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For all the little Black girls who were told that they could not climb...let them witness your

ascension.
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Abstract

A new control paradigm using angular momentum and foot placement as state

variables in the linear inverted pendulum model has expanded the realm of possibili-

ties for the control of bipedal robots. This new paradigm, known as the Angular

Linear Inverted Pendulum (ALIP) model, has shown effectiveness in cases where a

robot’s center of mass height can be assumed to be constant or near constant as

well as in cases where there are no non-kinematic restrictions on foot placement.

Walking up and down stairs violates both of these assumptions, where center of

mass height varies significantly within a step and the geometry of the stairs restrict

the effectiveness of foot placement.

In this thesis, we explore a variation of the ALIP model that allows the length

of the virtual pendulum formed by the robot’s stance foot and center of mass

to follow smooth trajectories during a step. We couple this model with a control

strategy constructed from a novel combination of virtual constraint-based control and

a model predictive control algorithm to stabilize a stair-climbing gait that does not

solely rely on foot placement. Simulations on a 20-degree of freedom model of the

Cassie biped in the SimMechanics simulation environment show that the controller is

able to achieve periodic gait. Hardware experiments also show promise of improving

the robustness of walking gaits on inclined surfaces.

xiii



Chapter 1

Introduction

1.1 Motivation

In a world where safety and efficiency are paramount, the integration of robots

into various domains has become increasingly prevalent [7, 8]. From disaster relief

efforts [9, 10, 11] to industrial automation [12, 13, 14, 15], underwater operations

[16], and healthcare care [17], robots have the potential to alleviate risks and

enhance the overall quality of life for humans. While many significant advancements

in legged robotics have been achieved over the past decades, there are still crucial

challenges that must be addressed to unlock the true potential of bipedal robots

[18, 19, 20, 21, 22].

One fundamental aspect of human-centric environments is the presence of stairs—–

a ubiquitous feature that poses a significant obstacle for both humans and bipedal

robots [23, 24, 25, 26]. Conquering this challenge requires innovative approaches

to robot control system design, specifically tailored for bipedal machines. This

thesis aims to present a novel solution by proposing a method for asymptotically

stable stair climbing that addresses the unique characteristics and constraints of

underactuated bipedal robots.

Drawing inspiration from the inverted pendulum model [27, 28], which is widely

used to analyze bipedal locomotion, our research introduces a novel variation that

allows for dynamic variations in the robot’s center of mass height within each

1



step. By combining virtual constraint-based control and Model Predictive Control,

we achieve a stable stair climbing gait that enables bipedal robots to ascend stairs

efficiently and safely.

Throughout this thesis, we will delve into the theoretical foundations of our

proposed method, provide a comprehensive analysis of the control algorithms employed,

and present experimental results to validate the effectiveness and feasibility of our

approach. By shedding light on the challenges faced by bipedal robots and offering

a promising solution for stair climbing, we aim to contribute to the advancement of

robotics and pave the way for a more robot-assisted world.

1.2 Objectives

The overarching goal of this thesis is to develop a gait design method for stair

climbing specifically tailored for underactuated bipedal robots. To achieve this goal,

the following specific objectives will be pursued:

1. Conduct a comprehensive review of existing literature and research on bipedal

locomotion, with a particular focus on stair-climbing techniques and challenges

faced by bipedal robots in traversing stairs.

2. Propose a novel variation of the inverted pendulum model that allows for

variations in the center of mass height within a step, enabling bipedal robots

to adapt their gait for stair climbing.

3. Develop virtual constraints to facilitate stability and precise control of the

bipedal robot during stair climbing using the proposed variation of the inverted

pendulum model.

4. Implement a Model Predictive Control-based ankle actuation strategy that works

with the virtual constraints to stabilize the stair-climbing gait.

2



5. Evaluate the proposed stair-climbing method through extensive simulations to

assess its stability, efficiency, and adaptability to different stair configurations.

6. Conduct experimental validations using an underactuated bipedal robot to assess

the practical feasibility and performance of the proposed method in real-world

scenarios.

7. Analyze and compare the results obtained from simulations and experiments,

identifying the strengths, limitations, and areas for improvement of the proposed

stair-climbing method.

8. Provide recommendations for future research and development in the field of

bipedal robot mobility, particularly in the context of stair climbing, aiming to

inspire further advancements and innovations.

By accomplishing these objectives, this thesis aims to contribute to the field

of robotics by presenting a practical and effective solution for stair climbing that

enhances the mobility and versatility of underactuated bipedal robots.

1.3 Thesis Overview

In the following chapters, we will introduce the bipedal robot platform used

in this thesis as well as modeling methodology (Chapter 2), explore the existing

literature on bipedal locomotion and discuss the technical details of our proposed

method (Chapter 3), present simulation and experimental results (Chapters 4 and

5), and finally, discuss the implications and potential future developments that

can arise from our research (Chapter 6). Through this exploration, we aspire to

foster innovation and inspire further advancements in the field of robotics, ultimately

enabling the creation of more capable and versatile robots that can operate effectively

in human-centric environments.
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Chapter 2

Laying the Blueprint - Modeling the Cassie Biped

Before introducing our novel stair-climbing algorithm, a comprehensive acquaintance

with the selected robot platform for testing and validation is essential. We thus

begin with introducing the robot that we use for this work. This chapter explores

the mathematical modeling of the Cassie Biped robot. By developing a comprehensive

model that captures its mechanical structure and dynamics, we gain valuable insights

into its stability and locomotion patterns, providing a scaffold on which to apply

our stair-climbing algorithm.

2.1 The Cassie Bipedal Robot

The stair-climbing algorithm presented in this dissertation is validated on the

Cassie robot. Cassie (shown in Figure 2.1) is a bipedal robot developed by the

company Agility Robotics [29]. Standing at 1.5 meters tall and weighing 35 kilograms

(4.92 feet and 77 pounds), its design is inspired by the structure and movements of

a cassowary, an ostrich-like bird. Only twelve Cassie robots were built, nine of which

were purchased by research labs across the United States (University of Michigan,

Georgia Institute of Technology, California Institute of Technology, University of

Pennsylvania, Oregon State, University of California Berkeley, Florida A&M University

- Florida State University, and Harvard), while the remaining three remained in

possession of Agility Robotics. The University of Michigan owns two, Cassie Blue

and Cassie Maize, which are identical, save for a few features (e.g., different spring
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stiffnesses). The first Cassie was released in 2017, but as of February 2023, Agility

Robotics no longer supports the Cassie platform. This poses a logistical challenge

for the hardware experiments in this thesis, as hardware experimentation began after

Cassie’s warranty ended.

Cassie has ten motors and 20 degrees-of-freedom (DoF), making it an under-

actuated robot. One of the key features researchers implement on Cassie is the

ability to autonomously maintain stability and recover from perturbations. Using a

combination of an Inertial Measurement Unit (IMU) and encoders in each of its

fourteen joints (labeled in Figure 2.2 and Figure 2.3), Cassie is able to constantly

monitor its position, orientation, and ground contact. This sensory information is

processed by sophisticated onboard algorithms to generate precise motor commands

and maintain balance [30, 31, 32, 33, 34, 35].

Cassie is capable of walking on various terrains, including flat surfaces [1], uneven

ground [35, 36], gentle slopes [31], and stairs [37, 38, 39]. The applications of

Cassie are wide-ranging. It has been primarily used in research and development

for studying bipedal locomotion, gait analysis, and balance control. Additionally,

Cassie has the potential to be used in various practical applications, such as package

delivery, search and rescue operations, and industrial tasks that require navigating

human environments. Moreover, controllers built for the Cassie robot can be applied

to other bipedal robot platforms [39, 40].

Overall, Cassie represents a significant advancement in bipedal robotics, combining

sophisticated control algorithms, sensors, and a biomechanical design to achieve stable

and natural walking capabilities. Its versatility and potential applications make it a

promising platform for future advancements in robotics and automation.

Now that we have a robot platform, we need to understand how to mathemati-

cally model it and the various forces acting on it to be able to effectively apply

our novel stair-climbing algorithm.
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2.2 The Robot Equations

The equations of motion, also known as the robot equations, describe the

relationship between the forces acting on a physical object (e.g., robot) and its

resulting motion [41, 42, 43, 44]. There are several approaches to generating a

robot’s equations of motion, including Newtonian mechanics (which uses Newton’s

Laws) and the Lagrangian (which uses energy). The method one chooses to use

depends on variety of practical and strategic factors.

This thesis chooses to use the Lagrangian approach for the following reasons:

• Generalization and Flexibility: The Lagrangian approach provides a generalized

framework that can handle a wide range of physical systems, including those

with constraints, non-conservative forces, and generalized coordinates. It offers

a unified treatment for different types of systems, making it applicable to a

broader class of problems.

• Simplicity and Clarity: The Lagrangian formulation often simplifies the mathe-

matical analysis compared to other approaches. It avoids the need to consider

individual forces acting on a system and focuses instead on the system’s overall

energy and the variation of its generalized coordinates. This can make the

derivation of equations of motion more straightforward, especially for complex

systems.

• Coordinate Independence: The Lagrangian approach is coordinate-independent,

allowing for a more elegant treatment of systems with generalized coordinates

that might not be easily expressed in Cartesian coordinates. This makes

it particularly useful for describing systems with non-linear or non-Cartesian

geometries (like Cassie).

• Conservation Laws: The Lagrangian formulation naturally incorporates the conser-
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vation laws, such as the conservation of energy and momentum, as consequences

of symmetries in the system. These conservation laws can provide valuable

insights into the system’s behavior without explicitly considering all the forces

acting on the system.

Deriving the robot equations is a non-trivial task that can take dozens to

hundreds of pages to write, especially for robots as complex as the Cassie biped.

Thus, we resort to software such as Matlab and Mathamatica to handle these

derivations [45]. Nevertheless, it is useful to understand the basics behind the math

that the software employs. Appendix A walks through the derivation of the robot

equations using Lagrangian mechanics on a robot approximated as point masses.

Note that we do not use the point mass approximation on Cassie to generate the

robot equations in our application in this thesis. Instead, we use distributed mass,

relying on a Unified Robotics Description Format (URDF) of Cassie to capture

Cassie’s structure and kinematics. However, understanding the Lagrangian mechanics

deviation of the robot equations on a point-mass model provides useful insights on

how the derivation would apply on a distributed mass system.

2.2.1 Cassie’s Robot Equations

Bipedal locomotion, such as with stair climbing, can be best characterized using

a hybrid system–a system that displays both continuous and discrete behavior [46, 2].

The continuous phase describes the dynamics of one foot supporting the robot and

the other swinging forward, while the discrete phase describes the transitions between

left and right feet. The “stance leg” is defined as the leg that is planted on the

ground during walking motion. Conversely, the “swing leg” refers to the leg whose

foot is progressing forward.

Using Lagrangian mechanics, one obtains a second-order differential equation to
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describe the continuous dynamics for the Cassie biped:

D(q)q̈ + C(q, q̇)q̇ + G(q) = JT
stF + JT

s Fs + Bu (2.1)

where D ∈ R20×20 is the mass inertial matrix, C ∈ R20×20 is the centrifugal and

coriolis forces matrix, G ∈ R20×1 is the gravitational vector, Jst ∈ R5×20 is the stance

foot Jacobian (we assume that the blade foot has two points of contact), F ∈ R5×1

is the ground reaction force acting on the stance foot, Js ∈ R4×20 is the Jacobian

of the springs, Fs ∈ R4×1 are the forces acting from the springs, B ∈ R20×10 is the

input matrix, u ∈ R10×1 is the motor torque vector, and q ∈ R20×1 is the generalized

coordinate vector.

The generalized coordinates of the Cassie robot are defined as follows:

q =

qfloating base

qbody

 (2.2)

where

qfloating base =
[
qabsolutex , qabsolutey , qabsolutez , qabsoluteyaw , qabsolutepitch , qabsoluteroll

]⊤
(2.3)

are the floating base coordinates that represent the pose of the base link with

respect to a fixed inertial frame, and

qbody =
[
qlefthip roll, q

left
hip yaw, q

left
hip pitch, q

left
knee, q

left
knee spring, q

left
ankle, q

left
toe ,

qrighthip roll, q
right
hip yaw, q

right
hip pitch, q

right
knee , q

right
knee spring, q

right
ankle, q

right
toe

]⊤
.

(2.4)

For reasons discussed in the next chapter, we reformulate the equations of motion

defined in Equation (2.1) such that the stance ankle torque term is isolated from
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the rest of the input terms. Thus,

D(q)q̈ + C(q, q̇)q̇ + G(q) = JT
stF + JT

s Fs + B1u1 + B9u9 (2.5)

where B9 ∈ R20×9 and u9 ∈ R9×1 are the input matrix and control vector without

the stance ankle terms, respectively, and B1 ∈ R20×1 and u1 ∈ R1×1 correspond to

the column in the input matrix and value in the control vector relating to the

stance ankle torque, respectively.

2.2.2 Constraints due to Springs and Contacts

When using a floating based model, the Cassie robot has 20 DoF. The four

springs—two on each leg—are very stiff. We therefore approximate them as four

holonomic constraints. When Cassie has one foot on the ground—which is the case

when walking or climbing stairs—that foot adds another 5 holonomic constraints to

the system: constraining the Cartesian position of the front and back of the foot

sets the Cartesian position of the foot, as well as its yaw angle and pitch angle.

Because the foot is narrow, it is modeled as a blade, allowing roll about the x-axis.

2.3 Building the Virtual Twin - Linear Inverted Pendulum-Based Biped Robot

Modeling

There is a common saying coined by the British statistician George E. P. Box

that goes “all models are wrong, but some are useful.” In the context of bipedal

robotics, roboticists have used a range of models to achieve agile movement in

their robots [47, 48, 49, 50, 51, 52]. Full-order dynamical models have proven to

be too computationally expensive for practical online control calculations and/or it

has proven hard to transfer among different robots of similar morphology [53, 54].

More granular models make it easier to apply a variety of control schemes and
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perform real-time computations, however, they can also be ineffective in capturing

the dominant dynamics of a robot, thus limiting the agility of the closed-loop system

(robot plus the controller) [55, 56, 57]. In addition, the sim-to-real gap can be hard

to manage [58, 59]. We use a model in this dissertation to more efficiently apply

our control scheme that would otherwise prove to be too computational expensive

to implement on a full order-model of Cassie in real-time.

2.3.1 The Linear Inverted Pendulum (LIP) Model

The Linear Inverted Pendulum (LIP) model (shown in Figure 2.4) is a simplified

representation of the dynamics of a pendulum in an inverted position. It is often

used in control theory and robotics to study the stability and control of systems

that resemble an inverted pendulum. The LIP model is particularly relevant in the

context of balancing systems like those found in applications such as bipedal robots,

where the LIP model assumes a point mass fixed on massless legs [27, 28].

