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ABSTRACT

Applying sophisticated optimization methods to control problems in various systems of-

fers a structured approach for achieving system efficiency and reliability, while ensuring the

feasibility of physics-based constraints. This dissertation primarily focuses on developing op-

timization algorithms for control problems in complex systems with mixed-integer variables

and parameter uncertainties. In Chapter 1, we provide a detailed introduction about the

problem motivation and summarize our problems and contributions. Specifically, we develop

new optimization models and algorithms for network-based traffic control and binary control

in quantum systems, detailed as follows.

Traffic signal control is an effective way of mitigating traffic congestion, where its complex-

ity escalates in large cities due to numerous intersections and varying traffic conditions. Ad-

vancements in communication technologies within transportation infrastructures have made

distributed traffic signal control at the network level possible and worth investigating. In

Chapter 2, we build a stochastic optimization model for network-level traffic signal control

under traffic demand uncertainty and solve it using decentralized algorithms. We compare

the results with state-of-the-art traffic control methods via testing instances of real-world

traffic networks and data.

Quantum computing and quantum systems provide a novel way of significantly acceler-

ating computation and their operations largely rely on quantum pulse control optimization

to attain desired states or status. The optimization of binary quantum pulse control can po-

tentially enhance the performance of classical quantum variational techniques and improve

solution quality. In Chapter 3, we study a discrete-valued binary quantum control problem

and propose an algorithmic framework to solve the problem with penalty on switches. In

Chapter 4, we explore the binary quantum control problem in a continuous time horizon

by optimizing both control functions and control time intervals. Moreover, the time-varying

noise in quantum systems and the wide use of inhomogeneous quantum ensembles highlight

the need for quantum controls considering uncertainties. In Chapter 5, we develop a stochas-

tic optimization model for the binary quantum control problem with uncertain Hamiltonian

controllers and solve it using gradient-based methods with rounding algorithms. We test the

performance of our approaches and benchmark with state-of-the-art control methods in all

xvi



three chapters. Lastly, in Chapter 6, we conclude the dissertation and state future research

directions.
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CHAPTER 1

Introduction

1.1 Background

Optimal control serves as the backbone for optimizing the performance and reliability of real-

world systems [30, 31]. By making high-quality control decisions, we can significantly enhance

system efficiency, mitigate associated risks, and achieve desired outcomes. The main focus

of this dissertation is to explore and develop optimization methods for mixed-integer control

problems in complex systems with three main challenges. First, all the systems have difficult

physical constraints and mixed integer and continuous variables, resulting in computational

complexity and the difficulty of attaining optimal solutions. Second, many control problems

in real-world systems are large-scale, making centralized solution approaches impractical due

to high computational costs. Third, real-world systems commonly include data collection

errors, system noise, and fluctuations, which introduce various uncertainties that must be

accounted for in our optimization approach. All these issues lead to extreme challenges

and difficulties in solving mixed-integer control problems, especially under uncertainties,

requiring the development of innovative optimization methods to design high-quality and

robust controls.

1.1.1 Optimization Methods for Control Problems

Optimization methods are powerful solution approaches that capture the physical constraints

and mixed-integer variables in systems, and integrate their physical nature into mathemat-

ical formulations that can be solved effectively. Therefore, employing various optimization

methods for complex system control enables more accurate, robust, and scalable control

solutions. In the literature, the Alternating Direction Method of Multipliers (ADMM), Ben-

ders decomposition, and the trust-region method are notably used due to their distinctive

advantages. In the following paragraphs, we review these three widely recognized optimiza-
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tion algorithms, which will form the foundation of different algorithms we develop in this

dissertation.

ADMM algorithm The ADMM algorithm [25] is known for its distributed optimization

capabilities, which is crucial in the case that the decision variables are separated across

different subsystems. The ADMM algorithm decomposes a larger problem into smaller sub-

problems, making it more manageable and scalable for real-world applications. The method

is particularly beneficial in control optimization tasks where a distributed solution approach

is required due to the decentralized nature of the systems [see e.g., 10, 58, 207].

The ADMM algorithm is initially developed for solving convex optimization problems

which can be decomposed into small subproblems [25]. Specifically, the ADMM algorithm

studies the following problem with decision variables x ∈ Rm, z ∈ Rn:

min f(x) + g(z) (1.1a)

s.t. Ax+Bz = c (1.1b)

where A ∈ Rp×m, B ∈ Rp×n, c ∈ Rp are parameters. The algorithm formulates the aug-

mented Lagrangian function as

Lρ(x, z, λ) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
∥Ax+Bz − c∥22, (1.2)

and consists of the following steps at iteration t+ 1:

xt+1 = arg min
x

Lρ(x, z
t, yt) (1.3a)

zt+1 = arg min
z

Lρ(x
t+1, z, yt) (1.3b)

yt+1 = yt + ρ(Axt+1 +Bzt+1 − c). (1.3c)

Boyd et al. [25] prove that both the objective value and solutions obtained by the ADMM

algorithm converge to the optimal value and solutions for convex problems. We incorporate

the ADMM algorithm into our control algorithms designed in Chapters 2– 3.

Benders decomposition By structurally separating problems into a master problem and

multiple sub-problems, Benders decomposition [18] provides a systematic way of solving two-

stage stochastic programs and is recognized for its ability to handle uncertainties that are

common in many real-world control optimization problems [see e.g., 21, 69, 142].

Benders decomposition was first proposed by Benders [18] to solve mixed-integer linear
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programs. When the integer variables are fixed, the resulting problem is a linear program

with strong duality which can be used to develop cuts [see e.g., 23, 90, 170, 187]. Specifically,

we consider a general two-stage stochastic mixed-integer linear program with finite sampled

realizations of uncertain parameters ξ. The first stage decision variable x ∈ X is decided

before we realize the uncertainty ξ where X ⊆ Rm or X ⊆ Zm is the feasible region for x. The

second stage decision variable y ∈ Rn is a continuous variable decided after we realize the

uncertainty ξ. We denote K as the number of finite samples and ξk = [Wk, hk, Tk, qk], k =

1, . . . , K as specific realizations of the uncertainty ξ. We set pk as the occurrence probability

of scenario k such that
∑K

k=1 pk = 1. The two-stage stochastic program has the following

form:

min cTx+
K∑
k=1

pkQ(x, ξk) (1.4a)

s.t. x ∈ X (1.4b)

where X is a constraint set without uncertainty and Q(x, ξk) is the optimal value of the

following second-stage problem:

min qTk yk (1.5a)

s.t. Tkx+Wkyk = hk, k = 1, . . . , K (1.5b)

yk ≥ 0, k = 1, . . . , K. (1.5c)

The traditional Benders decomposition algorithm solves a sequence of relaxed master prob-

lems and subproblems. We create new variable θ = (θ1, . . . , θK) ∈ RK and define a relaxed

master problem at iteration t as

(RMPt) min cTx+
K∑
k=1

pkθk (1.6a)

s.t. x ∈ X (1.6b)

(x, θ) ∈ Σt−1, (1.6c)

where Σt−1 is the set of Benders cuts as linear functions of x and θ generated up to the current

iteration t from sample-based subproblems (Σ0 = ∅). With dual variable πk corresponding

to constraints (1.5b), the subproblems are defined as the linear programming dual of the
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second-stage problems:

(SPk) max πT
k (hk − Tkx) (1.7a)

s.t. Wkπk ≤ qk (1.7b)

Given a first-stage variable solution x̂t, one can solve subproblems (SPk) with x = x̂t. Let

V k,t and Rk,t be the set of extreme points and rays of the feasible region of (SPk) in iteration t,

respectively (V k,0 = Rk,0 = ∅). We start to update the set of Benders cuts from Σt = Σt−1. If

the problem (SPk) is unbounded, it means that the original second-stage problem is infeasible

with fixed x̂t, therefore we update the Benders cuts Σt by adding feasibility cuts derived from

Rk,t:

Σt = Σt ∪ {(hk − Tkx)Tρk ≥ 0, ρk ∈ Rk,t} (1.8)

If the problem (SPk) is bounded, let Qk,t be the optimal value. When θtk < Qk,t, it means

that the current solution (x̂t, θ̂t) is not optimal for the original problem. Therefore we update

the Benders cuts Σt by adding optimality cuts derived from V k,t:

Σt = Σt ∪ {θk ≥ (hk − Tkx)Tνk, νk ∈ V k,t} (1.9)

We go through all the subproblems for k = 1, . . . , K to update the Benders cuts set Σt. Then

we go to the next iteration t + 1 and solve (RMPt+1). The optimal value of every (RMPt)

provides a lower bound to the original two-stage stochastic program and the combination

of optimal values of the subproblems (SPk), cT x̂t +
∑K

k=1 pkQk,t provides an upper bound.

The algorithm converges in a finite number of iterations because of the finite number of

subproblems [187]. We propose our distributed algorithm for a two-stage stochastic program

based on Benders decomposition in Chapter 3.

Trust-region method The Trust-Region method [47] is a well-established optimization

technique used for solving problems with nonlinear constraints and objective functions [see

e.g., 19, 42, 81, 217]. The method defines and adjusts the region where the estimated model

function is trusted to represent the original objective function accurately and solves a series

of subproblems [153].

Specifically, we consider a nonlinear optimization problem minx∈Rn f(x). The trust-region

method starts from an initial feasible point x0. At each iteration t, a model function mt(p)
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is designed to approximate the change of f(x) as

mt(p) = f(xt−1) + pT∇f(xt−1) +
1

2
pT∇2f(xt−1)p, (1.10)

where ∇f(xt−1) and ∇2f(xt−1) represent the gradient and the Hessian matrix of f , respec-

tively. We solve the following subproblem to minimize the model function within a trust

region with radius ∆t:

min
p∈Rn

mt(p) (1.11a)

s.t. ∥p∥ ≤ ∆t. (1.11b)

The choice of the radius ∆t is decided by the agreement between the model function mt

and the objective function f at previous iterations. Given an optimal solution pt of the

subproblem, the predicted reduction is defined as mt(0) −mt(pt) and the actual reduction

is defined as f(xt−1) − f(xt−1 + pt). The ratio ρt is defined as the actual reduction divided

by the predicted reduction. If ρt is high, it indicates that the model function mt yields a

good approximation to the objective function at the new point, then the radius ∆t will be

broadened, otherwise, the radius ∆t will be narrowed. If the actual reduction is larger than a

threshold, the current point xt is updated by xt = xt−1+pt, otherwise, it will keep the same as

xt = xt−1. With proper update rules of trust region radius and assumptions of the objective

function f(x), the trust-region method has global converge to stationary points [153]. It has

also been extended to solve nonlinear constrained optimization problems [35]. In Chapter 3,

we design our improvement heuristic based on the trust-region method as a part of our

algorithmic framework.

However, applying one type of the aforementioned methods is not sufficient for optimiz-

ing large-scale mixed-integer control problems in practice. For example, there are no general

guarantees for the ADMM algorithm’s convergence in non-convex problems [134]; the Ben-

ders decomposition can be computationally expensive with numerous added cuts and con-

straints in master problems and subproblems [73, 90]; the performance of the trust-region

method in non-convex problems is highly dependent on its initial points for non-convex prob-

lems, which can limit its applicability [47]. Given these challenges, we propose algorithmic

frameworks that integrate and enhance existing methods. In this dissertation, we consider

two applications of control optimization: (i) signal control in traffic systems and (ii) pulse

control in quantum systems, each with its unique challenges and opportunities.
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1.1.2 Control in Traffic Systems

Traffic congestion, a common issue in growing cities worldwide, causes serious travel delays

and environmental problems [88, 113, 186]. Among various solutions proposed to mitigate

congestion, such as congestion pricing and road expansion, traffic signal control stands out for

its effectiveness by optimizing the timing of green and red signals at intersections. However,

the traffic signal control problem becomes notably challenging in large cities due to the

numerous intersections, increasing the need for scalability of solution methods. Moreover,

traffic conditions vary significantly during different time periods and days while changing a

signal control plan requires complex tasks [238, 243]. Therefore, designing a traffic signal

control plan that considers the uncertainties of traffic conditions and is applicable to large-

scale traffic networks is valuable and challenging.

Traffic signal control is based on the modeling of traffic flow [120], consisting of models

simulating the behavior of an individual vehicle by using dynamic variables to describe

states [see e.g., 71, 149, 165, 230], and models simulating the traffic situation using variables

to describe overall states of all vehicles [see e.g., 86, 126, 161, 237]. Daganzo [49] first develops

a cell transmission model (CTM) to model traffic flows on highways, which divides roads into

homogeneous sections and considers the states of each section across discrete time steps [3].

Lo et al. [132] apply the CTM on urban traffic networks and develop a dynamic traffic signal

control model. Among all of the models, the CTM can describe traffic flows more precisely,

with an acceptable computational complexity, and therefore, our optimization framework for

the traffic signal control problem is based on the CTM.

Existing traffic signal control systems can be divided into three main categories: 1) fixed-

time; 2) actuated; and 3) adaptive control according to their responsiveness and flexibility.

Fixed-time traffic signal control utilizes offline optimization algorithms based on previously

observed traffic data to set a predetermined signal timing plan [see e.g., 6, 7, 130, 148, 223].

and the most widely-used plan is generated by Webster’s formula [223]. Muralidharan et al.

[148] discusses the widespread use of fixed-time signal control due to its low cost and the

challenges it faces. Actuated traffic signal control collects real-time data from sensors and

applies pre-defined logic to decide signals. Adaptive control performs instant adjustments

to traffic signal plans according to real-time traffic situations [see e.g., 1, 22, 67, 140, 192].

By Tang et al. [203], a large proportion of the traffic intersections in the US are still controlled

by fixed-time traffic signals due to the absence of detectors. Even in areas with detectors,

fixed-time control might remain in use, especially in congested urban areas. Therefore, we

focus on designing fixed-time signal control under uncertainties in this dissertation.
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1.1.3 Control in Quantum Systems

Quantum computing [151] is a cutting-edge field that applies the principles of quantum

mechanics to perform faster computations and tackles complex problems unmanageable by

classical computers. A vital component in quantum computing is quantum pulse control op-

timization, which aims to manipulate the evolution of quantum systems effectively to achieve

desired quantum states or operations. Quantum pulse control was initially used in quan-

tum chemistry but later found use in designing quantum circuits and creating new quantum

algorithms [see e.g., 13, 100, 162, 233]. In this dissertation, we mainly focus on discrete

binary quantum control with restricted feasible regions derived by linear constraints, which

corresponds to the widely-used quantum approximate optimization algorithm [59] and other

variational quantum algorithms [20, 37]. Moreover, high switching frequencies are undesir-

able in practical applications because they can damage the equipment in quantum systems.

Furthermore, recent developments highlight the need for quantum control under uncertainties

due to the presence of time-varying noise in quantum systems [see e.g., 50, 78, 79, 102, 167]

and the common use of inhomogeneous quantum ensembles, which comprise multiple quan-

tum systems with varied system parameters [see e.g., 39, 118, 141, 155, 168]. These underline

the significance of binary quantum pulse control optimization and the extensions with fewer

switches and uncertainties. The nonconvexity, uncertainty, binary variables, and restricted

feasible regions lead to extreme challenges and difficulties in solving binary quantum control

problems.

Various control methods have been employed to address challenges in quantum pulse

control. The gradient ascent pulse engineering (GRAPE) algorithm is a widely-used method

that estimates control functions with piece-wise constant functions and applies gradient-

based methods to optimize them [see e.g., 52, 95, 109, 173]. Another classical method is

the chopped random basis (CRAB) technique that describes the control space by a series of

basis functions and optimizes the coefficients [see e.g., 36, 56, 147, 198]. Other methods for

quantum control optimization include Lyapunov-based techniques [see e.g., 45, 46, 105, 106]

and Krotov method [see e.g., 104, 144, 159, 196, 197, 204], and model-free methods such as

evolution algorithm [232, 239], and reinforcement learning [32, 55, 152].

However, all the aforementioned control algorithms in quantum computing are designed

for continuous controls, leaving a gap in the study of binary controls. Some literature

consider the QAOA algorithm as a type of binary control problem with only two controllers,

named bang-bang control, and propose solution methods [11, 124], but they are limited to

situations with just two controllers. To the best of our knowledge, the paper by Vogt and

Petersson [217] is the only work studying a binary quantum control problem, but it lacks

the generality of quantum systems. In this dissertation, we explore a more general binary
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quantum control problem, extending our study to reduce switches and consider uncertainties,

and propose various efficient quantum control design algorithms. Our research aims to fill

in the existing knowledge gaps and provide a more comprehensive understanding of binary

controls in quantum systems.

1.2 Dissertation Overview

The remainder of the dissertation is organized as follows.

In Chapter 2, we study a coordinated traffic signal control problem in large-scale traf-

fic networks, aiming to maximize vehicle throughput on roads or networks under uncertain

traffic demand and vehicle turning. We build a two-stage stochastic mixed-integer linear

program with finite samples of uncertain parameters and develop a spatial-temporally dis-

tributed algorithm combining Bender decomposition and ADMM with an optimality guar-

antee. Through testing on corridors and grid networks with synthetic and real-world traffic

data, our results show that considering traffic uncertainties significantly improves signal

control quality, and our distributed algorithm can quickly find high-quality signal plans for

multiple intersections in complex road networks. The work in Chapter 2 has been published

in Fei et al. [66].

In Chapter 3, we focus on a deterministic discrete binary quantum pulse control opti-

mization problem. We develop a generic mixed-integer non-convex optimization model and

extend it to handle additional side constraints and reduce the number of switches. We adjust

the widely recognized gradient ascent pulse engineering (GRAPE) algorithm and introduce

a new ADMM algorithm to solve the continuous relaxation of the model. We employ round-

ing techniques to obtain binary control solutions and prove the theoretical upper bounds of

the rounding error. Furthermore, we design a modified trust-region method to improve the

controls. Our numerical studies on diverse quantum control examples demonstrate that our

algorithms obtain high-quality control results with few switches. The work in Chapter 3 has

been published in Fei et al. [64].

In Chapter 4, we consider a binary quantum pulse control optimization problem in a

continuous time horizon. Unlike the optimization problem with time discretization in Chap-

ter 3, we develop a new algorithmic framework that not only optimizes control functions but

also time points switching among controllers. Specifically, we develop two heuristic methods

to obtain controller sequences from continuous discretized controls balancing the quality of

controls and the number of switches. Then, we build and solve a generic switching time

optimization model with given Hamiltonian quantum controllers as parameters to optimize

the switches of control functions. Additionally, we introduce a new technique to acceler-
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ate time-evolution simulations in classical computers by pre-computing the eigenvalues of a

small number of Hamiltonian matrices. Our numerical simulations indicate that our switch-

ing time optimization framework obtains controls with higher quality and similar switches

within dramatically less computational time compared to the discretized model. The work

in Chapter 4 has been published online in Fei et al. [65].

In Chapter 5, we concentrate on a discrete-valued binary quantum pulse control opti-

mization problem considering the uncertainty of Hamiltonian controllers. We extend our

previous deterministic model proposed in Chapter 3 to a mixed-integer stochastic program

with a sample-based reformulation aiming to optimize both risk-neutral and risk-averse mea-

surements. We explore the differentiability of the new sample-based objective function and

apply two gradient-based algorithms to solve the continuous relaxation. We apply and im-

prove a sum-up-rounding technique to round continuous relaxation solutions and prove the

gaps between continuous and binary controls. Through numerical experiments on various

examples of quantum pulse optimization, we evaluate the impact of uncertainties in quan-

tum systems and demonstrate that the controls derived from our stochastic optimization

model outperform the controls of the deterministic model significantly in terms of quality

and robustness.

In Chapter 6, we conclude the work in this dissertation and discuss future research di-

rections. We are interested in combining mixed-integer programs with learning techniques

for optimal control problems. Extending our algorithms to other areas such as quantum

algorithm design and route recommendation is another potential direction.

1.3 Main Contributions

Overall, the contributions of this dissertation are outlined below. First, we consider a

network-level traffic signal control problem with various uncertainties and formulate it as

a two-stage mixed-integer stochastic program. We propose a spatial-temporally distributed

algorithm to accelerate computation and guarantee optimality. Our numerical results show

that our distributed algorithm handles problem sizes unmanageable by a centralized solver

and reduces traffic delays. Second, we bridge the gap between optimization methods and

binary quantum pulse control problems. We propose a generic model with restricted linear

feasible regions and develop an algorithmic framework to solve the model by time discretiza-

tion. The numerical results indicate that our methods obtain high-quality binary control

sequences and prevent frequent switching. Third, we derive a new algorithm optimizing

both control functions and switching time points. With the pre-computation of Hamiltonian

controllers, we accelerate time-evolution simulations on classical computers. This method
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obtains controls with higher quality and similar switching frequencies within significantly

less computational time. Fourth, we build a stochastic optimization model with a sample-

based formulation for the binary quantum control under time-varying noise and propose

an algorithm combining gradient-based methods and rounding techniques. We also provide

a theoretical discussion on the choices of risk measure function and gaps of rounded solu-

tions. We analyze control performance under various examples and highlight the benefits of

considering uncertainties in quantum systems.
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CHAPTER 2

Traffic Signal Control under Stochastic Traffic

Demand and Vehicle Turning via

Decentralized Decomposition Approaches

2.1 Introductory Remarks

In the past few decades, city scales have increased significantly and as a result, privately

owned vehicles increase, resulting in rapidly growing congestion issues in cities of all sizes

worldwide. According to Schrank et al. [186], in 2017, traffic congestion caused urban Amer-

icans to travel extra 8.8 billion hours and to purchase extra 3.3 billion gallons of fuel. Taking

the city of Detroit in the United States (US) as an example, in 2019, each driver lost 39 hours

on the road on average due to traffic delay [113]. Various approaches have been proposed

for addressing traffic congestion issues on road networks, including congestion pricing, road

expansion, and traffic signal control. Among them, traffic signal control can effectively mit-

igate congestion by optimizing the traffic signal timing parameters (cycle, green split, and

offset) at signalized intersections without major changes to the existing infrastructure [88].

Existing traffic signal control systems can be divided into three main categories: 1) fixed-

time; 2) actuated; and 3) adaptive control according to their responsiveness and flexibility.

Both actuated and adaptive are real-time control strategies that can react to time-varying

traffic demand and outperform fixed-time control in most cases. However, a large proportion

of the traffic intersections in the US are still controlled by fixed-time traffic signals due to

the absence of detectors [203]. Even with detectors on the road, fixed-time control might

still be used in congested urban areas. For fixed-time traffic signals, a whole day is split into

different time of day (TOD) intervals and each of the TOD uses a traffic signal timing plan

with fixed parameters (cycle, split, and offset). However, traffic conditions are stochastic

and can vary within the same time periods [235, 238], and changing a signal timing plan is

infrequent as it requires a series of labor works such as monitoring the traffic systems, tuning
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the parameters, and setting new parameters to the controller [243]. Therefore, a fixed-time

traffic signal timing plan is required to accommodate different traffic conditions within a

certain time of day.

In this chapter, we focus on the problem of optimizing fixed-time traffic signal parameters

of a large-scale network considering stochastic traffic input. Based on the Cell Transmission

Model (CTM) [49], this problem is formulated as a mixed-integer stochastic linear program-

ming. There are different types of network topology in the real world including isolated

intersections, corridors, and grid networks [209]. Our proposed method aims to deal with

large-scale networks and does not limit the network topology to a certain type. Such a

centralized formulation based on CTM can better incorporate the coordination among in-

tersections even for a complicated network topology while traditional methods can only deal

with traffic signals in a corridor [209].

For the traffic demand, our proposed method takes the link flow and turning ratios as the

direct input and both parameters can be stochastic. Even without detectors, link flow and

turning ratios can be estimated from other data sources. For example, vehicle trajectory

data that can be collected through different resources (e.g., ride-hailing services and navi-

gation systems) is an ideal alternative, which is more scalable and almost available at every

signalized intersection. Limited by the low penetration rate, it can hardly support real-time

applications but is more applicable for offline parameter estimation [221, 241, 245, 246, 247].

Other than the vehicle trajectory data, if origin-destination (OD) demand is given, an equi-

librium model can be used to obtain the link flow and turning ratios [166, 188]. As aforemen-

tioned, traffic demand is stochastic and time-varying and all measurements are also prone

to errors and noises [43, 235]. By taking a stochastic traffic demand into consideration, the

resulting traffic signal timing plan is more robust and works well for more different cases.

Our goal is to establish an optimization-based control paradigm to speed up solutions to

large-scale network-level traffic signal control in a distributed manner. We demonstrate the

results by testing a diverse set of instances, generated using synthetic data and also real-world

road networks and traffic data. Via out-of-sample tests, we show that the signal control plans

produced by our methods perform consistently better than plans solved using off-the-shelf

optimization solvers, or models that do not consider uncertainty. Our decomposition and

decentralized algorithms can significantly reduce computational time and produce reliable

traffic signal plans for moderate-sized city networks.

The remainder of the chapter is organized as follows. In Section 2.2, we review the most

relevant literature on traffic signal control and optimization methods used in this chapter.

In Section 2.3, we formulate the traffic signal control problem under uncertain demand and

turning ratios as a two-stage stochastic mixed-integer program (MIP). In Section 2.4, we
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combine the alternating direction method of multipliers (ADMM) and Benders decomposi-

tion algorithms to develop spatially distributed algorithms for solving the stochastic MIP

in a decentralized manner. In Section 2.5, we present numerical results of diverse instances

with different uncertainty settings. In Section 2.6, we conclude the chapter and state future

research directions.

2.2 Literature review

Traffic flow models have different scales from microscopic to macroscopic [see, e.g., 86, 120].

A microscopic model simulates the behavior of individual vehicles using dynamic variables

to describe states such as location and velocity of vehicles [165, 230]. A meso- or macro-

scale model simulates traffic conditions using variables that describe the overall states of all

vehicles, including traffic density, volume, and average speed [86]. Daganzo [49] first develops

a cell transmission model (CTM) to model traffic flows on highways. As a mesoscopic

traffic model, the CTM divides roads into homogeneous sections and considers states of each

section across discrete time steps. We refer interested readers to Adacher and Tiriolo [3]

for a comprehensive review of different CTM variants and appropriate situations for using

them. Compared to solving microscopic traffic models, computing macroscopic models is

much more efficient because of the aggregated traffic states and the resulting fewer number

of variables and dynamic equations. In this chapter, our optimization framework is based on

the CTM for traffic condition modeling. Next, in Section 2.2.1, we review the most relevant

work on distributed traffic signal control, especially with respect to ADMM. Section 2.2.2 is

a literature review of stochastic traffic signal control and Section 2.2.3 includes contributions

of this chapter.

2.2.1 Distributed Traffic Signal Control

Many existing studies formulate the traffic signal control problem to optimize the network

performance based on a certain traffic flow model. Lo [131] builds an MIP based on the CTM

for deriving traffic signal control policies but does not consider traffic demand or vehicle turn-

ing uncertainties. The model is only tested on corridors instead of general road networks,

mainly due to the exponentially increased number of variables and constraints in the latter

case. Indeed, solving an MIP requires gathering global traffic information in a road network

and becomes extremely difficult as the network size increases. On the other hand, each

intersection is physically isolated, making it natural to consider decentralized traffic signal

control. Advancements in parallel computing, sensing, and wireless communication tech-
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nologies allow efficient implementations of decentralized control at individual intersections,

leading to more research focusing on how to design parallel and distributed traffic signal

control schemes. For example, Al Islam and Hajbabaie [4] present a distributed-coordinated

approach for signal timing optimization in connected urban street networks. They first,

formulate the traffic signal control problem at each intersection as an MIP. Then, after sep-

arately solving the MIP associated with each intersection, all the intersections communicate

with each other to improve their local traffic control strategies (guided by heuristics), obtain

estimated traffic flows, and update parameters in their MIPs for the next time period. Tajalli

et al. [202] also formulate the traffic signal control problem as an MIP based on CTM for

each intersection but consider the coordination of intersections in a certain time period by

penalizing the difference between estimated and real traffic flow in the objective function.

Furthermore, a series of literature follows the procedure that first fixes traffic signals for each

intersection and runs simulations on the overall traffic network, and then updates traffic sig-

nals according to the estimated information from the simulation [see, e.g., 82, 125, 201]. All

of the aforementioned papers fail to ensure the optimality of the solution and do not consider

traffic uncertainties.

ADMM was initially developed to solve convex programs that can be decomposed into

multiple sub-clusters and the objective function is the summation of functions related to

each sub-cluster. For convex programs, it is proved that both the objective value and so-

lutions obtained by ADMM converge to the optimum [25]. Timotheou et al. [207] propose

a distributed algorithm that decomposes a traffic network into individual intersections for

traffic signal control and they apply ADMM to obtain the coordination between intersections

as well as solving the MIP for each intersection individually. However, vehicle turning is not

considered in their model and the work does not take into account the stochasticity of traffic

demand or vehicle turning.

Another class of literature is about the max pressure control, which is originally stud-

ied in the communication network for routing and scheduling [150, 205]. Varaiya [211]

firstly introduces the pressure-based method to solve the distributed traffic signal control

problem by assigning traffic signals according to queue lengths of different directions. The

max pressure control is derived based on the store-and-forward model and proved to be

throughput-optimal, which means it can stabilize the network queue lengths when the traffic

demand is within the network capacity. Many studies have been conducted to improve the

max pressure control from different perspectives [112, 123, 222, 229]. For example, Zaidi

et al. [240] modify the original max pressure method to conduct traffic signal control taking

fixed and adapt routing into consideration in a general traffic network. Levin et al. [112]

propose to utilize a cyclic phase structure which is easier to be implemented in the real world.

14



However, the store-and-forward model has some strong assumptions which essentially ignore

the vehicle length and travel time along the link [2]. Besides, the max pressure control only

ensures the stability of the network by showing that the overall network queue lengths are

bounded. According to Little’s law [129], bounded total queue lengths guarantee a bounded

total delay but not the optimal minimum delay. By taking the real-time traffic state (e.g.,

queue length) as the input, the implementation of the max pressure control has a high re-

quirement for real-time traffic monitoring and detection, which is not available for a large

proportion of signalized intersections. As aforementioned, this chapter focuses on generat-

ing background or fixed-time traffic signal timing for those intersections without real-time

monitoring capability.

2.2.2 Traffic Signal Control under Uncertainties

Starting from Heydecker [85] investigating the impact of uncertain traffic flows and showing

that using the average flow results in unsatisfactory performance, a series of studies have

been conducted on proposing traffic signal timing plan under flow fluctuations. Yin [235] and

Zhang et al. [243] consider fixed-time signal timing plans for road corridors under stochastic

traffic demand. They ensure that the probability of the travel delay exceeding a given

threshold is sufficiently small and apply heuristics to solve the stochastic MIPs. Based on

their work, Shirke et al. [191] propose a metaheuristic approach to design robust traffic

signal timing plans efficiently. Another class of existing literature focuses on optimizing

the average performance given the distribution of uncertain parameters. For example, Tong

et al. [208] propose a two-stage stochastic linear program (LP) for controlling traffic signals

at one intersection to minimize the expected traffic delay under uncertain traffic demand. Li

et al. [122] extend the previous work and formulate a two-stage stochastic LP for coordinated

traffic signal control on a corridor. However, the models in both Tong et al. [208] and Li

et al. [122] relax the integrality constraints. Li et al. [121] propose a two-stage MIP and

apply a heuristic stochastic gradient method to solve the model. Moreover, in all these

related work, the authors only consider one intersection or corridors instead of complex

road networks. For general traffic networks, Chiou [41] develop a two-stage mixed-integer

nonlinear program based on user equilibrium instead of the CTM and apply a Quasi-Newton

method to solve the model in centralization.

2.2.3 Main Contributions

Compared to the prior work, the main contributions of this chapter are threefold. First, we

consider a fixed-time traffic signal control problem and formulate it on general grid networks
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as an MIP based on the CTM, which takes into account the queue propagation along links

and optimizes traffic delay directly. We consider both vehicle movements along corridors and

turning movements of vehicles, to obtain better coordination between intersections within

a traffic network. Second, we extend the deterministic MIP to a stochastic one by incor-

porating various types of input parameter uncertainties, such as stochastic traffic demand

and turning ratios. Third, we speed up the computation of the formulation by integrating

Benders decomposition and ADMM approaches. Specifically, we ignore the traffic flow rela-

tionship between intersections and obtain a signal timing plan for each intersection. Then,

we coordinate the information of neighboring intersections and update the parameters of each

intersection. Such a distributed computational framework can best utilize advanced tech-

nologies in intelligent transportation systems such as distributed micro-computers – that can

be installed at traffic intersections. In Table 2.1, we compare our work with the most relevant

papers, in terms of modeling methods, instance scales, types of decisions, assumptions on

parameters, and solution approaches.

Table 2.1: Comparison between our work and other traffic signal control papers.

Paper Model Scale Decision Parameter Approach

Our work
Two-stage stochastic MIP

network fixed-time
stochastic traffic demand

decentralized
based on the CTM and turning ratio

Lo [131] Deterministic MIP corridor real-time deterministic centralized

Yin [235], Zhang et al. [243], Shirke et al. [191] Stochastic MIP corridor fixed-time stochastic traffic demand centralized

Tong et al. [208] Two-stage stochastic LP
isolated

real-time stochastic traffic demand centralized
intersection

Li et al. [122] Two-stage stochastic LP corridor real-time stochastic traffic demand centralized
Li et al. [121] Two-stage stochastic MIP corridor real-time stochastic traffic demand centralized
Chiou [41] Two-stage stochastic MIP network fixed-time stochastic traffic demand centralized

Tajalli et al. [202], Timotheou et al. [207] Deterministic MIP network real-time deterministic decentralized
Varaiya [211], Zaidi et al. [240] Pressure-based method network real-time deterministic decentralized

2.3 A Stochastic MIP for Traffic Signal Control

We define the notation and introduce CTM in Section 2.3.1. We then formulate the fixed-

time traffic signal control as a two-stage stochastic MIP using CTM in Section 2.3.2, where

we aim to maximize the expected total throughput (i.e., the number of vehicles going through

the whole traffic network). The model takes the initial traffic condition, samples, and prob-

abilities of source demand and vehicle turning ratios as input parameters and computes

optimal signal control plans at all intersections.

2.3.1 Problem Description and Notation

Structure of the CTM Consider a road network G(V,E) where V is the set of nodes

and E is the set of arcs. Here the nodes are signalized intersections and the arcs refer to
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road segments connecting pairs of intersections. In this chapter, we focus on road networks

in which at most four arcs are connected to the same node, representing North, South,

East, and West directions and therefore the underlying network is a grid. Each arc is

partitioned into homogeneous sections called cells, where the length of each cell is the distance

traveled by a vehicle at normal speed without traffic congestion in a unit of time. Let

C = E ∪ O ∪ D ∪ I ∪M ∪ V be the set of cells where E is the set of ordinary cells, O the

set of origin cells, D the set of destination cells, I the set of intersection cells, M the set

of merge cells and V the set of diverge cells. Ordinary cells have both inflow and outflow

of vehicles from other cells. Origin cells receive exogenous inflow and destination cells send

outflow traffic outside the network. Intersection cells are cells where vehicles can choose to

turn left, go straight, or turn right. Merge cells receive inflow traffic from more than one

cell, and diverge cells send outflow traffic to more than one cell. Let d(c) be the set of cells

sending their outflow to a cell c ∈ C and p(c) be the set of cells receiving their inflow from

a cell c ∈ C. Let R = {1, 2, . . . , NI} be the set of intersections where NI denotes the total

number of intersections.

A signal phase of a signalized intersection is a representation of moving directions that

can allow vehicles to pass the intersection at the same time. Let Fi = {1, 2, . . . , |Fi|} be the

set of indices of all the phases of a signalized intersection i for all i ∈ R. Let Iij be the set

of the intersection cells of intersection i and phase j for all i ∈ R and j ∈ Fi. We discretize

the whole time horizon into T time steps. Figure 2.1 depicts the way of transforming one

intersection and its related arcs into cells in CTM. We refer the interested readers to the

legend in Figure 2.1 for different types of the aforementioned cells in the CTM and the traffic

flow.

Input Parameters Let ninit
c be the number of initial vehicles inside each cell c ∈ C, and

let βcc′ denote the turning ratio of a diverging cell c ∈ V moving towards the direction of

an intersection cell c′ ∈ d(c). Notice that
∑

c′∈d(c) βcc′ = 1 for each c ∈ V . Let Qct and Nct

respectively represent the maximum number of vehicles that can flow through and reside in

cell c ∈ C, and Wct be the ratio between the shock-wave propagation speed and the flow-free

speed of a cell c during each time interval [t, t+ 1) for t ∈ {1, . . . , T}. Moreover, Dct denotes

the number of vehicles entering an origin cell c ∈ O during time [t, t + 1) (i.e., the source

demand considered in this chapter). Parameter Gmin and Gmax indicate the minimum and

maximum green time, meaning that any green signal set at time t cannot change during time

[t, t+Gmin) and the green signal of the same direction cannot last for more than Gmax time

[242], respectively. Let Ncy be the maximum number of cycles in the whole time horizon

where traffic signal plans are the same in each cycle. We use ninit, β,Q,N,W,D to represent
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Figure 2.1: A CTM-based transformation of an intersection.

the vector forms of all the above parameters, respectively. In addition, we introduce a

sufficiently large parameter U , a sufficiently small parameter ϵ, and a weight parameter α to

formulate constraints and the objective function in our stochastic MIP described later.

We denote ξ = [D, β] as the overall uncertain parameter and P as the probability dis-

tribution of ξ, which is assumed known and can be derived from historical data. Without

loss of generality, we assume a discrete distribution P and a finite set Ξ of realizations such

that Ξ = {ξ1, . . . , ξK} and each realization ξk is associated with probability pk such that∑K
k=1 p

k = 1.

Decision Variables We determine the traffic signal control plan by finding the beginning

time and ending time when the traffic signal is green for each phase and each cycle. Corre-

spondingly, we define a continuous variable li as the cycle length and a continuous variable

oi as the offset of each intersection i ∈ R. Variable gij indicates the interval length when

the traffic signal of an intersection i and a phase j is green, and continuous variables bijm

and eijm indicate the beginning and ending green time at intersection i, phase j during cycle

m, for each i ∈ R, j ∈ Fi, and m ∈ {1, . . . , Ncy}. For t ∈ {1, . . . , T}, we define binary

variables z1ijmt and z2ijmt to describe the relationship between the time step t, the beginning

green time bijm and the ending green time eijm of the intersection i, phase j and cycle m,

of which the details are provided in constraints (2.1a)–(2.1c). For each cell c ∈ C and time

t ∈ {1, . . . , T}, we define continuous variables yct and nct as the number of vehicles leaving

and inside cell c during time [t, t+ 1), respectively. We use l, o, b, e, g, z1, z2, y, n to represent

the vector forms of all the above continuous and binary decision variables.
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2.3.2 Two-stage Stochastic Optimization Model

We consider a two-stage stochastic optimization approach for controlling traffic signals, where

in the first stage, we determine traffic-signal related decisions, such as the cycle length l,

offset o, start and end of green time intervals b, e and auxiliary binary variables z1, z2; in the

second stage, for each realized sample ξk = [Dk, βk], we can use network flow constraints to

build a linear program to determine the actual number of vehicles leaving and inside cells,

given by values of variables yk and nk, respectively. Table 2.2 provides a summary of the

definitions of all the sets, parameters, and variables used in this chapter.

Table 2.2: A summary of notation of the stochastic traffic signal control problem.

Parameters
C Set of all cells (where C = O ∪D ∪ I ∪M∪ V)
O, D, I, M, V Set of origins, destinations, intersection, merge, diverge cells
NI The total number of intersections
R Set of intersections (where |R| = NI)
Fi Set of signal phases at intersection i
T The total number of time steps
Ncy The total number of cycles in the traffic signal timing plan
Gmin, Gmax Minimum and maximum green time
d(c) Cells receiving inflow from c ∈ C
p(c) Cells sending outflow to c ∈ C
ninit
c Number of initial vehicles inside cell c ∈ C
Qct, Nct Maximum number of vehicles flowing through and reside in cell c ∈ C during time [t, t+ 1) for t ∈ {1, . . . , T}
Wct Ratio between shock-wave and free-flow speed of cell c ∈ C during time [t, t+ 1) for t ∈ {1, . . . , T}
Dk

ct Source demand realization at origin c ∈ O during time [t, t+ 1) in scenario k = 1, . . . , K
βk
cc′ Turing ratio realization from cell c ∈ V to cell c′ ∈ d(c) in scenario k = 1, . . . , K

Decision variables
li, oi Cycle length and offset of intersection i ∈ R
gij Green length of intersection i ∈ R at phase j ∈ Fi

bijm, eijm Beginning and ending time of the green phase j ∈ Fi in cycle m = 1, . . . , Ncy of intersection i ∈ R
z1ijmt, z2ijmt Binary variables describing the relationship between bijm, eijm and time [t, t+ 1) for t ∈ {1, . . . , T}
ykct, n

k
ct Number of vehicles leaving and inside cell c ∈ C during time [t, t+ 1) for t ∈ {1, . . . , T} in scenario k = 1, . . . , K

We first formulate all the constraints in the first stage for configuring a feasible traffic
signal timing plan, and denote the feasible region as:

X =
{

−U · z1ijmt ≤ bijm − t ≤ U(1− z1ijmt)− ϵ, ∀i ∈ R, ∀j ∈ Fi, m = 1, . . . , Ncy, t = 1, . . . , T (2.1a)

−U · z2ijmt + ϵ ≤ t− eijm ≤ U(1− z2ijmt), ∀i ∈ R, ∀j ∈ Fi, m = 1, . . . , Ncy, t = 1, . . . , T (2.1b)∑
j∈Fi

(z1ijmt + z2ijmt) ≤ |Fi|+ 1, ∀i ∈ R, m = 1, . . . , Ncy, t = 1, . . . , T (2.1c)

oi ≤ li, ∀i ∈ R (2.1d)

bi1m = li · (m− 1)− oi, ∀i ∈ R, m = 1, . . . , Ncy (2.1e)

eijm = bijm + gij , ∀i ∈ R, ∀j ∈ Fi, m = 1, . . . , Ncy (2.1f)

bijm = eij−1m, ∀i ∈ R, ∀j ∈ Fi/{1}, m = 1, . . . , Ncy (2.1g)

li =
∑

j∈Fi
gij , ∀i ∈ R (2.1h)

Gmin ≤ gij ≤ Gmax, ∀i ∈ R, ∀j ∈ Fi (2.1i)

z1ijmt, z2ijmt ∈ {0, 1}, ∀i ∈ R, ∀j ∈ Fi, m = 1, . . . , Ncy, t = 1, . . . , T
}
. (2.1j)

Constraints (2.1a)–(2.1b) describe the relationship between each time step t, the start time

b and the end time e of the time interval when the traffic signal of each phase is green. For
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each intersection i ∈ R, each phase j ∈ Fi and each cycle m ∈ {1, . . . , Ncy} at each time

step t, z1ijmt = 1 if t ≥ bijm and z1jmt = 0 otherwise. Similarly, z2ijmt = 1 if t ≤ eijmt and

z2ijmt = 0 otherwise. Constraints (2.1c) indicate that at each time step, there is only one

phase with green light. Constraints (2.1d) indicate that the offset should be less than the

cycle length. Constraints (2.1e)–(2.1g) detail the steps for computing the start and the end

of the time interval at each cycle, when the traffic signal of each phase is green based on the

cycle length and the length of the interval. Constraints (2.1h) indicate that the sum of the

green time over all phases should be equal to the cycle length. Constraints (2.1i) bound the

green time from below and above. Constraints (2.1j) require z1 and z2 being binary valued.
The overall two-stage stochastic MIP is formulated as:

min
l,g,b,e,o,z1,z2,y,n

K∑
k=1

pk

(
−
∑
c∈D

T∑
t=1

nkct + α
∑
c∈C

T∑
t=1

(T − t)ykct

)
(2.2a)

s.t. (l, o, g, b, e, z1, z2) ∈ X

ykct ≤ nkct, ∀c ∈ C, t = 1, . . . , T, k = 1, . . . ,K (2.2b)

ykct ≤ Qct, ∀c ∈ E ∪ O ∪M∪ V, t = 1, . . . , T, k = 1, . . . ,K (2.2c)

ykct ≤
Ncy∑
m=1

(z1ijmt + z2ijmt − 1)Qct, ∀c ∈ Iij , ∀i ∈ R, ∀j ∈ Fi, t = 1, . . . , T, k = 1, . . . ,K

(2.2d)

ykct ≤ Qc′t, ∀c ∈ C/V, ∀c′ ∈ d(c), t = 1, . . . , T, k = 1, . . . ,K (2.2e)

βk
cc′y

k
ct ≤ Qc′t, ∀c ∈ V, ∀i ∈ R, ∀j ∈ Fi, ∀c′ ∈ d(c) ∩ Iij , t = 1, . . . , T, k = 1, . . . ,K

(2.2f)

ykct ≤Wc′t(Nc′t − nkc′t), ∀c ∈ C/V, ∀c′ ∈ d(c), t = 1, . . . , T, k = 1, . . . ,K (2.2g)

βcc′y
k
ct ≤Wc′t(Nc′t − nkc′t), ∀c ∈ V, ∀c′ ∈ d(c), t = 1, . . . , T, k = 1, . . . ,K (2.2h)

nkct+1 = nkct +
∑

c′∈p(c)

ykc′t − ykct, ∀c ∈ C/O/I, t = 1, . . . , T, k = 1, . . . ,K (2.2i)

nkct+1 = nkct +Dk
ct − ykct, ∀c ∈ O, t = 1, . . . , T, k = 1, . . . ,K (2.2j)

nkct+1 = nkct +
∑

c′∈p(c)

βk
c′cy

k
c′t − ykct, ∀c ∈ I, t = 1, . . . , T, k = 1, . . . ,K (2.2k)

nkc1 = ninitc , ∀c ∈ C, k = 1, . . . ,K (2.2l)

ykct ≥ 0, nk
ct ≥ 0, ∀c ∈ C, t = 1, . . . , T, k = 1, . . . ,K, (2.2m)

where in the objective function (2.2a) we minimize the negative value of the expected ve-

hicle throughput of the network over all time steps plus a so-called CTM objective term∑
c∈C
∑T

t=1(T − t)ykct, ∀k = 1, . . . , K. This will force ykct for each cell c ∈ C at each time

step t ∈ {1, . . . , T} to obtain the minimum of the right-hand sides of constraints (2.2b)–

(2.2h), and then to ensure all vehicles traveling forward as much as possible. (Each ykct is

weighted by the remaining T − t time steps.) The parameter α is set to balance between
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these two objectives, where a larger α can eliminate the vehicle-holding problem to a certain

extent. Constraints (2.2b)–(2.2m) involve both first-stage variables z1, z2 and second-stage

recourse variables yk, nk, and establish the fundamental relationships in CTM. Specifically,

constraints (2.2b) indicate that the number of vehicles leaving a cell c is limited by the

number of vehicles inside cell c. Constraints (2.2c)–(2.2d) imply that the number of vehicles

leaving a cell c is limited by the flow capacity of cell c. Notice that for an intersection cell,

its capacity is determined by the related traffic signal, such that if the signal is red, then

the capacity should be zero. Constraints (2.2e)–(2.2f) indicate that the number of vehicles

leaving a cell c is also limited by the flow capacity of its processing cell c′. Notice that a

diverging cell has more than one processing cell and the number of vehicles entering each

processing cell is estimated by the turning ratio. Constraints (2.2g)–(2.2h) indicate that the

number of vehicles leaving a cell c should be limited by the number of vehicles that can enter

its processing cells d(c). Constraints (2.2i)–(2.2k) are flow conservation equations for cells,

enforcing that the difference between the number of vehicles in a cell c between two consec-

utive time steps t and t + 1 equals to the number of vehicles coming from preceding cells

minus the number of vehicles leaving cell c during time [t, t+ 1). Notice that the number of

vehicles entering each origin cell is the source demand. Constraints (2.2l) present the initial

number of vehicles inside each cell. Constraints (2.2m) indicate that the number of vehicles

leaving and inside each cell should be non-negative.

