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ABSTRACT

The primary focus of this dissertation is to develop both online and offline algorithmic frame-

works for data-driven decision-making in the context of operations management problems

including supply chain management and revenue management. In a data-poor environ-

ment, online learning algorithms can be developed to utilize streaming data to help decision-

making sequentially balancing exploration and exploitation. On the other hand, when there

is already massive logged data available, offline learning algorithms can be developed for

stochastic optimization and policy making.

Many real-world operations management problems have complex system dynamics, abun-

dant operational constraints, as well as varying qualities of accessible data (e.g., missing or

censored data). These features, unique to operations management problems, become ma-

jor challenges of utilizing data in the process of optimization and better decision-making,

despite the existence of numerous learning frameworks developed by researchers from other

disciplines such as computer science. To overcome these challenges, we carry out research on

representative problems arising in the context of operations management. First, we formu-

late mathematical models capturing the main trade-offs based on specific domain knowledge.

Second, we derive structural properties of the optimal policies that provide a foundation for

the design of algorithms. Third, we propose a learning algorithm to solve the incomplete

information problem, along with a theoretical analysis of its performance guarantee. Finally,

we carry out extensive numerical or empirical studies for validation of the method and the

discovery of managerial insights.

This dissertation first investigates the online algorithm for a multi-variate optimization

problem within a multi-product system with general upgrading. Then still focusing on online

learning algorithms, the dissertation proposes two distinct two-layer methodological frame-

works designed to solve joint optimization problems that encompass two distinct decision

variables. One is based on the setting where the underlying dynamics form a Markov chain

in a dual-sourcing system. A learning algorithm combining Successive Elimination and Sam-

ple Average Approximation is proposed and demonstrates an optimal convergence rate of

regret. The other one is designed for scenarios in two-sided markets where the decision

maker makes no parametric assumptions on underlying functions. By integrating Bisection
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Search with the Upper Confidence Bound (UCB) algorithm in bandit control, the proposed

framework guides the sequential decision-making incurring regret with a provably tight up-

per bound, which is optimal for any learning algorithm. Finally, the dissertation studies the

offline learning algorithm for the problem of feature-based pricing with an offline dataset

containing information on historical decisions, covariates, and censored outcomes. An offline

algorithm incorporating supervised learning techniques and survival analysis in the language

of causal inference is proposed, whose profit is proven to converge to the optimum as the

sample size goes to infinity.
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CHAPTER 1

Introduction

1.1 Background

Data-driven approaches to decision-making in business have received tremendous attention

from both academia and industry in the era of big data (Feng and Shanthikumar 2018a). Due

to the increased complexity of business contexts and uncertainty in market trends, learning

from proper data becomes necessary to retrieve information on the underlying dynamics.

The design and analysis of learning algorithms depend not only on system dynamics as

well as the clairvoyant optimal policy structures, but also on the form of the data avail-

able to the decision maker. Specifically, when there is little information on the underlying

environment (e.g., demand distribution, demand function) and the data is revealed over

time, “learning-while-doing” online learning algorithms can be developed to help sequential

decision-making. When there is a set of offline data (e.g., sales data) available and online

exploration is expensive or infeasible due to practical issues (e.g., expensive real-time compu-

tation resources, data access limitations, concerns about fairness), “predict-then-optimize”

types of offline algorithms can serve to yield a static policy for the decision maker to adopt.

1.1.1 Existing Learning Theories

The computer science and statistics communities have proposed learning methods that can

be used to guide decision-making in both online and offline manners. It is noteworthy that

while these methodological frameworks were originally developed from different perspectives,

the methods and ideas can intersect with and be integrated to enhance each other.

Online learning algorithms offer the system a dynamic way of updating based on in-

coming data, consisting of various methods. This includes Online Reinforcement Learning

Theory, which is characterized by its interaction with environments through methods such

as UCRL2 (Auer et al. 2008), Q-learning (Watkins 1989), SARSA (Rummery and Niranjan

1994), and Actor-Critic (Konda and Tsitsiklis 1999). The field also includes Multi-Armed
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Bandits, focusing on the exploration-exploitation balance in a state-less context, with notable

algorithms including Explore-Then-Commit (Robbins 1952), UCB (Auer et al. 2002a), Suc-

cessive Elimination (Even-Dar et al. 2002), Thompson Sampling (Thompson 1933), Zooming

Algorithm (Kleinberg et al. 2008), Exp3/Exp4 (Auer et al. 2002b), LinUCB (Li et al. 2010),

and others. Online Convex Optimization introduces methods like Stochastic Gradient De-

scent (Robbins and Monro 1951), Stochastic Newton (Martens 2010), and Regularization

Techniques (Mirror Descent, FTRL), among others. Additionally, the domain encompasses

other Stochastic Optimization and Online Optimization tools, such as Sample Average Ap-

proximation, Stochastic Approximation, Coordinate Descent, Primal-Dual algorithms, and

Potential-Function methods.

In contrast, offline learning algorithms utilize pre-collected datasets for decision-making

without real-time interaction with the environment. This approach is evident in Offline

Reinforcement Learning with methods like Batch-Constrained Q-learning (BCQ) (Fujimoto

et al. 2019), Conservative Q-Learning (CQL) (Kumar et al. 2020), BEAR (Kumar et al.

2019), BRAC (Wu et al. 2019), and others. Supervised Learning for decision-making employs

models trained on historical data, including Decision Trees, Random Forest (Breiman 2001),

Gradient Boosting Machines such as XGBoost (Chen and Guestrin 2016) and LightGBM

(Ke et al. 2017), Support Vector Machines (Cortes and Vapnik 1995), Neural Networks

(Rumelhart et al. 1986), and more. Bayesian Methods also contribute to this domain with

Bayesian Neural Networks (Neal 2012), Gaussian Processes (Rasmussen and Williams 2003),

Bayesian Optimization (Mockus 1994), and additional techniques.

The analysis and performance evaluation of these algorithms are supported by developed

theories such as Statistical Learning Theory (Vapnik 2013), Empirical Processes (Sen 2018,

Wellner et al. 2013), and High-Dimensional Statistics (Boucheron et al. 2013, Wainwright

2019). These theories provide a robust framework for understanding the mathematical and

statistical principles underlying learning algorithms, enabling continued research and devel-

opment in the field.

1.1.2 Motivations

Despite the existence of previously established learning algorithms, there remains a signifi-

cant gap between the theories developed above and the resolution of problems in Operations

Management (OM). In particular, the OM problems confronted by decision-makers are typ-

ically more complex than the models in the general-purpose study in CS and OR.

The system dynamics, particularly in supply chain systems, are usually complicated, lead-

ing to challenges rendering existing learning methods not applicable or invalid. The com-
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plexity arises from various operational constraints that add to the intricacy of optimization

problem structures, even with complete information. For instance, the joint replenishment

and allocation decisions in Chapter 2 must adhere to practical restrictions instead of being

treated as purely unconstrained optimization problems. Moreover, the huge state spaces as-

sociated with real-life system dynamics pose additional challenges, particularly in capturing

state transitions, which can lead to the curse of dimensionality when attempting to apply

standard Reinforcement Learning frameworks. This issue is exemplified in the dual sourcing

system in Chapter 3, which involves a multi-dimensional state variable that needs careful

analysis to make the problem tractable. Additionally, the delay in feedback from certain ac-

tions complicates the evaluation of decision performance, as the full impact of decisions may

not become apparent until the system reaches a steady state. This necessitates a convergence

analysis of stochastic processes, especially evident when changes to order-up-to levels in the

dual sourcing system incur a non-stationary phase.

In general, OM researchers must strike a balance between capturing key tradeoffs and

ensuring tractability in modeling. This challenge is evident, for instance, when examining a

two-sided revenue management problem in Chapter 4. The model needs to be comprehensive

enough to accurately reflect real-world scenarios while also facilitating computationally effi-

cient algorithm design and the interpretation of practical insights. Furthermore, the access

to and quality of data collected in real life are crucial considerations in the design of esti-

mation and optimization processes. For example, demand censoring, resulting from limited

inventory, poses a common issue in demand estimation, as seen in an offline data setting

for pricing optimization in Chapter 5. Additionally, the analysis of consumer behaviors,

integrating insights from psychology, economics, and marketing with mathematical model-

ing, poses unique challenges in OM studies. This multidisciplinary approach is essential for

deriving practical implications for decision-making.

The specific challenges mentioned above underscore the need for a comprehensive and

in-depth study of learning algorithms, encompassing their design, analysis, and managerial

insights in decision-making within the context of operations management.

1.1.3 Learning Algorithms in Operations Management

The research on learning algorithms in OM aims to propose realistic models for specific real-

life problems and suggest implementable algorithms with provable performance guarantees.

The contributions of such research are twofold: providing practitioners with probably-good

decision support and fostering technical discoveries for methodological innovation in disci-

plines such as operations research, computer science, and applied probabilities.
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The salient feature of the design of both online and offline learning algorithms in OM

is to relax the assumption that the demand distribution or the demand-price function is

known to the decision-maker, and then “learn” the underlying environment by combining

optimization and machine learning techniques. The performance measure of any algorithm

is regret of the decision maker, defined as the absolute difference between the total expected

cost/revenue incurred by implementing the algorithm and that of the (clairvoyant) optimal

decisions if the demand distribution or the demand function was known.

Practical online learning algorithms have been developed in recent years to address two

main problems in operations management: supply chain management with demand learning

and dynamic pricing with demand learning. These include Sample Average Approximation

(SAA) methods (Cheung and Simchi-Levi 2019, Levi et al. 2015, 2007a, Lin et al. 2022, Qin

et al. 2022), types of Stochastic Gradient Descent (SGD) algorithms (Chen and Shi 2023,

Huh et al. 2009, Huh and Rusmevichientong 2009, Shi et al. 2016, Zhang et al. 2018, 2020),

and their combination with Bandit algorithms, resulting in a two-layer algorithm for joint

optimization of two decision variables simultaneously (Chen and Shi 2020, Chen et al. 2022a,

Gong and Simchi-Levi 2023, Wang et al. 2021b, Yuan et al. 2021). While the performance

of these algorithms is case-dependent and relies on specific system dynamics, the study of

online decision-making for various business models with different structures and contexts

continues to be an unresolved area.

Compared to online learning algorithms, offline learning algorithms in OM settings have

been much less explored (Ban and Rudin 2019, Bu et al. 2023, Elmachtoub and Grigas 2022).

This leaves ample opportunities for utilizing offline datasets in operations management,

allowing for efficient decision-making.

This dissertation aims to contribute to the methodology framework of online and offline

learning algorithms design and analysis, for problems in supply chain management and

revenue management with demand learning, through a detailed analysis of four specific

business settings: multi-product systems, dual sourcing systems, two-sided online platforms,

and feature-based pricing problems.

1.2 Dissertation Overview

The dissertation consists of six chapters in total.

Chapter 1 introduces the background and motivation of studying learning in OM.

Chapter 2 considers the joint optimization of ordering and upgrading decisions in a dy-

namic multiproduct system over a finite time horizon of T periods. Multiple types of demand

arrive in each period stochastically that can be satisfied with the supply of the same type or
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some higher type (upgrading). The firm does not know the demand distributions a priori

and makes adaptive inventory replenishment and upgrading decisions based on historical

demand observations. The structure of the clairvoyant optimal joint ordering and allocation

policy is first characterized, based on which a new online learning algorithm termed stochas-

tic gradient descent with perturbed gradient (SGD-PG for short) is proposed. The algorithm

admits a cumulative regret upper bound of O(
√
T ), which matches the lower bound for any

learning algorithms. This project proposes an easy-to-implement and provably-good algo-

rithm for the joint replenishment and allocation decisions in a multi-product system that

allows general upgrading.

Chapter 3 considers a periodic-review dual-sourcing inventory system with a regular

source (lower unit cost but longer lead time) and an expedited source (shorter lead time

but higher unit cost), under carried-over supply and backlogged demand. The firm does not

have access to the demand distribution a priori and relies solely on past demand realizations.

Even with complete information on the demand distribution, it is well known in the literature

that the optimal inventory replenishment policy is complex and state-dependent. Therefore,

the focus of the chapter is on a class of popular, easy-to-implement, and near-optimal heuris-

tic policies called the dual-index policy. The performance measure is the regret, defined as

the cost difference of any feasible learning algorithm against the full-information optimal

dual-index policy. We develop a nonparametric online learning algorithm that admits a re-

gret upper bound of O(
√
T log T ), which matches the regret lower bound for any feasible

learning algorithms up to a logarithmic factor, which provides practitioners with an easy-

to-implement, robust, and provably-good online decision support system for managing a

dual-sourcing inventory system.

Chapter 4 introduces a new model, the “remunerating newsvendor” problem, which ex-

tends the classical price-setting newsvendor problem to incorporate remuneration decisions in

two-sided markets. This model has practical applications in modern business contexts, such

as service platforms that connect clients with independent contractors or content creators.

The platform aims to optimize both pricing for customers and remuneration for providers to

maximize expected revenue. The demand is a (random) function of pricing, while the supply

is a (random) function of remuneration, and the problem seeks to find an optimal match

between them. In the case of complete information, the expected revenue function of the re-

munerating newsvendor problem is shown to be concave in remuneration given a posted price

and Lipschitz continuous with respect to price. A new algorithm called Bandit Bisection

Search (BBS) to solve the incomplete information problem. Matching upper and lower re-

gret bounds are established for the algorithm BBS. Moreover, another new algorithm named

Double Bisection Search (DBS) is specifically designed for the linear demand case, which

5



leads to improved regret. Numerical experiments provide validation for the effectiveness of

the proposed methods.

Chapter 5 studies a feature-based pricing problem with demand censoring in an offline

data-driven setting. In this problem, a firm is endowed with a finite amount of inventory,

and faces a random demand that is dependent on the offered price and the covariates (from

products, customers, or both). Any unsatisfied demand that exceeds the inventory level is

lost and unobservable. The firm does not know the demand function but has access to an

offline dataset consisting of quadruplets of historical covariates, inventory, price, and poten-

tially censored sales quantity. The objective is to use the offline dataset to find the optimal

feature-based pricing rule so as to maximize the expected profit. Through the lens of causal

inference, a novel data-driven algorithm is proposed, which is motivated by survival analysis

and doubly robust estimation. A finite sample regret bound to justify the proposed offline

learning algorithm and prove its robustness. Extensive numerical experiments demonstrate

the robust performance of the proposed algorithm in accurately estimating optimal prices

on both training and testing data. Furthermore, these experiments highlight the value of

considering demand censoring in the context of feature-based pricing.

Chapter 6 offers a summary of the Chapters 2 to 5, pointing out some future directions

along the direction of online and offline learning algorithms in OM.

1.3 Main Contributions

In Chapter 2, we studied the joint inventory control and demand allocation problem for

a multi-product system with upgrading. When the firm knows the demand distributions a

priori, we derive the optimal policy for joint inventory replenishment and allocation decisions

in each period. When the firm does not know the demand distributions a priori, based on a

myopic case, we propose the first nonparametric online learning algorithm based on stochastic

gradient descent with perturbed gradient (SGD-PG for short), to solve the problem with

demand learning. There are two key new ideas underlying SGD-PG. First, we propose a

non-trivial subroutine to compute a valid sample-path gradient of the profit with respect to

the inventory levels after replenishment. The main idea is to perturb the inventory levels

after replenishment by an infinitesimal amount and compute the increment in profit. A

key challenge is to correctly identify and quantify the “chaining effect” brought by a local

perturbation at some supply node. Second, SGD-PG keeps track of the “real-time imbalance”

between supply and demand the same way as in the clairvoyant optimal allocation policy,

and carries out the first and second rounds of allocation via an order. Then if the empirical

ordering levels are approaching the true optimal ordering levels, the allocation process will
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also converge to optimality, because we are following the exact structure of the clairvoyant

optimal allocation policy. Then we show an upper bound on the regret of the proposed online

learning algorithm using a different and simpler approach other than traditional proof using

queueing methods (Huh and Rusmevichientong 2009). Specifically, the key is that the length

of time for the (overshooting) inventory levels to drop below the target level is of a constant

order, based on which, the total regret incurred can be efficiently bounded.

Chapter 3 investigates the stochastic process of the dual-sourcing system formed under

the dual-index policy with backlogged demand. Specifically, the vector of pipeline inventory

and inventory position forms a uniformly ergodic Markov chain and we can derive a simple

expression for the long-run average cost of the dual-index policy. Then when the demand

distribution is not known a priori, we propose a nonparametric learning algorithm to ap-

proach the optimal (zr, ze) of the dual-index policy, which admits a regret upper bound of

O(
√
T log T ), matching the regret lower bound for any feasible learning algorithms up to a

logarithmic factor. There are three key ideas underlying the algorithm design and regret

analysis. First, we propose a two-layer learning algorithm that updates the two parameters

(∆, ze) simultaneously, where the outer layer discretizes the set of ∆ to obtain a grid and

treats each point on the grid as an arm of the bandit problem, and the inner layer updates

the expedited order-up-to level ze using the empirical quantile for each ∆ choice in the active

set. This is the first attempt in the literature to integrate bandits with sample average ap-

proximation methods, which also provably achieves a tight regret bound. Second, Because of

the special structure of the inventory system, after pulling one arm, we are able to evaluate

the performance of all the arms based on the realized demand data, which enables us to

achieve high estimation accuracies of all arms without extensive exploration of each of them.

Third, due to the dependency between two consecutive samples, we study the concentration

behavior of the estimation based on data from a Markov chain and utilize the ergodicity of

the system variable to achieve a tight regret bound for the regret analysis. A key step in

our proofs leverages a specific version of McDiarmid’s inequality for Markov chains (Ortner

2020, Paulin 2015).

In Chapter 4, we introduce a novel newsvendor model called the “remunerating newsven-

dor” which incorporates remuneration as a decision variable to address the supply side’s

uncertainty. To the best of our knowledge, we are one of the first to expand the price-setting

newsvendor model to incorporate remuneration in two-sided markets. Then we establish the

concavity of the expected revenue function with respect to the remuneration decision and the

concavity in price for any given remuneration choice. Leveraging the above structural prop-

erties of the full information problem, we propose an online algorithm BBS that integrates

bandit control (specifically, Upper-Confidence-Bound) with a bisection search (specifically,
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a strictly quartering search) approach, and provide proof of an upper bound on the total

regret which matches the lower bounds up to a logarithmic factor. In contrast to previous

literature that uses bisection search and its variants for operations management problems

(Agarwal et al. 2011, Chen et al. 2019a, Chen and Shi 2020, Chen et al. 2021c, Lei et al.

2014), our approach integrates query operations into the bisection search process with early

termination criteria to bound the loss from suboptimal bandit selections. This allows us

to update the algorithm at any time instead of restricting updates to only the end of each

epoch, which would otherwise result in an inability to establish a tight regret bound. On the

technical side, our approach leads to a novel concentration result for the regret of bisection

search caused by any bandit choice up to any time. We also further modify the quartering

search technique proposed by Agarwal et al. (2011) to improve efficiency.

Chapter 5 proposes a novel data-driven offline learning algorithm that gives the optimal

feature-based pricing strategy based on customer/product covariates under demand cen-

soring. To the best of our knowledge, we are the first to model this feature-based pricing

problem under censored demand through the lens of causal inference. We model the relation-

ship between demand and price under the celebrated potential outcome framework (Rubin

1974). This framework gives natural identification results on the effect of price on demand,

which makes it amenable for offline learning. A novel aspect of our model is to factor in

demand censoring. In order to estimate the profit function, we propose to borrow the tool

from survival analysis to recover the expected true (conditional) demand. We also propose a

doubly robust estimation procedure to further achieve the robustness of our estimation result

(Bang and Robins 2005). Specifically, we leverage state-of-the-art supervised learning tech-

niques in estimating the potential profit function and the propensity scores (Rosenbaum and

Rubin 1983) as well as in optimizing the feature-based prices. Compared with most exist-

ing approaches using parametric models in the literature of profit management and pricing,

all the aforementioned components are modeled non-parametrically, thus more robust to

model mis-specification. Furthermore, our proposed algorithm is backed up by theoretical

and empirical evidence. Theoretically, we provide a finite sample regret analysis of our of-

fline learning algorithm showing that the expected profit of the estimated pricing strategy

converges to the profit under the optimal pricing strategy asymptotically as the sample size

of the offline data increases. Empirically, we conduct thorough numerical experiments to

demonstrate that our proposed algorithm performs robustly well in estimating the optimal

prices on both training and testing datasets. We also demonstrate the value of factoring in

demand censoring in decision-making.

Overall, the contribution of this dissertation is as follows: Across four fundamental prob-

lems in supply chain management and revenue management, we formulate models capturing
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the system dynamics and decision-making tradeoffs, followed by a detailed analysis of the

problem structure. Subsequently, we propose either online or offline learning algorithms

based on the specific data environment and operational constraints. We then establish the

performance guarantees of the proposed algorithms from both theoretical and empirical

perspectives. Finally, the proposed methodology framework offers practitioners a provably

effective method or support for decision-making not only in specific settings but also for

other problems with similar structures.
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CHAPTER 2

Online Learning for Multiproduct Systems

with Upgrading

One common challenge practitioners encounter when applying first-order learning methods to

practical problems is the inaccessibility of subgradient information for the objective function,

a situation often complicated by intricate system dynamics and constraints. This obstacle

underscores the importance of exploring and devising strategies to efficiently derive first-

order information with complex system dynamics.

In this chapter, we consider a multi-product system allowing general upgrading and inves-

tigate the joint inventory replenishment and allocation rules, where the allocation procedure

adds complexity to the problem structure. Our analysis is dedicated to identifying the opti-

mal replenishment and allocation policy, and deriving first-order information of the expected

profit with respect to inventory control with demand learning.

2.1 Introduction

Modern businesses often expand their product offerings to meet the diverse needs of their

customers and drive additional profit streams. However, managing the inventory and fulfill-

ment of a large portfolio of products can be extremely operationally challenging, especially

in matching supply with demand across multiple product types over multiple periods. Up-

grading, by using a higher-quality product to fulfill the demand for a lower-quality item,

at the manager’s discretion, is a popular and effective operational strategy. According to

Yu et al. (2015), adopting this approach can increase profit without the need to produce

additional products, improve the customer experience, reduce lost sales, retain customers,

and improve their satisfaction. Additionally, it can reduce inventory holding costs, pool the

risk of understocking, improve supply chain efficiency, and boost profitability.

This chapter studies a dynamic inventory system with n types of products. By “type”,

we mean that the products satisfy the same overall need, but vary in characteristics such as
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unit ordering cost, inventory holding cost, quality, and price. We will refer to the products

as supply and the customers as demand hereafter. Without loss of generality, the higher

the supply quality is, the lower the index. Demand i can only be met by supply j with

j ≤ i (e.g., customer demand can be met using the same quality supply or higher), but

only with profit ri for type i. The process of satisfying one unit of demand i using a unit

of supply j is also referred to as allocating (or matching) one unit of supply j to demand

i. Essentially, our problem has a downward substitution structure. The firm needs to make

two operational decisions in each period, namely, inventory replenishment decisions (for all

supplies) and allocation or matching decisions (to match demand with the same type of

supply or potential upgrades). Unmet demand is lost. Purchasing one unit of supply i will

incur an ordering cost of ci and each unit of supply carried over to the next period will incur

a holding cost hi. The overall goal is to find an optimal joint ordering and matching policy

that maximizes the total expected revenue less the ordering and holding cost.

It is common in many industries to use higher priced or higher quality products to substi-

tute for products that are out of stock. For instance, in the car rental and hotel industries,

customers are often given an upgrade to a more expensive room or a larger vehicle when

the firm has run out of the types of rooms or vehicles that the customer has ordered. Re-

cently, we collaborated with a distributor of generators who had a large number of SKUs of

generators in its inventory. Typically, different standby generators were distinguished from

one another based on their rated wattage, such as 22kw for $4900 or 24kw for $5100. The

distributor worked with a number of contractors who had strict schedules for installing a

particular generator in a house and whose installation schedules would be negatively affected

if the generator they had ordered from the distributor was unavailable. As a result, the dis-

tributor would often offer a slightly higher wattage generator to a contractor for the same

price as the one the contractor had originally ordered if the originally ordered generator was

out of stock.

While Hu and Zhou (2021) have previously investigated the matching decisions between

supply and demand and Yu et al. (2015) have studied a joint capacity and allocation problem

with backlogged demand with no replenishment, many firms need to make both inventory

replenishment and allocation decisions instead of passively being offered supply. Prior studies

on the joint optimization problem (see, e.g., Duenyas and Tsai (2000), Hu et al. (2008)) have

predominantly focused on the “two-by-two” case or under specific demand distributions.

Here we study the more general structure of the optimal policy of the joint inventory ordering

and allocation decisions and propose the first online learning algorithm (when the firm does

not know the demand distributions a priori). Specifically, we would like to address the

following research questions.
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(1) When the demand distributions are known, what is the (clairvoyant) optimal policy for

making replenishment and allocation decisions of various types of supply in each period?

(2) When the demand distributions are unknown, how can we leverage the structure of

optimal policies to design effective online learning algorithms and establish tight regret

analysis?

(3) How can we extend our model and findings to a nested censored demand scenario?

2.1.1 Main Results and Contributions

We summarize our main results and key contributions as follows.

Clairvoyant Optimal Joint Ordering and Allocation Policy. When the firm knows

the demand distributions a priori, we derive the optimal policy for joint inventory replen-

ishment and allocation decisions in each period. There is limited literature on joint ordering

and allocation problems (mostly focusing on simple two-by-two cases). When the demand

distributions are i.i.d. across time periods, we show in Theorem 2.3.1 that the optimal or-

dering policy is an order-up-to policy with a well-specified order of allocation. This is, to the

best of our knowledge, the first structural result for such joint inventory replenishment and

allocation problems with general n products, and this compact structure makes it amenable

for practitioners to adopt and implement in practice and for online learning for models with

demand learning.

We establish the above result in three key steps. (a) We first show that the optimal

allocation policy is greedy (according to the order specified in Theorem 2.3.1) given any

inventory levels and realized demand. (b) Then based on this greedy allocation policy, we

establish the preservation of the concavity of value functions. (c) Finally, based on the

preservation of concavity, we show that the optimal replenishment policy is an order-up-to

policy.

Online Learning Algorithms via Infinitesimal Perturbation. When the firm does not

know the demand distributions a priori, we propose the first nonparametric online learn-

ing algorithm (Algorithm 1) based on stochastic gradient descent with perturbed gradient

(SGD-PG for short), to solve the problem with demand learning. We use the notion of cu-

mulative regret as our performance measure, which is the profit difference between running a

clairvoyant optimal policy (that has access to the demand distributions) and SGD-PG (that

has to learn the demand distributions based on past demand realizations). We prove that

SGD-PG admits a cumulative regret upper bound of O(
√
T ), which matches the regret lower

bound for any online learning algorithms.
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There are two key new ideas underlying SGD-PG. First, we propose a non-trivial sub-

routine (Algorithm 2) to compute a valid sample-path gradient of the profit with respect to

the inventory levels after replenishment. The main idea is to perturb the inventory levels

after replenishment by an infinitesimal amount and compute the increment in profit. A key

challenge is to correctly identify and quantify the “chaining effect” brought by a local per-

turbation at some supply node. Second, SGD-PG keeps track of the “real-time imbalance”

between supply and demand the same way as in the clairvoyant optimal allocation policy,

and carries out greedy allocation via an order of pairs. Then if the empirical ordering levels

are approaching the true optimal ordering levels, the allocation process will also converge to

optimality, because we are following the exact structure of the clairvoyant optimal allocation

policy.

We show that the SGD-PG algorithm also works in the nested censored demand case.

We also demonstrate the numerical efficacy of the proposed algorithms.

2.1.2 Relevant Literature

Our work is closely related to the following streams of literature.

Multiproduct inventory systems with upgrading or substitution. Allowing for

the allocation of multiple types of supply to multiple types of demand, such as product

upgrading or substitution, can provide firms with increased flexibility in inventory and rev-

enue management (see, for example, Jain et al. (2015), Parker and Olsen (2010). The key

operational management decisions for centralized firms include inventory replenishment and

allocation choices. We categorize the relevant research into three areas: (a) ordering de-

cisions, (b) substitution decisions, and (c) joint ordering and substitution decisions in a

dynamic setting.

In the context of inventory ordering decisions, Mahajan and van Ryzin (2001) studied a

one-period inventory model in which customers dynamically substitute among product vari-

ants within a retail assortment when inventory is depleted. The customer choice decisions

are based on a utility maximization criterion. Faced with such substitution behavior, the

retailer must choose initial inventory levels for the assortment to maximize expected profits.

They proposed a stochastic gradient algorithm to solve this problem (without demand learn-

ing). Several papers have considered multi-period models with two substitutable products.

Pasternack and Drezner (1991) proved that a base-stock policy is optimal for two products

with substitution in a dynamic newsvendor network. Nagarajan and Rajagopalan (2008)

proved that a partially decoupled base-stock policy is optimal for the setting where the two

products are partial substitutes and their demands are negatively correlated. As far as mul-
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tiple substitution choices are concerned, Gallego et al. (2006) proposed two simple heuristics

to determine ordering quantities in a semiconductor inventory system with downgrading,

assuming that a myopic allocation is used. Schlapp and Fleischmann (2018) derived the

optimal (capacity-dependent) ordering policy for a capacity-constrained firm selling multi-

ple partially substitutable products over a finite season in a market with stockout-based

customer substitution.

In the context of inventory allocation decisions, Hu and Zhou (2021) developed a two-

way substitution model that showed the optimal allocation policy for both horizontally and

vertically differentiated rewards is to match the pairs (down to some threshold levels) in the

descending order of priorities. They proposed heuristics to attain these optimal threshold

levels. Meanwhile, Baccara et al. (2020) derived the closed-form of optimal threshold lev-

els in dynamic matching under Poisson arrivals. Elmachtoub et al. (2019) considered the

multiproduct inventory problem with opaque products and derived a balancing policy that

is asymptotically optimal. However, to the best of our knowledge, none of these studies

have addressed the joint optimization problem of both inventory replenishment and product

allocation decisions. In this chapter, we aim to address this gap and propose a novel ap-

proach to jointly optimize inventory replenishment and product allocation. We first review

the literature on joint optimization starting from the single-period model to the multi-period

settings with two or more products.

In regard to the joint optimization of inventory replenishment and allocation decisions,

Bassok et al. (1999) investigated a single-period multiproduct inventory problem with down-

ward substitution with a constant marginal cost of substitution and penalty cost. They

demonstrated that the base-stock policy is optimal for stocking, and greedy allocation is

optimal under certain conditions. In another study, Rao et al. (2004) addressed a single-

period multiproduct inventory problem that involved decisions such as which products to

produce, the production quantities, and the allocation. They formulated the problem as a

mixed-integer program (MIP) and proposed effective heuristic algorithms for each part. It

is worth noting that our work differs from these studies in that we consider a multi-period

model.

For multi-period models, there is a significant amount of literature focusing on the case

where there are two products. For instance, Chen (1997) studied the joint replenishment

and allocation problem of two products with downward substitution, while Xu et al. (2011)

studied the optimal policy for the one-time replenishment and substitution decisions between

two mutually substitutable products, under Poisson arrivals. They demonstrated that the

optimal substitution followed a threshold rule. In the context of chip substitutions in the

semiconductor industry, Duenyas and Tsai (2000) studied the joint optimal policy for pro-
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duction and substitution policies and proposed a heuristic algorithm. Moreover, Hu et al.

(2008) addressed the optimal joint control of inventory and transshipment for a firm that

produces in two locations and faces capacity uncertainty. The optimal transshipment policy

was found to be floor-rationing and the production policy was proved to be a state-dependent

produce-up-to threshold policy. Similarly, Yu et al. (2017) studied optimal production, pric-

ing, and substitution policies for a continuous-review production inventory system with two

products under Poisson arrivals. They demonstrated that the optimal production policy

for each product is a state-dependent base-stock policy and the optimal substitution policy

consists of state-dependent thresholds. However, the main difference between these papers

and ours is that we do not limit ourselves to the special case of two products.

Finally, in the context of the multi-period model with multiple products, Shumsky and

Zhang (2009) studied a capacity allocation model with one-level upgrading, while Yu et al.

(2015) extended this model to allow for general upgrading and showed that the optimal

allocation policy involves a greedy allocation of supply to demand of the same type, followed

by sequential rationing. However, their models assume that capacity is decided only once

at the beginning of the horizon and that allocation of the capacity is needed in each period

without replenishment, whereas in our model, joint inventory replenishment and allocation

decisions are made in each period. Moreover, all the aforementioned papers assume that the

firm knows the demand distributions, while we consider a more realistic setting with demand

learning.

Learning algorithms for inventory management. Learning algorithms can be broadly

categorized into two groups based on the information structure of the firm: parametric and

nonparametric. Parametric algorithms involve the firm forming a prior belief about the

demand distribution and updating the parameters of the distribution with new demand

information. This Bayesian approach has been widely adopted in the literature, with early

contributions from Iglehart (1964), Murray and Silver (1966), Scarf (1959), and more recent

work by Chen and Plambeck (2008), Lu et al. (2005, 2008), Wang and Mersereau (2017).

On the other hand, nonparametric approaches have gained popularity in recent years.

Instead of assuming a prior distribution, these methods rely on the empirical distribution

formed by uncensored samples drawn from the true distribution. One such approach is

sample average approximation (SAA), which has been widely used in the inventory literature

(Kleywegt et al. (2002), Levi et al. (2015, 2007b)). Another popular nonparametric approach

is concave adaptive value estimation, which approximates the objective cost function with a

sequence of piecewise linear functions (Godfrey and Powell (2001), Powell et al. (2004)).

Our work belongs to the general class of gradient-based methods, which is arguably the

most popular nonparametric approach, especially for inventory systems. There has been
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a growing literature on developing gradient-based methods for various inventory models,

including capacitated inventory systems (Chen et al. (2020c), Shi et al. (2016)), perishable

inventory systems (Zhang et al. (2018)), lost sales inventory systems with lead times (Agrawal

and Jia (2022), Huh et al. (2009), Zhang et al. (2020)), dual-sourcing inventory systems

(Chen and Shi (2020)), joint pricing and inventory control (Chen et al. (2019a, 2021a, 2022a,

2020b)), inventory systems in the presence of fixed costs (Ban (2020), Yuan et al. (2021)),

and inventory control under non-stationary demand (Mao et al. (2020)). Nonparametric

approaches have also been applied to the newsvendor problem with contextual information

(Ban and Rudin (2019)). Our work differs from the above literature by considering not only

ordering decisions but also allocation decisions for multiple products over multiple periods.

Technically, we develop a new perturbed gradient estimation approach.

It is worth mentioning that more recently, Chen and Chao (2020a) considered a multi-

product inventory control problem with stockout substitution and demand learning, which

seems to be close to our problem setting. In their setting, customers attempt to substitute

once when facing stockout, and the substitution choices are made by customers, depending

on substitution probabilities. Hence, the firms in their settings only need to make inventory

ordering decisions. In contrast, in our setting, the substitution is controlled by the firm,

i.e., it is an active operational decision to make. To the best of our knowledge, our work

represents the first attempt in the literature that studies the joint ordering and allocation

problem with demand learning.

2.1.3 Chapter Organization and General Notation

The remainder of the chapter is organized as follows. We formulate the dynamic multiproduct

inventory system with general upgrading in §2.2. We characterize the (clairvoyant) optimal

joint ordering and allocation policy for this system in §2.3. We study the problem with

demand learning and propose the first online learning algorithm termed SGD-PG with a

theoretical regret analysis in §2.4. As an extension, we show the algorithm can handle

censored demand in §2.5. The performance of the algorithm is evaluated in the numerical

experiments in §2.6. Finally, we conclude the chapter in §2.7.
We introduce the general notation used in this chapter. For any real number x, we

denote x+ = max{x, 0} and x− = max{−x, 0}. For event A, the indicator function 1(A)

takes value 1 if A is true and 0 otherwise. The projection function is defined as P[a,b](x) =

min [b,max(x, a)] for any real numbers x, a, and b. For integer n ≥ 1, we use [n] to denote the

set {1, . . . , n}. The maximum operator functioning on vectors means taking the maximum

component-wise, i.e., max{x,y} = z where zi = max{xi, yi}. The symbol ⪰ (⪯) denotes
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vector inequality or componentwise inequality, i.e., for any y,x ∈ Rn, if y ⪰ (⪯)x, then

yi ≥ (≤)xi for i = 1, . . . , n. We often use upper-case characters to denote random variables

and corresponding lower-case characters to denote the realization of the random variables.

The term i.i.d. means independent and identically distributed.

2.2 Problem Formulation

We formally describe the multiproduct inventory system with general upgrading. There are

n products, each facing a stochastic demand. Without loss of generality, we index these n

products from 1 to n according to their intrinsic qualities with 1 being the best and n being

the poorest. We assume that the demand for product i can be satisfied using any product j

from [i] := {1, . . . , i}. (Note that with only slight modifications, our results continue to hold

with satisfying demand i using product j from a strict subset of [i].)

Figures 2.1 and 2.2 give schematic illustrations of direct allocation (perfect matching)

and upgrading (imperfect matching), respectively. The arrow from supply j to demand i

indicates that we can meet one unit of demand i using one unit of supply j, which generates

revenue ri independent of the supply type. For instance, the firm only receives r2 if it chooses

to satisfy demand 2 using supply 1 (i.e., upgrading). Purchasing one unit of supply j will

incur an ordering cost of cj, and each unit of supply j carried over to the next period will

incur a holding cost hj.

Supply Demand

1 1

2

3

4

2

3

4

Figure 2.1: Direct Allocation (Perfect
Matching)

Supply Demand

1 1

2

3

4

2

3

4

Figure 2.2: Upgrading (Imperfect Match-
ing)

Any remaining supply upon completion of the allocation process is kept in inventory and

incurs a holding cost, while any remaining unmatched demand is lost. Let t ∈ {1, 2, . . .} be

the time period, which is indexed forward. For each product i ∈ [n], we denote its demand

in period t by Dt
i .

17



Assumption 2.2.1 For each product i ∈ [n], the demands Dt
i are i.i.d. random variables

across t ∈ [T ]. Denote Di as a random variable with the same distribution as Dt
i ,∀t ∈ [T ],

then the expectation E [Di] = αi > 0 and variance V ar [Di] = σ2
i <∞.

Note that we do not require the i.i.d. assumption across products. A salient feature

of our setting is that the firm has no prior knowledge about the true underlying demand

distributions. The firm can observe the realized demand over time and make adaptive

decisions.

Assumption 2.2.2 The revenue and cost parameters satisfy the following conditions.

(a) r1 ≥ r2 ≥ . . . ≥ rn.

(b) c1 ≥ c2 ≥ . . . ≥ cn.

(c) hi = h0 + βci,∀ i ∈ [n] where β ∈ [0, 1].

Assumptions 2.2.2a and 2.2.2b indicate that the unit revenue and ordering cost are non-

increasing in the index (or equivalently, non-decreasing in the product quality). Assumption

2.2.2c asserts that the holding cost consists of two parts, with the first part being the fixed

physical holding cost h0 and the second part is the financial cost proportional to the order

cost.

2.2.1 System Dynamics

In each period t ∈ [T ], we use xt = (xt1, . . . , x
t
n) to denote the inventory levels at the beginning

of any period t (before ordering). After an order is received, we use yt = (yt1, . . . , y
t
n) to denote

the inventory level (after ordering). We use utij for all 1 ≤ j ≤ i ≤ n to denote the amount of

product j used to satisfy demand i in period t. For simplicity of notation, we define utij ≡ 0

when the index i or j is out of bound. With the realization of demand i denoted by dti, we

must have
∑n

i=j u
t
ij ≤ ytj and

∑i
j=1 u

t
ij ≤ dti. For any policy π, the sequence of events in each

period t, t = 1, 2, . . . , is as follows. (Note that xt,π and yt,π depend on the policy π and the

sample path ω, but we make the dependency implicit for notational convenience.)

(a) At the beginning of period t, the firm observes the on-hand inventory levels xt =

(xt1, . . . , x
t
n).

(b) The firm places an order so that the after-replenishment inventory level of product i is

yti ≥ xti. The order arrives instantaneously, incurring an ordering cost
∑n

i=1 ci (y
t
i − xti) .
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(c) The random demand Dt is realized to be dt. Then the firm makes an allocation decision

utij, ∀1 ≤ j ≤ i ≤ n, generating a revenue of
∑n

i=1 ri
∑i

j=1 u
t
ij.

(d) The remaining supply is carried over to the next period and the unmet demand is lost.

The excess supply also incurs a holding cost
∑n

j=1 hj

(
ytj −

∑n
i=j u

t
ij

)
.

(e) The system proceeds to the next period with xt+1 given by xt+1
j =

(
ytj −

∑n
i=j u

t
ij

)
, ∀j ∈

[n].

Given the (after-replenishment) inventory levels yt and the allocation quantity U t, the ef-

fective profit in period t can be written as

n∑
j=1

(
−cjytj +

n∑
i=j

riu
t
ij + (cj − hj)

(
ytj −

n∑
i=j

utij

))
.

The objective is to find a policy π that maximizes the total expected T -period profit.

2.3 (Clairvoyant) Optimal Joint Ordering and Alloca-

tion Policy

Before designing an effective online learning algorithm, we first characterize the clairvoyant

optimal joint ordering and allocation policy (if the firm had access to the demand distribution

D a priori).

2.3.1 Structural Results

We use J t(xt), t ∈ [T ] to denote the optimal expected profit starting from period t till the

end of the horizon given the starting inventory level is xt. Given it is a Markov decision

process, the optimal policy maximizing the total expected T -period profit can be attained

by solving the following dynamic program.

J t(xt) = max
yt⪰xt

V t
(
yt
)
+ c⊺xt,

V t
(
yt
)
:=− c⊺yt + ED

 max
Ut⊺1⪯yt,
Ut1⪯Dt,
Ut⪰0

{
r⊺U t1− h

(
yt − U t⊺1

)⊺
1+ J t+1

(
yt − U t⊺1

)}
 ,

JT+1
(
xT+1

)
=c⊺xT+1.
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where U t
ij = [utij] is the allocation matrix in period t. Specifically, in each period, the decision

maker first needs to determine the optimal after-replenishment inventory levels yt for all

products. Then after the demand is realized, allocation decisions need to be made subject to

the constraints of not exceeding the supply and demand quantities. Excess supply is carried

over to period t+1 as the starting inventory level and unmet demand is lost. Finally, at the

end of the horizon, any excess inventory j can be salvaged at the price of cj, and any unmet

demand i will incur a penalty cost ci.

Proposition 2.3.1 For any period t ∈ [T ], J t (xt) is concave in xt and V t (yt) is concave

in yt.

2.3.2 Myopic Optimal Policy with Zero Starting Inventory

We first study the optimal policy given the starting inventory of the system is zero. Figure

2.3 shows the structure of the “priority” of pairs considered in the allocation policy π∗A.

Row i consists of pairs with demand i and column j consists of pairs with supply j. The

possible pairs are divided into n layers where layer m contains n −m + 1 pairs where the

difference between the indices of supply and demand is m− 1.

Layer 1: (1, 1) (2, 2) (3, 3) . . . (n− 2, n− 2) (n− 1, n− 1) (n, n)

Layer 2: (2, 1) (3, 2) (4, 3) . . . (n− 1, n− 2) (n, n− 1)

Layer 3: (3, 1) (4, 2) (5, 3) . . . (n, n− 2)

. . .

Layer n: (n, 1)

We denote the optimal allocation policy by π∗A and the optimal replenishment policy by

π∗R.

Theorem 2.3.1 Suppose that Assumptions 2.2.1 and 2.2.2 hold, and the system starts with

zero inventory. Under the boundary condition JT+1
(
xT+1

)
= c⊺xT+1, the optimal allocation

policy for each period π∗A is to use supply j to satisfy demand i until either the supply or

the demand runs out, for pair (i, j) with ri − cj + hj ≥ 0 in increasing order of the index of

its layer as shown in Figure 2.3. The order of pairs within the same layer is arbitrary.

The optimal replenishment policy π∗R is to order up to y∗ = argmaxy⪰0 R (y) in each

period with

R (y) := ED

n∑
j=1

(
−cjyj +

n∑
i=j

riu
∗
ij (y,D) + (cj − hj)

(
yj −

n∑
i=j

u∗ij (y,D)

))
, (2.1)
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Figure 2.3: Allocation Structure

where u∗ij (y,D) is the quantity of supply j used to satisfy demand i given the on-hand

inventory levels y and the demand D following π∗A specified above.

2.3.3 Discussions about Theorem 2.3.1

Theorem 2.3.1 asserts that for our multiproduct system with general upgrading, it is optimal

to follow an order-up-to policy for each supply (where the base-stock level is the maximizer

of (2.1)) and to match supply with demand to the maximum extent in non-decreasing order

of the difference of the supply and demand indices. For example, suppose n = 3, c − h =

[3, 2, 1]⊺ , r = [6, 4, 2]⊺. Then there are in total 6 possible pairs with only one pair (3, 1) has

r3−c1+h1 < 0. So Theorem 1 states that one of the optimal allocation policies for each period

is to greedily use supply j to satisfy demand i in the order of (1, 1), (2, 2), (3, 3), (2, 1), (3, 2)

as shown in Figure 2.3 since the order of the pairs is distributed in non-decreasing order of

layer index.

To the best of our knowledge, this is the first result to compactly characterize the structure

of joint replenishment and allocation policy for a multiperiod multiproduct inventory system

with upgrading. In contrast, the existing literature predominantly focused on 2-product

settings (e.g., Duenyas and Tsai (2000), Hu et al. (2008), Xu et al. (2011), Yu et al. (2017)).

There have been relatively limited results on multiproduct settings (see Shumsky and Zhang

(2009), Yu et al. (2015) without replenishment decisions and Chen (1997), Shanthikumar

et al. (2003) with with certain properties of fixed substitution decisions instead of specifying

the allocation rule).
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2.4 Stochastic Gradient Descent with Perturbed Gra-

dient (SGD-PG)

Now suppose that the firm does not know the true underlying demand distribution Di, ∀i ∈
[n] a priori, and the system starts with zero inventory. Our goal is to find a provably-good

online learning algorithm such that the average profit converges to that of the clairvoyant

optimal policy.

2.4.1 The SGD-PG Algorithm

We describe our online learning algorithm π via stochastic gradient descent with perturbed

gradient (SGD-PG) in Algorithm 1. The motivation of the design is as follows.

Let π∗ denote the clairvoyant optimal policy. Based on the structural properties of Theo-

rem 2.3.1, if our policy π follows the optimal (greedy) allocation policy π∗A, we can decompose

the cumulative regret

Regret(π, T ) =
T∑
t=1

R (y∗)− E

[
T∑
t=1

R
(
yt
)]
,

where y∗ is the optimal order-up-to level of π∗ and yt is the inventory level following our

policy π. By the analysis of Theorem 2.3.1, we know that R(·) has a nice concavity property.

Lemma 2.4.1 R (y) defined in (2.1) is concave in y.

Thus, it is natural to run a stochastic gradient descent scheme to iteratively update yt.

However, the updated base-stock level upon each gradient descent step may not always be

implementable, if the starting inventory level is already higher than the desired base-stock

level. To resolve this issue, the algorithm π needs to maintain a pair of sequences (ŷt : t ≥ 1)

and (yt : t ≥ 1), where ŷt is the desired target inventory levels for period t and yt is the

actual implemented inventory levels in period t. Suppose the decision maker is aware of

an upper bound of the optimal order-up-to levels ȳ. The sequences are generated in the

following way:

ŷt+1 = P[0,ȳ]

(
ŷt + ϵtGt

(
ŷt
))
, (2.2)

yt+1 = max
(
ŷt+1,xt+1

)
, (2.3)

where the maximum operator is taken component-wise. Combined with the optimal alloca-

tion rules as specified in Theorem 2.3.1, this naturally gives rise to the following stochastic

gradient descent based Algorithm 1, where γ > 0 and θ = max{r1 − cn, c1 − cn + h}1.
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Algorithm 1 Stochastic Gradient Descent Algorithm with Perturbed Gradient (SGD-PG)

Initialization. Let L be an ordered list of pairs as stated in Theorem 2.3.1. Randomly
initialize ŷ1i ∈ [0, ȳi], ∀i ∈ [n]. Let γ > 0 and θ = max{r1 − cn, c1 − cn + h}1.

Learning. For each period 1 ≤ t ≤ T , carry out the following procedures.

Phase 1: Make a replenishment decision with the target base-stock level ŷt:

yt = max
(
ŷt,xt

)
.

Then carry out perfect matching, i.e., satisfying demand using the same type of supply.

Phase 2: Initialize the real-time imbalance between type i supply and demand lti
as yti − dti. For each pair of demand i and supply j in the ordered list L, carry out
upgrading as follows.

1. Allocate utij = min{(lti)−, (ltj)+} quantity of supply j to demand i;

2. Update the real-time imbalance by lti = lti + utij and l
t
j = ltj − utij.

Phase 3:

1. If xt ⪯ ŷ, call a subroutine (Algorithm 2) to obtain an unbiased gradient estimator
Gt (ŷt). Update the base-stock levels for period t+ 1:

ŷt+1 = P[0,ȳ]

(
ŷt + ϵtGt

(
ŷt
))
,

ϵt =
∥ȳ∥γ
∥θ∥

√
t
,

and P[a,b](x) means (component-wise) projecting xi onto [ai, bi], ∀i ∈ [n].

2. Otherwise, ŷt+1 = ŷt.

Carry the excess supply i to the next period as xt+1
i = (lti)

+, ∀i ∈ [n].

End. In period T + 1, the excess supply i is salvaged at the unit price of ci.
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2.4.2 Subroutine for Perturbed Gradient

Up to now, the algorithmic template for Algorithm 1 seems natural in that (a) we follow the

exact greedy allocation rule specified in Theorem 2.3.1 and (b) we leverage the fact that R(·)
has a nice concavity property. That said, there is an important missing piece (which is also

a key contribution). That is, we need to compute a stochastic (sample-path) gradient for

R(·). We denote such a sample-path gradient by Gt (ŷt) and we develop a new subroutine

(Algorithm 2) for computing it.

Algorithm 2 Subroutine for Computing Sample-Path Gradient Gt (ŷt)

Initialize et = [M, . . . ,M ], ∀t ∈ [T ]. Now create an exact copy of the system and do the
following without modifying the original system. Carry out perfect matching, i.e., satis-
fying demand using the same type of supply. Initialize the real-time imbalance between
type i supply and demand lti as ŷ

t
i − dti. For each pair of demand i and supply j in the

ordered list L, do:
1. If (ltj)

+ < (lti)
−, etj = i; else if (ltj)

+ > (lti)
−, eti = j.

2. Allocate utij = min{(lti)−, (ltj)+} quantity of supply j to demand i;

3. Update the real-time imbalance by lti = lti + utij and l
t
j = ltj − utij.

for i = 1, . . . , n do
if lti = 0 then ▷ supply (demand) i is depleted by demand (supply): eti

let a = eti ▷ use a temporary node a to track the chain
while eta! =M do

a = eta ▷ find where the chain of upgrading ends
end while
if lta > 0 then ▷ the chain ends at supply a

Gt
i = −ci + ca − ha ▷ one additional order means one more excess supply a

else ▷ the chain ends at demand a
Gt

i = ra − ci ▷ one additional order means one more met demand a
end if

else if lti > 0 then ▷ eti =M , excess supply i at the end of period t
Gt

i = −hi ▷ one more unit of excess supply i
else ▷ eti =M , unmet demand i at the end of period t

Gt
i = ri − ci ▷ one more perfect pair i

end if
end for
Output Gt.

2.4.2.1 An Illustrative Example.

The main idea of this subroutine is to hypothetically increase the inventory level of each

product for an infinitesimal amount δ and compute the profit increment under this sample
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path. Note that a perturbation in the inventory level yti of supply i not only affects demand

i but also demand j > i as well as other supplies k < i. We call it a “chaining effect”. A

key factor in this subroutine is to identify where a particular chain (starting with some δ

perturbation in some supply) ends, thereby quantifying the profit increment.

To better illustrate this idea, we define the following graphical notation. In Figure 2.4, on

the left hand side, an arrow is drawn from supply j to demand i, which means that supply

j is depleted by demand i and there is some unmet demand i at the end. Similarly, on the

right hand side, an arrow is drawn from demand i to supply j, which means that demand

i is depleted by supply j and there is excess supply j at the end. Essentially, for any two

nodes connected by an arrow, upon allocation, there are some positive units sitting on the

node pointed by an arrowhead and nothing on the other node.

S𝑗 D𝑖 S𝑗 D𝑖

supply 𝑗 is depleted by demand 𝑖
(i.e., unmet demand 𝑖 after the 

allocation of supply 𝑗 to demand 𝑖)

demand 𝑖 is depleted by supply 𝑗
(i.e., excess supply 𝑗 after the 

allocation of supply 𝑗 to demand 𝑖)

Figure 2.4: Definition of Arrows

With the definition of these arrows in place, consider the following example shown in

Figure 2.5. Upon perfect matching, there are excess supplies at supply nodes 2, 3, 6 and

there are unmet demands at demand nodes 1, 4, 5. Let us focus on an instance of upgrading

or substitution on the right hand side of Figure 2.5. There is excess supply at supply 3,

which is used to satisfy demand 4. Then supply 3 is depleted by demand 4 and there is still

unmet demand at demand 4. One could use excess supply at supply 2 to satisfy demand 4.

Then demand 4 is depleted by supply 2 and there is excess supply at supply 2. One could

use excess supply 2 to satisfy demand 5. Then supply 2 is depleted by demand 5 and there

is still unmet demand at demand 5. However, at this moment, there are no more supplies

from supply nodes 1, 2, 3, 4, 5, and thus this “chain” ends at demand node 5. This means if

we perturb supply 3 by δ, we can observe a chaining effect, i.e., supply 3 → demand 4 →
supply 2 → demand 5 where the terminal node is demand 5.

We use Figure 2.6 (the second subfigure) to illustrate that the gradient with respect to

yt3 is
∂R (yt;dt)

∂yt3
= (r5 − c3).

Suppose that we increase yt3 to yt3 + δ and this δ perturbation forms a chain (as discussed

earlier). It is clear that the non-terminal nodes of this chain do not affect the profit and only
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Perfect Matching Substitution

Figure 2.5: A Chaining Example

the terminal node does. As a result, there will be δ less unmet demand at demand node 5,

resulting in a profit change of (r5 − c3)δ. This implies a sample-path gradient with respect

to yt3 is (r5 − c3).

2.4.2.2 Validity of Algorithm 2.

Recall that R (y) is defined in (2.1). We slightly abuse the notation and let R (y;d) denote

the sample-path per-period profit given demand realization d:

R (y;d) :=
n∑

j=1

(
−cjyj +

n∑
i=j

riu
∗
ij (y,d) + (cj − hj)

(
yj −

n∑
i=j

u∗ij (y,d)

))
.

Proposition 2.4.1 The output Gt (y) from Algorithm 2 is a valid gradient of R (y;dt) in

y.