The basic idea is to model the dynamics of an inverted pendulum as a linear

system around an equilibrium point. The equilibrium point is the point around

which the system is linearized. For an inverted pendulum, the equilibrium point is

often chosen to be the upright position.

The LIP model is a valuable tool for analyzing the stability and designing control

strategies for systems that involve balancing an inverted pendulum. Control methods

such as Linear Quadratic Regulator (LQR) or Proportional-Integral-Derivative (PID)

controllers are commonly applied to stabilize and control systems modeled using the

LIP framework.

Approaches that use the LIP model in bipedal locomotion typically assume a

constant center of mass height and use CoM velocity as a means to quantify

“balance” (e.g., speed stabilization). These assumptions fail to effectively capture

impacts associated with gaits where the CoM height undergoes significant variation
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[60].

Recent research shows that angular momentum about the contact point of the

stance foot has higher fidelity when applied to realistic robots [61, 60]. This newer

paradigm, called the Angular Momentum Linear Inverted Pendulum (ALIP) model,

has been used in control strategies to determine foot placement. Critically, angular

momentum about the support foot has relative degree three with respect to all motor

torques except the stance ankle, where it has relative degree one. Consequently,

angular momentum about the support foot is directly controllable via ankle torque

and only weakly affected by distal motor torques throughout a step. Furthermore,

the transfer of angular momentum property at impact shows that angular momentum

about a given contact point is invariant to the impulsive force generated at the

contact point [48].

The ALIP model is a reparameterization of the LIP model where the linear

velocity of the CoM is replaced by the angular momentum about the contact point

as a key variable to “summarize” the state of a robot. For robot models consisting

of a single point mass suspended on massless legs, the ALIP model is equivalent to

the LIP model. For real robots, with links having distributed mass, reference [61]

shows that the ALIP model is superior for making predictions about future state

values.

While the ALIP model has proven to be an effective means of achieving agile

locomotion over flat ground [61], the model has not yet been demonstrated on tasks

that involve rapid changes to CoM height such as stair climbing or climbing onto

or off objects. Truly agile bipedal robots must be fitted with a controller that is

able to handle rapid changes to CoM height to make them capable of navigating

cluttered environments. This work further capitalizes on the benefits of the ALIP

model by coupling the angular momentum parameter with CoM angle, a variable

that better captures the non-constant behavior of a robot’s center of mass in gaits
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on uneven surfaces. We discuss this new ALIP model further in the following

subsections.

2.3.2 Derivation of the new Angular Momentum Linear Inverted Pendulum

(ALIP) Model

The derivation of the new ALIP model is as follows. Assume an inverted

pendulum as shown in Figure 2.4, where (xc, zc) are the Cartesian position of the

CoM with respect to the stance foot. It follows that the angle of the CoM with

respect to the stance foot is

θc = arctan
(xc

zc

)
. (2.6)

Taking the derivative with respect to time yields

θ̇c =
1

1 + (xc

zc
)2

( ẋczc − żcxc

z2c

)
=

1

z2c + x2
c

(ẋczc − żcxc)

=
1

r2c
(ẋczc − żcxc)

(2.7)

where rc =
√

x2
c + z2c is the length of the pendulum. For later use, we rewrite

Equation (2.7) as

θ̇c =
1

mr2c
(mẋczc −mżcxc) (2.8)

where m denotes total mass.

Given the angular momentum about the contact point L and the angular mo-

mentum about the CoM, Lc, the angular momentum transfer formula [31] gives

L− Lc = m

xc

zc

 ∧

ẋc

żc

 = mzcẋc −mxcżc (2.9)
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where xc

zc

 ∧

ẋc

żc

 :=



xc

0

zc

×


ẋc

0

żc


 •


0

1

0

 .

Using Equation (2.9), Equation (2.8) becomes

θ̇c =
L− Lc

mr2c
. (2.10)

To complete the model, the time derivative of L, the angular momentum about

the stance leg is

L̇ = mgxc + τ

= mgrc sin(θc) + τ,

(2.11)

where τ is the torque about the contact point, which we will call stance ankle

torque. Note that τ here is equivalent to u1 in Equation (2.5). Combining Equation

(2.10) and Equation (2.11), the dynamical model becomes

θ̇c =
L− Lc

mr2c

L̇ = mgrcsin(θc) + τ.

(2.12)

In [31], it is shown that Lc can be neglected for Cassie-like robots. For the

nominal stair-climbing trajectory, −0.21 ≤ θc ≤ 0.13 radians, and hence we can make

the approximation sin(θc) ≈ θc. This results in the linear time-varying model

θ̇c =
L

mr2c (t)

L̇ = mgrcθc + τ,

(2.13)

which we refer to as the ALIP. The model is time-varying because we will assume

that rc(t) evolves according to the nominal periodic orbit.

13



2.3.3 Remarks on the ALIP Model

When the CoM is controlled to a constant height, the ALIP model becomes

linear and time-invariant, and hence admits a closed-form solution. When walking

on level ground, a constant CoM assumption renders the impact map linear in the

planned horizontal swing foot position.

Walking on stairs violates two of the key assumptions made above: a) the CoM

height of the robot must vary to pass from one step to the next, and b) the

run of each step of the stair severely restricts horizontal foot placement, effectively

eliminating it as a control decision variable. This new version of the ALIP model

from [31] facilitates accounting for varying pendulum length. We also introduced

stance-leg ankle torque into the model so that it can be used as a control variable.

This is discussed further in the next chapter.

2.4 Impact Map

An impact map [2, 62] is a means of capturing a system’s state after impact

(i.e., when the swing foot touches the floor in a walking trajectory). Specifically,

the impact map calculates what the generalized velocities and forces acting on the

system are following impact by integrating the dynamics over an instantaneous period

of time. This period is bounded from t− (time before impact) and t+ (time after

impact). Because impact occurs when the swing foot touches the ground, the swing

foot is also included in the dynamics. Thus, Equation (2.5) extends to become

D(q)q̈ + C(q, q̇)q̇ + G(q) = JT
stF + JT

s Fs + B1u1 + B9u9 + JT
swδFsw (2.14)

where Jsw ∈ R5×20 is the swing foot Jacobian and δFsw ∈ R4×1 are the impulsive

ground reaction forces acting on the swing foot acting at impact. Integrating 2.14
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from time before impact t− to time after impact t+ yields

D(q)(q̇+ − q̇−) = JT
s,swFs,sw (2.15)

where q̇− ∈ R20×1 are the generalized velocities before impact and q̇+ ∈ R20×1 are

the generalized velocities after impact, and Fs,sw ∈ R9×1 are the impulsive forces

acting on the springs and swing foot, and Js,sw ∈ R9×20 is the spring and swing

foot Jacobian.

We assume a non-slip constraint. That is, swing foot velocity is zero after

impact:

Jswq̇
+ = 0. (2.16)

Combining Equation (2.15) and Equation (2.16) yields,

 q̇+

Fs,sw

 =

 D −JT
s,sw

Js,sw 0


−1 Dq̇−

0

 . (2.17)

Equation (2.17) is the impact map for the Cassie robot.
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Figure 2.1: The Cassie Blue bipedal robot built by Agility Robotics roaming through
a fiery field at the University of Michigan [1].
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Figure 2.2: (Left) The Cassie Blue bipedal robot next to (Right) a schematic of
the joints of the Cassie robot.
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Figure 2.3: The joints and kinematic model of the Cassie robot.
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Figure 2.4: Schematic of an inverted pendulum to derive a variation on the ALIP
model.
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Chapter 3

Development of the Stair-Climbing Algorithm for Underactuated

Bipedal Robots

This chapter unveils the creation of our novel stair-climbing algorithm for bipedal

robots. Leveraging the Cassie biped’s mathematical model and dynamic insights of

the previous chapter, we craft a versatile algorithm to navigate the complexities of

stair ascension. We detail the algorithm’s evolution through virtual constraint-based

control and MPC. These methods converge to establish a stable stair-climbing gait.

3.1 Background

The study of bipedal robot locomotion over stairs is not new. Several scholars,

such as Fu et al. [63] and Caron et al. [64], have delved into this field by

creating stair-walking controllers for fully actuated humanoid robots with 32 and

34 DoF respectively. In [65], the authors generated open-loop stair gaits for the

3D underactuated 20 DoF Cassie bipedal robot studied in this report; closed-loop

control was not explored. In [36], the authors were able to apply human data

of planned and unplanned downsteps on the Cassie biped in simulation. Our

thesis seeks to further expand the capabilities of the Cassie biped by achieving an

asymptotically stable periodic gait on stairs. Prior work by Siekmann et al. [38]

made use of reinforcement learning to design a closed-loop controller for the Cassie

bipedal robot, perceiving stair height as an unseen perturbation to the controller.
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Although this achievement is noteworthy, the resulting gait appears to provoke severe

impacts, potentially damaging the robot. In this thesis, we assume the robot is

able to perceive terrain geometry at least one-step ahead, enabling the design of a

controller that produces smoother locomotion. Dai et al. [39] approached the issue

by developing a dynamic walking controller for constrained footholds (including on

stairs) by regulating an underactuated robot’s vertical CoM. We seek an alternative

approach to stair climbing using the often-overlooked stance ankle motor as well

as virtual constraint-based control. While the use of virtual constraints in legged

locomotion is not new [66, 31, 35, 1, 67, 68, 69], the use of virtual constraints for

a stair-climbing algorithm for a bipedal robot presents a novel use-case.

3.2 Novel Contributions

This thesis develops a controller that allows the Cassie biped to climb stairs.

Novel contributions include the exploitation of a variation of the ALIP model that

allows CoM height to vary within a step, and a novel combination of virtual

constraint-based control and MPC to stabilize a stair-climbing gait.

If the ultimate goal is to have a bipedal robot navigate through cluttered

environments, speed may not be the first priority. Rather, precision in balance is

a necessity. We show the ability to modulate a robot’s closed-loop behavior in

real-time so as to smoothly handle stairs as well as reject perturbations on flat and

inclined ground.

3.3 Control Design Rationale

Figure 3.1 summarizes how the novel stair-climbing controller of this thesis is

developed. The Cassie biped has 20 DoF to control. This section breaks down how

we chose to regulate these degrees of freedom.

During single support (one foot on the ground and the other free of contact), 9
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DoF have holonomic constraints imposed on them: four from Cassie’s springs (two

springs on each leg), and five from the stance foot. Thus, we are left with 11 DoF

to control and 10 actuators. The robot is therefore underactuated.

Previous work that has successfully achieved stable walking on level, inclined, and

gently rolling terrain consistently used only nine of the ten actuators to achieve

stable walking [31, 35], excluding the stance ankle motor. The stance ankle torque is

not used in walking because the small ankle motor saturates easily on the real robot

in the presence of disturbances, leading to falling. The remaining two uncontrolled

degrees of freedom correspond to rotations of the robot about the stance foot in

the sagittal and frontal planes and are stabilized via foot placement. As noted

by Raibert in [70], if a robot’s CoM spends more time in front of the stance

foot than behind it, then it generally accelerates, and conversely, it decelerates.

This property has been used by many authors to propose foot placement control

algorithms [61, 71, 72, 73, 74, 75, 76] for stabilization of pendulum models.

We follow [31, 35] and use nine actuators to enforce nine virtual constraints,

leaving two degrees of freedom uncontrolled. We adopt the foot placement strategy

of [61] to stabilize the degree of freedom related to rotation about the stance foot

in the frontal plane. Stairs offer limited geometry for sagittal foot placement and

therefore foot placement in this plane is impractical. Instead, we use intelligent

ankle torque control in a manner such that saturation will not destabilize the robot.

This is developed in Section 3.6.
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Figure 3.1: Diagram depicting the structure for the novel stair-climbing controller developed in this thesis.
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3.4 Nominal Periodic Orbit

We utilized Fast Robot Optimization and Simulation Toolkit (FROST) [45] to

generate nominal trajectories for Cassie, leveraging its advanced framework designed

for optimizing and simulating the full-body dynamics of bipedal walking robots.

FROST seamlessly integrates virtual constraints-based feedback controllers and employs

a Wolfram Mathematica backend to symbolically generate expressions for multi-domain

system dynamics and kinematics. These symbolic expressions are then translated into

C/C++ code, compiled into *.MEX files under MATLAB, enhancing computational

speed.

FROST conceptualizes dynamic bipedal walking as a hybrid system, combining

both continuous phases and discrete transitions, represented by a Directed Graph.

A notable feature is its use of state-of-the-art direct collocation approaches for gait

optimization, ensuring swift and dependable convergence. The default control law of

FROST relies on virtual constraints-based feedback controllers. This toolkit emerges

as a versatile and efficient resource for researchers exploring bipedal robot control

and dynamics optimization.

In our study, FROST was employed to generate multiple nominal trajectories for

Cassie. Specifically, we crafted a nominal periodic orbit for Cassie ascending stairs,

defining parameters such as step period (T = 400 ms), step height (20 cm, adhering

to the regulated standard in the United States), and the “run of the step” (stair

depth) at 25 cm (with no standardized value in the United States) [23, 77, 78, 79,

80]. Utilizing Bèzier curves [81], we approximated optimized trajectories for the nine

virtual constraints (defined in Section 3.5), as well as the angular momentum and

CoM angle crucial for MPC computation for ankle torque, as detailed in Section

3.6.

Furthermore, we generated trajectories for various scenarios, including marching in
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place, walking forward, and transitioning from walking on flat ground to different

inclines (4 degrees, 8 degrees, 15 degrees, and 20 degrees).

3.4.1 Generating Nominal Trajectories with FROST

Figure 3.2 illustrates the video outtakes capturing a nominal trajectory designed

for stair climbing using FROST and a full-order model of the Cassie biped. The

trajectory encompasses two steps, accommodating both right and left foot stance

phases. The generation of this trajectory involved addressing several key constraints.

Similar constraints were imposed when crafting the other nominal trajectories.

To prevent Cassie’s feet from impacting the stairs, a constraint was introduced

in which FROST is prohibited from allowing Cassie’s feet to breach a specified

radial distance (determined by stair geometry) around the desired foot placement.

Additionally, a periodicity constraint was imposed at the conclusion of the second

step, enabling the use of this trajectory to traverse an unlimited number of stairs

through the simple repetition of the nominal trajectory.

Furthermore, a constraint was incorporated to minimize torque on the stance

ankle motor. This strategic addition provides increased adaptability when applying

the trajectory to an actual Cassie robot. Our hypothesis posited that a nominal

trajectory minimizing stance ankle torque would translate to minimal ankle torque

requirements for the physical robot when walking unperturbed, allowing for more

room to overcome disturbances by increasing stance ankle torque output. This

hypothesis was validated, as discussed in detail in Chapter 4 and Chapter 5.