2.4 Decentralized and Decomposition Algorithms

The scalability issue of solving the two-stage stochastic MIP mainly comes from the number

of intersections and time steps. In this section, we propose algorithms for solving Model

(2.2) using Benders decomposition combined with spatial and temporal decomposition. We

propose an exact ADMM-based spatially decentralized Benders algorithm and prove the

optimality in Section 2.4.1. We develop a heuristic temporal decomposition technique to

further reduce the computational time in Section 2.4.2.

2.4.1 ADMM-based Spatially Decentralized Benders Algorithm

At each iteration of the standard Benders algorithm, we solve the relaxed master problem

(first-stage problem), the subproblem (second-stage problem), and add derived constraints

to the relaxed master problem (Shapiro et al. [187]). We present the details of applying

the Benders algorithm to solve our problem directly in Appendix A.1. However, the com-

putational complexity of solving first-stage problems and second-stage problems increases
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significantly as network sizes and time steps increase. Therefore, we propose a distributed

algorithm that solves first-stage problems as well as second-stage problems separately for

each intersection based on the partition of the network. In Section 2.4.1.1 we propose a

distributed formulation of first-stage and second-stage problems. In Section 2.4.1.2 we solve

the second-stage problems for each intersection individually by applying ADMM [25]. In

Section 2.4.1.3 we generate optimality cuts based on the optimal value and solutions ob-

tained by ADMM and prove that the objective value obtained by our proposed algorithm

converges to the optimal objective value.

2.4.1.1 Distributed Formulation

We partition the network into NI areas where each area contains only one intersection. For

each area with an intersection i for i ∈ R, let Ci, Ei,Oi,Di,Mi,Vi be the corresponding

sets of all cells, ordinary cells, origin cells, destination cells, merge cells, and diverge cells,

respectively. Because signal constraints (2.1a)–(2.1j) can be written separately for each

intersection, by defining variables θki for each scenario ξk, k = 1, . . . , K and each intersection

i ∈ R, we formulate an intersection-based relaxed master problem as follows.

(RMPi) min
K∑
k=1

pkθki (2.3a)

s.t. Constraints (2.1a)–(2.1j) corresponding to the intersection i

(z1i, z2i, θi) ∈ Σi(z1i, z2i, θi), (2.3b)

where Σi(z1i, z2i, θi) is the set of cuts as linear functions of z1i, z2i generated up to the current

iteration. The problems (RMPi) allow us to solve the relaxed master problem for each area

separately which only contains one intersection i ∈ R.

Next, we consider the distributed formulation of second-stage subproblems. For each

intersection i ∈ R, we partition the set of cells Ci into two parts – one consists of all the cells

where the constraints of these cells are related to cells in other intersections, called boundary

cells and the other consists of all the remaining cells, called internal cells [207]. For each

area containing intersection i ∈ R, let BI
i be the set of input boundary cells receiving inflow

traffic from a cell of a neighboring area, and BO
i be the set of output boundary cells sending

outflow traffic to a cell of a neighboring area. In a centralized stochastic programming model,

constraints (2.2g) and (2.2i) are related to boundary cells. We rewrite these constraints

separately for boundary cells and internal cells. Notice that in a grid network setting, for

each boundary cell c ∈ BO
i ∪ BI

i , there is only one cell receiving the inflow traffic from c and

one cell sending the outflow traffic to c, denoted by dc and pc such that d(c) = {dc} and
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p(c) = {pc}.
For each intersection i ∈ R, the constraints related to boundary cells include variables

corresponding to other intersections. For each k = 1, . . . , K and i ∈ R, we introduce new

decision variable vectors ỹki ∈ R|BI
i |×T and ñk

i ∈ R|BO
i |×T to estimate the corresponding

yk and nk of cells of neighboring intersections. Constraints (2.2g)–(2.2h) are rewritten as

equality constraints for boundary cells by defining auxiliary variables skct ≥ 0 for each cell

c ∈ BI
i ∪ BO

i , ∀i ∈ R, at each time step t = 1, . . . , T and for each scenario k = 1, . . . , K.

Let sk = [skct, c ∈ ∪i∈R(BI
i ∪ BO

i ), t = 1, . . . , T ]T, ∀k = 1, . . . , K. Given the solutions

ẑ1i, ẑ2i of the first-stage problems (RMPi), i ∈ R, we substitute z1 = ẑ1i, z2 = ẑ2i into

constraints (2.2d) and formulate the second-stage problem as a distributed formulation:

(SP-Dk) min −
∑
i∈R

∑
c∈Di

T∑
t=1

nk
ct − α

∑
i∈R

∑
c∈Ci

T∑
t=1

(T − t)ykct (2.4a)

s.t. Constraints (2.2b)–(2.2m) for the scenario ξk, ∀i ∈ R, ∀c ∈ Ci/BI
i /BO

i

(2.4b)

skct ≥ 0, ∀i ∈ R, ∀c ∈ BI
i ∪ BO

i , ∀c′ ∈ d(c), t = 1, . . . , T (2.4c)

ykct + skct = Wdct(Ndct − ñk
ict), ∀i ∈ R, ∀c ∈ BO

i , t = 1, . . . , T (2.4d)

nk
ct+1 = nk

ct + ỹkict − ykct, ∀i ∈ R, ∀c ∈ BI
i , t = 1, . . . , T (2.4e)

ỹkict = ykpct, ∀i ∈ R, ∀c ∈ B
I
i , t = 1, . . . , T (2.4f)

ñk
ict = nk

dct, ∀i ∈ R, ∀c ∈ B
O
i , t = 1, . . . , T. (2.4g)

Constraints (2.4b) correspond to constraints (2.2b)–(2.2m) for the internal cells under sce-

nario ξk. Constraints (2.4d) and (2.4e) refer to the equality form of constraints (2.2g)

and (2.2i) related to boundary cells given ξk. Constraints (2.4f) and (2.4g) indicate that

for each intersection i ∈ R, ỹki and ñk
i should be equal to the value of yk and nk of cells of

neighboring intersections receiving flow from or sending flow to boundary cells.

The objective function and constraints (2.4b)–(2.4e) are separable for each intersection

i ∈ R. Because for each cell c ∈ BI
i ∪ BO

i , the cell sending or receiving flow pc or dc

belong to other intersections, constraints (2.4f)–(2.4g) are not separable. We relax the linear

constraints corresponding to all the original variables yk, nk, sk and estimate variables

ỹk, ñk using a Lagrangian penalty function and propose an ADMM algorithm to solve the

second-stage problem (SP-Dk) in the next section.
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2.4.1.2 ADMM for Second-stage Problems

In the distributed formulation, each intersection is considered as a block and the model con-

tains several additional coupled (linear) constraints between pairs of intersection blocks. We

apply ADMM to solve each second-stage problem (SP-Dk), ∀k = 1, . . . , K. Denote Yi as the

convex feasible region of [yki , n
k
i , s

k
i ] defined by constraints (2.4b)–(2.4c) for each intersection

i ∈ R. Introducing dual variables κkict, λ
k
ict, µ

k
ict, ν

k
ict for constraints (2.4d), (2.4e), (2.4f),

and (2.4g), respectively, and using κki , λ
k
i , µ

k
i , ν

k
i to represent vector forms of these dual vari-

ables, we define an augmented dual Lagrangian function with a feasible set Yi for each

intersection i ∈ R as follows. (Here L represents the Lagrangian penalty parameter.)

Lk
i (yki , n

k
i , s

k
i , ỹ

k
i , ñ

k
i , κ

k
i , λ

k
i , µ

k
i , ν

k
i ) = −

∑
c∈Di

T∑
t=1

nk
ct − α

∑
c∈Ci

T∑
t=1

(T − t)ykct

+
∑
c∈BO

i

T∑
t=1

κkict(y
k
ct + skct −Wdct(Ndct − ñk

ict))

+
∑
c∈BI

i

T∑
t=1

λkict(n
k
ct+1 − nk

ct − ỹkict + ykct)

+
∑
c∈BI

i

T∑
t=1

µk
ict(ỹ

k
ict − ykpct) +

∑
c∈BO

i

T∑
t=1

νkict(ñ
k
ict − nk

dct)

+
L

2

∑
c∈BO

i

T∑
t=1

∥ykct + skct −Wdct(Ndct − ñk
ict)∥2

+
L

2

∑
c∈BI

i

T∑
t=1

∥nk
ct+1 − nk

ct − ỹkict + ykct∥2

+
L

2

∑
c∈BI

i

T∑
t=1

∥ỹkict − ykpct∥
2 +

L

2

∑
c∈BO

i

T∑
t=1

∥ñk
ict − nk

dct∥
2.

(2.5)

The subproblem (SP-Dk) can be rewritten as the minimization problem of the augmented

Lagrangian function with a feasible set composed by constraints (2.4b)–(2.4e). Following

the definitions of dual variables, the augmented Lagrangian function is the summation of

functions Lk
i for all intersections i ∈ R, i.e.,

Lk(yk, nk, sk, ỹk, ñk, κk, λk, µk, νk) =
∑
i∈R

Lk
i (yki , n

k
i , s

k
i , ỹ

k
i , ñ

k
i , κ

k
i , λ

k
i , µ

k
i , ν

k
i ). (2.6)
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The minimization problem of Lk is equivalent to a series of problems that minimize Lk
i for

each intersection i ∈ R.

For each intersection i ∈ R, ADMM consists of three main steps: (i) updating original

variables yki , n
k
i , s

k
i by solving the minimization problem of the Lagrangian function Lk

with fixed estimates variables ỹki , ñ
k
i and dual variables, (ii) updating estimates variables

ỹki , ñ
k
i by solving the minimization problem of the Lagrangian function Lk with fixed original

variables yki , n
k
i , s

k
i and dual variables, and (iii) updating dual variables κki , λ

k
i , µ

k
i , ν

k
i by

gradient ascent. Specifically, in iteration l + 1, we update variables based on current values

ykl, nkl, skl,ỹkl, ñkl,κkl,λkl, µkl, νkl as follows.

[ykl+1
i , nkl+1

i , skl+1
i ] = arg min

[yki ,n
k
i ,s

k
i ]∈Yi

Lk
i (yki , n

k
i , s

k
i , ỹ

kl, ñkl, κkli , λ
kl
i µ

kl
i , ν

kl
i ), ∀i ∈ R, (2.7a)

[ỹkl+1
i , ñkl+1

i ] = arg min
ỹki ,ñ

k
i

Lk
i (ykl+1

i , nkl+1
i , skl+1

i , ỹki , ñ
k
i , κ

kl
i , λ

kl
i , µ

kl
i , ν

kl
i ), ∀i ∈ R, (2.7b)

κkl+1
ict = κklict + L(ykl+1

ct + skl+1
ct −Wdct(Ndct − ñkl+1

ict )), ∀i ∈ R, ∀c ∈ BO
i , t = 1, . . . , T,

(2.7c)

λkl+1
ict = λklict + L(nkl+1

ct+1 − nkl+1
ct − ỹkl+1

ict + ykl+1
ct ), ∀i ∈ R, ∀c ∈ BI

i , t = 1, . . . , T, (2.7d)

µkl+1
ict = µkl

ict + L(ỹkl+1
ct − ykl+1

pct ), ∀i ∈ R, ∀c ∈ BI
i , t = 1, . . . , T, (2.7e)

νkl+1
ict = νklict + L(ñkl+1

ct − nkl+1
dct

), ∀i ∈ R, ∀c ∈ BO
i , t = 1, . . . , T. (2.7f)

Because the procedure of updating variables is separable for each intersection, the compu-

tation can be conducted in parallel for different intersections in each iteration, which can

speed up the computation drastically. In practice, each subproblem can be solved by local

computers installed at each intersection and then communicate with each other to update

the duals, to fully utilize computing technologies in connected transportation systems.

2.4.1.3 ADMM-based Spatially Decentralized Benders Algorithm

We use the same formulation of (RMPi) as first-stage problems for all the intersections i ∈ R
and solve them directly to obtain solutions ẑ1i, ẑ2i, θ

k
i . Given first-stage solutions, for each

k = 1, . . . , K, we solve the second-stage problem by ADMM and obtain the optimal values

L̂k
i (ẑ1i, ẑ2i) and the optimal dual solutions σ̂k

ct, c ∈ Iij, j ∈ Fi, t = 1, . . . , T (associated with

constraints (2.2b)) for each intersection i ∈ R. We generate a linear optimality cut for θki

as:

θki ≥ L̂k
i (ẑ1i, ẑ2i)−

∑
j∈Fi

∑
c∈Iij

Ncy∑
m=1

T∑
t=1

(ẑ1ijmt + ẑ2ijmt − 1)Qctσ̂
k
ct
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+
∑
j∈Fi

∑
c∈Iij

Ncy∑
m=1

T∑
t=1

(z1ijmt + z2ijmt − 1)Qctσ̂
k
ct. (2.8)

Theorem 2.4.1. The optimality cut (2.8) is a valid cut.

Proof. For each k = 1, . . . , K and i ∈ R, let ˆ̃yki , ˆ̃n
k
i , κ̂

k
i , λ̂

k
i , µ̂

k
i , ν̂

k
i be the optimal solutions

of variables ỹki , ñ
k
i , κ

k
i , λ

k
i , µ

k
i , ν

k
i in ADMM. From the convergence property of ADMM on

convex problems, we have

L̂k
i (ẑ1i, ẑ2i) = min

[yki ,n
k
i ,s

k
i ]∈Yi

Lk
i (yki , n

k
i , s

k
i , ˆ̃yki , ˆ̃n

k
i , κ̂

k
i , λ̂

k
i , µ̂

k
i , ν̂

k
i ). (2.9)

Consider the minimization problem on the right-hand side of (2.9). Associate dual vari-

ables ρkct, σ
k
ct, π

k
cc′t, γ

k
cc′t, δ

k
ct, τ

k
c to constraints (2.2b), (2.2c)–(2.2d), (2.2e)–(2.2f), (2.2g)–

(2.2h), (2.2i)–(2.2k), and (2.2l), respectively. The dual Lagrangian function of this mini-

mization problem is in the form of

L̃k
i (ẑ1i, ẑ2i, y

k
i , n

k
i , s

k
i , ρ

k, σk, πk, γk, δk, τ k)

=Lk
i (yki , n

k
i , s

k
i , ˆ̃yki , ˆ̃n

k
i , κ̂

k
i , λ̂

k
i , µ̂

k
i , ν̂

k
i ) +

∑
c∈Ci/Ii

T∑
t=1

(Qct − ykct)σk
ct

+
∑
j∈Fi

∑
c∈Iij

Ncy∑
m=1

T∑
t=1

((ẑ1ijmt + ẑ2ijmt − 1)Qct − ykct)σk
ct +

∑
c∈Ci

∑
c′∈d(c)

T∑
t=1

(Qc′t − ykct)πk
cc′t

+
∑

c∈Ci/BO
i

∑
c′∈d(c)

T∑
t=1

(Wc′tNc′t − ykct −Wc′tn
k
ct)γ

k
cc′t

+
∑
c∈Oi

T∑
t=1

(Dk
ct − ykct + nk

ct − nk
ct+1)δ

k
ct +

∑
c∈Ci

(ninit
c − nk

c1)τ
k
c . (2.10)

Because the minimization problem of Lk
i is a semi-definite quadratic program, the strong

duality holds. Therefore,

L̂k
i (ẑ1i, ẑ2i) = max

ρk≥0,σk≥0,πk≥0,γk∈Γk,δk,τk
min

yki ,n
k
i ,s

k
i

L̃k
i (ẑ1i, ẑ2i, y

k
i , n

k
i , s

k
i , ρ

k, σk, πk, γk, δk, τ k),

(2.11)

where Γk is the feasible set of γk such that γcc′t ≥ 0, ∀c ∈ Ci/Bo
i , c

′ ∈ d(c), t = 1, . . . , T .

Furthermore, the feasibility set of ρk, σk, πk, γk, δk, τ k generated by minyki ,n
k
i ,s

k
i
L̃k

i does not

depend on first-stage decision variables. Substituting (2.11) into the cut (2.8), we can verify

that the cut is valid.
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The procedure of ADMM-based spatially decentralized Benders algorithm is described in

Algorithm 2.1.

Algorithm 2.1: An ADMM-based Spatially Decentralized Benders Algorithm for
solving Model (2.2).

1 for i ∈ R do
2 Initialize (RMPi) with Σi = ∅.
3 end
4 while the termination criteria is not satisfied do
5 for i ∈ R do

6 Solve (RMPi) to obtain optimal solution (ẑ1i, ẑ2i, θ̂i).
7 end
8 for k = 1, . . . , K do
9 Solve (SP-Dk) by ADMM in parallel according to Section 2.4.1.2 and obtain

the optimal value Lk∗
i and optimal dual variables σ̂.

10 end
11 for i ∈ R do

12 if θ̂ki < Lk∗
i then

13 Add optimality cut (2.8) to Σi.
14 end

15 end

16 end

17 Return the objective value as
∑K

k=1 p
k
∑

i∈R θ̂
k
i and the solutions of (RMPi), i ∈ R.

Remark 2.4.1. Because the added cuts are all valid, the summation of the objective values

of (RMPi) for all i ∈ R provides a lower bound of the original stochastic programming

model. The following theorem guarantees the optimality of the ADMM-based decentralized

Benders algorithm. Furthermore, the summation of L̂k
i provides an upper bound of the orig-

inal stochastic programming model since it is the objective value of a feasible solution. We

terminate the algorithm when the gap between the upper and lower bounds is sufficiently

small.

Theorem 2.4.2. With the assumption that the objective function of the relaxed master prob-

lem is separable for the intersections, when the algorithm terminates, the centralized relaxed

master problem (RMP) is equivalent to the union of distributed relaxed master problems

(RMPi), i ∈ R. Furthermore, Benders-ADMM converges to the optimal solutions and the

optimal objective value.

Proof. For each particular first-stage solution ẑ1, ẑ2, we denote θk ≥ F k
D(ẑ1, ẑ2) as the opti-

mality cut generated by Benders, and θki ≥ F k
Di

(ẑ1i, ẑ2i) as the cut generated by Benders-
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ADMM. It holds that

F k
D(ẑ1, ẑ2) =

∑
i∈R

F k
Di

(ẑ1i, ẑ2i). (2.12)

When the algorithm terminates, for any solution (z∗1 , z
∗
2 , θ

k∗) of (RMP), we solve the second-

stage subproblems by ADMM given (z∗1 , z
∗
2) and let θk∗i = L∗

i . From the procedure of Benders-

ADMM and equation (2.12), (z∗1i, z
∗
2i, θ

k∗
i ) is a solution to (RMPi) for each intersection

i ∈ R. On the other hand, for any solution (z∗1i, z
∗
2i, θ

k∗
i ) of (RMPi), we can construct

a solution
∏

i∈R z
∗
1i,
∏

i∈R z
∗
2i,
∑

i∈R θ
k∗
i for (RMP) because of the Benders procedures and

equation (2.12). It is well known that Benders decomposition algorithm converges to the

optimal solutions [187] and therefore, Benders-ADMM also converges to the optimal solutions

and the optimal objective value.

Remark 2.4.2. ADMM-based spatially decentralized Benders algorithm (Algorithm 2.1) can

be also employed when the partitioned areas contain multiple intersections.

2.4.2 Heuristic Temporal Decomposition

Our ADMM-based spatially decentralized Benders algorithm solves the relaxed mater prob-

lems and subproblems in a distributed manner, which reduces the computational time and

guarantees optimality. To further accelerate the convergence of our Benders algorithm, we

introduce a heuristic temporal decomposition technique to pre-determine the cycle length

in this section. The heuristic technique sacrifices the global optimality but still guarantees

the optimality under a certain cycle length constraint. For the first-stage problem of each

intersection i ∈ R, the computational complexity mainly depends on the number of time

steps, T .

Lemma 2.4.1. For each i ∈ R, the number of variables and constraints in (RMPi) grows

as O(T 2) with the number T of time steps.

Proof. The number of variables in (RMPi) is 2|Fi|NcyT +2|Fi|Ncy. As |Fi| does not depend

on T and Ncy grows linearly with T , the number of variables grows as O(T 2). Similarly,

the number of constraints is O(|Fi|NcyT ), which also grows as O(T 2). This completes the

proof.

To reduce the size of the first-stage problem, we pre-determine the cycle lengths li as l̂i

for each i ∈ R based on the source demand volume according to Koonce and Rodegerdts

[99]. Since the traffic signal control plan is the same for each cycle, the signal status of time
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step (m− 1)l̂i + t′ is exactly the same as t′ for all the cycles m = 1, . . . , Ncy. Therefore, we

redefine binary variables z1ijmt, z2ijmt for each intersection i ∈ R, each phase j ∈ Fi, only for

the first two cycles m = 1, 2 and time steps t = 1, . . . , l̂i. The first-stage problems (RMPi)

and (RMP) are reformulated by setting Ncy = 2 and T = l̂i. In the following lemma, we

show that it is sufficient to describe the signal status at each time step t = 1, . . . , T with the

redefined decision vectors z1i, z2i for the first two cycles and the first l̂i time steps.

Lemma 2.4.2. For each intersection i ∈ R, with given cycle length l̂i, the flow upper bound

constraints for cells controlled by signals (2.2d) are equivalent to

ykct ≤
2∑

m=1

(z1ijmt′ + z2ijmt′ − 1)Qct, ∀c ∈ Iij, ∀i ∈ R, ∀j ∈ Fi, t = 1, . . . , T, k = 1, . . . , K,

(2.13)

where t′ = (t− 1) mod l̂i + 1 is the index of time step corresponding to time step t.

Proof. Recalling the definition of binary variables z1, z2, we have that
∑Ncy

m=1(z1ijmt+z2ijmt−
1) = 1 if and only if the signal of phase j at intersection i is green at time step t. Because

the signal timing plan is the same for each cycle, we know that

Ncy∑
m=1

(z1ijmt + z2ijmt − 1) =

Ncy∑
m=1

(z1ijmt′ + z2ijmt′ − 1), t = 1, . . . , T, t′ = (t− 1) mod l̂i + 1.

(2.14)

Next, we show that the right-hand-side is equivalent to taking the summation with Ncy = 2.

From constraints (2.1d)–(2.1h), given li = l̂i, we have

−l̂i ≤ bi11 ≤ 0, ∀i ∈ R; (2.15a)

ei|Fi|2 ≥ l̂i, ∀i ∈ R. (2.15b)

The time horizon we consider is {1, . . . , l̂i}, which is a subset of [bi11, ei|Fi|2]. Hence, according

to the definition of z1, z2, we have that z1ijmt′ = z2ijmt′ = 0 for all the cycles m ≥ 2.

Theorem 2.4.3. By pre-determining the cycle length, the problem size of reformulated first-

stage problems (RMPi) for each i ∈ R only grows linearly with the cycle length. The

statement also holds for the reformulated centralized first-stage problem (RMP).

Proof. Combining Lemma 2.4.1 and Lemma 2.4.2, we show that the number of variables

reduces to 4|Fi|l̂i + 4|Fi| and number of constraints reduce to O(|Fi|l̂i). It is clear that the
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number of variables and the number of constraints in (RMPi) are both O(l̂i). Because the

number of variables and constraints in (RMP) is the summation of the number of variables

and constraints in (RMPi) for all i ∈ R, the conclusion holds if we pre-determine the cycle

lengths in (RMP).

With heuristic pre-determined cycle lengths and reformulated first-stage and second-stage

problems, Benders-ADMM only ensures convergence to the optimal solutions and optimal

objective value of the original centralized model with additional signal cycle length con-

straints li = l̂i, ∀i ∈ R.

Remark 2.4.3. The pre-determined cycle length for all the intersections are the same [99].

The cycle length lfix is set as the mean value of li, i ∈ R computed by the following formula

[223].

li =

⌈
|Fi| ∗ 7.5 + 5

1−
∑4

j=1Dj/Qj

⌉
(2.16)

where Dj and Qj are the source demand and maximum flow capacity of the direction corre-

sponding to a phase j.

2.5 Numerical Studies

We apply algorithms proposed in Section 2.4 to solve the traffic signal control problem

on instances of randomly generated grid networks and real-world traffic networks. In Sec-

tion 2.5.1, we introduce the experimental design. In Section 2.5.2 and Section 2.5.3, we

present the computational results to demonstrate the efficacy of our approaches.

2.5.1 Experimental Design

We introduce the setting of warm-up initialization in our experiments in Section 2.5.1.1.

We present the network design and parameter setting of randomly generated grid network

instances and real-world traffic network instances in Section 2.5.1.2 and Section 2.5.1.3,

respectively. We discuss the metrics and procedure of our out-of-sample evaluation in Sec-

tion 2.5.1.4.

2.5.1.1 Warm-up Initialization

We introduce a warm start technique according to Webster [223] to simulate the initialized

state of traffic networks and obtain the number ninit
c of vehicles inside each cell c ∈ C.
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We define a fixed traffic signal time plan and compute the number of vehicles in each cell

c ∈ C by solving the model with an objective function as the second term of (2.2a) and

constraints (2.2b)–(2.2m). For each each phase j ∈ Fi, the green time of a phase j is defined

as

gfixj =
Dj∑4
j=1Dj

lfix, (2.17)

where Dj is the source demand of the direction corresponding to a phase j and lfix is the

cycle length. For each cell c ∈ C, we set ninit
c as the number of vehicles inside c at the last

time step.

2.5.1.2 Randomly Generated Grid Networks

We conduct numerical studies on randomly generated grid networks with the size Nrow×Ncol,

where Nrow is the number of rows and Ncol is the number of intersections in each row that

has the same structure of intersections and road segments. We define the set of phases Fi for

all the intersections i ∈ R as Fi = {1, 2, 3, 4}, where j = 1 means turning left in East-West

direction, j = 2 means going straight or turning right in East-West direction, j = 3 means

turning left in North-South direction, and j = 4 means going straight or turning right in

North-South direction. We set the values of input parameters as follows. Let “veh” denote

the number of vehicles. For each intersection cell c ∈ I and time step t = 1, . . . , T , Qct = 1.5

veh and Nct = 6 veh, meaning that at most 1.5 and 6 vehicles can flow through and reside

in an intersection cell at any time, respectively. For the other cells c ∈ C/I and time step

t = 1, . . . , T , Qct = 3 veh and Nct = 12 veh, meaning that at most 3 and 12 vehicles can flow

through and reside in other cells at each time. The ratio of shock-wave speed over free-flow

speed is the same for all the cells in C for each t ∈ {1, . . . , T}, which is set as W = 1/3 .

The initialized number of vehicles ninit is generated by the warm-start technique described

in Section 2.5.1.1. The minimum green time Gmin = 6 seconds and the maximum green time

Gmax = 75 seconds. The whole time horizon is half an hour and has 600 time steps. We set

the weight parameter α = 0.001 in the objective function.

We generate random samples of source demand and turning ratios as follows. We assume

uniform arrivals of vehicles during the half-an-hour time horizon, and therefore values of Dct

are the same for all time steps t = 1, . . . , T for any origin cell c ∈ O. The source demand for

each cell c ∈ O follows a truncated Normal distribution defined on [0,∞) shown in Table 2.3,

where Column “SD/Mean” represents the ratio between standard deviation and the mean

value. The unit of source demand is the number of vehicles per hour (veh/h).

The turning ratios of all the diverge cells c ∈ D follow truncated Normal distribution
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Table 2.3: Instances of randomly generated source demand.

Instance Mean (veh/h) SD/Mean
1 200 (E-W), 50 (S-N) 2
2 200 (E-W), 50 (S-N) 3
3 200 (E-W), 50 (S-N) 4
4 400 (E-W), 100 (S-N) 2
5 400 (E-W), 100 (S-N) 3
6 400 (E-W), 100 (S-N) 4

E-W: direction of east and west;
S-N: direction of south and north;

defined on [0, 1] with mean values = 0.15, 0.72, 0.13, representing the ratio of turning left,

going straight and turning right, respectively. The ratio between the standard deviation and

the mean value is set to 0.3. We test our approaches on randomly generated grid networks

having sizes 4×4, 2×8, 6×6 and 10×10 and the distribution instance #4 of source demand

given in Table 2.3. We test the other types of distributions in Table 2.3 only for the 4 × 4

grid network.

We generate 100 in-sample scenarios to formulate the stochastic optimization model. As

a benchmark, we firstly use Gurobi to solve the stochastic programming model directly.

Then, we employ Benders with/without temporal decomposition described in Section 2.4.2

to solve the model. Furthermore, based on the temporal decomposition, we apply Benders

and the ADMM-based spatially decentralized Benders. For the 4 × 4 grid network, we

build a deterministic counterpart by setting the source demand and turning ratios as the

expectation and solve the model by applying ADMM-based spatially decentralized Benders

with temporal decomposition.

2.5.1.3 Real-world Traffic Networks

We also test all the algorithms on a real traffic network based on the road network of

Downtown Ann Arbor (a city in Michigan, United States). This traffic network contains 14

corridors, 37 signalized intersections, and 27 unsignalized intersections with stop signs and

one-way roads. We present the map of our considered network area and the neighboring

area in Figure 2.2. Notice that the test instance is a typical downtown area with grid

traffic networks with multiple arterials in each direction. We mark the main arterials in the

direction of East and West by red lines, including Miller Avenue, Huron Street, Washington

Street, and Liberty Street. We mark the main arterials in the direction of North and South

by purple lines, including Ashley Street, Main street, Division Street, and State Street. The

downtown area of Ann Arbor is mainly the center area of our network, near the intersections

of main arterials, which are marked by blue text. In addition, we mark the area of the
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Figure 2.2: Map of Ann Arbor downtown.

University of Michigan as the Southeast area of the traffic network. In the morning, people

mostly travel from West to East for studying and working at the university. In the afternoon,

people mostly travel from East to West for going back home.

All the parameters, including mean values of source demand and turning ratios, are

computed based on collected real-world traffic data. We test two instances with high average

source demand during morning and afternoon peak hours where we set the SD/Mean ratio

= 2 and an instance with low average source demand during off-peak hours with SD/Mean

ratio = 3. The ratio between standard deviation and mean of turning ratios is 0.3. We

generate 10 scenarios to formulate the stochastic optimization model and apply ADMM-

based spatially decentralized Benders with temporal decomposition to solve the model. To

construct a deterministic counterpart, we use the mean values of the source demand and

turning ratios as input parameters and apply ADMM-based spatially decentralized Benders

with temporal decomposition.

Remark 2.5.1. We set a heuristic lower bound of the green time that the green length of

each phase j should be no less than 60% of gfixj and apply early termination to make the

solutions more practical. Notice that our algorithm still works without these settings.

2.5.1.4 Out-of-sample Evaluation

Metrics for Evaluation After obtaining a traffic signal control plan, we evaluate its

performance by conducting CTM simulation according to Daganzo [49]. Let y∗ct be the
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obtained solution of the number of vehicles leaving a cell c ∈ C at a time step t = 1, . . . , T .

We define a link as a set of cells that belong to the same road segment connecting two

neighboring intersections. For each link starting from a cell c1 and ending at a cell c2, we

define the cumulative number of vehicles at time step t = 1, . . . , T of the inflow and outflow

as CNin(t) and CNout(t). The computation of these two metrics follows:

CNin(t) =
t∑

t′=1

y∗proc(c1)t (2.18a)

CNout(t) =
t∑

t′=1

y∗c2t (2.18b)

We define the cumulative number of vehicles of outflow at time step t as CN∗(t) by assuming

free-flow speed, and compute the value as

CN∗(t) = CNin(t−Nc), (2.19)

where Nc is the number of cells contained in the link. The performance of a traffic signal

control plan is evaluated for every link during the T time steps by the total travel time∑T
t=1(CNin(t)−CNout(t)) and the total delay

∑T
t=1(CN

∗(t)−CNout(t)). We also compute

the average travel time and the average delay of each vehicle. In addition, the total number

of vehicles traveling through a traffic network during the time horizon is the sum of CNout(T )

for all the links ending at destination cells.

Out-of-sample Evaluation Procedures For both randomly generated grid networks

and the real-world traffic network, we generate 5 replications of instances with the same

parameter settings, each having 100 independently identically distributed scenarios with the

same distribution as the one used in in-sample computation. We conduct the out-of-sample

tests based on CTM simulation for different traffic signal control plans on these replications.

We present the averages of the in-sample and out-of-sample objective values, the average

travel delay, and the total throughput across the total 500 scenarios. For the real-world

traffic network, we also compare the performance with our baseline solution that sets the

green time of each phase as gfixj .

All the numerical experiments of randomly generated grid networks are conducted on

Windows Server 2012 R2 Standard with 128 GB RAM and 2.20 GHz processor. All the

numerical experiments of real-world traffic networks are conducted on a Windows computer

with 32 GB RAM and 3.60 GHz processor.
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2.5.2 Results of Randomly Generated Grid Networks

We present the computational time results in Section 2.5.2.1 and solution performance in

Section 2.5.2.2.

2.5.2.1 Computational Time Comparison

We set the time limit for Gurobi to 7200 seconds. If we do not apply any decomposition

schemes and directly solve the problem, Gurobi is not able to provide a feasible solution or

even an upper bound of the objective value within the time limit. When using the generic

Benders without temporal decomposition, we are not able to solve the first-stage problem

within the time limit, and thus it cannot provide a feasible solution to the second-stage

problem. Based on these results, the temporal decomposition is necessary.

We present the computational time results of the three algorithms with the temporal

decomposition in Table 2.4, where we vary network sizes. In the table, Nrow andNcol represent

the number of intersections of each row and column in the grid networks while “Benders” and

“Benders-ADMM” represent Benders decomposition algorithm and ADMM-based spatially

decentralized Benders algorithm, respectively. In the table, “MP-min”, “MP-max”, “MP-A”,

“SP-min”, “SP-max”, “SP-A” stand for the minimum, maximum and average computational

time in seconds of solving first-stage master problems and second-stage subproblems during

all the iterations, respectively. If an algorithm is not able to return a feasible solution due

to the time limit, we mark the related results as “-” in the table.

Table 2.4: CPU time of different algorithms for solving grid networks with various sizes.

Nrow Ncol
Benders

MP-min (s) MP-max (s) MP-A(s) SP-min (s) SP-max(s) SP-A(s)
4 4 1.18 123.99 54.98 2005.10 6905.05 4632.75
2 8 0.96 76.20 33.78 1687.63 4834.43 3252.43
6 6 1.78 685.31 132.60 17810.42 43607.42 34603.78
10 10 - - - - - -

Nrow Ncol
Benders-ADMM

MP-min (s) MP-max (s) MP-A(s) SP-min (s) SP-max(s) SP-A(s)
4 4 1.73 46.22 18.81 539.44 594.26 571.98
2 8 1.68 33.96 14.71 295.12 519.81 426.21
6 6 4.26 101.51 42.43 1060.78 1685.95 1404.67
10 10 13.73 77.55 45.64 2780.25 3682.51 3231.38

The results show that the CPU time varies significantly during the iterations of different

algorithms. With added cuts, the computational time of the first-stage problem increases

drastically. The computational time of second-stage problems varies depending on first-

stage solutions. The results also indicate that for every instance, Benders-ADMM performs
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significantly better than Benders when solving first-stage problems since the size of first-stage

problems is reduced by the spatial decomposition. For second-stage problems, Benders-

ADMM outperforms Benders since parallel computing is able to be applied so that each

intersection can solve the second-stage problem at the same time. Moreover, for all the

algorithms, the computational time increases when the network size is larger. For networks

with the same number of intersections, the algorithms take less time to solve the model of

an asymmetric network than a symmetric one.

2.5.2.2 Evaluation Results

Overall objective values We use Benders-ADMM (Algorithm 2.1) to solve the deter-

ministic (Deter) and stochastic (SP) MIP models and present the objective values of both

models in Table 2.5. Column “Mean” presents mean values of source demand and Column

“SD/Mean” presents the ratios between standard deviations and demand mean values of

the solutions to different types of instances. Columns “In-sample Obj” and “Out-of-sample

Obj” present the in-sample and out-of-sample objective values. Column “Gap” presents the

gaps between in-sample and out-of-sample objectives. In all cases, gaps of the stochastic MIP

model are smaller than gaps of the deterministic one, indicating that the stochastic approach

better describes the real traffic conditions. When we increase demand mean values, all the

objective values increase since there are more vehicles entering the network. When the devia-

tions increase, objective gaps of the deterministic model increase while the stochastic model

can still maintain relatively low gaps, showing its solution robustness against parameter

uncertainty.

Table 2.5: In-sample and out-of-sample objective values of randomly generated grid networks.

Mean (veh/h)
SD/ In-sample Obj (veh·s) Out-of-sample Obj (veh·s) Gap

Mean Deter SP Deter SP Deter SP
200 (E-W), 50 (S-N) 2 −420597.37 −556225.39 −597997.23 −596944.23 29.65% 6.81%
200 (E-W), 50 (S-N) 3 −420597.37 −649147.73 −715975.68 −727529.79 41.25% 10.76%
200 (E-W), 50 (S-N) 4 −420597.37 −751408.39 −794377.55 −818953.97 47.05% 8.23%
400 (E-W), 100 (S-N) 2 −687354.94 −865289.83 −981940.02 −994091.40 30.00% 12.96%
400 (E-W), 100 (S-N) 3 −687354.94 −986676.06 −978864.21 −1092679.91 29.77% 9.69%
400 (E-W), 100 (S-N) 4 −687354.94 −1044571.92 −1122114.76 −1179086.03 38.74% 9.87%

Figure 2.3 shows the histograms of out-of-sample objective values and the gaps for the

instance with 400 veh/h in East-West direction and SD/Mean ratio = 3. Here the rectangles

filled with slashes are associated with the stochastic model and the ones with dots are

associated with the deterministic model. In most cases, the objective value and the gap of

the stochastic model are smaller than the ones of the deterministic model. The deviation
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of the gap of the stochastic model is also less than the deterministic model, showing the

solution robustness of the former.

(a) Histogram of out-of-sample objective
value (b) Histogram of objective gap

Figure 2.3: Out-of-sample performance and gap results of the instance with demand mean
as 400 (E-W), 100 (S-N) and SD/Mean ratio as 3

Other performance metrics We use travel delay and throughput as the metrics to eval-

uate signal timing plans. In Table 2.6, we present their values in out-of-sample tests of signal

timing plans obtained from the stochastic and deterministic models. Column “Gap” presents

the gaps of the corresponding metrics between the two types of models. In most cases, the

travel delay of the stochastic model is less than the one of the deterministic counterpart and

the throughput of the stochastic one is larger. Therefore, the signal timing plans obtained

by the stochastic model outperform the ones of the deterministic model, demonstrating the

importance and benefits of considering data uncertainties in traffic signal control. When the

demand mean value increases, more improvements are brought by the stochastic model in

most cases. For the same mean value, the largest improvement of the stochastic model is

often attained when the traffic network is not too idle or too congested (i.e., SD/Mean = 3).

We show the distribution of out-of-sample results in Table 2.7, where we present the

standard deviation (SD) and ratio between standard deviation and mean (SD/Mean) of travel

delay (D) and throughput (T), indicated by “SD-D”, “SD-T”, “SD/Mean-D”, “SD/Mean-

T”, respectively. The ratio between standard deviation and mean of travel delay is less than

the ratio of the throughput. In most cases, when the mean value and deviation of the demand

increase, there exist more samples where the traffic network is fully congested, leading to less

deviation of traffic delay and throughput. Figure 2.4 shows the histograms of out-of-sample
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Table 2.6: Out-of-sample evaluation of solutions for randomly generated grid networks with
varying demand mean values and SD/Mean ratios.

