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ABSTRACT

Extreme events happen in many stochastic natural and engineering systems. Al-

though these events occur with a low probability, they are often associated with

catastrophic consequences, making the quantification of their statistics vitally impor-

tant for a better understanding or design of the system. In this dissertation, we aim

to build efficient and accurate methods for the resolution of extreme-event statistics,

using a master example of extreme ship motions in random seas.

A direct computation of the extreme ship motion statistics requires running nu-

merical ship simulations to a long wave signal covering all wave conditions. The

computational cost of this approach, however, is prohibitively high considering the

high complexity of the random wave field, the rareness of the extreme motions, and

the expensiveness of the numerical simulation. One critical effort to reduce the com-

putational cost is reducing the complexity of the random sources, i.e., parameterizing

the wave field to a low-dimensional feature space. The original problem then becomes

a standard uncertainty quantification task to quantify the extreme response statistics

given an input-to-response (ItR) function (that needs to be learned) with known input

(feature) probability. Many methods have been proposed to address such problems,

with one method we are particularly interested in—surrogate modeling trained with

active learning. In detail, one can train a surrogate to approximate the ItR function.

The training samples are sequentially selected by optimizing an acquisition function

based on the existing samples, which facilitates the convergence of the extreme-event

statistics.

In this dissertation, we design a set of efficient computational methods to resolve
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extreme-event statistics measured in various forms. Regarding the problem of ship

motion in random waves, we first introduce a basic framework following existing

methods in wave group parameterization and sequential sampling that targets the

tail part of the ship motion PDF. In addition to some algorithmic improvements on

these two components, we also enrich the framework by considering complete system

dynamics through nonlinear wave simulation and ship-wave interaction CFD simula-

tion. In this basic framework, the ship response statistics are defined in terms of the

maximum motion in each wave group, which is easy to implement but not straight-

forward to interpret in practice. We next adapt the framework to quantify a more

robust measure, the temporal exceeding probability as the fraction of time that re-

sponses exceed a given threshold, with novel developments introduced for both the

surrogate model and acquisition function in sequential sampling. While group pa-

rameterization significantly speeds up the computation in the above two works, the

uncertainties introduced by reduced complexities have not been quantified. To incor-

porate the lost information, we consider systems characterized by a stochastic ItR

with heteroscedastic randomness. These systems are common in physics and engi-

neering with ItR randomness either intrinsic or additional due to dimension reduction.

In addressing this problem, we leverage the variational heteroscedastic Gaussian pro-

cess regression as the surrogate, along with a new acquisition function considering

randomness from both input and ItR.

In addition, we develop a multi-fidelity method to further reduce the computational

cost of the framework. The key idea here is to leverage low-fidelity models, e.g., a

low-resolution ship response CFD whose cost is only a certain fraction of its high-

resolution counterpart. In particular, we employ the multi-fidelity Gaussian process

regression as a surrogate model and design a new acquisition function that allows the

selection of the next-best sample in terms of both the location and fidelity level. An

inexpensive analytical evaluation of the acquisition with its derivative is also devel-
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oped, enabling gradient-based sampling selection in relatively high-dimensional space.

We further adapt the multi-fidelity framework to quantify exceeding/failure probabil-

ity over a threshold in the context of reliability analysis of connected and autonomous

vehicles (CAV). Our acquisition is formulated through information-theoretic consider-

ation which is not only desired to reduce the cost of CAV evaluation but also valuable

to the general field of reliability analysis.

We next improve a likelihood-weighted acquisition (algorithm) that was initially

designed for rare-event statistics and later extended to many other applications. The

improvement comes from the generalized form with two additional parameters ad-

dressing two weaknesses of the original likelihood weight: (1) that the input space

associated with rare-event responses is not sufficiently stressed; (2) that the surrogate

model trained from data may have a significant deviation from the true ItR function.

A critical procedure in Monte-Carlo discrete optimization of the acquisition function

is also developed that achieves orders of magnitude acceleration compared to existing

approaches. In the final part of this dissertation, we present an ongoing work on batch

sampling and conclude with a discussion of limitations and future research directions.

xviii



CHAPTER 1

Introduction

1.1 Background

Extreme events are generally abnormal system responses that can occur in many

stochastic natural and engineering systems. Typical examples include tsunamis, ex-

treme precipitations, ship capsizing, and pandemic spikes. Although these events

occur with a low probability, they can potentially result in catastrophic consequences

to the environment, industry, and society [33, 40, 111, 109, 42]. Therefore, the ac-

curate quantification of extreme-event statistics is crucial for the assessment and

improvement of the system reliability.

Resolving extreme-event statistics, however, is a non-trivial task. For instance,

consider a ship at sea with motions excited by stochastic waves. With the increase in

computational power, it is now possible to simulate an individual extreme event with

high-fidelity simulations, e.g., computational fluid dynamics (CFD). A direct compu-

tation of the extreme motion statistics, requiring running CFD to cover ensembles

of all wave field realizations or an infinitely long wave signal, is still computation-

ally prohibitive due to the high complexity of the random wave field, the rareness

of the extreme motions, and the expensiveness of the numerical simulation. One

critical effort to reduce the computational cost is to reduce the dimension of the ran-

dom source. In ocean engineering, many methods have been proposed to convert the
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Figure 1.1: Schematic of the computational framework. Random sources with high
dimensionality/complexity, e.g., irregular wave fields in the ship example and traffic
conditions in the CAV example, are first parameterized to low-dimensional feature
(input) space. A surrogate of the input-to-response (ItR) function is then trained
by (sequential) active learning. Finally, we compute the extreme statistics from the
cheap surrogate.

high-dimensional wave fields into a low-dimensional parameter space of wave groups

consisting of a small number of consecutive single waves. For example, wave groups

can be parameterized by the peak amplitude, the number of waves overrunning a

threshold, and the average period, with their occurrence probability evaluated via

a Markov-chain property of the wave process [77, 70, 3, 128]. For a narrow-band

wave field, the wave groups can be approximated by Gaussian forms and more con-

veniently parameterized by the height and length of the group [26, 94]. Similarly, for

reliability analysis of connected and autonomous vehicles (CAV), converged statistics

of CAV accident rate require hundreds of millions of miles for each configuration of

CAV [66]. To reduce the testing cost, scenario-based approaches have been devel-

oped [114, 97, 141, 37], where the scenarios (and their distribution) describing certain

traffic environments are parameterized from the Naturalistic Driving Data.

The responses of the ship/CAV can then be evaluated for a given group/scenario

as input, and their statistics are approximated by collecting responses considering the
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probability distribution of the low-dimensional input. In this sense, the original prob-

lem becomes a standard uncertainty quantification task: given an input-to-response

(ItR) function (that needs to be learned) with known input probability characterizing

the system of interests, our objective is to quantify the extreme response statistics

(measured in various forms). The ItR is usually expensive to evaluate through nu-

merical simulations or physical experiments, restricting the number of samples that

can be placed for system evaluations even in the low-dimensional space. In order to

reduce the required number of samples, methods using importance sampling [161],

control variate [156], first/second-order reliability methods [55], and large deviation

theory [140, 139, 27] have been developed and extensively studied. However, these

methods usually target only a single metric, lacking a general view of the extreme-

event statistics. In addition, they often make strong assumptions and deal with cases

where extreme events of interest occur in an isolated region of the input space, which

is not necessarily true for a complex nonlinear response function.

Another type of approach relies on a surrogate model of the ItR function that, in

principle, overcomes the issues mentioned above. The learning of the surrogate can

be achieved by a standard machine learning algorithm but needs to be conducted

with limited data (i.e., samples with system evaluations). A typical method involved

here is active learning (or Bayesian experimental design for probabilistic surrogates)

which sequentially selects the next sample most informative to extreme response

statistics through optimizing an acquisition function. Numerous methods have been

proposed with varying surrogates, acquisitions, measures of extreme-event statistics,

and applications. Among them, one popular area is structural reliability analysis

aiming for the failure probability. However, many existing acquisitions are rather

empirical [31, 15, 149], leaving much room for a rigorous development. In ocean

engineering, the first application (as far as we know) is [95] to estimate the whole

probability density function (PDF) of the marine structure response in random waves
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with emphasis on the tail part.

1.2 Roadmap

In this dissertation, we design an efficient computational framework (schematized

in figure 1.1) including novel developments in both dimension reduction and active

learning, with a master example of quantifying extreme ship responses in random

seas. In the following, we will walk readers through each chapter.

In §2, we introduce the basic computational framework in the context of quan-

tifying ship response PDF focusing on the tail part, including wave group param-

eterization following [26], sequential sampling following [95] with Gaussian process

regression as the surrogate. In addition to some algorithmic improvements on these

two components, we also consider complete system dynamics through nonlinear wave

simulation and ship-wave interaction CFD. We test the validity of the framework for

the cases of ship response calculated by a nonlinear roll equation and show the im-

portance of wave nonlinearity to extreme response statistics. Finally, the framework

is coupled with the CFD model to demonstrate its applicability to more realistic and

general ship motion problems. The subsequent chapters can be seen as improvements

of §2 in terms of specific problems raised in ocean engineering or more broadly the

active learning algorithms.

The ship response statistics in both §2 and [95] are defined in terms of the maximum

motion in each (isolated) wave group, which is not straightforward to interpret in

practice (e.g., its value depends on the subjective definition of the wave group). In

§3, we further adapt the computational framework to quantify a more robust measure,

the temporal exceeding probability as the fraction of time that responses exceed a

given threshold. For this goal, novel developments need to be introduced for both

the surrogate model and acquisition function. We validate our framework with a
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nonlinear roll equation, in terms of the agreement of our results to the true solution

and the independence of our results to the criterion of defining groups. Finally, we

demonstrate the coupling of the framework with CFD simulations.

While group parameterization in the above two chapters significantly speeds up the

computation, the uncertainties introduced in complexities reduction have not been

quantified. These uncertainties result in stochastic ItR, often with heteroscedastic

randomness for different inputs, in contrast to deterministic ItR in §2 and §3. To

incorporate the lost information, in §4, we consider systems characterized by two

random sources: (1) parameterized input with a known probability distribution as

before, and (2) stochastic ItR function with heteroscedastic randomness. The problem

setup often arises in physics and engineering problems, with randomness in ItR coming

from either intrinsic uncertainties or additional uncertainties as a result of dimension

reduction to the original high-dimensional space, e.g., wave group parameterization.

Our method leverages the variational heteroscedastic Gaussian process regression to

account for the stochastic ItR, along with a new acquisition function considering

randomness from both input and ItR. The validity of the method is first tested in

two synthetic problems with the stochastic ItR functions defined artificially. Finally,

we demonstrate the application to estimate the extreme ship motion probability,

where the uncertainty in ItR naturally originates from wave group parameterization

reducing the original high-dimensional wave field into a low-dimensional group space.

In §5, we develop a multi-fidelity sequential sampling method to further reduce

the computational cost of the framework in §2. The key idea here is to leverage low-

fidelity samples whose responses can be computed with a cost of a certain fraction

of that for high-fidelity samples, in an optimized configuration. In particular, we

employ a multi-fidelity Gaussian process regression as the surrogate and develop a

multi-fidelity acquisition to select the next-best sample in terms of both its location

and the fidelity level. In addition, we develop an inexpensive analytical evaluation of
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the acquisition and its derivative, avoiding numerical integrations that are prohibitive

for high-dimensional problems. The new method is mainly tested in a bi-fidelity

context for a series of synthetic problems with varying dimensions, low-fidelity model

accuracy, and computational costs. Compared with the single-fidelity method and

the bi-fidelity method with a pre-defined fidelity hierarchy, our method consistently

shows the best (or among the best) performance for all the test cases. Finally, we

demonstrate the superiority of our method in quantifying extreme ship responses,

using CFD configured in §2 with two different grid resolutions as the high and low-

fidelity models.

In §6, we adapt the multi-fidelity method in §5 to quantify exceeding/failure

probability over a threshold in the context of reliability analysis of connected and

autonomous vehicles. Our acquisition is formulated through information-theoretic

consideration which is not only desired to reduce the cost of CAV evaluation but

also valuable to the general field of reliability analysis as an improvement to many

empirical acquisitions. The developed method is tested in a widely considered two-

dimensional cut-in problem for CAVs, where Intelligent Driving Model with different

time resolutions are used to construct the high and low-fidelity models. We show that

our single-fidelity method outperforms the existing approach for the same problem,

and the bi-fidelity method can further save half of the computational cost to reach a

similar accuracy in estimating the accident rate.

In §7, we generalize the likelihood-weighted (LW) acquisition (as the basis to build

multi-fidelity acquisition in §5), a popular one in recent years that was initially de-

signed for rare-event statistics and later extended to many other applications. The

improvement in our acquisition comes from the generalized form with two additional

parameters, by varying which one can target and address two weaknesses of the orig-

inal LW acquisition: (1) that the input space associated with rare-event responses is

not sufficiently stressed; (2) that the surrogate model trained from data may have a
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significant deviation from the true ItR function. In addition, we develop a critical

procedure in Monte-Carlo discrete optimization of the acquisition function, which

achieves orders of magnitude acceleration compared to existing approaches for such

type of problems. The superior performance of our new acquisition to the original

LW acquisition is demonstrated in a number of test cases, including some cases that

were designed to show the effectiveness of the original LW acquisition.

Finally, we present an ongoing work about batch sampling in §8. In batch sam-

pling, a certain number of samples are collectively selected and parallelly evaluated

to reduce the wall computational time and, at the same time, improve (or keep) the

sampling efficiency. We conclude this dissertation in §9. The limitations and future

work will also be discussed in §9 in terms of (i) extension of the framework to broad-

band wave fields, (ii) choices of other surrogates, (iii) pre-trained sampling policy via

reinforcement learning, and (iv) inclusion of derivative observations.
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CHAPTER 2

Basic Framework for Group-Based

Extreme-Event Statistics of Ship Motions

2.1 Introduction

In this chapter, we present a computational framework for quantifying extreme ship

motions in stochastic oceanic waves. While extreme waves are generally recognized

as an important factor, extreme motions can also be induced in moderate wave con-

ditions through nonlinear wave-body interaction mechanisms. These wave-body in-

teractions may lead to parametric roll resonance, surf-riding, broaching, and other

dynamical phenomena. A complete dynamical model for the extreme ship motion

needs to account for the nonlinearity in both wave field and wave-ship interactions.

As we discussed in §1, with the increase of computational power, it is now possible

to simulate an individual extreme event with high fidelity, while the resolution of

the extreme motion statistics is computationally intractable. To obtain a practical

solution of extreme ship motion statistics, earlier method [129] relies on linear ex-

trapolation between ln(T ) and 1/H2
s , with T the failure return period and Hs the

significant wave height. However, this is later shown to result in under-estimation of

T , i.e., conservative results [125]. More recent approaches mainly rely on the princi-

ple of separation [10], which splits the computation into rare (R) and non-rare (NR)

sub-problems. Within the category of R-NR approaches, the (Envelope) Peaks-Over-
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Threshold (POT or EPOT) method [90, 22, 150] identifies the upcrossing rate over

a moderate threshold Sm in the NR problem, and extrapolates the distribution to a

larger threshold based on the asymptotic extreme value theory in the R problem; the

split-time method [9, 8] identifies the upcrossing rate and distribution of derivative

process (say roll rate) at Sm in the NR problem, and computes the probability of

failure conditioning on the derivative process at Sm in the R problem; The critical

wave group approach [137, 3, 1, 2] uses the NR problem to evaluate the distribution

of ship initial conditions encountering a wave group, and relates the extreme statistics

to the probability of critical wave groups based on the Markov process of wave crest in

the R problem. All three methods achieve certain levels of success. In particular, [8]

addresses the validity of EPOT and split-time methods; Positive results are reported

for the critical wave group approach [81, 126], with its experimental implementation

discussed in [5, 6, 7, 3].

In spite of the success of previous methods, an efficient method that incorporates

the nonlinearity from both wave field and wave-body interactions is still lacking.