In Figure 3.3, we present plots depicting the angular momentum and CoM angle,

comparing the results computed by FROST for the nominal trajectories against the

values obtained by the new variation of the ALIP model. As anticipated, the values

are similar. This shows that the trajectories generated by FROST satisfy the ALIP

model.
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3.4.2 Bézier Curves

We translate the numerical values of the nominal trajectories generated by FROST

and express them in the language of Bézier curves so that they can be more readily

used and manipulated by the controller developed in this thesis. A Bézier curve is

a mathematical representation of a curve defined by two or more “control points,”

which may be situated either on the curve itself or externally [2].

The order of a Bézier curve is determined by the number of control points it

possesses. Specifically, the order equals the number of control points minus one. For

instance, a linear curve (a straight line) involves two control points, a quadratic

curve (a parabola) has three control points, and a cubic curve requires four control

points. Irrespective of the number of control points, a Bézier curve is always

contained within the “convex hull” of its control points—the minimal enclosed space

that encompasses all control points.

A one-dimensional Bézier polynomial of degree M is expressed as follows:

bi(s) :=
M∑
k=0

αi
k

M !

k!(M − k)!
sk(1 − s)M−k (3.1)

where, s ∈ [0, 1], i denotes the ith Bézier curve, M signifies the order of the curve,

and αi
k represents the kth coefficient for the ith Bézier curve, with M + 1 coefficients

for each curve.

When employing a Bézier curve, the function x(q) of generalized coordinates

may not necessarily span only the unit interval. To conform to the requirement

that the independent variable s of the Bézier curve spans the unit interval [0, 1],

normalization is often necessary:

s(q) :=
x(q) − x+

x− − x+
. (3.2)
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Here, x− and x+ denote the smallest and largest allowable values for x, respectively.

An interesting observation is that the partial derivative of the Bézier curve with

respect to s is given by:

∂bi(s)

∂s
=

M−1∑
k=0

(
αi
k+1 − αi

k

) M !

k!(M − k − 1)!
sk(1 − s)M−k−1. (3.3)

Figure 3.4 illustrates a Bézier curve of order 5, featuring six control points (the

order plus one). The curve lies within the convex hull of these control points, which

are equivalent to the Bézier curve coefficients αi
k from Equation (3.1). Notably,

the curve commences at b(0) = α0 and concludes at b(1) = α5. This alignment is

intentional, as for all Bézier curves, bi(0) = αi
0 and bi(1) = αi

M , signifying that the

ith Bézier curve starts at the first coefficient αi
0 and concludes at the last coefficient

αi
M .

By incorporating Bézier curves into our controller for representing the nominal

trajectories from FROST, we gain the ability to finely manipulate these trajectories

through adjustments to their control points. For instance, to extend the time

the swing foot takes to ascend and avoid contact with the upcoming stair, we

strategically reposition the interior control points associated with the sagittal plane

motion of the swing foot, moving them closer to the initial control point. This

adjustment effectively prolongs the swing foot’s retention of its sagittal position as

it elevates in the z− plane. The utilization of Bézier curves empowers us to make

nuanced refinements to the nominal trajectories, such as this, without the need for

the time-intensive task of regenerating trajectories through FROST.

3.5 Passivity-Based Control

Passivity-Based Control (PBC) is a powerful control strategy used to control

nonlinear systems such as bipedal robots [82, 83, 84]. It has practical use for
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hardware applications because it does not require an accurate model of the system.

This is a key feature that adds a layer of robustness to shield from imperfect

sensors and uncertain kinematic and dynamic properties within the robot.

We impose a spring constraint such that

Jsq̈ + J̇sq̇ = −Kspring
D Jsq̇ −Kspring

P P error
s (3.4)

where P error
s is the spring position error and Kspring

D and Kspring
P are user-defined

derivative and proportional controller gains for the springs, respectively.

We additionally impose a non-slip constraint such that

Jstq̈ + J̇stq̇ = 0. (3.5)

From Equation (2.5), Equation (3.4), and Equation (3.5) we get

D̃f + H̃ = B̃u9 (3.6)

where

D̃ =


D −J⊤

st −J⊤
s

Jst 0 0

Js 0 0

 , f =


q̈

Fst

Fs

 , B̃ =


B9

0

0

 , and

H̃ =


Cq̇ + G−B1u1

J̇stq̇

J̇ q̇

−


0

0

−Kspring
D Jsq̇ −Kspring

P P error
s

 .

(3.7)

We order the generalized coordinate vector q such that q = [qc qu]⊤, where

qc are the controlled joints and qu are the uncontrolled joints. We define λ =
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[qu Fst Fs]
⊤ and partition Equation (3.7) such that

D̃11q̈c + D̃12λ + H̃1 = B̃1u9

D̃21q̈c + D̃22λ + H̃2 = B̃2u9.

(3.8)

That is, D̃11 D̃12

D̃21 D̃22


q̈c
λ

+

H̃1

H̃2

 =

B̃1

B̃2

u9. (3.9)

We eliminate λ by using Schur Complement, resulting in

D̄q̈c + H̄ = B̄u9 (3.10)

where

D̄ = D̃11 − D̃12D̃
−1
22 D21

H̄ = H̃1 − D̃12D̃
−1
22 H̃2

B̄ = B̃1 − D̃12D̃
−1
22 B̃2.

(3.11)

We define the output function as

y(x) = h0(q) − hd(q, p
x des
sw , py des

sw , pz des
sw , t) (3.12)

where h0 is the collection of virtual constraints and hd provides the desired trajec-

tories for the virtual constraints. In part due to precedent [1, 35, 61] and in part

due to the new ALIP model defined in Section 2.3.2 that is being used for this
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thesis, the virtual constraints are defined as follows:

h0(q) =



absolute torso pitch

absolute torso roll

stance hip yaw

swing hip yaw

pendulum length

pxst→sw

pyst→sw

pzst→sw

absolute swing toe pitch



(3.13)

where the pendulum length describes the vector rc from the stance foot to the

CoM and pst→sw is the vector emanating from the stance foot and ending at the

swing foot.

We design a passivity-based controller such that

D̄ÿ + (C̄ + KD)ẏ + KPy = 0 (3.14)

where KD and KP are user-defined derivative and proportional controller gains,

respectively. When designing the controller, we check that the decoupling matrix is

full rank and we assume that the stance ankle torque is known. The required value

of the ankle torque is developed in Section 3.6.

We can show that the error dynamics converge in Equation (3.14) using LaSalle’s

Invariance Principle, commonly known as LaSalle’s Theorem.

LaSalle’s Theorem Consider a system described by the Ordinary Differential Equation

(ODE) ẋ = f(x), where x is the state vector and f is a vector field that defines the dynamics.

Let D ⊂ Rn be a positively invariant set (i.e., if x(t) is in D for some t, then x(t) is in D for
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all t ≥ 0) contained in a region Ω. Suppose there exists a continuously differentiable function

V : Ω → R such that:

1. V (x) is positive definite (i.e., V (x) > 0 for all x ̸= 0 in Ω),

2. V̇ (x) ≤ 0 for all x in Ω (where V̇ (x) is the time derivative of V along trajectories of

the system),

3. V̇ (x) = 0 only on D.

Then, every solution x(t) of the system with initial conditions in Ω approaches the largest

invariant set contained in D as t → ∞. In other words, the trajectories of the system converge

to the set D as time progresses [42].

We now show that the error dynamics converge in Equation (3.14) using LaSalle’s

Theorem. First, we construct a Lyapunov Function. From [82] and [31], we know

the Lyapunov Function for an underactuated bipedal robot such as Cassie is

V =
1

2
ẏ⊤D̄ẏ +

1

2
y⊤KPy, (3.15)

which is positive definite. That is, V > 0.

Taking the time derivative of Equation (3.15) yields

V̇ = ẏ⊤
(
− (C̄ + KD)ẏ −KPy

)
+

1

2
ẏ⊤ ˙̄Dẏ + ẏ⊤KPy (3.16)

V̇ = −ẏ⊤KDẏ. (3.17)

From Equation (3.17), we know that V̇ is negative semi-definite. That is, V̇ ≤ 0.

Using Equation (3.17), V̇ ≡ 0 implies ẏ ≡ 0, and hence ÿ ≡ 0. Considering Equation

(3.14), this further implies y ≡ 0. Thus, from LaSalle’s Theorem, the error dynamics

are stable.
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3.6 Model Predictive Control using Quadratic Programming

Model Predictive Control (MPC) is a practical approach to controlling a robot

through cluttered environments [85, 86, 87, 88]. By letting the robot “see ahead of

time”—much like humans do when similarly moving through cluttered environments—

it is easier to plan control actions that ensure the robot does not fall.

The idea of using MPC for bipedal locomotion on non-flat terrain is not new.

In [89, 90], the authors generated trajectories for bipedal locomotion on stairs using

MPC. Meanwhile, in [24], the authors implemented an MPC-based stair walking

controller on a planar robot that had 5 DoF. This thesis seeks to use MPC to

compute torque values for the often neglected stance ankle motor to help bipedal

robots climb stairs.

The premise of Model Predictive Control is to use a model of a system to predict

how the system will evolve over an interval of time to determine an optimal set of

control inputs to achieve a desired goal state.

3.6.1 Discrete-time Model Formulation

We define the state of Equation (2.13) to be x(t) = [θc(t) L(t)]⊤ and convert

the differential equation into a discrete-time model via

ẋ(t) ≈ x(t + ∆t) − x(t)

∆t
. (3.18)

We let xk = x(k∆t) so that the model can be expressed as

xk+1 = Axk + bkuk (3.19)
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where

Ak =

1 0

0 1

+ ∆t

 0 1
mrc(k∆t)2

mgrc(k∆t) 0


bk = ∆t

0

1


uk = τ(k∆t).

While bk does not vary with time, it is convenient to know which control signal it

is distributing in the formulas below. Equation (3.19) defines our model for MPC.

3.6.2 Predictive Step

Given our model as well as values for our current state at time k, we can

calculate the state k + N at the end of a horizon of length N ,

xk = given or measured from the robot

xk+1 = Akxk + bkuk

xk+2 = Ak+1xk+1 + bk+1uk+1

= Ak+1Akxk + Ak+1bkuk + bk+1uk+1

...

xk+N = Ak+N−1 · · ·Akxk + Ak+N−1 · · ·Ak+1bkuk+

· · ·Ak+N−1bk+N−2uk+N−2 + bk+N−1uk+N−1.

(3.20)

For compactness, we rewrite this as

xk+N = Skxk + Γku
seq
k (3.21)
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where

Sk := Ak+N−1 · · ·Ak

useq
k :=

[
uk uk+1 · · · uk+N−2 uk+N−1

]⊤ (3.22)

and Γk can be computed recursively by

Bk := bk

Bk+j := [Ak+jBk+j−1 bk+j] , 1 ≤ j ≤ N − 1

Γk := Bk+N−1.

(3.23)

We note that Γk is a 2 ×N matrix. For N ≥ 2, it can be checked that Γk is full

rank, that is, det(Γk · Γ⊤
k ) ̸= 0.

With this predictive model, we seek to compute useq
k such that

xdes
k+N = Skxk + Γku

seq
k (3.24)

where we’ll select N to correspond to the duration of one robot step (i.e., a

prediction horizon of 400 ms) and we’ll choose xdes
k+N to be the corresponding value

on the nominal periodic orbit at time t = (k +N)∆T, mod T , where T = 400ms is

the step period.

3.6.3 Control Computation

To minimize the torque sequence useq
k such that the dynamics hold, we implement

a Quadratic Program (QP) [91]. A QP is a type of mathematical optimization

problem that involves optimizing a quadratic objective function subject to linear

equality and inequality constraints. The general form of a QP is as follows:

Minimize:
1

2
xTPx + qTx
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Subject to: Gx ≤ h

Ax = b

where,

x is the vector of variables to be optimized.

P is a symmetric positive-semidefinite matrix.

q is a vector.

G is a matrix defining linear inequality constraints.

h is a vector specifying the upper bounds on the inequality constraints.

A is a matrix defining linear equality constraints.

b is a vector specifying the right-hand side of the equality constraints.

The objective function in a QP is quadratic, and the constraints are typically

linear. The solution to a QP is a vector x that minimizes the objective function

while satisfying the given constraints.

In our application, we implement a QP and arrive at the following optimization

problem:

min
useq

[
uT
seq H(t)useq + (x− xdes)⊤Q(t)(x− xdes)

]

subject to

Γku
seq
k = xdes

k+N − Skxk

umin < uk < umax

(3.25)

where H(t) and Q(t) are weighting matrices, and umin and umax are the lower and

upper bounds imposed on the torque input, respectively. We select H(t) and Q(t)
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such that values toward the end of the step are weighted more, with the value at

impacts being weighted the most heavily.

Remark: Using a QP is a common approach to solving the optimization problem

posed from MPC. We discuss a näıve approach in Appendix C that we first

implemented in the ideal simulator (discussed in Appendix E) as a proof-of-concept

for this general control strategy.

3.7 Lateral Stabilization of the Robot

We stabilized the lateral motion of the Cassie biped by using the angular

momentum-based foot placement strategy developed in [61], but with the new ALIP

model derived in Section 2.3. This section derives the foot placement strategy for

the new ALIP model. Unlike the previous version of the ALIP model, the new

ALIP model does not have a closed-form solution. Thus, a numerical approach must

be implemented for a foot placement strategy.

The strategy to compute lateral foot placement numerically is outlined as follows:

1. Use Euler method for numerical integration to estimate the angular momentum

at the end of the next step, before impact, for two lateral foot positions

y1st→sw and y2st→sw, where y1st→sw and y2st→sw are close in value. We will call

these two angular momentum values L1 and L2.

2. Define a desired angular momentum Ldes that we assume to be approximately

along the line between Point 1 (y1st→sw, L1) and Point 2 (y2st→sw, L2).

3. Using 2-Dimensional (2D) or 3-Dimensional (3D) linear interpolation, find ydes,

the lateral foot placement position corresponding to Ldes.
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3.7.1 Euler Integration

Euler integration, also known as the Euler method, is a numerical technique

for approximating the solution of an Ordinary Differential Equation (ODE) with

an initial value problem [92]. The Euler method proceeds by discretizing the time

domain into small steps and approximating the solution at each step. The iterative

formula for Euler integration is:

xn+1 = xn + ∆t · f(tn, xn) (3.26)

where xn+1 is the approximation of the solution at the next time step, xn is the

solution at the current time step, ∆t is the step size representing the time interval

between consecutive steps, f(tn, xn) is a given first-order ODE function evaluated at

time n, and tn is the current time.