Mean (veh/h)
SD/ Average Travel Delay (s) Total Total Throughput (veh)

Mean Deter SP Gap Arrival (veh) Deter SP Gap
200 (E-W), 50 (S-N) 2 29.36 30.00 −2.14% 2105.61 1869.71 1880.02 0.55%
200 (E-W), 50 (S-N) 3 60.20 54.76 9.04% 2872.96 2280.55 2346.54 2.89%
200 (E-W), 50 (S-N) 4 96.81 87.24 8.24% 3658.03 2536.44 2583.79 1.87%
400 (E-W), 100 (S-N) 2 96.67 92.31 4.70% 4195.30 2966.80 3030.21 1.80%
400 (E-W), 100 (S-N) 3 179.12 149.07 16.57% 5825.33 3191.74 3351.85 4.68%
400 (E-W), 100 (S-N) 4 207.95 197.14 5.20% 7300.13 3364.67 3535.66 5.08%

tests on the instance with 400 vehicles per hour in the East-West direction and SD/Mean

ratio being 3. In most cases, the stochastic model outperforms the deterministic model in

the out-of-sample tests.

Table 2.7: Standard deviation of out-of-sample evaluation of solutions for randomly gener-
ated grid networks with varying demand mean values and SD/Mean ratios

Mean of Demand (veh/h)
SD/Mean of SD-D (s) SD-T (veh) SD/Mean-D SD/Mean-T

Demand Deter SP Deter SP Deter SP Deter SP
200 (E-W), 50 (S-N) 2 15.03 14.28 312.95 325.95 0.51 0.48 0.17 0.17
200 (E-W), 50 (S-N) 3 29.75 27.52 334.76 366.29 0.49 0.50 0.15 0.16
200 (E-W), 50 (S-N) 4 37.64 36.83 328.85 308.30 0.39 0.42 0.13 0.12
400 (E-W), 100 (S-N) 2 35.09 34.17 336.78 362.72 0.36 0.37 0.11 0.12
400 (E-W), 100 (S-N) 3 42.18 44.82 318.49 346.43 0.24 0.30 0.10 0.10
400 (E-W), 100 (S-N) 4 48.63 48.11 277.71 325.89 0.23 0.24 0.08 0.09

2.5.3 Results of Real-world Traffic Networks

In this section, we present the results of the ADMM-based spatially decentralized Benders

on real-world instances. Because solving the model without temporal decomposition is com-

putationally impractical, we pre-determine the cycle length heuristically. In our numerical

experiments, we show that the performance of signal timing plans is not sensitive to the

cycle length and set the cycle length as the average value of each intersection’s cycle length,

computed by the rule in Remark 2.4.3. Our numerical results show that the signal timing

plan with an in-sample scenario size K = 10 obtains the best performance and 500 scenarios

are enough for simulating the uncertain traffic reality in the out-of-sample test. The gap

between in-sample and out-of-sample tests is around 20%, mainly because we terminate early

in solving second-stage problems by ADMM allowing at most 20% gap between the obtained

objective value and the optimal one. The details of sensitivity analysis for cycle length, the

in-sample and out-of-sample scenario sizes are presented in Appendix A.2.1.
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(a) Histogram of traffic delay (b) Histogram of throughput

Figure 2.4: Out-of-sample delay and throughput results of the instance with demand mean
as 400 (E-W), 100 (S-N) and SD/Mean ratio as 3.

We select both instances of morning peak and off-peak hours of the real-world network,

to present the computational time and solution performance evaluation in Section 2.5.3.1

and Section 2.5.3.2, respectively. Similar results of the instance of afternoon peak hours are

presented in Appendix A.2.3.

2.5.3.1 Results of Morning Peak Hours

We present the computational time of the deterministic and stochastic models in seconds in

Table 2.8. The results show that our ADMM-based spatially decentralized Benders algorithm

is able to solve both models within an acceptable time limit.

Table 2.8: CPU time results of the traffic network of Downtown Ann Arbor during morning
peak hours.

MP-min (s) MP-max (s) MP-A (s) SP-min(s) SP-max (s) SP-A (s)
Deterministic 0.24 0.79 0.48 41.35 41.66 41.54

Stochastic 1.55 2.67 1.94 447.30 474.69 464.51

We present the in-sample objective values, out-of-sample objective values, and gaps be-

tween the deterministic and stochastic models in Table 2.9. To evaluate the traffic timing

plans, we also present the average travel delay, total arrival, and total throughput in the

second half of the table. In Columns “Average Delay” and “Total Throughput”, the per-

centages in Row “Deterministic” show the improvements of relative metrics compared to

the baseline, and the percentages in the row “Stochastic” show the improvements of related

metrics shown in each column as compared to the deterministic model, respectively.
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Table 2.9: Out-of-sample evaluation results of Downtown Ann Arbor during morning peak
hours.

In-sample Obj (veh·s) Out-of-sample Obj (veh·s) Gap
Deterministic −1498923.97 −1939263.92 22.70%

Stochastic −1540021.95 −2023592.97 23.88%
Average Delay (s) Total Arrival (veh) Total Throughput (veh)

Baseline 352.76 7956.79 3295.30
Deterministic 297.40 (15.69%) 7956.79 3789.91 (15.01%)

Stochastic 276.33 (7.62%) 7956.79 4009.33 (5.47%)

The results in Table 2.9 show that although the gaps between in-sample and out-of-sample

objective values of deterministic and stochastic models are similar, the stochastic model out-

performs the deterministic counterpart in terms of the average delay and total throughput.

Therefore, it is valuable to take into account uncertainties in real-world traffic signal control.

We show that both deterministic and stochastic models significantly outperform the base-

line in delays and throughputs, with at most 15.69% and 21.67% improvement, respectively,

illustrating the advantages of considering the coordination between different intersections.

Figure 2.5: Average number of vehicles in the traffic network during morning peak hours for
all the scenarios.

We visualize the average number of vehicles in the network across all the scenarios over

time in Figure 2.5. The line represents the baseline, the line marked by plus signs represents

the deterministic model and the line marked by stars represents the stochastic model. We

find that the number of vehicles in the traffic network increases the fastest in the baseline

setting, while it increases the slowest in the stochastic model, which also suggests the benefits

of stochastic models in preventing congestion. We also provide the visualizations of the

number of vehicles under the best and worst scenarios with respect to arrival and delay in
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the Appendix A.2.2.

(a) Deterministic model under best scenario (b) Stochastic model under best scenario

(c) Deterministic model under worst scenario (d) Stochastic model under worst scenario

Figure 2.6: Spatial distribution of vehicles at time step 800 during morning peak hours.

Figure 2.6 provides the snapshots of the spatial distribution of the number of vehicles

of deterministic and stochastic models under scenarios with the minimum and maximum

delay (i.e., the best scenario and worst scenario) at time step t = 800. In the figure, we

visualize the occupancy ratio, which stands for the ratio between the number of vehicles

and the maximum allowed number of vehicles in the cell. The road segments are darker if

the occupancy ratio is higher, meaning worse congestion. Figures 2.6a and 2.6b show less

congestion given by the stochastic model under the best scenario. Comparing Figures 2.6c

and 2.6d, although both models have congestion, there is a smaller number of congested

roads given by the signal timing plan produced by the stochastic model. The figures also

41



show that for the deterministic model, the congestion in the East-West direction is worse

while for the stochastic model, the congestion in the North-South direction is worse.

We present the traffic delay of solutions using the three different methods (i.e., Baseline,

Deterministic, and Stochastic) for each intersection in Figure 2.7a. In addition, we present

the histograms of the traffic delay for all the intersections in Figure 2.7b.

(a) Delay of all the methods. (b) Histogram statistics of the delay.

Figure 2.7: Average travel delay for all the intersections during morning peak hours.

In Figure 2.7, not all the delays at intersections are reduced. Compared to the baseline,

the delays at 60% of the intersections are reduced or unchanged by the deterministic model,

and 69% are reduced or unchanged by the stochastic model. The histograms show that

the maximum delays at all intersections by the deterministic and stochastic models are

significantly lower compared to the baseline, showing that considering coordination leads to

avoiding over-saturation. The stochastic model shows the best performance by obtaining the

highest counts of intersections for the minimum delay group, which is less than 11 seconds.

The spatial distribution of intersections with delay reduced or unchanged is presented in

Appendix A.2.2.

2.5.3.2 Results of Off-peak Hours

The computational time of the deterministic and stochastic models under off-peak hours are

presented in Table 2.10. Both models can be solved within acceptable computational time.

Compared to the results under peak hours, it takes less time to solve the models with lower

demand.

We compare the performance of the baseline, the deterministic model, and the stochastic

model in Table 2.11. We also show the solution improvements of the deterministic model
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Table 2.10: CPU time results of the traffic network of Downtown Ann Arbor during off-peak
hours.

MP-min (s) MP-max (s) MP-A (s) SP-min(s) SP-max (s) SP-A (s)
Deterministic 0.13 0.40 0.23 40.70 42.36 41.28

Stochastic 0.89 2.72 1.79 424.50 450.26 439.44

compared to the baseline solution, and the solution improvements of the stochastic model

compared to the deterministic one, both by percentage. For all the signal timing plans, the

average delay of off-peak hours is less than the one of peak hours.

Table 2.11: Out-of-sample evaluation results of Downtown Ann Arbor during off-peak hours.

In-sample Obj (veh·s) Out-of-sample Obj (veh·s) Gap
Deterministic −580971.48 −1121107.27 48.17%

Stochastic −592697.54 −1140783.78 48.04%
Average Delay (s) Total Arrival (veh) Total Throughput (veh)

Baseline 117.99 2905.69 2040.82
Deterministic 59.36 (49.69%) 2905.69 2419.07 (18.53%)

Stochastic 51.19 (13.77%) 2905.69 2466.60 (1.96%)

Comparing Table 2.11 with Table 2.9, the gaps between in-sample and out-of-sample

objective values of the two models are larger than the gaps during peak hours since the devi-

ation of the source demand is higher. The improvements of the deterministic and stochastic

models are both more significant in terms of average delay while the improvement of through-

put is similar compared to the results of peak hours. We visualize the average number of

vehicles in the network across all the scenarios over time in Figure 2.8. The increase rates

of the number of vehicles of all models are slower than the results of peak hours since the

mean source demand of off-peak hours is smaller. In Figure 2.9, we visualize the number of

vehicles in the network of the scenarios with the minimum delay and maximum delay of the

deterministic model, stochastic model, and baseline setting. Figure 2.9a shows that under

the scenario with minimum delay, the number of vehicles in the traffic network keeps stable

for both deterministic and stochastic models, and there are fewer vehicles of the stochastic

model. Figure 2.9b shows that under the scenario with maximum delay, the number of ve-

hicles of all the settings increases and the increasing rate of the stochastic model is slower

than the other two settings. We also provide the visualizations of the number of vehicles

under the best and worst scenarios with respect to arrival in Appendix A.2.2.

Figure 2.10 provides the snapshots of the spatial distribution of the number of vehicles

of the deterministic and stochastic models under the best and worst scenario at time step

t = 800. There are fewer congested intersections in the results of the stochastic model under

both scenarios, compared to the peak hours. While the solutions returned by the stochastic
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Figure 2.8: Average number of vehicles in the traffic network during afternoon peak hours
for all the scenarios.

(a) Scenario with minimum delay (b) Scenario with maximum delay

Figure 2.9: Number of vehicles in the Downtown Ann Arbor traffic network during off-peak
hours.

model can lead to almost fully empty roads, the deterministic counterpart still leaves several

roads congested.

We present the average traffic delay of solutions given by the three methods during off-

peak hours for each intersection in Figure 2.11a, and the traffic delay for all intersections

in Figure 2.11b. All the legends are the same as in Figure 2.7 for the morning peak hours

instance.

Compared to baseline, the delays at 64% of the intersections are reduced or unchanged

by the deterministic model, and at 70% intersections are reduced or unchanged by the

stochastic model. These percentages are higher compared to the ones during morning peak
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(a) Deterministic model under best scenario (b) Stochastic model under best scenario

(c) Deterministic model under worst scenario (d) Stochastic model under worst scenario

Figure 2.10: Spatial distribution of vehicles at time step 800 during off-peak hours.

hours. The histograms show that both centralized models improve the maximum delays at all

intersections compared to the baseline case. The stochastic model obtains the most number

of intersections in the minimum delay group, which is less than 2.5 seconds during off-peak

hours, demonstrating the benefits of considering coordination and uncertainties. We present

the spatial distribution of intersections with delay reduced or unchanged in Appendix A.2.2.

Based on all the above results, we show the benefits of considering travel demand and

turning ratio uncertainties as well as the coordination of intersections in traffic signal control

with real-world data and road networks. Our models work well for real-world instances

during both peak hours and off-peak hours and our stochastic model is more appropriate for

instances with high standard deviations of travel demand.
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(a) Delay of all the methods. (b) Histogram statistics of the delay.

Figure 2.11: Average travel delay for all the intersections during off-peak hours.

2.6 Concluding Remarks

In this chapter, we built a CTM-based MIP for traffic signal control and extended the

deterministic model to a two-stage stochastic optimization model by considering random

source demand and turning ratios. We proposed efficient algorithms for solving the models

and overcoming the scalability difficulties. Our algorithm not only reduced the computational

time but also ensured the optimality for the non-convex model with mixed-integer variables.

With the numerical results obtained from randomly generated grid networks and real-

world traffic networks, we first showed the reduction of the computational time of our

algorithm. Then we demonstrated the benefits of considering stochastic traffic demand.

Furthermore, we illustrated the advantages of our model to consider the coordination of all

the intersections in a real-world traffic network. We noted that the parameters in the model

need fine-tuning in practice, and this can be achieved easily since our decision models are

solved offline. The proposed method can be used by traffic engineers to generate the fixed-

time or background signal timing plan by taking stochastic traffic demand as input in forms

of distribution or different scenarios, which is more robust than only considering the average

traffic volume.

There are several limitations and corresponding possible directions for future research.

Firstly, our proposed formulation only optimizes traffic signal timing parameters based on a

pre-determined phase sequence and structure. It will be more flexible if the phase structure

(i.e., lead and lag phase) can also be considered as a decision variable. Secondly, like most

existing traffic signal control literature [131, 211], vehicle re-routing and induced demand

due to the change of the traffic signal timing plan is not explicitly included in this work.
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The overall traffic control problem can also be formulated as a more complicated bi-level pro-

gramming problem by taking vehicle re-routing into consideration. We leave this for future

study. In addition, with the development of connected and autonomous vehicles (CAV), the

distribution of traffic demand can be directly estimated from real-world data. The combina-

tion of data collected from CAV and our proposed approach provides a complete framework

for traffic signal optimization in practice. Furthermore, demographics and socioeconomics

can be used to predict long-term traffic demand, providing the potential to estimate traffic

flow distribution better, which is helpful in guiding the planning and operation of urban

traffic optimization.
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CHAPTER 3

Binary Control Pulse Optimization for

Quantum Systems

3.1 Introductory Remarks

Quantum control [29, 169, 224] is a rich field that started with applications in quantum

chemistry [89, 101, 163, 189, 190] but has since expanded to other subfields such as atomic,

molecular, and optical physics [76, 95, 210]. Quantum control theory has been used in

the quantum information community for a long time, mostly for designing pulse controls

and gates in quantum devices [54, 77, 96, 143, 154, 157, 158, 212, 220]; but more recently,

researchers have considered using control theories and optimization for the high-level design

of quantum algorithms [13, 26, 27, 127, 137, 213, 234]. In this chapter, we focus primarily on

the quantum information applications of control theory, but our methods are generalizable to

other settings. We do not focus on the analytic aspects of quantum control but on the more

mechanistic aspects of how to apply optimization techniques to the problem of designing

and finding solutions to a variety of quantum control problems.

Quantum computing architecture falls into different categories, such as quantum circuits,

which utilize discrete unitary gates to control a system, and quantum annealing [60, 93],

which uses smooth Hamiltonian evolution instead. Quantum control is already familiar

within quantum circuit architecture design as a method for designing quantum gates, and

several of our examples described in Section 3.2 belong to this category. Within the frame-

work of quantum algorithms, quantum control is often used in variational quantum algo-

rithms, which can straddle the line between discrete gates and smooth evolution. This

chapter focuses mainly on discrete binary control, which is more applicable to a quantum

gate architecture. Variational techniques have already been implemented experimentally

(see, e.g., [84, 156]), and our techniques can potentially enhance the performance of the

classical variational loop on such near-term devices.
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Most quantum optimal control algorithms are based on gradient descent for better con-

vergence than using gradient-free algorithms [153]. Khaneja et al. [95] proposed the gradient

ascent pulse engineering (GRAPE) algorithm for designing pulse sequences in nuclear mag-

netic resonance. The authors approximated the control function by a piecewise constant

function and evaluated the explicit derivative. Based on the GRAPE algorithm, Larocca

and Wisniacki [109] proposed a K-GRAPE algorithm by using a Krylov subspace to esti-

mate quantum states during the process of time evolution. Brady et al. [26] applied an

analytical framework based on gradient descent to discuss the optimal control procedure of

a special control problem that minimizes the energy of a quantum state with a combination

of two Hamiltonians. Another class of quantum optimal control algorithms are based on the

chopped random basis (CRAB) optimal control technique, which describes the control space

by a series of basis functions and optimizes the corresponding coefficients [36, 56]. Sørensen

et al. [198] combined the GRAPE algorithm and CRAB algorithm to achieve better re-

sults and faster convergence. However, all these algorithms are designed for unconstrained

continuous quantum control problems.

In this work, we focus on a quantum pulse optimization problem having binary control

variables and restricted feasible regions derived by linear constraints. These constraints de-

scribe a so-called bang-bang control in a model that corresponds to a quantum circuit design

similar to that in the quantum approximate optimization algorithm (QAOA) [59] and other

variational quantum algorithms [20, 37]. Some literature formulates the QAOA algorithm

into bang-bang control problems with a fixed evolution time and investigates the performance

of multiple methods including Stochastic Descent and Pontryagin’s minimum principle for

optimizing control models [11, 124]. However, they only consider quantum systems with two

controllers, while we propose a more general solution framework for quantum systems with

multiple controllers. In this chapter, we introduce four quantum control examples: (i) en-

ergy minimization problem, (ii) controlled NOT (CNOT) gate estimation problem, (iii) NOT

gate estimation problem with the energy leakage, and (iv) circuit compilation problem. The

nonconvexity, binary variables, and restricted feasible sets in these examples lead to extreme

challenges and difficulties in solving the related binary quantum control problems.

Methods for binary control mainly include genetic algorithms [146], branch-and-

bound [110, 114], and local search [216]. To the best of our knowledge, genetic algorithms

have not been applied to binary quantum control, but Zahedinejad et al. [239] showed that

such algorithms fail to obtain high-quality solutions even to continuous quantum control

problems. Branch-and-bound can find high-quality solutions for binary optimal control, but

the long computational time makes the algorithm intractable and hard to use for large-scale

practical problems. Vogt and Petersson [216] introduced a trust-region method [153] to solve
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the single flux quantum control problem with binary controls. We extend their approach by

allowing the addition of constraints, such as min-up-time and max-switching constraints to

control the number of switches.

The main contributions of this chapter are as follows. First, we propose a generic model in-

cluding continuous and discretized versions for binary quantum control problems with linear

constraints indicating that at each time step there can be only one active control. Second,

we introduce an exact penalty function for linear constraints and develop an algorithmic

framework combining the GRAPE algorithm and rounding techniques to solve it. Third, to

prevent chattering on controls, we propose a new model that includes a total variation (TV)

regularizer, and then we propose a new approach based on the alternating direction method

of multipliers (ADMM) to solve this model. Fourth, we introduce a modified trust-region

method to improve the solutions obtained from these algorithms. Compared with other

methods, our algorithmic framework can obtain high-quality binary control sequences and

prevent frequent switches. We demonstrate the performance on multiple quantum control

examples with various objective functions and controllers.

The chapter is organized as follows. In Section 3.2 we construct generic models of quantum

binary control problems using continuous and discretized formulations. We also introduce

the corresponding specific formulations for four quantum control examples. In Section 3.3 we

review the GRAPE algorithm, utilize a penalty function to relax certain linear constraints,

and introduce our rounding techniques. In Section 3.4 we propose and solve the penalty

model with the TV regularizer and the corresponding ADMM algorithm. In Section 3.5

we derive trust-region subproblems and propose an approximate local-branching method

based on the trust-region algorithm. In Section 3.6 we present numerical simulations for

multiple instances of the three quantum control examples in Section 3.2 to demonstrate the

computational efficacy and solution performance of our models and algorithms. In Section 3.7

we summarize our work and propose future research directions.

3.2 Formulations for Quantum Control

Consider a quantum system with q qubits and a time horizon [0, tf ], where tf > 0 is defined

as the evolution time. Let H(0) ∈ C2q×2q be the intrinsic Hamiltonian. Let N be the number

of control operators and H(j) ∈ C2q×2q , j = 1, . . . , N be the given control Hamiltonians.

Let Xinit, Xtarg ∈ C2q×2q be the initial and target unitary operators of the quantum system,

respectively. Define variables uj(t) ∈ {0, 1} , j = 1, . . . , N, ∀t as the real-valued control

functions at time t, and use u to represent the corresponding vector form. Define variables

H(t) ∈ C2q×2q as the time-dependent control Hamiltonian function and X(t) ∈ C2q×2q as the
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time-dependent unitary quantum operator function. A generic quantum control problem for

optimizing a function of quantum operators is formulated as

(P ) min F (X(tf )) (3.1a)

s.t. H(t) = H(0) +
N∑
j=1

uj(t)H
(j), ∀t ∈ [0, tf ] (3.1b)

d

dt
X(t) = −iH(t)X(t), ∀t ∈ [0, tf ] (3.1c)

X(0) = Xinit (3.1d)

N∑
j=1

uj(t) = 1, ∀t ∈ [0, tf ] (3.1e)

uj(t) ∈ {0, 1} , j = 1, . . . , N. (3.1f)

The objective function (3.1a) is a general function with respect to the final unitary operator

X(tf ). We assume that F is a differentiable function. In Sections 3.2.1–3.2.4, we provide the

specific formulations of the objective function for four quantum control examples. Constraint

(3.1b) describes the computation of the time-dependent Hamiltonian function based on the

intrinsic Hamiltonian, control Hamiltonians, and control functions. Constraint (3.1c) is the

ordinary differential equation describing the time evolution of the operator of the quantum

system with the same units for energy and frequency, setting ℏ = 1. Constraint (3.1d) is

the initial condition of the operator. Constraint (3.1e) indicates that the summation of all

the control functions should be one at all times, which is described by the Special Ordered

Set of Type 1 (SOS1) property in optimal control theory [181]. In binary control, this SOS1

property guarantees that only one control field will be active at a time that mimics the bang-

bang nature of some quantum applications such as the quantum approximate optimization

algorithm and the variational quantum eigensolver (VQE). Constraints (3.1f) require all

time-based values of the control functions to be feasible.

Following the time discretization process in [95], we explicitly integrate constraint (3.1c).

In particular, we divide the time horizon [0, tf ] into T time intervals [tk−1, tk), k = 1, . . . , T .

We consider time intervals with an equal length represented by ∆t, but our work readily

extends to nonuniform discretizations. For each controller j = 1, . . . , N and each time step

k = 1, . . . , T , we define discretized binary control variables as ujk ∈ {0, 1}. For each time

step k = 1, . . . , T , we define the discretized time-dependent Hamiltonians as Hk ∈ C2q×2q and

the quantum operators as Xk ∈ C2q×2q . The differential equation (3.1c) is thus approximated
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by

d

dt
X(t) = −iHkX(t), ∀t ∈ [tk−1, tk), k = 1, . . . , T. (3.2)

For each k = 1, . . . , T , the linear differential equation (3.2) is a Schrödinger equation of a

unitary operator, and we obtain an explicit solution as

X(t) = exp {−iHk(t− tk−1)}X(tk−1), ∀t ∈ [tk−1, tk),

because Hk is time independent. We then obtain a discretized quantum control problem

(DQCP) as a discretization of the differential control model (P) using explicit solutions on

each interval [tk−1, tk) for unitary operators as

(DQCP ) min
u,X,H

F (XT ) (3.3a)

s.t. Hk = H(0) +
N∑
j=1

ujkH
(j), k = 1, . . . , T (3.3b)

Xk = e−iHk∆tXk−1, k = 1, . . . , T (3.3c)

X0 = Xinit (3.3d)

N∑
j=1

ujk = 1, k = 1, . . . , T (3.3e)

ujk ∈ {0, 1} , j = 1, . . . , N, k = 1, . . . , T. (3.3f)

The objective function (3.3a) is the objective function (3.1a) evaluated at the approximated

final operator XT ≈ X(tf ). Constraints (3.3b)–(3.3f) are the discretized formulations of

constraints (3.1b)–(3.1f). In the following sections we use this discretized formulation to

develop our algorithms. We present the following discussion on the relationship between the

continuous and discretized formulation.

Remark 3.2.1. Problem (DQCP) is equivalent to (P) for piecewise-constant controls uj, j =

1, . . . , N . In addition, we have

∫ tk

0

uj(τ)dτ =
k∑

τ=1

ujτ∆t, j = 1, . . . , N, k = 1, . . . , T. (3.4)

Remark 3.2.2. The model can be generalized to instances with multiple active controllers

in any time interval by considering each possible combination of the controllers. For an

instance with L control Hamiltonians H(1), . . . , H(L), we consider N = 2L combinations
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H(l1,...,lk), ∀ {l1, . . . , lk} ⊆ {1, . . . , L} and define control functions for each combination.

Thus, the original problem is converted to a new problem with only one active controller

in any time interval.

In this chapter we consider four examples with different objective functions and control

Hamiltonians. In the following sections we introduce the continuous model of four exam-

ple problems in quantum control. They can be formulated as discretized models (DQCP)

following the above discretization process.

3.2.1 Energy Minimization Problem

Consider a quantum spin system consisting of q qubits, no intrinsic Hamiltonian, and two

control Hamiltonians H(1), H(2). The initial operator Xinit is a 2q-dimensional identity

matrix. Let |ψ0⟩ be the ground state of the first control Hamiltonian H(1). The ground

state energy of this quantum system is the minimum eigenvalue of the control Hamiltonian

H(2), represented by Emin in our model. Since the ground state energy differs across prob-

lem instances, it is important to compare performance consistently across these instances.

Therefore, we maximize the approximation ratio, defined as the achieved energy divided by

the true ground state energy. The problems we study are well defined so that the initial state

of the system has zero energy with respect to H(2); furthermore, the ground state energy will

always be a large negative number. Therefore, the approximation ratio reflects the energy

level achieved by our procedure from the initial energy of zero to the true ground state en-

ergy. Because our procedure can improve the state relative only to its initial configuration,

a negative approximation ratio is not possible.

To ensure consistency with the objective functions of our other two examples, we minimize

one minus the approximation ratio. Because the true ground state energy is negative, this

formula is equivalent to minimizing the achieved energy. The continuous-time formulation

is

min 1− ⟨ψ0|X(tf )†H(2)X(tf ) |ψ0⟩ /Emin (3.5a)

s.t. H(t) = u1(t)H
(1) + u2(t)H

(2), ∀t ∈ [0, tf ] (3.5b)

H(1) = −
q∑

i=1

σx
i , H

(2) =
∑
ij

Jijσ
z
i σ

z
j (3.5c)

Constraints (3.1c)–(3.1e)

u1(t), u2(t) ∈ {0, 1} , (3.5d)

where ·† represents the conjugate transpose of a matrix and ⟨·| represents the conjugate
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transpose of a quantum state vector |·⟩. The matrix [Jij], i, j = 1, . . . , q is the adjacency

matrix of a randomly generated graph with q nodes, and σx
i , σ

z
i are Pauli matrices of qubit

i.

3.2.2 CNOT Gate Estimation Problem

Our second example is defined on an isotropic Heisenberg spin-1/2 chain with length 2

according to [160]. For our study we consider just the unitary evolution with no energy

leakage. The quantum system includes 2 qubits, an intrinsic Hamiltonian H(0), and two

control Hamiltonians H(1), H(2). The initial operator Xinit is a 4-dimensional identity matrix

and the target operator is the matrix formulation of the CNOT gate represented by XCNOT ∈
C4×4. This problem’s continuous-time formulation is

min
u(t),X(t),H(t)

1− 1

4

∣∣∣tr{X†
CNOTX(tf )

}∣∣∣ (3.6a)

s.t. H(t) = H(0) + u1(t)H
(1) + u2(t)H

(2), ∀t ∈ [0, tf ] (3.6b)

H(0) = σx
1σ

x
2 + σy

1σ
y
2 + σz

1σ
z
2 (3.6c)

H(1) = σx
1 , H

(2) = σy
1 (3.6d)

Constraints (3.1c)–(3.1d)

u1(t), u2(t) ∈ {0, 1} , (3.6e)

where σx
i , σ

y
i , σ

z
i , i = 1, 2 are Pauli matrices of two qubits. The goal is to minimize

the objective function, defined as the infidelity between the final operator and the target

operator.

3.2.3 NOT Gate Estimation with Energy Leakage

We consider an anharmonic multilevel system that is widely used in quantum experiments

to implement physical qubits. Following [145], we consider the lowest three levels of an

energy spectrum with only nearest-level coupling for a single qubit q = 1. The first two

levels comprise the qubit and the third level models the energy leakage. Under this setting,

the system contains an intrinsic Hamiltonian H(0) and two control Hamiltonians H(1), H(2).

The initial operator Xinit is a 3-dimensional identity matrix, and the target operator is the

matrix formulation of the NOT gate corresponding to the lowest three levels of the energy
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spectrum represented by XNOT ∈ C3×3, which is

XNOT =

0 1 0

1 0 0

0 0 0

 . (3.7)

The continuous-time formulation of this problem is

min
u(t),X(t),H(t)

1− 1

2

∣∣∣tr{X†
NOTX(tf )

}∣∣∣ (3.8a)

s.t. H(t) = H(0) + u1(t)H
(1) + u2(t)H

(2), ∀t ∈ [0, tf ] (3.8b)

H(0) = µ1|1⟩⟨1|+ µ2|2⟩⟨2| (3.8c)

H(1) = ω1(|0⟩⟨1|+ |1⟩⟨0|) + ω2(|1⟩⟨2|+ |2⟩⟨1|) (3.8d)

H(2) = ω1(i|0⟩⟨1| − i|1⟩⟨0|) + ω2(i|1⟩⟨2| − i|2⟩⟨1|) (3.8e)

Constraints (3.1c)–(3.1d)

u1(t), u2(t) ∈ {0, 1} , (3.8f)

where |j⟩ represents a vector with the j-th element as 1 and other elements as 0. The

parameters µ1, µ2 weigh the relative strength of transitions and the parameters ω1, ω2

correspond to the drive frequency. We present the specific values of the parameters used in

numerical simulations in Section 3.6.2.

3.2.4 Circuit Compilation Problem

For a general quantum algorithm, each quantum circuit needs to be compiled to a represen-

tation imposed by specific controllers and constraints in order to execute the algorithm on

specific quantum devices. We take quantum circuits generated by the unitary coupled-cluster

single-double (UCCSD) method [15, 177] for estimating the ground state energy of molecules

in quantum chemistry as examples. We consider the Hamiltonian controllers in the gmon-

qubit system [40] with q qubits. Each qubit has a flux-drive controller and a charge-drive

controller. In addition, there is a rectangular-grid topology with nearest-neighbor connec-

tivity denoted by E, and each pair of connected qubits (j1, j2) ∈ E has a controller. Define

wj1j2(t) as control functions for the connected qubits controllers and use w(t) to represent the

corresponding vector form of wj1j2(t). The initial operator Xinit is a 2q-dimensional identity

matrix. The target operator is the matrix formulation of the quantum circuit generated by

UCCSD for specific molecules represented by XUCCSD ∈ C2q×2q . We refer interested readers
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to Gokhale et al. [75] for more details. The continuous-time formulation of this problem is

min 1− 1

2q

∣∣∣tr{X†
UCCSDX(tf )

}∣∣∣ (3.9a)

s.t. H(t) =

2q∑
j=1

uj(t)H
(j) +

∑
(j1,j2)∈E

wj1j2(t)H
(j1j2), ∀t ∈ [0, tf ] (3.9b)

H(2j−1) = Jcσ
x
j , j = 1, . . . , q (3.9c)

H(2j) = Jf

(
0 0

0 1

)
, j = 1, . . . , q (3.9d)

H(j1j2) = Jeσ
x
j1
σx
j2
, (j1, j2) ∈ E (3.9e)

Constraints (3.1c)–(3.1e)

uj(t) ∈ {0, 1} , wj1j2(t) ∈ {0, 1} , j = 1, . . . , 2q, (j1, j2) ∈ E, (3.9f)

where Jc, Jf , Je are parameters corresponding to the quantum system and σx
j is the Pauli

matrix of qubit j. We finish this section by showing a general property of the objective

function in optimal control problems.

Theorem 3.2.1. For a quantum system with q qubits, the infidelity 1 −
1
2q

∣∣∣tr{X†
targ X(tf )

}∣∣∣ ∈ [0, 1]. The objective functions of the optimal control models

for CNOT gate (3.6) and circuit compilation problem (3.9) are bounded between zero and

one.

Proof. By definition, the objective function value cannot be larger than 1. From the def-

inition of our quantum control problem, the quantum operators Xtarg and X(tf ) are both

unitary matrices. Therefore, we can write X(tf ) as X(tf ) =
∑2q

i=1 xie
T
i , where xi are the

orthonormal column vectors of X(tf ) and ei are 2q × 1 vectors with the ith component as 1

and all the other components as 0. Thus we have

∣∣∣tr{X†
targ X(tf )

}∣∣∣ =

∣∣∣∣∣
2q∑
i=1

tr
{
X†

targ xie
T
i

}∣∣∣∣∣ ≤
2q∑
i=1

∥∥∥X†
targ xi

∥∥∥
∞
≤ 2q. (3.10)

The first inequality follows from the fact that the trace of a product is invariant under cyclic

permutations of the factors. The second inequality follows from
∥∥∥X†

targ xi

∥∥∥
∞
≤ 1. As a

result, the objective function is no less than 0, and this completes the proof.

Remark 3.2.3. All the problems in this section fall into a class known as right-invariant

systems [92] that consists of control problems on Lie groups. Specifically, this class consists

of all control problems described by a Hamiltonian of the form H(t) = H(0) +
∑

j uj(t)H
(j).
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Controllability results on this class of control problems are well known [92, 171]. A test of

controllability of these problems consists of examining the dynamical Lie algebra generated

by the Hamiltonians, H(j), and their nested commutators and comparing that Lie algebra

with the Lie algebra of the subgroup defined by the symmetries in a given problem. For the

systems considered in this chapter, there are indeed enough control Hamiltonians to reach

the target state by using piecewise continuous control functions, uj(t).

3.3 Binary Quantum Control Algorithms

In this section we propose models and algorithms to obtain binary quantum control results

for the discretized model (DQCP). In Section 3.3.1 we review the adjoint approximation

method of gradients used in the GRAPE algorithm for solving the continuous relaxation

of the optimal control problem (DQCP) and derive the gradient update rule for the afore-

mentioned four specific examples. In Section 3.3.2 we propose an exact penalty function

for the SOS1 property that allows us to add constraints to GRAPE. In Section 3.3.3 we

introduce rounding techniques to obtain binary controls. These algorithms form the basis of

our discrete framework discussed in Sections 3.4–3.5.

The overall framework is outlined in Figure 3.1, which presents the methods in Sec-

tions 3.3–3.5 and the corresponding tables and results. We summarize the algorithms of our

framework in Table 3.1. In the figure, the rectangles represent the three formulations of our

model, and the ellipses represent the algorithms. The parallelograms show the result tables

corresponding to algorithms, where the dashed parallelograms refer to the results of the

continuous models and the solid parallelograms refer to the results of the discrete models.

Table 3.1: List of acronyms of algorithms in numerical simulations. The pGRAPE and
GRAPE algorithms are identical when the SOS1 constraint is absent.

Name Algorithms
pGRAPE Solving the continuous relaxation with squared L2-penalty function by penalized GRAPE.
TR Solving the continuous relaxation with TV regularizer and SOS1 property by a trust-region method.
ADMM Solving the continuous relaxation with TV regularizer and SOS1 property by ADMM.
SUR Rounding the continuous solutions without hard control constraints.
MT Rounding the continuous solutions with min-up-time constraints.
MS Rounding the continuous solutions with max-switching constraints.
ALB Improving the binary solutions by the approximate local-branching method.
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Unconstrained model
(continuous relaxation of
(DQCP) without (3.3e))

Model with penalized squared
L2-norm (continuous re-
laxation of (DQCP-L2))

Model with TV regular-
izer (continuous relax-
ation of (DQCP-TV))

GRAPE
(Section 3.3.1)

Penalized
GRAPE

(Section 3.3.2)

ADMM
algorithm

(Section 3.4)

Trust-region
method

(Section 3.5)

Table B.1

Sum-up-rounding
(no constraints,
Section 3.3.3.1)

Integral minimiza-
tion with min-up-
time constraints
(Section 3.3.3.2)

Integral minimiza-
tion with max-

switching constraints
(Section 3.3.3.2)

Table B.3

Approximate Local-
branching (Section 3.5)

Table B.5

Figure 3.1: Overview and results of the algorithmic framework.

3.3.1 GRAPE Approach for Solving Continuous Relaxations

The GRAPE algorithm [95] is a gradient descent algorithm for solving the unconstrained

continuous control problem. We derive a gradient descent algorithm based on the adjoint

approach used in the GRAPE algorithm to solve the continuous relaxation of our discretized

model (DQCP) without the SOS1 property enforced by constraint (3.3e). We eliminate

variables X and H by converting them into implicit functions of the control variables u

using constraints (3.3b)–(3.3d). Then the minimization problem of F (XT ) on u, X, H is

converted to the minimization problem of F (XT (u)) over the variables u. The goal of the

adjoint approach is to approximate the gradient of the objective function F with respect to

control variables ujk, j = 1, . . . , N, k = 1, . . . , T based on the discretized time horizon. For

simplicity, we define propagators for each time step k = 1, . . . , T as Uk = exp {−iHk∆t}.
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For small ∆t, the gradient of Uk corresponding to ujk is estimated as

∂Uk

∂ujk
= −i∆tH(j)Uk, j = 1, . . . , N, k = 1, . . . , T. (3.11)

The gradient of the objective function with respect to the propagators depends on its specific

formulation. We discuss gradients of two specific functions for the examples in Section 3.2.

Energy function For generality, we use H̄ to represent the Hamiltonian in the energy

objective function, which means that the goal is to minimize the energy corresponding to H̄.

Specifically, we have H̄ = H(2) in the example in Section 3.2.1. The general energy function

can be expressed as

⟨ψ0|X†
T H̄XT |ψ0⟩ = ⟨ψ0|U †

1 · · ·U
†
T H̄UT · · ·U1 |ψ0⟩ . (3.12)

For each time step k = 1, . . . , T − 1, define variables |κk⟩ = U †
k+1 · · ·U

†
T H̄XT |ψ0⟩. For the

last time step T , we define a variable |κT ⟩ = H̄XT |ψ0⟩. Then the gradient with respect to

ujk is computed as

∂F

∂ujk
=

2

Emin

Re
[
i∆t⟨κk|H(j)Xk |ψ0⟩

]
, j = 1, . . . , N, k = 1, . . . , T. (3.13)

Infidelity function The infidelity function can be expressed as

1− 1

2q

∣∣∣tr{X†
targXT

}∣∣∣ = 1− 1

2q

∣∣∣tr{X†
targUT · · ·U1X0

}∣∣∣ . (3.14)

For each time step k = 1, . . . , T − 1, define variables λk = U †
k+1 · · ·U

†
TXtarg. For the last

time step T , we define a variable λT = Xtarg. Then the gradient of the trace with respect to

ujk is computed as

∂ tr
{
X†

targXT

}
∂ujk

= −i∆tλ†kH
(j)Xk, j = 1, . . . , N, k = 1, . . . , T. (3.15)

Using the definition of objective function F , we compute the gradient as

∂F

∂ujk
=

1

2q
Re
[
i∆t tr

{
λ†kH

(j)Xk

}
e−iarg(tr{X†

targXT})
]
, j = 1, . . . , N, k = 1, . . . , T, (3.16)

where arg(·) represents the argument of a complex number.

With these computed gradients, we minimize the reduced function F (XT (u)) with respect
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to control variables u ∈ [0, 1]N ·T by L-BFGS-B [34], a well-known quasi-Newton algorithm

for solving bound-constrained optimization problems.

Remark 3.3.1. Our implementation of GRAPE extends the classical gradient-ascend

scheme (see, e.g., [95, 109]) in a number of ways: We use a bound-constrained quasi-

Newton method to solve problems with bounded control variables, and we introduce a pe-

nalized GRAPE (denoted by pGRAPE) that adds a quadratic penalty of the SOS1 property

in Section 3.3.2.

We take the circuit compilation problem (Section 3.2.4) on the molecule H2 (dihydrogen)

as an example to show the control results, and we present the continuous control results

without the SOS1 property obtained by the GRAPE algorithm in Figure 3.2a. We define

the absolute violation of the SOS1 property at each time step k = 1, . . . , T as |
∑N

j=1 ujk−1|
and present the value at each time step in Figure 3.2b. The figure shows that the results

violate the SOS1 property at all time steps, with the maximum absolute violation being 2.404.

Hence we introduce a penalized function in Section 3.3.2 to impose the SOS1 property.

(a) Control results of 5 controllers (b) Absolute violation at each step

Figure 3.2: (a) Control results of the continuous relaxation of the discretized model (DQCP)
without the SOS1 property constraint (3.3e) of the circuit compilation example on the
molecule H2. (b) Absolute violation at each time step.

3.3.2 Penalty Function for SOS1 Property

Our GRAPE algorithm is defined only for unconstrained or bound-constrained problems [95].

Hence, we convert the SOS1 property (3.3e) into a squared L2-penalty term and add it to
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the objective function. Define the squared L2 function of the constraint violation as

l(u, T ) =
T∑

k=1

(
N∑
j=1

ujk − 1

)2

. (3.17)

We let a constant ρ > 0 be the penalty parameter. Then the model with the penalty function

is

min F (XT ) + ρl(u, T ) s.t. Constraints (3.3b)–(3.3e). (DQCP-L2)

We use l(u∗ρ, T ) to denote the optimized value of the squared L2 function l(u, T ) under

the penalty parameter ρ. The following theorem discusses the exactness of the penalized

objective function.

Theorem 3.3.1. [Exactness of Squared L2-Penalty] Let z1 and z2(ρ) be the optimal values

of (DQCP) and (DQCP-L2), respectively. There exists ρ̃ < ∞ such that z1 = z2(ρ) for all

ρ > ρ̃.

A more general version of Theorem 3.3.1 is proved in [193]. Next we discuss the value

of the optimized squared L2-penalty term with respect to the penalty parameter ρ for the

continuous relaxation of (DQCP-L2).

Theorem 3.3.2. For the continuous relaxation of (DQCP-L2), if the original objective

function F is upper bounded by a constant CF and (DQCP) is feasible, then for any T the

optimized squared L2-penalty term uniformly holds that |l(u∗ρ, T )| ≤ 2CF/ρ.

A detailed proof is provided in Appendix B.1.1.

Remark 3.3.2. The GRAPE algorithm is still able to solve the unconstrained continuous

relaxation with the penalty function (DQCP-L2). We propose a penalized version (pGRAPE)

in Section 3.3.1 by adding a term 2ρ
(∑N

j=1 ujk − 1
)

to the approximated gradient of the

objective function.

