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ABSTRACT

Successful language comprehension requires the rapid deployment of working mem-

ory resources alongside the capacity to predict upcoming linguistic input. While previous

research views these as competing factors, this dissertation explores a unified theory of

processing complexity and evaluates the interaction between memory and prediction. The

evaluation focuses on how language-users deploy these factors to form long-distance de-

pendencies in Mandarin. Specifically, I investigate how memory retrieval of a target word

is a↵ected by: (i) the time elapsed since the word first appears, (ii) interference from a

neighboring distractor word that shares some linguistic features, and (iii) linguistic expec-

tations of the target word. Neuroelectric signals of the human brain during naturalistic

language comprehension were acquired by two electroencephalography (EEG) experi-

ments. The experiments examine the resolution of noun-phrase ellipsis and subject-verb

agreement using, respectively, carefully designed experimental stimuli and a naturally

occurring audiobook story. The data are analyzed in terms of their fit to the quantitative

predictions from computational models of these expectation and memory retrieval pro-

cesses. This approach allows for a comparison between predictions of a symbolic cognitive

model and a non-symbolic large language model. I report the first ever empirical evidence

of the modulation of memory retrieval by linguistic expectations with a controlled exper-

iment. I then report the first cortical electrophysiological evidence of the memory e↵ects

during naturalistic story listening, and suggest that interference modeled with cue-based

working-memory retrieval framework may generalize to more everyday comprehension

situation. The primary contributions of this work are, first, to unveil the biological un-

derpinning of cognitive operations essential for how people understand complex sentences

in a way that generalizes across languages and second, to contribute to methodological

xi



advancement in combining computational modeling and cognitive neuroscience to study

naturalistic language comprehension in real time which can be generalize to real-world

situations.
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CHAPTER I

Introduction

Language is an integral part of what makes us human, allowing us to express an

infinite set of meanings. As a highly e�cient cognitive system, it computes the arbi-

trary mapping between form and meaning. In language comprehension, this algorithm

transforms speech, sign or written input to concepts understood by language users with

a remarkable speed of two to three English words per second in a deceivingly e↵ortless

fashion. The question of how the brain implements this powerful algorithm in real-time

language processing remains at the core of cognitive science.

I draw on computational tools to model two key facets of this system and test mod-

els against neuroelectric brain signals recorded during language comprehension. These

facets, drawn from current research, are: (i) linguistic predictions (Hale, 2001; Levy,

2008) and (ii) working memory load (Lewis et al., 2006; McElree, 2006; Vasishth et al.,

2019). While these two facets of processing have received significant attention, relatively

little research seeks to integrate them into a unified model (Vasishth and Drenhaus, 2011;

Levy, 2013). My research pursues just such integration, guided by the following specific

questions:

1. How do predictions and working memory demands influence word-by-word language
processing?

2. What are the neural mechanisms that mediate these e↵ects?
3. How might these factors individually or jointly explain patterns of comprehension

across di↵erent languages?
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Answers to these questions form the initial steps to revealing the underlying mechanisms

that support language comprehension in a way that generalizes across the diversity of

the world’s ⇡7,000 languages.

This dissertation investigates how readers establish a dependent relation between two

linguistic elements far away from each other in a sentence. This “long-distance depen-

dency” is crucial for understanding “who did what to whom” in a sentence, and can

be used to test how readers make predictions and/or consume memory resources dur-

ing the process. The modulation of probabilistic expectations on memory cost will be

explored, alongside a nuanced perspective for memory load. In contrast to the heavily

studied distance-based memory cost (Gibson, 2000; Hsiao and Gibson, 2003; Vasishth

and Drenhaus, 2011) that focuses on the distance between two co-dependent linguistic

items (i.e. locality), recent psycholinguistic research has turned to cost associated with

the distinctiveness of items stored in memory according to the representational features of

items (Vasishth et al., 2019). When retrieving a target linguistic element that occurs ear-

lier in an utterance to establish a long-distance relationship between the current and the

retrieved items, memory retrieval can be a↵ected if an intervening lexical item (a “distrac-

tor”) shares some linguistic features with the target; this is interference, which appears

in multiple guises. In “inhibitory interference”, a distractor may cause a slow-down and

inaccuracy in memory retrieval of the target item, and thus jeopardize the comprehension

of an otherwise grammatical sentence (Franck et al., 2015; Jäger et al., 2017; Van Dyke

and Lewis, 2003; Van Dyke and McElree, 2006; Van Dyke, 2007; Van Dyke and McElree,

2011). Intriguingly, “facilitatory interference” occurs in ungrammatical sentences, where

distractors seemingly create an “illusion of grammaticality” and thus make processing

easier (Cunnings and Sturt, 2018; Dillon et al., 2013; Jäger et al., 2017, 2020; Lago et al.,

2015; Parker and Phillips, 2017; Sturt, 2003; Tucker et al., 2015; Wagers et al., 2009). In

sum: Intervening distractors lead to more uniqueness-based memory cost in grammatical

sentences, but less cost in ungrammatical situations. Therefore, interference has been

linked to language comprehension di�culty, after long being considered a major con-

tributor to forgetting in the domain general memory research (Van Dyke and McElree,

2



2011).

(1) provides an example set from Sturt (2003) following the notation convention

of Engelmann et al. (2019). “The surgeon” is the binding accessible antecedent (i.e.

the target) of the reflexive “himself”, while “Jonathan” and “Jennifer” are the binding

inaccessible antecedents (i.e. the distractors). When encountering the reflexive, two

relevant retrieval cues are used to retrieve the target: c-command and the gender of

reflexive, masculine. The former cue separates the target from the distractor, and the

latter cue relates to condition manipulation. The match or mismatch with respect to

individual retrieval cues is represented by the + and - in the feature matrix of the noun

phrases. “The surgeon” is a stereotypically masculine noun phrase in the study. The

target fully matches the retrieval cues in both a. and b. In contrast, the partial feature

match of the distractor in a, but not b, is predicted to give rise to inhibitory interference.

(1) a. Target-match; Distractor-match (Interference)
The surgeon+MASC

+CCOM
who treated Jonathan+MASC

�CCOM
had pricked himself

�
MASC

CCOM

 

with a used syringe needle.

b. Target-match; Distractor-mismatch (No interference)
The surgeon+MASC

+CCOM
who treated Jennifer�MASC

�CCOM
had pricked himself

�
MASC

CCOM

 

with a used syringe needle.

The second type of interference emerges when both the target and distractor only partially

match the retrieval cues. The overall speedup at the retrieval site in reading time marks

it as facilitatory interference (Dillon et al., 2013; Engelmann et al., 2019; Logačev and

Vasishth, 2016). An example set can be found in (2) (Sturt, 2003; Engelmann et al., 2019).

The target “the surgeon” is stereotypically masculine. Therefore, it mismatches the

gender retrieval cue, feminine, of the reflexive “herself” in both a. and b. The distractor

“Jennifer” in a. is nevertheless +FEM, examplifying the facilitatory interference criteria.

(2) a. Target-mismatch; Distractor-match (Interference)
The surgeon�FEM

+CCOM
who treated Jennifer+FEM

�CCOM
had pricked herself

�
FEM

CCOM

 

with a used syringe needle.

b. Target-mismatch; Distractor-mismatch (No interference)
The surgeon�FEM

+CCOM
who treated Jonathan�FEM

�CCOM
had pricked herself

�
FEM

CCOM

 

with a used syringe needle.
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Other than retrieval interference, the predictability of a word or structure given a

context has also been associated with processing ease or di�culty in reading comprehen-

sion (Hale, 2001; Levy, 2008). Comprehenders make linguistic expectancies at various

levels based on the sentential context (Kutas et al., 2014). Prediction of upcoming struc-

ture, for example, has been proposed to constrain possible syntactic violation and thus

enable rapid syntactic analysis, showing e↵ects as fast as 200 ms after stimulus onset

during online word-by-word reading (Lau et al., 2006). Federmeier et al. (2007) focused

on lexical prediction, reporting the beneficial e↵ect of processing expected words from

300 to 500 ms post-stimulus-onset, and the costly e↵ect of processing unexpected (but

plausible) words in strongly, but not weakly, constraining contexts at the 500-900 ms

time window. While the earlier stage was suggested to reflect facilitated processing due

to higher degree of match to expectation, the later stage might reflect the recognition of

mismatch and/or additional resources needed for the revision of expectation.

It remains unclear, nevertheless, when and how linguistic predictions may influence

the memory e↵ects when language users try to form a long-distance relation between

two non-adjacent elements. Only one prior study addressed this question directly; they

report an interaction between predictability and inhibitory interference, but rely on a

“dual-task” (i.e. word recall and sentence-reading) in English that is quite di↵erent from

every-day language comprehension (Campanelli et al., 2018). It is crucial to investigate

whether those findings can be generalized across linguistic dependencies across languages

and within a more natural comprehension paradigm. When the target item is highly an-

ticipated in grammatical sentences, will it become more distinctive from the distractor,

reducing the inhibitory interference e↵ect? In contrast, when a highly predictable target

causes a prediction error in ungrammatical sentences, will it become less distinctive from

the distractor, increasing the facilitatory interference e↵ect? The dissertation aims to

first replicate the interference and expectation e↵ects separately, and subsequently in-

vestigate the degree, and neural time course, of their interaction. I test this question

by measuring the electrical activity of large sets of neurons using Electroencephalogra-

phy (EEG); this neural signal indexes the processing of long-distance dependency in real
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time. I will first examine the electrophysioligical correlates of the memory and predic-

tion mechanisms separately, and then use those neural signals to investigate how they

interact. Importantly, I use carefully constructed experimental stimuli along-side an au-

diobook story, which are crucial for testing how well the models under consideration

account for language processing not only in the artificial conditions of a laboratory, but

in more every-day circumstances. Two separate EEG experiments will unveil the use of

linguistic expectancies and working memory resources during language comprehension,

and their relative contribution to processing complexity.

This dissertation will contribute to a unified and multidimensional theory of process-

ing complexity by concurrently examining the role of linguistic prediction and memory

interference during cross-linguistic online comprehension with high ecological validity.

Those cognitive operations will be explicitly modeled by computational theories of com-

prehension, and grounded in the electrical dynamics of neural activity. The study will

address the interplay of human memory and linguistic predictions, a key intersection that

is underspecified in dominant frameworks. The study will also have theoretical implica-

tions for the functional interpretation of neural signals, shedding light on the cognitive

processes and computations carried out in the electric activities of population of neurons.

To answer these questions in this dissertation, I will first present an EEG experiment

using constructed stimuli of Mandarin noun-phrase ellipsis in Chapter II. The inclusion

of both grammatical and ungrammatical conditions enables the examination of both

inhibitory and facilitatory interference e↵ects discussed in previous literature. The neural

correlates (i.e., event-related potentials (ERPs)) of predictions and memory retrieval

will also be introduced in the chapter. Afterwards, a second EEG experiment using

a Mandarin audiobook story will be presented to evaluate the theories in a more natural

and ecologically valid setting in Chapter III. I will demonstrate how to combine cognitive

neuroscience and computational modeling to study naturalistic language comprehension

in real time. Chapter IV will conclude the dissertation by considering the implications

of the results obtained from the two EEG experiments, as well as providing several ways

forward for the next exciting steps.
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CHAPTER II

Expectations Modulate Retrieval Interference during

Ellipsis Resolution

Abstract

Memory operations during language comprehension are subject to interference: retrieval

is harder when items are linguistically similar to each other. We test how such interfer-

ence e↵ects might be modulated by linguistic expectations. Theories di↵er in how these

factors might interact; we consider three possibilities: (i) predictability determines the

need for retrieval, (ii) predictability a↵ects cue-preference during retrieval, or (iii) word

predictability moderates the e↵ect of noise in memory during retrieval. We first demon-

strate that expectations for a target word modulate retrieval interference in Mandarin

noun-phrase ellipsis in an electroencephalography (EEG) experiment. This result obtains

in globally ungrammatical sentences – termed “facilitatory interference.” Such a pattern

is inconsistent with theories that focus only on the need for retrieval. To tease apart

cue-preferences from noisy-memory representations, we operationalize the latter using a

Transformer neural network language model. Confronting the model with our stimuli

reveals an interference e↵ect, consistent with prior work, but that e↵ect does not interact

with predictability in contrast to human EEG results. Together, these data are most con-

sistent with the hypothesis that the predictability of target items a↵ects cue-preferences

during retrieval.
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Keywords : Predictability, Cue-based Retrieval, Mandarin, Sentence Processing, P600,

GPT2.

2.1 Introduction

Successful language comprehension requires retrieving previously encountered linguis-

tic items, and may be subject to interference from other recent or similar entities in mem-

ory (Cunnings and Sturt, 2018; Dillon et al., 2013; Franck et al., 2015; Jäger et al., 2017,

2020; Lago et al., 2015; Martin et al., 2012; Martin, 2018; Sturt, 2003; Tucker et al., 2015;

Van Dyke and Lewis, 2003; Van Dyke and McElree, 2006; Van Dyke, 2007; Van Dyke and

McElree, 2011; Wagers et al., 2009; Vasishth et al., 2019). Recent research now hints at

an interaction between retrieval interference and predictive processing (Campanelli et al.,

2018; Futrell et al., 2020; Parker and Phillips, 2017; Schoknecht et al., 2022; Tanner et al.,

2014). One thing that remains to be established is how expectations of the target item

might modulate the interference e↵ect under both successful and unsuccessful retrievals.

In example (1), readers must retrieve the encoding of shirt from memory upon reaching

one, in order to interpret “one” as “one shirt”, not “one book”.

(1) Anne brought a shirt that was next to the book and Emma also brought one.

The retrieval process is guided by cues provided at the retrieval site, including structural

characteristics which point to “shirt” as the target antecedent (e.g., see Dillon et al.,

2013; Kush et al., 2017, for using syntactic information to constrain antecedent retrieval).

Specifically, the two conjuncts in this coordinate sentence requires symmetrical or parallel

syntactic and semantic representations; broad sources of evidence for this symmetry are

reviewed by Zhang (2009). In the present example, this requirement renders “shirt”, but

not “book”, as the target antecedent. If the retrieval cues fail to uniquely map onto the

target element in memory, interference from other cue-matching distractor elements may

surface.1

Mandarin Chinese presents a useful testing ground for interference e↵ects because

1The terms “distractor” and “attractor” are used interchangeably in this study.
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the retrieval site o↵ers both semantic and structural cues in the noun-phrase ellipsis

construction; this enables examination of interference from semantic-cue-matching dis-

tractors which are structurally incorrect as antecedents. As detailed below, Mandarin

classifiers at a retrieval site provide both syntactic and semantic cues that can map onto

the target antecedent and/or the intervening distractor. The present study leverages this

property to investigate how cue-based retrieval might interact with probabilistic expec-

tations during sentence comprehension, as indexed by event-related potentials (ERPs).

2.1.1 Cue-based retrieval

The cue-based retrieval framework theorizes that the retrieval of target lexical items

from memory depends on the match between memory contents and retrieval cues (Lewis

and Vasishth, 2005; Lewis et al., 2006; McElree, 2000; McElree et al., 2003; Van Dyke

and Lewis, 2003). Lexical items are stored with features of their intrinsic (e.g., lexical

and morphological) properties along with features encoding the local syntactic context

they appear in. Re-activation of an item is contingent on the degree of match between

those features and retrieval cues provided at the retrieval site. As a consequence of this

architecture, distractor items matching a subset of those retrieval cues may lead to two

types of similarity-based interference.

In grammatical sentences, “cue overload” may occur when a syntactically licensed

target word fully matches the cues while a syntactically unlicensed distractor partially

matches them. This results in inhibitory interference which leads to slower reading time

at the retrieval site in self-paced and eye-tracking studies (Franck et al., 2015; Jäger

et al., 2017; Van Dyke and Lewis, 2003; Van Dyke and McElree, 2006; Van Dyke, 2007;

Van Dyke and McElree, 2011).

To illustrate inhibitory interference, example (2) provides a set of sentences with

subject-verb dependencies (Dillon et al., 2013). Here “The new executive” is the target

subject noun of the verb “was”, while “manager” and “managers” are distractor nouns.

When encountering the verb, two relevant retrieval cues are used to retrieve the target:

structural location in terms of Local Subject-hood and Singular verbal number. The
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former syntactic cue distinguishes the target from the distractor while the latter cue is

manipulated in this study. The match or mismatch with respect to individual retrieval

cues is represented by the + and � in the feature matrix of the noun phrases, following

the convention of Engelmann et al. (2019) and Jäger et al. (2020). While the number

feature matches the distractor in the (a) sentence, it does not in (b); the cue overload in

(2) (a) causes inhibitory interference.

(2) a. Grammatical; Interference
The new executive+Singular

+LocalSubject
who oversaw the middle manager+Singular

�LocalSubject
ap-

parently was
�

Singular

LocalSubject

 
dishonest about the company’s profits.

b. Grammatical; No Interference
The new executive+Singular

+LocalSubject
who oversaw the middle managers�Singular

�LocalSubject

apparently was
�

Singular

LocalSubject

 
dishonest about the company’s profits.

A second type of interference emerges in ungrammatical sentences when both the

target and distractor only partially match the retrieval cues. Such cases show evidence

of a processing speedup at the retrieval site, termed “facilitatory interference” (Cunnings

and Sturt, 2018; Dillon et al., 2013; Jäger et al., 2017, 2020; Lago et al., 2015; Parker and

Phillips, 2017; Sturt, 2003; Tucker et al., 2015; Wagers et al., 2009). An example is shown

in (3) (Dillon et al., 2013; Engelmann et al., 2019; Jäger et al., 2020). Here, the target “the

new executive” is singular and thus it fails to match the number retrieval cue of the plural

verb “were” in both (3) (a) and (b). The distractor “managers” in (3) (a) is +Plural,

matching that retrieval cue, with the consequence that retrieval might be “successful” (if

incorrect) even in ungrammatical contexts. This is facilitatory interference. Interestingly,

not all interference e↵ects have the same strength, which we turn to in the next section.

(3) a. Ungrammatical; Interference
*The new executive�Plural

+LocalSubject
who oversaw the middle managers+Plural

�LocalSubject

apparently were
�

Plural

LocalSubject

 
dishonest about the company’s profits.

b. Ungrammatical; No Interference
*The new executive�Plural

+LocalSubject
who oversaw the middle manager�Plural

�LocalSubject

apparently were
�

Plural

LocalSubject

 
dishonest about the company’s profits.

9



2.1.2 Interference asymmetry and prediction

Agreement attraction errors seem to vary according to both grammaticality and de-

pendency types. Previous studies have noted two distinct kinds of processing asymme-

tries. First of all, facilitatory interference e↵ects in ungrammatical sentences appear to be

stronger than the inhibitory interference observed in grammatical sentences. This “gram-

matical asymmetry” was first reported in Wagers et al. (2009), who investigated English

subject-verb agreement in a self-paced reading paradigm; they found faster reading time

in the presence of a number-matching attractor noun, compared to a number-mismatching

attractor, in ungrammatical, but not grammatical, conditions. In that study, attraction

from a prepositional modifier ameliorates the e↵ect of subject-verb agreement violation

(i.e. shows facilitatory interference), but does not a↵ect grammatical sentences (i.e. no

inhibitory interference). This grammatical asymmetry is further supported by a Bayesian

random-e↵ects meta-analysis of 77 experimental comparisons from eye-tracking and self-

paced reading studies (Jäger et al., 2017), although not entirely supported by a recent

forced-choice judgment study (Hammerly et al., 2019), which highlights the importance

of further investigation.