The method starts with an initial value x0 and t0, and subsequent values are

computed using the iterative formula. The smaller the step size ∆t, the more

accurate the approximation, but it also increases the computational cost.

In our application, we determine our initial values x0 and t0 as being the current

state of the system x0 = [θc(t0) L(t0)]
⊤ at time t0. We use Equation (3.26) to

compute the state of the system at every time step ∆t until the end of the first

step of a period length t = T , before impact, where f(tn, xn) is defined as the

system dynamics from the new ALIP model from Equation (2.13). We use an

impact map (derived in Section 3.7.2) to compute the system dynamics after impact

of the first step. These state values are equivalent to the state values at the

beginning of the next step. Using these post-impact values as initial values, we

then implement Euler integration again to compute the state of the system at every

time step from the beginning of the next step until the end of the step before

impact.
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3.7.2 Impact Map for the New ALIP Model

To compute the state of the system after impact of the first step, we develop an

impact map for the new ALIP model. This new impact model for the reduced order

model is separate from the impact map for the full-order Cassie model developed

in Section 2.4.

Figure 3.5 illustrates the relevant variables to derive the new impact map. Let

Point A be the position where the swing foot touches the ground and Point B be

the point where the stance foot touches the ground. Using the angular momentum

about Point B before impact L−
B, we can compute the angular momentum about

Point A after impact L+
A. From the conservation of angular momentum, we know

that the angular momentum about Point A before impact L−
A is equivalent to the

angular momentum about Point A after impact L+
A. That is,

L−
A = L+

A. (3.27)

Using the angular momentum transfer formula [31], we compute L−
B from L−

A,

L−
A = L−

B + Pst → sw ×mvc (3.28)

where Pst → sw = [P x
st → sw P z

st → sw]⊤ is the vector from the stance to swing foot,

m is the mass of the robot, and vc is the CoM velocity. In the x-z plane, the

position of the CoM is defined as

pc = r−c

sin(θ−c )

cos(θ−c )

 . (3.29)
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Taking the derivative Equation (3.29) yields the velocity of the CoM,

d

dt
pc = vc =

 r−c cos(θ−c ) · θ̇−c + ṙ−c sin(θ−c )

−r−c sin(θ−c ) · θ̇−c + ṙ−c cos(θ−c )

 . (3.30)

From Equation (3.27), Equation (3.28), and Equation (3.30), we compute

L−
A = L+

A = L−
B + m

[
P z
st → sw

(
r−c cos(θ−c )θ̇−c + ṙ−c sin(θ−c )

)
−

P x
st → sw

(
− r−c sin(θ−c )θ̇−c + ṙ−c cos(θ−c )

)]
.

(3.31)

Using trigonmetry, we determine the value of the CoM angle after impact θ+c to

be

θ+c = arccos

(
r−c cos θ−c − P z

st → sw

r+c

)
. (3.32)

Equation (3.31) and Equation (3.32) form our impact map. That is, the state

of the system after impact is defined as

x+ =

θ+c
L+

 =



arccos

(
r−c cos θ−c −P z

st → sw

r+c

)

L−
B + m

[
P z
st → sw

(
r−c cos(θ−c )θ̇−c + ṙ−c sin(θ−c )

)
−

P x
st → sw

(
− r−c sin(θ−c )θ̇−c + ṙ−c cos(θ−c )

)]


. (3.33)

3.7.3 Linear Interpolation

Figure 3.6 depicts the 2D linear interpolation method to compute the lateral

foot placement. From this, we see that we can compute the desired lateral foot

placement ydes by

ydes = y1st→sw +
Ldes − L1

slope
, (3.34)
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where

slope =
L2 − L1

y2st→sw − y1st→sw

. (3.35)

Similarly, one could use CoM angle, θ, instead of angular momentum to compute

lateral foot placement. That is,

ydes = y1st→sw +
θdes − θ1

slope
, (3.36)

where

slope =
θ2 − θ1

y2st→sw − y1st→sw

. (3.37)

Using just angular momentum or CoM angle alone to compute lateral foot

placement is 2D interpolation. Linear interpolation in three dimensions utilizes both

angular momentum and CoM angle together to compute lateral foot placement. The

3D linear interpolation computation for lateral foot placement is computed as follows:


ydes

θdes

Ldes

 =


y1

θ1

L1

+

√
(ydes − y1st→sw)2 + (θdes − θ1)2 + (Ldes − L1)2

||v||
· v, (3.38)

where

v =


y2st→sw − y1st→sw

θ2 − θ1

L2 − L1

 . (3.39)
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Figure 3.2: Outtakes of the stair-climbing nominal trajectory generated by FROST
using a full-order model of the Cassie biped.
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Figure 3.3: Comparison of the nominal trajectory generated by FROST and ALIP
model of angular momentum and CoM angle.

Figure 3.4: Graph of a Bézier Curve of Order 5 [2].
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Figure 3.5: Schematic of the inverted pendulum to derive the impact map for the
new variation on the ALIP model.
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Figure 3.6: Graph depicting linear interpolation to compute lateral foot placement
using angular momentum.
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Chapter 4

Insights from SimMechanics - Simulation Results and Discussion

This chapter discusses the implementation of the controllers from Sections 3.5,

3.6 and 3.7 on the 20 DoF simulation model of the Cassie robot using Matlab and

Simulink in the SimMechanics simulation environment. Unlike in the ideal simulator

(discussed in Appendix E), the SimMechanics incorporates Cassie’s stiff springs in the

full-order model. Moreover, we implement state estimation using a Kalman filter to

fuse accelerometer and encoder data [93, 94, 95], exactly as we would on hardware,

for a more faithful representation of the physical Cassie robot.

Figure 4.1 and Figure 4.2 show the Cassie robot in the SimMechanics environment

on stairs. Note the direction of the positive x− and z−axes, which means that a

negative rotation about the y−axis corresponds to walking up the stairs. This is an

important observation for interpreting later plots.

4.1 Walking on Flat Ground

As a first check, we evaluated our controller on flat ground. We know from

previous work [70] that foot placement alone on flat ground is enough to stabilize

the system. Removing foot placement in the sagittal plane and instead using a fixed

step length value (that is, setting the desired swing foot position to a predefined

nominal value, similar to what needs to happen on stairs where the sagittal step

length is constrained to a constant) results in an unstable closed-loop system. We

posited that using ankle torque would then stabilize the system.
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Figure 4.1: 3D model of the Cassie robot in the SimMechanics simulation environ-
ment.
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Simulations showed this hypothesis to be correct. Turning off ankle torque while

the robot walked with fixed step lengths resulted in the robot falling. Adding ankle

torque control not only allowed the robot to walk continuously with fixed steps, but

also made the system robust against perturbations.

Figure 4.3 depicts the outtakes for a simulation where the robot stands for

the first two seconds, transitions to stepping in place for the next four simulation

seconds, and then walks forward for the remainder of the simulation, activating the

fixed step gait at the 12-second mark in the simulation time. Figure 4.4 shows

two sets of plots corresponding to the total angular momentum and CoM angle

for this simulation experiment. The first set of plots correspond to the simulation

where ankle torque was not used during the fixed step portion of runtime. The

second set of plots correspond to the simulation where ankle torque was used during

fixed step. Note that the robot falls after just two steps when ankle torque is not

engaged during the fixed step gait. This is because the fixed step trajectory does

not allow the robot to maintain a periodic angular momentum trajectory, causing

the angular momentum to lag behind the desired nominal trajectory and eventually

falling. Absent of the intelligent foot placement method that could ensure that a

angular momentum trajectory is followed, the system requires a force to maintain

stability. Ankle torque supplies this necessary force to the system, pushing the robot

back on to the nominal trajectory.

In Figure 4.5 and Figure 4.6, we demonstrate the robustness of our ankle torque

controller. Following the same gait transitions as aforementioned, we perturb the

system at simulation time t = 3 seconds (while the robot is walking in place) and

t = 14 seconds (while the robot is walking forward in fixed steps) by reducing all

motor torque inputs by one-fifth (1/5) of their desired value for 50 milliseconds.

The perturbations resulted in a disturbance equivalent to a shift of 0.1 rad in the

CoM angle and 5 kg-m2/sec in angular momentum. In both cases, ankle torque
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control was able to prevent a fall and return the robot to a periodic gait. In the

absence of ankle torque, the robot falls.

4.2 Walking up Stairs

At each step, the swing foot is regulated to place the new stance foot near the

center of the stair’s tread; without this, small errors accumulate and result in the

robot not respecting the stair’s geometry. In simulations, this is straightforward to

achieve. In future experiments, we’ll use the perception system design for Cassie in

[96, 97, 98, 99].

Using the passivity based controller of Section 3.5 alone to enforce fixed step

lengths, without other control in the sagittal plane, resulted in the robot taking two

steps and then falling backward. Activating the MPC controller for ankle torque

resulted in the 20 DoF simulation model being able to walk an unbounded number

of steps as depicted in [100].

Figure 4.7 shows the stance ankle torque inputs calculated via the MPC approach

throughout the simulation period. We enforced a stance ankle torque limit of ±23

Nm in the quadratic program solver. This value was decided based on the max

torque limit of the ankle motor and the gear ratio of 50. Throughout the simulation,

the stance ankle torque is predominantly negative, which means it is “pushing” in the

direction of motion. Without the additional ankle torque, the robot falls backward,

which results in a positive rotation about the y−axis.

Figure 4.8 shows the angular momentum and CoM angle as the robot walks

up 10 stairs. The plots show both the nominal trajectory that was used to set

the desired values for the MPC when determining stance ankle torque, as well as

the actual simulated values. Note that even though the simulated trajectory is not

exactly following the nominal trajectory, it is still able to achieve a stable periodic

orbit. The optimized nominal trajectory was developed on a model of the Cassie
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biped that does not factor in Cassie’s springs. We applied our controller on a full

order model of the Cassie biped in the SimMechanics simulation environment that

includes Cassie’s springs as a more faithful representation of the hardware model.

Furthermore, we approximate Cassie’s states using a Kalman Filter, exactly as we

would on hardware, which adds more noise to the system. In the presence of all of

these uncertainties and perturbations, our controller is still able to achieve a stable

walking gait up stairs. This is discussed further in the next section.

4.3 Discussion

The nominal trajectory used for stair climbing was designed with FROST [45]

using a model of Cassie that does not factor in the springs. In effect, the springs,

therefore, act as perturbations to the system that the MPC-generated ankle torque

must accommodate and overcome at each impact.

At impact, the relatively stiff springs in the stance leg come into play, leading to

oscillations in the “knee joint” that are not present in the controller design model.

This leads to the short-duration spikes in ankle torque seen in Figure 4.7. To

confirm this is the source of the torque spikes, we show in Figure 4.9 a simulation

of the planar nonlinear ALIP model in Equation (2.13) in closed-loop with the

identical controller used on the full-order model of Cassie over a horizon length

N = 5T . As expected, we achieved near perfect tracking with this simplified model

compared to the poorer tracking on the full order model shown in Figure 4.8.

Figure 4.10 shows the corresponding ankle torques for the simulation on the planar

nonlinear ALIP model. Note the marginal torque values that evolve to become

almost negligible by the fifth step in the horizon. This matches what we would

expect. The optimized trajectories generated by FROST was computed by placing

a constraint to minimize stance ankle torque. The planar nonlinear ALIP model is

thus able to follow the optimized trajectory using minimal torque input.
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While our controller has proven to be robust enough to handle the perturbations

caused by the springs, we anticipate that enhanced robustness and agility will require

a nominal trajectory that accounts for spring deflection. We can further improve the

robustness of our controller by 1) using trajectories that are optimized over a model

that factors in Cassie’s springs, and 2) upgrading our ALIP model used in MPC to

also factor in springs–in effect, using an Angular Momentum Spring-Loaded Inverted

Pendulum (A-SLIP) model. With these changes, our novel control paradigm would

not only be able to better handle perturbations to the system during flat ground

walking and stair climbing, but also be able to used as the basis of a controller

that can help a robot maintain balance while navigating through semi-cluttered

environments.

4.4 Conculsions

We have presented a model-based control strategy for walking up a flight of

stairs. The control strategy uses virtual constraints to control the robot’s posture.

A foot placement strategy ensures lateral stability because standard stair width does

not impose any geometric limitations in the lateral direction. In the sagittal plane,

however, stair tread depth makes foot placement impractical, and thus we adopted a

strategy relying on ankle torque computed via a linearized time-varying model and

MPC. Steady-state walking for a 20 DoF simulation model of the Cassie robot was

demonstrated in SimMechanics for both flat ground walking and stair climbing.

The next step will be to apply this strategy on the physical Cassie robot,

incorporating a perception system [96, 97, 98, 99], so that Cassie is able to navigate

stairs autonomously.
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Figure 4.2: The underactuated Cassie biped walking up stairs in the SimMechanics
Simulation environment.
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Figure 4.3: Outtakes of the underactuated Cassie biped for a SimMechanics simulation
experiment. Cassie stands for the first two seconds, transitions to stepping in place
for the next four simulation seconds, and then walks forward for the remainder of
the simulation, activating the fixed step gait at the 12-second mark in the simulation
time.
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Figure 4.4: Angular momentum and CoM angle during simulation where robot stands
for two seconds, steps in place for the next four seconds, and then is commanded
to walk forward at 0.5 m/s for the remainder of the simulation runtime. Fixed
step gait is turned on at the 12 second mark. Two test results are shown, (a) not
using ankle torque during fixed step, and (b) using ankle torque during fixed step.
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Figure 4.5: Angular momentum and CoM angle over time with and without ankle
torque to stabilize marching in place with perturbations at t = 3 sec (a) without
ankle torque and (b) with ankle torque. Note, that only the relevant time portion
of the plot is shown (2 < t < 8) to highlight the effects of the perturbation. In (a),
there is no data after ∼ 3.8 sec because the simulation fails at this time. Data
continues until the end of the simulation for (b) because the robot is able to fully
recover after the perturbation.
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Figure 4.6: Angular momentum and CoM angle over time with and without ankle
torque to stabilize walking forward with perturbations at t = 14 sec (a) without
ankle torque and (b) with ankle torque. Note, that only the relevant time portion
of the plot is shown (13 < t < 17) to highlight the effects of the perturbation. In
(a), there is no data after ∼ 14.7 sec because the simulation fails at this time.
Data continues until the end of the simulation for (b) because the robot is able to
fully recover after the perturbation.
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Figure 4.7: Simulated stance ankle torque vs time using MPC for stair climbing.

