

6 sl_var=var(['sl_{}'.format(i) for i in (1.. degree)]);

7 sr_var=var(['sr_{}'.format(i) for i in (1.. degree)]);

8 xl_var=var(['xl_{}'.format(i) for i in (1.. degree)]);

9 xr_var=var(['xr_{}'.format(i) for i in (1.. degree)]);

10 more_var=cos_var+cob_var+br_var+bl_var+sr_var+sl_var+xl_var+xr_var

11

12 CoPolyRing=PolynomialRing(QQ , more_var);

13 R=LazyPowerSeriesRing(CoPolyRing)

14 LS=ZZ[s_var [0::2]+ x_var]

15 LS_LS=ZZ[sl_var [0::2]+ sr_var [0::2]+ xl_var+xr_var]

16

17 bl_list =[0 ,1]+ list(bl_var)

18 br_list =[0 ,1]+ list(br_var)

19

20 s_as_sl =[]

21 s_as_sr =[]

22 sl_even_as_sl_odd =[]
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23 sl_even_as_sl_odd =[]

24 b_as_br =[]

25 b_as_bl =[]

26 b_as_cob =[]

27 x_as_nx =[]

28 x_as_xl =[]

29 x_as_xr =[]

30 #generate symbolic conversion relations

31 for i in range(degree):

32 s_as_sl.append(SR(s_var[i]== sl_var[i]))

33 s_as_sr.append(SR(s_var[i]== sr_var[i]))

34 b_as_bl.append(SR(b_var[i]== bl_var[i]))

35 b_as_br.append(SR(b_var[i]== br_var[i]))

36 b_as_cob.append(SR(b_var[i]== cob_var[i]))

37 x_as_nx.append(SR(x_var[i]== nx_var[i]))

Before continuing to the structure maps for (L,LS), it is important to highlight that

the results in the previous section were sufficient to compute the coefficients of the universal

formal group law as polynomials in the xi. Specifically, we can compute [2]F (x) and [−1]F (x),

which are each used in the defining relations for (L,LS). In both cases, we leverage the

isomorphism F (x, y) = expF (logF (x) + logF (y)) to draw our desired conclusions. We note

if F (x, iF (x)) = expF (logF (x) + logF (iF (x))) = 0 we can set iF (x) = expF (− logF (x)). The

following code performs the necessary composition and substitutions for [−1]F (x).

1 def compute_ifx_coeff_list(b_list , m_as_x , b_as_m , P):

2 b_poly=P(b_list +[0])

3 m_as_x_list =[0 ,1]

4 for m in m_as_x:

5 m_as_x_list.append(m.right ())

6 m_as_x_poly=P(m_as_x_list +[0]);

7 ifx=b_poly (-1* m_as_x_poly);

8 ifx_coeffs_sim=ifx.coefficients(degree +2);

9 ifx_coeffs_inter =[0]
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10 ifx_coeffs_final =[]

11 for i in range(degree +1):

12 ifx_coeffs_inter.append(SR(ifx_coeffs_sim[i+1]).subs(b_as_m));

13 for j in range(degree +1):

14 ifx_coeffs_final.append(SR(ifx_coeffs_inter[j]).subs(m_as_x).

expand ());

15 return ifx_coeffs_final

Similarly, we can express [2]F (x) as expF (2 logF (x)). This computation is included in the

next set of results.

As we noted previously, we have computed the Hopf algebroid structure on (L,LB) and

so we can now compute the structure for (L,LS) and (L,LSC). Recall that the structure

of LS is defined by

b(x) = x+ [2]F (x)s(x) s(x) =
∑
i≥0

six
i

along with the relation

xiF (x) = b(x)b(iF (x)).

By performing a similar series of compositions and substitutions, we can compute the co-

product and right unit of LS in terms of the si. This consists of two stages. The first relation

allows us to relate si to bi. Then, using the second relation, we can express each s2i as a

function of s2j+1 for all j < i, as noted in the proof of Lemma 3.2.2. This is done in one step

(along side the computation for iF (x)), in the following code:

1 def compute_s_as_b_relations(ifx_coeff_list , s_var , b_var , b_as_x , m_as_x ,

degree , P):

2 s_list =[0]+ list(s_var);

3 b_list =[0 ,1]+ list(b_var);

4 b_as_x_list =[0 ,1]

5 for b in b_as_x:

6 b_as_x_list.append(b.right ())

7 m_as_x_list =[0 ,1]
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8 for m in m_as_x:

9 m_as_x_list.append(m.right ())

10

11 s_poly=P(s_list +[0]);

12 b_poly=P(b_list +[0]);

13 b_F_poly=P(b_as_x_list +[0]);

14 m_F_poly=P(m_as_x_list +[0]);

15 ix_poly=P(ifx_coeff_list +[0])

16 x_poly=P([0,1,0])

17 xix_poly=x_poly*ix_poly

18

19 F2x_rational=b_F_poly (2* m_F_poly);

20 F2x_coeffs=F2x_rational.coefficients(degree +2)

21 F2x_integral_coeffs =[]

22 for coeff in F2x_coeffs:

23 F2x_integral_coeffs.append(SR(coeff).expand ())

24 F2x_poly=P(F2x_integral_coeffs +[0])

25

26

27 b_as_s_poly=x_poly+F2x_poly*s_poly

28 b_as_s_relations_poly=b_as_s_poly -b_poly

29 b_as_s_relations=b_as_s_relations_poly.coefficients(degree +2)

30 b_as_s_relations_list =[]

31 for i in range(degree +2):

32 b_as_s_relations_list.append(SR(b_as_s_relations[i]).expand ()==0)

33 s_as_b_solved=solve(b_as_s_relations_list , s_var)[0]

34 b_as_s_solved=solve(s_as_b_solved , b_var)[0]

35 s_as_b =[]

36 b_as_s =[]

37 for i in range(len(s_as_b_solved)):

38 s_as_b.append(SR(s_as_b_solved[i].left()== s_as_b_solved[i]. right()

.expand ()))
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39 b_as_s.append(SR(b_as_s_solved[i].left()== b_as_s_solved[i]. right()

.expand ()))

40

41 s_even_as_s_odd_poly=b_as_s_poly*b_as_s_poly(ix_poly)-xix_poly

42

43 s_even_as_s_odd_relations=s_even_as_s_odd_poly.coefficients(degree +3)

44 s_even_as_s_odd_relations_list =[]

45 for i in range(degree +3):

46 s_even_as_s_odd_relations_list.append(SR(s_even_as_s_odd_relations

[i]).expand ()==0)

47

48 even_s_var=s_var [1::2]

49 s_even_as_s_odd_relations_solved=solve(s_even_as_s_odd_relations_list

[0::2] , even_s_var)

50 s_even_as_s_odd =[]

51 for i in s_even_as_s_odd_relations_solved [0]:

52 s_even_as_s_odd.append(SR(i.left()==i.right ().expand ()))

53

54 return s_as_b , b_as_s , s_even_as_s_odd

Now, given that we have ηR(xi) in terms of bi, bi in terms of si, and the s2i in terms of s2j+1,

we can immediately obtain ηR(xi) for LS by performing the following simple substitutions:

1 def compute_b_as_s_odd(b_as_s , s_as_b , s_even_as_s_odd):

2 b_as_s_odd =[]

3 for b in b_as_s:

4 b_as_s_odd.append(b.left()==b.right ().subs(s_even_as_s_odd).expand

())

5 return b_as_s_odd , s_as_b [::2]

6

7 def compute_nx_as_s_odd(nx_as_b , b_as_s_odd):

8 nx_as_s_odd =[]

9 for nx in nx_as_b:

10 nx_as_s_odd.append(nx.left()==nx.right().subs(b_as_s_odd).expand ()
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)

11 return nx_as_s_odd

Next, we can compute the coproduct in LS. The initial substitutions are straightforward.