In this chapter, following recent methods of wave group parameterization [26] and

sequential sampling enabled by Bayesian experimental design [95, 59, 31], we imple-

ment a framework which enables an efficient resolution of the statistics of extreme

ship responses in irregular nonlinear wave fields. In addition to some algorithmic

improvement on the existing methods, our framework allows the wave nonlinearity

and wave-ship interaction captured respectively through simulations by high-order

spectral method [29, 151] and CFD. We restrict the application of the framework

to two-dimensional narrow-band wave fields and define the ship motion statistics

in terms of the maximum motion response in each (isolated) wave group (hereafter

group-maximum motion statistics). The developed framework is benchmarked for its

effectiveness in accurately resolving the group-maximum statistics in a problem where

a roll equation is used to compute the group-maximum motion response. The effects

9



Figure 2.1: Outline of the brute-force way to compute the extreme PDF of ship
motion

of wave nonlinearity on extreme response statistics are illustrated in an example of an

evolving nonlinear wave field. We finally demonstrate the coupling of the framework

with CFD simulations to study the realistic roll-motion statistics of a two-dimensional

square-shaped hull.

This chapter is adapted from [50]. The Python code for the proposed algorithm,

named wavefinder, is available on Github1.

2.2 Computational framework

Given a narrow-band wave spectrum (but otherwise arbitrary) and a certain ship

geometry, the purpose of our computation is to resolve the probability distribution

function (PDF) of the group-maximum ship motion with high precision on its tail part.

An outline of the full (brute-force) computation is illustrated in figure 2.1. In this

process, the procedure of computing the ensemble of nonlinear wave fields from a given

spectrum ((a)-(b)) can be accomplished by an ensemble run of the high-order spectral

(HOS) method [29, 151] starting from different initial random phase distributions.

This is in essence a full Monte-Carlo method, which is computationally viable due

to the highly efficient spectral algorithm in HOS. The difficulty in the computation

of figure 2.1 lies in the process from (b) to (d), where CFD simulations are used to

1https://github.com/umbrellagong/wavefinder
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sample the ensemble of nonlinear wave fields to resolve the motion PDF. Due to the

high dimensionality of the wave fields and the rarity of the extreme motion response,

a large number of CFD simulations are required to obtain converged statistics for the

tail of the motion PDF. This can become computationally prohibitive for complex

problems where each CFD simulation is already expensive.

To enable the computation in figure 2.1, efficient algorithms have to be developed

to realize the process from (b) to (d). We next describe two key methods for this

purpose. In particular, we use a wave group parameterization technique to reduce

the dimensionality of a narrow-band nonlinear wave field, and a sequential sampling

enabled by Bayesian experimental design to reduce the number of samples (in the

low-dimensional space) to resolve the extreme motion statistics.

2.2.1 Wave group parameterization

Wave groups are structures with successive large waves embedded in random wave

fields. To parameterize the wave groups, we first convert the wave elevation field η(x)

into an envelope process through the Hilbert transform [127] (see figure 2.2(a) for a

typical case):

η(x) = Re{ρ(x)eik0x+iϕ(x)}, (2.1)

where ρ(x) is the envelope process, k0 the carrier wavenumber, and ϕ(x) the phase

modulation. Here, we restrict our method only to sufficiently narrow-band wave

field where the low-dimensional structure in figure 2.2 (in particular the long group

in ρ(x) and nearly constant ϕ(x) in each group) can be clearly identified. Under

this situation, each wave group of the envelope can be approximated by a localized

Gaussian function:

ρc(x) ∼ A exp
−(x− xc)

2

2L2
, (2.2)
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Figure 2.2: (a) envelope process ρ(x) ( ) and (b) phase modulation ϕ(x) computed
from the surface elevation η(x) ( in (a)) using the Hilbert transform. A localized
wave group ρc(x) is indicated in (a).

where A is the group amplitude, L the length scale and xc the location of the group,

ρc(x) the segment of the envelope ρ(x) in the vicinity of xc, corresponding to a wave

group.

Our purpose here is to detect L and A for each wave group in the envelope ρ(x),

so that a low-dimensional description of the (ensemble) wave field can be established

in terms of the joint PDF of L and A (xc is not important since the ship-motion

response does not depend on xc). Our method builds on [26, 25], originated from

a scale-selection method in the computer vision field for feature detection in images

[75]. Specifically, the scale-space representation function S(x, l) of ρ(x) is defined by

S(x, l) = G(x, l) ∗ ρ(x), (2.3)

where G(x, l) = (1/
√
2πl) exp−x2/(2l2) is a Gaussian kernel with scale l at location x,

and ∗ denotes convolution. The detection algorithm finds the local minimum of the
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normalized second-order derivative of S and set

(xc, L0) = argminl,x l
2 ∂

2

∂x2
S(x, l), (2.4)

L =
1√
2
L0. (2.5)

The second equation of (2.5) is obtained from theoretical consideration when ρ(x)

is in an exact Gaussian shape [75, 26]. Given xc, A for the same wave group is

determined correspondingly as A = ρ(xc). In [26], it is demonstrated that the direct

detection by (2.5) results in a number of fake groups with low similarity with the

ρ(x). To remove these wave groups, a discrepancy index is defined as

D(L,A, xc) =
∥ρc(x)− Ae−

(x−xc)
2

2L2 ∥2
∥Ae−

(x−xc)2

2L2 ∥2
, (2.6)

The groups with a discrepancy index D < 0.25 are kept.

While the detection algorithm is simple to implement, we find that the scale L is

in general under-predicted. Figure 2.3(a) shows a typical result where this point is

elucidated. This is due to the finite length of the actual group ρc(x), in contrast to an

ideal Gaussian group with infinite length. As a result, the adjacent signal ρ(x) around

ρc(x) affects the scale resolution. To address this issue, we consider the value of L

calculated by (2.5) as an initial guess, and conduct another optimization to directly

minimize the discrepancy index (2.6), and set

L = argminL D(L,A, xc). (2.7)

We use Newton’s iteration method to solve (2.7). The result after applying (2.7) is

shown in figure 2.3(b), where clear improvement (in terms of the closeness between

the detected groups and original signal) can be visualized compared to figure 2.3(a).

For this wave field, the average value of D decreases from 0.22 to 0.09 after applying
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Figure 2.3: The localized Gaussian wave groups ( ) calculated using (a) existing
method with (2.5) and (b) improved method with (2.5) and (2.7), for an envelope
process ( ).

(2.7).

The group detection algorithm can be applied to the ensemble of nonlinear wave

fields to resolve a collection of pairs L and A, which are then used to calculate

pLA(L,A), the joint PDF of L and A (see figure 2.4 for an example). This joint PDF

provides a low-dimensional probabilistic description of the nonlinear wave fields, and

can be sampled as input to the CFD simulations.

2.2.2 Sequential sampling

Given px(x ≡ A,L), the PDF of a ship motion can be computed from sampling the

space of x. Mathematically, we consider a map r(x) : R2 → R which maps a wave

group parameter x to the group-maximum ship motion. Our objective is to resolve

the PDF of the ship motion pr(r), with high precision on its tail part. In practice, the

computation of map r requires expensive CFD computations. Hence only a limited

number of computations can be conducted. Even though the dimension of sample

space is low, the required number of CFD simulations is still too large due to the low
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Figure 2.4: An example of the joint PDF pLA(L,A) of L and A, normalized respec-
tively by spectral peak wavelength Lp and significant wave height Hs.

probability of extreme motions.

We next describe a sequential sampling method which significantly reduces the

number of samples (thus computational cost). Compared with the full Monte Carlo

(or importance sampling) which generates all samples based only on px(x), our se-

quential sampling generates samples making use of the previous samples and the

corresponding values of r from simulations to stress the tail part. The implementa-

tion requires (i) a surrogate model to approximate the map r, and (ii) solution of

an optimization problem to obtain the next-best sample which provides the fastest

convergence rate for the tail part of pr(r). The two components are next described

in details.

For the surrogate model, we use the Gaussian process regression (GPR, a.k.a.

Kriging), which is a well-developed method in machine learning [113] and geostatis-

tics [65]. Given a number of available parameter-to-response pairs D = {xi, r(xi)}ni=1,

the GPR predicts the function r(x) as a posterior Gaussian process: r(x)|D ∼

GP
(
E(r(x)|D), cov(r(x), r(x′)|D)

)
with detailed formulae of mean and covariance
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Figure 2.5: A schematic plot for the Gaussian process regression (GPR) and the re-
sulted response PDF, by assuming only the group length L as parameter and n = 4.
(a) predictive mean r̂4(L) ( ) and uncertainty bounds r̂4(L)± σ4(L) ( ) obtained
from four parameter-to-response pairs. (b) pr̂4(r) ( ), pr+4 (r) and pr

−
4
(r) ( ) calcu-

lated from r̂4, r̂4 + σ4 and r̂4 − σ4. (c) predictive mean r̂5(L; L̃) ( ) and uncertainty
bounds r̂5(L; L̃) ± σ5(L; L̃) ( ) obtained from existing four parameter-to-response
pairs and (L̃, r̂4(L̃)). (d) pr̂5(r) ( ), pr+5 (r) and pr−5 (r) ( ) calculated from r̂5,
r̂5 + σ5 and r̂5 − σ5.

summarized in Appendix A. For convenience, we hereafter denote the n-pair predic-

tive mean and standard deviation as r̂n(x) and σn(x).

To visualize the concept, we show a schematic plot in figure 2.5(a), where we use

n = 4 and group length L as the parameter for simplicity. Taking the predictive mean

r̂n as a (cheap) surrogate model, we are able to calculate the PDF of the response

pr̂n(r) using a large number of samples. In addition, the upper and lower uncertainty

bounds of the PDF, pr+n (r) and pr−n (r), can be calculated from, say, r̂n+σn and r̂n−σn

(figure 2.5(b)). Suppose again we have a dataset D = {xi, r(xi)}ni=1 where r(xi) is

computed by CFD simulations. We aim to find the next-best sample which leads

to the fastest convergence of the tail part of pr(r). Given an arbitrary next sample

x̃, the surrogate model r̂n can be used to predict its response r̂n(x̃). This provides
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us with n + 1 parameter-to-response pairs D ∪ (x̃, r̂n(x̃)), from which a new GRP

can be performed to develop an updated surrogate model r̂n+1(x; x̃), as well as the

resulted PDF pr̂n+1(r; x̃). Due to the additional information provided by (x̃, r̂n(x̃)),

the uncertainties of both r̂n+1(x; x̃) and pr̂n+1(r; x̃) are reduced, compared with r̂n(x)

and pr̂n(r). The schematic plot of this procedure is shown in figure 2.5 (c) and (d).

We note that both r̂n+1(x; x̃) and pr̂n+1(r; x̃) depend on the (n+1)th sample x̃. To

find the optimal x̃ for the resolution of the tail of pr(r), we construct an optimization

problem with an acquisition function

U(x̃) =

∫
|pr+n+1

(r; x̃)− pr−n+1
(r; x̃)|rmdr, (2.8)

where pr±n+1
(r; x̃) are uncertainty bounds of pr̂n+1(r; x̃) calculated from r̂n+1 + σ̂n+1

and r̂n+1 − σ̂n+1. r
m is a weighting factor which gives more weight for a larger value

of r (i.e., tail of pr̂n+1(r; x̃)) with m≫ 1. We use m = 6 in our current work.

The acquisition function (2.8) is different from the one used in [95], which stresses

the low probability part of pr̂n+1(r; x̃) by defining U based on the difference of log-

PDF without the weighting factor. However, a low probability does not necessarily

mean a large response (it may also correspond to an extremely small response). In

contrast, the function (2.8) provides a direct measure of the uncertainty of pr̂n+1(r; x̃)

focusing on the part of extreme (large) responses, with the level of ‘extreme’ tunable

by the value of m. We also remark that the sequential sampling based on (2.8) can

explore all extremes in a multi-modal response function given sufficient samples.

The next-best sample x∗ is chosen from the sample space by solving the optimiza-

tion problem

x∗ = argminx̃ U(x̃). (2.9)

In our current work, (2.9) is numerically solved using a particle swarm method [110].

The sequential sampling process is repeated for the next-best sampling until satisfac-
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tory convergence is achieved for the tail part of pr(r). We summarize the algorithm

of the whole process in the Algorithm 1.

Algorithm 1 Bayesian experimental design for extreme ship response statistics

Require: Number of initial samples ninit and sequential samples nseq

Input: Initial dataset D = {xi, r(xi)}ninit
i=1

Initialization n = ninit

while n < ninit + nseq do
Train the surrogate model with D
Solve (2.9) to find the next best sample x∗

Implement numerical simulation to get r(x∗)
Update the dataset D = D ∪ {x∗, r(x∗)}
n = n+ 1

end while
Output: Compute the ship motion PDF based on the surrogate model

2.3 Validation of the framework

For validation, it is desirable to compare PDF from our reduced-order approach with

the exact motion response PDF pr(r). This requires a cheap parameter-to-response

map r such that pr(r) can be efficiently calculated. For this purpose, we use a

nonlinear roll equation [142] to calculate the time series of ship roll ξ(t) from a given

group signal η(t;x):

ξ̈ + α1ξ̇ + α2ξ̇
3 + (β1 + ϵ1 cos(χ)η(t;x))ξ + β2ξ

3 = ϵ2 sin(χ)η(t;x), (2.10)

which phenomenologically models the ship roll motion due to nonlinear resonance and

parametric roll in oblique irregular waves. We use empirical coefficients α1 = 0.25,

α2 = 0.1, β1 = 0.04, β2 = −0.01, ϵ1 = 0.006, ϵ2 = 0.008 and χ = π/6. (2.10)

is numerically integrated with a 4th-order Runge-Kutta method from zero initial

condition to obtain the group-maximum response r(x) = max(ξ(t;x)). The values

of parameters are tuned such that the r is not sensitive to the initial conditions for
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η(t;x) described by (2.1) and (2.2).

To obtain the time series η(t;x) for a given x, we first construct the localized

Gaussian group from (2.2) and then the spatial surface elevation η(x;x) from (2.1).

The effect of ϕ(x) is neglected in (2.1), since the phase modulation ϕ(x) can be

considered almost a constant within a wave group (see figure 2.2(b)) for a sufficiently

narrow-band wave spectrum. The relatively large variation of ϕ(x) occurs near the

end of the wave group, which is expected to have a much smaller impact on the

extreme motion response than x ≡ (L,A). Given η(x;x), η(t;x) is then constructed

by considering the propagation of each wave mode by linear dispersion velocity.

To calculate the exact motion PDF pr(r), we generate ρc(t) from ρc(x) (figure

2.2(a)) in a similar manner, which is then substituted to (2.10) in replacement of

η(t;x). This is conducted for all ρc(x) in the ensemble of nonlinear wave fields to

obtain a collection of r(x), which is then used to calculate pr(r).

We next describe the implementation of our framework on this simplified ship roll

problem. We consider an initial narrow-band wave spectrum in a Gaussian form:

F (k) ∼ exp
−(k − k0)

2

2K2
, (2.11)

with significant wave height Hs = 12m, peak (carrier) wavenumber k0 = 0.018m−1

(corresponding to peak period Tp = 15s), and K = 0.05k0. Four hundred HOS

simulations are run, where each of them has a domain length of 64 times the peak

wavelength. The ensemble of nonlinear wave fields are collected at t = 50Tp, for which

the wave parameterization method discussed before is used to generate the joint PDF

of L and A.

The sampling process in the space (L,A) is performed as follows. We first generate

six random samples (following pLA(L,A)) and calculate their response r from (2.10) as

the initial dataset. Then we conduct twelve sequential samplings to compute pseqr̂18
(r).
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Figure 2.6: Samples and PDFs from sequential and random samplings. Left: Initial 6
random samples ( ), subsequently 12 sequential samples ( ) and 12 random samples
( ) in contour plot of pLA(L,A) ( ) and r(L,A) ( ). Right: The exact roll PDF
pr(r) ( ), sequential-sampling PDF pseqr̂18

(r) ( ) and random-sampling PDF pranr̂18
(r)

( ) plotted on both linear and log axes. The 95% confidence interval for pseqr̂18
(r) is

included ( ) in the log-axis plot.

Figure 2.7: Samples and PDFs from sequential and random samplings. Left: initial 6
random samples ( ), subsequently 12 sequential samples ( ) and 120 random samples
( ) in contour plot of pLA(L,A) ( ) and r(L,A) ( ). Right: The exact roll PDF
pr(r) ( ), sequential-sampling PDF pseqr̂18

(r) ( ) and random-sampling PDF pranr̂126
(r)

( ) plotted on both linear and log axes.
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For comparison, a random sampling approach with an equal number of samples is

also conducted to compute pranr̂18
(r) (based on the GPR surrogate model constructed

from 18 random samples).