Specifically, Algorithm 2 provides an easy-to-implement routine to calculate the subgradient

of the profit with respect to inventory levels of multiple products. The underlying idea is to

hypothetically increase the inventory level and apply the property of the greedy allocation

rule.
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Figure 2.6: A Perturbation Example

2.4.3 Regret Analysis

We decompose the average expected cumulative regret as

Regret(π, T ) =E

[
T∑
t=1

(
R (y∗)−R

(
yt
))]

=E

[
T∑
t=1

(
R (y∗)−R

(
ŷt
))]

+ E

[
T∑
t=1

(
R
(
ŷt
)
−R

(
yt
))]

:=Λ1(T ) + Λ2(T ).

With the valid stochastic gradient established above, bounding Λ1(T ) calls for an analysis

of online convex optimization. With inventory carryover, the desired inventory target levels

(resulting from gradient descent updates) may not be achieved. Bounding Λ2(T ) requires

mapping the “inventory overshoot” onto a queuing system with increasing service levels. The

key to bound both parts is to analyze the length of cycles in Algorithm 1 and to construct

an unbiased gradient estimator via infinitesimal perturbation (Algorithm 2 and Proposition

2.4.1).

Theorem 2.4.1 There is a constant C2 such that for any T ≥ 1, the cumulative regret of

running the SGD-PG algorithm is upper bounded as

Regret(π, T ) ≤ C2

√
T .

The following proposition establishes that our cumulative regret upper bound matches
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the lower bound (for any online learning algorithms), up to a logarithmic factor.

Proposition 2.4.2 Suppose that T > 5. The expected regret for any learning algorithm for

our joint replenishment and allocation problem is lower bounded by Ω(
√
T ).

Proposition 1 in Zhang et al. (2020) provides an example of a demand scenario under

which any learning algorithm incurs regret of at least Ω(
√
T ). This proposition examines a

single-product newsvendor problem that only involves ordering decisions and not allocation

decisions. The proof of Proposition 2.4.2 is omitted.

2.5 Extension to the Setting with Nested Censored De-

mand

We consider a setting with nested censored demand. There are two salient features of the

nested censored demand model (especially in the multiproduct setting). First, the censoring

is nested, i.e., whether demand i is censored depends on the supply and demand of type

1, . . . , i. Second, censoring is dynamic in the sense that in each period, the customers arrive

sequentially (not at once) and take action based on the available remaining inventory. There

are three cases when a customer arrives and demands a type i product.

(1) If there is still supply i left in the inventory, the customer will be provided with supply

i.

(2) If supply i is out of stock, but there is still (higher type) supply from 1, . . . , i−1 left in the

inventory, the customer informs the manager of the stockout and asks to be considered

for a potential upgrade. However, the allocation decision only happens at the end of that

period. This is because the firm may choose to upgrade to a higher type of customer

(for better revenue management). For instance, imagine a scenario in which there is

only one unit of supply 1 left, and there are two customers (not yet satisfied), one from

demand 2 and the other one from demand 3. Although demand 3 may have come in

before demand 2, the firm allocates supply 1 to demand 2 at the end of the day.

(3) If supply i is out of stock and all potential upgrades, namely, supply 1, . . . , i− 1 are out

of stock, the customer will simply leave the system without notifying the manager. This

is the portion of customers that are being censored.

Note that our model and results continue to hold with only slight modification if in Case

(2) only an unknown fraction of customers inform the manager of a stockout and ask to
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be considered for a potential upgrade. That means the remaining fraction gets censored.

For ease of presentation, we only focus on the setting with all eligible customers requesting

upgrades.

2.5.1 Model Dynamics

We use a 3-type instance to explain the model dynamics. Let types 1, 2, and 3 be high,

medium, and low quality, respectively. The optimal allocation policy is to first greedily

satisfy demand i with product i, i = 1, 2, 3, and then greedily satisfy demand 2 with supply

1, demand 3 with supply 2 and demand 3 with supply 1 if possible. The sequence of events

is described as follows.

1. At the beginning of the period, the inventory levels of three types in the store are

xt1, x
t
2, and x

t
3, respectively. The firm makes the replenishment decisions such that the

inventory levels after replenishment are yt1, y
t
2, and y

t
3. An ordering cost of

∑3
i=1 ci(y

t
i −

xti) is incurred.

2. The store starts to satisfy the demand. A random customer may face one of the three

cases.

(a) Customer finds the same type of supply and gets fulfilled. For example, customer

A in Figure 2.7 will be satisfied with one unit of supply 1.

(b) Customer finds the same type of supply out of stock but there is still supply

for potential upgrade. Then the customer informs the store manager and gets

the name recorded, for a potential upgrade at the end of the day. For example,

customers C and D in Figure 2.7 belong to this category. Note that the recorded

demand may not be upgraded in the end, as we can see that customer C is

upgraded with supply 2 while customer D is unfulfilled.

(c) Customer finds the same type of supply out of stock, and all potential upgrades

are also out of stock. Then the customer simply leaves the system, and this piece

of arrival information is censored. For example, customers B and E in Figure 2.7

belong to this category.

From the store’s perspective, the process above is to allocate the supply in stock to

the demand as much as possible, receiving
∑3

i=1 ri min(yti , d
t
i) revenue. Also, the store

records the unmet requests which might be upgraded at the end of the period.

3. At the end of the period, the store starts to upgrade the unmet demand recorded.

The firm will allocate excess supply to unmet demand in the order demonstrated in
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Theorem 2.3.1. Note that since the demand is only censored when there are no potential

upgrades available, the demand censoring will not make a difference in this process.

4. At the end of the period, the excess inventory will be carried over to the next period

with holding cost
∑3

i=1 hx
t+1
i where xt+1

i is the inventory level of supply i at the end

of period t.

timet+1t 1   2   3

supply

demand

A

A

B
D
C

recorded & lost

C

censored

C

recorded

C

recorded

D
E

censored

Figure 2.7: An Illustrative Example

Figure 2.7 illustrates an example: (1) The inventory levels for supply 1, 2, 3 are 3, 5, 4. (2)

The inventory levels become 2, 2, 3 after satisfying some customers. Customer A requesting

one unit of supply 1 gets filled by one unit of supply 1. (3) There are only 2 units of supply 2

in stock. Then customer B asking for supply 1 sees no match and no potential upgrades and

will leave without letting the store know. However, there is a potential upgrade available for

customer C asking for supply 3 so C will be recorded. (4) There is only one unit of supply

2 left. Another customer D asking for supply 3 comes and is recorded while a customer

E asking for supply 1 is censored. (5) At the end of the period, there are two recorded

unmet demands for supply 3 which are C and D. While C is upgraded with supply 2, D is

unfulfilled.

2.5.2 Online Learning Algorithms

Denote the observed censored demand vector in period t by d̃t. Algorithm 1 still works in

the case of demand censoring. The only modification is to use the censored demand d̃t in

place of the fully realized dt in Phase 2 and Subroutine 2.

Proposition 2.5.1 Theorem 2.4.1 still holds in the case of demand censoring.

Proof of Proposition 2.5.1. Consider Algorithm 1. We would like to show that the system

dynamics are the same using d̃t and dt following Algorithm 1. For any period t, with the

same initialization, the two systems are exactly the same until the end of Phase 1. As long as
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there is excess product i after Phase 1, the demand for product i+1, . . . , n will be uncensored.

That is to say, by initializing k = n and letting k = mini∈[n]{i : yti > d̃ti} − 1 if any, the

demand for products 1, . . . , k are all censored and the demand for products k + 1, . . . , n are

all uncensored, i.e., d̃ti ≤ dti, ∀1 ≤ i ≤ k and d̃ti = dti, ∀k + 1 ≤ i ≤ n. Consider Phase 2.

Denote l̃ti := yti − d̃ti. Then we have

l̃ti =

0, ∀1 ≤ i ≤ k,

lti, ∀k + 1 ≤ i ≤ n.

Thus,

ũtij =

0, ∀1 ≤ j ≤ k,

min{(l̃ti)−, (l̃tj)+} = min{(lti)−, (ltj)+}, ∀k + 1 ≤ j < i ≤ n,
= utij,

where l̃ti is the real-time imbalance between supply and censored demand of product i. Then

in Phase 3, we show that the obtained Gt(yt+1 | d̃t) = Gt (yt+1 | dt). Because yti ≥ ŷti , we

have

ŷti − d̃ti ≤ yti − d̃ti ≤ 0, ∀1 ≤ i ≤ k,

ŷti − dti ≤ yti − dti ≤ 0, ∀1 ≤ i ≤ k.

Hence, following the same logic as in Phase 2, the allocation results are the same as using

the fully realized demand dt. As a result, the output of the subroutine Gt(yt+1 | d̃t) =

Gt (yt+1 | dt). Then the unmet demand is lost and the excess supply of the same amount

is carried over to the next period t + 1. This shows that with the same initialization, the

dynamics of the two systems using the censored demand and the fully realized demand are

identical following Algorithm 1. The convergence result remains the same. Q.E.D.

2.6 Numerical Experiments

In our numerical experiments, we relax the somewhat restrictive Assumption 2.2.2c that

the holding costs have to be the same for all products. We demonstrate the profit gap of

the proposed policy in Theorem 2.3.1 with the optimal policy is very small, even when the

holding costs are unequal. Then we implement Algorithm 1 for both the uncensored and

censored demand cases.
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Table 2.1: Previous Experiment Parameters

instance c r h D ϵt

1 [5, 2, 1] [10, 8, 6] [0.5, 0.2, 0.1] [N(25, 3),N(20, 5),N(5, 1)] 1√
t

2 [5, 2, 1] [10, 8, 6] [0.5, 0.2, 0.1] [U[0, 50],U[0, 40],U[0, 10]] 1√
t

3 [5, 2, 1] [10, 8, 6] [0.5, 0.2, 0.1] [N(25, 10),N(20, 8),N(5, 2)] 1√
t

4 [10, 5, 2] [30, 20, 10] [2, 1, 0.4] [N(5, 1),N(10, 2),N(20, 4)] 2√
t

2.6.1 Performance of Algorithm 1 with Uncensored Demand

Define the relative regret of a policy π as

Relative Regret(π) :=
TR (y∗)− E

[∑T
t=1 R (yt)

]
TR (y∗)

,

where yt are the inventory levels after replenishment in period t following some policy π.

We introduce a series of benchmark algorithms named “SAA-κ” for κ = 100, 200, 300.

They belong to the category of “explore-then-exploit” policies since SAA-κ will first “ex-

plore” for κ periods with the order-up-to levels uniformly generated and then “exploit”

the empirically best choice for the remaining horizon. The detailed procedure is given in

Algorithm 3.

We run 1000 demand sets based on the instances specified in Table 2.1, where N[µ, σ]

denotes the truncated normal distribution truncated at [0, 2µ] with mean µ and standard

deviation σ andU[a, b] denotes the uniform distribution with lower bound a and upper bound

b. The average relative regret is shown in Figures 2.8–2.11. We also plot the cumulative

regret in Figures 2.12–2.15, i.e.,

Cumulative Regret (π) := TR (y∗)− E

[
T∑
t=1

R
(
yt
)]
.

We can see that Algorithm 1 performs robustly well across all cases.

2.6.2 Performance of Algorithm 1 with Censored Demand

We implement Algorithm 1 under censored demand for the instances specified in Table 2.1.
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Algorithm 3 SAA-κ (Sample-Average-Approximation-κ) Algorithm

Initialization. Let L be the ordered list of pairs specified in Theorem 2.3.1. Let N ′ = 100.

Exploration. For each period 1 ≤ t ≤ κ, carry out the following procedures.

Phase 1: Make a replenishment decision with randomly selected base-stock level
ŷti ∈ [Di, D̄i], ∀i ∈ [n].

yt = max
(
ŷt,xt

)
.

Satisfy demand using the requested product as much as possible. Record the demand
dti, i ∈ [n].

Phase 2: Initialize the real-time imbalance between type i supply and demand lti as
yti − dti, ∀i ∈ [n]. For each pair demand i and supply j in list L:

1. Allocate utij = min{(lti)−, (ltj)+} quantity of supply j to demand i;

2. Update the real-time imbalance by lti = lti + utij and l
t
j = ltj − utij.

Carry the excess supply i to the next period as xt+1
i = (lti)

+, ∀i ∈ [n].

Sample Average Approximation.

Step 1: For i ∈ [n], discretize the order-up-to level and obtain a set Si := {Di +
D̄i−Di

N ′ , . . . , D̄i}.

Step 2: Apply grid search for all combination of order-up-to levels. With the de-
mand data of κ periods {d1, . . . ,dκ}, implement using each choice of order-up-to levels
ŷ1, . . . , ŷn ∈ S1 × . . . × Sn and denote the order-up-to levels with highest profit as
ŷ∗SAA
1 , . . . , ŷ∗SAA

n .

Exploitation: For each period κ+1 ≤ t ≤ T , carry out Phase 1 and Phase 2 with the
order-up-to levels being ŷ∗SAA

1 , . . . , ŷ∗SAA
n for each period.

End. In period T + 1, the excess supply i is salvaged at the unit price of ci, ∀i ∈ [n].
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Figure 2.8: Instance 1
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Figure 2.9: Instance 2
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Figure 2.10: Instance 3
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Figure 2.11: Instance 4
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Figure 2.12: Instance 1 Cumulative Regret
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Figure 2.13: Instance 2 Cumulative Regret
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Figure 2.14: Instance 3 Cumulative Regret
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Figure 2.15: Instance 4 Cumulative Regret
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Algorithm 4 KM-κ (Kaplan-Meier-κ) Algorithm

Initialization. Let L be the ordered list of pairs specified in Theorem 2.3.1. Let N =
N ′ = 100. Initialize k = n+ 1.

Exploration. For each period 1 ≤ t ≤ κ, carry out the following procedures.

Phase 1: Make a replenishment decision with randomly selected base-stock level
ŷti ∈ [Di, D̄i], ∀i ∈ [n].

yt = max
(
ŷt,xt

)
.

Then satisfy demand using the requested product as much as possible. If any, let
k = mini∈[n]{i : yti > d̃ti}. Then we have the censoring indicator ∆t

i = 0,∀i ∈ [k − 1]
and ∆t

i = 1,∀k ≤ i ≤ n. Record the observed demand and censoring indicator pairs

(d̃ti,∆
t
i), i ∈ [n].

Phase 2: Initialize the observed real-time imbalance between type i supply and de-
mand lti as y

t
i − d̃ti, ∀i ∈ [n]. For each pair demand i and supply j in list L:

1. Allocate utij = min{(lti)−, (ltj)+} quantity of supply j to demand i;

2. Update the real-time imbalance by lti = lti + utij and l
t
j = ltj − utij.

Carry the excess supply i to the next period as xt+1
i = (lti)

+,∀i ∈ [n].

Kaplan-Meier Estimation.

For each product i ∈ [n],

Step 1: Arrange {d̃ti, t ∈ [κ]} values in increasing order denoted by {v1i , . . . , vκi }.
Step 2: For j ∈ [κ], obtain m̃j

i =
∑

t∈[κ] ∆
t
i1d̃ti=vji

and M̃ j
i =

∑
t∈[κ] 1d̃ti≥vji

.

Step 3: Obtain the estimated CDF as P[Di ≤ d] = 1−
∏

j:vji≤d

(
1− m̃j

i

M̃j
i

)
.

Step 4: Generate N sets of T -period demands for product i following the empir-
ical distribution obtained above.
Step 5: Discretize the order-up-to level and obtain a set Si := {Di +
D̄i−Di

N ′ , . . . , D̄i}.

Apply grid search for all combinations of order-up-to levels. With the generated N
sets of demand data, apply Monte-Carlo Simulation to each choice of order-up-to levels
ŷ1, . . . , ŷn ∈ S1 × . . . × Sn and denote the order-up-to levels with highest profit by
ŷ∗KM
1 , . . . , ŷ∗KM

n .

Exploitation. For each period κ+ 1 ≤ t ≤ T , carry out Phase 1 and Phase 2 with the
order-up-to levels being ŷ∗KM

1 , . . . , ŷ∗KM
n for each period.

End. In period T + 1, the excess supply i is salvaged at the unit price of ci, ∀i ∈ [n].
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Similar to the uncensored case, we also introduce a series of benchmark algorithms named

“KM-κ” for κ = 100, 200, 300. KM-κ will first choose the order-up-to levels uniformly for

κ periods, and then use grid search to obtain the optimal order-up-to level with respect to

the empirical distribution based on the celebrated Kaplan-Meier estimator (see Huh et al.

(2009)). Then the empirically best order-up-to levels are applied for the remaining of the

horizon. The detailed algorithm is given in Algorithm 4.

For each instance, we run 100 datasets. The average relative regret is shown in Figures

2.16–2.19 and the cumulative regret is shown in Figures 2.20–2.23. Again, we can see that

Algorithm 1 performs robustly well across all cases.
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Figure 2.16: Censored Instance 1
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Figure 2.17: Censored Instance 2
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Figure 2.18: Censored Instance 3
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Figure 2.19: Censored Instance 4
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Figure 2.20: Censored Instance 1 Cumula-
tive Regret
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Figure 2.21: Censored Instance 2 Cumula-
tive Regret
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Figure 2.22: Censored Instance 3 Cumula-
tive Regret
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Figure 2.23: Censored Instance 4 Cumula-
tive Regret
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2.7 Concluding Remark

We have studied a dynamic multiproduct system with general upgrading. The demand ar-

rives stochastically in each period. The firm needs to make both inventory replenishment

decisions and allocation decisions to match demand and supply (of different types). We first

characterized the optimal joint ordering and matching policy, had the firm known the true

demand distributions a priori. When the demand information is incomplete, we proposed

an online learning algorithm SGD-PG, to solve the joint learning and optimization prob-

lem under both uncensored demand and (nested) censored demand settings (see §2.5). We

gave provably optimal regret bounds and also demonstrated the efficacy of the proposed

algorithms in numerical experiments (see in §2.6).
To conclude this chapter, we would like to highlight three potential research areas for

future study. First, the current model assumes an uncapacitated supply, but in practical

scenarios, the supply may have fixed or stochastic constraints. Therefore, it would be valu-

able to extend the current model to include capacitated supply cases, which is an important

research direction. Second, while product upgrading is prevalent in practice, there are also

situations where two-way substitution, involving both upgrading and downgrading, is possi-

ble. Investigating the optimal structure for models with two-way substitution, as well as de-

veloping learning algorithms for the incomplete information problem, would be a worthwhile

undertaking. Third, one may consider models with non-stationary demand. Addressing this

direction would require significant innovations in modeling and the design and analysis of

algorithms. Overall, these research avenues have the potential to significantly advance the

field, but they will require substantial efforts in modeling and algorithmic design.
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CHAPTER 3

Online Learning in Dual Sourcing Systems

The Sample Average Approximation (SAA) and Bandit Control techniques stand as pivotal

methodologies within the realms of stochastic optimization and online learning algorithms.

One fundamental assumption for the methods to work is the independence of the sample

data. However, the complexity of operational dynamics or the delay of rewards undermines

this independence, raising critical questions about the applicability and integration of these

techniques in optimizing problems, as well as their impact on the regret convergence rate.

Dual sourcing systems are one of the important topics in supply chain management, which

is known for its complicated dynamics and state-dependent optimal replenishment policy.

This chapter delves into the feasibility of merging Bandit Control techniques with SAA in

the application of dual-sourcing inventory systems, by analyzing underlying dynamics and

algorithm performances, providing insights into data-driven methods for this complex yet

crucial topic.

3.1 Introduction

The dual-sourcing inventory system has received tremendous attention from both industry

and academia for several decades. The system’s capability to order from two sources, one

cheaper but slower, and the other one faster but more expensive, provides more flexibility for

a firm’s supply chain management and facilitates maintaining satisfactory customer services

while controlling costs. Dual-sourcing systems are ubiquitous in practice. For example, Dell

sources the majority of its computer components sold in the US from Asia, which offers a

lower per-unit purchasing cost but suffers from a long lead time. To complement the supplier

in Asia, Dell also sources from Mexico for the benefit of a shorter lead time, although the per-

unit purchasing cost for the latter is higher (Xin and Van Mieghem (2021)). Dual sourcing

also provides opportunities for firms to reduce supply chain risk, which is a primary concern

for firms and has become even more prominent ever since the outbreak of the COVID-19

pandemic. The devastating impact of the pandemic reveals enormous risks of an inflexible
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supply chain and pushes firms worldwide to seek alternative sourcing to reduce supply chain

risk (Svoboda et al. (2021)).

The formal study of dual-sourcing inventory systems with backlogged demand dates back

as early as six decades ago, and it has become an important area in inventory management

ever since. Even with a known demand distribution, the optimal inventory replenishment

policy is known to be hard to compute. For the very special case where the lead times

differ by exactly one, the optimal solution can be fully characterized (Bulinskaya (1964),

Fukuda (1964)). For general lead times, however, the optimal policy is proved to be highly

state-dependent and adopts no simple structure (Whittemore and Saunders (1977)). The

unattainability of the optimal policy calls for the need to develop reasonable heuristic poli-

cies, among which one important class of policies is the dual-index policy proposed by Veer-

araghavan and Scheller-Wolf (2008). The dual-index policy is characterized by two critical

parameters, (zr, ze), where zr is the order-up-to level for the regular source, and ze is the

order-up-to level for the expedited source. The dual-index policy is intuitive and convenient

to implement, and the existing literature has shown that it is easy to compute and performs

near-optimally in extensive simulation studies (Veeraraghavan and Scheller-Wolf (2008)). Li

and Yu (2014) and Hua et al. (2015) also find that the dual-index policy exhibits excellent

performance in many applications. Besides, the dual-index policy inspires the development

of variants of other heuristic policies for the dual sourcing model such as the vector-based

policy by Sheopuri et al. (2010) and the capped dual-index policy by Sun and Van Mieghem

(2019).

When the demand distribution is not known a priori, the dual sourcing inventory control

problem becomes more challenging to solve. In this chapter, by adopting the optimal dual-

index policy as our benchmark, we develop online learning algorithms that learn the demand

distribution while minimizing total costs over the planning horizon. Our algorithm integrates

stochastic bandits and sample average approximation techniques in an innovative way, and

we prove that the online learning algorithm converges to the optimal dual-index policy with

a provable rate.

3.1.1 Main Results and Contributions

We summarize our main results and key contributions as follows.

Proving ergodicity of the supply chain formed under the dual-index policy. We

investigate the stochastic process of the dual-sourcing system formed under the dual-index

policy with backlogged demand. In Lemma 3.3.1, we demonstrate that the vector of pipeline

inventory and inventory position forms a Markov chain. In Theorem 3.3.1, we prove that
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the Markov chain is ergodic under mild conditions and converges exponentially fast to a

stationary distribution. By analyzing the stationary distribution, we can derive a simple

expression for the long-run average cost of the dual-index policy. This expression serves as

the foundation for defining and analyzing the regret of our learning algorithm.

Developing online learning algorithms and proving (tight) regret. When the de-

mand distribution is not known a priori, we propose a nonparametric learning algorithm

to approach the optimal (zr, ze) of the dual-index policy. The performance measure is re-

gret, which is the cost difference between a feasible learning algorithm and the clairvoyant

(full-information) optimal dual-index policy. We develop a nonparametric online learning

algorithm and show that it admits a regret upper bound of O(
√
T log T ) in Theorem 3.5.1,

which matches the regret lower bound for any feasible learning algorithms up to a logarithmic

factor.

Let ∆ = zr − ze. Next, we explain the three key ideas in our learning algorithm.

1. We propose a two-layer learning algorithm that updates the two parameters (∆, ze)

simultaneously. The outer layer discretizes the set of ∆ to obtain a grid and treats

each point on the grid as an arm of the bandit problem. The algorithm maintains an

active set for ∆ and approximates the clairvoyant optimal value by pruning the poorly

behaved choices in the active set. The inner layer updates the expedited order-up-to

level ze using the empirical quantile to approximate the optimal expedited order-up-to

level z∗e(∆) according to Proposition 3.3.2 for each ∆ choice in the active set. This is the

first attempt in the literature to integrate bandits with sample average approximation

methods, which also provably achieves a tight regret bound.

2. In the pruning process to search for the optimal ∆, we utilize the same data set to

evaluate each arm within the current active set. Because of the special structure of

the inventory system, after pulling one arm, we are able to evaluate the performance

of all the arms based on the realized demand data, which enables us to achieve high

estimation accuracies of all arms without extensive exploration of each of them. This

property of the problem enables our algorithm to achieve a tight regret convergence

rate because it maximizes the usage of any realized demand information.

3. In the estimation procedure, we apply SAA for both the empirical quantile solution for

z∗e(∆) and the average period cost for each ∆ choice. Due to the dependency between

two consecutive samples, we study the concentration behavior of the estimation based

on data from a Markov chain and utilize the ergodicity of the system variable to achieve

a tight regret bound for the regret analysis. A key step in our proofs leverages a specific

version of McDiarmid’s inequality for Markov chains (Ortner 2020, Paulin 2015).
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3.1.2 Literature Review

Our work is related to the following streams of literature.

Dual-sourcing systems. There has been a considerable amount of literature devoted to

studying dual-sourcing inventory systems for the past six decades due to their practical

importance. However, analyzing such systems is challenging due to the multi-dimensional

inventory pipeline vector that needs to be tracked. Earlier research focused on finding exact

optimal policies. For systems with consecutive lead times, where the lead times of the

expedited and regular sources are k and k+1, respectively, for some non-negative k, Fukuda

(1964) showed that the optimal policy is a Single-Index Dual-Base-Stock policy. For k = 0,

Bulinskaya (1964) derived the explicit form of the optimal parameters. However, when the

lead times are arbitrary, Whittemore and Saunders (1977) pointed out that the optimal

policy would be state-dependent and difficult to obtain, a finding that was confirmed by

Sheopuri et al. (2010).

Since deriving the optimal policy for dual-sourcing systems with arbitrary demands is

complex and difficult (Janakiraman and Seshadri 2017), recent literature has focused on de-

veloping effective heuristic policies that are reasonable and easy to implement. For example,

the vector base-stock policy (Sheopuri et al. 2010), the capped dual-index policy (Sun and

Van Mieghem 2019), and the tailored base-surge (TBS) policy (Allon and Van Mieghem

2010, Janakiraman et al. 2015, Xin and Goldberg 2018) have been proposed. The dual-index

policy is one of the most important heuristic policies and was first introduced by Veer-

araghavan and Scheller-Wolf (2008). The optimal dual-index policy mimics the behavior

of the complex optimal state-dependent policy found via dynamic programming and thus

performs nearly optimally for most cases. The dual-index policy has also been shown to

exhibit excellent performance in Li and Yu (2014) and Hua et al. (2015). Furthermore, the

vector-based policy proposed by Sheopuri et al. (2010) and the capped dual-index policy

proposed by Sun and Van Mieghem (2019) are both variants of the basic dual-index policy.

Nonparametric learning algorithms in inventory management. There has been an

ongoing research effort focused on developing nonparametric online learning algorithms for

inventory systems. For instance, Shi et al. (2016) and Chen et al. (2020c) have studied

the capacitated inventory system, while Zhang et al. (2018) has investigated the inventory

system with perishable products. The lost sales inventory system with lead times has been

examined by Agrawal and Jia (2022), Huh et al. (2009), Zhang et al. (2020). Cheung et al.

(2022) explored the general resource allocation problem. One popular method for tackling

these problems is the sample average approximation (SAA) approach (see, e.g., Kleywegt

et al. (2002), Levi et al. (2015, 2007a)), which leverages the empirical distribution derived

from uncensored samples drawn from the actual distribution. This approach has also been
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embedded in part of our algorithm design. More recently, Gong and Simchi-Levi (2023)

leveraged Q-learning techniques for online decision-making in inventory systems with cyclic

demands and proposed two algorithms for subsets of problems with full feedback and one-

sided feedback of demand.

There has been a stream of online learning algorithms in which there are two decision

variables to determine in each period. Our work is a sequel to Chen and Shi (2020), who

proposed an online algorithm that converges to the optimal TBS policy for the dual-sourcing

system. Our work differs from Chen and Shi (2020) in two main aspects. Firstly, we adopt

the optimal dual-index policy as the clairvoyant benchmark, and the system dynamics are

very different. Secondly, we consider general lead times for both regular and expedited

sources. These two differences result in a completely new algorithmic design and analysis.

For other applications, Chen et al. (2019a), Chen et al. (2021a), Chen et al. (2022a) and

Chen et al. (2020a) studied the joint pricing and inventory control problem. Yuan et al.

(2021) studied inventory management with the fixed cost where the two decision variables

are the reorder point and the order-up-to level. To the best of our knowledge, this chapter

is the first to consider learning the optimal dual-index policy with general lead times.

3.1.3 Organization and Notation

The remainder of the chapter is organized as follows. We formulate the periodic-review

dynamic stochastic dual sourcing inventory model in §3.2. We identify a sufficient condition

for the Markov chain associated with a dual-index policy to be ergodic in §3.3. Based on the

uniform ergodicity of the Markov chain, we propose our online learning algorithm in §3.4
with regret analyzed in §3.5. Finally, we conclude the chapter and point out several future

research directions in §3.7.
We introduce the general notation used in this chapter. For any real number x, we

denote x+ = max{x, 0} and x− = max{−x, 0}. For event A, the indicator function 1(A)

takes value 1 if A is true and 0 otherwise. The event A∁ denotes the complement of event A.

For integer n ≥ 1, [n] means the set {1, . . . , n}. For some of the random variables of interest

denoted by upper-case characters, we use corresponding lower-case characters to denote their

realizations.

3.2 Model Formulation

We formally describe the periodic-review dual-sourcing system with backlogged demand. Let

t ∈ {1, 2, . . .} represent the time period indexed forward. We denote the demand in period t
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byDt and its realization by dt. We assume thatDt, t = 1, . . . , T, are i.i.d. continuous random

variables across periods with cumulative distribution function H(·) and mean µ. Let D be

a (time) generic random variable of Dt, and for notational convenience, we shall use them

interchangeably unless there is ambiguity. For any t ∈ [T ], k ∈ Z, denote Dt
k :=

∑k
i=0D

t+i,

which is the cumulative demand from period t to period t+ k with k being an integer either

positive or negative. Note that when k < 0, Dt
k :=

∑0
i=kD

t+i. We use dtk to denote the

realization of Dt
k.

When making replenishment in each period, the firm can either order through the regular

channel at the unit cost cr or through the expedited channel with a shorter lead time at some

premium cost ce per unit. Let q
t
e and q

t
r be the ordering quantities from the expedited source

and the regular source, respectively. Regular orders arrive after lr periods and the lead time

for expedited orders is le with le < lr, i.e., the lead time difference is l := lr − le ≥ 1. At the

beginning of period t, the on-hand inventory level is denoted by I t. Demands are satisfied as

much as possible by the on-hand inventory. Any demand that is not satisfied is backlogged

and incurs a per-unit penalty cost of b. If there are leftover inventories at the end of each

period, they incur a per-unit holding cost of h.

3.2.1 Sequence of Events under Dual-Index Policy

Now we present the sequence of events under a dual-index policy with parameters (zr, ze).

Define ∆ = zr − ze and denote the lower bound of ∆ as ∆. Note that ∆ > 0; otherwise, the

problem would be reduced to a single-sourcing system. Instead of using (zr, ze) to represent

a dual-index policy, we use (∆, ze) which is more amenable for later algorithmic design and

analysis. Period t begins with on-hand inventory I t. Note that if we define “the next x

periods” to be period t, t + 1, . . . , t + x, before the firm places any order in this period,

there are already expedited orders qt−le
e , . . . , qt−1

e due to arrive in the next le − 1 periods and

regular orders qt−lr
r , . . . , qt−1

r due to arrive in the next lr − 1 periods. These are also referred

to as pipeline inventories. At the beginning of period t, the expedited inventory position IP t
e

equals the on-hand inventory plus the orders due to arrive in the next le − 1 periods while

the regular inventory position IP t
r equals the on-hand inventory plus the orders due to arrive

in the next lr − 1 periods. More specifically, one has

IP t
e = I t + (qt−le

e + . . .+ qt−1
e ) + (qt−lr

r + . . .+ qt−l−1
r ),

IP t
r = I t + (qt−le

e + . . .+ qt−1
e ) + (qt−lr

r + . . .+ qt−1
r )

= IP t
e + qt−l

r + . . .+ qt−1
r .
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At the beginning of period t, the firm places an expedited order qte to raise the expedited

inventory position IP t
e to the target level ze, and after that, the firm places a regular order

qtr to raise the regular inventory position IP t
r up to zr. Note that at the beginning of

period t, the regular order qt−l
r enters the consideration time window of the expedited source,

because it will arrive in period t + le. After the addition of qt−l
r , the expedited inventory

position may be already larger than the expedited order up to level ze, in which case an

“overshoot” happens. The quantity of overshoot is denoted by Ot, which can be represented

as Ot = (IP t
e+ q

t−l
r − ze)

+. The realization of Ot is denoted by ot. Therefore, the firm places

an expedited order

qte = (ze − IP t
e − qt−l

r )+.

Then the firm takes the expedited order made into consideration and places the regular order

qtr = zr − IP t
r − qte

= Dt−1 − (ze − IP t
e − qt−l

r )+.

Next, we summarize the sequence of events:

1. In period t, the firm begins with on-hand inventory level I t ∈ R.

2. The expedited inventory position is IP t
e and qt−l

r enters the time window, based on

which the firm makes qte expedited orders at the cost of ce per unit.

3. The regular inventory position is IP t
r, and the firm makes qtr regular order at the unit

cost cr.

4. The orders qt−lr
r and qt−le

e physically arrive. The demand Dt realizes to be dt, which

is satisfied by the on-hand inventory to the maximum extent; any excess demand is

backlogged. By Lemmas 4.2 and 4.3 in Veeraraghavan and Scheller-Wolf (2008), the

on-hand inventory for the next period can be represented as

I t+1 = ze + ot−le − dt−le

= zr − (qt−le
r + qt−le−1

r + . . .+ qt−lr+1
r )− (dt−le + . . .+ dt),

incurring a holding and penalty cost of h(I t+1)+ + b(I t+1)−.

The total cost incurred in period t, which consists of ordering costs from both two channels
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as well as holding and penalty costs, is the following,

Ct(∆, ze) = ceq
t
e + crq

t
r + h(I t+1)+ + b(I t+1)−. (3.1)

The firm would like to minimize the total expected cost over the planning horizon of T

periods.

3.3 Ergodicity of Underlying Markov Chain and No-

tion of Regret

3.3.1 Markov Chain

Before introducing the problem objective and the notion of regret, we first analyze the

underlying stochastic process of this problem. Given the two order-up-to levels ze, zr in the

dual-index policy, define the state variable

W t(ze, zr) := (qt−1
r , . . . , qt−l+1

r , IP t
e + qt−l

r ) ∈ Rl−1
+ × R.

As qte =
(
ze − IP t

e − qt−l
r

)+
, the last component of W t(ze, zr) captures the information of the

expedited order to make. The first l− 1 components are the regular order from period t− 1

to period t− (l−1), which capture the regular orders to arrive from period t+ l−1 to period

t+ 1. The next result shows that (W t(ze, zr), t ≥ 1) forms a Markov chain.

Lemma 3.3.1 (W t(ze, zr), t ≥ 1) forms a Markov chain.

Proof of Lemma 3.3.1. We would like to show thatW t+1(ze, zr) = (qtr, . . . , q
t−l+2
r , IP t+1

e +

qt−l+1
r ) only depends on W t(ze, zr) = (qt−1

r , . . . , qt−l+1
r , IP t

e + qt−l
r ). First note that

qt−1
r , . . . , qt−l+2

r are included in W t(ze, zr). Next we tackle qtr and IP t+1
e + qt−l+1

r .

By the system dynamics, we have

IP t
r = IP t−1

r + qt−1
e + qt−1

r −Dt−1 = zr −Dt−1.

Hence we have the following relationship,

qtr = zr − (IP t
r + qte) = Dt−1 − qte = Dt−1 − (ze − IP t

e − qt−l
r )+,

which only depends on W t. In addition,

IP t+1
e + qt−l+1

r = max(ze, IP
t
e + qt−l

r )−Dt + qt−l+1
r ,
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which also only depends on W t. Q.E.D.

Define W̄ t(ze, zr) := (qt−1
r , . . . , qt−l+1

r ,max(ze, IP
t
e + qt−l

r )) ∈ Rl
+.

3.3.2 Ergodicity

As shown above, (W t(ze, zr), t ≥ 1) forms a Markov chain, which may not necessarily be er-

godic due to the complicated structure of the process. Next, we provide a sufficient condition

under which the Markov chain can be proved to be ergodic. For any (ze, zr), define

γ(ze, zr) := P

(
D ≤

zr − ze

lr + 1

)
.

Assumption 3.3.1 The following two conditions hold.

(a)
(
1− P2lr

(
D ≤ ∆

lr+1

))log T
≤ 1√

e
,

(b) P
(
D ≤ Z̄

lr+1

)
≤ λ with λ < 1 being a known constant.

Because ∆ > 0, Assumption 3.3.1a is readily satisfied for large values of T . Assumption

3.3.1b is also very mild because lr + 1 ≥ 2. Recall that ∆ is the lower limit of ∆ = zr − ze

and Z̄ is the upper limit of zr (and ∆).

Next we show that under Assumption 3.3.1a, the Markov chain W t(ze, zr) is ergodic.

Note that the Markov chain {W t(ze, zr) : t ≥ 1} is ergodic if there exists a random variable

W∞(ze, zr) such that for any initial state w1,

lim
t→∞

δt
(
ze, zr, w

1
)
= 0,

where for any t ≥ 1,

δt
(
ze, zr, w

1
)

(3.2)

= sup

{∣∣P (W t(ze, zr) ∈ Ω | W 1(ze, zr) = w1
)
− P (W∞(ze, zr) ∈ Ω)

∣∣ :
measurable set Ω ⊆ Rl−1

+ × R

}
.

In such case, we say W∞(ze, zr) is the steady-state vector of {W t(ze, zr) : t ≥ 1}. With

the definitions above, we have the following result for the Markov chain {W t(ze, zr) : t ≥ 1}.
The proof of Theorem 3.3.1 is relegated to Appendix B.2.1.
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Theorem 3.3.1 Let ze and zr be the base stock levels for expedited and regular orders re-

spectively. Under Assumption 3.3.1a, the Markov chain {W t(ze, zr) : t ≥ 1} is ergodic with

a steady-state random variable W∞(ze, zr). Furthermore, for any initial inventory vector

w1 ∈ Rl−1
+ × R and t ≥ 2lr + 1,

δt+1
(
ze, zr, w

1
)

≤


(1− γ(ze, zr)

2lr)t/4lr +H(w̄1 · 1l − zr)
t/2−lr , if infinite support,

(1− γ(ze, zr)
2lr)t/4lr + exp

(
4(w̄1 · 1l − zr)

D̄
−

2µ2(t/2− lr)

D̄2

)
, if D ≤ D̄ w.p. 1,

where D̄ and H(·) are the upper bound and cumulative distribution function of demand D.

Theorem 3.3.1 states that the Markov chain W t(ze, zr) not only is ergodic but also con-

verges to its steady stateW∞(ze, zr) exponentially fast regardless of the demand distribution

or the initial state. This result holds for both D having an infinite support and D upper

bounded with probability 1. For the rest of the analysis, we will focus on the case where

D ≤ D̄ with probability 1.

The main idea of the proof of Theorem 3.3.1 is that all sample paths couple after a

certain demand pattern. If demand is small enough, say Dt ≤
zr − ze

lr + 1
consecutively for 2lr

periods, then in the second lr periods during the pattern, the expedited order is zero and the

regular order only depends on the demand realizations. In this way, all the sample paths will

meet regardless of the state of the inventory vector before the demand pattern occurs. This

coupling argument builds the foundation for proving the ergodicity of the Markov chain.

Note that Huh et al. (2009) proved the ergodicity of a single-sourcing inventory system with

lost sales. Because the system dynamics of the dual-sourcing system are completely different,

our analysis is also different and new.

3.3.3 Regret Definition

Because the overshoot Ot = (IP t
e+ q

t−l
r −ze)+ only depends on W t, its steady state distribu-

tion exists and is denoted by O∞. Moreover, the per-period cost Ct(∆, ze) defined in (3.1)

also only depends on W t. This is because

qte = (ze − IP t
e − qt−l

r )+,

qtr = Dt−1 − (ze − IP t
e − qt−l

r )+,

I t+1 = ze +Ot−le −Dt
−le = max

{
ze, IP

t
e + qt−l

r

}
−Dt

−le .
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Therefore, there exists a stationary distribution for Ct(∆, ze), denoted by C∞(∆, ze), which

can be represented as

C∞(∆, ze) = ceq
∞
e + crq

∞
r + hE

[
(I∞)+

]
+ bE

[
(I∞)−

]
= ceq

∞
e + crq

∞
r + hE

[
(ze +O∞ −Dle)

+
]
+ bE

[
(ze +O∞ −Dle)

−]
= (ce − cr)q

∞
e + crE [D] + hE

[
(ze +O∞ −Dle)

+
]
+ bE

[
(ze +O∞ −Dle)

−] ,
(3.3)

where Dle denotes the sum of le + 1 random variable D.

Let (z∗e , z
∗
r ) be the clairvoyant optimal dual-index policy that maximizes E [C∞(ze, zr)]

under complete information about the demand distribution, and let ∆∗ = z∗r − z∗e . To solve

for (z∗e , z
∗
r ), it is equivalent to solve for (∆

∗, z∗e). We aim to develop a learning algorithmALG

that only makes use of historical demand data. Using the clairvoyant optimal dual-index

policy (∆∗, z∗e) as a natural benchmark, we define the regret by

RALG
T := E

[
T∑
t=1

Ct
ALG − TC∞(∆∗, z∗e)

]
,

where
∑T

t=1C
t
ALG is the total cost by running the learning algorithmALG when the demand

distribution is unknown. Note again that our regret is defined as the cost difference between

a feasible learning algorithm and the clairvoyant (full-information) optimal dual-index policy

instead of the true optimal policy.

To solve for the optimal (∆∗, z∗e), we first quote the following critical result directly from

Veeraraghavan and Scheller-Wolf (2008):

Proposition 3.3.1 (Proposition 4.1 and Lemma 5.1 in Veeraraghavan and

Scheller-Wolf (2008)). Both the overshoot Ot and the expedited order quantity qte are

functions of ∆, independent of ze.

Based on Proposition 3.3.1, to solve for z∗e in (3.3), one needs to minimize

hE [(ze +O∞ −Dle)
+] + bE [(ze +O∞ −Dle)

−], which is the newsvendor problem. For any

∆, let F∆ be the CDF of Dle − O∞ (∆), the following proposition states that z∗e is the

newsvendor quantile solution.

Proposition 3.3.2 (Theorem 4.1 in Veeraraghavan and Scheller-Wolf (2008))

The optimal level of ze given ∆ is z∗e(∆) = F−1
∆

(
b

b+h

)
.

Note that although the stationary distribution was mentioned in Veeraraghavan and

Scheller-Wolf (2008), there were no results in Veeraraghavan and Scheller-Wolf (2008) re-

garding how fast the system converges to the stationary distribution, which is a critical

result for developing online learning algorithms. Therefore, we provide Theorem 3.3.1 con-
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firming that the Markov chain converges to its stationary distribution exponentially fast.

After optimizing over ze under a given ∆, a natural question to ask is how to solve for the

optimal ∆. Unfortunately, there are no structural results of the objective as a function of ∆

even with known demand distribution, and one needs to conduct a one-dimensional search

to solve for the optimal ∆.

3.4 Online Learning Algorithm

We propose an online learning algorithm called (∆, ze) algorithm that converges to the

clairvoyant optimal dual-index policy with a provably fast rate.

The development of the (∆, ze) algorithm is based on Propositions 3.3.1 and 3.3.2. Next,

we present a high-level overview of it. At the beginning of the algorithm, the algorithm

discretizes ∆ into J arms and initializes the demand dataset D0 to be empty. The algorithm

consists of two layers, with the outer layer learning the optimal ∆ via adaptively eliminat-

ing inferior arms and the inner layer approximating the optimal ze under a given ∆ using

empirical quantiles. The algorithm proceeds in epochs. Epoch n starts with an active set

An ⊂ [J ] that contains all the “good performing” arms of ∆ evaluated by the empirical

average cost. For each j ∈ An, the algorithm has estimated the empirical optimal expedited

order-up-to level znej using historical data. During epoch n, the algorithm randomly selects

an arm ∆jn from the active set An and operates the system for Bn periods under (∆jn , z
n
ejn).

After demands during epoch n realize, the demand dataset is updated from Dn−1 to Dn with

the addition of new demand data. The updated dataset Dn is then applied to simulate the

dual-index policy for each j ∈ An. Specifically, based on Dn, the algorithm recomputes the

empirical quantile as the estimator for the optimal expedited order-up-to level and updates

it from znej to z
n+1
ej . In addition, the algorithm also updates the empirical average cost under

∆j. By comparing the empirical average costs under ∆j, j ∈ An, the algorithm prunes the

active set An according to a confidence size εn and obtains An+1.

In the algorithm, let J = ⌊
√
T ⌋, Bn = ⌈ 2n

log T
⌉, where J is the number of arms for ∆ after

discretization and Bn is the length of epoch n. Let ∆ be the lower limit of ∆ = zr − ze

and Z̄ be the upper limit of zr (and ∆). Denote µ as the known lower limit of the demand

mean µ. Let F̂t,∆j
(x) = P̂ (Dt

−le
− Ot−le(∆j) ≤ x) be the empirical cumulative distribution

function of Dt
−le

− Ot−le(∆j) under ∆j at time t. We let all variables with superscripts not

in [T ] be 0. The detailed pseudo-code for the (∆, ze) algorithm is presented in Algorithm 5.

As the simulation process is embedded in Algorithm 5, we discuss its runtime and space

complexity here. The initialization step takes O(
√
T ) time. For each epoch n, the dual-

index policy with selected indices (zte, z
t
r) = (znejn , z

n
ejn + ∆jn) has a time complexity of
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Algorithm 5 The (∆, ze) learning algorithm (π for short) for the dual-index policy

Let J = # discrete ∆’s and N = min
{
n :
∑n

i=1⌈
2i

log T
⌉ ≥ T

}
the number of epochs.

Let Bi = ⌈ 2i

log T
⌉ be the i-th epoch length.

Let Ln =
∑n

i=1B
i, ∀n ∈ [N − 1] with L0 = 0, LN = T . ▷ Parameters

Initialize the active set A1 = {1, . . . , J}, D0 = ∅. ▷ Initialization

For j ∈ A1, define ∆j = ∆+ j
J

∣∣Z̄ −∆
∣∣ and assign z1ej ∈ [0, Z̄ −∆j] arbitrarily.

for n = 1, 2, . . . , N do ▷ Outer Loop

Randomly select jn ∈ An. Let demand set Dn = Dn−1.

for t = Ln−1 + 1, . . . ,min{Ln, T}: do

Apply the dual-index policy (zte, z
t
r) = (znejn , z

n
ejn +∆jn).

Append the realized demand dt into Dn.

qte = (znejn − IP t
e − qt−l

r )+, qtr = (znejn +∆jn − IP t
r − qte)

+,

IP t+1
e = IP t

e + qte − dt + qt−l
r , IP t+1

r = IP t
r + qte + qtr − dt,

ot = (IP t
e + qt−l

r − znejn)
+, I t+1 = I t + qt−le

e + qt−lr
r − dt.

end for

for j ∈ An do ▷ Inner Loop

Simulate the policy (znej, z
n
ej +∆j) for min{Ln, T} periods using Dn and denote the

state variables of this simulation as Ŵ t
j := (q̂t−1

rj , . . . , q̂t−l+1
rj , ÎP

t

ej + q̂t−l
rj ) ∈ Rl−1

+ × R for

t = 1, . . . , Ln.

Obtain the estimated average period cost:

Ĝn
j =

1

Ln

∑
t∈[Ln]

ceq̂
t
ej + crq̂

t
rj + h(Î t+1

j )+ + b(Î t+1
j )−.

Let X n
j =

{
dtle − ôtj, t ∈ [Ln − le]

}
.

Let F̂ n
∆j
(·) be the empirical CDF of X t

j = Dt
le
− Ôt

j(∆j) with data sample X n
j .

Update zn+1
ej = F̂ n−1

∆j
( b
b+h

). ▷ Inner Layer Optimization

end for

Update and prune the active set ▷ Outer Layer Optimization

An+1 =

{
j ∈ An : Ĝn

j − min
j′∈An

Ĝn
j′ ≤ εn

}
.

end for
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O(Bn). Then, the simulation process iterates over all O(
√
T ) arms in An, with each arm

having a time complexity of O(Ln). Thus, the total time complexity of Algorithm 5 is

O(
∑N

n=1(B
n +

√
TLn)), which is O(T

3
2 ) since N ≤ log2(T log T + 2) − 1. For Algorithm

5 to work, we require O(
√
T ) space to store the information for the active arm set An,

including the ∆j, zej, and Ĝn
j for arm j. In the implementation of the dual-index policy,

we need to store the information of qte, q
t
r, q

t−l
r , IP t

e, IP t
r, O

t, and I t, which is of O(1)

space complexity. For the simulation process, we need the same O(1) vector to store the

information for each arm and O(T ) to store the demand information. Thus, the total space

complexity of Algorithm 5 is O(T ).

3.5 Regret Analysis

We have the following convergence result for the regret of our (∆, ze) algorithm. For ease of

notation, we refer to our (∆, ze) learning algorithm as Algorithm π for the remainder of this

chapter.

Theorem 3.5.1 Set the parameters J = ⌊
√
T ⌋ and εn = 2 (b+ h) Z̄αn + 2βn, where

αn =
3

2

√
3T0 log T

Ln−1
and βn =

3C̄

2

√
T0 log T

Ln
,

and T0 being a constant defined in (3.9) and C̄ = (ce + cr +h)Z̄ + b(le +1)D̄ being the upper

limit of the cost per period. Then the regret of our learning algorithm Rπ
T = O

(√
T log T

)
.

The regret upper bound in Theorem 3.5.1 is based on our regret definition in §3.3.3, which
uses a “weaker” clairvoyant benchmark, namely the optimal dual-index policy, rather than

the true optimal policy for the dual-sourcing system, which is state-dependent and difficult

to obtain.

The following proposition establishes the lower bound (for any online learning algorithms).

Proposition 3.5.1 Suppose that T > 5. The expected regret for any learning algorithm for

our dual-sourcing problem is lower bounded by Ω(
√
T ).

Proposition 1 in Zhang et al. (2020) provides an example of a demand scenario in which any

learning algorithm incurs a regret of at least Ω(
√
T ). This proposition examines a single

source problem, which is a special case of our problem with le = 0 and lr = ∞. We thus

omit the proof of Proposition 3.5.1 here. By combining the results from Theorem 3.5.1

and Proposition 3.5.1, we assert that the regret upper and lower bounds match, up to a

logarithmic factor.

Now, the remainder of this section will be devoted to establishing Theorem 3.5.1. Denote

z∗e(∆) as the optimal expedited order-up-to level given ∆ and j∗ as the index of the optimal
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arm of ∆ among all the discretized values. Recall that Ct
π is the cost in period t by running

our learning algorithm π. To prove Theorem 3.5.1, we decompose the regret of our algorithm

π into four parts as below:

Rπ
T =E

[
T∑
t=1

Ct
π − TC∞(∆∗, z∗e)

]

=E

[
T∑
t=1

(
Ct

π − C∞ (∆t, zte
))]

(Nonstationarity Loss)

+ E

[
T∑
t=1

(
C∞ (∆t, zte

)
− C∞ (∆t, z∗e(∆

t)
))]

(Empirical Suboptimality Loss)

+ E

[
T∑
t=1

(
C∞(∆t, z∗e(∆

t))− C∞(∆j∗ , z
∗
e(∆j∗))

)]
(Bandit Pruning Loss)

+ E

[
T∑
t=1

(C∞ (∆j∗ , z
∗
e(∆j∗))− C∞ (∆∗, z∗e))

]
. (Discretization Loss)

Then, to establish Theorem 3.5.1, it suffices to bound the above four terms. We provide an

explicit upper bound for each of them as follows.

Proposition 3.5.2 (Nonstationary Loss Bound)

E

[
T∑
t=1

(
Ct

π − C∞(∆t, zte)
)]

= O((log T )3).

Proposition 3.5.3 (Empirical Suboptimality Loss Bound)

E

[
T∑
t=1

(
C∞(∆t, zte)− C∞(∆t, z∗e(∆

t))
)]

= O
(√

T log T
)
.

Proposition 3.5.4 (Bandit Pruning Loss Bound)

E

[
T∑
t=1

(
C∞ (∆t, z∗e

(
∆t
))

− C∞ (∆j∗ , z
∗
e (∆j∗))

)]
= O

(√
T log T

)
.

Proposition 3.5.5 (Discretization Loss Bound)

E

[
T∑
t=1

(C∞ (∆j∗ , z
∗
e(∆j∗))− C∞ (∆∗, z∗e))

]
= O(

√
T ).

To help illustrate the structure of the proof of Theorem 3.5.1, we present a roadmap
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showing the main steps in regret analysis for the algorithm in Figure 3.1.

Cost Implementing                 Algorithm  

Nonstationary Loss
Coupling Analysis

Steady-state cost using  

Empirical Quantile
(Lemma 7)

Suboptimality Loss

Steady-state cost using

Suboptimality (Lemma 9)
Mean Estimation (Lemma 10)
Pruning Set (Lemma 11)

Bandit Loss

Steady-state cost using 

(Lemma 2)
(Proposition 4)

(Proposition 5) (Proposition 6)

Steady-state cost using optimal 

Discretization Loss

(Proposition 7)

Discretizing Choice
(Section 5.4)

Regret Bound

Ergodicity of Markov Chain

Concentration Results

(Theorem 1) 

(Lemma 6)

Figure 3.1: High-Level Roadmap for Regret Analysis

3.5.1 Proof of Proposition 3.5.2 - Bound the Nonstationarity Loss

To bound E
[∑T

t=1 (C
t
π − C∞(∆t, zte))

]
, we first propose a result of the mixing property of

the process. Note that mixing properties are important for the analysis of Markov chains,

especially in non-episodic reinforcement learning such as Azizzadenesheli et al. (2016).

Lemma 3.5.1 Consider the process (W t(ze, zr), t ≥ 1) under the dual-index policy (ze, zr)

with arbitrary W̄ 1 · 1l. Define an auxiliary process (W̃ t(ze, zr), t ≥ 1) where W̃ 1(ze, zr) is

randomly sampled from the steady-state W∞(ze, zr), and (W̃ t(ze, zr), t ≥ 1) is driven in the

same way by the same demand process as (W t(ze, zr), t ≥ 1). Then under Assumption 3.3.1a,

we have

P
(
W τ+1 = W̃ τ+1

)
≥ 1−

K0 + 1

T
5
2

,

where τ := ⌈5D̄2

4µ2 log T ⌉+ 2lr⌈5 (log T )2⌉.
Lemma 3.5.1 states that the processes with two different starting states will couple after

O ((log T )2) periods with high probability. The intuition for proving Lemma 3.5.1 is the

following.

1. Regardless of the initial state, after implementing (ze, zr) for O(log T ) periods for any

given (ze, zr), the regular inventory position will not exceed zr with high probability.