As we know si in terms of bi, we apply ∆ to obtain ∆(si) in terms of ∆(bi), and then use

the computation of ∆(bi) we obtained in the previous section to obtain ∆(si) in terms of

the variables bl_i and br_i. Next by knowing bi in terms of the s2k+1, we can obtain bl_i

in terms of sl_i and equivalently for the elements on the right of the tensor. Now, there is

a bit of nuance. The coproduct of LB did not involve elements of MU∗; that is to say, it

was free of all xi. However, we have seen that due to the [2]F (x) and [−1]F (x) terms in the

defining relations for LS, the relations between bi and si do involve the xi. Therefore when

we substitute bri for sri, we need to respect that elements xi are appearing on the right of

the tensor. Our calculations are simplified if we consider LB ⊗ LB as a polynomial algebra

MU∗[bi ⊗ bj], so therefore, we need to pass xi on the right of the tensor over to the left so

we can accurately regard them as coefficients. This involves transforming them via the right

unit, so the term 1⊗xi becomes ηR(xi)⊗1. More practically, we perform a substitution xr_i

by ηR(xi) expressed in terms of sl_i and xl_i. We include the two preliminary substitutions

(translating the b_as_s relation to the left and right and translating xr_i to ηR(x)⊗ 1) and

the final coproduct substitution here:

1 def compute_blr_as_slr(b_as_s_odd , s_as_sl , s_as_sr , x_as_xl , x_as_xr ,

br_var , bl_var , degree):

2 bl_as_sl =[]

3 br_as_sr =[]

4 for i in range(degree):

5 bl_as_sl.append(SR(bl_var[i]==SR(b_as_s_odd[i].right()).subs(

s_as_sl).subs(x_as_xl)))

6 br_as_sr.append(SR(br_var[i]==SR(b_as_s_odd[i].right()).subs(

s_as_sr).subs(x_as_xr)))

7 return bl_as_sl , br_as_sr

8
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9 def compute_xr_as_nxl(nx_as_s_odd , s_as_sl , x_as_xl , xr_var):

10 xr_as_nxl =[]

11 for i in range(degree):

12 xr_as_nxl.append(SR(xr_var[i]==SR(nx_as_s_odd[i]. right()).subs(

s_as_sl).subs(x_as_xl)))

13 return xr_as_nxl

14

15 def compute_cos_as_slr(s_as_b , b_as_cob , cob_as_blr , bl_as_sl , br_as_sr ,

degree):

16 cos_as_cob =[]

17 cos_as_blr =[]

18 cos_as_slr =[]

19 cos_as_slrn =[]

20 cos_as_s_final =[]

21

22 for i in range(degree):

23 cos_as_cob.append(SR(cos_var[i]==SR(s_as_b[i].right()).subs(

b_as_cob).subs(x_as_xl)))

24 for i in range(degree):

25 cos_as_blr.append(SR(cos_var[i]==SR(cos_as_cob[i]. right()).subs(

cob_as_blr)))

26 for i in range(degree):

27 cos_as_slr.append(SR(cos_var[i]==SR(cos_as_blr[i]. right()).subs(

bl_as_sl+br_as_sr).expand ()))

28 for i in range(degree):

29 cos_as_slrn.append(SR(cos_var[i]==SR(cos_as_slr[i]. right()).subs(

xr_as_nxl).expand ()))

30 for i in range(degree):

31 cos_as_s_final.append(SR(cos_var[i]==SR(cos_as_slrn[i].right()).

subs(s_as_sl).expand ()))

32 return cos_as_s_final [::2]

Now, we can procedurally obtain the image of the generators si under the coproduct in
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LS, and by extension, all polynomials in LS. We are now technically able to proceed with

the computation of the associated cobar complex and start computing π∗(MO[2]). However,

this is computationally unfeasible, and would require numerous substitutions, passing ηR(x)

over the tensor to collect all of the xi terms. Therefore, we would like to find a basis of

primitives s2i+1. This not only simplifies calculations for LS, but also make computations

of LSC possible, which we will see in Section 4.3.

To start the process of solving for primitives, we recall first that we already asserted such

a basis exists in Chapter 3. Therefore, we can safely assume such terms exist, and use this

to help simplify our solving process. We know that on s2i+1, each coproduct is of the form

∆(s2i+1) = s2i+1 ⊗ 1 + 1⊗ s2i+1 + f(sk′ ⊗ sk)

where f is a polynomial in LS ⊗ LS.

It suffices to find some homogenous degree 2(2i+ 1) polynomial g ∈ LS, such that

∆(g) = g ⊗ 1 + 1⊗ g − f(sk′ ⊗ sk).

To do this, we enumerate all monomials of the desired topological degree, compute the

coproducts, subtract the primitive part, and isolate the error term. Then, it is possible to

construct a system of linear diophantine equations to solve for coefficients which eliminate

the original error term of ∆(s2i+1). Importantly, we are able to do this because we know

such a solution must exist, and therefore our code can simply find it.

We now examine the implementation of this process more closely. Let us start by enu-

merating the necessary monomials in degree 2(2i + 1). We can classify these into three

groups: those which are strictly in Z[si] (denoted s_only terms); those which are strictly in

MU∗ (denoted x_only terms); and those which involve both the si and xi terms (denoted

xs terms). To condense our notation, we denote monomials using multiindex notation. We

note that the x_only terms can be disregarded entirely, as ∆(xi) = xi ⊗ 1, as these are
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elements of the base ring for the Hopf algebroid. We generate these classes of terms again

utilizing the LazyPowerSeries package. We construct three generating functions such that

the coefficient of xi is a polynomial containing all monomials of degree 2i. We then extract

these monomials while disregarding the associated coefficients. This is implemented here:

1

2 def compute_initial_terms(x_var , s_var , order , degree , term_gen_ring):

3 x_list =[0]+ list(x_var)

4 s_list =[0]

5 for i in range(degree):

6 if i%2==0:

7 s_list.append(s_var[i])

8 else:

9 s_list.append (0)

10 xs_list =[]

11 for i in range(degree +1):

12 xs_list.append(x_list[i]+ s_list[i])

13

14 weight_list =[0,1,1,1,1,1,1,1,1];

15 weight_poly=term_gen_ring(weight_list)

16 xs_generator_poly=term_gen_ring(xs_list)

17 x_generator_poly=term_gen_ring(x_list)

18 s_generator_poly=term_gen_ring(s_list)

19 s_term_poly=weight_poly(s_generator_poly);

20 x_term_poly=weight_poly(x_generator_poly);

21 total_term_poly=weight_poly(xs_generator_poly);

22 all_xs_term_list=LS(total_term_poly.coefficient(order)).monomials ()

23 s_terms=LS(s_term_poly.coefficient(order)).monomials ()

24 x_terms=LS(x_term_poly.coefficient(order)).monomials ()

25 xs_term_list =[]

26 for term in all_xs_term_list:

27 if term in x_terms:

28 continue
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29 elif term in s_terms:

30 continue

31 else:

32 xs_term_list.append(term)

33 return xs_term_list , s_terms

Next, we detail why we have chosen to separate the s_only and xs terms. If we consider

a monomial sJ for some index set of powers J , the coproduct is of the form

∆(sJ) = sJ ⊗ 1 + 1⊗ sJ + error

where error denotes the nonprimitive part. Ideally, we would simply compute the error

portion for all sJ and xIsJ and then construct the necessary diophantine system. However,

thenxs terms must be given special attention with regards to their coproduct. Therefore

similarly to the x_only terms above, the coproduct here becomes

∆(xIsJ) = ∆(xI)∆(sJ) = xI ⊗ 1(sJ ⊗ 1 + 1⊗ sJ + error) = xIsJ ⊗ 1 + xI ⊗ sJ + error.

