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ABSTRACT

Videos have been widely adopted across various applications, highlighting the increas-

ing importance of database management systems that can support video queries. However,

achieving effective query processing in video database management systems is challenging

due to factors such as the substantial size of video databases and the unstructured nature of

video content. To address these challenges, I demonstrate that video-specific algorithms

that support query processing in video database management systems are essential for

performance (accelerating video selection queries), policy (balancing competing query

requirements), and explanation (supporting queries for real-world explanation). To sup-

port this statement, my dissertation focuses on four key parts: (1) building a new indexing

mechanism that captures visual similarity for filtering items that are likely to satisfy the

query predicate, (2) developing a video degradation-accuracy profiling system, helping

administrators to choose an appropriate degradation setting for competing requirement

trade-off in video analytics, (3) proposing a commonsense knowledge-enhanced indexing

method, which initially constructs a lossy but inexpensive index and subsequently patches

it to quickly identify query result candidates, and (4) implementing a causal inference

system that uncovers confounding variables within images to solve confounding bias and

compute more accurate average treatment effects (ATE).

xiv



CHAPTER I

Introduction

Videos are ubiquitous in our daily life — they can be extensively collected from var-

ious sources such as publicly deployed surveillance cameras [62], dashcams [31], online

video platforms [4], etc., thus constituting a major part of contemporary data collection.

Due to the rich and useful information contained in videos, they are steadily gaining pop-

ularity in a range of applications, including traffic monitoring [46], building automation

systems [208], homeland security [92], self-driving techniques [21], robotics [193], and

so on.

In these applications, video databases are subjected to various queries to serve diverse

purposes. For instance, in order to improve a self-driving car model, 100 videos of cross-

walks might need to be retrieved from a dashcam video corpus. Such a query can be

written in SQL, with a crosswalk classifier integrated as a user-defined function (UDF) in

the predicate:

1 SELECT * FROM dashcamVideos

2 WHERE HasCrosswalkUDF(video) = True

1



3 LIMIT 100

Another example is in traffic monitoring. The average number of cars per frame in surveil-

lance videos during weekends might be computed for scheduling road construction work.

In this case, the SQL query can be expressed as follows:

1 SELECT AVG(CarNumUDF(video)) FROM trafficVideos

2 WHERE time = "weekend"

Database management systems (DBMS) are crucial for maintaining data and support-

ing query processing. Traditional database management systems [168, 42] are primarily

designed for relational databases, where data is stored in tables. In these tables, each

row represents an entity instance and each column represents an attribute value associated

with this instance. This relational data can be straightforwardly queried using standard

operations such as selection, projection, join, grouping, etc.

However, traditional database management systems are unsuitable for videos mainly

because videos are unstructured data. The information and attributes of videos, e.g., the

object categories contained in videos, are not explicitly stored in columns, thereby making

video queries harder to process. To extract video information, UDFs might be required

as shown in the above examples. While UDFs enhance the expressiveness of queries,

they can adversely affect query performance. In the above crosswalk example, the query

optimizer in traditional relational DBMSs or “big data” engines [185, 199] usually cannot

understand the semantics of UDFs, so the video data needs to be scanned sequentially, as

shown in the top half of Figure 1.1. In contrast, an index (e.g., B+ tree [34]) can be created

on attribute values for relational data to accelerate the process. If such an index is designed

2



NAIVE
Query System

Select 100 videos 
of crosswalks

Result set after 
slow processing

Process 

randomly 
. . .

OPTIMIZED
Query SystemResult set after 

fast processing

Process
in order

. . .

Select 100 videos 
of crosswalks

Figure 1.1: A comparison of video query processing with and without optimization

for video data, the satisfying videos can be easily selected as depicted in the bottom half

of Figure 1.1. Moreover, these UDFs for video analytics are typically neural network

models [209, 70, 9], yielding long inference time on each video, further exacerbating the

problem.

In addition to the UDF-challenges discussed above, there are challenges due to privacy

and system requirements, and intersections with related concerns, such as commonsense

knowledge and causality, as we discuss further in Section 1.1. Consequently, a new video

database management system with video-specific query processing techniques is desired.

In this dissertation, we present our work on supporting query processing in video

database management systems. In Section 1.1, we present the challenges and opportu-

nities in video query processing. Next, in Section 1.2, we summarize our contributions

to this research area in the dissertation — we propose four different algorithms/systems

for improving video query performance or supporting the process of new query types for

visual content. Finally, we provide an outline of our work presented in this dissertation in

Section 1.3.
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1.1 Challenges and Opportunities

There are four main challenges that make video query processing difficult:

The large size of video databases — Typically, popular video databases [4, 89, 99, 31]

contain a substantial amount of videos, partially due to how easy it is to collect videos

nowadays. For instance, from a single 30 fps surveillance camera, more than 2.5M video

frames can be collected within one day. If this camera records 1080p videos, each video

frame amounts to approximately 6MB, resulting in a total of around 15TB of frames each

day. On online media platforms, such as YouTube, over 500 hours of videos are uploaded

every minute [118]. These tremendous video databases present a new challenge — pro-

cessing these videos consumes a significant amount of time. In addition, large databases

require the support of adequate storage space, high bandwidth, and sufficient power, but

there are always system constraints [33, 11].

Privacy protection requirement in videos — Cameras are powerful sensors that can

easily capture private information, such as facial imagery, license plates, etc., which needs

to be protected. This information can raise public concern because it might be leaked dur-

ing the shipment of video off-camera or during malicious query execution. There are legal

regulations regarding privacy protection that must be adhered to during query processing.

For example, according to the EU General Data Protection Regulation [180], face blurring

is required when any closed-circuit television (CCTV) footage is shared with a third party.

Information extraction from unstructured video data with UDF — Unlike tradi-

tional relational data that is well-organized in tables with explicit attribute values, video

data is unstructured with hidden information that needs to be extracted by tools. With the

development of computer vision techniques, neural network models are widely adopted to
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extract video content, such as object detection [182], action recognition [205], etc. They

can be integrated into video queries as UDFs, but the inference time of a model is long

compared to math operators in traditional SQL queries, yielding extremely long query

processing time. For example, the processing speed of YOLOv7 [182], the state-of-the-art

object detection model, is only 56 FPS when achieving 55.9% AP. Due to the unknown se-

mantics of UDFs, traditional optimization methods (e.g., B+ trees [34]) are not applicable

for accelerating the process of UDFs in the predicates. Moreover, recent research works

dedicated to optimizing UDF execution [146, 149, 78] still make strong assumptions about

the programming language, design, or possible semantics in the user-defined component.

Special query types for visual content — Basic SQL query types, such as selection

queries and aggregate queries, are important in video queries as demonstrated in the above

two examples. Due to the richness of information contained in videos, complex queries be-

yond the above basic types are also desired, for example, leveraging external visual content

to enhance the accuracy of causal inference, or understanding object interaction in video

scenes and reasoning an event [200]. Unfortunately, current video database management

systems are unable to execute these special query types.

To build practical video database management systems that provide powerful query

processing features, there are many potential directions — designing novel index mecha-

nisms, developing video query languages, designing video-specific storage methods, sup-

porting multiple video types, maximizing the use of limited resources, etc. Our research

focuses on four specific opportunities in this area:

• The opaque filter query, a query with a selection predicate that is implemented with

a UDF, is an important class of video queries in machine learning and data science
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workloads, for example, filtering video frames. Even though the predicate’s seman-

tics are unknown to the optimizer, it is likely to filter similar video frames. It is

promising to design appropriate indexes to accelerate the processing.

• In video analytical tasks, governments have a range of policy goals — preserving

privacy, reducing bandwidth use, and legal compliance — that may be obtained by

degrading the video at some potential cost to analytical accuracy. It is beneficial

to profile video degradation-accuracy for administrators to employ controlled inten-

tional video degradation in order to balance competing goals.

• As a subset of opaque filter queries, we focus on video selection queries that select

videos containing desired objects. In order to achieve efficient query processing, the

semantic-level correlations in videos can be leveraged to quickly locate videos that

are relevant to predicates.

• Besides pure record keeping, videos as general-purpose sensors may also be used

for causal inference. Conducting causal inference using observational data often

encounters confounding bias, where hidden variables distort causal relationships.

The confounding variables may be observed in video frames, so it would be helpful

to integrate causal tables with external visual content.

1.2 Summary of Contributions

This dissertation addresses the above challenges by designing video-specific algo-

rithms for supporting video query processing in database management systems with ef-

ficiency, accuracy, competing requirements, and potential query types considered.
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The first work we present is VOODOO INDEXING, a two-phase method for optimizing

opaque filter queries. Before any query arrives, the method builds a hierarchical “query-

independent” index of the database contents, which groups together similar items. At

query time, the method builds a map of how much each group satisfies the predicate,

while also exploiting the map to accelerate execution. Unlike past methods, VOODOO

INDEXING does not require insight into predicate semantics and does not require in-query

model training. We implemented both standalone and SparkSQL-specific systems, plus

experiments on more than 100 distinct opaque predicates on image data. VOODOO IN-

DEXING can yield up to an 88% improvement over standard scan behavior, and a 79%

improvement over the previous best method adapted from the research literature.

In the second work, SMOKESCREEN, we propose a video degradation-accuracy profil-

ing model for the problem of controlling the appropriate amount of degradation in analyt-

ical video systems. It offers administrators a profile that illustrates the tradeoff between

increased analytical accuracy and increased amounts of degradation. Computing the true

tradeoff curves requires full access to the non-degraded video stream, so a primary techni-

cal contribution of this work lies in methods for accurately approximating the curves with

only limited information. In addition, we propose a profile repair policy to further improve

tradeoff curves’ accuracy. We conducted experiments on two video datasets, two detection

models, and four aggregate query types. Compared with competing methods, our upper

bound estimation of analytical error can enable up to 88% more accurate tradeoffs.

Next, we present PAINE, an indexing mechanism to optimize video selection queries

with commonsense knowledge. Commonsense knowledge consists of fundamental infor-

mation about the world, such as the fact that a tennis racket is a tool designed for hitting a
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tennis ball. To save computation, a lossy index can be intentionally created, but this may

result in missed target objects and suboptimal query time performance. Our mechanism

addresses this issue by constructing probabilistic models from commonsense knowledge

to patch the lossy index and then prioritizing predicate-related videos at query time. This

method can achieve significant performance improvements comparable to those of a full

index while keeping the construction costs of a lossy index. We tested our prototype

system on two video corpora, showing up to 97.79% fewer videos processed compared

to baselines. Even the model constructed without any video content can yield a 75.39%

improvement over baselines.

Lastly, we propose a novel approach to deal with the incomplete causal table by utiliz-

ing the information embedded in video frames, in order to uncover confounders in causal

inference. Our system collects user-defined confounder names through a user interface that

covers a wide range of image features and recommends domain-specific features. It em-

ploys a visual language model, GPT-4V, alongside lightweight classifiers based on CLIP

embeddings for accurate feature extraction from images. Our pipeline creates the enriched

causal table to compute the average treatment effect (ATE). Extensive testing across three

causal graphs with varying levels of extraction difficulty demonstrates our system’s ro-

bustness and effectiveness in identifying confounders from images and quantifying causal

effects, yielding up to 66.7% more accurate ATE.

1.3 Dissertation Outlines

The rest of this dissertation is organized as follows:
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• In Chapter II, we present the research background and discuss previous works re-

lated to the dissertation.

• In Chapter III, we present a two-phase index method, VOODOO INDEXING, for op-

timizing opaque filter queries.

• In Chapter IV, we present a video degradation-accuracy profiling model, SMOKE-

SCREEN, to control the appropriate amount of intentional degradation in analytical

video systems.

• In Chapter V, we present a novel index mechanism, PAINE, for optimizing video

selection queries that select desired videos containing target objects.

• In Chapter VI, we present a new approach to mitigate confounding bias in causal

inference by uncovering potential confounders from video frames.

• In Chapter VII, we conclude this dissertation and discuss potential avenues for future

research.
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CHAPTER II

Background and Related Work

In this chapter, we give a brief overview of the research background and related work.

The discussion is organized around four research domains: video data management, query

processing in relational database management system, video analysis in computer vision,

and causal inference.

2.1 Video Data Management

A variety of video database management systems are emerging nowadays. They make

the data management process more suitable for video data and improve the performance.

Most of the previous works focus on query processing efficiency. They apply shallower

neural network models than full models in predicates [85, 84], select appropriate input

video settings (e.g., the frame resolution and frame rate) [8, 80, 17, 85, 204], propose

probabilistic predicates to prefilter items [115], construct approximate indexes of possible

object classes [73], enable parallel processing for large-scale video analysis [114, 140],

design new tile layouts for efficient video decoding [38], or materialize and reuse user-
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defined functions’ results for exploratory video analytics [190]. Our works, VOODOO

INDEXING and PAINE, fall into this category, exploring the index opportunity to accelerate

query processing without error tolerance. Other previous works also design systems for

specific video types, such as virtual reality videos [64], and develop video compression

techniques [122]. Our works, SMOKESCREEN and our final project, pursue new directions

— profiling video analytical accuracy under video degradation to balance competing goals,

and leveraging images to address the issue of confounding bias for causal inference.

2.2 Query Processing in Relational Database Management System

In this section, we mainly discuss three aspects in RDBMS that are related to our work:

2.2.1 Query Optimization

Query optimization based on indexes — Traditional index structures [34, 121] have

been widely applied in modern database management systems [129, 126, 41] for query

optimization. Some works have designed novel index techniques. Database cracking [76]

gradually cracks databases for building indexes according to users’ queries. Learned index

structures [96] adopt machine learning models for index construction in order to reduce

time. However, these indexes are not applicable to video and other unstructured data.

UDF optimization — Database researchers have been working on optimizing queries

with UDFs for decades [69]. The main approaches can be divided into three categories.

The first one is to analyze the semantic of UDF code so as to leverage traditional optimiza-

tion techniques, such as sub-query optimization [146], operator reordering [149, 74, 75]

and index selection [78, 30]. However, due to the opaqueness of UDF code, these meth-
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ods are not applicable to all the UDFs. The second one is to create new predicates for

pre-filtering without careful semantic analysis [115, 8, 84, 85]. These works rely on his-

torical queries, otherwise they need to train binary classifiers at cold start which stage can

not be optimized. The third one is to sample data from indexed groups by learning map-

ping between UDF and groups at query time. Zombie [7] leverages this idea for feature

engineering acceleration.

Query optimization with machine learning — With the development of reinforce-

ment learning [169] and deep learning [104], machine learning methods have been popular

in improving traditional query optimization methods. These works can help with join or-

dering [97, 177], subquery representation [135], cardinality estimation [91], selectivity

estimation [102], index structures [96], and query hint selection [119].

In two of our works, VOODOO INDEXING and PAINE, we design novel indexing mech-

anisms that utilize machine learning models to optimize video queries with UDF.

2.2.2 Data Management with Privacy and System Requirements

The privacy-preserving problem in data publishing has been explored, summarized

by [52]. Numerous models are proposed for guaranteeing k-anonymity [156, 106], ϵ-

differential privacy [43, 32], etc. Apart from the non-interactive data publishing, studies

have integrated the privacy protection into the query processing engine [19, 175]. For

the system requirements, such as bandwidth management, energy saving, and storage ca-

pacity limitation, popular solutions include database compression [57, 152] and adjusting

hardware and software configurations [178]. In comparison, our system SMOKESCREEN

is suitable for video data with all of the above requirements and reveals how analytical
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accuracy changes with these requirements.

2.2.3 Approximate Query Processing

Approximate query processing (AQP), aiming to approximate aggregate query answers

in online analytical processing, has been researched for decades [29]. AQP methods com-

prise two categories: online aggregation and offline synopsis generation [110]. Works

about online aggregation [68, 132, 5, 203, 28] select samples online to estimate the answers

of aggregate functions, such as COUNT, SUM, and AVG. The estimation performance can be

further improved by recent developments in concentration inequality [16, 123, 154, 93]

which have been used in many areas, such as solving the multi-armed bandit prob-

lem [113]. Methods about offline synopsis generation [150] can be applied to more aggre-

gate functions but require prior knowledge. Other than the above distributive and algebraic

aggregate functions, holistic aggregate function approximation, such as MEDIAN and RANK,

mainly rely on summary statistics [53, 163, 61, 60]; only some of the works are based

on sampling [108, 117]. These algorithms can be applied for profiling video degradation-

accuracy, but our estimation in SMOKESCREEN is more accurate.

2.3 Video Analysis in Computer Vision

With the increasing popularity of videos, video analysis is an important research di-

rection in computer vision. Effective models and pipelines have been designed for various

applications: object detection [182], action recognition [205], video segmentation [189],

virtual reality video processing [107], human pose estimation [137], scene graph con-

struction [82], etc. These video models are typically neural network models [104] that
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are composed of multiple various kinds of layers (e.g., convolutional layers). After learn-

ing the weights of computation, these models can transform raw videos to desired results

(e.g., the contained object categories). Nevertheless, powerful neural network models are

usually along with long inference time.

Commonsense knowledge, the facts that are expected to be known by all humans,

has been applied to many computer vision tasks in order to achieve human-level perfor-

mance. It is collected and modeled by knowledge graphs (e.g., WordNet [125], Concept-

Net [166], Wikidata [181], and CSKG [77]), natural language corpus (e.g., NELL [27]

and OMCS [165]), and multiple choice QA problems (e.g., VCR [200] and SWAG [201])

through crowdsourcing, mining and other advanced methods. Commonsense knowledge

can be utilized to improve the accuracy of object detection [44, 143], action recogni-

tion [54], and image classification [120], and enable visual commonsense reasoning [200].

2.4 Causal Inference

The development of modern causal inference methods have been ongoing for decades.

Two well-known frameworks, Pearl’s graphical causal model [138] and Rubin’s potential

outcome framework [153], provide formalized approaches to estimating causal effects.

Because confounding bias is a crucial issue in causal inference, data integration for ad-

dressing missing confounders has been investigated [196, 162]. Integrating causal tables

with different types of data presents distinct challenges. For tables, previous literature

has supported efficient correlated column discovery and table join [157], combination of

randomized clinical trial (RCT) with observational data when the primary outcome cannot

be measured in RCT [13], and incomplete data sample combination [59]. Some works
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also mine confounding attributes from knowledge graphs [195]. When it comes to un-

structured data, previous research generated term frequency representations [202] and de-

signed causally sufficient document embeddings [179] to uncover confounders from text,

but these techniques cannot work when images confounds the causal inference.

While visual information was not examined for confounder identification, as a rich

and popular data source, it has been explored in the field of causal inference to achieve

cognition-level visual understanding. Recent works studied causal discovery among envi-

ronmental and object variables in physical systems directly from videos [111], presented

Bayesian grammar model for high-level causal induction from visual data [50], and em-

bedded structural causal models into machine learning models to learn visual representa-

tions as causal variables [158]. In addition to extracting the explicit causal relationships

for constructing causal graphs, there are also research projects about commonsense rea-

soning on visual data. These works designed algorithms to answer multiple-choice rea-

soning questions [109, 174], different types of causal questions [194], and give rationales

to justify answers [200].
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CHAPTER III

A Method for Optimizing Opaque Filter Queries

3.1 Introduction

Opaque filter queries constitute an important workload for processing unstructured

data like videos. In these queries, LIMIT clauses commonly occur as users navigate mas-

sive databases. For example, an engineer trying to improve a self-driving car might want

to retrieve 100 videos of crosswalks from a large database of dashcam video. She could

train an classifier that detects crosswalks, package it as a user-defined function (UDF), and

then run the following SQL query:

1 SELECT * FROM dashcamVideos

2 WHERE HasCrosswalkUDF(video) = True

3 LIMIT 100

A naı̈ve but traditional method [101] for these queries is to scan the whole database,

apply the UDF to every row, and filter the result set according to the UDF’s boolean an-

swers. Obviously this method is time-consuming when the UDF runtime is long and the
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database is large. Canziani, et al. showed that the deep model inference time per image

is at least 5 milliseconds and can already reach up to 200 milliseconds [25]. Moreover,

extremely large video databases are easy to collect, not only from online collections but

via the growing class of video applications; a single 30fps camera can obtain more than

2.5M frames a day.

Query optimization methods are crucial for good performance, but most have histor-

ically relied on semantic understanding of the query, which can pose a challenge when

the query includes user-defined components. Recent research into optimizing UDF execu-

tion has tried to reduce query time through transforming or reordering UDFs for semantic

equivalence [146, 149] and selecting indexes by code inspection [78]. However, these

techniques remain limited, largely because of strong assumptions they make about the

UDF’s programming language, design, or possible semantics. These methods cannot help

in the example below.

EXAMPLE 1. Harry is a self-driving car engineer whose job is to debug car behavior

under specific failure scenarios. In this case, he needs to identify 100 examples of cross-

walks in the video database, but in general there are always new scenarios to debug, so

Harry cannot rely on a one-time video frame labeling step; instead, he must provide novel

trained classifiers as user-defined predicates and run opaque filter queries. Unfortunately,

all real-life systems, whether relational or ”big data” engines such as Hadoop [185] and

Spark [199], execute these queries with a simple scan. Even worse, the inference time of

each classifier invocation is long, making him wait a long time.

Technical Challenge — Existing methods cannot optimize our opaque filter query

workload for two core reasons, both tied to the fact that the selection predicate is not
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only a UDF, but most likely a trained deep network. First, the selection predicates have

semantics that are unclear to the database system and cannot be easily analyzed. As a

result, it is not clear to the optimizer when a possible query optimization would be safe or

effective. Second, the training procedure that yields the UDF selection predicate is likely

an ongoing process, which constantly yields updated and novel predicates. As a result, it

is not feasible to simply apply the predicate once to the entire database.

There has been some work on query systems for images and videos [8, 84, 85] that do

not have full semantic information about the data, but still save time as many traditional in-

dexing methods do: by avoiding processing irrelevant data. Unfortunately, these methods

require expensive and error-prone online model retraining [8, 85].

Our challenge is to build an optimization method that has no access to detailed UDF

semantics and avoids use of online model retraining.

Our Approach — In this paper, we propose a new mechanism for accelerating opaque

filter queries that we call VOODOO INDEXING. Like many optimization methods, it ob-

tains speedups by avoiding processing irrelevant data that will not be returned to the user.

Unlike past methods for optimizing UDF-based queries, VOODOO INDEXING does not

require any semantic insight into the UDF code. Further, VOODOO INDEXING does not

require an online model retraining procedure.

VOODOO INDEXING’s basic mechanism works in two phases. At index time, it clus-

ters records into index groups so that similar objects are physically grouped together. At

query time, it simultaneously builds a model of the rate at which different groups’ records

satisfy the UDF predicate, and also exploits the model to oversample records from the

high-satisfy-rate groups. (Correspondingly, the method undersamples from groups where
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the UDF is satisfied comparatively rarely.) VOODOO INDEXING adapts this approach

from the ZOMBIE system, which was originally designed to support feature engineering

tasks [7]; ours is the first indexing mechanism with this two-phase architecture for video

analytics.

A core technical difficulty lies in quickly identifying and reading from the most-

productive regions of the indexed database (that is, the database elements most likely to

satisfy the UDF selection predicate). In addition to employing a multi-armed bandit pol-

icy [15] for deciding among index groups, VOODOO INDEXING further adds a hierarchical

sampling procedure. The core observation is that drawing a sample record from one index

group yields evidence about the sampled group as well as weaker evidence about other

similar groups. By exploiting this weak but plentiful evidence at query time, VOODOO

INDEXING can identify useful groups with very few samples, thereby yielding substantial

performance gains beyond a naive adaptation of ZOMBIE method.

EXAMPLE 2. In order to decrease waiting time, Harry employs voodoo indexing. At index

time, voodoo indexing clusters together visually-similar frames from the dashcam video

database. At query time, the system samples from a variety of index groups, sending each

to the crosswalk detector UDF for evaluation. It finds that one index group contains a

high fraction of data items that pass the selection filter, and oversamples from this group,

quickly yielding 100 results.

Under this design, the system can identify many records that satisfy the UDF predicate

early in the query execution process. It is intended to be most effective on ”Goldilocks”

LIMIT sizes that are neither extremely small nor extremely large. Extremely small result

sizes will not give the system much opportunity to exploit the query-time information it
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collects, while extremely large result sizes will require the system to draw records from

even very low-probability index groups. Fortunately, these mid-sized LIMIT sizes should

be typical for the analytical and machine learning workloads we expect to see alongside

UDF-based predicates.

Contributions — Our main contributions are as follows:

• We propose a novel method, VOODOO INDEXING, for optimizing opaque filter

queries. We model query processing as a hierarchical multi-armed bandit problem

[198] and design an efficient algorithm for sampling.

• We evaluate our algorithm with real-world image databases, MNIST and ImageNet,

showing that VOODOO INDEXING can yield up to an 88.2% improvement over stan-

dard scan, and a 79.0% improvement over adapted ZOMBIE.

• We prototype our method in a standalone system as well one integrated with Spark-

SQL, and test its functionality on MNIST, showing up to 86.6% improvement.

3.2 Problem Formulation

In this section we introduce notation and a formal model for the opaque filter query

optimization task, as well as for our proposed solution framework. All of the notation is

listed in Table 3.1.

3.2.1 Problem Definition

An opaque filter query is characterized by a 3-tuple of parameters (D,F, k). The raw

data D is a large dataset that needs to be filtered, such as the dashcam video dataset in the
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Parameter Description Example
D (Given) Raw dataset Driving dashcam videos
F (Given) UDF predicate Crosswalk detector
k (Given) LIMIT number 3 items

I (Designed) Clusters Data clusters created by K-Means or similar alg
T (Designed) Dendrogram A balanced tree describing data similarities
µ (Designed) Reward Crosswalk detector returns True
n (Designed) # samples 14 items are sent to F

Table 3.1: Frequently used notation in VOODOO INDEXING

above example. The function F is user-defined function used as the selection predicate.