Using EEG, Tanner et al. (2014) did replicate this “asymmetrical attraction e↵ect”

with English subject-verb agreement. Tanner et al. attribute this asymmetry to a pre-

dictive mechanism which operates alongside retrieval in the following way. For obligatory

constituents like the upcoming verb for an English subject noun, the syntactic structure

and the specifications for verbal agreement features are automatically predicted. In gram-

matical sentences, successful prediction minimizes the need for further retrieval (Dillon

et al., 2013; Lago et al., 2015; Wagers et al., 2009), and also reduces the occurrence of

attraction e↵ects, which happen during the retrieval process. But in ungrammatical sen-

tences, the actual bottom-up input (with mismatched verbal agreement features) clashes

with the top-down predictions. This mismatch triggers retrieval for the (wrongly) pre-

dicted features, and gives attractors a chance to cause attraction during the retrieval

process. By this logic, the retrieval process and attraction e↵ects are biased toward

ungrammatical, not grammatical sentences.
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This account also captures the apparent symmetry in attraction e↵ects observed for

grammatical and ungrammatical Spanish noun-phrase ellipsis by Martin et al. (2012).

Tanner et al. (2014) reason that since no reliable prediction can be made for the com-

putation of noun-phrase ellipsis in those stimuli, retrieval needs to be initiated for both

grammatical and ungrammatical sentences, giving rise to attraction symmetry. In sum,

Tanner et al. propose that the need for retrieval relies on the predictability of linguistic

dependencies. For predictable dependencies such as subject-verb agreement, retrieval and

attraction occur when prediction is unsuccessful (as in ungrammatical sentences), but not

when prediction is successful (as in grammatical sentences). For unpredictable depen-

dencies such as noun-phrase ellipsis, retrieval and attraction occur for both grammatical

and ungrammatical sentences because no prediction is available. We will call this model

the “retrieval-by-predictability” account to highlight its unique features in comparison to

alternatives, discussed below.

Recently, predictive models based on noisy memory representation have also been

proposed to account for the “grammatical asymmetry” observed in human data. Both

lossy-context surprisal model (Futrell et al., 2020) and Transformer-based neural network

language models such as Generative Pre-trained Transformer-2 (GPT2) (Radford et al.,

2019) use noisy memory representations of the previous context to calculate predictability

of the next word. The noisy memory representation is a version of the true context with

some information obscured by noise. The incomplete information about previous words

reflects the general information-loss characteristic of of memory representations. Hahn

et al. (2022) further proposes that the memory representations are noisy because they are

refined to reduce processing cost due to cognitive resource constraints, which the authors

call the resource-rational model of fine-grained memory representations.

Word predictability, formalized as surprisal values obtained from the predictive mod-

els based on noisy memory representation, have been associated with processing di�culty

during comprehension (Futrell et al., 2020). When cast in terms of surprisal values from

a Transformer-based artificial neural network, like GPT2, Ryu and Lewis (2021) demon-

strate that such an account successfully simulates the presence of facilitatory interference
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e↵ects in ungrammatical sentences as well as the absence of inhibitory interference e↵ects

in grammatical sentences of English subject-verb agreement and reflexive-antecedent de-

pendencies. In brief, Ryu and Lewis argue that word predictability based on noisy mem-

ory representations may directly characterize the interference profile during retrieval. We

will call this theoretical alternative the “noisy-memory-based-predictability” account.

A second processing asymmetry concerns facilitatory interference e↵ects in ungram-

matical sentences: such e↵ects seem to be stronger in subject-verb agreement dependency

than in reflexive-antecedent dependency. This “type asymmetry” was first documented in

Dillon et al. (2013) in their English eye-tracking experiments, and later reinforced by the

large scale Bayesian random-e↵ects meta-analysis of 77 experimental comparisons from

Jäger et al. (2017). More empirical work is needed as a recent large-sample replication

study by Jäger et al. (2020) did not find type asymmetry with eye-tracking measures.

To account for type asymmetry, Parker and Phillips (2017) also appeal to the pre-

dictability of linguistic dependencies, which they propose a↵ects cue weightings during the

retrieval process. For unpredictable dependencies such as holds between a reflexive and

its antecedent, retrieval is part of the necessary resolution process and structural cues are

prioritized, minimizing facilitatory interference e↵ects. That is, the antecedent does not

serve to predict any upcoming reflexive anaphor in ungrammatical reflexive-antecedent

dependency. The default retrieval mechanism thus ensures priority for structural cues in

such cases.

In contrast, for predictable dependencies like subject-verb agreement, retrieval is

triggered by prediction error and thus structural cues are not prioritized, resulting in

facilitatory interference e↵ects. Put simply, the subject noun predicts the number of

the verb. If a number prediction error occurs in ungrammatical subject-verb agreement,

retrieval is invoked as a repair mechanism (Lago et al., 2015; Wagers et al., 2009). Due

to this prediction error, the parser may re-weight the validity of the structure built so far

and rely less on structural cues during retrieval. Evidence from eye-tracking experiments

in Parker and Phillips (2017) also supports their proposal that detection of agreement

prediction error induces subsequent retrieval and interference. Specifically, the e↵ect of
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grammaticality violations are reflected in early measures such as first-pass reading times,

while the facilitatory interference e↵ects are reflected in later measures.

Parker and Phillips incorporate this weighted cue-combinatorics scheme into their

model for long-distance dependency processing based on the cue-based retrieval model of

parsing under the Adaptive Character of Thought–Rational (ACT-R) architecture (An-

derson, 1990; Lewis and Vasishth, 2005; Vasishth et al., 2008). Their model succeeds

in simulating the facilitatory interference e↵ects in ungrammatical English reflexive-

antecedent dependencies. Thus, Parker and Phillips argue that cue weighting during

retrieval depends on the predictability of linguistic dependencies. For predictable de-

pendencies like subject-verb agreement, the neutralized structural cues allow facilitatory

interference e↵ects to surface in ungrammatical sentences. For unpredictable dependen-

cies like reflexive-antecedent binding, the prioritized structural cues minimize facilitatory

interference e↵ects. We will call this model the “cue-preference-by-predictability” account

for present purposes.

To summarize the theoretical landscape, in the face of empirical interference asym-

metries, Tanner et al. (2014) propose that dependency predictability determines the need

for retrieval (the retrieval-by-predictability account) while Parker and Phillips (2017) in-

stead argue that dependency predictability a↵ects cue-preference during retrieval (the

cue-preference-by-predictability account). Ryu and Lewis (2021), on the other hand,

suggest that word predictability based on noisy memory representations directly char-

acterizes retrieval interference (the noisy-memory-based-predictability account; see also

Futrell et al., 2020; Hahn et al., 2022).

Compared to previous emphasis on the predictability of a linguistic dependency dur-

ing the retrieval operations (e.g., Dillon et al., 2013; Parker and Phillips, 2017; Tanner

et al., 2014; Wagers et al., 2009), the predictability of the target lexical item itself has re-

ceived less attention. However, target expectation is crucially implicated by the accounts

reviewed above, where predictability modulates whether a target is retrieved, the cues

prioritized in actualizing the retrieval, or the strength of the the memory representation

being (re-)activated. In order to dissociate the e↵ects of dependency predictability from
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that of target predictability, we manipulate target predictability in the present study.

Specifically, we test whether the interference e↵ects still occur under both grammatical

and ungrammatical conditions for unpredictable dependencies such as noun-phrase ellip-

sis (as reported in Martin et al., 2012 and Tanner et al., 2014), when we additionally

control for the predictability of the target item. We turn to this issue in the next section

and identify specific EEG-based predictions concerning how target expectations modulate

memory retrieval that tease apart these three hypotheses.

2.1.3 Interplay between retrieval interference and target expectations

In contrast to an extensive literature on cue-based retrieval interference, less work

has focused on the interplay between similarity-based interference and probabilistic ex-

pectations of the target items. To our knowledge, Campanelli et al. (2018) presented

the fist study to probe a related question. That is, they manipulated the probabilistic

expectations of the word at the retrieval site, but not that of the target item itself. They

used a dual-task design combining word list recall and sentence-reading to cross working

memory load and main clause verb type, creating Baseline and Interference conditions.

Working memory load was defined as whether or not participants needed to keep three

nouns in memory while reading a stimulus sentence, and the main clause verb was varied

as to whether or not the three nouns in memory could be a semantically compatible direct

object for the main clause verb and thus cause interference.

Example (4) presents example Memory Load stimuli from Campanelli et al.; slashes

mark segments of presentation during the self-pace reading task. (The No Memory Load

conditions include the same sentences without the memory list.) Examples (b) and

(c) illustrate Interference conditions because “website”, “handbag”, “password” in the

memory list are plausible objects for the verb “create”, but not for “perform” as in

the control condition illustrated in (a). The predictability of the main clause verb was

varied by pairing it with di↵erent main clause subjects, thus creating High and Low

Expectation conditions; (c) is the High Expectation condition since the verb “create” is

highly expected in the context of the sentence with the subject “choreographer” while
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(a) and (b) are Low Expectation conditions due to the lower expectation of the verbs

“create” and “perform” with the subject “person”.

(4) a. Low Expectation; No Interference
Memory list: website-handbag-password
It was the dance/that the person/who lived/in the city/performed/early
last month.

b. Low Expectation; Interference
Memory list: website-handbag-password
It was the dance/that the person/who lived/in the city/created/early last
month.

c. High Expectation; Interference
Memory list: website-handbag-password
It was the dance/that the choreographer/who lived/in the city/created/early
last month.

Campanelli et al. report an expectation e↵ect in reading times for both No Load

and Load conditions at the spillover region (e.g., “early last month”). They observe

faster reading time for the High Expectation (c) condition compared to Low Expectation

ones (a,b). An interference e↵ect in response time to comprehension questions was also

observed for the Load conditions, with slower response time for the Interference con-

ditions versus the No Interference one. This interference e↵ect approached significance

in reading time at the spillover region for the Low Expectation condition, but not for

the High Expectation condition. Campanelli et al. argue that the higher expectation of

words at the retrieval site might neutralize the interference e↵ect on reading time. They

conclude that sharp expectation o↵ered by constraining context facilitates the retrieval

and integration of previously encountered words at the retrieval site. The leading idea is

that accumulated evidence may selectively pre-activate the target word and make it more

available for retrieval compared to the distractors, consequently minimizing interference.

The observation of little interference e↵ects under high expectation for grammatical

sentences is also predicted by the retrieval-by-predictability account (Tanner et al., 2014),

although their reason is the absence of retrieval, rather than facilitated retrieval suggested

by Campanelli et al.. For the cue-preference-by-predictability account of Parker and

Phillips (2017), in contrast, these grammatical contexts do not lead to any prediction
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error and thus should not a↵ect how cues are weighted. Consequently, that account

predicts there should be no modulation by expectedness.

Schoknecht et al. (2022) also examine the interplay between interference and expec-

tation. They used German sentence pairs to compare two kinds of interference not yet

discussed: retroactive interference where the distractor noun followed the target noun,

and proactive interference where the distractor preceded the target nouns. As shown in

example (5), in the first context sentence (a to d) of each sentence pair, the target noun

is Kfer (“beetle”[masculine]), and the distractor noun Wurm (“worm”[masculine]) or

Raupe (“caterpillar”[feminine]), with gender-matching distractor noun causing more

interference. In the second target sentence (e) of each sentence pair, the target noun

could be retrieved at the critical gender-marked article den (“the”[masculine]). The ex-

pectation level of this article was further di↵erentiated by its cloze probability.

Schoknecht et al. find that retroactive interference elicits a broadly distributed neg-

ative ERP component compared to proactive interference for low, not high, expectation

conditions. This negativity with fronto-central focus lasted from 300 to 500 ms after the

article onset, and could indicate referential processing di�culty with multiple possible

referent candidates (the “Nref”e↵ect, discussed below in Section 2.1.5). Schoknecht

et al. further argue that pre-activation of a fully predicted target word could prevent

memory retrieval of the target and eliminate interference, consistent with the retrieval-

by-predictability account (Tanner et al., 2014).

(5) a. High Retroactive Interference
In der Schachtel sitzt ein Kfer und im Glas liegt ein Wurm.
“In the box there sits a beetle[masc.] and in the glas there lies aworm[masc.].”

b. High Proactive Interference
Im Glas liegt ein Wurm und in der Schachtel sitzt ein Kfer.
“In the glas there lies a worm[masc.] and in the box there sits a bee-
tle[masc.].”

c. Low Retroactive Interference
In der Schachtel sitzt ein Kfer und im Glas liegt eine Raupe.
“In the box there sits a beetle[masc.] and in the glas there lies a cater-
pillar[fem.].”

d. Low Proactive Interference
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Im Glas liegt eine Raupe und in der Schachtel sitzt ein Kfer.
“In the glas there lies a caterpillar[fem.] and in the box there sits a bee-
tle[masc.].”

e. Target sentence for all conditions
Peter befreit den Kfer aus der Schachtel.
“Peter frees the[masc.] beetle[masc.] from the box.”

These previous e↵orts help to clarify the interplay between expectation and memory re-

trieval, but face some limitations that we address in the present study. Note again that

both Campanelli et al. (2018) and Schoknecht et al. (2022) manipulated the probabilis-

tic expectations of the word at the retrieval site but not that of the target item. And

while Campanelli et al. (2018) examined interference e↵ects from a word list outside of

the stimulus sentence under the dual-task paradigm, Schoknecht et al. (2022) focused on

comparing proactive and retroactive interference, and did not directly assess the inter-

action between expectation and interference degree (high vs. low) which were strongly

correlated in their materials. To better connect with previous studies on cue-based re-

trieval interference (e.g., Dillon et al. (2013); Jäger et al. (2020); Lago et al. (2015); Martin

et al. (2012); Parker and Phillips (2017); Sturt (2003); Tanner et al. (2014); Wagers et al.

(2009)), we directly manipulate the probabilistic exptectations of the target item and

investigate interference e↵ects from a distractor word within the stimulus sentence in a

single-task sentence reading paradigm. We also modulate the degree of interference (high

vs. low) separately from expectation.

2.1.4 Interference and expectations when resolving Mandarin ellipsis

Memory retrieval allows language users to establish a linguistic dependency between

two non-adjacent constituents. This is especially crucial in the interpretation of so-called

“silent” constituents as in linguistic ellipsis (Martin and McElree, 2009; Merchant et al.,

2001). The ellipsis construction abounds in Mandarin (Li and Wei, 2014). To test how

linguistic expectations modulate memory retrieval, we use Mandarin noun-phrase ellipsis

construction shown in Table 2.1 in a single-task sentence reading paradigm.

17



Table 2.1: An example of Mandarin noun-phrase ellipsis.

ΩΩ 6Ü �ˆ ccc��� ( LLLNNN ¡ä� sR _ 6Ü ���ˆ̂̂⇥
mma dile yjin yf zi xngl pngbin nr y dile yjin
mother bring one-CLJian shirt+Jian

+LocalObject
at luggage+Jian

�LocalObject
side daughter also bring one-CL{Jian

LocalObject
}

‘The mother brought a shirt that was next to the luggage, and the daughter also brought one.’

Mandarin is a numeral classifier language which means that a classifier is required be-

tween a noun and its preceding numeral, demonstrative, and certain quantifiers (Del Gobbo,

2014). The noun needs to agree with the classifier in semantic features. The classifier is

a morpheme that “denotes some salient perceived or imputed characteristic of the entity

to which an associated noun refers” (Allan, 1977); functionally, it serves to cognitively

individualize and categorize units following semantic distinctions such as animacy, shape,

orientation, rigidity, and nature/function (Croft, 1994). For example, the classifier ˆ̂̂

“CLJian” is used for individual objects such as shirts and luggage, while the classifier ,,,

“CLBen” is used for books and pamphlets.

In a sentential context, noun-phrase ellipsis can be licensed after the classifier (Cheng

and Sybesma, 2014), as highlighted by the underlined number-classifier sequence in Table

2.1. Furthermore, because the noun-phrase ellipsis occurs in a coordinate sentence, the

syntactic and semantic representations of the two conjuncts need to be symmetrical or

parallel to each other according to the Parallelism Requirement (Zhang, 2009, p. 177).

That is, ���ˆ̂̂ “one-CLJian” from the sentence illustrated in Table 2.1 can only be inter-

preted as���ˆ̂̂ccc��� “one-CLJian shirt”, and refers to a new referent under the category

of shirt. In this way, LLLNNN “luggage” is a distractor noun; it is structurally illicit as

the target antecedent because it does not reside in a symmetrical object position to the

verb, but instead resides in a prepositional phrase adjunct. Successful licensing of noun-

phrases ellipsis thus requires a structurally correct antecedent noun that also agrees with

the classifier in semantic features.

When readers try to retrieve this target antecedent, the classifier critically provides

structural cues and relevant semantic cues based on its agreement features. For notational

purposes, the structural cue [Local Object] indicates a noun phrase that stands in the

structural position of an object to a verb and does not reside within an adjunct; the

semantic cue [Jian] stands for the semantic features of the classifier ˆ̂̂ “CLJian”. In
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the present experiment, the target antecedent always matches the structural retrieval

cue, while the distractor always mismatches the structural retrieval cue by virtue of its

syntactic position. Crucially, both the target and distractor nouns may either match or

mismatch the semantic cue of the classifier. Our use of a non-structural cue manipulation

follows Martin et al. (2012) who manipulated determiner gender in Spanish noun-phrase

ellipsis.2

To study interference e↵ects during retrieval, our experimental design manipulates

the semantic match between the classifier and a syntactically inaccessible distractor noun

(see Table 2.3 below). We also vary the semantic match of the structurally correct target

antecedent noun which o↵ers a manipulation of sentence grammaticality. A mismatching

target antecedent violates classifier-noun agreement and renders the sentence ungram-

matical. Semantic cue-based interference from distractors is predicted by the cue-based

retrieval theory (Lewis and Vasishth, 2005; Lewis et al., 2006; McElree, 2000; McElree

et al., 2003; Van Dyke and Lewis, 2003), which emphasizes the e↵ect of not only struc-

tural, but also non-structural cues when establishing linguistic dependencies like ellipsis.

In grammatical sentences, cue-matching distractors could induce inhibitory interference

and thus processing slow-downs (Franck et al., 2015; Jäger et al., 2017; Van Dyke and

Lewis, 2003; Van Dyke and McElree, 2006; Van Dyke, 2007; Van Dyke and McElree,

2011). (We discuss an alternative possibility further below that cue mismatch imposes

processing di�culty, as suggested by Martin et al., 2012.) In ungrammatical sentences,

facilitatory interference could be triggered by cue-matching distractors (Cunnings and

Sturt, 2018; Dillon et al., 2013; Jäger et al., 2017, 2020; Lago et al., 2015; Parker and

Phillips, 2017; Sturt, 2003; Tucker et al., 2015; Wagers et al., 2009).