2. When there is no overshoot over zr, suppose that we create an auxiliary process start-

ing with a state sampling from the steady-state W∞(ze, zr) and sharing the same

demand sample path with W t(ze, zr). Then after O ((log T )2) periods, the process

(W t(ze, zr), t ≥ 1) will couple with the auxiliary process with high probability.
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Before introducing the formal proof for Lemma 3.5.1, we first introduce the following two

lemmas that support the intuitions explained above.

Lemma 3.5.2 Consider the process (W t(ze, zr), t ≥ 1) under the dual-index policy (ze, zr),

for any initial state W 1(ze, zr) we have

P
(
W̄

⌈ 5D̄2

4µ2
log T ⌉

(ze, zr) · 1l ≤ zr

)
≥ 1−

K0

T
5
2

,

where K0 = e
4(Z̄−zr)

D̄
+ 2µ2lr

D̄2 .

Lemma 3.5.3 Consider the process (W t(ze, zr), t ≥ 1) under dual-index policy (ze, zr) with

W̄ 1 · 1l ≤ zr. Define an auxiliary process (W̃ t(ze, zr), t ≥ 1) where W̃ 1(ze, zr) is randomly

sampled from the steady-state W∞(ze, zr). Then under Assumption 3.3.1a, we have

P
(
W 2lr⌈5 log T ⌉+1 = W̃ 2lr⌈5 log T ⌉+1

)
≥ 1−

1

T
5
2

.

Proof of Lemma 3.5.2. Note that the sum of the components of W̄ t(ze, zr) is the regular

inventory position before making the regular order, i.e., W̄ t(ze, zr) · 1l = IP t
r + qte. Denote

events S = {W̄ ⌈ 5D̄2

4µ2
log T ⌉

(ze, zr) · 1l ≤ zr} and

S̃(w̄1) =

{
W̄

⌈ 5D̄2

4µ2
log T ⌉

(ze, zr) · 1l ≤ zr|W̄ 1(ze, zr) = w̄1

}
,

and the latter means that the regular inventory position before making regular order is no

larger than zr in period ⌈5D̄2

4µ2 log T ⌉ given the regular inventory position in period 1 is w̄1.

By Lemma B.2.3 in Appendix B.2.1, we have

P
(
W̄ t(ze, zr) · 1l > zr|W̄ 1(ze, zr) = w̄1

)
≤ e4(w̄

1·1l−zr)/D̄ · e−2µ2(t−lr)/D̄2

.

Therefore, when t = ⌈5D̄2

4µ2 log T ⌉ ≥ 5D̄2

4µ2 log T , we have

P
(
S̃(w̄1)

)
≥ 1−

e
4(w̄1·1l−zr)

D̄
+ 2µ2lr

D̄2

T
5
2

.

As w̄1 · 1 ≤ Z̄, which is the upper limit of the regular inventory position, we have

P
(
S̃(w̄1)

)
≥ 1−

K0

T
5
2

, ∀w̄1.
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Hence, we have P (S) ≥ 1−
K0

T
5
2

. Q.E.D.

Proof of Lemma 3.5.3. In the auxiliary stochastic process {W̃ t(ze, zr), t ≥ 1}, note that

W̃ 1(ze, zr) is a realization of the steady state variable W∞(ze, zr):

W̃ 1(ze, zr) = (q̃∞r , . . . , q̃
∞
r , ˜IP

∞
e + q̃∞r ).

For t ≥ 1, the state variables follow the same system dynamics as W t(ze, zr), i.e., the two

processes share the same demand realizations:

q̃te = (ze − ˜IP
t

e − q̃t−l
r )+, q̃tr = ze +∆− ˜IP

t

r − q̃te,

˜IP
t+1

e = ˜IP
t

e + q̃te − dt + q̃t−l
r , ˜IP

t+1

r = ˜IP
t

r + q̃te + q̃tr − dt,

õt = ( ˜IP
t

e + q̃t−l
r − ze)

+, Ĩ t+1 = Ĩ t + q̃t−le
e + q̃t−lr

r − dt.

After a specific demand pattern, the two processes W̃ t(∆, ze) and Ŵ
t(∆, ze) will couple,

implying that the states in W̃ t(∆, ze) will be independent of its initial state, given that the

initial regular inventory position is at most zr. This demand pattern is the following:

Dt ≤
zr − ze

lr + 1
, ∀1 ≤ t ≤ 2lr. (3.4)

After 2lr periods of such a pattern where the demand in each period is small enough,

then for t = lr + 1, . . . , 2lr, the overshoot is always positive, and the regular order qtr = dt−1.

Hence, if such a pattern ends in period t′, then according to (B.1) in Appendix B.2.1, the

state in period t′ + 1 is W t′+1 = (dt
′−1, . . . , dt

′−l+1, dt
′
) which only depends on the demand

realizations.

Thus, we denote event Ũ as the occurrence of such a demand pattern during periods 1

to 2lr⌈5 (log T )2⌉, which means that there are 2lr consecutive periods where demands satisfy

Dt ≤
zr − ze

lr + 1
. If we divide the 2lr⌈5 (log T )2⌉ periods into ⌈5 (log T )2⌉ fragments of length

2lr and consider each fragment independent of the others, the probability that one segment

does not follow the pattern specified in (3.4) is at most 1− γ2lr . Hence, we have

P
(
Ũ ∁
)
≤
(
1− γ2lr

)⌈5(log T )2⌉ ≤
(
1− γ2lr

)5(log T )2

,

and 1− γ2lr ∈ [0, 1).
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By Assumption 3.3.1a, we have
(
1− γ2lr

)log T ≤ 1√
e
, which implies

P
(
Ũ ∁
)
≤ 1

(
√
e)

5 log T
=

1

T
5
2

.

Q.E.D.

Combining Lemma 3.5.2 and 3.5.3, Lemma 3.5.1 naturally holds.

Proof of Lemma 3.5.1. Recall that event S = W̄
⌈ 5D̄2

4µ2
log T ⌉

(ze, zr) · 1l ≤ zr, which means

that the inventory position drops below zr after ⌈5D̄2

4µ2 log T ⌉ periods. We further denote

event U as the demand pattern described in (3.4) occurring during periods ⌈5D̄2

4µ2 log T ⌉ + 1

to period τ = ⌈5D̄2

4µ2 log T ⌉+ 2lr⌈5 (log T )2⌉. By Lemma 3.5.2, we have

P (S) ≥ 1−
K0

T
5
2

with K0 = e
4(Z̄−zr)

D̄
+ 2µ2lr

D̄2 ,

and by Lemma 3.5.3, we have P (U) ≥ 1−
1

T
5
2

. Because event S only depends on the demand

realizations during the first ⌈5D̄2

4µ2 log T ⌉ periods while event U depends on the demand pattern

from period ⌈5D̄2

4µ2 log T ⌉ + 1 to period τ , we know that event S is independent of event U .

Consider the event Ṽ :=
{
W τ+1 = W̃ τ+1

}
, we have S∩U ⊆ Ṽ (if the regular inventory level

drops below zr and the demand pattern in (3.4) appears afterwards, then event Ṽ happens),

thus Ṽ ∁ ⊆ (S ∩ U)∁. Therefore,

P
(
Ṽ ∁
)
≤ P

(
S∁ ∪ U ∁

)
≤ P

(
S∁
)
+ P

(
U ∁
)
≤ K0

1

T
5
2

+
1

T
5
2

= (K0 + 1)
1

T
5
2

.

Q.E.D.

Now we are ready to apply the mixing property of the process as indicated in Lemma

3.5.1. Let

N0 = log2 log T + log2

(
10lr(log T )

2 +
5D̄2

4µ2
log T + 2lr + 1

)
.

Then when n ≥ N0, we have that the length of the epoch n is at least τ , i.e.,

Bn =

⌈
2n

log T

⌉
≥
⌈

2N0

log T

⌉
= 10lr(log T )

2 +
5D̄2

4µ2
log T + 2lr + 1 ≥ τ.
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Specifically, we can decompose the regret in epoch n ≥ N0 in the following way:

E

 T∑
t=LN0+1

(
Ct

π − C∞(∆t, zte)
)

=
N∑

n=N0+1

E

[
Ln∑

t=Ln−1+1

(
Ct

π − C∞(∆t, zte)
)]

=
N∑

n=N0+1

E

[
Ln−1+τ∑

t=Ln−1+1

(
Ct

π − C∞(∆t, zte)
)
+

Ln∑
t=Ln−1+τ+1

(
Ct

π − C∞(∆t, zte)
)]
.

For each epoch n ≥ N0, define an auxiliary process {W̃ t(ze, zr)}Ln−1+1≤t≤Ln where

W̃Ln−1+1(ze, zr) is randomly sampled from the steady-state W∞(ze, zr). Denote event

V n :=
{
WLn−1+τ+1(ze, zr) = W̃Ln−1+τ+1(ze, zr)

}
, which means that the process following

the algorithm will couple with the auxiliary process. Then based on Lemma 3.5.1, we have

P (V n) ≥ 1−
K0 + 1

T
5
2

.

Also, when event V n occurs, it means that the event{
W t(ze, zr) = W̃ t(ze, zr), ∀Ln−1 + τ + 1 ≤ t ≤ Ln

}
also occurs. Because W̃Ln−1+1(ze, zr)

is randomly sampled from the steady-state W∞(ze, zr), we have that W t(ze, zr) also

follows the steady-state distribution for periods Ln−1 + τ + 1 to Ln. Furthermore,

the per-period cost Ct (∆, ze) also depends on W t(∆, ze) as shown in §3.3.3, we have

E
[∑Ln

t=Ln−1+τ+1 (C
t
π − C∞(∆t, zte)) | V n

]
= 0.

Therefore, the total nonstationary loss satisfies

N∑
n=1

E

[
Ln−1+τ∑

t=Ln−1+1

(
Ct

π − C∞(∆t, zte)
)
+

Ln∑
t=Ln−1+τ+1

(
Ct

π − C∞(∆t, zte)
)]

=
LN0∑
t=1

E
(
Ct

π − C∞(∆t, zte)
)
+

N∑
n=N0+1

E

[
Ln−1+τ∑

t=Ln−1+1

(
Ct

π − C∞(∆t, zte)
)]

+
N∑

n=N0+1

E

[
Ln∑

t=Ln−1+τ+1

(
Ct

π − C∞(∆t, zte)
)
| V n

]
P (V n)

+
N∑

n=N0+1

E

[
Ln∑

t=Ln−1+τ+1

(
Ct

π − C∞(∆t, zte)
)
| V n∁

]
P
(
V n∁

)
≤LN0C̄ +NτC̄ + 0 · P (V n) + TC̄P

(
V n∁

)
(3.5)
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≤LN0C̄ +NτC̄ + 0 · 1 + T
K0 + 1

T
5
2

C̄ = O((log T )3), (3.6)

where (3.5) is because, for the first LN0 periods, the cost difference is at most τC̄ with C̄

being the upper bound of the cost per period. For each epoch n ≥ N0, when t ≤ τ , the cost

difference per period is still bounded by C̄ and for t > τ , the cost difference is calculated

using the law of total expectation. Conditional on event V n, we have that the difference is 0

and conditional on event V n∁, the difference is also bounded by C̄ for each period. The last

inequality (3.6) is due to LN0 =
∑N0

i=1B
i ≤ N0⌈ 2N0

log T
⌉ = O(log T )3, N ≤ log2(T log T +2)− 1

as well as P (V n) ≤ 1.

3.5.2 Proof of Proposition 3.5.3 - Bound the Empirical Subopti-

mal Loss

To show the bound for the cost difference between the estimated quantile and the theoretical

quantile, i.e., E
[∑NL

t=1 (C
∞ (∆t, zte)− C∞ (∆t, z∗e(∆

t)))
]
, first we show the following lemma

on the relationship between the accuracy of the empirical quantile and the expected cost

difference.

Lemma 3.5.4 Let F∆(·) be the CDF of Dle − O∞ (∆) and z∗e = F−1
∆

(
b

b+h

)
. For any ze, if

|F (ze)− F (z∗e)| ≤ α for some α > 0, then we have

E [C∞(∆, ze)− C∞(∆, z∗e)] ≤ α(b+ h) |ze − z∗e | .

Proof of Lemma 3.5.4. Note that the limiting average cost of the system under the dual-

index policy (∆, ze) is

E [C∞(∆, ze)] =(ce − cr)E [q∞e ] + crE [D] + hE
[
(I∞)+

]
+ bE

[
(I∞)−

]
=(ce − cr)E [q∞e ] + crE [D] + hE

[
(ze +O∞ −Dle)

+
]
+ bE

[
(ze +O∞ −Dle)

−] ,
Based on Proposition 3.3.1, we know the expedited ordering quantity qte and the overshoot

Ot are functions of ∆ but not ze. Hence, we have

E [C∞(∆, z1)− C∞(∆, z2)]

=hE
[
(z1 +O∞ −Dle)

+ − (z2 +O∞ −Dle)
+
]
+ bE

[
(z1 +O∞ −Dle)

− − (z2 +O∞ −Dle)
−] ,

(3.7)

where (3.7) is the difference of the newsvendor cost with demand variable Dle −O∞. There-
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fore, by Lemma 2.1 in Levi et al. (2007a), we have that (3.7) can be bounded as follows:

E [C∞(∆, ze)− C∞(∆, z∗e)] ≤ α(b+ h) |ze − z∗e | .

Lemma 3.5.4 is thus proved. Q.E.D.

Now we focus on the difference between the empirical quantile and the theoretical quantile

solution. The main idea is based on the concentration result for uniformly ergodic Markov

chains. We define dTV(P,Q) := supA∈F |P (A)−Q(A)| for two distributions P and Q defined

on the same (S,F) where S is a state space and F is a σ-algebra defined on S. Recall that
a Markov chain with stationary distribution ψ, state space S, and transition kernel P (x, dy)

is uniformly ergodic if there exists some ρ < 1 and M <∞ such that for all n ∈ Z+,

sup
x∈S

dTV (P n(x, ·), ψ) ≤Mρn.

By Theorem 3.3.1, we have the Markov chain {W t(ze, zr) : t ≥ 1} is uniformly ergodic, which

bears the following version of McDiarmid’s inequality.

Lemma 3.5.5 (Lemma 1 in Ortner (2020)) Consider a uniformly ergodic Markov

chain X1, . . . , Xn on state space S with stationary distribution ψ and transition kernel

P (x, dy). The mixing time tmix is defined by tmix := min
{
t : supx∈S dTV (P t(x, ·), ψ) ≤ 1

4

}
where dTV(P,Q) := supA∈F |P (A)−Q(A)| for two distributions P and Q defined on the same

(S,F). Let f : Sn → R with

f (s1, . . . , sn)− f (s′1, . . . , s
′
n) ≤

n∑
i=1

ιi1 [si ̸= s′i] ,∀ (s1, . . . , sn) , (s′1, . . . , s′n) ∈ Sn. (3.8)

Then for any θ ≥ 0,

P {|f (X1, . . . , Xn)− E [f (X1, . . . , Xn)]| ≥ θ} ≤ 2 exp

(
− 2θ2

9∥ι∥22tmix

)
.

As Theorem 3.3.1 established the uniform ergodicity of Markov chain W t(ze, zr), we have

the following corollary.

Corollary 3.5.1 Consider the Markov chain (W t (ze, zr) , t ≥ 1), we have tmix ≤ T0 where

T0 := min
η∈(0, 14)

max

{
4lr · exp

(
log η log

(
1− λ)2lr

))
,−D̄

2

µ2
log

(
1

4
− η

)
+

4D̄
(
w̄1 · 1l

)
µ2

+ 2lr

}
.

(3.9)
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Proof of Corollary 3.5.1. Denote the minimizer of (3.9) by η∗. For the Markov chain

(W t (ze, zr) , t ≥ 1), we have tmix = min
{
n | δt (ze, zr, w1) ≤ 1

4

}
where δt (ze, zr, w

1) is defined

in (3.2). Consider when t ≥ T0, by Assumption 3.3.1b, we have

t ≥ 4lr · exp
(
log η∗ · log

(
1− γ(ze, zr)

2lr
))
, t ≥ −D̄

2

µ2
log

(
1

4
− η∗

)
+

4D̄
(
w̄1 · 1l

)
µ2

+ 2lr,

which means

(
1− γ (ze, zr)

2lr
)t/4lr

≤ η∗, exp

(
4
(
w̄1 · 1l − zr

)
D̄

− 2µ2 (t/2− lr)

D̄2

)
≤ 1

4
− η∗.

Hence, by the definition of tmix, the corollary is proved. Q.E.D.

Now we utilize Lemma 3.5.5 to achieve a concentration result for the empirical quan-

tile of the variable Dle − O∞ obtained from the simulation. Consider the Markov chain{
Ŵ t

j

}Ln

t=1
, ∀n ∈ [N ], j ∈ [J ] which is the simulated process if the system follows the dual-

index policy (∆j, z
n
ej) using the demand data from period 1 to Ln. Recall from Proposition

3.3.1, the overshoot Ot only depends on ∆. Hence, for the Markov chain
{
Ŵ t

j

}Ln

t=1
following

the dual-index policy
(
∆j, z

n
ej

)
, we have that the steady-state overshoot O∞ (∆j) only de-

pends on ∆j. For simplicity of notation, we denote O∞ (∆j) by O
∞
j in the following analysis,

in accordance with the notation scheme in Algorithm 5. For any j ∈ [J ], let F∆j
(·) denote

the CDF of Dle −O∞
j . Recall that F∆j

(z∗e (∆j)) =
b

b+h
.

Lemma 3.5.6 For any ∆ index j ∈ [J ] in any epoch n ∈ [N − 1], we have for any θ ≥ 0

P
(∣∣∣∣F∆j

(
zn+1
ej

)
− b

b+ h

∣∣∣∣ ≥ θ

)
≤ 4 exp

{
−2Lnθ2

9T0

}
.

Proof of Lemma 3.5.6. Consider the function fn
(
Ŵ 1

j , . . . , Ŵ
Ln

j

)
:= 1

Ln

∑Ln

t=1 1(D
t
le
−

Ôt
j ≤ z∗e (∆j) + ζ) where F∆j

(z∗e (∆j) + ζ) = b
b+h

+ θ. Note that condition (3.8) holds

with ιi =
1
Ln , ∀i ∈ [Ln]. For any epoch n ∈ [N ], recall that F̂ n

∆j
(·) denote the empirical CDF

of Dle −O∞
j based on dataset X n

j =
{
dtle − ôtj

}Ln−le

t=1
. Thus, we have

P
(
F∆j

(
zn+1
ej

)
>

b

b+ h
+ θ

)
= P

(
zn+1
ej

> z∗e (∆j) + ζ
)

= P
(
F̂ n
∆j

(
zn+1
ej

)
> F̂ n

∆j
(z∗e (∆j) + ζ)

)
= P

(
b

b+ h
>

1

Ln

Ln∑
t=1

1(Dt
le − Ôt

j ≤ z∗e (∆j) + ζ)

)
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= P
(
E
[
fn
(
Ŵ 1

j , . . . , Ŵ
Ln

j

)]
− θ > fn

(
Ŵ 1

j , . . . , Ŵ
Ln

j

))
(3.10)

≤ 2 exp

{
−2Lnθ2

9T0

}
(3.11)

where (3.10) is from ergodicity and (3.11) is by Lemma 3.5.5. Also

P
(
F∆j

(
zn+1
ej

)
< b

b+h
+ θ
)

≤ 2 exp
{
−2Lnθ2

9T0

}
holds following similar analysis which

completes the proof. Q.E.D.

For any epoch n ∈ [N ], denote event An
j =

{∣∣∣F∆j

(
znej

)
− b

b+h

∣∣∣ ≤ αn
}

where α0 := 1

and αn := 3
2

√
3T0 log T
Ln−1 ,∀n ≥ 2. Note that event An

j denotes the event that the empirical

estimator znej is accurate enough for z∗ (∆j). Define event Ā := ∩n∈[N ]A
n
jn . Then for any

epoch n ∈ [N ], by Lemma 3.5.4 we have

E
[(
C∞ (∆jn , z

n
ejn

)
− C∞ (∆jn , z

∗
e(∆jn))

)
| Ā
]
≤ αn(b+ h)

∣∣znejn − z∗e(∆jn)
∣∣ .

By Lemma 3.5.6, we have P
(
An∁

jn

)
≤ 4

T
3
2
, ∀n ∈ [N ], which further implies P

(
Ā∁
)
≤∑

n∈[N ] P
(
An∁

jn

)
≤ 4⌊

√
T ⌋

T
3
2

≤ 4
T
as N ≤ 2 log2 T ≤

√
T . Given the fact that the estimator is

accurate enough with high probability, we apply the law of total expectation and obtain

E

[
T∑
t=1

(
C∞ (∆t, zte

)
− C∞ (∆jn , z

∗
e(∆jn))

)]

=E

[
T∑
t=1

(
C∞ (∆jn , z

n
ejn

)
− C∞ (∆jn , z

∗
e(∆jn))

)
| Ā

]
P
(
Ā
)

+ E

[
T∑
t=1

(
C∞ (∆jn , z

n
ejn

)
− C∞ (∆jn , z

∗
e(∆jn))

)
| Ā∁

]
P
(
Ā∁
)

≤ (b+ h) Z̄
N∑

n=1

BnαnP
(
Ā
)
+

N∑
n=1

BnC̄P
(
Ā∁
)

≤ (b+ h) Z̄
N∑

n=1

Bnαn + T · 2C̄
T

= O(
√
T log T ),

where the last inequality is from Lemma 3.5.7 below with proof in Appendix B.3.1.

Lemma 3.5.7
∑N

n=1B
nαn = O(

√
T log T ).
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3.5.3 Proof of Proposition 3.5.4 - Bound the Bandit Pruning Loss

To bound E
[∑T

t=1 (C
∞ (∆t, z∗e (∆

t))− C∞ (∆j∗ , z
∗
e (∆j∗)))

]
, which is the loss due to the

suboptimality of the choice of the arm ∆n selected for epoch n, we provide upper bounds

for the following three components:

1. gap between the steady-state average cost with the optimal expedited order-

up-to level and with estimated expedited order-up-to level for any arm j, i.e.,∣∣E [C∞ (∆j, z
∗
e(∆j))]− E

[
C∞ (∆j, z

n
j

)]∣∣, denoted as Suboptimality Loss;

2. gap between the steady-state average cost and the estimated average cost both with

the estimated expedited order-up-to level, i.e.,
∣∣∣(E [C∞ (∆j, z

n
j

)]
− Ĝn

j

)∣∣∣, denoted as

Mean Estimation Loss;

3. difference between the estimated average cost of the optimal arm j∗ with its correspond-

ing estimated expedited order-up-to level and the estimated average cost of the selected

arm jn with its corresponding estimated expedited order-up-to level, i.e., Ĝn
jn − Ĝn

j∗ ,

denoted as Pruning Set Loss.

The upper bounds for the three components above are established in the three lemmas

below.

Lemma 3.5.8 (Suboptimality loss) We have

P
(∣∣E [C∞ (∆j, z

∗
e(∆j))]− E

[
C∞ (∆j, z

n
j

)]∣∣ ≤ (b+ h) Z̄αn, for any n ∈ [N ], j ∈ An
)
≥ 1− 2√

T
.

Lemma 3.5.9 (Mean Estimation Loss) We have

P
(∣∣∣E [C∞ (∆j, z

n
j

)]
− Ĝn

j

∣∣∣ ≤ βn, for any n ∈ [N ], j ∈ An
)
≥ 1− 2√

T
.

Lemma 3.5.10 (Pruning Set Loss) With probability of at least 1−
4

√
T
, we have that for

any n ∈ [N ] \ {1}, the optimal arm j∗ ∈ An and

Ĝn−1
jn − Ĝn−1

j∗ ≤ 2βn−1 + 2 (b+ h) Z̄αn−1.

The proof of Lemma 3.5.8 is based on the accuracy of the empirical quantile. To establish

Lemma 3.5.9, we apply the concentration bound for an empirical mean of the data sampled

from an ergodic Markov chain. The proof for Lemma 3.5.10 relies on proving that with high

probability the optimal arm will remain in the active set.
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Proof of Lemma 3.5.8. Define the event that the estimated expedited order-up-to level

based on empirical quantile is close to the true optimal expedited order-up-to level for any

arm j ∈ An in epoch n as A, i.e.,

A =

{∣∣∣∣F∆j

(
znej

)
− b

b+ h

∣∣∣∣ ≤ αn, ∀n ∈ [N ], j ∈ An

}
=

⋂
j∈An,n∈[N ]

An
j .

By Lemma 3.5.6, we have

P
(
A∁
)
≤

∑
j∈[J ],n∈[N ]

P
(
An∁

j

)
≤ ⌊

√
T ⌋⌊

√
T ⌋ 2

T
3
2

≤
2

√
T
. (3.12)

Conditional on event A and Lemma 3.5.4, we have that for any arm j and any epoch n,

∣∣E [C∞ (∆j, z
∗
e(∆j))]− E

[
C∞ (∆j, z

n
j

)]∣∣ ≤ (b+ h) Z̄αn. (3.13)

Q.E.D.

Before the proof of Lemma 3.5.9, we first present a concentration result of the estimated

mean cost, the proof of which is similar to that of Lemma 3.5.6 and thus is relegated to

Appendix B.3.2.

Lemma 3.5.11 For any ∆ index j ∈ [J ] in any epoch n ∈ [N ], we have for any θ ≥ 0,

P
(∣∣∣Ĉn

j − C∞ (∆j, z
n
j

)∣∣∣ ≥ θ
)
≤ 2 exp

{
− 2Lnθ2

9T0
(
C̄
)2
}
.

Proof of Lemma 3.5.9. Let Ĉt(∆j, z
n
ej) be the simulated cost for arm j in round n in the

algorithm (corresponding to the process Ŵ t
j (∆j, z

n
ej)) and C̃t(∆t, zte) to be the cost of the

auxiliary process sampling from the steady state for arm j in round n. Recall that the cost

Ct (∆, ze) in period t of a system following the dual-index policy only depends on W t(∆, ze)

as shown in §3.3.3.
Denote event that the estimated cost for arm j in epoch n is accurate enough as Mn

j , i.e.,

Mn
j :=

{∣∣∣Ĝn
j − E

[
C∞(∆j, z

n
ej)
]∣∣∣ ≤ βn

}
,

where βn = 3C̄
2

√
T0 log T

Ln . Then by Lemma 3.5.11, we have

P
(
Mn∁

j

)
≤ 2

T
3
2

.
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Therefore, let event M =
⋂

j∈[J ],n∈[N ]M
n
j and we have

P
(
M ∁ | V

)
≤

∑
j∈[J ],n∈[N ]

2

T
3
2

≤ 2√
T
. (3.14)

Conditional on event M , for any arm j ∈ [J ] and any epoch n ∈ [N ], we have∣∣∣E [C∞ (∆j, z
n
j

)]
− Ĝn

j

∣∣∣ ≤ βn. (3.15)

Q.E.D.

Proof of Lemma 3.5.10. We would like to show that with high probability, the optimal

arm j∗ remains in the active set An and the difference between the estimated costs of the

selected arm jn and of j∗ is small.

First, we show that with high probability, the optimal arm j∗ will remain in the active

set An, which is equivalent to showing that Ĝk
j∗ −minj Ĝ

k
j ≤ εk, ∀1 ≤ k ≤ n. Note that for

any arm j, we have:

Ĝn
j∗ − Ĝn

j (3.16)

≤Ĝn
j∗ − E [C∞(∆j∗ , z

∗
e(∆j∗))] + E [C∞(∆j, z

∗
e(∆j))]− Ĝn

j (3.17)

=
1

Ln

Ln∑
t=1

Ct(∆j∗ , z
n
ej∗)− E

[
C∞(∆j∗ , z

n
ej∗)
]

(3.18)

+ E
[
C∞(∆j∗ , z

n
ej∗)
]
− E [C∞(∆j∗ , z

∗
e(∆j∗))] (3.19)

+ E [C∞(∆j, z
∗
e(∆j))]− E

[
C∞(∆j, z

n
ej)
]

(3.20)

+ E
[
C∞(∆j, z

n
ej)
]
− 1

Ln

Ln∑
k=1

Ct(∆j, z
n
ej). (3.21)

Conditional on M , which means that the estimation for the average cost is well enough

for all arms and epochs, by (3.15), we have

(3.18) ≤ βn, (3.21) ≤ βn.

Conditional on A, which indicates the estimation for the expedited order-up-to level is

accurate enough for all arms and epochs, by (3.13), we have

(3.19) ≤ (b+ h) Z̄αn, (3.20) ≤ (b+ h) Z̄αn.
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Conditional on A ∩M , we have ∀j ∈ [J ],

Ĝn
j∗ − Ĝn

j ≤βn + (b+ h) Z̄αn + (b+ h) Z̄αn + βn

≤2βn + 2 (b+ h) Z̄αn,

which implies that

Ĝn
j∗ −min

j
Ĝn

j ≤ 2βn + 2 (b+ h) Z̄αn = εn.

Thus, conditional on event A∩M , the optimal bandit will remain in the active set An, ∀n ∈
[N ].

Now we can bound the difference between the estimated cost for jn and that for j∗. Since

jn ∈ An, jn is not removed in the (n − 1)th iteration. Hence, conditional on event A ∩M ,

we have

Ĝn−1
jn − Ĝn−1

j∗

≤Ĝn−1
jn −min

j
Ĝn−1

j

≤2βn−1 + 2 (b+ h) Z̄αn−1. (3.22)

Note that by (3.12) and (3.14), we have

P
(
(A ∩M)∁

)
= P

(
M ∁ ∪ A∁

)
≤ P

(
M ∁
)
+ P

(
A∁
)

≤ 4√
T
.

Lemma 3.5.10 is thus proved. Q.E.D.

Equipped with Lemmas 3.5.8, 3.5.9, and 3.5.10, now we are ready to prove Proposition

3.5.4.

E
[
C∞ (∆t, z∗e(∆

t)
)
− C∞ (∆j∗ , z

∗
e(∆j∗))

]
(3.23)

=E [C∞ (∆jn , z
∗
e(∆jn))− C∞ (∆j∗ , z

∗
e(∆j∗))] (3.24)

=
(
E [C∞ (∆jn , z

∗
e(∆jn))]− E

[
C∞ (∆jn , z

n−1
jn

)])
(3.25)

+
(
E
[
C∞ (∆jn , z

n−1
jn

)]
− Ĝn−1

jn

)
(3.26)

+
(
Ĝn−1

jn − Ĝn−1
j∗

)
(3.27)
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+
(
Ĝn−1

j∗ − E
[
C∞ (∆j∗ , z

n−1
j∗

)])
(3.28)

+
(
E
[
C∞ (∆j∗ , z

n−1
j∗

)]
− E [C∞ (∆j∗ , z

∗
e(∆j∗))]

)
. (3.29)

By Lemma 3.5.8, we have

(3.25) ≤ (b+ h) Z̄αn−1 +
2√
T
C̄,

(3.29) ≤ (b+ h) Z̄αn−1 +
2√
T
C̄.

By Lemma 3.5.9, we have

(3.26) ≤ βn−1 +
2√
T
C̄,

(3.28) ≤ βn−1 +
2√
T
C̄.

By Lemma 3.5.10, we have

(3.27) ≤ 2βn−1 + 2 (b+ h) Z̄αn−1 +
4√
T
C̄.

Combining all the results above, we have

E
[
C∞ (∆t, z∗e(∆

t)
)
− C∞ (∆j∗ , z

∗
e(∆j∗))

]
≤4βn−1 + 4 (b+ h) Z̄αn−1 + C̄

12√
T
.

Summing over
∑N

n=1B
n periods, we have

E

[
T∑
t=1

(
C∞(∆t, zte)− C∞(∆t, z∗e(∆j∗))

)]

≤12C̄
√
T +

N∑
n=2

Bn
(
4βn−1 + 4 (b+ h) Z̄αn−1

)
=O

(√
T log T

)
,

where the last inequality is due to Lemma 3.5.7.
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3.5.4 Proof of Proposition 3.5.5 - Bound the Discretization Loss

Finally, to bound the loss due to the discretization of the specified ∆ choices, i.e.,

E
[∑T

t=1 (C
∞ (∆j∗ , z

∗
e(∆j∗))− C∞ (∆∗, z∗e))

]
, we prove that E [C∞(∆, z∗e(∆))] is Lipschitz

in ∆ in Lemma 3.5.12 below. The proof is relegated to Appendix B.3.3.

Lemma 3.5.12 The minimum steady state cost E [C∞(∆, z∗e(∆))] is Lipschitz in ∆. Specif-

ically, for any ∆1,∆2 we have |E [C∞(∆1, z
∗
e(∆1))]− E [C∞(∆2, z

∗
e(∆2))]| ≤ (ce + cr + h +

b) |∆1 −∆2|.
Denote k = argminj∈[J ] |∆∗ −∆j|. As we initialize the active set with size ⌊

√
T ⌋, we have

∆k −∆∗ ≤
(
Z̄ −∆

)
/⌊
√
T ⌋. Therefore,

E

[
T∑
t=1

(C∞ (∆j∗ , z
∗
e(∆j∗))− C∞ (∆∗, z∗e))

]
≤T (ce + cr + h+ b)

(
Z̄ −∆

)
/⌊
√
T ⌋

=O(
√
T ).

3.6 Numerical Results

Consider a dual-sourcing system starting with zero inventory, with the total number of

periods to consider T = 1600. The unit prices for the order from the expedited and regular

source are ce = 20 and cr = 15, respectively. The lead time of the expedited inventory is

le = 2. We run the algorithm for 24 instances as below.

Table 3.1: Experimental Parameters

Parameters Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

lr 4 6 8 4 6 8

d N[50, 10] N[50, 10] N[50, 10] N[50, 20] N[50, 20] N[50, 20]

b 5 5 10 10 5 5 10 10 5 5 10 10 5 5 10 10 5 5 10 10 5 5 10 10

h 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4

In Table 3.1, N[µ, σ] denotes the truncated normal distribution here truncated at [0, 100].

We test the performances under short, medium, and long lead time difference scenarios,

respectively, with various values of holding and penalty cost. The performance measure

we use for each instance is the average relative regret defined as the cumulative difference

between the total cost of (∆, ze) algorithm and the cost if we operate the system under the

dual-index policy using the clairvoyant optimal order-up-to levels z∗e , z
∗
r , divided by time,
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i.e.,

Relative Regret :=

∑T
t=1C

t
π −

∑T
t=1C

t(z∗e , z
∗
r )∑T

t=1C
t(z∗e , z

∗
r )

.

For each instance, we run 1000 times and take the average of the relative regret. Figures

3.2–3.7 are the figures of the relative regret of Group 1 to 6 averaged over the instances of

different values of b and h, respectively. The algorithm converges robustly under various

settings. While the average relative regret level slightly increases as the lead time differ-

ence increases, the performances of the algorithm for demand with different coefficients of

variation are comparable.

The dual sourcing literature commonly assumes independent and identically distributed

(i.i.d.) demand (Allon and Van Mieghem 2010, Sheopuri et al. 2010), and the dual-index

policy was developed specifically for stationary demand (Veeraraghavan and Scheller-Wolf

2008). However, in real-world scenarios, nonstationary demand is often encountered. To this

end, we propose the Restart Learning Algorithm, a modified approach that incorporates the

“restart” idea from Besbes et al. (2015) to handle non-i.i.d. demand environments. This

modified algorithm involves restarting the learning process every τT periods, where τT is

determined by the upper bound of the variation budget of the stationary per-period cost,

denoted as VT . We refer interested readers to Appendix B.4 for more details. We demonstrate

that this modified approach based on restarting the algorithm from time to time performs

well in non-i.i.d. demand environments.

3.7 Conclusions

We studied the dual-sourcing system with backlogged demand, where the decisions are the

inventory replenishment quantities from expedited and regular channels, respectively. Specif-

ically, we considered the celebrated dual-index policy and provided a sufficient condition for

the inventory system to be ergodic. Based on this key ergodic result, we proposed an online

learning algorithm and analyzed its theoretical regret bounds.

We close this chapter by pointing out three promising future research avenues. First,

according to Svoboda et al. (2021), of all publications on this topic, 70% considered dual

sourcing while the remaining 30% looked at multiple sourcing with more than two suppliers.

One possible direction would be investigating the optimal or near-optimal replenishment

policy for systems with more than two sources (Feng et al. 2005). Second, this chapter

only considered the case without capacity constraints for expedited and regular orders. It
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would be worthwhile investigating the settings with capacity constraints (Federgruen et al.

2020, 2022). Third, dual-sourcing systems with lost sales and general lead times remain a

long-standing open problem. Any progress on the lost sales counterpart model would be a

substantial contribution to the literature.
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Figure 3.2: Computational Performance for
Group 1
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Figure 3.3: Computational Performance for
Group 2
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Figure 3.4: Computational Performance for
Group 3
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Figure 3.5: Computational Performance for
Group 4
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Figure 3.6: Computational Performance for
Group 5
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Figure 3.7: Computational Performance for
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CHAPTER 4

Online Learning in Two-Sided Markets

While the development and application of a two-layer online learning algorithm have seen

considerable success across various studies (Chen et al. 2019a, 2021a, Chen and Shi 2020,

Chen et al. 2022a, Yuan et al. 2021), the frameworks are often based on assumptions about

the parametric forms of objective functions. However, the increasing uncertainty in markets

prompts a relaxation of these parametric assumptions where only bandit feedback is available

for optimization.

One of the applications in recent years with highly uncertain markets is online platforms,

which serve as a connection between demand and supply. The decision-maker needs to

make decisions for both sides without the form of the demand and supply functions. Given

the limited information on these functions, this chapter introduces a nonparametric online

learning algorithm designed to navigate the joint optimization of two decision variables.

4.1 Introduction

The classical price-setting newsvendor problem has been a hallmark in operations manage-

ment (Whitin 1955). This problem concerns finding the optimal price and ordering quantity

of a product when demand for the product is a (random) function of the posted price (Chou

et al. 2012). The fundamental concept of balancing supply and demand through the use of

pricing and inventory levers is embodied in this problem, which has many practical applica-

tions across various industries, such as airlines, hospitality, brick-and-mortar retailing, and

online retailing.

The rapid expansion of platform-based businesses, driven by the proliferation of mobile

and other information technology, is profoundly transforming the retail and service sectors

(Chen et al. 2020d). These dual-sided market intermediaries, distinct from conventional

inventory-based business models, employ information and communication technologies to

foster interactions between users (EuroCommission 2022). Revenues are generated from the

differential between the prices paid by demand-side users and the remuneration allocated
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to supply-side providers. In such two-sided markets, demand is contingent upon established

prices while supply is influenced by the platform’s remuneration offerings. A centralized

decision-maker must jointly optimize pricing and remuneration strategies to maximize profits.

However, the traditional price-setting newsvendor model fails to capture the random and

endogenous nature of the supply side in these markets. This is precisely our main motivation

for proposing a novel newsvendor model that incorporates both pricing and remuneration

decisions, and for studying it in-depth.

4.1.1 Brief Problem Statement and Motivating Applications

We refer to our main problem as the “remunerating newsvendor” problem arising in the con-

text of two-sided markets, which significantly expands upon the conventional price-setting

newsvendor problem. This problem examines a scenario in which a platform aims to maxi-

mize its total expected revenue by jointly establishing pricing for demand and remuneration

for supply. Specifically, the platform sets both the price p for customers and the remuner-

ation w for providers. The demand from customers is given by D(p) = λ(p) + ε, and the

supply from providers is given by S(w) = µ(w)+δ, where λ(p) and µ(w) are the demand and

supply functions, respectively, with random noise terms ε and δ. The goal is to maximize the

expected revenue of a “repeated” remunerating newsvendor problem over a finite horizon of

T periods, where a single-period time-generic objective function can be defined as follows:

max
p, w

R(p, w) := (p− w)E [min(λ(p) + ε, µ(w) + δ)] (Remunerating Newsvendor)

s.t. 0 ≤ w ≤ p.

We are particularly interested in solving the incomplete information problem, where D(p)

and S(w), as well as the distributions of ε and δ, are not known a priori and have to be

learned over time. Our objective is to propose online learning algorithms with provably tight

regret.

This problem setting is prevalent in contemporary business contexts, particularly in ser-

vice platforms that facilitate connections between clients seeking on-demand services and

independent contractors, known as “gig workers”, who provide these services (Xu et al.

2023). By setting prices for clients and remuneration for providers, the platform profits

from the difference between clients’ payments and remuneration for suppliers. For example,

digital platforms such as Handy and Helping provide home cleaning services by connecting

clients with professional house cleaning and other home services. Clients are presented with

predetermined rates for various services based on factors such as the size of the property,
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the nature of the service, and the location. A portion of the total service fee is disbursed

to the professionals as remuneration, while the platform profits from the remaining amount.

It is worth noting that the participation of clients and service providers depends on their

agreement with the prices and remunerations determined by the platform (Benjaafar and

Hu 2020), which can indirectly balance demand and supply and subsequently improve the

profit.

Analogous applications are evident in service platforms that provide a range of other

services. For example, Rover is a digital platform that connects pet owners with pet care

service providers, including pet sitters, dog walkers, and boarding facilities. The platform

establishes a suggested price range for each service type based on market data, location, and

other factors, and providers can set their prices within this range. However, the platform

maintains control over the general pricing structure. When a client books a service, Rover

retains a commission from the fee paid by pet owners. Another example is HelloTech,

which focuses on in-home and online tech support services that span a variety of areas, from

smart home device installation and setup to TV mounting, computer repair, and more. The

prices for different services are predetermined by the platform itself, providing predictability

and transparency to customers which is crucial for customer acquisition and retention in

the digital platform business. On the provider side, the techs are independent contractors

compensated based on the rates set by the platform, providing a consistent and relatively

predictable income stream.

Our model provides a concise and stylized representation of the newsvendor problem faced

in many two-sided markets. We believe that our approaches can offer valuable insights for

devising pricing and remuneration strategies in all of the above examples.

4.1.2 Main Results and Our Contributions

This chapter makes two key contributions.

Modeling. We introduce a novel newsvendor model called the “remunerating newsvendor”

which incorporates remuneration as a decision variable to address the supply side’s uncer-

tainty. To the best of our knowledge, we are one of the first to expand the price-setting

newsvendor model to incorporate remuneration in two-sided markets. Previous literature on

price-setting newsvendor models treats supply uncertainty as exogenous, assuming random

yield (e.g., Huh and Nagarajan (2010), Kazaz and Webster (2015), Kouvelis et al. (2018), Li

and Zheng (2006)). However, in contemporary two-sided business platforms such as those

mentioned above, these formulations fail to capture the random and endogenous nature of

the supply side. Therefore, we model demand and supply as unspecified functions of price
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and remuneration, respectively, with corresponding price and remuneration independent ran-

domness modeled in an additive manner. Note that the formulation of additive randomness

in the price-setting newsvendor model is widely used in the literature (e.g., Chen and Simchi-

Levi (2004a,b), Federgruen and Heching (1999), Petruzzi and Dada (1999) and numerous

more recent works). We believe that our concise newsvendor-type model in a two-sided

market serves as one of the fundamental models for contemporary businesses.

Structural Results and Online Learning Algorithms. We first analyze the complete

information problem. The main structural properties are stated (informally) below.

Theorem 1 (Informal) For the complete information problem (where the demand and

supply functions as well as the noise distributions are known a priori), the expected revenue

function R(p, w) of the remunerating newsvendor problem has the following two properties:

(a) R(p, w) is concave and Lipschitz continuous in w for a given p.

(b) R(p, w∗(p)) is Lipschitz continuous in p.

Leveraging the above structural properties of the full information problem, we devise

a new online learning algorithm that combines the powers of bandit control and bisection

search. We provide the following matching upper and lower regret bounds.

Theorems 2 and 3 (Informal) For the incomplete information problem (where the demand

and supply functions as well as the noise distributions are not known a priori),

(a) Our bandit bisection search algorithm (BBS for short) attains RegretTBBS = Õ(T
2
3 ).

(b) For any algorithm ALG, there exist problem instances such that RegretTALG = Ω(T
2
3 ).

Note that the regret upper and lower bounds match up to a logarithmic factor. The

high-level ideas and novelties of the proposed algorithm BBS are summarized as follows:

(i) We propose an online algorithm that integrates bandit control (specifically, Upper-

Confidence-Bound) with a bisection search (specifically, a strictly quartering search)

approach, and provide proof of an upper bound on the total regret. The revenue

function R(p, w) is not jointly concave in p and w, which rules out direct stochastic

gradient descent methods. Instead, we adopt a two-layer algorithm. Given a fixed p,

the inner layer searches for the optimal w using bisection search (strictly quartering

search) based on the concavity result of R(p, w) stated in Theorem 4.2.1. Note that we

adopt bisection search since there is no gradient information available. The outer layer

then searches for the best p using the Lipschitz bandit approaches. However, the online

nature of the intertwined outer and inner layers requires careful handling of intricacies

that are not captured by one-dimensional bisection methods (Agarwal et al. 2011).
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(ii) In contrast to previous literature that uses bisection search and its variants for oper-

ations management problems (Agarwal et al. 2011, Chen et al. 2019a, Chen and Shi

2020, Chen et al. 2021c, Lei et al. 2014), our approach integrates query operations into

the bisection search process with early termination criteria to bound the loss from sub-

optimal bandit selections. This allows us to update the algorithm at any time instead

of restricting updates to only the end of each epoch, which would otherwise result in an

inability to establish a tight regret bound. On the technical side, our approach leads

to a novel concentration result for the regret of bisection search caused by any bandit

choice up to any time (Lemma 4.4.4 and related results). We also further modify the

quartering search technique proposed by Agarwal et al. (2011) to improve efficiency.

Specifically, we define a “clean event” E to represent the case where the estimated

revenue is sufficiently close to the true expected revenue at any time over the decision

space (see §4.4.2 for more details). Conditional on this clean event, we simplify their

proof (Lemma 4.4.2) and improve the efficiency of the procedure by reusing queries

from previous rounds. This modification may provide insights for future usage of the

quartering search technique.

Subsequently, we focus our analysis on a special case, in which we presume linear relation-

ships between the demand (supply) and price (remuneration). This specific focus allows us

to examine the nuances of these relationships with greater precision. Compared to the gen-

eral case, it turns out that an additional concavity result concerning a transformed variable

∆ := p− w which is the gap between price and remuneration, can be attained.

Theorem 4 (Informal) For the complete information problem where the demand and supply

functions are known linear functions and the noise distributions are known a priori, the

expected revenue function R(∆, w) of the remunerating newsvendor problem has the following

two properties:

(a) R(∆, w) is concave and Lipschitz continuous in w for a given ∆.

(b) R(∆, w∗(∆)) is concave and Lipschitz continuous in ∆.

For this special case, we improve the regret convergence rate by proposing another algo-

rithm, matching the lower bound of the regret up to logarithmic factors.

Theorem 5 and Proposition 1 (Informal) For the incomplete information problem

(where the linear demand and supply functions as well as the noise distributions are not

known a priori),

(a) Our double bisection search algorithm (DBS for short) attains RegretTDBS = Õ(T
1
2 ).

(b) For any algorithm ALG, there exist problem instances such that RegretTALG = Ω(T
1
2 ).
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Given that linear relationships are frequently discussed in the operations management

literature (Keskin and Zeevi 2014, Mills 1959, Petruzzi and Dada 1999, Taylor 1974), our

extension to this specific case may offer valuable insights for analogous problem settings in

this field.

4.1.3 Related Literature

Our work is closely related to the following streams of literature.

Price-Setting Newsvendor with Random Supplies. The joint production-pricing op-

timization problem in the newsvendor model has been extensively studied, with research

dating back to Whitin (1955). Interested readers can refer to survey papers such as Petruzzi

and Dada (1999) and Chen and Simchi-Levi (2012) for a comprehensive overview of this

literature. Our work extends the price-setting newsvendor model by incorporating remu-

neration decisions that affect the supply function. To provide context for our research, we

briefly discuss related work on models with random supplies. In the current literature, supply

uncertainty can be modeled in two main ways: through random capacity and random yield.

Random capacity models refer to situations where a firm’s production capacity is uncertain

due to various factors such as machine breakdowns, supplier delays, or labor shortages (see,

e.g., Chen et al. (2020b, 2018), Ciarallo et al. (1994), Duenyas et al. (1997), Feng (2010),

Güllü (1998)). In contrast, random yield models deal with situations where the amount

of usable product that a firm can produce from a batch of raw materials is uncertain and

subject to random variation. This means that the firm may start with a certain quantity

of raw materials, but the proportion that will become finished goods is uncertain (see, e.g.,

Bu et al. (2020), Federgruen and Yang (2011), Feng and Shanthikumar (2018b), Henig and

Gerchak (1990), Huh and Nagarajan (2010), Wang and Gerchak (1996)). In our research,

we consider a different approach to supply uncertainty. Specifically, we model supply as an

endogenous function of remuneration, which is more appropriate for two-sided markets. This

differs from the random capacity and random yield models discussed above, which assume

that supply is exogenously determined by external factors.

We also survey the literature on newsvendor-type models in two-sided markets, with a

particular focus on joint optimization of price and remuneration. Such problems are relevant

to pricing in on-demand service platforms (Hu and Liu 2023). Taylor (2018) and Bai et al.

(2019) formulated the problem as a queueing model and investigated the impact of various

factors on optimal per-service price and wage. Hu and Zhou (2020) studied the performance

of the fixed commission contracts where the wage is equal to a fraction of the price, in

comparison with the optimal expected profit. In their setting, the platform is aware of
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the scenario realization and corresponding deterministic demand or supply functions with

respect to price and wage when making the decisions, while our model assumes there is no

information on the demand and supply functions and we incorporate stochasticity via random

noises with unknown distributions. In addition, Parker and Van Alstyne (2005) presented a

formal model of two-sided network externalities for other types of two-sided markets, such

as video game platforms, newspapers, and payment card systems. Armstrong (2006) further

investigated three models of such markets. Closer to our work, Chou et al. (2012) studied the

pricing problem of a platform intermediary to jointly determine the selling price of platforms

(hardware) sold to consumers and the royalty charged to content developers for content

(software), when the demands for content and for platforms are interdependent. Their

model elucidated the impact of supply chain replenishment costs and demand uncertainty

on the strategic issues of platform pricing in a two-sided market. Our model differs in that

we study an incomplete information problem in which the underlying demand and supply

functions as well as the random noise distributions are unknown.

Online Learning Algorithms in Related Problems. Our algorithm belongs to the

research area of newsvendor type models with demand learning (Chen et al. 2022b). One

popular approach is to apply the Sample Average Approximation (SAA) method, which

leverages the sample average of historical data to solve stochastic optimization problems in

newsvendor settings. The SAA approach has been widely used in inventory management

(e.g., Cheung and Simchi-Levi (2019), Kleywegt et al. (2002), Levi et al. (2015, 2007a), Lin

et al. (2022)) and pricing (e.g., Qin et al. (2022)) literature. Compared with the conventional

SAA approaches, we adopt a novel bandit bisection search approach.

The design of our proposed online algorithms is closely related to the literature on dynamic

pricing problems with demand learning and continuous price range. Besbes and Zeevi (2009)

proposed an exploration-exploitation algorithm for a single product dynamic pricing problem,

based on the structural result from the seminal work by Gallego and Van Ryzin (1994), and

achieved a regret bound of Õ(T
3
4 ). Wang (2014) used a more adaptive learning-while-doing

approach to close the gap of the problem and attained an asymptotic regret of Õ(T
1
2 ). The

framework was further extended to network revenue management problems by Besbes and

Zeevi (2012), and several follow-up works have used different techniques, such as spline

approximation by Chen et al. (2019b), bisection search by Lei et al. (2014), primal-dual

approach by Chen and Gallego (2022), online inverse batch gradient descent by Chen and Shi

(2023), and robust ellipsoid method by Miao and Wang (2021). Our work distinguishes itself

from the existing literature by introducing a remuneration mechanism into the newsvendor

model and jointly optimizing price and remuneration to maximize the expected revenue,

instead of only optimizing the price.
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The optimization process for remuneration in our algorithm, which constitutes the inner

layer, essentially involves solving a convex optimization problem with bandit feedback. In

contrast to previous dynamic pricing settings, the convergence rate of the learning process

is embedded in another optimization layer and therefore requires careful design. As the

problem is, in essence, a convex optimization problem with bandit feedback, Flaxman et al.

(2005) initiated a discussion on learning from bandit feedback under convex and Lipschitz

reward functions. They approximated the gradient using a random sampling technique

and achieved an O(T
3
4 ) regret bound using the Bandit Gradient Descent algorithm. Cope

(2009) tackled the problem using Kiefer-Wolfowitz Stochastic Approximation techniques and

achieved a O(
√
T ) regret bound under strict conditions. Agarwal et al. (2011) proposed a

bisection method that achieves an O(
√
T ) regret bound, proven to be tight in Shamir (2013).

Note that the term “bisection” is used here for consistency with the existing optimization

literature. While the method in Lei et al. (2014) was actually a trisection search, Agarwal

et al. (2011) used a quartering search, with the middle point out of the three trials each time

serving as a sentinel benefiting the total regret. To the best of our knowledge, Chen and

Shi (2020) is the only work adopting this approach in revenue management. The difference

between the application of the bisection approach in our work and theirs is that, in order to

bound the loss for total regret, we distribute the bisection search process to multiple outer

loops, and therefore, the search process is no longer consecutively executed.

All aforementioned approaches require structural properties of the objective function,

such as unimodality or concavity. Our algorithm is also related to the problem of continuum-

armed bandits (Agrawal 1995) for price optimization, which is the outer loop of our algorithm

and has no particular structural results besides Lipschitz continuity. The continuum-armed

bandit problem was addressed by Kleinberg (2004) using uniform discretization, while the

Lipschitz bandits problem was addressed in Kleinberg et al. (2008). In the context of dy-

namic pricing, Wang et al. (2021b) studied the single product pricing problem allowing

the expected reward function to be multimodal. They proposed an algorithm combining

the Upper-Confidence-Bound algorithm for the multi-armed bandit and local polynomial

approximation. In contrast to optimizing only price under various smoothness conditions

in Wang et al. (2021b), we study the joint optimization of price and remuneration with

first-order smoothness conditions (see Assumption 4.2.1b).

4.1.4 Organization and Notation

The rest of the chapter is structured as follows. In §4.2, we present our problem formula-

tion and discuss several essential structural properties of our revenue function. In §4.3, we
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propose an online algorithm for solving the incomplete information problem and analyze its

convergence rate in §4.4, which is proved to be optimal up to logarithmic factors in §4.5.
Then, in §4.6, we consider a special case with linear demand and supply functions and derive

better regret bounds. Numerical experiments in §4.7 validate the performance of proposed

algorithms. Finally, we conclude the chapter in §4.8.
We also introduce some general notation used in this chapter. The Big-O notation Õ(·)

hides any logarithmic factors. For any scalar a, |a| denotes its absolute value. For any set A,

|A| denotes its cardinality; if A is an interval, then |A| is its length. The event A∁ denotes

the complement of event A. For any integer n ≥ 1, we use [n] to denote the set {1, . . . , n}.