Remark 3.3.3. For the quantum control problem with two controllers, the SOS1 can be

enforced directly by substituting

u2k = 1− u1k, k = 1, . . . , T (3.18)

in the model instead of using the penalty function.
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We show the control results obtained from the continuous relaxation with the squared

L2-penalty function and penalty parameter ρ = 1.0 in Figure 3.3. The value of the squared

penalty term is 5.55× 10−7, leading to a small error between continuous and binary results

with the SOS1 property obtained by rounding techniques. However, we still need to provide

rounding techniques to obtain binary results.

Figure 3.3: Control results of the continuous relaxation of the discretized model with a
squared L2-penalty function (DQCP-L2) of the circuit compilation example on the molecule
H2 (objective value: 4.37E−07).

3.3.3 Rounding Techniques and Optimality Guarantees

In this section we introduce rounding techniques to obtain binary control results and investi-

gate their optimality guarantees. In Section 3.3.3.1 we review the sum-up rounding technique

designed for binary controls without constraints and discuss the difference compared with

the continuous results. In Section 3.3.3.2 we introduce the integral minimization problem

for rounding to obtain restricted binary controls.

3.3.3.1 Sum-Up Rounding

The sum-Up rounding (SUR) strategy proposed by Sager et al. [181] is a well-known method

to obtain integer controls from continuous, relaxed ones in optimal control theory; see,

for example, [135, 236]. One concern when applying SUR is that the solution of the re-

laxation does not satisfy the SOS1 constraints because the exactness of the squared L2-

penalty is only for binary controls. We show that as long as the violation of the SOS1

constraint is small, the solution that is constructed via SUR still satisfies the strong con-

vergence properties of SUR. We define the discretized continuous control function uc as
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ucjk ∈ [0, 1], j = 1, . . . , N, k = 1, . . . , T . We define the discretized binary control function

ub as ubjk ∈ {0, 1} , j = 1, . . . , N, k = 1, . . . , T . For each time step k = 1, . . . , T , we denote

the vector form of control variables as uck and ubk. We define the current cumulative devia-

tion between continuous and binary controls as p̂jk, j = 1, . . . , N, k = 1, . . . , T . The SUR

approach to obtain binary controls is described in Algorithm 3.1.

Algorithm 3.1: Sum-Up Rounding with the SOS1 Property.

Input: Continuous control uc on uniform discretization.
/* Iterate over each time step */

1 for k = 1, . . . , T do
/* Iterate over each controller */

2 for j = 1, . . . , N do

3 Compute cumulative deviation as p̂jk =
k∑

τ=1

ucjτ∆t−
k−1∑
τ=1

ubjτ∆t.

4 end
5 Choose controller j∗ = arg maxj=1,...,N p̂jk. If there is a tie, we break the tie by

choosing the smallest index.
6 Set binary control ubj∗k = 1 and ubjk = 0, ∀j ̸= j∗.

7 end
Output: Binary control ub.

The construction of ubjk ensures that the binary control satisfies the SOS1 property. Sager

et al. [181] proved that if the continuous control uc satisfies the SOS1 property, then the

rounded control ub will converge to uc when the length of a time interval ∆t converges

to zero. This does not hold for arbitrary continuous controls without the SOS1 property,

however, as the next proposition shows.

Proposition 3.3.1. Let continuous control uc and binary control ub defined in Algorithm

3.1 be given for N ≥ 2. Define

ϵ(∆t) = max
k=1,...,T

∣∣∣∣∣
k∑

τ=1

(
N∑
j=1

ucjτ − 1

)
∆t

∣∣∣∣∣ . (3.19)

If tf <∞, then ub satisfies the SOS1 property
∑N

j=1 u
b
jk = 1 at any time step k = 1, . . . , T ,

and we have

max
k=1,...,T

∥∥∥∥∥
k∑

τ=1

(
ucτ − ubτ

)
∆t

∥∥∥∥∥
∞

≥ 1

N
ϵ(∆t). (3.20)

The proof is provided in Appendix B.1.2. We have the following estimate of the difference
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between the continuous control without the SOS1 property and the rounded control.

Theorem 3.3.3. With the same definition of ϵ(∆t) in Proposition 3.3.1, it holds that for

any time step k = 1, . . . , T ,∥∥∥∥∥
k∑

τ=1

(
ucτ − ubτ

)
∆t

∥∥∥∥∥
∞

≤ (N − 1) ∆t+
2N − 1

N
ϵ(∆t). (3.21)

Because ub and uc are bounded, we have ϵ(∆t) < ∞ if tf < ∞. The proof of the

inequality (3.21) extends the proof for Theorem 5 in [181]. We modify the right-hand side of

the inequality by adding a term 2N−1
N

ϵ(∆t). We provide the detailed proof in Appendix B.1.2.

In the following corollary we show that for our bounded discretized quantum control problem,

ϵ(∆t) converges to zero as ∆t converges to zero, ensuring the convergence of the rounded

control to the continuous control.

Corollary 3.3.1. Let l(uc, T ) be the value of the optimized squared L2 term in the continuous

relaxation of the model (DQCP-L2). Then it holds that

ϵ(∆t) ≤
√
tf l(uc, T )∆t, (3.22)

where tf is the evolution time. Furthermore, if the original objective function F is bounded,

the rounded control will converge to the continuous control when ∆t is small enough.

The proof is provided in Appendix B.1.2. Based on the convergence of binary results

to continuous results, we present the following proposition to guarantee the optimality of

binary results.

Proposition 3.3.2. Under the discretized setting of the quantum control problem, let uc be

the continuous control and ub be the binary control obtained by Algorithm 3.1. Then the state

of time evolution with binary control Xb converges to the state with continuous control Xc

at each time step, namely,

lim
∆t→0

Xb
k = lim

∆t→0
Xc

k, k = 1, . . . , T, (3.23)

leading to lim
∆t→0

F (Xb
T ) = lim

∆t→0
F (Xc

T ) for a continuous objective function.

The proof is provided in Appendix B.1.2.

3.3.3.2 Combinatorial Integral Approximation

To obtain discretized binary controls, Sager [180] proposed a more general rounding technique

by minimizing the integral difference between continuous and binary controls with certain
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additional constraints on the binary controls called combinatorial integral approximation

(CIA). Let UB ⊆ {0, 1}N ·T be the feasible region for binary controls. For each controller

j = 1, . . . , N and each time step k = 1, . . . , T , define ucjk and ubjk as the discretized continuous

and binary controls. We use uc and ub to represent the corresponding vector forms. The

optimization problem for rounding is formulated as a mixed-integer problem

min
ub

max
j=1,...,N

max
k=1,...,T

∣∣∣∣∣
k∑

τ=1

(ucjτ − ubjτ )∆t

∣∣∣∣∣ (3.24a)

s.t. ub ∈ UB. (3.24b)

The rounding optimization problem can be solved by diverse algorithms for solving in-

teger programs. In this chapter we choose a branch-and-cut algorithm [228]. Further-

more, the rounding result obtained from SUR is an optimal solution of model (3.24) with

UB = {0, 1}N ·T [180]. In practice, researchers and engineers have proposed diverse restric-

tions on binary controls to avoid frequent switches. We formulate two main types of con-

straints as linear constraints.

Min-Up-Time Constraints. Let Tminup be the minimum number of steps ∆t that the

controller is active. The min-up-time constraints enforce that each controller is active for at

least Tminup time steps. The restricted feasible region is formulated by the following linear

constraints:

UB =

{
(u, v) :− vjk ≤ ujk − ujk+1 ≤ vjk, j = 1, . . . , N, k = 1, . . . , T − 1

t+Tminup−1∑
k=t

vjk ≤ 1, j = 1, . . . , N, t = 1, . . . , T − Tminup

}
. (3.25)

Max-Switching Constraints. Let S be the maximum number of switches during the

evolution time horizon [0, tf ]. The max-switching constraints enforce an upper bound S on

the total number of switches for each controller. We describe the restricted feasible region

by linear constraints as

UB =

{
(u, v) :− vjk ≤ ujk − ujk+1 ≤ vjk, j = 1, . . . , N, k = 1, . . . , T − 1

T∑
k=1

vjk ≤ S, j = 1, . . . , N

}
. (3.26)
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We present the binary results obtained from SUR and CIA with min-up-time constraints

in Figure 3.4. We show that SUR leads to chattering on singular arcs. Although CIA can

prevent frequent switches by setting hard constraints on the controls, it leads to a serious

objective value increase. In Section 3.4 and Section 3.5 we propose models and algorithms

to reduce switches when taking the original objective function into account.

(a) SUR results (objective value 0.021) (b) CIA results with min-up time constraints (ob-
jective value 0.600)

Figure 3.4: Binary control results obtained by conducting SUR and CIA on continuous results
of the circuit compilation example using the molecule H2. The min-up time constraints
reduce the switches but increase the objective value.

3.4 Model with the TV Regularizer

Binary controls that avoid chattering on singular arcs can be obtained by solving the rounding

model (3.24). However, the objective function of the rounding model is not relevant to the

original objective function F , leading to a significant increase in the value of F , as illustrated

in Figure 3.4. Here we investigate a TV regularizer as an alternative strategy to obtain

solutions with fewer switches.

The TV of a function is defined as the integral of the absolute change of the function over

the entire space. Since Rudin et al. [178] first introduced the TV regularizer by considering

functions describing images, it has become a popular method in image noise reduction;

see, for example, [44, 107]. We refer interested readers to [176] for a detailed review of

applying a TV regularizer to denoise images. Stella et al. [199] propose an algorithm to solve

the continuous control problem with the TV regularizer based on the forward-backward
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envelope [206]. Sager and Zeile [183] considered the TV of integer control functions to

reduce the absolute change of controls. The authors added a constraint imposing that the

TV regularizer should be no more than a threshold. However, they considered the TV

regularizer only when rounding the control results of continuous relaxation, which leads to

an increase in the original objective function. Leyffer and Manns [116] extended the trust-

region method to solve the integer optimal control problem with the TV regularizer in the

objective function, but it is still highly dependent on the initial values.

We use the TV regularizer to penalize the absolute change between control variables of

two consecutive time steps, which is defined as

TV (u) =
N∑
j=1

T−1∑
k=1

|ujk − ujk+1| (3.27)

for a control variable vector u. Let α > 0 be the parameter for the TV regularizer. Then

the continuous relaxation model with the TV regularizer is formulated as

min F (XT ) + ρl(u, T ) + αTV (u) s.t. Constraints (3.3b)–(3.3d), u ∈ [0, 1]N ·T .

(DQCP-TV)

The first term is the original objective function, the second term is the squared L2-penalty

function for the SOS1 property, and the third term is the TV regularizer function. Because

of the L1 term, we cannot use GRAPE; instead, we propose ADMM to solve the continuous

relaxation. For each controller j = 1, . . . , N and time step k = 1, . . . , T − 1, we introduce

auxiliary variables vjk = ujk − ujk+1 to describe the change between control variables of two

consecutive time steps. We reformulate the model as follows:

min F (XT ) + ρl(u, T ) + α
N∑
j=1

T−1∑
k=1

|vjk| (3.28a)

s.t. vjk = ujk − ujk+1, j = 1, . . . , N, k = 1, . . . , T − 1 (3.28b)

Constraints (3.3b)–(3.3d)

u ∈ [0, 1]N ·T . (3.28c)

Define µjk, j = 1, . . . , N, k = 1, . . . , T −1 as the dual variables corresponding to constraints

(3.28b). We use u, v, µ to denote the corresponding vector forms. Let fixed parameters

β > 0, δ > 0 be the Lagrangian penalty parameter and stopping criterion threshold. The

update procedure of ADMM consists of three steps: (i) updating variables u, (ii) updating

variables v, and (iii) updating dual variables µ. We solve the minimization problem for
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updating variables u by the modified GRAPE algorithm with a squared L2-penalty function

and Lagrangian penalty function. We derive an exact form for the update of variables v. We

use gradient descent to update the dual variables µ. The specific procedure for updating is

presented in Algorithm 3.2.

Algorithm 3.2: ADMM Algorithm for Solving Continuous Relaxation of
(DQCP-TV).

Input: Initial values of variables u0, v0, µ0, and number of ADMM iterations L.
1 Initialize iteration l = 1.
2 while l ≤ L and the algorithm does not converge do
3 Update variables u as

ul = arg min
u∈UC

F (XT ) + ρl(u, T ) +
β

2

N∑
j=1

T−1∑
k=1

∥ujk − ujk+1 − vl−1
jk + µl−1

jk ∥
2

s.t. Constraints (3.3b)–(3.3d).

for k = 1, . . . , T do
4 for j = 1, . . . , N do
5 Update variables vjk as

vljk =


uljk − uljk+1 + µl−1

jk − α/β, if uljk − uljk+1 + µl−1
jk > α/β,

uljk − uljk+1 + µl−1
jk + α/β, if uljk − uljk+1 + µl−1

jk < −α/β,
0, otherwise.

Update dual variables µjk as µl
jk = µl−1

jk + (uljk − uljk+1 − vljk).

6 end

7 end

8 if
∑N

j=1

∑T−1
k=1 ∥uljk − uljk+1 − vljk∥2 ≤ δ then

9 Break the loop.
10 end
11 Update l← l + 1.

12 end
Output: Final solutions of variables ul, vl, µl.

We present the continuous control results obtained from the model (DQCP-TV) in Fig-

ure 3.5 for the circuit compilation example on the molecule H2. We test the parameter

of the TV regularizer α = 10−5, 10−4, 10−3, 10−2, 10−1 and the Lagrangian parameter

β = 0.1, 0.5, 1.0. We choose α = 10−3 and β = 0.5, which has the smallest objective value

after rounding with min-up-time constraints. The number of switches in control results de-

creases significantly as compared with the results in Figure 3.3, showing the benefits of the

TV regularizer.
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Figure 3.5: Control results of the continuous relaxation of the discretized model with the TV
regularizer (DQCP-TV) of the circuit compilation example on the molecule H2 (objective
value: 1.33E−05).

3.5 Improvement Heuristic: Approximate Local-

Branching Method

Because the ADMM algorithm does not ensure global optimality for nonlinear objective

functions and the objective value increases after rounding, the control results can be improved

by applying an approximate local-branching (ALB) heuristic. The trust-region method [153]

is a widely used local search method in optimization but highly depends on the initial

values. In this section we propose a trust-region subproblem for the quantum control problem

and then modify the trust-region method to solve the problem starting from the solutions

obtained in Sections 3.3–3.4 to improve the quantum controls.

We introduce our improvement heuristic based on the approach of [116] to solve the binary

model with the TV regularizer. Given a feasible point û, we use the first-order gradient to

approximate the objective value around the point û and define the trust-region subproblem

with radius R as

min
u

⟨∇F (û), u− û⟩L2 + αTV (u)− αTV (û) (3.29a)

s.t. ∥u− û∥1 ≤ R (3.29b)

Constraints (3.3e)–(3.3f).

We note that (3.29a) approximates the objective value F (u) but uses an exact form of the TV

regularizer. Constraint (3.29b) indicates that we consider only the points with L1 distance
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to û no more than R. For each controller j = 1, . . . , N and time step k = 1, . . . , T − 1,

define variables vjk as the upper bound of the absolute change between the control values

of two consecutive time steps. The trust-region subproblem is reformulated as the following

mixed-integer linear program:

min
u

⟨F (û), u− û⟩L2 + α
T−1∑
k=1

N∑
j=1

vjk − αTV (û) (3.30a)

s.t.
T∑

k=1

 ∑
j:ûjk=0

ujk +
∑

j:ûjk=1

(1− ujk)

 ≤ R (3.30b)

− vjk ≤ ujk − ujk+1 ≤ vjk, j = 1, . . . , N, k = 1, . . . , T − 1 (3.30c)

Constraints (3.3e)–(3.3f).

The objective function (3.30a) is a reformulation of (3.29a) with variables v. Constraint

(3.30b) is the trust-region constraint. Constraints (3.30c) ensure that for each controller

j = 1, . . . , N , vjk ≥ |ujk − ujk+1|, k = 1, . . . , T − 1. Let ū be an optimal solution of the

model (3.30). Define ∆Fp(û, ū) and ∆Fa(û, ū) respectively as the predictive and actual

decrease of the objective function with the following formulations:

∆Fp(û, ū) = ⟨∇F (û), û− ū⟩L2 + αTV (ûjk)− αTV (ūjk), (3.31a)

∆Fa(û, ū) = F (û)− F (ū) + αTV (ûjk)− αTV (ūjk). (3.31b)

The trust-region algorithm consists of an inner loop and an outer loop. In the inner loop

we solve a sequence of trust-region subproblems with monotonically decreasing radius until

the ratio between the actual decrease and predictive decrease is large enough. To obtain a

balance between the computational cost and the searched area, we set a threshold R̄ for the

radius. When the radius is greater than the threshold, we decrease it according to a geometric

sequence [116]; otherwise, we decrease it by an arithmetic sequence. In the outer loop we

repeat the inner loop for each updated point until the predictive decrease is nonpositive.

This procedure is described in Algorithm 3.3.

Remark 3.5.1. If we relax the feasible region of each controller to [0, 1], the trust-region

method can solve the continuous relaxation of the model with the TV regularizer. Trust-

region methods show convergence to stationary points on continuous relaxation if we allow

the radius R to be real and adjusted accordingly (Corollary 3.9 in [9]).

The trust-region approach can also improve solutions obtained by CIA approaches from

Section 3.3.3.2. Based on the restricted feasible region UB instead of the TV regularizer, we
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Algorithm 3.3: Trust-Region Method for Quantum Control.

Input: Starting radius R0 > 0, threshold of radius R̄ > 0, initial feasible point u0,
and threshold of decrease η > 0.

1 Initialize predictive decrease ∆Fp(u
0, ū) =∞ and actual decrease ∆Fa(u

0, ū) = −∞.
2 Set the number of outer iterations l← 0.
3 while ∆Fp(u

l, ū) > 0 do
4 Initialize radius R = R0.
5 while ∆Fa(u

l, ū) < η∆Fp(u
l, ū) do

6 Solve model (3.30) with û = ul to obtain the minimizer ū.
7 Compute predictive and actual decrease ∆Fp(u

l, ū) and ∆Fa(u
l, ū) by (3.31).

if R > R̄ then
8 R← max

{
⌊R/2⌋, R̄

}
.

9 else
10 R← R− 1.
11 end

12 end
13 Set l← l + 1. Update the central point ul ← ū.

14 end
Output: Control results ul.

propose the trust-region subproblem with additional linear constraints as follows:

min
u

⟨∇F (û), u− û⟩L2 (3.32a)

s.t. Constraints (3.3e)–(3.3f), (3.30b)

(u, v) ∈ UB. (3.32b)

The objective function (3.32a) is a first-order gradient approximation of the original ob-

jective function F (u), and constraint (3.32b) restricts feasible regions for controls. The

computations of the predictive decrease and actual decrease are modified as

∆Fp(û, ū) = ⟨∇F (û), û− ū⟩L2 , (3.33a)

∆Fa(û, ū) = F (û)− F (ū). (3.33b)

For the trust-region algorithm (Algorithm 3.3), we replace solving model (3.30) with solving

model (3.32) and compute the decrease by (3.33). The other parts remain the same.

In theory, all time-evolution processes in our algorithms can be conducted on quantum

computers. The inputs for the quantum computers are the control sequences, and we require

the output of the objective function and its (approximate) gradient. The updates of variables

are still computed on classical computers.
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3.6 Numerical Results

We apply our algorithmic framework proposed in Sections 3.3–3.5 to diverse instances of the

four examples introduced in Section 3.2. In Section 3.6.1 we show the results from state-

of-the-art optimization solvers as the baseline. In Section 3.6.2 we introduce the design of

numerical instances and parameter settings. In Sections 3.6.3–3.6.5 we present the numerical

results, including the continuous relaxation results, binary results by combinatorial integral

approximation, and binary results after an improvement heuristic.

3.6.1 State-of-the-Art Optimization Solvers

The NEOS server is a frequently used internet-based service containing several state-of-

the-art solvers for numerical optimization problems [48, 53, 80]. For nonlinear constrained

continuous problems, SNOPT [8] and IPOPT [219] are two widely used solvers. For mixed-

integer nonlinear constrained problems, BARON [184] and Couenne [16] are commonly used

for obtaining global optimal solutions, while MINLP [17, 115], SCIP [70], and Bonmin [24]

are effective solvers with good performance for finding local optima.

As a baseline we first apply the optimization solvers from the NEOS server to solve the

energy minimization example problem in Section 3.2.1. All the experiments are conducted

on the online server. We set the number of qubits q = 2 and q = 6. We set the evolution

time tf = 2 and the number of time steps T = 40. We notice that for all the evolution times

in Section 3.6, we use dimensionless units, with ℏ = 1. We apply the solver MUSCOD-II

(6.0) [98] to solve the continuous formulation with the differential equations (P), and we set

the maximum iterations to 100 for q = 2 and 700 for q = 6. To apply the state-of-the-art

nonlinear optimization solvers to a discretized model, we derive a discretized formulation of

the ordinary differential equation by the implicit Euler method (see, e.g., [33]) as

Xk −Xk−1 = −iHkXk∆t, k = 1, . . . , T. (3.34)

We apply the solvers SNOPT (7.6.1) and IPOPT (3.13.4) to solve the continuous relaxation

model and apply the solvers MINLP, Bonmin (1.8.8), Couenne (0.5.8), and SCIP (7.0.3.5)

to solve the binary model. We set the time limit to 5 minutes when q = 2 and 80 minutes

when q = 6. In Table 3.2 we present the objective values, TV-norm values, CPU times, and

explored nodes (only for binary solvers).

Table 3.2 shows that MUSCOD-II is good for solving the continuous relaxation for the

instance with q = 2, but it takes a long time to solve the large instance with q = 6. SNOPT

and IPOPT perform worse than the MUSCOD-II solver especially when the quantum systems
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include more qubits. For the binary control problem, all the methods reach the time limit.

Bonmin obtains the best solution, but the gaps between their results and true energy are all

large. For the instance with q = 6, some optimization solvers such as MINLP and Couenne

run out of memory. The CPU time increases and the number of explored nodes decreases

significantly when the size of the quantum system increases.

Table 3.2: Results of solvers on energy minimization example. The results are marked
by “OOM” if a solver runs out of memory and “LIMIT” if a solver reaches the time or
iteration limit. The explored nodes of continuous solvers are marked by “-” because the
node exploration process is conducted only by binary solvers.

Solver
q = 2 q = 6

Obj Time (s) Nodes Obj Time (s) Nodes
SNOPT 0.084 0.18 - 0.736 199.64 -
IPOPT 0.084 0.10 - 0.736 46.85 -
MUSCOD-II 5.90E−09 1.67 - 0.154 4399.54 -
MINLP 0.150 LIMIT 9056 OOM OOM OOM
Bonmin 0.148 LIMIT 11672 0.793 LIMIT 355
Couenne 0.471 LIMIT 6932 OOM OOM OOM
SCIP 0.149 LIMIT 25679 1.000 LIMIT 2480

This experiment shows that existing standard nonlinear programming and mixed-integer

nonlinear programming solvers cannot solve discretized optimal control problems. In the

following sections we present the numerical results of our proposed algorithms on multiple

instances. Our pGRAPE+SUR method obtains binary solutions with an objective value

4.22E−04 in 0.14 seconds for q = 2 and binary solutions with an objective value 0.157 in

27.95 seconds for q = 6. We show that our methods can obtain better results and with

shorter computational time than do the state-of-art solvers.

3.6.2 Experimental Design and Parameter Settings

When the problems have no SOS1 property, the squared L2 term in the penalized model

(DQCP-L2) is eliminated, so solving (DQCP-L2) by pGRAPE is equivalent to solving the

original model (DQCP) by GRAPE. Because the energy minimization problem has only two

controllers, we eliminate the SOS1 property directly by substituting u2(t) = 1−u1(t). We re-

move the SOS1 property in the CNOT gate estimation problem to show the generality of our

models. We solve the model with a squared L2-penalty function for the circuit compilation

problem.

For all the examples, we apply the pGRAPE algorithm to solve the continuous relaxation.

We also employ the TR and ADMM algorithms to solve the continuous relaxation with the
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TV regularizer. Then we obtain the binary results without constraints by SUR, the binary

results with min-up-time constraints, and the binary results with max-switching constraints

by integral minimization. Furthermore, we apply the approximate local-branching methods

to improve the binary solutions with the TV regularizer and hard control constraints.

For the energy minimization problem, when q = 2, the matrix J is two-dimensional and

includes only one independent element because it is symmetric. Hence, we set diagonals in

J to 0 and other elements to 1. When q = 4, 6, we generate 5 instances where each instance

has a random symmetric matrix J with zero diagonals and elements within a range [−1, 1].

We will present averaged objective value results for these problems. The instances are repre-

sented by Energy2, Energy4, and Energy6 corresponding to the number of qubits q = 2, 4, 6

in our following results. For the CNOT problem, we conduct experiments with evolution

times tf = 5, 10, 15, 20 and represent the corresponding instances as CNOT5, CNOT10,

CNOT15, CNOT20, respectively. For the NOT gate estimation problem, we follow the pa-

rameter settings in [145] and set µ1 = 0, µ2 = 2π, ω1 = 1, ω2 =
√

2. We conduct numerical

simulations with evolution times tf = 2, 6, 10 and represent the instances as NOT2, NOT6,

and NOT10, respectively. For the circuit compilation problem, we test two molecules, H2

(dihydrogen) and LiH (lithium hydride), and generate the UCCSD circuits with minimum

energy by the VQE algorithm in the Python package Qiskit [5]. The instances are represented

by CircuitH2 and CircuitLiH. We set the parameters corresponding to quantum systems as

Jc = 0.2π, Jf = 3π, J = 0.1π. We test values of the penalty parameter for the squared

L2-penalty function ρ = 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, and we choose the one

with the smallest objective value among the parameters with a squared penalized term less

than 10−6. We set the penalty parameters to be ρ = 1.0 and ρ = 0.1 for two instances,

respectively. We test values for the TV parameter α = 10−5, 10−4, 10−3, 10−2 and choose

α with the smallest rounding objective value with min-up-time constraints. The settings

of α and other parameters are presented in Table 3.3. All the numerical simulations were

conducted in Python 3.8 on a MacOS computer with 8 cores, 16 GB of RAM, and a 3.20

GHz processor. All the computational time results are the times on classical computers.

In Sections 3.6.3–3.6.5, for brevity we select four different instances, Energy6, CNOT20,

NOT10, and CircuitLiH, to analyze the results of objective values and CPU time. Detailed

results of all the methods and instances are presented in Tables B.1, B.2, B.3, B.4, B.5, and

B.6 in Appendix B.2. Our full code and results are available on our Github repository [61].
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Table 3.3: Parameter settings of examples. The parameters include the number of qubits
(q), number of controllers (N), evolution time (tf ), number of time steps (T ), TV parameter
(α), minimum uptime steps (Tminup), and maximum switches (S).

Instance q N tf T α Tminup S
Energy2 2 2 2 40 0.01 10 5
Energy4 4 2 2 40 0.01 10 5
Energy6 6 2 2 40 0.01 10 5
CNOT5 2 2 5 100 0.01 10 20
CNOT10 2 2 10 200 0.001 10 20
CNOT15 2 2 15 300 0.0001 10 20
CNOT20 2 2 20 400 0.0001 10 20
NOT2 1 2 2 20 0.001 5 4
NOT6 1 2 6 60 0.001 5 12
NOT10 1 2 10 100 0.001 5 20
CircuitH2 2 5 4 80 0.001 10 8
CircuitLiH 4 12 20 200 0.001 5 40

3.6.3 Results of Continuous Relaxations

In Figure 3.6 we show how the common logarithm of the squared L2-norm value varies

with the penalty parameter represented by the lines. We also present an asymptotic bound

log10 c/ρ represented by the dashed lines, where c is a constant marking that a selected data

point lies on the dashed lines in the simulation results. Notably, the figure confirms that

l(u∗ρ, T ) ∼ O(1/ρ), as shown in Theorem 3.3.2.

We show that pGRAPE always obtains the lowest objective value but the highest TV

regularizer values because it solves the model without the TV regularizer. ADMM has the

best performance for reducing the TV regularizer values, showing the benefits of introducing

a TV regularizer in Section 3.4. The detailed results are presented in Appendix B.2.

We measure the problem size of each instance by 2q×N×T , where q, N , and T represent

the number of qubits, number of controllers, and number of time steps. For four groups of

instances, Energy, CNOT, NOT, and Circuit, we present in Figure 3.7 common logarithm-

logarithm figures to show how the CPU time and the number of iterations vary with the

problem size. The CPU time increases significantly with an increase in the number of qubits

because the dimension of simulation Hamiltonian matrices increases exponentially. The CPU

time also increases when the number of controllers and time steps increases. Compared with

pGRAPE, TR and ADMM spend more time solving the model because it contains the TV

regularizer. The CPU time of ADMM is more than that of TR for Energy instances, while

TR spends more time on CNOT, NOT, and Circuit instances than ADMM spends.
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(a) Instance CircuitH2 (b) Instance CircuitLiH

Figure 3.6: Common logarithm of squared L2-norm varying with log10 ρ, where ρ is the
squared L2 penalty parameter. Blue lines are the common logarithm of the squared L2-
norm. Orange dashed lines are functions log10 c− log10 ρ, where c is a constant. The figures
show that the squared L2-norm l(u∗ρ, T ) decreases as the penalty parameter ρ increases with
a rate O(1/ρ).

Figure 3.7: Common logarithm-logarithm figure of CPU time and iterations of continuous
relaxation for all the instances and number of time steps. Blue, orange, green, and red
colors represent instances Energy, CNOT, NOT, and Circuit. Circles, triangles, and stars
represent obtaining continuous results by pGRAPE, TR, and ADMM, respectively. Dots
with increasing size and transparency represent results by MT and MS, respectively.
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3.6.4 Results of Rounding Techniques

In Figure 3.12 we present the objective values and TV regularizer values of the binary re-

sults obtained by SUR as well as CIA with min-up-time constraints and max-switching

constraints of selected instances. Compared with pGRAPE+MT/MS, TR+MT/MS or

ADMM+MT/MS obtains lower objective values and TV regularizer values for the binary

results with min-up-time constraints and max-switching constraints because they solve the

model with the TV regularizer.

From the results of pGRAPE we show that the squared L2-penalty function ensures

that the difference between binary controls of SUR and continuous results is small. To

further demonstrate the convergence of pGRAPE+SUR in Section 3.3.3.1, we present how

the maximum absolute integral error, which is the left-hand side of equation (3.21), varies

with the number of time steps in Figure 3.8 represented by the lines. The figures show that

the error converges to zero with the increase in the number of time steps, as is claimed in

Proposition 3.3.2. We also present the theoretical upper bound of the integral error, which is

the right-hand side of (3.21), represented by the dashed lines. We observe that the integral

error is always less than the upper bound, demonstrating the conclusion in Theorem 3.3.3. In

addition, we present the figures of how ϵ(∆t) and the upper bound
√
tf l(uc, T )∆t vary with

the number of time steps for instances CircuitH2 and CircuitLiH in Figure 3.9. We show

that ϵ(∆t) is always smaller than the upper bound, demonstrating the conclusion (3.22) in

Corollary 3.3.1.

We set the time limit to 60 seconds for solving the combinatorial integral approximation

with min-up-time and max-switching constraints. In Figure 3.10 we present the CPU time

and iterations of all the instances. All the CPU times of SUR and Energy instances are

less than 0.01 seconds so we do not show them in the figure. The CPU times increase

significantly with the number of variables. For the instance CircuitLiH, all the methods

exceed the computational time limit. In most cases, iterations and CPU times of MS are

more than MT because the problem with MS has a larger integrality gap.

3.6.5 Results of Improvement Heuristic

In Figure 3.12 we present the objective values and TV regularizer values after the improve-

ment heuristic with the control results of combinatorial integral approximation as initial

points for selected instances. Because there are multiple local minima for these quantum

control problems, each method may obtain a different performance after the improvement

heuristic. For systems with two controllers, all the methods obtain performance at a similar

level. The performance of different methods varies more on the circuit compilation problem
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(a) Instance CicruitH2 (b) Instance CircuitLiH

Figure 3.8: Binary logarithm of maximum absolute integral error and upper bound of con-
tinuous results and SUR binary results. Blue lines marked by circles represent the maximum
absolute integral error, and orange lines marked by stars represent the upper bound. The
error is always smaller than the upper bound and converges to zero as the number of time
steps increases, demonstrating the conclusion (3.21).

because it contains more local optima.

We show in Figure 3.11 the CPU time and iterations for the improvement heuristic of

selected instances. For each group of instances Energy, CNOT, NOT, and Circuit, the CPU

time increases with the problem size. The number of iterations highly depends on the initial

points.

In addition, we observe that for both continuous relaxation and ALB, the CPU time

is exponentially increasing but the number of iterations increases slightly. We note that

the main increase in the computational time comes from the time-evolution process for

simulating the quantum system because the dimension of the Hamiltonian matrices increases

exponentially with the number of qubits q. In our algorithm, we could directly conduct the

time evolution on quantum computers with a control pulse, and then only use the final state

to compute the objective value and approximate the gradient by the finite difference method.

Hence, we do not need to evaluate the state at each time step, indicating the scalability of

our approach for handling large-scale instances.

In Figure 3.12 we show the objective values and TV regularizer values of the combinatorial

integral approximation and the improvement heuristic. We show that the objective value

of SUR keeps the same or slightly increases, demonstrating the theorems and propositions

in Section 3.3.3.1. Adding min-up-time and max-switching constraints leads to an increase

in objective values because of adding additional constraints stated in Section 3.3.3.2 to
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(a) Instance CicruitH2 (b) Instance CircuitLiH

Figure 3.9: Binary logarithm of the maximum SOS1 difference of continuous control ϵ(∆t)
and its upper bound in (3.22). Blue lines represent ϵ(∆t) and orange dashed lines represent
the upper bound. We show that ϵ(∆t) converges to 0 with the increase in time steps and is
always smaller than the upper bound, demonstrating Corollary 3.3.1.

Figure 3.10: Common logarithm-logarithm figure of CPU time and iterations of CIA for
all the instances. Blue, orange, and green colors represent instances of CNOT, NOT, and
Circuit, respectively. Circles, triangles, and stars represent obtaining continuous results
by pGRAPE, TR, and ADMM, respectively. Dots with increasing size and transparency
represent results by SUR, MT, and MS, respectively.
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Figure 3.11: Common logarithm-logarithm figure of CPU time and iterations of ALB for
all the instances. Blue, orange, green, and red colors represent groups of instances Energy,
CNOT, NOT, and Circuit.

Circles, triangles, and stars represent obtaining continuous results by pGRAPE, TR, and
ADMM, respectively. Dots with increasing size and transparency represent results by SUR,
MT, and MS, respectively.

the feasible set. The increase from adding min-up-time constraints is higher because the

restricted feasible region contains fewer feasible solutions. From the aspect of the chattering

measured by the TV regularizer value, we show that SUR leads to more chattering compared

with continuous solutions because of the rounding process. As discussed in Section 3.3.3.2,

imposing min-up-time and max-switching constraints reduces the chattering, and adding

min-up-time constraints reduces it more significantly because the constraints are stricter.

The improvement heuristic reduces the objective values and chattering remarkably for the

results obtained from all the methods with rounding techniques, especially pGRAPE, which

shows the benefits of our improvement algorithms in Section 3.5. In Figure 3.12, the dot

closest to the lower-left corner indicates that it obtains the best balance between improving

objective values and reducing chattering. If the original objective function matters more,

one can choose methods that consist of SUR and the improvement heuristic. If one focuses

more on reducing the switches, the methods with min-up-time or max-switching constraints

and the improvement heuristic are better.
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Figure 3.12: Objective values and TV regularizer values of binary results of selected in-
stances. Blue, orange, and green dots represent solving continuous relaxation by pGRAPE,
TR, and ADMM, respectively. Circles, triangles, and stars represent obtaining binary results
by SUR, MT, and MS, respectively. Big dots represent results before ALB, and opaque small
dots represent results after ALB. We annotate the method represented by the closest point
to the lower-left corner.
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3.7 Concluding Remarks

In this chapter, we built a generic control model with both continuous and discretized for-

mulations for the quantum control problem. We introduced a penalized squared L2 function

into the model to ensure that only one control is active at all times. In addition, we proposed

a model with the TV regularizer aiming to reduce the absolute change of controls.

We developed an algorithmic framework combining the GRAPE approach, combinatorial

integral approximation, and local-branching improvement heuristic. With numerical simula-

tions on multiple examples with various objective functions and controllers, we demonstrated

the feasibility of the discrete optimal quantum control problem and illustrated that our al-

gorithms obtained trade-off controls between high quality and low absolute changes within a

short computational time. Specifically, the performance of different relaxation models varies

among instances, and therefore, testing all three methods (pGRAPE, TR, and ADMM) is

helpful in selecting the best control. If one is more interested in obtaining controls with

lower energy or infidelity, we recommend methods using the sum-up-rounding technique.

On the other hand, if one aims to reduce switches, it is better to choose methods with min-

up-time constraints added. Both cases require the use of the approximate local branching

algorithm to improve final solutions. In practice, the performance can be improved further

by fine-tuning the corresponding parameters.

All the numerical simulations in our chapter were conducted on classical computers, and

the CPU time mainly comes from the time-evolution process of quantum states. Because

our algorithm only requires the final state to compute the objective value and approximate

the gradient, running the time-evolution process in our algorithms on quantum computers

is easy in practice and could help eliminate a significant amount of the exponential slow-

down as we observe in our simulations. Furthermore, with continuous control results, we

can extract appropriate controller sequences and optimize the location of switching points to

obtain high-quality controls. Switching-time optimization using continuous control results

is an important future research direction.
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CHAPTER 4

Switching Time Optimization for Binary

Quantum Optimal Control

4.1 Introductory Remarks

We use methods from classical computer design and engineering to accelerate the develop-

ment of practical and scalable quantum computing systems. Quantum control theory has

a rich history that parallels the development of controllable quantum devices. Notions of

quantum control theory [51, 74, 225] first appeared in more analog settings, such as quan-

tum chemistry [100, 162]. As the field evolves, it saw applications in quantum information

through gate design [145, 160] and quantum circuit compilation [75], and later has been used

in more high-level design of quantum algorithms, especially with the advent of variational

quantum circuits [13, 26, 28, 64, 72, 108, 128, 138, 214, 233].

To better implement quantum control, unlike most of the literature that solves quantum

control problems using a fixed time discretization, we optimize both control functions and

the time between consecutive control switches. Our new algorithmic framework—based

on classical computer and optimization models and algorithms—improves the quality of

quantum controls and reduces computational time.

Here we generalize the quantum control problem in a continuous time horizon (P) studied

in Chapter 3. With the same definition of variables and parameters, and newly defined

feasible set U ⊆ {0, 1}N of u(t), we have the following formulation:

(P ) min
u,X,H

F (X(tf ))

s.t. H(t) = H(0) +
N∑
j=1

uj(t)H
(j), ∀t ∈ [0, tf ]

d

dt
X(t) = −iH(t)X(t), ∀t ∈ [0, tf ]
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X(0) = Xinit

u(t) ∈ U , a.e. t ∈ [0, tf ]. (4.1a)

The only different constraint (4.1a) indicates that for t ∈ [0, tf ] almost everywhere, the

feasible region set U constrains the value of the control function u(t). In this chapter, we

consider two cases, one is binary controls U = {0, 1}N , and the other one is binary controls

with the additional SOS1 property constraint U = {u ∈ {0, 1}N :
∑N

j=1 uj = 1} discussed in

Chapter 3.

Following the previous chapter, we employ two widely used objective functions in the

quantum control field. We use |·⟩ to represent a quantum state vector and ⟨·| to represent its

conjugate transpose, and ·† to represent the conjugate transpose of a complex matrix. One

function is the energy ratio minimization function with the specific form

F (X(tf )) = 1− ⟨ψ0|X†(tf )H̃X(tf )|ψ0⟩/Emin, (4.2)

to minimize the energy corresponding to the Hamiltonian H̃. In the objective function, the

initial state of the quantum system is given by |ψ0⟩ and the constant minimum energy Emin

represents the minimum eigenvalue of the Hamiltonian H̃. An alternative objective function

is the infidelity function

F (X(tf )) = 1− 1

2q

∣∣∣tr{X†
targX(tf )

}∣∣∣ , (4.3)

to minimize the difference between X(tf ) and the target operator Xtarg. Both objective

functions are bounded between [0, 1].

In the literature, the most widely used method to solve the original quantum control

problem (P) is time discretization, which divides the evolution time horizon into time inter-

vals. We follow the time discretization in Chapter 3 to build the discretized model as follows.

The only difference is that we optimize both variables u,X,H and time interval endpoints

t1, . . . , tT .

(PD) min
u,X,H,t1,...,tT

F (XT ) (4.4a)

s.t. Hk = H(0) +
N∑
j=1

ujkH
(j), k = 1, . . . , T

Xk = e−iHk(tk−tk−1)Xk−1, k = 1, . . . , T

X0 = Xinit
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uk ∈ U , k = 1, . . . , T. (4.4b)

The simultaneous optimization of both control functions u, X, H, and time discretization

points t1, . . . , tT was proposed by Logsdon and Biegler [133] for differential equation systems.

Due to the computational complexity, we divide our problem into two parts: (i) optimizing

discretized control variables uk for each time step k = 1, . . . , T and (ii) optimizing time

points of switching between controllers. Next, we review the main literature focusing on the

problem of each part.

Literature of Quantum Optimal Control. Most quantum optimal control algorithms

only consider optimizing controls under a fixed time discretization. For continuous quantum

control problems, Khaneja et al. [95] first proposed the gradient ascent pulse engineering

(GRAPE) algorithm to estimate control functions with piece-wise constant functions and

apply gradient-based methods to optimize them. Furthermore, Larocca and Wisniacki [109]

combined the GRAPE algorithm and Krylov-subspace approach to improve computational

efficiency. Brady et al. [26] developed an analytical framework based on time discretization

for optimizing bang-bang and smooth annealing controls for a quantum energy minimiza-

tion problem. Other algorithms based on time discretization include pseudospectral meth-

ods [119] and reinforcement learning frameworks [32, 152, 194]. For binary quantum control

problems, Vogt and Petersson [217] applied a trust-region method [153] to optimize controls

in a single flux quantum system. Fei et al. [64] developed a solution framework combining the

GRAPE algorithm, rounding techniques, and local branching heuristics. However, obtaining

controls with higher quality by the discretized model requires more precise time discretiza-

tion, equivalent to a larger number of decision variables associated with each time step,

which increases the computational cost severely. Estimating control functions by piece-wise

functions also leads to limitations in obtaining better control solutions.

Literature of Switching Time Optimization. The switching time optimization has

been a meaningful yet challenging topic in controls of switched-mode dynamic sys-

tems [57, 68, 91, 139, 200]. Vossen [218] discussed the switching time optimization for both

bang-bang and singular controls. In quantum theory, a class of literature formulates the

quantum approximate optimization algorithm (QAOA) as an optimal control problem with

two controllers and applies multiple methods to solve it [11, 59, 124], which can be considered

as a simplified version of switching time optimization with only two switching controllers.

The aforementioned literature assumes known analytical formulations of control functions.

Bukov et al. [32] designed simple variational control protocols from discretized control so-
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lutions obtained by reinforcement learning which requires numerous training episodes and

lacks generality for various control problems.

Main Contributions. The main contributions of this chapter are as follows. First, we

develop a new algorithmic framework that not only optimize control functions but also

switching time points. Specifically, we develop two heuristic methods to obtain binary dis-

cretized controls from continuous discretized controls balancing the quality of controls and

the number of switches for general quantum control problems. Second, we build and solve a

generic switching time optimization model for quantum control problems with given Hamil-

tonian controllers as parameters. In addition, we accelerate the time-evolution simulations

by pre-computing the eigenvalues of a small number of Hamiltonian matrices. Third, we con-

duct numerical simulations on multiple quantum control examples and show that our method

obtains controls with higher quality and a similar number of switches within significantly

less computational time compared to the discretized model.