Figure 4.8: Nominal and simulated angular momentum and CoM angle over time
using MPC to determine stance ankle torque to stabilize sagittal motion and (lateral)
foot placement to stabilize lateral motion during stair climbing.
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Figure 4.9: CoM angle and angular momentum over time steps for a horizon length
N = 5T on the planar nonlinear ALIP model.

Figure 4.10: Stance ankle torque over a horizon length N = 5T on the planar
nonlinear ALIP model.
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Chapter 5

Real-world Revelations - Hardware Results and Discussion

This chapter delves into the practical implementation of the controllers outlined

in Sections 3.5, 3.6, and 3.7 on the physical 20 DoF Cassie bipedal robot hard-

ware. While the achievements in the SimMechanics simulation environment were

commendable, the pivotal challenge lies in bridging the gap between simulation and

reality. Roboticists encounter persistent difficulties in translating simulated outcomes

to physical hardware due to factors such as motor friction, sensor inaccuracies, and

unforeseen variables not accounted for in simulation environments.

5.1 Navigating the sim-to-real Gap for Cassie Hardware

A paramount concern in deploying controllers on Cassie hardware is adhering

to the stringent maximum controller execution time of 2 kHz. The passivity-based

controller (PBC) detailed in Section 3.5 adeptly operates within this temporal con-

straint. In contrast, the model predictive controller (MPC) discussed in Section

3.6 demands a higher execution time. To surmount this challenge, we strategically

offloaded the MPC computations to a secondary computer. The execution time was

further optimized through the utilization of CasADi, an open-source tool for nonlinear

optimization and algorithmic differentiation [101, 102]. The MPC computation now

runs at an approximate duration of 500 µs. Given that it is unnecessary to compute

a desired ankle torque value for every time step, the utilization of a secondary

computer for MPC, with a slower execution time dedicated to ankle torque values,

58



poses no hindrance. This claim is substantiated by the positive outcomes observed in

SimMechanics simulation experiments, where the transfer of ankle torque computations

to the secondary computer did not result in any noticeable deviations in results.

In addressing the observed spikes in ankle torque values during the SimMechanics

simulation, as discussed in Section 4.2, we introduced an impactful approach to

mitigate these spikes. Specifically, we developed an impact map based on the

linearization about the nominal trajectories. A detailed discussion of this methodology

can be found in Appendix D. This enhancement represents a crucial step in refining

the control strategy, aiming to minimize unexpected spikes in control output and

further enhance the stability and performance of Cassie for hardware experiments.

5.2 Maximum Walking Speed on Various Inclined Surfaces

In evaluating the performance of Cassie equipped with the novel controller struc-

ture developed in this thesis, a series of tests were conducted to determine its

maximum walking speed on diverse inclinations. Previous walking controllers for

Cassie hardware demonstrated speeds of 2 m/s on level ground [31], but exploration

of maximum speeds on inclined surfaces was lacking.

With the implementation of our new controller, Cassie showcased an enhanced

walking capability, achieving a comfortable speed of up to 2.2 m/s on a flat treadmill

[103]. Extending the analysis to inclined surfaces, Cassie maintained a commendable

speed of 2 m/s on a treadmill inclined at 4 degrees [104] and 8 degrees [105].

Even on steeper inclinations, such as a 15- and 20-degree slope, Cassie exhibited a

noteworthy walking speed, reaching up to 1.5 m/s [106, 4]. These findings underscore

the adaptability and improved performance achieved through the integration of the

developed controller structure, opening avenues for enhanced mobility on surfaces

with varying degrees of incline.
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5.3 Continuous Walking on Changing Incline

In our subsequent experiment, we conducted a continuous walking test on a

dynamically changing incline. The experiment commenced on a level surface with

a 0-degree incline, progressively transitioning to the maximum incline of 20 degrees,

and then returning to the initial 0-degree incline, as depicted in Figure 5.1 and

Figure 5.2 and whose accompanying video can be found in [3]. Throughout the

experiment, the treadmill maintained a constant speed of 0.9 m/s. To streamline

the complexity of the experiment, we employed only three nominal trajectories:

• Nominal Trajectory for Flat Ground Walking: Implemented during Cassie’s

movement on inclines ranging from 0 to 7 degrees.

• Nominal Trajectory for 8-Degree Incline: Applied as Cassie traversed inclines

ranging from 8 to 14 degrees.

• Nominal Trajectory for 15-Degree Incline: Utilized when Cassie navigated

inclines ranging from 15 to 20 degrees.

The use of nominal trajectories on inclines for which the trajectories were not

specifically optimized showcased the robustness of the controller. This experiment

demonstrated that perfect trajectories for all situations are not a prerequisite for

stability—–specifically, a nominal trajectory optimized for a 15-degree incline success-

fully operated on a 20-degree inclined surface.

Moreover, all nominal trajectories assumed a constant nominal speed of 0.5

m/s, introducing additional disturbance to the system since the treadmill operated

at 0.9 m/s during the experiment. This underscored the controller’s ability to

maintain stability and adjust seamlessly to varying walking speeds, irrespective of the

speed specified in the nominal trajectory. The experimental configuration provided a
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comprehensive assessment of the developed controller’s capacity to adapt and ensure

stability during continuous walking on inclines.

Figure 5.3 provides insight into the left and right ankle torque values during this

experiment. Importantly, the ankle torque values consistently remain well below the

maximum and minimum thresholds of ±23 N, as allowed by the Quadratic Program

(QP) for the MPC.

5.4 Transitioning from Stationary Flat Ground to Inclined Moving Treadmill

In our subsequent experiment, we tasked the Cassie bipedal robot with walking

from stationary flat ground to an inclined moving treadmill. This challenging scenario

was systematically tested for inclined transitions at 4 degrees [104], 8 degrees [105],

15 degrees [106], and 20 degrees [4]. Figure 5.5 and Figure 5.6 shows outtakes for

the experiment of the transition from stationary flat ground to a 20-degree incline.

These experiments presented two significant sources of disturbance, both of which

our controller adeptly surmounted.

The first challenge involved negotiating the large gaps between the stationary

ground and the inclined moving treadmill. This transition demanded a seamless

adjustment in gait and stability, which our controller effectively managed. The second

challenge arose from the fact that the treadmill was in motion at 0.2 m/s while

Cassie initiated the transition from stationary flat ground to the treadmill. Despite

this differential in speed, Cassie not only successfully navigated the transition but

also exhibited the capability to accommodate increased treadmill speeds.

The controller demonstrated its resilience by overcoming both disturbances en-

countered during the transition process. Furthermore, we successfully escalated the

treadmill speed to the maximum values detailed in Section 5.2 post-transition, affirm-

ing the adaptability and robust performance of the developed controller in challenging

real-world scenarios.
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Figure 5.4 provides a visual representation of the left and right ankle torque

values during the experiment, illustrating Cassie’s transition from flat stationary

ground to the 20-degree inclined moving treadmill. While the ankle torque values

approach the saturation threshold of ±23 N, as allowed by the QP for the MPC,

they remain below this limit, underscoring the controller’s effectiveness in managing

the complexities of dynamic transitions.

5.5 Navigating on and off of a Moving Walkway

In our culminating experiment, we tasked Cassie with traversing on and off a

moving walkway—–an essential capability for robots in human-centric environments

such as airports and shopping malls. The integration of robots into everyday

scenarios necessitates their adept navigation through commonplace features like moving

walkways, which typically exhibit average speeds ranging from 0.5 to 0.83 m/s [107].

Our objective was to validate Cassie’s ability to seamlessly adapt to different speeds

on the moving walkway.

We successfully tested Cassie’s performance on moving walkways operating at

speeds of 0.5 m/s [5], 0.8 m/s [108], and 1.2 m/s [6]. Outtakes from the experiment,

as depicted in Figure 5.7 and Figure 5.8, highlight Cassie’s agility in walking on

and off a 0.5 m/s moving walkway.

A notable challenge introduced during this experiment was the presence of a

gantry, which did not extend far enough to cover the entire length of the treadmill

used to simulate the moving walkway. As a result, Cassie experienced significant

tugging forces from the gantry. During the initial setup, when Cassie was walked to

the end of the treadmill, it stumbled and nearly fell due to the tugging forces but

swiftly recovered. Furthermore, despite operator error leading to Cassie approaching

the moving walkway at a diagonal for the 0.8 m/s and 1.2 m/s scenarios, Cassie

adeptly navigated onto and off the moving walkway. A remarkable video showcasing
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Cassie’s successful navigation on and off a 1.2 m/s moving walkway, despite stumbling

from the tugging gantry (shown in Figure 5.9 and Figure 5.10) and approaching at

a diagonal, was featured in the IEEE Spectrum Video Friday edition on November

24, 2023. This demonstration underscores the robustness and adaptability of our

controller in addressing real-world challenges during robot locomotion on dynamic

surfaces.

Figure 5.11 provides insight into the left and right ankle torque values during

Cassie’s traversal on and off a 1.2 m/s moving treadmill. Noteworthy spikes are

evident between the 290-second and 295-second marks, corresponding to the moment

when Cassie stumbled. Importantly, the ankle torque values consistently remain

well below the maximum and minimum thresholds of ±23 N, as allowed by the

QP for the MPC. This observation attests to the controller’s ability to manage

unexpected disturbances while maintaining stability, further validating its effectiveness

in real-world scenarios.

5.6 Discussion and Conclusion

This chapter details the implementation of controllers on the physical 20 DoF

Cassie bipedal robot hardware, moving beyond commendable SimMechanics simulation

outcomes. The transition to physical hardware accentuates the persistent challenge

of the sim-to-real gap, encompassing issues like motor friction, sensor inaccuracies,

and unforeseen variables absent in simulation environments.

The stringent maximum controller execution time of 2 kHz on Cassie hardware

poses a critical concern. While the passivity-based controller (PBC) successfully

adheres to this constraint, the model predictive controller (MPC) demands a longer

execution time. Our strategic approach involves offloading MPC computations to a

secondary computer, optimizing execution time with CasADi. Successful simulation

experiments affirm the viability of this offloading strategy.
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Evaluating Cassie’s performance with the developed controller structure reveals

enhanced walking capabilities. Cassie achieves speeds of up to 2.2 m/s on a flat

treadmill, with maintained speeds of 2 m/s on an 8-degree inclined treadmill and

1.5 m/s on a 20-degree incline. This demonstrates the controller’s adaptability and

improved performance across varying incline levels.

A continuous walking experiment on changing incline further validates the robust-

ness of the controller. Nominal trajectories, not perfectly optimized for all situations,

showcase the controller’s stability during continuous walking on inclines, emphasizing

its adaptability.

Transitions from stationary flat ground to an inclined moving treadmill present

unique challenges, including negotiating gaps and adapting to treadmill motion. The

controller adeptly manages these disturbances, enabling successful transitions, even at

increased treadmill speeds. This resilience underscores the adaptability and robust

performance of the developed controller.

Cassie’s navigation on and off a moving walkway, despite challenges introduced

by a tugging gantry and operator error, highlights the controller’s robustness and

adaptability in real-world scenarios. This successful demonstration contributes valuable

insights for integrating bipedal robots into dynamic human-centric environments.

In conclusion, this chapter demonstrates successful implementation and real-world

applicability of controllers on Cassie hardware. By addressing challenges in execu-

tion time, hardware constraints, and adapting to dynamic surfaces, our controller

contributes to the advancement of bipedal robots, fostering capabilities for enhanced

mobility in diverse environments.
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Figure 5.1: A series of images depicting hardware results of the Cassie bipedal robot
walking on an inclined moving treadmill moving at a constant speed of 0.9 m/s
from a side view perspective. The treadmill is gradually inclined from 0 degrees to
its maximum incline of 20 degrees and back to 0 degrees. The original video can
be found in [3].
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Figure 5.2: A series of images depicting hardware results of the Cassie bipedal robot
walking on an inclined moving treadmill moving at a constant speed of 0.9 m/s
from a back view perspective. The treadmill is gradually inclined from 0 degrees to
its maximum incline of 20 degrees and back to 0 degrees. The original video can
be found in [3].

66



Figure 5.3: Plot of left and right ankle torque values for hardware experiment on
the Cassie bipedal robot walking on an inclined moving treadmill moving at a
constant speed of 0.9 m/s. The treadmill is gradually inclined from 0 degrees to
its maximum incline of 20 degrees and back to 0 degrees.

Figure 5.4: Plot of left and right ankle torque values for hardware experiment on
the Cassie bipedal robot walking from stationary flat ground to a 0.2 m/s moving
treadmill inclined at 20 degrees. Once Cassie steps on the treadmill, the treadmill’s
speed is gradually increased to 1.5 m/s.
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Figure 5.5: A series of images depicting hardware results of the Cassie bipedal
robot walking from flat, stationary ground to a 0.2 m/s moving treadmill inclined
at 20 degrees from a side view perspective. Once Cassie steps on the treadmill, the
treadmill’s speed is gradually increased to 1.5 m/s. The original video can be found
in [4].
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Figure 5.6: A series of images depicting hardware results of the Cassie bipedal
robot walking from flat, stationary ground to a 0.2 m/s moving treadmill inclined
at 20 degrees from a back view perspective. Once Cassie steps on the treadmill,
the treadmill’s speed is gradually increased to 1.5 m/s. The original video can be
found in [4].
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Figure 5.7: A series of images depicting hardware results of the Cassie bipedal robot
walking on to and off of a 0.5 m/s moving walkway (treadmill) from a side view
perspective. The original video can be found in [5].
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Figure 5.8: A series of images depicting hardware results of the Cassie bipedal robot
walking on to and off of a 0.5 m/s moving walkway (treadmill) from a front view
perspective. The original video can be found in [5].
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Figure 5.9: Part 1 of a series of images depicting Cassie stumbling during the setup
for the moving walkway experiment. Part 2 of the images is shown in Figure 5.10.
The original video can be found in [6].
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Figure 5.10: Part 2 of a series of images depicting Cassie stumbling during the
setup for the moving walkway experiment. Part 1 of the images is shown in Figure
5.9. The original video can be found in [6].
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Figure 5.11: Plot of left and right ankle torque values for hardware experiment
on the Cassie bipedal robot walking on to and off of a 1.2 m/s moving walkway
(treadmill).
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Chapter 6

Future Work and Conclusions

The research developed in this thesis makes significant strides in addressing the

challenges of stair climbing for underactuated bipedal robots. Nevertheless, additional

avenues for future exploration and improvement emerge from this work. In this

chapter, we outline the next steps for future research and development to further

enhance the capabilities and practical applications of the proposed stair-climbing

algorithm.