It can be written using any language or programming framework. For example, it can be

a TensorFlow or a PyTorch model, or even a hand-written piece of Python code. Items in

dataset D will be selected when function F returns true. The LIMIT k is the number of

items that the query should return. Usually k is driven by application concerns, such as the

screen size, or the amount of time available to the user, or the required number of training

examples for a downstream learning pipeline.

The value n is the number of items in D that are sent to F at query time for evaluation,

in hopes of finding k items where F returns true. We expect that F will be time-consuming

to run, so the runtime of the query is substantially driven by the time needed to run n

invocations of F . We can now define the optimization problem as follows:

PROBLEM 1: Given input dataset D and user-defined function F , find k items that

satisfy F while minimizing n.

21



3.2.2 UDF Optimization Strategy

In order to solve the above problem, our model aims to intelligently choose the items

in D that are evaluated with F , such that the function returns false as infrequently as

possible. At index time we organize the dataset D into a similarity structure. For example,

the structure can be a dendrogram T in which the leaves are clusters of items, notated as

I . At query time, our approach estimates the average utility of the clusters in order to

select the useful ones to answer user’s query. For each cluster it accumulates a reward µ,

computed as the fraction of records that return true when given to F . We can now describe

our algorithmic task as follows: Design a similarity structure for raw dataset D, as well

as a selection strategy, that will solve the above optimization task.

3.2.3 Design Considerations

Saved time

(s)

Figure 3.1: Typical execution curves for PERFECT, VOODOO and SCAN

Here we discuss some considerations in formulating a design.

22



LIMIT Size — Our goal is to optimize opaque filter queries with a LIMIT value

k. Figure 3.1 shows how quickly different approaches can satisfy an opaque filter query

on MNIST data [105]. The x-axis describes query runtime, while the y-axis indicates

the number of data items retrieved by the system for which F returns true. The dotted

horizontal line indicates the query’s LIMIT value (in this case, 90% of the total database

size). This figure is derived from executing a real query. The PERFECT line indicates an

ideal (but probably unrealizable) system that processes solely data items that return true

when sent to the UDF predicate F . The VOODOO line indicates the method described in

this paper.

Note that if the query’s LIMIT value is extremely large or small, it is challenging

for competing methods to improve over SCAN. Fortunately, we expect most k values to

fall in the broad middle due to databases’ large size. Experiments in Section 3.6.2 show

that while our method is effective across LIMIT values ranging from 10% to 90% of the

satisfying item size, it shows best results for middle-range values.

UDF Behavior — We expect the UDF’s runtime to be broadly consistent with pub-

lished runtimes of trained classifiers running on GPU hardware. The longer the UDF

runtime, the more useful it is to minimize invocations of F . We expect the UDF to be

accurate enough to serve the purposes of the user’s query; the work here does not try to

improve the UDF’s standalone accuracy.

3.2.4 Illustrative Example

In this section we illustrate the behavior of three possible implementations of opaque

filter queries: standard SCAN, the ZOMBIE method, and our proposed VOODOO INDEX-
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(b) Zombie:

(c) Voodoo:

(a) Scan:

1 2 7 8

1 2 7 8

Item where UDF 
returns TRUE

Item where UDF 
returns FALSE

…...

…...

…...

………..

…...

Select direction

Select direction

Select direction

Figure 3.2: Three methods for the illustrative example

ING method.

Example 1: SCAN. This example is shown in Figure 3.2 (a). Harry is now filter-

ing crosswalk video frames by applying a learned classifier as UDF, and has indicated a

LIMIT value of k = 3. There are 32 records in the database; 4 of them return True when

sent to the UDF. In this case, the UDF needs to be applied 24 times in order to obtain 3

useful video frames.

Now consider the following example about the adapted ZOMBIE method:

Example 2: ZOMBIE. This example is shown in Figure 3.2 (b). Harry now tries
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utilizing a research query system that employs a method adapted from the Zombie algo-

rithm. At index time, these data records are clustered into 8 index groups. Some have a

large fraction of data items where F will return True. At query time, the system repeatedly

draws each item from a chosen index group. By monitoring the rate at which index group

yields a record where F returns True, the UDF only needs to be applied 18 times in order

to obtain 3 useful video frames (a 25% reduction from standard practice).

Now consider our VOODOO INDEXING approach:

Example 3: VOODOO. This example is shown in Figure 3.2 (c). At index time, the

data records are again clustered into index groups. In addition, those clusters are placed

in the leaves of a dendrogram, in which similar clusters are closer to each other in the tree.

At query time, the system again repeatedly draws each item based on the dendrogram. In

this way, the system can learn to ignore useless clusters (from cluster 3 through 8) with

fewer accesses than in the above method. In this case, the UDF needs to be applied just 14

times in order to obtain 3 useful video frames (a 41.7% reduction from standard practice,

and a 22.2% reduction from Zombie.)

These scenarios show actual examples on small datasets. Our method can show larger

advantages when applied to larger databases, as shown in Section 3.6.

3.3 Background: Multi-Armed Bandits

Before presenting our work for optimizing opaque filter queries, we will introduce

some needed background about the multi-armed bandit problem.

The multi-armed bandit problem is from the area of reinforcement learning [23]. An

25



agent is confronted with a set of “one-armed bandits”, or slot machines, each of which has

a different probability of payout. The agent has a limited number of pulls to obtain payout

from these machines, and could choose to spend those pulls identifying the best bandit

(that is, exploring) or spend on the bandit currently known to be best (that is, exploiting).

The goal of the problem is to balance these two motives to maximize the total payout.

The UCB algorithm [15], a formal way to simultaneously explore and exploit, is com-

monly used to solve this bandit problem. The upper confidence bound (UCB) of each slot

machine’s utility is composed of the current average reward (the exploitation term) and the

one-sided confidence interval that may contain the true utility (the exploration term):

UCBa,t = µa + α

√
2 lnn

na

(3.1)

where UCBa,t is the upper confidence bound of machine a at each time t, µa is the average

reward of machine a, α is the exploration-exploitation balancing parameter, n is the overall

number of inserted coins, and na is the number of coins inserted in machine a. According

to the UCB algorithm, the machine that currently maximizes the upper confidence bound

is always selected for the next action.

When we adapt this solution in our situation, each bandit corresponds to an index

group, and each ”pull” is the drawing of a data record from an index group. The reward

at each time indicates whether the UDF predicate returns True for the chosen data record.

We will discuss this bandit model in detail in the next section.
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3.4 Algorithms

Now we describe our novel VOODOO INDEXING algorithm that helps users optimize

opaque filter queries. In Section 3.4.1, we introduce a generalized version of ZOMBIE that

we call ZOMBIE-G. ZOMBIE was designed to solve a particular feature engineering task,

which can be seen as an example of the generic opaque query optimization problem. In

Section 3.4.2, we propose the basic version of VOODOO INDEXING utilizing hierarchical

multi-armed bandit algorithm. It samples from one cluster and sheds partial evidence

about other clusters, leading to faster convergence on a good policy. In the remaining

sections we discuss additional components that can benefit performance under particular

situations.

3.4.1 Zombie-G

Overview — ZOMBIE-G contains two stages as shown in Figure 3.3: the indexing

stage and the query processing stage. Its core idea is to construct a query-independent

index before any query arrives, and then when executing queries select from high-payoff

groups more frequently. Its structure is similar to two-phase operation in approximate

query processing [55, 6]. The algorithm is shown in Algorithm 1.

Indexing — In the first stage, the raw dataset is re-arranged in a one layer index struc-

ture. A basic method is to cluster them into a set of index groups I as shown in line 2 of

Algorithm 1. This initial process tries to group similar data together and divide dissimilar

data into different groups. For example, crosswalk video frames may be clustered together.

The clusters are not built with a particular query in mind: they simply group together

data objects that are generally similar. We employ general-purpose clustering methods,
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Figure 3.3: The architecture for opaque filter query optimization

such as K-Means. We also use task-independent features, such as pixel values. Task-

independent features are widely used; for example pixel value vectors as visual con-

tents are correlated with digit classification [105], different object classifications [39, 98],

indoor-outdoor scene classification [170], etc. If insight about the database domain or

query workload is known at indexing time, it can be used.

An important hypothesis of this approach is that downstream UDFs will filter records

using properties that are captured in the index groups. This seems reasonable; most UDFs

are not purely random and general features are related with a wide range of filter properties.

If the UDF’s classification and the index groups are correlated, then the query processing

stage has a chance to identify these high-payoff groups. If the index happens to be totally

unrelated with the UDF, ZOMBIE-G will be unable to identify high-payoff groups, so its

performance will be similar to (but not greatly worse than) simple scan.

We will examine only ”insight-free” cases in Section 3.6, in which there is no knowl-

edge ahead of time of the database domain or query workload.
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Query Processing — In the second stage, the goal is to identify and draw from index

groups that contain larger numbers of data records where F returns True. We will treat a

group’s fraction of items where F is True as its payoff. The true payoff of each group is an

unknown parameter, because the UDF is potentially new with each query. We must simul-

taneously sample from groups to figure out their payoff, as well as use this information to

improve future index group choices.

This problem is similar to multi-armed bandit problem, the purpose of which is to learn

from “one-armed bandit” and maximize total rewards. We use the UCB algorithm to solve

the problem. The algorithm works as follows: the UCB of every group is calculated in

lines 4-6, the formula of which is the same as equation (3.1) in the last section, except that

a is the index for each group, n and na are the number of sampled records in total and for

group a respectively. µa, the averaged reward of group a, is initialized to be 1 and updated

as the system obtains counts during query execution. One item from the group with the

highest UCB is selected in lines 7-8 (ties are broken by selecting randomly). This item is

taken as the input of UDF F to determine if it should be filtered, and to obtain the reward µ

in lines 9-12. Related parameters are updated in line 13 for the next round. The algorithm

terminates when the result set size meets the user’s LIMIT requirement or when all the

data have been selected.

The ZOMBIE-G algorithm can be useful (as we show in Section 3.2.4), but it has some

weaknesses. In particular, it can take a long time to identify high-payoff index groups,

especially when the space of bandits is large. Executing the user’s query will entail broad

sampling from many clusters for a long time, thereby processing many data items that do

not satisfy the filter predicate. Only after sampling and processing records from many
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Algorithm 1: Zombie-G
Input: Raw dataset D, UDF F , LIMIT number k

1 resultSet = [ ];
2 I = Cluster(D);
3 repeat
4 for Every group a do
5 UCBa = µa + α

√
2 lnn
na

6 end
7 bestIdx = argmaxa UCBa;
8 item = I(bestIdx).getNext();
9 if F (item) == True then

10 resultSet.append(item)
11 end
12 µ = rewardFromUDF(item);
13 Update µbestIdx, n, nbestIdx

14 until |resultSet| == k or n == |D|;
Output: resultSet

clusters does the system find high-value clusters to focus on. As we will see below, our

VOODOO INDEXING algorithm can do better.

3.4.2 Voodoo Indexing

The above algorithm treats each index group — each one-armed bandit — as entirely

separate. But data items in different clusters still have a similarity relationship. Some

clusters’ contents are more similar to each other than to others, and a sample from one

cluster may shed information about another. We can use this fact to better exploit the

information we get from each sample — each ”pull” of a bandit arm — and accelerate

the agent’s convergence to a good policy, thereby running the query much more quickly

than ZOMBIE-G can. Authors have previously proposed a hierarchical bandit algorithm
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[198], which mainly explores in a coarse low-dimensional space to greatly decrease the

amount of unnecessary exploration and exploit fine-grained space to guarantee accuracy.

This approach can potentially capture the correlations that exist between our data clusters.

Different from the linear reward assumption and the feature vector representation in [198],

we propose a new algorithm to leverages this coarse-to-fine hierarchical idea.

Overview — Like ZOMBIE-G, VOODOO INDEXING has the two-phase architecture

shown in Figure 3.3. However, in order to leverage similarity between data clusters, we

design a different index structure in the first stage and a different algorithm for item selec-

tion in the second stage. Algorithm 2 shows the VOODOO INDEXING algorithm.

Indexing — In the indexing stage, the one-layer index structure in ZOMBIE-G cannot

capture the clusters’ similarity. Instead, in VOODOO INDEXING, raw data are arranged

into a hierarchical structure T in line 2. To be specific, a dataset is first organized in

clusters according to the Euclidean distance between items. These clusters are added

as leaf nodes to a dendrogram, and then connected according to the Euclidean distance

between groups’ cluster centers. Each internal node can be thought of as a ”virtual cluster”

that contains all of the records in its child nodes. Various cluster method, such as K-Means,

and dendrogram construction methods, such as agglomerative hierarchical clustering, can

be utilized in this stage.

Query Processing — How can we use this structure to exploit the similarity between

groups? Our novel algorithm is inspired by hierarchical optimistic optimization (HOO) in

[24]. HOO is an arm selection policy designed for continuous reward functions, which we

have modified for our discrete situation. First, the upper confidence bound is calculated for

every group a including leaf nodes and inner nodes at each time t in line 4-6. In contrast to
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that previous work, inner nodes in the dendrogram only contain information of leaf nodes

that have not yet been fully explored. Next, in line 7-10, the algorithm will choose a target

cluster by starting at the root and repeatedly comparing the UCB of the current node’s

nonempty children, selecting the winner:

BestChild = argmax
c∈nonempty children

UCBc (3.2)

until reaching the bottom or a full index group that has not been touched before. Then

after selecting the index group and updating the result set in line 11-14, the reward from

applying the UDF to the selected item is received in line 15, which is given by:

µitem =

 1, if this item satisfies the predicate

0, otherwise
(3.3)

Subsequently, parameters n, µa and na in the searching path are updated in line 16-19 in

preparation for next UCB update. Crucially, this procedure allows a sample from one leaf

index group to influence future behavior for all subtrees containing it. The loop is repeated

until meeting the stopping criteria.

3.4.3 Dynamic Index Recovery

VOODOO INDEXING relies on the hierarchical index structure to better exploit sam-

ple information. However, this mechanism can only help if the dendrogram carries useful

information. Dendrogram examples of different qualities are shown in Figure 3.4, where

index groups that satisfy the UDF predicate 100% of the time are indicated in black, the
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Algorithm 2: Voodoo Indexing
Input: Raw dataset D, UDF F , LIMIT number k

1 resultSet = [ ];
2 T = Dendrogram(D);
3 repeat
4 for Every group a do
5 UCBa = µa + α

√
2 lnn
na

6 end
7 bestIdx = Root(T );
8 repeat
9 bestIdx = argmaxc∈nonemptyChildren(bestIdx) UCBc

10 until nbestIdx == 0 or bestIdx ∈ Leaf(T );
11 item = T (bestIdx).getNext();
12 if F (item) == True then
13 resultSet.append(item)
14 end
15 µ = rewardFromUDF(item);
16 Update n;
17 for Every group a on searching path do
18 Update µa, na

19 end
20 until |resultSet| == k or n == |D|;

Output: resultSet

33



50% level is indicated in grey, and 0% is indicated in white. Even though every example

tree is composed of the same clusters, not all of the trees are useful. In the good dendro-

gram, low-payoff clusters are concentrated in the right subtree, so only a few samples in

the right subtree can tell the algorithm to decrease sampling frequency for these clusters.

In the useless dendrogram, low-payoff clusters are intermixed with high-payoff clusters,

so high-level internal nodes of the dendrogram provide almost no useful information. In

the bad dendrogram, the low overall payoff of the right subtree will hide the actually best

cluster, so the algorithm may actively avoid sampling from this high-payoff cluster.

(a) Good 
     Dendrogram

(b) Useless 
     Dendrogram

(c) Bad 
     Dendrogram

100% items 
in the group 
satisfy UDF

50% items
in the group 
satisfy UDF

0% items 
in the group 
satisfy UDF

Figure 3.4: Dendrogram examples of different qualities

Without any evidence about the user’s UDF filter, we can only use index-time infor-

mation when constructing the dendrogram. Unfortunately, if this dendrogram does not

group together clusters with similar filter behavior, a sample from one cluster does not

give useful information about its sibling cluster, as with the last two dendrogram types

above, and so VOODOO INDEXING does not yield speedups. It can potentially do worse

than ZOMBIE-G or even a simple scan.

However, we note that as the user’s query executes, we gain information about cluster
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similarity that was not available at index time. It may be possible to use this information to

dynamically construct a new dendrogram that will help later stages of VOODOO INDEXING

execution. Algorithm 3 is our implementation of dynamic VOODOO INDEXING. It is the

same as algorithm 2 in the indexing stage in line 2. However, in the second stage, rather

than retain the initial dendrogram for the entire execution, this algorithm may switch to a

new one. If the algorithm detects that it is finding good data items less efficiently, possibly

due to the inappropriate dendrogram structure, it holds a “contest” to determine whether

it should switch to a new dendrogram. Two dendrograms compete in the contest: one is

the initial dendrogram computed at index time, and the other is generated by sorting the

leaf clusters by average observed rewards. A certain number of items are sampled from

these two dendrograms separately by executing VOODOO INDEXING, and the accumulated

rewards are compared in lines 7-14. The algorithm will switch to the better dendrogram,

until either a new contest is found to be needed, or the query terminates.

Although drawing items from the discarded dendrogram during the contest represents

extra overhead, the predicate answers for these items can be stored for future sampling

to decrease UDF running times. This is a greedy algorithm that makes the current opti-

mal decision when unsatisfactory performance occurs. Even though it is possible that the

greedy version may lead to a local optimum, comparing against the initial dendrogram

guarantees that the dynamic version would not be worse than basic VOODOO INDEXING.

The dynamic recovery algorithm requires setting a few parameters to determine the

frequency of running each contest, and how long each contest should be run. In order to

formulate a policy that permits the system to set these parameters automatically, we tested

a wide range of parameter values on various workloads. The policy sets the balancing
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parameter α to a larger (1) value for smaller datasets (size ≤ 100,000), and smaller (0.1) for

larger datasets (size > 100,000). It runs a contest no more frequently than after processing

a 5% chunk of the database. It runs a contest if the last 5% of data yield UDF-satisfying

data records at a rate of less than 80% of the previous 5% chunk. Running a contest entails

processing 1% of the database through each candidate dendrogram.

Algorithm 3: Dynamic Voodoo
Input: Raw dataset D, UDF F , LIMIT number k

1 resultSet = [ ];
2 T = Dendrogram(D);
3 repeat
4 while Performance not get worse do
5 resultSet.append(BasicVoodoo(T ))
6 end
7 reward1 = ContestReward(Initialize(T ));
8 reward2 = ContestReward(Sort(T ));
9 if reward1 > reward2 then

10 T = Initialize(T )
11 end
12 else
13 T = Sort(T )
14 end
15 until |resultSet| == k or n == |D|;

Output: resultSet

3.4.4 Scan Failover

A good dendrogram can help accelerate data selection. However, sometimes it may

not be possible to identify an effective dendrogram. In some cases it may unfortunately be

true that our method’s basic hypothesis — that the UDF predicate yields results correlated

with one or more the index groups — is false. There is no correlation between what the
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user wants and our index structure. In these cases, the best thing we can do is to switch

over to standard scan in order to avoid the additional overhead associated with our method.

Therefore, we design a new component to detect when this failover is appropriate.

After running query processing for a certain period of time (we set it to be 10% of

dataset size) our detector works to compare the current ratio of the number of items where

F returns True to number of processed items against that in simulated scan performance.

The only challenge is how to determine a simulated scan sample size to minimize the

sample overhead while accurately reflecting scan’s expected performance. Confidence

intervals can be leveraged to tackle this problem. We assume every item’s predicate answer

obeys the Bernoulli distribution B(p) identically and independently, in which p is the true

ratio in the scan process that we want to estimate. Given the expectation p and standard

deviation
√

p(1− p), we can get the convergence property according to the central limit

theorem [103]: √
n(p̂− p)√
p(1− p)

d−→ N (0, 1) (3.4)

where p̂ is the sample average to estimate p. Therefore, the sample size under 95% confi-

dence level should be:

n =
1.962p(1− p)

(p̂− p)2
(3.5)

where 1.96 is the z-score. In our system, the margin |p̂ − p| in the denominator is set to

be half of p for small p (< 10%) and one fifth of p for large p (> 10%). We hypothesize

that the true ratio p equals the ratio p in VOODOO INDEXING to determine the sample size

n. After n scan samplings, the confidence interval [p̂ − 1.96
√

p(1−p)
n

, p̂ + 1.96
√

p(1−p)
n

]

is supposed to contain the mean p under 95% confidence level. If p < p̂, the midpoint
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of the interval, it is highly probable that the true parameter p ≥ p, which means simple

scan sampling is not worse than VOODOO INDEXING, so we stop our VOODOO INDEXING

algorithm and switch to scan.

3.4.5 Batch Mode

In the previous algorithm, we selected only one item at each time, which fits the tuple-

level iterator model that is common in database software. However, this method leaves

unexploited advantages of batch-loading multiple items at once into GPU memory. Batch

loading is a common low-level optimization for GPU workloads [186]. It has been widely

used in neural network training in order to improve memory utilization and the parallel

efficiency of matrix multiplication. We would like to leverage this optimization in our

algorithm. We therefore slightly modify VOODOO INDEXING during query processing to

draw a batch of items from the index groups with the highest UCBs in each round, and

feed into the UDF predicate a batch at a time.

The disadvantage of batch mode is that UCBs cannot be updated after each choice:

the top picks in each round might be out of date. More concretely, in a particular batch

of sampled items, the second pick cannot benefit from the learned information from pro-

cessing the first pick. Nevertheless, batch mode can still help reduce runtime dramatically,

which will be discussed in Section 3.6.

3.5 System Prototypes

We embodied our VOODOO INDEXING algorithm in two prototype systems: a stan-

dalone Python implementation and an implementation integrated with SparkSQL. The for-
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mer allows us to conduct detailed experiments on the algorithm’s behavior, while the latter

allows us to demonstrate VOODOO INDEXING in a real-life working database system.

At a high level, our SparkSQL implementation allows users to ingest dataset files like

they would for any standard SparkSQL database. Before any queries arrive, our system

clusters the data elements into index groups. The indexed dataset now contains an addi-

tional field that identifies, for each row, an index group ID.

Standard SparkSQL behavior when processing an opaque filter query is to use an RDD

iterator to scan the dataset in sequence, applying the UDF selection predicate to each ele-

ment, and deciding whether to put the row into the result set. In contrast, we implemented

a custom Scala SparkSQL operator that repeatedly interacts with a VOODOO INDEXING

backend, which tells the custom operator which group ID it should read next. This back-

end implements the index group choice procedure from Algorithm 2 in Section 3.4.2. Each

step of this iterator also updates the VOODOO INDEXING model about whether the last in-

dex group decision yielded a positive or negative result from the UDF predicate. (That is,

it updates whether the bandit arm pull yielded a reward.)

We also implemented a new SparkSQL operator to perform correct but basic early stop-

ping in LIMIT queries, regardless of whether the data is being processed in scan fashion or

using VOODOO INDEXING. (The standard plan generated by SparkSQL when performing

LIMIT queries will not perform basic early stopping even when the LIMIT is satisfied, but

rather will scan the entire dataset and then throw away results beyond the LIMIT.)

3.6 Experiments

We evaluated four core claims about VOODOO INDEXING:
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1. Voodoo indexing performance is better than competing methods. VOODOO IN-

DEXING can execute opaque filter queries more quickly than competing methods.

This holds true across a range of real-world image datasets, as well as a range of

user-defined selection predicates (that is, trained UDFs) (Section 3.6.2).

2. All voodoo extensions yield benefits. The three extensions to VOODOO INDEXING

— dynamic index recovery, scan failover, and batch mode execution — yield better

results than the naı̈ve VOODOO INDEXING algorithm (Section 3.6.3).

3. Voodoo is effective across many scenarios. VOODOO INDEXING can work over

a very wide range of plausible real-world scenarios, which we demonstrate using a

range of synthetic UDFs and clusterings (Section 3.6.4).

4. Voodoo works in real systems, like SparkSQL. We show our approach yields

direct runtime benefits when integrated with the real-life SparkSQL system (Sec-

tion 3.6.5).

3.6.1 Experimental Setting

In this section, we describe our workloads, baseline methods, evaluation metrics, and

experimental configuration.

Workloads — We evaluated our algorithm on multiple workloads. Each consists of a

popular image dataset, plus a trained network to provide the UDF filter.

The MNIST database [105] contains 70,000 handwritten digit images. We trained a

10-digit image classifier, using the ResNet-18 [66] architecture modified to fit MNIST.

It was trained from scratch, achieving 98.7% accuracy. It takes around 5ms to pro-
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cess one image on a GPU. We used this classifier to build 10 different boolean UDFs:

isDigitZeroUDF(), isDigitOneUDF(), and so on. One such query takes the form:

1 SELECT * FROM MNIST

2 WHERE isDigitZeroUDF(image) = True

When using ImageNet data[39], we use the Large Scale Visual Recognition Challenge

2012 (ILSVRC2012) [155] dataset, comprising 1,281,167 images in 1000 categories from

ImageNet. It is widely used for image classification training. A quarter of the images

were randomly chosen for our queries. We used the pre-trained ResNeXt-101 (32 × 8d)

[188] model in PyTorch [136]. We also trained 80 binary classifiers for 20 randomly

chosen categories (Table 3.2), varying the model architecture (ResNeXt-101 (32 × 8d)

and VGG-19 [164]), learning rate (0.1 and 0.01) and optimizer (SGD and Adam). These

models achieve 97.6% accuracy on average on the sampled ImageNet dataset. It takes

the ResNeXt-based model about 36 ms and takes the VGG-based model about 11 ms to

process a single image on a GPU. Eight of the trained models never returned true for any

tested input, so we removed them from the evaluation. We used these 72 trained classifiers

and the 20 pretrained ones to build 92 boolean UDFs. One such query takes the form:

1 SELECT * FROM ImageNet

2 WHERE isBakeryUDF(image) = True

Baselines — We evaluated against two baselines.