The remainder of the chapter is organized as follows. In Section 4.2, we construct our

algorithmic framework and develop heuristic methods to obtain controller sequences. In

Section 4.3, we formulate and solve the switching time optimization model with acceleration

techniques for time evolution. In Section 4.4, we conduct numerical simulations and discuss

the results. In Section 4.5, we conclude our work and propose future research directions.

4.2 Algorithm Framework and Controller Sequence

Extraction

Our algorithmic framework consists of four steps, which we describe in detail in Algo-

rithm 4.1. First, we solve the continuous relaxation of the discretized model (DQCP) with

a fixed (equal) time discretization and time interval length ∆t by the penalized GRAPE

algorithm proposed in the paper by Fei et al. [64]. Second, we obtain binary controls from

solutions of continuous relaxation by rounding algorithms, such as algorithms in [64, Table

1], Algorithm 4.3, and Algorithm 4.4. Third, we merge consecutive time intervals with the

same control values as a time interval to derive a sequence of controllers by Algorithm 4.2.

Fourth, we optimize the switching time points of merged time intervals with the sequence

of controllers as parameters, which is discussed in detail in Section 4.3. We present the flow

chart for our overall algorithm in Figure 4.1.

We present control results of a simple example in Figure 4.2. In the left figure, we

present the piece-wise continuous control function ucon obtained after solving the discretized
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Algorithm 4.1: Switching time optimization method for binary quantum control
problem.

Input: Discretized binary quantum control model (DQCP).
1 Solve the continuous relaxation of (DQCP) with a fixed time discretization and

obtain continuous solutions ucon.
2 Obtain heuristic binary solutions ubin from continuous solutions ucon by a given

rounding algorithm, such as algorithms in [64, Table 1], Algorithms 4.3, and 4.4.
3 Merge time intervals with the same control value and derive the controller sequence
H̄ with length S by Algorithm 4.2.

4 Solve switching time optimization model (STO) in Section 4.3 to optimize switching
time points with the given controller sequence H̄.
Output: Control time interval lengths for each controller in the controller sequence

H̄.

Algorithm 4.2: Controller sequence extraction from binary controls.

Input: Discretized binary controls ubin.

1 Initialize controller sequence H̄1 =
[
H(0) +

∑N
j=1 uj1H

(j)
]

and sequence length

S ← 1.
2 for k = 2, . . . , T do
3 if uk ̸= uk−1 then

4 S ← S + 1, H̄S = H(0) +
∑N

j=1 ujkH
(j).

5 H̄S ←
[
H̄S−1, H̄S

]
.

6 end

7 end
Output: Controller sequence H̄S and length S.

continuous relaxation (step 1). In the middle figure, we present the binary control obtained

after rounding methods (step 2). We convert the control functions from fractional values to

binary values. In the right figure, we present the optimized control after optimizing the time

of switches obtained by step 4.

Various methods to obtain binary controls have been proposed but they either require

high computational costs or frequent switches [64, 135, 181, 182, 236]. In this section, we

present two heuristic rounding methods to obtain controller sequences from given continuous

discretized controls ucon. Our key idea is to balance the difference between continuous and

binary controls and the number of switches. For any control u, we evaluate the frequency

of switching by the total variational (TV) norm defined as cumulative absolute differences
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Figure 4.1: Flow chart for the overall algorithmic framework (Algorithm 4.1). We first
optimize control functions u, including solving the discretized continuous relaxation of
model (DQCP) and applying rounding algorithms (Algorithm 4.3–4.4). Then we optimize
the switching times by solving the switching time optimization model (STO) with controller
sequences extracted from binary controls (Algorithm 4.2) as input.

between consecutive steps with the formulation:

TV (u) =
T−1∑
k=1

N∑
j=1

|ujk − ujk+1| . (4.5)

We evaluate the difference based on two metrics and propose the corresponding methods in

Sections 4.2.1 and 4.2.2, respectively. In each section, we also prove that for both methods,

if we only consider minimizing the difference between continuous and binary controls, when

the length of time intervals goes to zero, the limit of the objective value of binary controls is
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Figure 4.2: Simple example for the overall algorithm framework (Algorithm 4.1). Left:
Piece-wise continuous control ucon after step 1. Middle: Binary control ubin after step 2.
Right: Optimized control after step 4.

no more than the limit of the objective value of the continuous control under the objective

functions (4.2) and (4.3) considered in this chapter.

4.2.1 Method Based on Objective Value

We convert unitary operator variables X and Hamiltonian variables H to implicit functions of

control variables u by constraints (3.3b)–(3.3d). The final operator XT can also be computed

as a function of u as

XT (u) =
T∏

k=1

e−i(H(0)+
∑N

j=1 ujkH
(j))∆tXinit, (4.6)

which is equivalent to solving the Schrödinger equation (3.3b)–(3.3d). Substituting XT (u)

into the objective function F , we derive an objective function only dependent on u, denoted

as F̄ (u) by eliminating intermediate variables Hk and Xk, k = 1, . . . , T .

In this section, we propose Algorithm 4.3 based on evaluating the difference between

binary and continuous solutions by the difference of objective values F̄ (ubin) and F̄ (ucon).

We define α as the TV norm penalty parameter. We present the explanation as follows. At

each time step k, we examine the current control [ubin1 , . . . , ubink−1, û, u
con
k+1, . . . , u

con
T ] ∈ [0, 1]N×T

for all û ∈ U and choose the control with smallest objective value û∗ (see step 5–6). We

compare the choices of keeping the control values of the previous time step, i.e. û = ubink−1,

and updating control values, i.e. û = û∗ (see step 7). If the objective value of keeping the

control is no larger than the TV-norm value of updating the control weighted by α, we keep

the control (see step 8). Otherwise, we choose the control with the smallest objective value

and update the TV-norm value (see step 10). If α = 0, we always choose the control with

the smallest objective value. Furthermore, we update the binary control ubink by the selected
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control and move to the next time step k + 1 (see step 12). This approach requires T − 1

simulations at a receding time horizon.

The computational advantages of conducting time-evolution processes on quantum com-

puters allow computing objective values quickly. For simulations on classical computers, we

propose an acceleration technique to avoid conducting time evolution for every examined

control. With continuous solutions ucon, we define back propagators µk as

µk = µk+1e
−i(H(0)+

∑N
j=1 u

con
jk H(j))∆t, k = 1, . . . , T, (4.7)

where µT+1 is an identity matrix. At each time step, after determining the binary control,

the operator corresponding to binary controls is updated as

Xbin
k = e−i(H(0)+

∑N
j=1 u

bin
jk H(j))∆tXbin

k−1, (4.8)

where Xbin
0 = Xinit. We have the following proposition to evaluate the objective value.

Proposition 4.2.1. At time step k = 1, . . . , T , the objective value of a current examined

control is computed by

F̄
(
[ubin1 , . . . , ubink−1, û, u

con
k+1, . . . , u

con
T ]
)

= F
(
µk+1e

−i(H(0)+
∑N

j=1 ûjH
(j))∆tXbin

k−1

)
, ∀û ∈ U . (4.9)

Proof. For any examined control, the final operator X̂T is computed by

X̂T =
T∏

t=k+1

e−i(H(0)+
∑N

j=1 u
con
jt H(j))∆tXk = µk+1Xk = µk+1e

−i(H(0)+
∑N

j=1 ûjH
(j))∆tXbin

k−1, (4.10)

where the last two equalities directly follow the definition µk and Xbin
k in (4.7)–(4.8). From

the definition of F̄ , we have

F̄
(
[ubin1 , . . . , ubink−1, û, u

con
k+1, . . . , u

con
T ]
)

= F (X̂T ) = F
(
µk+1e

−i(H(0)+
∑N

j=1 ûjH
(j))∆tXbin

k−1

)
.

(4.11)

From Proposition 4.2.1, we show that the pre-computing and the reformulation of evalu-

ating the objective value significantly reduce the matrix operation times, which we discuss

in detail in the following proposition.

Proposition 4.2.2. Let N ′ = U be the number of feasible examined controls at each time

90



step. With Algorithm 4.3, we reduce the computation of matrix exponentials from O(N ′T 2)

to O(N ′ + T ) and the computation of matrix multiplications from O(N ′T 2) to O(N ′T ).

Proof. Without our reformulation of the objective value and pre-computation, we require

computing O(T ) matrix exponentials and O(T ) matrix multiplications during each time

evolution process. We need to evaluate all the examined controls at each time step, which

means that we need to do N ′T time evolution processes, hence the total number is O(N ′T 2)

for both matrix exponentials and multiplications. With our acceleration, we only need to

compute T unitary propagators of the continuous control and the matrix exponential of each

possible control in U . Hence, the order of computing matrix exponentials is O(N ′ + T ). We

need to perform T matrix multiplications for computing µk, k = 1, . . . , T . At each time

step, we need to compute the objective value of setting each controller active, which requires

total O(N ′) matrix multiplications, and then update the current operator Xbin
k , which only

requires 1 multiplication. Therefore, taking a summation of all the time steps, the order of

matrix multiplications is O(N ′T ).

We present the details of the algorithm in Algorithm 4.3. For any bounded objective

Algorithm 4.3: Heuristic Rounding Methods based on Objective Values (Obj)

Input: Continuous control ucon and constant TV norm parameter α.
1 Initialize binary control ubin = ucon and current objective value Fcur = F̄ (ucon).
2 Pre-compute back propagators µk, k = 1, . . . , T by Eqn (4.7).

3 Pre-compute matrix exponentials e−i(H(0)+
∑N

j=1 ûjH
(j)) for all û ∈ U .

4 Let ubin1 = arg minû∈U F̄ ([û, ucon2 , . . . , uconT ]).
5 for k = 2, . . . , T do
6 Let û∗ = arg minû∈U F̄

(
[ubin1 , . . . , ubink−1, û, u

con
k+1, . . . , u

con
T ]
)
.

7 if F̄
(
[ubin1 , . . . , ubink−1, u

bin
k−1, u

con
k+1, . . . , u

con
T ]
)
≤

αTV ([ubin1 , . . . , ubink−1, û
∗, uconk+1, . . . , u

con
T ]) then

8 Update binary control ubink = ubink−1.
9 else

10 Update binary control ubink = û∗, break ties with smaller TV value.
11 end
12 Update Xbin

k by Eqn. (4.8) and objective value

Fcur = F̄
(
[ubin1 , . . . , ubink , uconk+1, . . . , u

con
T ]
)
.

13 end
Output: Binary control ubin.

function with upper bound Fub, the TV-norm value with penalty parameter α is upper-

bounded by Fub/α. In the following theorems, we discuss the difference between the objective

values of binary controls ubin and input continuous controls ucon when setting the penalty
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parameter α = 0. All the conclusions in this section are proved for both the energy objective

function (4.2) and the infidelity objective function (4.3). Before presenting our main results,

we review a series of lemmas corresponding to unitary matrices and singular values used in

our proof. The proof of Lemma 4.2.1–4.2.3 is presented by Horn and Johnson [87].

Lemma 4.2.1. ([87, Section 3.1]) The singular values are invariant under the multiplication

of unitary matrices.

Lemma 4.2.2. ([87, Theorem 3.3.4, 3.3.16]) Let A, B ∈ Cm×m be two complex ma-

trices and let σ1(·) represent the maximum singular value of a matrix, then σ1(AB) ≤
σ1(A)σ1(B), σ1(A+B) ≤ σ1(A) + σ1(B).

Lemma 4.2.3. ([87, Theorem 3.1.2]) Let A be an arbitrary complex matrix, then for any

unit vector |ψ⟩ such that ∥|ψ⟩∥2 = 1, it holds that |⟨ψ|A|ψ⟩| ≤ σ1(A).

Lemma 4.2.4. Let U ∈ Cm×m be a unitary matrix and A ∈ Cm×m be an arbitrary complex

matrix, then |tr {UA}| ≤
m∑
i=1

σi(A) ≤ mσ1(A), where σ1(A) ≥ . . . ≥ σm(A) ≥ 0 are the

singular values of A.

The proof of Lemma 4.2.4 is presented in Appendix C.1. In the following theorem, we

prove that if ucon has the SOS1 property, for the energy objective function and infidelity

objective function discussed in Section 4.1, the difference of objective values F̄ (ubin)−F̄ (ucon)

is bounded by O(∆t).

Theorem 4.2.1. Let ucon be the solution of the continuous relaxation of (DQCP) with a fixed

time discretization and ubin be the binary controls obtained by Algorithm 4.3 when α = 0.

If the SOS1 property holds for continuous controls, which means that
∑N

j=1 u
con
jk = 1, k =

1, . . . , T , and is required for binary controls, then there exists constants C1, C2 > 0 such

that for energy objective function (4.2) and infidelity objective function (4.3), the difference

between the objective value of binary and continuous control satisfies

F̄ (ubin)− F̄ (ucon) ≤ 2C1e
C2∆t∆t. (4.12)

Furthermore, we have

lim sup
∆t→0

F̄ (ubin)− F̄ (ucon) ≤ 0. (4.13)

The detailed proof is presented in Appendix C.1. Next, we discuss a more general case

when the SOS1 property of the continuous control ucon does not exactly hold but the SOS1
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property of the binary control ubin is still required. We define the cumulative error between

binary and continuous control as

ϵc(∆t) =
T∑

k=1

∣∣∣∣∣
N∑
j=1

uconjk − 1

∣∣∣∣∣∆t =

tf/∆t∑
k=1

∣∣∣∣∣
N∑
j=1

uconjk − 1

∣∣∣∣∣∆t. (4.14)

In the following theorem, we present the estimation of the difference in objective values

between continuous and binary controls.

Theorem 4.2.2. Let ucon be the solution of the continuous relaxation of model (DQCP)

without the SOS1 property under fixed time discretization. Let ubin be the binary control with

the enforced SOS1 property obtained by Algorithm 4.3 with α = 0. There exist constants

C0, C1, C2 such that the difference between objective values of continuous and binary controls

satisfies

F̄ (ubin)− F̄ (ucon) ≤ 2C1e
C2∆t∆t+ C0ϵ

c(∆t). (4.15)

We provide detailed proof in Appendix C.1. We consider a uniform discretized model

with L2 penalty function for the SOS1 property with the following formulation [64]:

min
u∈[0,1]N×T ,X,H

F̄ (u) + ρ
T∑

k=1

(
N∑
j=1

ujk − 1

)2

, (P-L2)

where ρ is the penalty parameter. We assume that the original problem (P) has a feasible

solution with the SOS1 property. In the following corollary, we show that if we solve the

model with L2 penalty function (P-L2), then the convergence result in Theorem 4.2.1 still

holds.

Corollary 4.2.1. Assume that the original problem (P) has a feasible solution with the

SOS1 property. For any ∆t, let the discretized continuous controls ucon be the solution of

model (P-L2) and ubin be the binary solutions obtained by Algorithm 4.3 with α = 0, then

we have

lim sup
∆t→0

F̄ (ubin)− F̄ (ucon) ≤ 0. (4.16)

Proof. It is obvious that all the constants C0, C1, C2 are bounded. We only need to prove

that lim sup
∆t→0

ϵc(∆t) = 0. With the assumption that the original problem (P) has a feasible

solution with the SOS1 property, we have that there exist continuous functions uj(t), j =
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1, . . . , N such that
N∑
j=1

uj(t) = 1 for t ∈ [0, tf ] almost everywhere. For any time discretization

with T time intervals and length ∆t = tf/T , we construct a discretized solution u(T ) such

that

u
(T )
jk =

∫ tk

tk−1

uj(t)dt/∆t, k = 1, . . . , T. (4.17)

With the definition, we have
N∑
j=1

u
(T )
jk = 1, k = 1, . . . , T . Let u(T )∗ be the optimal solution

of problem (P-L2) with time steps T , then we have

F̄ (u(T )∗) + ρT
T∑

k=1

(
N∑
j=1

u
(T )∗
jk − 1

)2

tf
T
≤ F̄ (u(T )) (4.18)

from the definition of the optimal solution. Taking the limit when T →∞, i.e. ∆t→ 0, we

have

lim
T→∞

F̄ (u(T )∗) + lim
T→∞

ρT
T∑

k=1

(
N∑
j=1

u
(T )∗
jk − 1

)2

tf
T
≤ lim

T→∞
F̄ (u(T )) ≤ FUB, (4.19)

where FUB is the upper bound of the objective function F and the last inequality follows

lim
T→∞

u
(T )
j = uj(t).

With the definition that ucon = u(T )∗, we have

T∑
k=1

∣∣∣∣∣
N∑
j=1

uconjk − 1

∣∣∣∣∣ ≤ √T
 T∑

k=1

(
N∑
j=1

u
(T )∗
jk − 1

)2
1/2

(4.20)

for any T following the norm inequality between L1 and L2 norm. Consider two cases that

the L2 norm in equation (4.20) is smaller or not smaller than 1, then we have

T∑
k=1

∣∣∣∣∣
N∑
j=1

uconjk − 1

∣∣∣∣∣ ≤ max{
√
T ,
√
T

T∑
k=1

(
N∑
j=1

u
(T )∗
jk − 1

)2

} (4.21)
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for any T , respectively. Next we prove lim sup
∆t→0

ϵc(∆t) = 0. Because ϵc(∆t) can be written as

ϵc(∆t) =
T∑

k=1

∣∣∣∣∣
N∑
j=1

uconjk − 1

∣∣∣∣∣ tfT , (4.22)

we only need to prove lim
T→∞

√
T
tf
T

= 0 and lim
T→∞

√
T

T∑
k=1

(
N∑
j=1

u
(T )∗
jk − 1

)2

tf
T

= 0.

With tf as a constant, we directly have lim
T→∞

√
T
tf
T

= 0. We prove the second limit by con-

tradiction. Assume there exists a constant ϵ0 > 0 such that
√
T

T∑
k=1

(
N∑
j=1

u
(T )∗
jk − 1

)2

tf
T
≥

ϵ0 > 0 for any T , then the quadratic penalty term in the objective function of (P-L2)

lim
T→∞

ρT
T∑

k=1

(
N∑
j=1

u
(T )∗
jk − 1

)2

tf
T

= lim
T→∞

ρ
√
T
√
T

T∑
k=1

(
N∑
j=1

u
(T )∗
jk − 1

)2

tf
T

≥ lim
T→∞

ρ
√
Tϵ0 =∞, (4.23)

which contradicts the upper bound FUB in (4.19). Therefore, we have

lim sup
∆t→0

ϵc(∆t) ≤ lim sup
T→∞

max{
√
T
tf
T
,
√
T

T∑
k=1

(
N∑
j=1

u
(T )∗
jk − 1

)2

tf
T
} = 0. (4.24)

In the following corollary, we prove that for quantum control problems without the SOS1

property, the convergence results still hold.

Corollary 4.2.2. Let ucon be the solution of the continuous relaxation of model (DQCP)

without the SOS1 property. Let ubin be the binary control obtained by Algorithm 4.3 without

the SOS1 property constraint (i.e. U = {0, 1}N) setting α = 0. Then we have

lim sup
∆t→0

F̄ (ubin)− F̄ (ucon) ≤ 0. (4.25)

Proof. We complete the proof by showing that we can convert a continuous solution u without

the SOS1 property to a solution u′ with the SOS1 property with re-defined Hamiltonian

controllers.

Specifically, for a control system with N Hamiltonian controllers H(1), . . . , H(N), we

introduce a new control system with 2N controllers, including Hamiltonian controllers
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Ĥ(l1,...,li) =
i∑

j=1

H(lj), ∀ {l1, . . . , li} ⊆ {1, . . . , N} , ∀i = 1, . . . , N , Especially Ĥ(∅) is an

idle controller with represented as an all-zero Hamiltonian matrix. For any given controls

uk ∈ [0, 1]N of the continuous relaxation of the discretized model (DQCP) without the SOS1

property, we can convert them to controls u′k ∈ [0, 1]2
N

such that
∑2N

j=1 u
′
jk = 1 as the fol-

lowing rule for every time step k = 1, . . . , T . At time step k, given control variable uk for

N controllers, we sort the control values by descending order as ul1(k)k ≥ . . . ≥ ulN (k)k where

li(k) is the controller index with the ith high control value. For simplicity, we represent the

sorted controller index as l1, . . . , lN by eliminating k, then we reconstruct controls u′ as

u′(l1,...,li)k = ulik − uli+1k, i = 1, . . . , N − 1 (4.26a)

u′(l1,...,lN )k = ulNk (4.26b)

u′0 = 1− ul1k, (4.26c)

where u′(l1,...,li) is the control value corresponding to Hamiltonian controller H(l1,...,li), i =

1, . . . , N and u′0 is the control value corresponding to all-zeros Hamiltonian controller Ĥ(∅).

We have that

N∑
i=1

u′(l1...li)kĤ
(l1...li) + u′0Ĥ

(∅) =
N∑
i=1

u′(l1...li)k

i∑
j=1

H(lj) =
N∑
j=1

(
N∑
i=j

u′(l1...li)k

)
H(lj)

=
N∑
j=1

uljkH
(lj) =

N∑
l=1

ulkH
(l). (4.27)

Therefore the two control variables u and u′ with corresponding control systems have the

same impact on the states. Based on the definition of u′ and bound constraints that u ∈

[0, 1]N×T , we have
N∑
i=1

u′(l1...li)k + u′0 = 1 and u′ ∈ [0, 1]2
N×T , which means that the SOS1

property holds for the new control system. From Corollary 4.2.1, the convergence results of

Algorithm 4.3 hold for u′ with the SOS1 property, hence, hold for u.

4.2.2 Method Based on Cumulative Difference

Evaluating the difference between binary controls and continuous controls by cumulative

difference was proposed by Sager et al. [182] and is widely used in optimal control the-

ory [135, 181, 236]. In this section, we propose another method (Algorithm 4.4) to balance

the cumulative difference between binary controls and continuous controls and the penalized

number of switches. We define β as the TV norm penalty parameter. The explanation of
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the algorithm is as follows. At each time step k, we compute the cumulative difference of

current controls [ubin1 , . . . , ubink−1, û] ∈ [0, 1]N×T for all û ∈ U and select û∗ as the one with the

smallest cumulative difference (see step 4–5). If the cumulative difference of keeping control

of the current time step the same as the previous time step, i.e. û = uk−1, is no larger than

the weighted TV-norm value of choosing the control with the smallest cumulative difference,

i.e. û = û∗, we keep the previous time step controllers (see step 6–7). Otherwise, we choose

the controller with the smallest cumulative difference. Then update the binary control ubin

and move to the next time step k + 1 (see step 9).

According to the paper by Sager et al. [182], the cumulative difference at each time step

k for any feasible control û ∈ U is defined by

Diff
(
ucon, [ubin1 , . . . , ubink−1, û]

)
= max

j=1,...,N

∣∣∣∣∣
k−1∑
l=1

(
uconjl − ubinjl

)
∆t+

(
uconjk − ûj

)
∆t

∣∣∣∣∣ . (4.28)

Following the paper by Sager et al. [181], we introduce auxiliary deviation variables p̂jk for

each controller j = 1, . . . , N and each time step k = 1, . . . , T , such that:

p̂jk =
k∑

l=1

uconjl ∆t−
k−1∑
l=1

ubinjl ∆t, j = 1, . . . , N, k = 1, . . . , T. (4.29)

At time step k = 1, . . . , T , we use p̂k to represent the column vector of deviation variables.

We update deviation variables by a recursive formula as:

p̂k = p̂k−1 + uconk − ubink−1, k = 2, . . . , T. (4.30)

For any binary control û, the cumulative difference at time step k can be computed by the

deviation variables as

Diff
(
ucon, [ubin1 , . . . , ubink−1, û]

)
= max{max

j:ûj=1
|p̂jk −∆t| , max

j:ûj=0
|p̂jk|}. (4.31)

Therefore we only require to compute p̂jk and p̂jk−∆t for each time step. With the definition

of deviation variables, we conclude that setting controller j active does not increase the

cumulative difference if and only if |p̂jk| > |p̂jk − ∆t|, which means that p̂jk ≥ 0.5∆t.

Furthermore, for any two controllers, setting the one with a higher deviation leads to a

higher decrease or lower increase in the cumulative difference.

Remark 4.2.1. If binary control ubin requires the SOS1 property, at each time step k, let

j∗ = arg maxj=1,...,N p̂jk, we choose û∗k as û∗j∗k = 1, û∗jk = 0, ∀j ̸= j∗. If binary control does
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not require any additional constraints, at each time step k, let J∗ = {j = 1, . . . , N : p̂jk ≥
0.5∆t}, we choose û∗k as û∗jk = 1, ∀j ∈ J∗, û∗jk = 0, ∀j /∈ J∗.

We describe the detailed algorithm in Algorithm 4.4. Notice that the maximum number

Algorithm 4.4: Heuristic Rounding Method based on Cumulative Difference (Cd-
iff)

Input: Continuous control ucon and TV penalty parameter β.
1 Initialize binary control p̂1 = ucon1 .
2 Let ubin1 = arg minû∈U Diff (ucon, [û]).
3 for k = 2, . . . , T do
4 p̂k = p̂k−1 + uconk − ubink−1.

5 Let û∗ = arg minû∈U Diff
(
ucon, [ubin1 , . . . , ubink−1, û]

)
.

6 if Diff
(
ucon, [ubin1 , . . . , ubink−1, u

bin
k−1]

)
≤ βTV

(
[ubin1 , . . . , ubink−1, û

∗, uconk+1, . . . , u
con
T ]
)

then
7 Update binary control ubink = ubink−1.
8 else
9 Update control ubink = û∗, breaking ties choosing control with the smallest

TV value.

10 end

11 end
Output: Binary control ubin

of switches with penalty parameter β is tf/β following from the definition of cumulative

differences. When the weight parameter β = 0, the convergence results of SUR [64, 181]

ensure that the cumulative difference between ubin and ucon converges to zero, no matter

whether the SOS1 property holds or not, leading to the objective value of the binary control

F̄ (ubin) converges to the objective value of the continuous control F̄ (ucon) when ∆t goes to

zero.

4.3 Switching Time Optimization

With derived controller sequences in Section 4.2, we next propose our generic switching time

optimization model based on the continuous time horizon. Then we introduce the solution

method and an acceleration technique for time-evolution simulations.

Formulation Let S be the total number of controllers in the controller sequence H̄, we

divide the whole time horizon into S time intervals as 0 = t0 < t1 < . . . < tS = tf where

each time interval has a fixed Hamiltonian controller. For each time interval s = 1, . . . , S,

we define variables τs ∈ [0, tf ] as the length and Xs ∈ C2q×2q as the unitary operator at the
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end of the time interval. Let τ be the corresponding vector form of τs. By definition, the

final unitary operator X(tf ) = XS. The start and end time of time interval s is computed

by ts−1 =
∑s−1

l=1 τl and ts =
∑s

l=1 τl. The unitary operators follow the differential equation

d

dt
X(t) = −iH̄sX(t), ∀t ∈ (ts−1, ts], s = 1, . . . , S. (4.32)

We obtain the explicit solution as X(t) = exp{−iH̄s(t − ts−1)}X(ts−1), ∀t ∈ (ts−1, ts], s =

1, . . . , S. As a result, the final operator X(tf ) can be computed as an implicit function of τ :

X(tf , τ) = XS(τ) =
S∏

s=1

e−iH̄sτsXinit. (4.33)

Substituting the final operator X(tf , τ) into a general objective function F , we obtain an

objective function F̂ (τ) with respect to variables τ and formulate the switching time opti-

mization problem as

(STO) min
τ

F̂ (τ) = F (X(tf , τ)) (4.34a)

s.t.
S∑

s=1

τs = tf (4.34b)

τs ≥ 0, s = 1, . . . , S. (4.34c)

The objective function (4.34a) is a general function only corresponding to τ . Con-

straint (4.34b) enforces that the sum of the time intervals equals the evolution time. Con-

straint (4.34c) ensures that the length of each time interval is in [0, tf ]. Note that time

interval s with length as zero means that we do not apply Hamiltonian controller H̄s to the

control system, leading to a reduction in the number of switches.

Solution method Because the switching optimization model (STO) includes the addi-

tional summation constraint (4.34b), we derive the gradient of F̂ (τ) as follows and solve

the model by the sequential least-squares programming (SLSQP) algorithm [215], which is

a widely used iterative algorithm for solving bounded optimization problems with equality

constraints. For each time interval s = 1, . . . , S, we define propagators Us = exp{−iH̄sτs}.
The gradient of Us corresponding to τs is computed as

∂Us

∂τs
= −iH̄sUs, s = 1, . . . , S. (4.35)
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The gradient of the objective function with respect to the propagators varies with its spe-

cific formulation. For the energy function, we define back propagation variables κs =

U †
s+1 · · ·U

†
SH̃XS|ψ0⟩ for each interval s = 1, . . . , S − 1 and κS = H̃XS|ψ0⟩. The gradient

with respect to τs is computed as

∂F̂

∂τs
=

2

Emin

Re
[
i⟨κs|H̄sXs|ψ0⟩

]
, s = 1, . . . , S. (4.36)

For the infidelity function, we define back propagation variables λs = U †
s+1 · · ·U

†
SXtarg for

each interval s = 1, . . . , S − 1 and λS = Xtarg. Then the gradient of the trace with respect

to τs is computed as

∂ tr
{
X†

targXS

}
∂τs

= −iλ†sH̄sXs, s = 1, . . . , S. (4.37)

Using the definition of the infidelity objective function (4.3), we compute the gradient as

∂F̂

∂τs
=

1

2q
Re
[
itr
{
λ†sH̄sXs

}
e−iarg(tr{X†

targXS})
]
, s = 1, . . . , S, (4.38)

where arg(·) represents the argument of a complex number.

Time-evolution simulation For each set of switching time points, we can input con-

trollers into quantum systems and conduct the time-evolution process to obtain final objec-

tives and gradients by the finite difference method. Conducting time-evolution simulations

on classical computers is still a widely used approach in quantum control research. Directly

computing matrix exponentials during time evolution requires high computational costs.

Therefore, we introduce an acceleration technique of time-evolution simulations with pre-

computed eigenvalue decompositions. Because all the Hamiltonian controllers in quantum

systems are Hermitian matrices, they can be written as

H̄s = QsΛsQ
†
s, s = 1, . . . , S (4.39)

where Λs = diag{λ1s, . . . , λ2qs} are diagonal matrices with eigenvalues λ1s, . . . , λ2qs of

H̄s as diagonals and Qs are unitary matrices. According to the paper by Hall [83], the

corresponding propagators are computed as

Us = e−iH̄sτs = Qse
−iΛsτsQ†

s = Qsdiag{eλ1s , . . . , eλ2qs}Q†
s, s = 1, . . . , S. (4.40)
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Therefore, with pre-decomposed H̄s, s = 1, . . . , S, for any interval length variables τ , we

only need to compute 2q real number exponentials for all the eigenvalues and 2 matrix

exponentials for computing each propagator during the time-evolution process. The number

of eigenvalue decompositions we require to pre-compute is no more than the number of

distinctive controllers in the sequence H̄, which is at most N for problems with the SOS1

property and 2N for problems without the SOS1 property.

4.4 Numerical Studies

We apply our solution frameworks from Sections 4.2 and 4.3 with switching time optimiza-

tion to solve multiple specific quantum control instances, to demonstrate their computational

efficacy. In Section 4.4.1, we introduce our experimental design and four specific problems.

In Section 4.4.2, we select a specific instance to conduct the sensitivity analysis of the switch-

ing penalty parameter for obtaining binary controls. In Section 4.4.3, we first present the

objective value results of different methods and then show the computational time results

and the acceleration of our pre-computing matrix decomposition technique. We demonstrate

that our switching time optimization framework eliminates the requirement for precise time

discretization. In Section 4.4.4, we discuss the optimal control figures of selected instances,

to provide intuitive insights for our algorithms.

4.4.1 Simulation Design

For all the instances, we first solve the continuous relaxation of the discretized model (DQCP)

to obtain continuous solutions. Then we apply three methods to obtain discretized bi-

nary controls and their corresponding controller sequences. The first one is Algorithm

TR+MT+ALB in Chapter 3 which solves the continuous relaxation with TV regularizer

by a trust-region method (TR), then rounds continuous solutions with min-up-time con-

straints (MT), and improves binary solutions by an approximate local-branching method

(ALB). We select TR+MT+ALB as the benchmark algorithm because it obtains the best

trade-off between objective values and TV regularizer values among all the instances. The

second and third methods are heuristic methods based on objective value (Algorithm 4.3)

and cumulative difference (Algorithm 4.4). With obtained controller sequences, we solve the

switching time optimization model (STO) and obtain final solutions. We test our new algo-

rithm framework on the four quantum control problems, including (i) energy minimization

problem, (ii) NOT gate estimation problem, (iii) CNOT gate estimation problem, and (iv)

circuit compilation problem introduced in Section 3.2.1–3.2.4. The parameter settings in
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these problems follow the setting previous chapter (see Section 3.6.2). We additionally test

the circuit compilation problem with a new molecule BeH2 (Beryllium dihydride).

The settings of all the parameters are presented in Table 4.1. We test parameters for

penalizing the switching when rounding continuous controls α and β both in the interval

[10−n, 10−n+1] with step size 5 × 10−n−1 for n = 1, 2, 3, 4. We choose the parameter

with the best trade-off between objective values and the number of switches to present the

results. All the numerical simulations were conducted on a macOS computer with 8 cores,

16GB RAM, and a 3.20GHz processor in Python 3.8. All the computational time results

are the times on classical computers. Our full code and results are available on our GitHub

repository [62].

Table 4.1: Parameter settings of examples. The parameters include the number of qubits
(q), number of controllers (N), evolution time tf , number of time steps (T ), L2 penalty
parameter (ρ), and switching penalty parameter (α, β). The L2 penalty parameter ρ is only
for circuit compilation examples and it is marked by “-” for other examples.

Instance q N tf T ρ α β
Energy2 2 2 2 40 - 0.1 0.075
Energy4 4 2 2 40 - 0.15 0.015
Energy6 6 2 5 100 - 0.015 0.01
CNOT5 2 2 5 100 - 0.02 0.02
CNOT10 2 2 10 200 - 0.003 0.008
CNOT20 2 2 20 400 - 0.01 0.015
NOT2 1 2 2 20 - 0.01 0.03
NOT6 1 2 6 60 - 0.0015 0.015
NOT10 1 2 10 100 - 0.009 0.035
CircuitH2 2 5 10 100 1.0 0.045 0.01
CircuitLiH 4 12 20 200 0.1 0.03 0.06
CircuitBeH2 6 19 20 200 0.01 0.03 0.2

4.4.2 Sensitivity Analysis of Switching Penalty

We take an instance Energy6 to show the performance of controls of Algorithm 4.1 with

different switching penalty parameters α when obtaining binary controls based on objective

values (Algorithm 4.3). The performance of changing β when obtaining binary controls

based on the cumulative differences (Algorithm 4.4) is similar.

In the quantum energy minimization problem, the first excited state is the state having

energy as the second smallest eigenvalue of the corresponding matrix H̃. We use Efe to

represent the energy of the first excited state. In most applications, we are interested in
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comparing obtained energy and Efe. If the obtained energy is smaller, we say that the

control is good enough to distinguish the states. In Table 4.2, we present the difference

between obtained energy and minimum energy Emin for different penalty parameters as well

as the difference between the first excited state energy and the minimum energy for the 5

randomly generated instances.

Table 4.2: Difference between obtained energy and minimum energy of Energy6 example
for Algorithm 4.1 using Algorithm 4.3 at step 2 with different switching penalty parameters
α. Column “First-excited” represents the difference between the first-excited energy and
the ground energy. We bold the maximum parameter with obtained energy less than the
first-excited energy for all 5 instances.

α First-excited 0 0.001 0.003 0.005 0.01 0.015 0.02
Instance 1 0.8966 0.1503 0.1507 0.1518 0.1549 0.1825 0.2772 0.5358
Instance 2 0.9013 0.1235 0.1243 0.1289 0.1310 0.1993 0.2800 0.2800
Instance 3 0.8587 0.2156 0.2163 0.2194 0.2236 0.2313 0.2458 0.3283
Instance 4 1.4315 0.0356 0.0367 0.0409 0.0434 0.1639 0.1639 0.3532
Instance 5 0.2772 0.2059 0.2064 0.2082 0.2094 0.2200 0.2719 0.3969
Average 0.8731 0.1462 0.1469 0.1499 0.1525 0.1994 0.2478 0.3788
α 0.03 0.04 0.05 0.07 0.1 0.2 0.3 0.6
Instance 1 0.5358 0.5358 0.9666 0.9666 1.4327 1.5090 3.9625 3.9625
Instance 2 0.4363 0.7910 0.7910 0.7910 1.2370 3.2501 5.3743 6.2999
Instance 3 0.4504 0.6540 0.6540 0.6540 1.3813 2.4889 4.7132 4.7573
Instance 4 0.7195 0.7195 0.7195 1.6350 1.6350 2.4832 5.3054 5.3054
Instance 5 0.3969 0.6277 0.6277 0.9823 0.9823 1.5300 1.5300 4.1083
Average 0.5078 0.6656 0.7518 1.0058 1.3337 2.2522 4.1771 4.8867

We show that with the increase of switching penalty parameter α, the differences of

energy for all the instances increase, until reaching the maximum difference −Emin. We

notice that when the difference between first-excited and minimum energy is small (Instance

5), we require a smaller energy ratio difference to distinguish the states, therefore requiring

a smaller penalty parameter α. We bold the maximum penalty parameter α = 0.015 with

obtained energy smaller than the first-excited energy in all the instances.

In our model, obtaining energy less than the first-excited energy Efe is equivalent to

obtaining an objective value smaller than 1−Efe/Emin. We present average objective values

1−E/Emin and TV-norm values among 5 instances for different switching penalty parameters

in Table 4.3. The detailed objective values and TV-norm value results for each instance

can be found in Appendix C.2. We show that with the increase of the switching penalty

parameter α, the average objective value increases monotonically and the average TV-norm

value decreases monotonically. Furthermore, we present the trade-off relationship between

objective values computed by 1 − E/Emin and TV-norm values in Figure 4.3. Blue circles,
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Table 4.3: Average objective value and TV-norm results of Energy6 example for Algo-
rithm 4.1 using Algorithm 4.3 at step 2 with different switching penalty parameters α.
TV-norm value of the first-excited state is not applicable and marked by “-”.

α First-excited 0 0.001 0.003 0.005 0.01 0.015 0.02
Objective 0.1787 0.0319 0.0321 0.0327 0.0332 0.0422 0.0526 0.0824
TV-norm - 116.4 74.0 41.2 32.4 23.2 20.4 17.6
α 0.03 0.04 0.05 0.07 0.1 0.2 0.3 0.6
Objective 0.1063 0.1373 0.1591 0.2109 0.2791 0.4521 0.8432 1.0000
TV-norm 15.2 12.8 12.0 10.4 8.4 4.8 2.4 0.0

orange triangles, green stars, red squares, and purple plus signs represent the results of

various α of instances 1–5, respectively. We use larger transparent dots to represent the

results with higher energy than first-excited state energy and use smaller opaque dots to

represent the results with lower energy. We choose the point with energy lower than the first-

excited state energy for both 5 instances and the smallest TV-norm as our best switching

penalty parameter, which is α = 0.015.

Figure 4.3: Objective value and TV-norm results of Energy6 example for Algorithm 4.1
using Algorithm 4.3 at step 2 with different switching penalty parameters α. Blue circles,
orange triangles, green stars, red squares, and purple plus signs represent the results of
instances 1–5, respectively. Larger transparent markers represent the results with higher
energy than first-excited state energy while smaller opaque markers represent the results
with lower energy.
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4.4.3 Numerical Results

In this section, we discuss the numerical results for four methods introduced in Section 4.4.1.

In all the following tables, figures, and discussion, we label results of discretized controls

obtained by Algorithm TR+MT+ALB in Chapter 3 as “Chpt. 3”. We label the results

obtained by Algorithm 4.1 using the method in Chapterr 3, heuristic methods based on

objective values (Algorithm 4.3), and heuristic methods based on cumulative difference (Al-

gorithm 4.4) to attain binary controls ubin at step 2 as “Alg. 4.1w/Chpt. 3”, “Alg. 4.1w/4.3”,

and “Alg. 4.1w/4.4”, respectively.

Objective results We present the histograms of objective values with log-scale and TV-

norm values in Figure 4.4 for all the instances and methods. Blue and orange bars represent

objective and TV-norm value results. Bars marked by slashes, backslashes, stars, and dots

represent the results of methods TR+MT+ALB in Chapter 3, Algorithm 4.1 with binary

controls from TR+MT+ALB in Chapter 3, Algorithm 4.1 with binary controls from Algo-

rithm 4.3, and Algorithm 4.1 with binary controls from Algorithm 4.4, respectively.

Comparing the discretzied results in Chapter 3 and the results after Algorithm 4.1 starting

from the discretized solutions, we demonstrate that switching time optimization significantly

improves the objective value because we can eliminate a fixed time discretization without

increasing the number of switches. Compared to the results of Algorithm 4.1 with binary

controls from Chapter 3, we show that Algorithm 4.1 with binary controls obtained from new

heuristic methods (Algorithm 4.3–4.4) is not only more concise and convenient for adjusting

parameters but also gains a better trade-off results for most instances. For the results of

Algorithm 4.1 with our two new methods to obtain binary control, we illustrate that the

objective values are in the same order but the TV-norm values vary among instances. In

practice, we recommend testing two methods and choosing the best one.

We select an instance NOT10 and present the control results with objective values (rep-

resented by “Obj”) and TV-norm values in Figure 4.5. We show that switching optimization

improves the objective value significantly by slightly modifying the time points of switches by

comparing the upper-left and upper-right figures in Figure 4.5. We demonstrate that switch-

ing time optimization with our new rounding algorithms reduces both objective values and

TV-norm values in Figure 4.5.

CPU time results We present the CPU time of solving continuous relaxations (Step 1),

extracting binary controls (Step 2), and conducting switching time optimization (Step 4) for

all the methods in Table 4.4. We eliminate the time of merging intervals because it is not

closely related to various instances and methods. We show our new methods of obtaining bi-
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Figure 4.4: Histograms of objective values with log-scale and TV-norm values for all the
instances and methods. Blue and orange bars represent objective and TV-norm value results.
Bars marked by slashes, backslashes, stars, and dots represent methods TR+MT+ALB in
Chapter 3, Alg. 4.1 with binary controls from TR+MT+ALB in Chapter 3, Alg. 4.1 with
binary controls from Alg. 4.3, and Alg. 4.1 with binary controls from Alg. 4.4.

nary controls dramatically reduce the computational time compared to the previous method

by eliminating the local search process. With our proposed acceleration technique in the

heuristic method based on objective values, we avoid conducting time-evolution for N · T
times and complete the process in seconds. The time of solving the switching optimization

model (STO) is all less than one second.

We present how the common logarithm of CPU time and iterations vary among problem

sizes computed by 2q ·T ·N when solving (STO) in Figure 4.6. We show that CPU times grow

exponentially with q because the dimensions of Hamiltonian matrices grow exponentially,

while the number of iterations is stable. The main CPU time of large-scale examples such

as Energy6 and CircuitBeH2 comes from solving continuous relaxations. In practice, using

quantum computers to conduct the time-evolution process can help save computational times

with at most exponential reduction. We only need to evaluate the final state for computing

the objective value and the gradient by the finite difference method.
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Figure 4.5: Control results of instance NOT10 for all the methods. Upper-left: discretized
controls obtained by TR+MT+ALB in Chapter 3 (objective 9.087E−04, TV-norm 20).
Upper-right: controls of Algorithm 4.1 with binary controls obtained by TR+MT+ALB in
Chapter 3 (objective: 5.132E−08, TV-norm: 20). Lower-left: controls of Algorithm 4.1 with
binary controls obtained by Algorithm 4.3 (objective: 2.439E−08, TV-norm: 11). Lower-
right: controls of Algorithm 4.1 with binary controls obtained by Algorithm 4.4 (objective:
4.692E−08, TV-norm: 17). Blue lines and orange dashed lines represent controllers 1 and
2, respectively.