Importantly, we test the influence of linguistic prediction on the retrieval operation

by varying the lexical-semantic expectation of the target antecedent as determined by the

main clause verb. The target word is less expected if the verb is congruent with both the

distractor and target nouns. The target is highly expected if the verb is only congruent

2Other instances of semantic cues in the literature include animacy (Van Dyke, 2007; Van Dyke and
McElree, 2011) and the semantic compatibility between verbs and their object nouns (Campanelli et al.,
2018; Cunnings and Sturt, 2018; Van Dyke and McElree, 2006); these have been found to be diagnostic
of similarity-based interference e↵ects in both grammatical and ungrammatical contexts.
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Table 2.2: Theoretical predictions from the retrieval-by-predictability and cue-preference-by-
predictability accounts for interference e↵ects under grammaticaliy and expectation manipu-
lation for our experimental stimuli. Predictions from the noisy-memory-based-predictability
account will be operationalized below in Section 2.3.2

Retrieval-by-predictability
account

Cue-preference-by-predictability
account

Noisy-memory-based-predictability
account

Grammatical High Expectation No interference No interference (operationalized in Section 4.2)
Low Expectation Inhibitory interference No interference

Ungrammatical High Expectation Facilitatory interference Facilitatory interference
Low Expectation Facilitatory interference No interference

with the target noun. The theories under consideration carry di↵erent predictions for

how expectation should interact with interference and grammaticality in this construc-

tion. According to the retrieval-by-predictability account (Tanner et al., 2014), successful

prediction minimizes both retrieval need and interference e↵ects, as in grammatical noun-

phrase ellipsis with highly expected target antecedent nouns. In contrast, less expected

target nouns, or wrongly expected target nouns as in ungrammatical noun-phrase ellipsis,

require the retrieval operation, during which the interference e↵ects may surface. Those

theoretical predictions are summarized in Table 2.2. Secondly, the cue-preference-by-

predictability account (Parker and Phillips, 2017) suggests that when retrieval is a nor-

mal resolution process, prioritized structural cues could minimize the interference e↵ects,

as in grammatical noun-phrase ellipsis, or ungrammatical noun-phrase ellipsis with lowly

expected target nouns. However, if retrieval is triggered by prediction error by highly

expected target nouns in ungrammatical noun-phrase ellipsis, neutralized syntactic cues

would increase the chance of interference e↵ects (see Table 2.2 for summary). We have

identified divergent predictions for our stimuli according to the retrieval-by-predictability

(Tanner et al., 2014) and cue-preference-by-predictability (Parker and Phillips, 2017) ac-

counts. Predictions of the noisy-memory-based-predictability account (Ryu and Lewis,

2021) for these stimuli are unknown. We operationalize that account below in Section

2.3.2 using the GPT2 large language model and ask whether surprisal values from GPT2

simulates responses reflecting interference and target expectations in a way similar to

human data when reading the same stimulus items.

In sum, we manipulate expectation of the target antecedent by varying the main verb,

grammaticality by manipulating semantic match of the classifier to target antecedent, and
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memory interference by manipulating the semantic feature of the distractor. This 2⇥2⇥2

design yields two levels of expectation (High/Low), two levels of grammaticality (Gram-

matical/Ungrammatical) and two levels of interference (High/Low).3 With this design, we

first test the hypothesis that target expectations modulate interference e↵ects under both

successful and unsuccessful retrievals by establishing: (i) the ERP correlates of retrieval

failure for ungrammatical ellipsis, (ii) ERP correlates of interference during retrieval suc-

cess or failure, (iii) how contextual expectation might modulate these neural signatures.

We then assess the explanatory power of three theoretical accounts: the retrieval-by-

predictability account (Tanner et al., 2014), the cue-preference-by-predictability account

(Parker and Phillips, 2017), and the noisy-memory-based-predictability account (Ryu

and Lewis, 2021). To evaluate the noisy-memory-based-predictability account, we ex-

amine how well the GPT2 large language model captures the interference e↵ects and

the interaction between interference and target expectations, in parallel with the ERP

analyses. The next section outlines our predictions according to previous literature on

language-related ERP components that are relevant for cue-based retrieval.

2.1.5 The electrophysiology of retrieval mechanism and linguistic expecta-

tions

Research on similarity-based retrieval interference has primarily been built on behav-

ioral data, including eye-tracking (Cunnings and Sturt, 2018; Dillon et al., 2013; Jäger

et al., 2020; Parker and Phillips, 2017; Sturt, 2003; Van Dyke, 2007; Van Dyke and

McElree, 2011), self-paced reading (Campanelli et al., 2018; Franck et al., 2015; Lago

et al., 2015; Tucker et al., 2015; Van Dyke and Lewis, 2003; Van Dyke and McElree,

2006; Van Dyke, 2007; Wagers et al., 2009), and speed-accuracy tradeo↵ (Van Dyke and

McElree, 2011). The current study uses EEG for its high temporal resolution in detailing

the retrieval process during sentence comprehension, whose multiple facets might not be

fully captured by behavioral measures. As pointed out in Tanner et al. (2014), the lack of

3We label the conditions “High/Low Interference” by following e.g., Schoknecht et al., Van Dyke and
Lewis (2003); Van Dyke (2007). And in line with the attraction literature, “High/Low Interference”
corresponds to “Attractor-match/mismatch”.
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consistent behavioral interference e↵ects reported in grammatical sentences might be due

to its subtle nature, and EEG might o↵er measures sensitive enough to tease apart such

nuances. Below we first review relevant ERP components before laying out predictions

for our experimental design.

To begin with, semantically unexpected words induce a poststimulus negativity be-

tween 200 and 600 ms with a peak around 400 ms, which is largest over centro-parietal

sensors and slightly right-lateralized (DeLong et al., 2005; Kutas and Hillyard, 1980,

1984; Kutas and Federmeier, 2011; Nieuwland et al., 2018, 2020). This “N400” e↵ect

has been linked to lexical-semantic processing di�culty (Kutas and Federmeier, 2011;

Nieuwland et al., 2020) as expectation can facilitate semantic activation of a word due

to pre-activation prior to the actual word appearance.

Secondly, violations of syntactic principles, including classifier-noun agreement viola-

tions (Hsu et al., 2014; Zhang et al., 2012), systematically induce a positive shift with a

peak around 600 ms after stimulus onset and which is generally maximal over central pos-

terior electrodes (Hagoort et al., 1993; Kaan et al., 2000; Kaan, 2002; Kaan and Swaab,

2003; Molinaro et al., 2011; Tanner et al., 2014; Yang et al., 2015). This “P600” e↵ect

has also been elicited by unfulfilled syntactic preferences in grammatically well-formed

sentences (Friederici et al., 2001; Kaan and Swaab, 2003; Osterhout and Holcomb, 1992;

Yang et al., 2010), and has been proposed to index revision processes prompted by in-

consistency between an initial syntactic prediction and the received input. The latency

of P600 may reflect the relative ease of the diagnosis, prior to actual reanalysis, for the

revision operations (Friederici et al., 2001). The amplitude of the P600 increases with the

degree of syntactic processing di�culty (Kaan et al., 2000; Kaan and Swaab, 2003). In

addition, the P600 e↵ect has been evoked by semantic verb-argument violations without

syntactic violations or ambiguities (Kim and Osterhout, 2005; Kuperberg et al., 2003),

and may indicate continuous combinatorial analysis in an e↵ort to resolve conflicting

semantic and syntactic representations (Kuperberg, 2007). Therefore, the onset and am-

plitude of the P600 can reliably signal syntactic processing di�culty, or combinatorial

analytical e↵ort, in both ungrammatical and grammatical sentences.

22



In investigating attraction e↵ects in English subject-verb agreement, Tanner et al.

(2014) reported a P600 e↵ect to ungrammatical, relative to grammatical, verbs. They

also reported a smaller P600 to ungrammatical verbs with a number-agreeing attractor

noun, compared to those with a number-disagreeing attractor, consistent with a facili-

tatory interference e↵ect. Tanner et al. interpreted the reduced P600 magnitude with

a matching attractor to indicate less robust processing of the agreement violations. No

significant di↵erence was detected for grammatical conditions in that study. Similarly,

Xiang et al. (2009) reported a P600 e↵ect to ungrammatical, compared to grammati-

cal, negative polarity item (NPIs) in English NPI licensing. A reduced P600 was also

reported for ungrammatical NPIs with an intrusive licensor, relative to those without a

licensor, showing a facilitatory interference e↵ect. Relatedly, Martin (2018) used English

verb-phrase ellipsis and found a P600 e↵ect to ungrammatical, versus grammatical verbs,

when the attractor verb-phrase mismatched the voice of the target verb-phrase. Martin

suggested that the voice feature match between the attractor and retrieval cue in the

ungrammatical condition was disruptive for antecedent retrieval and processing, but did

not explicitly test for inhibitory or facilitatory interference e↵ects. The P600 e↵ect can

thus e↵ectively index both grammaticality and interference e↵ects.

Martin et al. (2012), on the other hand, examined noun-phrase ellipsis marked by the

gender-bearing determiner otro/a (“another”) in Castilian Spanish. They found a sus-

tained, broadly distributed negativity e↵ect to ungrammatical, compared to grammatical,

determiners. This resembles the “Nref” e↵ect which is a sustained frontal negative de-

flection that onsets about 280 ms post-stimulus when an insu�ciently specific referential

expression, including nouns and pronouns, cannot identify a unique referent from multiple

competitors according to previous discourse (e.g. Van Berkum et al., 1999; Van Berkum,

2009). Martin et al. further found this negativity to be elicited by grammatical deter-

miners mismatching the gender of the attractors, in comparison to those matching the

attractors. They argued that the attractors were temporarily considered as antecedent

candidates, but did not fully match the retrieval cues. They suggest that the recency

and/or similarity (to targets) of a “local agreement attractor” in memory a↵ected re-
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trieval success even in grammatical ellipsis with retrievable antecedents. Although not

statistically significant, this negativity seemed to be smaller for ungrammatical determin-

ers matching the gender of the attractors, compared to those mismatching the attractors,

hinting perhaps at a facilitatory interference e↵ect.

While limited, these findings provide some foundation for ERP predictions in the

present study. We first predict a P600 e↵ect to ungrammatical, relative to grammatical,

ellipsis, due to syntactic violation of classifier-noun agreement. Alternatively, or addition-

ally, ungrammatical (versus grammatical) ellipsis might drive an Nref e↵ect as observed

by Martin et al. in the case that no referent can be established for the elided noun.

Following Tanner et al. (2014) and Xiang et al. (2009), we expect a larger P600

(and/or Nref) e↵ect in grammatical ellipsis for the cue-matching distractor, compared

to the cue-mismatching one. This would be an instance of inhibitory interference as

the semantic compatibility of the distractor might disrupt dependency formation for the

target, and confuse the reader in settling on a unique antecedent and referent, when

a search for antecedent is initiated at the numeral-classifier position. This inhibitory

interference due to a cue-overload could lead to both syntactic and referential processing

di�culty reflected in larger P600 and/or Nref. The account of Martin et al. (2012)

carries a contrasting prediction for grammatical sentences: They hold that an e↵ect in

the opposite direction (i.e. larger P600 and/or Nref for mis-matching distractors) could

follow if the ERP is driven by a mismatch between the distractor term and retrieval cues

in memory. For ungrammatical ellipsis, the cue-matching distractor could reduce the

P600 and/or Nref e↵ect compared to the cue-mismatching one. This prediction follows

under the theory that comprehenders might mistakenly consider the distractor as a valid

target if it matches the semantic cue. Such an illusion of grammaticality (Wagers et al.,

2009) could result in facilitatory interference, facilitating both syntactic and referential

processing marked by smaller P600 and/or Nref.

Lastly, in grammatical ellipsis, an interference e↵ect on the P600 and/or Nref could

be neutralized when the target antecedent is highly predictable, as predicted by the

retrieval-by-predictability account (Tanner et al., 2014). In ungrammatical ellipsis, the
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P600 and/or Nref e↵ect driven by facilitatory interference could be enlarged by a highly

anticipated target antecedent. If a strong expectation of the target antecedent is defied

at the retrieval site by a mismatching classifier, interference from the distractor would

become more evident, in line with the cue-preference-by-predictability account (Parker

and Phillips, 2017). In addition, the predictions of the noisy-memory-based-predictability

account (Ryu and Lewis, 2021) on the experimental stimuli will be derived below, and

compared with the human ERP data.

2.2 Methods

2.2.1 Materials

Forty four sets of eight conditions were created. To fulfill the expectation, grammat-

icality and interference manipulations, each condition in a set varied only in terms of:

(1) the main verb that carried a high or low prediction for the antecedent, (2) the crit-

ical classifier (of the elided noun phrase) that semantically matched or mismatched the

antecedent, and (3) the distractor that semantically matched or mismatched the critical

classifier. See Table 2.3 for an example stimulus set and Section 2.8 regarding access to

the complete set of experimental materials.

Using the classifier ˆ̂̂ “CLJian” at the retrieval site, (a) and (b) in Table 2.3 are

Grammatical because the target nominal antecedentccc��� “shirt” matches the semantic

cue of the classifier, marked as [+Jian]. (a) is also High Interference since the intervening

nominal distractor LLLNNN “luggage” also matches the semantic cue ([+Jian]), while (b)

is Low Interference due to a mismatch ([�Jian]) by the distractor ¯̄̄MMM “book”. Due to

the structural configuration, the target antecedent is always a match to the syntactic cue

of the classifier ([+Local Object]), and the distractor a mismatch ([�Local Object]).

With the classifier ,,, “CLBen” at the retrieval site, (c) and (d) are Ungrammatical

since the target antecedent ccc��� “shirt” mismatches the semantic cue of the classifier

([�Ben]). (c) is also High Interference because the distractor ¯̄̄MMM “book” is a match

to the semantic cue ([+Ben]), and (d) is Low Interference as a result of a mismatch

([�Ben]) by the distractor LLLNNN “luggage”.
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Table 2.3: An example of experimental stimuli.

(a) Low Expectation; Grammatical; High Interference
ΩΩ 6Ü �ˆ ccc��� ( LLLNNN ¡ä� sR _ 6Ü ���ˆ̂̂ ˙| ≈L⇥
mma dile yjin yf zi xngl pngbin nr y dile yjin chf lxng
mother bring one-CLJian shirt+Jian

+LocalObject
at luggage+Jian

�LocalObject
side daughter also bring one-CL{Jian

LocalObject
} go.on trip

‘The mother brought a shirt that was next to the luggage, and the daughter also brought one to go on a trip.’

(b) Low Expectation; Grammatical; Low Interference
ΩΩ 6Ü �ˆ ccc��� ( ¯̄̄MMM ¡ä� sR _ 6Ü ���ˆ̂̂ ˙| ≈L⇥
mma dile yjin yf zi shj pngbin nr y dile yjin chf lxng
mother bring one-CLJian shirt+Jian

+LocalObject
at book�Jian

�LocalObject
side daughter also bring one-CL{Jian

LocalObject
} go.on trip

‘The mother brought a shirt that was next to the book, and the daughter also brought one to go on a trip.’

(c) Low Expectation; Ungrammatical; High Interference
ΩΩ 6Ü �ˆ ccc��� ( ¯̄̄MMM ¡ä� sR _ 6Ü ���,,, ˙| ≈L⇥
mma dile yjin yf zi shj pngbin nr y dile ybn chf lxng
mother bring one-CLJian shirt�Ben

+LocalObject
at book+Ben

�LocalObject
side daughter also bring one-CL{Ben

LocalObject
} go.on trip

‘The mother brought a shirt that was next to the book, and the daughter also brought one to go on a trip.’

(d) Low Expectation; Ungrammatical; Low Interference
ΩΩ 6Ü �ˆ ccc��� ( LLLNNN ¡ä� sR _ 6Ü ���,,, ˙| ≈L⇥
mma dile yjin yf zi xngl pngbin nr y dile ybn chf lxng
mother bring one-CLJian shirt�Ben

+LocalObject
at luggage�Ben

�LocalObject
side daughter also bring one-CL{Ben

LocalObject
} go.on trip

‘The mother brought a shirt that was next to the luggage, and the daughter also brought one to go on a trip.’

(e) High Expectation; Grammatical; High Interference
ΩΩ �Ü �ˆ ccc��� ( LLLNNN ¡ä� sR _ �Ü ���ˆ̂̂ ˙| ≈L⇥
mma chunle yjin yf zi xngl pngbin nr y chunle yjin chf lxng
mother wear one-CLJian shirt+Jian

+LocalObject
at luggage+Jian

�LocalObject
side daughter also wear one-CL{Jian

LocalObject
} go.on trip

‘The mother wore a shirt that was next to the luggage, and the daughter also wore one to go on a trip.’

(f) High Expectation; Grammatical; Low Interference
ΩΩ �Ü �ˆ ccc��� ( ¯̄̄MMM ¡ä� sR _ �Ü ���ˆ̂̂ ˙| ≈L⇥
mma chunle yjin yf zi shj pngbin nr y chunle yjin chf lxng
mother wear one-CLJian shirt+Jian

+LocalObject
at book�Jian

�LocalObject
side daughter also wear one-CL{Jian

LocalObject
} go.on trip

‘The mother wore a shirt that was next to the book, and the daughter also wore one to go on a trip.’

(g) High Expectation; Ungrammatical; High Interference
ΩΩ �Ü �ˆ ccc��� ( ¯̄̄MMM ¡ä� sR _ �Ü ���,,, ˙| ≈L⇥
mma chunle yjin yf zi shj pngbin nr y chunle ybn chf lxng
mother wear one-CLJian shirt�Ben

+LocalObject
at book+Ben

�LocalObject
side daughter also wear one-CL{Ben

LocalObject
} go.on trip

‘The mother wore a shirt that was next to the book, and the daughter also wore one to go on a trip.’

(h) High Expectation; Ungrammatical; Low Interference
ΩΩ �Ü �ˆ ccc��� ( LLLNNN ¡ä� sR _ �Ü ���,,, ˙| ≈L⇥
mma chunle yjin yf zi xngl pngbin nr y chunle ybn chf lxng
mother wear one-CLJian shirt�Ben

+LocalObject
at luggage�Ben

�LocalObject
side daughter also wear one-CL{Ben

LocalObject
} go.on trip

‘The mother wore a shirt that was next to the luggage, and the daughter also wore one to go on a trip.’

Employing the main clause verb 666ÜÜÜ “bring”, (a) to (d) are Low Expectation

because both the target antecedent ccc��� “shirt”, and the distractors LLLNNN “luggage”

and ¯̄̄MMM “book” can be a conceptually possible object noun of the verb. A change of

the main clause verb to���ÜÜÜ “wear” makes (e) to (h) High Expectation since the verb is

only semantically congruent with the target antecedent ccc��� “shirt”, but not with the

distractors LLLNNN “luggage” or ¯̄̄MMM “book”.
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Target antecedent and distractor nouns were matched across conditions in terms of

log frequency (base 10): antecedent noun M = 3.75 (SD = 0.91), di↵erent classification

distractor 3.67 (0.66), same classification distractor 3.50 (0.80).4 In addition, the numer-

als preceding the critical classifiers ranged from one to nine, with each number repeating

for four or five times across sets. The critical classifier and its next word never occurred in

a sentence-final position. Below we present the norming procedure for the expectation,

grammaticality and interference manipulations based on the conditional probability of

the object nouns given the verbs, and the classifier-noun collocation frequency.

To begin with, the conditional probability of the object nouns given the verbs was used

to estimate whether the main verb highly predicted the antecedent noun compared to the

distractor nouns (High Expectation condition), or whether the main verb did not predict

the antecedent as well as the distractor nouns (Low Expectation condition). We used

Chinese Word Sketch (Huang et al., 2005), a web-based system for collocation extraction

based on the 1.4 billion words of Linguistic Data Consortium’s Chinese Gigaword corpus

(Huang, 2009).

For the High Expectation condition, the main verb always took as the object the

antecedent noun more often than the distractor nouns, showing high expectation for the

antecedent over the distractor, given the main verb. The raw counts that yield the condi-

tional probability are: verbM = 14877.11 (SD = 52665.99), antecedent 462.68 (1829.16),

di↵erent classification distractor 0.09 (0.0062), same classification distractor (raw count

= 0). The conditional probability of the antecedent or distractor noun given the verb are:

antecedent M = 0.07 (SD = 0.12), di↵erent classification distractor 0.000039 (0.00018),

same classification distractor (raw count = 0).

Due to the size of the billion-word-corpus, our critical verbs and nouns are sparsely

distributed in the data set. The key take-away is that the conditional probability of the

antecedent given the high expectation verb is at least three orders higher than that of

the distractor given the verb.