The PDFs pseqr̂18
(r), pranr̂18

(r) and pr(r), as well as the 95% confidence interval for

pseqr̂18
(r), are plotted in figure 2.6, on both linear and log scales. It can be seen that

the result from the sequential sampling is much closer to the exact PDF compared

to the result from the random sampling. With the left sub-figure showing the loca-

tions of the samples, we see that the random samples are concentrated in the high

probability region of pLA(L,A), while the sequential samples explore the region with

large response (combined with nontrivial probability). In order to obtain comparable

roll PDF using random sampling, at least one order of magnitude more samples are

needed. Figure 2.7 shows the result pranr̂126
(r) obtained from 120 random samples (after

the 6 initial ones), which is still less accurate than pseqr̂18
(r) in terms of the tail part of

the PDF.

2.4 Effects of wave nonlinearity

Our framework allows the direct resolution of wave nonlinearity effect on the ship

response statistics. It has been experimentally and numerically demonstrated that

the modulational instability of nonlinear waves result in the non-Gaussian statistics

(in terms of a heavy-tail PDF) of the surface elevations [103, 155]. Based on this, we

expect the extreme ship response statistics to be enhanced when nonlinearity effect

is included for the wave field.

To illustrate the effect of wave nonlinearity, we generate an initial linear wave field

from the spectrum (2.11) using independent and random phase distributions, i.e.,

with surface elevation following Gaussian statistics. An ensemble of four hundred

HOS simulations (with domain length of 64 times of the peak wavelength) are used
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Figure 2.8: PDFs of (a) surface elevation and (b) roll response at t = 0 ( ), 20Tp
( ), 30Tp ( ) and 50Tp ( ). The Gaussian PDF is plotted in (a) with ( ).

to compute the evolution of wave statistics with time. Figure 2.8(a) shows the PDFs

of surface elevations at t = 0, 20Tp, 30Tp and 50Tp respectively. It is clear that

the PDF at t = 0 follows closely a Gaussian tail. With the increase of time, a

heavier tail develops due to the nonlinear wave effect, indicating a higher probability

of extreme waves in the field. We compute the response PDF using roll equation

and sequential sampling with wave group statistics calculated from the wave fields in

each instant of figure 2.8(a), with the results shown in figure 2.8(b). We can clearly

observe the development of enhanced extreme ship motion statistics with the increase

of time. Since the evolution of wave spectrum in O(10 − 50)Tp is relatively mild,

it is not unreasonable to associate the enhanced motion statistics to non-Gaussian

wave statistics developed due to the wave nonlinearity. While this case qualitatively

demonstrates the influence of wave nonlinearity on extreme ship motion statistics,

more studies are warrantied in future work to quantify this effect.

2.5 Coupling with CFD

In this section, we use CFD simulations to compute the ship motion response in a

given incident wave group described by parameters L and A. For each sample in

the wave parameter space, we define the initial condition of CFD simulation using
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the profile of a propagating wave group with parameters L and A, and compute the

maximum response as the output of the simulation. For simplicity, we consider the

motion of a two-dimensional (2D), square-shaped hull geometry with 40m × 40m

cross section and density ρh = 0.5ρw with ρw being the water density. The turbulence

effects are neglected in the simulations. Our interest is to resolve the extreme roll

statistics using the framework described above. In spite of the simplification (in terms

of the 2D geometry), this computation is sufficient to demonstrate the effectiveness

of the new framework when coupled to CFD, which enables more realistic problems

to be studied.

2.5.1 CFD model

The CFD simulations in this work are performed using the open-source code Open-

FOAM [63]. We next describe the details of our model.

2.5.1.1 Mathematical formulation

The air-water interface in CFD is modeled by the volume fraction γ (γ = 0 for air and

γ = 1 for water). To capture the evolution of the γ field, we use the interFoam solver,

which is based on an algebraic volume of fluid (AVOF) approach. In AVOF, the flux

of volume fraction γ is computed algebraically without a geometric reconstruction

of the interface [93]. An interfacial compression term is used to mitigate the effects

of numerical smearing of the interface [28]. The governing equations of the problem

include the continuity equation, the momentum equation and the volume fraction

equation:

∇ · u = 0, (2.12)

∂(ρu)

∂t
+∇ · (ρuu) =−∇pd +∇ · (µ∇u)

+∇u · ∇µ− g · x∇ρ,
(2.13)
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∂γ

∂t
+∇ · (uγ) +∇ · (urγ(1− γ)) = 0, (2.14)

where u is the velocity field, pd = p−ρg ·x is the modified pressure, with p being the

pressure, and g the gravitational acceleration vector, and x the position vector. The

fluid properties, including the density ρ and the dynamic viscosity µ are calculated

as weighted averages based on γ,

ρ = γρw + (1− γ)ρa, (2.15)

µ = γµw + (1− γ)µa, (2.16)

where the subscripts w and a correspond to water and air respectively. In (2.14),

the last term (with tuned parameter ur) represents an artificial compression of the

interface to mitigate the numerical diffusion [12].

The motion of the hull is calculated based on the force exerted by flow pressure

and shear stress. The hull is considered as a rigid body, whose motion is solved by

numerical integration implemented by the Newmark method [99]:

Ẋn+1 = Ẋn + (1− α)∆tẌn + α∆tẌn+1, (2.17)

Xn+1 = Xn +∆tẊn +
1− 2β

2
∆t2Ẍn + β∆t2Ẍn+1, (2.18)

where X represents the linear displacement of the heave and sway motion, and the

angular displacement of the roll motion, ∆t is the time step, α and β are user-defined

coefficients. Typically, α = 0.5, β = 0.25 are the most common choices and are used

in our study.

2.5.1.2 Computational grids

The 2D computational domain is discretized by a Cartesian mesh with refined grids

near the free surface (see figure 2.9(a)). The dynamic mesh is used around the hull,
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Figure 2.9: (a) The mesh around the hull with a refined region near the free surface;
(b) The deformed mesh around the moving hull. The interface is marked by a blue
solid line. The boundaries of inner distance and outer distance are marked by red
dashed lines.

allowing the mesh to deform when the hull moves. The region of mesh deformation is

controlled both inner and outer distance: the grids within the inner distance from the

body surface move with the hull as a rigid body; the grids between the inner distance

and the outer distance can be morphed; and the grids outside the outer distance do

not move (see figure 2.9(b)).

2.5.1.3 Initial condition and boundary conditions

The initial condition of the simulation includes the initial fields γ0(x, z) ≡ γ(x, z, t =

0) and u0(x, z) ≡ u(x, z, t = 0), where z is the coordinate in the vertical direction and

t is the time. These initial fields are defined separately for the left and right parts of

the computation domain (see figure 2.10). For the right part, we consider the situation

of a stationary hull floating on still water, with a corresponding volume fraction

γ0(x, z), and velocity u0(x, z) = 0. For the left part, the initial condition represents

the profile of a propagating wave group with parameters L and A. In particular, the

γ0(x, z) field is specified from the free surface position η0(x) = η(x;A,L) (see (2.1)
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Figure 2.10: (a) the window function w(x); (b) a typical initial field γ0(x, z). The
border of the left and right domains is indicated by a dashed line.

and (2.2)) by

γ0(x, z) =


0, z > η0(x)

1, z < η0(x)

. (2.19)

The u0(x, z) field is calculated correspondingly assuming a linear dispersion relation

for each wave mode of η0(x), namely with the horizontal and vertical velocity com-

ponents

u0(x, z) =
N∑
j=1

ajωj
cosh[kj(z + h)]

sinh(kjh)
cos(kjx+ ψj), (2.20)

v0(x, z) =
N∑
j=1

ajωj
sinh[kj(z + h)]

sinh(kjh)
sin(kjx+ ψj), (2.21)

where aj cos(kjx + ψj) is the mode j of η0(x), with aj the amplitude, kj the modal

wavenumber, and ψj the modal phase. ωj =
√
gkj tanh(kjh) is the angular frequency

of mode j, h is the water depth (300m in our case).

To obtain a smooth field as the initial condition, a window function w(x) is multi-

plied to γ0(x, z) and u0(x, z) to remove the discontinuity between the wave field and

the still-water field at both ends of the wave group. This is illustrated in figure 2.10
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along with the resulted initial γ0(x, z) field.

Periodic boundary conditions are used at the left and right ends of the domain, al-

lowing the wave to keep propagating without reflection after interacting with the hull.

We have tested that the domain is sufficiently large such that the periodic boundary

does not result in spurious waves interacting with the body (in the time period of the

simulation). At the bottom of the domain, a slip-wall boundary condition is used.

At the top, the pressureInletOutletlVelocity boundary condition is used, which is a

modified zero-gradient velocity condition. For the boundaries on the floating hull, the

no-slip boundary condition is used, which sets the fluid velocity to the same value as

the velocity of the moving rigid body.

2.5.1.4 A typical case

We show the result of a typical case with A = 8.1m and L = 332.7m in figure 2.11. A

snapshot of the γ(x, z) field is shown in figure 2.11(a) in the process of a wave group

interacting with the hull. The time series of roll angle ξ(t) is shown in figure 2.11(b).

The group-maximum response is then taken as the maximum of ξ(t), which is used

in the sequential sampling.

2.5.2 Results

The wave parameter space px(x) is generated using the initial condition (2.11) with

data collected at t = 20Tp. The sequential sampling is coupled with CFD simulations

to compute pr(r). We again use 6 random samples (as well as r(x) obtained from

CFD) as the initial dataset. Then 14 sequential samples are performed to compute

pr̂20(r). Since the exact pr(r) is not available for this problem, we plot pr̂n(r) for

different n in figure 2.12. We see that there is a clear trend of convergence for the

tail of pr̂n(r) as n increases. For the last few samples (n = 16 ∼ 20), the tail of the

PDF oscillates in small regions, indicating the convergence of the extreme statistics.
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Figure 2.11: The result from a typical case with A = 8.1m and L = 332.7m. (a) a
snapshot of the γ(x, z) field in the process of a wave group interacting with the hull;
(b) time series of ξ(t).

We also plot U(xn) as a function of the sample number n in figure 2.13(a). We

see that at the end of 20 samples, the value of U(xn) almost converges to a constant

level. Nevertheless, this constant level is higher than U at previous samples, e.g.,

U(x20) > U(x10). This is due to the shift of the tail of pr̂n(r) to the right (or larger

values of r), which results in an increase of U through the factor rm (see (2.8)). An

alternative metric to quantify the uncertainty level of the PDF tail can be defined as

U ′ = U(xn)/max(r̂n(x))
7, where max(r̂n(x)) provides the maximum value of response

from all parameters x. Compared to U , U ′ removes the effect of the right-shifting of

the PDF tail, and focuses only on the difference between the upper and lower bounds

of the tail. The metric U ′(xn) as a function of n is plotted in figure 2.13(b), showing

a satisfactory convergence over all samples.
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Figure 2.12: The PDFs pr̂n(r) for different n.

Figure 2.13: (a) U(xn) as a function of the sample number n; (b) U ′(xn) as a function
of the sample number n
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2.6 Summary

Building on existing methods, we implement a computational framework which allows

an efficient resolution of extreme ship motion statistics in narrow-band nonlinear

wave fields. Three key components are included in the framework: (1) generation

of an ensemble of nonlinear wave fields using the high-order spectral method; (2)

wave group parameterization to reduce the high-dimensional wave field to a low-

dimensional space of (L,A); and (3) sequential sampling to obtain the motion response

PDF pr(r) with fastest convergence rate of its tail, i.e., extreme motion part. In

addition to some improvements to the existing methods, our framework allows the

effect of wave nonlinearity to be incorporated in the computation of ship response

statistics. The framework is validated through a simplified problem of roll motion

predicted by a nonlinear roll equation, where the sequential sampling are shown to

be effective in obtaining accurate pr(r) with significantly reduced computational cost.

The capability of the framework to include nonlinearity of the waves have also been

demonstrated in an evolving nonlinear wave field. We finally demonstrate the coupling

of the framework with CFD to resolve the extreme roll statistics of a two-dimensional,

square-shaped hull.

We note that three approximations in our method require further considerations:

(1) The Gaussian wave group representation neglects the deviation of realistic wave

groups from Gaussian functions; (2) The application of a constant phase modulation

ignores its variation within a wave group; (3) The use of zero initial conditions ne-

glects the high variability of initial conditions in a wave field with multiple groups.

The impact of factors (1) and (2) can be considered insignificant in the limit of narrow-

band wave field, with their effects increasing with the increase of spectral bandwidth.

The impact of (3) is negligible only for dynamical systems where the maximum re-

sponses are not sensitive to initial conditions (such as the roll equation considered

in this chapter). For general cases, the uncertainties associated with (1)-(3) have to

30



be considered, which will be discussed in §4. We also remark that the computation

of the acquisition (2.8) involves resolving the upper and lower bound PDFs, which is

relatively expensive. Different methods to reduce this cost will be introduced later in

§5 and §7.
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CHAPTER 3

Efficient Computation of Temporal

Exceeding Probability of Ship Motions

3.1 Introduction

In the previous chapter, we have built a computational framework targeting group-

maximum statistics defined in terms of the maximum motion response in each (iso-

lated) wave group. While the group-maximum statistics is indeed a natural metric to

compute under the wave group parameterization, this concept is not sufficient under

certain circumstances. First, the group-maximum statistics, say, exceedance proba-

bility of the group-maximum response, depends on additional parameters to define

wave groups, e.g., the overrun threshold in the Markov-chain method or the simi-

larity score in the Gaussian group method. Depending on values of these additional

parameters, different numbers of groups can be defined in a time series, which affects

the denominator in calculating the group-based probability. In most cases, in order

to make physical sense of this probability, one needs to combine it with the encounter

rate of groups in a wave field, which requires an additional step in the computation.

Second, if both the group-maximum exceedance probability and group encounter rate

are available, one can further compute valuable derivatives such as the probability of

the number of exceedances in a given exposure time period. However, this probabil-

ity quantity is still not informative enough in two aspects: (1) the group-maximum
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approach ignores the situation when multiple exceedances occur in one wave group,

which would be counted as only one exceedance since only the group-maximum re-

sponse is computed. Therefore, the probability on the number of exceedance is only

strictly valid if the exceeding threshold is sufficiently high (so that in each group there

is at most one exceedance). (2) Knowing the number of exceedances does not provide

information about the “severity” of the exceedance, e.g., how long the exceedance

lasts.

In contrast, the temporal exceeding probability (i.e., percentage of the exposure

time that ship responses are greater than a given large threshold) provides an im-

portant complement to the group-maximum exceeding probability, with the following

advantages: (a) the calculation of temporal exceeding probability, as will be discussed

in detail, naturally incorporates the information of wave group encounter rate so that

no additional step is needed. (b) It safely accounts for multiple exceedances in one

group and quantifies the ‘severity’ of the exceedance by the exceeding time. In com-

puting the temporal exceeding probability, the group parameterization remains as an

effective way for dimension reduction of the wave field (although the final result does

not depend on the defined groups as we will demonstrate later in the chapter). One

may expect to further consider the motion exceeding time as the response function

of group parameters and apply the sequential sampling or Bayesian experimental de-

sign (BED). However, this operation introduces additional difficulties that need to be

resolved by substantial developments in both components involved in sequential sam-

pling — the surrogate model and acquisition function. While a standard Gaussian

process regression (GPR) is sufficient as a surrogate model to compute the group-

maximum response (as a smoothly varying response function), great challenges, i.e.,

prediction errors, arise if the group exceeding time is used as a response function.

This is because the group exceeding time as a response function is characterized by

two drastically different scales of variation in the regions of zero values (for the major-
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ity of the inputs) and positive values (for ‘dangerous’ critical wave groups) separated

by the limiting state. In addition, the existing acquisition functions for exceeding

probability [136, 31, 15, 149, 59, 74, 135, 163] mainly focus on sampling at the limit-

ing state, which becomes insufficient for temporal exceeding probability for which the

wave groups leading to longer exceeding time matter more than those at the limiting

state.