• Scan — All DBMSes we are familiar with, including SparkSQL and Post-

greSQL [128], will execute opaque filter queries with a simple scan, applying the

UDF selection predicate to each row of data in sequence.
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Category Label ID Category Label ID
American lobster n01983481 Lipstick n03676483

Dugong n02074367 Megalith n03743016
German shepherd n02106662 Pay phone n03902125

Greater Swiss
mountain dog

n02107574 Pop bottle n03983396

Great dane n02109047 Schooner n04147183
Fly n02190166 Screw n04153751

Bakery n02776631 Spotlight n04286575
Cuirass n03146219 Submarine n04347754

Fountain n03388043 Washer n04554684
Honeycomb n03530642 Corn n12144580

Table 3.2: The 20 randomly-selected ImageNet categories we used to train UDF models.

• Zombie-G — This is a generalized method from the ZOMBIE system, introduced in

Section 3.4.1.

Evaluation Metrics — We computed two core metrics to show the benefit of VOODOO

INDEXING: the total number of items that were processed by the UDF predicate, as well

as total query time. The first metric reflects directly what VOODOO INDEXING can change

during execution. The second metric reflects our method’s decisions, but also reflects the

query’s UDF runtime and our method’s overhead. Although we report indexing time, we

believe it is relatively unimportant compared to query time: the index structure is only

computed once, then used for all queries that follow.

Experimental Configuration — We implemented our algorithm and all baseline

methods in Python, and implemented SparkSQL-specific components in Scala. Experi-

ments were run on a 64-core (2.10GHz) Intel Xeon Gold 6130 server with 512 GB RAM

and 4 GeForce GTX 1080 Ti GPUs.
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(a) MNIST (b) ImageNet

VOODOO VS SCAN       VOODOO VS ZOMBIE-G

Figure 3.5: Overall voodoo performance gains on MNIST and ImageNet.

3.6.2 Overall Performance

Summary — Our method VOODOO INDEXING is better than competing efforts on a

range of datasets and trained models. Over a range of query settings, VOODOO INDEX-

ING shows average query time improvements over competing methods of up to 88.2% on

MNIST and 38.4% on ImageNet.

Overview — We evaluated VOODOO INDEXING against ZOMBIE-G and SCAN on

off-the-shelf image datasets. Before we executed any queries, the data was clustered as

described in Section 3.4. We indexed each dataset just once — using generic pixel value

features. MNIST images are small (a 28*28 grayscale image), so we used direct pixel
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values to produce a length 784 feature vector; we resized the higher-resolution ImageNet

images to grayscale 30*30 images for a feature vector of length 900. We clustered data

using basic K-Means for MNIST (with number of clusters set to 1000), and Mini Batch

K-Means [159] for ImageNet (with number of clusters set to about 2500). We built initial

dendrograms in all cases using agglomerative clustering.

We tested full dynamic VOODOO INDEXING with scan failover. We did not use batch

mode in these results, in order to make the various methods’ behavior easier to understand.

We cover batch mode performance in Section 3.6.3.3. We set all parameters according to

the method in Sections 3.4.3 and 3.4.4.

We tested 102 distinct UDFs in total (10 MNIST UDFs and 92 ImageNet UDFs).

These selection UDFs yield various observed selectivities: around 10% (MNIST) and

from 0.1% to 8.0% (ImageNet).

Results — We show improvement over competing methods in Figure 3.5. The figure

shows the average improvement of VOODOO INDEXING for all the UDFs in each dataset.

The upper figures show reduction in processed item counts, while lower figures show

reduction in query time.

VOODOO INDEXING shows improvements for all datasets and almost all LIMIT val-

ues, yielding up to an 88.2% improvement over SCAN and a 79.0% improvement over

ZOMBIE-G. As we would expect, our method’s advantage is smaller as the LIMIT size

approaches 100%; VOODOO INDEXING needs to explore low-payoff clusters and may

eventually process almost the entire dataset. In the case of MNIST, this led to slightly

longer-than-competition query times when using a LIMIT of 100% of the database due to

the extra overhead of UCB calculation and top-down group selection. However, even in
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this extreme case, VOODOO INDEXING did not yield performance that was meaningfully

below other methods.

For all datasets, our method’s advantage over ZOMBIE-G is lower than its advantage

over SCAN, but is still substantial. Since both VOODOO INDEXING and ZOMBIE-G use

the same sets of clusters and UDFs, these results show that our method’s novel dendrogram

approach is yielding real benefits in terms of reduced item selection and query runtimes.

Our method shows the best performance gains on MNIST. For a range of LIMITs

from 10% to 90% of the data, VOODOO INDEXING spends much less time than the other

two methods. Because the MNIST UDF has a selectivity of 10%, the best possible query

processor — processing solely those data records where the UDF returns True — would

yield a saving of 90%. Our method saves 80.3% - 88.2% of time compared to SCAN,

close to that ideal. It saves 44.1% - 79.0% of time compared to ZOMBIE-G. Even when

the user desires a small LIMIT size, for example 10% (around 700 items), our method can

locate and select good items very quickly (only around 920 selections and 5.0 seconds). In

contrast, ZOMBIE-G spends a long time early in execution trying to identify which index

groups are valuable, showing most of its benefit only when the user needs larger amounts

of data.

ImageNet data is much more complicated than the simple MNIST images, and has

much finer-grained categories. But even in this challenging task, VOODOO INDEXING

clearly wins on average. It also beats SCAN in 83 out of the 92 individual UDFs. In nine

cases the system detects that VOODOO INDEXING is not successful, and so switches over

to standard scan. Apart from extremely high-LIMIT cases, VOODOO INDEXING always

shows an improvement. It achieves a 18.6% - 38.4% improvement over SCAN and 5.7%
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Category @ LIMIT
Query Time (s)

No-Switch Switch Relative Change
Cuirass @ 30% 3219.9 2739.7 14.9%
Lipstick @ 30% 3965.0 3063.7 22.7%
Schooner @ 60% 3313.2 2598.2 21.6%

Screw @ 30% 3681.0 3216.0 12.6%
Spotlight @ 40% 4517.4 2946.1 34.8%

Corn @ 30% 4474.4 3849.2 14.0%

(a) The best LIMIT case

Category @ LIMIT
Query Time (s)

No-Switch Switch Relative Change
Cuirass @ 70% 7203.9 7739.1 -7.4%
Lipstick @ 70% 7434.0 8267.7 -11.2%
Schooner @ 80% 5357.9 6146.2 -14.7%

Screw @ 90% 9537.7 9942.6 -4.2%
Spotlight @ 80% 6697.0 8001.6 -19.5%

Corn @ 90% 10491.0 10617.1 -1.2%

(b) The worst LIMIT case

Table 3.3: Compare voodoo indexing with and without the dynamic switch mechanism on
ImageNet.

- 31.0% improvement over ZOMBIE-G when LIMIT fraction is less than 80%.

3.6.3 Component Testing

In this section we show that all three extensions to VOODOO INDEXING are effective:

dynamic index recovery, scan failover, and batch mode execution. In order to best illustrate

their behavior when standard parts of VOODOO INDEXING fail, we ran our experiments on

the most challenging dataset: applying the pre-trained ResNeXt-101 model to filter each

one of twenty categories from ImageNet dataset.
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3.6.3.1 Dynamic Index Recovery

Summary — Compared to naı̈ve VOODOO INDEXING execution, using dynamic index

recovery saves up to 34.8% in query time.

Overview — We tested how much dynamic index recovery can improve by trying

to obtain better dendrograms midway through query execution. Whether using dynamic

index recovery choice or not, we ran with the scan failover mechanism in place. We con-

sidered 200 scenarios: all 20 UDFs, at LIMIT levels ranging from 10% to 100%. For each

UDF, we identified the LIMIT setting that yielded the biggest benefit from dynamic index

recovery, and the worst benefit from dynamic index recovery (which could be negative,

i.e., the method worsens the performance).

Results — For six categories, using dynamic index recovery made a meaningful dif-

ference to query runtimes. (For the remaining 14, using dynamic index recovery made

no meaningful overall impact.) The best differences for these categories are shown in Ta-

ble 3.3a. Compared to naı̈ve VOODOO INDEXING, dynamic VOODOO INDEXING can save

up to 34.8% query time. Note that this table shows the change derived from an individual

dynamic index switch.

Although dynamic index recovery often helps overall, there may be certain settings

where it actually yields worse results, as seen in Table 3.3b. (Remember that the greedy

algorithm only examines query performance for a short period of time before deciding on

a particular dendrogram for a long period.) But these bad scenarios are rare and small,

and on balance dynamic index recovery is worthwhile. We believe this is because even if

switching to a new index has an unfortunate impact, it can always switch back to a better

dendrogram in the future.
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3.6.3.2 Scan Failover

Summary — The scan failover mechanism can successfully detect cases in the Im-

ageNet data where VOODOO INDEXING fails to yield a benefit, and then switch over

to SCAN. This yields up to a 25.8% improvement in query time compared to dynamic

VOODOO INDEXING without the scan failover, and adds only 6.0% extra runtime on aver-

age compared to SCAN.

Overview — As described in Section 3.4.4, there may be situations in which the user’s

predicate is simply unrelated to the index groups. In this case, the best strategy is simply

to fail over to SCAN. We ran dynamic VOODOO INDEXING with and without the scan

failover mechanism.

Results — Table 3.4 shows the results of these experiments for LIMIT setting that

yields the best runtime improvement for scan failover. For five failed categories, we list

the number of selected items used in the scan simulation process described in Section

3.4.4. We also show the runtimes for VOODOO INDEXING, in no-failover and failover

modes. As expected, this mechanism shows obvious speedup on all of these five failure

cases, yielding up to 25.8% improvement. The overhead in implementing this method —

the processing of the scan simulation items — entails selecting fewer than 20,000 items, or

just 6% of the total dataset size. Therefore, after switching to scan, VOODOO INDEXING’s

runtime of the cases in Table 3.4 is only 6.0% over scan’s on average.

3.6.3.3 Batch Mode

Summary — Batch mode can yield 61.7% - 66.2% query time improvements.

Overview — All of the previous experiments are run in single mode; that is, the
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Category @ LIMIT
Simulation
size

Query Time (s)

No-Failover Failover
Relative
change

American lobster @ 50% 14898 6104.8 5835.3 4.4%
Dugong @ 40% 16390 5618.0 4624.5 17.7%

Greater Swiss Mountain dog @ 30% 15861 3849.0 2857.3 25.8%
Honeycomb @ 30% 18914 4585.6 3839.5 16.3%
Pop bottle @ 40% 19671 5596.6 4722.5 15.6%

Table 3.4: Comparing dynamic voodoo indexing with and without scan failover on five
failure cases from ImageNet

method repeatedly (1) chooses a single data item to process, then (2) predicts which data

item to choose next. However, for performance reasons we may want to load multiple data

items into the GPU for batch processing, so as to fully utilize GPU RAM and data-parallel

processing.

In this experiment, we modified the query time algorithm to choose 40 items at a

time for processing. It loads all chosen items into GPU memory and applies the selection

predicate to all 40 items. It then applies 40 updates to the bandit model.

Results — Figure 3.6 shows the averaged performance results, comparing dynamic

VOODOO INDEXING with scan failover in single mode and in batch mode. In the left

figure, we can see that the two approaches process roughly the same number of items. It is

not surprising that single mode in most cases processes fewer items than batch mode; the

bandit model in single mode should be more accurate.

It is quite surprising that in some cases single mode may process more items than

batch mode. We do not yet understand why this happens; our current hypothesis is that

processing batches of items may have an impact similar to that of changing the α explo-

ration/exploitation parameter, and that this has a positive impact in some situations.
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Figure 3.6: Batch vs single mode for voodoo indexing on the ImageNet dataset.

But the right hand figure shows that the runtime advantages of batch mode are defi-

nitely worth any small losses encountered via choosing imperfect data items: batch mode

can save 61.7% - 66.2% of query time compared to single mode for any LIMIT value.

3.6.4 Varying Deployment Scenarios

In this section, we generate synthetic UDFs, index structures, and datasets with dif-

ferent selectivities to show VOODOO INDEXING’s performance in the context of a wide

range of deployment scenarios. We started with the same real-world datasets. Unless oth-

erwise stated in the text below, we filtered them for the same labels by using the same

UDFs as in Section 3.6.2, and averaged the results. In these experiments we set the LIMIT

value to 40% of the total number of satisfying data items, a moderate and representative

LIMIT setting. We see that VOODOO INDEXING is effective in most, but not all, plausible

scenarios.
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3.6.4.1 UDF Execution Time

Summary — VOODOO INDEXING is effective for all UDF runtimes we would expect

to see in common processing settings.

Overview — In this section, we tested the lowest bound of UDF times that still make

VOODOO INDEXING worthwhile compared with SCAN and ZOMBIE-G. For very short

runtimes, the overhead of VOODOO INDEXING might not be worthwhile. We varied the

UDF time from 0 to 20ms for each dataset.

Results — Figure 3.7 shows the speedup factor of VOODOO INDEXING over compet-

ing methods, with UDF runtime on the x-axis. The black dotted line is the boundary when

speedup is 1. From this figure, we can see that our method’s expected speedup is always

greater than 1, except when the UDF runtime is very fast (under 1ms). At this stage, de-

creasing the number of predicate UDF invocations is not worth the extra overhead from the

selection mechanism. As UDF runtime increases, VOODOO INDEXING shows it is worth

its extra overhead. Eventually, the method’s speedup reaches a plateau where it is close to

the observed ratio of UDF invocations.

3.6.4.2 Index Structure Quality

Summary — Query performance varies with cluster quality; in some datasets, ob-

served performance is close to what the best possible clustering might enable.

Overview — In this experiment, we varied the index group quality to see its impact

on VOODOO INDEXING and competing methods. We created synthetic indexes in the

following manner: (1) we set the group size to be the same as the clustered structure, (2)

created a random index structure by placing each data item into a single randomly-chosen
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Figure 3.7: Speedup over Scan and Zombie-G, varying the UDF time.

cluster, (3) constructed a best index structure assigning data items to clusters according to

their true labels.

Results — Perhaps unsurprisingly, Figure 3.8 shows that both VOODOO INDEXING

and ZOMBIE-G are more effective when the index structure quality gets better. When

the index structure is random, no method can do well, though at least the overhead of

our method is minimal compared to SCAN. It is interesting to compare best performance

to what can actually be obtained with the existing clustering. In MNIST, the observed

practical performance comes close to what is enabled by the best possible clustering. For

ImageNet, the large gap between observed performance and the best suggests that our

practical clusterings of ImageNet are worthwhile but far below what might be possible.

This analysis gives reason to hope that with better cluster features, VOODOO INDEXING

might be able to obtain substantially better performance on ImageNet-linked queries.
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Figure 3.8: Analyze Voodoo’s performance under different index structure quality

3.6.4.3 Selectivity

Summary — VOODOO INDEXING is effective under a very wide range of moderate

UDF selectivities. It shows no worse performance than competing methods when UDF

selectivities are extreme.

Overview — In this experiment, in order to test the range of UDF selectivities for

which VOODOO INDEXING is effective, we randomly selected ten binary ResNeXt-based

UDFs in ten categories, from among the eighty trained models introduced in Section 3.6.1.

We constructed new datasets from ImageNet to yield an effective selectivity of around

0.5%, 10%, 30% and 90% for these UDFs. We averaged the query time improvements

over competing methods for each selectivity level.

Results — Figure 3.9 shows that for all tested selectivities, VOODOO INDEXING is

better than standard SCAN and ZOMBIE-G. When the selectivity is in the middle range

(e.g. 10% and 30% as shown in the figure), our method yields substantial benefits. These
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Figure 3.9: Query time improvement over competing methods on ImageNet, varying the
selectivity.

results are to be expected. When the selectivity is extremely large, SCAN is an extremely

effective algorithm, and when selectivity is extremely low, it can be challenging to find

satisfying data records even in a high-quality index.

3.6.5 SparkSQL Experiments

Summary — Our prototype system can work for real SQL query processing and can

achieve up to an 86.6% improvement over SparkSQL.

Overview — We tested our SparkSQL-specific system on 70000 images in MNIST

dataset by running a SQL query with a synthetic UDF implemented as the predicate to

filter digit 0 images. The executed query is:

1 SELECT * FROM MNIST

2 WHERE label(image) = 0 LIMIT 700

with varying LIMIT value. In order to show our system’s performance under different

levels of UDF complexity, we made the UDF label() returns ground truth and set the UDF

time to be 5ms and 10ms. Similar to previous experiments, the dataset is clustered into
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LIMIT
# samples T(s)(UDF=5ms) T(s)(UDF=10ms)

Voodoo Spark Voodoo Spark Voodoo Spark
10% 860 7248 7.40 36.43 11.70 72.67
20% 1585 14313 17.02 72.15 24.95 143.72
30% 2350 21371 22.92 107.53 34.67 214.39
40% 3051 28589 23.78 143.74 39.04 286.69
50% 3779 35479 31.16 178.17 50.06 355.57
60% 4497 42320 35.65 212.46 58.13 424.06
70% 5227 49306 40.12 247.41 66.25 493.94
80% 6307 56124 48.01 281.63 79.54 562.25
90% 8394 63154 82.69 316.71 124.66 632.48
100% 67048 69984 660.98 351.06 996.22 700.98

Table 3.5: Results of our system and SparkSQL on MNIST

1000 groups and arranged in a dendrogram, and the balancing parameter α is set to be 1.

We compared our system against a standard SparkSQL system that we extended with a

LIMIT operator that stops scanning when the user query is satisfied.

Results — Table 3.5 compares our prototype system and SparkSQL in the terms of

the number of items selected and the query time, with different kinds of UDFs. From

this table, we can see that for different LIMIT levels, our system executes many fewer

selections than standard SparkSQL, except the improvement when the LIMIT fraction is

100%. In this case, VOODOO INDEXING encounters the inevitable problem of low-payoff

cluster exploration. No matter if UDF execution time is 5ms or 10ms, our system is much

faster than SparkSQL when LIMIT is less than 100%, yielding up to 86.6% improvement

in query time. The saved UDF time can make up for the extra overhead in our system

around item location and selection. And when UDF execution time is large, our system’s

strength is more obvious.

55



3.6.6 Discussion

While our system can work for a wide range of opaque filter queries, it still has sev-

eral limitations. Our mechanism may not be helpful when LIMIT values are extremely

small, because of the time needed to identify high-value clusters. When the LIMIT value

is extremely large, the system may also be slow, processing even low-payoff clusters. For-

tunately, we believe that the broad range of middle-size LIMIT values will be popular and

important, representing a good fit to analytical and ML style workloads.

The system may also be ineffective when the UDF returns TRUE extremely frequently

or infrequently, because there is almost no difference between clusters’ payoff, making

cluster selection useless work and degrade to traditional scan. However, opaque filter

queries with moderate selectivity are again likely to be a widespread workload: usually

users would choose a related massive database consisted of items in more than one classes.

Overall, except for the above unusual situations, our mechanism is beneficial for com-

mon opaque filter queries on popular databases.

In addition, although our system is designed for video queries, it is also applicable for

opaque filter queries on other unstructured data, such as text. For example, we can use this

mechanism to filter sentences with positive sentiments.

3.7 Conclusion

As opaque filter queries in machine learning workloads become ubiquitous, an efficient

filter strategy is required. However, due to its opaque semantic and unstable characteristic,

real-world systems just execute these queries by simple scan. In summary, we present
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a novel two-phase indexing mechanism for opaque filter query optimization, which can

select data that satisfies UDF predicate quickly, yielding to query time reduction. In addi-

tion, we build standalone and SparkSQL-integrated systems, and verify that both of them

can achieve high performance on real-world datasets.
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CHAPTER IV

Controlled Intentional Degradation in Analytical Video

Systems

4.1 Introduction

Society is experiencing a vast increase in the availability of video data. This data can

be used for a range of public good applications, such as traffic monitoring and gathering

commerce data. In these applications, administrators attach importance to analytical ac-

curacy, but may also have competing goals. One goal is to meet system requirements. For

example, wireless sensor networks, widely applied for building control, environmental

monitoring, etc., suffer from low bandwidth and low power constraints [33, 130]. An-

other goal is to preserve private information (e.g., facial imagery) captured by video. This

information can raise public concern due to potential leakage during shipment of video

off-camera or execution of malicious queries. Finally, video surveillance is supposed to

obey legal regulations [145]. For instance, according to the EU General Data Protection

Regulation [180], face blurring is required when any closed-circuit television (CCTV)
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footage is shared with a third party.

Generic intentional degradation methods are helpful for these analysis require-

ments [36, 142, 10, 197, 180, 56, 11, 48]. For example, frame rate reduction can be

applied when the storage budget is limited. Frame resolution reduction can ensure legal

compliance and is also useful for informal privacy protection. Although video degrada-

tion is extremely valuable, it usually does harm to analytical result accuracy, so it has to

be done in a careful and controlled way. Unfortunately, no current system reveals how

degradation affects analytical accuracy.

In response, we introduce a system for enabling controlled intentional degradation.

The system has a few basic components:

• A set of configurable networked cameras that can collect, modify, and transmit

images to a central system for query processing.

• A set of destructive interventions available in each camera: decreased resolution,

decreased sampling rates, selective image removal, etc. These interventions likely

solve system, privacy and legal compliance problems but likely decrease analytical

query accuracy.

• A video query processor that receives a set of images from the cameras and imple-

ments an analytical query. It will be common for this query to include a UDF that

embodies a trained neural network.

• A public administrator who determines the appropriate degradation/accuracy

tradeoff for each query in a workload. This administrator could be an actual in-

dividual holding a public office, or a public committee, etc.
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Figure 4.1: The public administrator must make a query-specific tradeoff that balances
degradation requirements with the benefits of accurate analytical queries. Our system
does not choose a tradeoff. Rather, it makes the tradeoff curve visible to the administrator.

EXAMPLE 1. Harry is the public administrator for a city that collects surveillance

videos of a road. The city wants to compute the average number of cars per frame on

weekends so as to extrapolate the average cars per hour in order to schedule construction

work. The city wants to maximize individuals’ privacy, especially faces, and minimize the

energy consumption during video transmission from cameras to the central system, but

the maintenance department needs a frame-averaged car count that is within 10% of the

correct answer. Harry configures the cameras to lower the frame resolution. However, the

extremely low resolution has led to a query result that is badly wrong. Without knowing

how the frame resolution affects the accuracy of the query, Harry cannot implement the

city’s preferences.

System Goals — A well-informed tradeoff between destructive interventions and ag-

gregate query accuracy is difficult to make, since interventions can interact in unexpected

ways with the query. For example, a slightly-reduced frame sampling rate may not impact
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a query that counts pedestrians since pedestrians move relatively slowly. But once the

sampling rate falls under a particular threshold, the query may become very inaccurate.

Therefore, even when the video system operator’s degradation goals stay stable, the opti-

mal tradeoff point can change with changes in the query, the destructive interventions, or

the video contents. In an ideal world, the video system operator could examine a query-

specific tradeoff curve (as in Figure 4.1) to determine an appropriate set of interventions.

EXAMPLE 2. Harry submits the weekend car counting query to the system and re-

ceives a customized degradation accuracy tradeoff curve. By examining the curve, he finds

that 128×128 is the lowest resolution that would not cause more than 10% analytical er-

ror. The cameras now collect and transmit only this low-resolution information, greatly

improving privacy and saving energy while still giving the city maintenance department

what it needs.

Unfortunately, it is not clear how to generate this tradeoff curve. A simple approach

would be: run the query on a representative portion of video, run it again on a degraded

version of the video, and then compare the resulting query outputs. However, this naı̈ve

method presents serious problems:

• Accessing the original video and lightly-degraded video means we cannot conserve

systems resources and preserve private data for the examined portion of video.

• It is computationally expensive, because it may need to be performed on many dif-

ferent degradation “knob settings”.

The above problems may be acceptable if this examined portion is small and limited,

but as mentioned above, we potentially need to recompute tradeoff curves for every new
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Figure 4.2: Conceptual diagram of approximate curves with a tight upper bound and a
loose upper bound.

query, model, or video set. This naı̈ve method may have to be applied almost continuously,

violating the goals that motivated intentional degradation in the first place. We sidestep all

of these problems by computing tradeoff curves without access to the underlying video.

Moreover, we show that it can be done in a computationally efficient manner.

Technical Challenge — The main challenge of producing valuable tradeoff curves is

to estimate the accuracy of the approximate query answer when video data is modified by

any set of destructive interventions. The interventions transform video in different ways.

For example, the reduced frame sampling intervention samples frames randomly; while

the image removal intervention samples frames that do not contain restricted objects so

that video features are modified non-randomly. The query analytical accuracy should be

estimated under both random and non-random interventions.

This estimation problem is difficult because we can only get access to degraded sam-

ples instead of the unmodified video. A common solution is to compute the upper bound

of the analytical error. Figure 4.2 shows a conceptual diagram of the true tradeoff curve
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and approximate tradeoff curves, one with a tight and one with a loose upper bound. Given

an analytical error threshold, if the true tradeoff curve were known, an administrator could

choose the tradeoff at point A. A tight approximate curve lets the administrator choose a

level of degradation at point B; the video here is less degraded than at point A, but the loss

in degradation is not too bad. However, with a loose approximation curve, the adminis-

trator has no choice but to accept the worst tradeoff at C. As a consequence, we can see

the upper bound needs to be tight. Online aggregation [68], stopping algorithms such as

EBGS [127] and holistic aggregation approximation methods [108, 117] can provide error

upper bounds for a variety of aggregate queries. However, these methods cannot compute

sufficiently tight outputs to enable good degradation decisions, especially when video is

substantially degraded. Moreover, they are not able to deal with non-random interventions.