We again have an issue with the side of the xI , as we want to isolate the error term by

subtracting xIsJ ⊗ 1 + 1 ⊗ xIsJ , but cannot simply replace xI ⊗ sJ by 1 ⊗ ηR(xI)sJ , as it

is important that our error terms are consistently expressed in basis where all xi are on the

left. We can solve this dilemma by noting that ηR(xI)⊗ sJ = 1⊗xIsJ . Therefore, it suffices

to add −ηR(xI)⊗ sJ + 1⊗ xIsJ to the coproduct, yielding:

∆(xIsJ) = xIsJ ⊗ 1 + 1⊗ xIsJ − ηR(xI)⊗ sJ + xI ⊗ sJ + error.

where we now include −ηR(xI)⊗ sJ + xI ⊗ sJ as part of our error term.

As it stands, we have only computed the image of the necessary generators, that is to

say, we have ηR(xi) and ∆(s2j+1). To generalize this, we make use of the R.hom() function

associated to a Ring object in Sage. This will allow us to simply loop over the monomials
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and extract the error terms systematically. First, we define the rings:

1 LS=ZZ[s_var [0::2]+ x_var]

2 LS_LS=ZZ[sl_var [0::2]+ sr_var [0::2]+ xl_var+xr_var]

Then, we produce the coproduct and the right unit on xl_i. We also include some of the

helper functions used to format our existing results to the proper input. Additionally, we

define maps which are strict left and right inclusions. These are use to isolate the error term

of the coproduct in the next step of our process.

1 def compute_coprod_LS_list(cos_as_slr , xl_var):

2 coprod_LS_list =[]

3 for cos in cos_as_slr:

4 coprod_LS_list.append(cos.right ())

5 for xi in xl_var:

6 coprod_LS_list.append(xi)

7 return coprod_LS_list

8

9 def compute_left_to_right_unit(sr_var , xr_var , nx_as_s_odd , x_as_xl ,

s_as_sl):

10 right_unit =[]

11 for i in range(degree):

12 right_unit.append (((SR(SR(nx_as_s_odd[i]).right().subs(x_as_xl).

subs(s_as_sl)))).expand ())

13 prim_refine=flatten ([ sl_var [0::2]]+[ sr_var [0::2]]+[ right_unit ]+[ xr_var

])

14 return prim_refine

1 coprod_LS_list=compute_coprod_LS_list(cos_as_slr , xl_var)

2 coprod=LS.hom(coprod_LS_list , LS_LS)

3

4 left_to_right_unit=compute_left_to_right_unit(sr_var , xr_var , nx_as_s_odd ,

x_as_xl , s_as_sl)

5 left_to_right_refine=LS_LS.hom(left_to_right_unit , LS_LS)

6
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7 right_incl=LS.hom(sr_var [0::2]+ xr_var , LS_LS)

8 left_incl=LS.hom(sl_var [0::2]+ xl_var , LS_LS)

Finally, we can now compute the error terms. First, we enumerate and isolate the errors,

based on if the monomial is in xs_terms or s_only_terms. We make the appropriate

corrections in the case of the xs_terms and for all monomials subtract the primitive part.

1 def compute_primitive_errors(xs_terms , s_only_terms , x_as_xl , s_as_sr ,

LS_LS ):

2 primitive_errors =[];

3 for term in xs_terms:

4 xterm=LS_LS(SR(term).subs(x_as_xl).subs(s_as_sr))

5 r_xterm=LS_LS(SR(term).subs(x_as_xr).subs(s_as_sr))

6 correction= -1* left_to_right_refine(xterm)+r_xterm

7 primitive_errors.append(SR(coprod(term)+correction -right_incl(term

)-left_incl(term)).subs(xr_as_nxl).expand ())

8 for term in s_only_terms:

9 primitive_errors.append(SR(coprod(term)-right_incl(term)-

left_incl(term)))

10 return primitive_errors

This results in a list of all error terms corresponding to monomials in topological degree

2(2i + 1). Due to the lexicographic ordering of the monomials() command used to extract

the terms for xs_terms and s_only_terms, the error of the ∆(s2i+1) will always be the final

entry of primitive_errors. Therefore, we can proceed to setup a system of equations to

solve for terms which cancel the errors. Symbolically, we create a polynomial ring Z[pi] over

placeholder variables p_i. This allows us to solve for the coefficients of the primitive term:

s2i+1 = s2i+1 +
∑
xIsJ

pixIsJ .

We loop over the primitive_error list, constructing a single overall error term. We

now attempt to solve for the variables pi which force this term to be zero. We extract the
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coefficients of this overall error term, which gives a list of equations in the p_i, which we

denote error_coeffs. At this point, we could simply proceed to use the solve() function

over a symbolic ring to solve pi. However, solve() exclusively works over Q, which does

not produce specific solutions, but a general solution. In our case, their are infinitely many

solutions over Q. As the number of terms grows similarly to the number of integer partitions,

we see that manually searching for integer solutions from the generic rational solution is

unfeasible. Therefore, we setup a linear system of equations and leverage Smith Normal Form

to solve for integer coefficients. We convert the list of equations into a system A · P = C.

By applying smith normal form to A, we obtain U, V such that UAV = B, where B is in

Smith Form. From here we see that BV −1P = U · C. Then, if we let k be the rank of A

and n − 1 be the number of variables we are solving for, we can conclude that P = V · C ′,

where C ′
i = (U · C)i if 1 ≤ i ≤ k, C ′

i = 0 if k < i < n and C ′
n = 1. This P contains the the

solved values for p_i so all that is left is to dot P with the list of monomials to obtain the

primitive term. This is included here:

1 def lin_dioph_solv(A,C):

2 smith=A.smith_form ()

3 B=smith [0]

4 U=smith [1]

5 V=smith [2]

6 D=U*C

7 k=B.rank()

8 m,n=[len(A.rows()), len(A.columns ())]

9 temp =[]

10 for i in range(n):

11 if i<k:

12 temp.append(D[i][0]/B[i,i])

13 elif i==n-1:

14 temp.append (1)

15 else:

16 temp.append (0)
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17 X=V*matrix(temp).transpose ()

18 return X

1 def compute_primitive_generator(xs_terms , s_only_terms , primitive_errors):

2 p=var(['p_{}'.format(i) for i in range(len(primitive_errors))]);

3 Dummy_Var_Ring=ZZ[p]

4 Dummy_LS=Dummy_Var_Ring[sl_var [0::2]+ sr_var [0::2]+ xl_var+xr_var]

5 s_error_term=primitive_errors[len(primitive_errors) -1] #error of s_2n

+1

6 for i in range(len(primitive_errors) -1):