4.2 Problem Formulation and Structural Properties

We formally describe what we call the “remunerating newsvendor” problem, involving joint

pricing and remuneration decisions. Suppose there is a firm that sells a single product with

the goal of maximizing its expected revenue. The decisions to be made include the price p

for customers and the remuneration or wage w for suppliers, while the supply S is a random

variable depending on the remuneration, and demand D is a random variable depending on

the price. Specifically, we assume additive random noises for demand and supply, i.e.,

D(p) = λ(p) + ε, S(w) = µ(w) + δ,

where λ(p) and µ(w) represent the underlying demand and supply functions, while ε and

δ denote random noises with E [ε] = 0 and E [δ] = 0. Then the remunerating newsvendor

problem for maximizing the expected revenue can be formulated as

max
p, w

R(p, w) := (p− w)E [min(λ(p) + ε, µ(w) + δ)] (4.1)

s.t. 0 ≤ w ≤ p.

Assumption 4.2.1 We make the following modeling assumptions.

(a) There are lower and upper bounds for the price p, denoted by P and P̄ , respectively.

Additionally, for any 0 ≤ w ≤ p ≤ P̄ , we assume that 0 ≤ D(p) ≤ S̄ and 0 ≤ S(w) ≤ S̄

almost surely for some finite positive constant S̄.

(b) The demand function λ(p) is Lipschitz continuous in p. That is, there exists a constant

K1 such that |λ (p1)− λ (p2) | ≤ K1|p1 − p2|.

(c) The supply function µ(w) is Lipschitz continuous in w. That is, there exists a constant
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K2 such that |µ (w1)− µ (w2) | ≤ K2|w1 − w2|.

(d) The supply function µ(w) is non-decreasing and concave in w, i.e., µ′(w) ≥ 0 and

µ′′(w) ≤ 0.

Assumption 4.2.1a posits that the platform sets the price over a bounded set. Additionally,

there is a cap on the maximum values for both demand and supply. Furthermore, we assume

that the probability of negative demand or negative supply is negligible. This condition

can be readily satisfied if the noises have finite supports. In cases where the noises are

unbounded, it is more realistic to consider scenarios where the standard deviation of the

noises is small enough to ensure non-negative demand and supply. Similar assumptions

regarding the impact of random noises on the non-negativity of demand can be found in, for

example, Le Guen (2008) §4.4.1, Keskin and Zeevi (2014) §2, and Snyder and Shen (2019)

§4.2.
Assumptions 4.2.1b and 4.2.1c essentially suggest that the rates of change in demand and

supply, λ′(p) and µ′(w), are both bounded, which is standard in the revenue management

literature (Besbes and Zeevi 2009, 2012, Lei et al. 2014, Wang 2014).

Assumption 4.2.1d introduces an additional regularity assumption for the supply function,

which is also commonly assumed in the literature (Talluri et al. 2004). Additionally, it is

assumed that the supply function is non-decreasing in remuneration, which is expected in

practical applications. Furthermore, the assumption states that the supply curve is concave

in w ∈ [0, P̄ ], indicating a saturation effect in the finite supply market where the rate of

increase in supply slows down as the remuneration approaches P̄ . This assumption is also

employed in Hu and Zhou (2020). Another interpretation is a case where the seller has a

random utility U and will participate in the system only when the realized utility is less

than or equal to the remuneration w. In this setting, the probability that the seller will join

the market given the remuneration w is µ(w) = P (U ≤ w). Then Assumption d is satisfied

when the cumulative distribution function of the random variable U is concave, which is

considered a reasonable assumption (e.g., exponential distribution).

Based on the formulation and assumptions described above, in the case of complete infor-

mation where the demand and supply functions, as well as the random noise distributions,

are known a priori, we establish Theorem 4.2.1. The theorem states the concavity of the ex-

pected revenue with respect to the remuneration given a fixed price in a, and the smoothness

condition of the optimal expected revenue as a function of the price in b. These structural

results serve as the foundation for the design of Algorithm 6 in §4.3. The full proof of

Theorem 4.2.1 is given in Appendix C.2.1.

Theorem 4.2.1 In the case of complete information where the demand and supply func-
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tions, as well as the random noise distributions, are known a priori, the remunerating

newsvendor problem has the following structural properties under Assumptions 4.2.1c and

4.2.1d.

(a) The expected revenue R(p, w) is concave and max{K2, S̄}P̄ -Lipschitz in the remuneration

w ∈ [0, p]. That is, for any w1, w2 ∈ [0, p],

|R(p, w1)−R(p, w2)| ≤ max{K2, S̄}P̄ |w1 − w2| .

(b) The optimal expected revenue as a function of price p, denoted by R (p, w∗(p)), is Lips-

chitz continuous in p. That is, for any p1, p2 ∈ [P , P̄ ],

|R (p1, w
∗(p1))−R (p2, w

∗(p2))| ≤ K3 |p1 − p2| ,

where K3 := max
{
K1P̄ ,max{K2, S̄}P̄ + S̄

}
.

Now, in the case of incomplete information where the demand and supply functions, as

well as the random noise distributions, are not known a priori, we introduce the notion of

regret as a performance measure for online learning algorithms. Consider a T -period problem

in which the firm needs to jointly determine the prices for customers and the remunerations

for suppliers for each period. Any excess demand or supply at the end of each period will

be lost. Let the clairvoyant (or the complete information) optimal price be p∗ and the

clairvoyant optimal remuneration be w∗. Recall that the expected revenue of price and

remuneration pair (p, w) is denoted by R(p, w) as defined in (4.1). Define the regret of any

learning algorithmALG for a T -period finite horizon joint pricing and remuneration decision

problem as

RegretTALG = TR(p∗, w∗)− E

[
T∑

s=1

R̆s
ALG

]
,

where R̆s
ALG denotes the revenue collected in period s by running algorithm ALG.

4.3 Bandit Bisection Search Algorithm (BBS)

In the case of incomplete information where the demand and supply functions, as well as

the random noise distributions, are not known a priori, we propose a new online learning

algorithm, termed Bandit Bisection Search Algorithm (BBS), and also discuss its main ideas

and novelties. Subsequently, each arm (bandit) refers to a discretized price value. Pulling
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or selecting an arm means choosing the corresponding value as the price to implement.

Subscripts l, c, r stand for “left”, “center”, and “right”, respectively.

4.3.1 A Two-Layered Design of BBS

Algorithm 6 is essentially a two-layered algorithm that integrates bandit control with a

bisection search method. Let us explain why we need a two-layered design where the inner

layer aims to optimize the remuneration w∗ and the outer layer aims to optimize the price

p∗. For the inner layer where price p is fixed, based on Theorem 4.2.1a, we know that the

expected revenue R (p, w) is concave in the remuneration w. One might naturally consider

employing gradient descent to find w∗(p). However, since we are unable to extract gradient

information, our best option is to employ a bisection search approach to find w∗(p) for each

value of p.

Now let us move on to the outer layer. Suppose that we know w∗(p) for any p (from

running the inner layer). Determining the optimal price p that maximizes R (p, w∗(p)) can

be viewed as a continuum-armed bandit (CAB) problem, given the Lipschitz continuity

property established in Theorem 4.2.1b. Note that the set of arms is the continuous price

range p ∈ [P , P̄ ]. Consequently, we utilize a discretization technique in conjunction with the

Upper-Confidence-Bound algorithm for multi-armed bandits in order to identify the optimal

price p∗.

While the aforementioned two-layered design appears to be natural and feasible, executing

them in the correct sequence and order presents significant challenges. If not executed

carefully, the resulting regret could become multiplicative with respect to the inner and

outer layers. It is worth noting that bisection search and bandit control individually yield

a regret of O(
√
T ), and therefore a naive implementation would result in a linear regret

(O(
√
T ) × O(

√
T )). Thus, effectively intertwining these two methods remains a critical

challenge.

4.3.2 Detailed Implementation of BBS and Technical Novelties

Based on the intuition above, we now give more details of implementation. For ease of

presentation, we consider a time horizon of 3T periods. We then use the term “time t”

hereafter to denote periods 3(t− 1) + 1, 3(t− 1) + 2, 3(t− 1) + 3. The algorithm operates

as depicted in Figure 4.1.
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Implement bisection search for each price/arm

remuneration

Figure 4.1: Illustration of Algorithm 6

The price range is discretized into J discrete values pj for j ∈ [J ] with equal intervals. Each

price corresponds to an “arm” in the outer loop algorithm, forming the vertical dimension.

The top horizontal line in the figure represents time intervals with each consisting of 3 periods.

Each subsequent horizontal line represents the time interval in which the price pj, j ∈ [J ]

gets implemented. Whenever the price is selected, three quartiles of the current interval for

the optimal remuneration for this price are implemented as remuneration successively. In

Figure 4.1, the interval corresponding to the price and three periods is solid. As shown in

the figure, the price pj is implemented during a subset of T times, which is not necessarily

consecutive. Based on the value of remuneration chosen at each time, this subset of times

consists of multiple epochs with each epoch comprising multiple rounds. The length of an

epoch depends on both the shape of the function R(pj, w) concerning w and the separation

of values in the inspected interval sample path.

At the beginning of each time t (i.e., periods 3(t − 1) + 1, 3(t − 1) + 2, 3(t − 1) +

3), the algorithm selects the price with the highest upper confidence bound following the

Upper-Confidence-Bound (UCB) algorithm. This selection is based on the empirical revenue

obtained from historical data. The chosen arm jt is associated with an interval [ljt , rjt ], which

contains the optimal remuneration w∗(pjt) for the corresponding price with high probability.

Subsequently, the algorithm implements the price pjt along with the remunerations wt
l =

3
4
ljt +

1
4
rjt , w

t
c =

1
2
ljt +

1
2
rjt , w

t
r =

1
4
ljt +

3
4
rjt for three consecutive periods.

The revenue realizations of (pjt , w
t
x) , x ∈ {l, c, r} are then used to obtain the following

estimators:
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(a) Empirical average of the revenue R (pjt , w
t
x) , x ∈ {l, c, r} for bisection search, i.e.,

R̂t+1

jt,x

mt+1

jt

.

(b) Estimation of the revenue R (pjt , w
∗(pjt)) for the UCB procedure, i.e.,

αt+1

jt

3nt+1

jt

.

This process continues until the number of samples for R (pjt , w
t
x) , x ∈ {l, c, r} reaches

4γ−2
1 (P̄ S̄)2 log T . Subsequently, we compare the empirical means of R (pjt , w

t
x) , x ∈ {l, c, r}

to narrow down the interval. Lemma 4.4.1 assures that estimator a provides sufficient accu-

racy with a high probability for the truncation operation. If the interval can be successfully

narrowed, the algorithm updates the interval for arm jt and proceeds to another epoch.

However, if one cannot discard a quarter interval based on the estimated revenue for the

three points, the algorithm continues to query the points in the original interval for arm jt

and initiates a new round within the same epoch, where the term “query” applied to the

process of bisection search means implementing the process in one period with the queried

value as the remuneration. During this round, a comparison will occur on a smaller scale,

and the cumulative number of samples required before comparison will increase. Regarding

the loss incurred due to the suboptimality of the arm selected each time, specifically the

estimation in b, Lemma 4.4.4 guarantees the accuracy of estimating R (pjt , w
∗(pjt)). This

accurate estimation helps in bounding the total regret.

In the following, we emphasize a crucial aspect in designing Algorithm 6 and the under-

lying technical innovations. One key consideration when designing the algorithm is whether

we are compelled or restricted to updating the Confidence Radius (Rad) of the UCB algo-

rithm and selecting a better arm solely until an epoch or a round of the bisection search is

complete. Note that the total loss compared to the optimal expected revenue of the optimal

arm can be decomposed into loss from suboptimality of the price pj as in (4.2) and the loss

from the remuneration given the price as in (4.3), i.e., the process of approximating w∗(pj).

3TR (pj∗ , w
∗(pj∗))−

3T∑
s=1

R̆s
BBS

=3TR (pj∗ , w
∗(pj∗))−

J∑
j=1

3nT+1
j R (pj, w

∗(pj)) (4.2)

+
J∑

j=1

3nT+1
j R (pj, w

∗(pj))−
∑
t∈Hj

∑
x∈{l,c,r}

R̃t
x

 , (4.3)

where 3nT+1
j is the total number of times of selecting price pj andHj denotes the set of indices

of time when the price is pj. Part (4.3) can be bounded by the bisection search process with
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Algorithm 6 Bandit Bisection Search Algorithm (BBS)

Let J = # discrete p’s and pj = P + j
J

∣∣P̄ − P
∣∣ for j = 1, . . . , J . Let γi := 2−i, i ≥ 1. ▷

Input
for j ∈ [J ] do Initialize: ▷ Initialization

lj = 0 and rj = pj to be the left and right end-points of the interval for w∗(pj),
respectively;

kj = 1 to be the current level of confidence of estimation for price pj;
m1

j = 0 and use mt
j to track the number of times of selecting price pj in the current

epoch;
n1
j = 0 and use nt

j to track the total number of times of selecting price pj until time t;

α1
j = 0 and use αt

j to track the cumulative realized revenue using price pj until time t;

R̂1
j,x = 0, x ∈ {l, c, r} and use R̂t

j,x to track the cumulative realized revenue R̂t
j,x using

price pj in the current epoch of price pj;
Rad1

j = 0 and use Radt
j to denote the confidence radius of estimation of R (pj, w

∗(pj))
for price pj until time t.
end for
for t = 1, 2, . . . , T do

if t ≤ J then
jt = t,

else

Select jt = argmaxj∈[J ]

{
αt
j

3nt
j

+Radt
j

}
. ▷ Outer Layer (Bandit Control)

end if
Let u = rjt − ljt and w

t
l = ljt +

1
4
u,wt

c = ljt +
1
2
u,wt

r = ljt +
3
4
u.

Implement (pjt , w
t
x) and obtain realized revenue R̃t

x for x ∈ {l, c, r}.
Update αt+1

jt = αt
jt +

∑
x∈{l,c,r} R̃

t
x, nt+1

jt = nt
jt + 1, mt+1

jt = mt
jt + 1,

R̂t+1
jt,x = R̂t

jt,x + R̃t
x, x ∈ {l, c, r}, Radt+1

jt =

max{2P̄ S̄, 49
2
}P̄ S̄

√
log T

nt+1

jt

log 4
3

P̄ 2max{K2
2 , S̄

2}nt+1
jt

9S̄2 log T
.

For j ̸= jt, update αt+1
j = αt

j, nt+1
j = nt

j, mt+1
j = mt

j, R̂t+1
j,x = R̂t

j,x, x ∈ {l, c, r},
Radt+1

j = Radt
j.
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if mt+1
jt =

⌈
4γ−2

kjt
(P̄ S̄)2 log T

⌉
then ▷ Inner Layer (Bisection Search)

Arm jt enters a new round.

For x ∈ {l, c, r}, UBkjt
(wt

x) =
R̂t+1

jt,x

mt+1

jt

+
γk

jt

2
, LBkjt

(wt
x) =

R̂t+1

jt,x

mt+1

jt

−
γk

jt

2
.

if min
{
UBkjt

(wt
l) , UBkjt

(wt
r)
}
≤ max

{
LBkjt

(wt
l) , LBkjt

(wt
r)
}
− γkjt then

if UBkjt
(wt

l) ≤ UBkjt
(wt

r) then ljt = wt
l , rjt = rjt ,

else ljt = ljt , rjt = wt
r.

end if
kjt = 1, mt+1

jt = 0, R̂t+1
jt,x = 0, x ∈ {l, c, r}, arm jt enters a new epoch.

else if min
{
UBkjt

(wt
l) ,UBkjt

(wt
r)
}
≤ LBkjt

(wt
c)− γkjt then

if UBkjt
(wt

l) ≤ UBkjt
(wt

r) then ljt = wt
l , rjt = rjt ,

else ljt = ljt , rjt = wt
r.

end if
kjt = 1, mt+1

jt = 0, R̂t+1
jt,x = 0, x ∈ {l, c, r}, arm jt enters a new epoch.

else kjt = kjt + 1.
end if

end if
end for

high probability. For any price pj, the number of periods in one epoch of bisection search

depends on the separation of the queried remuneration values and cannot be bounded by a

small enough value. If we keep selecting price pj until one epoch finishes in the inner layer

bisection search, the number of periods becomes unpredictable. Consequently, Part (4.2),

incurred from the product of the gap between the optimal revenue of pj∗ and selected pjt

and the total number of times price pjt is selected, cannot be bounded efficiently. Therefore,

to address the suboptimality of the arm, Algorithm 6 enhances the price choice at each

time, and the bisection search process for each arm does not need to be consecutive. This

unique characteristic differentiates our method from previous literature employing either

bisection or trisection search (Agarwal et al. 2011, Chen et al. 2019a, Chen and Shi 2020,

Chen et al. 2021c, Lei et al. 2014). Essentially, this “smart” adaptive querying operation in

the bisection search procedure enables us to update the algorithm at any time, rather than

restricting updates to only the end of each epoch. This flexibility is essential to establish a

tight regret bound based on the fact that the estimation of the optimal expected revenue

using price p1, . . . , pJ at any time t will be sufficiently accurate with high probability (see

Lemma 4.4.4).

We can further improve the efficiency of the bisection search procedure by altering the

sampling process to reuse samples from previous rounds. Specifically, for the quartering

search technique, both Agarwal et al. (2011) and Chen and Shi (2020) query exactly Θ
(

log T
γ2
i

)
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in round i consecutively. In Algorithm 6, however, round i ≥ 2 incorporates Θ
(

log T
γ2
i

− log T
γ2
i−1

)
samples, i.e., we will reutilize the samples from previous rounds for estimation in the current

round. Although this modification cannot strictly improve the order of the final regret

bound, it potentially accelerates the bisection search process and also simplifies the proof

for regret bound for each epoch (see the proof of Lemma 4.4.2 in comparison with the proof

of Lemma 3 in Agarwal et al. (2011)).

In summary, the unique querying approach enables the algorithm to continuously update

the confidence radius (Rad) and select a new arm at any point in time, rather than only at

the end of an epoch or a complete round of the bisection search. This prevents the regret

from being adversely affected by excessive exploration of suboptimal arms. Furthermore,

efficiency is enhanced by reusing queries from previous rounds within each epoch.

4.4 Regret Analysis

We first state our main result in Theorem 4.4.1. Together with Theorem 4.5.1 established

later, we obtain matching upper and lower regret bounds, up to a logarithmic factor.

Theorem 4.4.1 Under Assumption 4.2.1, by setting the price discretization parameter J =

T
1
3 , Algorithm 6 achieves Regret3TBBS = Õ(T

2
3 ) for a finite horizon of 3T periods.

The remainder of this section is devoted to proving Theorem 4.4.1. For notational conve-

nience, for any j ∈ [J ], we define the following notations. We denote the set of time indices

contained in price pj’s epoch τ as Lj,τ and those when the price is pj as set Hj. Let the index

of the epoch of price pj at time t be τ tj . Additionally, we denote the left and right end-points

of the interval of price pj in epoch τ as lτj and rτj . Recall that we employ wt
x, x ∈ {l, c, r} to

denote the remuneration values implemented at time t.

4.4.1 High Level Roadmap

To present a concise overview of the regret upper bound for the BBS Algorithm, we provide

a high-level demonstration using Figure 4.2 as a visual roadmap. In particular, for any given

sample path, the total loss of Algorithm 6 can be decomposed into the following components:

3TR(p∗, w∗)−
3T∑
s=1

R̆s
BBS

=3TR (p∗, w∗)− 3TR (pj∗ , w
∗(pj∗)) (Discretization Loss) (4.4)

+ 3TR (pj∗ , w
∗(pj∗))− 3

J∑
j=1

∑
t∈Hj

R (pj, w
∗(pj)) (Bandit Selection Loss) (4.5)
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Figure 4.2: Proof of Theorem 4.4.1 Roadmap

+
J∑

j=1

∑
t∈Hj

3R (pj, w
∗(pj))−

∑
x∈{l,c,r}

R̃t
x

 , (Bisection Search Loss) (4.6)

where (4.4) is the loss from the discretization over the price range, (4.5) is the loss from

selecting the suboptimal arms of price, and (4.6) is the loss incurred during the process of

the bisection search for the optimal remuneration for each arm.

For the upper bound of the Discretization Loss (4.4), since R (p, w∗(p)) is Lipschitz in

p as shown in Theorem 4.2.1b, the difference between the expected revenue R (p∗, w∗(p∗))

and R (pj∗ , w
∗(pj∗)) can be bounded by the difference between p∗ and pj∗ by controlling the

discretization interval to be O(T− 1
3 ).

Recall that we select the price arm with the highest upper confidence bound estimated

by the average realized revenue. Loss (4.5) from selecting a suboptimal price at time t can

be bounded by the confidence radius at time t in estimating the optimal expected revenue

using the price. The confidence radius can be further bounded as below. For any price

pj, j ∈ [J ], the set of times when the price is pj until time t consist of multiple epochs,

where the loss in each epoch originating from the suboptimality of the remuneration can

be bounded by the property of bisection search in Lemma 4.4.2. Furthermore, the number

of rounds in any epoch for any j ∈ [J ] is upper bounded based on the number of times of

selecting price pj up to time t. Then the length of the interval for remuneration in time t is

bounded below. Because for any j ∈ [J ] and any k, the interval after round k will contain all

w values satisfying R (pj, w
∗ (pj))− R (pj, w) ≤ γk. Thus, if the number of rounds is upper

bounded, by Lipschitz continuity of R(p, w) in w, the length of the interval for w is bounded
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below. In addition, the length of the interval for searching w∗(pj) will shrink by a factor of
3
4
after each epoch. Therefore, the number of epochs can be bounded as in Lemma 4.4.3.

Combined with the bound on the loss incurred from each epoch, the confidence radius can

be bounded.

Part (4.6) incurred from the suboptimality of remuneration in the bisection process for

each pulled arm, can be bounded in the same way as discussed above.

4.4.2 High Probability Event

We establish a high probability result for the “clean event” as opposed to “bad events” which

will incur a large regret. Specifically, we present the following lemma.

Lemma 4.4.1 We define an event E (the so-called clean event) as

E :=

{∣∣∣∣∣ R̂
t+1
jt,x

mt+1
jt

−R
(
pjt , w

t
x

)∣∣∣∣∣ ≤ P̄ S̄

√
log T

mt+1
jt

, ∀t ∈ [T ], x ∈ {l, c, r}

}
. (4.7)

Then we have P [E ] ≥ 1− 6
T
. Moreover, conditional on event E, for any calculated UBkjt

(wt
x)

and LBkjt
(wt

x), we have R (pj, w
t
x) ∈

[
LBkjt

(wt
x) ,UBkjt

(wt
x)
]
for any x ∈ {l, c, r}.

Proof of Lemma 4.4.1. For any t ∈ [T ] and x ∈ {l, c, r}, we define the event

E t
x :=

{∣∣∣∣∣ R̂
t+1
jt,x

mt+1
jt

−R
(
pjt , w

t
x

)∣∣∣∣∣ ≤ P̄ S̄

√
log T

mt+1
jt

}
,

indicating that the average of mt+1
jt realizations of revenue using (pjt , w

t
x) in the current

round of pulled arm jt sufficiently approximates R (pjt , w
t
x). By Hoeffding’s inequality, we

have P
(
(E t

x)
∁
)
≤ 2

T 2 . Note that the event E = ∩T
t=1 ∩x∈{l,c,r} E t

x denotes the event that at

any time t and x ∈ {l, c, r} the estimate of R (pjt , w
t
x) is sufficiently accurate. Then by union

bound, we have P
(
E∁
)
≤ 6

T
.

Recall that

UBkjt

(
wt

x

)
=
R̂t+1

jt,x

mt+1
jt

+
γkjt

2

is calculated when mt+1
jt reaches

⌈
4(P̄ S̄)2 log T

γ2
k
jt

⌉
. Consequently,

UBkjt

(
wt

x

)
≥
R̂t+1

jt,x

mt+1
jt

+ P̄ S̄

√
log T

mt+1
jt

.
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Similar analysis can be applied to LBkjt
(wt

x) and we have

LBkjt

(
wt

x

)
≤
R̂t+1

jt,x

mt+1
jt

− P̄ S̄

√
log T

mt+1
jt

.

Therefore conditional on event E , we have R (pj, w
t
x) ∈

[
LBkjt

(wt
x) ,UBkjt

(wt
x)
]
for any

x ∈ {l, c, r} and any t ∈ [T ]. Q.E.D.

4.4.3 New Concentration Bound for Estimation

We analyze the regret conditional on the event E , as defined in (4.7), which occurs with a

probability of at least 1 − 6
T
. Specifically, we first bound the regret for any price pj in any

epoch τ (§4.4.3.1), then we bound the number of epochs until time t (§4.4.3.2). Finally, we
provide the result to bound the deviation of the total realized revenue for any price choice

until time t from the true optimal revenue (§4.4.3.3).

4.4.3.1 Regret within Single Epoch.

We have the following lemma that bounds the deviation of total realized revenue
∑

t∈Lj,τ
R̃t

x

from the optimal revenue |Lj,τ |R (pj, w
∗(pj)), for any price pj in its epoch τ .

Lemma 4.4.2 For any arm j ∈ [J ], suppose it is in its epoch τ which ends in round k.

Then for any x ∈ {l, c, r}, we have∣∣∣∣∣∣
∑
t∈Lj,τ

(
R (pj, w

∗(pj))− R̃t
x

)∣∣∣∣∣∣ ≤ max{8P̄ S̄, 98}(P̄ S̄)
2 log T

γk
.

Proof of Lemma 4.4.2. We analyze various scenarios based on different values of k.

1. If k = 1, we have∣∣∣∣∣∣
∑
t∈Lj,τ

(
R (pj, w

∗(pj))− R̃t
x

)∣∣∣∣∣∣ ≤ 4(P̄ S̄)2 log T

γ21
P̄ S̄ =

8
(
P̄ S̄
)3

log T

γ1
.

2. If k ≥ 2, note that for any epoch τ of price pj, we have∣∣∣∣∣∣
∑

t∈Lj,τ

(
R (pj , w

∗(pj))− R̃t
x

)∣∣∣∣∣∣ ≤
∑

t∈Lj,τ

(
R (pj , w

∗(pj))−R
(
pj , w

t
x

))
︸ ︷︷ ︸

A1

+

∣∣∣∣∣∣
∑

t∈Lj,τ

(
R
(
pj , w

t
x

)
− R̃t

x

)∣∣∣∣∣∣︸ ︷︷ ︸
A2

.
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Recall that Lj,τ is the set of time indices contained in price pj’s epoch τ . We know

|Lj,τ | ≤ 4(P̄ S̄)2 log T

γ2
k

because epoch τ ends in round k. Therefore, we have

(A1) =
∑
t∈Lj,τ

(
R (pj, w

∗(pj))−R
(
pj, w

t
x

))
≤12γk−1 |Lj,τ | = 24γk |Lj,τ | ≤

96(P̄ S̄)2 log T

γk
,

where the first inequality is due to the fact that for any price pj, if epoch τ ends at

round k ≥ 2, then R (pj, w
∗(pj)) − R (pj, w

t
x) ≤ 12γk−1, ∀t ∈ Lj,τ , x ∈ {l, c, r}, which

is Lemma 2 in Agarwal et al. (2011). Since we condition on event E , we have

(A2) ≤ |Lj,τ |P̄ S̄

√
log T

|Lj,τ |
= P̄ S̄

√
log T |Lj,τ | ≤

2(P̄ S̄)2 log T

γk
,

because |Lj,τ | ≤
2
(
P̄ S̄
)2

log T

γk
. Thus, for k ≥ 2, the total loss can be bounded by

∣∣∣∣∣∣
∑
t∈Lj,τ

(
R (pj, w

∗(pj))− R̃t (pj, wj,x)
)∣∣∣∣∣∣ ≤ 98(P̄ S̄)2 log T

γk
.

Then we sum up both situations and the proof is completed. Q.E.D.

4.4.3.2 Bound on the Number of Epochs.

We bound the total number of epochs for any arm at any time t.

Lemma 4.4.3 At any time t, for any arm j ∈ [J ], the total number of epochs

τ tj ≤
1

2
log 4

3

P̄ 2max{K2
2 , S̄

2}nt+1
j

9S̄2 log T
,

where nt+1
j is the number of times price pj is selected by the end of time t.

Proof of Lemma 4.4.3. At any time t and for any j ∈ [J ], define γtmin
j := 2P̄ S̄

√
log T

nt+1
j

.

Note that for any epoch τ of price pj up to the end of time t, assuming epoch τ ends in

round k, we have γk ≥ γtmin
j because otherwise price pj will be selected for more than

nt+1
j times in total by the end of time t, which is a contradiction. Define interval IN t

j :=[
w∗(pj)−

γtmin
j

max{K2,S̄}P̄ , w
∗(pj) +

γtmin
j

max{K2,S̄}P̄

]
. Then because R(p, w) is max{K2, S̄}P̄ -Lipschitz
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in w given p by Theorem 4.2.1a, for any w ∈ IN t
j we have

R (pj, w
∗(pj))−R (pj, w) ≤ max{K2, S̄}P̄ |w − w∗(pj)| ≤ γtmin

j .

Suppose τ tj ≥ 2, suppose epoch τ tj−1 ends in round k. With a minor abuse of notation, we

denote the interval during epoch τ of price pj as
[
lτj , r

τ
j

]
. Note that by Lemma 1 in Agarwal

et al. (2011), for any price pj, if epoch τ ends at round k, then the interval
[
lτ+1
j , rτ+1

j

]
contains

every w ∈
[
lτj , r

τ
j

]
such that R (pj, w) ≥ R (pj, w

∗(pj)) − γk. In particular, w∗(pj) ∈
[
lτj , r

τ
j

]
for all epochs τ . Consequently,

IN t
j ⊆ {w : R (pj, w) ≥ R (pj, w

∗(pj))− γk} ⊆
[
l
τ tj
j , r

τ tj
j

]
,

which implies

∣∣IN t
j

∣∣ = 2γtmin
j

max{K2, S̄}P̄
≤
∣∣∣[lτ tjj , rτ tjj ]∣∣∣ = P̄

(
3

4

)τ tj−1

.

Therefore, we have

τ tj ≤
1

2
log 4

3

P̄ 2max{K2
2 , S̄

2}nt+1
j

16S̄2 log T
+ 1 =

1

2
log 4

3

P̄ 2max{K2
2 , S̄

2}nt+1
j

9S̄2 log T
.

Note that if τ tj = 1, the result holds trivially. Q.E.D.

4.4.3.3 Bound of the Regret for Fixed Arm.

With Lemmas 4.4.2 and 4.4.3 established, we now provide a bound on the total regret of

any given arm at any time.
Lemma 4.4.4 At any time t, for any price pj, recall that H

t
j is the set of time indices by

the end of time t when value pj is selected for price, we have∣∣∣∣∣∣R (pj , w
∗(pj))−

1

3nt+1
j

∑
s∈Ht

j

∑
x∈{l,c,r}

R̃s (pj , w
s
x)

∣∣∣∣∣∣ ≤max{2P̄ S̄,
49

2
}P̄ S̄

√
log T

nt+1
j

log 4
3

P̄ 2 max{K2
2 , S̄

2}nt+1
j

9S̄2 log T

=Radt+1
j .

Proof of Lemma 4.4.4. Until time t, for any epoch τ of price pj which ends in round k,
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we have∣∣∣∣∣∣
∑

s∈Lj,τ

R (pj, w
∗(pj))− R̃s (pj, w

s
x)

∣∣∣∣∣∣ ≤max{8P̄ S̄, 98}(P̄ S̄)
2 log T

γk
≤ max{8P̄ S̄, 98}(P̄ S̄)

2 log T

γtmin
j

=max{4P̄ S̄, 49}P̄ S̄
√

log Tnt+1
j ,

where the first inequality is by Lemma 4.4.2 and the second inequality is due to the fact

that the number of times of selecting price pj until time t should be no larger than nt+1
j . In

addition, by Lemma 4.4.3, we have a bound on the number of epochs of price pj until time

t, i.e.,

τ tj ≤
1

2
log 4

3

P̄ 2max{K2
2 , S̄

2}nt
j

9S̄2 log T
.

Therefore, we have∣∣∣∣∣∣
∑
s∈Ht

j

3R (pj, w
∗(pj))−

∑
x∈{l,c,r}

R̃s (pj, w
s
x)

∣∣∣∣∣∣
≤max{6P̄ S̄, 147

2
}P̄ S̄

√
log Tnt+1

j log 4
3

P̄ 2max{K2
2 , S̄

2}nt+1
j

9S̄2 log T
.

Then the proof is complete because
∣∣H t

j

∣∣ = nt+1
j . Q.E.D.

Lemma 4.4.4 presents an important concentration inequality for any given arm at any

given point in time, which provides an essential framework for constraining the overall re-

gret. In particular, it handles the key challenge in designing the online algorithm for the

remunerating newsvendor problem, which is the tradeoff between the loss incurred by the

exploration of price (Part (4.5)) and the loss attributable to the suboptimality of remuner-

ation for any price choice (Part (4.6)). These two parts of losses, incurred in the process

of searching for the optimal price and the corresponding optimal remuneration, are intrin-

sically determined by the duration devoted to the exploration of a price’s optimal revenue

prior to the exploitation of this data in pursuit of better price options. This balancing act

between exploration and exploitation drives the efficacy of the online algorithm designed for

two decision variables and needs to be constructed carefully.

It is observed that the naive combination of Bisection Search and Bandit Control, which

involves implementing a phase of Bisection Search (on remunerations) under a single price

choice and then using the obtained revenue to estimate the performance of that price, leads

to a total regret of order O(T ). Under this naive design, let us assume that the algorithm

makes a total of K price selections, denoted by pk for the k-th choice. While Part (4.6) can
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still be effectively bounded, Part (4.5) poses a problem. We can express Part (4.5) as follows:

3TR (pj∗ , w
∗(pj∗))− 3

K∑
k=1

NkR
(
pk, w∗(pk)

)
= 3

K∑
k=1

Nk
(
R (pj∗ , w

∗(pj∗))−R
(
pk, w∗(pk)

))
,

where Nk denotes the total number of times for kth price choice. While R (pj∗ , w
∗(pj∗)) −

R
(
pk, w∗(pk)

)
does not depend on Nk, the length of a round or epoch in the Bisection

Search process with respect to w is determined by the specific shape (predominantly the

first-order derivatives) of the function R
(
pk, w

)
. Since we do not impose any assumption

on the function’s curvature, determining a conclusive bound for Nk is difficult. This renders

Part (4.5) to be instance dependent. An extreme example is when the function R (p1, w) , w ∈
[0, p1] is flat enough such that K = 1 and N1 = T , this naive design adopts a total loss of

order O(T ).

To address such pathological circumstances, it is necessary to reduce the Bandit Selection

Loss (4.5) by truncating the exploratory phase of suboptimal price choices compared to the

naive design. To this end, we propose updating the price choice at each time instead of at the

end of each epoch, and distributing the Bisection Search process for each price into different

outer layers. This design allows the algorithm to spend less time on suboptimal prices and

enables faster learning of the optimal remuneration corresponding to superior price choices.

Specifically, Lemma 4.4.4 quantifies the concentration inequality for the estimation of each

price choice at any time, supporting the concurrent price updates. Based on the design and

the concentration result, the regret of the algorithm can be shown to be Õ(T
2
3 ). The details

are specified below in §4.4.4.

4.4.4 Total Regret Bound

We are now ready to put everything together to obtain the total regret bound.

Proof of Theorem 4.4.1. First, we condition on the event E defined in (4.7). By Theorem

4.2.1b,

|R (p1, w
∗(p1))−R (p2, w

∗(p2))| ≤ K3 |p1 − p2| ,

it can be seen that (4.4) ≤ 3T ·
K3P̄

J
.
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For the loss from bandit selection, it can be shown

(4.5) ≤3P̄ S̄J + 3

T∑
t=J+1

[(
αt
j∗

3nt
j∗

+Radt
j∗

)
−

(
αt
jt

3nt
jt

+Radt
jt

)
+

(
αt
jt

3nt
jt

+Radt
jt

)
−R (pjt , w

∗(pjt))

]
(4.8)

≤3P̄ S̄J + 3

T∑
t=J+1

((
αt
jt

3nt
jt

+Radt
jt

)
−R (pjt , w

∗(pjt))

)
(4.9)

≤3P̄ S̄J + 6

T∑
t=J+1

Radt
jt (4.10)

≤3P̄ S̄J + 6

J∑
j=1

nT+1
j∑
i=1

max{2P̄ S̄,
49

2
}P̄ S̄

√
log T

i
log 4

3

P̄ 2 max{K2
2 , S̄

2}i
9S̄2 log T

≤3P̄ S̄J + 12max{2P̄ S̄,
49

2
}P̄ S̄

√
log T log 4

3

P̄ 2 max{K2
2 , S̄

2}T
9S̄2 log T

J∑
j=1

√
nT+1
j ,

where (4.8) and (4.10) are by Lemma 4.4.4, and (4.9) is due to the selection rule in Algorithm

6.

For the loss caused by the bisection search process, it can be shown that

(4.6) ≤
J∑

j=1

RadT+1
j 3nT+1

j =
J∑

j=1

3max{2P̄ S̄, 49
2
}P̄ S̄

√
log TnT+1

j log 4
3

P̄ 2max{K2
2 , S̄

2}nT+1
j

9S̄2 log T

≤3max{2P̄ S̄, 49
2
}P̄ S̄

√
log T log 4

3

P̄ 2max{K2
2 , S̄

2}T
9S̄2 log T

J∑
j=1

√
nT+1
j ,

where the first inequality is by applying Lemma 4.4.4 to any price pj at the end of time T .

Note that
∑J

j=1 n
T+1
j = T , so we have

∑J
j=1

√
nT+1
j ≤

√
JT by Jensen’s inequality. In

sum, by Lemma 4.4.1,

Regret3TBBS =3TR(p∗, w∗)− E

[
3T∑
s=1

R̆s
BBS

]

=E

[
3TR(p∗, w∗)−

3T∑
s=1

R̆s
BBS | E

]
P (E) + E

[
3TR(p∗, w∗)−

3T∑
s=1

R̆s
BBS | E∁

]
P
(
E∁
)

≤15max{2P̄ S̄,
49

2
}P̄ S̄

√
log T log 4

3

P̄ 2 max{K2
2 , S̄

2}T
9S̄2 log T

√
JT + 3S̄P̄ J + 3K3P̄ TJ−1

+
6

T
3T P̄ S̄.

Finally, when J = T
1
3 , we have Regret3TBBS = Õ(T

2
3 ) and Theorem 4.4.1 is proved.

Q.E.D.

We would like to highlight two challenges that our algorithm has overcome, which did
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not arise in the work of Agarwal et al. (2011) that focused on a single-dimensional bisection

search. First, we significantly extend the existing methods to a framework that encompasses

two decision variables (without having joint convexity). To tackle this problem, we integrate

carefully designed Bandit Control techniques into the Bisection Search method. This com-

bination leverages the strengths of both methodologies and enables an innovative approach

to handle the complexities introduced by the inclusion of an additional decision variable

and the absence of a joint convex structure. Second, we introduce a crucial modification

to the querying process within Bisection Search, which distributes the search process over

multiple outer loops and non-consecutive steps. This tailored modification plays a key role

in ensuring that the regret incurred from the bisection search process, for any price selection

at any given time, is bounded with high probability, as given in Lemma 4.4.4. Consequently,

the learning algorithm can achieve a tight regret bound.

4.5 Regret Lower Bound

We derive the following lower bound for the regret of a T -period finite horizon joint pricing

and remuneration decision problem, which implies that the proposed Algorithm 6 achieves

the optimal regret bound up to a logarithmic factor for any admissible pricing strategy.

Theorem 4.5.1 Under Assumption 4.2.1, for any admissible pricing strategy ALG, there

exist problem instances such that RegretTALG = Ω(T
2
3 ).

To prove Theorem 4.5.1, we invoke the following result from Wang et al. (2021b) without

proof.

Lemma 4.5.1 (Theorem 2 in Wang et al. (2021b)) Fix any integer k ≥ 1 and pmin =

1, pmax = 2, C = 1. There exists a constant Ck > 0 depending only on k, such that for any

admissible dynamic pricing strategy π,

sup
f∈Σk([pmin, pmax];c)

Eπ

[
T × max

p∈[pmin, pmax]
pf(p)−

T∑
t=1

ptf (pt)

]
≥ Ck × T (k+1)/(2k+1),

where {pt}Tt=1 are the prices set by the pricing strategy π.

Proof of Theorem 4.5.1. Consider the case where µ(w) = S̄ (the upper bound for demand

and supply) and ε = δ = 0, satisfying Assumption 4.2.1. In this case, the problem simplifies

to:

max
pt, wt

T∑
t=1

(pt − wt)λ(pt)

98



s.t. 0 ≤ wt ≤ pt, ∀t ∈ [T ].

For any p, we have
∂R(p, w)

∂w
= −λ(p) ≤ 0. Therefore, the optimal remuneration price

w∗(p) = 0 for any p, and the problem simplifies to:

max
pt

T∑
t=1

ptλ(pt) (4.11)

s.t. 0 ≤ pt ≤ P̄ , ∀t ∈ [T ].

Because λ(·) is Lipschitz continuous by Assumption 4.2.1b, the problem (4.11) corresponds

to the dynamic pricing problem studied in Wang et al. (2021b) when k = 1. In particular,

they constructed J revenue functions where instance j achieves its maximum in the interval

[1 + (j − 1)/J, 1 + j/J ]. For any policy π, there exists an instance such that the regret

is of order Ω
(
T (k+1)/(2k+1)

)
. By Lemma 4.5.1, we can conclude that Theorem 4.5.1 holds.

Q.E.D.

4.6 Special Case: Linear Model

We now turn our attention to a specific instance of the remunerating newsvendor problem

where the underlying demand and supply functions are presumed to have a linear relationship

with price and remuneration, respectively. We improve the regret upper bound for this special

case by imposing another online algorithm.

Specifically, with the assumption of additive noises for the demand D(p) = λ(p) + ε and

supply S(w) = µ(w) + δ, we further assume a linear relationship between demand (supply)

and price (remuneration), which is common in operations management literature (Keskin

and Zeevi 2014, Mills 1959, Petruzzi and Dada 1999, Taylor 1974).

Assumption 4.6.1 The demand and supply are decreasing and increasing linear functions

with respect to price and remuneration respectively, each with an additive zero-mean noise,

i.e.,

λ(p) = c1 − a1p, µ(w) = c2 + a2q, a1, c1, a2, c2 > 0,

E [ε] = 0, E [δ] = 0.

We term the difference between the price and remuneration as a “gap” defined as ∆ := p−
w. With slight abuse of notation, we denote R (∆, w) := ∆E [min(λ(∆ + w) + ε, µ(w) + δ)].
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Once again, we posit that the likelihood of negative supply or demand can be disregarded,

as discussed in §4.2. Then the problem can be written as:

max
∆, w

R(∆, w) = ∆E [min(c1 − a1(∆ + w) + ε, c2 + a2w + δ)]

s.t. ∆, w ≥ 0

Subsequently, we obtain the following structural results with proof provided in Appendix

C.2.2.

Theorem 4.6.1 In the case of complete information where the demand and supply func-

tions, as well as the random noise distributions, are known a priori, the remunerating

newsvendor problem has the following structural properties under Assumptions 4.2.1a and

4.6.1,

(a) For any gap ∆, the expected revenue R(∆, w) is concave and Lipschitz continuous in

remuneration w. In particular, for any w1, w2 ∈ [0, P̄ ],

|R (∆, w1)−R (∆, w2)| ≤ K4 |w1 − w2| ,

where K4 = P̄ ā and ā = max{a1, a2}.

(b) The optimal expected revenue R (∆, w∗(∆)) as a function of gap ∆ is concave and Lip-

schitz continuous in ∆. In particular, for any ∆1,∆2 ∈ [0, P̄ ],

|R (∆1, w
∗(∆1))−R (∆2, w

∗(∆2))| ≤ K5 |∆1 −∆2| ,

where K5 = max
(
c1,

2a1a2
a1+a2

P̄ + 2a1+a2
a1+a2

S̄, P̄ + S̄
)
.

4.6.1 Double Bisection Search Algorithm (DBS)

Given a context of incomplete information, where a1, a2, c1, c2 and the distributions of ε

and δ are unknown, we propose an alternative online algorithm. This algorithm, called

Double Bisection Search Algorithm (DBS), offers an enhanced upper bound for regret. The

algorithm applies Bisection Search in both outer and inner layers and is detailed in Algorithm

7.

4.6.1.1 Main Ideas and High-Level Analysis.

The main idea of Algorithm 7 is a Bisection Search procedure implemented to optimize ∆,

with the standard query process within each epoch supplanted by another BS routine (see
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Algorithm 7 Double Bisection Search Algorithm (DBS)

Define γi :=
1
2i
, i ≥ 1 and α(T ) = 1

2
log 4

3

1
16S̄2

T
log T

. Initialize l1 = 0, r1 = P̄ .

Let K6 := max(24K4, 512)P̄ S̄. ▷ Parameters

for epoch τ = 1, 2, . . . do ▷ Outer Bisection Search

Let u := rτ − lτ and ∆l := lτ + u/4,∆c := lτ + u/2,∆r := lτ + 3u/4.

Initialize mx = 0 and qx = P̄ −∆x for x ∈ {l, c, r}.
for round i = 1, 2, . . . do

for x ∈ {l, c, r} do

Update R̂x,mx, qx = BS(∆x,
4K2

6 log T

γ2
i

,mx, qx). ▷ Inner Bisection Search

end for

Let LBγi(∆x) = R̂x − γi
2
α(T ) and UBγi(∆x) = R̂x +

γi
2
α(T ) for x ∈ {l, c, r}.

if min {UBγi (∆l) ,UBγi (∆r)} ≤ max {LBγi (∆l) ,LBγi (∆r)} − γiα(T ) then

if UBγi (∆l) ≤ UBγi (∆r) then let lτ+1 = ∆l and rτ+1 = rτ .

else let lτ+1 = lτ and rτ+1 = ∆r.

end if

Continue to epoch τ + 1.

else if min {UBγi (∆l) ,UBγi (∆r)} ≤ LBγi (∆c)− γiα(T ) then

if UBγi (∆l) ≤ UBγi (∆r) then lτ+1 = ∆l and rτ+1 = rτ .

else let lτ+1 = lτ and rτ+1 = ∆r.

end if

Continue to epoch τ + 1.

end if

end for

end for
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Algorithm 8 BS(∆, n,m, q)

Define γi :=
1
2i
, i ≥ 1 and let l1 := m and r1 := q.

for epoch τ = 1, 2, . . . do

Let u := rτ − lτ and wl := lτ + u/4, wc := lτ + u/2, wr := lτ + 3u/4. Initialize S = 0.

for round i = 1, 2, . . . do

Sx = 0 for x ∈ {l, c, r}.
for t = 1, . . . , 4P̄

2S̄2

γ2
i

log T do

For x ∈ {l, c, r}, implement with ∆, wx and obtain the realized revenue R̆t
x.

Update S = S + R̆t
x and Sx = Sx + R̆t

x.

end for

Let LBγi(wx) =
Sxγ2

i

4P̄ 2S̄2 log T
− γi

2
and UBγi(wx) =

Sxγ2
i

4P̄ 2S̄2 log T
+ γi

2
for x ∈ {l, c, r}.

if min {UBγi (wl) ,UBγi (wr)} ≤ max {LBγi (wl) ,LBγi (wr)} − γi then

if UBγi (wl) ≤ UBγi (wr) then let lτ+1 = wl and rτ+1 = rτ .

else let lτ+1 = lτ and rτ+1 = wr.

end if

Continue to epoch τ + 1.

else if min {UBγi (wl) ,UBγi (wr)} ≤ LBγi (wc)− γi then

if UBγi (wl) ≤ UBγi (wr) then lτ+1 = wl and rτ+1 = rτ .

else let lτ+1 = lτ and rτ+1 = wr.

end if

Continue to epoch τ + 1.

end if

end for

end for

Output S
n
, lτ , rτ .
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Algorithm 8). The Bisection Search procedure focuses on remuneration w and is consecutively

executed within each outer epoch. It is noteworthy that all inner BS procedures during the

same epoch in Algorithm 7 should be consecutively executed, i.e., the ending interval of

the BS procedure in the preceding round should be “memorized” to be used for the initial

interval in the subsequent round. This is crucial because a naive implementation that invokes

the BS subroutine independently in each round would result in an unbounded cumulative

number of inner BS executions, and consequently yield a suboptimal total regret bound.

Lemma 4.6.1 establishes a concentration inequality (Boucheron et al. 2013) that bounds

the deviation of the average revenue generated by the BS process from R (∆, w∗(∆)). This

guarantees the validity of the outer Bisection Search process over ∆. Consequently, the loss

from the suboptimality of ∆ (i.e., Part (4.12) in §4.6.2) can be bounded efficiently with high

probability. The loss from the suboptimality of w and random noise (i.e., Part (4.13) in

§4.6.2) can be bounded by Lemma 4.6.1 together with Proposition 4.6.2, which bounds the

total number of BS cycles by a logarithmic factor.

4.6.1.2 Improved Regret Bounds.

We present the subsequent theorem that establishes the upper bound of the regret for Algo-

rithm 7. The proof for this theorem is provided in §4.6.2.
Theorem 4.6.2 Under Assumptions 4.2.1a and 4.6.1, if we choose ηt = 1√

t
, we have

RegretTDBS = Õ(T
1
2 ).

It’s noteworthy that the marked improvement of the regret from Õ(T
2
3 ) for the general

function case to Õ(T
1
2 ) for the linear case principally stems from the concavity result of

R (∆, w∗(∆)), which enables us to apply the Bisection Search Algorithm instead of Bandit

Algorithm. Coupled with the succeeding proposition, we demonstrate that the proposed

Algorithm 7 attains the optimal convergence rate in regret, up to logarithmic factors.

Proposition 4.6.1 (Theorem 1 in Keskin and Zeevi (2014)) There exists a finite

constant c such that RegretTALG ≥ c
√
T for any policy ALG and time horizon T ≥ 3.

Notably, when µ(w) = S̄ and ε = δ = 0, our problem transforms into a dynamic pricing

problem with a linear underlying correlation between demand and price. This is the problem

setting studied in Keskin and Zeevi (2014). Therefore, we omit the proof.
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4.6.2 Proof of Theorem 4.6.2

The total loss under any sample path can be decomposed into two parts as below.

TR (∆∗, w∗)−
T∑
t=1

R̆t
DBS

=TR (∆∗, w∗)−
T∑
t=1

R
(
∆t, w∗ (∆t

))
(Outer Bisection Search Loss) (4.12)

+
T∑
t=1

R
(
∆t, w∗ (∆t

))
−

T∑
t=1

R̆t
DBS. (Inner Bisection Search Loss) (4.13)

The component (4.13), which is bounded as per §4.6.2.1, signifies the loss resulting from

the BS Subroutine 8. Then in §4.6.2.2, we analyze the regret bound for (4.12), which denotes

the loss from the suboptimal choice of ∆ that is optimized over the Bisection Search process.

We summarize the total loss in §4.6.2.3. It is noteworthy that the rounds or epochs within

both Bisection Search procedures are now consecutively executed without the reuse of past

rounds’ realizations, in order to directly incorporate the existing outcomes of the Bisection

Search and enhance the conciseness of the proof.

4.6.2.1 Inner Bisection Loss.

It is noted that the inner BS in Algorithm 8 is a standard quartering search procedure with

starting interval [m, q] and horizon length n. Consequently, we can apply similar proof with

different Lipschitz constants and Hoeffding’s inequality for bounded variables to the proof of

Theorem 1 in Agarwal et al. (2011) and obtain the following lemma for the BS procedure.

Lemma 4.6.1 For any ∆, n,m, q, if we run Algorithm 8 BS(∆, n,m, q), then with proba-

bility at least 1− 2
T 2 , we have∣∣∣∣∣R (∆, w∗(∆))− 1

n

n∑
i=1

R̃i

∣∣∣∣∣ ≤max(12K4(q −m), 216)P̄ S̄

√
log T

n
log 4

3

(q −m)2

16(P̄ S̄)2
n

log T

≤K6

√
log T

n
α(T ),

where K4 = P̄ ā, K6 = max(24K4P̄ , 432)P̄ S̄, and α(T ) =
1
2
log 4

3

1
16(S̄)2

T
log T

as in Algorithm

7.

We denote the number of periods in epoch τ in Algorithm 7 as nτ and the total number

of epochs is N . For any epoch τ in Algorithm 7, we define the inspected gap values as

∆τ,x, x ∈ {l, c, r}. Define R̂i
τ,x as the output from BS subroutine for estimation of ∆τ,x in
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round i. With the i-th realized revenue using gap ∆τ,x during epoch τ denoted as R̃i
τ,x for

i ∈ [nτ ], we define the following events where Bi
τ,x denotes the event that the loss incurred

in round i of epoch τ with respect to R (∆τ,x, w
∗ (∆τ,x)) is small enough and Cτ,x denotes

that the estimation for R (∆τ,x, w
∗ (∆τ,x)) from epoch τ is accurate enough. That is,

Bi
τ,x =

{∣∣∣R̂i
τ,x −R (∆τ,x, w

∗(∆τ,x))
∣∣∣ ≤ γi

2
α(T )

}
.

Cτ,x =

{∣∣∣∣∣ 1nτ

nτ∑
i=1

R̃i
τ,x −R (∆τ,x, w

∗(∆τ,x))

∣∣∣∣∣ ≤ K6

√
log T

nτ

α(T )

}
.

By Lemma 4.6.1 with ∆ = ∆τ,x and n =
4K2

6 log T

γ2
i

, for any x ∈ {l, c, r} and any round i

in any epoch τ , we have P
(
Bi∁

τ,x

)
≤ 2

T 2 . In addition, note that for each epoch τ , the BS

procedure is implemented consecutively and consequently is itself a BS procedure of length

nτ . By Lemma 4.6.1 with ∆ = ∆τ,x and n = nτ , we have P
(
C∁

τ,x

)
≤ 2

T 2 for any τ ∈ [N ] and

x ∈ {l, c, r}.
Following this, for the events B := ∩τ,x,iB

i
τ,x and C := ∩τ,xCτ,x, through the application

of union bounds, we deduce the following

P (B) ≥ 1− 6

T
, P (C) ≥ 1− 6

T
. (4.14)

Prior to analyzing the cumulative loss from all iterations of BS, we introduce the subse-

quent lemma concerning the total number of epochs, that is, the number of a complete cycle

of inner BS. The proof follows a similar logic to the proof of Lemma 4 in Agarwal et al.

(2011) with the differences lying in the Lipschitz constant and the number of queries in each

round. We thus omit the proof of this lemma.

Lemma 4.6.2 Conditional on event B, the total number of epochs N in the outer Bisection

Search performed by Algorithm 7 is bounded as N ≤ 1
2
log 4

3

(
K2

5 P̄
2T

16K2
6 log T

)
.