6.1 Implementing Stair Climbing on Cassie Hardware

A pivotal step in advancing Cassie’s mobility involves extending its capabilities

to navigate stairs. This future work focuses on implementing stair climbing and

testing the algorithm’s performance across various stair geometries. The goal is to

adapt the existing walking controllers to seamlessly negotiate stairs with varying step

heights, tread depths, and incline angles. Fine-tuning gait parameters specific to

stair traversal, assessing stability and robustness, and enabling real-time adaptation

to changes in stair geometry are essential components of this research. Additionally,

exploring the integration of sensory feedback mechanisms, such as depth cameras

or proximity sensors, will enhance Cassie’s ability to perceive and respond to the

stair environment. This comprehensive approach aims to broaden Cassie’s mobility

spectrum, making it adept at navigating complex terrains in real-world scenarios.
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6.2 Advancing Stair Negotiation – Walking Downstairs

Expanding Cassie’s mobility to include walking downstairs is a natural progression

in enhancing its versatility. However, due to Cassie’s kinematics, addressing this

challenge necessitates a phased approach.

6.2.1 Phase 1: Backward-Facing Descent

The initial step involves mastering walking downstairs with Cassie facing backward.

This approach mitigates the risk of Cassie’s legs colliding with the stairs during

descent, ensuring a safe and controlled traversal. Implementing algorithms that enable

Cassie to descend stairs in a backward-facing orientation requires careful consideration

of gait parameters, stability adjustments, and real-time adaptation to stair geometry

changes. This phase aims to establish a foundation for safe stair negotiation before

progressing to more complex scenarios.

6.2.2 Phase 2: Forward-Facing Descent

Once the backward-facing descent has been successfully implemented and optimized,

the subsequent phase involves developing algorithms for Cassie to walk downstairs

while facing forward. This represents a more intricate challenge due to the potential

risk of leg-stair collisions. Addressing this requires innovative solutions in gait

planning, trajectory optimization, and dynamic stability adjustments. Ensuring Cassie’s

ability to descend stairs in a forward-facing orientation will significantly broaden its

applicability, enabling more intuitive navigation in environments with varying terrains.

6.2.3 Kinematic Considerations

Throughout both phases, careful attention must be given to Cassie’s kinematics.

Analyzing joint configurations, limb trajectories, and ensuring adequate leg clearance
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during descent are crucial aspects. Iterative refinement of the algorithms based on

empirical testing and simulation results will be paramount to achieving a seamless

and reliable stair descent capability.

6.2.4 Integration with Sensory Feedback

Similar to the stair-climbing future work, integrating sensory feedback mechanisms

will enhance Cassie’s perception during stair descent. Depth cameras, proximity

sensors, or other relevant sensors can provide real-time information about the stairs,

aiding in adjusting Cassie’s gait and ensuring a safe and efficient descent.

In conclusion, advancing Cassie’s stair negotiation capabilities to include walking

downstairs represents a significant future work. By initially mastering backward-facing

descent and subsequently progressing to forward-facing descent, this research aims to

augment Cassie’s mobility, making it proficient in navigating a broader spectrum of

real-world environments with stairs.

6.3 Outdoor Navigation for Cassie

To broaden Cassie’s mobility for outdoor environments, the focus is on adapting

existing algorithms, particularly for stair climbing, to handle natural slopes, uneven

surfaces, and various outdoor stairs. This involves fine-tuning the stair-climbing

algorithm for seamless navigation in challenging outdoor conditions.

Following successful lab testing, the next step is to conduct targeted outdoor

experiments. Locations like the Wave Field and the steep, uneven grassy slope at

the University of Michigan provide diverse terrains for validating Cassie’s performance

in real-world scenarios.

However, outdoor experiments with Cassie come with logistical challenges and

safety considerations. Operating an out-of-warranty Cassie biped outdoors demands

careful planning, risk assessment, and contingency measures to ensure both the safety
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of Cassie and the success of the experiments.

In summary, future work on outdoor navigation for Cassie centers on adapting

stair-climbing algorithms, conducting targeted outdoor experiments, addressing logistical

challenges, and ensuring safety. This research aims to position Cassie as a capable

and versatile bipedal robot for navigating the complexities of outdoor environments.

6.4 Generalizing Control Strategy for Different Bipedal Robots

The next phase of this research involves assessing the transferability of the

current algorithm from the Cassie robot to other underactuated bipedal platforms.

Validating the control strategy on diverse robots, such as Agility Robotics’ Digit

bipedal robot, will provide insights into its versatility and potential for broader

applications. This extension aims to demonstrate the adaptability of the developed

control algorithm across various hardware architectures, advancing its utility in diverse

robotic scenarios.

6.5 Conclusions

In conclusion, the development and exploration of the Angular Linear Inverted

Pendulum (ALIP) model, particularly its adaptation for stair climbing, mark a

significant advancement in the control paradigm for bipedal robots. The traditional

limitations associated with variations in center of mass height and non-kinematic

restrictions on foot placement have been addressed through the innovative integration

of smooth trajectory-following for the virtual pendulum. The devised control strategy,

combining virtual constraint-based control and a model predictive control algorithm,

has demonstrated success in stabilizing a stair-climbing gait that transcends reliance

solely on foot placement.

Simulations on a detailed model of the Cassie biped and corresponding hardware

experiments illustrate the algorithm’s efficacy, showcasing its potential to enhance
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the robustness of walking gaits on inclined surfaces. This research not only provides

a practical solution to the challenges posed by stair climbing but also lays the

groundwork for further advancements in bipedal robot mobility.

Looking ahead, future research directions should focus on refining and optimizing

the proposed algorithm to address specific challenges in real-world scenarios. Addi-

tionally, further exploration of underactuated bipedal robots and their applications in

diverse industries holds great promise. By continuing to unlock the full potential of

these robots, we can pave the way for their widespread utilization and integration

into various fields, ultimately contributing to advancements in automation, exploration,

and assistance in real-world applications. The stair-climbing algorithm presented in

this thesis thus stands as a crucial stepping stone toward the realization of more

capable and versatile bipedal robots.
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Appendix A

Using Lagrangian Mechanics to derive the Robot Equations on a

Point Mass System

In this appendix, we use Lagrangian Mechanics to derive the robot equations for

the three-link bipedal robot depicted in Figure A.1.

The Lagrangian is defined by

L = KE − PE (A.1)

where KE is kinetic energy and PE is potential energy. Kinetic energy for a point

mass can be calculated as follows:

KE =
1

2
m(vx

2 + vy
2) (A.2)

where m is mass, vx is the velocity in the horizontal direction, and vy is the velocity

in the vertical direction. Potential energy for a point mass can be calculated as

follows:

PE = mgh (A.3)

where m is mass, g is gravity, and h is height.

Taking the partial derivative of Equation (A.1) gets the Lagrange Equation in a

more usable form:

d

dt

∂L

∂q̇
− ∂L

∂q
= Γ (A.4)
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Figure A.1: Schematic of the three-link walker in Matlab.
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where Γ is the external and internal forces, q is the generalized coordinates and q̇

is the generalized velocities.

Equation (A.4) is known as the Euler-Lagrangian. This equation can be rearranged

into a different form to make mathematical manipulation easier. This form is:

D(q)q̈ + C(q, q̇)q̇ + G(q) = Γ = Bu (A.5)

where D is the mass inertial matrix, C is the centrifugal and coriolis forces matrix,

G is the gravity vector, B is the input matrix, and u is the torques of the motors.

(A.5) are the equations of motion.

Generating Equation (A.5) is straightforward. Approximating the mass of each

link of a robot as a single point mass, we define the variable pi as the position

vector for the mass of link i. That is,

pi =

px
py

 = f(q) (A.6)

where px is the horizontal coordinates and py is the vertical coordinates. Velocity

is found by taking the derivative:

vi =

vx
vy

 =
∂f

∂q
q̇ (A.7)

where vx is the velocity in the horizontal direction and vy is the velocity in the

vertical direction.
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Using Equation (A.2), the kinetic energy for each mass is derived as

KEi =
1

2
m(vi)

T (vi) (A.8)

=
1

2
mq̇T

(
∂f

∂q

)T(
∂f

∂q

)
q̇ (A.9)

=
1

2
q̇TD(q)q̇ (A.10)

where D(q) =

[
m

(
∂f
∂q

)T(
∂f
∂q

)]
and is a symmetric matrix since it is the matrix

multiplication of a matrix and its transpose.

The total kinetic energy of the robot would simply be the sum of the kinetic

energies of each of the masses,

KE =
4∑

i=1

1

2
q̇T

[
m

(
∂f

∂q

)T(
∂f

∂q

)]
︸ ︷︷ ︸

Di(q)

q̇ (A.11)

Plugging in Equation (A.1) into Equation (A.4) yields

d

dt

∂(KE − PE)

∂q̇
− ∂(KE − PE)

∂q
= Γ (A.12)

Taking the partial derivative of KE from Equation (A.10), yields

d

dt

[
∂

∂q̇

(1

2
q̇TD(q)q̇

)
−

�
�

�
��

0

∂[PE]

∂q̇

]
− ∂

∂q

[
1

2
q̇TD(q)q̇ − PE

]
= Γ (A.13)

d

dt

[
�
�
�1

2
(2)D(q)q̇ − 0

]
− ∂

∂q

[
1

2
q̇TD(q)q̇ − PE

]
= Γ (A.14)[

D(q)q̈ +
∂

∂q

[
D(q)q̇

]
q̇

]
−

[
1

2

∂

∂q

[
q̇TD(q)q̇

]
︸ ︷︷ ︸

=C(q,q̇)q̇

− ∂[PE]

∂q︸ ︷︷ ︸
=G(q)

]
= Γ (A.15)

Thus, we have derived the equations of motion of Equation (A.5).

Remark: The C matrix is typically derived in terms of Christoffel symbols [2].
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Remark: It is worth reiterating that for practical applications, we do not

typically approximate robot systems as point masses. Nevertheless, understanding

Lagrangian mechanics on a point mass system can better help conceptualize the math

hidden behind software programs used to derive the robot equations for complex

systems like Cassie. This fundamental knowledge of bipedal robots (and more) are

discussed in the Biped Bootcamp technical document that this author wrote. See

Appendix F.
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Appendix B

Input-Output Feedback Linearization

Input-Output Feedback Linearization is a common approach to control nonlinear

systems such as bipedal robots [2, 109, 110]. Though the practical applications

are limited due to requiring an accurate model of the system, its relatively simple

nature makes it an ideal controller to use in simulation. In practice, we use a

passivity-based controller that uses nonlinear input-output feedback [82].

The output function is defined as

y(x) = h0(q) − hd(q, p
x des
sw , py des

sw , pz des
sw , t) (B.1)

where h0 is the collection of virtual constraints and hd provides the desired trajec-

tories for the virtual constraints. In part due to precedent [61, 35, 1] and in part

due to the new ALIP model of Section 2.3.2 that is being used for this paper, the
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virtual constraints are defined as follows:

h0(q) =



absolute torso pitch

absolute torso roll

stance hip yaw

swing hip yaw

pendulum length

pxst→sw

pyst→sw

pzst→sw

absolute swing toe pitch



(B.2)

where the pendulum length describes the vector rc from the stance foot to the

CoM and pst→sw is the vector emanating from the stance foot and ending at the

swing foot.

We design an input-output linearizing controller such that

ÿ + KDẏ + KPy = 0 (B.3)

where KD and KP are user-defined derivative and proportional controller gains,

respectively. When designing the controller, we check that the decoupling matrix is

full rank and we assume that the ankle torque is known. The required value of

the ankle torque is developed in Section 3.6.

The first and second derivatives of y are defined as

ẏ = −ḣd + Jhq̇

ÿ = −ḧd + Jhq̈ + δJhq̇

(B.4)

where Jh is the jacobian of the constraints h at a given time step and δJh is the
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partial derivative of the jacobian of the constraints at given time step with respect

to q.

Plugging in Equation (B.4) into Equation (B.3) yields

−ḧd + Jhq̈ + δJhq̇ + KD(−ḣd + Jhq̇) + KPh = 0 (B.5)

where q̈ is known from the continuous dynamics defined in Equation (2.5). That is,

q̈ = M([1 : 20], :)u9 − b[1 : 20]

= Mu9 − b

(B.6)

where M and b describe the first 20 rows of the matrices M and b, which are

defined as

M =


D −JT

st −JT
s

Jst 0 0

Js 0 0


−1 

B9

0

0



b =


D −JT

st −JT
s

Jst 0 0

Js 0 0


−1 

Cq̇ + G−B1u1

J̇stq̇

J̇sq̇

 .

(B.7)

Thus, plugging in Equation (B.6) into Equation (B.5) and solving for the control

input u9, the final controller is defined as

u9 = [JhM ]−1[ḧd + Jhb− δJhq̇ −KD(−ḣd + Jhq̇) −KPh]. (B.8)

87



Appendix C

A Näıve Approach for Control Computation in Model Predictive

Control

This appendix discusses a näıve approach to solving the Model Predictive Control

problem discussed in Section 3.6. The discrete-time model formulation and predictive

steps are the same as discussed in Section 3.6. The change thus comes in the

control computation.

For N > 2, 3.24 is an underdetermined system of linear equations in the unknown

vector of control decisions, useq
k . We propose to determine a value for it via

useq ∗
k := arg min

Γku
seq
k =(xdes

k+N−Skxk)
||useq

k ||2. (C.1)

And then, in the spirit of MPC, we only apply the first component, which we call

u∗
k.

Using standard results, we note that

useq ∗
k = ΓT

k · (Γk · ΓT
k )−1(xdes

k+N − Skxk). (C.2)

Therefore, we have

u∗
k = useq ∗

k (1),

the first component of useq ∗
k .

Remark: This is a näıve approach to implementing an MPC problem because
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we impose a single equality constraint at the end of the control horizon and do not

impose bounds on uk when solving the least squares problem. For a more robust

implementation, a QP with inequality constraints poses a less näıve optimization

problem than Equation (C.1).
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Appendix D

Developing an Impact Map by Linearizing over a Nominal

Trajectory

In this appendix, we develop an impact map based off of a linearization about a

nominal trajectory. This was used to reduce the spikes in ankle torque computed by

the MPC controller witnessed in the SimMechanics simulation experiments discussed

in Section 4.2.

We utilize the Taylor series to linearize about a nominal trajectory. Linearization

about a nominal trajectory using a Taylor series is a common technique in control

theory and system analysis. The idea is to approximate a nonlinear system by a

linear one in the vicinity of a nominal trajectory or operating point.