7 s_error_term=s_error_term+p[i]* primitive_errors[i]

8 error_poly=Dummy_LS(s_error_term)

9 error_coeffs=error_poly.coefficients ()

10 prim_mat =[]

11 for term in error_coeffs:

12 coeff_vec =[]

13 for i in range(len(p)+1):

14 if i!=len(p):

15 coeff_vec.append(int(Dummy_Var_Ring(term).

monomial_coefficient(Dummy_Var_Ring(p[i]))))

16 else:

17 coeff_vec.append(int(Dummy_Var_Ring(term).

constant_coefficient ()))

18 prim_mat.append(coeff_vec)

19 prim_mat=matrix(prim_mat)

20 A=prim_mat [:,:-1]

21 C=-1* prim_mat [:,-1]

22 prim_coeffs = lin_dioph_solv(A,C)

23 term_list=xs_terms+s_only_terms

24 term=( matrix(term_list)*( prim_coeffs))[0][0]

25 return term

Additionally, we want to point out entries for k < i < n are in fact free entries, and

not forced to be zero. Modifying these entries allows us to generate all possible integer
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coefficients for primitives. This is in fact one area for significant improvement, as the resulting

primitives have coefficients which are quite large. Being able to minimize these coefficients

could potentially improve performance when computing the homology of the cobar complex

later.

Our final step requires us to note that we have ηR(xi) in terms of the si. A simple

substitution (which we will not include) allows us to produce nx_as_sbar from nx_as_s_odd.

We now have completely determined (computationally) the Hopf algebra structure of (L,LS).

We are now able to proceed with characterizing (L,LSC).

4.3 Structure Maps for (L,LSC) and the Witt Construc-

tion

To characterize (L,LSC), we should start by highlighting the most important strucutral

difference between LS and LSC. The existence of primitives in LS, the cobar calculation

can be done globally over Z. This is not a luxery shared by LSC, which we have already

addressed in Chapter 3. Therefore, to proceed with a meaninful computation of the cobar

complex associated to LSC, we need to think outside the box. As a consequence of [RW74],

2-locally, we have an isomorphism:

WS(LS) ∼= LSC

where WS(LS) is the Witt construction applied to the primitives s2i+1, which we computa-

tionally solved for in Section 4.2. Then, since each induced s2i+1,j has a coproduct which

can be recursively determined, and is exclusively in terms of s, with no xi. Therefore, we do

not have to worry about passing xi over the tensor to collect coefficients. This means that

we are a modified version of the cobar complex for (L,LS) to WS(LS). This will only allow

us to compute the 2-torsion associated to π∗(MSC). However, as we have already noted, at
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odd primes π∗(MSC) is polynomial, meaning the only torsion is 2-torsion. Therefore, we

can work over Z and ignore the p-torsion for odd p.

Working 2-locally with the Witt construction provides two major benefits to the code.

We have already mentioned the first, being that the si,j do not contain xi. The second is

similar, as ηR(xi) will involve any of the new induced elements, meaning we have already

effectively computed ηR for (L,LSC)∧2 . Therefore, the only necessary step to determine the

Hopf algebra structure is to compute the coproduct on the induced si,j. The determination

of this coproduct is done by requiring the ghost component

s2
j

2i+1,0 + 2s2
j−1

2i+1,1 + . . . 2js2i+1,j

be primitive. This uses a modified version of the error algorithm detailed above. This is

shown here:

1 var('y z');

2 degree =4; #sets n for m_n , coefficient of m_i x^(i+1)

3 s_var=var(['s_{}'.format(i) for i in (0.. degree)]);

4 sl_var=var(['sl_{}'.format(i) for i in (0.. degree)]);

5 sr_var=var(['sr_{}'.format(i) for i in (0.. degree)]);

6 cos_var=var(['cos_{}'.format(i) for i in (0.. degree)]);

7 all_var=s_var+sl_var+sr_var+cos_var

8 WLS=PolynomialRing(ZZ ,all_var)

9

10 cos_as_s =[SR(cos_0 == sl_0+sr_0)]

11 cos_ghost =0

12 left_ghost =0

13 right_ghost =0

14 for i in range(1,degree +1):

15 for j in range(i+1):

16 cos_ghost =2^j*cos_var[j]^(2^(i-j))+cos_ghost

17 left_ghost =2^j*sl_var[j]^(2^(i-j))+left_ghost

18 right_ghost =2^j*sr_var[j]^(2^(i-j))+right_ghost
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19 cos_as_s.append(SR(cos_ghost == left_ghost+right_ghost))

20 cos_as_s_solved=solve(cos_as_s , cos_var [0:i+1]) [0]

21 cos_temp =[]

22 for term in cos_as_s_solved:

23 print(term.expand ())

24 cos_temp.append(term.expand ())

25 cos_as_s=cos_temp

We note that the recursion relation is independent of which primitive s2i+1 is used as the

initial term, and therefore allows us to compute many relations simultaneously. Note that

s2i+1,j has degree |2j+1(2i+ 1)|, and for the sake of notational simplicity, as each n ∈ N can

be written uniquely as 2j(2i+1), we can re-lable s2i+1,j by sn for the corresponding n. This

also lets us see how the Witt construction is "filling-in" the missing s2i from LS, and using

them as primitive analogs in place of the B2i present in (L,LSC).

4.4 The Cobar Complex

We are now able to proceed with the construction of the cobar complex and the associated

computation of its homology. Algebraically, the cobar complex is given by:

ds : LS
⊗s ⊗MU∗ → LS

⊗s+1 ⊗MU∗

where the differential is defined by the map:

ds(s1| . . . |ss|x0) := id1 ⊗ · · · ⊗ ids ⊗ ηR(x) +
s∑

j=1

(−1)j+1id1 ⊗∆j(sj)⊗ ids ⊗ id0.

Additionally, recall that LS is the cokernel of the left unit, which given that ηL was the

inclusion, gives LS := Z[s2i+1].

Therefore, we can continue to leverage Sage and the packages associated to the Ring class

to help us construct the cobar complex. The process centralizes around how we can produce
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differentials which are manageable in terms of computational resources. As taking homology

requires extracting elementary divisors, if we can keep the differential matrices small, we

will be able to compute to much higher total degree than otherwise possible. First, we note

that our differentials respect topological degree, so it is possible to work levelwise in t in our

generation of the cobar complex. This means we are able to compute just the degree t part

of ds, denoted dt,s as we loop over t. Secondly, note that the tensor LS
⊗s can be treated as

polynomial, with generators s2i+1,ℓ := 1⊗ . . . s2i+1 · · · ⊗ 1 where s2i+1 is in the ℓth index. We

denote these variables by s_i_j (this notation is similar to the notation initially used in the

Witt construction, but as we have already addressed above, we have chosen to relabel those

terms for ease of notation).

Now, we have completed the setup necessary to begin the process of constructing the

differentials. First, we will be looping over t. Therefore, our code takes a fixed t, and

will compute all dt,s 0 < s < t. As such it also suffices to fix s in the range 0 < s < t.

We let C_i denote (LS
⊗s ⊗ MU∗)t and C_i1 denote (LS

⊗s+1 ⊗ MU∗)t. Therefore to con-

struct the differential matrix dt,s we need to enumerate the generators of these two modules.