Conditional on event B ∩ C, we have

(4.13) =
T∑
t=1

R
(
∆t, w∗ (∆t

))
−

T∑
t=1

R̆t
DBS

=
N∑
τ=1

∑
x∈{l,c,r}

R (∆τ,x, w
∗(∆τ,x))−

1

nτ

nτ∑
i=1

R̃i
τ,x

(
∆τ,x, w

i
τ

)
≤

N∑
τ=1

K6

√
nτ log Tα(T ) (4.15)

≤K6

√
TN log Tα(T ) (4.16)
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≤K6

√
T log Tα(T )

1

2
log 4

3

(
K2

5 P̄
2T

16K2
6 log T

)
, (4.17)

where (4.15) is by conditioning on event C; (4.16) is by Jensen’s inequality and (4.17) is by

Lemma 4.6.2.

4.6.2.2 Outer Bisection Search Loss.

In the context of Theorem 4.6.1b, the concavity and Lipschitz continuity of R (∆, w∗(∆))

allow us to establish the following proposition concerning the Bisection Search Procedure. As

the proof mirrors that of the proof of standard bisection search with the confidence intervals

multiplied by α(T ), it is omitted for brevity.

Proposition 4.6.2 Conditional on event B, the total regret resulting from the outer Bisec-

tion Search can be expressed as

(4.12) =TR (∆∗, w∗)−
T∑
t=1

R
(
∆t, w∗ (∆t

))
≤max

{
6K5P̄ , 108α(T )

}
K6

√
T log T log 4

3

(
K2

5 P̄
2T

16K2
6 log T

)
.

4.6.2.3 Total Loss.

Proof of Theorem 4.6.2. Given the above intermediate results, we can then bound the
total regret.

RegretTDBS

=E

[
TR (∆∗, w∗)−

T∑
t=1

R
(
∆t, w∗ (∆t

))
+

T∑
t=1

R
(
∆t, w∗ (∆t

))
−

T∑
t=1

R̆t
DBS | B ∩ C

]
P (B ∩ C)

+ E

[
TR (∆∗, w∗)−

T∑
t=1

R̆t
DBS | B∁ ∪ C∁

]
P
(
B∁ ∪ C∁

)
≤K6

√
T log T

1

2
α(T ) log 4

3

(
K2

5 P̄
2T

16K2
6 log T

)
+max

{
6K5P̄ , 108α(T )

}
K6

√
T log T log 4

3

(
K2

5 P̄
2T

16K2
6 log T

)
+ P̄ S̄T

12

T

=Õ
(√

T
)
,

where the inequality is by results (4.17) and Proposition 4.6.2. Q.E.D.

From a methodological standpoint, while the Bisection Search technique proposed by

Agarwal et al. (2011) was tailored for convex optimization over a single decision variable,

our approach introduces two key innovations. First, our proposed algorithm is specifically

designed to incorporate two decision variables through a two-layered application of the tech-
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nique, while maintaining a tight upper bound for the total regret. Second, we emphasize the

importance of maintaining a continuous inner bisection search procedure within each outer

epoch. This sequential design ensures that the starting interval of the subsequent round

aligns with the ending interval of the current round. Such a structural design is essential

for effectively bounding the total number of inner bisection searches by the total number of

epochs in the outer layer. Without adhering to this sequential design, if the inner Bisection

Search were to be independently invoked during each iteration, the total regret would fail to

achieve the optimal rate.

4.7 Numerical Experiments

We conduct simulation-based numerical experiments on the proposed algorithms in this

section.

4.7.1 General Case

We consider a remunerating newsvendor problem with a finite horizon defined by T = 1000

and a lower price bound of P = 0. We implement Algorithm 6 for the 6 instances in Table 4.1,

where N[µ, σ] represents a truncated normal distribution with mean µ, standard deviation

σ and a bounded support [−10, 10], while U[a, b] represents a uniform distribution with a

and b as the lower and upper bounds, respectively.

Instance λ(p) µ(w) ε δ P̄ S̄

1 110− p 10 + w N[0, 5] N[0, 5] 100 120

2 110− p 10 + w N[0, 10] N[0, 10] 100 120

3 110− p 10 + w U[−5, 5] U[−5, 5] 100 120

4 110− p2 −w2 + 20w + 10 N[0, 5] N[0, 5] 10 120

5 110− p2 −w2 + 20w + 10 N[0, 10] N[0, 10] 10 120

6 110− p2 −w2 + 20w + 10 U[−5, 5] U[−5, 5] 10 120

Table 4.1: Experiment Parameters

We assess the performance of the model under different scenarios, involving linear and

quadratic functions, and normal and uniform noise distributions with varying degrees of

variance. We denote the policy that uses the clairvoyant optimal price p∗ and remuneration

w∗ for each period as π∗. The performance measure we use is the average relative regret,

which is the average ratio of the cumulative difference between the revenue of implementing
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π∗ and the revenue generated by any algorithm ALG, i.e.,

Relative RegretALG :=

∑3T
s=1 R̆

s
π∗ −

∑3T
s=1 R̆

s
ALG∑3T

s=1 R̆
s
π∗

. (4.18)

For each instance, we conduct 1000 iterations and compute the average relative regret for

Algorithm 6. Figures 4.3–4.8 display the relative regret for instances 1 through 6, respec-

tively. The algorithm converges robustly under various settings.

4.7.2 Linear Case

We also implement Algorithm 7 for the linear case and compare its performance with an-

other type of algorithm which follows the “Explore Then Commit” framework as shown in

Algorithm 9. We implement ECO-n for n = 10, 25, 50 on Instance 1, 2, 3 respectively, each

with N = 100, and conducted 100 iterations.

The average relative ratios of the algorithms as defined in (4.18) with T = 1000 are in

Table 4.2. We can see that DBS outperforms ECO. Moreover, because ECO relies on the

quality of the samples in the exploration phase, the performance of DBS is more stable as

the comparison of the standard deviation of the relative ratios in Table 4.3 indicates.

Algorithm 9 Explore Then Commit using OLS Estimators (ECO-n)

Denote set S :=
{
0, P̄

N
, . . . , P̄

}
. Set p1, p2 ∈ [0, P̄ ] and w1 ∈ [0, p1], w2 ∈ [0, p2] arbitrarily.

for t = 1, . . . , 2n do ▷ Explore

If t ≤ n, then pt = p1 and wt = w1; otherwise p
t = p2 and wt = w2.

Implement price pt and remuneration wt. Observe the demand dt and supply st.

end for

Obtain the ordinary least squares (OLS) estimator â1, ĉ1 using samples {dt}2nt=1 and â2, ĉ2

using samples {st}2nt=1.

Estimate the random noises by ε̂t = dt− ĉ1+ â1pt and δ̂t = st− ĉ2− â2wt for t = 1, . . . , 2n.

Calculate the cumulative revenue for each (p, w) pair with p, w ∈ S and p ≥ w using

estimated parameters â1, ĉ1, â2, ĉ2 and random noise set {ε̂t}2nt=1 and {δ̂t}2nt=1.

Denote the pair with the largest calculated revenue as (p∗ECO, w
∗
ECO).

for t = 2n+ 1, . . . , T do ▷ Commit

Implement with price p∗ECO and remuneration w∗
ECO.

end for
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Instance ECO-10 ECO-25 ECO-50 DBS

1 0.091 0.092 0.061 0.034

2 0.045 0.037 0.039 0.037

3 0.058 0.049 0.045 0.037

Table 4.2: Average Relative Regret at t =
1000

Instance ECO-10 ECO-25 ECO-50 DBS

1 0.183 0.17 0.119 0.003

2 0.115 0.071 0.064 0.002

3 0.145 0.112 0.092 0.002

Table 4.3: Standard Deviation at t =
1000

4.8 Conclusion

We have introduced the “remunerating newsvendor” model, which extends the classical price-

setting newsvendor model by incorporating remuneration decisions in a two-sided market.

We have analyzed the optimal pricing and remuneration policy for fully-informed scenarios

and proposed an online algorithm for situations where the demand and supply functions,

relative to price and remuneration, as well as the noise distributions, are unknown. The al-

gorithm achieves a provably tight regret bound. Furthermore, we improved the regret bound

through an additional online algorithm, specifically for cases presenting a linear relationship

between expected demand (or supply) and price (or remuneration).

Finally, we identify three potential avenues for future research. First, while demand mod-

els in much of the existing literature can be categorized as either additive or multiplicative,

our approach handles the random noise additively. One possible extension would be to

study the problem in a multiplicative or hybrid demand model (e.g., Chen and Simchi-Levi

(2004a)). Second, we consider the scenario of lost sales and no carry-over inventory. It is

natural to wonder how to solve the problem in the backlogged setting with excess inventory

carried over to the next period. Third, while our model presumes that demand (or supply) is

independent of remuneration (or price), it might be intriguing to consider cross-sided effects,

thus capturing a broader array of characteristics inherent in real-world two-sided markets.

109



0 200 400 600 800 1000

Time(t)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
R

eg
re

t
Average Relative Regret of BBS Algorithm for Instance 1

Figure 4.3: Computational Performance for
Instance 1
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Figure 4.4: Computational Performance for
Instance 2
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Figure 4.5: Computational Performance for
Instance 3
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Figure 4.6: Computational Performance for
Instance 4
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Figure 4.7: Computational Performance for
Instance 5
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Figure 4.8: Computational Performance for
Instance 6
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CHAPTER 5

Offline Learning in Feature-Based Pricing

Previous chapters focus on the online learning algorithms in OM, highlighting their reliance

on continuous online exploration, which may not always be practical due to operational

constraints or regulatory considerations. For instance, contractual agreements with suppliers

may prevent retailers from adjusting order quantities frequently while e-commerce platforms

might take fairness in customer transactions into consideration when setting product prices.

Furthermore, The implementation of online learning algorithms involving data collection,

retrieval, pre-processing, and calculation in real time poses requirements for computational

resources. Finally, in some large organizations, the procedural requisites for data access can

impede timely algorithm implementation.

Given these considerations and the availability of extensive historical data, this chapter

shifts focus to the exploration of offline learning algorithms. Specifically, it particularly

addresses one critical issue firms face: setting prices based on historical data based on a

range of features. This chapter presents an in-depth analysis of feature-based pricing with

offline censored demand data, introducing an offline learning algorithm that is supported by

both theoretical performance guarantees and empirical validation. In addition to unraveling

the intricacies of feature-based pricing, this study establishes the first framework for tackling

optimization challenges through the lens of causal inference.

5.1 Introduction

In today’s data-rich business environment, the increased availability of customer data has

fueled interest in feature-based pricing strategies. Firms (especially big techs) combine these

covariates information with machine learning and optimization tools to predict a customer’s

willingness to pay and offer an attractive feature-based price (Elmachtoub et al. 2021).

For any price optimization model, understanding the demand function is the first and

arguably the most critical component. In reality, this task is often very challenging espe-

cially when the demand function D is a function not just of price P offered but also of
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customer/product covariates X. Thanks to the rapid advances in information technology,

firms have been collecting petabytes of historical data from past selling seasons, which is

commonly referred to as offline data (Bu et al. 2023). A central task is to leverage the of-

fline data to extract the demand information and ultimately make near-optimal data-driven

pricing decisions.

A major challenge lies in that typical offline data only contains historical sales, which

suffers from a well-known phenomenon called demand censoring (Huh and Rusmevichientong

2009). This is because when customers face stock-out, they will leave the system without

any purchase records. Hence, the sales quantity is the minimum of the true demand and the

available inventory. That is, the lost sales quantity is censored and unobservable. If demand

censoring is not carefully factored in the design of offline policy learning algorithms, it could

potentially lead to biased and inconsistent demand estimation and, consequently, suboptimal

pricing decisions. Note that demand censoring is not limited to brick-and-mortar settings;

it also occurs on online platforms. On these platforms, when a product is out of stock, the

product page often displays an “out-of-stock” sign. As a result, interested customers may

simply walk away without making any clicks or further engagement.

5.1.1 Brief Problem Statement and Motivating Applications

We consider an offline learning problem in which a firm with a finite amount of inventory

aims to find the optimal feature-based pricing strategy based on customer/product covariates

information. Note that in our setup, any unsatisfied demand that exceeds the inventory level

is lost and unobservable. In particular, the firm does not know the demand function D but

has access to an offline dataset consisting of quadruplets of historical covariates X, inventory

Y , price P , and potentially censored sales quantity S = min{D, Y }. We assume that all

confounders are measured in the data. Our goal is to find the optimal feature-based pricing

strategy π that maps any given covariate vector and available inventory (X, Y ) into price P ,

so as to maximize the potential profit.

Online retailing is one key application area of our developed approach, including Amazon,

Walmart, eBay, and Etsy, to assist sellers in pricing their products. For instance, Wayfair

is an American e-commerce company that offers a wide range of home goods and furniture

products, including sofas, whose pricing is affected by features such as the type of material

used, design complexity, size, brand, and additional features like built-in recliners or pull-out

beds. With the use of historical data, our approach can effectively price these differentiated

products.

It can also be applied to online flash sales websites like Gilt, Rue La La, Belle & Clive, and
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HauteLook. These websites receive luxury goods from various brands periodically and need

to set prices for each item during a short time frame. Our model, which takes into account

historical offline datasets and the highly differentiated products sold, can be applied to these

scenarios. Moreover, the algorithmic approach may be useful for traditional markets, such

as high-end art and premium wine, requiring pricing based on product features.

Our developed approach could also be applied to the hospitality industry. Hotel products

have several features that differentiate them from each other, including their location, type of

accommodation and amenities, reputation, seasonality, brand, and special events. The size

and type of rooms, the amenities provided, as well as the time of year and special events in

the area, can affect pricing. Our algorithm can assist in pricing these differentiated products,

given the large amount of offline data that is available for analysis.

As highlighted in the above examples, our model primarily uses product covariates in-

formation. However, our framework is flexible enough to accommodate customer covariates

as well. Nonetheless, this requires more scrutiny due to legal implications. According to

Ban and Keskin (2021), price discrimination based on customer characteristics is a well-

established legal practice, unless it involves “suspect categories” such as race or religion, or

violates antitrust or price-fixing laws. Insurance companies, for instance, legally quote prices

based on customers’ credit, marriage status, and annual income, among other factors. Sim-

ilarly, customized pricing strategies are widely adopted in various client-oriented industries,

such as advertising and consulting. E-commerce giants like Amazon and Walmart also use

customized pricing, for instance, by offering digital coupons and membership/student dis-

counts, which are commonly used in online economics. We refer interested readers to Cohen

et al. (2020), Miao et al. (2022) and Chen and Gallego (2021) for more application areas of

feature-based pricing strategies, including our own.

5.1.2 Main Results and Contributions

We propose a novel data-driven offline learning algorithm that gives the optimal feature-

based pricing strategy based on customer/product covariates under demand censoring.

Our key contribution is two-fold.

(a) Modeling. To the best of our knowledge, we are the first to model this feature-based

pricing problem under censored demand through the lens of causal inference. We model

the relationship between demand and price under the celebrated potential outcome

framework (Rubin 1974). This framework gives natural identification results on the

effect of price on demand, which makes it amenable for offline learning. A novel aspect

of our model is to factor in demand censoring. In order to estimate the profit function,
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we propose to borrow the tool from survival analysis to recover the expected true (condi-

tional) demand. We also propose a doubly robust estimation procedure to further achieve

the robustness of our estimation result (Bang and Robins 2005). Specifically, we leverage

state-of-the-art supervised learning techniques in estimating the potential profit func-

tion and the propensity scores (Rosenbaum and Rubin 1983) as well as in optimizing the

feature-based prices. Compared with most existing approaches using parametric models

in the literature of profit management and pricing, all the aforementioned components

are modeled non-parametrically, thus more robust to model mis-specification.

(b) Performance. Our proposed algorithm is backed up by theoretical and empirical ev-

idence. Theoretically, we provide a finite sample regret analysis of our offline learning

algorithm showing that the expected profit of the estimated pricing strategy converges

to the profit under the optimal pricing strategy asymptotically as the sample size of

the offline data increases. Empirically, we conduct thorough numerical experiments to

demonstrate that our proposed algorithm performs robustly well in estimating the op-

timal prices on both training and testing datasets. We also demonstrate the value of

factoring in demand censoring in decision-making. Figure 5.1 shows that if one “mistak-

enly” used the sales as the uncensored demands, the resulting prices (represented by the

pink line) would be drastically lower than the theoretical optimal prices (represented by

the orange line), leading to profit degradation by up to 5%. Note that 5% improvement

is significant on an e-commerce company’s bottom line (Columbus 2020).

5.1.3 Literature Review

Our work is related to the following streams of literature.

Offline Learning for Pricing and Inventory Models. There has been increasing atten-

tion and interest in developing effective offline learning strategies for pricing and inventory

models, thanks to the massive amount of historical data on customer and/or product infor-

mation. This differs from online learning in that the entire dataset is available before the

algorithm starts. Offline learning is especially useful when conducting online exploration

can sometimes be very expensive or infeasible. Levi et al. (2007a) studied both single-period

and multi-period inventory problems. They proposed sample average approximation (SAA)

algorithms by approximating the true demand distribution with an empirical distribution,

and developed sample complexity bounds. Levi et al. (2015) leveraged the notion of weighted

mean spread to further improve this sample complexity bound for the newsvendor model.

Cheung and Simchi-Levi (2019) gave both sample complexity upper and lower bounds for the
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Figure 5.1: Theoretical optimal prices, our recommended prices, and prices without factoring
in demand censoring

capacitated model. Qin et al. (2022) derived a sample complexity bound for the joint pricing

and inventory control model. Ban and Rudin (2019) applied machine learning algorithms to

the data-driven newsvendor with feature information. However, all aforementioned studies

assume that the historical demand samples can be fully observed, whereas our approach

considers demand censoring (i.e., only historical sales samples are available).

To the best of our knowledge, fewer than a handful of papers in the literature consid-

ered demand censoring for the offline learning setting. Ban (2020) studied a multi-period

inventory system with fixed costs under censored demand, and developed a nonparametric

estimation procedure for the (s, S) policy which is consistent and asymptotically normal.

More closely related, Bu et al. (2023) studied a single product pricing problem under cen-

sored demand, and developed a necessary and sufficient condition for problem identifiability

by relating to distributionally robust optimization (DRO) problems. They also proposed a

data-driven algorithm that hedges against the distributional uncertainty arising from cen-

sored data, with provable finite-sample performance guarantees regardless of problem iden-

tifiability and offline data quality. There are two major distinctions between our work and

their work. First, our work takes a completely different approach based on a canonical causal

inference framework. Second, our work prescribes an optimal feature-based pricing strategy

based on customer/product covariates, which is precisely consistent with the key research

vision proposed in Feng and Shanthikumar (2018a) (in terms of how to leverage Big Data in

production and operations management research). There also has been a growing interest

in developing offline reinforcement learning approaches (Bu et al. 2022, Foster et al. 2021,
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Simchi-Levi and Xu 2022), where offline data is leveraged to learn a decision-making policy.

Online Learning for Pricing and Inventory Models. Most existing literature focuses

on online learning for pricing and inventory models, where sales data are generated by

sequential actions on the fly. There have been studies focusing on the repeated newsvendor

problem with censored demand (Besbes and Muharremoglu 2013, Huh et al. 2011, Huh and

Rusmevichientong 2009, Lugosi et al. 2017). Subsequently, more studies have been devoted

to more involved systems with censored demand, e.g., the lost sales problem with positive

lead times (Agrawal and Jia 2022, Huh et al. 2009, Zhang et al. 2020), perishable inventory

control (Zhang et al. 2018), inventory control with stock substitutions (Chen and Chao

2020b), inventory control with fixed costs (Yuan et al. 2021), dynamic pricing with high

dimensional features (Wang et al. 2020), joint pricing and inventory control (Chen et al.

2019a, 2021a, 2020a, 2022a). In contrast, our chapter focuses on offline learning with an

available (and potentially massive) dataset. Our proposed framework is particularly useful

when there has already been a plethora of historical data in the firm and conducting online

experimentation could be very expensive both in terms of costs and time commitment (to

actively explore). A well-performed pricing strategy learned from the historical data can

nevertheless be an initial policy for promoting efficient online learning. The major challenge

is that one needs to factor in demand censoring which is always inherent in the underlying

dataset.

Feature-Based Pricing Strategies. There has been a huge body of literature on

joint learning and pricing strategies (Den Boer 2015). The increased availability of cus-

tomer/product information has led to advances in feature-based pricing that have clear

advantages over traditional static pricing (Elmachtoub et al. 2021). Here we only discuss a

list of papers (by no means exhaustive) that focus on feature-based pricing strategies. Cohen

et al. (2020) proposed an ellipsoid method that admits a worst-case regret which is quadratic

in the dimension of the feature space and logarithmic in the time horizon. Chen and Gallego

(2021) gave an online learning algorithm based on adaptively splitting the covariate space

into smaller bins and learning the optimal decision in each bin. Miao et al. (2022) considered

a context-based dynamic pricing problem of online products which have low sales and gave

an online clustering algorithm. Javanmard and Nazerzadeh (2019) considered a dynamic

pricing problem with a binary choice model, and constructed a near-optimal policy in their

setting. Xu and Wang (2021) proposed two algorithms for stochastic and adversarial feature

settings respectively with logarithmic regret bounds. Fan et al. (2022) extended Javanmard

and Nazerzadeh (2019) to a semiparametric demand model. Qiang and Bayati (2016) pro-

posed a greedy iterative least squares approach that admits a logarithmic regret. Ban and

Keskin (2021) also proposed an iterative least squares approach for a refined model that
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incorporates feature-dependent price sensitivity. Nambiar et al. (2019) proposed a “random

price shock” algorithm that dynamically generates randomized price shocks to estimate price

elasticity, and showed that this approach is robust to model mis-specification. Luo et al.

(2021) studied the contextual dynamic pricing problem with unknown random noise in the

valuation model. Wang et al. (2021a) proposed a simple pricing algorithm for the dynamic

pricing problem with very few assumptions on the covariates. The above papers all assumed

various parametric forms of demand functions (mostly linear or generalized linear functions)

whereas we take a nonparametric approach based on a causal inference framework. There has

also been a recent stream of literature considering feature-based pricing strategies with fair-

ness (Chen et al. 2021c, Cohen et al. 2022, 2021) and differential privacy (Chen et al. 2021b,

2022c). To the best of our knowledge, we are the first in the literature to study nonparamet-

ric feature-based pricing strategies in an offline data-driven setting with censored demand

through the lens of causal inference. Since the time this chapter was written, two subsequent

studies Wang (2023) and Miao et al. (2023) have utilized the causal inference framework to

explore feature-based pricing problems under approximate or invalid instrumental variables.

Policy Learning under Causal Inference. Policy learning under the framework of causal

inference has also been well-studied in the statistics community. Here we review several pa-

pers related to our proposal. For a complete overview, we refer to Kosorok and Laber (2019)

and the references therein. In particular, Chen et al. (2016) and Kallus and Zhou (2018)

studied policy learning with continuous treatment in the clinical trial setting, where the

generalized propensity score (Hirano and Imbens 2004) is known. Therefore they adopted

an inverse probability weighting approach for evaluating and optimizing policies. Recently,

Cai et al. (2021) proposed a deep Q-learning-typed approach for estimating an optimal

interval-policy in the continuous treatment setting. Chernozhukov et al. (2019) and Schulz

and Moodie (2021) developed doubly robust approaches for policy learning in the continuous

treatment space by assuming some parametric component related to the treatment effect.

Different from the aforementioned works, we propose to use kernel approximation and de-

velop a different doubly robust estimator for evaluating and optimizing policies. All our

models are non-parametric, thus enjoying more robustness of model mis-specification. More

importantly, our proposal is able to handle the potential censoring in the outcome.

5.1.4 Organization and Notation

The rest of the chapter is organized as follows. In Section 5.2, we describe the mathematical

model with first the case of fully observable demand and then the case of censored demand,

through the potential outcome framework in causal inference. We also establish problem
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identifiability. In Section 5.3, we propose an offline data-driven algorithm based on survival

analysis and a doubly robust estimation approach to computing the optimal feature-based

pricing strategy. In Section 5.4, we give a theoretical regret analysis of our proposed offline

learning algorithm. A numerical study is provided in Section 5.5, and we conclude the

chapter and point out several future research avenues in Section 5.6. Technical proofs are

presented in the Appendix.

Throughout this chapter, we distinguish between a random variable and its realizations

using capital and lower-case letters, respectively. The function x+ = max(x, 0). The indi-

cation function 1(A) takes the value 1 if the event A is true and 0 otherwise. For generic

sequences {ϖ(n)} and {θ(n)}, ϖ(n) ≲ θ(n) means that there exists a sufficiently large con-

stant c1 > 0 such that ϖ(n) ≤ c1θ(n). We use “covariates”, “features”, and “contexts”,

interchangeably.

5.2 Model Formulation

5.2.1 Feature-Based Pricing with Fully Observable Demand

We first describe our model with fully observable demand (i.e., uncensored demand) for ease

of presentation. We denote by P the price of some product which takes values in a compact

space P , i.e., P ∈ P = [p1, p2] with 0 ≤ p1 ≤ p2. Let Y be the amount of inventory available

for sales, which takes a non-negative value. In particular Y ∈ Y ⊆ [0,∞). We note that here

we consider Y to be continuous, but our framework can be easily extended to the case where

Y is discrete. We model the relationship between demand and price under the celebrated

potential outcome framework in causal inference (Rubin 1974). In particular, let D(p) be the

potential demand of a product if the treatment or price P is set as a (deterministic) value

p. Let D be the observed demand. We can only observe D = D(p) if we set the treatment

or price P = p. We denote by X the observed q-dimensional covariates associated with

the product that belongs to some covariate space X ⊂ Rq. Note that our model allows for

either customer covariates (e.g., geographical information, past clicks, spending patterns) or

product covariates (e.g., color, size, quality), or both. In summary, for each product, we can

observe a random tuple (X, Y, P,D) if the demand is not censored.

Under this potential outcome framework of the price-demand setting, our goal is to find

the optimal feature-based pricing strategy that maximizes the potential profit based on

covariates. Specifically, let Π be the class of all pricing strategies where each strategy π ∈ Π

is a measurable function: (X ,Y) → P , i.e., mapping from the covariate space X and the

inventory space Y into the pricing space P . Then the potential outcome under a pricing
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strategy π ∈ Π is defined as D (π (X, Y )). For ease of presentation, we write it as D(π)

hereafter.

Then the expected profit of a pricing strategy π ∈ Π is defined as

V (π) ≜ E
{
π(X, Y )×min{D(π), Y } − c× (D(π)− Y )+

}
, (5.1)

where c is the stockout cost per unit. For simplicity, we assume c is fixed and known. (Our

framework can also treat the stockout cost as a random variable, which can be observed as a

part of covariates X.) Note that V (π) defined in (5.1) may not be identified by the observed

data without any assumptions, since for each observation one can only observe a particular

demand D(p) under the current price p. Consistent with standard causal identification

results such as Robins (1986), we make the following three standard assumptions.

Assumption 5.2.1 (Standard Causal Assumption)

(a) D = D(P ) almost surely;

(b) There exists some constant fmin such that the conditional probability density of the price

f(P = p |X = x, Y = y) ≥ fmin > 0 for every p ∈ P , x ∈ X and y ∈ Y;

(c) D(p) ⊥⊥ P | (X, Y ) where ⊥⊥ represents the statistical independence.

Assumption 5.2.1(a) states that when the treatment or price P is set to p, the observed

demand D is equal to the potential demand D(p) at price p. This assumption also rules

out interference among observations, meaning that there cannot be a scenario where the

treatment or price P is set to p, but the observed demand D corresponds to the potential

demand D(p′) at some other price p′ ̸= p (Rubin 1974). This assumption is standard in the

causal inference literature. To make it clearer for the general audience, we will illustrate it

using a special case with a linear demand function, ignoring the impact of Y . We assume

that the potential demand follows a linear form: D(π(X)) = a⊺X − (b⊺X) · π(X) + ε, where

a and b are constant vectors in Rq, and ε represents random noise. Assumption 5.2.1(a)

ensures that for any pricing strategy π(X) ∈ P , the observed demand D |X,P = π(X)

is the same as the potential demand D(π(X)) |X,P = π(X), which can be expressed as

a⊺X − (b⊺X) · π(X) + ε. Note again that our model is nonparametric, capable of handling

any form of demand functions.

Assumption 5.2.1(b) essentially states that each price has at least some positive prob-

ability of being assigned for every covariate. In causal inference, f(P |X, Y ) is commonly

referred to as the generalized propensity score (Hirano and Imbens 2004), which is an exten-

sion of the propensity score for use with quantitative exposures. In our setting, since offline

data may include those collected from some pricing experiments run by companies before,
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it may be sensible to assume all prices are possibly observed, although fmin could be very

small. Assumption 5.2.1(b) is used to establish the non-parametric identification result on

V (π) via Lemma 5.2.2.

Assumption 5.2.1(c) indicates that all confounders are measured in the data. In other

words, by adjusting for confounders, i.e., covariates X and the inventory Y , we are able

to fully identify the causal effect of the price P on the demand D. If Assumption 3 is

violated such as there is a measurement error on X, we cannot identify the effect of P on

the demand, which will lead to a bias. In this case, we can investigate the sensitivity of

the estimates of causal effects to the choice of pre-treatment variables used for adjustments

to assess unconfoundedness (see §21.5 in Imbens and Rubin (2015)). One can also use

the instrumental variable approaches for identifying the optimal pricing under unmeasured

confounding. See Wang and Tchetgen (2018) and references therein.

Hence, we have the following identification result, indicating that under the current data

generating process, V (π) is uniquely defined. In other words, there does not exist another

Ṽ (π) that is consistent with the offline data distribution. This situation could arise if,

conditional on the covariates, the observed demand cannot reflect the effect of price on

demand, and the statistical estimates obtained from the offline dataset lead to another

variable instead of the potential expected revenue under policy π. This is the building block

for finding an optimal pricing strategy using the offline data.

Lemma 5.2.1 Under Assumption 5.2.1, we can identify the value function V (π) by

V (π) = E {Q(X, Y, π(X, Y ))} , (5.2)

where the expectation is taken over X, Y , and the Q-function is

Q(X, Y, P ) = E
{(
P ×min{D, Y } − c× (D − Y )+

)
|X, Y, P

}
.

Note that the problem identifiability here refers to that we can uniquely determine the

potential revenue. By comparison, the problem identifiability defined in Bu et al. (2023)

pertains to whether the distribution of model parameters in the linear demand linear model

can be learned by any algorithm from censored demand data, even with an infinite number of

samples and a fixed observable boundary. Since we do not make any parametric assumptions

regarding the demand model and we do not assume a uniform boundary on the upper bound

of observable demand, this notion of identifiability defined within the distributionally robust

framework does not apply to our problem. By maximizing V (π) in (5.2) over the pricing
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strategy class Π, a global optimal pricing strategy is

π∗ ∈ argmax
π∈Π

E {Q(X, Y, π(X, Y ))} .

Since Π is the class of all pricing strategies, the optimal pricing strategy can be further shown

as

π∗(X, Y ) ∈ argmax
p∈P

{
E
[
P ×min{D, Y } − c× (D − Y )+ |X, Y, P = p

]}
, (5.3)

almost surely. Essentially, for each (X, Y ), a price p = π∗(X, Y ) should be assigned so that

the expected profit is maximized. Based on (5.2), one possible way is to directly apply

supervised learning techniques to estimate the Q-function and then optimize the strategy

over Π. However, such an approach may suffer from bias when the model for estimating

Q-function is mis-specified. To account for mis-specification, in Section 5.3.1, we introduce a

doubly robust estimator for learning the optimal pricing strategy. Before that, we introduce

an alternative approach for identifying V (π), which is a key step in the proposed doubly

robust estimator. Specifically, one may employ an inverse probability weighting (IPW)

approach (Robins 1986) to identify V (π). In particular, consider

E
{
(P ×min{D, Y } − c× (D − Y )+)1(π(X, Y ) = P )

f(P |X, Y )

}
. (5.4)

When the pricing space P is discrete, we can use the above formulation to identify V (π)

under Assumption 5.2.1(b), where the conditional probability density becomes a mass func-

tion. However, when P is continuously distributed in the observed data, given X and Y ,

1(π(X, Y ) = P ) may not be absolutely continuous with respect to the probability mea-

sure of the price P in the observed data. Hence the above formulation could be invalid for

identifying V (π).

In what follows, we provide a valid IPW-type approach to approximately identify V (π),

similar to that in Kallus and Zhou (2018), based on which we can combine the IPW-type

and Q-function estimation methods for learning the optimal pricing strategy robustly. In

particular, we adopt a kernel-based approach to approximate V (π). Recall that a kernel

function K(u) : R → [0,∞) satisfies
∫
uK(u)du = 0 and

∫
K(u)du = 1, and specific

examples of kernel functions include uniform, triangular, and Gaussian kernels among many
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others. We adopt the following function with kernels to approximate V (π):

Vh(π) = E

{
(P ×min{D, Y } − c× (D − Y )+)K(P−π(X,Y )

h
)

hf(P |X, Y )

}
, (5.5)

where h is the bandwidth used in kernel approximation. We refer interested readers to

Parzen (1962) for more details of kernel methods.

We then show that V (π) can be approximated by Vh(π) up to arbitrary precision as

h→ 0, where we first impose the following assumption.

Assumption 5.2.2 (Kernel Property and Approximation)

(a) K(u) : R → [0,∞) satisfies
∫
K(u)du = 1 and

∫
|u|K(u)du ≤ C1 for some constant C1.

(b) There exists some universal constant C2 such that

E
{

sup
p1≤p<p′≤p2

∣∣∣∣Q(X, Y, p)−Q(X, Y, p′)

p′ − p

∣∣∣∣} ≤ C2. (5.6)

Assumption 5.2.2(a) is satisfied by a wide range of kernel functions including the aforemen-

tioned examples. Assumption 5.2.2(b) is a mild condition on the smoothness of Q-function

defined in Lemma 5.2.1. Then the next lemma shows that when h is small, Vh(π) well

approximates V (π).

Lemma 5.2.2 Under Assumptions 5.2.1–5.2.2, there exists some constant C3 such that for

all π ∈ Π,

|Vh(π)− V (π)| ≤ C3h. (5.7)

So far we have discussed (approximately) identifying V (π) if one can fully observe the

information (X, Y, P,D) for all products. However, when the inventory cannot fully satisfy

the demand, D will be censored. In the following subsection, we address the issue of potential

censoring in the demand. In Section 5.3, focusing on estimating Vh(π), we combine these

two approaches to enhance the robustness in terms of statistical estimation.

5.2.2 Feature-Based Pricing with Censored Demand

One major challenge of estimating π∗(X, Y ) using the observed data is that any extra de-

mands over inventory level Y are lost and thus cannot be fully leveraged by retailers to infer

the optimal feature-based prices. Ignoring demand censoring in the dataset will inevitably

cause biases in estimating the value function, leading to suboptimal prices as we discussed in
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Section 5.1 (See Figure 5.1). In this subsection, we address this potential issue. We denote by

S the observed sales quantity, i.e., S = min{D, Y }. Therefore instead of having (X, Y, P,D),

we may only obtain realizations of (X, Y, P, S) in practice. In this case, we augment this ran-

dom tuple (X, Y, P, S) with a censoring indicator defined as ∆ = 1(D < Y ). In particular,

if the demand D is less than the inventory level Y , we let ∆ = 1 and otherwise ∆ = 0. Here

we can observe the censoring indicator for either continuous or discrete demand case as we

can observe 1(D < Y ) by observing 1(S < Y ). When demand or sales is continuously dis-

tributed, we can safely ignore the case when Y = D, where there is indeed no censoring. For

a more general discussion, we refer interested readers to Besbes and Muharremoglu (2013).

In order to identify V (π) under censored demand, we make one additional assumption.

Assumption 5.2.3 (Censored Demand Identification)

(a) Demand D and inventory Y are conditionally independent given feature X and price P ,

i.e., D ⊥⊥ Y |X,P.

(b) There exists some known constant Dmax such that 0 ≤ D ≤ Dmax almost surely.

Assumption 5.2.3(a) essentially states that demand is not affected by the inventory level given

covariates X and the price information P . This is reasonable as the inventory level is often

considered as the private information of retailers. In the literature, Assumption 5.2.3(a) can

be called (conditional) non-informative censoring, which rules out the dependence between

the demand and inventory level. If violated, standard methods of estimating (the probability

distribution of) the survival outcome will fail and lead to biased estimation. In the literature

on informative censoring in survival analysis, a specific model is often imposed for modeling

the relationship between response (i.e., demand) and censor time (i.e., inventory level). See

Diggle and Kenward (1994) for more details. Assumption 5.2.3(b) imposes a uniform upper

bound for the demands across covariates, which is mainly used to simplify the theoretical

analysis of estimating E [D|X,P, S,∆ = 0].

We identify V (π) under the censored demand in the next lemma, where we first define a

surrogate profit (outcome) as

R(X,P, S,∆) = P × S + c× 1(∆ = 0) (S − E [D|X,P, S,∆ = 0]) . (5.8)

Lemma 5.2.3 Suppose Assumptions 5.2.1–5.2.3(a) hold, then for every π ∈ Π, we have

Vh(π) = E

{
RK(P−π(X,Y )

h
)

hf(P |X, Y )

}
, (5.9)

where R is given in (5.8) as a function of (X,P, S,∆).
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For the remainder of this chapter, we write R = R(X,P, S,∆) explicitly to indicate its

dependency on X,P, S, and ∆, whenever needed. As seen from (5.8), R is a function of

the observed data. Therefore if one can estimate R accurately, then Vh(π) can be estimated

properly under the setting of censored demand, after which we can optimize with respect to

π to achieve the optimal feature-based pricing strategy.

5.3 Offline Feature-Based Pricing Strategy

5.3.1 Estimation Framework

To derive the optimal feature-based pricing strategy π∗, we first leverage the (offline) observed

data to estimate the objective function Vh(π), which is of crucial importance in achieving the

optimal pricing strategy. Figure 5.2 shows the roadmap of our main estimation framework.

For the plain estimation strategy, we need to estimate two quantities, namely, surrogate

profit R and propensity scores f(P |X, Y ), which we shall discuss immediately. Later, we

will also use an improved strategy called doubly robust estimation to further increase the

robustness of our estimation. We first outline our estimation framework with key ideas, and

defer the implementation details in Section 5.3.2.

Estimation of Potential Profit R. We first discuss how we estimate the potential profit R

in (5.8). Now suppose that we observe n independent and identically distributed (i.i.d.)

samples

Dn = {(Xi, Yi, Pi, Si,∆i)}1≤i≤n ,

where ∆i = 1(Di ≤ Yi) denotes the censoring indicator for i-th product.

Note that the i.i.d. assumption on the offline dataset implies that the quintuples

(Xi, Yi, Pi, Si,∆i) are independent across data entries. However, within each data entry,

(Xi, Yi, Pi, Si,∆i) could exhibit arbitrary correlations. For instance, a firm may employ a

complex strategy f to determine Yi = f(Xi), where inventory decisions are based on the

given features, which is permissible within our model. Moreover, to further address the

assumption of independence across data entries, we investigate a multi-center case in Ap-

pendix D.3 where dependence exists among the observations. We extend our method by

incorporating stationary and exponential β-mixing processes, and also provide a theoretical

guarantee.

In order to estimate π∗ using the observed data, we first address the key unknown quantity

E [D|X,P, S,∆ = 0] in (5.8). Inspired by the notion of conditional survival function in

survival analysis (see, e.g., Kleinbaum and Klein 2010 and Cui et al. 2017), we have the

following lemma.
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Estimate

Potential revenue under censored demand
Gaussian kernel function 
“Approximate                       "

Generalized propensity score

“Estimate full demand using survival analysis”

“Estimate using maximum likelihood estimation (MLE)”

WARM-UP APPROACH: PLAIN ESTIMATION

DOUBLY ROBUST ESTIMATION APPROACH

Potential revenue under censored demand
“Train using multi-layer perceptron regression”

Estimate

This estimator bears the name "doubly robust'' because it only requires one of the models to be correct. 

If the propensity score model f(P|X,Y) is correct, 
we will be able to identify the causal effect even if the outcome model is wrong. 

On the flip side, if the outcome model Q(X,Y,P) is correct, 
we will also be able to identify the causal effect even if the propensity score model is wrong.

Figure 5.2: Roadmap of Our Approach
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Lemma 5.3.1 Under Assumptions 5.2.3, we have

E [D|X,P, S,∆ = 0] = S +

∫ Dmax

S

H(t|X,P )
H(S|X,P )

dt, (5.10)

where H(t|X,P ) = P(D > t |X,P ).
By Lemma 5.3.1, we have that it is sufficient to estimate H(t|X,P ), which is called the

conditional survival function in the literature (e.g., Kleinbaum and Klein (2010)). To achieve

modeling robustness, we then propose to adopt the nonparametric random survival forests to

estimate H(t|X,P ) (Ishwaran et al. 2008). Plugging the estimator of H(t|X,P ) into (5.10),

we denote the estimator of E [D|X,P, S,∆ = 0] as Ê [D|X,P, S,∆ = 0]. Then, we let the

estimator for R be

R̂ = P × S + c× 1(∆ = 0)
(
S − Ê [D|X,P, S,∆ = 0]

)
. (5.11)

Meanwhile, we denote the estimator for the potential profit of the i-th product as R̂i for

1 ≤ i ≤ n using the same estimation procedure described above. In what follows, we write

R̂ and R̂i for R̂(X,P, S,∆) and R̂i(Xi, Pi, Si,∆i), respectively.

Estimation of Propensity Scores f(P |X, Y ). Since the propensity score f(P |X, Y ),

which is the conditional density function of the price, is generally unknown, we can estimate

it using the observed data. For example, one can model P |X, Y as a Gaussian random

variable. Then it is sufficient to use the maximum likelihood method to estimate the mean

µP (X, Y ) and the variance Var(P |X, Y ). One can also incorporate non-parametric models

such as kernel density estimation or generative adversarial networks (Goodfellow et al. 2014)

to obtain an estimate of f(P |X, Y ). The resulting estimator is denoted as f̂(P |X, Y ).

Plain Estimation of Objective Function Vh(π). Given the observed data and two

estimators, R̂ and f̂(P |X, Y ) described above, we plug them into (5.9) and get an estimator

for Vh(π). We then solve the following maximization problem to get a pricing policy π̂ that

π̂ ∈ argmax
π∈Π0

1

nh

n∑
i=1

R̂iK(Pi−π(Xi,Yi)
h

)

f̂(Pi|Xi, Yi)
− λnJ(π), (5.12)

where Π0 is some pre-specified class of pricing strategies, J(π) is some regularization function

on the policy π, and λn is a positive tuning parameter possibly depending on the sample

size n. In this chapter, for ease of presentation, we consider Π0 as a Hilbert space with norm

∥ · ∥Π0 and J(π) = ∥π∥2Π0
. For example, if we consider a class of linear pricing strategies, i.e.,

Π0 =
{
π : π(X, Y ) = min(p2,max(p1, β0 + (X, Y )⊤β)) with β0 ∈ R, β ∈ Rq+1

}
, (5.13)
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then we let J(·) be the ridge penalty. Then the optimization problem in (5.12) becomes

max
β0∈R,β∈Rq+1

1

nh

n∑
i=1

R̂iK(Pi−min(p2,max(p1,β0+(Xi,Yi)
⊤β))

h
)

f̂(Pi|Xi, Yi)
− λn∥β∥22. (5.14)

We remark that plain estimation in (5.12) could incur large errors due to the possibly

small propensity estimation f̂(P |X, Y ) in the denominator, especially when there is model

misspecification. In the following, we consider a doubly robust estimation for Vh(π).

Doubly Robust Estimation of Objective Function Vh(π). To address the potential

model mis-specification of the propensity score f(P |X, Y ) and possibly large errors, we

adopt the doubly robust estimation idea in causal inference to estimate Vh(π) (Bang and

Robins 2005). The motivation for proposing the doubly robust estimator is bi-directional.

As shown in Figure 5.2, the plain estimation involves the treatment model, while the direct

estimation of potential revenue is based on an outcome model. The doubly robust estimator

can be viewed as a correction of the outcome regression by a function that involves the

treatment model, or as a correction of the inverse probability weighting (IPW) estimator

by incorporating the outcome model. This approach allows us to demonstrate that the

estimator will converge to the true value as long as at least one of the models is consistent.

In the doubly robust framework, we first use some supervised learning techniques to estimate

E[R |X, Y, P ], and we denote the estimator as Q̂(X, Y, P ). Then we propose the following

doubly robust estimator for estimating Vh(π) that

V̂ DR
n (π) =

1

nh

n∑
i=1

∫ p2

p1

Q̂(Xi, Yi, p)K

(
p− π(Xi, Yi)

h

)
dp

+
1

n

n∑
i=1

1

hf̂(Pi|Xi, Yi)
K

(
Pi − π(Xi, Yi)

h

)
(R̂i − Q̂(Xi, Yi, Pi)).

(5.15)

Besides plain estimation, as seen from Lemma 5.2.1, one can also use Q̂ to construct an

estimator for V (π). However, due to the censoring issue, the estimator Q̂ could be biased.

This indicates that estimating Q could also be hard especially when the censoring rate is

high. A doubly robust estimator (5.15) naturally combines these two approaches together

for achieving a robust estimation property. The double robustness means that as long as

either Q̂(X, Y, P ) or f̂(P |X, Y ) consistently estimates the counterpart, V̂ DR
n (π) is a consis-

tent estimator for Vh(π) and V (π) (when h → 0), which is shown below. Basically when

the estimated outcome model is replaced by the true one, the bias term (last term in (5.15))

vanishes asymptotically. Thus we get the consistency result. When the propensity score is

correctly specified, by the change of measure, quantities related to the estimated outcome
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Q̂ disappear, which implies consistency as well. Hence, compared with plain estimation and

directly optimizing Q function for π∗, our doubly robust estimator and the proposed learn-

ing algorithm provide additional robustness against the potential model mis-specification

on the propensity score f(P |X, Y ) and Q function. More specifically, denote V̂ DR
n (π) as

V̂ DR
n (π,Q, f,R) to indicate its dependency on Q, f , and R, we have the following property.

Theorem 5.3.1 Let Q̃ and f̃ be estimators for Q and f , respectively. Suppose that Assump-

tions 5.2.1–5.2.2 and Assumption 5.4.3(a) in Section 5.4 hold. If either Q̃ or f̃ is consistent

in terms of sup-norm, then for any given ε > 0, we have

lim
h→0

lim
n→∞

P
(∣∣∣V̂ DR

n (π, Q̃, f̃ , R̂)− V (π)
∣∣∣ ≥ ε

)
= 0.

As seen from Theorem 5.3.1, as long as either Q or f can be estimated consistently, we can

show that V̂ DR
n (π) converges to the truth in probability.

Based on the doubly robust estimator, we propose to estimate π∗ by solving the following

optimization problem that

π̂ = argmax
π∈Π0

V̂ DR
n (π)− λnJ(π). (5.16)

In practice, we may further implement cross-fitting technique (Bickel 1982, Chernozhukov
et al. 2018) to remove the dependence between nuisance functions (i.e., Q̂(X, Y, P ) and
f̂(P |X, Y )) and the estimated pricing strategy, so that the data efficiency can be guaranteed
under less restrictive conditions on each nuisance function. See Chernozhukov et al. (2018)
for more details. In particular, in cross-fitting, we randomly split data intoM folds and apply
the following procedure: first, for each fold m = 1, · · · ,M , we use the other M − 1 folds
to obtain the estimators Q̂(−m)(X, Y, P ) and f̂ (−m)(P |X, Y ) for Q(X, Y, P ) and f(P |X, Y )
respectively; then we obtain an estimated optimal pricing strategy π̂n by solving the following
optimization problem that

π̂n ∈ argmax
π∈Π0

{
1

nh

n∑
i=1

∫ p2

p1

Q̂(−m(i))(Xi, Yi, p)K

(
p− π(Xi, Yi)

h

)
dp (5.17)

+
1

n

n∑
i=1

1

hf̂ (−m(i))(Pi|Xi, Yi)
K

(
Pi − π(Xi, Yi)

h

)
(R̂i − Q̂(−m(i))(Xi, Yi, Pi))− λnJ(π)

}
,

where m(i) denotes the fold containing the i-th observation.

We outline the proposed algorithm in Table 10, and provide more details in the next

subsection. A brief description of the random survival forests method is in Appendix D.4.4.

We remark that while the random survival forests method is used for estimating the surrogate

outcome R, this task can also be solved by other methods such as the Kaplan-Meier estimator

or Nelson-Aalen estimator.
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Algorithm 10 (Offline) Learning Optimal Feature-Based Pricing Strategy

Input: Observed data {Xi, Yi, Pi, Si,∆i}ni=1; kernel bandwidth h and tuning parameter
λn;
Divide Dn into M folds and denote D(−m)

n as the other (M − 1) folds except m.
Estimate E [D|X,S, Y,∆ = 0] using Dn via random survival forests (Ishwaran et al. 2008).
for m = 1, . . . ,M do

Apply supervised learning techniques with response R̂ and covariates (X, Y, P ) to ob-

tain estimates Q̂(−m) using D(−m)
n .

Compute estimates f̂ (−m)(P |X, Y ) via kernel density estimation or maximum likeli-

hood estimation using D(−m)
n .

end for
Solve the optimization problem in (5.17).
Output: π̂n(X, Y )

5.3.2 Implementation Details of Algorithm 10

We discuss the implementation of Algorithm 10 in detail. Suppose that we are given an

offline dataset of n records with censored demand. Each record i ∈ [n] includes the i-th

product’s features Xi, its inventory level Yi, its price Pi ∈ [p1, p2], and the corresponding

sales data Si. We aim to find an optimal pricing strategy π(X, Y ) based on this dataset, i.e.,

to find the optimal price given a product’s features and inventory level.

As we discussed in the previous subsection, the basic idea of our algorithm is to first

estimate some nuisance functions, and then find a policy π̂ that maximizes the estimated

profit as stated in (5.17). Our framework requires computing, R̂i, Q̂
(−m(i))(Xi, Yi, p) for each

p ∈ P , and f̂ (−m(i))(Pi|Xi, Yi). In what follows, we discuss how we compute them in more

detail.

(a) We first discuss how to compute R̂(X,P, S,∆) in (5.11). First, we apply the random

survival forests algorithm for estimating the conditional survival function H(t |X,P ) =
P(D > t |X,P ) as in Ishwaran et al. (2008). Then according to (5.10), we can further

obtain an Ê[D |X,P, S,∆ = 0]. Finally, we estimate the conditional expected reward

R̂(X,P, S,∆) = P × S + c× 1(∆ = 0)(S − Ê[D |X,P, S,∆ = 0]). (5.18)

(b) We then discuss how we compute Q̂(−m(i)) (Xi, Yi, p) and f̂ (−m(i)) (Pi | Xi, Yi) using the

cross-fitting technique. We randomly split data intoM folds, and for each fold m ∈ [M ],

we use the other M − 1 folds as the training data to obtain estimator Q̂(−m)(X, Y, P )

and f̂ (−m)(P |X, Y ) for estimates of Q(X, Y, P ) and f(P |X, Y ). In particular,
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(i) For Q̂(−m(i)) (Xi, Yi, P ), we use deep neural networks to model

Q̂(X, Y, P ) = E[R̂ |X, Y, P ]

and for each record i in the dataset, we obtain an estimate Q̂(Xi, Yi, p) for all p ∈ P .

(ii) For f̂ (−m(i)) (Pi | Xi, Yi), we adopt a Gaussian probabilistic model to estimate

f(P |X, Y ) with deep neural networks to approximate the mean and covariance

matrix. In particular, we assume that conditioning on X and Y , P follows a

multi-variate Gaussian distribution N
(
µϕ1(X, Y ), σ2

ϕ2
(X, Y )

)
, where ϕ1 and ϕ2 are

parameters of two neural networks to model the mean and the covariance matrix

respectively. Then we apply maximum likelihood estimation (MLE) to obtain esti-

mates (ϕ̂1, ϕ̂2). In this way, we obtain estimates µ̂(−m(i))(Xi, Yi) and σ̂
(−m(i))(Xi, Yi),

and then the estimated probability density function f̂ (−m(i)) (Pi | Xi, Yi) for each

record i in the dataset.

Upon computing all the estimators on the right-hand side of (5.17), we build a deep neural

network for the pricing policy π with parameters ϕ3. By minimizing the loss function cus-

tomized to be the negative of the right-hand side of (5.17), we thus obtain the estimated

network parameters ϕ̂3 maximizing the right-hand side of (5.17). After feeding the network

with the offline dataset to train the pricing strategy, we can then output the near-optimal

feature-based price for any given (X, Y ). Note that one may use DC (difference of convex)

programming (see, e.g., Cui et al. 2018) to solve for (5.17) if π uses a piecewise linear model

(as a special case).

5.4 Regret Analysis and Double Robustness

We establish a finite sample regret bound for our estimated pricing strategy π̂n in terms

of the sample size n, which shows that our estimated pricing strategy π̂n converges to the

optimal one in terms of the regret as the sample size n goes to infinity. We define the regret

of π̂n as the difference between the expected profit of the optimal strategy π∗ and π̂n that

Regret(π̂n) = V (π∗)− V (π̂n). (5.19)

We first make the following technical assumptions.

Assumption 5.4.1 There exists a constant C4 > 0 such that |Y | ≤ C4.
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Assumption 5.4.2 There exist constants A > 0 and v > 0 such that

sup
Q̃

N(Π0, Q̃, ε∥F∥Q̃,2) ≤ (A/ε)v ,

for all 0 < ε ≤ 1, where N(Π0, Q̃, ε∥F∥Q̃,2) denotes the covering number of the policy class

Π0, F is the envelope function of Π0, ∥ · ∥Q̃,2 denotes the L2-norm under some finitely

discrete probability measure Q̃ on (X, Y ), and the supremum is taken over all such probability

measures.

Assumption 5.4.3 (Rate Conditions)

(a) There exists some constant C5(ε) depending on ε ∈ (0, 1) such that

sup
x∈X ,p∈[p1,p2],0≤s≤C4

|R̂(x, p, s, 0)−R(x, p, s, 0)| ≤ C5(ε)n
−δ,

with probability 1− ε for some δ > 0.

(b) The nuisance function estimators Q̂(−m) and f̂ (−m) obtained from the other (M−1) folds

of the data in the cross-fitting procedure in Algorithm 10 satisfy that there exist constants

α > 0 and β > 0 such that

E
[
∥Q̂(−m)(X, Y, P )−Q(X, Y, P )∥22

]
= O(n−2α),

E
[
∥1/f̂ (−m)(P |X, Y )− 1/f(P |X, Y )∥22

]
= O(n−2β),

uniformly for all p ∈ [p1, p2] and 1 ≤ m ≤M . In addition, there exists a constant C6 > 0

such that

max

{
sup

p1≤p≤p2,x∈X ,y∈Y

∣∣∣1/f̂(P |X, Y )
∣∣∣, ∥Q̂∥∞} ≤ C6.