Acceleration of time-evolution simulation We select two large-scale instances, En-

ergy6 and CircuitBeH2 to indicate the benefits of our time-evolution simulation with pre-

decomposed Hamiltonian controllers proposed in Section 4.3. We present the CPU time of

conducting time-evolution processes and the total CPU time when solving the model (STO)

in Table 4.5, where rows “Accelerated” represent the results of our accelerated simulation and

rows “Baseline” represent the results of the baseline that computes matrix exponentials at

each iteration. We demonstrate our accelerated simulation obtains remarkable improvement

in CPU times with at most 16.3x speed-up.

Results of fewer time steps Because the switching time optimization model (STO) only

requires the controller sequence and optimizes the time of all the switching points, we no
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Table 4.4: CPU time (s) results of all the methods for main steps in Algorithm 4.1. We
eliminate the time of merging intervals. Column “Continuous” represents the results of
solving continuous relaxations (Step 1). Columns “Alg. 4.1w/Chpt. 3”, “Alg. 4.1w/4.3”,
and “Alg. 4.1w/4.4” represent the time of rounding continuous controls (Step 2) and solving
the switching time optimization model (STO) (Step 4) in Algorithm 4.1 using TR+MT+ALB
in Chapter 3, Algorithm 4.3, and Algorithm 4.4 in Step 2, respectively.

Continuous Binary control extraction (Step 2) Switching time optimization (Step 4)
(Step 1) Alg. 4.1w/Chpt. 3 Alg. 4.1w/4.3 Alg. 4.1w/4.4 Alg. 4.1w/Chpt. 3 Alg. 4.1w/4.3 Alg. 4.1w/4.4

Energy2 0.130 4.038 0.011 0.013 0.002 0.002 0.002
Energy4 2.892 33.173 0.030 0.027 0.003 0.009 0.007
Energy6 105.788 3174.384 0.678 0.484 0.063 0.463 0.167
CNOT5 1.125 100.506 0.036 0.023 0.015 0.020 0.009
CNOT10 0.725 291.447 0.071 0.043 0.035 0.036 0.044
CNOT20 1.025 595.570 0.135 0.080 0.036 0.038 0.030
NOT2 0.046 0.560 0.009 0.006 0.002 0.003 0.003
NOT6 0.147 12.240 0.022 0.015 0.013 0.007 0.016
NOT10 0.105 82.500 0.033 0.021 0.008 0.017 0.009
CircuitH2 1.754 353.006 0.045 0.022 0.008 0.018 0.032
CircuitLiH 238.685 2347.433 0.392 0.131 0.015 0.042 0.025
CircuitBeH2 3060.900 37368.162 2.026 1.758 0.124 0.555 0.311

Figure 4.6: CPU times and numbers of iterations varying among problem sizes computed
by 2q · T ·N . We take the common logarithm of all the values. Blue, orange, green, and red
dots represent instances of Energy, CNOT, NOT, and Circuit examples. Circles, triangles,
and stars represent time results of Alg. 4.1 with methods in Chpater 3, Alg. 4.3, Alg. 4.4 to
extract binary controls at Step 2.
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Table 4.5: CPU time (s) results of solving the switching time optimization model (Step 4)
with extracted controllers by various methods, including the benchmark TR+MT+ALB [64]
in Column “Alg. 4.1w/Chpt. 3”, Algorithm 4.3 in Column “Alg. 4.1w/4.3”, and Algo-
rithm 4.4 in Column “Alg. 4.1w/4.4”. We present CPU times of evolution simulations
and total CPU times. Row “# Evolution” presents the number of evolution times. Rows
“Acceleration” and “Baseline” represent results after and before our acceleration by pre-
decomposing matrices. Row “Speed-up” represents the speed-up results.

Energy 6 CircuitBeH2
Alg. 4.1w/Chpt. 3 Alg. 4.1w/4.3 Alg. 4.1w/4.4 Alg. 4.1w/Chpt. 3 Alg. 4.1w/4.3 Alg. 4.1w/4.4

# Evolution 18.0 41.4 39.8 16 51 20

Evolution (s)
Acceleration 0.035 0.255 0.095 0.052 0.235 0.163
Baseline 0.577 1.742 1.454 0.648 2.858 0.594
Speed-up 16.3x 6.8x 15.3x 12.6x 12.1x 12.5x

Total (s)
Acceleration 0.063 0.463 0.167 0.124 0.555 0.311
Baseline 0.902 2.711 2.266 1.063 5.829 1.038
Speed-up 14.4x 5.9x 13.6x 8.6x 10.5x 3.3x

longer require precise time discretization. Therefore, we can solve continuous relaxation with

longer discretized time intervals, thus reducing the number of time steps and computational

costs. We take Energy6 and CircuitBeH2 as examples and solve instances with T = 20 and

T = 40 by Algorithm 4.1 using our new methods, Algorithm 4.3–4.4 to round controls. In

Table 4.6, we compare objective values, TV-norm values, and CPU times between different

numbers of time steps. We show that both methods obtain similar objective values and

TV-norm values after switching time optimization with a significant decrease in CPU times.

Table 4.6: Comparison of objective value, TV-norm value, and CPU time results with dif-
ferent time steps on example Energy6 (T = 20, 100) and CircuitBeH2 (T = 40, 200) for the
switching time optimization model. Columns “Alg. 4.1w/4.3” and “Alg. 4.1w/4.4” repre-
sent results of Algorithm 4.1 with extracted binary controls obtained by Algorithm 4.3 and
Algorithm 4.4.

Energy6-T20 Energy6-T100 CircuitBeH2-T40 CircuitBeH2-T200
Alg. 4.1w/4.3 Alg. 4.1w/4.4 Alg. 4.1w/4.3 Alg. 4.1w/4.4 Alg. 4.1w/4.3 Alg. 4.1w/4.4 Alg. 4.1w/4.3 Alg. 4.1w/4.4

Objective 0.0723 0.0453 0.0526 0.0632 1.250E−03 1.249E−03 1.250E−03 1.250E−03
TV-norm 18.8 22 20.4 19.6 22 14 28 14
CPU time 38.579 38.609 106.929 106.439 329.643 329.383 3063.481 3062.387

4.4.4 Discussion of Controls

In this section, we choose Algorithm 4.1 with the method of obtaining binary controls based

on objective values (Algorithm 4.3) as an example to show the figures of controls and provide

intuitive explanations of our overall framework. We select examples CircuitLiH, CircuitH2,

and the fourth randomly generated instance of Energy6 to present the figures. For each
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example, we present the continuous controls ucon after solving the continuous relaxation

(Step 1), extracted binary controls by Algorithm 4.3 (Step 2), and controls after switching

time optimization (Step 4) with their objective values.

In Figure 4.7, we show the results of the example CircuitLiH. Comparing the objective

value of binary controls and optimized control, we show that solving the switching time

optimization model significantly improves the objective value. We notice that the binary

controls obtained based on objective values have the most switches at the beginning of the

evolution time interval because our heuristic algorithm aims to balance the objective value

and the number of switches. Specifically, at the beginning of the time evolution interval,

keeping the same control leads to a high objective value increase, so the system switches

frequently among different controllers. At the second half of the time interval, the objective

value becomes stable because it is upper-bounded by one, hence the algorithm chooses to

keep the current controller to avoid an increase in the number of switches.

Figure 4.7: Control results for CircuitLiH of Algorithm 4.1 with binary controls obtained
based on objective values (Algorithm 4.3). Left: Continuous controls with objective
1.310E−03. Middle: Binary controls with objective 0.9993. Right: Optimized controls
with objective 1.702E−03.

In Figure 4.8, we present the control results for the example CircuitH2. We demonstrate

that the optimized control results obtain a smaller objective value even compared to the

continuous controls, showing the advantages of the switching time optimization model by

eliminating time discretization. Furthermore, we show that the switching time optimization

model can obtain an optimal solution in that some time intervals have zero length, leading

to a reduction in the number of switches.

In Figures 4.9 and 4.10, we present the control results with larger time steps T = 100

and fewer time steps T = 20. We show that reducing the time steps leads to a higher

objective value of continuous results and rounded binary controls, which is a disadvantage
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Figure 4.8: Control results for CircuitH2 of Algorithm 4.1 with binary controls obtained
based on objective values (Algorithm 4.3). Left: Continuous controls with objective
2.150E−04. Middle: Binary controls with objective 0.9619. Right: Optimized controls
with objective 1.208E−06.

of the discretized model. However, our control results after the switching time optimization

obtain the same objective for T = 100 and T = 20, indicating the capability of our model for

reducing the computation of continuous relaxation with no degradation in the final optimized

results.

Figure 4.9: Control results for instance 4 of Energy6 of Algorithm 4.1 with binary controls
obtained based on objective values (Algorithm 4.3). The number of time steps T = 100.
Left: Continuous controls with objective 0.0067. Middle: Binary controls with objective
0.1808. Right: Optimized controls with objective 0.0309.

4.5 Concluding Remarks

In this chapter, we studied a generic binary quantum control problem. We proposed an

algorithmic framework optimizing control functions as well as time points of switching con-
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Figure 4.10: Control results for instance 4 of Energy6 of Algorithm 4.1 with binary controls
obtained based on objective values (Algorithm 4.3). The number of time steps T = 20. Left:
Continuous controls with objective 0.0078. Middle: Binary controls with objective 0.2231.
Right: Optimized controls with objective 0.0309.

trollers. We proposed two heuristic methods to obtain controller sequences from discretized

continuous controls with a penalty on the number of switches. With obtained controller se-

quences, we developed a switching time optimization model to optimize the switching points

of controllers and applied a sequential least-squares programming algorithm to solve it. Fur-

thermore, we proposed an acceleration technique to compute matrix exponentials for the

time-evolution simulation on classical computers.

With numerical experiments on multiple instances in different quantum systems, we

demonstrated that our new framework significantly outperforms binary solutions of the time

discretization model in balancing objective values and switching frequency. Although ap-

proaches to obtaining binary controls are various, we showed that our new heuristic methods

are concise and effective, and obtain the best quality control after switching time optimiza-

tion. In practice, one can test new heuristic methods and adjust penalty parameters to

achieve the best control. Furthermore, we indicated that the switching time optimization

model requires less precise time discretization, leading to a reduction of the computational

burden.

Because our algorithm only requires the final state of quantum systems to evaluate the

objective value and the gradient, using quantum computers to conduct the time-evolution

process is one of our future research directions. Noise and uncertainty in quantum sys-

tems have been a long-standing problem, making it a valuable topic to take account into

uncertainties in quantum control problems and design robust controls.
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CHAPTER 5

Binary Quantum Control Optimization with

Uncertain Hamiltonians

5.1 Introductory Remarks

Quantum control theory [51, 74, 225] is an area of quantum research that focuses on design-

ing efficient and accurate controls to manipulate quantum systems toward desired quantum

states and operations. The early applications of quantum control theory include nuclear

magnetic resonance experiments [94, 95, 136, 195] and quantum chemistry [100, 162]. With

the development of quantum technologies, quantum control theories have played an impor-

tant role in quantum information [75, 111, 145, 157, 158, 160, 172] and the high-level design

of quantum algorithms [12, 26, 27, 64, 65, 138, 214].

Various methods have been proposed for tackling quantum optimal control problems.

Khaneja et al. [95] first develop the gradient ascent pulse engineering (GRAPE) algorithm

which estimates controls by piece-wise constant functions. Larocca and Wisniacki [109]

later improve the computational efficiency of the GRAPE algorithm using Krylov subspace.

Another popular algorithm is the chopped random basis algorithm, which describes the

control space by basis functions [36, 56, 198]. Some other studies solve the optimal control

problem by gradient-free methods, including the evolution algorithm [239] and reinforcement

learning [32, 38, 152, 194, 244]. For binary control problems, Vogt and Petersson [216]

propose a trust-region method for optimal control in a single flux quantum system. Recently,

Fei et al. [64, 65] develop a solution framework for general quantum systems and improve it

by switching time optimization.

All the aforementioned papers only study the deterministic quantum optimal control

problem. However, the imprecise estimation of Hamiltonian controllers and time-varying

noises in quantum systems has recently raised the need for robust quantum control [50,

78, 79, 102, 167]. Moreover, designing a robust uniform control is an important topic in

inhomogeneous quantum ensembles, involving a large number of quantum systems with
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variations in system parameters [39, 118, 141, 155, 168]. Fourier decomposition methods are

applied to design a uniform control for inhomogeneous quantum fields [118, 168]. Barr et al.

[14] extend quantum noise spectroscopy to design optimized amplitude control waveforms

suppressing low-frequency dephasing noise and detuning errors. Ruths and Li [179] propose

a multidimensional pseudospectral method with uncertainty sampling for optimal control

of quantum ensembles. Chen et al. [39] apply a sample approximation algorithm and Wu

et al. [231] extend it to a batch-based sampling algorithm to minimize the expectation of

the error between final and target operations. To hedge against risk, some studies focus

on optimizing the worst-case performance under uncertainties. Wesenberg [226] solves a

robust quantum optimal control problem using a general minmax algorithm based on a

series of constrained quasi-Newton sequential quadratic programs. Kosut et al. [103] develop

a sample-based sequential convex programming scheme to obtain an optimal control for the

worst-case robust optimization problem.

The main contributions of this chapter are threefold. First, we develop a stochastic opti-

mization model and a sample-based reformulation for the general quantum optimal control

problem under uncertain Hamiltonians to balance risk-neutral and risk-averse objectives.

Second, we apply multiple gradient-based methods and rounding techniques to solve the

reformulated mixed-integer stochastic programming model. We provide theoretical discus-

sions for the derivative of the objective function and the gap between solutions before and

after rounding. Third, we analyze the performance of our approaches under various variance

settings and demonstrate the benefits of considering uncertainties when conducting binary

controls of quantum systems.

The remainder of this chapter is organized as follows. In Section 5.2, we present a general

mixed-integer stochastic optimization model and its reformulation based on finite samples

of the uncertain Hamiltonians. In Section 5.3, we derive the reformulation of the original

stochastic optimization model and propose our gradient-based algorithm to solve the con-

tinuous relaxation. We apply rounding techniques to obtain binary controls and analyze the

gap between binary and continuous control solutions. In Section 5.4, we introduce two spe-

cific quantum control instances and discuss the results of our numerical tests and simulation.

In Section 5.5, we conclude our work and state future research directions.

5.2 Model with Uncertain Hamiltonians

Following the discretized binary quantum control model (DQCP) introduced in Chapter 3,

we extend the deterministic model to a general stochastic optimization model in Section 5.2.1

and propose the sample-based reformulation. Next, we describe the risk measure function
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used in this chapter in Section 5.2.2.

5.2.1 Stochastic Optimization Model

In practice, there exist time-varying noises in the intrinsic and control Hamiltonians due

to various reasons such as decoherence, hardware limitations, and environmental noise. On

the other hand, multiple applications, such as inhomogeneous quantum ensembles, require

applying a uniform control to manipulate quantum systems with different Hamiltonians

values. These properties and applications lead to studies that take the uncertainty of

Hamiltonians into consideration. In this chapter, we denote the uncertainty parameters

as ξ = [ξjk] ∈ Ξ ⊆ R(N+1)·T where ξjk, j = 0, . . . , N, k = 1, . . . , T represents the uncertainty

of the intrinsic Hamiltonian (j = 0) and jth control Hamiltonian (j ≥ 1) at time step k. We

assume that the uncertainty parameters have a known distribution P and use finite samples

to approximate the distribution. We define set S as a finite set of uncertainty realizations

S = {ξ1, . . . , ξS} according to the distribution P such that ξs, for each s = 1, . . . , S is asso-

ciated with probability ps with
∑S

s=1 ps = 1. The time-dependent Hamiltonians and unitary

operators are the functions of uncertain parameters ξ. For each sample ξs, s = 1, . . . , S, at

each time step k = 1, . . . , T , we denote the corresponding time-dependent Hamiltonian Hk

and unitary operator Xk as Hs
k and Xs

k, respectively. We define ρ
[
FX(X1

T ), . . . , FX(XS
T )
]

as a risk measure function based on the uncertainty sample set S. The generic stochastic

optimization model variant of Model (DQCP) is given by

(SP(S)) min
u,X,H

ρ
[
FX(X1

T ), . . . , FX(XS
T )
]

(5.1a)

s.t. Hs
k = (1 + ξs0k)H(0) +

N∑
j=1

(1 + ξsjk)ujkH
(j), k = 1, . . . , T, s = 1, . . . , S

(5.1b)

Xs
k = e−iHs

k∆tXs
k−1, k = 1, . . . , T, s = 1, . . . , S (5.1c)

Xs
0 = Xinit, s = 1, . . . , S (5.1d)

N∑
j=1

ujk = 1, k = 1, . . . , T

ujk ∈ {0, 1} , j = 1, . . . , N, k = 1, . . . , T.

The objective function (5.1a) uses a risk measure ρ to evaluate the risk of having huge de-

viations from the desired cost of controling quantum operators under uncertainty, which we

will describe the details in Section 5.2.2. (In Section 5.4 for the numerical results, we intro-
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duce specific quantum control objective functions for different examples.) Constraints (5.1b)

illustrate how to compute time-dependent Hamiltonians given sample ξs, s = 1, . . . , S. Con-

straints (5.1c)–(5.1d) are the copies of constraints (3.3c)–(3.3d) for s = 1, . . . , S.

5.2.2 Risk Measure and Objective Function

The risk measure ρ in the objective function (5.1a) in the stochastic optimization model

can take different forms depending on the decision-maker’s risk attitudes and uncertainty

levels. One of the most widely-used measures is the expectation of a random variable, which

measures the average performance, also known as the risk-neutral measure [187]. For any

stochastic function f(ξ) where ξ has support Ξ and distribution P, the expectation is defined

as Eξ[f(ξ)] =
∫
Ξ
f(ξ)dP. With a sample set S, the approximation expectation formulation

for the stochastic function f(ξ) is
S∑

s=1

psf(ξs).

However, a particular realization of ξ can be significantly different from its expectation.

In quantum control applications, avoiding extremely bad performance in some quantum

systems is important and necessary. Here we consider a risk-averse measure, to control the

risk in the solutions given by the stochastic optimization model (SP(S)) [164, 174, 175, 185].

The Conditional Value-at-Risk (CVaR) function [175] is considered in this paper given that

it is a coherent risk measure with nice properties such as convexity. For any stochastic

function f(ξ), the CVaR function with risk level η is defined as the expected value of f(ξ)

subject to that the value of f(ξ) is no less than the lower 1 − η percentile [185]. We show

an illustration figure for η = 0.05 in Figure 5.1, where the blue line at 2 represents the 95

percentile of f(ξ) and the red dashed line represents the CVaR value as the average of all

values of f(ξ) that is larger than 2. We introduce the following equivalent formulation for

the CVaR function [175]:

CVaRη (f(ξ)) = inf

{
ζ +

1

η

∫
Ξ

max{0, f(ξ)− ζ}dP : ζ ∈ R
}
. (5.2)

With a sample set S, the CVaR function has the following sample approximation formulation:

min
ζ∈R

(
ζ +

1

η

S∑
s=1

ps max{0, FX(Xs
T )− ζ}

)
. (5.3)

One can consider a linear combination of expectation and CVaR function as the specific

objective function in (SP(S)) to balance between risk-neutral and risk-averse attitudes. With
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Figure 5.1: Illustration for CVaR function with risk level η = 0.05. The histograms are the
distribution of f(ξ). The blue line represents the 95 percentile of f(ξ). The red dashed line
represents the CVaR value.

a sample set S, the risk measure (5.1a) has the following specific formulation:

ρ
[
FX(X1

T ), . . . , FX(XS
T )
]

=α
S∑

s=1

psFX(Xs
T )

+ (1− α) min
ζ∈R

(
ζ +

1

η

S∑
s=1

ps max{0, FX(Xs
T )− ζ}

)
, (5.4)

where α ∈ [0, 1] is the weight parameter and η is the risk level parameter. When α = 0,

the problem is equivalent to minimizing the CVaR function to obtain a risk-averse control.

When α = 1, the goal is to optimize the expected performance of the control.

5.3 Gradient-based Algorithm

Our algorithm for solving the stochastic optimization model Our algorithm for solving the

stochastic optimization model consists of two parts, (i) solving continuous relaxation and (ii)

rounding solutions. In Section 5.3.1, we first convert the stochastic optimization model with

sample approximation (SP(S)) to an unconstrained optimization model. Then, we discuss

the derivative for the objective function and introduce two gradient-based algorithms to solve

the continuous relaxation of the model. In Section 5.3.2, we apply the sum-up-rounding

algorithm to obtain binary solutions with an optimality guarantee.
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5.3.1 Solution Methods for Continuous Relaxation

Following constraints (5.1b)–(5.1d), we convert the final operator Xs
T to an implicit function

of control variables u as

Xs
T (u) =

T∏
k=1

exp

{
−i

(
(1 + ξs0k)H(0) +

N∑
j=1

(1 + ξsjk)ujkH
(j)

)
∆t

}
Xinit, s = 1, . . . , S. (5.5)

We use F s(u) to denote the objective function of u given uncertainty realization ξs by

substituting Xs
T (u) into the objective function (3.3a), i.e. F s(u) = FX(Xs

T (u)). We penalize

the SOS1 property (3.3e) by an L2 penalty function in the form of:

FL(u) =
T∑

k=1

(
N∑
j=1

ujk − 1

)2

. (5.6)

By relaxing the binary constraints (3.3f), the stochastic optimization model (SP(S)) is con-

verted to an unconstrained optimization problem over a bounded feasible region as

min
u∈[0,1]N×T ,ζ

α
S∑

s=1

psF
s(u) + (1− α)

(
ζ +

1

η

S∑
s=1

ps max{0, F s(u)− ζ}

)
+ θFL(u), (5.7)

where θ is the penalty weight parameter for the SOS1 property. The maximization function

in the second term leads to the indifferentiability of variables u and ζ and we will discuss the

derivative of it in the following theorems. For simplicity, we denote the second term without

weight (1− α) by FCVaR(u, ζ), i.e.,

FCVaR(u, ζ) = ζ +
1

η

S∑
s=1

ps max{0, F s(u)− ζ}. (5.8)

We derive a closed-form expression of minζ FCVaR(u, ζ) as follows.

Theorem 5.3.1. For a given control variable u, define s∗(u) as the scenario number with

the largest original objective value F s∗(u)(u) such that

S∑
s=1

ps1{F s(u)>F s∗(u)(u)} ≥ η. (5.9)
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Then the closed-form expression of minζ FCVaR(u, ζ) at point u is given by

FC(u) = F s∗(u)(u) +
1

η

∑
s:F s(u)>F s∗(u)(u)

ps(F
s(u)− F s∗(u)(u)) (5.10a)

= F s∗(u)(u) +
1

η

∑
s:F s(u)≥F s∗(u)(u)

ps(F
s(u)− F s∗(u)(u)). (5.10b)

The main idea of the proof is showing that given a control variable u, the optimal solution

for the minimization problem minζ FCVaR(u, ζ) is ζ∗(u) = F s∗(u)(u). We provide the details

in Appendix D.1.

Remark 5.3.1. For a special case where we sample the scenario with equal probability, i.e.,

ps = 1
S
, the optimal solution ζ∗ = F s∗(u)(u) is the ⌈ηS⌉ largest original objective function

value F s(u) among all the scenarios s = 1, . . . , S.

Using the closed-form expression, we convert the original problem to minimizing an uncon-

strained continuous relaxation with uncertainty sample set S = {ξ1, . . . , ξS}. For simplicity,

in the remaining discussion, we define the summation of terms coming from the original

objective function as

F̃ (u) = α
S∑

s=1

psF
s(u) + (1− α)FC(u) (5.11)

Taking the L2 penalty function into consideration, the unconstrained continuous relaxation

is formulated as

min
u∈[0,1]N×T

FR(u) = α

S∑
s=1

psF
s(u) + (1− α)FC(u) + θFL(u), (SP-R(S))

where the differentiability of FC(u) depends on the objective values of all the scenarios. For

a given control variable point û, we present the following theorem about the derivative.

Theorem 5.3.2. For any given control variable point û, if F s(û) ̸= F s∗(û)(û), ∀s ̸= s∗(û),

then the closed form FC(u) is differentiable at point û, with the derivative formulation as

∂FC(û)

∂û
=

1− 1

η

∑
s:F s(û)>F s∗(û)(û)

ps

 ∂F s∗(û)(û)

∂û
+

1

η

∑
s:F s(û)>F s∗(û)(û)

ps
∂F s(û)

∂û
. (5.12)

The detailed proof of differentiability and derivative is presented in Appendix D.1.

With the derivative of FC(u), we compute the derivative of the objective function FR(u)
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in (SP-R(S)) by the chain rule as

∂FR(u)

∂ujk
= α

S∑
s=1

ps
∂F s(u)

∂ujk
+ (1− α)∂FC(u)

∂ujk
+ 2θ

 N∑
j=1

ujk − 1

 , j = 1, . . . , N, k = 1, . . . , T,

(5.13)

where the gradient of the original objective functions F s(u) for every scenario s = 1, . . . , S

depends on specific quantum problems and can be computed by the popular GRAPE al-

gorithm [95]. We apply two optimization methods, L-BFGS-B algorithm [34] and Adam

method [97] with our derived gradient for FR(u) in (5.13) to solve the continuous relaxation

of the stochastic model. In numerical studies, we empirically show that the L-BFGS-B al-

gorithm is better for quantum problems aiming to minimize the energy of a quantum state,

while the Adam method performs better at problems minimizing the infidelity compared to

a target quantum operator.

L-BFGS-B algorithm L-BFGS-B algorithm is a widely-used quasi-Newton method for

optimizing unconstrained models with a deterministic objective function. We first generate

S samples for the uncertain parameters ξ, then apply the L-BFGS-B algorithm to solve

the model (SP-R(S)). Specifically, during each iteration of the L-BFGS-B algorithm, we

compute the derivative by Equation (5.13) and the search direction, then conduct a line

search to update control variables, following the details in Byrd et al. [34], Zhu et al. [248].

Adam method Adam is a well-known first-order gradient-based optimization method for

optimizing unconstrained models with a stochastic objective function [97]. We modify the

Adam method to solve our problem with a bounded feasible region by adding a projection

step. The details of the algorithm are presented in Algorithm 5.1 where⊗ represents element-

wise multiplication between two vectors. Specifically, during each iteration, we first generate

S samples to formulate the corresponding continuous relaxation (SP-R(S)) (see Step 3).

Then we compute the derivative using (5.13) (see Step 4), update the control variables, and

project the updated variables to the feasible region [0, 1]N×T (see Steps 5–8).

5.3.2 Sum-Up-Rounding Technique

With continuous solutions ucon ∈ [0, 1]N×T , we apply the sum-up-rounding (SUR) technique

to obtain binary solutions ubin. The SUR technique is proposed by the work of Sager et al.

[181] and is widely used in integer control optimization problems. To the best of our knowl-

edge, most work using SUR rounds either a continuous-time control function [182, 183] or

120



Algorithm 5.1: Adam for solving the continuous relaxation of the stochastic model.

Input: Initial control values u(0). Maximum iteration number K.
Input: Step size γ1 > γ2 > 0. Objective value threshold to change step size F̄ .
Input: Exponential decay rates for the moment estimates β1, β2 ∈ [0, 1). Constant

for numerical computation ϵ.

1 Initialize the first and second moment vectors m(0), v(0) as N × T -dimensional zero
vectors.

2 Initialize step size γ̂ = γ1.
3 for Iteration i = 1, . . . , K do
4 Generate a sample set S = {ξ1, . . . , ξS} with probability ps for ξs, s = 1, . . . , S

and formulate the unconstrained sample approximation model (SP-R(S)).

5 Compute the corresponding derivative g(i) =
∂FR(u)

∂u(i−1)
by Equation (5.13).

6 Compute the first moment vector m(i) =
(
β1m

(i−1) + (1− β1)g(i)
)
.

7 Compute the second moment vector v(i) =
(
β2v

(i−1) + (1− β2)g(i) ⊗ g(i)
)
.

8 Compute the bias-corrected moment vectors

m̂(i) = m(i)/(1− βi
1), v̂

(i) = v(i)/(1− βi
2).

9 Update control variables and project to the feasible bounded region [0, 1]N×T as

u(i) = Π[0,1]N×T

(
u(i−1) − γ̂m̂(i)/(

√
v̂(i) + ϵ)

)
.

10 if FR(u(i)) < F̄ then
11 γ̂ = γ2.
12 end

13 end

Output: Continuous control solutions u(K).

controls of the continuous relaxation with the same time discretization [64, 65, 117, 135].

In our problem, the time of solving the continuous relaxation is the major part of the

overall computational time and significantly increases when the number of time steps T and

scenarios S is high. Therefore, we solve the continuous relaxation using fewer time steps T

and round the solutions using more time steps TR to achieve a balance between computational

time and the difference between continuous and binary solutions. For simplicity, we assume

that TR = CSURT in our chapter where CSUR > 1 is a pre-determined integer constant. We

present the rounding algorithm procedure in Algorithm 5.2.

We discuss how the difference between continuous and binary controls varies with time

steps T in the rest of this section. In the remaining discussion, we use u to represent all

the discretized controls and u(t) to represent all the control functions on a continuous time

horizon (i.e., T =∞). We first propose two assumptions for the original problem, which are

satisfied in most quantum control problems.

Assumption 5.3.1. We assume that the original objective function for each quantum system

121



Algorithm 5.2: Sum-up-rounding algorithm for continuous and binary solutions
with different time steps.

Input: Time steps of continuous solution T . The multiplier factor between time
steps of continuous and binary solutions CSUR. Continuous control
ucon ∈ [0, 1]N×T .

1 for k = 1, . . . , CSURT do
2 for j = 1, . . . , N do

3 Compute cumulative deviation δjk =
k∑

τ=1

uconj⌊τ/CSUR⌋
∆t

CSUR

−
k−1∑
τ=1

ubinjτ

∆t

CSUR

.

4 end
5 if Binary control is required to have SOS1 property then
6 Let j∗ = arg maxj=1,...,N δjk. If there is a tie, we break the tie by choosing the

smallest index.
7 Update binary control ubinj∗k = 1 and ubinjk = 0, ∀j ̸= j∗.

8 else
9 Let J∗ = {j : δjk ≥ 0.5∆t/CSUR}.

10 Update binary control ubinjk = 1, ∀j ∈ J∗ and ubinjk = 0, ∀j /∈ J∗.

11 end

12 end
Output: Binary control ubin ∈ {0, 1}N×CSURT .

FX is continuous, non-negative, and upper-bounded.

Assumption 5.3.2. We assume that the stochastic optimization model (SP(S)) is feasible.

We define piece-wise constant control functions ucon(t) and ubin(t) as equivalent formula-

tions to discretized controls ucon and ubin:

uconj (t) = uconjk , ∀t ∈ [(k − 1)∆t, k∆t), j = 1, . . . , N, k = 1, . . . , T. (5.14a)

ubinj (t) = ubinjk , ∀t ∈ [(k − 1)
∆t

CSUR

, k
∆t

CSUR

), j = 1, . . . , N, k = 1, . . . , CSURT. (5.14b)

In the following theorem, we discuss the cumulative difference between continuous and binary

control functions:

Theorem 5.3.3. With Assumptions 5.3.1–5.3.2, let FUB be the upper bound of FX , then the

cumulative difference between continuous and binary controls at any time t satisfies∥∥∥∥∫ t

0

(
ucon(τ)− ubin(τ)

)
dτ

∥∥∥∥
∞
≤ (N − 1)

CSUR

∆t+
2N − 1

N

√
tfFL(ucon)∆t, ∀t ∈ [0, tf ]. (5.15)

Furthermore, we have the following convergence results for the objective values defined
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in (5.11) of continuous and binary solutions:

lim
∆t→0

F̃ (ucon) = lim
∆t→0

F̃ (ubin). (5.16)

Proof. For any time interval length ∆t, let k̂ be the index of the time step in the SUR

algorithm that t falls in, then the integral can be written as follows based on the definition

of piece-wise constant functions.

∫ t

0

(
ucon(τ)− ubin(τ)

)
dτ =

k̂∑
τ=0

(
uconj⌊τ/CSUR⌋ − ubinjτ

) ∆t

CSUR

. (5.17)

The remaining proof of the upper bound in (4.28) directly follows the proof of Theorem 4

and Corollary 1 in Fei et al. [64] with details being omitted here. For any control value u,

we have

FC(u) = min
ζ
FCVaR(u, ζ) ≤ FCVaR(u, FUB) = FUB. (5.18)

Hence, the original risk measure function F̃ (u) defined in (5.11) is upper bounded by FUB.

Because ucon is the optimal solution of penalized continuous relaxation, for a feasible solution

uf of model (SP(S)), we have

F̃ (ucon) + FL(ucon) ≤ F̃ (uf ) + FL(uf ) = F̃ (uf ) ≤ FUB, (5.19)

where the last equality follows by the fact that uf is a feasible solution of the model with

the SOS1 property, so FL(uf ) = 0. Therefore, we have FL(ucon) ≤ FUB and the convergence

of objective values directly follows Corollary 8 in Sager et al. [181].

We prove that FL(ucon) ≤ FUB and the cumulative difference is upper bounded by O(
√

∆t)

in Theorem 5.3.3. In the following propositions, we show that with additional assumptions,

the upper bound can be tightened. We first introduce the infinite dimension formulation

(i.e., T =∞) for the original objective function of a single scenario s:

F s(u(t)) = FX(Xs(tf ;u)), s = 1, . . . , S. (5.20)

The operator Xs(tf ;u) is the value of Xs(t;u) at time tf and Xs(t;u) is the solution for the
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following differential equation with given control functions u(t):

d

dt
Xs(t) = −i

(
(1 + ξs0(t))H

(0) +
N∑
j=1

(1 + ξsj (t))uj(t)H
(j)

)
Xs(t), (5.21)

where ξs0(t), . . . , ξ
s
N(t) are time-dependent noises. We use the infinite dimension objective

function F s(u(t)) in (5.20) to replace F s(u) in the stochastic objective function F̃ (u) defined

in (5.10a) and (5.11). The infinite dimension stochastic objective function F̃ (u(t)) has the

following formulation:

F̃ (u(t)) = α

S∑
s=1

psF
s(u(t))

+ (1− α)

F s∗(u(t))(u(t)) +
1

η

∑
s:F s(u(t))>F s∗(u(t))(u(t))

ps
(
F s(u(t))− F s∗(u(t))(u(t)

) ,
(5.22)

where s∗(u(t)) is the scenario number with the largest original objective value F s∗(u(t)) such

that
S∑

s=1

ps1F s(u(t))>F s∗(u(t))(u(t)) ≥ η (see discretized version in Theorem 5.3.1). With the

definition of infinite dimension stochastic objective function F̃ (u(t)) in (5.11), we define

the infinite dimension formulation with the SOS1 property for the stochastic optimization

model (SP(S)) as

(SP-C) min
u

F̃ (u(t)) (5.23a)

s.t.
N∑
j=1

uj(t) = 1, a.e. t ∈ [0, tf ] (5.23b)

uj(t) ∈ {0, 1} , j = 1, . . . , N, a.e. t ∈ [0, tf ]. (5.23c)

The objective function (5.23a) is the stochastic objective function defined in (5.22). Con-

straint (5.23b) enforces that the control function holds the SOS1 property for t ∈ [0, tf ]

almost everywhere. Constraint (5.23c) indicates that the control function value is binary for

t ∈ [0, tf ] almost everywhere. Every feasible solution of the discretized model (SP(S)) can

be considered as a piece-wise constant control function, and thus is a feasible solution for

the infinite dimension formulation (SP-C). For the above model, we impose the following

assumption and derive an O(∆t) upper bound for the cumulative difference based on it.

Assumption 5.3.3. We assume that there exists an optimal solution for the continuous
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relaxation of the infinite dimension model with the SOS1 property (SP-C), represented by

u∗,SOS1(t) such that the original objective value F̃ (u∗,SOS1(t)) = 0.

Proposition 5.3.1. Recall that θ is the weight parameter of the SOS1 L2 penalty function,

with Assumptions 5.3.1–5.3.3, then we have the following bound for the cumulative difference:∥∥∥∥∫ t

0

(
ucon(τ)− ubin(τ)

)
dτ

∥∥∥∥
∞
≤
(

(N − 1)

CSUR

+
2N − 1

N
√
θ
Cdiff

)
∆t, ∀t ∈ [0, tf ], (5.24)

where Cdiff is a constant determined by control Hamiltonians and evolution time tf .

The goal of the proof is to find a constant Cdiff such that
√
tfFL(ucon) ≤ Cdiff

√
∆t/
√
θ.

Then the proposition follows the conclusion in Theorem 5.3.3. The details of the proof is

presented in Appendix D.1.

Furthermore, we prove in Proposition 5.3.2, with an additional Assumption 5.3.4 for the

infinite dimension model (SP-C) that the second term of the cumulative difference is upper

bounded by o(∆t)∆t where lim∆t→0 o(∆t) = 0.

Assumption 5.3.4. We assume that there exists a constant time interval ∆t0 such that for

any time discretization with ∆t ≤ ∆t0, the optimal solution u∗,SOS1(t) for the continuous

relaxation of infinite dimension model with the SOS1 property (SP-C) is continuous in each

time subinterval.

Proposition 5.3.2. With Assumptions 5.3.1–5.3.4, for any ∆t ≤ ∆t0, we have the following

bound for the cumulative difference:∥∥∥∥∫ t

0

(
ucon(τ)− ubin(τ)

)
dτ

∥∥∥∥
∞
≤ (N − 1)

CSUR

∆t+
2N − 1

N
√
θ
o(∆t)∆t, ∀t ∈ [0, tf ], (5.25)

where lim∆t→0 o(∆t) = 0.

The detailed proof is similar to Proposition 5.3.1 and is presented in Appendix D.1. The

upper bound in Proposition 5.3.2 indicates that the first term dominates the second term,

and therefore increasing the multiplier factor for time steps in the SUR algorithm (CSUR)

significantly reduces the cumulative difference between binary and continuous controls if

Assumptions 5.3.1–5.3.4 hold.

For a fixed number of time steps T , the optimal value of the continuous relaxation

(F̃ (ucon)) provides a lower bound for the binary model with the same time steps, but not

necessarily for the binary model with time steps CSURT . We provide a counter example in

the following remark.
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Remark 5.3.2. We provide an example showing that the objective value of the continuous

relaxation optimal solution F̃ (ucon) is larger than the objective value of the binary solution

F̃ (ubin) obtained by SUR with rounding time steps CSURT . We consider a quantum control

problem with zero noises as follows. The objective function is defined as

1− 1

4

∣∣∣tr{X†
targXT

}∣∣∣ , (5.26)

where Xtarg is

Xtarg =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (5.27)

We set intrinsic and control Hamiltonians as

H(0) =


1 0 0 0

0 −1 2 0

0 2 −1 1

0 0 1 1

 , H(1) =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , H(2) =


0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

 . (5.28)

The initial operator Xinit is a 4-dimensional identical matrix. The evolution time tf = 8.

The number of time steps for continuous relaxation T = 1 and the number of time steps for

SUR TR = CSURT = 100. We consider only one scenario S = 1 and uncertainty ξjk = 0

for all j = 0, 1, 2 and k = 1. The time-dependent Hamiltonians Hs
k are computed by (5.1b)

and the time-dependent operators Xs
k are computed by (5.1c). By solving the model, we show

that F̃ (ubin) = 0.673 < 0.678 = F̃ (ucon).

5.4 Numerical Studies

We apply the algorithms discussed in Section 5.3 to solve two quantum control examples with

uncertain Hamiltonians, as an energy minimization problem and a circuit compilation prob-

lem. In Section 5.4.1, we introduce our simulation design for the uncertainty of Hamiltonians

in quantum systems. In Section 5.4.2, we introduce the settings of the energy minimization

problem and present the numerical results. In Section 5.4.3, we introduce the circuit com-

pilation problem and describe the numerical results. All the numerical simulations were

conducted on a macOS computer with 8 cores, 16GB RAM, and a 3.20GHz processor. The
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implementation was in Python with version 3.8. Our full code and results are available on

our GitHub repository [63].

5.4.1 Uncertainty Design

Our proposed stochastic optimization model with uncertain Hamiltonians only focuses on

control noises in quantum systems. In realistic experiments, the control noises of Hamiltoni-

ans vary among each simulation, each time step, and have different distribution parameters

for different Hamiltonians. The variances of the uncertain parameters are larger across simu-

lations and smaller within each time step during a single simulation. Specifically, we assume

that for each controller j and each time step k, the uncertain parameter ξjk follows a nor-

mal distribution N (µ, σtime
j ) where µ is a random variable following a normal distribution

N (0, σoffset
j ), with constant variances σtime

j , σoffset
j determined by Hamiltonians.

For each scenario s = 1, . . . , S, we generate the corresponding samples as follows. We

first sample a parameter µs
j from a normal distribution with mean value 0 and variance σoffset

j

for each Hamiltonian H(j), j = 0, . . . , N , representing the mean value of uncertainties for

Hamiltonian H(j) among all the time steps under scenario s, defined as an offset. Then, we

sample ξsjk for each Hamiltonian H(j), for all j = 0, . . . , N and time step k = 1, . . . , T from

a normal distribution with mean value µs
j and variance σtime

j .

We show the values of 10 sampled scenarios of ξ0k, ∀k = 1, . . . , T in Figure 5.2. The

different intercepts of lines reflect the variances of each simulation described by σoffset
0 , and

the fluctuation of each line indicates the variances among time steps for each simulation,

described by σtime
0 .

5.4.2 Energy Minimization Problem

We apply the algorithm L-BFGS-B to solve the stochastic optimization model of an energy

minimization quantum control problem. The deterministic mathematical formulation of this

problem is introduced in Section 3.2.1. We follow the parameter setting of the quantum

system in Section 3.6.2.

We assume that σtime
j = 0.1σoffset

j for control Hamiltonians j = 1, 2. We set the CVaR

risk-level parameter η = 0.05, the number of qubits q = 6, the evolution time tf = 5, the

number of time steps for solving the continuous relaxation T = 50, and the number of time

steps for rounding TR = 200. We conduct out-of-sample tests for all controls under the same

distribution as in-sample tests across 10 groups, each with 500 scenarios. We present the

results of various numbers given by different scenario numbers, weight choices, and variance

settings in Sections 5.4.2.1–5.4.2.3, respectively. We discuss the CPU time of solving the
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Figure 5.2: Sampled values of ξ0 with 10 scenarios. The x-axis is time step k = 1, . . . , T and
the y-axis is the value of ξ0. The lines represent values of corresponding samples for each
scenario s = 1, . . . , 10.

problem with different sizes in Section 5.4.2.4.

5.4.2.1 Results of Scenarios

We set the weight parameter α = 0.5, variance σoffset
j = 0.05 for both controllers j = 1, 2, and

solve the stochastic optimization model with in-sample scenarios S = 1, 20, 100, 300, 500.

We present mean values, CVaR function values defined in (5.3), and weighted summation

values of the mean and CVaR with weight α = 0.5 in Table 5.1. The columns under “In-

sample objective” represent the results among in-sample scenarios generated to solve the

model. The columns under “Out-of-sample objective” represent the results across 5000 in-

dependently generated samples for evaluating different control solutions. The columns under

“Gap” represent the gaps between in-sample and out-of-sample tests for all the function val-

ues. We show that generally, the gap of all the objective values decreases when the number

of scenarios increases and the gap of the CVaR function value is higher than the mean value.

For the remaining tests, we fix the in-sample size as S = 300 and keep the out-of-sample size

as 5000 scenarios.