Our Approach — We propose new algorithms to provide tight upper bounds of analyt-

ical error, allowing us to create better degradation/accuracy tradeoff curves for aggregate

queries with AVG, SUM, COUNT, MAX and MIN functions. These queries’ results are computed

at a frame level, then aggregated; such queries have been introduced and investigated in

previous work [84, 100]. Deduplicated aggregate query types are beyond the scope of this

paper. The novelty of our work for each type of destructive intervention is summarized in

Table 4.1.

When the destructive interventions are random, for aggregate queries with AVG, SUM

or COUNT, we adapt the analytical error estimation method from the empirical Bernstein

stopping algorithm [127], and further improve it by relaxing the confidence interval con-

struction requirement and applying the Hoeffding–Serfling inequality [16]. For aggregate

queries with MAX or MIN, we leverage the normal approximation for hypergeometric distri-
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Video Scenario Technical Problem Our Novelty

Estimate analytical
accuracy of video
aggregate queries
under random
destructive
interventions, e.g.,
reduced frame
sampling. (Section
4.2.1)

Provide a tight upper
bound of the error of
the aggregate result
estimation under a
certain confidence level
when the distribution of
models’ outputs is
unchanged. (Section
4.2.4)

AVG, SUM, COUNT: Improve the
error bound estimation method
adapted from the empirical Bernstein
stopping algorithm and apply the
Hoeffding–Serfling inequality.
(Section 4.3.2)

MAX, MIN: Leverage the normal
approximation for hypergeometric
distribution to estimate the error bound
of extreme quantiles. (Section 4.3.2)

Estimate analytical
accuracy of video
aggregate queries
under non-random
interventions, e.g.,
reduced frame
resolution and image
removal. (Section
4.2.1)

Provide a tight upper
bound of the error of
the aggregate result
estimation under a
certain confidence level
when the distribution of
models’ outputs may
change. (Section 4.2.4)

Profile repair: Use the randomly
sampled correction set to correct
possibly wrong error bounds and
minimize the correction set size
according to its own analytical
accuracy, or create tradeoff curves
from a similar but less sensitive video.
(Section 4.3.2)

Table 4.1: The video scenarios, technical problems and novelty in our model.

bution in order to approximate the error of extreme quantiles.

When the destructive interventions are non-random, we propose a profile repair strat-

egy. We introduce a correction set of video that is only modified by random interventions

with the aim of correcting our method’s analytical accuracy estimation. We minimize the

size of this correction set as much as possible. Administrators may construct correction

sets by applying random interventions to the query-specified video. When it is not possible

to use only random interventions on the query video (perhaps when the video is especially

sensitive), it is still possible to obtain a good approximation: administrators can choose
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to compute from a separate video set that is similar to the query video, yielding a similar

tradeoff curve, and then use this curve to guide non-random interventions applied to the

intended query video. Finally, note that the correction set can also improve the accuracy

of tradeoff curves for random interventions in some cases.

Contributions — Our contributions are as follows:

• We propose a novel video degradation-accuracy profiling model that enables gov-

ernments to implement well-informed tradeoffs for system, privacy and legal com-

pliance reasons. (Section 4.2)

• We design novel algorithms for random and non-random destructive interventions to

compute tight error bounds of query result estimations for tradeoff curve profiling.

Our method can obtain a 155% tighter error bound than the previous state-of-the-art

method. (Section 4.3)

• We embodied these ideas in a prototype software system, SMOKESCREEN, and eval-

uated it on a range of video datasets and aggregate query types. We show that

SMOKESCREEN enables tradeoffs that are 88% more accurate than a method based

on previously-known approaches. (Sections 4.4 and 4.5)

4.2 Problem Formulation

We introduce the types of video degradation in Section 4.2.1, the importance of degra-

dation accuracy tradeoff curves in Section 4.2.2, frequently-used vocabulary in our model

in Section 4.2.3, and the technical problems’ formal formulation in Section 4.2.4.
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4.2.1 Video Degradation

There are often system, privacy and legal compliance requirements in addition to the

pure analytical accuracy requirement, so administrators have to balance these competing

goals. Intentionally degrading video is a common operation in analytical settings. Here

are three ways to do it:

Intervention example 1: Reduced frame sampling — This method reduces the ra-

tio of the randomly sampled frames against the total query-specified frames. With this

intervention, time-related privacy (e.g., daily life tracks) will not be revealed [36], and

video file size can be reduced to meet system requirements such as a low bandwidth con-

straint [142, 10] and energy limitations [197].

Intervention example 2: Reduced frame resolution — This method reduces the

resolution of processed frames. With this intervention, objects like faces that can be

recognized from high-resolution images will not be revealed so as to obey legal regula-

tions [180]; the burden on system resources can also be mitigated [56, 11].

Intervention example 3: Image removal — This method entirely deletes frames

that contain restricted objects so as to ensure legal compliance and preserve privacy [48].

Sensitive objects include people, faces, license plates, etc. Any combination of them may

be considered to be restricted.

Besides these three examples, there are also other degradation methods, such as noise

addition [191], video compression techniques [63], etc. All of these methods can be di-

vided into two categories. Random interventions modify video features such that the dis-

tribution of models’ outputs is unchanged (e.g., reduced frame sampling). Non-random
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interventions modify underlying videos such that the distribution of models’ outputs may

change (e.g., reduced frame resolution and image removal).

A single intervention type may not meet all the requirements, such as different legal

regulations, and may affect analytical accuracy much more than other interventions. For

example, previous experiments show that low video resolution can significantly affect the

accuracy of some classification models [95]. As a consequence, we allow the adminis-

trator to choose a combination of the above three typical intervention examples, covering

both random and non-random intervention types. Administrators can tune these degrada-

tion knobs (making sample fraction and resolution up or down, and choosing preferred

restricted objects) in order to trade analytical accuracy against degradation goals.

4.2.2 Degradation Accuracy Trade-Off Curves

Two important features about video make the tradeoff problem difficult. First, adminis-

trators, perhaps driven by their local government, usually have different preferences about

query answer quality and the best degradation level. As a result, it is not feasible to simply

fix the intervention settings for all administrators. Second, the shape of the degradation

accuracy tradeoff curve changes depending on the query (e.g., calculating the average or

the maximum number of cars) and the video content (e.g., collected from the surveillance

camera at a downtown intersection or at a narrow road). Figure 4.3 shows two real degra-

dation accuracy tradeoff curves of queries that compute the average number of cars per

frame on night-street video [84] and UA-DETRAC video [184]. YOLOv4 [20] is used in

these queries to detect cars. The x-axis describes frame resolution, while the y-axis is the

relative error of the estimated query result. These two curves are quite different from each
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Figure 4.3: Real degradation accuracy tradeoff curves for the AVG query on two different
video datasets.

other, illustrating how they are video-dependent.

Therefore, a system that supports administrators in making this crucial degradation/ac-

curacy trade-off must provide video- and query-specific curves.

4.2.3 Usage Model

In our video degradation-accuracy profiling model, frequently used vocabulary is sum-

marized as follows:

• Original video: The raw unaltered video collected by the set of networked cameras.

This video has not yet been processed by the destructive interventions. It is never

processed directly by the video query processor.

• Degraded video: Applying a destructive intervention to the original video will yield

a set of degraded video. It can then be analyzed by the video query processor.
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• Profile: A profile describes a tradeoff between a destructive intervention and analyt-

ical accuracy for each unique combination of video corpus, query, and intervention.

The profile consists of a set of (degradation, error) pairs; missing values should sim-

ply be interpolated by the administrator. The profile shows the error caused by video

degradation when compared with the query result derived from non-degraded video,

so the error values are computed without regard to the absolute accuracy of the video

analysis model.

• Profile generation: Our system produces a unique profile for a given video corpus,

query, and intervention.

• Choosing a tradeoff: Administrators use a profile to select a desired level of de-

structive intervention. We expect that queries contain video analysis models of high

accuracy, or at least that administrators know the approximate accuracy of models.

Administrators can adjust the analytical accuracy threshold in the selection process

by considering models’ inherent accuracy. This selected degradation setting is then

applied for query result estimation.

• Public preferences: Preferences that guide the administrator when choosing a

tradeoff. Forms of preference include: the minimum allowable analytical error, the

maximum allowable frame resolution, and so on.

Consider Harry using our model:

EXAMPLE 3. Harry activates our profiling model for his query. During the profile

generation stage, the system produces the profiles by degrading a representative portion

of original video under multiple sets of interventions and sending the degraded video to the
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Parameter Description Example
D Video data Surveillance video

Fmodel Video analytics model Car detector
FA Aggregate function Average
f Reduced sampling 0.1
p Reduced resolution 128 × 128
c Restricted object Person

1− δ Confidence level 95%
X1, ..., XN Model outputs on original frames # cars in 1000 frames

x1, ..., xn Model outputs on degraded frames
# cars in 100 frames (128 × 128) with no
people contained

v1, ..., vm Model outputs on correction set # cars in randomly sampled 200 frames
Ytrue True query answer Average value of X1, ..., XN

Yapprox Approximate answer Average value of x1, ..., xn

errb Upper bound of approximation error
Upper bound of the relative error
|Yapprox−Ytrue

Ytrue
|

Table 4.2: Frequently used notation in SMOKESCREEN

query processor for analytical error bound estimation, then returns the profiles to Harry.

During the choosing a tradeoff stage, Harry determines a proper set of interventions

according to the public preferences, so he tunes the knobs and runs the car-counting

query on the appropriately degraded video to obtain an approximate query result that is

within 10% of the correct result.

4.2.4 Technical Formulation

With the above design of the degradation-accuracy profiling model, we still face sev-

eral technical problems. In the choosing a tradeoff stage, algorithms are needed to estimate

the query result under destructive interventions. In the profile generation stage, algorithms

are needed to estimate the analytical accuracy under a broad range of degradation settings;

this stage should operate on video that is degraded as much as possible while still yielding
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a valid profile. These problems can be stated formally, and all of the notation is listed in

Table 4.2.

The video analytical query is characterized by a 3-tuple of parameters (D,Fmodel, FA).

The video data D is queried to collect useful information. Two functions, Fmodel and FA,

represent the video analysis model (e.g., car detector) and the aggregate function (e.g.,

AVG) in the query. This analysis model’s behavior is our definition of the ground truth. The

value N is the number of frames that should be sent to Fmodel and FA in naı̈ve execution. In

addition, the 3-tuple of parameters (f, p, c) represent the destructive interventions, which

are reduced frame sampling, reduced frame resolution, and restricted objects respectively.

The analytical query answer should be executed under these interventions, that is, only n

(n = N × f ) frames with resolution p (e.g., 128 × 128), which do not contain objects c

(e.g., person), may be processed by Fmodel and FA to obtain the approximate query answer

Yapprox. The value errb, computed to reflect the analytical accuracy, denotes the upper

bound of the relative error of the approximate query result compared with the true result

with probability at least 1− δ.

PROBLEM 1: Given video analytical query (D,Fmodel, FA), compute the approximate

query answer Yapprox and a tight upper bound errb of the approximation error under de-

structive interventions (f, p, c).

PROBLEM 2: In the profile generation stage, compute the profiles while maximizing

the interventions.
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4.3 Algorithms

Now we introduce our novel algorithms to solve the above problems. In Section 4.3.1,

we describe the administration procedure in the stages of profile generation and choosing

a tradeoff. In Section 4.3.2, we propose our query answer and error bound estimation

algorithms for frequently used aggregate query types. In Section 4.3.3, we further discuss

the details of profile generation in our model.

4.3.1 Administration Procedure

In the profile generation stage, provided with a query with an analysis model Fmodel

and an aggregate function FA, a tight upper bound of analytical error is computed when

the original video D is degraded by every set of intervention candidates. (Intervention

candidate selection will be discussed in Section 4.3.3.) These error bounds can form a

degradation hypercube with cube slices as multiple two-dimensional arrays that are re-

turned to the administrators in order to choose an appropriate set of interventions. Initially,

administrators are only shown three cube slices — obtained by fixing each unseen dimen-

sion to the loosest intervention value — visualized as 2D plots. They choose intervention

candidates by considering both public preferences (e.g., images that contain people should

be removed) and the interventions’ effect on analytical accuracy shown in the curves (e.g.,

resolution 128 × 128 makes query results too inaccurate), and then adjust the fixed dimen-

sions for more plots, and fine-tune these knobs according to bounded error values. At last,

the query result is estimated by running the query on the video D or upcoming videos pro-

cessed by the determined degradation operations. The algorithms of estimating analytical

results and error bounds are described in the following sections.
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4.3.2 Query Answer and Error Bound Estimation

We describe our estimation algorithms for frequently used aggregate functions. We

first address the case of reduced frame sampling and then we introduce the profile repair

strategy for non-random interventions.

4.3.2.1 AVG Function

The aggregate function AVG() is applied to calculate the frame-level average value

of a user-defined vision model’s outputs on video frames. In EXAMPLE 1, the public

administrator, Harry, applies this function to collect the average number of cars per frame

in order to learn how busy the road is. Let X1, X2, ..., XN denote the outputs of N frames

with mean µ and range R. Due to the reduced frame sampling intervention f , only n

frames are randomly sampled, yielding outputs x1, x2, ..., xn. The relative error of the

approximate query result Yapprox compared with the true query result µ, |Yapprox−µ

µ
|, is used

as the analytical accuracy metric, so we aim to compute the upper bound of this relative

error.

Many research efforts have focused on this computation. When the sample size is

relatively large, sample mean approximately obeys the normal distribution according to

the central limit theorem, so the upper bound of absolute error between sample mean and

true mean can be derived [68], and then the upper bound of relative error can be obtained

by dividing the lower bound of the query result. However, it is highly probable that the

administrator chooses the sample fraction to be a small value. In other words, the central

limit theorem will become useless exactly in the scenarios where our system aims to be

the most useful. Online aggregation [68] also provides another more conservative bound
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from Hoeffding’s inequality [72]. Besides these classic approaches, a tighter upper bound

can be derived from the Hoeffding-Serfling inequality [16] proposed recently, which as-

sumes sampling without replacement instead of i.i.d. sampling. Moreover, early stopping

algorithms — determining a stopping point when the error is within some threshold —

can also be adapted for the error bound estimation. The empirical Bernstein stopping al-

gorithm [127] provides a new query result estimation instead of sample mean, yielding a

tighter error bound. We further improve this method by relaxing the confidence interval

construction requirement and applying the tight Hoeffding-Serfling inequality [16], which

is more suitable for a small sample size than the empirical Bernstein bound [14] in the

original version. This estimation mechanism is shown in Algorithm 4.

Algorithm 4: AVG()
Input: Aggregate query (D,Fmodel, AV G), Intervention f , δ
// Sample model outputs

1 x1, x2, ..., xn = Fmodel(Sample(D, f ));
// Calculate Hoeffding-Serfling bound I

2 Compute sample range R and sample mean x̄n;
3 ρn = min{(1− n−1

N
), (1− n

N
)(1 + 1

n
)};

4 I = R
√

ρn log (2/δ)
2n

;
// Compute approximate result and error bound

5 UB = |x̄n|+ I;
6 LB = max (0, |x̄n| − I);
7 Yapprox = sgn(x̄n) · 2UB·LB

UB+LB
;

8 errb = UB−LB
UB+LB

;
Output: Yapprox, errb

Hoeffding-Serfling inequality states that with probability at least 1 − δ, x̄n − µ ≤

R
√

ρn log (1/δ)
2n

, where x̄n is the sample mean: x̄n = 1
n

∑n
i=1 xi, {xi} is sampled without

replacement, and ρn = min{(1− n−1
N

), (1− n
N
)(1 + 1

n
)}. Similarly, with this confidence
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level, x̄n − µ ≥ −R
√

ρn log (1/δ)
2n

. Due to union bound, with probability at least 1 − δ,

|x̄n − µ| ≤ R
√

ρn log (2/δ)
2n

. We denote this bound as I , so (x̄n − I, x̄n + I) is a 1 − δ

confidence interval for µ. In contrast to the empirical Bernstein stopping algorithm, we do

not need to simultaneously construct the intervals for all n ∈ N+ but just for the sample

size n under 1 − δ confidence level. As a result, this confidence interval can be smaller

by our construction. Correspondingly, we set LB to max (0, |x̄n| − I) and UB to |x̄n|+ I

rather than the definitions in the stopping algorithm.

Theorem 1. The approximate query answer Yapprox and the error bound errb with proba-

bility at least 1− δ are as follows:

Yapprox = sgn(x̄n) ·
2UB · LB
UB + LB

, (4.1)

errb =
UB − LB

UB + LB
. (4.2)

Proof. With probability at least 1− δ,

|Yapprox| =
2UB · LB
UB + LB

= (1 + errb)LB ≤ (1 + errb)|µ|, (4.3)

|Yapprox| =
2UB · LB
UB + LB

= (1− errb)UB ≥ (1− errb)|µ|. (4.4)

When LB = 0, it can be derived that Yapprox = 0 and errb = 1, so errb is the

error bound. When LB ̸= 0, the inequality |x̄n| > I ≥ |x̄n − µ| holds true, so

sgn(Yapprox) = sgn(x̄n) = sgn(µ), where sgn() is the sign function. We can obtain

the following inequality: ∣∣∣∣Yapprox − µ

µ

∣∣∣∣ = ||Yapprox| − |µ||
|µ|

≤ errb (4.5)

Therefore, the above theorem holds true.

75



4.3.2.2 SUM Function

The aggregate function SUM() is applied to calculate the sum of the model’s outputs

in each frame. This function can be used to compute the sum of all cars seen in each

frame in a time period. It captures both car number and car speed information, which is

valuable for determining the road congestion level. The parameters and the error metric

are the same as the above. In this case, Ytrue = Nµ, so we compute the upper bound of

the relative error |Yapprox−Nµ

Nµ
|. We assume that the length of video is known before any

processing. According to the above conclusion, we define Yapprox = sgn(x̄n) · 2UB·LB
UB+LB

·N

and errb =
UB−LB
UB+LB

to make errb the error bound with probability at least 1− δ.

4.3.2.3 COUNT Function

The aggregate function COUNT() is applied to calculate the number of frames that

satisfy the query predicate. This function can be used to compute the number of frames

(i.e., the length of time) when there are varying levels of cars. It would be helpful to

decide when congestion is low enough to close a single lane. Although this seems like a

new problem, we can redefine it as the estimation problem for SUM. For each frame i, if

the predicate model returns TRUE, we assign an associated value 1 to Xi; otherwise, 0 is

assigned to Xi. Therefore, the count problem is transformed to calculating the sum of Xi,

and the above conclusion can be directly applied here.

4.3.2.4 MAX/MIN Function

The aggregate function MAX() or MIN() is applied to calculate extreme values in the

frame-level outputs. This function can be used to compute the maximum/minimum num-
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ber of cars that exist in one frame in order to detect the most/least crowded moment.

Unfortunately, it is hard to estimate and analyze extreme values just by sampling, be-

cause only the extreme value itself in the samples seems to be related to the true result.

Therefore, we use rth-quantile to estimate the result of MAX() and MIN() (when r is

close to 1 or 0). The goal is transformed into estimating the rth-quantile in the outputs,

X1, X2, ..., XN . There are n frames randomly sampled without replacement for process-

ing, yielding x1, x2, ..., xn. For quantiles, BlinkDB [6] uses the same relative error metric

as other aggregate query types. However, this metric is substantially affected by the hidden

distribution, especially for extreme quantiles. As a result, the ranks rather than the actual

values are compared, that is, the relative error between the ranks of Ytrue and Yapprox in the

original array, | rank(Yapprox)−rank(Ytrue)

rank(Ytrue)
|, is used to reflect the accuracy. This metric is also

compatible with the definition of ϵ-approximate quantile [116].

Previous works [108, 117] have designed sampling-based algorithms to estimate quan-

tiles in wireless sensor networks and for business intelligence applications. The classic

approach [117] proposed an estimation based on Stein’s lemma. A recent work [108]

made estimates based on the central limit theorem. However, there are two problems in

these algorithms. First, the inequality bound is too loose during the derivation process.

Second, they assume random sampling with replacement, which is less reasonable than

our non-replacement assumption. Both of them lead to loose upper bounds. We make

improvements based on recent work [108] (the novelty is summarized in Table 4.1). We

propose the quantile approximation algorithm as follows, shown in Algorithm 5, and com-

pare our algorithm with the better approach [117] between the above two previous works

in Section 4.5.2.
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Algorithm 5: MAX() or MIN()
Input: Aggregate query (D,Fmodel, FA), Intervention f , Extreme percentage r, δ
// Sample model outputs

1 x1, x2, ..., xn = Fmodel(Sample(D, f ));
// Compute approximate result and error bound

2 sortList = Sort(x1, x2, ..., xn);
3 Yapprox = sortList[n · r];
4 F̂k̂ = sortList.count(Yapprox) / n;
5 if FA == MAX then

6 errb = (
ϕ δ

2

√
r(1−r)

√
N−n

n(N−1)
+F̂k̂

F̂k̂

+ 1) · F̂k̂
r

7 end
8 else

9 errb = (
ϕ δ

2

√
(r+F̂k̂)[1−(r+F̂k̂)]

√
N−n

n(N−1)
+F̂k̂

F̂k̂

+ 1) · F̂k̂
r

10 end
Output: Yapprox, errb

Let {s1, s2, ...} be the sorted distinct values in X1, X2, ..., XN . Each si occurs Ni

times in this array and ni times in the sampled array, the frequency of which is Fi =
Ni

N

and F̂i =
ni

n
respectively. According to the definition of rth-quantile, Ytrue = mini{si :∑i

j=1 Fj ≥ r}. Let Ytrue and Yapprox be the kth and k̂th distinct value, i.e., Ytrue = sk and

Yapprox = sk̂.

Theorem 2. The approximate quantile Yapprox and error bound errb with probability at

least 1− δ can be constructed as follows.

Yapprox = min
i
{si :

i∑
j=1

F̂j ≥ r}. (4.6)

When the aggregate function is MAX, r is close to 1,

errb = (
ϕ δ

2

√
r(1− r)

√
N−n

n(N−1) + Fk

mink̂+1≤i≤k−1 or k+1≤i≤k̂−1 F̂i

+ 1) ·
maxk̂+1≤i≤k or k+1≤i≤k̂ Fi

r
. (4.7)
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And when the aggregate function is MIN, r is close to 0,

errb =(
ϕ δ

2

√
(r + Fk)[1− (r + Fk)]

√
N−n

n(N−1) + Fk

mink̂+1≤i≤k−1 or k+1≤i≤k̂−1 F̂i

+ 1)·

maxk̂+1≤i≤k or k+1≤i≤k̂ Fi

r
.

(4.8)

Proof sketch: The error metric satisfies the inequality:

error =
|
∑k

i=1 Fi −
∑k̂

i=1 Fi|∑k
i=1 Fi

≤
|k − k̂|maxk̂+1≤i≤k or k+1≤i≤k̂ Fi

r
. (4.9)

According to the definition, we have
∑k̂−1

i=1 F̂i < r ≤
∑k

i=1 Fi and
∑k−1

i=1 Fi < r ≤∑k̂
i=1 F̂i. So when k̂ > k, k̂ − k <

∑k
i=1 Fi−

∑k
i=1 F̂i

mink+1≤i≤k̂−1 F̂i
+ 1, and when k > k̂, k − k̂ <∑k

i=1 F̂i−
∑k

i=1 Fi+Fk

mink̂+1≤i≤k−1 F̂i
+ 1. Therefore,

error < (
|
∑k

i=1 F̂i −
∑k

i=1 Fi|+ Fk

mink̂+1≤i≤k−1 or k+1≤i≤k̂−1 F̂i

+ 1) ·
maxk̂+1≤i≤k or k+1≤i≤k̂ Fi

r
. (4.10)

Because
∑k

i=1 F̂i =
∑k

i=1 ni

n
, and

∑k
i=1 ni obeys hypergeometric distribution, we can ob-

tain that E[
∑k

i=1 F̂i] =
∑k

i=1 Fi and V ar[
∑k

i=1 F̂i] =
∑k

i=1 Fi(1 −
∑k

i=1 Fi) · N−n
n(N−1)

. It

has been demonstrated that there is a normal approximation for the hypergeometric dis-

tribution when N, n,
∑k

i=1 Ni,
∑k

i=1 ni are large [131, 47], so there exists an asymptotic

normal distribution:
∑k

i=1 F̂i−
∑k

i=1 Fi√
V ar[

∑k
i=1 F̂i]

∼ N (0, 1). When r is close to 1, V ar[
∑k

i=1 F̂i] ≤

r(1− r) · N−n
n(N−1)

, so

P

(
|

k∑
i=1

F̂i −
k∑

i=1

Fi| ≥ ϕ δ
2

√
r(1− r)

√
N − n

n(N − 1)

)
≤ δ, (4.11)

where ϕ δ
2

is the Z-score. Therefore P (error ≥ errb) ≤ δ is satisfied. When r is close to

0, V ar[
∑k

i=1 F̂i] ≤ (r + Fk)[1− (r + Fk)] · N−n
n(N−1)

. Similarly, the theorem holds true.

In the formula of errb, Fi (for any i ∈ N+), k, and k̂ are unknown. Ideally, F̂i and Fi,

k and k̂ should be close, so we use F̂k̂ to estimate Fk, mink̂+1≤i≤k−1 or k+1≤i≤k̂−1 F̂i, and
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maxk̂+1≤i≤k or k+1≤i≤k̂ Fi above. It needs to be noted that a distribution approximation is

utilized in the above proof. Although it holds true when sample size is large, the derived

error bound is still valid experimentally in Section 4.5 even when sample size is vary small.