For the Low Expectation condition, the main verb showed no preference in taking the

4“Same classification distractors” refers to distractors that are semantically compatible with the same
classifiers as the antecedents, and “di↵erent classification distractors” refers to those that are not.
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antecedent or the distractors as object nouns. The raw counts that yield the conditional

probability are: verb M = 71398.96 (SD = 106005.96), antecedent 62.32 (234.66), dif-

ferent classification distractor 11.77 (12.81), same classification distractor 26.25 (62.91).

The conditional probability of the antecedent or of the distractor noun given the verb

exhibited no significant di↵erences: antecedent M = 0.0028 (SD = 0.0096), di↵erent

classification distractor 0.0017 (0.0062), same classification distractor 0.0022 (0.0064).

The critical classifiers were selected from Gao and Malt (2009), who developed a

taxonomy of 126 common individual classifiers and their associated object nouns. 41 dif-

ferent critical classifiers were used in the Grammatical condition, and 32 di↵erent critical

classifiers in the Ungrammatical condition. 21 of them appeared in both conditions for

di↵erent stimuli sets. The (in)congruity between the classifiers and object nouns, includ-

ing the target antecedent and distractors, was confirmed by classifier-noun collocation

frequency from Chinese Word Sketch (Huang et al., 2005).

Following Chan (2019), the degree of relative incongruity of the classifier-noun pair

was calculated by the ratio of the mismatching classifier-noun collocation frequency to the

matching classifier-noun collocation frequency. The lower the mismatching classifier-noun

collocation frequency, the lower the incongruity ratio. An incongruity ratio below 25%

was the threshold of incongruity for the mismatching classifier compared to the matching

classifier.5 For example, the collocation frequency for “CLBen-shirt” and “CLJian-shirt”

were 0 and 463 respectively, resulting in an incongruity ratio of 0%, indicating that

“CLBen” was the semantically mismatching classifier, and “CLJian” was the semantically

matching classifier, for the noun “shirt”. The incongruity ratio for antecedent was below

0.4% for all 44 stimulus sets; the incongruity ratio for di↵erent classification distractor

was below 4% for all 44 sets; the incongruity ratio for same classification distractor was

below 2% for 43 sets, and was 25% for 1 set.

All 44 stimuli sets met the above criteria. To balance the amount of available data

against participant fatigue, three lists of 30 stimuli sets were generated from the original

5Chan used 10% as the incongruity ratio threshold. For our stimuli, all of the ratios were below 4%
except for one, which was 25%, due to the smaller number of instances of that particular classifier-noun
pair in the collocation corpus (Huang et al., 2005).
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44 sets, so that 42 sets were used twice in di↵erent lists and two sets were used for

all three lists. For each list, 30 stimuli sets of eight conditions were randomized with

104 filler sentences with various lengths and syntactic structures. The fillers were all

grammatical and involved no semantic incongruity. Each participant saw one list of 344

sentences. We adopted this approach by following, for example, Bornkessel-Schlesewsky

et al. (2011) and Schoknecht et al. (2022) in maximizing the amount of data which can be

collected from each participant, compared to employing a Latin square design, given the

considerable time and e↵ort required for EEG recording preparation. To militate against

order e↵ects, we fully randomized each list di↵erently for each participant.6

2.2.2 Metric for noisy-memory-based-predictability

Following Ryu and Lewis (2021), we used GPT2 surprisal as the metric to evaluate

the noisy-memory-based-predictability account in relation to interference e↵ects and the

interaction between interference and target expectations. We computed the surprisal

values of the critical number-classifier sequence from Chinese GPT2 (Du, 2019; Radford

et al., 2019), a large-scale Transformer model pretrained on CLUECorpusSmall (Xu et al.,

2020) with five billion Chinese words. Surprisal (Hale, 2001; Levy, 2008) was defined as

the negative log probability of the critical number-classifier sequence given left-context

of the stimulus sentence. We derived the surprisal values for all 44 stimuli sets.

2.2.3 Participants

Thirty native Mandarin speakers (6 Males, 24 Females; aged 19 to 37; mean age=23.7

years) participated in the study after signing a written consent form. The screening

criteria include right-handedness, normal or corrected-to-normal vision, and no history

of neurological or psychiatric disorders a↵ecting the language functioning based on self

report. All procedures were in accordance with protection for human subjects at the Uni-

versity of Michigan, following protocol HUM00081060. Participants were compensated

15 USD/hour.

6As the trial order e↵ect might moderate the observed results, we conducted a post-hoc trial order
Bayesian model analysis below in Section 2.3.1 to rule out potential confounds of repeated exposure.
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2.2.4 EEG procedure

Participants were comfortably seated approximately 100 cm from the computer screen

in an isolated room, and were instructed to silently read sentences while minimizing

movement and eye blinks. Sentences were presented word-by-word at the center of the

screen in white text on a black background using an RSVP paradigm with the stimuli

segmented as shown in Table 2.3. A fixation cross of 500 ms began each trial and each

word lasted for 300 ms with a 300 ms inter-stimulus-interval. One forth of the trials were

followed by a yes/no comprehension question to check attentiveness, and the participants

answered by pressing one of two keys on the keyboard with left or right index finger. The

yes/no response keys were counterbalanced across participants. All participants showed

above-chance accuracy on the comprehension questions (mean percent correct = 80%,

range = [60%, 92%]). The next trial started immediately after the key press, or after

300 ms for trials without comprehension questions. After a short practice session to

familiarize the participants with the task, the main session took approximately an hour,

including 344 trials, with a break every 15 trials.

2.2.5 EEG recording

EEG was recorded from 32 actively-amplified electrodes, mounted on an elastic cap

(actiCAP, EASYCAP GmbH), and arranged across the scalp following the Standard 32-

channel actiCAP snap layout. Two electrodes were placed above and below the left eye

to monitor vertical eye movements. The recordings were digitized at 500 Hz between 0.1

and 200 Hz, and referenced to the left mastoid electrode. Channel impedances were kept

below 25 kOhms.

2.2.6 Data analysis

We used FieldTrip, a MATLAB toolbox (Oostenveld et al., 2011), for data processing.

The EEG was high-pass filtered at 0.1 Hz, re-referenced to the average of the left and

right mastoid electrodes, and epoched from 300 ms before the critical number-classifier

sequence onset to 1000 ms after the onset. Trials with eye movements were removed
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using Independent Component Analysis (Jung et al., 2000), and trials with excessive noise

were excluded based on visual inspection, with a removal range of 0.1%–19% (median

= 10%) across participants. Data from channels exceeding the impedance threshold

or introducing excessive noises were interpolated by surface spline interpolation (Perrin

et al., 1987) (median channels interpolated per participant = 1, range = [0, 4]). Trials were

low-pass filtered at 20 Hz, corrected with a 100 ms pre-stimulus baseline, and averaged

together per condition.

In accordance with previous literature (Molinaro et al., 2011; Parker and Phillips,

2017; Sturt, 2003; Tanner et al., 2014; Xiang et al., 2009), we analyzed centro-posterior

electrodes within 500–800 ms (for the main e↵ect of grammaticality) and 600–800 ms

(for interference e↵ects) after the critical word onset (e.g., ���ˆ̂̂ “one-CLJian”) for the

predicted P600 e↵ect. We followed Parker and Phillips (2017) and Sturt (2003) in dis-

sociating the grammaticality and the interference e↵ects, where the former temporally

precedes the later. Specifically, while Tanner et al. (2014) reported grammaticality e↵ect

in the 500–800ms time interval, Xiang et al. (2009) reported grammaticality e↵ect in the

400–600 and 600–800ms time intervals, and interference e↵ect in the 600–800ms interval

in centro-posterior electrodes. As proposed in the review paper of Molinaro et al. (2011),

various subcomponents could interact in determining the P600 e↵ects, evidenced by re-

ports of positivities of di↵ering time intervals. In addition, for the predicted Nref e↵ect as

reported in Martin et al. (2012), we followed Martin et al. in analyzing all EEG electrodes

within 400–1000 ms after the critical word onset. Within these spatio-temporal windows,

we employed a non-parametric statistical test (Maris and Oostenveld, 2007) to address the

multiple comparisons problem which arises from sampling at multiple electrodes and time

points. The cluster-based permutation tests were implemented as follows: (i) a repeated-

measures t-test was conducted on each electrode-time pair. (ii) pairs with p < 0.05 were

clustered based on temporal-spatial adjacency, and their t-values were summed. (iii)

steps (i) and (ii) were repeated for 1,000 times by randomly assigning condition labels.

(iv) clusters with p < 0.05 were considered as statistically significant. (v) clusters un-

der High Expectation and Low Expectation conditions were compared respectively for
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Grammatical and Ungrammatical conditions to determine interaction e↵ects.

To further compare the performance of GPT2 with human EEG data, we also ex-

tracted single-trial EEG amplitudes, measured in microvolts, by averaging per trial from

selected centro-posterior electrodes (Cz, CP1, CP2, Pz, P3, P4) within 600–800 ms after

the critical word onset (e.g.,���ˆ̂̂). We then conducted Bayesian statistical model analy-

sis on the z-scores of single-trial EEG amplitudes, the expectation⇥grammaticalty⇥interference

manipulation, and GPT2 surprisal using the brms package (Bürkner, 2017) and the loo

package (Vehtari et al., 2017), with weakly informative priors to improve convergence

and avoid overfitting (see Section 2.3.2).7

2.3 Results

2.3.1 EEG

The critical number-classifier sequences elicited a slow late positive shift in Ungram-

matical conditions compared to Grammatical conditions. Figure 2.1 plots the grand av-

erage ERPs and 95% confidence intervals at electrode Pz for all eight conditions, grouped

by Low Expectation (left panel), High Expectation (right panel), Low Interference (upper

panel), and High Interference (lower panel). All Ungrammatical conditions show a late

positive component with the exception of Ungrammatical; High Expectation; High Inter-

ference condition, which is the predicted condition to drive the facilitatory interference

e↵ect indexed by a reduced P600 amplitude. All corresponding topographic distributions

are based on the 500 to 800 ms interval after the critical word onset. Figure 2.2 further

plots the grand average ERPs and 95% confidence intervals collapsed across all Ungram-

matical, or Grammatical conditions at electrodes Cz, Pz and Oz in the upper panel, and

in the lower panel displays the corresponding topographic distributions in four adjacent

7 Priors for regression coe�cients were defined as N (0, 1). In the Wilkinson-Rogers notation, the
models were specified as:

1. eeg ⇠ expectation * grammaticality * interference + (1 + (expectation *
grammaticality * interference) | participant),

2. eeg ⇠ expectation * grammaticality * interference + gpt2 surprisal + (1 +
(expectation * grammaticality * interference) + gpt2 surprisal | participant)
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time windows spanning from 100 to 1000 ms after the critical word onset. The positive

going waveform begins around 400–500 ms after word onset and lasts to 700–800 ms,

with maximal amplitude over centro-posterior electrode sites, and with little laterality

preference. This main e↵ect of grammaticality was statistically significant from 512–644

ms (cluster p = 0.049).

Figure 2.1: Grand averages and 95% confidence intervals (grey shading) elicited by the under-
lined critical word onset (i.e. number-classifier sequence) at Pz for all eight conditions grouped
by Low Expectation (left), High Expectation (right), Low Interference (upper), and High In-
terference (lower). Ungrammatical condition is plotted with red lines and corresponds to the
left scalp distribution for each contrast; Grammatical condition is plotted with blue lines and
corresponds to the right scalp distribution. Scalp distributions are shown for the interval 500
to 800 ms after the critical word onset.

For Ungrammatical sentences, the High Interference condition elicited a reduced pos-

itivity relative to the Low Interference condition, but only when Expectation was High,

not Low. Figure 2.3 shows the di↵erence waves resulting from subtraction of the High

Interference from the Low Interference condition and 95% confidence intervals, separately

for High Expectation and Low Expectation conditions, along-side topographic di↵erence

maps for High Expectation and Low Expectation conditions respectively. The interac-
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Figure 2.2: Grand averages
and 95% confidence intervals
(grey shading) at Cz, Pz, Oz
for Ungrammatical (red lines)
or Grammatical (blue lines)
condition, and their scalp dis-
tributions during four consec-
utive time windows between
100 to 1000 ms after the under-
lined critical word onset (i.e.
number-classifier sequence).

tion of Expectation, Grammaticality and Interference reached statistical significance from

678–748 ms (p = 0.048).

For Grammatical conditions, the High Interference condition elicited a more pro-

nounced positivity compared to the Low Interference condition, but only in Low Expec-

tation, not High Expectation conditions. Figure 2.4 shows di↵erence waves resulting from

subtraction of the High Interference from the Low Interference condition and 95% confi-

dence intervals, for High Expectation and Low Expectation conditions respectively along

with the topographic distributions for these di↵erences waves separately for High Ex-

pectation and Low Expectation conditions. However, this trend did not reach statistical

significance.

In contrast to the observed P600 e↵ects, no Nref e↵ect was detected when comparing

Ungrammatical to Grammatical conditions (p = 0.12). And no modulation of Nref

34



Figure 2.3: Di↵erence waves
and 95% confidence intervals
(grey shading) at Cz, Pz, Oz
for Low Interference minus
High Interference in High Ex-
pectation (red lines) or Low
Expectation (blue lines) un-
grammatical condition, and
their scalp distributions dur-
ing four consecutive time win-
dows between 200 to 1000
ms after the underlined criti-
cal word onset (i.e. number-
classifier sequence).

e↵ect by Interference and Expectation was found in either Ungrammatical (p = 0.24), or

Grammatical (p = 0.49), conditions.

In brief, an ensemble of positive deflections consistent with the P600, but not Nref,

was induced by Ungrammatical conditions, relative to Grammatical conditions. More-

over, in Ungrammatical conditions this P600 was reduced when the semantic features

of an intervening distractor matched the classifier, but only when the target was highly

predictable. This finding replicates and extends previous EEG findings on facilitatory

interference (Martin et al., 2012; Tanner et al., 2014; Xiang et al., 2009), with a newly-

established expectation modulation. For Grammatical conditions, a non-significant trend

for prediction-modulated inhibitory interference is consistent with prior behavioral find-
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Figure 2.4: Di↵erence waves
and 95% confidence intervals
(grey shading) at Cz, Pz, Oz
for Low Interference minus
High Interference in High Ex-
pectation (red lines) or Low
Expectation (blue lines) gram-
matical condition, and their
scalp distributions during four
consecutive time windows be-
tween 200 to 1000 ms after the
underlined critical word on-
set (i.e. number-classifier se-
quence).

ings (Campanelli et al., 2018).

Note that the choice of number-classifier sequences as the critical region presupposes

that participants actively anticipate ellipsis; this assumption is confirmed by the grammti-

cality e↵ect observed at this region. Importantly for our purposes, the interference e↵ect

observed at this region is further modulated by expectation of the target antecedent.

We also analyzed the verb region immediately following the number-classifier se-

quence; it is this region where ellipsis is confirmed. We observed there a similar pattern

of di↵erences between conditions as in the critical region, although that pattern is indexed

by a broadly distributed negativity rather than a P600. This negativity may be consistent

with the Nref component. Specifically, a main e↵ect of grammaticality was statistically
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significant from 400 to 828 ms (p = 0.008), with the Ungrammatical condition eliciting

a broadly distributed negative shift relative to the Grammatical condition as plotted in

Appendix A, Figure 1. For Ungrammatical conditions, an interference e↵ect was statis-

tically significant from 702 to 998 ms under High (p = 0.028), but not Low (p = 0.41)

Expectation condition, with High Interference condition eliciting an enhanced negativity

compared to the Low Interference condition (see Figure 2 in Appendix A). For Gram-

matical sentences, no interference e↵ect was detected for either High (p = 0.75), or Low

(p = 0.34) Expectation condition (see Figure 3 in Appendix A). The fact that interference

e↵ects did not surface in Low Expectation condition for both the critical number-classifier

region, and also in the following verb region is consistent with the general finding of an

expectation-modulated interference e↵ect in ungrammatical sentences.

To evaluate the potential confound of repeated exposure, we also conducted a post-

hoc Bayesian model analysis testing trial order e↵ects at the critical number-classifier

sequences. We fit a model with EEG single-trial P600 amplitudes as dependent vari-

able and the trial order as independent variable along with the experimental factors and

all higher order interactions. The 95% highest-posterior density (HPD) interval of the

marginal e↵ect of trial order spanned from �0.03 to 1.05 (mean = 0.54). Because this

interval includes zero, we do not observe evidence suggesting trial order modulated the

P600. Similarly, trial order did not reliably interact with the key experimental manip-

ulation. We quantify this by examining the marginal HPD for the interaction between

trial order and interference in each cell of the experimental design defined by gramamti-

cality and expectation: Ungrammatical; High Expectation M = �0.05 [�0.18, 0.09],

Ungrammatical; Low Expectation �0.06 [�0.20, 0.07], Grammatical; High Expectation

0.04 [�0.08, 0.18], Grammatical; Low Expectation �0.06 [�0.19, 0.07].

2.3.2 Noisy-memory-based-predictability

We now evaluate how well these EEG signatures of retrieval interference are captured

by the GPT2 language model which we use to operationalize the noisy-memory-based-

predictability account (Ryu and Lewis, 2021). Figures 2.5 and 2.6 plot averaged P600
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Figure 2.5: Stimulus-set-averaged EEG signal. EEG signals averaged per trial from selected
centro-posterior electrodes (Cz, CP1, CP2, Pz, P3, P4) within 600–800 ms after the underlined
critical word onset (i.e. number-classifier sequence) for High Interference (red points) or Low
Interference (blue points) condition under High Expectation (left box) or Low Expectation
(right box) condition for Grammatical (left within each box) or Ungrammatical (right within
each box) condition. Points represent individual averages per stimulus set for plotting purposes,
and boxes represent the group mean and 95% confidence intervals.

Figure 2.6: GPT2 surprisal. GPT2 surprisal at the critical number-classifier sequences across
conditions as described in Figure 2.5. A three-way interaction is evident in EEG signals, but
not GPT2 surprisal. This di↵erence is statistically evaluated using model comparison in Section
2.3.2.

amplitudes from human EEG recordings along-side GPT2 surprisal values calculated

at the critical number-classifier sequences. As detailed above, EEG results (Figure 2.5)

exhibit a three-way interaction between grammaticality, interference and expectation. To

repeat, for Ungrammatical conditions, the P600 was reduced in High (red points) vs. Low

(blue points) Interference, but only in High (left box), not Low (right box), Expectation

condition. No reliable di↵erence surfaced in Grammatical conditions.

In contrast, GPT2 results (Figure 2.6) only show a two-way interaction between gram-

38



Table 2.4: ANOVAs for GPT2 surprisal at the critical number-classifier sequences.

Source dfs F p
Expectation 1,43 11.67 <.01
Grammaticality 1,43 686 <.001
Interference 1,43 54.73 <.001
Expectation ⇥ Grammaticality 1,43 34.72 <.001
Expectation ⇥ Interference 1,43 15.27 <.001
Grammaticality ⇥ Interference 1,43 36.74 <.001
Expectation ⇥ Grammaticality ⇥ Interference 1,43 1.77 n.s.

Table 2.5: Theoretical predictions from retrieval-by-predictability account, cue-preference-by-
predictability account and noisy-memory-based-predictability account for interference e↵ects
under grammaticaliy and expectation manipulation in our experimental stimuli.

Retrieval-by-predictability
account

Cue-preference-by-predictability
account

Noisy-memory-based-predictability
account

Grammatical High Expectation n.s. n.s. n.s.
Low Expectation Inhibitory interference n.s. n.s.