Assumption 5.4.1 requires that the inventory level Y is uniformly bounded, which is similar

to Assumption 5.2.3(b), and they are reasonable in practice. Both Assumptions 5.2.3(b)

and 5.4.1 can be relaxed by imposing a bounded condition on the second moments of D

and Y respectively and using the truncation argument. In this case, it would be hard to

derive the high probability bound that decays exponentially fast. Therefore, for simplicity,

we consider these two relatively stronger assumptions. Assumption 5.4.2 basically states

that the policy class Π0 has finite Vapnik-Chervonenkis (VC) dimension (see Definition 2.1

of Chernozhukov et al. 2014). Assumption 5.4.3(a) imposes a high-level condition on the

estimation of the surrogate outcome R in (5.8). As we discussed in the previous section,

we estimate R by estimating the conditional survival function H(·) in (5.10). By standard
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nonparametric methods such as kernel Kaplan-Meier estimator, this assumption is satisfied

as discussed in Dabrowska (1989) and Khardani and Semmar (2014). See Theorem 3.2 and

the proof of Khardani and Semmar (2014) for more details. Assumption 5.4.3(b) imposes

high-level conditions on the L2-norm convergence rates of the estimated nuisance functions

when the cross-fitting technique is applied. For our theoretical results below, we only require

α + β > 1/2, which is a mild assumption. For example, if linear models are imposed in

estimating Q function, then α = min(1
2
, δ) can be obtained by the least squares method as

long as the linear model is correct. When non-parametric models such as linear sieve/neural

networks are used to approximate Q, under some regularity conditions, one can show that

α = min( ω
q+1+2ω

, δ), where ω is the smoothness coefficient of the true Q. Assuming 2ω >

(q + 1), we have α > min(1/4, δ). See Chen (2007) and Schmidt-Hieber (2020) for more

details to attain these rates. Similar analysis can be performed for f . For example, if we

model f by a Gaussian distribution, then a maximum likelihood estimation can be used to

estimate µP (X, Y ) and Var(P |X, Y ) by a parametric model. If such a model is correct,

then we have β = 1/2, which is a typical convergence rate in a parametric model. Therefore

as long as we can estimate R reasonably well, we can guarantee that α+ β > 1/2 for a wide

range of parametric and non-parametric models.

Let π∗
h ∈ argmaxπ∈Π0

Vh(π), and we let the approximation error of π∗
h be

Λ(λn) = Vh(π
∗
h)− sup

π∈Π0

{Vh(π)− λnJ(π)} .

The finite sample regret bound for π̂n is given by the following theorem.

Theorem 5.4.1 Suppose that Assumptions 5.2.1–5.4.3 hold. If λn ≤ 1 and α + β > 1/2,

then for any x > 0, ε ∈ (0, 1) with probability at least 1− exp(−x)− ε, Algorithm 10 admits

the following regret upper bound

Regret(π̂n) ≲ Λ(λn) + 2C3h+max{1, x}
√
vλ

− 1
2

n n− 1
2/h2

+ C5(ε)max{1, x}n
−δλ

−1/2
n

h2
P(∆ = 0),

(5.20)

where the regret is defined in (5.19).

The proof of Theorem 5.4.1 is given in Appendix D.2. The first term Λ(λn) in (5.20) can

be interpreted as the approximation error of using Π0. Under some mild conditions, if a

universal kernel (e.g., Micchelli et al. (2006)) or a properly chosen neural network model

(e.g., Barron (1994)) is used for constructing Π0, one can show that Λ(λn) → 0 as λn → 0.

The second term 2h is the approximation error incurred by the use of kernel function in

(5.5). The third term of (5.20) can be understood as the estimation error when there is
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no censored demand. Note that when the tuning parameters λn and h are constants, the

resulting rate of this estimation error is n−1/2, which matches the optimal parametric rate.

The last term in (5.20) is caused by the potential censored demand, which is controlled by

the chance of observing censored demand, i.e., P(∆ = 0) and the estimation error for the

surrogate profit R, i.e., n−δ. Lastly, if we additionally assume that there exists ζ ∈ (0, 1]

such that, for every n,

Λ(λn) ≲ λζn, (5.21)

then we have an explicit error bound for the regret of our estimated pricing strategy π̂n given

by the following corollary. Note that (5.21) is a typical assumption in machine learning (See

Steinwart and Christmann (2008) for more details).

Corollary 5.4.1 Assume all conditions in Theorem 5.4.1 hold and (5.21) is satisfied, by

choosing h = n− (12ζ+1)min( 12 ,δ)

6(6ζ+1) and λn = n−min( 12 ,δ)

6ζ+1 , with probability at least 1 − exp(−x) − ε,

Algorithm 10 admits the following regret upper bound

Regret(π̂n) ≲ max{1, x}n− ζ min( 12 ,δ)

6ζ+1 . (5.22)

Corollary 5.4.1 is obtained by plugging (5.21) into (5.20) and then optimizing the upper

bound with respect to λn and h. We omit the proof for brevity. As we can see from

(5.22), the regret bound of our estimated pricing strategy π̂n decreases as β increases (and

the approximation error Λ(λn) decreases). When ζ = 1, we obtain the convergence rate

n−min( 1
2
,δ)/7.

Note that with the probability bound in Theorem 5.4.1 and Corollary 5.4.1, one can also
derive an upper bound for the expected regret. For example, suppose that with probability
1− ε, regret(π̂) ≤ ω(n, ε) for some generic rate ω(n, ε). Then since regret(π) is non-negative
and uniformly bounded by some generic constant C for every π due to Assumptions 5.2.3(b)
and 5.4.1, we have

E[Regret(π̂n)] ≤ E[Regret(π̂n)1(Regret(π̂n) ≤ ω(n, ε))] + E[Regret(π̂n)1(Regret(π̂n) > ω(n, ε))]

≤ ω(n, ε) + Cε,

For some concrete ω(n, ε) such as the one in Corollary 5.4.1, one can minimize the right-

hand-side of the above inequality over ε to get the bound for the expected regret. We omit

the details here.

In the literature considering a discrete action space with a fixed policy class and without

the censoring issue, the minimax lower bound is of order
√

VC(Π0)/n, where VC(Π0) is

referred to as VC dimension of the policy class Π0. Due to the complication of continuous
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action space and censored outcome, it still remains an open question for the optimal bound

of the regret. Since this is beyond the scope of our chapter, we decide to leave it for future

work.

5.5 Numerical Experiments

We carry out extensive numerical studies to demonstrate the efficacy of our proposed offline

learning algorithm. We follow the implementation details of Algorithm 10, given in Section

5.3.2.

5.5.1 Experimental Setup

We present a simple but nontrivial numerical example. Even though this example is relatively

simple, it gives insights into how the proposed causal inference based approach resolves the

issue of demand censoring and achieves near-optimal feature-based pricing.

Data Generation. Consider a setting with only two product features X1 and X2. We

generate each record of (X1, X2, P,D, Y, S) as follows.

(i) The first feature X1 ∼ Uniform[0, 1].

(ii) The second feature X2 ∼ Uniform[0, 1].

(iii) The price distribution P ∼ Normal(0.5, 0.52) truncated at [0, 1].

(iv) The underlying demand distribution D ∼ Poisson(λ1) + 1 with rate λ1 = 5 + X2
1 +

X2
2 − 5P .

(v) The inventory Y is set as follows.

• For the dataset used in Section 5.5.2 without demand censoring, we let Y = ∞
for all records, so that the sales S is exactly demand D.

• For the dataset used in Section 5.5.3 where any demand exceeding inventory Y is

censored, we let Y = ⌊N (6, 2)⌋.

(vi) S = min{Y,D} denotes the sales data.

Parameters. We set the sample size as n = 2000. The stock-out cost per unit is set to

be c = 0.1. The neural network for estimating f̂ (−m(i)) (Pi | Xi, Yi) has 3 inner layers, each

with 84 nodes. The neural network for finding optimal prices has 4 inner layers, each with
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12 nodes. We also discuss the sensitivity of the result with respect to the neural network

parameters in Appendix D.4.2, and the running time is reported in Appendix D.4.3.

For the choice of h, we use h = 0.01 in our numerical implementation, which performs

well empirically. Theoretically, we should choose h as small as possible since the kernel

approximates the true value when h → 0. However, there is always a trade-off between

the estimator’s bias and variance. In practice, given the kernel function, one can select

the h value based on the size and quality of the sample data. For example, we may apply

Silverman’s rule of thumb, which is h = 0.9min
(
σ̂, IQR

1.34

)
n− 1

5 where interquartile range (IQR)

is the difference between the 75th and 25th percentiles of the data. Or, we can tune h by

cross-validation.

For λn, we use λn = 10−4 for ridge regularization term in our case. The selection of regu-

larization parameters depends on the sample size, network structure, and the regularization

type. In practice, it can be tuned through cross-validation techniques.

Kernel Approximations. We use kernel approximation in the value function estimation.

Also, we use the finite sum to approximate any integrals.

(a) When calculating (5.17), the first term involves an integral, which is approximated by a

finite sum with bandwidth 0.01. More precisely, the estimated Q values are given by

Q̂(−m(i))(Xi, Yi, π(X, Y )) =
n∑

i=1

∫ p2

p1

Q̂(−m(i))(Xi, Yi, p)K

(
π(Xi, Yi)− p

h

)
dp (5.23)

≈
n∑

i=1

100∑
j=1

0.01× Q̂(−m(i))(Xi, Yi, pj)K

(
π(Xi, Yi)− pj

h

)
,

where pj = 0.01× j and h = 0.01.

(b) We use a Gaussian kernel function, K(u) = 1√
2π
e−

u2

2 with bandwidth h = 0.01, to

approximate the indicator function in (5.4).

To see how our approximations perform, we shall compare the true and estimated Q values

under different prices π(Xi, Yi) ∈ [0, 1]. The true Q(Xi, Yi, π(Xi, Yi)) value is given by

Q(X, Y, P ) = E[R|X, Y, P ] = (6 +X2
1 +X2

2 − 5P )P. (5.24)

Note here that Y = ∞, ignoring the inventory impact. The estimated Q values are given by

(5.23).

The numerical results show that the finite sum of the Gaussian kernel approximates the

true Q values very well. Figure 5.3 shows an example where X = [0.74, 0.22], Y = ∞. As

we can see, the estimated Q values based on the dataset are very close to the theoretical
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Figure 5.3: Comparison between the kernel approximated Q and the true Q

true Q values. Moreover, the estimated expected reward can capture the peak reward when

iterating over different pricing choices, ensuring that the maximization of (5.17) would yield

the pricing strategy with maximum profit.

Performance Measure. We randomly generate L = 100 pairs of training and testing

datasets each with size n = 2000 according to our generative model. For each ℓ = 1, . . . , L,

we train our model independently using the ℓth training dataset and then test the performance

on the ℓth testing dataset. Let Eval(π) be the average reward gained under any given pricing

strategy π calculated on L testing datasets. Then we define the performance ratio as

κ(π) = Eval(π)/Eval(π∗), (5.25)

where π∗ is the theoretical optimal pricing policy. In our numerical experiment, we are

particularly interested in κ(π̂n) and κ(π̃n). Here π̂n is our offline learning algorithm with

demand censoring. Meanwhile, π̃n implements our algorithm by hypothetically treating the

observed sales quantities as the true uncensored demand quantities.

5.5.2 The Case with Unlimited Inventory Y = ∞

Before implementing our algorithm with demand censoring, we first consider applying the al-

gorithm to the same dataset but with unlimited inventory. More precisely, we hypothetically
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reset inventory Y = ∞ in the dataset (so that all demands are satisfied).

For our example in (5.24), we can calculate the theoretical optimal prices in closed-form

as

π∗(X, Y ) =
(6 +X2

1 +X2
2 )

10
∈ [0, 1],

which is used to benchmark against our numerical result (with unlimited inventory).

Estimation of Q Values. To check whether the estimates Q̂(−m(i)) (Xi, Yi, Pi) are accurate,

we plot the estimated values and the true values of Q on one particular dataset in Figure

5.4.
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Figure 5.4: Accuracy of the estimated Q̂ values in the case of unlimited inventory

In Figure 5.4, the x-axis denotes the indices of samples in the dataset, which are ranked

according to the true Q values from low to high. The true Q values (represented using orange

dots) are calculated by (5.24) while our estimated Q̂ values (represented using blue dots)

are given by MLP regressor. We can see that the estimated Q̂ values approximate the true

Q values very well.

Doubly Robust Pricing Strategy. Now we apply Algorithm 10 according to (5.17). As

the inventory is unlimited, there is no censoring in demand. Hence, we can obtain the true

reward Ri for each record i using

Ri = Pi × Si − c× (Di − Si)
+, ∀i ∈ [n].
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Then upon computing the estimated generalized propensity scores f̂ (−m(i))(Pi|Xi, Yi) and the
estimated Q values Q̂(−m(i))(Xi, Yi, p), we compute the optimal pricing strategy via building
a neural network for the pricing policy π with “tensorflow” package (version 2.6.0). With
the loss function of this neural network being the negative of the right-hand side of (5.17),
the regularization term is implemented by using the built-in “kernel regularizer” parameter
of the neural network layers. Then we apply the “Adam” optimization algorithm again
to find the solution. So the optimal pricing strategy is obtained by solving the following
problem:

π̂n ∈ argmax
π∈Π0

{
1

nh

n∑
i=1

∫ p2

p1

Q̂(−m(i))(Xi, Yi, p)K

(
p− π(Xi, Yi)

h

)
dp

+
1

n

n∑
i=1

1

hf̂ (−m(i))(Pi|Xi, Yi)
K

(
Pi − π(Xi, Yi)

h

)
(Ri − Q̂(−m(i))(Xi, Yi, Pi))− λnJ(π)

}
.

As a hypothetical benchmark, if we were to use true Q and f values, we would use

π̌n ∈ argmax
π∈Π0

{
1

nh

n∑
i=1

∫ p2

p1

Q(Xi, Yi, p)K

(
p− π(Xi, Yi)

h

)
dp

+
1

n

n∑
i=1

1

hf(Pi|Xi, Yi)
K

(
Pi − π(Xi, Yi)

h

)
(Ri −Q(Xi, Yi, Pi))− λnJ(π)

}
.

Figure 5.5 shows the performance of pricing strategies π̂n and π̌n, relative to the theoretical

optimal prices π∗. The x-axis denotes the indices of samples in the dataset, ranked according

to the theoretical optimal prices from low to high. We use translucent dots to represent the

prices given by π̂n and π̌n. The fitted lines are generated by doing a polynomial fit of degree

4 for these dots. Our doubly robust pricing strategy π̂n is represented using the (fitted) blue

line; the hypothetical benchmark π̌n (with access to true Q and f) is represented using the

(fitted) pink line; and the theoretical optimal price strategy is represented using the orange

line. We can see that the fitted lines of the pricing strategies π̌n and π̂n are close to each

other, indicating excellent estimations of f̂ (−m(i))(Pi|Xi, Yi) and Q̂
(−m(i))(Xi, Yi, p). Both are

consistent with the theoretical optimal prices but have a wider range.

In terms of profit performance via the notion of performance ratio defined in (5.25),

κ(π̂n) = 97.03% (2.29e−3) and κ(π̌n) = 96.78% (3.04e−3)

where the value in the parenthesis is the standard error of the average performance ratio.
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Figure 5.5: Prices given by doubly robust pricing strategy in the case of unlimited inventory

5.5.3 The Case with Limited Inventory (Demand Censoring)

Now we recover the finite values of Y in the dataset and consider the case with demand

censoring.

Estimation of Q Values. With demand censoring, we no longer have access to the true

profit, since any demand exceeding the limited inventory Y is lost and censored. Hence, we

use the surrogate profit R̂(X,P, S,∆). Specifically, as discussed in Ishwaran et al. (2008),

we first draw B bootstrap samples from the whole dataset and grow a survival tree for each

bootstrap sample using the extremely randomized tree in Geurts et al. (2006). Note that

here B is a tuning parameter. After some experiments, we find that the output is robust with

respect to the choice of B. In our use of R package “ranger” downloaded from R-CRAN,

we adopt the default choice of B which is 500. Second, we estimate the conditional survival

functions H(t |X,P ) = P(D > t |X,P ) as stated in Lemma 5.3.1 for all terminal nodes of

the estimated survival trees using the Nelson–Aalen estimator (Aalen 1978, Nelson 1972)

to obtain the cumulative hazard function and aggregate over all B trees. We remark that

the terminal nodes are the unique sales values S in the data records. Then to estimate the

conditional expected demand, the integral in (5.26) is approximated by Riemann sum, where

the partition is decided by the terminal nodes, i.e. the observed sales values in the data. The

survival function values are estimated by the “last observation carried forward” approach

using the estimated conditional survival functions of the terminal nodes, which means for
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the t where we do not have the estimated survival function Ĥ(t |X,P ), we approximate

it by using the estimated survival function of the closest sales value smaller than t. This

step generates imputations for the censored samples. Then, by plugging the estimator of

H(t |X,P ), we estimate the conditional expectation of demand using (5.10) that

E[D |X,P, S,∆ = 0] = S +

∫ Dmax

S

H(t |X,P )
H(S |X,P )

dt

≈ S +
l−1∑
i=k

Ĥ(S[i] |X,P )(S[i+1] − S[i])

Ĥ(S |X,P )
,

(5.26)

where S[k] = S and S[i] denotes the ith order statistic of the unique sales values in the

data and ℓ is the number of unique sales values. Based on the survival analysis above,

R̂(X,P, S,∆) is estimated via (5.18). In the neural network for estimating Q(X, Y, P ), we

apply the multi-layer perceptron (MLP) regressor (Pedregosa et al. 2011).

Note that the true Q values (for our simple example) can be computed as follows.

Q(X, Y, P ) = E[R|X, Y, P ] = E[R(X,P, S,∆)|X, Y, P ]

=
∞∑

D=1

f(D)R(X,P,min(D, Y ),1(D ≤ Y ))

=
Y∑

D=1

f(D)PD +
∞∑

D=Y+1

f(D) (PY + c(Y − E[D|X,P, Y,∆ = 0]))

=
Y∑

D=1

f(D)PD + (1− F (Y ))

(
PY + c

(
Y −

∑∞
D=Y+1Df(D)

1− F (Y )

))

=
Y∑

D=1

λD−1
1 e−λ1

(D − 1)!
PD −

∞∑
D=Y+1

λD−1
1 e−λ1

(D − 1)!
cD + (1− F (Y )) (P + c)Y.

(5.27)

Figure 5.6 shows the comparison of true Q values and the estimated Q̂(−m(i))(Xi, Yi, Pi)

using MLP. The x-axis denotes the indices of the sample in the data, ranked according to

the true Q values from low to high. The true Q values (represented using orange dots) are

calculated by (5.27) while our estimated Q̂ values (represented using blue dots) are given by

MLP regressor. We use the “Adam” optimizer which is a stochastic gradient descent method

that is based on adaptive estimation of first-order and second-order moments by Kingma

and Ba (2017). We can see that the estimated Q̂ values approximate the true Q values very

well.

Note that there is a slight overestimate of the true Q values, caused by the error from

the estimation of R(X,P, S,∆). Specifically, when demand is censored, the way we obtained
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Figure 5.6: Accuracy of the estimated Q̂ values in the case of limited inventory

Q̂(X, Y, P ) = E[R̂ |X, Y, P ] is by using neural networks, with feeding data R̂(X,P, S,∆)

achieved from the following approximation in implementation that

R̂(X,P, S,∆) ≈P × S + c× 1(∆ = 0)
l−1∑
i=k

Ĥ(S[i] |X,P )(S[i+1] − S[i])

Ĥ(S |X,P )
, (5.28)

where S[k] = S and S[i] denotes the ith order statistic of the unique sales values in the data

and ℓ is the number of unique sales values. Note that (5.28) might result in under-estimating

Ê [D|X,P, S,∆ = 0] due to we let H(t |X,P ) ≈ 0, t ≥ S[ℓ], leading to the over-estimation

of R̂(X,P, S,∆) for each record. Therefore, Q̂(X, Y, P ) may be over-estimated given the

over-estimation of the training data.

Computing Theoretical Optimal Prices. Unlike the unlimited inventory case, the the-

oretical optimal prices in the limited inventory case do not enjoy a closed-form expression,

due to demand censoring. Thus, we “simulate” the theoretical optimal prices as follows.

(a) First, we generate another independent training dataset with size N = 50000 with the

true reward RTRUE
j (Xj, Yj, Dj, Pj) for each record j ∈ [N ]:

RTRUE
j (Xj, Yj, Dj, Pj) = Pj ×min{Yj, Dj} − c× (Dj − Yj)

+.

(b) Second, we use deep neural networks and MLP regressor to obtain Q̂ (Xi, Yi, p) with
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p = [0, 0.001, 0.002, . . . , 1] for each record i ∈ [n] in the original dataset. Note

that the reward used in the MLP regressor for Q̂(−k(j)) (Xj, Yj, p) is the true reward

RTRUE
j (Xj, Yj, Dj, Pj),∀j ∈ [N ] instead of R̂j(Xj, Pj, Sj,∆j).

(c) Third, for each record i ∈ [n], find

P ∗
i = argmax

p∈{0,0.001,0.002,...,1}
Q̂ (Xi, Yi, p) , ∀i ∈ [n].

Use P ∗
i as our estimated theoretical optimal prices for the original dataset, which are

presented by the orange dots in Figure 5.7.

Doubly Robust Pricing Strategy. Now we apply Algorithm 10 according to (5.17).
Recall that upon computing the estimated potential profit R̂i, the estimated generalized
propensity scores f̂ (−m(i))(Pi|Xi, Yi), and the estimated Q values Q̂(−m(i))(Xi, Yi, p), we com-
pute the optimal pricing strategy via

π̂n ∈ argmax
π∈Π0

{
1

nh

n∑
i=1

∫ p2

p1

Q̂(−m(i))(Xi, Yi, p)K

(
p− π(Xi, Yi)

h

)
dp

+
1

n

n∑
i=1

1

hf̂ (−m(i))(Pi|Xi, Yi)
K

(
Pi − π(Xi, Yi)

h

)
(R̂i − Q̂(−m(i))(Xi, Yi, Pi))− λnJ(π)

}
.

Figure 5.7 shows the performance of pricing strategy π̂n, relative to the theoretical optimal

prices π∗. The x-axis denotes the indices of samples in the dataset, ranked according to the

theoretical optimal prices from low to high. We use translucent dots to represent the prices

given by π̂n. The (blue) fitted lines are generated by doing a polynomial fit of degree 4 for

these dots. Our doubly robust pricing strategy π̂n is represented using the (fitted) blue line,

and the theoretical optimal price strategy is represented using the orange line. We can see

that π̂n is consistent with the theoretical optimal prices but have a higher variance due to

the finite sample data.

Value of Considering Demand Censoring. Figure 5.7 above also depicts the value of

factoring in demand censoring. The reasoning is as follows. The variant π̃n implements our

algorithm π̂n except for the fact that π̃n hypothetically treated the observed sales quantities

as the true demand quantities. In other words, all the procedures are the same except

that instead of using R̂i(Xi, Pi, Si,∆i) obtained from survival analysis, we now only use the

observed sales profit

ROBS
i (Xi, Pi, Si,∆i) := Pi × Si, ∀i ∈ [n]

as the expected reward to estimate Q(X, Y, P ).

Figure 5.7 demonstrates that the estimated optimal prices without factoring in demand
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Figure 5.7: Prices given by doubly robust pricing strategy in the case of limited inventory

censoring (represented using the pink line) are significantly below the theoretical optimal

prices and also our prices. To make sense of this, imagine a scenario where Y = 10 and

D = 100. In this case, if the manager uses sales min(Y,D) = 10 as true uncensored demand,

she may post some moderate price, due to seemingly one-to-one matching between supply

and demand. But in fact, the true demand is 100, which is much higher, competing for the

same 10 units of inventory, then the manager should significantly increase the prices to gain

more potential profit.

In terms of profit performance via the notion of performance ratio defined in (5.25),

κ(π̂n) = 96.18% (4.93e−3) and κ(π̃n) = 92.46% (1.84e−2)

where the value in the parenthesis is the standard error of the average performance ratio.

We can see that our algorithm is near-optimal while ignoring the issue of demand censoring

could significantly undermine the potential profit, underperforming by more than 4%. Also,

the performance is also more stable than that of ignoring the demand censoring, with the

standard error being about one-third of the latter one.

Robustness Check. We also test different variants as shown in Table 5.1 based on this

model. Recall that n is the number of samples in the dataset, h is the bandwidth in the

kernel approximation, and the batch size is the parameter in the neural network of optimizing

pricing strategy.
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Instance Sample Size n Bandwidth h Batch Size
1 2,000 0.010 10
2 3,000 0.010 10
3 2,000 0.005 10
4 2,000 0.010 20

Table 5.1: Robustness Experiments

Instance 1 is the basic instance whereas we change the sample size in Instance 2, the

kernel bandwidth in Instance 3, and the batch size in the neural network of maximizing

(5.17) in Instance 4. By changing these parameters, we find that our algorithm is robust

and that the results in these variants are consistent and robust. The results of applying our

algorithms in these variants are shown in Figures D.1 – D.4 in Appendix D.4.1.

Comparison with Existing Methods. While there are few studies on offline learning

under censored demand, Bu et al. (2023) proposed an algorithm named “D2ACD” for a

single-product pricing problem based on inventory level under a linear demand model with

zero penalty cost for lost demand. We compare the performance of our non-parametric

algorithm with theirs under both linear and non-linear demand settings.

Specifically, we run π̂n and D2ACD (the algorithm proposed by Bu et al. (2023)) on L = 50

datasets and apply the pricing strategies obtained on 50 testing datasets respectively. For

each training dataset, we have K = 200 groups of (y, p) pairs. For each group i ∈ [K], there

are Ni = 10 records and γi = P [ξ < yi + bpi] > 0 as assumed in Bu et al. (2023). There

are 2000 records of inventory levels in each testing dataset. Following the noise distribution

in Bu et al. (2023), we set η as a centered geometric random variable with parameter 1/30.

Table 5.2 is the comparison of the performance of the two algorithms.

Demand Function κ(π̂n) κ(D2ACD)
D = 120− P + η 98.40% (2.63e−3) 97.41% (3.16e−3)

D = 120− 1
10
P 2 + η 99.34% (0.62e−3) 76.63% (8.3e−3)

Table 5.2: Comparison of π̂n with D2ACD

We can see that our algorithm outperforms D2ACD, especially in the nonlinear case. As

the D2ACD assumes a linear relationship between demand and price, the results make sense.

Our method outperforms Bu et al. (2023) in linear cases due to two potential reasons. First,

the application of our method requires a large number of samples with random prices, which

differs from the experimental settings in Bu et al. (2023) where the number of groups is

relatively small (e.g., K = 2) and there are ample samples within each group (e.g., Ni =
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100, i ∈ [K]). In our setting, the presence of a large number of groups and a small number

of records within each group may undermine the advantage of D2ACD for linear cases.

Second, while our method relies on the performance of supervised learning techniques for

nonparametric estimation of variables, the relatively simple structure of the revenue function,

which does not penalize lost sales, combined with multiple samples for the same price and

inventory pair, makes it easier for the supervised learning techniques to learn the demand

function and achieve favorable performance, even when compared to parametric approaches.

The second reason also explains why the performance of our algorithm is better in this setting

than the one studied before. Compared with c = 0.1 (the penalty for the lost demand) in

our previous simulation study, here we do not have the penalty for the lost demand (c = 0),

leading to the access to the true values of

R(X,P, S,∆) = P × S + c× 1(∆ = 0) (S − E [D|X,P, S,∆ = 0]) .

In addition, the underlying demand functions are also simpler than the previous setting,

without covariates. Thus, the estimator Q̂(X, Y, P ) is more accurate and the performance of

our algorithm is better than when our algorithm also suffers from the estimation error from

the survival analysis for R(X,P, S,∆).

5.6 Conclusions

We studied a feature-based pricing problem with demand censoring in an offline data-driven

setting, and through the lens of causal inference, we proposed a novel data-driven algorithm

that is based on survival analysis and doubly robust estimation. We derived a finite sample

regret bound of our offline learning algorithm and also demonstrated the computational

efficacy through simulation experiments. We also discussed the value of factoring in demand

censoring, by demonstrating numerically that the resulting prices will be significantly lower

than the theoretical optimal prices if one simply treats the sales data as the uncensored

demand data.

To close this chapter, we would like to point out several promising future research avenues.

First, it is interesting to extend our method to the longitudinal or multi-period setting. In

practice, we may have longitudinal data over some time periods. In this case, the prices of

certain products fluctuate, and we observe sales within each time period. It is promising to

develop new models to learn the causal relationship between price and demand given such

data. Second, it is worthwhile to consider the competitive setting where other suppliers are

offering the same or similar products. In such cases, one may incorporate the competitors’
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features into the causal inference model to learn the optimal price given other competitors’

information. Third, beyond pricing problems, one possible direction is to consider the offline

learning problem in inventory control (or newsvendor) settings. One could potentially employ

a similar causal inference model to prescribe target inventory levels with feature information.

Finally, we believe that investigating the joint pricing and inventory control problem holds

promise for future research. This problem introduces additional complexity as demand is

influenced by price (and is no longer exogenous). Studying this problem through the lens of

causal inference presents another intriguing challenge to investigate.
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CHAPTER 6

Conclusion

This dissertation proposes online and offline learning algorithms in OM through four specific

application settings. Chapter 2 is focused on designing an online learning algorithm with

perturbed gradients to solve multi-product inventory control problems with product upgrad-

ing. Chapter 3 proposes an online learning algorithm, integrating bandit control and SAA, to

solve dual sourcing systems. Chapter 4 is devoted to designing learning algorithms for two-

sided markets. Finally, Chapter 5 develops an offline learning algorithm for feature-based

pricing problems with demand censoring.

There are numerous future research directions for online and offline learning in OM.

(a) Integrating causal inference into the optimization process. While the literature

on causal inference focuses on improving estimation performance, the role of causal

inference in efficiently solving optimization problems remains open to study. Integrating

causal inference into optimization algorithms for OM problems in a synergistic manner

can help better understand the underlying mechanism and thus better decision-making.

(b) Incorporating fairness constraints into resource allocation and pricing prob-

lems. For instance, dynamic pricing may impact the fairness of customer transactions,

and this can be addressed by introducing constraints on price trends. Similar consid-

erations apply to resource allocation challenges, such as labor assignments, where the

well-being of the workforce needs to be factored into the model.

(c) Applications of generative AI in decision making. While generative AI especially

Large Language Models (LLMs) displayed huge potential in text/image generation, the

impact of generative AI on decision sciences remains an open field to investigate. Just as

the impact of machine learning on decision sciences in the past decade, massive datasets

and the leap in computational power will provide brand new interpretations to models

and algorithms. Integration of state-of-the-art techniques or the underlying ideas into

algorithms in OM is an exciting and potentially fruitful direction.
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APPENDIX A

Appendix For Chapter 2

A.1 Summary of Major Notation

Table A.1: Summary of Major Notation in the Problem Formulation

n the number of demand or supply types considered
T the number of periods in consideration
ri the revenue of satisfying one unit of demand i,∀i ∈ [n]
cj the cost of ordering one unit of supply j,∀j ∈ [n]
hj the cost of holding one unit of supply j for one period, ∀j ∈ [n]
Dt

i random variable, the quantity of demand i in period t, ∀i ∈ [n], t ∈ [T ]
ȳi constant, the upper bound for Dt

i ,∀i ∈ [n], t ∈ [T ]
0 constant, the lower bound for Dt

i ,∀i ∈ [n], t ∈ [T ]
dti the realization of quantity of demand i in period t,∀i ∈ [n], t ∈ [T ]
xt
j the starting inventory level of supply j in period t, ∀j ∈ [n], t ∈ [T ]

ytj the inventory level of supply j after replenishment in period t, ∀j ∈ [n], t ∈ [T ]

ut
ij the allocation of supply j to demand i with i ≥ j, i, j ∈ [n], t ∈ [T ]

y∗j the base-stock level vector for supply j in each period in the optimal policy π∗

Regret(π, T ) the T -period expected cumulative regret of the policy π
R (y) the expected single period profit with after-replenishment level y following the allocation

policy π∗A

R (y;d) the sample-path single period profit given after-replenishment inventory level y and de-
mand realization d following the allocation policy π∗A

ŷtj the implemented base-stock level for supply j in period t,∀j ∈ [n], t ∈ [T ]

J t (xt) the expected optimal profit from period t till the end of horizon with starting inventory
level xt

A.2 Proof of Propositions and Theorems

A.2.1 Proof of Proposition 2.3.1 and Theorem 4.2.1

Before proving Theorem 4.2.1 by induction, we first establish the optimal policy for a single-

period allocation problem. Then we study the optimal policy in period T and then analyze
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Table A.2: Summary of Major Notation in the SGD-PG Algorithm

L the ordered set of all demand i and supply j pairs in decreasing order of ri − cj
lti the real-time imbalance between type i supply and demand in the second round allocation,

∀i ∈ [n], t ∈ [T ]
ȳ upper bound for the optimal base-stock levels y∗ and the base-stock levels in SGD-PG algorithm,

set to be ȳi = ȳi
ϵt algorithm parameters, ∀t ∈ [T ]
γ constant, a parameter in SGD-PG algorithm
Gt (ŷt) the gradient estimator, a random variable in the algorithm
eti index of supply(demand) which depletes demand(supply) i in period t
a temporal index of supply(demand) where a chain ends

period t by induction. Finally, the optimal policy is attained by the assumption that the

system starts with zero inventory, as well as the fact that the allocation quantity is non-

negative.

We first propose two lemmas below. The first one is the preservation of concavity to

facilitate the proof and the second one is the optimal allocation policy in a single-period

problem.

Lemma A.2.1 Consider the following optimization problem with parameter vector b ∈ Rm,

matrix A ∈ Rm×n and decision variables xn. The objective function f (x,b) is concave and

constraints are linear.

g (b) := max
x

f (x,b) (P̄ (b))

s.t. Ax ⪯ b

x ⪰ 0,

Then g (b) is concave in b.

Lemma A.2.2 For the following allocation problem PA(y,d) with inventory vector y ∈ Rn,

demand realization d ∈ Rn, and the decision variables uij,∀1 ≤ j ≤ i ≤ n.

max
uij ,1≤j≤i≤n

∑
1≤j≤i≤n

(ri − cj + hj)uij (PA)

s.t.
n∑

i=j

uij ≤ yj,∀j ∈ [n]

i∑
j=1

uij ≤ di,∀i ∈ [n]

uij ≥ 0, ∀1 ≤ j ≤ i ≤ n.
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Then it is optimal to follow the allocation rule π∗A specified in Theorem 4.2.1.

Proof of Lemma A.2.1. For any given vectors b1,b2. For k = 1, 2, denote xk∗ as the

optimal solution to the problem, P̄
(
bk
)
. So g

(
bk
)
= f

(
xk∗). For any λ ∈ [0, 1], we have

x′ := λx1∗ + (1 − λ)x2∗ is a feasible solution to the problem P̄ (λ (b1) + (1− λ) (b2)) since

the constraints are all linear. By definition of g (·),

g
(
λ
(
b1
)
+ (1− λ)

(
b2
))

≥f
(
x′, λ

(
b1
)
+ (1− λ)

(
b2
))

=f
(
λx1∗ + (1− λ)x2∗, λ

(
b1
)
+ (1− λ)

(
b2
))

≥λf
(
x1∗,b1

)
+ (1− λ)f

(
x2∗,b2

)
=λg

(
b1
)
+ (1− λ)g

(
b2
)
,

where the second inequality is due to concavity. Therefore, Lemma A.2.1 holds. Q.E.D.

Proof of Lemma A.2.2. The problem can be seen as a multi-knapsack problem with spe-

cial structures. There are three steps of the proof to show it is optimal to

(I) not allocate supply j to demand i with ri − cj + hj < 0;

(II) greedily match pair (i, j) with ri − cj + hj ≥ 0 in non-decreasing order of the layer

index;

(III) determine the order of pairs in the same layer arbitrarily.

Step I: We first show that u∗ij = 0 for any pair (i, j) with ri−cj+hj < 0 by contradiction.

Suppose u∗ij > 0, then we can always decrease u∗ij to 0 maintaining feasibility and strictly

increasing the profit, contradicting the assumption that it is the optimal solution.

Step II: Then we prove the optimality of the greedy matching by induction of layers 1 to

n. For the pairs in layer 1, we prove the optimal allocation policy by showing that if there

exists k such that rk − ck + hk ≥ 0 and u∗kk < min (yk, dk), then we can always increase it by

a positive amount without harming the profit. Specifically, when u∗kk < min (yk, dk), there

are four cases.

1. u∗ik = u∗kj = 0 for all pairs (i, k), (k, j) in layers 2 to n, which means no demand 2

is satisfied or supply 2 is used for the any pair in layers 2 to n. Then the remaining

supply k is yk −
∑n

i=k u
∗
ik > 0 and the unmet demand k is dk −

∑k
j=1 u

∗
kj > 0. So there

exists δ such that

0 < δ < min

(
yk −

n∑
i=k

u∗ik, dk −
k∑

j=1

u∗kj

)
.
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Consider a new feasible solution with u′kk = u∗kk + δ and others remain the same. The

new solution generates no less profit than U∗, since rk − ck + hk ≥ 0.

2. There exists a supply j < k such that u∗kj > 0 but u∗ik = 0 for all pairs (i, k) in layer

2 to n, which means demand k is satisfied by some other supply j < k for some pair

(k, j) in layers 2 to n, and supply k is not used by any pair in layers 2 to n. So the

remaining supply k is yk −
∑n

i=k u
∗
ik > 0 and there exists δ such that

0 < δ < min

(
yk −

n∑
i=k

u∗ik, u
∗
kj

)
.

Consider a new feasible solution with u′kk = u∗kk+δ, u
′
kj = u∗kj−δ and others remain the

same. The new solution generates no less profit than U∗, since rk−ck+hk ≥ rk−cj+hj.

3. There exists a demand i > k such that u∗ik > 0 but u∗kj = 0 for all pairs (k, j) in layer

2 to n, which means supply k is used to satisfy by some other demand i > k for some

pair (i, k) in layers 2 to n, and demand k is not satisfied by any pair in layers 2 to n.

So the unmet demand k is dk −
∑k

j=1 u
∗
kj > 0 and there exists δ such that

0 < δ < min

(
dk −

k∑
j=1

u∗kj, u
∗
ki

)
.

Consider a new feasible solution with u′kk = u∗kk+δ, u
′
ik = u∗ik−δ and others remain the

same. The new solution generates no less profit than U∗, since rk−ck+hk ≥ ri−ck+hk.

4. There exist a supply j < k such that u∗kj > 0 and a demand i > k such that u∗ik > 0,

which means demand k and supply k are both utilized by some pairs in layers 2 to n.

So there exists δ such that

0 < δ < min
(
u∗ik, u

∗
kj

)
.

(a) If ri − cj + hj ≥ 0, then consider a new feasible solution with

u′kk = u∗kk + δ, u′ij = u∗ij + δ, u′kj = u∗kj − δ, u′ik = u∗ik − δ.

and others remain the same, i.e., the new solution takes δ pairs (i, k) and (k, j)

to form δ pairs (k, k) and (i, j). The new solution generates the same profit than

U∗, since rk − ck + hk + ri − cj + hj = ri − ck + hk + rk − cj + hj.
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(b) If ri − cj + hj < 0, then consider a new feasible solution with

u′kk = u∗kk + δ, u′kj = u∗kj − δ, u′ik = u∗ik − δ.

and others remain the same, i.e., the new solution takes δ pairs (i, k) and (k, j)

to form δ pairs (k, k). The new solution generates more profit than U∗, since

rk − ck + hk > ri − ck + hk + rk − cj + hj.

In sum, if there exists k such that u∗kk < min (yk, dk), then we can always increase it by

a positive amount without harming the objective profit. In this way, it is optimal to set

u∗kk = min (yk, dk) for k ∈ [n]. So the greedy matching of pairs (i, j) with ri− cj +hj in layer

1 is optimal.

Now suppose the greedy matching of (i, j) with ri− cj +hj in layer 1 to m− 1 is optimal.

We next show for layer m containing the pairs {(m, 1), . . . , (n, n−m+ 1)}, if the matching

between (k, l) with rk − cj + hj ≥ 0 is not greedy, then there are four cases.

1. u∗kj = u∗il = 0 for all pairs (k, j), (i, l) in layer m + 1 to n, which means demand k

and supply l is not used by any pair in layers 2 to n. Then the remaining supply l is

yl−
∑n

i=l u
∗
il > 0 and the unmet demand k is dk −

∑k
j=1 u

∗
kj > 0. So there exists δ such

that

0 < δ < min

(
yl −

n∑
i=l

u∗il, dk −
k∑

j=1

u∗kj

)
.

Consider a new feasible solution with u′kl = u∗kl + δ and others remain the same. The

new solution generates no less profit than U∗, since rk − cl + hl ≥ 0.

2. There exists a pair (k, j) in layers m+1 to n such that u∗kj > 0 but u∗il = 0 for all pairs

(i, l) in layer m+1 to n, which means demand k is also satisfied by some pair in layers

m + 1 to n and supply l is only satisfied by pairs in layers 1 to m. So the remaining

supply l is yl −
∑n

i=l u
∗
il > 0 and there exists δ such that

0 < δ < min

(
yl −

n∑
i=l

u∗il, u
∗
kj

)
.

Consider a new feasible solution with u′kl = u∗kl+δ, u
′
kj = u∗kj −δ and others remain the

same. The new solution generates no less profit than U∗, since rk−cl+hl ≥ rk−cj+hj.

3. There exists a pair (i, l) in lays m + 1 to n such that u∗il > 0 but u∗kj = 0 for all pairs

(k, j) in layer m + 1 to n, which means supply l is used by some pair in layers 2 to
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n and demand k is only satisfied using pairs in layers 1 to m. So the unmet demand

dk −
∑k

j=1 u
∗
kj > 0 and there exists δ such that

0 < δ < min

(
dk −

k∑
j=1

u∗kj, u
∗
ki

)
.

Consider a new feasible solution with u′kl = u∗kl + δ, u′il = u∗il − δ and others remain the

same. The new solution generates no less profit than U∗, since rk−cl+hl ≥ ri−ck+hk.

4. There exist pairs (k, j) and (i, l) such that u∗kj > 0 and u∗il > 0, which means supply l

and demand k are both used by some pairs in layers m+1 to n. So there exists δ such

that

0 < δ < min
(
u∗il, u

∗
kj

)
.

(a) If ri − cj + hj ≥ 0, then consider a new feasible solution with

u′kl = u∗kl + δ, u′ij = u∗ij + δ, u′kj = u∗kj − δ, u′il = u∗il − δ.

and others remain the same, i.e., the new solution takes δ pairs (i, l) and (k, j)

to form δ pairs (l, k) and (i, j). The new solution generates the same profit than

U∗, since rk − cl + hl + ri − cj + hj = ri − ck + hk + rk − cj + hj.

(b) If ri − cj + hj < 0, then consider a new feasible solution with

u′kl = u∗kl + δ, u′kj = u∗kj − δ, u′il = u∗il − δ.

and others remain the same, i.e., the new solution takes δ pairs (i, k) and (k, j)

to form δ pairs (k, l). The new solution generates more profit than U∗, since

rk − cl + hl > ri − ck + hk + rk − cj + hj.

In sum, if the matching between (k, l) with rk−cj+hj ≥ 0 is not greedy, then we can always

increase the matching of pair (k, l) by a positive amount without harming the profit. In this

way, it is optimal to greedily match pair (i, j) with ri − cj + hj ≥ 0 in layer m.

Step III: Finally, the allocation order in layer 1 obviously does not matter. For any layer

m ≥ 2, there are at most two pairs in the same layer with supply or demand being k for any

k ∈ [n]. Note that following the greedy allocation policy in layer 1, supply and demand k

cannot simultaneously have a positive quantity when it comes to layer m ≥ 2. So we only

need to consider one of the two pairs in the same layer and the order of allocation within
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the same layer also does not matter.

Therefore, the allocation policy is π∗A as described in Theorem 4.2.1 is optimal for this

optimization problem. Q.E.D.

Now we are ready to prove Theorem 4.2.1. We have the following lemma.

Lemma A.2.3 For any period t ∈ [T ],

(A) J t (xt) is concave in xt and V t (yt) is concave in yt;

(B) when xt ⪯ y∗, it is optimal to order up to y∗ and follow the allocation rule π∗A in

Theorem 4.2.1.

Proof of Lemma A.2.3. We prove the results by induction. First, when t = T ,

JT (xT ) = max
yT⪰xT

V T
(
yT
)
+

n∑
i=1

cix
T
i ,

V T
(
yT
)
=−

n∑
j=1

cjy
T
j + EDT max∑n

i=j u
T
ij≤yTj ,∀j∈[n]∑i

j=1 u
T
ij≤DT

i ,∀i∈[n]
uT
ij≥0,1≤j≤i≤n

[
n∑

j=1

(
n∑

i=j

riu
T
ij + (cj − hj)

(
yTj −

n∑
i=j

uTij

))]

=−
n∑

j=1

hjy
T
j + EDT max∑n

i=j u
T
ij≤yTj ,∀j∈[n]∑i

j=1 u
T
ij≤DT

i ,∀i∈[n]
uT
ij≥0,1≤j≤i≤n

∑
1≤j≤i≤n

(ri − cj + hj)u
T
ij (Eq V T )

:=−
n∑

j=1

hjy
T
j + EDTQ

(
yT ,DT

)
.

The objective function of the optimization problem in (Eq V T ) is linear and thus concave.

By Lemma A.2.1, we have Q
(
yT ,dT

)
is concave in yT for any realized dT . Then after taking

expectation, EDTQ
(
yT ,DT

)
is concave in yT . Therefore, V T

(
yT
)
is concave in yT . Since

{yT : yT ⪰ xT} is a convex set, the maximization preserves concavity and JT (xT ) is concave

in xT . So Lemma A.2.3A holds for t = T .

Let’s consider allocation decisions, which is exactly the problem PA
(
yT ,dT

)
specified in

Lemma A.2.2. So it is optimal to follow π∗A for the allocation decisions. Now

V T
(
yT
)
=EDT

n∑
j=1

(
−cjyj +

n∑
i=j

riu
∗
ij

(
yT ,DT

)
+ (cj − hj)

(
yj −

n∑
i=j

u∗ij
(
yT ,DT

)))
=R

(
yT
)
.

So V T
(
yT
)
is maximized at y∗ and when xT ⪯ yT , it is optimal to order up to y∗. So
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Lemma A.2.3B, i.e., the optimality of π∗A and π∗R holds for period T .
Now suppose Lemma A.2.3 holds for period t+ 1.Then we consider period t.

J t(xt) = max
yt⪰xt

V t
(
yt
)
+

n∑
i=1

cix
t
i,

V t
(
yt
)
=−

n∑
j=1

cjy
t
j + EDt max∑n

i=j ut
ij≤yt

j ,∀j∈[n]∑i
j=1 ut

ij≤Dt
i ,∀i∈[n]

ut
ij≥0,1≤j≤i≤n

 n∑
j=1

 n∑
i=j

riu
t
ij − hj

ytj −
n∑

i=j

ut
ij

+ J t+1
(
yt − U t⊺1

)

:= −
n∑

j=1

cjy
t
j + EDtHt

(
yt,Dt

)
. (Eq V t)

By induction hypothesis, J t+1 (xt+1) is concave in xt+1. Define ut :=[
ut11, u

t
21, . . . , u

t
n(n−1)

]
, i.e., the elements of ut is utij, 1 ≤ j ≤ i ≤ n in non-decreasing or-

der of j and in non-decreasing order of i within the same j index. So xt+1 = yt − U t⊺1

is an affine transformation of vector (yt,ut), which preserves concavity. Therefore, for any

realized dt, the objective of the optimization problem in (Eq V t) is concave. By Lemma

A.2.1, we have Ht (yt,Dt) is concave in (yt,Dt). After taking expectation with Dt, we have

V t (yt) is concave in yt. Since {yt : yt ⪰ xt} is a convex set, the maximization preserves

concavity and J t(xt) is concave in xt. So Lemma A.2.3A holds for period t.

If xt ⪯ y∗, xt+1 ⪯ y∗ since non-negative quantity of supply will be allocated to the

demand in period t. By induction hypothesis, it is optimal to order up to y∗ in period t+1.

Therefore, we have

J t+1(xt+1) = V t+1 (y∗) +
n∑

i=1

cix
t+1
i .

Thus for period t,

V t
(
yt
)
=−

n∑
j=1

cjy
t
j + EDt max∑n

i=j ut
ij≤yt

j ,∀j∈[n]∑i
j=1 ut

ij≤Dt
i ,∀i∈[n]

ut
ij≥0,1≤j≤i≤n

 n∑
j=1

 n∑
i=j

riu
t
ij + (cj − hj)

ytj −
n∑

i=j

ut
ij

+ V t+1 (y∗)

=−
n∑

j=1

hjy
t
j + EDt max∑n

i=j ut
ij≤yt

j ,∀j∈[n]∑i
j=1 ut

ij≤Dt
i ,∀i∈[n]

ut
ij≥0,1≤j≤i≤n

∑
1≤j≤i≤n

(ri − cj + hj)u
t
ij + V t+1 (y∗) .

For any realized demand dt, the allocation problem is exactly PA(yt,dt) specified in Lemma

155



A.2.2. So it is optimal to follow π∗A for the allocation decisions. Now

V t
(
yt
)
=EDt

n∑
j=1

−cjyj +

n∑
i=j

riu
∗
ij

(
yt,Dt

)
+ (cj − hj)

yj −
n∑

i=j

u∗
ij

(
yt,Dt

)+ V t+1 (y∗)

=R
(
yt
)
+ V t+1 (y∗) .

So V t (yt) is maximized at y∗ and when xt ⪯ yt, it is optimal to order up to y∗. So Lemma

A.2.3B, i.e., the optimality of π∗A and π∗R holds for period t. Q.E.D.

If the system starts with zero inventory, then x1 ⪯ y∗. Then following the optimal policy

indicated in Lemma A.2.3, xt ⪯ y∗ for any period t and Theorem 4.2.1 is proven.

A.2.2 Proof of Proposition 2.4.1

The main idea is to compute the profit change due to perturbing the inventory level of supply

i by an infinitesimal amount δ. The n-dimensional vector et keeps track of the terminal state

of each product i ∈ [n]. This vector is initialized to be value M . At the end of period t,

there are three possible index values for each eti: If eti = M , it means that there is either

unmet demand i or excess supply i. Otherwise, eti = j when unmet demand i is depleted by

supply j or unmet supply i is depleted by demand j. The while loop identifies where the

chain ends.

Let lti denote the real-time imbalance between the supply and demand of product i. At

the end of period t, (lti)
+ denotes excess supply i and (lti)

− denotes unmet demand i.

1. If lti = 0, there are two possible cases after perfect matching:

(a) There is excess supply i after perfect matching (e.g., supply 3 in Figure 2.6).

(b) There is unmet demand i after perfect matching (e.g., demand 4 in Figure 2.6).

For either case, the influence of increasing the inventory level by δ is the same, as long

as the terminal node of the chain is the same. Because all the supply and demand

nodes in the middle of the chain will be depleted, the only difference takes place at the

terminal node a.

(a) If lta > 0, which means the chain ends at excess supply a, then there will be δ more

supply a carried over to the next period. Thus, the profit change is δ(−ci+ca−ha).

(b) If lta < 0, which means the chain ends at unmet demand a, then there will be δ

less unmet demand a. Thus, the profit change is δ(−ci + ra). (This is the case of

yt3 → yt3 + δ or the case of yt4 → yt4 + δ in Figure 2.6.)
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Figure A.1: One Sample Path with n = 2

2. If lti > 0, there is still excess supply i at the end of period t. Hence, increasing supply i

by δ will result in δ more excess supply i. Thus, the profit change is δ(−ci + ci − hi) =

δ(−hi). (This is the case of yt6 → yt6 + δ in Figure 2.6.)

3. If lti < 0, there is still unmet demand i at the end of period t. Hence, increasing supply

i by δ will result in δ more demand i met. Thus, the profit change is δ(−ci+ ri). (This
is the case of yt1 → yt1 + δ in Figure 2.6).

This exhausts all possible cases, thereby proving the clhuh2009nonparametric.

A.2.3 Proof of Theorem 2.4.1

Proof of Lemma 2.4.1.

R (y) =−
n∑

j=1

cjyj + ED max∑n
i=j uij≤yj ,∀j∈[n]∑i
j=1 uij≤di,∀i∈[n]
uij≥0,1≤j≤i≤n

[
n∑

j=1

(
n∑

i=j

riuij + (cj − hj)

(
yj −

n∑
i=j

uij

))]

=−
n∑

j=1

hjyj + EDQ (y,d) .

By Lemma A.2.1, we have Q (y,D) is concave in y for any realized d. Then after taking

expectation, EDQ (y,D) is concave in y. Q.E.D.

Before we prove the upper bound of Λ1(T ) and Λ2(T ), we first study the dynamics of the

system. First, we establish a result that the length of an epoch is a sub-exponential random

variable.
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Lemma A.2.4 Denote D as a non-negative random variable and E [D] = α > 0. Define

m := max{l :
∑l

i=0Di ≤ M}. Then for any M ∈ R, there exists non-negative numbers

(ν, η) such that

E
[
eλm
]
≤ e

ν2λ2

2 , ∀ |λ| < 1

η
.

Proof of Lemma A.2.4. Fix D̄ > 0. Define another variable

D′ :=

D, if D ≤ D̄,

D̄, otherwise.

Denote E [D′] = α′ > 0. We have D′ ≤ D almost surely, so

P

[
n∑

i=1

Di ≤M

]
≤ P

[
n∑

i=1

D′
i ≤M

]
.

If M − nα′ < 0, then by Hoeffding’s inequality.

P

[
n∑

i=1

D′
i ≤M

]
= P

(
n∑

i=1

D′
i − nα′ ≤M − nα′

)
≤ e−

2(nα′−M)2

nD̄2

= e
M2−4α′M

D̄2 · e−
2α′
D̄2 n.

If M − nα′ ≥ 0, i.e., n ≤ M
α′

P

[
n∑

i=1

D′
i ≤M

]
≤ 1 ≤ e

2Mα′
D̄2 · e−

2α′2
D̄2 n.

Define ξ1 := max{e
M2−4α′M

D̄2 , e
2Mα′
D̄2 } and ξ2 :=

2α2
i

D̄2 . So for any s > 0,

P (m ≥ s) =P

τk−1+⌈s⌉∑
t=τk−1

Dt
i ≤ ȳi

 ≤ max{e
M2−4α′M

D̄2 , e
2Mα′
D̄2 } · e−

2α2
i

D̄2 ⌈s⌉

≤ξ1 + e−ξ2⌈s⌉ ≤ ξ1 + e−ξ2s.

By Theorem 2.13 in Wainwright (2019), m is sub-exponential. So there exists non-negative
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numbers (ν, η) such that

E
[
eλm
]
≤ e

ν2λ2

2 , ∀ |λ| < 1

η
.

Q.E.D.

Then we denote the period when xt ≤ ŷt as τ1, τ2, · · · , τk, which means starting inventory

levels do not exceed the target levels and let τ0 = 0, τk+1 = T . Since the system starts

with zero inventory, we have τ1 = 1. By definition, for any τl < t < τl+1, there exists some

j ∈ [n] such that xtj > ŷtj. in addition, we denote the length between two such periods

as δk := τk − τk−1, k = 1, · · · , K + 1 as shown in Figure A.1. Recall that in Algorithm 1,

the order-up-to levels will not be updated until all inventory levels drop below the target

inventory levels. In Figure A.1, the order up to levels are updated in period 1 and 4 waiting

for the inventory level of product 1 to drop below.