4.3.2.5 Managing Combinations of Random and Non-random Interventions

through Profile Repair

We have provided the error bound for different aggregate functions for random inter-

ventions. However, the algorithms cannot be directly applied when there are non-random

interventions because sampled outputs from videos degraded by non-random interventions

can be systematically wrong in one direction. Under this circumstance, these sampled out-

puts are not enough for an accurate error bound. A correction set, v1, v2, ..., vm, obtained

from processing videos degraded by only random interventions, is required to repair the

biased bound. Its construction is elaborated in Section 4.3.3. Once it is constructed, it

can be used for correcting error bounds of any combination of interventions. Our algo-

rithm is shown in Algorithm 6, and the proof sketches for the error bounds are presented

below. These proofs leverage the error bound conclusion connected with random interven-

tions (see Theorem 1 and 2). That is, the error bound of the correction set under a certain

confidence level has been proved, and it is utilized in the inequality derivation below. Fur-

ther, note there is no distributional assumption of the outputs from videos degraded by

non-random interventions.

For the aggregate function AVG(), we assume that v1, v2, ..., vm are randomly sampled

outputs without replacement. The approximate answer Yapprox(v) to estimate µ and the

error bound errb(v) obtained only from the correction set as in Equation 4.1 and 4.2 can
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Algorithm 6: Managing a Combination of Random and Non-random Interven-
tions

Input: Aggregate query (D,Fmodel, FA), Destructive interventions (f, p, c), δ, r,
m

// Compute approximate result and error bound of the degraded

video and the correction set

1 Yapprox, errb = resultErrorEst(D, Fmodel, FA, f , p, c, δ, r);
2 Yapprox(v), errb(v) = resultErrorEst(D, Fmodel, FA, m/len(D), None, None, δ, r);
// Correct the error bound of degraded video

3 if FA == AVG or SUM or COUNT then
4 errb = (1+errb(v))|Yapprox−Yapprox(v)|

|Yapprox(v)| + errb(v)

5 end
6 if FA == MAX or MIN then
7

∑k̂
i=1 F̂i = Rank of Yapprox in correction set / m;

8
∑k̂(v)

i=1 F̂i = Rank of Yapprox(v) in correction set / m;

9 errb = |
∑k̂

i=1 F̂i−
∑k̂(v)

i=1 F̂i|
r

+ errb(v)

10 end
Output: errb
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satisfy |Yapprox(v)−µ|
|µ| ≤ errb(v), with probability at least 1 − δ. So when non-random

interventions exist, the error bound for the approximate result Yapprox can be derived as

follows:

|Yapprox − µ|
|µ|

≤ |Yapprox − Yapprox(v)|+ |Yapprox(v)− µ|
|µ|

≤ (1 + errb(v))|Yapprox − Yapprox(v)|
|Yapprox(v)|

+ errb(v).

(4.12)

Since it is derived from the error bound of the correction set, this error bound also holds

true with probability at least 1− δ. And for other functions, SUM() and COUNT(), because

the error metric is the same, the corrected error bound can be derived similarly.

For the aggregate function MIN() or MAX(), the approximate rth-quantile Yapprox(v)

and the error bound errb(v) obtained only from the correction set as in Equation 4.6, 4.7,

and 4.8 can satisfy |
∑k̂(v)

i=1 Fi−
∑k

i=1 Fi|∑k
i=1 Fi

≤ errb(v) with probability at least 1 − δ, where

Yapprox(v) is the k̂(v)th distinct value. So

|
∑k̂

i=1 Fi −
∑k

i=1 Fi|∑k
i=1 Fi

≤
|
∑k̂

i=1 Fi −
∑k̂(v)

i=1 Fi|+ |
∑k̂(v)

i=1 Fi −
∑k

i=1 Fi|∑k
i=1 Fi

≤
|
∑k̂

i=1 Fi −
∑k̂(v)

i=1 Fi|
r

+ errb(v),

(4.13)

with probability at least 1−δ. In this formula, the true rank difference |
∑k̂

i=1 Fi−
∑k̂(v)

i=1 Fi|

is unknown, so we use the rank difference |
∑k̂

i=1 F̂i −
∑k̂(v)

i=1 F̂i| between Yapprox and

Yapprox(v) in the correction set to estimate it.

4.3.3 Discussion

In this section, we further discuss details of the profile generation stage.
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4.3.3.1 Correction Set Construction

As introduced in Section 4.3.1, the correction set is necessary for estimating the analyt-

ical accuracy of non-random interventions. It can also improve the error bound of random

interventions when the correction set can provide substantially more information than the

degraded video, as shown in Section 4.5.2. Constructing the correction set requires access

to videos with random interventions alone; non-random interventions are not permissible.

However, using only random interventions is feasible in many cases. Instead of using a

non-random intervention, the administrator might be willing to apply a random one at a

very high degradation level. (For example, they may choose a lower sampling rate instead

of lowering frame resolution.) In addition, since the correction set is only required in the

profile generation stage, it may be acceptable to permit a lower level of degradation for

just a limited amount of time.

The correction set should still be degraded by the random interventions as much as

possible; in the context of reduced frame sampling, that means minimizing the set’s size.

However, there is a limit to how much degradation can be introduced, since we want to

ensure a tight error bound for the downstream process. According to the definition of the

corrected bound in Equation 4.12 and 4.13, when errb(v) is smaller, the corrected error

bound is tighter. Therefore, we need to achieve low errb(v) while using as few frames in

the correction set as possible, i.e., picking the elbow of the curve of errb(v) against m, the

size of the correction set. In our design, we use a simple heuristic to determine the size:

the correction set’s size is increased gradually by 1% of the total size of the original video

to output errb(v). Once the difference between the current and the previous output is less

than 2%, which means the value errb(v) does not change much with the correction set’s
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size (i.e., the elbow), or the current size reaches the size limit defined by the administrator,

we stop growing the correction set.

If pure random interventions are not allowed or only substantial random interventions

are allowed, it may be that no correction set or only a small correction set is possible.

In that case, an alternative method to approximate the tradeoff curve may be generating

profiles on less privacy-sensitive video at another time. Videos at different times might

interact with analytical models in different ways, but they are expected to be visually

similar and will yield roughly similar profiles. Experiments in Section 4.5.3 demonstrate

that similar profiles arise from visually-similar video collections.

4.3.3.2 Intervention Candidate Design and Time Complexity

Our system first considers many possible sets of destructive interventions (f, p, c). For

the reduced frame sampling f , similar to the correction set design, we consider sample

fractions at 1% intervals. For reduced frame resolution p and image removal c, we uni-

formly generate ten frame resolutions and all combinations of possibly sensitive classes.

Then administrators filter out the intervention candidates that cannot satisfy degradation

goals.

The total time of profile generation includes time for the neural network model to

process frames plus the analytical error estimation time. Estimation time is usually neg-

ligible compared with the network’s image processing time (discussed in Section 4.5.3).

Model processing time is O(Nmodel · Tmodel), where Nmodel is the total number of model

invocations, and Tmodel is the averaged processing time on each frame, including load-

ing, transformation and inference. An early stopping and reuse strategy can be applied
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to decrease Nmodel. For each resolution candidate, the error bound is estimated for frame

sampling rate candidates in ascending order. In this way, model outputs for frames sam-

pled at a low rate can be reused for the outputs at a high rate, and the estimation process

can stop early when the error bound decreases slowly. As a result, the profile generation

overhead is modest.

4.4 System Prototype

We implemented a prototype system, SMOKESCREEN, in Python. This system ran on

a 64-core (2.10GHz) Intel Xeon Gold 6130 server with 512 GB RAM and 4 GeForce GTX

1080 Ti GPUs. It embodies our novel algorithms and contains three main components: 1)

video frame processor, 2) analytical result and error bound estimator, and 3) correction set

and intervention candidate design.

Video frame processor — This component processes video frames by calling the

UDFs in queries. We use YOLOv4 [20] and Mask R-CNN [65] as two built-in models for

detection UDFs. YOLOv4 has been implemented based on a neural network framework,

Darknet [147], written in C and CUDA. This model is invoked through a Python inter-

face in this component. And we directly apply a Mask R-CNN implementation based on

Keras and Tensorflow [3]. The processed video frames are from decoded videos which are

stored on a disk for downstream processing. Only one frame can be loaded, resized, and

processed at a time (i.e., no batch computation), and all the model inference procedures

run on a GPU.

Analytical result and error bound estimator — This component consists of our

estimation algorithms in Section 4.3. The cost of the estimation itself is relatively small.
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Correction set and intervention candidate design — This component determines the

correction set size and the sets of intervention candidates, working in the profile genera-

tion stage. By calling the above estimation component to process video frames of different

sizes, the error bound differences are computed and the size of the correction set is deter-

mined as stated in Section 4.3.3. This component also interacts with administrators to

collect intervention candidates, which will then be sent to the error bound estimator.

4.5 Experiments

We evaluate three core claims about SMOKESCREEN:

1. For random destructive interventions, our algorithm can provide a tighter analytical

error bound than competing methods. This holds true for every aggregate query

type. (Section 4.5.2)

2. For both random and non-random destructive interventions, the correction set can

improve the performance of error bound estimation. And our technique can effi-

ciently determine an appropriate correction set size. (Section 4.5.2)

3. The discussion of profile generation time and profile similarity between similar

videos is demonstrated. (Section 4.5.3)

4.5.1 Experimental Setting

We describe our workloads, baselines, and accuracy metrics.

Workloads — We evaluated our system on multiple workloads. Each workload con-

sists of a video dataset, a trained neural network to process video frames, an aggregate
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function to collect useful information, and a set of destructive interventions. Every work-

load was run 100 times, and the experimental results below are the averaged results of 100

trials of the following workloads unless stated otherwise.

• Video dataset — The video set is one of either night-street video or UA-DETRAC

video. The night-street video is surveillance video of a street in Jackson Hole

at night, which is released by the BlazeIt project [84]. It contains 973k frames

in total and the frame rate is 30 FPS. We selected one out of every fifty frames

(19463 frames) to construct our dataset. The UA-DETRAC video [184] is recorded

at Beijing and Tianjin in China. It contains 40 sequences (56k frames) in its test

dataset and the frame rate is 25 FPS. We selected 12 sequences (15210 frames) for

our experiments.

• Neural network model — We used Mask R-CNN [65] for night-street video and

YOLOv4 [20] for UA-DETRAC video to detect cars. The detection threshold was

set to be 0.7 for both of the models. Although the confidence output associated

with each detected object can further improve the detection accuracy when averaged

over frames, we just utilized the object output alone in each frame for simplicity

because we assume the model output as the ground truth and our work does not try

to improve the model’s standalone accuracy.

• Aggregate function — The aggregate function is one of AVG, SUM, MAX, or COUNT.

In our experiments, they were used to compute the average, sum, maximum of the

number of cars in frames, and count the number of frames that contain cars re-

spectively. For MAX, our system estimates 0.99 quantile as an approximation of the
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maximum value.

• Destructive intervention — A set of destructive interventions is composed of re-

duced frame sampling fraction, reduced frame resolution, and the restricted class for

image removal. We assumed the video with the original length and the highest res-

olution as the original video. We set the highest resolution to be 640×640 for Mask

R-CNN and 608×608 for YOLOv4. In our experiments, the sample fraction can be

any value less than one, the frame resolution should be lower than the highest value

and meet models’ requirements (e.g., the default structure of Mask R-CNN can only

handle the resolution in multiples of 64), and restricted classes include “person”

and “face”. We detected “person” by applying YOLOv4 with detection threshold

0.7, and detected “face” by applying MTCNN [206] with threshold 0.8. Restricting

“person” is usually a more strict intervention because people can appear in cam-

eras with unclear faces. According to the detector, 2761 frames (14.18%) contain

“person” and 782 frames (4.02%) contain “face” in night-street data; 10018 frames

(65.86%) contain “person” and 377 frames (2.48%) contain “face” in UA-DETRAC

data. These contained classes for each frame were stored as prior information.

Baselines — We evaluated against the first four baselines for AVG, SUM, and COUNT,

and evaluated against the last baseline for MAX.

• EBGS — The EBGS algorithm [127] is widely used for early stopping when esti-

mated error is within some small number. We directly used it to estimate the query

result and error bound instead of using the stopping mechanism.

• Hoeffding-Serfling — The upper bound of absolute error can be derived from the
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Hoeffding-Serfling inequality [16]. We divided it by the lower bound of the query

result in order to obtain the upper bound of relative error for comparison.

• Hoeffding — Online aggregation [68] provides the upper bound of absolute error

from Hoeffding’s inequality. Then we processed it in the same way as above.

• CLT — Online aggregation [68] also provides the upper bound of absolute error

from the central limit theorem. Then we processed it in the same way as above.

• Stein — [117] minimizes the sample size that can ensure the ϵ-approximate extreme

quantile based on Stein’s lemma. We directly used it to derive the error bound.

Accuracy Metrics — As introduced in Section 4.3.2, the relative error of the approx-

imate query result compared with the true result was used as the accuracy metric when

querying with aggregate functions AVG, SUM or COUNT, and the relative error of the approx-

imate result’s true rank compared with the true result’s true rank was used when querying

with MAX in our experiments. We treated the query result without destructive interventions

as the true result. Our algorithms computed upper bounds of these relative errors and we

compared them with the true relative errors.

4.5.2 Analytical Result and Accuracy Estimation

We show that our query result and accuracy estimation algorithms are effective across

a range of video data, models and aggregate query types for both random and non-random

interventions.
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Figure 4.4: The true relative error of estimated query result (dashed lines) and error bound
(solid lines) computed from Smokescreen and baselines for each aggregate query type on
two datasets

4.5.2.1 Managing Random Interventions

Summary — For random destructive interventions, our basic algorithms can provide

good estimated analytical results and tighter upper bounds of relative errors compared with

reliable competing methods for every aggregate query type. Our error bound can be up

to 154.70% tighter than baselines, and the tight bound can enable tradeoffs that are 88%

more accurate.

Overview — We evaluated our query result and error estimation algorithms against

competing methods on four aggregate query types, two video datasets and two models.

When we varied the sample fraction, we did not tune other destructive interventions. And

when we varied the frame resolution or restricted class, the sample fraction was set to be
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Figure 4.5: The percentage of the situation when the error bound from CLT is smaller than
the true error in 100 trials

0.5. For better comparison with baselines, no correction set was used in this experiment.

Results — We show the true relative error of estimated query result and the error

bound computed by each method in Figure 4.4. It shows the results varying with the

reduced frame sampling intervention. From the true analytical error of SMOKESCREEN

(blue dashed lines), we can find that for every aggregate function, the sample fraction

increases, the true estimation error goes down and approaches zero. Since the curves have

flattened, for the four query types, we end them when the fraction is 0.1, 0.1, 0.05, 0.0015

for night-street video, and 0.06, 0.06, 0.02, 0.003 for UA-DETRAC video. The curves

indicate that our algorithm can collect useful information from the samples and show good

performance even when the sample fraction is relatively small. When looking at the upper

bound from SMOKESCREEN (blue solid lines), we can find that they are always higher

than the true error curves, which means that our error estimation algorithm for random

interventions truly provides an upper bound of the error.

For AVG, SUM and COUNT, the query result and error estimation of Smokescreen are al-
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Figure 4.6: Compare the estimated error bound w/ and w/o correction set with the true
error under random and non-random destructive interventions on two video datasets

ways better than EBGS. When compared with Hoeffding and Hoeffding-Serfling, although

our result estimation is less precise, a tight error bound is the more important goal. Our

error bound can be up to 154.70% tighter (Due to the range of the y-axis, it is not shown

in the figure). All of these algorithms, SMOKESCREEN, EBGS, Hoeffding and Hoeffding-

Serfling, can ensure these upper bound estimations are greater than the true errors with

at least 95% probability. It seems that CLT can provide an even tighter bound than ours.

However, CLT can be brittle and unreliable: it cannot always obtain a bound at the 95%

confidence level especially when the sample size is small. Figure 4.5 shows the percent-

age of situations when CLT’s error bound is smaller than the true error on UA-DETRAC

video in 100 trials. These upper bound estimations would provide misleading information

for administrators to determine a set of interventions that yield large error beyond expec-

tations. For MAX, our query result estimation is the same as Stein’s, but our error bound is
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Figure 4.7: Apply YOLOv4 to compute the average number of cars in night-street video.
The relative error is abnormally large when resolution is 384×384. The legend is the same
as that in Figure 4.6.
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Figure 4.8: Car number distribution predicted by YOLOv4 in night-street video data

tighter when the sample fraction is small.

When non-random interventions are applied, none of the above techniques can provide

correct upper bounds, that is, the error estimation cannot be guaranteed to be greater than

the true error. These destructive interventions will be handled in the next section.

4.5.2.2 Managing Combinations of Random and Non-random Interventions

Summary — Our error correction algorithm can provide a true error bound when non-

random interventions exist, and can further improve basic algorithms’ bound estimations
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Figure 4.9: The error bound estimation with different correction set sizes for two sets of
destructive interventions on UA-DETRAC video

for random interventions in some cases.

Overview — In order to test our error correction algorithm, we compared error bound

estimation computed with and without the correction set with the true error under each

set of interventions. Because the algorithms for SUM and COUNT are almost the same as

that for AVG, we only tested AVG and MAX functions. We set the sizes of the correction sets

according to the correction set construction strategy in Section 4.3.3: 6% of the original

frames for function AVG and 2% for function MAX for night-street video, and 4% for AVG

and 2% for MAX for UA-DETRAC video. Only one kind of intervention was tuned at a

time and the other two were fixed. When testing the combination situation when both

random and non-random interventions exist, we set the sample fraction to be 0.5 while

varying non-random interventions. The only exception was that we set the sample fraction

to be 0.1 when changing the restricted class for UA-DETRAC video, because the number

of frames that do not contain “person” is less than half of the total number.

Results — Figure 4.6 shows the error bounds with and without the correction set un-
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der each set of interventions for AVG and MAX functions. In the second and third rows

of Figure 4.6, when the frame resolution is low or the restricted class is “person”, the

error bound without correction set (blue curve or blue bar), circled in red, can be lower

than the true error (yellow curve or yellow bar), so they are wrong and will mislead ad-

ministrators. It happens because low-resolution objects are hard to be detected by neural

network models and the existences of “person” and “car” are very likely to be correlated,

both yielding systematic error in samples. Fortunately, the error correction algorithm can

solve this problem: the error bound with correction set (green curve or green bar) is al-

ways higher than the true error. From the first row, it shows that the correction set is also

helpful for random interventions when the size of the set is much larger than the size of

the degraded video (that is, it provides more information). When there is only the random

intervention, the tighter of the error bounds with and without the correction set is used as

the error estimation.

Besides Mask R-CNN, we also applied YOLOv4 to detect cars in night-street video,

and we noticed an abnormal situation when querying the average number of cars with

frame resolution interventions, shown in Figure 4.7. The estimation error under resolu-

tion 384×384, marked in the red circle, is even larger than that under lower resolutions.

To find out the reason, we show the predicted car number distribution, i.e., the number of

frames that are predicted to contain certain number of cars, in resolution 608×608 (ground

truth), 384×384, and 320×320, in Figure 4.8. It shows that the distribution under reso-

lution 320×320 is similar to the true distribution, while that under resolution 384×384

deviates substantially from the truth. Therefore, the neural network’s large prediction

error causes the inaccurate result estimation. If not provided with degradation profiles,
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administrators might unknowingly select this bad intervention that keeps video’s good fi-

delity while yielding a high estimation error. Fortunately, our algorithms can detect this

counter-intuitive situation to help administrators make a reasonable tradeoff.

4.5.2.3 Correction Set Size

Summary — Our algorithm, which determines an appropriate correction set size

through the change of its error bound with its size, is effective in real cases so that checking

the correction set’s performance under every set of interventions can be avoided.

Overview — In this experiment, in order to verify that an appropriate correction set

size can be directly obtained from its error bound without considering multiple destructive

interventions, we tested two sets of interventions and all four aggregation functions on

two datasets. These representative sets of interventions were randomly selected: (1) sam-

ple fraction 0.1, frame resolution 256×256 and restricted class “person”; and (2) sample

fraction 0.05, frame resolution 320×320 and restricted class “face”.

Results — The curves of error bound estimation that varies with correction set frac-

tion for AVG and MAX on UA-DETRAC video are shown in Figure 4.9, and other cases are

similar. In this figure, the x-axis, the correction set fraction, is the proportion of the cor-

rection set size to the length of the original video. When it is larger, error bounds become

smaller and approach true errors. When the fraction is large enough, the slopes of these

curves are close to zero, which means more correction data would not make the estima-

tion more precise, so we should stop increasing the size. According to the mechanism

in Section 4.3.3, the determined fractions are shown as dotted vertical lines. We can find

that even though two sets of destructive interventions’ curves are different, the determined
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fractions are appropriate choices for both of them because their slopes have dropped down

at the intersections with the dotted lines.

4.5.3 Other Experiments

In this section, we discuss the profile generation time and profile similarity between

similar videos.

4.5.3.1 Profile Generation Time

Summary — The total time of profile generation is dominated by network model

processing time, which is determined by the model and intervention candidates.

Overview — We evaluated the total time of profile generation for the analytical query

that employs YOLOv4 to compute the average number of cars in UA-DETRAC video. In

the profiles, we set the highest resolution to be 608×608, and ten resolutions were selected

as the intervention candidates. And we set the loosest image removal intervention to be no

restricted class. As shown in Section 4.5.2, the determined correction set fraction is 0.04

in this case. We also set this value as the highest sample fraction.

Results — YOLOv4 needs to be invoked 6084 times to process 4% of the total frames

under every resolution setting, and the total time is around three minutes. Compared with

the model processing time, our estimation stage takes only tens of milliseconds for each

set of degradation interventions, so the profile generation time is dominated by the former.

When the neural network model, the video content, or the intervention candidate settings

are different, the profiling time would vary.
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Figure 4.10: Compare two error bound differences when using or not using a similar video.

4.5.3.2 Profile Similarity between Similar Videos

Summary — Similar profiles can be generated from a similar video to guide the trade-

off in the original video.

Overview — We computed the profiles of the AVG analytical query with YOLOv4

on two video sequences selected from UA-DETRAC dataset. One video (MVI 40771),

denoted as video A and set as the original video, is from a traffic monitoring camera at

a busy intersection. Another video (MVI 40775), denoted as video B, is captured by the

same camera at a different time, and is visually similar to the original video. They contain

1720 frames and 975 frames respectively. We tested reduced frame sampling and reduced

resolution interventions and set the correction set size as 500 for both video A and B. We

also tested multiple degradation settings for video A when at most 50 randomly sampled

frames can be accessed, which may happen due to a high degradation requirement. We

compared the target profiles of video A when 500 frames are sampled as the correction set

with other profiles by computing the absolute differences.
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Results — Figure 4.10 shows the profile differences. In the left figure, the reduced

frame sampling intervention is applied with the fixed resolution 608×608. The total num-

ber of frames are different in the two video sequences, so we use the sample size instead

of the sample fraction as the x-axis for better comparison. And we only show the results

when the size is less than 100 because the error bound differences only slightly change

beyond this area. The limited frame access (up to 50 frames) to video A causes an incom-

plete and loose error bound estimation, yielding the substantial difference (orange line)

compared with the target profile. Fortunately, when enough frames (500 frames) in video

B are accessed, the error bound differences between this similar video and video A (red

line) are close to zero. In the right figure, the resolution is varied with the fixed sample

size 500. Similarly, the error bound differences between video A and B are very small and

always within 5%.

4.6 Conclusion

As video data of public locations is increasingly collected and analyzed, how to bal-

ance the analytical query accuracy and other competing goals becomes a problem. In

summary, we present a novel video degradation-accuracy profiling model which is able to

produce accuracy/degradation tradeoff curves so that administrators can determine a set of

appropriate destructive interventions. In addition, we implemented our prototype system,

SMOKESCREEN, and verified its good performance on real-world video datasets.

For the analytical accuracy estimation problem in this work, we modeled random and

non-random interventions as shown in Table 4.1. This modeling is not restricted to videos

— if other scenarios for other data types can be modeled as the same technical problems in
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Table 4.1, our algorithms are also applicable. If videos’ unique properties are exploited —

for example, a sequence of frames are so similar that part of frames can be skipped from

processing — the quality of the estimated error bound can be further improved.
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CHAPTER V

Optimizing Video Selection Queries With Commonsense

Knowledge

5.1 Introduction

With the increased availability and popularity of video databases [99, 4, 89], video

selection queries have emerged as a growing area of research interest [8, 37, 115, 85, 84].

These queries are utilized for selecting desired videos that satisfy certain predicates, es-

pecially containing target objects. This kind of query can help video search in consumer-

facing systems (e.g., social media platforms, albums in personal smartphones), in systems

for filtering purposes (e.g., video censoring for privacy reasons), in the training set con-

struction systems for machine learning pipelines (as with self-driving cars), etc. In princi-

ple, the object information in videos is unknown and needs to be extracted by applying an

object detector.

A naı̈ve method to process this type of query is to scan the video corpus. For each

video, feed it to the frame-level object detector, which is typically a neural network model
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Figure 5.1: A comparison between naı̈ve query system and our query system based on
commonsense knowledge

with a deep architecture, and add the video that satisfies the query’s predicate to the result

set. It is a common practice to include the LIMIT clause in video selection queries [84, 86]

in the above applications due to the large size of existing video databases (e.g., over 500

hours of videos are uploaded to YouTube, an online media platform, every minute [118]).

The LIMIT clause does not impose any ranking of results as long as records satisfy the

query predicates. The above process is repeated until the result set meets the LIMIT size

requirement. However, processing videos in random order leads to lots of wasted effort

— the detection model would process a significant number of videos that do not satisfy

the predicate. As a consequence of the detector’s long inference time [171] and long

preprocessing time (e.g., decoding) [87], the query execution would be very slow.