Ungrammatical High Expectation Facilitatory interference Facilitatory interference Facilitatory interference
Low Expectation Facilitatory interference n.s. Facilitatory interference

maticality and interference (F (1, 43) = 36.74, p < .001), without a three-way interaction

with the additional expectation factor (F (1, 43) = 1.77, p = 0.19) (see Table 2.4). In par-

ticular, for Ungrammatical conditions, lower surprisal was observed in High (red points)

vs. Low (blue points) Interference, under both High (left box) and Low (right box)

Expectation conditions. No reliable di↵erences occurred for Grammatical conditions.

This two-way interaction replicates Ryu and Lewis, who simulated facilitatory, but not

inhibitory, interference e↵ects using GPT2 surprisal. The GPT2 results here serve to op-

erationalize the theoretical predictions of the noisy-memory-based-predictability account

for our experimental stimuli, which we summarize in Table 2.5, along with predictions

from retrieval-by-predictability and cue-preference-by-predictability account (updating

Table 2.2).

The absence of an interaction in GPT2 surprisal between Interference, Grammatical-

ity and Expectation is bolstered by a single-trial Bayesian model analysis which found

little contribution of GPT2 surprisal to the P600 response. Specifically, we compared two

models as specified in Footnote 4. The first model has the z-scores of EEG single-trial

signals as dependent variable, and the interaction among expectation, grammaticality

and interference as independent variable, with random e↵ect of the interaction among

expectation, grammaticality and interference on each participant. The second model also
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has the z-scores of EEG single-trial signals as dependent variable, and the interaction

among expectation, grammaticality and interference, as well as the z-scores of surprisal

values, as independent variables, with random e↵ects of the interaction among expecta-

tion, grammaticality and interference, and of surprisal on each participant. Models are

compared via approximate leave-one-out cross-validation (Vehtari et al., 2017) and the

comparison is summarized in terms of the di↵erence in expected log pointwise predic-

tive density (�ELPD). The results showed that the first model without contribution of

the GPT2 surprisal was the better performing model (�ELPD = �2.6, SE = 0.5); the

rubric of Sivula et al. (2020) describes values of ELPD < 4 as “small”.

In sum, while GPT2 surprisal does correlate with both grammaticality and facilitatory

interference e↵ects, it does not capture how expectations modulate these e↵ects as found

for the P600 ERP response. This is consistent with e.g. Hale et al. (2018), who reported

no correlation between a surprisal measure derived from a recurrent neural network and

the P600 (rather, surprisal was associated with an earlier anterior component in that

study). Similarly, surprisal estimates derived from GPT2 are also limited in how well

they predict human self-paced reading time and eye-gaze duration data compared to

models which explicitly represent sentence structure (Oh et al., 2022) (see also Stanojević

et al., 2023 regarding such limitations in capturing fMRI signals with a large language

model.) Moreover, the larger the Transformer-based language model, the less predictive

of human reading times the models become in terms of the surprisal estimates they

generate (Oh and Schuler, 2023). This pattern follows in as much as the noisy-memory

system that we operationalize with GPT2 might reflect memorization of sequences from

immense amounts of training data (to maximize next-word prediction) in a way that is

not human-like.

2.4 Discussion

We tested the hypothesis that target expectations modulate retrieval interference

using Mandarin noun-phrase ellipsis construction in a single-task paradigm. We report

three principle new findings: (i) ungrammatical noun-phrase ellipsis due to a mismatching
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classifier generates a P600 e↵ect in comparison to grammatical ellipsis, (ii) the semantic

feature of an intervening distractor, as well as the expectancy of the target antecedent,

modulate the P600 signal in ungrammatical ellipsis, and (iii) a Transformer-based ar-

tificial neural network (GPT2) simulates the interaction between grammaticality and

interference but does not capture the further modulatory e↵ect of expectation. The

predicted main e↵ect of grammaticality in EEG signals indicates that grammatical and

ungrammatical ellipsis are clearly di↵erentiated by readers, and that the antecedent noun

can be successfully retrieved and incorporated in grammatical conditions, but not in un-

grammatical conditions. This e↵ect also mitigates against the possibility that the local

attractor is uniformly mistaken as the intended target for ellipsis resolution.

The observed interaction between grammaticality, interference and expectation in

EEG signals highlights an interesting di↵erential e↵ect of cue-based retrieval interfer-

ence and expectation on grammatical versus ungrammatical ellipsis. For ungrammatical

ellipsis, the semantic cue-matching distractor in High Interference conditions might be

temporarily taken as the antecedent noun and thus attenuate the P600 amplitude, com-

pared to the Low Interference condition, but only when prediction error is incurred by a

highly expected cue-mismatching target antecedent, not a less expected one. In contrast

to this reliable interaction of expectation and facilitatory interference, the interaction

of expectation and inhibitory interference e↵ect in grammatical ellipsis is numerically

smaller and not statistically reliable. In addition, GPT2 surprisal models only the facili-

tatory interference e↵ects without the expectation modulation.

Observant readers might notice that the expectation manipulation in the current

study varies not only the predictability of the target item, but also, inevitably, the se-

mantic congruity of the distractor item with the main clause verb. That is, in High Ex-

pectation conditions, the target item is highly anticipated because the distractor items

are semantically incongruent with the main clause verb. In Low Expectation conditions,

the target item is less anticipated since the distractor items are also semantically com-

patible with the main clause verb. This design thus cannot disentangle the e↵ects of

target predictability from that of distractor congruity/plausibility. It is possible that
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both target predictability and distractor congruity/plausibility incur the prediction er-

ror in ungrammatical conditions, and subsequently moderate the facilitatory interference

e↵ects. While the discussion below focuses on the implication of target predictability,

essential future work is needed to better di↵erentiate the e↵ects of target predictabil-

ity from that of distractor congruity/plausibility. As discussed in Section 2.4.2 below,

our ERP evidence (but not GPT2 simulation) is consistent with the cue-preference-by-

predictability account (Parker and Phillips, 2017) developed under the broader cue-based

retrieval framework. Below we first discuss our results in terms of the cognitive processes

indexed by the observed ERP responses, and then relate them to theoretical models in

terms of cue-based retrieval theory.

2.4.1 Neural signatures of grammaticality, interference and expectation

The mismatching classifiers in our study violate the agreement requirement of the

antecedent nouns and evoke a P600 e↵ect. Such an e↵ect has been well-reported in

response to violations of syntactic rules or expectation (Tanner et al., 2014; Xiang et al.,

2009; Yang et al., 2015, 2010, inter alia), including classifier-noun agreement violation

in Mandarin (Hsu et al., 2014; Zhang et al., 2012). Since the classifier mismatching the

target antecedent disrupts ellipsis resolution, the parser may initiate a repair in syntactic

relations, which is reflected in the P600 (Gouvea et al., 2010).

At the ellipsis site (i.e. the critical number-classifier sequence), we do not replicate

the sustained negativity, or Nref e↵ect, that was reported by Martin et al. (2012) for

mismatching determiners in ungrammatical Spanish noun-phrase ellipsis. We speculate

that the readers could readily detect the syntactic anomaly in the present study and

engage in reanalyzing the syntactic relations, rather than directly experiencing referen-

tial failure when trying to establish a referent for the elided noun. At the verb region

immediately following the number-classifier sequence, where ellipsis is confirmed, we do

observe a broadly distributed negativity consistent with the Nref e↵ect. We contend that

this observation does not complicate the interpretation of the P600 e↵ect observed in the

previous region, and we do not speculate the underlying processes for this later negative
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component.

Importantly, the agreement violations indexed by P600 magnitude are attenuated

by semantically matching distractor nouns in High Interference condition, relative to

mismatching distractor nouns in Low Interference condition, when the highly expected

target nouns do not match the classifiers. This attenuation is not present when nominal

antecedents have low expectancy. Our results thus indicate that the resolution of noun-

phrase ellipsis could be influenced when a local attractor matches the retrieval cue in an

ungrammatical sentence where a highly expected antecedent noun could not be retrieved.

The semantic feature of the local attractor and the expectancy of the target antecedent

could both influence the retrieval process.

While Martin et al. reported a tentative (not statistically significant) facilitatory

interference e↵ect indexed by the Nref component during the resolution of noun-phrase

ellipsis when a local attractor matches the gender of the ungrammatical determiner,

Tanner et al. (2014) found a facilitatory interference e↵ect indexed by a P600 when an

attractor noun agrees in number with the ungrammatical verb during the formation of

subject-verb agreement dependency. Similarly, Xiang et al. (2009) found a facilitatory

interference e↵ect indexed by a P600 during in a negative polarity construction (NPI)

when an intrusive licensor intrudes for the ungrammatical NPI. We therefore first repli-

cate the facilitatory interference e↵ect reported in Tanner et al. (2014) and Xiang et al.

(2009) for ERPs and extensively elsewhere for behavioral measures (see Introduction)

and additionally demonstrate its interaction with expectation.

A numerically larger P600 also appears when both distractor nouns and less expected

target nouns match the grammatical classifiers, compared to situation with mismatching

distractors. No such increase surfaces in the presence of highly expected antecedents.

This trend resembles the interaction between inhibitory interference e↵ects and expecta-

tion indexed by reading time reported by Campanelli et al. (2018), who suggest smaller

interference e↵ect when target nouns are highly predicted and pre-activated by the pre-

ceding sentential context, thus facilitating target retrieval and minimizing distractor in-

terference. Recognizing that this trend was not statistically reliable in that study, the
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pattern replicates the (marginally reliable) inhibitory interference e↵ect and expectation

interaction reported by Campanelli et al. with novel electrophysiological evidence.

Again, we do not replicate the Nref e↵ect driven by mismatching distractors in gram-

matical noun-phrase ellipsis that was reported by Martin et al. (2012). As explained

above, it is possible that distractor interference disrupts dependency formation for tar-

get antecedent, and first causes syntactic, not referential processing di�culty. We do,

however, replicate the fact that interference e↵ects can be detected, at least weakly, in

both grammatical and ungrammatical noun-phrase ellipsis as in Martin et al.. Following

Tanner et al. (2014), this interference e↵ect might result from obligatory retrieval for

noun-phrase ellipsis where agreement computation can not be predicted.

Taken together, the temporal resolution of ERPs enables investigation into the time

course and underlying cognitive operations during the resolution of noun-phrase ellipsis.

The P600 e↵ect captures the interaction between grammaticality, interference and expec-

tation, and indicates a modulation of syntactic processing di�culty by the three factors

during sentence comprehension. In the next section, we further assess the retrieval-by-

predictability account (Tanner et al., 2014), the cue-preference-by-predictability account

(Parker and Phillips, 2017), and the noisy-memory-based-predictability account (Ryu

and Lewis, 2021) according to the observed ERP results.

2.4.2 Theoretical implications for cue-based retrieval

Evaluated against the theoretical predictions summarized above in Table 2.5, our

observed ERP interaction is most consistent with the cue-preference-by-predictability ac-

count (Parker and Phillips, 2017), but not the retrieval-by-predictability account (Tanner

et al., 2014) or noisy-memory-based-predictability account as operationalized via GPT2

(Ryu and Lewis, 2021). According to the cue-preference-by-predictability account (Parker

and Phillips, 2017), in ungrammatical noun-phrase ellipsis, the prediction error engen-

dered by the highly predicted target might enable the distractor to interfere more easily

and create an illusion of grammaticality, which then ameliorates the syntactic processing

di�culty associated with the ungrammatical classifier. Since little prediction error would
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occur with the less predicted target, or in grammatical noun-phase ellipsis, interference

from the distractor becomes less likely. We will review and extend the mechanism by

which the cue-preference-by-predictability account of Parker and Phillips captures this

interaction in the next section.

On the other hand, the retrieval-by-predictability account (e.g. Tanner et al., 2014)

states that with the exception of highly predicted targets, less predicted or wrongly

predicted targets need to be retrieved and that process is susceptible to distractor in-

terference. This theory wrongly predicts interference e↵ects with less expected targets,

especially in ungrammatical contexts. Similarly, the noisy-memory-based-predictability

account (Ryu and Lewis, 2021) as operationalized by the GPT2 language model fails to

capture the observed EEG interaction by erroneously predicting interference e↵ects with

less predicted targets in ungrammatical sentences. We will briefly speculate the di↵erence

between the GPT2 language model and the extended cue-preference-by-predictability ac-

count in the next section, where we fit the results with one specific implementation of

cue-based retrieval theory that incorporates information about predictability.

2.4.3 Predictability-dependent cue-weighting and cue-diagnosticity in re-

trieval mechanism

In this section we consider in more depth the theoretical implications of the interaction

between grammaticality, interference and expectation we observe in human electrophysi-

ological data. We first review below the cue-preference-by-predictability account (Parker

and Phillips, 2017) developed under the cue-based retrieval framework, and subsequently

extend their account to represent target expectation manipulated in our design. We will

also return to the comparison of human EEG signals to neural-network based surprisal

values, and end with a discussion of cue-diagnosticity.

Parker and Phillips proposed a retrieval mechanism with a cue-combinatorics scheme

prioritizing structural cues over non-structural (e.g., morphological) cues, whose prefer-

ential weighting depends on predictability of the linguistic dependency. For unpredictable

dependencies like reflexive-antecedent binding, retrieval is part of the normal resolution
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process, and syntactic cues are prioritized by default. In contrast, syntactic cues are not

prioritized if retrieval is driven by a prediction error, and serves as a repair mechanism

(Lago et al., 2015; Wagers et al., 2009), in predictable dependencies like subject-verb

agreement. Due to the error signal, the parser might doubt the validity of the structures

built so far, and thus minimize the use of syntactic cues for subsequent retrieval. This

decreased importance of syntactic cues might in e↵ect increase probability of interference

from other cue-matching items that are structurally illicit for dependency resolution. This

cue-preference-by-predictability account successfully predicts stronger facilitatory inter-

ference e↵ects in subject-verb agreement compared to reflexive-antecedent dependency

(i.e. type asymmetry) reported in the literature (Dillon et al., 2013; Jäger et al., 2017).

We propose that this cue-preference-by-predictability account (Parker and Phillips,

2017) can be naturally extended to capture the interaction between grammaticality, in-

terference and expectation that we observe. Under their account, when the preceding

main verb in our study highly predicts the target antecedent noun, but the mismatching

classifier at the retrieval site violates the prediction, the parser would employ cue-based

retrieval to find a matching noun to resolve ellipsis. The lower priority of structural cues

during retrieval could therefore lead to facilitatory interference e↵ect from the matching

distractor noun. On the other hand, if the target antecedent remains less predicted, little

prediction error would occur at the mismatching classifier, and structural cues would

still be weighted more strongly during the retrieval, reducing the likelihood of local at-

traction. Taken together, we extend the theory of Parker and Phillips by showing that

the cue-weighting scheme could additionally be a↵ected by predictability of the to-be-

retrieved linguistic item. Prediction errors generated at the retrieval site could neutralize

the structural cues even in unpredictable dependencies such as noun-phrase ellipsis.

In support of the current view, the temporal profile of our EEG e↵ects e↵ectively

replicates previous reading time experiments (Lago et al., 2015; Parker and Phillips,

2017). Specifically, we observed that the P600 e↵ect of grammaticality violations (512–

644 ms) numerically preceded that of facilitatory interference (678–748 ms), suggesting an

initial detection of an agreement prediction error, followed by error-prone retrieval of the
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antecedent. (Note, though, that we did not statistically evaluate latency di↵erences in this

study.) This consistency, more broadly, points in favor of extending this cue-weighting

scheme of Parker and Phillips to similarity-based interference e↵ects in not only English

and Spanish (Lago et al., 2015; Parker and Phillips, 2017), but also Mandarin.

Additionally, we extend Ryu and Lewis (2021) and demonstrate that Transformer-

based neural network language models also predict certain pattern of facilitatory in-

terference e↵ect during Mandarin ellipsis processing. However, GPT2 appears to be

insensitive to the modulatory e↵ect of antecedent predictability on interference, which

is key to human electrophysiological data explained by cue-based retrieval theory with

preferential cue-weighting scheme (Parker and Phillips, 2017). As detailed above, the

parser prefers syntactic cues over non-structural cues; thus facilitatory interference tends

to emerge more when structural cues are neutralized by prediction error caused by a

highly expected antecedent mismatching the retrieval cues. The fact that GPT2 predicts

facilitatory interference e↵ect across-the-board suggests a lack of such cue preference.

Finally, we will briefly discuss how predictability-dependent cue-weighting relates to

cue-diagnosticity during the retrieval process. Since the classifier provides both structural

and semantic cues at the retrieval site, our results implicate that successful retrieval of

the cognitive target antecedent depends on whether retrieval cues could fully and unam-

biguously map onto the target antecedent (Van Dyke and Lewis, 2003). The strength

of cue-diagnosticity for the target item could be weakened by other cue-matching items.

According to Nairne (2002), the probability of retrieval of a target item depends on the

extent to which retrieval cues match the target item relative to other possible candidates

in memory.

Following the variant of cue-based retrieval model of Parker and Phillips (2017), we

suggest that retrieval cues may be di↵erentially weighted according to the expectancy

of the target lexical item as manipulated in the current study. In particular, structural

cues are weighted more than non-structural cues by default. Since only the targets,

not the distractors, match the structural cue, this preferential cue-weighting strengthens

cue-diagnosticity for the targets. However, if prediction errors are incurred by a highly
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predicted target, the preferential weighting no longer exists, thus weakening the cue-

diagnosticity for the targets. As a consequence, the probability of target retrieval will be

decreased while increasing the probability of facilitatory interference from distractor(s),

as in the High Expectation/Ungrammatical/High Interference condition in the current

study.

Preferential cue-weighting directly impacts cue-diagnosticity for ungrammatical el-

lipsis due to the presence of prediction error, but this account does not readily extend to

grammatical ellipsis. This is because under that account, cue-reweighting is only moti-

vated by ungrammaticality. Our results indicated a trend, albeit not statistically reliable,

for predictability e↵ect on grammatical inhibitory interference. If such a trend warrants

theoretical analysis, we suspect that it might follow from pre-activation of target items

(as suggested in e.g., Campanelli et al., 2018; Schoknecht et al., 2022) which increases

their base-level activation (see Lewis and Vasishth, 2005; Parker and Phillips, 2017; Va-

sishth et al., 2008). The probability of target retrieval will thus be increased while the

probability of inhibitory interference from distractor(s) is decreased, as observed here for

High Expectation/Grammatical/High Interference sentences.

Our findings, broadly, provide evidence that structurally illicit local attractors as

well as antecedent expectancy could a↵ect noun-phrase ellipsis licensing and referential

resolution. Successful retrieval to compute ellipsis during language comprehension is a

function of the feature match between retrieval cues and target lexical item, relative

to the feature match between retrieval cues and recent lexical item, modulated by the

expectancy of the target.