In this chapter, we address the above two problems in the sequential BED pro-

cedure, enabling an efficient computation of temporal exceeding probability of ship

responses in a random wave field. Specifically, we construct a uniformly-varying (i.e.,

varying with the same or comparable length scale) response function derived from the

group exceeding time which eliminates the prediction errors in GPR while not affect-

ing the final solution of exceeding probability. We then formulate a new acquisition

function focusing on sampling wave groups associated with significant exceeding time

rather than at the limiting state. We validate our developed computational frame-

work in a case of ship response calculated by a nonlinear roll equation, in terms of the

agreement of our obtained result with the true solution, and the independence of our

result to different criteria to define wave groups. Finally, we demonstrate the coupling

of our framework to CFD models to enable the computation for more realistic and

general ship response problems.

This chapter is adapted from [49]. The Python code for the proposed algorithm,

named gpship, is available on Github1.

1https://github.com/umbrellagong/gpship

34



3.2 Method

3.2.1 Problem setup

We start from a narrow-band wave field with a sufficiently long time series of wave

elevation η(t), t ∈ [0, Tend]. There is no restriction on how η(t) should be obtained. It

can be extracted from real oceanic data, nonlinear wave simulations [29, 151, 148], or

linear wave construction given a spectrum [102] (which we use in the current work).

Our objective is to compute the temporal exceeding probability (i.e., percentage of

time that the ship response is larger than a threshold rs) when a ship goes through

the wave field described by time series η(t), defined as

Ptemp =

∫ Tend

0
1
(
|ξ(t)| − rs

)
dt

Tend
, (3.1)

where ξ(t) is the time series of ship response caused by waves η(t), rs the response

threshold, and 1(·) is a Heaviside function:

1(x) =


1, if x > 0

0, if x ≤ 0

. (3.2)

The computation of Ptemp, as defined in (3.1), involves a simulation of the ship re-

sponse from η(t), which needs to be extremely long to cover (many times) all wave

conditions associated with a given wave spectrum. If high-fidelity models (e.g., CFD)

are used for this computation, the computational cost can become prohibitively high.

In order to reduce the overall computational cost, we can parameterize the time

series η(t) into wave groups. Specifically, we compute the envelope process ρ(t) from

η(t) through the Hilbert transform [127] (figure 3.1(a)), and then construct Gaussian-
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Figure 3.1: (a) surface elevation η(t) ( ) and the corresponding envelope process
ρ(t) ( ) in a random wave field. (b) ρ(t) ( ) fitted by an ensemble of Gaussian
wave groups ρi(t)( ) with parameters l and a. (c) probability distribution pLA(l, a)
obtained from the whole wave field.

like wave groups ρi(t) which best fit ρ(t) locally:

ρi(t) = ai exp
−(t− ti)

2

2l2i
, (3.3)

where ti, ai, and li are respectively the temporal location, amplitude and length of

group i that are selected to fit ρ(t) (see figure 3.1(b)). This construction relies on the

group detection algorithm detailed in §2.2.1. The final identification of a wave group

is based on the tolerance of a discrepancy index

Di(li, ai, ti) =

∫ ti+2li
ti−2li

(
ρ(t)− ρi(t)

)2
dt∫ ti+2li

ti−2li
ρi(t)2dt

. (3.4)

Only groups with Di < Dthr are qualified as wave groups in the time series η(t), with

Dthr serving as a user-defined (subjective) criterion to define wave groups.
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Based on the detected groups, we can construct an approximation of Ptemp as

P a
temp =

∑m
i=1 S(li, ai)

Tend
≡ m

Tend

∫
S(l, a)pLA(l, a) dlda, (3.5)

where the input-to-response (ItR) function S(li, ai) =
∫
1
(
|r(t; li, ai)| − rs

)
dt is the

time of responses r(t; li, ai) exceeding rs in group (li, ai), m is the total number of

groups in η(t). In (3.5), P a
temp is expressed in two equivalent ways, the first through

the summation of exceeding times over all groups in η(t), and the second through

sampling in the parameter space (L,A) with known probability distribution pLA(l, a)

obtained from η(t) (see figure 3.1(c)). The equivalence of these two expressions can be

demonstrated by computing
∫
S(l, a)pLA(l, a) dlda with sufficiently large m samples

in a Monte Carlo way, i.e.,
∫
S(l, a)pLA(l, a) dlda =

∑m
i=1 S(li, ai)/m. We note that

P a
temp is an approximation to Ptemp ((3.5) relative to (3.1)) since certain information

is lost when the group parameterization is conducted. For a narrow-band wave field,

the most influential information lost is the initial condition of the ship encountering

a wave group that can cause deviation of P a
temp from Ptemp, as carefully analyzed in

[44]. In this work, we focus on the efficient sampling method to compute P a
temp, and

discuss how the proposed method can be further developed for the computation of

Ptemp in §3.3.

We also remark that although the definition in (3.5) involves group numbers m

(that depends on the group definition criterion through Dthr), P a
temp can be considered

to be independent of Dthr in the practical calculation. This can be easily understood

from (3.5) especially through the definition with summation of S. As long as the large

groups leading to positive S(li, ai) are correctly identified, P a
temp remains constant

even though the number of small wave groups varies. This is generally true with our

group detection algorithm where the threshold Dthr only affects the identification of

small wave groups (that are ambiguous in nature). One may alternatively argue that
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another measure could be defined as the number of groups leading to the exceedance

within [0, Tend], which is also invariant due to the above argument and involves only

the group maximum in its computation. However, such a measure provides less

information since S(li, ai) additionally captures the ‘severity’ of a given wave group

as discussed in §3.1.

Our next task is to design an efficient method for the computation of P a
temp with-

out going through the physical computation of S(li, ai) for each group. In principle

this will be achieved through Bayesian experimental design (BED) to compute the

response from a few informative groups for the construction of function S(l, a). In the

following sections, we will introduce two basic components of BED specifically in the

context of the computation of P a
temp: (1) an inexpensive surrogate model to obtain

S based on Gaussian process regression (GPR), and (2) an acquisitive function to

sequentially select the next-best sample for acceleration of the convergence to P a
temp.

3.2.2 Surrogate model

As a general procedure in BED, we may construct a surrogate model for

S(l, a) through the Gaussian progress regression (GPR). Given a dataset D =

{(li, ai), f(li, ai)}i=n
i=1 consisting of n inputs and the corresponding outputs, our ob-

jective is to infer the underlying function f , which can be expressed by a Gaussian

process

f(l, a)|D ∼ N
(
E(f(l, a)|D), cov(f(l, a), f(l′, a′)|D)

)
, (3.6)

with details of the mean and covariance summarized in Appendix A.

However, a direct application of the GPR on function S(l, a) can be problematic,

especially in the context of the computation in (3.5). By definition as the exceeding

time, the function S is characterized by zero function values for majority of the input

parameters (l, a) and positive for only critical ranges of input. The two regions are
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Figure 3.2: A one-dimensional (1D) demonstration of the issues regarding GPR for
exceeding time. This example can be perceived with variable x as the group amplitude
a with fixed group length, say l = 1. (a) The response function of exceeding time
S(x) ( ) and the input probability distribution px(x) ( ); (b) The function S(x)
( ) and the mean of GPR prediction E(S(x)|D) ( ) with five sample points ( ), as
well as the false positive region as the shaded area; (c) The function S(x) ( ) and
the auxiliary function h(x) ( ).

associated with drastically different scales of functional variation (the former as a

constant with no variation and the latter with much faster variation). In addition,

the probability of the input is usually heavily placed on the region where the function

value is zero (i.e., majority of groups leading to no exceedance), with the situation

illustrated in a phenomenological 1D example in figure 3.2(a). If a GPR is placed on

the dataset from such a function, the predicted function is sketched in figure 3.2(b),

where prediction errors are inevitably associated with the part with S = 0. These

errors are devastating for the computation of P a
temp when the false positive value of S

is accompanied by a large input group probability pLA(l, a), leading to a significant

false exceeding probability (considering that the true value of P a
temp is small). This

situation can only be alleviated if we have a (very) large number of samples in the

region of S = 0, but this contradicts the goal of the sequential sampling to place the

emphasis in regions with large exceeding time.

To solve this problem, we define an auxiliary function h(l, a) derived from S(l, a),

where h contains the information about exceeding time in S and is favorable for GPR

to learn. Ideally, h is required to be a function of uniform scale of variation and free
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of false positive value of exceedance. Considering these constraints, a function h can

be defined as

h(l, a) =


S(l, a)

l
, if S(l, a) > 0

rmax(l, a)− rs
rs

, if S(l, a) = 0

. (3.7)

where rmax(l, a) = maxt |r(t; l, a)| is the group-maximum response in the group (l, a).

When S = 0, function h takes negative values with rmax − rs serving as a “negative

penalty” quantifying how far the response is from the threshold. In such a way, the

false positive value of S can be avoided. We also normalize the two piecewise segments

of h respectively by factors l and rs so that both segments are in O(1), ensuring the

uniform scale of variation. Figure 3.2(c) demonstrates a typical function h in the 1D

example.

After the GPR of h is available, we can recover function S by S ≡ 1(h)h l. Such

recovered S is also free of false positive values because of the “negative penalty”

placed on h.

3.2.3 Acquisition function

Given the function h (and S) learned from the GPR based on dataset D, P a
temp can be

considered as a random variable with its randomness resulting from the uncertainty

in h. The uncertainty in P a
temp can therefore be estimated as

U(D) =

∑m
i=1

∣∣S+(li, ai|D)− S−(li, ai|D)
∣∣

Tend
, (3.8)

where S±(li, ai|D) = 1
(
h±(li, ai|D)

)
h±(li, ai|D) li, with h± the upper and lower

bound of h estimated by (one standard deviation up and below)

h±(l, a|D) = E(h(l, a)|D) ± std(h(l, a)|D). (3.9)
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Our purpose is to select the next sample, after adding which the uncertainty in

P a
temp is significantly reduced. For an efficient way to fulfill this purpose, we further

formulate the uncertainty in P a
temp after adding one hypothetical sample at l̃, ã:

U(D, l̃, ã) =
∑m

i=1

∣∣S+
(
li, ai|D, h(l̃, ã)

)
− S−(li, ai|D, h(l̃, ã))∣∣

Tend
(3.10)

with h(l̃, ã) = E(h(l̃, ã)|D) the mean prediction in (3.6). The computation of

S±(li, ai|D, h(l̃, ã)) relies on h±(li, ai|D, h(l̃, ã)), with the formulation of the latter

detailed in Appendix A.

The selection of the next sample can then be formulated as an optimization prob-

lem to minimize the hypothetical next-step uncertainty:

l∗, a∗ = argminl̃,ã U(D, l̃, ã), (3.11)

which can be solved using standard optimization methods. In our work, we apply

a combined brute-force grid search (with coarse grid) and a gradient-based (for fine

search) method2 in the two-dimensional space.

We note that if the (initial) dataset D contains only samples far from exceedance,

h±(li, ai) can be negative for all wave groups (see figure 3.3(a)). As a result,

S±(li, ai) = 0 and the uncertainty defined in (3.10) vanishes (figure 3.3(c)). Un-

der these situations, in order to robustly initiate the sequential sampling, one can

temporarily apply a ‘soft’ indicator function in computing S±(li, ai), i.e., we use a

logistic function 1/(1 + e−c h±
) with c ≫ 1 instead of 1(h±) (figure 3.3(b)). This

procedure replaces the zero values of S±(li, ai) by small positive values, but with

meaningful uncertainties (represented by the upper and lower bounds) to drive the

next sample to regions with larger exceedance (figure 3.3(c)).

We summarize the full BED algorithm in Algorithm 2.

2https://github.com/scipy/scipy/blob/v1.8.1/scipy/optimize/_optimize.py
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Figure 3.3: A 1D demonstration of the effect of softer indicator function. This ex-
ample can be perceived with variable x as the group amplitude a with fixed group
length, say l = 1. (a) upper and lower bounds h±(x) ( ) generated from sample
points on true function h(x) ( ) that are far from exceedance ( ); (b) The original
indicator function 1(h) ( ) and the soft indicator function 1/(1+ e−c h) with c = 10
( ); (c) The uncertainty |S+(x|D)− S−(x|D)| as a function of x, computed by the
original ( ) and soft ( ) indicator functions.

Algorithm 2 Bayesian experimental design for temporal exceeding probability

Require: Number of initial samples ninit and sequential samples nseq

Input: Initial dataset D = {(li, ai), h(li, ai)}ninit
i=1

Initialization n = ninit

while n < ninit + nseq do
Train the surrogate model (3.6) with D
Solve (3.11) to find the next best sample (ln+1, an+1)
Implement numerical simulation to get h(ln+1, an+1)
Update the dataset D = D ∪ {(ln+1, an+1), h(ln+1, an+1)}
n = n+ 1

end while
Output: Compute the temporal exceeding probability (3.5) based on the surrogate
model
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3.3 Validation of the Method

In this section, we compute P a
temp by the proposed sequential sampling approach,

with comparison to the result from the space-filling Latin hypercube (LH) sampling

and the true solution of P a
temp. In addition, we will discuss the invariance of P a

temp,

the difference between P a
temp and Ptemp and suggest improved methods to eventually

capture Ptemp. Since P a
temp and Ptemp need to be accurately evaluated, an efficient

ship response simulator is required. For this work, we use a nonlinear roll equation

to calculate ξ(t) from a given wave signal η(t):

ξ̈ + α1ξ̇ + α2ξ̇|ξ̇|+ (β1 + ϵ1 cos(χ)η(t))ξ + β2r
3 = ϵ2 sin(χ)η(t), (3.12)

which models the ship roll response due to nonlinear resonance and parametric roll

in oblique irregular waves. Empirical coefficients are set as α1 = 0.35, α2 = 0.06,

β1 = 0.04, β2 = −0.1, χ = π/6, ϵ1 = 0.016, and ϵ2 = 0.012. The wave field η(t) to

be decomposed into groups is generated from a narrow-band spectrum of a Gaussian

form:

F (ω) =
H2

s

16

1√
2πd

exp(
−(ω − ωp)

2

2d2
), (3.13)

with ω the angular frequency, Hs = 12m the significant wave height, ωp = 0.067s−1

the peak (carrier) wave frequency (corresponding to peak period Tp = 15s), and

d = 0.02s−1 a parameter of the spectral bandwidth. In particular, we compute

η(t) =
∑

n an cos(n∆ωt + ϕn) with ∆ω = 0.00026s−1, n from 1 to 1024, ϕn being a

random phase for each mode, and an =
√
2F (n∆ω)∆ω.

Before describing the procedure of our computation, we remark that there is no

mathematical proof that the roll statistics resulted from nonlinear equations such as

(3.12) is ergodic or not. Numerical studies over relatively short time intervals suggest

that the roll process may not be ergodic [11], but it is not clear what the situation is

for very long time series (such as our case). Furthermore, if capsize is involved in the
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time series of response, then it is guaranteed that the roll process is non-ergodic. We

have practically avoided this case by tuning the parameters in the model such as the

damping coefficient α1. Under this situation, our computational procedure, described

below, provides a unique answer of P a
temp given any time series of wave elevation that

is sufficiently long (since such time series lead to the same probability distribution of

wave groups). Therefore, as far as P a
temp is considered, the roll process treated by our

approach is assumed (or considered) ergodic.

Following procedures in §3.2.1, the wave field described by (3.13) can be reduced

to a parameter space (L,A) with known probability pLA(l, a) (figure 3.1(c)). In com-

puting P a
temp, the response ξ(t; l, a) from a group (l, a) is needed, which is calculated

by simulation of (3.12) in t ∈ {−3l, 3l} with input η(t; l, a) = a exp(− t2

2l2
) cos(ωpt)

and (0, 0) initial condition at t = −3l. We note that the constant frequency ωp is

justified by the narrow-band setting of the spectrum (3.13). The choice of 3l does not

appreciably affect the final solution as long as the value is sufficiently large to cover

the portion of the group with significant amplitude. The exceeding time in one group

is then computed by S(l, a) =
∫ 3l

−3l
1
(
|ξ(t; l, a)| − rs

)
dt, and the algorithm described

in §3.2.3 can be applied accordingly.

The results of P a
temp for four cases with rs = 0.25, 0.3, 0.35, and 0.37 radians are

respectively shown in figure 3.4 (a), (b), (c), and (d). In addition, we also vary the

parametric parameter in (3.12) with cases of ϵ1 = 0 and ϵ1 = 0.008 shown in (e)

and (f) for rs = 0.3 radians. In all cases, we present results computed by our new

sequential BED sampling and standard LH sampling, along with the true solution of

P a
temp and Ptemp (by brute-force calculations with a large number of groups and a long

time series, with the difference in their values discussed at the end of this section).