We also define an auxiliary variable ∆k which is the length of epoch k is upper bounded

by the length of time it takes for product i to drop ȳi for all i ∈ [n] without upgrading.

Then δk ≤ ∆k almost surely, since xt+1
i ≤ yti − dti by the allocation rule that the supply i

is first used to satisfy demand i as much as possible and then used to satisfy other demand

if possible. We then clhuh2009nonparametric that the expected length of an epoch is of a

constant order.

Lemma A.2.5 For any given K, with δk = τk − τk−1, k = 1, · · · , K + 1, we have

E [δk − 1] ≤ O (log n) ,

where n is the number of products.

Proof of Lemma A.2.5. Now we consider mk
i := max

{
l :
∑τk−1+l

t=τk−1
dti ≤ ȳi

}
, which is the

maximum number of periods whose cumulative demand does not exceed the upper bound

of the order-up-to level of product i, i.e., ȳi. So mk
i + 1 = min

{
l :
∑τk−1+l

t=τk−1
dti > ȳi

}
which

is the number of periods it takes for the inventory level of product i to drop ȳi and ∆k =

maxi∈[n]m
k
i + 1.

E [δk − 1] ≤ E [∆k − 1] = E
[
max
i∈[n]

mk
i

]
. (A.1)

Note that mk
i is a renewal process with inter-arrival times D

τk−1

i , D
τk−1+1
i , . . .. Define Ki :=

ȳi
αi

+
σ2
i +α2

i

α2
i
,∀i ∈ [n] where αi = E [Di] and σ

2
i = V ar [Di] defined in Assumption 2.2.1. We
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have

E
[
mk

i

]
≤ ȳi

E [Di]
+

E [D2
i ]

(E [Di])
2 = Ki, (A.2)

where the inequality is by Lorden’s inequality in Asmussen (2003) Proposition 6.2.

In addition, by Lemma A.2.4, for any i ∈ [n], k ∈ [K + 1], there exists non-negative

numbers (νi, ηi) such that

E
[
eλm

k
i

]
≤ e

ν2i λ2

2 , ∀ |λ| < 1

ηi
. (A.3)

Let λ = mini∈[n]

(
1
2ηi

)
. We have

E
[
max
i∈[n]

mk
i

]
=
1

λ
E
[
log eλmaxi∈[n] m

k
i

]
≤ 1

λ
logE

[
eλmaxi∈(n] m

k
i

]
≤1

λ
log
∑
i∈[n]

E
[
eλm

k
i

]
=

1

λ
log
∑
i∈[n]

E
[
eλ(m

k
i −E[mk

i ]) · eE[mk
i ]
]

(A.4)

≤1

λ
log
∑
i∈[n]

E
[
eλ(m

k
i −E[mk

i ]) · eKi

]
=

1

λ
log
∑
i∈[n]

eKiE
[
eλ(m

k
1−E[mk

i ])
]

≤1

λ
log
∑
i∈[n]

eKi+
ν2i λ2

2 ≤ O (log n) , (A.5)

where the inequality in (A.4) is due to (A.2) and the inequality in (A.5) is due to (A.3).

Combined with inequality (A.1), we have E [δk − 1] ≤ O (log n) holds. Q.E.D.

Now we are ready to bound the two terms respectively.

A.2.4 Bound of Λ1(T ).

E

[
T∑
t=1

(
R (y∗)−R

(
ŷt
))]

=E

[
K∑
k=0

τk+1∑
t=τk+1

[
R (y∗)−R

(
ŷt
)]]

=E

[
K+1∑
k=1

δk [R (y∗)−R (ŷτk)]

]

≤EK

[
K+1∑
k=1

∆k (R (y∗)−R (yτk)) | K

]
,

where the inequality is due to δk ≤ ∆k almost surely. Since ∆k depends on demand after
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period τk−1, while ŷ
τk = ŷτk−1+1 depends on demand before (including) period τk−1, we have

∆k and ŷτk are independent. Thus

E

[
T∑
t=1

(R (y∗)−R (ŷ∗))

]
≤EK

[
K+1∑
k=1

E [∆k]E [R (y∗)−R (ŷτk)] | K

]

≤(C0 log n+ 1)E

[
K+1∑
k=1

(R (y∗)−R (ŷτk))

]
,

for some constant C0 by Lemma A.2.5. By Lemma 2.4.1, we have that for each period t,

Φ (yt) := −R (yt) is convex in yt. By Lemma 2.4.1, Gt (ŷt) is a random vector where its

realization is a valid gradient of R (ŷt;dt) under the demand realization dt. Hence, taking

the expectation over all sample paths of demand, ED [−Gt (ŷt) | ŷt] = ∇Φ (ŷt).

The following lemma is a standard result in online convex optimization.

Lemma A.2.6 (Theorem 3.4 in Hazan et al. (2016)) Let f be a convex function on

a bounded convex and compact set K with an upper bound on the diameter D. We denote

by G > 0 an upper bound on the norm of the subgradients of f over K, i.e., ∥∇f(x)∥ ≤ G

for all x ∈ K. For t = 1, . . . , T , we update yt+1 = xt − ηt∇̃t,xt+1 =
∏

K (yt+1) where

E
[
∇̃x

]
= ∇f(x). Then

E

[
1

T

∑
t

f (xt)

]
≤ min

x⋆∈K
f (x⋆) +

3GD

2
√
T

with step sizes ηt =
D

G
√
t
.

We can readily apply Lemma A.2.6 to Φ (yt) which is a convex function with S = [0, ȳ]n

being a convex set. Let ȳ = ȳ1 and θ = max{r1 − cn, c1 − cn + h}1. Because c1 − rn ≤ h

and c1 − cn ≥ 0,

−Gt
i(ŷ

t) ≤ max{ci − ca + h,−ra + ci, h,−ri + ci}

≤ max{c1 − cn + h,−rn + c1, h, 0} ≤ c1 − cn + h.

Also, by ri − ci + h ≥ 0, we have

Gt
i(ŷ

t) ≤ max{−ci + ca − h, ra − ci,−h, ri − ci}

≤ max{−cn + c1 − h, r1 − cn,−h} ≤ r1 − cn.

Thus, ∥ − G (y) ∥ ≤ ∥θ∥ for all y according to Algorithm 2. We have shown that
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E [−Gi (y
t) |yi] = ∇iΦ (yt) , ∀i ∈ [n]. Thus, we have that for all T ≥ 1,

E

[
T∑
t=1

(R (y∗)−R (ŷ∗))

]
=E

[
T∑
t=1

(
Φ
(
ŷt
)
− Φ (y∗)

)]

≤ (C0 log n+ 1)E

[
K+1∑
k=1

(Φ (ŷτk)− Φ (y∗))

]
≤ O

(√
T
)
. (A.6)

A.2.5 Bound of Λ2(T ).

We first show the difference between the expected profit can be upper bounded by differences

in yti and ŷ
t
i .

Lemma A.2.7 For any t ∈ [T ], the difference in expected profit satisfies

R
(
ŷt
)
−R

(
yt
)
≤

n∑
j=1

hj
(
ytj − ŷt

j

)
.

Proof of Lemma A.2.7. By definition,

R
(
ŷt
)
−R

(
yt
)
=−

n∑
j=1

hj ŷ
t
j + EDt max∑n

i=j u
t
ij≤ŷtj ,∀j∈[n]∑i

j=1 u
t
ij≤Dt

i ,∀i∈[n]
ut
ij≥0,1≤j≤i≤n

∑
1≤j≤i≤n

(ri − cj + hj)u
t
ij

+
n∑

j=1

hjy
t
j − EDt max∑n

i=j u
t
ij≤ytj ,∀j∈[n]∑i

j=1 u
t
ij≤Dt

i ,∀i∈[n]
ut
ij≥0,1≤j≤i≤n

∑
1≤j≤i≤n

(ri − cj + hj)u
t
ij

=
n∑

j=1

hj
(
ytj − ŷtj

)
+ ED

[
OPT

(
ŷt, D

)
−OPT

(
yt, D

)]
,

where OPT (y, D) is the optimal value of the following problem P (y, D).

OPT (y,d) := max
∑

1≤j≤i≤n

(ri − cj + hj)uij (P0 (y,d))

s.t.
n∑

i=j

uij ≤ (yj −Dj)
+ ,∀j ∈ [n]

i∑
j=1

uij ≤ (Di − yi)
+ ,∀i ∈ [n]

uij ≥ 0, 1 ≤ j ≤ i ≤ n.
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Note that for any demand realization d, solution u∗ij (ŷ
t,d) is feasible for the problem

P0(y
t,d) and thus OPT (yt,d) ≥ OPT (ŷt,d). Thus for any t ∈ [T ],

R
(
ŷt
)
−R

(
yt
)
≤

n∑
j=1

hj
(
ytj − ŷtj

)
.

Q.E.D.

By Lemma A.2.7, we have

T∑
t=1

[
R
(
ŷt
)
−R

(
yt
)]

≤E

[
T∑
t=2

n∑
i=1

hi
(
yti − ŷti

)]

=E

 ∑
k:τk+1≤τk+1−1

τk+1−1∑
t=τk+1

n∑
i=1

hi
(
yti − ŷti

) .
Since for any period t such that τk + 1 ≤ t ≤ τk+1 − 1, we have

ŷti = ŷ
τk+1

i , ŷ
τk+1

i < yti ≤ ŷτki ,

which means the inventory level after replenishment has not reached target ŷ
τk+1

i but does
not exceed ŷτki due to the base-stock policy. Thus

T∑
t=1

[
R
(
ŷt
)
−R

(
yt
)]

≤E

[
K+1∑
k=2

(δk − 1)

n∑
i=1

hi

∣∣ŷτk−1

i − ŷτki
∣∣]

≤E

[
K+1∑
k=2

(
(δk − 1)

(
n∑

i=1

∥ȳ∥γ
∥θ∥√τk−1

))]

=EK

[
K+1∑
k=2

E
[
(δk − 1)

∥ȳ∥nγ
∥θ∥√τk−1

]∣∣∣∣∣ K
]
≤ EK

[
K+1∑
k=2

E
[
(δk − 1)

∥ȳ∥nγ
∥θ∥

√
k − 1

]∣∣∣∣∣ K
]

=EK

[
K+1∑
k=2

E [(δk − 1)]
∥ȳ∥nγ

∥θ∥
√
k − 1

∣∣∣∣∣ K
]

≤Ek

[
K+1∑
k=2

C0 log n · ∥ȳ∥nγ
∥θ∥

√
k − 1

∣∣∣∣∣ K
]
= C0

∥ȳ∥γn log n

∥θ∥
E

[
K+1∑
k=2

1√
k − 1

]
≤ O

(√
T
)
,

(A.7)

where the last inequality is by Lemma A.2.5.

Finally, combining the bounds from (A.6) and (A.7) proves Theorem 2.4.1.

163



APPENDIX B

Appendix For Chapter 3

B.1 Summary of Major Notation

Table B.1: Summary of Major Notation for Model Formulation

T the total number of periods

Dt the demand in period t, random variable

D time generic demand variable

dt the realized demand in period t

Dt
k the cumulative demand from period t to t+ k, Dt

k =
∑k

i=0 D
t+i, ∀t ∈ [T ], k ∈ Z

dtk the realization of Dt
k

ce the unit ordering cost of inventory from expedited channel

cr the unit ordering cost of inventory from regular channel

le the lead time of inventory from expedited channel

lr the lead time of inventory from regular channel

l lr − le ≥ 1, the difference between two lead times

h the unit holding cost for excess inventory

b the unit penalty cost for unmet demand

IPt
e the expedited inventory position in period t

IPt
r the regular inventory position in period t

ze the order-up-to level for expedited inventory position

zr the order-up-to level for regular inventory position

∆ zr − ze, the difference between the order-up-to levels

qte the order in period t from expedited channel

qtr the order in period t from regular channel

It the on-hand inventory in period t

Ot the overshoot in period t, random variable

ot the realized overshoot in period t

Table B.2: Summary of Major Notation for Objective and Regret

W t(ze, zr) (qt−1
r , . . . , qt−l+1

r , IPt
e + qt−l

r ) ∈ Rl−1
+ × R state variable under dual-index policy ze, zr

Ct(ze, zr) the cost in period t under dual-index policy (ze, zr)

W̄ t(ze, zr) (qt−1
r , . . . , qt−l+1

r , 0, . . . , 0,max(ze, IPt
e + qt−l

r )) ∈ Rl
+

O∞(∆) the random variable following the steady state distribution of the overshoot Ot = (IPt
e + qt−l

r − ze)+

W∞(ze, zr) the steady state of process W t(ze, zr) under dual-index policy ze, zr
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C∞(ze, zr) the cost per period in the steady state W∞(ze, zr)

Dle the sum of le + 1 random variable D

ALG an algorithm for the inventory replenishment in the dual-sourcing system

Ct
ALG the revenue in period t of an algorithm ALG

RALG
T the regret of an algorithm ALG in T periods

z∗e the expedited order-up-to level in the clairvoyant dual-index policy

z∗r the regular order-up-to level in the clairvoyant dual-index policy

∆∗ the gap between the regular and the expedited order-up-to levels in the clairvoyant dual-index policy

γ(ze, zr) P

(
D ≤

zr − ze

lr + 1

)
∆ the lower limit of the gap between the regular and expedited order-up-to level ∆

λ a known upper bound of P
(
D ≤ Z̄

lr+1

)
with λ < 1

Table B.3: Summary of Major Notation for Online Learning Algorithm

D̄ the upper bound of the demand variable

Z̄ the upper limit of the regular order-up-to level zr

µ the expectation of the demand D

µ the lower limit of the demand mean µ

Bn the length of each epoch n

Ln Ln =
∑n

i=1 B
i, ∀n ∈ [N − 1] with L0 = 0, LN = T

N the total number of epochs, N = min
{
n :
∑n

i=1⌈
2i

log T
⌉ ≥ T

}
J the number of discretized values for ∆ in the algorithm, J = ⌊

√
T ⌋

F∆ the CDF of the distribution of variable Dle −O∞(∆)

z∗e (∆) the optimal expedited order-up-to level given ∆

An the active set of choices for ∆ in epoch n

jn the index in An of the ∆ selected in epoch n

Dn the demand data set in epoch n

znej the estimated optimal expedited order-up-to level given ∆j in epoch n

Ŵ t
j the simulated process for using ∆j and znej where t ∈ [Ln]

Ĝn
j the estimated average period cost for the dual-index policy with ∆j and znej in epoch n

Xn
j the data sample set of Xt

j = Dt
−le

−Ot−le (∆j) for estimating the empirical quantile in epoch n

F̂n
∆j

(·) the empirical CDF of variable Dle −O∞(∆j) using Xn
j

εn the error bound to prune the active set for ∆

T0 a constant defined in (3.9)

Table B.4: Summary of Major Notation for Regret Analysis

αn, βn parameters in the algorithm

C̄ an upper limit of the cost per period (ce + cr + h)Z̄ + b((le + 1)D̄)

K0 constant, which is e
4(w̄1

j ·1l−zr)

D̄
+ 2µ2lr

D̄2

π our proposed learning algorithm (∆, ze)

Ct
π the cost in period t by running our algorithm π = (∆, ze)

Rπ
T the regret of our learning algorithm π in T periods

Ct(∆, ze) the cost in period t under dual-index policy (ze, ze +∆)

C∞(∆, ze) the steady-state per-period cost under dual-index policy (ze, ze +∆)

S the event that the inventory position drops down below zr after ⌈ 5D̄2

4µ2 log T ⌉ periods
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τ constant defined as τ = ⌈ 5D̄2

4µ2 log T ⌉+ 2lr⌈5 (log T )2⌉

U
the event that the demand pattern (3.4) occurs during periods ⌈ 5D̄2

4µ2 log T ⌉+ 1

to period ⌈ 5D̄2

4µ2 log T ⌉+ 2lr⌈5 (log T )2⌉
V n the event that two processes W t(ze, zr) = W̃ t(ze, zr) couple after τ periods in epoch n

Mn
j the event that the estimated cost for arm j in epoch n is accurate enough

N0 constant defined as N0 = log2 log T + log2

(
10lr(log T )2 + 5D̄2

4µ2 log T + 2lr + 1
)

An
j the event that An

j =
{∣∣∣F∆j

(
znej

)
− b

b+h

∣∣∣ ≤ αn
}

B.2 Proof of Theorems

B.2.1 Proof of Theorem 3.3.1

We prove the ergodicity in two disjoint cases depending on the initial regular inventory

position.

B.2.1.1 Case 1: initial regular inventory position is at most zr

Lemma B.2.1 If γ(ze, zr) = P

(
D ≤

zr − ze

lr + 1

)
> 0, then the Markov chain

{W t(ze, zr) : t ≥ 1} is ergodic with a steady state random vector W∞(ze, zr). Moreover, for

any t ≥ 2lr + 1, any initial vector w1 ∈ Rl−1
+ × R satisfying w̄1 · 1l ≤ zr,

δt+1
(
ze, zr, w

1
)
≤ (1− γ(ze, zr)

2lr)t/2lr ,

where we define W̄ t(ze, zr) = (qt−1
r , . . . , qt−l+1

r , 0, . . . , 0,max(ze, IP
t
e + qt−l

r )) ∈ Rl−1
+ × R.

Proof of Lemma B.2.1. We say a measurable set Ū ⊆ Rl−1
+ ×R is a small set with respect

to a nontrivial measure ν provided that there exists t∗ > 0 such that for any w1 ∈ Ū and

any measurable set Ω ⊆ Rl−1
+ × R,

P
(
W t∗(ze, zr) ∈ Ω | W 1(ze, zr) = w1

)
≥ ν(Ω).

The following result appears in Theorem 16.0.2 in Meyn and Tweedie (1993). If Ū is a small

set with respect to ν, then there exists stationary random variable W∞(ze, zr) such that for

any w1 ∈ Ū and t ≥ t∗,

δt+1
(
ze, zr, w

1
)
≤
(
1− ν(Rl−1

+ × R)
)t/(t∗−1)

.

Recall that W̄ t(ze, zr) = (qt−1
r , . . . , qt−l+1

r , 0, . . . , 0,max(ze, IP
t
e + qt−l

r )) ∈ Rl−1
+ × R. Now
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we let Ū =
{
w1 ∈ Rl−1

+ × R|w̄1 · 1 ≤ zr
}
.

For any 0 ≤ k ≤ lr − 1, let Ωk ⊆ R+ be any measurable set and let

Ω =

{
(q−1

r , q−2
r , . . . , q−l+1

r , IPe + q−l
r ) ∈ Rl−1

+ × R
∣∣∣∣q−k

r ∈ Ωk, ∀1 ≤ k ≤ l − 1, zr − IPe − q−l
r −

l−1∑
k=1

q−k
r ∈ Ω0

}
.

Define measure

ν(Ω) = γ(ze, zr)
lr+le ·

l−1∏
k=0

P

(
D ∈ Ωk ∩

[
0,
zr − ze

lr + 1

])
.

So we have ν(Rl−1
+ × R) = γ(ze, zr)

2lr > 0. So ν is a non-trivial measure.

To show Ū is a small set with respect to ν and t∗ = 2lr + 1, we define Ω̂k = Ωk ∩[
0,
zr − ze

lr + 1

]
, ∀1 ≤ k ≤ l − 1. So we have

P
(
W 2lr+1(ze, zr) ∈ Ω|W 1(ze, zr) = w1

)
≥ P

(
W 2lr+1(ze, zr) ∈ Ω̂|W 1(ze, zr) = w1

)
,

and ν(Ω) = ν(Ω̂). So if we can prove

P
(
W 2lr+1(ze, zr) ∈ Ω̂|W 1(ze, zr) = w1

)
≥ ν(Ω̂),

we can show

P
(
W 2lr+1(ze, zr) ∈ Ω|W 1(ze, zr) = w1

)
≥ ν(Ω).

Consider the following demand pattern of length 2lr.

Dt ≤
zr − ze

lr + 1
, ∀1 ≤ t ≤ lr + le,

D2lr−k ∈ Ω̂k, ∀k = l − 1, . . . , 0.

This demand pattern happens with probability γ(ze, zr)
lr+le ·

∏l−1
k=0 P

(
D ∈ Ω̂k

)
.

As w̄1 · 1 ≤ zr, we have

q1e = (ze − IP1
e − q1−l

r )+,

q1r = zr − (IP1
e + q1−l

r + . . .+ q0r + q1e),

for the first period. Also, from Veeraraghavan and Scheller-Wolf (2008) Eq. (4), we know
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qt+1
e + qt+1

r = dt, ∀t ≥ 1. So we have qt+1
r ≤ dt, ∀t ≥ 1.

Thus, we have for lr + 1 ≤ t ≤ 2lr,

dt ≥ qt+1
r = zr − (IP t+1

r + qt+1
e )

= zr − IP t+1
r − (ze − IP t+1

e − qt+1−l)+

= zr − IP t+1
e − qt−l+2

r − . . .− qtr − (ze − IP t+1
e − qt+1−l)+

= zr −max(ze, IP
t+1
e + qt+1−l

r )− (qt−l+2
r + . . .+ qtr).

Therefore

max(ze, IP
t+1
e + qt+1−l

r ) ≥ zr − dt − (qt−l+2
r + . . .+ qtr)

≥ zr −
l(zr − ze)

lr + 1
> ze,

because
l

lr + 1
< 1.

So max(ze, IP
t+1
e +qt+1−l

r ) = IP t+1
e +qt+1−l

r . Thus, qt+1
e = 0 and qt+1

r = dt, ∀lr+1 ≤ t ≤ 2lr.

Thus, we have

(q2lrr , q2lr−1
r , . . . , qlr+2

r ) = (d2lr−1, d2lr−2, . . . , dlr+1). (B.1)

Also,

q2lr+1
r = zr − IP2lr+1

e − q2lrr − . . .− q2lr+1−l
r ,

and therefore,

zr − (IP2lr+1
e + q2lr+1−l

r )−
2lr∑

k=2lr+2−l

qkr = d2lr .

Thus, after the demand pattern, W 2lr+1(ze, zr) = (q2lrr , q2lr−1
r , . . . , qlr+le+2

r , IP2lr+1
e +

q2lr+1−l
r ) ∈ Ω̂ as q2lrr = d2lr−1 ∈ Ω̂1, . . . , q

lr+le+2
r = dlr+le+1 ∈ Ω̂l−1, zr − (IP2lr+1

e + q2lr+1−l
r ) −∑2lr

k=2lr+2−l q
k
r = d2lr ∈ Ω̂0. So

P
(
W 2lr+1(ze, zr) ∈ Ω̂|W 1(ze, zr) = w1

)
≥ γ(ze, zr)

lr+le ·
l−1∏
k=0

P
(
D ∈ Ω̂k

)
= ν(Ω̂).

And therefore Ū is a small set with respect to ν and t∗ = 2lr +1. Hence, for any t ≥ 2lr +1,
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any initial vector w1 ∈ Rl−1
+ × R satisfying w̄1 · 1l ≤ zr,

δt+1
(
ze, zr, w

1
)
≤ (1− γ(ze, zr)

2lr)t/2lr .

Q.E.D.

B.2.1.2 Case 2: Initial regular inventory position exceeds zr

The proof for this section is similar to the proof of Theorem 3 in Huh et al. (2009) Case 2.

Denote F (·) as the distribution function of D and µ = E [D]. Below is the Lemma 5 in

Huh et al. (2009):

Lemma B.2.2 (Lemma 5 in Huh et al. (2009)) For any η ∈ R and t ≥ 1,

P

(
t∑

ℓ=1

Dℓ ≤ η

)
≤

F (η)t, if D has an infinite support,

e4η/D̄ · e−2tµ2/D̄2
, if D ≤ D̄ with probability one.

Also, similar to Lemma 6 in Huh et al. (2009), we have the following lemma:

Lemma B.2.3 Consider dual-index policy with base stock levels (ze, zr). For any regular

starting inventory position w1 ∈ Rl−1
+ × R and t ≥ 2lr, we have:

P
(
W̄ t(ze, zr) · 1l > zr|W̄ 1(ze, zr) = w̄1

)
≤

F (w̄1 · 1l − zr)
t−lr , if D has infinite support,

e4(w̄
1·1l−zr)/D̄ · e−2µ2(t−lr)/D̄2

, if D ≤ D̄ with probability one.

Proof of Lemma B.2.3. According to the base-stock policy in the dual-index policy for

the regular inventory position, we have

max
{
W̄ t(ze, zr) · 1l, zr

}
≤ max

{
W̄ 1(ze, zr) · 1l, zr

}
, ∀t ≥ 1.

So

P
(
D1 +D2 + . . .+Dt−lr < w̄1 · 1l − zr

)
=P
(
Dlr +Dlr+1 + . . .+Dt−1 < w̄1 · 1l − zr

)
≥P
(
Dlr +Dlr+1 + . . .+Dt−1 < w̄lr · 1l − zr

)
.

So ∀t ≥ 2lr, we claim that W̄ t(ze, zr) · 1l > zr if and only if W̄ lr(ze, zr) · 1l − (Dlr +Dlr+1 +

. . .+Dt−1) > zr.
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If W̄ t(ze, zr) · 1l > zr, then according to the dual-index policy, we have qkr = 0, ∀k ≤ t.

So we have W̄ t(ze, zr) · 1l = max(ze, IP
t
e).

Because ze ≤ zr, we have W̄ t(ze, zr) · 1l = IP t
e > zr ≥ ze. Also, W̄ lr(ze, zr) · 1l = IP lr

e >

zr ≥ ze. So q
k
e = 0, ∀lr ≤ k ≤ t.

So

W̄ lr(ze, zr) · 1l − (Dlr +Dlr+1 + . . .+Dt−1)

=IP lr
e − (Dlr +Dlr+1 + . . .+Dt−1)

=IP t
e > zr.

If W̄ lr(ze, zr) · 1l − (Dlr +Dlr+1 + . . .+Dt−1) > zr, then W̄
t(ze, zr) · 1l > zr.

Hence, W̄ t(ze, zr) · 1l > zr if and only if W̄ lr(ze, zr) · 1l − (Dlr +Dlr+1 + . . .+Dt−1) > zr.

Thus, by Lemma B.2.2, the results of Lemma B.2.3 follow. Q.E.D.

Next, we only prove the result when D has infinite support. The proof for the situation

when D is bounded is similar.

Let Pw̄1 and Ew̄1 be the probability and expectation conditioned on the event that W̄ 1·1l =

w̄1. Then for any measurable set Ω ⊆ Rl−1
+ × R,

Pw̄1 [W t+1(ze, zr) ∈ Ω]

=Ew̄1

[
Pw̄1 [W t+1(ze, zr) ∈ Ω | W ⌈ t

2
⌉(ze, zr)]

]
=Ew̄1

[
1(W ⌈ t

2
⌉(ze, zr) · 1l ≤ zr) · P

(
W t+1(ze, zr) ∈ Ω|W ⌈ t

2
⌉(ze, zr)

)]
+ Ew̄1

[
1(W̄ ⌈ t

2
⌉(ze, zr) · 1l > zr) · P

(
W t+1(ze, zr) ∈ Ω|W̄ ⌈ t

2
⌉(ze, zr)

))
],

where the last equality is from Markov property. Then we have

A :=Pw̄1 [W t+1(ze, zr) ∈ Ω]− P (W∞(ze, zr) ∈ Ω)

=Ew̄1

[
1(W̄ ⌈ t

2
⌉(ze, zr) · 1l ≤ zr) · ϕ(Ω)

]
+ Ew̄1

[
1(W̄ ⌈ t

2
⌉(ze, zr) · 1l > zr) · ϕ(Ω)

]
,

where ϕ(Ω) = P
(
W t+1(ze, zr) ∈ Ω|W ⌈ t

2
⌉(ze, zr)

)
− P (W∞(ze, zr) ∈ Ω).

Also, we have almost surely

|ϕ(Ω)| ≤ δt−⌈ t
2
⌉+2(ze, zr,W

⌈ t
2
⌉(ze, zr)),
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and ϕ(Ω) ≤ 1, so

|A| ≤Ew̄1

[
1(W̄ ⌈ t

2
⌉(ze, zr) · 1l ≤ zr) · δt−⌈ t

2
⌉+2(ze, zr,W

⌈ t
2
⌉(ze, zr))

]
+ Pw̄1 [W̄ ⌈ t

2
⌉(ze, zr) · 1l > zr].

By Lemma B.2.1, the first term

Ew̄1

[
1(W̄ ⌈ t

2
⌉(ze, zr) · 1l ≤ zr) · δt−⌈ t

2
⌉+2(ze, zr,W

⌈ t
2
⌉(ze, zr))

]
≤Pw̄1 [W̄ ⌈ t

2
⌉(ze, zr) · 1l ≤ zr] ·

(
1− γ(ze, zr)

2lr
)(t−⌈ t

2
⌉+1)/2lr

≤
(
1− γ(ze, zr)

2lr
)(t−⌈ t

2
⌉+1)/2lr

≤
(
1− γ(ze, zr)

2lr
)t/4lr

.

By Lemma B.2.3, the second term

Pw̄1 [W̄ ⌈ t
2
⌉(ze, zr) · 1l > zr] ≤ F (w̄1 · 1l − zr)

⌈ t
2
⌉−lr

≤ F (w̄1 · 1l − zr)
t
2
−lr .

Therefore, we obtain the bound for δt+1 (ze, zr, w
1) as stated in Theorem 3.3.1.

B.3 Proof of Lemmas

B.3.1 Proof of Lemma 3.5.7

Because

Ln−1 =
n−1∑
i=1

⌈
2i

log T

⌉
≥

n−1∑
i=1

2i

log T
=

2n − 2

log T
,

we have αn ≤ 3
2

√
3T0

log T
√
2n − 2

. Therefore,

N∑
n=1

Bnαn ≤
N∑

n=1

⌈
2n

log T

⌉
3

2

√
3T0

log T√
2n − 2

≤3

2

√
3T0

N∑
n=1

(
2n√
2n − 2

+

√
log T

2n − 2

)
=O(

√
T log T ),
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where the last line is because N ≤ log2(T log T + 2)− 1.

B.3.2 Proof of Lemma 3.5.11

For any epoch n ∈ [N ] and any arm j ∈ An, as {W t
j}L

n

t=1 is the Markov chain of the states of

the system following the dual-index policy
(
∆j, z

n
ej

)
, let

gn
(
Ŵ 1

j , . . . , Ŵ
Ln

j

)
=

1

Ln

Ln∑
t=1

Ĉt
(
∆j, z

n
ej

)
=

1

Ln

Ln∑
t=1

ceq̂
t
ej + crq̂

t
rj
+ h

(
Î t+1
j

)+
+ b
(
Î t+1
j

)−
Also, notice that condition (3.8) holds with ιi =

C̄
Ln , ∀i ∈ [Ln] as Ct(∆, ze) ≤ C̄ with

probability 1 for any ∆ and ze. Then Lemma 3.5.11 holds according to Lemma 3.5.5 with

Markov chain being {W t
j}L

n

t=1 and the function f being gn for any n ∈ [N ] and j ∈ [J ].

B.3.3 Proof of Lemma 3.5.12

For notational simplicity, let E [C∗(∆)] := E [C∞(∆, z∗e(∆))]. For ∆1 and ∆2, without loss

of generality, we assume E [C∗(∆1)] ≥ E [C∗(∆2)]. Let z1 = argminz E [C∞(∆1, ze)] and

z2 = argminz E [C∞(∆2, ze)].

E [C∗(∆1)]− E [C∗(∆2)]

=E [C∞(∆1, z1)]− E [C∞(∆2, z2)]

≤E [C∞(∆1, z2)]− E [C∞(∆2, z2)]

=(ce + cr)E [O∞(∆1)−O∞(∆2)] + hE
[
(z2 +O∞(∆1)−Dle)

+ − (z2 +O∞(∆2)−Dle)
+]

+ bE
[
(z2 +O∞(∆1)−Dle)

− − (z2 +O∞(∆2)−Dle)
−] .

We would like to offer an upper bound for the term E |O∞(∆1)−O∞(∆2)|. First, we

show that E [O∞(∆)] is non-decreasing in ∆ by contradiction.

Suppose that ∆1 ≥ ∆2 with E [O∞(∆1)] < E [O∞(∆2)]. From Equation (8) in Veer-

araghavan and Scheller-Wolf (2008) which is O∞(∆) = ∆− (qtr+ q
t−1
r + . . .+ qt−l+1

r ), we have

E [Ot(∆)] = ∆− lE [q∞r ]. Consider the following two cases:

1. If E [O∞(∆1)] = 0, which means E [q∞e ] ≥ 0 and thus E [q∞r ] ≤ E [D].

E [O∞(∆1)]− E [O∞(∆2)]
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=∆1 − lE [q∞r (∆1)]−∆2 + lE [D] .

As E [q∞r (∆1)] ≤ lE [D] and ∆1 ≥ ∆2, we have

E [O∞(∆1)]− E [O∞(∆2)] ≥ 0,

which is a contradiction.

2. If E [O∞(∆1)] > 0, which means E [q∞r ] = E [D]. Then we have

E [O∞(∆1)]− E [O∞(∆2)]

=∆1 − lE [D]−∆2 + lE [D] ≥ 0,

which is a contradiction.

Therefore, we have E [O∞(∆)] is non-decreasing in ∆. So consider ∆1 ≥ ∆2 without loss of

generality. Then we have E [O∞(∆1)] ≥ E [O∞(∆2)].

1. If E [O∞(∆1)] > 0 and E [O∞(∆2)] > 0, then

E [O∞(∆1)]− E [O∞(∆2)] = ∆1 −∆2.

2. If E [O∞(∆1)] > 0 and E [O∞(∆2)] = 0, then

E [O∞(∆1)]− E [O∞(∆2)] = ∆1 −∆2 − lE [D] + lE [q∞r (∆2)] ≤ ∆1 −∆2.

3. If E [O∞(∆1)] = 0 and E [O∞(∆2)] = 0, then

E [O∞(∆1)]− E [O∞(∆2)] = 0.

In sum, E [|O∞(∆1)−O∞(∆2)|] ≤ |∆1 −∆2|.
Then, because (x− a)+ − (y − a)+ ≤ |x− y| and (x− a)− − (y − a)− ≤ |x− y|, we have

E [C∗(∆1)]− E [C∗(∆2)] ≤ (ce + cr + h+ b)E [|O∞(∆1)−O∞(∆2)|] ≤ (ce + cr + h+ b) |∆1 −∆2| ,

which suggests that E [C∗(∆)] is Lipschitz in ∆.

173



B.4 Settings with Nonstationary Demand

The i.i.d. demand assumption is predominant in the dual sourcing literature (Allon and

Van Mieghem 2010, Sheopuri et al. 2010). The dual-index policy was, therefore, developed

for stationary demand (Veeraraghavan and Scheller-Wolf 2008), and its performance has

never been explored under non-stationary demand.

Restart Learning Algorithm. When demand is non-i.i.d., the performance guarantee

of our (∆, ze) algorithm may not hold (see Figure B.3) if our learning algorithm is naively im-

plemented in this nonstationary environment. Thus, we need to come up with an alternative

strategy. Borrowing the “restart” idea from Besbes et al. (2015), we re-design our algorithm

by restarting the procedure for every τT periods. The details of our modified algorithm are

in Algorithm 11. Regarding the choice of τT , in Besbes et al. (2015), τT =
⌈
(T/VT )

2/3
⌉

where VT is a known variation budget. In our problem, VT is defined as the upper bound of∑T
t=2

∥∥C∞
t − C∞

t−1

∥∥ =
∑T

t=2 sup(ze,zr)∈[0,Z̄]×[0,Z̄] |C
∞
t (ze, zr)−C∞

t−1(ze, zr)| where C∞
t (·) is the

stationary per-period cost when demand follows the same distribution as Dt. Note that our

algorithm is different from the OGD studied in Besbes et al. (2015) and the f function is not

necessarily convex, the tuning of the restarting interval will vary. For experimental purposes,

we follow the choice of τT =
⌈
(T/VT )

2/3
⌉
based on the intuition that the larger the variation

budget is, the smaller the restart interval should be. Since the performance measure is the

relative regret, the cost parameters can be scaled and so is the variation budget. We assume

that the firm knows the variation budget VT = 1 after rescaling the cost parameters.

Convergence Rate. Here we briefly analyze the performance guarantee of the proposed

Algorithm 11 denoted as π′. Since the optimal inventory replenishment policy is complex and

state-dependent even under stationary demand, we still choose the full-information optimal

dual-index policies as the benchmark under non-stationary demand. Specifically, for any

algorithm ALG, we define the performance metric under nonstationary demand as

RALG
T = E

[
T∑
t=1

Ct
ALG −

T∑
t=1

C∞
t

(
zt∗e , z

t∗
r

)]
,

where Ct
ALG is the cost in period t by running algorithm ALG. We define C∞

t (ze, zr) as

the stationary cost variable under the dual-index policy with dual indices (ze, zr) under the

demand with the same distribution as Dt and (zt∗e , z
t∗
r ) := argmax(ze,zr)C

∞
t (ze, zr).

We conjecture that Rπ′
T = Õ

(
T

2
3V

1
3
T

)
, but we leave the rigorous proof to future work.

Here, we only provide some intuitions and technical results, which would help build the

foundation of a rigorous proof.

It is noteworthy that the establishment of Lemma 3.3.1 and Lemma 3.5.1 does not rely
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on the stationarity of the demand distribution, and both lemmas still hold (with an addi-

tional assumption restricting the cumulative demand from being excessively small for Lemma

3.5.1). In particular, (W t(ze, zr), t ≥ 1) in the dual-sourcing system following a dual-index

policy with parameters (ze, zr) under non-stationary demand still forms a (not necessar-

ily homogeneous) Markov chain. Moreover, two processes driven by the same demand will

couple after O(log T )2 periods with high probability.

As for another key result Lemma 3.5.5, which guarantees the performance of the empirical

estimation framework, we here define the mixing time for Markov chains without assuming

time homogeneity. We let L (Xi+t | Xi = x) be the conditional distribution of Xi+t given

Xi = x.

d̄(t) := max
1≤i≤N−t

sup
x,y∈Ωi

dTV (L (Xi+t | Xi = x) ,L (Xi+t | Xi = y)) ,

τ(ϵ) := min{t ∈ N : d̄(t) ≤ ϵ}.

The following generalized result of Lemma 3.5.5 exists for not necessarily homogeneous

Markov chains.

Lemma B.4.1 (Corollary 2.10 in Paulin (2015)) Let X := (X1, . . . , XN) be a (not

necessarily time-homogeneous) Markov chain, taking values in a Polish state space Λ =

Λ1 × . . . × ΛN , with mixing time τ(ϵ)( for 0 ≤ ϵ ≤ 1). Let τmin := inf0≤ϵ<1 τ(ϵ) ·
(
2−ϵ
1−ϵ

)2
.

Suppose that f : Λ → R satisfies f(x) − f(y) ≤
∑n

i=1 ci1 [xi ̸= yi] for every x, y ∈ Λ. Then

for any t ≥ 0,

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp

(
−2t2

∥c∥2τmin

)
.

Thus, we have a concentration inequality established for the sample average up to time t of

some function with respect to the Markov chains with non-stationary transition kernels, com-

pared with the true mean up to time t of the function under this nonstationary environment.

With proper assumptions on the degree of changes in the underlying demand distribution,

τmin would be of constant order. Consequently, following similar proof as in the case of a sta-

tionary environment, we can offer an upper bound for the difference between the cost incurred

by the original (∆, ze) Algorithm (denoted as π) and the static optimal dual-index policy,

i.e., Rπ
τT

:= E [
∑τT

t=1C
t
π − τTC

∞ (z∗e , z
∗
r )] where (z∗e , z

∗
r ) := argmax(ze,zr) E [

∑τT
t=1C

∞
t (ze, zr)].

Since all key results hold in the same order as in stationary cases, we speculate that

Rπ
τT

= Õ(
√
τT ).

Combined with the following proposition, we can provide the upper bound for the dynamic

regret.

Proposition B.4.1 (Proposition 2 in Besbes et al. (2015)) Let π′ be the policy de-
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fined by the restarting procedure that uses π as a subroutine with batch size τT . Then, for

any T ⩾ 1,

Rπ′

T ⩽

⌈
T

τT

⌉
· Rπ

τT
+ 2τTVT .

Because the establishment of Proposition B.4.1 does not require the convexity property of

the objective function, adopting the restarting procedure with batch size τT =
⌈
(T/VT )

2/3
⌉

will incur a total regret Rπ′
T = Õ

(
T

2
3V

1
3
T

)
, matching the information-theoretic lower bound

established in Besbes et al. (2015) up to logarithmic factors. If we consider the instance below

where VT = O(1) and τT =
⌈
(T/VT )

2/3
⌉
= 150, the total regret is of order O(T

2
3 log T ) as

shown in Figure B.1.

Non-IID Demand Instance. Consider the following test instance where the time

horizon is five consecutive years with T = 1825. The lead times are set to be le = 2, lr = 4.

The demand in period t is set to follow the truncated normal distribution N (µn, σ
2
n) where

n = ⌈t/365⌉ as shown in Table B.5.

Table B.5: Demand Settings

Year 1 2 3 4 5

Distribution N (30, 6) N (40, 7) N (50, 10) N (60, 12) N (70, 14)

Truncated at [0, 60] [10, 70] [20, 80] [30, 90] [40, 100]

Computational Performance. We emphasize that the firm does not know the evolu-

tion of the demand distribution nor the distributions themselves when running the learning

algorithm. The relative regret is defined as

Relative Regret :=

∑T
t=1C

t(ztπe , z
tπ
r )−

∑T
t=1C

t(zt∗e , z
t∗
r )∑T

t=1C
t(zt∗e , z

t∗
r )

,

where (zt∗e , z
t∗
r ) are the optimal order-up-to levels for the dual-sourcing system with demand

followingN (µ⌈t/365⌉, σ
2
⌈t/365⌉). Figure B.1 shows the relative regret averaged over the instances

with (b, h) pairs taking values ({5, 10}×{1, 4}) as in Table 3.1. For each instance, we run 1000

times and take the average of the relative regret. Also, Figure B.2 shows the performance

of the restart (∆, ze) algorithm when the restart point is tuned to be the change point. For

comparison, Figure B.3 shows the performance of the (∆, ze) algorithm without restart. It

is evident that the restarting procedure is necessary under non-stationary demand, and the

modified restart algorithm works well when the restarting point is close to the change point

of demand.

Unknown Variation Budget. Algorithm 11 requires prior knowledge of the total
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Algorithm 11 The “restart” (∆, ze) learning algorithm for the dual-index policy

for k = 1, . . . , ⌈T/τT ⌉: do ▷ Restart

Let T0 = (min {τT , T − (k − 1)τT}) and N = min
{
n :
∑n

i=1⌈
2i

log T0
⌉ ≥ T0

}
the number

of epochs.
Let J = # discrete ∆’s and Bi = ⌈ 2i

log T0
⌉ be the i-th epoch length.

Let Ln =
∑n

i=1B
i, ∀n ∈ [N − 1] with L0 = 0, LN = T0. ▷ Parameters

Initialize the active set A1 = {1, . . . , J}, D0 = ∅. ▷ Initialization
For j ∈ A1, define ∆j = ∆+ j

J

∣∣Z̄ −∆
∣∣ and assign z1ej ∈ [0, Z̄ −∆j] arbitrarily.

for n = 1, 2, . . . , N do ▷ Outer Loop
Randomly select jn ∈ An. Let demand set Dn = Dn−1.
for t = (k − 1)τT + Ln−1 + 1, . . . , (k − 1)τT + Ln: do

Apply the dual-index policy (zte, z
t
r) = (znejn , z

n
ejn +∆jn).

Append the realized demand dt into Dn.

qte = (znejn − IP t
e − qt−l

r )+, qtr = (znejn +∆jn − IP t
r − qte)

+,

IP t+1
e = IP t

e + qte − dt + qt−l
r , IP t+1

r = IP t
r + qte + qtr − dt,

ot = (IP t
e + qt−l

r − znejn)
+, I t+1 = I t + qt−le

e + qt−lr
r − dt.

end for
for j ∈ An do ▷ Inner Loop

Simulate the policy (znej, z
n
ej +∆j) for min {Ln, T0} periods using Dn and denote

the state variables of this simulation by Ŵ t
j := (q̂t−1

rj , . . . , q̂t−l+1
rj , ÎP

t

ej+q̂
t−l
rj ) ∈ Rl−1

+ ×R, t =
(k − 1)τT + 1, . . . , (k − 1)τT + Ln.

Obtain the estimated average period cost:

Ĝn
j =

1

Ln

∑
t∈[Ln]

ceq̂
t
ej + crq̂

t
rj + h(Î t+1

j )+ + b(Î t+1
j )−.

Let X n
j =

{
dtle − ôtj, t ∈ [(k − 1)τT + 1, (k − 1)τT + Ln − le]

}
.

Let F̂ n
∆j
(·) be the empirical CDF of X t

j = Dt
le
− Ôt

j(∆j) with data sample X n
j .

Update zn+1
ej = F̂ n−1

∆j
( b
b+h

). ▷ Inner Layer Optimization
end for
Update and prune the active set ▷ Outer Layer Optimization

An+1 =

{
j ∈ An : Ĝn

j − min
j′∈An

Ĝn
j′ ≤ εn

}
.

end for
end for
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Figure B.1: Restart Interval τT = 150
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Figure B.2: Restart Interval τT = 365
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Figure B.3: (∆, ze) Algorithm without
Restart

variation budget VT to determine the length of restarting epoch τT . When there is no

information on the degree of non-stationarity, one can schedule multiple instances of the base

algorithm with different durations in a carefully-designed randomized scheme and restart

based on the real-time detection result of the change of the environment as introduced in

Wei and Luo (2021). The design and analysis of this framework for the dual-index policy in

dual-sourcing systems are left to future work.
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APPENDIX C

Appendix For Chapter 4

C.1 Summary of Major Notation

Table C.1: Summary of Major Notation for Model Formulation

p the unit price set for customers

w the unit remuneration for suppliers

λ(·), µ(·) unknown functions

ε, δ zero-mean random variables with unknown distributions

D(p) random demand depending on price p, specifically D(p) = λ(p) + ε

S(w) random supply depending on remuneration w, specifically S(w) = µ(w) + δ

R(p, w) expected revenue under price p and remuneration w, specifically R(p, w) = (p−w)E[min(λ(p)+ ε, µ(w)+ δ)]

P̄ , P known constants, the upper and lower bound of price p

S̄ known constant, the upper bound for random demand and supply variables for any 0 ≤ w ≤ p ≤ P̄

K1 constant, λ(p) is K1-Lipschitz in p

K2 constant, upper bound of µ′(w)

K3 constant, given p the optimal expected revenue R (p, w∗(p)) is K3-Lipschitz in p,

specifically K3 = max{K1P̄ ,max{K2, S̄}P̄ + S̄}
p∗ clairvoyant optimal price

w∗ clairvoyant optimal remuneration

ALG any algorithm

R̆s
ALG the realized revenue in period s by running algorithm ALG

RegretTALG the regret of any algorithm ALG for a T period finite horizon problem

Table C.2: Summary of Major Notation for Online Learning Algorithm
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J the number of discrete arms of price p

t time indices, one time consists of 3 consecutive periods for brevity in analysis

pj the price corresponding to j-th arm, pj = P + j
J

∣∣P̄ − P
∣∣

γi the multiplier for various levels of confidence in bisection search, γi =
1
2i

, i ≥ 1

[lj , rj ] real-time updated interval of searching for w∗(pj)

kj real-time updated index of level of confidence when querying the points in the current interval

mt
j the number of times of selecting price pj in the current epoch up to the beginning of time t

nt
j the total number of times of selecting price pj up to the beginning of time t

αt
j the sum of realized revenue using price pj up to the beginning of time t

R̂t
j,x, x ∈ {l, c, r} the cumulative sum of realized revenue using price pj up to the beginning of time t in the current

epoch

Radt
j the confidence radius of estimation of R (pj , w

∗(pj)) at the beginning of time t

jt the index of the arm pulled in time t

u a temporary variable representing the length of the interval in time t, specifically u = rjt − ljt

wt
x, x ∈ {l, c, r} the three choices of remuneration in time t, corresponding to quartiles of the interval of arm jt

in time t

R̃t
x, x ∈ {l, c, r} the realized revenue using implementing (pjt , w

t
x) in time t

UBkjt

(
wt

x

)
, x ∈ {l, c, r} upper bound of the confidence interval for estimation of R

(
pjt , w

t
x

)
in time t

LBkjt

(
wt

x

)
, x ∈ {l, c, r} lower bound of the confidence interval for estimation of R

(
pjt , w

t
x

)
in time t

Table C.3: Summary of Major Notation for Regret Analysis

τ index of an epoch for any arm

Lj,τ the set of time indices contained in price pj ’s epoch τ

Hj the set of time indices when the price is pj

τ tj the index of the epoch of price pj in time t[
lτj , r

τ
j

]
the interval for estimation of w∗(pj) during epoch τ of price pj

Et
x, x ∈ {l, c, r} the event that the estimation of R

(
pjt , w

t
x

)
is accurate enough, specifically,

Et
x =

{∣∣∣∣∣ R̂
t+1

jt,x

mt+1

jt

−R
(
pjt , w

t
x

)∣∣∣∣∣ ≤ P̄ S̄
√

log T

mt+1

jt

}
E intersection of events

{
Et
x, x ∈ {l, c, r}, t ∈ [T ]

}
γtmin
j the lower bound of the multiplier of price pj used up to the end of time t, specifically, γtmin

j = 2P̄ S̄
√

log T

nt+1
j

IN t
j the interval contained in the interval of price pj in time t

R̆s
BBS the realized revenue in period s by running algorithm BBS

Regret3TBBS the regret of any algorithm BBS for a 3T period finite horizon problem

C.2 Proof of Theorems and Lemmas

C.2.1 Proof of Theorem 4.2.1

Proof of Theorem 4.2.1a. We begin by proving the first part of Theorem 4.2.1, which

essentially involves examining the second-order partial derivative.

∂R(p, w)

∂w
= −E[min(λ(p) + ε, µ(w) + δ)] + (p− w)µ′(w)(1− F (µ(w)− λ(p))),

∂2R(p, w)

∂w2
= −2µ′(w)(1− F (µ(w)− λ(p))) + (p− w)µ′′(w)(1− F (µ(w)− λ(p)))
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− (p− w) (µ′(w))
2
f(µ(w)− λ(p)),

where F (·) and f(·) represent the CDF and PDF of the difference term ε− δ. When p > w,

Assumption 4.2.1d ensures ∂2R
∂w2 ≤ 0, leading to the concavity result.

Without loss of generality, suppose that R (p, w1) ≥ R (p, w2). Then we have

R (p, w1)−R (p, w2) ≤
∂R(p, w)

∂w

∣∣∣∣
w=w2

(w1 − w2)

= (−E [min (λ (p) + ε, µ (w2) + δ)] + (p− w2)µ
′ (w2) (1− F (µ (w2)− λ (p)))) (w1 − w2) .

Note that

−P̄ S̄ ≤ −E [min (λ (p) + ε, µ (w2) + δ)] + (p− w2)µ
′ (w2) (1− F (µ (w2)− λ (p))) ≤ K2P̄ ,

where the first inequality is from Assumption 4.2.1a and Assumption 4.2.1d, and the

second inequality is from Assumption 4.2.1c. Consequently, R (p, w1) − R (p, w2) ≤
max{K2, S̄}P̄ |w1 − w2|. Q.E.D.

Proof of Theorem 4.2.1b. We prove the second part of Theorem 4.2.1. For ease of nota-

tion, we simply write w∗
1 = w∗(p1) and w∗

2 = w∗(p2). Without loss of generality, suppose

R (p1, w
∗
1) ≥ R (p2, w

∗
2).

R (p1, w
∗
1)−R (p2, w

∗
2) ≤R (p1, w

∗
1)−R (p2,min (p2, w

∗
1)) .

Then we have the following cases.

(1) If w∗
1 ≤ p2, we have

R (p1, w
∗
1)−R (p2, w

∗
2)

= (p1 − w∗
1)E [min (λ (p1) + ε, µ (w∗

1) + δ)]− (p2 − w∗
1)E [min (λ (p2) + ε, µ (w∗

1) + δ)] .

(C.1)

(a) If p1 ≥ p2, then λ (p1) ≤ λ (p2).

(C.1) ≤ (p1 − p2)E [min (λ (p2) + ε, µ (w∗
1) + δ)] ≤ S̄ (p1 − p2) .

(b) If p1 < p2, then λ (p1) > λ (p2).

(C.1) ≤ (p2 − w∗
1) (E [min (λ (p1) + ε, µ (w∗

1) + δ)]− E [min (x (p2) + ε1, µ (w
∗
1) + δ)])
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= (p2 − w∗
1)E [min (λ (p1) + ε, µ (w∗

1) + δ)−min (λ (p2) + ε, µ (w∗
1) + δ)]

= (p2 − w∗
1)

(∫ µ(w∗
1)−λ(p1)

−∞
(λ (p1)− λ (p2)) f(ε− δ)d(ε− δ)

+

∫ µ(w∗
1)−λ(p2)

µ(w∗
1)−λ(p1)

(µ (w∗
1) + δ − λ (p2)− ε) f(ε− δ)d(ε− δ)

)
.

Because when ε−δ ∈ [µ (w∗
1)− λ (p1) , µ (w

∗
1)− λ (p2)], we have µ (w

∗
1)+δ ≤ λ (p1)+

ε. Therefore,

(C.1) ≤ (p2 − w∗
1)

∫ µ(w∗
1)−λ(p2)

−∞
(λ (p1)− λ (p2)) f(ε− δ)d(ε− δ)

≤ P̄ (λ (p1)− λ (p2)) ≤ P̄K1 |p1 − p2| ,

where the last inequality holds by Assumption 4.2.1b.

(2) If w∗
1 > p2, as p1 ≥ w∗

1, we have p1 > p2. Then

R (p1, w
∗
1)−R (p2, p2)

=R (p1, w
∗
1)−R (p1, p2) +R (p1, p2)−R (p2, p2)

≤ ∂R (p1, w)

∂w

∣∣∣∣
w=p2

(w∗
1 − p2) + (p1 − p2) S̄

≤

(
∂R (p1, w)

∂w

∣∣∣∣
w=p2

+ S̄

)
(p1 − p2)

=
(
−E [min (λ (p1) + ε, µ (p2) + δ)] + (p1 − p2)µ

′ (p2) (1− F (µ (p2)− λ (p1))) + S̄
)
(p1 − p2)

≤
(
max{K2, S̄}P̄ + S̄

)
(p1 − p2) ,

where the last inequality holds by Assumption 4.2.1c.

Combining the above cases, we obtain the desired Lipschitz continuity in p. Q.E.D.