EXAMPLE 1. Sansa is a tennis lover and wants to search for 10 videos with tennis

balls from a video corpus comprising 100 various videos so as to study the trajectory of

tennis serves. In this corpus, 20 videos can satisfy her requirement. She specifies the target

object’s name and the LIMIT number, yielding the following video selection query:

1 SELECT * FROM videoCorpus
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2 WHERE DetectedObject = ’’Tennis Ball’’

3 LIMIT 10

She utilizes a naı̈ve query system that simply scans the corpus as shown in the upper part

of Figure 5.1. In this way, only one out of five videos on average will satisfy her query.

Therefore, the query processor must run the detection model against roughly half of the

corpus.

System Goals — Optimizing selection queries using an index is common in traditional

database management systems [79, 35]. One simple way to build an index for videos is to

process every frame by the object detector and record all the detectable object information

in each video. When a query arrives, the query processor can operate based on the index

rather than invoking detectors so as to save query time. However, it is not practical to

merely shift the burden of computational cost from query time to index time. In contrast to

traditional index building based on available attribute values, this index for videos involves

processing consecutive frames with an expensive detector. Because the vast majority of

frames are not useful for queries, processing them is just a waste of valuable time and

computation resources. Unlike previous video processing systems that rely on a traditional

index, we intend to build a system that can achieve efficient query processing for object-

based video retrieval as well as a low index cost.

Technical Challenge — Videos are processed by object detectors on a per-frame basis.

To reduce the index cost, a straightforward option is to process fewer frames at index time.

In this way, the index will contain objects that frequently appear in the video. However,

objects that can only be detected in a small fraction of frames are likely to be missed,
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yielding a lossy index. Depending on the query, this may lead to worse query performance

compared to a full index.

Solving the problem caused by the lossy index is a challenging task. Improving the

quality of the index itself (i.e., making it more complete) while adhering to a limited index

budget seems like an option, but current techniques are inadequate: the difference detector

method [85] only works when the video is very static, and the specialized neural network

model method [85, 84, 8] would reduce the results’ accuracy and require running a bunch

of binary classifiers for each potential queried object. Another option is to maintain a

lossy index and then intelligently utilize it to quickly identify predicate-related videos at

query time. FOCUS [73] clusters video frames based on approximate object information

at ingest time and selects promising clusters at query time. However, the limited informa-

tion obtained at index time remains insufficient. With the development of large language

models (LLM, e.g., GPT-4 [133]), the task of selecting predicate-related videos from an

incomplete index might appear to be simplified. However, the scalability and result quality

of such models remain a limitation when applied to large video corpora. LLMs are super-

ficially appealing and offer some advantages, but we found better results through other

mechanisms based on commonsense knowledge.

Our Approach — In this paper, we propose a novel data indexing mechanism: at

index-time, save resources by intentionally creating a lossy and sparse index; then at

query-time, effectively ”patch” the index by exploiting “commonsense” to estimate

what information is missing. As a result, an inexpensive index can be used to obtain

query-time performance that is equivalent to using a much more expensive index.

What do we mean by commonsense knowledge? It refers to the basic understanding
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of the world that can be used to explain video content. Any human being watching a video

can tell that objects in videos are not randomly arranged but are semantically correlated.

For example, it is commonly known that people play tennis by hitting a tennis ball with a

tennis racket. A human being who sees a tennis racket in a video frame can predict that

this video is likely to contain a tennis ball sometime soon. Therefore, whether a selection

predicate is satisfied by a video can often be inferred by observing just a few frames and

applying commonsense knowledge. Previous works [85] have exploited the frame-level

correlation to avoid processing frames that are almost identical visually, but they can only

work in limited situations. Our approach leveraging semantic-level correlation in videos

is more often applicable.

Based on this observation, we propose a method that, at index time, only a few frames

of each video in the corpus are processed by object detection models to cheaply build

a lossy index. At query time, our mechanism predicts the probability that a query object

exists in each video from the lossy index and a commonsense knowledge-integrated proba-

bilistic model and prioritizes videos with high probabilities, thereby avoiding unnecessary

processing of irrelevant videos, much like traditional index methods.

The core technical difficulty is how to build a commonsense knowledge-integrated

probabilistic model that is accurate enough to infer the missing objects and remains

compact enough to ensure computational efficiency at query time. Commonsense

knowledge can be acquired through various sources — general commonsense from knowl-

edge graphs and text, and queried video-specific commonsense from video content. Con-

sidering that videos which have the same object distribution as the queried videos may not

always be accessible, we build two probabilistic models, one incorporating videos and the
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other without videos. When such videos are not available, we estimate the object existence

probability through Bayes’ theorem [83] and Fréchet inequalities [51] based on the object

similarity in knowledge graphs. When such videos are available, we model it as a re-

gression problem and adapt the BERT model [40] pre-trained on text to our scenario. We

further fine-tune it with video-specific commonsense. These models can be constructed

offline and do not rely on any query information from users.

EXAMPLE 2. Sansa employs our commonsense query system to decrease the runtime

of the tennis ball selection query. At index time, one out of thirty video frames is processed

to build the sparse index. At query time, videos that contain objects related to tennis balls

in the index (e.g., rackets, players, courts, etc.) are processed first, as shown in the bottom

half of Figure 5.1. Due to the fact that these videos are more likely to contain a tennis ball,

only 15 videos are processed before selecting 10 desired videos, decreasing Sansa’s wait

time.

Contributions — Our main contributions are as follows:

• We propose a novel index mechanism to optimize video selection queries based on

commonsense knowledge. (Section 5.2)

• We design two commonsense knowledge probabilistic models, a conditional proba-

bility formula-based model without videos, and a neural network-based model that

incorporates videos, to predict the probability of finding target objects in the unob-

served video frames for different commonsense knowledge sources. (Section 5.3)

• We implement a prototype system, PAINE, that embodies our algorithms, and evalu-

ate it on two video datasets. Our optimization method can save up to 97.79% query
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processing time compared to baselines. Even the commonsense model without any

video content can yield up to a 75.39% improvement over baselines. (Section 5.4

and 5.5)

5.2 Problem Formulation

In this section, we define the video selection query optimization problem in Sec-

tion 5.2.1, introduce the query optimization strategy with commonsense knowledge in

Section 5.2.2, discuss our design considerations in Section 5.2.3, and elaborate the do-

main assumptions in Section 5.2.4. All of the notations are listed in Table 5.1.

Parameter Description Example
V = {Vi} Video Corpus YouTube videos

D Object detector YOLO9000
O = {O1, ..., Or} Target objects {tennis ball}

k LIMIT number 10 videos
n # processed videos in query processing 20 videos processed by D at

query time
Li = [Li,1, ..., Li,mi ] mi objects detected from sampled

frames in Vi

[tennis racket, person]

I = {Li → Vi} Index (observed object list → video) {[tennis racket, person] → V1}
P (O|Li) Conditional probability that describes

video contents
Probability that a tennis ball ex-
ists in a video containing [tennis
racket, person]

M Commonsense knowledge model that
estimates P (O|Li) to match true prob-
abilities’ rank ordering

An extension of a BERT model

Table 5.1: Frequently used notation
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5.2.1 Optimization Problem Definition

A video selection query is characterized by a tuple of 4 parameters (V , D, O, k).

The video corpus V usually contains a large number of videos. We focus on a general

situation — the video corpus only includes pure videos without any textual information

(e.g., titles, scripts, topics, etc.). The object detector D, e.g., a neural network such as

YOLO9000 [148], is applied to this corpus to identify videos of interest where the target

objects O exist; the target objects O are defined in the query’s predicate, e.g., searching

for videos with a “tennis ball”. The LIMIT clause with the number k restricts videos that

should be selected and returned to the user. The result set can consist of any k satisfying

videos instead of the top k videos that are most related to the target objects. Values of

k can vary depending on the user. k might be small in consumer search applications. k

can also be large when an engineer or a machine collects videos for a downstream training

task.

In general, it takes a long time to process video selection queries through a simple scan;

the number of processed videos n is proportional to the LIMIT number k, and the object

detector D needs to be invoked for all the frames of the processed videos after decoding.

Both model inference and video preprocessing are computationally expensive. If fewer

videos are processed (i.e., n is smaller), the total query processing time can be reduced.

This leads to the following optimization problem:

QUERY OPTIMIZATION PROBLEM: Given a video selection query (V , D, O, k), min-

imize the number of videos n that will be processed while guaranteeing all the k videos in

the result set satisfy the predicate.
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5.2.2 Optimization Strategy

For query optimization, an index I consisting of the observed object list Li (e.g., Li

= [tennis racket, person]) for each video Vi can help decrease n. Due to the limited in-

dex computation budget, only a fraction of frames can be indexed. It would make Li an

incomplete list, either due to rare objects or the detection model’s inaccuracy. At query

time, our mechanism applies a commonsense knowledge-integrated probabilistic model

M to predict the conditional probability P (O|Li) from the imperfect index I, indicat-

ing the probability of the event that videos containing Li will also contain target objects

O. The predicted values are supposed to match the true ranking of these probabilities.

Videos with higher values will be processed first in the hopes of quickly locating videos

that can satisfy the predicates. Our algorithmic task is how to design such a commonsense

knowledge-integrated probabilistic model M to solve the video selection query optimiza-

tion problem.

5.2.3 Design Consideration

In our design, we consider choosing appropriate index content. We extract the incom-

plete object list Li from a few frames of each video and store (object list Li, video Vi) pairs

as the index. We do not include information about which videos are likely to contain target

objects in the index. It is because target objects cannot be known in advance at index time

and there are too many potential target object combinations (i.e., 2# of distinct objects). This

design also allows us to update the commonsense knowledge model M without changing

the index. We defer the conditional probability prediction and video selection process to

the query time.
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Besides the incomplete object lists, other types of video information may also be uti-

lized as the index. It may be effective to predict objects’ existence based on other textual

information from videos, such as descriptions generated by video captioning models [192]

or video topics identified through video classification [173]. These two options are at two

extreme ends of the spectrum when it comes to information richness and computation

cost — video topics can be obtained from small-scale classification models but only of-

fer general domain information, while dense video captioning comprises rich information

(e.g., actions) but obtaining it from image data requires a longer time. In contrast, object

extraction is in between them and is more flexible due to the adjustable frame rate. In

addition, the extracted objects can be directly used for video selection queries that search

for frequent objects at query time.

Visual features (e.g., embeddings from a visual model), which are widely used for

content-based search, can also serve as the index [2, 88, 160]. Because these features

are designed for reasonably accurate outcomes, they have larger dimensions compared to

short object lists. When such features are used for video ranking, it would incur much extra

overhead, especially for a large video corpus. Moreover, when such features are directly

used for object detection at query time, we can expect that our commonsense knowledge

models with object lists will still facilitate faster video selection due to the compactness

of the object lists and models. Given these considerations, we choose object lists as the

index.

110



5.2.4 Domain Assumption

Our strategy would be useful for a broad range of video selection queries with the

following assumptions:

Video Type — Our techniques are designed for conventional videos where frames are

semantically correlated. For some exotic video types, our methods can still “work” but

we would not expect much speedup. These videos might include: (1) videos in which

frames seem to be generated randomly and there is no normal logic among frames, for

example, science fiction movie clips depicting an imaginary world1, psychedelic films2,

animation instructional videos3, etc.; (2) videos in which common objects do not exist,

for example, typography videos with just text rather than visuals4, nonrepresentational art

videos5, etc.; (3) videos in which frames do not change much across time, for example,

surveillance video in an elevator at night, dash cam video of a car on a congested road, etc.

The difference detector method [85] is already designed to handle this static video type.

Fortunately, the above video types constitute only a small proportion of existing videos.

For other video types, even unusual genres like animation, our method would be beneficial

as long as there are semantic relations among video frames.

Performance of the Object Detector — The results from the underlying detection

model are viewed as the ground truth — we do not aim to improve them and we always

use these results to evaluate our system’s quality. Therefore, whether the detection models

are accurate or relatively inaccurate does not actually impact our system. However, our

1Movie example: Avatar
2Video example: https://www.youtube.com/watch?v=JJkPLYmUyzg
3Video example: https://www.youtube.com/watch?v=NZbrdCAsYqU
4Video example: https://www.youtube.com/watch?v=qZEPs3vmYB4
5Video example: https://www.youtube.com/watch?v=q2Ffbo5fpEQ
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system would not be helpful when a detection model is extremely inaccurate because there

may not be a correlation between the detection results.

Target Object — We expect our techniques to accelerate most video selection queries

except in two cases: (1) target objects that are semantically vague (e.g., “thing”, “mecha-

nism”, etc.). These high-level objects are associated with a large number of other objects.

Even humans have difficulty reliably identifying these vague objects in videos. Moreover,

it is not clear that these queries are very useful for users. (2) target objects that are hard to

infer from single frames (e.g., “communicator”, “leader”, etc.), but are best inferred from

visual clues that appear across sequential frames. In contrast, our current work focuses on

frame-level detection. We might extend our approach to multi-frame sequences in future

work.

5.3 Algorithms

Now, we introduce our video selection query optimization algorithms. In Section 5.3.1,

we introduce the overall procedure — our system’s three-stage architecture. In Sec-

tion 5.3.2, we focus on the model preparation stage and elaborate on the construction of

commonsense knowledge models. In Section 5.3.3, we further improve the model based

on the ground truth collected online.

5.3.1 Overall Procedure

We design a three-stage architecture in our system as shown in Figure 5.2. In the

indexing stage, an index is built for the whole video corpus V . For each video Vi, a few

frames are processed by a detector that can detect various kinds of objects to produce an
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Figure 5.2: The architecture of the overall procedure. In the model preparation stage, an
offline stage, commonsense knowledge models that estimate objects’ conditional existence
probability are constructed from knowledge graphs, text or videos. The whole video cor-
pus goes through the indexing stage; only a fraction of frames (black frames) are processed
to create the observed but incomplete object lists as the index. When new queries arrive,
videos are ranked based on the index and the probabilistic model in the query processing
stage.

incomplete object list Li. These object lists mapped to videos as key-value pairs compose

the index I. The indexing frame rate is adjustable according to varying index time budgets

(e.g., sampling one out of thirty frames). When a new video selection query arrives, the

system enters the query processing stage — the query optimizer gives precedence to

videos that are likely to contain target objects and avoids processing irrelevant videos.

Algorithm 7 describes this procedure. In lines 1-7, videos in which target objects O are

observed at index time are added to the result set directly, and the remaining videos will be

taken into consideration in the following steps. In line 8, the existence probability of target

objects O conditioned on the imperfect index I is predicted by the prepared probabilistic

model M . A high-quality model will assign high probabilities to predicate-related videos.

In line 9, the video corpus is sorted in descending order of the probabilities in P . After

that, they are processed sequentially by the object detector D to determine whether they

contain target objects. Desired videos are added to the result set until the set’s size has

reached the LIMIT number k or all the videos have been explored in lines 10-15.
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Algorithm 7: Query processing
Input: Video corpus V , object detector D, target objects O, LIMIT number k,

probabilistic model M , Index I
1 for Vi in V do
2 if O ⊆ Li then
3 resultSet.append(Vi);
4 V .remove(Vi);
5 I.remove(Li → Vi);
6 end
7 end
8 P = M (I, O);
9 V = V[P .argsort()[::-1]];

10 repeat
11 Vselect = V .getNext();
12 if O ⊆ D(Vselect) then
13 resultSet.append(Vselect);
14 end
15 until |resultSet| == k or V .hasNext() == False;

Output: resultSet

In the model preparation stage, as an offline step, we develop probabilistic models

M integrating commonsense knowledge for the above procedure. This model is designed

to predict the probability that any combination of objects exists in a video conditioned on

the fact that another combination of objects is observed in this video. Model construction

details will be introduced in Section 5.3.2.

5.3.2 Commonsense Knowledge Model

In this section, we describe the construction of the commonsense knowledge proba-

bilistic model M in the model preparation stage. If the observed object list Li contains

target objects O, this video is handled in lines 1-7 in Algorithm 7 before applying the prob-
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abilistic model. In the subsequent parts of this section, we will only consider the index that

does not contain target objects. In Section 5.3.2.1, we introduce a conditional probabil-

ity formula-based model when there are only off-the-shelf knowledge graphs and text as

commonsense knowledge sources. In Section 5.3.2.2, we propose a neural network-based

model when videos are also available to provide commonsense knowledge.

5.3.2.1 Model Built Without Videos

A wealth of commonsense knowledge is embodied in various existing sources, such as

text corpora [165], knowledge graphs [125], etc, which are easy to obtain. In this section,

we utilize these text-based sources to construct probabilistic models that incorporate basic

and general commonsense knowledge.

Knowledge graphs (e.g., WordNet [125], ConceptNet [166], Wikidata [181], etc.) are

networks of real-world entities, where each node represents an entity (e.g., object), and

edges connecting these nodes represent the semantic relationships between them. For ex-

ample, in ConceptNet [166], a node corresponding to “tennis racket” and another node

corresponding to “ball” are connected by an edge labeled as “RelatedTo”. The close-

ness between two nodes in a knowledge graph, reflecting the semantic closeness, can

often indicate the likelihood of their coexistence in a video. For instance, based on the

above knowledge graph triplet, we may deduce that “tennis racket” and “ball” probably

exist in the same video. In recent years, there has been significant attention to knowl-

edge graph embedding [183], which maps knowledge graph components into continuous

vector spaces. The node embeddings, represented as numerical vectors, preserve the in-

herent structure of knowledge graphs — nodes that are closely connected in a knowledge
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graph tend to be mapped to proximal vectors in the embedding space. Based on this trend

and the above finding, we estimate the conditional existence probability from knowledge

graph embeddings of the objects. Since object names are often unambiguous, and knowl-

edge graphs like ConceptNet can be sufficiently comprehensive for handling synonyms,

we directly match the detected object names with knowledge graph nodes.

First, we estimate the pairwise conditional probability P (O|Li) in which both the tar-

get object list O and observed list Li have only one object. The closeness between two

node embeddings can be measured by cosine similarity [45], capturing objects’ semantic

similarity. On the other hand, the Jaccard coefficient for probability measures is a useful

tool for gauging the similarity of two events. In our scenario, each event represents an ob-

ject’s existence in a video. Due to the connection between two objects’ semantic similarity

and their coexistence possibility, we take the cosine similarity between O and Li’s word

embeddings to estimate the following probability ratio:

P (O ∩ Li)

P (O ∪ Li)
:= max (

embedding(O) · embedding(Li)

∥embedding(O)∥ · ∥embedding(Li)∥
, ϵ). (5.1)

To avoid probabilities from quickly diminishing to zero, we set a small threshold ϵ. In this

estimation, we took into account two factors: (1) the formulas on both sides are supposed

to be symmetric with respect to O and Li; (2) the semantic similarity should not be used

for estimating intersection probability directly, as this involves the influence of objects’

own popularity.

The existence probability of a single object in a video can be influenced by its level of

popularity, which can be reflected in Wikipedia pageview statistics [26]. We estimate the
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probability by the relative value of the average daily pageview:

P (O) :=

√
Avg daily pageview of O

max{Avg daily pageview of detectable objects}
. (5.2)

Probability P (Li) can also be estimated in this way. According to the set’s and proba-

bility’s characteristics, conditional probability can be derived by plugging in the above

estimations:

P (O|Li) =
(P (Li) + P (O))P (O∩Li)

P (O∪Li)

(1 + P (O∩Li)
P (O∪Li)

)P (Li)
. (5.3)

In most cases, multiple distinct objects would be observed from videos at index time,

and there may also be multiple target objects. We predict the conditional probability

P (O|Li) for this common situation based on the above pairwise probability estimation.

Objects in the observed list Li are denoted as Li,1, Li,2, ..., Li,mi
, and target objects in O

are denoted as O1, O2, ..., Or. Similar to the “naı̈ve” conditional independence assump-

tions in naı̈ve Bayes classifiers [151], we adopt the following assumption: the existence of

Li,1, Li,2, ..., Li,mi
is mutually independent, conditioned on the existence of O. According

to Bayes’ theorem [83],

P (O|Li) =
P (O)P (Li|O)

P (Li)
=

P (O)
∏mi

j=1 P (Li,j |O)

P (Li)
. (5.4)

In this formula, P (Li,j|O) is calculated by Equation (5.3) if r = 1 or calculated by Equa-

tion (5.4) if r > 1.

Our next step involves estimating P (Li) and P (O) in Equation (5.4). According to

Fréchet inequalities [51]:

max(

mi∑
j=1

P (Li,j)− (mi − 1), 0) ≤ P (Li) ≤ min
j

P (Li,j). (5.5)
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Since we can compute the probability of two objects existing in the same video by plugging

in Equation (5.1) and (5.2), i.e., ∀j, k ∈ [1,mi], j, k ∈ N,

P (Li,j ∩ Li,k) =
(P (Li,j) + P (Li,k))

P (Li,j∩Li,k)
P (Li,j∪Li,k)

1 +
P (Li,j∩Li,k)
P (Li,j∪Li,k)

, (5.6)

a tighter lower bound and upper bound of P (Li) can be derived by pairing objects in Li:

PLB(Li) = max(
1

mi − 1

∑
1≤j<k≤mi

P (Li,j ∩ Li,k)− (
mi

2
− 1), 0), (5.7)

PUB(Li) = min
1≤j<k≤mi

P (Li,j ∩ Li,k). (5.8)

Note that there are mi − 1 unique combinations of non-repeating pairs, meaning that each

pair occurs only once among the combinations (if mi is not an even number, we add the

universal set to the intersection Li). By summing the inequality (5.5) for all the combi-

nations, we can obtain Equation (5.7). P (Li) is estimated by the mean value of PLB(Li)

and PUB(Li) in our model, and P (O) will be derived similarly. As a result, P (O|Li) in

Equation (5.4) can be computed.

5.3.2.2 Model Built With Videos

Although text-based commonsense knowledge sources are easy to acquire, they are

constructed from crowd-sourced knowledge or online text collections, resulting in a

generic knowledge base that may not accurately reflect the object associations depicted in

queried videos. Previous studies show that commonsense knowledge can also be obtained

from videos [172]. The distribution of objects portrayed in videos can provide video-

and domain-specific knowledge, that is likely more valuable for our system. For exam-

ple, “tennis racket” and “tennis ball” are probably highly correlated in the commonsense
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knowledge from both conventional text sources and video sources. In contrast, ”sun” and

”tennis racket” are only loosely linked in conventional commonsense, but may be highly

correlated in videos since most tennis matches occur outdoors on sunny days. It needs to

be noted that the object distribution in the videos as the source of commonsense knowl-

edge should be close to that in the queried video corpus. For instance, if this data is only

gathered from traffic surveillance videos, it would not be very helpful for various videos

on YouTube. Since these videos are not always accessible, the model built without videos

in Section 5.3.2.1 is designated as the default model.

In this section, we aim to estimate the probability P (O|Li) when videos are also avail-

able as the source of commonsense knowledge. To accomplish this, we collect a series

of object lists, each containing objects observed in the same video. Potential ways to ob-

tain these object statistics include accessing the ground-truth labels of an external similar

video corpus or retrieving video selection query results from historical videos (a query’s

non-empty result indicates that the objects specified in the selection predicate indeed exist

in the same video).

It is easy to think of estimating the conditional probability using the conditional relative

frequency of objects in videos, i.e., # of videos containing O
# of videos containing O and Li

for any possible O and Li,

but this method has limitations. There could be several object combinations that either

do not exist or occur infrequently. Such combinations can lead to inaccurate probability

estimations. Moreover, there are too many object combinations, requiring a significant

amount of storage space. Another way to estimate probability is by first estimating the

pairwise coexistence probability and then applying the derived probability formula as in

Section 5.3.2.1. However, this formula only integrates pairwise relationships and does
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Figure 5.3: The structure of the model built with videos. The input is a sequence of the
observed objects in index and target objects; the output is conditional probability predic-
tion.

not fully explore the potential of videos. In contrast, the algorithm below shows better

performance.

Videos offer a unique opportunity to learn a commonsense knowledge model rather

than explicitly derive theoretical formulas. With the development of deep learning, neural

network models have emerged as effective tools for learning extremely large and complex

probability distributions [104]. In line with this trend, we develop a neural network model

that takes the target objects and observed object lists in the index as inputs and is trained

on object statistics to determine whether the target objects exist in the video.

Our neural network model is constructed based on the state-of-the-art language model

BERT (Bidirectional Encoder Representations from Transformers) [40], specifically the
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uncased BERT base model. This model consists of 12 Transformer blocks and 110M

parameters and has been pre-trained with two tasks (masked language modeling and next

sentence prediction) on BookCorpus [207] and English Wikipedia. There are three notable

benefits to adopting this model. First, the length of observed object lists in the index may

vary, but this model is capable of accepting input sequences of different lengths. Second,

BERT’s pre-training on large text corpora means that it contains generic commonsense

knowledge from text, which would be helpful for our task through transfer learning [176].

Third, as a Transformer-based model, BERT can process the entire sequence in paral-

lel, making it faster than other models that process the sequence sequentially, such as

LSTM [71].

We start with the case when there is only one target object in a query’s predicate.

Figure 5.3 shows the structure of our neural network model. To construct the input, we

organize the observed object list in the index and the target object as two sentences for each

video. We concatenate the observed objects, Li,1, Li,2, ..., Li,mi
to form a sentence. For

example, if the observed object list is [tennis racket, person], the sentence would be “tennis

racket person”. These observed objects are arranged in the order of their occurrence,

which means Li,u occurs before Li,v or in the same frame as Li,v in video Vi if u < v. We

believe this time sequence can provide useful semantic information. For instance, [cookie,

flour, butter, chocolate] in sequence could indicate a video on how to make chocolate

cookies, while [flour, chocolate, cookie, butter] in sequence could indicate a video about

grocery store products. The observed object list is deduplicated, and we do not include

the occurrence frequency of each object or additional separation tokens between every

two objects in the sentence, as including these does not result in significant performance
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improvement. This reduces the sequence length and saves computational costs.