Consider a nonlinear function f(x). We can approximate f(x) about a nominal

trajectory x̄ using a Taylor series expansion:

f(x) = f(x̄) +
df

dx

∣∣∣∣∣
x=x̄

(x− x̄) +
1

2

d2f

dx2

∣∣∣∣∣
x=x̄

(x− x̄)2 +
1

6

d3f

dx3

∣∣∣∣∣
x=x̄

(x− x̄)3... (D.1)

which can be written as

f(x) = f(x̄) +
df

dx

∣∣∣∣∣
x=x̄

(x− x̄) + higher order terms. (D.2)

For x sufficiently close to x̄, the higher order terms will be very close to zero.
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Thus, we can drop these terms to obtain the approximation

f(x) ≈ f(x̄) +
df

dx

∣∣∣∣∣
x=x̄

(x− x̄). (D.3)

Let

δx = x− x̄ (D.4)

Thus,

x = x̄ + δx. (D.5)

Using Equation (D.5), Equation (D.3) becomes

f(x̄ + δx) ≈ f(x̄) +
df

dx

∣∣∣∣∣
x=x̄

δx, (D.6)

where x̄ is the nominal trajectory, δx is the error between the actual value and

nominal trajectory, and df
dx

∣∣
x=x̄

is the derivative of the function f evaluated at the

nominal trajectory x̄.

We now develop an impact map based off a linearization about the nominal

trajectory for center of mass (CoM) angle, θ̄+c , and angular momentum. We start

with CoM angle.

D.1 CoM Angle

Figure D.1 depicts the relevant variables for computing the impact map. Note

that θ̄+c refers to the CoM angle after impact and θ̄−c refers to CoM angle before

impact.

From geometry, we have

r−c cos(θ̄−c ) = r+c cos(θ̄+c ) + h. (D.7)
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Figure D.1: Schematic depicting geometry variables for computing impact map based
off of a lineariziation of a nominal trajectory.
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While we wish to perfectly follow the nominal trajectory θ̄+c , in reality, we do

not. Instead, we have an error δx. Thus, Equation (D.7) becomes

r−c cos(θ̄−c + δx) = r+c cos(θ̄+c + δx) + h. (D.8)

Applying linearization on cos(θ̄−c + δx) and cos(θ̄+c + δx) using Equation (D.6) on

Equation (D.8) yields

r−c

[
cos(θ̄−c ) +

d

dθ−c
cos(θ−c )

∣∣∣
θ−c =θ̄−c

]
= r+c

[
cos(θ̄+c ) +

d

dθ+c
cos(θ+c )

∣∣∣
θ+c =θ̄+c

]
+ h (D.9)

r−c

[
cos(θ̄−c ) − sin(θ̄−c )δθ−c

]
= r+c

[
cos(θ̄+c ) − sin(θ̄+c )δθ+c

]
+ h (D.10)

r−c cos(θ̄−c ) − r−c sin(θ̄−c )δθ−c = r+c cos(θ̄+c ) − r+c sin(θ̄+c )δθ+c + h (D.11)

Plugging in Equation (D.7) into Equation (D.11) yields

������
r+c cos(θ̄+c ) + ��h− r−c sin(θ̄−c )δθ−c = ������

r+c cos(θ̄+c ) − r+c sin(θ̄+c )δθ+c + ��h (D.12)

−r−c sin(θ̄−c )δθ−c = −r+c sin(θ̄+c )δθ+c . (D.13)

Solving for the error δθ+c yields,

δθ+c =
r−c sin(θ̄−c )

r−c sin(θ̄+c )
δθ−c (D.14)

where r−c sin(θ̄+c ) is a constant given by the nominal trajectory.

To find the actual value of θ+c , we use Equation (D.5) applied to the CoM

angle after impact θ+c . That is,

θ+c = δθ+c + θ̄+c . (D.15)
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Plugging in Equation (D.14) into Equation (D.15) yields

θ+c =
r−c sin(θ̄−c )

r−c sin(θ̄+c )
δθ−c + θ̄+c . (D.16)

D.2 Angular Momentum

We now compute the impact map for angular momentum by linearizing about its

nominal trajectory. We start by using the impact map derived for angular momentum

in Section 3.7.2. From Equation (3.31), we know that if we were perfectly following

the nominal trajectory, the angular momentum after impact would be

L̄+
A = L̄−

B + m

[
P z
st → sw

(
r−c cos(θ̄−c ) ˙̄θ−c + ṙ−c sin(θ̄−c )

)
−

P x
st → sw

(
− r−c sin(θ̄−c ) ˙̄θ−c + ṙ−c cos(θ̄−c )

)]
.

(D.17)

In reality, we have error δL and δθc. Thus, Equation (D.17) becomes

(L̄+
A + δL+) = (L̄−

B + δL−) + m

[
P z
st → sw

(
r−c cos(θ̄−c + δθ−c )( ˙̄θ−c + δθ̇c)

+ṙ−c sin(θ̄−c + δθ−c )
)
− P x

st → sw

(
− r−c sin(θ̄−c + δθ−c )( ˙̄θ−c + δθ̄−c )

+ṙ−c cos(θ̄−c + δθ−c )
)]

.

(D.18)

We now linearize Equation (D.18) using Equation (D.3).

For clarity, we do the computations in segments.

L̄+ + δL+ ≈ L̄+ +

(
∂(L̄+)

∂L+
+

∂(L̄+)

∂θ+c

)
· δL+ (D.19)

= L̄+ + (1)δL+ (D.20)

= L̄+ + δL+ (D.21)
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L̄− + δL− ≈ L̄− +

(
∂(L̄−)

∂L− +
∂(L̄−)

∂θ−c

)
· δL− (D.22)

= L̄− + (1)δL− (D.23)

= L̄− + δL− (D.24)

cos(θ̄−c + δθ−c ) ≈ cos(θ̄−c ) +

(
∂
(

cos(θ̄−c )
)

∂L− +
∂
(

cos(θ̄−c )
)

∂θ−c

)
· δθ−c (D.25)

= cos(θ̄−c ) −
(

sin(θ̄−c )
)
· δθ−c (D.26)

= cos(θ̄−c ) − δθ−c sin(θ̄−c ) (D.27)

˙̄θ−c + δθ̇−c ≈ ˙̄θ−c +

(
∂( ˙̄θ−c )

∂L− +
∂( ˙̄θ−c )

∂θ−c

)
· θ−c (D.28)

= ˙̄θ−c +����(0)δθ−c (D.29)

= ˙̄θ−c (D.30)

sin(θ̄−c + δθ−c ) ≈ sin(θ̄−c ) +

(
∂
(

sin(θ̄−c )
)

∂L− +
∂
(

sin(θ̄−c )
)

∂θ−c

)
· δθ−c (D.31)

= sin(θ̄−c ) +
(

cos(θ̄−c )
)
· δθ−c (D.32)

= sin(θ̄−c ) + δθ−c cos(θ̄−c ) (D.33)

Using Equation (D.21), Equation (D.24), Equation (D.27), Equation (D.30), and
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Equation (D.33), Equation (D.18) becomes

(L̄+
A + δL+) = (L̄−

B + δL−) + m

[
P z
st → sw

(
r−c

[
cos(θ̄−c ) − δθ−c sin(θ̄−c )

]
( ˙̄θ−c )

+ṙ−c

[
sin(θ̄−c ) + δθ−c cos(θ̄−c )

])
− P x

st → sw

(
− r−c

[
sin(θ̄−c ) + δθ−c cos(θ̄−c )

]
( ˙̄θ−c )

+ṙ−c

[
cos(θ̄−c ) − δθ−c sin(θ̄−c )

])]
.

(D.34)

Solving for δL+ yields,

δL+ = L̄−
B + δL− − L̄+

A + m

[
P z
st → sw

(
r−c

[
cos(θ̄−c ) − δθ−c sin(θ̄−c )

]
( ˙̄θ−c )

+ṙ−c

[
sin(θ̄−c ) + δθ−c cos(θ̄−c )

])
− P x

st → sw

(
− r−c

[
sin(θ̄−c ) + δθ−c cos(θ̄−c )

]
( ˙̄θ−c )

+ṙ−c

[
cos(θ̄−c ) − δθ−c sin(θ̄−c )

])]
.

(D.35)

To find the actual value of L+, we use Equation (D.5) applied to the angular

momentum after impact L+. That is,

L+ = δL+ + L̄+. (D.36)

Plugging in Equation (D.35) into Equation (D.36) yields

L+ = L̄−
B + δL− − L̄+

A + m

[
P z
st → sw

(
r−c

[
cos(θ̄−c ) − δθ−c sin(θ̄−c )

]
( ˙̄θ−c )

+ṙ−c

[
sin(θ̄−c ) + δθ−c cos(θ̄−c )

])
− P x

st → sw

(
− r−c

[
sin(θ̄−c ) + δθ−c cos(θ̄−c )

]
( ˙̄θ−c )

+ṙ−c

[
cos(θ̄−c ) − δθ−c sin(θ̄−c )

])]
+ L̄+.

(D.37)

Equation (D.16) and Equation (D.37) form our impact map.
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Appendix E

Results in the Ideal Simulator

This section discusses the implementation of the controllers from Appendix B,

Section 3.7, and Appendix C on the 20 DoF simulation model of the Cassie robot

using Matlab and Simulink in an “ideal simulator”. This simulator does not include

Cassie’s stiff springs in the full order model. It also does not include any state

estimation, a necessary feature for hardware implementation. This ideal simulator

serves as a proof-of-concept implementation of our stair-climbing controller.

Figure E.1 shows the Cassie robot in the simulated environment on stairs. Note

the direction of the positive x− and z−axes, which means that a positive rotation

about the y−axis is rotating down the stairs. This is an important observation for

later.

E.1 Initial Tests

As a sanity check, the input-output linearizing controller of Section B was

implemented without any control in the sagittal and frontal planes. In other words,

the controllers from Appendix C and Section 3.7 were not activated. As expected,

the closed-loop system was unstable. The robot would take two steps and then fall

backward, shown in Figure E.2.

We then activated the Simplified MPC controller, which resulted in the robot

taking 7 steps before falling sideways. We then activated the controller for the
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Figure E.1: Simulated 3D model of the Cassie robot using Matlab and Simulink.
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lateral dynamics, resulting in the robot being able to walk an unbounded number

of steps.

Making the control horizon shorter (T/2 instead of T ) does not change the

robot’s ability to walk an unbounded number of steps; however, it does cause the

stance ankle torque to saturate more. Extending the horizon to 2T not only caused

the stance ankle torque to saturate more, but also caused the simulation to fail

after just one step.

E.2 Discussion of Results

We will focus discussion on the Simplified MPC approach to ankle torque control,

since that is where we made our major contribution.

Even while taking a näıve approach, implementing MPC to determine the stance

ankle torque needed to achieve desired angular momentum and CoM angle over time

proved successful. Figure E.3 shows outtakes of the animation from the working

simulation.

Figure E.4 shows the stance ankle torque inputs calculated via the simplified

MPC approach throughout the simulation period of five seconds. A stance ankle

torque limit of ±17 Nm was used. Note the mostly negative values for the stance

ankle torques. Without implementing either controller, the robot would fall backward,

which results in a positive rotation about the y−axis. Therefore, in order to prevent

the robot from falling backward, a negative torque must be applied about the

y−axis, hence the negative stance ankle torque values.

The motors do saturate toward the end of each step, likely as a response to the

increase in angular momentum that occurs at the end of each step. Because the

input-output linearizing controller is “cancelling” the stance ankle torque, saturation

of the stance ankle torque does not prevent the input-output linearizing controller

from driving the virtual constraints to zero. If we had been employing the stance
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Figure E.2: Cassie falling backward as a result of not adding stabilizing sagittal or
lateral controllers.
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Figure E.3: One-step animation result of stair climbing using MPC to determine
stance torque input and ALIP to determine lateral foot placement. The time units
are seconds.
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Figure E.4: Stance ankle torque input over time using simplified MPC to determine
desired values for the stance ankle torque input.

ankle torque to impose ten virtual constraints, then saturation of the ankle torque

could have prevented the controller from maintaining the virtual constraints near

zero, possibly resulting in falling of the robot.

Figure E.5 shows the angular momentum and CoM angle over the entire simula-

tion run time of five seconds during which the simulated robot completed 12 steps.

The plots shows both the nominal trajectory that was used to set the desired values

for the MPC when determining stance ankle torque, as well as the actual simulated

values.

Note that even though the simulated trajectory is not exactly following the

nominal trajectory, it is still able to achieve a stable periodic orbit. This led us to

believe that our controllers would be robust enough to reject small perturbations.

Indeed, even when adding a push to the system at the beginning of the simulation
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Figure E.5: Nominal and simulated angular momentum and CoM angle over time
using MPC to determine stance ankle torque to stabilize sagittal motion, and (lateral)
foot placement to stabilize lateral motion.

that resulted in an additional 5.09 kg-m2/sec of angular momentum (20% increase)

being introduced to the system, the controllers were able to adequately recover by

the end of the first step and continue on a periodic orbit as shown in Fig. E.6.

We also attempted to perturb the system by increasing the mass value used in

the MPC calculation from Cassie’s nominal mass of 32 kg to 35 kg. This resulted

in the system failing within half of a second with the robot falling forward. Trials

with mass set to 34 kg and 33 kg were also tested, but with similar results. We

are confident that upgrading from the simplified MPC approach used in this paper

to a more standard MPC approach will lead to a more robust controller, capable

of handling varying mass values.

To further test the robustness of the controller, we tried varying the stair height,

without re-computing the nominal trajectories, to see how the controller will hold

up with sub-optimal desired trajectories. The robot was able to take 5 steps before

falling when the stair height was changed from the nominal height of 20 cm to
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Figure E.6: Nominal and simulated angular momentum and CoM angle over time
using MPC to determine stance torque input to stabilize sagittal motion, and the
ALIP model to stabilize lateral control with 5.09 kg-m2/sec of angular momentum
perturbation (20% increase) introduced at the start of simulation.

18 cm; however, when the stair height was changed to 22 cm, the simulation

converged to a stable orbit. We posit that a more robust implementation of MPC

would be able to handle greater variance in stair height than the current simplified

implementation, bringing us closer to the goal of having the Cassie biped navigate

through a loosely structured cluttered environment.
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Appendix F

Biped Bootcamp - Empowering the Next Generation of Roboticists

The Biped Bootcamp was a transformative educational endeavor that originated

under the guidance of my esteemed advisor, Professor Jessy Grizzle, and has been

an instrumental part of my research journey. The bootcamp is a series fast-paced

instructional verbal lessons on the fundalmentals of biped robots that every PhD

student that passes through Professor Grizzle’s lab undergoes. This personalized and

informal learning experience has played a pivotal role in shaping my contributions

and achievements in the field of bipedal robotics.