The sequential samplings are conducted with an initial data set of 8 LH samples.

In order to have a fair comparison of the results, we perform 100 calculations of

the sequential-sampling and LH-sampling methods with both starting from different
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Figure 3.4: Temporal exceeding probability P a
temp as a function of sampling numbers,

calculated from sequential sampling ( ) and LH sampling ( ), for (a) ϵ1 = 0.016,
rs = 0.25 radians, (b) ϵ1 = 0.016, rs = 0.3, (c) ϵ1 = 0.016, rs = 0.35, (d) ϵ1 = 0.016,
rs = 0.37, (e) ϵ1 = 0, rs = 0.3, and (f) ϵ1 = 0.008, rs = 0.3. The shaded regions
are bounded by the median and 85% of the results from 100 applications of the
corresponding methods. The true solution of P a

temp and Ptemp are respectively shown
by ( ) and ( ).
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Figure 3.5: Positions of sequential samples ( ) for {ϵ1 = 0.016, rs = 0.25} in the space
of S(l, a)pLA(l, a) with a contour plot.

initial samples, and present the median and 85% percentile of the results, with the

difference shaded in figure 3.4 to represent the uncertainty of the results. In general,

it is clear that the sequential-sampling results approach to the true solution of P a
temp

much faster than that by LH sampling, with the former also exhibiting a much smaller

uncertainty. In contrast, even at the end of 60 samples, the LH-sampling results have

not converged yet, reflected by a deviation of the median value from the true solution

of P a
temp (in most cases) and a very large uncertainty (in all cases). The excessive

uncertainty level of the LH-sampling results indicate that a single experiment by LH

sampling has a large chance to provide a solution that significantly deviates from the

true solution of P a
temp. This is especially the case when rs is large such as those in (c)

and (d).

We further examine the reason for the fast convergence of the sequential-sampling

results by plotting the sample positions for case {ϵ1 = 0.016, rs = 0.25} in the space

of S(l, a)pLA(l, a) in figure 3.5. Here the contour of S(l, a)pLA(l, a) provides a measure

of the importance of a group (l, a) in computing P a
temp, which can also be seen from
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Table 3.1: Comparison of P a
temp and P a

group (ϵ1 = 0.016) for varying Dthr and rs.

Dthr
P a
temp P a

group

rs = 0.25 rs = 0.3 rs = 0.35 rs = 0.25 rs = 0.3 rs = 0.35
0.35 0.02566 0.006473 0.0004861 0.2632 0.09884 0.01335
0.30 0.02564 0.006471 0.0004860 0.2781 0.1047 0.01414
0.25 0.02554 0.006462 0.0004859 0.3278 0.1246 0.01688
0.20 0.02467 0.006352 0.0004825 0.4050 0.1598 0.02206

variation1 3.8 % 1.8 % 0.7 % 35 % 38 % 39 %
1 The variation is computed by the relative difference (normalized by the
largest values) in each column.

(3.5). As shown in the figure, most sequential samples are driven to the region with

significant S(l, a)pLA(l, a), indicating the effectiveness of our BED method with new

developments in both the surrogate model and acquisition function.

We next demonstrate the invariance of temporal exceeding probability with group

detection criterion, particularly the threshold Dthr for (3.4). Table 3.1 lists the values

of P a
temp and the group-maximum exceeding probability (P a

group =
∑m

i=1 1(rmax(li, ai)−

rs)/m) for different rs and Dthr (with same ϵ1 = 0.016). For all values of rs, P
a
group

changes more than 30% for Dthr varying from 0.35 to 0.2. In contrast, P a
temp remains

almost a constant, with the very small variation resulting from some small/deformed

groups leading to large motion that escape from the detection.

We finally discuss the difference between P a
temp and Ptemp shown in figure 3.4.

For these cases, P a
temp represents a O(20 − 30%) over-estimation compared to Ptemp.

As discussed in §3.2, the difference between the two quantities is mainly due to the

neglect of the varying initial condition in computing P a
temp. In addition, for general

cases, the over-estimation cannot be guaranteed and it is desirable to develop a more

sophisticated method to directly and efficiently compute Ptemp. We believe that this

can be achieved through the combination of the method in this chapter and techniques

compensating the lost information in the wave group representation, which will be

presented in §4.
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3.4 Coupling with CFD

While our sequential BED method has been validated using a low-fidelity ship motion

model in the previous section, it may be desired to couple the approach to higher-

fidelity (e.g., CFD) models in practical applications. In this section, we demonstrate

such an application with CFD simulations to compute the ship roll responses. For

simplicity, we consider the motion of a two-dimensional (2D), square-shaped hull

geometry with 40m × 40m cross section and density ρh = 0.5ρw with ρw being the

water density. The input wave groups are considered as spatial groups located at a

distance of about 800m from the ship at the initial time, and the ship response is

computed as the wave group travels over 800m and then across the ship.

We remark that the use of spatial wave groups (instead of temporal groups in

§3.3) are convenient and necessary for the CFD settings. Accordingly, in this section,

we interpret t and l in (3.3) as the spatial position and spatial length of the wave

groups. The probability distribution of the parameters is obtained from a wavenumber

spectrum converted from (3.13), with surface elevation inside the group following the

peak wavenumber kp = ω2
p/g (with g the gravitational constant). In each CFD

simulation, the initial field is partitioned into the left and right sides, where the wave

groups are located on the left side with a distance of about 800m from its peak to the

ship at rest on the right side (see figure 3.6(a)). The velocity field of initial condition

is calculated based on linear dispersion relation placed on each propagating mode of

the group. The exceeding time is computed from the time series of the simulated roll

motion (see figure 3.6(b) and (c)).

The CFD model is developed using the open-source code OpenFOAM [63]. The in-

terFoam solver is used to capture the air-water interface through an algebraic volume

of fluid (AVOF) method. A standard k − ϵ turbulence model is applied in conjunc-

tion with the AVOF method [93]. The 2D hull is considered as a rigid body, moving

under the force exerted by flow pressure and shear stress. The motion of the hull is
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Figure 3.6: A typical CFD simulation for a wave group with a = 8.1m and l = 332.7m.
(a) initial wave field with volume fraction γ0, with hull located on the right; (b) volume
fraction γ in the process of a wave group interacting with the hull; (c) time series of
ξ(t) ( ) with threshold rs ( ).
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Figure 3.7: (a) Temporal exceeding probability P a
temp ( ) for rs = 0.13 as a func-

tion of the sequential sample number, with the convergent level indicated ( ); (b)
Normalized uncertainty as a function of the sequential sample number.
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calculated by numerical integration implemented by the Newmark method [99]. More

details about the boundary conditions, model equations, and grid resolutions of the

solver can be found in §2.5.

In computing P a
temp, we set a threshold of rs = 0.13 radians in a wave field of

Hs = 9m and otherwise the same as that in §3.3. Figure 3.7(a) shows the results

of P a
temp using 25 sequential samples followed by 6 LH samples. It is clear that the

estimated P a
temp approaches a constant level after O(20) sequential samples, indicating

the convergence of the result. Since the true solution of P a
temp is not available for this

case (unless much more computational resources can be allocated to run the CFD

model, which is not feasible now), we examine the uncertainties (3.8) associated with

the solution, normalized by its value at initial time. As shown in figure 3.7(b), the

uncertainty decreases rapidly as P a
temp approaches a constant level, demonstrating the

effectiveness of our method when coupled to CFD.

3.5 Summary

In this work, we develop a computational framework to efficiently compute the tem-

poral exceeding probability of ship responses in a random wave field, i.e., the fraction

of time that the response exceeds a specified threshold. As an important complement

to group-maximum exceeding probability, temporal exceeding probability provides a

robust measure of the extreme motion due to its invariance regarding different group

definitions and consistency with practical design metrics. To enable the computation

of temporal exceeding probability, we develop a novel BED framework incorporating

(1) a uniformly-varying response function resulting from negative penalty and nor-

malization of the group exceeding time; (2) a new acquisition function focusing on

sampling wave groups associated with significant exceeding time. We validate our

framework in the context of a nonlinear roll equation in terms of the efficiency of
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the sequential sampling and the invariance of results to wave group definitions. We

finally demonstrate the coupling of our framework to CFD simulations to show its

applicability to higher-fidelity models.
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CHAPTER 4

Bayesian Experimental Design for

Extreme-Event Probability in Stochastic

Input-to-Response Systems

4.1 Introduction

In §2 and §3, we represent the irregular waves by a large number of wave groups to

compute extreme ship motion statistics. While group parameterization significantly

speeds up the computation, this procedure neglects information about wave phases,

frequency modulation, and initial conditions of the ship when encountering the wave

groups. To compensate for the lost information, it is essential to treat the input-

to-response (ItR) function as a stochastic function. More generally, a stochastic ItR

may originate from (a) an intrinsically stochastic dynamical system, e.g., stochastic

differential equations modeling a physical diffusion process or stock prices [58]; the

stochastic model of climate variability including the non-average ‘weather’ compo-

nent as random forcing terms [57], and (b) some uncertain variables that are not

easily incorporated in a low-dimensional input parameter space, in particular when

dimension reduction technique is applied to a high-dimensional input space as we

initially discussed. Under such situations, the probability distribution of the response

is critically influenced by the randomness in the ItR (in addition to the probabil-
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ity distribution of input parameters). If the randomness of the ItR is uniform for

all input parameters, previous techniques [31, 15, 59, 149, 95] for deterministic ItR

can be extended to handle the situation (by incorporating the uniform randomness

in the Gaussian process regression). However, more often, the uncertainty of the

ItR is inhomogeneous for different input parameters, e.g., due to the interaction of

input parameters and random terms in stochastic equations of the aforementioned

case (a) (also see [108] for more examples), or non-uniform impact of missing dimen-

sions in case (b). This results in a heteroscedastic ItR with the variance of response

not representable as a constant. To our knowledge, currently, there is no sequential

BED method designed to consider heteroscedastic uncertainty in ItR, and its effect

on extreme-event probability.

In this chapter, we propose a new method to quantify the probability of extreme

events (defined as an observable above a given threshold) considering the ItR with

heteroscedastic uncertainty. The core of our algorithm is a variational heteroscedastic

Gaussian process regression (VHGPR) which approximates the ItR with sufficiently

low computational cost and high accuracy. This brings major improvement upon all

previous BED methods employing the standard Gaussian process regression (SGPR)

which are unable to resolve the heteroscedasticity in the ItR. Accordingly, we formu-

late a new acquisition function for selecting the next-best sample considering both the

probability distribution of inputs and uncertainty in ItR. We first demonstrate the

effectiveness of our method in two synthetic problems to estimate the extreme-event

probability. We show that drastically improved performance is achieved compared to

existing approaches based on SGPR. Finally, we demonstrate the superiority of our

method (to existing methods) in solving an engineering problem of estimating the

extreme ship motion probability in irregular waves. The difficulty in this problem lies

in the heteroscedastic uncertainty of the ItR resulting from the wave group parame-

terization which reduces the original high-dimensional wave field to a two-dimensional
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parameter space. We show that the effect of this type of uncertainty on the exceeding

probability can be successfully considered in our approach.

This chapter is adapted from [46]. The Python code for the proposed algorithm,

named HGPextreme, is available on Github1.

4.2 Method

4.2.1 Problem setup

We start from an ItR system with input x ∈ Rd of known distribution X ∼ px(x)

and response y ∈ R. An ItR function S directly relates x to y with its randomness

represented by ω:

y(ω) = S(x, ω), ω ∈ Ω. (4.1)

To be more specific, ω is a random seed lying in the sample space Ω. For given x,

y(ω) represents a random variable, i.e., a function from sample space to real number

Ω → R.

Our interest is the exceeding probability of y(ω) above a threshold δ:

Pe ≡ P(S(X,ω) > δ) =

∫
P(S(X,ω) > δ|X = x)px(x)dx

=

∫
P(S(x, ω) > δ)px(x)dx. (4.2)

It is clear that both distribution px and uncertainty ω contribute to the exceeding

probability in (4.2). Moreover, the variance of the response S (introduced by ω) is

generally different for different input x, resulting in a heteroscedastic uncertainty of

the ItR. We remark that this problem setup including (4.1) and (4.2) are motivated

in the discussion in §4.1, and resolving this heteroscedasticity in the ItR is critical

for the success of our new method (or improvement of our method compared to all

1https://github.com/umbrellagong/HGPextreme
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previous approaches) as will be discussed in §4.3

A brute-force computation of (4.2) calls for extensive Monte-Carlo samples in the

probability space associated with both X and ω, e.g., [108], which is prohibitive under

expensive queries of S(x, ω). Therefore, we seek to develop a sampling algorithm

following the sequential BED framework, where each sample is selected making use

of the existing information of previous samples. Our new sampling algorithm also has

to be developed in conjunction with the heteroscedastic uncertain ItR that has not

been considered before. In summary, two key components in our new approach are

(i) an inexpensive surrogate model based on the variational heteroscedastic Gaussian

process regression (VHGPR) to approximate the heteroscedastic ItR; and (ii) an

optimization based on an acquisition function to provide the next-best samples with

fast convergence in computing (4.2). We next describe the two components in detail

in §4.2.2 and §4.2.3 , followed by the overall algorithm.

4.2.2 Surrogate model

To introduce the surrogate model for the ItR, we first rewrite (4.1) as

S(x, ω) = f(x) +R(x, ω), (4.3)

where f(x) ≡ E[S(x, ω)] is the mean of S(x, ω) with respect to ω, and R(x, ω) is

the uncertain component with zero mean. Given a dataset (from previous samples)

D = {xi, yi}ni=1, our purpose is to approximate (4.3) using Gaussian process regression

as involved in many BED problems.

In standard Gaussian process regression (SGPR), as implemented in most previous
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applications for extreme-event probability, one can approximate (4.3) as:

f(x)|D ∼ GP
(
E(f(x)|D), cov(f(x), f(x′)|D)

)
, (4.4)

R(x, ω) ∼ N (0, γ20), (4.5)

where GP(·, ·) represents a Gaussian process with the first argument as the mean and

the second argument as the covariance function. The uncertain component R(x, ω)

is approximated by an independent normal function at all x with constant variance

γ20 . Clearly, the heteroscedasticity in ItR (i.e., the dependence of R on x) cannot be

captured by the SGPR.

To incorporate the heteroscedasticity, we need to rely on the heteroscedastic Gaus-

sian process regression (implemented as VHGPR following [72] in this chapter). In

VHGPR, we are able to approximate (4.3) as

f(x)|D ∼ GP
(
E(f(x)|D), cov(f(x), f(x′)|D)

)
, (4.6)

R(x, ω) ∼ N (0, eg(x)), (4.7)

g(x)|D ∼ GP
(
E(g(x)|D), cov(g(x), g(x′)|D)

)
, (4.8)

where the heteroscedastic (log) variance of the uncertain term R(x, ω) is represented

by another Gaussian process g(x)|D. The eg(x) term in (4.7) is used to guarantee that

the variance of R(x, ω) is always positive for any g(x). We remark that (4.7) implies

that the distribution associated with ω in (4.1) can be approximated by a Gaussian.

Although the Gaussian assumption is a standard practice in many literature [146, 80,

87, 53], we will perform a validity check of this assumption in the specific problem

solved in §4.3.

Both approximations in SGPR (in terms of (4.4)) and VHGPR ((4.6) and (4.8))

are computed as posterior predictive distributions under a Bayesian framework, with
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hyperparameters (say θ) determined from maximizing the likelihood function p(D|θ).

For SGPR, both the likelihood function and posterior (4.4) can be derived analytically,

allowing a straightforward and inexpensive numerical implementation. In contrast,

for heteroscedastic GPR, the introduction of the Gaussian process on g(x) prohibits

analytical results on the likelihood function and posterior, posing great challenges in

the numerical computation (which involves high-dimensional integration).

In order to reduce the computational cost, variational inference is applied in

VHGPR, which uses parameterized Gaussian distributions to approximate some crit-

ical distributions involved in the posterior and likelihood function. These Gaussian

distributions can be determined efficiently through some optimization problems to

minimize their differences from the critical distributions. As a result of this approx-

imation, the high-dimensional integration can be reduced to analytical formulations

which leads to inexpensive computations (approximations) of the posterior and the

likelihood function. In particular, the computational cost of VHGPR is only twice

of SGPR, alleviating the resource requirement for the computation. More details on

the algorithms of the VHGPR, along with SGPR, are summarized in Appendix B.1

for completeness. The interested readers can also refer to [113, 72] for details.