2.5 Conclusion

Language users often need to access past memory representations during online sen-

tence processing. Our EEG study demonstrated that the retrieval of a cognitive noun-

phrase antecedent to license ellipsis could be a↵ected not only by an intervening noun-

phrase distractor, but also by the expectancy of the antecedent, especially when the

sentence was ungrammatical. Our results align with the cue-preference-by-predictability
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account (Parker and Phillips, 2017), and support the claims that grammatical and seman-

tic constraints can be implemented as retrieval cues, and that linguistic dependencies are

resolved using a cue-based retrieval mechanism operating on content-addressable memory

representations (Lewis and Vasishth, 2005; Lewis et al., 2006; McElree, 2000; McElree

et al., 2003; Van Dyke and Lewis, 2003). The GPT2 transformer-based neural network

language model does not show evidence of a similar cue-weighting mechanism. Building

on previous English and Spanish studies, our Mandarin data also provide evidence that

similar memory retrieval mechanism could be employed across languages in comprehen-

sion (Lago et al., 2015).
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CHAPTER III

Memory Retrieval and Predictions during

Naturalistic Dependency Resolution

3.1 Introduction

Language comprehension is a↵ected by the success of memory retrieval of previously

encountered lexical items and also by the predictability of the word being processed

given the prior context. The retrieval of a previous lexical item is theorized to depend

on the time elapsed since that item first appears (i.e., the decay e↵ect), and also on

the occurrence of other similar items in working memory causing interference (i.e., the

similarity-based interference e↵ect; see Chapter II) (Arnett and Wagers, 2017; Cunnings

and Sturt, 2018; Dillon et al., 2013; Franck et al., 2015; Glaser et al., 2013; Jäger et al.,

2017, 2020; Lago et al., 2015; Martin et al., 2012; Martin, 2018; Mertzen et al., 2023;

Sturt, 2003; Tucker et al., 2015; Van Dyke and Lewis, 2003; Van Dyke and McElree,

2006; Van Dyke, 2007; Van Dyke and McElree, 2011; Vasishth et al., 2019; Wagers et al.,

2009; Xiang et al., 2009). On the other hand, contextual information routinely shapes how

well a word can be anticipated and integrated, as discussed in Chapter I (Boston et al.,

2008; Brothers and Kuperberg, 2021; Chen and Hale, 2021; Chow et al., 2018; DeLong

et al., 2005, 2014; Demberg and Keller, 2008; Federmeier and Kutas, 1999; Federmeier

et al., 2007; Frank et al., 2015; Hale, 2001; Henderson et al., 2016; Kamide, 2008; Kutas

and Hillyard, 1984; Levy, 2008; Levy and Keller, 2013; Roark et al., 2009; Van Berkum

et al., 2005; Wicha et al., 2004; Xiang and Kuperberg, 2015).
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While memory retrieval and predictability have been extensively investigated in the

sentence processing literature, this work joins a small, but growing set of studies examin-

ing these two facets of processing together (Campanelli et al., 2018; Futrell et al., 2020;

Parker and Phillips, 2017; Ryu and Lewis, 2021; Schoknecht et al., 2022; Tanner et al.,

2014). Importantly, previous work, including the experiment reported in Chapter II, uses

mainly artificially-constructed individual sentences as experimental stimulus, which di-

verge from the language use in everyday life. It remains to be seen whether the e↵ects of

memory retrieval and predictions also surface during a more naturalistic language setting

such as audiobook listening (Brennan et al., 2016; Brennan, 2016; Brennan and Hale,

2019; Hale et al., 2018; Lopopolo et al., 2017; Willems et al., 2016).

The sorts of sentences that demand retrieval, and present possible instances of decay

and interference, are common in every-day language. For instance, example (1) presents

the direct English translation of an excerpt from the audiobook story “Le Petit Prince”.

Here, the nominal subject Little prince is encoded in memory and needs to be retrieved

upon reaching the main clause verb asked to interpret “little prince”, but not “me”, as

the agent of the action “asked”.

(1) Little prince to me asked many questions.

The longer the linear distance between the verb and the subject noun, the less activated in

working memory the subject noun becomes when reaching the verb site. The decay of the

subject noun could thus hinder its retrieval success. Moreover, the retrieval site provides

the syntactic cue “grammatical subject” that maps onto the memory representation of

“little prince”, but not that of “me”, as the structurally licensed target subject (e.g., see

Arnett and Wagers, 2017; Dillon et al., 2013; Kush and Phillips, 2014; Kush et al., 2015,

2017, for using structural information as a constraint to retrieve target noun-phrases from

memory). The semantic cue “animate”, on the other hand, matches both nouns, which

could cause interference during retrieval. Interference could result in misretrieval of the

semantic-cue-matching distractor “me”, and misinterpretation of “me” as the agent of

the action “asked”. In addition, the relative likelihood of the critical verb asked relies on

52



the conditioning sentential context. A high-constraint context can preactivate the word

and facilitate its access from long-term memory during processing.

The current study will focus on establishing whether the comprehension of subject-

verb dependency during human natural listening can be characterized by: (i) the cue-

based working-memory retrieval theory (Lewis and Vasishth, 2005; Vasishth et al., 2008)

implemented under the Adaptive Control of Thought–Rational (ACT-R) architecture

(Anderson, 1990), and/or (ii) the word predictability derived from noisy memory repre-

sentations such as those in a large language model (Futrell et al., 2020; Ryu and Lewis,

2021).

3.1.1 Cue-based working-memory retrieval

Cue-based working-memory retrieval has been proposed to mediate the resolution of

long-distance dependency, leading to processing complexity (Lewis and Vasishth, 2005;

McElree, 2000; Vasishth et al., 2008), as demonstrated in the work presented in Chapter

II with Mandarin noun-phrase ellipsis (Tung and Brennan, 2023). This retrieval mech-

anism is constrained by independently motivated principles of memory and cognitive

skills, and specifically applied to human sentence processing. Under this theory, sentence

parsing consists of a sequence of memory retrievals, which are a↵ected by both fluctu-

ating activation and similarity-based interference. Processing di�culty arises when the

retrieval target has low activation level in memory due to longer time elapsed since it last

appeared, or when the target cannot be easily distinguishable from other similar items

in memory. These cognitive principles have been formulated computationally under the

Adaptive Control of Thought–Rational (ACT-R) architecture (Anderson, 1990), which

serves as a formal model of word-by-word sentence comprehension.

However, previous experiments use mostly highly-controlled discrete sentences to test

the theory, and less is known about the generalizability of the framework to naturalistic

language. This study thus aims to test the hypothesis that cue-based retrieval as charac-

terized by ACT-R also underlies language processing in a more naturalistic setting such as

audiobook listening. To apply this framework to naturalistic text, we will first parse and
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annotate our audiobook stimulus with the Stanford Neural Network Dependency Parser

(Chen and Manning, 2014). Within the stimulus, we focus on subject-verb dependency

because it has previously been heavily studied with controlled experiments (see Jäger

et al., 2017, for review) but not in a more naturalistic setting. After the parser identi-

fies all subject-verb dependencies in the stimulus, the ACT-R metric predictions will be

obtained for all target verbs in the dependencies. ACT-R can be divided into di↵erent

components which provide quantitative estimates of factors that a↵ect activation, such as

the amount of interference. In addition, there are several hyper-parameters that are sub-

ject to debate in the literature, such as the relative weighting of di↵erent cues (see Section

2.1.2 in Chapter II for more discussion). I will thus be evaluating a suite of models, with

di↵erent parameter settings corresponding to di↵erent theoretical proposals, and also for

each model I will derive a set of metrics that captures sub-parts of the retrieval process.

Those models and metrics will be statistically assessed with the EEG data recorded at the

target verb region. We will further compare those models with the model based on word

predictability (to be described below), and rank all models according to their statistical

fit against the EEG data. The ranking will determine whether the ACT-R models or

the predictability model could better predict human electrophysiological signals during

subject-verb dependency resolution.

While traditional cue-based models of parsing employ structural and non-structural

retrieval cues simultaneously and equally to solve resolve dependencies by default (Lewis

and Vasishth, 2005; McElree, 2000; Vasishth et al., 2008), recent work has considered the

possibility that cues may be weighted di↵erently or may be evaluated at di↵erent time

lags. Structural cues are either weighted more strongly than (Parker and Phillips, 2017;

Van Dyke and McElree, 2011; Yadav et al., 2022), or evaluated prior to (Mertzen et al.,

2023; Sturt, 2003), non-structural cues. In other words, syntactic constraints could serve

as an “early but defeasible filter” when accessing the retrieval targets (Sturt, 2003). These

proposals thus predict weaker interference e↵ects from distractor items mismatching the

syntactic cues, at least in an early processing stage. The current study will compare ACT-

R variants with equal and di↵erential cue-weighting scheme in terms of their predictive
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power for human electrophysiological signals.

Cue preference could depend on a variety of variables. Firstly, the cue-preference-

by-predictability account (Parker and Phillips, 2017; Tung and Brennan, 2023, also see

P. 13 in Chapter II) highlights the predictability of linguistic dependencies and retrieval

targets. According to this account, syntactic cues are prioritized by default during the

retrieval operation if no prediction error occurs to neutralize this priority. This could

be true for all grammatical contexts (without any grammatical violation) as well as for

ungrammatical contexts with unpredictable target nouns or unpredictable dependencies

such as reflexive-antecedent binding (as little prediction leads to error signals). The

priority of the syntactic cues maximizes the success in retrieving the structurally relevant

target items. In contrast, prediction error could be incurred by predictable target nouns

or predictable dependencies such as subject-verb agreement in ungrammatical situations.

The parser could consequently reevaluate the validity of the structure under construction,

and no longer prioritize the structural cue, giving structurally inaccessible distractor items

a chance to exert interference e↵ects.

The cue-preference-by-predictability account accurately characterizes the empirical

findings of consistent interference e↵ects in ungrammatical sentences with subject-verb

agreement, and the occasional interference e↵ects in ungrammatical sentences with reflexive-

antecedent dependency (Dillon et al., 2013; Jäger et al., 2017). In their eye-tracking

experiments on ungrammatical reflexive licensing, Parker and Phillips (2017) reported

interference e↵ects only when the target word had 2 morphological-cue-mismatches, but

not when the target had 1 mismatch. This pattern was later successfully simulated with

the syntactic cues being weighted 1.6 times higher than the morphological cues. The

syntactic cues did not serve the gating function (cf. Van Dyke and McElree (2011)) as

their preferential weighting still allowed structurally inaccessible distractor items to be

considered for retrieval when the target word mismatched more morphological cues.

Secondly, cue preference could relate to individual variations. Yadav et al. (2022)

reported that only fast readers weighted structural cues higher. Cue weighting could

thus be related to reading proficiency and language experience. We will call this the
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“cue-preference-by-proficiency account” to highlight its particular features. Finally, cue

preference could be attributed to cross-linguistic variations. When contrasting German

with English, Mertzen et al. (2023) found that semantic cues seemed to enter the compu-

tation slightly slower than syntactic cues, and associated the superiority of syntactic cues

over semantic ones to the richer morphosyntactic marking in German. We name this the

“cue-preference-by-morphosyntax account” to contrast with other accounts.

The above accounts can be operationalized di↵erently for our experiment. First of all,

with the assumption that little prediction error would be generated by the grammatical

audiobook texts, structural cues would by default receive stronger weighting during the

retrieval process. The cue-preference-by-predictability account (Parker and Phillips, 2017;

Tung and Brennan, 2023) thus predicts that the ACT-R model with preferential cue-

weighting would outperform that with equal cue-weighting in simulating our experimental

results. In Section 3.2.2 below, we will construct an ACT-R model with preferential cue-

weighting (ACT-R-2), which I contrast with an ACT-R model with equal cue weighting

(ACT-R-1). Secondly, with the working hypothesis that all native speakers have high

native language proficiency, the participants would prefer structural over non-structural

cues when processing their native language. The cue-preference-by-proficiency account

(Yadav et al., 2022) similarly predicts that the model with preferential cue-weighting

would be the better performing model. Thirdly, assuming that Mandarin resembles

more with English in terms of their less explicit morphosyntactic marking, structural

cues would not be more superior than non-structural cues for the Mandarin retrieval

operation. Consequently, the cue-preference-by-morphosyntax account (Mertzen et al.,

2023) predicts that the model with equal cue-weighting would capture our human data

better than the model with preferential cue-weighting.

Table 3.1 summarizes the above accounts with their proponents and operationaliza-

tion for our experiment. Importantly, recent development has seen an integration of pre-

dictability into the memory-based ACT-R models, which is evident in the cue-preference-

by-predictability account (Parker and Phillips, 2017; Tung and Brennan, 2023). Sec-

tion 3.1.2 below will further discuss the incorporation of memory constraints into pre-
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dictive models for next-word prediction, and operationalize the noisy-memory-based-

predictability account (Ryu and Lewis, 2021; Tung and Brennan, 2023) for our experi-

ment, to be contrasted with the above theories.

Under the cue-based memory retrieval framework, in order to resolve the long-distance

subject-verb agreement dependency, the subject noun needs to be retrieved upon encoun-

tering the main verb (Dillon et al., 2013; Glaser et al., 2013; Mertzen et al., 2023; Parker

and Phillips, 2017; Van Dyke and Lewis, 2003; Van Dyke, 2007; Van Dyke and McEl-

ree, 2011). Aside from the requirement of positional configuration, the licensed subject

noun also agrees with the dependent main verb in terms of semantic-pragmatic properties

(e.g., animacy) (Mertzen et al., 2023; Van Dyke, 2007; Van Dyke and McElree, 2011). The

verb thus provide both syntactic cues and semantic cues in search of a compatible subject

noun.1 If other structurally illicit distractor nouns also match those semantic retrieval

cues, retrieval interference may occur. Such semantic interference e↵ect has been reported

using both o✏ine and online processing measures, including paraphrasing (Stolz, 1967),

comprehension accuracy (King and Just, 1991), self-paced reading (Van Dyke, 2007),

speed-accuracy tradeo↵ (Van Dyke and McElree, 2011), and eye-tracking (Mertzen et al.,

2023; Van Dyke, 2007; Van Dyke and McElree, 2011). While prior literature mainly

focuses on English and German, the current study aims to achieve cross-linguistic vali-

dation and assess whether the retrieval of a subject noun-phrase will be impacted by an

animacy-matching distractor noun during the resolution of subject-verb dependency in

Mandarin.

3.1.2 Interaction between memory retrieval and predictability

Along-side working memory considerations, probabilistic expectations about sen-

tences have also been proposed to account for processing di�culty in real-time com-

prehension of natural language. Surprisal (Hale, 2001; Levy, 2008), based on conditional

probability, is one incremental information-theoretic complexity metric that quantifies

1Such semantic cues have also been used for the verbs and their associated object nouns in the cleft or
object relative clause construction to investigate the interference phenomenon (Campanelli et al., 2018;
Cunnings and Sturt, 2018; Van Dyke and McElree, 2006).
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processing complexity of a sentence in terms of word-by-word expectations. While “lexi-

cal surprisal” calculates how surprising a word is given the context, “syntactic surprisal”

assesses how surprising the syntactic structure to be generated is, in order to integrate

the current word into the sentence (Roark et al., 2009).

Surprisal has been shown to successfully predict human word-by-word comprehension

in diverse linguistic tasks using di↵erent methodological measures. The tasks included

comprehension of naturalistic paragraphs from novels or newspaper (Brennan et al., 2016;

Brennan and Hale, 2019; Demberg and Keller, 2008; Hale et al., 2018; Henderson et al.,

2016; Lopopolo et al., 2017; Willems et al., 2016), of single sentences from novels pre-

sented in random order (Frank et al., 2015), of constructed narratives with syntactically

complex sentences (e.g., sentential embeddings, relative clauses and non-local dependen-

cies) (Roark et al., 2009), and of constructed individual sentences (Boston et al., 2008;

Hale, 2001). Those studies employed techniques such as electroencephalography (Bren-

nan and Hale, 2019; Frank et al., 2015; Hale et al., 2018), fMRI (Brennan et al., 2016;

Henderson et al., 2016; Lopopolo et al., 2017; Willems et al., 2016), eye-tracking (Boston

et al., 2008; Demberg and Keller, 2008) and self-paced reading (Roark et al., 2009). Sur-

prisal can therefore estimate the degree to which individual words are pre-activated in

the brains of language users.

Rather than being viewed as two independent processing mechanisms, recent e↵orts

have explored how both memory retrieval and prediction may interact in conditioning

language comprehension e↵orts. For example, both unidirectional transformer-based lan-

guage models such as Generative Pre-trained Transformer-2 (GPT2) (Radford et al.,

2019), and variants such as the lossy-context surprisal model of Futrell et al. (2020)

can be used to compute the surprisal value of a lexical item based on the noisy mem-

ory representations of its preceding context. With some information a↵ected by noise,

the noisy memory representation provides an incomplete version of the true context.

The information-loss is a general feature of memory representations, and may result

from cognitive resource constraints, as argued in the resource-rational model of fine-

grained memory representations (Hahn et al., 2022). Surprisal from GPT2 has been
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Table 3.1: Summary of the cue-preference-by-predictability, cue-preference-by-proficiency, cue-
preference-by-morphosyntax and noisy-memory-based-predictability accounts with their propo-
nents and operationalizations for our experimental stimuli.

Account
Cue-preference-
by-predictability

Cue-preference-
by-proficiency

Cue-preference-
by-morphosyntax

Noisy-memory-
based-predictability

Proponent
Parker and Phillips (2017)
Tung and Brennan (2023)

Yadav et al. (2022) Mertzen et al. (2023) Ryu and Lewis (2021)

Operationalization
ACT-R with
preferential cue-weighting
(ACT-R-2)

ACT-R with
preferential cue-weighting
(ACT-R-2)

ACT-R with
equal cue-weighting
(ACT-R-1)

Word predictability
formalized as surprisal

further proposed to characterize the retrieval interference e↵ects in English sentences

with subject-verb agreement and reflexive-antecedent dependencies (the “noisy-memory-

based-predictability account” (Ryu and Lewis, 2021; Tung and Brennan, 2023)). For

our experiment, the account thus predicts that word predictability derived from the ar-

tificial neural network model with noisy memory representations could characterize the

human processing profile. Table 3.1 presents the proponent and operationalization of

the noisy-memory-based-predictability account, along with that from the cue-preference-

by-predictability, cue-preference-by-proficiency and cue-preference-by-morphosyntax ac-

counts introduced in Section 3.1.1.

To tease apart these accounts, the current study will use the ACT-R and word-

predictability metrics to model the incremental parsing operations separately, and to test

whether any of those metrics could better detect the neural correlates of the parsing

operations in an EEG experiment. The analysis below will focus on a particular aspect

of the EEG signal: the sustained anterior e↵ects with a post-stimulus onset of 280 ms.

This choice reflects prior work on memory e↵ects in language with EEG. That prior

work (Martin et al., 2012) indicates that memory retrieval modulates a particular EEG

response called the “Sustained Anterior Negativity”. This e↵ect is similar to the “Nref”

e↵ect (Van Berkum, 2009), elicited when a unique referent cannot be identified from

multiple candidates in memory based on prior discourse.
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3.2 Methods

3.2.1 Materials

We adopted materials used in “Le Petit Prince multilingual naturalistic fMRI corpus”

(Li et al., 2022) to enable direct comparison between the neuroimaging and electrophys-

iological data. The stimuli were the first section of the Chinese “The Little Prince”

audiobook (http://www.xiaowangzi.org/), which amounted to nine minutes, and was

read by a professional female Chinese broadcaster. This section contained 2,427 words

in 134 sentences with an average length of 18.11 words per sentence (SD = 13.67). Fol-

lowing Li et al., the auditory narrative was accompanied by visual drawings as appeared

in the original text to aid in comprehension. Three drawings was respectively shown at

the 10, 35 and 60 second timepoints of the section, and lasted for 15, 20 and 15 seconds.

This choice of naturally occurring and contextualized, rather than artificially crafted and

isolated, stimuli enhances the generalizability of the results.

3.2.2 Three models of memory retrieval and predictability

We use the ACT-R model of sentence processing (Lewis and Vasishth, 2005; Vasishth

et al., 2008) to estimate memory cost in this more natural stimulus. To further probe the

modulatory e↵ect of cue-combinatorics on memory retrieval, we build two ACT-R variants

with equal and di↵erential cue-weighting scheme. These models serve to tease apart the

cue-preference-by-predictability (Parker and Phillips, 2017; Tung and Brennan, 2023),

cue-preference-by-proficiency (Yadav et al., 2022) and cue-preference-by-morphosyntax

(Mertzen et al., 2023) accounts. The third model formalizes the expectation of a word via

surprisal (Hale, 2001; Levy, 2008) using Chinese GPT2 (Du, 2019; Radford et al., 2019),

and tests for the noisy-memory-based-predictability account (Ryu and Lewis, 2021; Tung

and Brennan, 2023). We describe the mathematical formulation of each model below.