We start by producing the exponent vector corresponding to each generator. Using the

WeightedIntegerVectors(t, weights) function included in Sage, we enumerate all vec-

tors whose entries sum to t weighted according to the entries of the vector weights. There-

fore, we produce weight vectors for the x_i and s_i_j, concatenate these into a single weight

vector, and then using the WeightedIntegerVectors function, produce a list of possible ex-

ponent vectors. However, this list needs to be refined, as it does not for the s degree being

correct. Therefore, we need to refine the list to include only those terms who also live in

degree s. We use the enumerate_generator_exponents_MO2() and reduce_Weight_MO2()

classes detailed here:

1 def enumerate_generator_exponents_MO2(t,s):

2 x_weights =[2*i for i in range(1, top_degree +1)]

3 s_weights =[2*i for i in range(1, top_degree +1, 2)]

4 weights =[]
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5 weights.append(x_weights [0:t])

6 for i in range(0,s):

7 weights.append(s_weights [0: floor ((t+1)/2)])

8 flat_weights=flatten(copy(weights))

9 temp=copy(flat_weights)

10 temp.append(s_weights [0: floor ((t+1)/2)])

11 flat_weights1=flatten(copy(temp))

12 wi=WeightedIntegerVectors (2*t,flat_weights)

13 wi1=WeightedIntegerVectors (2*t,flat_weights1)

14 exp_vec=reduceWeight_MO2(wi,t,s)

15 exp_vec1=reduceWeight_MO2(wi1 ,t,s+1)

16 return exp_vec , exp_vec1

1 def reduceWeight_MO2(weights , t,s):

2 if t==0:

3 return weights

4 reduced =[]

5 for term in weights:

6 s_terms=np.array(term[t::])

7 s_count=floor ((t+1)/2)

8 term_len=len(s_terms)/s_count

9 s_reshape=np.reshape(s_terms , (term_len , s_count))

10 term_count =0

11 for i in range(0,len(s_reshape)):

12 if np.count_nonzero(s_reshape[i])!=0:

13 term_count=term_count +1

14 if term_count ==s:

15 reduced.append(term)

16 return reduced

Now that we have enumerated the generators of our source and our target, we now need

to construct the differential maps. We will then loop over our source generators, compute

the image of the differential for each generator, and extract the coefficients of each generator
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in the target. This becomes a matrix which we use to compute the homology. Specifically,

we use the Ring.hom() function to compute each of the component maps to the differential,

and then take a sum. There are two types of component maps to the differential. We

start by defining a list, denoted diff_array, which will contain all component maps of the

differential dt,s. Then, we specify the image of each polynomial generator of C_i. For the

jth component map, we have s_i_k7→s_i_k for k < j, s_i_k7→s_i_k+s_i_{k+1} for k = j,

and finally s_i_k7→s_i_{k+1} if k > j, and is the identity on x_i. Our final map is the

identity on all s_i_k for 1 ≤ k ≤ s, but sends x_i to ηR(xi) where each si has been replaced

by s_i_s+1. We construct this array with the gen_maps_MO2() function, provided here:

1 def gen_maps_MO2(C_i , C_i1 , nx_as_sbar t,s):

2 diff_array =[]

3 C_i_s=list(C_i.gens()[t::])

4 C_i1_s=list(C_i1.gens()[t::])

5 C_i_x=list(C_i.gens()[0:t])

6 s_count=floor ((t+1)/2)

7 C_i1_s_last=C_i1_s[-s_count ::]

8 for j in range(0,s):

9 coprod_array=copy(C_i_x)

10 for i in range(0,len(C_i.gens()[t::])):

11 coprod_array.append(C_i1(SR((i<(j+1)*s_count)*C_i_s[i]+(i>=j*

s_count)*C_i1_s[i+s_count ])))

12 diff_array.append(C_i.hom(coprod_array , C_i1))

13 sbar_as_s_last =[]

14 for i in range(0,len(C_i1_s_last)):

15 sbar_as_s_last.append(SR(sbar_var[i]== C_i1_s_last[i]))

16 right_unit_array =[]

17 for i in range(0, len(C_i_x)):

18 if i < len(nx_as_sbar):

19 right_unit_array.append(nx_as_sbar[i].subs(sbar_as_s_last))

20 else:

21 right_unit_array.append(C_i_x[i])
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22 for s in C_i_s:

23 right_unit_array.append(s)

24 diff_array.append(C_i.hom(right_unit_array , C_i1))

25 return diff_array

Finally, we are now able to produce the dt,s matrix. As we have already specfified,

this simply loops over our module generators, computes the differential, and extracts the

coefficients of the module generators in the target. The compute_di_mat_MO2 combines the

work we have already done to enumerate the terms and generate the maps. It is given here:

1 def compute_di_mat_MO2(t,s, x_var , s_var , nx_as_sbar):

2 exp_vec , exp_vec1=enumerate_generator_exponents_MO2(t,s)

3 C_i=ZZ[x_var [0:t]+tuple(s_var [0:s, 0:floor((t+1) /2)]. flatten ())];

4 C_i1=ZZ[x_var [0:t]+ tuple(s_var [0:s+1, 0: floor ((t+1)/2)]. flatten ())];

5 C_i_gen =[]

6 C_i1_gen =[]

7 for w in exp_vec:

8 if len(w)==0:

9 C_i_gen.append (0)

10 else:

11 C_i_gen.append(C_i({ tuple(w):1}))

12 for v in exp_vec1:

13 if len(v)==0:

14 C_i1_gen.append (0)

15 else:

16 C_i1_gen.append(C_i1({tuple(v):1}))

17 diff_summands=gen_maps_MO2(C_i , C_i1 , nx_as_sbar , t, s)

18 diff_ts=matrix(len(C_i1_gen), len(C_i_gen),sparse=true )

19 for col in range(0,len(C_i_gen)):

20 term=0

21 for i in range(0,len(diff_summands)):

22 term=term +(-1)^(i+1)*diff_summands[i]( C_i_gen[col])

23 for row in range(0,len(C_i1_gen)):
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24 if term !=0:

25 diff_ts[row ,col]=term.coefficient(C_i1_gen[row])

26 return diff_ts

Once the differential matrix is constructed, there are several ways to compute the ho-

mology. This can be done by constructing a ChainComplex() object in Sage, or simply

extracting the elementary divisors and performing the necessary rank computations manu-

ally.

We want to note that the above code snippets are for exclusively LS. This is primarily due

to the indexing considerations needed to skip over even si while still preserving the weight

vectors. Aside from the indexing considerations, the computation of WS(LS) differs in the

gen_maps_WLS() function, which requires modification to how it constructs the coproduct

maps. Instead of simply mapping to a primitive, the induced Witt elements need to map

according to the induced coproduct. We passes this to the function as cos_as_s and make

the appropriate index-shifting substitutions just as we did in the case of LS. The code for

this is included here:

1 def gen_maps_WLS(C_i , C_i1 ,nx_as_s , cos_as_s t,s):

2 diff_array =[]

3 C_i_s=list(C_i.gens()[t::])

4 C_i1_s=list(C_i1.gens()[t::])

5 C_i_x=list(C_i.gens()[0:t])

6 C_i1_s_last=C_i1_s[-t::]

7 for j in range(0,s):

8 coprod_array=copy(C_i_x)

9 slr_as_sii1 =[]

10 for i in range(0,t):

11 slr_as_sii1.append(SR(slbar_var[i]== C_i_s[j*(t)+i]))