In summary, the VHGPR provides us with an estimation of the ItR,

S(x, ω|f(x), g(x)), where f(x)|D and g(x)|D follow distributions in (4.6) and (4.8)

(Hereafter we will delete the condition on D for conciseness). Given realizations of

f(x) and g(x), the intrinsic randomness in ItR is expected to be captured by ω, i.e.,

the heteroscedastic distribution in (4.7).

4.2.3 Acquisition function

Given the VHGPR of the ItR, the exceeding probability can be expressed as

P(S(X,ω|f(x), g(x)) > δ) =

∫
P(S(x, ω|f(x), g(x)) > δ)px(x)dx, (4.9)
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which depends on the realizations of f(x) and g(x). The purpose here is to construct

an acquisition function, based on which the next sample can be selected to minimize

the variance of the estimation (4.9), i.e., varf,g[P(S(X,ω|f(x), g(x)) > δ)]. For this

purpose, the next-best sample is selected at the value of x which is associated with

maximum uncertainty in the integrand of (4.9) (so that the sample is expected to

reduce the uncertainty of (4.9) significantly):

x∗ = argmaxx stdf,g[P(S(x, ω|f(x), g(x)) > δ)]px(x). (4.10)

We note that (4.10) is closely related to the so-called U criterion [31] widely

used in computing the exceeding probability associated with a deterministic

ItR. In general, the U criterion seeks the most ‘dangerous’ point (i.e., point

with maximum local variance), which in our problem corresponds to x∗ =

argmaxx stdf,g[P(S(x, ω|f(x), g(x)) > δ)]. Therefore, our acquisition function in

(4.10) can be considered as a weighted U criterion which incorporates the influence of

the input distribution px(x) in computing the variance of (4.9). Furthermore, the cri-

terion in (4.10) corresponds to the upper bound of varf,g[P(S(X,ω|f(x), g(x)) > δ)],

as we can show

varf,g[P(S(X,ω|f(x), g(x)) > δ)]

≤ 1

2

∫
stdf,g

[
P(S(x, ω|f(x), g(x)) > δ)

]
px(x)dx. (4.11)

The derivation for this upper bound is shown in Appendix B.2.

In practice, we approximate the operator stdf,g ≡ (varf,g)
0.5 in (4.10) by the two-

dimensional spherical cubature integration [145] with 4 quadrature points (although
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extension to more quadrature points is straightforward):

Ef,g[P(S(x, ω|f(x), g(x)) > δ)]

=

∫
P(S(x, ω|f(x), g(x)) > δ)pf,g(f(x), g(x))df(x)dg(x)

≈ 1

4

4∑
i=1

P(S(x, ω|u(i)) > δ) = m, (4.12)

varf,g[P(S(x, ω|f(x), g(x)) > δ)]

=

∫
(P(S(x, ω|f(x), g(x)) > δ)−m)2pf,g(f(x), g(x))df(x)dg(x)

≈ 1

4

4∑
i=1

(P(S(x, ω|u(i)) > δ)−m)2, (4.13)

u(1) = {f(x) = E(f(x)|D) +
√

2 var(f(x)|D), g(x) = E(g(x)|D)}

u(2) = {f(x) = E(f(x)|D)−
√
2 var(f(x)|D), g(x) = E(g(x)|D)}

u(3) = {f(x) = E(f(x)|D), g(x) = E(g(x)|D) +
√
2 var(g(x)|D)}

u(4) = {f(x) = E(f(x)|D), g(x) = E(g(x)|D)−
√
2 var(g(x)|D)},

(4.14)

where the quadrature points (4.14) and the corresponding weights 1/4 in (4.12) and

(4.13) are selected for third-order accuracy of the scheme (see Appendix B.3). With

(4.12)-(4.14) to compute the operator stdf,g, (4.10) can be directly solved using stan-

dard optimization methods, say a multiple-starting L-BFGS-B quasi-Newton method

[100].

We remark that the construction of acquisition function has been studied exten-

sively in the case of deterministic ItR [31, 59, 163, 149, 15], and that there may

still be room for improvement relative to (4.10) in the case of stochastic ItR. These

potential improvements of acquisition function may generally take consideration of

correlation between different x in addition to the standard deviation in (4.10). For ex-

ample, techniques developed for deterministic ItR, such as using a hypothetical point

[33, 105] (also see §3.2.3) and global sensitivity analysis [59], may be transferred here.
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However, they may lead to significantly increased computational cost when combined

with VHGPR (e.g., the re-training of the variational parameters when hypothetical

points are used). These potential developments will be left to our future work.

Combining the VHGPR surrogate model ((4.6), (4.7), and (4.8)) and the opti-

mization of acquisition function (4.10), we are able to sequentially select the next-best

samples starting from an initial dataset. The final estimation of exceeding probability

Pe is computed by VHGPR with predicted means to represent functions f and g:

Pe = P
(
S
(
X,ω|f(x) = E(f(x)|D), g(x) = E(g(x)|D)

)
> δ

)
. (4.15)

We summarize the algorithm of this sequential BED process in Algorithm 3.

Algorithm 3 Sequential experimental design for systems with stochastic ItR

Require: Number of initial points ninit, number of iterations niter

Input: Initial dataset D = {xi, yi}ninit
i=1

Initialization n = ninit

while n < ninit + nseq do
Train the surrogate model ((4.6), (4.7), and (4.8)) with D
Maximize the acquisition function (4.10) to find the next best sample xn+1

Implement numerical simulation to get yn+1 = S(xn+1, ω)
Update the dataset D = D ∪ {xn+1, yn+1}
n = n+ 1

end while
Output: Compute the exceeding probability (4.15) based on the surrogate model

4.3 Results

In this section, we validate our approach using two synthetic problems and a realistic

engineering application to quantify the extreme ship motion probability in irregular

waves. The heteroscedastic randomness in the ItR are assigned artificially in the

former cases, while resulted naturally from dimension reduction of the input param-

eter space in the latter case. For all cases, we present the results from our current
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method of sequential BED with VHGPR as a surrogate model (Seq-VHGPR), as well

as other methods for validation and comparison. These other methods include Monte

Carlo sampling using one million samples for accurate estimation of the mean and

variance of ItR (Exact-MC, which serves as the exact result to validate Seq-VHGPR);

space-filling Latin hypercube (LH) sampling [89] with VHGPR as a surrogate (LH-

VHGPR, which serves as a reference to demonstrate the efficiency of sequential BED);

LH sampling with SGPR as a surrogate (LH-SGPR, to demonstrate the necessity of

using VHGPR). We also include the asymptotic value obtained from the LH-SGPR

method, i.e., the convergent result with sufficiently large number of samples. This

represents the best solution that can be achieved by previous vast methods based on

SGPR with constant uncertainties [59, 31, 15, 135].

4.3.1 Quadratic function

We start from a 1D synthetic problem, where the true ItR S(x, ω) (4.3) is constructed

with (see figure 4.1 for an illustration)

f(x) = (x− 5)2, (4.16)

and R(x, ω) ∼ N (0, γ2(x)) with

γ(x) = 0.1 + 0.1x2. (4.17)

We note that γ2(x) is the function that we aim to approximate through eg(x) (in (4.7))

in VHGPR. The input X is assumed to follow a Gaussian distribution with px(x) =

N (5, 1). Our objective is to estimate an exceeding probability Pe = P(S(X,ω) > 9).

For Seq-VHGPR, we use 40 LH samples as the initial data set, and show the results

after 40 initial samples along with other methods.

Figure 4.2 plots the results Pe computed by Exact-MC, Seq-VHGPR, LH-VHGPR
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Figure 4.1: The mean f(x) ( ) and uncertainty bounds f(x) ± 2γ(x) ( ) of the
1D ItR, as well as the threshold ( ) in defining the exceeding probability.
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Figure 4.2: Pe in the 1D synthetic problem, computed by Seq-VHGPR( ), LH-
VHGPR( ), LH-SGPR( ) with its asymptotic value ( ), Exact-MC( ) (in
terms of the upper and lower 5% error bounds). The shaded region represents
one standard deviation above the mean estimated from 100 applications of the each
method.
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Figure 4.3: (a) Typical positions of initial 40 samples ( ) and 60 sequential samples
( ) in Seq-VHGPR, as well as the learned function f(x)( ) and f(x) ± 2γ(x)( )
compared to the corresponding exact functions ( , ); (b) the function P(S(x, ω) >
δ)px(x).

and LH-SGPR (where in Seq-VHGPR and LH-VHGPR, Pe is estimated by (4.15);

in LH-SGPR, Pe is estimated by (4.15) with constant variance g(x) = log(γ20)). Also

included in figure 4.2 are the standard deviations in Seq-VHGPR, LH-VHGPR and

LH-SGPR obtained from 100 applications of the methods. (These uncertainties come

from the initial sampling positions and the randomness ω of ItR in computing S(x, ω)

for each query.) We see that the result from Seq-VHGPR converges rapidly to that

from Exact-MC (shown in terms of the 5%-error region) in the first 20 sequential

samples, with an accurate estimation of the exceeding probability. In contrast, the

LH-VHGPR result converges much slower, with a non-negligible difference from the

Exact-MC result at the end of 100 samples in figure 4.2 (in spite of a later convergence

with about 200 samples confirmed in our test). Furthermore, the LH-SGPR result

converges to an asymptotic value which is 3 times of the Exact-MC result, showing

the incapability of this class of methods (i.e., most previous methods using SGPR)

in estimating the exceeding probability induced by a heteroscedastic ItR. We remark

that the failure of the SGPR-based methods lie in the loss of heteroscedasticity in-

formation in ItR, irrespective of the sampling approach or acquisitions used. Finally,

as shown by the shaded area in figure 4.2, Seq-VHGPR leads to significantly reduced
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standard deviation compared to other approaches.

We further examine the reason for the fast convergence achieved by Seq-VHGPR

(relative to LH-VHGPR). Figure 4.3(a) plots the positions of 100 samples (i.e., 40

initial and 60 sequential samples) in Seq-VHGPR, as well as the learned functions

f(x) and γ(x). While the initial 40 samples are randomly chosen (providing the

overall trend of f(x) and γ(x)), the 60 sequential samples are concentrated near

x = 6.5, providing more accurate estimation of f(x) and γ(x) in the nearby region.

This point corresponds to the maximum in P(S(x, ω) > δ)px(x) (the integrand in

(4.2)) as shown in figure 4.3(b), leading to the largest contribution in computing the

exceeding probability (4.2).

4.3.2 Four-branch function

We construct a 2D synthetic problem by setting f(x) to be a four-branch function

(that has been widely-used in estimating extreme-event probability with a determin-

istic ItR) [31, 59, 135, 149]:

f(x1, x2) = −min



8 + 0.1(x1 − x2)
2 +

(x1 + x2)√
2

8 + 0.1(x1 − x2)
2 − (x1 + x2)√

2

(x1 − x2) +
6√
2
+ 5

(x2 − x1) +
6√
2
+ 5

.

To generate an uncertain ItR, we add a Gaussian randomness R(x1, x2, ω) ∼

N (0, γ2(x1, x2)) to f(x1, x2) with standard deviation γ(x1, x2) = f(x1, x2)/6 (see

figure 4.4 for f(x1, x2) and γ(x1, x2)). We assume the input X to follow a Gaus-

sian distribution pX1X2(x1, x2) = N (0, I), with I being a 2×2 identity matrix, and

our purpose is to estimate an exceeding probability Pe = P(S(X1, X2, ω) > 5). For
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Figure 4.4: (a) f(x1, x2) and (b) γ(x1, x2) as in R(x1, x2, ω) in the 2D stochastic four-
branch ItR.

Seq-VHGPR, 60 LH samples are used as the initial data set.

The results of the 2D problem, as shown in figure 4.5, further demonstrates the

effectiveness of Seq-VHGPR, which approaches the Exact-MC solution with 5% error

within the first 20 sequential samples and leads to the smallest uncertainty among

all methods. The convergence rate of Seq-VHGPR is much faster than that of LH-

VHGPR, where the latter fails to converge at the end of 120 samples. Compared with

1D results, the superiority of Seq-VHGPR over LH-VHGPR is more evident due to

the increased sparsity of samples in the 2D case. The LH-SGPR result, on the other

hand, converges to an asymptotic value which is 2.5 times of the Exact-MC result, a

significant error due to the neglect of heteroscedastic randomness in ItR.

The typical positions of (60 initial and 60 sequential) samples in Seq-VHGPR are

shown in figure 4.6(a)(b), as well as the the learned functions f(x1, x2) and γ(x1, x2).

Similar to the 1D case, the sequential samples are expected to concentrate in regions

where P(S(x1, x2, ω) > δ)pX1X2(x1, x2) is maximized, i.e., the four regions enclosed

by −4 contour lines in figure 4.6(c). As shown in figure 4.6(a)(b), most sequential

samples lie in three out of the four regions (although the situation depends on the

initial samples and for some cases all four regions can be filled). The difficulty of the

sequential samples transiting to all four regions within 60 samples can be anticipated,
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Figure 4.5: Pe in the 2D synthetic problem, computed by Seq-VHGPR( ), LH-
VHGPR( ), LH-SGPR( ) with its asymptotic value ( ), Exact-MC( ) (in
terms of the upper and lower 5% error bounds). The shaded region represents
one standard deviation above the mean estimated from 100 applications of the each
method.
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Figure 4.6: Typical positions of initial 60 samples ( ) and 60 sequential samples ( )
in Seq-VHGPR, as well as the learned f(x1, x2) ( ) compared to the exact function
( ) in (a); and the learned γ(x1, x2) ( ) compared to the exact function ( ) in
(b); (c) the (log) function P(S(x1, x2, ω) > δ)pX1X2(x1, x2).
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which is consistent with the observation in the case of deterministic ItR if the U

criterion is used as the acquisition function [31]. While the design of better acquisition

function is possible referring to the counterpart in the deterministic case [59], the

current results already show the adequacy of Seq-VHGPR in estimating the exceeding

probability (even if not all four regions are filled and the estimation of γ(x1, x2) is

relatively less accurate than that of f(x1, x2)).

We also take the opportunity of this example to show the computational efficiency

of our algorithm. Using one core of Intel Xeon Gold 6154 with 2GB memory, we record

the computation time of selecting one sequential sample with 50 existing samples in

the dataset, with the total time splitted into (1) the training of the VHGPR and (2)

optimization of the acquisition function. The two parts take respectively 1.77s and

2.91s on average. These times are generally negligible given the expensive system

evaluations. In addition, since the cost of training VHGPR is comparable to that

of SGPR (Appendix B.1), the computational cost of our full algorithm is similar to

previous methods based on SGPR.

4.3.3 Extreme-event probability of ship motion in irregular

waves

We further consider an engineering application of our method to estimate the prob-

ability of extreme ship roll motions in uni-directional irregular waves. In marine

engineering, the ship motion problem can often be treated as a dynamical system

where the input is a time series of wave (or surface) elevation η(t), and the output

is, say, the ship roll motion ξ(t). The ItR connecting η(t) and ξ(t) can be computed

by Computational Fluid Dynamics (CFD) simulations. However, the resolution of

exact exceeding probability requires running expensive CFD simulations with a very

long-time input η(t) (due to the rareness of the extreme roll motion), leading to

prohibitively high computational cost. Therefore, for the purpose of validating our
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Figure 4.7: (a) surface elevation η(t) ( ) and the corresponding envelope process
ρ(t) ( ) in a narrow-band wave field. (b) ρ(t) ( ) fitted by an ensemble of Gaussian
wave groups ρc(t)( ) with parameters L and A. (c) pLA(L,A) obtained from wave
fields.

approach, we use an inexpensive phenomenological nonlinear roll equation [142] to

construct the ItR (with the uncertainty associated with ω introduced later)

ξ̈ + α1ξ̇ + α2ξ̇
3 + (β1 + ϵ1 cos(χ)η(t))ξ + β2ξ

3 = ϵ2 sin(χ)η(t), (4.18)

with empirical coefficients [98] α1 = 0.19, α2 = 0.06, β1 = 0.04, β2 = −0.1, ϵ1 = 0.020,

ϵ2 = 0.004, and χ = π/6.