C.2.2 Proof of Theorem 4.6.1

Proof of Theorem 4.6.1a. Define a new random variable z := c1 − c2 + ε − δ and F (·)
and f (·) are the CDF and PDF of the random variable z. Since

R(∆, w) = ∆ [c1 − a1(∆ + w)]−∆E
[
(z − a1(∆ + w)− a2w)

+] ,
∂R(∆, w)

∂w
= ∆ [a2 − (a1 + a2)F (a1∆+ a1w + a2w)] ,
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∂2R(∆, w)

∂w2
= − (a1 + a2)

2∆f (a1p+ a2w) < 0,

we have
∣∣∣∂R(∆,w)

∂w

∣∣∣ ≤ P̄ ā where ā = max{a1, a2}. Therefore Theorem 4.6.1a holds. Q.E.D.

Proof of Theorem 4.6.1b. Denote w∗
1(∆) :=

F−1
(

a2
a1+a2

)
−a1∆

a1+a2
. Based on Theorem 4.6.1a,

we can solve for the optimal w given any ∆ by

w∗(∆) =

w
∗
1(∆), if ∆ <

F−1
(

a2
a1+a2

)
a1

,

0, if ∆ ≥
F−1

(
a2

a1+a2

)
a1

,

(C.2)

since we require w ≥ 0.

Because w∗(∆) is a piece-wise linear function of ∆, we first we consider when ∆ <
F−1

(
a2

a1+a2

)
a1

. By calculation, we have

d2R (∆, w∗
1(∆))

d∆2
= − 2a1w2

a1 + a2
< 0,

which means (∆, w∗
1(∆)) is concave in ∆ ∈ R. So we can obtain the closed form of the

optimizer for (∆, w∗
1(∆)) denoted as ∆∗

1:

∆∗
1 :=

a1 + a2
2a1a2

(
c1 −

∫ ∞

F−1
(

a2
a1+a2

) zf(z)dz
)
.

Then we consider when ∆ ≥
F−1

(
a2

a1+a2

)
a1

where w∗(∆) = 0. We have

d2R(∆, 0)

d∆2
= −2a1F (a1∆)− a21∆f(a1∆) < 0,

which means R(∆, 0) is concave in ∆ ∈ R. Denote the optimizer of R(∆, 0) as ∆∗
2, we have

dR(∆, 0)

d∆

∣∣∣∣
∆=∆∗

2

= c1 − a1∆
∗
2[1 + F (a1∆

∗
2)]− E

[
(z − a1∆

∗
2)

+] = 0.

We next combine these two pieces of functions and discuss the whole structure of

183



R (∆, w∗(∆)), which is

R (∆, w∗(∆)) =

R (∆, w∗
1(∆)) , if ∆ <

F−1
(

a2
a1+a2

)
a1

,

R(∆, 0), if ∆ ≥
F−1

(
a2

a1+a2

)
a1

.

Consider the sign of the value of the derivative of R (∆, w∗
1(∆)) at the breakpoint ∆ =

F−1
(

a2
a1+a2

)
a1

:

dR(∆, 0)

d∆

∣∣∣∣
∆=

F−1( a2
a1+a2

)
a1

= c1 −
2a2

a1 + a2
F−1

(
a2

a1 + a2

)
−
∫ ∞

F−1
(

a2
a1+a2

) zf(z)dz. (C.3)

1. If (C.3) ≤ 0, i.e.
F−1

(
a2

a1+a2

)
a1

≥ ∆∗
2, which means the breakpoint is no smaller than the

optimal point of R(∆, 0). Then R(∆, 0) decreases in

[
F−1

(
a2

a1+a2

)
a1

,+∞
)
.

Also, as (C.3) ≤ 0, we have

c1 −
∫ ∞

F−1
(

a2
a1+a2

) zf(z)dz ≤ 2a2
a1 + a2

F−1

(
a2

a1 + a2

)
,

which means ∆∗
1 =

a1+a2
2a1a2

(
c1 −

∫∞
F−1

(
a2

a1+a2

) zf(z)dz
)

≤
F−1

(
a2

a1+a2

)
a1

and ∆∗
1 can thus be

attained.

So when (C.3) ≤ 0, R (∆, w∗(∆)) increases in (−∞,∆∗
1) and decreases in (∆∗

1,+∞).

2. If (C.3) > 0, i.e.
F−1

(
a2

a1+a2

)
a1

< ∆∗
2, which means the breakpoint is to the left of the

optimal point of R(∆, 0). Then R(∆, 0) first increases in

[
F−1

(
a2

a1+a2

)
a1

,∆∗
2

)
and then

decreases in [∆∗
2,∞).

Also, as (C.3) > 0, which means c1 −
∫∞
F−1

(
a2

a1+a2

) zf(z)dz > 2a2
a1+a2

F−1
(

a2
a1+a2

)
, i.e.

∆∗
1 >

F−1
(

a2
a1+a2

)
a1

which means R (∆, w∗
1(∆)) increases in

(
−∞,

F−1
(

a2
a1+a2

)
a1

)
.

So when (C.3) > 0, R (∆, w∗(∆)) increases in (−∞,∆∗
2) and decreases in [∆∗

2,+∞).

In sum, R (∆, w∗(∆)) consists of two concave functions R (∆, w∗
1(∆)) and R (∆, 0). More-

over, R (∆, w∗(∆)) first increases and then decreases with the maximum point depending on
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(C.3). Also, we have

dR (∆, w∗
1(∆))

d∆

∣∣∣∣
∆=

F−1( a2
a1+a2

)
a1

=c1 −
2a2

a1 + a2
F−1

(
a2

a1 + a2

)
−
∫ ∞

F−1
(

a2
a1+a2

) zf(z)dz

=
dR(∆, 0)

d∆

∣∣∣∣
∆=

F−1( a2
a1+a2

)
a1

,

which means the derivatives of the two sides of the breakpoint are the same. Also, as the

two functions are both concave, we have E [R (∆, w∗(∆))] is concave in ∆.

For the Lipschitz continuity, note that

∂R (∆, w∗
1(∆))

∂∆
= − 2a1a2

a1 + a2
∆+ c1 −

a1
a1 + a2

F−1

(
a2

a1 + c2

)
− E

[(
z − F−1

(
a2

a1 + a2

))+
]
,

∂R (∆, 0)

∂∆
= −E [min {c1 − a1∆+ ε, c2 + δ}] + ∆F (a1∆) .

Therefore, by Assumption 4.2.1a, we have −
(

2a1a2
a1+a2

P̄ + 2a1+a2
a1+a2

S̄
)

≤ ∂R(∆,w∗
1(∆))

∂∆
≤ c1 and

0 ≤ ∂R(∆,0)
∂∆

≤ P̄+S̄. Without loss of generality, we assumeR (∆1, w
∗(∆1)) ≤ R (∆2, w

∗(∆2)).

By concavity, we have

R (∆2, w
∗(∆2))−R (∆1, w

∗(∆1)) ≤max

{∣∣∣∣∣ ∂R (∆, w∗
1(∆))

∂∆

∣∣∣∣
∆=∆2

∣∣∣∣∣ ,
∣∣∣∣∣ ∂R (∆, 0)

∂∆

∣∣∣∣
∆=∆2

∣∣∣∣∣
}
|∆1 −∆2|

≤K5 |∆1 −∆2| ,

where K5 = max
(
c1,

2a1a2
a1+a2

P̄ + 2a1+a2
a1+a2

S̄, P̄ + S̄
)
. Q.E.D.
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APPENDIX D

Appendix For Chapter 5

D.1 Summary of Major Notation

Table D.1: Summary of Major Notation for Problem Formulation

P the price of a product

P [p1, p2] the compact space of price values

Y the amount of inventory available for sales

Y the set for inventory vales Y ⊆ [0,∞)

D(p) the potential demand of a product if the price P is set to be a (deterministic) value p

q number of dimensions of covariates associated with the product

X observed q-dimensional covariates associated with the product

X some covariate space X ⊂ Rq

π a pricing strategy being a measurable function: (X ,Y) → P
Π the class of all pricing strategies

D(π) the potential outcome under a pricing strategy π ∈ Π

V (π) the expected profit of a pricing strategy π ∈ Π

c the stockout cost per unit

f(P |X,Y ) conditional probability density of the price, commonly referred to as the generalized propensity score

fmin an almost surely positive lower bound for the conditional probability density of the price f(P |X,Y )

Q(X,Y, P ) the expected profit of a product given the product covariates X, inventory amount Y and price P

π∗ the global optimal pricing strategy which maximizes the expected profit V (π)

K(u) a kernel function R → [0,∞)

h the bandwidth used in kernel approximation

Vh(π) approximated expected profit of pricing strategy π using kernel approximation with bandwidth h

C1 a constant in Assumption 5.2.2(a)

C2 a constant in Assumption 5.2.2(b)

C3 a constant in Lemma 5.2.2

S the observed sales quantity S = min{D,Y }
∆ censor indicator ∆ = 1(D < Y )

R(X,P, S,∆) the surrogate profit given X,P, S,∆ of a product

Table D.2: Summary of Major Notation for Offline Feature-Based Pricing Strategy

Dmax no-negative constant, upper bound of D in the assumption b

n sample size
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Dn n independent and identically distributed samples

H(t|X,P ) the conditional survival function of the demand D, H(t|X,P ) = P(D > t |X,P )

Ĥ(t|X,P ) estimated conditional survival function using random forests method

ℓ number of unique sales values in the dataset Dn

Ê [D|X,P, S,∆ = 0] estimated conditional expectation of demand using estimated H(t|X,P )

R̂(X,P, S,∆) estimated potential profit of a product

f̂(P |X,Y ) estimated conditional density function of the price

Π0 some pre-specified class of pricing strategies

λn a positive tuning parameter possibly depending on the sample size n

∥ · ∥Π0
norm of the Hilbert space Π0

J(π) some regularization function on the policy π, set to be ∥π∥2Π0

β0 constant term in the example of linear pricing strategies

β parameters of the covariates in the example of linear pricing strategies, β ∈ Rq+1

Q̂(X,Y, P ) estimated expected conditional potential profit Q̂(X,Y, P ) = E[R |X,Y, P ]

V̂ DR
n (π) a doubly robust estimator for estimating Vh(π)

π̂ the estimated global optimal pricing policy by solving (5.16)

π̂n the estimated global optimal pricing policy by solving (5.17)

B number of survival trees in the random survival forests algorithm

M number of folds in the cross-fitting technique

m index of the fold in the cross-fitting technique, m = 1, . . . ,M

m(i) the fold containing the i-th observation

Q̂(−m)(X,Y, P ) estimated expected conditional potential profit using data excluding fold m

f̂ (−m)(P |X,Y ) estimated conditional probability density of the price using data excluding fold m

D(−m)
n the other (M − 1) folds data except k

ϕ1 parameters of the neural network for the mean of the distribution of (P |X,Y )

ϕ2 parameters of the neural network for the covariance of the distribution of (P |X,Y )

ϕ̂1 estimated ϕ1 using MLE

ϕ̂2 estimated ϕ2 using MLE

µ̂(−m(i))(Xi, Yi) estimated mean of the the multi-variate Gaussian distribution of (P |X,Y ) using ϕ̂1

σ̂(−m(i))(Xi, Yi)
estimated covariance matrix of the multivariate Gaussian distribution

of the price (P |X,Y ) using ϕ̂2

ϕ3 parameters of the neural network for the pricing policy

ϕ̂3 estimated ϕ3 maximizing the right hand side of (5.17)

Table D.3: Summary of Major Notation for Regret Analysis and Double Robustness

Regret(π̂n) the regret of the pricing strategy π̂n

C4 a constant in Assumption 5.4.1

A a constant in Assumption 5.4.2

v a constant in Assumption 5.4.2

Q̃ some probability measure on (X,Y )

∥ · ∥Q,2 the L2-norm under Q̃ on (X,Y )

F the envelope function of Π0

C5 a constant in Assumption 5.4.3(a)

C6 a constant in Assumption 5.4.3(b)

α, β constants in Assumption 5.4.3(b)

ω the smoothness coefficient of the true Q

π∗
h the estimated optimal pricing policy by maximizing Vh(π)
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D.2 Technical Proofs

Proof of Lemma 5.2.1. By definition, we have

V (π) = E
{
π(X, Y )×min{D(π), Y } − c× (D(π)− Y )+

}
,

= E
{
E
{
π(X, Y )×min{D(π), Y } − c× (D(π)− Y )+ |X, Y

}}
,

= E
{
E
{
π(X, Y )×min{D(π), Y } − c× (D(π)− Y )+ |X, Y, P = π(X, Y )

}}
,

= E
{∫ p2

p1

E
{
p×min{D, Y } − c× (D − Y )+ |X, Y, P = p

}
1(π(X, Y ) = p)dp

}
,

= E {Q(X, Y, π(X, Y ))} ,

where the third equality is by Assumption 5.2.1(c) and the fourth equality is by Assumption

5.2.1(a). Q.E.D.

Proof of Lemma 5.2.2. We first consider the unbounded support of P . As seen from

Lemma 5.2.1, V (π) = E [Q(X, Y, π(X, Y ))]. By a similar derivation, we can show that

Vh(π) = E

{
Q(X, Y, P )K(P−π(X,Y )

h
)

hf(P |X, Y )

}

= E

{∫
Q(X, Y, p)K(p−π(X,Y )

h
)

h
dp

}

= E
{∫

Q(X, Y, th+ π(X, Y ))K(t)dt

}
,

where the last equality is based on the change of variables. Then it can be seen that

|Vh(π)− V (π)| =
∣∣∣∣E{∫ Q(X, Y, th+ π(X, Y ))K(t)dt

}
− E

{∫
Q(X, Y, π(X, Y ))

}∣∣∣∣
≤ E

{∫
|Q(X, Y, th+ π(X, Y ))−Q(X, Y, π(X, Y ))|K(t)dt

}
≤ E

{
sup

p1≤p<p′≤p2

∣∣∣∣Q(X, Y, p)−Q(X, Y, p′)

p′ − p

∣∣∣∣ ∫ |th|K(t)dt

}
≤ hC2

∫
|t|K(t)dt

≤ C3h,

where the second inequality is given by Assumption 5.2.2(b). When P has a bounded
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support, we need to normalize the kernel by

K̃(
p− π(X, Y )

h
) = K(

p− π(X, Y )

h
)/

∫ p2

p1

K(
p− π(X, Y )

h
)dp.

Then by a similar proof as the unbounded case, we can show that |Vh(π)− V (π)| ≤ C3h,

which completes our proof. Q.E.D.

Proof of Lemma 5.2.3. Consider the following quantity:

E
[(
P × S − c× (D − Y )+

)
|X,P, S, Y

]
= E

[(
P × S − c× (D − Y )+

)
|X,P, S, Y,∆ = 1

]
1(∆ = 1)

+ E
[(
P × S − c× (D − Y )+

)
|X,P, S, Y,∆ = 0

]
1(∆ = 0)

= 1(∆ = 1)PS + 1(∆ = 0)E
[(
P × S − c× (D − Y )+

)
|X,P, S, Y,∆ = 0

]
= 1(∆ = 1)PS + 1(∆ = 0)E [(P × S − c× (D − Y )) |X,P, S,D > S, Y = S]

= 1(∆ = 1)PS + (P + c)S1(∆ = 0)− c1(∆ = 0)E [D|X,P, S,D > S]

= PS + cS1(∆ = 0)− c1(∆ = 0)E [D|X,P, S,D > S] = R,

where the last but two equality is based on Assumption 5.2.3(a). In addition, we can rewrite

V (π) as

V (π) = E
{∫ p2

p1

E
[(
P × S − c× (D − Y )+

)
|X, Y, P = p

]
1(π(X, Y ) = p)dp

}
= E

{∫ p2

p1

E [R|X, Y, P = p]1(π(X, Y ) = p)dp

}
= E {R|X, Y, P = π(X, Y )} ,

which concludes our proof. Q.E.D.

Proof of Lemma 5.3.1. We show this lemma by interchanging the order of integration.

Let h(w |X,P ) as the conditional probability density of survival function H. Note that∫ Dmax

S

H(t|X,P )
H(S|X,P )

dt =

∫ Dmax

S

∫ Dmax

t

h(w|X,P )
H(S|X,P )

dwdt

=

∫ Dmax

S

{∫ w

S

h(w|X,P )
H(S|X,P )

dt

}
dw =

∫ Dmax

S

(w − S)
h(w|X,P )
H(S|X,P )

dw

=

∫ Dmax

S

w
h(w|X,P )
H(S|X,P )

dw − S = E [D |X,P, S,∆ = 0]− S,

which concludes the proof. Q.E.D.
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Proof of Theorem 5.3.1. Since by the assumption our estimator R̂ and either Q̃ or

f̃ are consistent in terms of sup-norm, without loss of generality, we assume R̂ = R and

consider either Q = Q̃ or f = f̃ . If Q = Q̃, we have

V̂ DR
n (π) =

1

nh

n∑
i=1

∫ p2

p1

Q(Xi, Yi, p)K

(
p− π(Xi, Yi)

h

)
dp

+
1

n

n∑
i=1

1

hf̃(Pi|Xi, Yi)
K

(
Pi − π(Xi, Yi)

h

)
(Ri −Q(Xi, Yi, Pi)).

By the law of large numbers, we can show that V̂ DR
n (π) converges in probability to

1

h
E
[∫ p2

p1

Q(X,Y, p)K

(
p− π(X,Y )

h

)
dp

]
+ E

[
1

hf̃(P |X,Y )
K

(
P − π(X,Y )

h

)
(R−Q(X,Y, P ))

]
= Vh(π),

where the equation is given by E [R−Q(X, Y, P ) |X, Y, P ] = 0. If f = f̃ , then by the
law of large numbers again, we can show that V̂ DR

n (π) converges in probability to

1

h
E
[∫ p2

p1

Q̃(X,Y, p)K

(
p− π(X,Y )

h

)
dp

]
+ E

[
1

hf(P |X,Y )
K

(
P − π(X,Y )

h

)
(R− Q̃(X,Y, P ))

]
= Vh(π) +

1

h
E
[∫ p2

p1

Q̃(X,Y, p)K

(
p− π(X,Y )

h

)
dp

]
− E

[
1

hf(P |X,Y )
K

(
P − π(X,Y )

h

)
Q̃(X,Y, P )

]
= Vh(π).

The proof is complete by noticing that |Vh(π)− V (π)| ≤ C3h given by Lemma 5.2.2.

Q.E.D.

Proof of Theorem 5.4.1. For notational simplicity, let Z = (X, Y ) and Z = X × Y .
We further let U(π) = −V (π), Uh(π) = −Vh(π). By Lemma 5.2.2, we can show that

V (π∗)− V (π̂n) = U(π̂n)− U(π∗)

≤ Uh(π̂n) + C3h− Uh(π
∗) + C3h+ Uh(π

λn

h ) + λnJ(π
λn

h ) + λnJ(π̂n)− {Uh(π
λn

h ) + λnJ(π
λn

h )}

≤ Uh(π
λn

h ) + λnJ(π
λn

h )− Uh(π
∗
h) + Uh(π̂n) + λnJ(π̂n)− {Uh(π

λn

h ) + λnJ(π
λn

h )}+ 2C3h

= Λ(λn) + Uh(π̂n) + λnJ(π̂n)− {Uh(π
λn

h ) + λnJ(π
λn

h )}︸ ︷︷ ︸
(I)

+2C3h,

where πλn
h ∈ argminπ∈Π0

{Uh(π)+λnJ(π)}. In the following, we apply the empirical process
theory to bound Term (I) on the right hand side of the inequality above. Let

Gπ ≜

{∫ p2

p1

Q(Z, p)
K((p− πλn

h (Z))/h)

h
dp+

1

hf(P |Z)
K(

P − πλn
h (Z)

h
)(R−Q(Z,P )) + λnJ(π)

−
∫ p2

p1

Q(Z, p)
K((p− π(Z))/h)

h
dp−

1

hf(P |Z)
K(

P − π(Z)

h
)(R−Q(Z,P ))− λnJ(π

λn
h ) | J(π) ≲ λ−1

n , π ∈ Π0

}
.
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Based on the definition of Gπ, we use gπ to denote any generic element in Gπ. Recall
that J(π) = ∥π∥2Π0

. We consider a constraint class on π by the following argument. By
Assumptions 5.4.1 and 5.4.3(b), all nuisance functions in (5.17) are bounded. Then according
to the optimization property, we can show that

1

nh

n∑
i=1

∫ p2

p1

Q̂(−m(i))(Zi, p)K(
p− π̂n(Zi)

h
)dp+

1

nh

n∑
i=1

1

f̂ (−m(i))(Pi|Zi)
K(

Pi − π̂n(Zi)

h
)(R̂i − Q̂(Zi, Pi)) + λnJ(π̂n)

≤
1

nh

n∑
i=1

∫ p2

p1

Q̂(−m(i))(Zi, p)K(
p

h
)dp+

1

nh

n∑
i=1

1

f̂ (−m(i))(Pi|Zi)
K(

Pi

h
)(R̂i − Q̂(Zi, Pi)),

which implies that λnJ(π̂n) ≲ 1. Based on this, we can further show that for any gπ ∈ Gπ,

∥gπ∥∞ ≲ 1/h+ ∥π∥Π0/h ≲ λ
− 1

2
n /h,

since K is Lipschitz with respect to ∥ • ∥Π0 and λn → 0 with λn ≤ 1. The remaining proof

consists of two steps. In the first step, we show

En(gπ̂n) ≤ ε1,

for some ε1 > 0 with a high probability. In the second step, we aim to show that

sup
gπ∈Gπ

|En(gπ)− E(gπ)| ≤ ε2,

with a high probability for some ε2. Then combining two, we are able to show (I) ≤ ε1 + ε2

with some high probability.
Step 1: We first notice that

En(gπ̂n
)

= En

{∫ p2

p1

Q(Z, p)
K((p− πλn

h (Z))/h)

h
dp+

1

hf(P |Z)
K(

P − πλn
h (Z)

h
)(R−Q(Z,P ))

}
+ λnJ(π̂n)

− En

{∫ p2

p1

Q(Z, p)
K((p− π̂n(Z))/h)

h
dp+

1

hf(P |Z)
K(

P − π̂n(Z)

h
)(R−Q(Z,P ))

}
− λnJ(π

λn
h )

= En

{∫ p2

p1

Q(Z, p)
K((p− πλn

h (Z))/h)

h
dp+

1

hf(P |Z)
K(

P − πλn
h (Z)

h
)(R−Q(Z,P ))

}

− En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((p− πλn

h (Z))/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

P − πλn
h (Z)

h
)(R̂− Q̂(−m(i)))(Z,P ))

}

+ En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((p− πλn

h (Z))/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

P − πλn
h (Z)

h
)(R̂− Q̂(−m(i))(Z,P ))

}
− λnJ(π

λn
h )

− En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((p− π̂n(Z))/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

P − π̂n(Z)

h
)(R̂− Q̂(−m(i))(Z,P ))

}
+ λnJ(π̂n)

+ En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((p− π̂n(Z))/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

P − π̂n(Z)

h
)(R̂− Q̂(−m(i))(Z,P ))

}

− En

{∫ p2

p1

Q(Z, p)
K((p− π̂n(Z))/h)

h
dp+

1

hf(P |Z)
K(

P − π̂n(Z)

h
)(R−Q(Z,P ))

}
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≤ En

{∫ p2

p1

Q(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf(P |Z)
K(

πλn
h (Z)− P

h
)(R−Q(Z,P ))

}

− En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

πλn
h (Z)− P

h
)(R̂− Q̂(−m(i)))(Z,P ))

}

+ En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((π̂n(Z)− p)/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

π̂n(Z)− P

h
)(R̂− Q̂(−m(i))(Z,P ))

}

− En

{∫ p2

p1

Q(Z, p)
K((π̂n(Z)− p)/h)

h
dp+

1

hf(P |Z)
K(

π̂n(Z)− p

h
)(R−Q(Z,P ))

}
,

where the last inequality is given by the optimization property in (5.17). In the following,

we bound right hand side of the above inequality. It suffices to focus on the first two terms

on the right hand side while the other two terms can be bounded similarly.
Specifically, we consider bounding the following term, defined as

E1 ≜ En

{∫ p2

p1

Q(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf(P |Z)
K(

πλn
h (Z)− P

h
)(R−Q(Z,P ))

}

− En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

πλn
h (Z)− P

h
)(R̂− Q̂(−m(i))(Z,P ))

}

We remark that we can write∫ p2

p1

Q(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf(P |Z)
K(

πλn
h (Z)− P

h
)(R−Q(Z,P ))

=

∫ p2

p1

Q(Z, p)
K((πλn

h (Z)− p)/h)

h
+
1(P = p)

hf(p|Z)
K(

πλn
h (Z)− p

h
)(R−Q(Z, p))︸ ︷︷ ︸

E1(p)

dp,

where 1(P = p) is indeed a Dirac measure. For a fix p, it can be seen that

E1(p) =
1

nh

n∑
i=1

(1− 1(Pi = p)

f(p|Zi)
)(Q̂−m(i)(Zi, Pi)−Q(Zi, p))K(

π̂n(Zi)− p

h
)

+
1

nh

n∑
i=1

(
1(Pi = p)

f̂−m(i)(p|Zi)
− 1(Pi = p)

f(p|Zi)
)(Ri −Q(Zi, Pi))K(

π̂n(Zi)− p

h
)

+
1

nh

n∑
i=1

(
1(Pi = p)

f̂−m(i)(p|Zi)
− 1(Pi = p)

f(p|Zi)
)(R̂i − Q̂−m(i)(Zi, Pi)− (Ri −Q(Zi, Pi)))K(

π̂n(Zi)− p

h
)

+
1

nh

n∑
i=1

1(Pi = p)

f(p|Zi)
(R̂i −Ri)K(

π̂n(Zi)− p

h
)

≜ E2(p) + E3(p) + E4(p) + E5(p).

In the following, we bound each of the above four terms. For E3(p), consider

G1,π ≜

{∫ p2

p1

(
1(P = p)

f̂−(k)(p|Z)
− 1(P = p)

f(p|Z)
)(R−Q(Z, P ))K(

π(Z)− P

h
)dp | J(π) ≤ λ−1

n , π ∈ Π0

}
.
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By the sample splitting, we can show that E
[
R−Q(Z, P )|Z, P, f−(m(i))(p|Z)

]
= 0. There-

fore we can observe that E[gπ] = 0 for any gπ ∈ G1,π. In addition, the envelop function of G1,

defined as G1, is proportional to
∫ p2
p1

| 1(P=p)

f̂−(k)(p|Z)
− 1(P=p)

f(p|Z)
||R − Q(Z, P )|λ−

1
2

n /hdp by the Lips-

chitz boundness on K in Assumption 5.2.2(a). Therefore ∥G1∥2,P ≲ n−βλ
− 1

2
n /h by the error

bound condition on f̂−(m)(p|Z) given in Assumption 5.4.3(b). By the entropy condition in

Assumption 5.4.2 and Lipschitz property of K in Assumption 5.2.2(a), we can further show

that

sup
Q̃

N(G1,π, Q̃, ε∥G1∥2,Q̃) ≲
(
1

ε

)v

,

which implies that

J(1,G1,π, G1) ≜
∫ 1

0

sup
Q̃

√
logN(G1,π, Q̃, ε∥G1∥2,Q̃)dε ≲

√
v.

By leveraging the maximal inequality in the empirical process theory, we can show that

E sup
g∈G1,π

|Eng| ≲
√
vn− 1

2n−βλ
− 1

2
n /h.

Then by Talagrand’s inequality, we can show with probability 1− e−x,

∫ p2

p1

E3(p)dp ≲
1

h

E sup
g∈G1,π

|Eng|+ 2
√
x

√
4
√
vn− 1

2
−βλ−1

n /h2 + C0n−2βλ−1
n /h2

n
+

3xλ
− 1

2
n

nh


≲ max{1, x}

√
vn− 1

2n−βλ
− 1

2
n /h2.

Similarly, we can show ∫ p2

p1

E2(p)dp ≲ max{1, x}
√
vn− 1

2n−αλ
− 1

2
n /h2,

with probability at least 1 − e−x. In addition, we can bound
∫ p2
p1
E4(p)dp term by Cauchy-

Schwarz inequality, i.e., with probability at least 1− 2e−x,

∫ p2

p1

E4(p)dp ≤ 1/h2

En

[
1

f̂−(m)(P |Z)
− 1

f(P |Z)

]2 1
2

×
(
En

[
R̂− Q̂−m(i)(Z,P )− (R−Q(Z,P ))

]2) 1
2

λ
− 1

2
n

≤ 1/h2

En

[
1

f̂−(m)(P |Z)
− 1

f(P |Z)

]2 1
2

×

{(
En

[
Q̂−m(i)(Z,P )−Q(Z,P )

]2) 1
2

+ n−δ

}
λ
− 1

2
n

≲ max{1, x}
(
n−(α+β) + n−βn−δ

)
λ
− 1

2
n /h2.
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The last inequality is due to Bernstein’s inequality, i.e.,

En

[
1

f̂−(k)(p|Z)
− 1

f(p|Z)

]2
≲ n−2β + n− 1

2
−β

√
2x+

x

3n
,

and

En

[
Q̂−m(i)(Z, P )−Q(Z, P )

]2
≲ n−2β + n− 1

2
−β

√
2x+

x

3n
,

by the uniformly bounded assumption in Assumptions 5.4.1 and 5.4.3(b) and the error bound

condition on nuisance function estimation in Assumption 5.4.3(b).

For the last term
∫ p2
p1
E5(p)dp, we can show that with probability at least 1− ex − ε,

∫ p2

p1

E5(p)dp =
1

nh

n∑
i=1

1

f(Pi|Zi)
(R̂i −Ri)K(

π̂n(Zi)− p

h
)

≲ C5(ε)
1

nh2

n∑
i=1

1(∆i = 0)n−δλ−1/2
n

≲ C5(ε)
n−δλ

−1/2
n

h2

(
P(∆ = 0) +

√
x

n

)
.

Combining the results above together, we can show that with probability at least 1 −
5e−x − ε,∫ p2

p1

E1(p)dp ≲ max{1, x}
√
vn− 1

2n−min(β,α)λ
− 1

2
n /h2

+max{1, x}n−(α+β)λ
− 1

2
n /h2 + C5(ε)max{1, x}n

−δλ
−1/2
n

h2
P(∆ = 0).

Similar results can be obtained if we replace π̂n by πλn
h in E1. Then we have

En(gπ̂n) ≲ max{1, x}
√
vn− 1

2n−min(β,α)λ
− 1

2
n /h2

+max{1, x}n−(α+β)λ
− 1

2
n /h2 + C5(ε)max{1, x}n

−δλ
−1/2
n

h2
P(∆ = 0),

with probability 1− 10 exp(−x)− 2ε.

Step 2: Again by applying Talagrand’s inequality and maximal inequality, we can simi-

larly show that with probability at least 1− e−x,

sup
gπ∈Gπ

|En(gπ)− E(gπ)| ≲ max{1, x}
√
vλ

− 1
2

n n− 1
2/h2.
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Summarizing Steps 1 and 2, we can show that with probability 1− e−x − ε,

Regret(π̂n) =V (π∗)− V (π̂n)

≲ Λ(λn) + 2C3h+max{1, x}
√
vλ

− 1
2

n n− 1
2/h2

+max{1, x}
√
vn− 1

2n−min(β,α)λ
− 1

2
n /h2

+max{1, x}n−(α+β)λ
− 1

2
n /h2 + C5(ε)max{1, x}n

−δλ
−1/2
n

h2
P(∆ = 0).

which concludes our proof. Q.E.D.

D.3 Dependent Data Scenario and Its Analysis

In this section, we consider the scenario where {(Xi, Yi, Pi, Si,∆i)}1≤i≤n are not i.i.d. copies.
Instead, we assume our data come from M centers, where data collected at each center
are dependent and cross the center are independent. Specifically, for center 1 ≤ m ≤ M ,

our offline data consist of
{
(X

(m)
t , Y

(m)
t , P

(m)
t , S

(m)
t ,∆

(m)
t )

}
1≤t≤n

. Since data across different

centers are independent, we can apply the previously proposed method (5.17) to learn the
optimal pricing strategy that

π̂n ∈ argmax
π∈Π0

{
1

nMh

nM∑
i=1

∫ p2

p1

Q̂(−m(i))(Xi, Yi, p)K

(
p− π(Xi, Yi)

h

)
dp (D.1)

+
1

nM

nM∑
i=1

1

hf̂ (−m(i))(Pi|Xi, Yi)
K

(
Pi − π(Xi, Yi)

h

)
(R̂i − Q̂(−m(i))(Xi, Yi, Pi))− λnJ(π)

}
,

where m(i) denotes the center containing the i-th observation.

In the following, we provide a theoretical guarantee for our approach under the

non-i.i.d. case. For any two σ-fields A and B ⊂ F , we define β(A,B) :=

sup 1
2

∑I
i=1

∑J
j=1 |P (Ai ∩Bj)− P (Ai)P (Bj)| where the supremum is taken over all pairs

of (finite) partitions {A1, . . . , AI} and {B1, . . . , BJ} of Ω such that Ai ∈ A for each i

and Bj ∈ B for each j. We also define the σ-field for the sequence of random variables

X := (Xk, k ∈ Z). For each n ≥ 1, the dependence coefficient (β-mixing coefficient) is

defined as β(n) := supj∈Z β
(
F j

−∞,F∞
j+n

)
. Then the random sequence X is said to be β-

mixing if β(n) → 0 as n → ∞. We now make the following assumption to characterize the

dependency among observations in each center.

Assumption D.3.1 For each 1 ≤ m ≤ M , the stochastic process{
(X

(m)
t , Y

(m)
t , P

(m)
t , S

(m)
t ,∆

(m)
t )

}
t≥1

is a stationary and exponential β-mixing process

with β-mixing coefficient β(t) ≤ β0 exp(−β1t) for some β0 ≥ 0 and β1 > 0.
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Assumption D.3.1 characterizes the dependence among observations in each center. An

exponential β-mixing process is a type of stochastic process that satisfies certain conditions

regarding the dependence structure of its random variables. Specifically, a process is β-

mixing if the correlation between two variables decreases exponentially fast as the time

separation between them increases. The β-mixing coefficient is a measure of the rate at

which the correlation between two variables decays as the time separation between them

increases. A smaller β-mixing coefficient indicates a faster decay of correlation and hence

a weaker dependence structure. In particular, the upper bound on the β-mixing coefficient

at the time lag t basically means that the dependence decays to 0 at the slowest possible

exponential rate with respect to t. See Bradley (2005) for more details. Without loss of

generality, we assumeM = 2. Then we have the following regret guarantee for our estimated

optimal pricing strategy given in (D.1).

Theorem D.3.1 Suppose that Assumptions 5.2.1–D.3.1 hold. If λn ≤ 1 and α + β > 1/2,

then for any ε ∈ (0, 1) with probability at least 1−1/n−ε, Algorithm 10 admits the following

regret upper bound

Regret(π̂n) ≲ Λ(λn) + 2C3h+ log(n)
√
vλ

− 1
2

n n− 1
2/h2

+ C5(ε) log(n)
n−δλ

−1/2
n

h2
P(∆ = 0),

(D.2)

where the regret is defined in (5.19). Furthermore, if (5.21) holds, then with probability at

least 1− 1/n− ε

Regret(π̂n) ≲ log(n)n− ζ min( 12 ,δ)

6ζ+1 . (D.3)

Under Assumption D.3.1, one can obtain a similar regret result as that in Theorem 5.4.1.

Lemma D.3.1 Suppose that a stochastic process {Zt}t≥1 is a stationary and exponential

β-mixing process with β-mixing coefficient β(q) ≤ β0 exp(−β1q) for some β0 ≥ 0 and β1 > 0.

Let G be a class of measurable functions that take Zt as input. For any g ∈ G, assume

E[g(Zt)] = 0 for any t ≥ 0. Suppose that the envelop function of G is uniformly bounded

by some constant C > 0. In addition, if G belongs to the class of VC-typed functions such

that supQ̃N (G, Q̃, ϵ∥ • ∥Q̃,2) ≲ (1/ϵ)α for a constant α > 0. Then with a probability at least

1− 1/T ,

sup
g∈G

∣∣∣∣∣ 1T
T∑
t=1

g(Zi,t)

∣∣∣∣∣ ≲ log(T )

√
α

T
.
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If σ2 = supg∈G E[g2(Zt)] for 1 ≤ t ≤ T , then with probability at least 1− 1/T ,

sup
g∈G

∣∣∣∣∣ 1T
T∑
t=1

g(Zi,t)

∣∣∣∣∣ ≲ log(T )(
√

log(T )α∥G∥2 +
√
Tσ2 + 1)

T
.

Proof of Lemma D.3.1. To prove the case (i) of the lemma, we focus on bounding

supg∈G

∣∣∣∑T
t=1 g(Zt)

∣∣∣. Specifically, we apply Berbee’s coupling lemma (Berbee 1979) and

follow the remark below Lemma 4.1 of Dedecker and Louhichi (2002). Let q be some positive

integer. One can always construct a sequence {Z̃t}t≥1 such that with probability at least

1− (Tβ(q))/q,

sup
g∈G

∣∣∣∣∣
T∑
t=1

g(Zt)

∣∣∣∣∣ = sup
g∈G

∣∣∣∣∣
T∑
t=1

g(Z̃t)

∣∣∣∣∣ .
In the same time, the block sequence X̃k(g) = {g(Z̃(k−1)q+j)}1≤j≤q are identically distributed

for k ≥ 1. In addition, the sequence {X̃k(g) | k = 2ω, ω ≥ 1} are independent and so are

the sequence {X̃k(g) | k = 2ω+1, ω ≥ 0}. Let Ir = {⌊T/q⌋q+1, · · · , T} with Card(Ir) < q.

Then we can show that with probability at least 1− (Tβ(q))/q,

sup
g∈G

∣∣∣∣∣
T∑
t=1

g(Zt)

∣∣∣∣∣
≤ sup

g∈G

∣∣∣∣∣∣
q⌊T/q⌋∑
t=1

g(Z̃t)

∣∣∣∣∣∣+ sup
g∈G

∣∣∣∣∣∑
t∈Ir

g(Zt)

∣∣∣∣∣ .
In the following, we always assume that the above inequality holds. Then it is sufficient

to bound each of the above two terms separately. First of all, without loss of generality, we

assume ⌊T/q⌋ is an even number. Then for the first term, we have

sup
g∈G

∣∣∣∣∣∣
q⌊T/q⌋∑
t=1

g(Z̃t)

∣∣∣∣∣∣
≤

2q∑
j=1

sup
g∈G

∣∣∣∣∣∣
⌊T/q⌋/2∑
k=1

g(Z̃i)

∣∣∣∣∣∣ .
By the previous construction, supg∈G

∣∣∣∑⌊T/q⌋/2
k=1 g(Z̃i)

∣∣∣ is a suprema empirical process of i.i.d.

sequences. Then by conditions in Lemma D.3.1 and Mcdiarmid’s inequality, we have with
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probability at least 1− ε,

sup
g∈G

∣∣∣∣∣∣
⌊T/q⌋/2∑
k=1

g(Z̃i)

∣∣∣∣∣∣ ≲ E

sup
g∈G

∣∣∣∣∣∣
⌊T/q⌋/2∑
k=1

g(Z̃i)

∣∣∣∣∣∣
+

√
T log(1/ε)

q
.

Given the condition that

sup
Q̃

N (G, Q̃, ϵ∥ • ∥Q̃,2) ≲ (1/ϵ)α.

By a standard maximal inequality using uniform entropy integral (e.g., Van Der Vaart and

Wellner 2011), we can show that with probability at least 1− ε,

E

sup
g∈G

∣∣∣∣∣∣
⌊T/q⌋/2∑
k=1

g(Z̃i)

∣∣∣∣∣∣
 ≲

√
αT

q
.

By letting ε = 1/T , we can show that with probability at least 1− 1/T ,

sup
g∈G

∣∣∣∣∣∣
⌊T/q⌋/2∑
k=1

g(Z̃i)

∣∣∣∣∣∣ ≲
√
αT

q
+

√
T log(T )

q
.

Next, we can bound supg∈G
∣∣∑

t∈Ir g(Zt)
∣∣ by Cq. By letting q ≍ log(T ), we can show that

with probability at least 1− 1/T ,

sup
g∈G

∣∣∣∣∣
T∑
t=1

g(Zt)

∣∣∣∣∣
≲ log(T )

√
αT

log(T )
+ log(T )

√
T log(T )

log(T )
+ log(T )

≲ log(T )
√
Tα.

This concludes our proof of case (i) by dividing both sides by T .

In the second part of our proof, we have σ2 = supg∈G E[g2(Zt)] for 1 ≤ t ≤ T . Then

by conditions in Lemma D.3.1 and Talagrand’s inequality, we have with probability at least

1− ε,

sup
g∈G

∣∣∣∣∣∣
⌊T/q⌋/2∑
k=1

g(Z̃i)

∣∣∣∣∣∣ ≲ E

sup
g∈G

∣∣∣∣∣∣
⌊T/q⌋/2∑
k=1

g(Z̃i)

∣∣∣∣∣∣
+

√
2ηn log(1/ε) + C log(1/ε),
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where ηn = 2T/qE
[
supg∈G

∣∣∣∑⌊T/q⌋/2
k=1 g(Z̃i)

∣∣∣] + T/qσ2. We can deploy another maximal in-

equality to show that

E

sup
g∈G

∣∣∣∣∣∣
⌊T/q⌋/2∑
k=1

g(Z̃i)

∣∣∣∣∣∣
 ≲ J(1,G, G)∥G∥2 ≲

√
α∥G∥2.

by letting ε = 1/T , we can show that with probability at least 1− 1/T ,

sup
g∈G

∣∣∣∣∣∣
⌊T/q⌋/2∑
k=1

g(Z̃i)

∣∣∣∣∣∣ ≲ √
α∥G∥2 +

√(√
α∥G∥2 +

T

q
σ2

)
log(T ) + C log(T ).

By letting q ≍ log(T ), we can show that with probability at least 1− 1/T ,

sup
g∈G

∣∣∣∣∣
T∑
t=1

g(Zt)

∣∣∣∣∣
≲ log(T )

√
α∥G∥2 + log(T )

√(√
α∥G∥2 +

T

log(T )
σ2

)
log(T ) + log(T )

≲ log(T )(
√
log(T )α∥G∥2 +

√
Tσ2 + 1)

The result follows by dividing both sides by T . Q.E.D.

Proof of Theorem D.3.1. For notational simplicity, let Zt = (Xt, Yt) for 1 ≤ t ≤ n

and Z = X ×Y . We further let U(π) = −V (π), Uh(π) = −Vh(π). By similar derivation, we

can show that

V (π∗)− V (π̂n) ≤ Λ(λn) + Uh(π̂) + λnJ(π̂)− {Uh(π
λn
h ) + λnJ(π

λn
h )}︸ ︷︷ ︸

(I)

+2C3h,

where πλn
h ∈ argminπ∈Π0

{Uh(π) + λnJ(π)}. In the following, we apply Lemma D.3.1 to
bound Term (I) on the right hand side of the inequality above. Let

Gπ ≜

{∫ p2

p1

Q(Z, p)
K((p− πλn

h (Z))/h)

h
dp+

1

hf(P |Z)
K(

P − πλn
h (Z)

h
)(R−Q(Z,P )) + λnJ(π)

−
∫ p2

p1

Q(Z, p)
K((p− π(Z))/h)

h
dp−

1

hf(P |Z)
K(

P − π(Z)

h
)(R−Q(Z,P ))− λnJ(π

λn
h ) | J(π) ≲ λ−1

n , π ∈ Π0

}
.

Recall that J(π) = ∥π∥2Π0
. We consider a constraint class on π based on the same argument

in Theorem 5.4.1. In the first step, we show

En(gπ̂n) ≤ ε1,
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for some ε1 > 0 with a high probability. In the second step, we aim to show that

sup
gπ∈Gπ

|En(gπ)− E(gπ)| ≤ ε2,

with a high probability for some ε2. Then combining two, we are able to show (I) ≤ ε1 + ε2

with some high probability.
Step 1: We can similarly derive that

En(gπ̂n
)

≤ En

{∫ p2

p1

Q(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf(P |Z)
K(

πλn
h (Z)− P

h
)(R−Q(Z,P ))

}

− En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

πλn
h (Z)− P

h
)(R̂− Q̂(−m(i)))(Z,P ))

}

+ En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((π̂n(Z)− p)/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

π̂n(Z)− P

h
)(R̂− Q̂(−m(i))(Z,P ))

}

− En

{∫ p2

p1

Q(Z, p)
K((π̂n(Z)− p)/h)

h
dp+

1

hf(P |Z)
K(

π̂n(Z)− p

h
)(R−Q(Z,P ))

}
,

In the following, we bound the right-hand side of the above inequality. It suffices to focus

on the first two terms on the right-hand side while the other two terms can be bounded

similarly.
Specifically, we consider bounding the following term, defined as

E1 ≜ En

{∫ p2

p1

Q(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf(P |Z)
K(

πλn
h (Z)− P

h
)(R−Q(Z,P ))

}

− En

{∫ p2

p1

Q̂(−m(i))(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf̂ (−m(i))(P |Z)
K(

πλn
h (Z)− P

h
)(R̂− Q̂(−m(i)))(Z,P )

}

We again notice that∫ p2

p1

Q(Z, p)
K((πλn

h (Z)− p)/h)

h
dp+

1

hf(P |Z)
K(

πλn
h (Z)− P

h
)(R−Q(Z, P ))

=

∫ p2

p1

Q(Z, p)
K((πλn

h (Z)− p)/h)

h
+
1(P = p)

hf(p|Z)
K(

πλn
h (Z)− p

h
)(R−Q(Z, p))︸ ︷︷ ︸

E1(p)

dp,

where 1(P = p) is indeed a Dirac measure. For a fix p, it can be seen that

E1(p) =
1

nh

n∑
i=1

(1−
1(Pi = p)

f(p|Zi)
)(Q̂−m(i)(Zi, Pi)−Q(Zi, p))K(

π̂n(Zi)− p

h
)

+
1

nh

n∑
i=1

(
1(Pi = p)

f̂−m(i)(p|Zi)
−
1(Pi = p)

f(p|Zi)
)(Ri −Q(Zi, Pi))K(

π̂n(Zi)− p

h
)

+
1

nh

n∑
i=1

(
1(Pi = p)

f̂−m(i)(p|Zi)
−
1(Pi = p)

f(p|Zi)
)(R̂i − Q̂−m(i)(Zi, Pi)− (Ri −Q(Zi, Pi)))K(

π̂n(Zi)− p

h
)
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+
1

nh

n∑
i=1

1(Pi = p)

f(p|Zi)
(R̂i −Ri)K(

π̂n(Zi)− p

h
)

≜ E2(p) + E3(p) + E4(p) + E5(p).

In the following, we bound each of the above four terms. For E3(p),consider

G1,π ≜

{∫ p2

p1

(
1(P = p)

f̂−(k)(p|Z)
− 1(P = p)

f(p|Z)
)(R−Q(Z,P ))K(

π(Z)− P

h
)dp | J(π) ≤ λ−1

n , π ∈ Π0

}
.

By the problem setting and the independence across centers, we can show that

E
[
R−Q(Z, P )|Z, P, f−(m(i))(p|Z)

]
= 0. Therefore we can observe that E[gπ] = 0 for

any gπ ∈ G1,π. In addition, the envelop function of G1, defined as G1, is proportional to∫ p2
p1

| 1(P=p)

f̂−(k)(p|Z)
− 1(P=p)

f(p|Z)
||R −Q(Z, P )|λ−

1
2

n /hdp by the Lipschitz boundness on K in Assump-

tion5.2.2(a). Therefore ∥G1∥2,P ≲ n−βλ
− 1

2
n /h by the error bound condition on f̂−(m)(p|Z)

given in Assumption 5.4.3(b). By the entropy condition in Assumption 5.4.2 and Lipschitz

property of K in Assumption 5.2.2(a), we can further show that

sup
Q̃

N(G1,π, Q̃, ε∥G1∥2,Q̃) ≲
(
1

ε

)v

,

which implies that

J(1,G1,π, G1) ≜
∫ 1

0

sup
Q̃

√
logN(G1,π, Q̃, ε∥G1∥2,Q̃)dε ≲

√
v.

By leveraging the result in Lemma D.3.1, we can show that with probability at least 1−1/n,∫ p2

p1

E3(p)dp ≲ log(n)
√
vn− 1

2n−βλ
− 1

2
n /h2.

Similarly, we can show ∫ p2

p1

E2(p)dp ≲ log(n)
√
vn− 1

2n−αλ
− 1

2
n /h2,

with probability at least 1 − 1/n. In addition, we can bound
∫ p2
p1
E4(p)dp term by Cauchy-

Schwarz inequality, i.e., with probability at least 1− 1/n,

∫ p2

p1

E4(p)dp ≤ 1/h2

En

[
1

f̂−(m)(P |Z)
− 1

f(P |Z)

]2 1
2

×
(
En

[
R̂− Q̂−m(i)(Z,P )− (R−Q(Z,P ))

]2) 1
2

λ
− 1

2
n

201



≤ 1/h2

En

[
1

f̂−(m)(P |Z)
− 1

f(P |Z)

]2 1
2

×

{(
En

[
Q̂−m(i)(Z,P )−Q(Z,P )

]2) 1
2

+ n−δ

}
λ
− 1

2
n

≲ log(n)
(
n−(α+β) + n−βn−δ

)
λ
− 1

2
n /h2.

The last inequality is due to Bernstein’s inequality in the dependent case using the uniformly

bounded assumption in Assumptions 5.4.1 and 5.4.3(b) and the error bound condition on

nuisance function estimation in Assumption 5.4.3(b). See theorem 8 of Fu et al. (2022) for

more details.

For the last term
∫ p2
p1
E5(p)dp, we can show that with probability at least 1− ε,

∫ p2

p1

E5(p)dp =
1

nh

n∑
i=1

1

f(Pi|Zi)
(R̂i −Ri)K(

π̂n(Zi)− p

h
)

≲ C5(ε)
1

nh2

n∑
i=1

1(∆i = 0)n−δλ−1/2
n

≲ C5(ε)
n−δλ

−1/2
n

h2

(
P(∆ = 0) +

√
x

n

)
.

Combining the results above together, we can show that with probability at least 1 −
5/n− ε, ∫ p2

p1

E1(p)dp ≲ log(n)
√
vn− 1

2n−min(β,α)λ
− 1

2
n /h2

+ log(n)n−(α+β)λ
− 1

2
n /h2 + C5(ε) log(n)

n−δλ
−1/2
n

h2
P(∆ = 0).

Similar results can be obtained if we replace π̂n by πλn
h in E1. Then we have

En(gπ̂n) ≲ log(n)
√
vn− 1

2n−min(β,α)λ
− 1

2
n /h2

+ log(n)n−(α+β)λ
− 1

2
n /h2 + C5(ε) log(n)

n−δλ
−1/2
n

h2
P(∆ = 0),

with probability 1− 10/n− 2ε.

Step 2: Again by applying Lemma D.3.1, we can similarly show that with probability at

least 1− 1/n,

sup
gπ∈Gπ

|En(gπ)− E(gπ)| ≲ log(n)
√
vλ

− 1
2

n n− 1
2/h2.
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Summarizing Steps 1 and 2, we can show that with probability 1− 1/n− ε,

Regret(π̂n) =V (π∗)− V (π̂n)

≲ Λ(λn) + 2C3h+ log(n)
√
vλ

− 1
2

n n− 1
2/h2

+ log(n)
√
vn− 1

2n−min(β,α)λ
− 1

2
n /h2

+ log(n)n−(α+β)λ
− 1

2
n /h2 + C5(ε) log(n)

n−δλ
−1/2
n

h2
P(∆ = 0).

which concludes our proof for the first statement. The second statement holds the same

argument as that in Corollary 5.4.1. Q.E.D.

D.4 Numerical Experiment Supplementary

D.4.1 Robustness Experiments

Figures D.1 – D.4 are the results of the experiments in Table 5.1.

D.4.2 Sensitivity Analysis

The neural network parameters’ sensitivity will be instance-dependent. For the instance

we use, after experiments with various neural network parameters for the neural networks

generating Q̂(X, Y, P ), f̂(P |X, Y ), and π̂n, we find the outputs are not too sensitive to the

parameters. For example, Figures D.5 – D.8 are the results of the same instance obtained

using four sets of parameters, where the numbers in the parentheses denote the number of

neurons in each hidden layer and the number of scalars denotes the number of hidden layers

used for the neural network for estimating each variable:

Set Q̂(X, Y, P ) f̂(P |X, Y ) π̂n
1 (100,100) (48) (12)
2 (100,100) (48) (24)
3 (100,100) (24) (12)
4 (200,100) (48) (12)

Table D.4: Neural Network Parameters
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Figure D.1: Instance 1
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Figure D.2: Instance 2

0 250 500 750 1000 1250 1500 1750 2000
Indices of X,Y samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ice

 V
al

ue

Comparison of Prices
Fitted Price
Optimal Price

Figure D.3: Instance 3
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Figure D.4: Instance 4
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Figure D.5: Set 1
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Figure D.6: Set 2
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Figure D.7: Set 3
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Figure D.8: Set 4
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D.4.3 Running Time

The main time-consuming part of the algorithm lies in 1) in each fold, the training of the neu-

ral networks used to estimate Q̂(−m(i))(Xi, Yi, p), Q̂
(−m(i))(Xi, Yi, Pi) and f̂ (−m(i))(Pi|Xi, Yi);

2) the training of the neural network used to estimate π̂n. Note that the number of folds

used in cross-validation is usually not too large. In our case, we choose K = 3. Below we

report the running time to train the neural network for each statistic, averaged over 100

instances of sample size 2000 and also 3 folds if in the inner loop, with the value in the

parenthesis being the standard deviation. So in general, it takes around 457.28 seconds to

Neural Network Q̂(−m(i))(Xi, Yi, p) Q̂(−m(i))(Xi, Yi, Pi) f̂ (−m(i))(Pi|Xi, Yi) π̂n
Average Running Time (s) 33.95(13.00) 30.26(12.35) 22.34(1.96) 197.73(16.29)

Table D.5: Running Time

run our algorithm for an instance with a sample size of 2000 which is reasonable.

D.4.4 Random Survival Forests Description

We briefly describe the random survival forests method introduced by (Ishwaran et al. 2008).

Define the censoring indicator to be 0 if the data is right-censored and otherwise 1. Given a

data set with each record comprising the individual’s survival time and the 0− 1 censoring

indicator, the random survival forests algorithm consists of the following steps:

1. First, we draw B bootstrap samples from the original data where B is a given param-

eter. Note that each bootstrap sample excludes on average 37% of the data, called

out-of-bag data (OOB data).

2. For each bootstrap sample, grow a survival tree, where p candidate variables randomly

selected are used at each node. Then the node is split using the candidate variable

that maximizes survival difference between daughter nodes to separate the dissimilar

cases, by searching over all possible x variables and split values c, and choosing that

x∗ and c∗ that maximizes survival difference. The tree is grown to a full size such that

a terminal node should have at least d0 > 0 unique deaths, where d0 is also a specified

parameter.

3. Calculate a cumulative hazard function (CHF) for each tree. Average to obtain the

ensemble CHF.

4. Calculate prediction error for the ensemble CHF using OOB data.
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Using the non-parametric random survival forests method above, we can obtain the estimated

CHF h(t |X,P ) for each record (X,P ) and thus the survival function H(t |X,P ) in (5.10)

via H(t |X,P ) = e−h(t |X,P ).
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