12 slr_as_sii1.append(SR(srbar_var[i]== C_i1_s [(j+1)*t+i]))

13 for i in range(0,len(C_i_s)):

14 if (i<j*t):

15 coprod_array.append(C_i1(SR(C_i_s[i])))
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16 elif (i>=(j+1)*t):

17 coprod_array.append(C_i1(SR(C_i1_s[i+t])))

18 else:

19 coprod_array.append(C_i1(SR(cos_as_s[i-j*t].subs(

slr_as_sii1))))

20 #coprod_array.append(C_i1(SR((i<(j+1)*s_count)*C_i_s[i]+(i

>=j*s_count)*C_i1_s[i+s_count ])))

21 diff_array.append(C_i.hom(coprod_array , C_i1))

22 sbar_as_s_last =[]

23 for i in range(0,len(C_i1_s_last)):

24 sbar_as_s_last.append(SR(sbar_var[i]== C_i1_s_last[i]))

25

26 right_unit_array =[]

27 for i in range(0, len(C_i_x)):

28 if i < len(nx_as_sbar):

29 right_unit_array.append(nx_as_sbar[i].subs(sbar_as_s_last))

30 else:

31 right_unit_array.append(C_i_x[i])

32 for s in C_i_s:

33 right_unit_array.append(s)

34 diff_array.append(C_i.hom(right_unit_array , C_i1))
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CHAPTER 5

Tables

This chapter contains the tables generated by the computations in Chapter 4. We include

the computations for the following results discussed above:

• The map of Hopf algebroids LB → LS, specifying the image of each polynomial

generator bi ∈ LB.

• A primitive generator si in LS for i = 1, 3, 5, 7.

• The image of the right unit ηR : L → LS on the generators xi, using both the naive

generators (s2i+1)and primitive generators (s2i+1).

• The coproduct for the Witt elements si,j.

• The E∞-page of the rectified Adams-Novikov spectral sequence computing π∗(MSC).

In the absence of extensions via Theorem 3.5.1, this is equivalent to πt−s(MSC).

• The E∞-page of the rectified Adams-Novikov spectral sequence computing π∗(MO[2]).

As we have not resolved the extension problem, we are unable to claim this is

πt−s(MO[2]).
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Table 5.1: Image of generators of LB in LS

bi Image Under LB → LS
b1 2s1
b2 2s21 + s1x1

b3 2s3 − s21x1 − s1x
2
1 − 2s1x2

b4 − 2s41 − 6s31x1 − 6s21x
2
1 − 2s1x

3
1 − 4s21x2 − 2s1x1x2 + 4s1s3 + 3s3x1 + s1x3

b5 2s5 + s41x1 + 3s31x
2
1 + 3s21x

3
1 + s1x

4
1 − 5s21x1x2 − 3s1x

2
1x2 − 2s1s3x1 − 2s3x

2
1

+ 2s1x
2
2 − 7s21x3 − 5s1x1x3 − 2s3x2 − 6s1x4

b6 4s61 + 22s51x1 + 48s41x
2
1 + 52s31x

3
1 + 28s21x

4
1 + 6s1x

5
1 + 8s41x2 + 8s31x1x2 − 8s21x

2
1x2

− 5s1x
3
1x2 − 8s31s3 − 26s21s3x1 − 28s1s3x

2
1 − 10s3x

3
1 + 6s21x

2
2 + 57s1x1x

2
2 − 18s31x3

− 36s21x1x3 − 15s1x
2
1x3 − 8s1s3x2 − 2s3x1x2 + 50s1x2x3 − 12s21x4 + 6s1x1x4 + 2s23

+ 4s1s5 + 5s5x1 + 3s3x3 + 2s1x5

b7 2s7 − 2s61x1 − 11s51x
2
1 − 24s41x

3
1 − 26s31x

4
1 − 14s21x

5
1 − 3s1x

6
1 + 3s41x1x2 + 17s31x

2
1x2

− 35s21x
3
1x2 + 18s1x

4
1x2 + 4s31s3x1 + 13s21s3x

2
1 + 14s1s3x

3
1 + 5s3x

4
1 − 1672s21x1x

2
2

+ 194s1x
2
1x

2
2 + 7s41x3 + 30s31x1x3 − 21s21x

2
1x3 + 23s1x

3
1x3 − 10s1s3x1x2 − 10s3x

2
1x2

− 2s1x
3
2 − 1607s21x2x3 + 203s1x1x2x3 − 651s21x1x4 + 77s1x

2
1x4 − s23x1 − 2s1s5x1

− 3s5x
2
1 + 2s3x

2
2 − 14s1s3x3 − 13s3x1x3 + 12s1x

2
3 + 20s1x2x4 − 62s21x5 + 6s1x1x5

− 2s5x2 − 6s3x4 − 18s1x6

b8 − 10s81 − 84s71x1 − 302s61x
2
1 − 602s51x

3
1 − 718s41x

4
1 − 512s31x

5
1 − 202s21x

6
1 − 34s1x

7
1

− 24s61x2 − 84s51x1x2 − 52s41x
2
1x2 − 2s31x

3
1x2 − 26s21x

4
1x2 + 57s1x

5
1x2 + 24s51s3

+ 142s41s3x1 + 336s31s3x
2
1 + 398s21s3x

3
1 + 236s1s3x

4
1 + 56s3x

5
1 − 20s41x

2
2 − 3592s31x1x

2
2

− 6066s21x
2
1x

2
2 − 720s1x

3
1x

2
2 + 58s51x3 + 284s41x1x3 + 396s31x

2
1x3 + 210s21x

3
1x3

+ 113s1x
4
1x3 + 32s31s3x2 + 40s21s3x1x2 − 32s1s3x

2
1x2 − 39s3x

3
1x2 − 8s21x

3
2 − 7589s1x1x

3
2

− 3392s31x2x3 − 5762s21x1x2x3 − 670s1x
2
1x2x3 + 24s41x4 − 1296s31x1x4 − 2228s21x

2
1x4

− 102s1x
3
1x4 − 12s21s

2
3 − 8s31s5 − 34s1s

2
3x1 − 34s21s5x1 − 24s23x

2
1 − 52s1s5x

2
1 − 28s5x

3
1

+ 12s1s3x
2
2 + 167s3x1x

2
2 − 62s21s3x3 − 132s1s3x1x3 − 67s3x

2
1x3 − 7306s1x

2
2x3 + 2s21x

2
3

+ 3s1x1x
2
3 + 52s21x2x4 − 3002s1x1x2x4 − 132s31x5 − 226s21x1x5 − 19s1x

2
1x5 − 4s23x2

− 8s1s5x2 − 2s5x1x2 + 154s3x2x3 − 24s1s3x4 + 42s3x1x4 − 107s1x3x4 − 277s1x2x5

− 36s21x6 − 102s1x1x6 + 4s3s5 + 4s1s7 + 7s7x1 + 5s5x3 + 6s3x5 + s1x7
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Table 5.2: Primitive Generators of LS