The wave elevation η(t) is usually specified from a wave spectral process, which re-

sides in a high-dimensional input space. A typical procedure to reduce the dimension

is to describe η(t) by an ensemble of wave groups embedded in its envelope process

as in §2.2.1 (see figure 4.7(a) for an illustration). Specifically, we compute the enve-

lope process ρ(t) from η(t) through the Hilbert transform [127], and then construct

two-parameter Gaussian-like wave groups ρc(x) which best fits ρ(t):

ρc(t) ∼ A exp
−(t− tc)

2

2L2
, (4.19)
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where tc is the temporal location of the group, and the two parameters A (group

amplitude) and L (group length) describe the geometry of the group (figure 4.7(b)).

This dimension-reduction procedure allows η(t) to be described by an ensemble of

(L,A) wave groups, i.e., a two-dimensional input parameter space (see figure 4.7(c)).

We can then construct an ItR with the input as (L,A) to (4.18) and the output as the

maximum roll through this wave group, and consider the group-based probability.

However, the dimension reduction results in the loss of information relative to the

original field η(t), i.e., it introduces uncertainties in the ItR, including the uncertain

initial conditions of (ξ(0), ξ̇(0)) and detailed phase and frequency conditions in the

wave group. As shown in [2, 130], (4.18) (and the ship roll in general) may be sensi-

tive to the lost information such as initial conditions, and the resulted uncertainty is

non-uniform for different A and L. (see figure 4.8 as an example that the uncertainty

is larger for the first wave group but smaller for the second one). This creates het-

eroscedastic uncertainty in the ItR (associated with ω) that needs to be dealt with

by our current approach Seq-VHGPR.

In the following, we show the results with input η(t) extracted from a narrow-band

Gaussian wave spectrum:

F (ω) =
H2

s

16

1√
2πd

exp(
−(ω − ω0)

2

2d2
), (4.20)

with ω the angular frequency, the significant wave height Hs = 12m, peak (car-

rier) wave frequency ω0 = 0.067s−1 (corresponding to peak period Tp = 15s),

and d = 0.02s−1. In particular, we compute η(t) =
∑

n an cos(n∆ωt + ϕn) with

∆ω = 0.00026s−1, n from 1 to 1024, ϕn being a random phase for each mode, and

an =
√

2F (n∆ω)∆ω.

The exact exceeding probability is computed by simulating 1500 hours (360000 Tp)

of ship responses. To compute the ItR incorporating the heteroscedastic randomness
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Figure 4.8: The roll responses (c) and (d) with different initial conditions {ξ̇(0) =
0, ξ(0) = 0} ( ); {ξ̇(0) = 0, ξ(0) = −0.05} ( ); {ξ̇(0) = 0, ξ(0) = 0.05} ( ),
computed from (4.18) with input from a wave group with respectively (a) larger and
(b) smaller amplitudes.
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in ω, after a sample (L,A) is chosen, we randomly select a wave group of this (L,A)

in ρ(x), and simulate (4.18) starting from (on average) 3 groups ahead of the (L,A)

group with a (0, 0) initial condition. Since the impact of initial conditions typically

decay in O(1) wave group, we are able to naturally capture the true initial condition

as the ship encounters the (L,A) group, as well as the phase and frequency condition

in the particular group. We name this method as ‘natural initial condition’ and sys-

tematically compare it with other methods to incorporate the ship initial conditions

in [44].

Figure 4.9 plots Pe = P(max(ξL,A(t)) > 0.3) (the probability that maximum roll

in a group exceeds 17 degrees) obtained from Seq-VHGPR, LH-VHGPR, LH-SGPR

and the exact solution. We see that the Seq-VHGPR result converges to the exact

solution within the first 30 sequential samples, much faster than the convergence of

the LH-VHGPR result. The LH-SGPR result converges to an asymptotic value which

is appreciably larger than the exact solution. We remark that this value represents

the best result that can be achieved by all previous methods on this problem [95, 50]

based on SGPR. These results, again, demonstrate the effectiveness of Seq-VHGPR

in computing the exceeding probability relative to all other approaches.

Finally, the application of VHGPR in our problem assumes that the distribution of

S(x, ω) is approximately Gaussian (associated with ω for each x ≡ (A,L)). While this

cannot be checked in the Seq-VHGPR sampling, we provide a posterior calculation

to show that this is indeed true. Figure 4.10 plots the distribution of S(x, ω) for two

selected values of (A = Hs, L = 1.5Tp) and (A = 0.8Hs, L = 1.5Tp), generated from

all such groups in the time series of five million Tp. It is evident that the distributions

are approximated by Gaussian distributions.
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Figure 4.9: Pe in the ship roll problem, computed by Seq-VHGPR( ), LH-
VHGPR( ), LH-SGPR( ) with its asymptotic value ( ), exact solution( )
(in terms of the upper and lower 5% error bounds). The shaded region represents
one standard deviation above the mean estimated from 50 applications of the each
method.
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Figure 4.10: The density histograms of S(A,L, ω) for (a) A = Hs, L = 1.5Tp and (b)
A = 0.8Hs, L = 1.5Tp, generated from all such groups in the time series of five million
Tp. The Gaussian fits for the histograms are shown ( ).
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4.4 Summary

In this chapter, we present a new method (Seq-VHGPR) to efficiently estimate the

extreme-event probability (in terms of the exceeding probability) induced by an ItR

with heteroscedastic uncertainty. The method is established in the framework of

sequential Bayesian experimental design, and leverages the VHGPR as a surrogate

model to estimate the uncertain ItR. A new acquisition function corresponding to

the VHGPR estimation is developed to select the next-best sequential sample which

leads to fast convergence of the exceeding probability. We validate our new method in

two synthetic problems and one engineering application to estimate the extreme ship

motion probability in irregular waves. In all cases, we find fast convergence of Seq-

VHGPR to the exact solution, demonstrating its superiority to all existing methods if

an ItR with heteroscedastic uncertainty is associated with the problem. This is indeed

due to the effectiveness of VHGPR in estimating the ItR, although there is still room

for improvement of the acquisition function to accelerate the convergence, which will

be introduced in the case of deterministic ItR in §6. Finally, we remark that the

present method also provides an effective way for high-dimensional BED, where the

most influential dimensions can be selected as (low-dimensional) input X, with other

secondary ones packaged into Ω in the ItR (as in the ship motion problem).
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CHAPTER 5

Multi-Fidelity Bayesian Experimental

Design for Rare-Event Statistics

5.1 Introduction

In previous chapters, we have built different Bayesian experimental design (BED)

frameworks for various objectives. In this chapter, we go back to the original frame-

work in §2 for the tail part of the response PDF (where a new acquisition function

has been proposed in [117, 19]) but consider an additional technique to reduce the

computational cost: leveraging lower-fidelity models that calculate each response in a

(small) fraction of cost (e.g., computational time or budget) of the high-fidelity model.

Examples of such lower-fidelity models (as approximations to the high-fidelity coun-

terparts) include (1) analytical models or numerical simulations as approximations to

expensive physical experiments [107, 82]; (2) coarse-grid computational fluid dynam-

ics (CFD) simulations as approximations to fine-grid CFD simulations [162]; and (3)

Reynolds-averaged Navier–Stokes models as approximations to large eddy simulations

for turbulent flows [152]. While the idea of using multi-fidelity information has been

widely studied in standard Monte Carlo approach in the form of control variates [104]

or multi-level Monte Carlo [41], here we restrict our discussion to the active learning

side. Making use of the multi-fidelity Gaussian process [68, 107] or neural network

[92, 91] as surrogate models, multi-fidelity sampling algorithms have been developed

74



for the purpose of global optimization [131, 119], function learning [91], and contour

detection [85]. In terms of the rare or extreme-event statistics, the only related work

within the multi-fidelity framework, to our knowledge, is [158] which estimates the

exceeding probability for reliability analysis. However, [158] employs the sub-optimal

acquisition function which has been shown to be not only (much) less efficient than

many improved algorithms later, but also not applicable to our purpose of obtaining

the overall rare-event portion of the response PDF.

One of the key issues involved in the multi-fidelity sampling method is the de-

termination of the fidelity level of each sample. Two types of methods have been

considered regarding this issue, one to select the fidelity of the next sample adap-

tively based on existing samples in order to reduce the overall computational cost

(though in a heuristic manner) [85, 82], and the other to follow a pre-defined fidelity

hierarchy (say pre-defined ratio and sequence of high and low fidelity samples in a bi-

fidelity context) [119, 162]. While the former type of method is developed in the hope

of outperforming the latter one, there is not sufficient evidence to support the idea

as systematic comparisons between the two types of methods are not available. It is

one purpose of the current study, in the context of capturing the rare-event statistics

of response PDF, to systematically compare these two types of methods in determin-

ing the fidelity level of samples, along with the identification of their improvements

relative to the single-fidelity algorithm [21].

In this chapter, we develop a multi-fidelity sequential BED framework for the

quantification of the response PDF of an ItR system, with emphasis on rare events.

In particular, we use a multi-fidelity Gaussian process as the surrogate model, and

develop an acquisition function (as a substantial extension to the single-fidelity acqui-

sition function [21]) which allows adaptive choice of both the location in the parameter

space and fidelity level of the next sample. We also construct an analytical compu-

tation of the acquisition which avoids expensive numerical integration and enables
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high-dimensional implementation of the algorithm through gradient-based optimiza-

tion. Our new method is mainly tested in a bi-fidelity context for a series of synthetic

problems with varying dimensions, low-fidelity model accuracy and computational

costs in a systematic way. We show that our bi-fidelity method outperforms the

single-fidelity method in all test cases, and that our method for adaptive choice of

fidelity level consistently performs among the best in all bi-fidelity runs with pre-

defined fidelity hierarchy varying in a broad range. Finally, we demonstrate the

coupling of our method with CFD to compute the PDF of rare-event ship roll motion

in irregular ocean waves. By using CFD simulations with two different grid resolu-

tions as high and low-fidelity models, we show that our bi-fidelity method achieves

much faster convergence of the result (i.e., PDF of rare-event responses) than the

previous single-fidelity method.

This chapter is adapted from [48]. The Python code for the proposed algorithm,

named MFGPextreme, is available on Github1.

5.2 Method

5.2.1 Problem setup

We consider a black-box ItR function f(x) : Rd → R, with x ∈ Rd representing

the input parameters with known probability distribution px(x). We assume that

we have a hierarchy of models fi(x), i ∈ {1, . . . , s} (from low to high fidelity) to

compute f(x), with fs(x) = f(x) and fi(x) having increasing deviations from f(x)

for i = s − 1, s − 2, ..., 1. In addition, the models fi(x) are associated with fixed

computational costs ci which increases for i = 1, 2, ..., s. The evaluation using these

models can be conducted at given x = xj at fidelity level i, leading to an observation

1https://github.com/umbrellagong/MFGPextreme
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y = fi(xj).
2

Our quantity of interest is the PDF of the response pf (f), focusing on the tail

part. Specifically, we aim to obtain an estimation pf,est(f) with minimized error (see

[95])

e =

∫ ∣∣∣ log pf,est(f)− log pf (f)
∣∣∣df. (5.1)

We note that the log function in (5.1) acts on the ratio pf,est(f)/pf (f), which is am-

plified when pf (f) is small, i.e., (5.1) emphasizes on the error in the small-probability

rare event portion of the PDF. We remark that while in many cases, rare events in

the responses coincide with extreme events (or events of extremely large responses),

these two concepts are not equivalent in general. An error metric for extreme events,

in contrast to (5.1) for rare events, can be formulated through high-order moments

of pf (f) as studied in §2.2.2.

To compute pf,est(f), we can use a sequence of samples fi(x) with i and x varying

for each sample. Our objective is to find an optimized sequence, in terms of both

i and x, such that e is minimized under a given total computational cost c (i.e.,

summation of computational cost ci over all members in the sequence). In general,

there is no computational approach for this type of problem that can be guaranteed to

provide a globally optimal solution, and the method we propose in this paper should

be considered as a greedy algorithm that looks one step ahead of the existing samples.

In particular, our method is based on a multi-fidelity sequential BED, which involves

two basic components: (1) an inexpensive surrogate model based on the multi-fidelity

Gaussian process trained by results from multi-fidelity samples; (2) a new acquisitive

function measuring the benefit (i.e., reduction in e) per computational cost. The

next-best sample can then be selected in terms of both i and x to maximize the

2In general, one can also associate the observation y with a Gaussian noise, say from the mea-
surement error if fi is a physical experiment. In this paper, we consider the case of zero noise since
fi in all examples represent numerical simulations, but our methodology can be naturally extended
to the case with finite Gaussian noise by including additional hyperparameters in constructing the
surrogate model.
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acquisition function. The two components are next described in detail in §5.2.2

and §5.2.3. In addition, in §5.2.4, we develop an analytical formula to compute the

acquisition function and its derivative with respect to x, enabling the gradient-based

optimization that is suitable for high-dimensional problems.

5.2.2 Surrogate model

In this section, we briefly outline the multi-fidelity Gaussian process developed in [68]

as our surrogate model. Assume we have a dataset D = {X ,Y} consisting of s levels

of model outputs Y = {Yi}si=1 at input positions X = {Xi}si=1 sorted by increasing

fidelity. Here Xi ∈ Rni×d, Yi ∈ Rni , X ∈ Rm×d, Y ∈ Rm, with ni the number of

samples available at fidelity level i, d the dimension of input vectors, m =
∑s

i=1 ni

the total number of samples. In other words, Xi contains ni input vectors, each with

d dimensions, evaluated by models of fidelity level i with ni outputs collected in Yi.

In general, input vectors in Xi are different for different fidelity levels. D = {X ,Y}

collects all samples available at all fidelity levels. The purpose of the multi-fidelity

Gaussian process is to learn the underlying relation fi(x) from D. This can be

achieved through an auto-regressive scheme, which models fi(x) as

fi(x) = ρi−1fi−1(x) + di(x) i = 2, . . . , s, (5.2)

with f1(x) ∼ GP(0, k1(x,x
′)) and {di(x) ∼ GP(0, ki(x,x

′))}si=2 pairwise independent

Gaussian processes, ρi−1 a scaling factor to quantify the correlation between fi and

fi−1. The kernels ki(x,x
′) are defined as radial-basis functions

ki(x,x
′) = τ 2i exp

(
− 1

2
(x− x′)TΛ−1

i (x− x′)
)
, (5.3)

with τi and the diagonal matrix Λi respectively representing the characteristic am-

plitude and length scales. {τi,Λi}si=1 and {ρi}s−1
i=1 are hyperparameters in the model
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and can be determined by maximizing the likelihood function p(Y = Y), where Y is

a random vector of the surrogate with input at X , satisfying a Gaussian distribution

N (0, cov(Y)). Here we apply the shorthand notation cov(Y) ≡ cov(Y,Y) ∈ Rm×m

to represent a covariance matrix for each pairwise random variables in Y ∈ Rm, which

will be used throughout this chapter.

The posterior prediction fi(x) given the dataset D can then be derived as a Gaus-

sian process

fi(x)|D ∼ GP
(
E(fi(x)|D), cov(fi(x), fi(x

′)|D)
)
, i = 1, 2, ..., s (5.4)

with analytically tractable mean and covariance (also defined across different fidelity

levels)

E(fi(x)|D) = cov(fi(x),Y)cov(Y)−1Y , (5.5)

cov
(
fi(x), fj(x

′)|D
)
= cov

(
fi(x), fj(x

′)
)
− cov

(
fi(x),Y

)
cov(Y)−1cov

(
Y, fj(x

′)
)
.

(5.6)

In (5.5) and (5.6) (as well as the likelihood function), the covariances are computed

as (or can be derived from):

cov(fi(x), fj(x
′)) =

min(i,j)∑
l=1

πijlkl(x,x
′), (5.7)

where

πijl =


(
∏i−1

t=l ρt)(
∏j−1

t=l ρt) l ̸= min(i, j),∏max(i,j)−1
t=min(i,j) ρt l = min(i, j), i ̸= j,

1 l = min(i, j), i = j.