Building upon the foundations laid by Professor Grizzle, I took my extensive

written notes from the bootcamp and transformed them into a comprehensive and

insightful technical document. This documentation eventually evolved into the Biped

Bootcamp technical document—a significant contribution in its own right. This

document has served as a valuable resource for learners seeking to understand the

fundamentals of controlling and simulating biped robots in Matlab, with its reach

extending beyond our lab to inspire and educate others interested in the field.

Spanning over 100 pages, the comprehensive document meticulously guides students

through various aspects of bipedal robotics, ranging from kinematics and dynamics

to control and optimization techniques. The bootcamp’s ultimate objective is to

equip learners with the necessary knowledge and skills to animate a three-link walker

(shown in Figure A.1) using Matlab. The sequel document builds upon the knowledge

laid out in the first document and applies it on the more complicated five-link
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Figure F.1: Actual RABBIT Bipedal Robot (left) and its diagram representation
(right).

walker, also known as RABBIT [111] (shown in Figure F.1).

The Biped Bootcamp has had a meaningful impact on the education and career

trajectories of numerous students, inspiring a passion for robotics and fostering inno-

vation within the domain. At least fourteen students, encompassing undergraduates,

postgraduates, and even a high school student, have benefited from the bootcamp’s

wealth of knowledge and practical applications.

Ankita Mahajan, one of our talented students, took the learnings from the Biped

Bootcamp to a whole new level. Not only did she master the content and apply it

to her academic pursuits, but she also went on to share this invaluable knowledge

with ten students of her own after adapting the document into Matlab Grader. She

has since also further adapted the document into the Julia coding language with

the intent to incorporate it into a publicly accessible course. Ankita’s adaptation of

the bootcamp into the Matlab Grader and Julia programming language highlights
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the versatility and flexibility of the material, ensuring it reaches a wider audience

and resonates with different student communities.

Another student, Justin Lu, is a testament to the bootcamp’s profound impact

on nurturing individual creativity and initiative. Armed with the knowledge gained

from the bootcamp, Justin embarked on an ambitious project to build his very own

quadruped robot. This remarkable endeavor showcases the practical application of the

skills acquired during the bootcamp and exemplifies how it has empowered students

to venture into new and innovative realms of robotics.

Moreover, the bootcamp’s positive impact extends beyond the realm of education

and into the professional landscape. Yichen Wang, another talented student, found

themselves thriving in a research assistant position in a prosthetics research lab over

the summer. The knowledge and skills gained from the bootcamp played a crucial

role in preparing Yichen for this research opportunity, highlighting the practical

relevance and applicability of the content to real-world challenges.

In conclusion, the Biped Bootcamp stands as a testament to the power of

education in nurturing a new generation of roboticists and fostering innovation in

the field of bipedal robotics. The dedication, enthusiasm, and accomplishments of our

students demonstrate the bootcamp’s transformative potential, not only in academic

pursuits but also in shaping successful and impactful careers in robotics. The Biped

Bootcamp, with its far-reaching effects, has undoubtedly played a pivotal role in

cultivating a thriving community of robotic enthusiasts and scholars, paving the way

for a future filled with advancements in bipedal robotics and beyond.

Below are the known alumni of the Biped Bootcamp technical document thus

far.

Masters Students

Aayushi Shrivastava, M.S., Robotics

Yujie Li, M.S., Robotics

107



Yufeiyang Gao, M.S., Robotics

Undergraduate Students

Ankita Mahajan, B.S., Electrical Engineering

Gurnoor Kaur, B.S., Robotics, minor in Computer Science

Ishrat Khan, B.S., Robotics

Justin Lu, B.S., Computer Science

Laasya Chukka, B.S., Computer Science

Max Rucker, B.S., Robotics

Miles Bronson, B.S., Computer Science

Victor Popa-Simil, B.S., Biomedical Engineering

Yamato Miura, B.S., Computer Science

Yichen Wang, B.S., Electrical Engineering

High School Students

Vanya Krishna
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[13] Ítalo Renan da Costa Barros and Tiago Pereira Nascimento. Robotic mobile
fulfillment systems: A survey on recent developments and research opportunities.
Robotics and Autonomous Systems, 137:103729, Mar 2021.

[14] David Lattanzi and Gregory Miller. Review of robotic infrastructure inspection
systems. Journal of Infrastructure Systems, 23(3):04017004, Sep 2017.

[15] Rinat Galin and Roman Meshcheryakov. Automation and robotics in the context
of industry 4.0: the shift to collaborative robots. In IOP Conference Series:
Materials Science and Engineering, volume 537, page 032073. IOP Publishing,
2019.

[16] Robert Bogue. Underwater robots: a review of technologies and applications.
Industrial Robot: An International Journal, 42(3):186–191, Jan 2015.

[17] Maria Kyrarini, Fotios Lygerakis, Akilesh Rajavenkatanarayanan, Christos Sev-
astopoulos, Harish Ram Nambiappan, Kodur Krishna Chaitanya, Ashwin Ramesh
Babu, Joanne Mathew, and Fillia Makedon. A survey of robots in healthcare.
Technologies, 9(11):8, Mar 2021.

[18] Matthew Spenko, Stephen Buerger, and Karl Iagnemma. The DARPA Robotics
Challenge Finals: Humanoid Robots To The Rescue. Springer, 2018.

[19] Alexander Stumpf, Stefan Kohlbrecher, David C. Conner, and Oskar von Stryk.
Supervised footstep planning for humanoid robots in rough terrain tasks using
a black box walking controller. In 2014 IEEE-RAS International Conference on
Humanoid Robots, page 287–294, Nov 2014.

[20] Matthew Johnson, Brandon Shrewsbury, Sylvain Bertrand, Tingfan Wu, Daniel
Duran, Marshall Floyd, Peter Abeles, Douglas Stephen, Nathan Mertins, Alex
Lesman, John Carff, William Rifenburgh, Pushyami Kaveti, Wessel Straatman,
Jesper Smith, Maarten Griffioen, Brooke Layton, Tomas de Boer, Twan Koolen,
Peter Neuhaus, and Jerry Pratt. Team ihmc’s lessons learned from the darpa
robotics challenge trials. Journal of Field Robotics, 32(2):192–208, 2015.

[21] Duncan Calvert, Bhavyansh Mishra, Stephen McCrory, Sylvain Bertrand, Robert
Griffin, and Jerry Pratt. A fast, autonomous, bipedal walking behavior over
rapid regions. arXiv, Jul 2022. arXiv:2207.08312 [cs].

[22] Robert J. Griffin, Georg Wiedebach, Stephen McCrory, Sylvain Bertrand, Inho
Lee, and Jerry Pratt. Footstep planning for autonomous walking over rough
terrain. In 2019 IEEE-RAS 19th International Conference on Humanoid Robots
(Humanoids), page 9–16, Oct 2019.

110



[23] Lori A Livingston, Joan M Stevenson, and Sandra J Olney. Stairclimbing
kinematics on stairs of differing dimensions. Archives of physical medicine and
rehabilitation, 72(6):398–402, 1991.

[24] Reza Heydari and Mohammad Farrokhi. Model predictive control for biped
robots in climbing stairs. In 2014 22nd Iranian Conference on Electrical Engineering
(ICEE), pages 1209–1214, 2014.

[25] Giorgio Figliolini and Marco Ceccarelli. Climbing stairs with ep-war2 biped
robot. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No. 01CH37164), volume 4, pages 4116–4121. IEEE, 2001.

[26] Giorgio Figliolini, Marco Ceccarelli, and Maurizio Di Gioia. Descending stairs
with ep-war3 biped robot. In Proceedings 2003 IEEE/ASME International Confer-
ence on Advanced Intelligent Mechatronics (AIM 2003), volume 2, pages 747–752.
IEEE, 2003.

[27] S. Kajita and K. Tani. Study of dynamic biped locomotion on rugged terrain-
derivation and application of the linear inverted pendulum mode. In Proceedings.
1991 IEEE International Conference on Robotics and Automation, pages 1405–1411
vol.2, 1991.

[28] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. The 3d
linear inverted pendulum mode: a simple modeling for a biped walking pattern
generation. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium
(Cat. No.01CH37180), volume 1, pages 239–246 vol.1, 2001.

[29] Agility Robotics. Cassie robot. https://github.com/agilityrobotics/

cassie-doc/wiki.

[30] Jacob Reher, Wen-Loong Ma, and Aaron D. Ames. Dynamic walking with
compliance on a cassie bipedal robot. In 2019 18th European Control Conference
(ECC), pages 2589–2595, 2019.

[31] Yukai Gong and Jessy Grizzle. Zero dynamics, pendulum models, and angular
momentum in feedback control of bipedal locomotion, 2021.

[32] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel van de
Panne. Feedback control for cassie with deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1241–1246, 2018.

[33] Xiaobin Xiong and Aaron Ames. 3-d underactuated bipedal walking via h-lip
based gait synthesis and stepping stabilization. IEEE Transactions on Robotics,
38(4):2405–2425, 2022.

111

https://github.com/agilityrobotics/cassie-doc/wiki
https://github.com/agilityrobotics/cassie-doc/wiki


[34] William Yang and Michael Posa. Impact invariant control with applications
to bipedal locomotion. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5151–5158, 2021.

[35] Grant Gibson, Oluwami Dosunmu-Ogunbi, Yukai Gong, and Jessy Grizzle.
Terrain-adaptive, alip-based bipedal locomotion controller via model predictive
control and virtual constraints. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6724–6731. IEEE, 2022.

[36] Joris Verhagen, Xiaobin Xiong, Aaron Ames, and Ajay Seth. From human
walking to bipedal robot locomotion: Reflex inspired compensation on planned
and unplanned downsteps, 2022.

[37] Oluwami Dosunmu-Ogunbi, Aayushi Shrivastava, Grant Gibson, and Jessy Grizzle.
Stair climbing using the angular momentum linear inverted pendulum model
and model predictive control. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6724–6731. IEEE, 2023.

[38] Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and Jonathan W.
Hurst. Blind bipedal stair traversal via sim-to-real reinforcement learning. CoRR,
abs/2105.08328, 2021.

[39] Min Dai, Xiaobin Xiong, and Aaron Ames. Bipedal walking on constrained
footholds: Momentum regulation via vertical com control. In 2022 International
Conference on Robotics and Automation (ICRA), pages 10435–10441, 2022.

[40] Alphonsus Adu-Bredu, Grant Gibson, and Jessy W Grizzle. Exploring kinody-
namic fabrics for reactive whole-body control of underactuated humanoid robots.
arXiv preprint arXiv:2303.04279, 2023.

[41] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical introduc-
tion to robotic manipulation. CRC press, 2017.

[42] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot modeling
and control. John Wiley & Sons, 2020.

[43] Kevin M Lynch and Frank C Park. Modern robotics. Cambridge University
Press, 2017.

[44] Roy Featherstone and David Orin. Robot dynamics: equations and algorithms.
In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 1,
pages 826–834. IEEE, 2000.

[45] Ayonga Hereid and Aaron D. Ames. Frost: Fast robot optimization and
simulation toolkit. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, September 2017. IEEE/RSJ.

112



[46] Ram Vasudevan. Hybrid system identification via switched system optimal
control for bipedal robotic walking. In Robotics Research: The 15th International
Symposium ISRR, pages 635–650. Springer, 2017.

[47] Xingye Da and Jessy Grizzle. Combining trajectory optimization, supervised
machine learning, and model structure for mitigating the curse of dimensionality
in the control of bipedal robots. The International Journal of Robotics Research,
38(9):1063–1097, Aug 2019.

[48] Yukai Gong. Feedback Control of Highly Dynamic 3D Bipedal Locomotion. PhD
thesis, University of Michigan, 2022.

[49] Xiaobin Xiong and Aaron D. Ames. Orbit characterization, stabilization and
composition on 3d underactuated bipedal walking via hybrid passive linear
inverted pendulum model. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), page 4644–4651, Nov 2019.

[50] Theresa Klein. A Neurorobotic Model of Humanoid Walking. PhD thesis, University
of Arizona, Dec 2011.

[51] I. Poulakakis and J.W. Grizzle. The spring loaded inverted pendulum as the
hybrid zero dynamics of an asymmetric hopper. IEEE Transactions on Automatic
Control, 54(8):1779–1793, Aug 2009.

[52] J. Pratt, P. Dilworth, and G. Pratt. Virtual model control of a bipedal walking
robot. In Proceedings of International Conference on Robotics and Automation,
volume 1, page 193–198 vol.1, Apr 1997.

[53] Alessandro Alla and J Nathan Kutz. Nonlinear model order reduction via
dynamic mode decomposition. SIAM Journal on Scientific Computing, 39(5):B778–
B796, 2017.

[54] Deepak Trivedi, Amir Lotfi, and Christopher D Rahn. Geometrically exact
dynamic models for soft robotic manipulators. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1497–1502. IEEE, 2007.

[55] Peter Benner and Heike Faßbender. Model order reduction: Techniques and
tools. In Encyclopedia of Systems and Control, pages 1227–1234. Springer, 2021.

[56] Manuel Beschi, Enrico Villagrossi, Nicola Pedrocchi, and Lorenzo Molinari
Tosatti. A general analytical procedure for robot dynamic model reduction. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4127–4132. IEEE, 2015.

[57] Wisama Khalil, J Kleinfinger, and Maxime Gautier. Reducing the computational
burden of the dynamic models of robots. In Proceedings. 1986 IEEE International
Conference on Robotics and Automation, volume 3, pages 525–531. IEEE, 1986.

113



[58] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac,
Nathan Ratliff, and Dieter Fox. Closing the sim-to-real loop: Adapting simula-
tion randomization with real world experience. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8973–8979. IEEE, 2019.

[59] Erica Salvato, Gianfranco Fenu, Eric Medvet, and Felice Andrea Pellegrino.
Crossing the reality gap: A survey on sim-to-real transferability of robot con-
trollers in reinforcement learning. IEEE Access, 9:153171–153187, 2021.

[60] Matthew J Powell and Aaron D Ames. Mechanics-based control of underactuated
3D robotic walking: Dynamic gait generation under torque constraints. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on,
pages 555–560. IEEE, 2016.

[61] Yukai Gong and Jessy Grizzle. One-step ahead prediction of angular momentum
about the contact point for control of bipedal locomotion: Validation in a
lip-inspired controller. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 2832–2838, 2021.

[62] Benjamin Morris and Jessy W Grizzle. Hybrid invariant manifolds in systems
with impulse effects with application to periodic locomotion in bipedal robots.
IEEE Transactions on Automatic Control, 54(8):1751–1764, 2009.

[63] Chenglong Fu and Ken Chen. Gait synthesis and sensory control of stair
climbing for a humanoid robot. IEEE Transactions on Industrial Electronics,
55(5):2111–2120, 2008.
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