si Primitive Element
s1 s1
s3 s3 − 4s31 + s21x1 + 2s1x

2
1 − 29s1x2

s5 s5 + 168s51 − 223s41x1 + 101s31x
2
1 − 10s21x

3
1 + 112s31x2 − 51s21x1x2 + 8s21s3 − 10s1s3x1

− 7s21x3 − 43s1x1x3 − 19s3x2 + 15s1x4

s7 s7 + 5523530266907576x6
1s1 − 66276962336827839x5

1s
2
1 + 441817643504713883x4

1s
3
1

− 1767184345002182444x3
1s

4
1 + 4241104531376304967x2

1s
5
1

− 5654714110715752774x1s
6
1 + 3231265206140931960s71 − 10801266771352x4

1x2s1

+ 86314318348477x3
1x2s

2
1 − 344913488560468x2

1x2s
3
1 + 689483218080877x1x2s

4
1

− 551586543370108x2s
5
1 + 97815318506x2

1x
2
2s1 + 525252153x3

1x3s1

− 523712956582x1x
2
2s

2
1 − 2123651282x2

1x3s
2
1 + 698294198920x2

2s
3
1

+ 2833874063x1x3s
3
1 + 3824882x3s

4
1 + 1965210x3

1s1s3 − 6785712x2
1s

2
1s3

− 329464x1s
3
1s3 − 15429344s41s3 + 88404175296x3

2s1 + 41178119x1x2x3s1

− 234495086x2
1x4s1 + 3789289x2x3s

2
1 + 944578098x1x4s

2
1 − 1259489640x4s

3
1

+ 3838454x1x2s1s3 − 15575236x2s
2
1s3 + 232517x2

3s1 − 19638940x2x4s1

− 75502x1x5s1 − 3280x5s
2
1 + 491410x1x3s3 − 1964996x3s1s3 − 982496x1s

2
3

+ 3929968s1s
2
3 − 3254x1s1s5 + 6492s21s5 + 6161x6s1 − 81x4s3 + 3199x2s5

86



Table 5.3: Right Unit in LS Using Naive Generators

xi Image under ηR using si
x1 x1 − 4s1
x2 x2 + 2s21 − s1x1

x3 x3 + 8s31 + 2s21x1 + 4s1x
2
1 + 8s1x2 − 4s3

x4 x4 − 6s41 − 66s31x1 − 11s21x
2
1 + 7s1x

3
1 − 38s21x2 + s1x1x2 + 36s1s3 − 9s3x1 − 9s1x3

x5 x5 − 236s51 − 3287s41x1 + 290s31x
2
1 + 489s21x

3
1 − 80s1x

4
1 − 1856s31x2 + 284s21x1x2

− 56s1x
2
1x2 + 1788s21s3 − 882s1s3x1 + 104s3x

2
1 − 104s1x

2
2 − 437s21x3 + 136s1x1x3

+ 108s3x2 + 48s1x4 − 2s5
x6 x6 − 76s61 − 562s51x1 + 1259s41x

2
1 + 730s31x

3
1 − 51s21x

4
1 − 37s1x

5
1 − 514s41x2 − 17s3x3

+ 578s31x1x2 − 50s21x
2
1x2 − 24s1x

3
1x2 + 488s31s3 − 1102s21s3x1 − 80s1s3x

2
1 + 60s3x

3
1

+ 170s21x
2
2 − 1383s1x1x

2
2 − 622s31x3 − 131s21x1x3 + 42s1x

2
1x3 − 204s1s3x2 − 50s1x5

+ 17s3x1x2 − 1299s1x2x3 − 286s21x4 − 457s1x1x4 + 34s23 + 100s1s5 − 25s5x1

x7 x7 + 16136s71 + 115326s61x1 − 313265s51x
2
1 − 103150s41x

3
1 + 46890s31x

4
1 + 6613s21x

5
1

− 1476s1x
6
1 + 104916s51x2 − 179339s41x1x2 + 9324s31x

2
1x2 − 2102s21x

3
1x2

− 1216s1x
4
1x2 − 98040s41s3 + 282912s31s3x1 − 31264s21s3x

2
1 − 19520s1s3x

3
1

+ 2398s3x
4
1 − 36136s31x

2
2 + 246958s21x1x

2
2 − 66575s1x

2
1x

2
2 + 112066s41x3

− 20663s31x1x3 − 16778s21x
2
1x3 + 1986s1x

3
1x3 + 56572s21s3x2 − 5090s1s3x1x2

744s3x
2
1x2 − 652s1x

3
2 + 228545s21x2x3 − 62689s1x1x2x3 + 49656s31x4 + 69934s21x1x4

− 22604s1x
2
1x4 − 19960s1s

2
3 − 17516s21s5 + 5006s23x1 + 8790s1s5x1 − 1004s5x

2
1

+ 656s3x
2
2 + 10028s1s3x3 − 1621s3x1x3 − 937s1x

2
3 + 1728s1x2x4 + 8894s21x5

− 2429s1x1x5 − 538s5x2 − 356s3x4 − 120s1x6 − 4s7
x8 x8 + 6390s81 + 27300s71x1 − 336810s61x

2
1 + 37262s51x

3
1 + 164628s41x

4
1 + 25966s31x

5
1

− 6133s21x
6
1 − 823s1x

7
1 + 56732s61x2 − 216506s51x1x2 + 60734s41x

2
1x2 + 24067s31x

3
1x2

− 9987s21x
4
1x2 − 2698s1x

5
1x2 − 54408s51s3 + 325262s41s3x1 − 157222s31s3x

2
1

− 77205s21s3x
3
1 + 6782s1s3x

4
1 + 1367s3x

5
1 − 65698s41x

2
2 + 1068250s31x1x

2
2

− 354279s21x
2
1x

2
2 − 198553s1x

3
1x

2
2 + 133706s51x3 − 102161s41x1x3 − 52668s31x

2
1x3

− 2508s21x
3
1x3 − 1663s1x

4
1x3 + 96552s31s3x2 − 53602s21s3x1x2 + 3861s1s3x

2
1x2

− 1578s3x
3
1x2 + 1144s21x

3
2 − 1411503s1x1x

3
2 + 972818s31x2x3 − 346348s21x1x2x3

− 197166s1x
2
1x2x3 + 73278s41x4 + 323970s31x1x4 − 131800s21x

2
1x4 − 54388s1x

3
1x4

− 30896s21s
2
3 − 24928s31s5 + 26080s1s

2
3x1 + 27280s21s5x1 + 761s23x

2
1 − 813s1s5x

2
1

− 716s5x
3
1 − 2736s1s3x

2
2 + 16856s3x1x

2
2 + 30860s21s3x3 + 2669s1s3x1x3

− 1784s3x
2
1x3 − 1360251s1x

2
2x3 − 6720s21x

2
3 − 4050s1x1x

2
3 − 8926s21x2x4

− 568885s1x1x2x4 + 38168s31x5 − 12542s21x1x5 − 5340s1x
2
1x5 + 1580s23x2

+ 1424s1s5x2 + 278s5x1x2 + 16328s3x2x3 + 5436s1s3x4 + 6249s3x1x4

− 18180s1x3x4 − 51553s1x2x5 + 6444s21x6 − 8892s1x1x6 − 1268s3s5 − 756s1s7

+ 189s7x1 + 317s5x3 + 634s3x5 + 189s1x7
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Table 5.4: Right Unit in LS Using Primitive Generators

xi Image under ηR using using si
x1 x1 − 4s1
x2 x2 + 2s21 − s1x1

x3 x3 − 8s31 + 6s21x1 + 12s1x
2
1 − 108s1x2 − 4s3

x4 x4 + 138s41 − 138s31x1 − 74s21x
2
1 + 25s1x

3
1 + 1006s21x2 − 260s1x1x2 + 36s1s3

− 9s3x1 − 9s1x3

x5 x5 + 7316s51 − 9145s41x1 − 1798s31x
2
1 + 2169s21x

3
1 − 288s1x

4
1 + 50964s31x2

− 26046s21x1x2 + 2820s1x
2
1x2 + 1804s21s3 − 902s1s3x1 + 104s3x

2
1 + 1926s1x

2
2

− 451s21x3 + 50s1x1x3 + 70s3x2 + 78s1x4 − 2s5
x6 x6 − 17580s61 + 26370s51x1 − 15720s41x