These two sentences are transformed into tokens through the BERT tokenizer, and

special tokens ([CLS] and [SEP]) are added to the beginning of them. For instance, two

sentences “tennis racket person” and “ball” are tokenized as [[CLS], tennis, rack, ##et,

person, [SEP], ball]. These tokens are then inputted into the pre-trained BERT model.

Since our goal is to accurately rank videos by predicting a higher probability for the videos

where the target object exists, we model it as a regression problem. The regression layer

is connected to the pre-trained model, with the output vector representing [CLS] being fed

into this layer. This layer comprises a dropout layer and a fully connected layer, which is

fine-tuned for our task. We use MSE (mean squared error) as the loss function.

During the model preparation stage, the target object is not pre-defined, and the goal of

the commonsense knowledge model is to work for any possible target object. To achieve

this, we construct the training data in the following manner: for each video object list in

the collected object statistics, we select each item in this list as the target object O in turn

and consider the remaining items as the observed objects, creating the training data with

ground truth 1. Additionally, we randomly sample an object not included in the object

list as the target object and use the entire object list as the observed objects, creating the

training data with ground truth 0.

Besides random sampling, we also attempted to use knowledge graphs to identify re-

lated objects that do not exist in the videos and make them as the target objects to construct

challenging examples for the model to learn. However, the model’s performance suffered

as a result. We speculate that this may be due to the fact that objects exist with a certain

probability, and the way in which we constructed the data emphasized their non-existence,
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causing the model to learn in the opposite manner. More parameter settings and training

details will be discussed in Section 5.5.1.

During the query processing stage, when the model is applied to predict the conditional

probability, we take into account the probability range by constraining the outputs to be

between 0 and 1. If the output falls outside this range, we set the probability to either 0 or

1, depending on whether the output is less than 0 or greater than 1, respectively.

Now we consider the case when there are multiple target objects in a query’s predicate.

Since the BERT model can accept sequences of varying lengths, it is straightforward to

add multiple target objects to the end of the input. We can concatenate the target objects

to construct the second sentence and then reuse the model that was trained on a single

target object. Because the model was only trained on single target object cases, there are

two other competitive options. Option 1 is to derive the conditional probability of multiple

target objects from single target objects (e.g., P (O1, O2|Li) = P (O1|O2,Li) · P (O2|Li)).

However, this option did not bring performance improvement in experiments and required

longer inference time due to the computation of multiple probabilities (equal to the number

of target objects). Option 2 is to train new models by generating training data with multiple

target objects, but this approach is not scalable because the model needs to be trained for

all potential numbers of target objects. Therefore, we choose the first algorithm rather than

these two alternatives because it is the most practical and efficient solution.

It needs to be noted that our data generation and training strategies are not exclusively

developed for BERT. Therefore, even with the advent of more advanced language models

in the future, our techniques remain suitable for integration into these newer models.
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5.3.3 Online Learning

Based on the commonsense knowledge during the model preparation stage, we can

generate primary models by applying the above algorithms. Subsequently, we can gather

additional object statistics from videos during one or more rounds of query processing,

which enables us to enhance the model built with videos. This information is especially

beneficial because (1) compared with previously collected commonsense knowledge, the

object distribution in these videos is more up-to-date and closely resembles that of videos

specified by future queries; (2) since each frame of a video needs to be processed for

identifying satisfying videos (line 12 in Algorithm 7), this object information may be

more comprehensive and precise. To facilitate this approach, we have devised an online

learning strategy whereby the BERT regression model is further updated by incorporating

visual information extracted from the query processing stage.

5.4 System Prototype

Our prototype system, PAINE, implemented in Python, embodies our two optimization

methods based on different commonsense knowledge sources for video selection queries.

The system was deployed on Amazon EC2 g3.4xlarge instance with 16 vCPUs, 122GB

memory, 1 NVIDIA Tesla M60 GPU, and 8GB GPU memory.

A major component of the system is the detection model. It is utilized to extract

object information from videos for commonsense knowledge collection from videos, index

construction, and predicate processing. We used the pre-trained YOLO9000 [148] model

based on the neural network framework Darknet [147], implemented in C and CUDA. Just
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like the per-item processing in traditional DBMSs, this detection model was invoked for

each frame, and batch processing was not enabled.

In the model preparation stage, we implemented the BERT regression model with Hug-

ging Face Transformers [187] and PyTorch [136]. We loaded the pre-trained bert-base-

uncased model from Hugging Face for sequence regression and fine-tuned it on the col-

lected object statistics. After training, we stored the best checkpoint, which included the

model architecture and weights, on disk along with knowledge graph embeddings for the

model built without videos.

The whole video corpus for querying was processed by the detection component at a

certain frame rate, and the detected objects were stored on disk as the index, mapping to

each video. When a query arrived, the stored index and the commonsense knowledge (in

the form of knowledge graph embeddings or the BERT regression model) were sent to the

query optimizer, which would apply the model and prioritize videos with high predicted

existence probabilities of the target object set.

5.5 Experiments

We evaluated two core claims about PAINE:

1. The performance of PAINE is better than state-of-the-art baselines — PAINE can

process fewer video clips during query processing time, yielding faster execution.

Our model built with videos achieves the best performance. (Section 5.5.2).

2. The performance of PAINE varies with different experimental scenarios — different

index time budgets, varying amounts of object statistics for model construction, the
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use of the online learning strategy, and different LIMIT values. PAINE is effective

in a wide range of scenarios (Section 5.5.3).

5.5.1 Experimental Setting

Here, we describe our workloads, baselines, and evaluation metric.

Workloads — We evaluated our PAINE on multiple workloads. Each workload con-

sists of the target object(s) in the predicate and a commonsense knowledge probabilistic

model, plus a video corpus.

Video corpus — We tested two datasets that consist of diverse videos: YouTube-8M [4]

and HowTo100M [124]. These YouTube-style videos comprise important workloads for

applications introduced in Section 5.1. We cut videos into 60-second clips and selected

clips that contain at least five distinct objects in 60 uniformly sampled frames. When using

our system, this segmentation process applies universally to long videos, simplifying video

content representation. This step yields 19611 video clips from the YouTube-8M dataset

and 31971 video clips from the HowTo100M dataset (note that original videos are not too

long so that there would not be too many clips from the same video). In each dataset,

80% of video clips were used for the model preparation stage, and 20% of video clips

were used in the index and query processing stages. When training the BERT regression

model, the splitting ratio for training and validation is 3:1. Within the videos used for

query processing, we used the ground truth of half of them for online learning and used

the other half as the test data. When we split the dataset, we put clips from the same

original video in the same category.

Object detection model and target object — YOLO9000 [148] was applied for gener-
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ating object statistics for commonsense knowledge and building indexes both at the rate of

one frame per second. It was also used for obtaining the ground truth. In our experiments,

we considered the object categories in the training data, yielding 1041 distinct objects in

YouTube-8M and 1096 objects in HowTo100M. We selected target objects that were in

both the above classes and ConceptNet Numberbatch and existed in at least 10 queried

videos. We also removed those with vague meanings, which are hyponyms of the synset

“object.n.01” with path lengths of at most 3 from “object.n.01” in WordNet. Overall, there

are 445 objects and 430 objects used as target objects in YouTube-8M and HowTo100M.

Commonsense knowledge probabilistic model — For the model built without videos,

we used the 19.08 English-only version of ConceptNet Numberbatch [166], containing

knowledge graph embeddings. We also used the daily pageview statistics of Wikipedia

in 2022 to estimate individual probabilities. The small threshold ϵ in Section 5.3.2.1 is

set to 0.01. For the model built with videos, we made the amount of training data with

labels 1 or 0 balanced. In the training process, the batch size is 128, the number of epochs

is 4, the optimizer is Adam algorithm with weight decay [90], the initial learning rate is

2×10−5, the learning rate warmup ratio is 0.1, and the model is evaluated every 500 steps.

During the online learning, we split the ground truth as 4 : 1 for training and validation,

and we set the batch size as 64. The epoch number is 2 on the YouTube-8M and 4 on the

HowTo100M dataset.

Baselines — We evaluated PAINE against best-known baselines:

Scan with lossy index — Scan the video corpus with the same inexpensive index that

is built in our system. Videos with target objects in the index are processed first. The

remaining videos are scanned in sequence which is adopted by most modern database
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management systems, such as SparkSQL [12].

Difference Detector — This method is from NoScope [85]. At index time, we pro-

cessed frames with large mean squared errors to obtain the index. The query processing

procedure is the same as Scan.

Adapted FOCUS — Because we focus on a substantial number of distinct objects and

videos from diverse streams, we adapt FOCUS to our scenario while retaining its core idea

of clustering. Videos are clustered based on the observed object lists at index time. At

query time, the system prioritizes the clusters containing target objects.

When learning the commonsense knowledge from videos, traditional machine learn-

ing methods like association rule mining [94] and Bayesian network [167] can also be

employed. However, they are less effective than our neural network model in our tests.

Evaluation metric — With the same index time budget for all the compared meth-

ods, we computed the number of videos processed by the detection model divided by

the optimal number as the evaluation metric. Here optimal means the result set’s size —

only the satisfying videos would be accessed by a perfect method. This metric is directly

affected by different optimization methods and approximately reflects the slowdown ra-

tio compared to the perfect situation. This holds true because the extra overhead of our

optimization method is negligible, as explained in Section 5.5.2.

5.5.2 Overall Performance

This section shows the overall comparison results between PAINE and the baselines.

We evaluated our two models after online learning and tested them on single-target-object

and multiple-target-object workloads, as detailed in Section 5.5.2.1 and 5.5.2.2.
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5.5.2.1 Single Target Object

Summary — PAINE can beat all the baselines when there is one single target object

in each query. When comparing the model built with videos to baselines, we observed a

significant improvement of up to 97.79% over Scan with lossy index while ensuring the

same index cost (around 3% of the video collection). In some cases, there may not be

available object statistics from videos. Even without videos, our model can still achieve

up to a 75.39% improvement.

Overview — To test the performance on target objects of different frequency levels,

we divided them into three groups: a low-frequency group when 10 - 50 queried videos

contained the target object in the ground truth, a medium-frequency group when 50 - 100

queried videos contained it, and a high-frequency group when at least 100 queried videos

contained it. We tested a moderate and representative LIMIT number, 20% of the total

number of satisfying video clips for each query. We removed target objects that have

satisfying videos of the required size observed at index time. For a fair comparison, all

three baselines have the same index budget as ours. For the Scan and Adapted FOCUS

methods, the observed object lists in the index are exactly the same as ours. For the

Difference Detector method, we set the difference threshold to 1 and 10, and indexed 60

frames for each video.

To infer unseen objects from the lossy index, leveraging large language models seems

like a promising and easy approach. Hence, we compared our two models with this ap-

proach. The quality of LLM’s output depends on the prompt. If we just wrote the prompt

ourselves, the results might primarily reflect the prompt rather than LLMs in general.

Therefore, we collected various prompts from 10 students (these prompts are shown with
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Figure 5.4: Comparison of our system, PAINE, with baselines Adapted FOCUS, Differ-
ence Detector (the difference threshold is set to 1 and 10), and Scan with lossy index.

the source code on Github), spanning three solution types: direct object list ranking, video

index number ranking, and video scoring. We chose the most popular LLM from Ope-

nAI [22], namely GPT. We evaluated the version with the highest maximum token capac-

ity, gpt-3.5-turbo-16k, which allows up to 16,384 tokens. For the first two solution types,

we truncated each object list in the index; for the third solution type, we partitioned the

entire video corpus into multiple queries to ensure compatibility with the token limit.
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Figure 5.5: Compare the average query processing time of PAINE and baselines on
YouTube-8M dataset.

Results — We show the performance of our system PAINE with two models, Adapted

FOCUS (baseline), Difference Detector with two difference thresholds (baseline), and Scan

with lossy index (baseline) for target objects with different levels of frequency in Fig-

ure 5.4. For each optimization method in the figure, the box spans from the first quartile

to the third quartile values of the results, with a line marking the median and a triangle

marking the mean value, and the whiskers extend from 10% to 90% of the data.

From left figures to right figures, the evaluation results of baselines decrease, indicat-

ing easier queries with the increase of the target object’s frequency. Same as the baselines,

our system also delivers better performance when the frequency becomes higher. In each

frequency group, Difference Detector methods (green boxes) show comparable perfor-

mance to Scan with lossy index (blue box) because they do not bring many changes to

index building — only around 0.7% of frames and 1.5% of frames can be skipped in our

index when the difference threshold is 1 and 10 respectively. It indicates that there are

always obvious motions in these video clips and the one-second interval is long enough to
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Figure 5.6: Comparison of our commonsense knowledge models against a large language
model (GPT-3.5) using the optimal two prompts from a selection of ten.

capture visual differences. Adapted FOCUS (dark cyan box) is better than other baselines

as it can capture similarities between video clips at index time. Our system (yellow and

orange boxes), especially the model built with videos (yellow box), significantly outper-

forms all the baselines. This is particularly evident in the low- and medium-frequency

groups, where PAINE exhibits up to a 97.79% improvement and shows a lower variance.

Drawing a comparison to Adapted FOCUS, it can be inferred that incorporating external
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commonsense knowledge does bring notable benefits.

When comparing our two models, as expected, the model built with videos achieves

better results, yielding 83.48% - 97.79% improvement over baselines. Even though the

other model only integrates general commonsense knowledge and does not include any

video information, it still shows a strong performance — 33.82% - 75.39% improve-

ment over baselines. When it is hard to obtain commonsense knowledge from appropriate

videos in advance, the model built without videos would be a good choice. In addition,

when the frequency of target objects gets higher, the difference between these two models

becomes less significant. This is reasonable because the relations between frequently-

occurring objects and other objects are more well-known and easier to be captured by

knowledge graphs or online text, making the video information less important.

The number of processed videos is a good proxy for query performance because the de-

tection model’s runtime dominates query processing time. Our commonsense knowledge

models bring extra overhead due to the assignment of probabilities and video ranking, but

this overhead is minor. For example, it takes our BERT regression model around 5.3 sec-

onds to predict probabilities and rank videos for the YouTube-8M dataset. Considering

the video clip length, frame rate, and the inference time of the detector, the total detection

time significantly outweighs this extra overhead. Figure 5.5 shows the average query pro-

cessing time of PAINE against baselines on YouTube-8M dataset. The results are aligned

with Figure 5.4a.

Besides the above baselines from previous research, we compared our commonsense

knowledge models with the LLM (GPT-3.5), as depicted in Figure 5.6. We evaluated ten

diverse prompts and showed the best two in this figure. Even though the LLM is pow-
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erful in addressing various natural language inquiries and it indeed exhibits performance

improvement over a simple scan, it is not as useful as our models in this video selection

task. By analyzing the LLM’s responses, we find that it can return a few “obvious” an-

swers, i.e., videos containing objects that are closely associated with target objects, but

then return bad results. This may be attributed to two factors: firstly, the truncated index

results in information loss; additionally, as the response tends to rely on nearby text, LLM

outputs meaningless text at the end of the response (e.g., simply repeating). Furthermore,

good performance cannot be achieved even when processing the prompt for video scor-

ing. Although the factors mentioned above are not concerns in this scenario, LLM still

struggles to provide precise scoring.

5.5.2.2 Multiple Target Objects

Summary — PAINE works well for video selection workloads with multiple target ob-

jects. In two-target-object scenarios, PAINE can achieve a 92.23% improvement compared

with baselines; in three-target-object scenarios, it can yield a 91.43% improvement.

Overview — We generated new queries that contain two or three distinct target ob-

jects. The object combination in two-target-object queries should satisfy the following

requirements: (1) at least 10 arriving video clips contained it, and it is categorized either

as a member of the low-frequency, medium-frequency, or high-frequency group; (2) both

objects in the combination existed in the ConceptNet NumberBatch; (3) both objects were

not within a distance of length 3 with the entity ‘object.n.01’ in the WordNet in order to

remove vague words. When creating three-target-object queries, due to the substantial

amount of potential combinations, we only tested those combinations that exist in 10-15
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Figure 5.7: Compare PAINE with baselines when there are two target objects in each query.

arriving videos. Overall, we constructed 8051 and 10004 queries containing two target

objects and 13298 and 17541 queries containing three target objects for each dataset re-

spectively.

Results — Figure 5.7 and Figure 5.8 show the comparison results for two-target-

object and three-target-object workloads. In Figure 5.7, our system, especially PAINE with

videos, achieves the best result. Even though our BERT regression model was only trained

with single-target-object examples, its advantage over baselines is still significant in the
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Figure 5.8: Compare PAINE with baselines when there are three target objects in each
query.

multiple-target-object workload, yielding up to a 92.23% improvement on YouTube-8M

data and a 91.37% improvement on HowTo100M data. The model built without videos

exhibits great performance in the low-frequency group. However, in the medium- and

high-frequency groups, this model falls short of exceeding one of the baselines, Adapted

FOCUS. Selecting videos containing frequent objects is a relatively easy task for base-

lines. In order to beat baselines, the object relations need to be well modeled, but general

commonsense knowledge from knowledge graphs and text may not be enough to achieve

this goal. Our model built without videos does not aim to be helpful in this case.

Even though processing the three-target-object workload is a harder task, PAINE out-

performs baselines for infrequent target object combinations as shown in Figure 5.8. Due

to the space limit, we do not show more results of queries with more than three target

objects. However, according to the trend, we expect PAINE can work well for multiple

target objects, and the model without videos can be effective for target objects with low

frequency.
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5.5.3 Various Settings

In this section, we vary the experimental scenarios to test how our algorithms perform

in a wide range of settings, including different index time budgets in Section 5.5.3.1, dif-

ferent amounts of object statistics for model training in Section 5.5.3.2, the effect of the on-

line learning strategy in Section 5.5.3.3, and different LIMIT numbers in Section 5.5.3.4.

We tested single-target-object queries in the low-frequency group for all the following

experiments, and we set the LIMIT fraction to 20% in Section 5.5.3.1-5.5.3.3.

In a hard scenario, the target objects are quite rare and cannot be captured by the index.

To test how our methods perform in this scenario, we ran experiments in a hard mode in

this section, that is to say, for each query, the target object was deleted from the index. We

did not test this mode in the overall comparison in Section 5.5.2 because all three baselines

rely directly on the index and they would reduce to a simple scan method in the hard mode.

5.5.3.1 Index Budget

Summary — In general, our optimization algorithms become more useful with the

increase of the index size. They have a significant advantage over Scan even with a tiny

index size.

Overview — In our default setting, frames are processed to build the index at the rate

of one frame per second. As the index time budgets vary, it may be necessary to reduce

the rate accordingly. We experimented with different average frame rates for the index,

ranging from 0.02 to 1 frame per second. We compared our two models in PAINE with a

simple scan.

Results — Figure 5.9 shows the performance of PAINE and Scan under different index
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Figure 5.9: The performance of optimization methods when varying the index size.

settings. We find that when the average index frame rate increases, our system’s per-

formance becomes better. It is reasonable because object information from more frames

usually can promote a better understanding of the video content. We can also see that our

system can achieve substantial improvement compared with Scan even with an extreme

index budget limit: up to a 74.52% improvement on YouTube-8M and up to a 36.41% im-

provement on HowTo100M when only 0.05 frames are indexed per second on average. We

notice that the model built with videos improves at a faster rate as the index size increases

compared to the model built without videos, indicating that the commonsense knowledge

from videos equips the former model with better capabilities to leverage complex relation-

ships among multiple objects.

5.5.3.2 Size of Videos for Commonsense Knowledge Collection

Summary — The performance of the model built with videos becomes better when the

size of videos used for commonsense knowledge collection increases for model training.

Overview — In the default setting, we assigned a large portion of the video corpus to
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Figure 5.10: The performance of optimization methods trained with different amounts of
videos

generate object statistics from videos for model training (11766 video clips in YouTube-

8M and 19183 video clips in HowTo100M) and validation (3922 video clips in YouTube-

8M and 6395 video clips in HowTo100M). In practice, in the model preparation stage,

it might not be feasible to collect this amount of videos that have the same object distri-

butions as new-coming videos. To test this situation, we varied the size: using 1%, 5%,

10%, 50%, and 100% of the assigned videos to train the model. For a fair comparison, we

adjusted the training epochs for each model to ensure the same amount of training steps.

The online learning strategy was not applied in this experiment.

Results — Figure 5.10 shows the comparison of different probabilistic models trained

with varying sizes of videos that are used for commonsense collection. When the size

is larger, it can yield more accurate and comprehensive commonsense knowledge so that

our optimization method can process fewer video clips. When the size is very small (e.g.,

1%), the BERT regression model is not fully trained but it still substantially outperforms

the scan method.
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5.5.3.3 Online Learning

Summary — Our model built with videos can be further improved by the online learn-

ing strategy. In general, the performance gets better with the increase in video size during

online learning.

Overview — In order to test whether the online learning strategy is effective, we var-

ied the fraction of data used for online learning from 0% to 100%. To make the compar-

ison fair, we adjusted training epochs for the experiments with different data fractions to

achieve the same training steps.

Results — Compared with no online learning, the model after full online learning can

process up to 19.98% fewer videos on YouTube-8M and up to 7.81% fewer videos on

HowTo100M. When the fraction increases from 10% to 100%, the overall performance is

gradually enhanced. However, compared with no online learning, when the online learning

fraction is too small, the performance could even become worse. A possible reason could

be that the model has overfitted to the limited examples, resulting in unsatisfactory results

on new data. It would be better to use this strategy after enough video information is

gathered in the query processing stage.

5.5.3.4 LIMIT Values

Summary — Our optimization algorithms are effective across a wide range of LIMIT

values, even when faced with the demanding task of retrieving all satisfying videos.

Overview — In the conducted experiments, we selected a moderate and representative

LIMIT value, 20% of the videos that can satisfy the query’s predicate. To assess the ro-

bustness of our models across varying LIMIT settings, we systematically tested the LIMIT
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Figure 5.11: The performance of optimization methods when varying the LIMIT value.

fractions ranging from 10% to 100%, with intervals of 10%.

Results — Figure 5.11 shows the comparative performance of different optimization

methods on two datasets across a range of LIMIT fractions. The x-axis represents the

LIMIT fraction, which is the fraction of LIMIT value relative to the total count of videos

that can satisfy the predicate. Both of our models (yellow and orange lines) show signifi-

cant performance across a wide range of LIMIT settings, outperforming the scan method.

As the LIMIT fraction approaches 100%, the task becomes more challenging, but our

models continue to be substantially faster than scan.

5.5.4 Discussion

In this work, we focus on video selection queries with a built-in object detector. Our

optimization methods are orthogonal with the detection model, so as an extension, users

can also provide their own detection model in the predicate. If the user-defined detector can

detect new object categories, useful object statistics would not be collected in the model

preparation stage. Fortunately, our general-purpose model built without videos may still
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perform well.

Besides the benefit of accelerating query processing, our optimization method can also

return more relevant videos to users. For example, when videos are processed by a simple

scan, a video containing only a single frame of the target object might be returned, but it

is unlikely to happen in our commonsense knowledge-based method. If relevance ranking

is considered, we believe our method can still beat baselines. In addition, it is unlikely

for PAINE to return rare videos regarding target objects, for example, returning videos

containing a tennis racket in a department store rather than on a tennis court when the target

object is “tennis racket”. However, users can specify the atypical target object combination

(e.g., “tennis racket” and “department store”) in their query if they are interested in rare

situations. Even though target objects are not closely related in such cases, results from

the low-frequency group in Section 5.5.2.2 demonstrate that PAINE can effectively retrieve

rare videos that contain atypical combinations of target objects.

It is worth noting that the query processing procedure can be further improved during

the invocation of the object detector, for example, batch processing can be allowed as in

voodoo indexing [67], or specialized NNs and the difference detector can be applied if

a small error can be tolerated. These techniques can be combined with our system or

baselines. To ensure a fair comparison and focus on the video ranking mechanism before

the detection model invocation, we did not include these techniques in our experiments.

5.6 Conclusion

As deep learning models are becoming increasingly popular in object detection, it is

common for video selection queries to include these models in the predicates. Due to the
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long inference time of detection models, it is crucial to develop optimization techniques

to accelerate the query processing. In summary, we propose a novel index mechanism

that utilizes an inexpensive index and commonsense knowledge to prioritize videos that

are likely to contain target objects. We have implemented a prototype system, PAINE, and

tested it on real-world video corpora with a wide range of settings.
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CHAPTER VI

Uncovering Confounders from Images for Causal

Inference

6.1 Introduction

Causal inference is the process of identifying the causal relationships between at-

tributes in data, helping analysts determine whether and how much one factor inde-

pendently influences the outcome. It is widely used across various domains, such as

medicine [141], public policy [49], education [58], etc. Because randomized controlled

trials are not always feasible due to constraints such as budget limitations and ethical con-

siderations, it becomes more appealing to estimate causal effect using observational data.

However, such works suffer from confounding bias [139], one of the major concerns in the

field of causality — confounding variables that are associated with both the factors being

studied and the outcome make it challenging to figure out the genuine causal relationship.

To address the confounding bias, one primary obstacle is that the confounders may be

absent from the data [196].
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When the data is incomplete for causal inference, it needs to be augmented with at-

tributes selected from external sources. It has been explored to mine potential confounders

and integrate data with tables [157, 162], knowledge graphs [195], and text [202]. In ad-

dition to these sources, there might be images associated with the studied attributes, such

as patient record tables with medical images. It is important to note that images could

potentially contain confounding variables, yet they have not been investigated.