5.4.2.2 Results of Weight Parameter

In this section, we set the number of scenarios S = 300, variance σoffset
j = 0.05, for j =

1, 2, and solve the stochastic optimization model with different weight parameters α =
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Table 5.1: Objective values result for in-sample and out-of-sample tests and their gaps with
a different number of scenarios, including mean values (“Mean”), CVaR function values
(“CVaR”), and weighted summation (“Total”).

S
In-sample objective Out-of-sample objective Gap

Mean CVaR Total Mean CVaR Total Mean CVaR Total
1 0.038 0.038 0.038 0.107 0.357 0.232 64.16% 89.27% 83.48%

20 0.100 0.206 0.153 0.141 0.410 0.276 29.07% 49.82% 44.50%
100 0.105 0.290 0.198 0.104 0.326 0.215 −0.84% 10.96% 8.10%
300 0.102 0.286 0.194 0.108 0.309 0.208 5.67% 7.29% 6.87%
500 0.100 0.300 0.200 0.099 0.318 0.208 −0.90% 5.64% 4.08%

0, 0.25, 0.5, 0.75, 1. When α = 0, the model only optimizes the CVaR function, as compared

to when α = 1, the model only optimizes the expected value of the random objective. We

present how the values of mean and CVaR in out-of-sample tests vary depending on the

weight parameter in Figure 5.3. The blue line marked by dots represents the mean and

the orange line marked by triangles represents the CVaR. Furthermore, we present box plots

describing the objective values of 5000 out-of-sample test scenarios for each weight parameter

α. The red lines, the box edges, and the caps represent the medians, the first to the third

quartiles, and the whiskers based on the interquartile range, respectively (see Wickham and

Stryjewski [227] for details).

Figure 5.3: Figure of objective values in out-of-sample tests with multiple weight parameters
α. The blue line marked by dots represents the mean value. The orange line marked by
triangles represents the CVaR function value. Red lines, box edges, and caps represent
medians, first and third quartiles, and whiskers [227]
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We show that when α increases, the out-of-sample mean values decrease while the CVaR

function values increase because the objective function assigns more weight to the expec-

tation. Moreover, the box plots illustrate that decreasing α results in a reduced deviation,

showing the advantages of incorporating risk aversion into the objective function.

In our numerical out-of-sample tests, we find that with the same offset µs
j for s = 1, . . . , S,

the standard deviations of the out-of-sample objective value with different ξs are always

smaller than 0.005. Therefore, we focus on comparing the objective values with various

offsets in our following discussion. Using a derived control u from a given weight parameter

α, and offsets µ1, µ2 ∈ [−0.5, 0.5], we generate 20 different scenarios for ξ following the

normal distribution N (µj, σ
time
j ), j = 1, 2 and compute the objective value FX(XT (u; ξ)).

The average objective value is considered as the performance of control u under a specific

simulation uncertainty offset (µ1, µ2). In Figure 5.4, we select the risk-averse case (α = 0)

and the risk-neutral case (α = 1) to present the figures of average objective value among 20

scenarios for offsets µ1, µ2 ∈ [−0.5, 0.5].

(a) Risk-averse (α = 0) (b) Risk-neutral (α = 1)

Figure 5.4: Average objective values among samples of uncertainty ξ as a function of un-
certainty offsets µ1, µ2 ∈ [−0.5, 0.5]. The control solutions are obtained from the stochastic
optimization model with α = 0, 1 and variance as 0.05.

We show that the control of the risk-neutral case attains a lower objective value when the

uncertainty offsets are small, leading to better average performance. On the other hand, the

control of the risk-neutral case has a significantly higher objective value when the uncertainty

offsets are large, as shown in the upper-left and lower-right corners of the figure, while the

control of the risk-averse case is more robust among all scenarios.
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5.4.2.3 Results of Variance

Again, we fix the number of scenarios S = 300 and solve the stochastic optimization model

with weight α = 0, 0.5, 1 for different values of variances as σoffset
1 , σoffset

2 ∈ {0.01, 0.05, 0.1}.
We evaluate the derived control solution using three metrics: the mean value, the CVaR

function value, and the success rate in distinguishing states in the energy minimization

problem. In this instance, a control successfully distinguishes the first-excited state from

the minimum energy state if its objective value is smaller than the energy difference ratio

of these two states, which is one of our control design goals. The third metric is thus the

percentage of scenarios in the out-of-sample test that achieve this distinction.

To compare the performance of stochastic optimization models with the deterministic

model more straightforwardly, we compute the percentage of change in metrics as (meSP −
meD)/meD where meD and meSP represent the evaluation metric value of the deterministic

model and stochastic optimization model, respectively. For mean and CVaR, a negative

percentage of change means lower energy consumption and better performance, while for

the distinguished percentage, a positive percentage of change means better performance.

We present the percentage of change in Table 5.2 and bold the best results of each variance

setting. Columns with “α = 1”, “α = 0”, and “α = 0.5” represent the results of the model

optimizing the expectation, optimizing the CVaR function, and optimizing the weighted

summation function.

For the mean value, we show that the results with α = 1 always have better performance

compared to the deterministic model, while the results with α = 0 are worse because the

model only focuses on the tail distribution. The balanced model with α = 0.5 performs

worse with low variance but better with high variance. For the CVaR function value, we

show that models with all the weights have better results and the model with α = 0 is the

best, demonstrating an improvement in robustness when considering parameter uncertainty.

For the distinguished percentage, we show that the model with α = 1 and α = 0.5 are both

better than the deterministic model for all the variance settings, showing the benefits of our

stochastic optimization model. The model with α = 0 performs worse with high variance

because it optimizes for scenarios with a high error ξ and sacrifices the performance in other

scenarios.

Furthermore, we observe that with a fixed uncertainty offset variance for one controller,

increasing the variance of the other controller leads to higher mean values, higher CVaR

function values, and lower distinguished percentages, because the uncertainty in the quantum

system increases. Increasing the uncertainty offset variance of the first controller H(1) has a

larger negative impact on objective values compared to increasing the uncertainty variance

of H(2), which means this quantum control system is more sensitive to the uncertainty of
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Table 5.2: Percentage change compared to the deterministic model in mean values (“Mean”),
CVaR function values (“CVaR”), and distinguished first-excited state percentage of different
offset variances. The results include the model optimizing mean (“α = 0”), CVaR function
(“α = 1”), and weighted summation of two functions (“α = 0.5”). The in-sample and out-
of-sample tests have the same distribution. The best results are bolded.

σoffset
1 σoffset

2

Mean CVaR Distinguished percentage
α = 1 α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1 α = 0 α = 0.5

0.01 0.01 −3.43% 5.29% −1.15% −4.10% −5.24% −1.92% 0.00% 0.00% 0.00%
0.01 0.05 −5.30% 38.85% 0.22% −4.90% −17.55% −14.95% 0.25% 1.44% 1.03%
0.01 0.1 −8.85% 80.32% 4.43% −7.21% −26.08% −17.66% 1.68% −9.27% 4.20%
0.05 0.01 −8.65% 25.35% 4.28% −9.30% −29.15% −16.33% 0.95% 2.57% 1.53%
0.05 0.05 −9.06% 47.67% −0.44% −7.50% −20.61% −13.62% 2.04% 3.08% 2.89%
0.05 0.1 −11.45% 64.49% −7.61% −7.29% −19.86% −12.18% 3.71% −24.40% 4.20%
0.1 0.01 −11.66% 38.76% −2.02% −8.96% −31.38% −18.00% 3.87% 7.97% 6.00%
0.1 0.05 −12.12% 33.77% −5.13% −7.87% −23.16% −12.37% 5.20% 0.74% 6.38%
0.1 0.1 −14.26% 55.23% −5.45% −6.87% −17.99% −10.52% 6.79% −72.22% 7.08%

controller H(1).

We show the histogram of out-of-sample tests for both deterministic and stochastic opti-

mization models and the zoomed-in tail distribution with variance 0.05 in Figure 5.5. The

blue and yellow histograms represent the results of the deterministic and the stochastic op-

timization model, respectively. The figures show that our stochastic optimization model

obtains a lighter tail distribution.

Similar to Figure 5.4, for each obtained control u, and for every combination of offsets

value µ1, µ2 ∈ [−1, 1], we generate 20 different scenarios for ξ with a normal distribution

N (µj, σ
time
j ), j = 1, 2 and compute the average objective value FX(XT (u; ξ)). The average

objective value represents the performance of control u under a specific simulation uncer-

tainty offset (µ1, µ2). In Figure 5.6, we present the average objective values for different offset

values µ1, µ2 ∈ [−1, 1] for u obtained from the deterministic and stochastic optimization

models with both offset variances set as 0.1. We show that although both controls have high

objective value when |µ| goes to 1, the control of the stochastic optimization model is more

robust, especially for (µ1, µ2) ∈ [−1,−0.75]× [0.5, 1] and (µ1, µ2) ∈ [0.5, 1]× [−1,−0.75].

5.4.2.4 Results of CPU Time

We fix the offset variances σoffset
j = 0.05, j = 1, 2, the weight parameter α = 0.5 and solve the

stochastic optimization model with different numbers of qubits q = 2, 6, different numbers

of time steps T = 20, 50, and different numbers of scenarios S = 1, 20, 100, 200, 300.

We present the CPU time and the number of iterations for the algorithm L-BFGS-B in

Table 5.3. We show that the number of qubits q has the most important impact on the
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(a) All scenarios (b) Tail distribution

Figure 5.5: Histograms of out-of-sample test for the deterministic and stochastic model with
offset variances 0.05 for both controllers. Blue and yellow histograms represent the results of
the deterministic and the stochastic optimization model. (a) The figure for all the scenarios.
(b) Zoomed-in tail distribution.

(a) Deterministic (b) Stochastic

Figure 5.6: Average objective values among samples of uncertainty ξ as a function of µ1, µ2 ∈
[−1, 1]. The control solutions are obtained from the deterministic and stochastic optimization
model with α = 0.5 and offset variances as 0.1.

133



Table 5.3: CPU time and iteration results of different problem sizes, including the number
of qubits q, the number of time steps T , and the number of scenarios S.

q T S CPU time (s) Iteration
2 20 300 32.90 15
2 50 300 99.74 27
6 50 300 2814.33 26
6 50 200 971.06 14
6 50 100 401.20 19
6 50 20 121.18 15
6 50 1 21.66 34

CPU time because the dimension of Hamiltonian matrices grows exponentially with q. This

issue can be potentially resolved by using quantum computers to conduct time evolution.

An increasing number of scenarios S leads to an increase in CPU time, which can be reduced

by parallel computing on multiple CPU cores of classical computers or multiple quantum

computers. The CPU time also increases with the increase in the number of time steps T .

Moreover, we notice that the number of iterations is robust regardless of the problem size.

5.4.3 Circuit Compilation Problem

Quantum circuit compilation aims to represent a circuit by specific controllers and con-

straints, to build a foundation for general quantum algorithms. In this section, we apply the

modified Adam method (Algorithm 5.1) to study a compilation problem for the quantum cir-

cuit that has the ground state energy of molecules generated by the unitary coupled-cluster

single-double method [15, 177]. The detailed mathematical formulation of the deterministic

circuit compilation problem is introduced in Section 3.2.4. We follow the parameter setting

of the quantum system in Section 3.6.2.

We assume that the variance of uncertainty among time steps σtime
j = 0.1σoffset

j for all the

control Hamiltonians. All the single-qubit control Hamiltonians have the same uncertainty

offset variance, represented by σoffset
s , and all two-qubit control Hamiltonians have the same

uncertainty offset variance, represented by σoffset
t . In Sections 5.4.3.1–5.4.3.2, we discuss

the performance of the stochastic optimization model on an instance of the molecule H2

(Dihydrogen). The system includes q = 2 qubits, 4 single-qubit controllers, and a two-qubit

controller. We set the evolution time tf = 20, number of time steps T = 50, and number

of rounding time steps TR = 4000, the risk level η = 0.05. We generate 10 groups, each

with 500 scenarios sampled from the same distribution under in-sample tests to conduct

out-of-sample tests for evaluating the obtained controls. In Section 5.4.3.3, we present the
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CPU time of solving the circuit compilation problem with different molecules and problem

sizes.

5.4.3.1 Results of Scenarios

In this section, we set the weight parameter α = 0.5 and offset variances σoffset
s = σoffset

t =

0.01. We test our algorithm with a different number of scenarios S = 20, 40, 80, and

160 with adjusted learning rates 0.05, 0.06, 0.08, and 0.15. To compare the performance

under the same computational costs which is represented by the product of the number of

scenarios and iterations (S×K), we set the number of iterations to 2000, 1000, 500, and 250

accordingly. We show how the objective value varies with the computational costs during

the algorithm procedure by a log-log scale in Figure 5.7. We show that with a larger number

of scenarios, the objective value is more stable because the method learns more about the

distribution at each iteration. However, the convergence is slower because the algorithm

runs for fewer iterations.

Figure 5.7: Log-log scale figure for the objective values during the in-sample test iterations.
The x-axis represents the multiplication of the number of scenarios and iterations. Blue,
orange, green, and red lines represent S = 20, 40, 80, and 160.

We present the out-of-sample test results for the controls obtained by a different number

of scenarios, including the mean value, the CVaR function value, and the total objective value

as weighted summation with α = 0.5 in Table 5.4. We show that the control with S = 20

achieves the lowest objective value primarily because of its higher number of iterations within

the same computational cost.
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Table 5.4: Mean, CVaR function value, and total objective values (α = 0.5) in out-of-sample
tests for a different number of scenarios. The offset variances for both in-sample and out-of-
sample tests and all the controllers are 0.01.

Scenario Mean CVaR Total
20 8.19E−03 3.21E−02 2.02E−02
40 1.21E−02 4.30E−02 2.76E−02
80 1.35E−02 6.76E−02 4.06E−02

160 2.38E−02 9.51E−02 5.94E−02

5.4.3.2 Results of Variance

We compare the performance of the deterministic and the stochastic optimization model

with sample size S = 20, weight parameter α = 0.5 under different offset variances σoffset
s ∈

{0.01, 0.05}, σoffset
t ∈ {0.01, 0.05}. We present the mean value and the CVaR function value

of the deterministic model (represented by “Deter”) and the stochastic program (represented

by “SP”) for different variances of the uncertainty offsets in Table 5.5.

Table 5.5: Mean values and CVaR function values of different offset variances of single-qubit
controllers (σoffset

s ) and two-qubit controllers (σoffset
t ) for the deterministic model (“Deter”)

and the stochastic program (“SP”). The in-sample and out-of-sample tests are under the
same distribution. We bold the better results for each variance setting.

σoffset
s σoffset

t

Mean CVaR
Deter SP Deter SP

0.01 0.01 0.639 8.19E−03 0.986 3.21E−02
0.01 0.05 0.639 8.74E−03 0.988 4.32E−02
0.05 0.01 0.748 5.44E−02 0.990 0.353
0.05 0.05 0.748 9.84E−02 0.990 0.419

Comparing the results of different variances, we show that the uncertainty in single-

qubit controllers significantly affects the objective values more than the two-qubit controllers

do, mainly because single-qubit controllers are expected to have more impact on unitary

operators and they are the majority of controllers in the quantum system. For example, the

instance of H2 includes 4 single-qubit controllers but only 1 two-qubit controller. Moreover,

increasing variance leads to a larger increase in the CVaR function value, indicating a larger

negative impact on scenarios with large deviations.

We demonstrate that the control of the deterministic model performs badly even under

a small variance, with all the mean values larger than 0.6 and all the CVaR function values

larger than 0.9. On the other hand, the control of our stochastic optimization model per-

forms dramatically better on the mean values and CVaR function values for all the settings,
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illustrating the advantages of our model considering the uncertainty in quantum control

systems.

We present the histogram of out-of-sample tests for both deterministic and stochastic

optimization models with variances for all the controllers as 0.01 and 0.05 in Figure 5.8.

The blue and yellow histograms represent the results of the deterministic and the stochastic

optimization model, respectively. We show that with the increase of variance, both models

have heavier tail distribution, but the stochastic optimization model always has a much

lighter tail distribution compared to the deterministic model.

(a) σoffsets = σoffsett = 0.01 (b) σoffsets = σoffsett = 0.05

Figure 5.8: Histograms of out-of-sample tests with offset variances 0.01 and 0.05 for all the
controllers. Blue and yellow histograms represent the results of the deterministic and the
stochastic optimization model.

5.4.3.3 Results of CPU Time

We set the iteration number for the modified Adam method at 2000, weight parameter

α = 0.5, and offset variances σoffset
s = σoffset

t = 0.01. We solve the stochastic optimization

model for molecules H2 and LiH, with time steps T = 50, 100, and scenario numbers

S = 20, 40. In Table 5.6, we present the CPU time of the algorithm for different problem sizes

and molecules, with the respective number of qubits q and controllers N . We show that with

the same number of time steps and scenarios, changing molecules leads to a significant CPU

time increase, mainly because the dimension of Hamiltonian matrices increases exponentially

with q and the number of controllers also increases. The CPU time increases with time

steps T and scenario numbers S approximately linearly. In practice, the CPU time can
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Table 5.6: CPU time results of different molecules, different numbers of times steps T , and
different numbers of scenarios S. We present the number of qubits q and the number of
controllers N for molecules.

Molecule q N T S CPU time (s)
2 5 50 20 1383.62

H2 2 5 50 40 2713.80
2 5 100 20 2888.77
4 12 50 20 4168.16

LiH 4 12 50 40 7918.20
4 12 100 20 8482.01

be potentially reduced by conducting time evolution on quantum computers and parallel

computing among different scenarios on large amounts of CPU cores.

5.5 Concluding Remarks

In this chapter, we built a stochastic mixed-integer program with the sample-based reformu-

lation for the quantum optimal control problem with uncertain Hamiltonians. We introduced

an objective function aiming to balance risk-neutral and risk-averse measurements, which

are evaluated by expectation and CVaR function, respectively. We derived a closed-form

expression and discussed the derivative for the objective function. We modified and applied

two gradient-based methods to solve the continuous relaxation and obtained binary solutions

by the sum-up-rounding technique with a discussion of the rounding errors.

We conducted numerical simulations on multiple quantum control instances. Based on

the results, we recommend the L-BFGS-B method for quantum control problems minimizing

system energy and the modified Adam method for problems minimizing infidelity. The

results show that our stochastic optimization model outperforms the deterministic model in

terms of both average and robust performance for different variance levels.

With all the simulations completed on classical computers, we find that the number of

qubits in quantum systems has a significant impact on the computational time. Conducting

time-evolution processes on quantum computers to reduce computational time is an interest-

ing direction for future research. Furthermore, model-free optimization methods, including

reinforcement learning, provide chances to capture more complex uncertainties in quantum

systems.
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CHAPTER 6

Conclusion

In this dissertation, we focus on developing optimization methods for mixed-integer control

problems in systems with complex physical constraints and parameter uncertainties. Specif-

ically, we develop new deterministic and stochastic optimization models to formulate control

problems in traffic signal systems and quantum systems and design innovative algorithms

based on widely recognized optimization methods to solve these models.

In Chapter 2, we develop a Cell Transmission Model (CTM) based mixed-integer pro-

gram for a network-level traffic signal control problem, which is further extended to a two-

stage stochastic optimization model to account for uncertain traffic conditions. We design

a distributed algorithm that overcomes scalability difficulties and ensures optimality in a

non-convex model with mixed-integer variables. Our numerical results from synthetic and

real-world scenarios demonstrate an improvement in computational time and highlight the

benefits of considering stochastic traffic demand and coordination among intersections.

In Chapter 3, we build a generic model for the binary quantum pulse control problem, in-

troducing a penalized squared L2 function and a Total Variation (TV) regularizer to ensure a

single active control and minimize control changes, respectively. We propose an algorithmic

framework combining the gradient ascent pulse engineering (GRAPE) approach, combina-

torial integral approximation, and local-branching improvement heuristic. Through multiple

numerical simulations, we indicate that our algorithm successfully obtains high-quality con-

trols with fewer switches. In Chapter 4, we continue the research on the binary quantum

control problem and construct an innovative framework optimizing both control functions

and switching times of controllers. We derive new heuristic methods for obtaining controller

sequences with a time-evolution simulation acceleration technique, and then build and solve

a switching time optimization model. Our numerical studies show a notable enhancement

in balancing control quality and switching frequency compared to solutions of the time dis-

cretization model within significantly reduced computational time.

In Chapter 5, we develop a stochastic mixed-integer program with a sample-based refor-

mulation for the binary quantum control problem with time-varying noise in Hamiltonians.
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The model aims to balance between risk-neutral and risk-averse measurements, evaluated by

expectation and CVaR function, respectively. We modify and apply gradient-based methods

and sum-up-rounding techniques to solve the model with theoretical discussions on differen-

tiability and rounding errors. By numerical simulations, we demonstrate that our stochastic

optimization model outperforms the deterministic model in both average and robust perfor-

mance under different noise levels.

There are several possible directions for future research. We anticipate exploring the

potential of combining optimization models and learning techniques to solve mixed-integer

control problems with physical constraints effectively. Additionally, we are interested in

applying our binary quantum pulse control optimization methods to improve variational

quantum algorithms. Moreover, we plan to extend the optimization methods to different

application areas such as resource planning and route recommendation, offering practical

solutions to more real-world challenges.
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APPENDIX A

Appendix For Chapter 2

A.1 Benders Decomposition Algorithm

We first create new variables θk, k = 1, . . . , K and define a relaxed master problem as

follows.

(RMP) min
K∑
k=1

pkθk (A.1a)

s.t. (l, o, g, b, e, z1, z2) ∈ X,

(z1, z2, θ) ∈ Σ(z1, z2, θ). (A.1b)

Here, Σ(z1, z2, θ) is the set of Benders cuts as linear functions of z1, z2 generated up to the

current iteration from sample-based subproblems:

(SPk) Qk(z1, z2) = min −
∑
c∈D

T∑
t=1

nk
ct + α

∑
c∈C

T∑
t=1

(T − t)ykct (A.2a)

s.t. (yk, nk) ∈ Constraints (2.2b)–(2.2m) for each k. (A.2b)

Given first-stage integer solutions ẑ1, ẑ2, one can solve (SPk) with z1 = ẑ1, z2 = ẑ2

and obtain Qk(ẑ1, ẑ2), for each k = 1, . . . , K. The signal constraints (2.1a)–(2.1j) in the

first stage ensure that for each i ∈ R, j ∈ Fi, m = 1, . . . , Ncy and t = 1, . . . , T , we have

ẑ1ijmt + ẑ2ijmt ≥ 1. Given non-negative parameters Q,N,D, ninit,W and positive parameter

ϵ, each subproblem (SPk) always has at least one feasible solution yk = nk = 0 for any given

ẑ1, ẑ2. Therefore, we only need to add optimality cuts to the set Σ.

We next derive optimality cuts from the dual formulations of the second-stage lin-

ear programs (SPk). Associate dual variables ρkct, σk
ct, πk

cc′t, γkcc′t, δkct, τ kc to con-

straints (2.2b), (2.2c)–(2.2d), (2.2e)–(2.2f), (2.2g)–(2.2h), (2.2i)–(2.2k), and (2.2l), respec-
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tively. Following weak duality, for each k = 1, . . . , K, the optimality cut is of the form:

θk ≥
∑
c∈C/I

T∑
t=1

Qctσ
k
ct +

∑
i∈R

∑
j∈Fi

∑
c∈Iij

Ncy∑
m=1

T∑
t=1

(z1ijmt + z2ijmt − 1)Qctσ
k
ct

+
∑
c∈C

∑
c′∈d(c)

T∑
t=1

Qc′tπ
k
cc′t +

∑
c∈C

∑
c′∈d(c)

T∑
t=1

Wc′tNc′tγ
k
cc′t

+
∑
c∈O

T∑
t=1

Dk
ctδ

k
ct +

∑
c∈C

ninit
c τ kc . (A.3)

The generic Benders procedures are presented in Algorithm A.1. In every iteration, we

solve (RMP) with current Benders’ cuts and obtain feasible solutions ẑ1, ẑ2. The optimal

value of (RMP) provides a lower bound to the original stochastic MIP (2.2). We then com-

pute optimal dual solutions to the second-stage subproblems (SPk) for each k = 1, . . . , K,

and the expectation of their optimal values provides an upper bound of the overall optimal

objective value. We terminate the algorithm when the gap between the upper bound and

the lower bound is sufficiently small.

Algorithm A.1: A generic Benders Decomposition approach for solving Model
(2.2).

1 Initialize (RMP) with with Σ = ∅.
2 while the termination criteria is not satisfied do

3 Solve (RMP) to obtain optimal solutions (ẑ1, ẑ2, θ̂).
4 for k = 1, . . . , K do

5 Solve (SPk) to obtain optimal dual solutions. if θ̂k < Qk(ẑ1, ẑ2) then
6 Add an optimality cut (A.3) to the set Σ(z1, z2, θ).
7 end

8 end

9 end

10 Return the objective value as
∑K

k=1 p
kθ̂k and the solutions of (RMP).

A.2 Additional Numerical Results

We present additional numerical results in this appendix section.
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A.2.1 Sensitivity Analysis

Cycle length We solve the deterministic model with various cycle lengths l̂ =19, 24, 29,

34, 39, where for all the intersections i ∈ R, l̂i = l̂. We present the average delay and

throughput under the out-of-sample test with 500 scenarios in Table A.1.

Table A.1: Delay and total throughput of different cycle lengths.

Cycle length (l̂) 19 24 29 34 39
In-sample Obj −1507598.54 −1498923.98 −1490859.43 −1479932.66 −1427223.55
Average Delay 286.34 297.40 293.04 303.72 302.76
Total Throughput 3881.38 3789.91 3848.80 3773.03 3820.57

We show that for all the metrics, the gap among different cycle lengths is no larger than

5%, which demonstrates that the performance of signal timing plans is not sensitive to the

cycle length. In our following numerical experiments, we follow the rule in Remark 2.4.3 and

choose cycle length as l̂i = 24, ∀i ∈ R. In real-world applications, one can test the model

with multiple selected cycle lengths and choose the one with the best performance.

In-sample scenarios We choose in-sample scenarios K = 5, 10, 15, 20 and solve the

stochastic MIP. We present the in-sample and out-of-sample objective values as well as the

gaps between them. We test the signal timing plans on the same out-of-sample test set with

500 scenarios and present the results in Table A.2.

Table A.2: Objective value and evaluation metrics of different in-sample scenarios k.

In-sample Scenarios 5 10 15 20
In-sample Obj −1493833.50 −1540021.95 −1462882.47 −1535876.09
Out-of-sample Obj −1925990.42 −2023592.97 −1992383.23 −1929821.75
Gap 22.44% 23.90% 26.58% 20.41%
Average Delay 298.96 276.33 283.97 297.95
Total Throughput 3811.87 4009.33 3931.91 3817.81

We show that when the total number of scenarios is 20, the gaps between in-sample and

out-of-sample tests decrease slightly. However, the signal timing plan given by the sample

with K = 10 scenarios has the best performance in out-of-sample tests. The main reason

is that we terminate early in solving second-stage problems by ADMM allowing at most

20% gap between the obtained objective value and the optimal one. Also, adding in-sample

scenarios increases the difficulty of solving the problem, making solutions of K = 15, 20

not as good as K = 10 with the same number of Benders iterations. To obtain the balance
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between computation and results, we use K = 10 as our in-sample scenario size in our later

numerical studies.

Out-of-sample scenarios We vary the number of out-of-sample test scenarios among 500,

1000, 1500, 2000 and evaluate the performance of the signal timing plan obtained by the

solution of K = 10 instance. We present the out-of-sample objective values, gaps between

in-sample and out-of-sample objectives, average delay, total arrival, and the total throughput

results in Table A.3.

Table A.3: Objective value and evaluation metrics of different out-of-sample scenarios.

Out-of-sample Scenarios 500 1000 1500 2000
Out-of-sample Obj −2023592.97 −2021604.03 −2024107.83 −2024080.06
Gap 23.90% 23.82% 23.92% 23.91%
Average Delay 276.33 274.40 275.09 275.61
Total Arrival 7956.79 7922.89 7932.95 7942.05
Total Throughput 4009.33 4016.07 4020.70 4020.16

Note that all the results are similar regardless of the choice of out-of-sample scenario size.

We use 500 scenarios for our later computation in all out-of-sample tests.

A.2.2 Number of Vehicles in Real-world Traffic Networks

Results of Morning Peak Hours To evaluate the traffic signal plans, in figure A.1, we

visualize the number of vehicles in the network of the scenarios with the lowest and highest

arrivals. The figure shows that in both scenarios, the stochastic model outperforms the

deterministic model and the baseline, and it is more significant when the arrival is lower.

In Figure A.2, we visualize the number of vehicles in the traffic network under the sce-

narios with minimum delay and maximum delay. For both scenarios, the number of vehicles

keeps increasing. The increasing rate of the stochastic model is lower under the scenario

with minimum delay while the increase rate of the deterministic model is lower under the

scenario with maximum delay. The increase rate of the stochastic model is higher than the

deterministic model because the total arrival of the stochastic model is larger.

In Figure A.3, we present the spatial distribution of intersections compared between the

stochastic model and the baseline in the morning peak hours, where the delay of intersections

marked by green color is reduced or unchanged and the delay of others is increased. We show

that for every corridor, the delay of the majority of intersections is reduced or unchanged.

The intersections with increased delay are mostly in the upper-left corner and around a

parking lot.
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(a) Scenario with lowest arrival (b) Scenario with highest arrival

Figure A.1: Number of vehicles in the traffic network during morning peak hours

(a) Scenario with minimum delay (b) Scenario with maximum delay

Figure A.2: Number of vehicles in the traffic network during morning peak hours

Results of Off-peak Hours In Figure A.4, we visualize the number of vehicles in the

network of the scenarios with the lowest and highest arrivals. Figure A.4a shows that when

the arrival is low, the number of vehicles in the traffic work keeps stable for both deterministic

and stochastic models. Figure A.4b shows that when the arrival is high, the increase rates

of the number of vehicles of the stochastic model is slower than the other two settings.

In Figure A.5, we present the spatial distribution of intersections compared between the

stochastic model and the baseline in the traffic network of off-peak hours. The intersections

with reduced delay are marked by green color. We show that for every corridor, the delay

of the majority of intersections is reduced or unchanged. The intersections with increased

delay are mostly in the lower-left corner and around a parking lot.
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Figure A.3: Spatial distribution of intersections under the stochastic model solution with
delay improved or unchanged compared to the baseline in the traffic network during morning
peak hours, marked by green color in the figure.

(a) Scenario with lowest arrival (b) Scenario with highest arrival

Figure A.4: Number of vehicles in the traffic network during off-peak hours
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Figure A.5: Spatial distribution of intersections under the stochastic model solution with
delay improved or unchanged compared to the baseline in the traffic network during off-peak
hours, marked by green color in the figure.

A.2.3 Detailed Results of Afternoon Peak Hours

We present the computational time of the deterministic and stochastic models in seconds in

Table A.4. We show that our distributed algorithm solves the problem within an acceptable

time limit. The computational time of master problems is slightly higher but the time of

subproblems is lower compared to the morning peak hours instances.

Table A.4: CPU time results of the traffic network of Downtown Ann Arbor during afternoon
peak hours

MP-min (s) MP-max (s) MP-A (s) SP-min(s) SP-max (s) SP-A (s)
Deterministic 0.23 0.94 0.50 37.50 37.81 37.67

Stochastic 1.18 3.17 2.08 378.51 393.16 386.89

We present the in-sample and out-of-sample objective values as well as their gaps of the

deterministic and stochastic model in Table A.5. We show that the gap of the stochastic

model is slightly smaller than the deterministic model because it has a better realization of

the uncertainties. Both gaps are similar to the results of morning peak hours because they

have the same deviation. Furthermore, we present the average delay and total throughput to

evaluate the signal controls. In Row “Deterministic”, we also present the improvement of the

deterministic model compared to the baseline. Similarly, in Row “Stochastic”, we present the

improvement of the stochastic model compared to the deterministic model. We demonstrate

that our deterministic and stochastic models both outperform dramatically compared to
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Table A.5: Out-of-sample evaluation results of Downtown Ann Arbor during afternoon peak
hours

In-sample Obj (veh·s) Out-of-sample Obj (veh·s) Gap
Deterministic −1510461.85 −2082966.89 27.49%

Stochastic −1602873.23 −2177611.47 26.39%
Average Delay (s) Total Arrival (veh) Total Throughput (veh)

Baseline 425.93 9447.04 3029.47
Deterministic 344.58 (23.61%) 9447.04 3961.59 (30.77%)

Stochastic 323.25 (6.60%) 9447.04 4179.38 (5.50%)

the baseline, indicating that our centralized model obtains better network coordination of

intersections. The stochastic model obtains a smaller average travel delay and larger total

throughput, showing the benefits of considering uncertainties.

Compared to the results of morning peak hours, the impact of network coordination is

more significant, demonstrated by the higher improvement when being compared with the

baseline case. In particular, the improvement of total throughput is larger than morning

peak hours and off-peak hours, mainly because the traffic flow is highest during afternoon

peak hours. On the other hand, the improvement of the stochastic model compared to the

deterministic model is smaller. The main reason is that under extremely high traffic flow,

the optimization space for traffic signals is small so the difference between the results of the

two models decreases.

We visualize the average number of vehicles in the traffic network for all the scenarios in

Figure A.6a. We show that although the number of vehicles increases with time for all the

methods because of high traffic arrival, the stochastic model has the slowest increase while

the baseline has the fastest increase. The increase rate of afternoon peak hours is higher

than the two other TODs because the traffic arrival is higher. Furthermore, we visualize the

number of vehicles in the network under the scenario with the lowest and highest traffic arrival

in Figure A.6b–A.6c. We show that for both scenarios, the stochastic model outperforms

the deterministic model and the improvement is more significant under the scenario with

the lowest arrival because, with higher traffic arrival, the intersections are more likely to be

saturated under all the signal timing plans, causing an increase of the number of vehicles in

the network.

We provide the snapshots of the spatial distribution of the number of vehicles of the

deterministic and stochastic models under the best and worst scenario at time step t = 800 in

Figure A.7. We show that even under the best scenario, traffic congestion exists on two main

corridors, Main Street and Huron Street. The stochastic model obtains significantly better

performance on main corridors but still causes traffic congestion on a few local roads with

the direction of north and south. For the worst scenario, traffic congestion in the stochastic
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(a) Average number (b) Lowest arrival (c) Highest arrival

Figure A.6: Number of vehicles in the Downtown Ann Arbor traffic network during afternoon
peak hours. Left: Average number of all the scenarios. Middle: Number under best scenario.
Right: Number under worst scenariosenne

model is mostly in the direction of north and south direction while traffic congestion in the

deterministic model is in both directions.

The average traffic delay of each intersection is presented in Figure A.8a and the his-

tograms of all intersections are presented in Figure A.8b.

(a) Delay of all the methods. (b) Histogram statistics of the delay.

Figure A.8: Average travel delay for all the intersections during off-peak hours.

Compared to the baseline, the delays at 69% of the intersections are reduced or unchanged

by the deterministic model, and at 75% of all the intersections are reduced or unchanged by

the stochastic model. All the percentages are higher than the other two instances, showing

that our model is able to reduce the congestion in more intersections with higher source

demand. Compared to the baseline, our centralized model obtains a lower maximum delay.

The stochastic model obtains the highest percentage of intersections in the minimum delay
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(a) Deterministic model under best scenario (b) Stochastic model under best scenario

(c) Deterministic model under worst scenario (d) Stochastic model under worst scenario

Figure A.7: Spatial distribution of vehicles at time step 800 during afternoon peak hours.
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group, which is less than 12 seconds during afternoon off-peak hours, showing the advantages

of considering network coordination and traffic uncertainties.

In Figure A.9, we present the spatial distribution of intersections compared between

the stochastic model and the baseline in the traffic network of afternoon peak hours. The

intersections with reduced delay are marked by green color and the others are marked by red

color. We show that for every corridor, the delay of the majority of intersections is reduced

or unchanged.

Figure A.9: Spatial distribution of intersections under the stochastic model solution with
delay improved or unchanged compared to the baseline in the traffic network during afternoon
peak hours, marked by green color in the figure.
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APPENDIX B

Appendix For Chapter 3

B.1 Proofs of Results in Section 3.3

In this section, we provide proof of the results in Section 3.3.

B.1.1 Proofs of Results in Section 3.3.2

Proof of Theorem 3.3.2. Because F is upper bounded by constant CF , we have |F (u)| ≤ CF

for all the u. We prove that for any ρ and T , |ρl(u∗ρ, T )| ≤ 2CF . Assume that there

exists an optimal solution u(1) of (DQCP-L2) such that |ρl(u(1), T )| > 2CF , then we have

F (u(1))+ρl(u(1), T ) > CF . This is a contradiction to the definition of u(1) because we can find

a feasible solution u(2) of (DQCP) such that F (u(2)) + ρl(u
(2), T ) = F (u(2)) ≤ CF . Therefore

we drive that |l(u∗ρ, T )| ≤ 2CF/ρ, which means that l(u∗ρ, T ) ∼ O(1/ρ).

B.1.2 Proofs of Results in Section 3.3.3

Proof of Proposition 3.3.1. Because the SOS1 property holds for binary control ub, we have

max
k=1,...,T

∥∥∥∥∥
k∑

τ=1

(ucτ − ubτ )∆t

∥∥∥∥∥
∞

= max
k=1,...,T

max
j=1,...,N

∣∣∣∣∣
k∑

τ=1

(ucjτ − ubjτ )∆t

∣∣∣∣∣
≥ max

k=1,...,T

1

N

∣∣∣∣∣
N∑
j=1

k∑
τ=1

(ucjτ − ubjτ )∆t

∣∣∣∣∣
= max

k=1,...,T

1

N

∣∣∣∣∣
k∑

τ=1

(
N∑
j=1

ucjτ − 1

)
∆t

∣∣∣∣∣ =
1

N
ϵ(∆t). (B.1)

Proof of Theorem 3.3.3. For simplicity, we use ϵ to denote ϵ(∆t). It is obvious that for any

time step k = 1, . . . , T , exactly one control can be set to 1 by ub by the construction. Hence
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ub satisfies the SOS1 property. For a specific time step k = 1, . . . , T , define

ik = arg max
j=1,...,N

∣∣∣∣∣
k∑

τ=1

ucjτ∆t−
k∑

τ=1

ubjτ∆t

∣∣∣∣∣ . (B.2)

We assume that there exists a time step r such that the claim does not hold. For simplicity,

we use i to represent the corresponding ir. We consider the assumption in two cases.

Case 1: We assume that,

r∑
τ=1

uciτ∆t−
r∑

τ=1

ubiτ∆t < − (N − 1) ∆t− 2N − 1

N
ϵ. (B.3)

Let k̂ be the highest index of the time step in which control i is rounded up,

k̂ = arg max
1≤k≤r

{
k | ubik = 1

}
. (B.4)

Then by (B.3), we have,

k̂∑
τ=1

uciτ∆t+ (N − 1) ∆t+
2N − 1

N
ϵ ≤

r∑
τ=1

uciτ∆t+ (N − 1) ∆t+
2N − 1

N
ϵ (B.5a)

<
r∑

τ=1

ubiτ∆t =
k̂∑

τ=1

ubiτ∆t. (B.5b)

Because ub
ik̂

= 1, we know that i has the maximum value of (B.5a) among j = 1, . . . , N .

Hence it follows from (B.5),

k̂∑
τ=1

ucjτ∆t−
k̂∑

τ=1

ubjτ∆t < − (N − 1) ∆t− 2N − 1

N
ϵ, j = 1, . . . , N. (B.6)

Summing up over all the controls j,

−ϵ ≤
N∑
j=1

 k̂∑
τ=1

ucjτ∆t−
k̂∑

τ=1

ubjτ∆t

 < −N (N − 1) ∆t− (2N − 2)ϵ. (B.7)

The first inequality comes from the definition of ϵ. This leads to 0 < −N(N−1)∆t−(N−1)ϵ,

which is a contradiction because ϵ ≥ 0 and N ≥ 2.

153



Case 2: We assume that,

r∑
τ=1

uciτ∆t−
r∑

τ=1

ubiτ∆t > (N − 1) ∆t+
2N − 1

N
ϵ. (B.8)

From the definition of ϵ, we have

N∑
1=j ̸=i

(
r∑

τ=1

ucjτ∆t−
r∑

τ=1

ubjτ∆t

)
+

r∑
τ=1

uciτ∆t−
r∑

τ=1

ubiτ∆t ≤ ϵ (B.9)

and by substituting (B.8) into (B.9), it holds that

N∑
1=j ̸=i

(
r∑

τ=1

ucjτ∆t−
r∑

τ=1

ubjτ∆t

)
+ (N − 1)∆t+

N − 1

N
ϵ < 0. (B.10)

Because the left-hand side can be written as the sum of N − 1 terms as

∆t+
1

N
ϵ+

r∑
τ=1

ucjτ∆t−
r∑

τ=1

ubjτ∆t, (B.11)

at least one of them must be negative, therefore there exists ĵ such that

∆t+
1

N
ϵ+

r∑
τ=1

uc
ĵτ

∆t−
r∑

τ=1

ub
ĵτ

∆t < 0. (B.12)

Let k̂ be the highest index of the time step in which control ĵ is rounded up,

k̂ = arg max
1≤k≤r

{
k | ub

ĵk
= 1
}
. (B.13)

Then we have

k̂∑
τ=1

uc
ĵτ

∆t−
k̂−1∑
τ=1

ub
ĵτ

∆t ≤ ∆t+
r∑

τ=1

uc
ĵτ

∆t−
r∑

τ=1

ub
ĵτ

∆t < − 1

N
ϵ. (B.14)

The first inequality follows from ub
ĵk̂

= 1 and ub
ĵk

= 0, k ≥ k̂. The second inequality

follows from (B.12). Because ĵ is the control which is rounded up at time step k̂, for any
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j = 1, . . . , N , it holds that,

k̂∑
τ=1

ucjτ∆t−
k̂∑

τ=1

ubjτ∆t ≤
k̂∑

τ=1

ucjτ∆t−
k̂−1∑
τ=1

ubjτ∆t < − 1

N
ϵ. (B.15)

Summing over all the controls, we have

N∑
j=1

k̂∑
τ=1

(
ucjτ − ubjτ

)
∆t < −ϵ. (B.16)

This contradicts the definition of the parameter ϵ.

Proof of Corollary 3.3.1. Based on the formulation of the discretized control in the contin-

uous relaxation of the model (DQCP-L2), we have

ϵ(∆t) = max
k=1,...,T

∣∣∣∣∣
k∑

τ=1

(
N∑
j=1

ucjτ − 1

)
∆t

∣∣∣∣∣ ≤
T∑

k=1

∣∣∣∣∣
N∑
j=1

ucjk − 1

∣∣∣∣∣∆t
≤
√
T

√√√√ T∑
k=1

(
N∑
j=1

ucjk − 1

)2

∆t =
√
T l(uc, T )∆t =

√
tf l(uc, T )∆t. (B.17)

From Theorem 3.3.3, we directly obtain the statement (3.22). From Theorem 3.3.2, if the

original function F is bounded, the optimized squared L2 term l(uc, T ) is uniformly bounded

over time steps T , then the absolute integral error between continuous and discretized control

converges with O(
√

∆t).