2
1 + 4765s31x

3
1 + 435s21x

4
1 − 157s1x

5
1

− 6090s41x2 + 5820s31x1x2 − 17773s21x
2
1x2 + 2632s1x

3
1x2 − 40s31s3 + 30s21s3x1

− 466s1s3x
2
1 + 60s3x

3
1 + 77948s21x

2
2 − 14665s1x1x

2
2 + 10s31x3 + 4011s21x1x3

− 999s1x
2
1x3 + 3668s1s3x2 − 458s3x1x2 − 1792s1x2x3 − 1786s21x4 − 82s1x1x4

+ 34s23 + 100s1s5 − 25s5x1 − 17s3x3 − 50s1x5

x7 x7 + 12925060824565990504s71 − 22618856442990483382s61x1

+ 16964418125315029689s51x
2
1 − 7068737379826504462s41x

3
1

+ 1767270574112656294s31x
4
1 − 265107849378679653s21x

5
1

+ 22094121067624032s1x
6
1 − 2206344577337220s51x2 + 2757931151756307s41x1x2

− 1379656229257256s31x
2
1x2 + 345257925104058s21x

3
1x2 − 43205066980418s1x

4
1x2

+ 63716264s41s3 − 63716264s31s3x1 − 82158032s21s3x
2
1 + 23531192s1s3x

3
1

+ 2398s3x
4
1 + 2804576673280s31x

2
2 − 2097705754920s21x1x

2
2 + 391260208705s1x

2
1x

2
2

− 15929066s41x3 + 11351515475s31x1x3 − 8481074759s21x
2
1x3 + 2097039388s1x

3
1x3

+ 848413048s21s3x2 − 212257712s1s3x1x2 − 18332s3x
2
1x2 + 353623473714s1x

3
2

− 212177217s21x2x3 + 222133432s1x1x2x3 − 5038038404s31x4 + 3778446396s21x1x4

− 937986528s1x
2
1x4 + 15699912s1s

2
3 + 8452s21s5 − 3924978s23x1 − 4226s1s5x1

− 1004s5x
2
1 + 233558s3x

2
2 − 7849956s1s3x3 + 1964019s3x1x3 + 929131s1x

2
3

− 78757622s1x2x4 − 4226s21x5 − 304437s1x1x5 + 12258s5x2 − 680s3x4

+ 24524s1x6 − 4s7
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Table 5.4: Right Unit in LS Using Primitive Generators (Continued)

x8 x8 + 2442836495842446822454s81 − 4885672991684893644908s71x1

+ 4275015992614865375986s61x
2
1 − 2137560121207818767216s51x

3
1

+ 668011979703992816963s41x
4
1 − 133608918159402911717s31x

5
1

+ 16702134764928194523s21x
6
1 − 1043947220445535421s1x

7
1

− 416999124667493532s61x2 + 625498768438578252s51x1x2

− 391067275053295714s41x
2
1x2 + 130442505239081210s31x

3
1x2

− 24479194725151300s21x
4
1x2 + 2041439419852837s1x

5
1x2 + 12064790808s51s3

− 15080988510s41s3x1 − 12536834722s31s3x
2
1 + 8344941203s21s3x

3
1

− 1114195088s1s3x
4
1 + 1367s3x

5
1 + 530069627032198s41x

2
2

− 528985473218224s31x1x
2
2 + 173065312642696s21x

2
1x

2
2 − 18487072905523s1x

3
1x

2
2

− 3016197702s51x3 + 2146327092972s41x1x3 − 2139379040468s31x
2
1x3

+ 797094321151s21x
3
1x3 − 99086932820s1x

4
1x3 + 160618631816s31s3x2

− 80355000606s21s3x1x2 + 10050417730s1s3x
2
1x2 − 15182s3x

3
1x2

+ 66834870860252s21x
3
2 − 16708723041106s1x1x

3
2 − 40197340034s31x2x3

+ 52056357855s21x1x2x3 − 10502362624s1x
2
1x2x3 − 952247487042s41x4

+ 952199927010s31x1x4 − 355812838231s21x
2
1x4 + 44319484490s1x

3
1x4

+ 2971035056s21s
2
3 + 4877952s31s5 − 1485517528s1s

2
3x1 − 3658464s21s5x1

+ 185692505s23x
2
1 + 616729s1s5x

2
1 − 716s5x

3
1 + 44669060s1s3x

2
2 − 11465471s3x1x

2
2

− 1485517528s21s3x3 + 742841519s1s3x1x3 − 92878274s3x
2
1x3 − 712072s1x

2
2x3

+ 175778351s21x
2
3 − 43936132s1x1x

2
3 − 14884412206s21x2x4 + 3720880952s1x1x2x4

− 2438976s31x5 − 56472768s21x1x5 + 14263270s1x
2
1x5 − 22512s23x2 + 2383096s1s5x2

− 604333s5x1x2 + 22351s3x2x3 − 36780s1s3x4 + 21558s3x1x4 − 22935s1x3x4

− 33167s1x2x5 + 4664160s21x6 − 1173321s1x1x6 − 1268s3s5 − 756s1s7 + 189s7x1

+ 317s5x3 + 634s3x5 + 189s1x7
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Table 5.5: Image of Witt elements si, j in WS(LS)

Witt Element si,j Image under Coproduct
s1,0 = s′1 s1,0 ⊗ 1 + 1⊗ s1,0
s1,1 = s′2 −s1,0 ⊗ s1,0 + s1,1 ⊗ 1 + 1⊗ s1,1
s3,0 = s′3 s3,0 ⊗ 1 + 1⊗ s3,0
s1,2 = s′4 − s31,0 ⊗ s1,0 − 2s21,0 ⊗ s21,0 − s1,0 ⊗ s31,0 + s1,0s1,1 ⊗ s1,0 + s1,0 ⊗ s1,0s1,1

− s1,1 ⊗ s1,1 + s1,2 ⊗ 1 + 1⊗ s1,2
s5,0 = s′5 s5,0 ⊗ 1 + 1⊗ s5,0
s3,1 = s′6 −s3,0 ⊗ s3,0 + s3,1 ⊗ 1 + 1⊗ s3,1
s7,0 = s′7 s7,0 ⊗ 1 + 1⊗ s7,0

Table 5.6: πt−s(MSC)

s\t− s 0 1 2 3 4 5 6 7 8 9 10 11 12
0 Z 0 Z 0 Z2 0 Z3

1 (4) Z (2, 16) Z2 (8, 64) Z4

2 0 (2) (4) (2, 4, 8) (Z, 2, 4) (2, 42, 8, 32)
3 0 0 0 (2) (2)
4 0 0 0 0 0

s\t− s 13 14 15 16
0 0 Z5

1 (2, 4, 32, 256) Z7

2 (Z2, 2, 43) (22, 43, 8, 16, 32, 128)
3 (23) (23, 4)
4 (0) (2)
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