The original ACT-R model is based on Equation 3.1, which calculates the overall

activation level A of the target lexical item i, Ai. Ai a↵ects the probability of the item’s

retrieval and its retrieval latency.
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Ai = Bi +
mX

j=1

WjSji (3.1)

The base-level activation of the lexical item, Bi, in Equation 3.1 is specified in Equation

3.2. tj stands for the time since j th retrieval of the item, while the decay parameter d

is conventionally set to be 0.5 as default. Adding up the time for all n retrievals to the

power of the negative decay parameter, and transforming it through natural logarithm,

produce Bi. As a result, the more frequent an item occurs, or is retrieved, the higher its

base-level activation becomes. This is called “activation boost”.

Bi = ln

 
nX

j=1

t�d
j

!
(3.2)

For the second term in Equation 3.1, the weightW for each retrieval cue j,Wj, equalsG/j.

G represents all available goal activation and defaults to 1 in ACT-R. The associative

strength between a retrieval cue and the lexical item Sji is further computed by Equation

3.3. The constant S is set to be 1.5 following previous modeling work on the fan e↵ect

(Anderson, 1990; Vasishth et al., 2008). The term fanj expresses the number of lexical

item matching the retrieval cue j. Consequently, the more lexical items matching the

retrieval cue, the weaker the associative strength between the cue and the target item,

which gives rise to retrieval interference.

Sji = S � ln (fanj) (3.3)

We further vary the weight for each retrieval cue Wj to create two ACT-R models. ACT-

R-1 has the default equal cue-weighting for structural and non-structural cues. ACT-R-2

has the preferential cue-weighting for structural cues, which is 1.6 times higher than the

non-structural cues, following Parker and Phillips (2017).

Lastly, we calculate the surprisal value of the critical word at the retrieval site (i.e.,

the verb in subject-verb dependency) using Equation 3.4.

surprisal(w) = �log2(p(w|c)) (3.4)
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Surprisal (Hale, 2001; Levy, 2008), measured in bits, is the negative logarithm (base 2)

probability p of a word w given a linguistic context c. Words with lower conditional prob-

ability convey more information and demand more cognitive load in sentence processing,

resulting in higher surprisal values. The linguistic context includes all preceding words in

the same sentence as the critical verb at the retrieval site. To enable direct comparison

with prior work (Ryu and Lewis, 2021), we use Chinese GPT2 (Du, 2019; Radford et al.,

2019) to derive the “lexical surprisal”, that is, the conditional probability of a word based

on its lexical identity (cf. syntactic surprisal).

The accuracy of each of these models in representing human psychological processes

is the main focus of this paper. We will test the model predictions against human elec-

trophysiological signals recorded during audiobook listening.

3.2.3 Stimulus annotations

The quantitative predictions of the ACT-R and surprisal metrics were tested against

Mandarin human EEG data to investigate the e↵ects of memory and predictability during

the resolution of subject-verb dependency in language processing. In the following steps,

to acquire the quantitative predictions for all stimuli, the first section of the Chinese

“The Little Prince” audiobook was parsed by the Stanford Neural Network Dependency

Parser (Chen and Manning, 2014) to identify all subject-verb dependencies and their

intervening distractor nouns. For the ACT-R metric, the time-interval between subject

and verb was noted to model activation decay. The structural feature [Local Subject]

was annotated for the target subject; the semantic feature [Animacy] of the target

subject and distractor nouns was annotated to query retrieval interference e↵ects between

nouns due to a shared animacy status (both are [+Animate] or [�Animate]), following

previous literature (e.g., Mertzen et al., 2023; Van Dyke, 2007; Van Dyke and McElree,

2011). Interference was higher where the animacy feature matched between target and

distractor nouns. Brought together, the activation level of the target subject noun-

phrases was calculated by Equation 3.1, which served as a metric of memory cost. In

addition, to obtain the expectation-based metric, the surprisal value of the critical verb
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Table 3.2: Token counts of the: (1) High Interference, (2) Low Interference, and (3) No In-
terference configurations with animate or inanimate target subject noun-phrases in Mandarin
subject-verb dependency.

Configuration Count
(1) High Interference Animate Target 40

Inanimate Target 1
(2) Low Interference Animate Target 31

Inanimate Target 1
(3) No Interference Animate Target 122

Inanimate Target 28
Total 223

at the retrieval site was computed by Equation 3.4. These metrics were then statistically

assessed against the human EEG data.

To illustrate the di↵erent ways retrieval may play out in this stimulus, consider the

following three configurations for subject-verb agreement that we observed in this story:

(1) High Interference configuration with at least one matching distractor, (2) Low Interfer-

ence configuration with at least one mismatching distractor and no matching distractor,

and (3) No Interference configuration without any distractor. Those three discrete con-

figurations serve the illustration purpose of the retrieval interference e↵ects only, while

the statistical analysis uses continuous variables based on numerical ACT-R and word-

predictability metrics defined in Section 3.2.2. Table 3.2 presents the token counts of each

configuration with animate or inanimate target subject noun-phrases. 41 tokens of High

Interference configuration, 32 of Low Interference, and 150 of No Interference amounts

to 223 tokens in total.

We will provide concrete example sentences for each configuration, along with illustra-

tions of the ACT-R metric derivation for each sentence below. To begin with, Figure 3.1

displays sample parse and annotations of three example sentences for the three key config-

urations. In the first clause of the first sentence, the subject little prince ([+Animate])

needs to be retrieved upon reaching the verb ask to establish the dependent relation be-

tween the nominal subject and the verb. Here, a distractor noun me ([+Animate])

intervenes between the subject and the verb. Due to a shared animacy status with the

target subject ([+Animate]), the distractor has a high probability of causing similarity-

63



based inhibitory interference e↵ect in this grammatical sentence, hence the (1) High

Interference configuration.

In the second sentence, the retrieval of the subject noun you ([+Animate]) occurs

at the verb fall. Crucially, the intervening distractor sky ([�Animate]) has a low

probability of generating inhibitory interference e↵ect since it has a di↵erent animacy

status compared to the target subject. This is the (2) Low Interference configuration.

Finally, in the last clause of the first sentence, where the subject he ([+Animate])

depends on the verb have, no nominal distractor intervenes, which exemplifies the (3)

No Interference configuration.

Figure 3.1: Sample parse and annotations of the: (1) High Interference (red shading), (2) Low
Interference (blue shading), and (3) No Interference (green shading) configurations in Mandarin
subject-verb dependency.

Following the parse and annotations, the activation level of the target subjects in the

three example sentences can be computed by Equation 3.1. For the (1) High Interference

configuration example, we calculate the overall activation level Ai of the subject noun

“little prince” at its dependent verb “ask”. To get the the base-level activation Bi, we first

subtract the onset timepoint of “little prince” (418.51 second) from that of “ask” (419.51

second) to estimate the time tj since last retrieval of “he” (1 second).2 Entering this

time tj into Equation 3.2 yields the base-level activation Bi (0). Since both the subject

noun “little prince” and the intervening distractor “me” match the semantic retrieval cue

[Animacy] between the target and retrieval site in the sentence, fanj equals 2. This

2In the current model, we only assess the time tj since the latest retrieval of the target subject, given
the scope of the sentence the subject noun occurs in. The dependent relationship between a subject
noun and the verb is defined by the Stanford Neural Network Dependency Parser (Chen and Manning,
2014).
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obtains the associative strength Sji between the retrieval cue and the target subject of

0.81 according to Equation 3.3. The subject uniquely matches the structural retrieval

cue [Local Subject], leading to fanj of 1 and associative strength Sji of 1.5. Sji can be

multiplied with a weighting Wj of 1 for equal cue-weighting scheme, or with Wj of 1.6

for preferential cue-weighting. For ACT-R-1 with equal cue-weighting, overall activation

level Ai (2.31) results from the the summation of the base-level activation Bi (0) and the

sum of the weighted associative strength
Pm

j=1 WjSji for the two retrieval cues (2.31).

For ACT-R-2 with preferential cue-weighting, overall activation level Ai (3.21) is the

summation of the base-level activation Bi (0) and the sum of the weighted associative

strength
Pm

j=1 WjSji for the two retrieval cues (3.21). Those values are summarized in

Table 3.3.

Similarly, for the (2) Low Interference configuration example, we subtract the onset

timepoint of the subject noun “you” (450.48 second) from that of “fall” (451.27 second)

to get the time tj since last retrieval of “you” (0.79 second), as well as the base-level

activation Bi (0.12). With only the subject “you” matching the semantic cue [Animacy],

the fanj equals 1, and the associative strength Sji 1.5. And with only the subject “you”

matching the structural cue [Local Subject], the fanj equals 1, and the associative

strength Sji 1.5. Combining Bi (0.12) with sum of the weighted associative strength
Pm

j=1 WjSji (3) results in the the overall activation level Ai (3.12) for ACT-R-1. ACT-

R-2 has the overall activation level Ai of 4.02 from the summation of Bi of 0.12 and sum

of the weighted associative strength
Pm

j=1 WjSji 0f 3.9 (see Table 3.3).

Finally, for the above example of (3) No Interference configuration, we subtract the

onset timepoint of the subject noun “he” (422.92 second) from that of “have” (423.58

second) to measure the time tj since last retrieval of “he” (0.66 second), which results in

the base-level activation Bi of 0.21. The fanj for the semantic retrieval cue [Animacy]

is 1 because only the subject noun “he” matches the cue, and the associative strength Sji

1.5. The fanj for the structural cue [Local Subject] is 1 because of a uniquely matching

subject, and the associative strength Sji 1.5. For ACT-R-1, the overall activation level Ai

is 3.21 by adding up Bi (0.21) and sum of the weighted associative strength
Pm

j=1 WjSji
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Table 3.3: The base-level activation Bi, sum of the weighted associative strength
Pm

j=1WjSji,
and overall activation level Ai of the target subjects for ACT-R-1 and ACT-R-2, as well as the
surprisal value of the critical verbs, in the three example sentences for the three key configura-
tions.

Configuration Target Subject Critical Verb ACT-R-1 ACT-R-2 Surprisal
Bi

Pm
j=1 WjSji Ai Bi

Pm
j=1 WjSji Ai

(1) High Interference little prince ask 0 2.31 2.31 0 3.21 3.21 10.10
(2) Low Interference you fall 0.12 3 3.12 0.12 3.9 4.02 0.009
(3) No Interference he have 0.21 3 3.21 0.21 3.9 4.11 13.12

(3). For ACT-R-2, the summation of the base-level activation Bi (0.21) and the sum

of the weighted associative strength
Pm

j=1 WjSji for the two retrieval cues (3.9) give the

overall activation level Ai (4.11), as shown in Table 3.3.

In sum, the lower base-level activation Bi (less recent retrieval) and lower sum of

the weighted associative strength
Pm

j=1 WjSji (with matching distractor) for the High

Interference configuration give rise to the lower overall activation level Ai. In contrast,

the higher Ai for the Low Interference and No Interference configurations comes from both

higher Bi (more recent retrieval) and higher
Pm

j=1 WjSji (no matching distractor). The

ACT-R model of sentence processing thus predicts higher probability of target retrieval

due to higher Ai in the face of more recent retrieval, and in the absence of inhibitory

interference, as in the Low and No Interference configurations. When comparing ACT-

R-1 with ACT-R-2, the latter receives higher
Pm

j=1 WjSji due to preferential weighting

of the structural cues matching the target noun-phrases. Since higher
Pm

j=1 WjSji leads

to higher Ai, ACT-R-2 thus predicts higher successful rate of target retrieval compared

to ACT-R-1.

Beside the ACT-R metric, we also derive the word-predictability metric by calculating

the surprisal value of the critical verbs according to Equation 3.4, and present the values

in Table 3.3. The higher the surprisal value, the heavier the cognitive load it requires

to process the word. For the three example sentences, the surprisal model thus predicts

more processing demand for the High Interference and No Interference configurations,

compared to the Low Interference configuration.
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3.2.4 Participants

Nineteen Mandarin native speakers (12 female, 6 male, 1 non-binary; mean age=23

years; range 20–38 years) participated in the study. All participants were right-handed,

had normal or corrected-to-normal vision and no reported history of neurological disorder.

They gave informed consent and were paid 15 USD/hour for their participation. All

procedures aligned with protection for human subjects at the University of Michigan,

following protocol HUM00081060.

3.2.5 EEG procedure

After debriefing the research procedure, we measured the hearing threshold of every

participant per ear by playing 1 kHz tones (300 ms each, 10 ms fade in/out). During

the experiment, participants were seated in a chair about 100 cm away from a computer

screen in a sound-proof room. They were instructed to listen to the story silently and

minimize any movement and eye blinks. The first section of the Chinese “The Little

Prince” audiobook was played through the in-ear headphones (EA-2, Etymotic Inc.) at

the volume of 45dB above the hearing threshold of the participants. The section lasted

for about 10 minutes, and was preceded by a written instruction “the section is about

to begin” on the screen. To ensure attentiveness, participants answered four multiple-

choice comprehension questions after the section by pressing one of the four arrow keys on

the keyboard. All participants exhibited above-average accuracy on the comprehension

questions (mean percent correct = 92%, range = [50%, 100%]), with only one participant

having 50% accuracy rate due to the smaller number of questions.

3.2.6 EEG recording

Thirty-two actively-amplified electrodes were mounted on an elastic cap (actiCAP,

EASYCAP GmbH) and placed on the scalp according to the Standard 32-channel acti-

CAP snap layout. Bipolar electrodes were placed above and below the left eye to monitor

vertical eye movements. The EEG signal was continuously sampled at 500 Hz between 0.1

and 200 Hz, and referenced to the left mastoid electrode. Impedances were maintained
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at less than 25 kOhms for all electrode sites.

3.2.7 Data analysis

We conducted data processing with the FieldTrip toolbox in MATLAB (Oostenveld

et al., 2011). A high-pass filter of 0.1 Hz was first applied, and the data was re-referenced

to the average of the left and right mastoid electrodes. Epochs time-locked to the onset

of the 223 critical verb from -300–1000 ms were extracted. Afterwards, epochs containing

ocular artifact were rejected with Independent Component Analysis (Jung et al., 2000),

and epochs containing muscular artifact were removed based on visual inspection. The

rejection rate ranged from 0%–4.93% (median = 0.45%) across participants. Epochs

from channels above the impedance threshold or with excessive noises were interpolated

by surface spline interpolation (Perrin et al., 1987). The number of channels interpolated

per participant ranged from 0–3 (median = 0). A 20-Hz low-pass filter was then applied

and a 100-ms pre-stimulus baseline was subtracted from all epochs.

For illustration purposes, we divided epochs using a median split on activation level

(Ai in Equation 3.1 of the ACT-R model). Specifically, the High Activation group con-

sisted of epochs associated with the 50% highest overall activation level Ai, and the Low

Activation group contained epochs with the other 50%. Averaged ERPs were formed

from the epochs for plotting purposes only.

To evaluate the predicted sustained negativity e↵ect (Martin et al., 2012; Van Berkum,

2009), we computed single-trial EEG mean amplitude, measured in microvolts, by aver-

aging per trial from central channels (Fz, FC1, FC2, Cz, CP1, CP2, Pz) within three time

windows (100–300, 300–500 and 500–800 ms) respectively for each epoch around the crit-

ical verb. We then performed Bayesian statistical model analysis with the brms package

(Bürkner, 2017) and the loo package (Vehtari et al., 2017), choosing weakly informative

priors to improve convergence and avoid overfitting.3 The pointwise out-of-sample pre-

diction accuracy from a fitted Bayesian model can be estimated by the Leave-one-out

cross-validation (LOO) method with log-likelihood assessed from the posterior simula-

3Priors for regression coe�cients were defined as N (0, 1).
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tions of the parameter values. This measure of predictive accuracy is called expected

log pointwise predictive density (ELPD). Furthermore, the comparison amongst models

can be achieved with the estimated di↵erence of expected leave-one-out prediction errors

(�ELPD) amongst models, as well as the standard error (SE) (Vehtari et al., 2017).

We constructed separate models with the z-scores of single-trial EEG amplitudes

as the dependent variable, and the overall activation level Ai, base-level activation Bi,

sum of the weighted associative strength
Pm

j=1 WjSji, or GPT2 surprisal as fixed e↵ect,

and random slope of each fixed e↵ect by participant. The z-scores of single-trial EEG

amplitudes included averages from three separate time windows (100–300, 300–500 and

500–800 ms), and the overall activation level Ai and sum of the weighted associative

strength
Pm

j=1 WjSji were derived independently for ACT-R-1 and ACT-R-2.4

3.3 Results

For illustration purposes, we divided epochs using a median split on activation level

(Ai in Equation 3.1 of the ACT-R model). Specifically, the High Activation group con-

sisted of epochs associated with the 50% highest overall activation level Ai, and the Low

Activation group contained epochs with the other 50%. Averaged ERPs were formed

from the epochs for plotting purposes only.

Activation level modulated a sustained negativity over anterior electrodes at the

critical verb region. This is evident in Figure 3.2 which plots evoked average waveforms

for epochs divided by a median-split on activation (computed with ACT-R-1). Figure

3.2 plots the grand average ERPs and 95% confidence intervals at electrodes Fz, Cz, Pz

for the High Activation and Low Activation groups in the upper panel, and in the lower

panel depicts the corresponding topographic distributions in four adjacent time windows

4 The models were specified following the Wilkinson-Rogers notation:

1. eeg ⇠ Ai + (1 + Ai | participant),

2. eeg ⇠ Bi + (1 + Bi | participant),

3. eeg ⇠
Pm

j=1 WjSji + (1 +
Pm

j=1 WjSji | participant),

4. eeg ⇠ gpt2 surprisal + (1 + gpt2 surprisal | participant),
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spanning from 0 to 1000 ms after the critical verb onset. The negative shift begins around

100 ms after word onset and lasts to 1000 ms, with a wide scalp distribution. Using

EEG, our finding extends previous findings on memory retrieval using functional magnetic

resonance imaging (fMRI) and magnetoencephalography (MEG) (Li et al., 2021).

Figure 3.2: Grand aver-
ages and 95% confidence
intervals (grey shading)
at Fz, Cz, Pz for High
Activation (blue lines)
or Low Activation (red
lines) group, and their
scalp distributions dur-
ing four consecutive time
windows between 0 to
1000 ms after the critical
verb onset.

This pattern was statistically evaluated using Bayesian regression with ACT-R and

predictability metrics for each verb and single-trial EEG amplitude. The single-trial

Bayesian model analysis illustrated that lower subject activation and weighted associative

strength, estimated via both ACT-R models, leads to more negativity in all three time-

windows. Table 3.4 presents the estimated mean and 95% Credible Interval (CI) of the

posterior distribution of the regression coe�cient b for Ai, Bi,
Pm

j=1 WjSji for ACT-

R-1 and ACT-R-2 respectively, and surprisal during the 100–300-ms, 300–500-ms and
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Table 3.4: The estimated mean and 95% Credible Interval (CI) of the posterior distribution
of the regression coe�cient b for Ai of ACT-R-1, Ai of ACT-R-2, Surprisal,

Pm
j=1WjSji of

ACT-R-1,
Pm

j=1WjSji of ACT-R-2 and Bi of ACT-R-1&2 during the 100–300-ms, 300–500-ms
and 500–800-ms time windows at the critical verb region.