Proof of Proposition 3.3.2. For any time step k = 1, . . . , T , we have

lim
∆t→0

Xc
k = lim

∆t→0

k∏
τ=1

e−i∆tHτX0 = lim
∆t→0

k∏
τ=1

e−i∆t(H(0)+
∑N

j=1 u
c
jτH

(j))X0

= lim
∆t→0

e−i∆tH(0)−i∆t
∑N

j=1

∑k
τ=1 u

c
jτH

(j)

X0. (B.18)

The last equality follows by Trotter expansion that e∆t(A+B) = e∆tAe∆tB +O(∆t2) and taking

the limit as ∆t goes to zero. Similarly, for binary control, we have

lim
∆t→0

Xb
k = lim

∆t→0
e−i∆tH(0)−i∆t

∑N
j=1

∑k
τ=1 u

b
jτH

(j)

X0. (B.19)
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From Theorem 3.3.3, we have for any time step k = 1, . . . , T and controller j = 1, . . . , N ,∣∣∣∣∣
k∑

τ=1

ucjτ∆t−
k∑

τ=1

ubjτ∆t

∣∣∣∣∣ ≤
∥∥∥∥∥

k∑
τ=1

(
ucτ − ubτ

)
∆t

∥∥∥∥∥
∞

≤ (N − 1) ∆t+
2N − 1

N
ϵ(∆t). (B.20)

Combining with Corollary 3.3.1 and taking the limit as ∆t goes to zero, we have

lim
∆t→0

k∑
τ=1

ucjτ∆t = lim
∆t→0

k∑
τ=1

ubjτ∆t. (B.21)

We substitute (B.21) into the formulation of states (B.18) and (B.19), then we obtain the

conclusion that

lim
∆t→0

Xb
k = lim

∆t→0
Xc

k, k = 1, . . . , T. (B.22)

Substituting states into the objective function, we prove that

lim
∆t→0

F (Xb
T ) = lim

∆t→0
F (Xc

T ). (B.23)

B.2 Detailed Numerical Results

In this section, we present the results of continuous relaxation, combinatorial integral approx-

imation, and the improvement heuristic for all the methods and instances in Table B.1–B.6.

We also present the objective values and TV regularizer values for all the instances and

annotate the best method in Figure B.1.
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Table B.1: Objective value results of continuous relaxation.

Instance
Objective value TV regularizer

pGRAPE TR ADMM pGRAPE TR ADMM

Energy2 1.10E−12 9.11E−05 8.94E−05 0.999 0.567 0.523

Energy4 0.154 0.155 0.168 5.064 4.114 2.752

Energy6 0.213 0.213 0.219 5.999 4.508 3.237

CNOT5 0.169 0.124 0.191 16.000 9.419 6.094

CNOT10 1.16E−09 2.65E−04 3.21E−04 20.979 15.194 11.056

CNOT15 1.00E−10 8.43E−06 3.65E−06 29.846 24.348 16.795

CNOT20 5.93E−10 4.06E−06 8.07E−07 26.162 23.481 15.099

NOT2 0.163 0.163 0.163 2.226 1.188 0.908

NOT6 4.28E−10 6.55E−05 1.07E−04 3.251 0.652 0.578

NOT10 6.55E−11 5.14E−05 4.79E−05 2.740 1.530 1.005

CircuitH2 4.37E−07 1.24E−04 1.33E−05 18.720 8.421 2.744

CircuitLiH 1.14E−03 1.45E−03 1.43E−03 53.976 48.720 0.677

Table B.2: CPU time and iterations of continuous relaxation.

Instance
CPU time (s) Iterations

pGRAPE TR ADMM pGRAPE TR ADMM
Energy2 0.13 1.77 19.56 7 132 100
Energy4 2.89 27.99 163.08 44 914 100
Energy6 27.94 341.43 1195.41 51 1578 100
CNOT5 1.12 79.55 21.75 111 3146 100
CNOT10 0.75 192.78 70.21 31 3279 100
CNOT15 1.26 348.96 100.59 39 3900 100
CNOT20 1.02 432.73 150.25 21 3929 100
NOT2 0.05 4.93 2.63 15 1268 100
NOT6 0.15 48.81 10.93 24 3563 100
NOT10 0.10 91.39 34.05 6 3762 100
CircuitH2 3.01 154.05 39.86 244 3832 100
CircuitLiH 663.08 1403.03 564.95 4345 4247 100
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Figure B.1: Objective values and TV regularizer values of binary results of all the instances.
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B.3 Control Results of NOT Estimation Problem

For the NOT gate estimation problem, we present the control obtaining the best trade-off

between objective values and TV regularizer values which are annotated in Figure B.2. All

three instances show that the controller 1 has more significant impact on the final infidelity.

When the evolution time is short (tf = 2), the optimal control sets controller 1 active all

the time. When the evolution time is longer (tf = 6, 10), the active time of controller 2 is

shorter. The main reason is that only considering controller 1 can also obtain a low infidelity

with a sufficiently long evolution time but the performance of a single controller is worse

than two controllers with the same evolution time [145, 172].

(a) tf = 2 (b) tf = 6 (c) tf = 10

Figure B.2: Control results of NOT gate estimation example with different evolution times.
Blue lines represent the controller 1 and orange dashed lines represent the controller 2.
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APPENDIX C

Appendix For Chapter 4

C.1 Proofs of All Theorems in Section 4.2

Proof of Lemma 4.2.4. Let A =
∑m

i=1wiσi(A)vTi be the singular value decomposition of A

where w1, . . . , wm and v1, . . . , vm are orthonormal vectors. Then the norm of the trace

|tr {UA}| =

∣∣∣∣∣tr
{

m∑
i=1

Uwiσi(A)v†i

}∣∣∣∣∣ ≤
m∑
i=1

∣∣∣tr{Uwiσi(A)v†i

}∣∣∣
≤

m∑
i=1

∥Uwi∥2σi(A)∥vi∥2 ≤
m∑
i=1

σi(A) ≤ mσ1(A). (C.1)

The first and second inequalities follow from the norm inequality. The third inequality holds

because Uw1, . . . , Uwm and v1, . . . , vm are orthonormal vectors. The last inequality comes

from the definition of singular values.

Proof of Theorem 4.2.1. At time step k, for each examined control u(j) with only controller

j active, we define the change of objective value as Rjk = F̄ (u(j)) − Fcur. We prove the

theorem by showing that at each time step, there exists a controller such that the change

of objective value Rjk ≤ 2C1e
C2∆t∆t2. Our proof mainly consists of two parts. Firstly we

prove that the sum of all the terms in each Rjk corresponding to ∆tl, l ≥ 2 is upper bounded

by 2C1e
C2∆t∆t2. Then we prove that there exists a controller ĵ such that the sum of the

constant terms and terms corresponding to ∆t in Rĵk is upper bounded by 0. Before we

present our detailed proof, we define a constant parameter

σmax = max
j=1,...,N

σ1(H
(j)) + σ1(H

(0)), (C.2)

where σ1(·) is the maximum singular value of a given constant Hamiltonian controller. We

discuss the change of objective value for the aforementioned two specific objective function
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formulations (4.2)–(4.3). We start from the infidelity function because the formulation is

more concise to prove.

Infidelity function For each time step k, the change of objective value Rjk is computed

as

Rjk =
1

2q

∣∣∣∣∣tr
{
X†

targ

T∏
l=k+1

Ule
−iH(0)∆t−i

∑N
j′=1 u

con
j′kH

(j′)∆t
k−1∏
l=1

UlXinit

}∣∣∣∣∣
− 1

2q

∣∣∣∣∣tr
{
X†

targ

T∏
l=k+1

Ule
−iH(0)∆t−iH(j)∆t

k−1∏
l=1

UlXinit

}∣∣∣∣∣ , (C.3)

where

Ul =

e
−iH(0)∆t−i

∑N
j′=1 u

bin
j′l H

(j)∆t
1 ≤ l ≤ k − 1

e
−iH(0)∆t−i

∑N
j′=1 u

con
j′l H

(j)∆t
k + 1 ≤ l ≤ T

. (C.4)

For simplicity, we denote

U(k) =
k−1∏
l=1

UlXinitX
†
targ

T∏
l=k+1

Ul, (C.5)

which is still a unitary matrix because it is the product of a series of unitary matrices.

Following the definition of trace, we know that the trace of a product of matrices is invariant

under cyclic permutations. Hence,

Rjk =
1

2q

∣∣∣tr{U(k)e
−iH(0)∆t−i

∑N
j′=1 u

con
j′kH

(j′)∆t
}∣∣∣− 1

2q

∣∣∣tr{U(k)e−iH(0)∆t−iH(j)∆t
}∣∣∣ . (C.6)

Without loss of generality, we consider a general matrix A ∈ Cm×m, then the exponential

matrix eA∆t =
∞∑
l=0

1

l!
Al∆tl. Therefore we have

tr
{
U(k)eA∆t

}
= tr

{
U(k)(I + A∆t)

}
+

∞∑
l=2

1

l!
tr
{
U(k)Al

}
∆tl. (C.7)
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The norm of the second term of the trace in (C.7) is upper bounded as∣∣∣∣∣
∞∑
l=2

1

l!
tr
{
U(k)Al

}
∆tl

∣∣∣∣∣ ≤
∞∑
l=2

m

l!
σ1(A

l)∆tl ≤
∞∑
l=2

m

l!
(σ1(A)∆t)l ≤ mσ2

1(A)eσ1(A)∆t∆t2.

(C.8)

The first inequality follows from Lemma 4.2.4 and the second inequality follows from

Lemma 4.2.2. The last inequality directly comes from the Taylor expansion. We define

constants C1(A), C2(A) corresponding to matrix A as

C1(A) = mσ2
1(A), C2(A) = σ1(A), (C.9)

then the second term is upper bounded by C1(A)eC2(A)∆t∆t2. Therefore we have the following

inequality for the norm of trace (C.7):

∣∣tr{U(k)(I + A∆t)
}∣∣− C1(A)eC2(A)∆t∆t2 ≤

∣∣tr{U(k)eA∆t
}∣∣

≤
∣∣tr{U(k)(I + A∆t)

}∣∣+ C1(A)eC2(A)∆t∆t2,

(C.10)

In our examples, all the Hamiltonian control matrices have a formulation A =

−i
(
(0) +

∑N
j=1 ujH

(j)
)

with given controls
∑N

j=1 uj = 1 and given constant controllers

H(0), H(j) ∈ C2q×2q . Then the maximum singular value of any control matrix

σ1(A) ≤ σ1(H
(0)) +

N∑
j=1

ujσ1(H
(j)) ≤ σ1(H

(0)) + max
j=1,...,N

σ1(H
(j)) = σmax. (C.11)

We define constants C1, C2 as

C1 = σ2
max, C2 = σmax. (C.12)

For any time-dependent Hamiltonian matrix A, the constants C1(A) ≤ 2qC1, C2(A) ≤ C2.

Substituting A = −iH(0)− i
N∑

j′=1

uconj′kH
(j′) and A = −iH(0)− iH(j) into the inequality (C.10)

and combining (C.12), the change of objective value satisfies

Rjk ≤
1

2q

∣∣∣∣∣tr
{
U(k)

(
I − iH(0)∆t− i

N∑
j′=1

uconj′kH
(j′)∆t

)}∣∣∣∣∣
− 1

2q

∣∣tr{U(k)
(
I − iH(0)∆t− iH(j)∆t

)}∣∣+ 2C1e
C2∆t∆t2. (C.13)
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We prove that there exists a controller j such that the value of the first two terms is no more

than 0 by contradiction. Assume that for any j,∣∣∣∣∣tr
{
U(k)

(
I − iH(0)∆t− i

N∑
j′=1

uconj′kH
(j′)∆t

)}∣∣∣∣∣− ∣∣tr{U(k)
(
I − iH(0)∆t− iH(j)∆t

)}∣∣ > 0.

(C.14)

Then we have∣∣∣∣∣∣tr
U(k)

I − iH(0)∆t− i
N∑

j′=1

uconj′kH
(j′)∆t


∣∣∣∣∣∣ ≤

N∑
j′=1

uconj′k

∣∣∣tr{U(k)
(
I − iH(0)∆t− iH(j′)∆t

)}∣∣∣
<

∣∣∣∣∣∣tr
U(k)

I − iH(0)∆t− i
N∑

j′=1

uconj′kH
(j′)∆t


∣∣∣∣∣∣ .

(C.15)

The first inequality follows from
∑N

j′=1 u
con
j′k = 1 and 0 ≤ uconj′k ≤ 1. The second inequality

follows from (C.14). It obviously leads to a contradiction. Therefore we prove that there

exists at least one controller j such that

Rjk ≤ 2C1e
C2∆t∆t2. (C.16)

In the algorithm, at each time step, we choose the ĵ with minimum change of objective value.

Taking the summation over all time steps, we have

F̄ (ubin)− F̄ (ucon) =
T∑

k=1

min
j=1,...,N

Rjk ≤ 2C1e
C2∆t∆t. (C.17)

Energy function We have a similar proof for the energy function. For each time step k,
the change of objective value Rjk is computed as

Rjk =⟨ψ0|
(
U(2k)e−iH(0)∆t−i

∑N
j′=1

ucon
j′kH

(j′)∆tU(1k)
)†
H̃U(2k)e−iH(0)∆t−i

∑N
j′=1

ucon
j′kH

(j′)∆tU(1k)|ψ0⟩/Emin

− ⟨ψ0|
(
U(2k)e−iH(0)∆t−iH(j)∆tU(1k)

)†
H̃U(2k)e−iH(0)∆t−iH(j)∆tU(1k)|ψ0⟩/Emin, (C.18)

where

U(1k) =
k−1∏
l=1

e
−iH(0)∆t−i

∑N
j′=1 u

bin
j′l H

(j′)∆t
Xinit, U(2k) =

T∏
l=k+1

e
−iH(0)∆t−i

∑N
j′=1 u

con
j′l H

(j′)∆t
. (C.19)
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It is obvious that U(1k),U(2k) are both unitary matrices. We consider a general Hamiltonian

matrix A ∈ Cm×m, with the matrix exponential expansion, we have

⟨ψ0|
(
U(2k)eA∆tU(1k)

)†
H̃U(2k)eA∆tU(1k)|ψ0⟩

=⟨ψ0|
(
U(2k)U(1k)

)†
H̃U(2k)U(1k)|ψ0⟩

+ ⟨ψ0|
(
U(2k)AU(1k)

)†
H̃U(2k)U(1k)|ψ0⟩∆t+ ⟨ψ0|

(
U(2k)U(1k)

)†
H̃U(2k)AU(1k)|ψ0⟩∆t

+ ⟨ψ0|
(
U(2k)AU(1k)

)†
H̃U(2k)AU(1k)|ψ0⟩∆t2 (C.20a)

+ ⟨ψ0|

(
U(2k)

∞∑
l=2

1

l!
Al∆tlU(1k)

)†

H̃U(2k)eA∆tU(1k)|ψ0⟩ (C.20b)

+ ⟨ψ0|
(
U(2k)U(1k)

)†
H̃U(2k)

∞∑
l=2

1

l!
Al∆tlU(1k)|ψ0⟩ (C.20c)

+ ⟨ψ0|
(
U(2k)A∆tU(1k)

)†
H̃U(2k)

∞∑
l=2

1

l!
Al∆tlU(1k)|ψ0⟩. (C.20d)

We first prove that there exists constants C1(A), C2(A) such that the summation of

terms (C.20a)–(C.20d) is bounded by C1(A)eC2(A)∆t∆t2. Because U(1k) and U(2k) are

unitary matrices and ∥|ψ0⟩∥2 = 1, following from Lemma 4.2.1 and Lemma 4.2.3, the norm

value of term (C.20a) is no more than

σ1(A
†H̃A)∆t2 ≤ σ2

1(A)σ1(H̃)∆t2 ≤ σ2
1(A)σ1(H̃)eσ1(A)∆t∆t2. (C.21)

The first inequality follows from Lemma 4.2.2. The second inequality holds because ∆t and

σ1(A) are non-negative. Recall that eA∆t is a unitary matrix because A is a Hamiltonian

matrix, hence by Lemma 4.2.1 and Lemma 4.2.3, the norm value of term (C.20b) is no more

than

∞∑
l=2

1

l!
σ1(A

lH̃)∆tl ≤ σ1(H̃)
∞∑
l=2

1

l!
σl
1(A)∆tl ≤ σ1(H̃)eσ1(A)∆t∆t2. (C.22)

The first inequality follows from Lemma 4.2.2 and the second inequality follows from Taylor

expansion. Similarly, the norm value of term (C.20c) is bounded by

σ1(H̃)eσ1(A)∆t∆t2, (C.23)

and the norm value of term (C.20d) is bounded by

σ1(A
†H̃)eσ1(A)∆t∆t3 ≤ tfσ1(A)σ1(H̃)eσ1(A)∆t∆t2, (C.24)
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where the inequality holds because of the fact that ∆t ≤ tf and Lemma 4.2.2. We define

the constants C1(A), C2(A) as

C1(A) = σ1(H̃)
(
σ2
1(A) + 2 + tfσ1(A)

)
(C.25a)

C2(A) = σ1(A). (C.25b)

The values of the summation of terms (C.20a)–(C.20d) is upper bounded by the summation

of their norms, which is bounded by C1(A)eC2(A)∆t∆t2. We define the constants C1, C2 as

C1 = σ1(H̃)
(
σ2
max + 2 + tfσmax

)
/|Emin| (C.26a)

C2 = σmax. (C.26b)

From (C.11), we know that for any time-dependent Hamiltonian controller A, we have

C1(A) ≤ |Emin|C1, C2(A) ≤ C2. Substituting A = −iH(0) − i
N∑

j′=1

uconj′kH
(j′) and A =

−iH(0) − iH(j) into the expanded trace equation (C.20) and combining with the constants

C1, C2, the change of objective value satisfies

Rjk ≤
1

Emin

⟨ψ0|

(
U(2k)i

(
H(j) −

N∑
j′=1

uconj′kH
(j′)

)
U(1k)

)†

H̃U(2k)U(1k)|ψ0⟩∆t

+
1

Emin

⟨ψ0|
(
U(2k)U(1k)

)†
H̃U(2k)i

(
H(j) −

N∑
j′=1

uconj′kH
(j′)

)
U(1k)|ψ0⟩∆t

+ 2C1e
C2∆t∆t2. (C.27)

We prove that there exists a controller j such that the value of terms of ∆t is upper bounded

by zero. Assume that there does not exist such a controller, then by taking summation

weighted by uconjk over all the controllers, we have

0 <
1

Emin

⟨ψ0|

(
U(2k)i

N∑
j=1

uconjk

(
H(j) −

N∑
j′=1

uconj′kH
(j′)

)
U(1k)

)†

H̃U(2k)U(1k)|ψ0⟩∆t

+
1

Emin

⟨ψ0|
(
U(2k)U(1k)

)†
H̃U(2k)i

N∑
j=1

uconjk

(
H(j) −

N∑
j′=1

uconj′kH
(j′)

)
U(1k)|ψ0⟩∆t. (C.28)
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Because
∑N

j=1 u
con
jk = 1, we have

N∑
j=1

uconjk

(
H(j) −

N∑
j′=1

uconj′kH
(j′)

)
=

N∑
j=1

uconjk H
(j) −

N∑
j′=1

uconj′kH
(j′) = 0. (C.29)

Therefore the right-hand side of the inequality (C.28) is 0, which leads to a contradiction.

At each time step k, by our update rule in the algorithm, the change of objective value

Rĵk = min
j=1,...,N

Rjk ≤ 2C1e
C2∆t∆t2. (C.30)

Summing over all time steps, we have

F̄ (ubin)− F̄ (ucon) =
T∑

k=1

min
j=1,...,N

Rjk ≤ 2C1e
C2∆t∆t. (C.31)

Proof of Theorem 4.2.2. We first define the constants C1, C2. Similar to (C.11), for any

time-dependent Hamiltonian matrix A = −i
(
H(0) +

∑N
j=1 ujH

(j)
)

, we now have
∑N

j=1 uj ≤
N because uj ∈ [0, 1], j = 1, . . . , N . Hence the maximum singular value

σ1(A) ≤ σ1(H
(0)) +

N∑
j=1

ujσ1(H
(j)) ≤ Nσmax. (C.32)

For energy objective function (4.2), we define constants C1, C2 are specified as

C1 = σ1(H̃)
(
N2σ2

max + 2 + tfNσmax

)
/|Emin| (C.33a)

C2 = Nσmax. (C.33b)

For infidelity objective function (4.3), C1, C2 are specified as

C1 = N2σ2
max, C2 = Nσmax. (C.33c)

With the same proof in Theorem 4.2.1, we show that the summation of terms with order

O(∆tn), n ≥ 2 in Rjk is upper bounded by C1e
C2∆t∆t2. We modify the proof of The-

orem 4.2.1 to prove that the terms with respect to O(∆t) in Rjk is upper bounded by
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C0ϵ
c(∆t) where C0 is a constant parameter. For simplicity of the proof, we define ϵk as

ϵk =

∣∣∣∣∣
N∑
j=1

uconjk − 1

∣∣∣∣∣ , k = 1, . . . , T. (C.34)

We discuss the proof specifically for two objective functions following the sequence in the

proof of Theorem 4.2.1.

Infidelity function We define the constant C0 = σmax and prove the conclusion by con-

tradiction. Assume that for any controller j, it holds that

1

2q

∣∣∣∣∣tr
{
U(k)

(
I − iH(0)∆t− i

N∑
j′=1

uconj′kH
(j′)∆t

)}∣∣∣∣∣
− 1

2q

∣∣tr{U(k)
(
I − iH(0)∆t− iH(j)∆t

)}∣∣ > C0ϵk∆t. (C.35)

Now we have

2qC0ϵk∆t = 2q

N∑
j=1

uconjk∑N
j′=1 u

con
j′k

C0ϵk∆t (C.36a)

<

∣∣∣∣∣tr
{
U(k)

(
I − iH(0)∆t− i

N∑
j=1

uconjk H
(j)∆t

)}∣∣∣∣∣
−

N∑
j=1

uconjk∑N
j′=1 u

con
j′k

∣∣tr{U(k)
(
I − iH(0)∆t− iH(j)∆t

)}∣∣ (C.36b)

≤

∣∣∣∣∣tr
{
U(k)

(
−i

N∑
j=1

uconjk H
(j)∆t+ i

N∑
j=1

uconjk∑N
j′=1 u

con
j′k

H(j)∆t

)}∣∣∣∣∣ (C.36c)

≤

∣∣∣∑N
j′=1 u

con
j′k − 1

∣∣∣∑N
j′=1 u

con
j′k

∣∣∣∣∣tr
{
U(k)

(
−i

N∑
j=1

uconjk H
(j)∆t

)}∣∣∣∣∣ (C.36d)

≤ ϵk∑N
j′=1 u

con
j′k

2q

N∑
j=1

uconjk σmax∆t = 2qσmaxϵk∆t = 2qC0ϵk∆. (C.36e)

The inequality (C.36b) comes from the weighted summation of (C.35) over all the controllers

with weight ujk/
∑N

j′=1 uj′k for controller j = 1, . . . , N . The inequalities (C.36c)–(C.36d)

follow from the norm inequality and the fact that the summation of all the weights is one.

The last inequality follows from the definition of ϵk and Lemma 4.2.4. By substituting C0,

the inequalities lead to a contradiction, which means that at each step, the minimum change
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of objective value

min
j=1,...,N

Rjk ≤ 2C1e
C2∆t∆t2 + C0ϵk∆t. (C.37)

Taking summation over all the time steps, we have

F̄ (ubin)− F̄ (ucon) =
T∑

k=1

min
j=1,...,N

Rjk ≤ 2C1e
C2∆t∆t+ C0ϵ

c(∆t). (C.38)

Energy function We define C0 = 2σ1(H̃)σmax/|Emin| and prove the statement by contra-

diction. Assume that for any controller j, it holds that

1

Emin

⟨ψ0|

(
U(2k)i

(
H(j) −

N∑
j′=1

uconj′kH
(j′)

)
U(1k)

)†

H̃U(2k)U(1k)|ψ0⟩∆t

+
1

Emin

⟨ψ0|
(
U(2k)U(1k)

)†
H̃U(2k)i

(
H(j) −

N∑
j′=1

uconj′kH
(j′)

)
U(1k)|ψ0⟩∆t > C0ϵk∆t. (C.39)

Then we have

C0ϵk∆t =
N∑
j=1

uconjk∑N
j′=1 u

con
j′k

C0ϵk∆t (C.40a)

<

∑N
j=1 u

con
jk

Emin

⟨ψ0|

(
U(2k)i

1−
∑N

j′=1 u
con
j′k∑N

j′=1 u
con
j′k

H(j)U(1k)

)†

H̃U(2k)U(1k)|ψ0⟩∆t

+

∑N
j=1 u

con
jk

Emin

⟨ψ0|
(
U(2k)U(1k)

)†
H̃U(2k)i

1−
∑N

j′=1 u
con
j′k∑N

j′=1 u
con
j′k

H(j)U(1k)|ψ0⟩∆t (C.40b)

≤ 2

|Emin|
∑N

j′=1 u
con
j′k

ϵk

N∑
j=1

uconjk σmaxσ1(H̃)∆t =
2

|Emin|
σmaxσ1(H̃)ϵk∆t = C0ϵk∆t. (C.40c)

The inequality (C.40b) comes from the weighted summation of (C.39) over all the controllers

with weight ujk/
∑N

j=1 ujk for controller j = 1, . . . , N . Notice that we use the fact that the

summation of all the weights is one. The last inequality (C.40c) follows from the definition

of ϵk and Lemma 4.2.4. By substituting C0, the inequalities lead to a contradiction, which

means that at each step, the minimum change of objective value

min
j=1,...,N

Rjk ≤ 2C1e
C2∆t∆t2 + C0ϵk∆t. (C.41)
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Taking summation over all the time steps, we have

F̄ (ubin)− F̄ (ucon) =
T∑

k=1

min
j=1,...,N

Rjk ≤ 2C1e
C2∆t∆t+ C0ϵ

c(∆t). (C.42)

C.2 Detailed Numerical Results

Detailed Results for Sensitivity Analysis For the sensitivity analysis in Section 4.4.2,

we present the detailed objective values for 5 instances in Table C.1. We present the detailed

Table C.1: Objective values for Energy6 example solved by Algorithm 4.1 using Algorithm 4.3
to round continuous controls with various switching penalty parameter α.

First-excited 0 0.001 0.003 0.005 0.01 0.015 0.02
Instance 1 0.2263 0.0379 0.0380 0.0383 0.0391 0.0461 0.0700 0.1352
Instance 2 0.1431 0.0196 0.0197 0.0205 0.0208 0.0316 0.0444 0.0444
Instance 3 0.1805 0.0453 0.0455 0.0461 0.0470 0.0486 0.0517 0.0690
Instance 4 0.2698 0.0067 0.0069 0.0077 0.0082 0.0309 0.0309 0.0666
Instance 5 0.0675 0.0501 0.0502 0.0507 0.0510 0.0536 0.0662 0.0966
Average 0.1787 0.0319 0.0321 0.0327 0.0332 0.0422 0.0526 0.0824

0.03 0.04 0.05 0.07 0.1 0.2 0.3 0.6
Instance 1 0.1352 0.1352 0.2439 0.2439 0.3616 0.3808 1.0000 1.0000
Instance 2 0.0693 0.1256 0.1256 0.1256 0.1963 0.5159 0.8531 1.0000
Instance 3 0.0947 0.1375 0.1375 0.1375 0.2904 0.5232 0.9907 1.0000
Instance 4 0.1356 0.1356 0.1356 0.3082 0.3082 0.4680 1.0000 1.0000
Instance 5 0.0966 0.1528 0.1528 0.2391 0.2391 0.3724 0.3724 1.0000
Average 0.1063 0.1373 0.1591 0.2109 0.2791 0.4521 0.8432 1.0000

TV-norm values for 5 instances in Table C.2.

Detailed Results for Objective We present the detailed numerical results for objective

values and TV-norm values for all the methods and instances in Table C.3. We present

the best discretized control obtained by Algorithm TR+MT+ALB in Chapter 3 in column

“Chpt. 3” as a baseline. Columns “Alg. 4.1w/Chpt. 3”, “Alg. 4.1w/4.3”, and “Alg. 4.1w/4.4”

represent results obtained by Algorithm 4.1 with binary control obtained by Algorithm

TR+MT+ALB in Chapter 3, the heuristic method based on objective value (Algorithm 4.3),

and the heuristic method based on the cumulative difference (Algorithm 4.4), respectively.
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Table C.2: TV-norm results for Energy6 example solved by Algorithm 4.1 using Algo-
rithm 4.3 to round continuous controls with various switching penalty parameter α. TV-norm
values of the first-excited state are marked by ”-”.

First-excited 0 0.001 0.003 0.005 0.01 0.015 0.02
Instance 1 - 98 74 42 30 24 20 16
Instance 2 - 114 70 38 34 24 20 20
Instance 3 - 118 82 46 34 26 22 20
Instance 4 - 130 62 34 30 20 20 16
Instance 5 - 122 82 46 34 22 20 16
Average - 116.4 74.0 41.2 32.4 23.2 20.4 17.6

0.03 0.04 0.05 0.07 0.1 0.2 0.3 0.6
Instance 1 16 16 12 12 8 6 0 0
Instance 2 16 12 12 12 10 4 4 0
Instance 3 16 12 12 12 8 4 4 0
Instance 4 12 12 12 8 8 6 0 0
Instance 5 16 12 12 8 8 4 4 0
Average 15.2 12.8 12.0 10.4 8.4 4.8 2.4 0.0

Table C.3: Objective and TV-norm value results of various approaches. Column “Chpt. 3”
represent the results of the benchmark discretized controls without optimizing switching
points. Columns “Alg. 4.1w/Chpt. 3”, “Alg. 4.1w/4.3”, and “Alg. 4.1w/4.4” represent the
results of Algorithm 4.1 with extracting binary controls by various approaches, including
TR+MT+ALB in Chapter 3, Algorithm 4.3 and Algorithm 4.4.

(Objective value, TV-norm value)
Chpt. 3 Alg. 4.1w/Chpt. 3 Alg. 4.1w/4.3 Alg. 4.1w/4.4

Energy2 (2.930E−03, 10) (1.255E−14, 4) (1.255E−14, 4) (1.255E−14, 4)
Energy4 (0.1986, 6) (0.1611, 6) (0.1569, 9.2) (0.1568, 8.4)
Energy6 (0.3046, 10.8) (0.2049, 10.8) (0.0526, 20.4) (0.0632, 19.6)
CNOT5 (0.1968, 10) (0.1807, 10) (0.1763, 11) (0.1792, 9)
CNOT10 (9.431E−03, 16) (5.071E−03, 16) (5.326E−07, 28) (2.163E−07, 26)
CNOT20 (8.224E−04, 49) (3.124E−08, 49) (1.728E−07, 41) (3.136E−07, 39)
NOT2 (0.1636, 1) (0.1632, 1) (0.1632, 1) (0.1632, 1)
NOT6 (1.270E−02, 11) (6.885E−06, 11) (1.122E−06, 0) (3.267E−06, 14)
NOT10 (9.087E−04, 20) (5.132E−08, 20) (2.439E−08, 11) (4.692E−08, 17)
CircuitH2 (7.777E−02, 8) (2.747E−03, 8) (1.208E−06, 16) (6.612E−05, 36)
CircuitLiH (8.110E−01, 18) (4.054E−02, 18) (1.702E−03, 32) (1.986E−03, 20)
CircuitBeH2 (5.115E−02, 24) (1.250E−03, 24) (1.250E−03, 28) (1.250E−03, 14)
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APPENDIX D

Appendix For Chapter 5

D.1 Proofs of All Theorems in Section 5.3

We present the proofs for all the theorems and propositions in Section 5.3.

D.1.1 Proofs of Theorems in Section 5.3.1

Proof of Theorem 5.3.1. First, note that the two forms (5.10a) and (5.10b) are equivalent

because scenarios s with F s(u) − F s∗(u)(u) = 0 contribute nothing to the summation, and

thus we only need to prove (5.10a). To prove the closed-form expression, it is equivalent

to prove that given a control variable u, the optimal solution for the minimization problem

minζ FCVaR(u, ζ) is ζ∗(u) = F s∗(u)(u). When ζ < ζ∗(u) = F s∗(u)(u), we have

FCVaR(u, ζ) =ζ +
1

η

S∑
s=1

ps max{0, F s(u)− ζ} = ζ +
1

η

∑
s:ζ<F s(u)

ps(F
s(u)− ζ)

=FCVaR(u, ζ∗(u)) + ζ − ζ∗(u) +
1

η

∑
s:ζ<F s(u)≤ζ∗(u)

ps(F
s(u)− ζ)

+ (ζ∗(u)− ζ)
1

η

∑
s:F s(u)>ζ∗(u)

ps

≥FCVaR (u, ζ∗(u)) +
1

η

∑
s:ζ<F s(u)≤ζ∗(u)

ps(F
s(u)− ζ) ≥ FCVaR(u, ζ∗(u)). (D.1)

The equalities directly follow the definition of FCVaR(u, ζ). The first inequality holds because

of the definition of s∗(u) such that
∑

s:F s(u)>ζ∗(u) ps ≥ η. The last inequality holds because

all the terms in the summation have F s(u) > ζ. Similarly, we can show that when ζ >
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ζ∗(u) = F s∗(u)(u), we have

FCVaR(u, ζ) =ζ +
1

η

S∑
s=1

ps max{0, F s(u)− ζ} = ζ +
1

η

∑
s:ζ<F s(u)

ps(F
s(u)− ζ)

=FCVaR(u, ζ∗(u)) + ζ − ζ∗(u) +
1

η

∑
s:ζ∗(u)<F s(u)≤ζ

ps(ζ − F s(u))

+ (ζ∗(u)− ζ)
1

η

∑
s:F s(u)>ζ∗(u)

ps

≥FCVaR(u, ζ∗(u)) +
1

η

∑
s:ζ∗(u)<F s(u)≤ζ

ps(ζ − F s(u)) ≥ FCVaR(u, ζ∗(u)). (D.2)

The only difference is that for the last inequality, it holds because all the terms in the

summation have F s(u) ≤ ζ. This completes the proof.

Proof of Theorem 5.3.2. Because the functions FX(XT ) and Xs
T (u) are differentiable for each

scenario s = 1, . . . , S, the function F s(u) is differentiable, and thus continuous. Because the

objective function F s(u) is continuous, given a control variable point û, for any ω > 0, there

exists a distance rs(û, ω) for each scenario s such that for any ∥u − û∥ ≤ rs(û, ω), we have

|F s(u)−F s(û)| < ω. Choosing ω = mins ̸=s∗(û) |F s(û)−F s∗(û)(û)|, from the assumption that

∀s ̸= s∗(û), F s(û) ̸= F s∗(û)(û), we have ω > 0. Define r = mins=1,...,S rs(û, ω/2). Then, for

any u such that |u− û| ≤ r, s∗(u) = s∗(û). We prove this claim by the following statements

that

F s(u) > F s(û)− ω

2
≥ F s∗(û)(û) + ω − ω

2

= F s∗(û)(û) +
ω

2
> F s∗(û)(u), ∀s : F s(û) > F s∗(û)(û) (D.3)

F s(u) < F s(û) +
ω

2
≤ F s∗(û)(û)− ω +

ω

2

= F s∗(û)(û)− ω

2
< F s∗(û)(u), ∀s : F s(û) < F s∗(û)(û). (D.4)

For both formulas, the first and last inequalities follow the continuity of F s(u) and the other
inequalities follow from the definition of ω. Now we show that s∗(û) is still the scenario

number with the largest original objective value such that
S∑

s=1

ps⊮{F s(u)>F s∗(u)(u)} ≥ η, which

means that s∗(u) = s∗(û). Furthermore, we also show that {s : F s(u) > F s∗(u)(u)} = {s :
F s(û) > F s∗(û)(û)}. Therefore, the derivative of FC(u) at point û is

∂FC(û)

∂û
= lim

u→û

FC(u)− FC(û)

u− û
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= lim
u→û

F s∗(û)(u)− F s∗(û)(û)

u− û
+

1

η

∑
s:F s(u)>F s∗(û)(u)

ps
F s(u)− F s(û)− F s∗(û)(u) + F s∗(û)(û)

u− û


=

1− 1

η

∑
s:F s(û)>F s∗(û)(û)

ps

 ∂F s∗(û)(û)

∂û
+

1

η

∑
s:F s(û)>F s∗(û)(û)

ps
∂F s(û)

∂û
. (D.5)

This completes the proof.

D.1.2 Proofs of Theorems in Section 5.3.2

Proof of Proposition 5.3.1. We only need to prove that there exists a constant Cdiff such that√
tfFL(ucon) ≤ Cdiff

√
∆t/
√
θ. We define ucon,SOS1 as the optimal solution for the continuous

relaxation of the discretized model with the SOS1 property (SP(S)). From the optimality

of ucon, we have

F̃ (ucon) + θFL(ucon) ≤ F̃ (ucon,SOS1) + θFL(ucon,SOS1) = F̃ (ucon,SOS1), (D.6)

where the last inequality follows the fact that ucon,SOS1 holds the SOS1 property, so the

penalty term FL(ucon,SOS1) = 0. Combining with the Assumption 5.3.1 that F̃ (ucon) ≥ 0, we

have

FL(ucon) ≤ 1

θ
F̃ (ucon,SOS1). (D.7)

We then consider the difference in objective values between the optimal infinite dimension

relaxation solution u∗,SOS1(t) (defined in Assumption 5.3.3) and the optimal discretized relax-

ation solution ucon,SOS1. We first construct a piece-wise constant control function ud,SOS1(t)

satisfying the inequality as:

ud,SOS1(t) =
1

∆t

∫ k∆t

(k−1)∆t

u∗,SOS1(τ)dτ, ∀t ∈ [(k − 1)∆t, k∆t), k = 1, . . . , T. (D.8)

It is obvious that during each time interval, we have∫ k∆t

(k−1)∆t

ud,SOS1(τ)dτ =

∫ k∆t

(k−1)∆t

u∗,SOS1(τ)dτ, k = 1, . . . , T. (D.9)
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For any time t ∈ [0, tf ], let k̂ be the index of time interval that t falls in, we have∥∥∥∥∫ t

0

ud,SOS1(τ)dτ −
∫ t

0

u∗,SOS1(τ)dτ

∥∥∥∥
∞
≤
∥∥∥∥∫ t

(k̂−1)∆t

ud,SOS1(τ)dτ −
∫ t

(k̂−1)∆t

u∗,SOS1(τ)dτ

∥∥∥∥
∞

(D.10)

In the time subinterval [(k̂ − 1)∆t, k̂∆t], the two integrals hold∫ t

(k̂−1)∆t

ud,SOS1(τ)dτ ≤ max
τ∈[(k̂−1)∆t,k̂∆t]

ud,SOS1(τ)∆t (D.11a)∫ t

(k̂−1)∆t

u∗,SOS1(τ)dτ ≥ min
τ∈[(k̂−1)∆t,k̂∆t]

u∗,SOS1(τ)∆t (D.11b)

From the definition of ud,SOS1 in (D.8), we know that

max
τ∈[(k̂−1)∆t,k̂∆t]

ud,SOS1(τ) ≤ max
τ∈[(k̂−1)∆t,k̂∆t]

u∗,SOS1(τ). (D.12)

Therefore, for any t ∈ [0, tf ],∥∥∥∥∫ t

0

ud,SOS1(τ)dτ −
∫ t

0

u∗,SOS1(τ)dτ

∥∥∥∥
∞

≤
∥∥∥∥ max
τ∈[(k̂−1)∆t,k̂∆t]

u∗,SOS1(τ)− min
τ∈[(k̂−1)∆t,k̂∆t]

u∗,SOS1(τ)

∥∥∥∥
∞

∆t. (D.13)

We notice that the values of control functions u∗,SOS1(t) and ud,SOS1(t) are both bounded by

[0, 1]. Hence the difference of integral is upper bounded by ∆t. From Theorem 2 in Sager

and Zeile [183], we have

∥∥X(tf ;u∗,SOS1)−X(tf ;ud,SOS1)
∥∥ ≤ C ′∆t, (D.14)

where C ′ is a constant determined by control Hamiltonians and evolution time. Combining

with the continuity of the objective function F̃ (u(t)), we have

F̃ (ud,SOS1(t))− F̃ (u∗,SOS1(t)) ≤ C ′′∆t, (D.15)

where C ′′ is a constant determined by objective function F̃ (u). From the definition of the

piece-wise constant control function ud,SOS1(t), we can construct an equivalent discretized

solution ud,SOS1
k = ud,SOS1(t) where k is the index of time interval that t falls in. Because
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ucon,SOS1 is the optimal solution of the discretized formulation, it holds that

F̃ (ucon,SOS1)− F̃ (u∗,SOS1(t)) ≤ F̃ (ud,SOS1)− F̃ (u∗,SOS1(t))

= F̃ (ud,SOS1(t))− F̃ (u∗,SOS1(t)) ≤ C ′′∆t. (D.16)

With Assumption 5.3.3 that F̃ (u∗,SOS1(t)) = 0 and the upper bound for FL(ucon) in (D.7),

we prove that √
tfFL(ucon) ≤ Cdiff

√
∆t/
√
θ, (D.17)

where Cdiff =
√
tfC ′′.

Proof of Proposition 5.3.2. We consider the upper bound for the cumulative difference be-

tween u∗,SOS1(t) and ud,SOS1(t) in (D.13). Because we assume that u∗,SOS1(t) is continuous

in each subinterval in Assumption 5.3.4, the right-hand side is upper bounded by o(∆t)∆t.

The other parts of the proof are the same as the proof of Proposition 5.3.1.
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[176] Paul Rodŕıguez. 2013. Total variation regularization algorithms for images corrupted
with different noise models: A review. Journal of Electrical and Computer Engineering
2013 (2013).

[177] Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J Love,
and Alán Aspuru-Guzik. 2018. Strategies for quantum computing molecular energies
using the unitary coupled cluster ansatz. Quantum Science and Technology 4, 1 (2018),
014008. https://doi.org/10.1088/2058-9565/aad3e4

[178] Leonid I Rudin, Stanley Osher, and Emad Fatemi. 1992. Nonlinear total variation
based noise removal algorithms. Physica D: nonlinear phenomena 60, 1-4 (1992), 259–
268.

[179] Justin Ruths and Jr-Shin Li. 2011. A multidimensional pseudospectral method for
optimal control of quantum ensembles. The Journal of chemical physics 134, 4 (2011),
044128. https://doi.org/10.1063/1.3541253

[180] Sebastian Sager. 2005. Numerical Methods for Mixed-Integer Optimal Control Prob-
lems. Der Andere Verlag Tönning.

[181] Sebastian Sager, Hans Georg Bock, and Moritz Diehl. 2012. The integer approximation
error in mixed-integer optimal control. Mathematical programming 133, 1 (2012), 1–23.
https://doi.org/10.1007/s10107-010-0405-3

[182] Sebastian Sager, Michael Jung, and Christian Kirches. 2011. Combinatorial integral
approximation. Mathematical Methods of Operations Research 73, 3 (2011), 363–380.
https://doi.org/10.1007/s00186-011-0355-4

193

https://doi.org/10.1103/physrevb.79.060507
https://doi.org/10.1103/physrevb.79.060507
https://doi.org/10.1088/2058-9565/aad3e4
https://doi.org/10.1063/1.3541253
https://doi.org/10.1007/s10107-010-0405-3
https://doi.org/10.1007/s00186-011-0355-4


[183] Sebastian Sager and Clemens Zeile. 2021. On mixed-integer optimal control with
constrained total variation of the integer control. Computational Optimization and
Applications 78, 2 (2021), 575–623.

[184] Nikolaos V Sahinidis. 1996. BARON: A general purpose global optimization software
package. Journal of global optimization 8, 2 (1996), 201–205.

[185] Sergey Sarykalin, Gaia Serraino, and Stan Uryasev. 2008. Value-at-risk vs. conditional
value-at-risk in risk management and optimization. In State-of-the-art decision-making
tools in the information-intensive age. Informs, 270–294.

[186] D. Schrank, B. Eisele, and Lomax T. 2019. 2019 Urban mobility report. Technical
Report. Texas A&M Transportation Institute.

[187] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. 2014. Lectures on
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