EXAMPLE. Sansa, a manager of a chain of markets, devised a novel pricing strat-

egy. In order to figure out its effectiveness, she applied the policy across all the markets

for a few days, recording the sale revenue. Subsequently, she input both the old and new

revenue data into a causal inference system, which analyzed policy’s impact on sales. Ad-

ditional information from the market database, such as the market location and product

categories, was incorporated for identifying external confounding variables. The causal

inference system indicated that the policy had a positive influence on sales, leading Sansa

to continue this strategy.

However, after a full season, Sansa noticed that the sales revenue had actually declined

compared to previous values. It turned out that the weather condition played an important

role as a confounding variable — the new pricing policy had only been tested during rainy

days by coincidence, and the rainy weather boosted the revenue due to increased umbrella

prices. Unfortunately, this weather variable had not been included into the causal in-

ference analysis, leading to distorted results. If video frames from surveillance cameras

outside the markets are provided for the causal inference system to extract the weather

information, the causal effect of the new policy could be accurately estimated, avoiding

the financial losses in this season.
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To prevent the confounding bias in the above example, we aim to uncover confounders

from images for causal inference. This is not a trivial task due to the unstructured na-

ture of image data. Unlike tables and knowledge graphs in which attributes are explicitly

listed, image attributes are hidden in pixels and required to be extracted before integration.

Regarding the feature extraction, we face two main challenges. First, it is unclear what

specific attributes should be extracted. While one might intuitively consider extracting ob-

jects present in the images, the task remains ambiguous due to the various subcategories

associated with objects. Additionally, there exist other relevant features to consider, such

as weather conditions. The attributes can be highly domain-specific, depending on the

images and the studied causal relationships. Attempting to pre-define all the features for a

comprehensive solution is unrealistic. Second, feature extraction from images is difficult

even when the attribute names are known. A variety of deep learning models have been

designed to improve extraction efficiency compared with manual extraction. However,

most models are only pretrained for specific tasks, for example, YOLOv5 [81] can detect

80 object categories in MS COCO dataset [112] but cannot distinguish the color of traffic

lights. It is impractical to collect all the specific models for various attributes.

In this paper, we tackle the above challenges and propose a novel causal inference

pipeline that extracts potential confounding variables from images. Our system accepts

an incomplete causal table with specified treatment and outcome names, along with a set

of images associated with each tuple, as the input. We design a user interface that col-

lects the names of potential confounders from users. This interface covers a wide range

of image features, including object presence, object status, etc., enabling this pipeline to

function effectively across diverse domains. In order to extract such features from images,
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we utilize the state-of-the-art visual language model, GPT-4 with vision (GPT-4V) [134],

which can process both textual and visual information. We design the appropriate prompts

to achieve accurate feature extraction. When high accuracy cannot be guaranteed by us-

ing the visual language model, our system will employ a lightweight classifier trained on

visual embeddings from CLIP [144] to enhance accuracy. Furthermore, we leverage GPT-

4V to recommend domain-specific features that complement the confounding information

from the user interface. Our pipeline integrates the original table with the extracted visual

features, and it outputs the average treatment effect (ATE) from the complete causal table

using an existing causal graph generation tool.

In our evaluation process, we collected real-life images for testing across three distinct

causal graphs. These causal graphs contain diverse visual features as the confounding

variables, including various object statuses and variables with different value ranges. To

challenge the robustness of our pipeline, we devised varying levels of difficulty when

it came to extracting the confounding variables and gathered images accordingly. Our

results demonstrate that our system can successfully identify confounders within images

and accurately compute the independent causal effect between the treatment and outcome.

6.2 Approach

In this section, we first introduce our overall procedure about uncovering potential

confounding variables from images to correct causal inference in Section 6.2.1. Then, we

describe each component of the workflow in detail in Section 6.2.2 - 6.2.4.
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Figure 6.1: The architecture of our system to uncover potential confounders from images.

6.2.1 Overall Procedure

Our end-to-end system architecture that supports the extraction of potential con-

founders from images is shown in Figure 6.1. Users can submit a relational table, serv-

ing as the original causal table, and designate two specific table attributes as the treat-

ment and outcome variables. Additionally, they incorporate relevant images as external

sources of confounding factors. Our system outputs the important causal parameter, aver-

age treatment effect (ATE), which quantifies the average differences in outcomes between

the treatment group and the control group, for example, the revenue difference resulting

from applying the new pricing policy or not.

In this workflow, our system initially acquires potential confounder names directly

from users or through image analysis, such as “weather” (as detailed in Section 6.2.2).

Subsequently, it extracts values of these variables from the image set, such as “rainy” and

“not rainy” for the variable “weather” (as elaborated in Section 6.2.3). These identified

attribute values are then forwarded to the post-processing component (as outlined in Sec-

tion 6.2.4) for extraction accuracy diagnostic, integration with the original causal table,

and functional dependency removal to yield a complete causal table. Much like other
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works in the field of causal inference, we assume this table adheres to the fundamental

principles of causal inference — consistency, positivity, and exchangeability. We employ

an existing causal discovery tool [1] that is built upon DoWhy [161, 18] to identify the

confounders from the attributes. With these confounders accounted for, the tool computes

ATE and the associated p-value. If the p-value is greater than the threshold 0.05, users

have the option to expand the dataset by collecting more tuples and images and rerun the

entire system.

6.2.2 Suggest Potential Confounders

The potential confounding variable names can be obtained directly from the users when

they possess domain knowledge. Our user interface, as shown in Figure 6.2, enables users

to input feature names related to objects and the environment. In the first category, users

have the flexibility to specify the object’s name and its attributes (e.g., color, shape, loca-

tion, etc.) in text, and choose the feature type from options like the existence condition

(“existence”), the quantity of this object (“count”), or its status (“status”). When “status”

is selected, users can provide a concrete description in the right-most text boxes. In the

second category, users can pick the type of environment-related feature from “weather”,

“outdoor/indoor”, and “brightness” and define the status of these features, such as “rainy”

and “not rainy”.

Due to the rich information contained in images and the extensive background knowl-

edge involved, it is often challenging for users to provide a comprehensive list of the po-

tential confounder names. Besides the above user interface, it would be great if our system

can further assist users to address this issue. One possible approach is to propose poten-
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Figure 6.2: Our user interface for users to provide the names of potential confounders

tial confounding variable names from knowledge graphs. However, this approach has two

weaknesses. First, it can lead to an excess of potential confounders, some of which may

not even be relevant to the images. Consequently, processing images for these variables in

the feature extraction stage (Section 6.2.3) would be a waste of computational resources

and time. Second, knowledge graphs are limited; there may exist new relationships in im-

ages that have not been incorporated into knowledge graphs. To address these issues, our

system adopts a more direct approach by generating potential confounder names from the

image data. Visual language models can recognize image content and are enriched with

general knowledge because they have been trained on vast amounts of text and visual data.

They can provide general insights including the status of objects, for example, the traffic

light can be red or green. Our system generates prompts to process various images using

GPT-4V(ision) and records essential information, including the identified objects, their

numbers, locations, common statuses, and current statuses within the image. We filter out

objects that always exhibit the identical statuses across images, distinguishing different

objects based on their category and location. Such objects just serve as background ele-

ments and would not contribute information to causal inference. We present these objects
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and statuses to users, allowing them to make informed selections.

6.2.3 Feature Extraction

After the system has acquired the potential confounding variable names, the next step

involves extracting their corresponding values from each image. If there exist specialized

pre-trained computer vision models tailored to detect these objects, this would simplify the

task. However, due to the domain variance, a more general approach is required. Visual

language models, such as Google Bard, GPT-4V(ision), and others, which are designed

to understand visual content, offer a fitting solution. These models take natural language

input that describes the task and they are able to address visual challenges in various fields.

Our system employs GPT-4V API for the extraction of the potential confounders. We

generate prompts to communicate with the model, prompting it to produce concise an-

swers post-parsing. For example, a typical prompt may take the form of “Is the status of

this traffic light red or green? Answer in one word.” In addition to these basic prompts,

we implement the following prompt techniques to further improve the extraction perfor-

mance. First, we leverage the power of few-shot learning by integrating a few images,

each annotated with user-defined labels, into the prompt. This technique encourages the

model to learn from these examples. We ensure that the examples are consist of images

with various labels. Second, we include domain knowledge into the prompt to provide

additional context and background information. For example, we may include the infor-

mation like, “The top light corresponds to red. The bottom light corresponds to green.”

Third, we employ other prompt practices to make the model “think”, for example, adding

the content “give me the reason in the second line” to encourage the model to think about
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the underlying rationale.

6.2.4 Attribute Post-processing

The extracted potential confounding variables are then fed into the post-processing

component to generate a high-quality causal table. The accuracy of confounder values

can affect the causal inference process. If the values deviate significantly from the ground

truth, their capacity to correct the Average Treatment Effect (ATE) between the treatment

and outcome diminishes. To tackle this issue, we have implemented a diagnostic mecha-

nism. For each variable, users are required to annotate at least 1% of the total images. If

the extraction results fall below the accuracy threshold δc (for categorical data) or exceed

the difference threshold δn (for numerical data), we consider the extraction quality to be

inadequate and our system will revert to the feature extraction component. In this situ-

ation, a general-purpose visual language model struggles to perform effectively, leading

our system to rely on specialized classifiers for support. We train a lightweight classifier, a

logistic regression model, using visual embeddings from CLIP based on images and labels

provided by users.

The precisely extracted attributes are then incorporated into the original causal table.

We align the sequence of images with the row numbers of the original causal table, en-

abling the attributes to be integrated as new columns directly. Adhering to the positivity

assumption in causal inference, we remove attributes exhibiting functional dependencies

or high intercorrelations.

152



Vehicle speed Car accident frequency

Traffic light status

1 -2

Number of books 
at home

Reading hours 
every week

Academic 
performance

3

3 2

1

Electricity 
consumption

Mood of 
people

Light switch status

2 2

-3

Figure 6.3: Three causal directed acyclic graphs (DAGs) tested in our evaluation

6.3 Evaluation

In this section, we introduce our datasets and experimental settings in Section 6.3.1.

We show our results sequentially — we compare the accuracy of ATE from our system

with baselines in Section 6.3.2, demonstrate how feature extraction quality affects ATE’s

accuracy in Section 6.3.3, vary the size of causal table in Section 6.3.4, and evaluate causal

inference cost in Section 6.3.5. All experiments were conducted on a 40-core Intel Xeon

Gold 6248 server with 384GB RAM and 2 Nvidia Volta V100 GPUs, and a Macbook Pro

with the Apple M1 chip and 16GB memory.

6.3.1 Datasets and Experimental Settings

When testing the effectiveness of our system, we confronted the absence of available

relational data associated with images prepared for causal inference research. To address

this limitation, we created three new datasets which comprised three distinct causal DAGs

as shown in Figure 6.3, and each DAG is characterized by a unique confounding variable
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type:

• Traffic light case: The treatment, high vehicle speed, can independently cause

higher outcome, the frequency of car accidents. Traffic light status is a confound-

ing variable — green light causes an increase in vehicle speed while decreasing the

frequency of car accidents, as drivers are not required to alter their driving mode.

This confounder can be represented as two distinct values: “green” denoted by 1

and “red” denoted by 0, with these states distinguishable through color.

• Light switch case: The treatment, high electricity consumption, can diminish peo-

ple’s mood. The light switch status is a confounding variable — when the light is

turned on, it consumes more electricity but elevates people’s mood due to increased

brightness. This confounder can be represented as two values: “on” denoted by 1

and “off” denoted by 0, with these states distinguishable based on the position of

the light switches.

• Education case: The treatment, more reading hours every week, can boost aca-

demic performance. The number of books at home is a confounding variable — a

greater number of books at home, which indicates more favorable educational envi-

ronment, usually results in longer reading hours and better academic performance.

This confounder can take a range of non-negative integer values.

Because the causal discovery tool that we employed operates under the common assump-

tion of linear causal relationships, the attributes in our designed DAGs have linear inter-

connections. The linear coefficients are denoted by the edge weights in Figure 6.3.

To align our data with these DAGs, we generated tables and collected a diverse set of
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images captured from various perspectives and locations to reflect the real causal relation-

ships, incorporating small errors that follow a normal distribution. In addition, we ensured

that camera-related information, including image resolution, remained constant in each

dataset, treating them as unmeasured confounding variables. Furthermore, for the easy

scenario, traffic light case, we gathered images categorized into three tiers of complexity,

ranging from simple scenarios with a single traffic light, to situations featuring other ob-

jects alongside a traffic light, and even cases with two traffic lights, one of which exerted

a causal influence.

In the feature extraction component, we invoked GPT-4 API to utilize the model “gpt-

4-vision-preview”, setting the image resolution as high, the maximum number of tokens

as 300, and the temperature as 0. In the post-processing component, we established the

accuracy threshold δc to be 0.8 and the difference threshold δn to be 1. As for the existing

causal discovery tool, we used the default back-door adjustment setting.

6.3.2 ATE Accuracy

To test the effectiveness of our system, we compare the ATE output from the following

methods:

• No image: There is no image input — the ATE is computed based on the original

causal table.

• YOLOv5: In the feature extraction stage, we utilized an object detection model,

YOLOv5 [81], to analyze each image. We generated a table where each column

corresponds to a distinct object category, with each cell recording the count of each
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Figure 6.4: We compare the relative ATE difference of our system (with user-defined
variable or with suggested variable) with baselines (no image or YOLOv5) in the traffic
light case. From left to right, we increase the complexity level of feature extraction —
image input contains (1) single traffic light, (2) single traffic light and other irrelevant
objects, or (3) two traffic lights with the left one acting as a confounder.

object in each image. This table was then concatenated with the original causal

table.

• Ours (user-defined variable) We run our system based on user-specified confound-

ing variables. We assume that all the confounders are provided by users through our

user interface (Figure 6.2). For example, in the traffic light case, users input “traffic

light” as the object name, select the type “status”, and proceed to specify the statuses

as “red” and “green”.

• Ours (suggested variable) We run our system based on the potential confounding

variables suggested by our system as introduced in Section 6.2.2, independent of

users’ domain expertise.

We show the comparison results of the above four methods in the traffic light case in

Figure 6.4. The y-axis represents the relative difference between ATE and the ground truth

with a lower value indicating a better outcome. From left to right, the original causal table

is the same, but the inputed images are becoming more complex — they contain single
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traffic light, single traffic light with other irrelevant objects, and two traffic lights with the

left one affecting the treatment and outcome, separately in each subgraph, making the fea-

ture extraction stage more difficult. When there is no image input, the causal discovery

tool cannot find any confounding variable, computing the total effect of the treatment on

the outcome, which is 66.7% smaller than the true ATE. When there exists images as the

external resource and YOLOv5 is used in the feature extraction stage, new object vari-

ables are introduced but none of them are considered as the confounder. The reason is that

YOLOv5 cannot distinguish green traffic lights and red traffic lights and the detectable

objects are not causally related with the color status of traffic lights. Therefore, YOLOv5

cannot improve the no image baseline. In the left figure, our method shows superior per-

formance — the computed ATE is almost the same as the ground truth, because our prompt

enables GPT-4V to 100% distinguish the color of traffic lights. Even when users do not

provide this confounding variable name, our system can figure out the common status of

traffic light is red or green, suggesting a useful potential confounder. When the images be-

come more complex, the accuracy of our methods decreases but our results are still closer

to the ground truth compared with baselines. In the method where our system suggests

the potential confounders, irrelevant variables are also suggested, such as the existence of

people. Fortunately, they do not impact the accuracy of ATE because they are eliminated

due to no variance across images or they are not selected as the confounder candidates by

the causal discovery tool. However, due to the increased number of variables, it would

take more time to extract features. The runtime will be discussed in Section 6.3.5.

The results of the other two harder cases, the light switch case and the education case,

are presented in Figure 6.5. In the light switch case, YOLOv5 cannot distinguish the
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Figure 6.5: The ATE comparison results of the light switch case and the education case.

on or off status of light switches, showing the same results as the no image baseline.

When running our system, the detection accuracy of GPT-4V is below the threshold of 0.8

as it struggles to accurately determine the switch’s direction. This triggers the sytem to

return to the feature extraction stage to train a logistic regression model based on the CLIP

embeddings. This model can enhance ATE results compared to baselines. In the education

case, YOLOv5 can detect “book” but it is hard for YOLOv5 to output the precise book

number. Therefore, its performance falls between the no image baseline and our system.

Due to the difficulty of computing the exact number of books, our system is only slightly

better than baselines. However, it can reveal the confounders and discern the direction of

ATE changes, underscoring the importance of obtaining high-quality confounder values

for precise causal inference analysis.

6.3.3 Effect of Feature Extraction Accuracy

In Seciton 6.3.2, our analysis revealed that the computed Average Treatment Effect

(ATE) displayed varying levels of accuracy across different methods and datasets. This
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Figure 6.6: The relative ATE difference of our system when varying the feature extraction
accuracy and the causal DAG edge weight (the ground truth of causal effect) in the traffic
light case.

variability can be attributed to differences in feature extraction precision. When the causal

table contains inaccuracies, the causal inference task becomes challenging, as these errors

must be discerned and mitigated. In this section, we use the traffic light case to investigate

how the accuracy of feature extraction impacts the accuracy of ATE calculations. Specifi-

cally, we varied the accuracy of the binary classification in traffic light color and the edge

weights within the causal DAG.

We present the results of ATE difference compared with the ground truth of causal

effects in Figure 6.6. The left figure illustrates the impact of varying feature extraction

accuracy, ranging from 0.5 to 1, achieved by randomly assigning traffic light colors based

on the specified accuracy levels. As expected, as feature extraction accuracy increases,

the ATE difference decreases, signifying more precise causal inference outcomes. When

the extracted variables are 100% accurate, there is no difference between the computed

ATE and the ground truth, underscoring the effectiveness of the adopted causal discovery

tool. Notably, ATE accuracy exhibits minimal fluctuation when feature extraction accu-
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racy is low, but it experiences rapid changes when feature extraction accuracy is large.

This indicates the importance of enhancing feature extraction accuracy, as even marginal

improvements yield significant benefits when accuracy is already high.

In the right figure, we maintain a constant feature extraction accuracy of 0.95 while

varying the edge weight between vehicle speed and the frequency of car accidents in Fig-

ure 6.3 from 2 to 10, thereby altering the ground truth of ATE. This figure reflects that the

effect of the feature extraction depends on the causal DAG. With consistent feature extrac-

tion accuracy, higher edge weights correspond to greater ATE accuracy. This phenomenon

arises because, when the edge weight between the treatment and the outcome is substan-

tial, the indirect causal effect becomes relatively minor, thereby reducing the impact of

confounding value errors on the computed ATE’s accuracy.

6.3.4 Causal Table Size

We have conducted tests of the causal inference task on large causal tables which

contain 100,000 rows. When causal tables are too small to yield robust ATE calculations,

our system takes measures to ensure the user is alerted and prompted to supply additional

data for a more reliable outcome. In such scenarios, our system provides users with the

p-value from the causal discovery tool, the probability of obtaining results that are at least

as extreme as the computed results under the null hypothesis. To evaluate how the size of

causal tables affect the ATE, we varied the number of rows in the traffic light case when

providing images containing single traffic light and other irrelevant objects.

Figure 6.7 illustrates the results under different sizes of causal tables. The y-axis on

the left side (depicted in red) is ATE difference compared with ground truth, and the y-axis
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Figure 6.7: The results of ATE accuracy and p-value when varying the size of causal tables
in the traffic light case.

on the right side (depicted in blue) represents the p-values. When the number of rows is

minimal, the p-value deviates from zero, and the computed ATE exhibits substantial fluc-

tuations. This behavior is due to insufficient evidence to establish statistical significance.

As the dataset size increases, the p-value is close to 0 but ATE fluctuations persist. A

possible reason is the presence of non-deterministic relationships between variables, char-

acterized by errors following a normal distribution. These errors were introduced during

data generation. When the number of rows becomes sufficiently large, such as exceeding

200, the p-value approaches zero, and the computed ATE stabilizes. This observation sug-

gests that increasing the causal table size mitigates uncertainty but does not eliminate the

effects of feature extraction errors.
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6.3.5 Causal Inference Cost

In this section, we studied the computational costs of causal inference when using

our system. To illustrate, let’s consider the scenario of the traffic light case, where we

work with images containing a single traffic light. The post-processing stage and the

application of the causal discovery tool to propose confounding variable candidates and

compute the ATE are highly efficient, requiring only approximately 0.3 seconds. The

time consumed during the potential confounder suggestion stage and the feature extraction

stage dominates the total causal inference duration. This primarily results from the time-

intensive invocation of GPT-4V. Its inference time depends on the token length, which is

approximately six seconds for each image in the traffic light case. Therefore, the total

time required for causal inference is nearly linear with both image size and the number of

extracted variables. If the system suggests a substantial number of potential confounders,

the overall process would experience slower execution.

6.4 Conclusion

In this work, we designed a new approach to mitigate confounding bias in causal infer-

ence by uncovering potential confounders from images. Our system leverages the state-of-

the-art visual language model and classifiers to extract user-defined and domain-specific

features from images. We demonstrated its ability to find out potential confounders for

causal table integration and compute independent causal effects in our evaluation. This

research reveals the importance of incorporating visual information into causal inference.
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CHAPTER VII

Conclusion and Future Work

7.1 Conclusion

My dissertation is dedicated to addressing the challenges in query processing within

video database management systems. In order to mitigate the slow processing issues

caused by the large size of video databases and the prolonged inference times required for

information extraction, we propose two novel indexing mechanisms to accelerate query

processing and facilitate the selection of desired videos and video frames. In our system,

VOODOO INDEXING, we introduce item indexes that are organized based on similarity

so as to intelligently oversample from groups that are more likely to satisfy query predi-

cates. In addition, within our system PAINE, we construct a cost-effective object index by

processing sampled frames and augmenting the index using commonsense knowledge to

suggest potential video candidates.

Furthermore, we address the challenging trade-offs between accuracy and competing

goals in video analytics, which include system requirements driven by the immense size of

video databases, as well as unique privacy considerations for video data. To assist admin-
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istrators in balancing these goals, we compute approximate tradeoff curves that quantifies

the relationship between video degradation and analytical accuracy.

Lastly, to support causal inference queries in datasets that include images, a challenge

task due to the unstructured nature of image data, we develop a comprehensive pipeline.

This pipeline is designed to extract confounding variables from images, thereby enhancing

the accuracy of causal effect estimation.

7.2 Future Work

In this dissertation, we have presented four works, each offering unique perspectives

on improving query processing within video database management systems. In the near

future, there are promising research opportunities in each of these areas.

In VOODOO INDEXING, we focus on basic filter queries with one UDF predicate. We

view this as the initial step towards a family of methods for opaque query optimization. We

believe it may be possible to apply our method to filter queries with multiple predicates by

adjusting the reward function. Applying our method to aggregation queries that include

a selection is likely to be straightforward, but using a UDF in the HAVING clause of

an aggregation query is a serious challenge. This latter situation might appear in large

machine learning workloads that use database queries to feed training data to a vast number

of model production pipelines; we believe that examining the larger context in which

opaque filter queries operate is a promising direction for future projects. Finally, we would

like to address the optimization challenge for more elaborate queries such as JOIN queries.

A possible way is to adapt our mechanism for cardinality estimation.

In SMOKESCREEN, we focus on the video aggregate queries with frame-level detection
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models. Even though they can cover a variety of cases, there exists another type of model,

which processes frame sequences, e.g., a RNN model for action recognition and detection.

Because reducing the sampling rate likely decreases the accuracy of the model’s outputs,

simply considering it as a random intervention seems inappropriate. In this situation, both

of our algorithms for random and non-random interventions cannot be directly applied. In

addition, besides the four commonly used aggregate functions, AVG, SUM, MAX, and COUNT

in our work, more aggregate types can be explored, such as VAR. We believe examining

the degradation-accuracy profiling problem for more neural network model types and ag-

gregate functions, as well as exploiting videos’ unique properties, are promising future

projects.

PAINE opens a new direction to optimizing video selection queries based on common-

sense knowledge. For future work, we could consider calibrating the predicted probabil-

ities to enable skipping the processing of high-probability videos, if users can tolerate a

small error. Moreover, it would be exciting to expand our approach to tackle more general

cases, such as video selection queries that filter objects with specific position constraints

or filter actions detected from multi-frame sequences. It is promising to infer correlations

between the above elements from commonsense knowledge.

When it comes to causal inference, videos open up more opportunities, as it contains

richer information, especially in terms of temporal characteristics. Within videos, ex-

clusive and valuable temporal information can be extracted, including but not limited to

object speed, trajectories, human actions, and event durations. These temporal features

may also act as confounding variables in causal relationships. Besides, the temporal na-

ture of videos can help determine causal directions due to its inherent asymmetry. It is
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promising to extend the exploration of confounding variables to video data. Addition-

ally, in causal graphs, visual attributes can serve not only as confounders but also as other

causal variable types, such as mediators and colliders. A compelling future direction can

be constructing complex causal graphs that incorporate both traditional table attributes and

visual attributes. Such causal DAGs could provide a more comprehensive depiction of the

underlying causal relationships in the world. Moreover, this work has the potential to be

adapted and tested in diverse domains, such as medical research, opening up possibilities

for interdisciplinary collaboration.

In addition to these directions closely related to our works, there exist other promis-

ing avenues for future exploration within the topic of query processing in video database

management systems. Firstly, there is a growing number of video streams that require

near real-time query processing. The indexing mechanisms are inadequate in this context,

prompting the need for new approaches to query optimization. Secondly, it is important to

investigate effective storage methods for videos, which can be viewed as high-dimensional

vectors. Such methods can significantly impact scalability, performance, and privacy con-

siderations, etc. Lastly, there is high value to develop a video database management system

supporting more intricate queries. While current visual language models, like GPT-4V,

have the capacity to handle complex queries in natural language, it is challenging for these

models to achieve a higher level of accuracy.
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