100–300 ms 300–500 ms 500–800 ms
Estimate l-95% CI u-95% CI Estimate l-95% CI u-95% CI Estimate l-95% CI u-95% CI

Ai of ACT-R-1 0.06 0.01 0.10 0.03 -0.01 0.07 0.04 -0.005 0.09
Ai of ACT-R-2 0.06 0.01 0.10 0.03 -0.02 0.07 0.04 -0.005 0.08

Surprisal 0.01 -0.02 0.04 -0.002 -0.04 0.03 -0.002 -0.03 0.03Pm
j=1 WjSji of ACT-R-1 0.04 0.004 0.07 0.04 0.007 0.08 0.04 0.006 0.07Pm
j=1 WjSji of ACT-R-2 0.04 0.002 0.07 0.04 0.007 0.08 0.04 0.008 0.07
Bi of ACT-R-1&2 0.03 -0.001 0.07 0.003 -0.03 0.04 0.02 -0.02 0.05

500–800-ms time windows at the critical verb region.

In the next step, we directly compared all models specified in Footnote 4 using ap-

proximate leave-one-out cross-validation (Vehtari et al., 2017). The comparison can be

summarized by the di↵erence in expected log pointwise predictive density (�ELPD, see

Section 3.2.7 for using �ELPD as a tool for model comparison). To begin with, we

found that compared to GPT2 surprisal, ACT-R metrics received stronger evidence for

successfully predicting single-trial EEG amplitude of the sustained negativity, and that

the ACT-R-1 and ACT-R-2 models showed comparable performance. Table 3.5 depicts

the �ELPD and standard error (SE) for the model comparison among Ai of ACT-R-1,

Ai of ACT-R-2, and Surprisal during the 100–300-ms, 300–500-ms and 500–800-ms time

windows at the critical verb region.

Secondly, the better predictive power of Ai could be attributed to its sub-component,
Pm

j=1 WjSji, but not Bi, in both ACT-R-1 and ACT-R-2 models. For ACT-R-1, Table

3.6 displays the �ELPD and SE for the model comparison among Ai, Bi,
Pm

j=1 WjSji,

and Surprisal during the 100–300-ms, 300–500-ms and 500–800-ms time windows at the

critical verb region And Table 3.7 displays similar comparison using the metric values of

ACT-R-2.

We thus report one of the first cortical electrophysiological evidence of the memory

interference e↵ects during naturalistic language processing, and suggest that interference

modeled with ACT-R may generalize to more everyday comprehension situation.
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Table 3.5: The di↵erence in expected log pointwise predictive density (�ELPD) and standard
error (SE) for the model comparison among Ai of ACT-R-1, Ai of ACT-R-2, and Surprisal
during the 100–300-ms, 300–500-ms and 500–800-ms time windows at the critical verb region.

100–300 ms 300–500 ms 500–800 ms
�ELPD SE �ELPD SE �ELPD SE

Ai of ACT-R-2 0.0 0.0 Ai of ACT-R-1 0.0 0.0 Ai of ACT-R-1 0.0 0.0
Ai of ACT-R-1 0.0 0.1 Ai of ACT-R-2 0.0 0.2 Ai of ACT-R-2 0.0 0.2
Surprisal -2.7 2.6 Surprisal -0.9 1.6 Surprisal -1.5 2.3

Table 3.6: The di↵erence in expected log pointwise predictive density (�ELPD) and standard
error (SE) for the model comparison among Ai of ACT-R-1, Bi of ACT-R-1,

Pm
j=1WjSji of

ACT-R-1, and Surprisal during the 100–300-ms, 300–500-ms and 500–800-ms time windows at
the critical verb region.

100–300 ms 300–500 ms 500–800 ms
�ELPD SE �ELPD SE �ELPD SE

Ai of ACT-R-1 0.0 0.0
Pm

j=1 WjSji of ACT-R-1 0.0 0.0
Pm

j=1 WjSji of ACT-R-1 0.0 0.0Pm
j=1 WjSji of ACT-R-1 -0.4 1.9 Ai of ACT-R-1 -2.9 2.7 Ai of ACT-R-1 -1.2 1.8

Bi of ACT-R-1 -0.8 1.2 Bi of ACT-R-1 -3.5 3.7 Bi of ACT-R-1 -2.6 2.7
Surprisal -2.7 2.6 Surprisal -3.7 3.6 Surprisal -2.7 3.0

Table 3.7: The di↵erence in expected log pointwise predictive density (�ELPD) and standard
error (SE) for the model comparison among Ai of ACT-R-2, Bi of ACT-R-2,

Pm
j=1WjSji of

ACT-R-2, and Surprisal during the 100–300-ms, 300–500-ms and 500–800-ms time windows at
the critical verb region.

100–300 ms 300–500 ms 500–800 ms
�ELPD SE �ELPD SE �ELPD SE

Ai of ACT-R-2 0.0 0.0
Pm

j=1 WjSji of ACT-R-2 0.0 0.0
Pm

j=1 WjSji of ACT-R-2 0.0 0.0Pm
j=1 WjSji of ACT-R-2 -0.2 1.9 Ai of ACT-R-2 -2.9 2.8 Ai of ACT-R-2 -1.1 1.8

Bi of ACT-R-2 -0.8 1.2 Bi of ACT-R-2 -3.5 3.8 Bi of ACT-R-2 -2.5 2.7
Surprisal -2.7 2.6 Surprisal -3.8 3.7 Surprisal -2.6 3.0
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3.4 Discussion

We test for the e↵ects of memory retrieval (i.e., interference and decay) and pre-

dictability and their neural bases during the resolution of subject-verb agreement during

Chinese audiobook naturalistic listening. Extending Li et al. (2021)’s characterisation of

pronoun reference in natural stories with ACT-R, we fit electroencephalography (EEG)

signals against two ACT-R variants (Lewis and Vasishth, 2005) and word-predictability

measure from Chinese GPT2 (Du, 2019; Radford et al., 2019). Variants di↵er in cue-

combinatorics (Parker and Phillips, 2017; Sturt, 2003): structural cues may be weighted

(i) equally (Lewis and Vasishth, 2005; McElree, 2000; Vasishth et al., 2008) or (ii) prefer-

ably (Parker and Phillips, 2017; Van Dyke and McElree, 2011; Yadav et al., 2022) over

non-structural cues in ACT-R.

We first successfully report the e↵ects of memory retrieval during naturalistic com-

prehension. Our EEG results showed that a sustained negativity was elicited by Low

Activation vs. High Activation group. This negativity was better captured by both

ACT-R models, but not the word-predictability model. Within the ACT-R metric, we

further identify the interference component as the driving force behind this negativity

e↵ect, as compared to the decay component in the ACT-R model.

Theoretically, our results support the general cue-based working-memory retrieval

theory (Lewis and Vasishth, 2005; Vasishth et al., 2008), but not the noisy-memory-

based-predictability account (Ryu and Lewis, 2021). In order to further tease apart

sub-theories concerning cue-preference under the cue-based retrieval framework, and to

probe the potential interaction between memory retrieval and predictability, more future

work is needed. Firstly, to test for the cue-preference-by-predictability account (Parker

and Phillips, 2017; Tung and Brennan, 2023), cue-weighting could be varied in a more

continuous fashion. Rather than assigning an invariant weighting (e.g., 1 or 1.6) for the

retrieval cues for all target words, one strategy would be to parameterize the weighting

scheme per word according to the predictability of the critical words at the retrieval site.

This will provide a novel dynamic metric for evaluating the influence of cue-weighting on

the memory retrieval process for each individual target word. This approach also consti-
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tutes e↵orts to more tightly integrate memory retrieval and predictability into a common

processing model. Secondly, to assess the cue-preference-by-proficiency account (Yadav

et al., 2022), the language proficiency of participants could be estimated by separate

battery of tests, which will in turn a↵ect the cue-weighting scheme for each participant.

Taking into account individual di↵erences could further improve the predictive power of

the memory metric. Finally, to evaluate the cue-preference-by-morphosyntax account

(Mertzen et al., 2023), cross-linguistic comparison within subject might better repre-

sent the cue-weighting scheme at work in the individual minds of each participant. For

example, comparing the metric performance on explaining data on English audiobook

listening to data on German audiobook listening might be a valuable benchmark for

theories/metrics built previously on controlled experiments.

Methodologically, we also illustrated how to combine computational modeling and

cognitive neuroscience to study continuous spoken language comprehension in real time.

Specifically, we exploited both symbolic modeling and large language models in combina-

tion with event-related brain potential recordings from the human scalp to show that the

incremental parser exploited both syntactic and semantic information to retrieve target

noun-phrases from memory.

3.5 Conclusion

Our study connects theories of memory retrieval and prediction with their neural

implementations, suggesting a strong correlation between cue-based retrieval mechanism

and the amplitude of a sustained negativity ERP component in response to processing

the verb during subject-verb dependency while listening to an audiobook story. These

computationally explicit theories generate values as linking hypotheses to test against

measured human responses, and are therefore especially useful in decoding EEG data

from naturalistic studies with non-factorial design and naturally occurring sentences as

stimuli. We thus demonstrate how the formal modeling approach could simulate cognitive

processes in language comprehension that is generalizable to every-day language use.
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CHAPTER IV

Conclusion

This dissertation investigates how predictions and working memory demands a↵ect

word-by-word language processing, and identifies the neural mechanisms that mediate

these e↵ects. These experiments, based on Mandarin Chinese, complement existing work

on typologically di↵erent languages (primarily English and German), and thus serves to

broaden the cross-linguistic data contributing to theories of memory and prediction under

analysis. To integrate linguistic predictions (Hale, 2001; Levy, 2008) and working mem-

ory load (Lewis et al., 2006; McElree, 2006; Vasishth et al., 2019) into a unified model of

processing complexity, Chapter II tests for and reports, for the first time, empirical ev-

idence for the modulation of memory retrieval by linguistic predictions using controlled

experiments. Chapter III then isolates, also for the first time, the memory e↵ects in-

dependently from the predictability e↵ects using an authentic audiobook story during

continuous speech comprehension. Below I will summarize the contributions of Chap-

ters II and III before comparing diverse neural signatures of memory retrieval. Future

directions pertaining to the refinement of memory and predictability models, alongside

cross-linguistic comparison will also be discussed.

Chapter II deploys a within-task design (i.e. sentence-reading) to assess whether

Mandarin constructions show an interaction between predictability and memory inter-

ference, as previously demonstrated for English. This EEG experiment focuses on the

“noun-phrase ellipsis” (e.g., Elizabeth ate a cookie that was next to the cake and Har-

riet also ate one.). Similar to prior work in English, I found a greater positive voltage
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over the centro-posterior scalp areas around 600 milliseconds after the critical word onset.

This “P600 e↵ect” has been proposed to index processing di�culty due to retrieval inter-

ference in ungrammatical sentences (Tanner et al., 2014; Xiang et al., 2009). Crucially,

this facilitatory interference e↵ect only surfaced when the target item was highly pre-

dictable, but not when the target and distractor items were equally unpredictable. The

results support my hypothesis and align with a working memory cost account that incor-

porates predictability (Parker and Phillips, 2017). In other words, these neuro-electrical

dynamics are consistent with an integrated perspective where linguistic predictions and

memory load jointly and interactively contribute to successful language comprehension

(Futrell et al., 2020). The memory-based (Lewis et al., 2006; McElree, 2006; Vasishth

et al., 2019) and prediction-based (Hale, 2001; Levy, 2008) accounts are, therefore, not

mutually exclusive, but may rather represent di↵erent aspects of the processing mecha-

nisms.

Chapter III capitalizes on a naturally occurring Mandarin audiobook story to inves-

tigate whether the memory retrieval and predictability e↵ects also surface in a more nat-

uralistic environment of language comprehension. This EEG experiment studies subject-

verb dependencies (e.g., You for me draw a sheep.). In line with previous English

literature, I discovered an increased negative voltage with wide scalp distribution start-

ing around 200 ms after the critical word onset. This “Nref” e↵ect (Van Berkum, 2009;

Van Berkum et al., 1999) has been associated with processing di�culty due to retrieval

interference in grammatical contexts (Martin et al., 2012). Furthermore, this inhibitory

interference e↵ect (Jäger et al., 2017, for review) was better explained by the ACT-R

memory (Lewis and Vasishth, 2005) model as compared to the GPT-2 probability model

(Ryu and Lewis, 2021). I thus reported one of the first cortical electrophysiological evi-

dence for how memory retrieval is modulated during naturalistic language processing.

4.1 Neural signatures of memory retrieval

One nuance of the experimental results is that memory retrieval e↵ects are indexed

by the P600 ERP component at the critical word region in Chapter II, but by the Nref
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component in Chapter III. The critical word region is the retrieval site for the target

word in the process of dependency resolution. It corresponds to the word region of

number-classifier sequence for noun-phrase ellipsis construction, and to the region of verb

for subject-verb dependency. Importantly, in Chapter II, while the interference e↵ect

correlates with the P600 component at the critical word region, the same interaction

e↵ect is associated with the Nref component at the word region immediately following

the critical word region. The presence of the P600 e↵ect and the distinct timing of

the Nref e↵ects might relate to several di↵erences in the two experiments. Chapter II

employs a reading task with carefully designed individual ungrammatical sentences. But

in Chapter III, participants listen to a naturally occurring audiobook story that contains

only grammatical sentences.

First, the two experiments di↵er in modality. Second, and perhaps more importantly,

the experiment in Chapter II focuses on memory e↵ects in ungrammatical sentences (fa-

cilitatory interference) while the naturalistic analysis in Chapter III focuses on ERPs for

grammatical sentences. Since the P600 e↵ect has been consistently elicited by violations

of syntactic principles (Hagoort et al., 1993; Kaan et al., 2000; Kaan, 2002; Kaan and

Swaab, 2003; Molinaro et al., 2011; Tanner et al., 2014; Yang et al., 2015), as well as

by facilitatory interference under ungrammatical contexts (Tanner et al., 2014; Xiang

et al., 2009), it is predicted for the ungrammatical stimuli sentences in Chapter II, but

not necessarily for the grammatical audiobook texts in Chapter III.

The Nref e↵ect, on the other hand, has been induced when a unique referent can-

not be selected from several competitors given prior context (Van Berkum et al., 1999;

Van Berkum, 2009), as well as when distractors cause interference in grammatical situa-

tions (Martin et al., 2012). A statistically non-significant trend of a facilitatory interfer-

ence e↵ect in ungrammatical sentences indexed by the Nref e↵ect was also reported by

Martin et al. (2012). Not strongly tied with the grammaticality manipulation, the Nref

e↵ect can thus be predicted for stimuli introducing referential processing di�culty in both

grammatical and ungrammatical situations, as in both of our experiments. Specifically,

due to distractor interference, a su�ciently unique target noun-phrase antecedent might
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become di�cult to be identified in the noun-phrase ellipsis construction in Chapter II.

Similar di�culty holds for the target subject noun-phrase in the subject-verb dependency

in Chapter III in the presence of distractor interference. The delayed timing of the Nref

e↵ect in Chapter II compared to Chapter III might reflect the additional immediate e↵ort

required to resolve syntactic violation before the referential ambiguity.

4.2 Modeling naturalistic comprehension

The findings of Chapter III further complement the results of Li et al. (2021), who

also successfully characterized brain activities during story listening using the ACT-R

memory model, but not deep neural network models with LSTM or Transformer archi-

tecture. They identified a cortical network involving the anterior and posterior left middle

temporal gyrus and the angular gyrus for pronoun resolution using fMRI and MEG exper-

iments. And they attributed the underlying cognitive processes for referential processing

to domain-general mechanism similar to memory retrieval. I extended this line of re-

search to a more diverse set of linguistic constructions and experimental methodologies.

Namely, I used subject-verb dependency in an EEG experiment to provide converging

evidence in support of the underlying mechanisms for online language processing that is

generalizable to every-day situation. To further understand the detailed memory retrieval

operations, I additionally evaluated several theories of cue-preference by comparing two

ACT-R models.

By pitching the memory model directly against the predictability model, I success-

fully isolated the memory retrieval e↵ects from linguistic predictability e↵ects by iden-

tifying unique neural correlates of the memory demand. While the current study could

not further tease apart sub-theories of cue-preference under the general cue-based mem-

ory retrieval framework, I provide feasible ways forward to try to test for those delicate

theoretical nuances. Specifically, I suggest to: (i) parameterize cue-weighting with a con-

tinuous scale according to the predictability of the critical words in order to test for the

cue-preference-by-predictability account (Parker and Phillips, 2017; Tung and Brennan,

2023), (ii) measure language proficiency across native speakers and vary cue-weighting ac-

78



cordingly to evaluate the cue-preference-by-proficiency account (Yadav et al., 2022), and

(iii) collect data on English and German audiobook listening to assess the cue-preference-

by-morphosyntax account (Mertzen et al., 2023). These approaches serve to investigate

the hypothesized individual di↵erences among words, participants and language stimuli,

with the goal of maximizing the capabilities of the memory metrics in approximating

human performance on naturalistic language comprehension.

4.3 Cross-linguistic comparison

While my dissertation investigates the e↵ect of memory and predictability using both

artificially constructed Mandarin single-sentences stimuli and more ecologically valid

Mandarin audiobook stimuli on native (L1) speakers, the next natural step is to use

English audiobook stimuli on second-language (L2) learners to further achieve cross-

competency and cross-linguistic comparison. While theories of sentence processing and

cognitive architecture flourish with growing clarity, they are severely constrained by a

small class of language users. The next urgent step in the field is to connect the models

with a more representative group of languages and learners. One possible extension of

the research on naturalistic comprehension is to compare L1 and L2 speakers of English

and that of Mandarin. This dynamic extension seeks to unveil the cognitive and neu-

ral mechanisms underlying multilingual processing success/di�culty, especially since the

engagement of predictive mechanism might vary as a function of linguistic typology or

proficiency (Blasi et al., 2022; Huettig and Mani, 2016). Apart from further data collec-

tion, continued refinement of formal computational models of memory and predictability

(Hahn et al., 2022; Lewis and Vasishth, 2005; Parker and Phillips, 2017) will benefit the

aims of building biologically plausible and interpretable models for human electrophysi-

ological data.

Pushing forward, I am keen to extend this line of research to indigenous languages,

which are underrepresented in neurolinguistics studies. Experimental data is scarce (cf.

Wagers et al. (2018)), and data collection poses unique challenges. My naturalistic au-

diobook listening paradigm tackles the challenges by o↵ering an accessible approach for
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populations (e.g., non-literate) for whom traditional experimental tasks may be di�cult.

Investigating the parsing strategies for diverse languages could unveil the universality

and variance among linguistic algorithms, their neural signature, and downstream ef-

fects of comprehension success/breakdown, which hold both educational and therapeutic

implications.
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APPENDIX A

Supplementary Material of Chapter II

Figure A.1: Grand averages
and 95% confidence intervals
(grey shading) at Cz, Pz, Oz
for Ungrammatical (red lines)
or Grammatical (blue lines)
condition, and their scalp dis-
tributions during four consec-
utive time windows between
200 to 1000 ms after the verb
onset immediately following
the critical number-classifier
sequence.
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Figure A.2: Di↵erence waves
and 95% confidence intervals
(grey shading) at Cz, Pz, Oz
for High Interference minus
Low Interference in High Ex-
pectation (red lines) or Low
Expectation (blue lines) un-
grammatical condition, and
their scalp distributions dur-
ing four consecutive time win-
dows between 200 to 1000 ms
after the verb onset imme-
diately following the critical
number-classifier sequence.
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Figure A.3: Di↵erence waves
and 95% confidence intervals
(grey shading) at Cz, Pz, Oz
for High Interference minus
Low Interference in Low Ex-
pectation (red lines) or High
Expectation (blue lines) gram-
matical condition, and their
scalp distributions during four
consecutive time windows be-
tween 200 to 1000 ms after
the verb onset immediately
following the critical number-
classifier sequence.
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