(5.8)

We finally summarize the bi-fidelity counterpart of (5.4) in Appendix C.1, which

we will use in §5.3 for computation.
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5.2.3 Acquisition function

Given the Gaussian process surrogate fs(x)|D as in (5.4) of the ItR, we can estimate

the response PDF pf |D(f). Our purpose is to select the next sample in terms of the

fidelity level i and the location x̃ to significantly reduce the uncertainty in the rare-

event part of the response PDF (which is expected to lead to significantly smaller e

in (5.1)). In particular, this uncertainty can be estimated by (see previous work in

the single-fidelity context [95])

U(D, i, x̃) =
∫

| log pf+|D,f i(x̃)
(f)− log pf−|D,f i(x̃)

(f)|df, (5.9)

where, f i = E(fi(x̃)|D) is the mean response computed by the surrogate fi(x)|D from

a hypothetical location x̃ and fidelity i, pf±|D,f i(x̃)
(f) are PDF bounds generated

by upper and lower bounds (say two standard deviations away from the mean) of

f|D, f i(x̃).

Using U(D, i, x̃) directly as the acquisition, however, involves significant compu-

tational cost (e.g., building a new Gaussian process f|D, f i(x̃) for each hypothetical

sample) even for single-fidelity problems. To address this issue, we extend the method-

ology developed for single-fidelity problems in [117, 21] to the multi-fidelity context.

The first step is to introduce an upper bound as a proxy to U , defined as (proven in

[117] for single-fidelity applications)

Q(D, i, x̃) =
∫

var(f(x)|D, f i(x̃))w(x)dx, (5.10)

with

w(x) =
px(x)

pf (f(x))
, (5.11)

where f(x) = E[f(x)|D] represents the mean prediction (5.5) with i = s. Q measures

the model uncertainty with emphasis on positions of large w, i.e. small-probability
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response regions with significant input probability. We are interested in the reduction

in Q (i.e., the benefit) after adding the sample at x̃ and i, formulated as

B(i, x̃) = Q(D)−Q(D, i, x̃)

=

∫ (
var(f(x)|D)− var(f(x)|D, f i(x̃))

)
w(x)dx

=
1

var(fi(x̃)|D)

∫
cov2(f(x), fi(x̃)|D)w(x)dx, (5.12)

where Q(D) computes the value of Q as defined in (5.10) but with the variance on the

right hand side conditioning only on D, i.e., before adding an i fidelity sample at x̃.

The derivation of the result in (5.12) is summarized in Appendix C.2, which makes

use of the recursive update of the Gaussian process that is simpler than the derivation

in [21] for the single-fidelity method. We note that the expensive computations of

the new posterior in (5.9) and (5.10) are not involved in (5.12). Further reduction of

computational cost by avoiding the numerical integration in (5.12) will be discussed

later in §5.2.4.

In general, one may expect that adding a high-fidelity sample is more beneficial

than adding a low-fidelity sample at the same x. While this is indeed generally true,

we note that there exist some certain special situations in which adding a low-fidelity

sample becomes more beneficial according to (5.12). Such situations can occur when

the function di(x) in (5.2) becomes uncorrelated, with a rigorous justification provided

in Appendix C.3. To select the next best sample in terms of both location and fidelity

level, we need an acquisition function taking into consideration both the benefit (5.12)

and cost of the sample ci. In particular, we solve an optimization problem

x∗, i∗ = argmaxx̃∈Rd,i∈{1,2,...s} B(i, x̃)/ci. (5.13)

We remark that (5.13) provides the optimal next sample in terms of the uncer-
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tainty reduction (5.12) per computational cost. Nevertheless, there is no guarantee

that successively applying (5.13) provides a globally optimal solution although this

type of fidelity-choice algorithm has also been applied for other purposes [85, 82].

Therefore, the ultimate validity of (5.13) needs to be tested in a sufficiently wide

range of examples, especially against algorithms with a fixed fidelity hierarchy, which

is one of our purposes in §5.3.

In solving (5.13) as a combined discrete and continuous optimization problem, we

first find the optimal location x for each fidelity i, i.e., x∗
i = argmaxx̃∈Rd B(i, x̃) for

i = 1, 2, . . . , s, then we compare the benefit per cost for each fidelity level and find

the optimal fidelity level, i.e., i∗ = argmaxi∈{1,2,...s} B(i,x∗
i )/ci.

While the solution procedure outlined above seems straightforward, there is still

difficulty in applying the method to high-dimensional problems. The reason lies in

that the numerical integration in (5.12) can become prohibitively expensive for high-

dimensional x. Furthermore, the high-dimensional optimization (5.13) needs to rely

on a gradient-based algorithm where the derivative of (5.12) is also expensive to

compute. To address these issues, analytical formulae for (5.12) and its derivative are

much preferable, which will be discussed in the next section.

5.2.4 Analytical formulae for acquisition and its derivative

To develop an analytical formula for (5.12), we first substitute the expression of

covariance function (5.6) into (5.12) and obtain

B(i, x̃) =
1

var(fi(x̃)|D)

(
K(fi(x̃), fi(x̃))

+ cov(fi(x̃),Y)cov(Y)−1
(
K(Y,Y)cov(Y)−1cov(Y, fi(x̃))− 2K(Y, fi(x̃))

))
,

(5.14)
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with

K(fi(x1), fj(x2)) =

∫
cov

(
fi(x1), f(x)

)
cov

(
f(x), fj(x2))

)
w(x)dx. (5.15)

We see that every term in (5.14) is analytically tractable except the K function in

(5.15) where the numerical integration is carried out. One idea to obtain an analytical

form of K, which has been suggested in the single-fidelity cases [21], is to approximate

the w(x) with a Gaussian mixture model [51] with nGMM Gaussian functions:

w(x) ≈
nGMM∑
t=1

αtN (x;µt,Σt). (5.16)

This allows us to reformulate (5.15) as

K(fi(x1), fj(x2)) ≈
nGMM∑
t=1

αtGt(fi(x1), fj(x2)), (5.17)

with

Gt(fi(x1), fj(x2)) =

∫
cov

(
fi(x1), f(x)

)
cov

(
f(x), fj(x2))

)
N (x;µt,Σt)dx. (5.18)

The problem now boils down to developing an analytical formula for (5.18), which

involves in the integrand the multiplication of two different multi-fidelity covariance

functions and a Gaussian distribution function. This situation here is more compli-

cated than that in the single-fidelity case [21] where the problem is simplified by only

involving two same single-fidelity covariance functions (e.g., analytical result from

the latter case is already available [88]). We summarize the detailed derivation of the

analytical form of (5.18), as well as the derivative ∂B(i, x̃)/∂x̃ that can be derived in

a similar manner, in Appendix C.4.

With analytical computation of B(i, x̃) and ∂B(i, x̃)/∂x̃ available, we can solve
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the optimization (5.13) using gradient-based algorithm (which is more suitable for

high-dimensional problems). In our current work, a gradient-based quasi-Newton

method [100] with multiple starting points is used to solve (5.13), which completes

the algorithm of the multi-fidelity BED method for rare-event statistics. We finally

summarize the full algorithm in Algorithm 4 and note that the algorithm reduces to

a single-fidelity BED method for s = 1.

Algorithm 4 Multi-fidelity Bayesian experimental design for rare-event statistics

Require: Number of initial samples {ninit(i)}si=1, cost of each fidelity model {ci}si=1,
total budget clim

Input: Initial dataset D = {X ,Y} with X = {Xi}si=1 and Y = {Yi}si=1

Initialization ctotal =
∑

i ninit(i) ci
while ctotal < clim do
1. Train the surrogate model (5.2) with D to obtain (5.4)
2. Compute w(x) in (5.11) and approximate it with GMM model (5.16)
3. Solve the optimization (5.13) to find the next-best sample {i∗,x∗}
4. Evaluate the i∗−fidelity function to get fi∗(x

∗)
5. Update the dataset Xi∗ = Xi∗ ∪ {x∗} and Yi∗ = Yi∗ ∪ {fi∗(x∗)}
6. ctotal = ctotal + ci∗

end while
Output: Compute the response PDF based on the surrogate model (5.5)

5.3 Results

In this section, we test our developed method in the context of bi-fidelity problems,

i.e., s = 2 and we use f1(x) = fl(x), c1 = cl and f2(x) = fh(x), c2 = ch for clarity.

The tests are conducted for three synthetic problems with dimensions d = 1, 2, 8

(§5.3.1, §5.3.2, §5.3.3) and an engineering problem (of d = 2) to evaluate rare-event

statistics of ship motion in irregular waves with CFD of low and high resolutions

as fl(x) and fh(x) (§5.3.4). In synthetic problems, the true solution pf involved in

(5.1) is obtained from a computation using a sufficiently large number of high-fidelity

samples (since we assume f(x) = fh(x) discussed in §5.2.1).

In all cases, we compare the results from our method (bi-fidelity optimal sampling
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in both location and fidelity level as in Algorithm 4, hereafter termed “BF-O”) to

those from single-fidelity optimal sampling [21] (Algorithm 4 with s = 1, hereafter

termed “SF”). In addition, for the synthetic problems with d = 2 and 8, we further

include the results from the bi-fidelity model with fixed ratio n (as well as sequence)

of low and high fidelity samples with locations optimized (Algorithm 4 but with op-

timization x∗
i = argmaxx̃∈Rd B(i, x̃) solved for fixed fidelity level i on each sample,

hereafter termed “BF-Fn”). Specifically, we repeatedly use one high-fidelity sample

followed by n low-fidelity samples, with each sample location x chosen through opti-

mization regarding acquisition function B. The cost weight, although not included in

the acquisition, is still considered in computation of the total cost ctotal. The purpose

to compare the results from BF-Fn and BF-O is to understand the benefit of the

BF-O scheme to automatically choose the fidelity level. We shall vary the number

n, the ratio ch/cl and the low-fidelity accuracy level in a broad range, to assess the

performance of our method BF-O in various situations for cases of intermediate to

relatively high complexity.

For all the methods in comparison, an initial data set is required to start the

sequential BED procedure. To create a fair situation for comparison, we keep the

cost to generate the initial dataset the same for all methods. In particular, the initial

set is generated by a space-filling Latin Hypercube sampling method [89], with 4d

high-fidelity samples for SF method, and 2d high-fidelity and 2d ch/cl low-fidelity

samples for BF-Fn and BF-O methods. Since the initial sample locations are not

fixed, we will present the results from SF, BF-O and BF-Fn methods in terms of

the average over 100 implementations with different initial datasets for the synthetic

cases in §5.3.1, §5.3.2, and §5.3.3.
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Figure 5.1: (a) The low fidelity function fl(x) ( ) and high-fidelity function fh(x)
( ) in the 1D problem. (b) The corresponding error e(c) computed by BF-O( )
and SF( ). (c) The sequence of high-fidelity ( ) and low-fidelity ( ) samples in ten
experiments of BF-O.

5.3.1 Forrester function

We start the method validation from a one-dimensional (1D) Forrester function f(x)

that has been previously used to demonstrate the multi-fidelity global optimization

[38]. The high-fidelity (fh(x) = f(x), ch = 1) and low-fidelity (fl(x), cl = 0.2) models

are constructed as (see figure 5.1(a))

fh(x) = (6x− 2)2 sin(12x− 4), (5.19)

fl(x) = 0.5fh(x) + 10x, (5.20)

where the input x is assumed to follow a Gaussian distribution with px(x) =

N (0.5, 0.1). The results of BF-O and SF methods are shown in figure 5.1(b) in

terms of the error e (as in (5.1)) as a function of the total cost c (i.e., summation of

cl and ch for all samples). The BF-O method clearly outperforms the SF method to

a large extent. For example, at c = 6, the BF-O method achieves a value of e that

is nearly two orders of magnitude smaller than the SF method. In figure 5.1(c), we

show 10 examples of the sequence of fidelity levels in samples by BF-O. While the

sequences vary for different initial datasets, the BF-O algorithm exclusively selects a
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high-fidelity sample as the first sequential sample. This is consistent with an intuitive

understanding that the algorithm tends to use three high-fidelity samples (2 in the

initial dataset and 1 as selected) to learn the linear difference term 10x in (5.20) using

a Gaussian process, which results in a significant reduction in e at c ≈ 5 in figure

5.1(b).

While this simple example demonstrates the advantage of using BF-O method, it

is only for a single case with fixed accuracy level of the low-fidelity model (in terms

of (5.20)) and the cost ratio ch/cl. We will next use a two-dimensional (2D) case to

test a much broader range of situations in the next section.

5.3.2 Stochastic oscillator

We consider a 2D function constructed from the solution of a stochastic oscillator

equation, which has been previously used for testing the single-fidelity BED method

(i.e., SF method) in [95, 21]. In particular, the oscillator equation is formulated as

ü+ δu̇+ F (u) = ξ(t), (5.21)

where u(t) is the state variable, F is a nonlinear restoring force defined by:

F (u) =


αu if 0 ≤ |u| ≤ u1

αu1 if u1 ≤ |u| ≤ u2

αu1 + β(u− u2)3 if u2 ≤ |u|

. (5.22)

The stochastic process ξ(t), with a correlation function σ2
ξe

−τ2/(2l2ξ), is approximated

by a two-term Karhunen-Loeve expansion

ξ(t) ≈
2∑

i=1

xiλiϕ(t), (5.23)
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Figure 5.2: (a) The low-fidelity ( ) and high-fidelity ( ) functions with a linear
difference in the 2D oscillator problem. (b) The corresponding error e(c) computed
by BF-O( ), BF-F1( ), BF-F2( ), BF-F5( ), BF-F10( ), BF-F15 ( ) and
SF( ). (c) The sequence of high-fidelity ( ) and low-fidelity ( ) samples in ten ex-
periments of BF-O.

with λi and ϕ(t) respectively the eigenvalue and eigenfunction of the correlation func-

tion, x ≡ (x1, x2) is a standard normal variable as the input to the system, satisfying

px(x) = N (0, I) with I being a 2 × 2 identity matrix. The values of the parameters

are kept the same as those in the single-fidelity work [21]1.

The response of the system is considered as the mean value of u(t;x) in the interval

1δ=1.5, α=1, β=0.1, u1=0.5, u2=1.5, σ2
ξ=0.1, lξ=4.
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[0, 25], which serves as our high-fidelity model:

fh(x) =
1

25

∫ 25

0

u(t;x)dt. (5.24)

For our low-fidelity model, we construct a function fl(x) (to be varied later in this

section) with a difference d(x) from (5.24):

fl(x) = ρfh(x) + d(x), (5.25)

with ρ = 1 and d(x) chosen as a linear function 0.05(x1 + x2) in this case. Both the

fh(x) and fl(x) functions are shown in figure 5.2(a) to illustrate the functional forms

and their difference. In this case, we use cl = 0.2 and ch = 1 as the computational

cost of low and high fidelity models.

The error e(c) is plotted in figure 5.2(b) for SF, BF-O and BF-Fn with n varying

from 1 to 15. We see that all bi-fidelity methods (BF-O and BF-Fn) achieve acceler-

ation on the error reduction (to different extents) compared to the SF method. For

the BF-Fn method, faster convergence is observed for larger n in the test range of

n ∈ [1, 15], but with much less benefit for n increasing from 10 to 15. The BF-O

method provides the best result, in terms of the error e at cost c = 80, although the

BF-O result is somewhat less accurate than the BF-F15 result for smaller c in the

range of [25,50]. Accounting for all the sequence of fidelity levels (with 10 examples

shown in 5.2(c)), the average ratio of high and low fidelity samples selected by BF-O

is approximately 19.06, close to the value of n = 15 which is found to be the best in

BF-Fn in the test range.

To further test the performance of BF-O (as well as BF-Fn) in more diversified

situations, in the following, we construct additionally 9 cases with different computa-

tional costs cl and low-fidelity functions fl(x) as summarized in Table 5.1. In addition

to the linear difference function used in the previous case (now case 1 in Table 5.1),
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Table 5.1: Setting of cases in the 2D oscillator problem.

no. d(x) ρ δ ch/cl
rank of BF-O
at cost 80

nl/nh

in BF-O
best n

in BF-Fn
1 δ(x1 + x2)

1

0.05
5

1 19.06 15
2

δ sin(x1 + x2)

0.02 2 11.95 5
3 0.05 1 7.19 5
4

0.1

2 1 0.47 1
5 5 1 4.74 5
6 8 1 5.93 5
7 10 1 6.85 10
8 0.2

5
2 3.19 5

9 0.4 2 2.16 5
10 1.5 0.1 1 6.91 5

we also consider a nonlinear difference function d(x) = δ sin(x1 + x2) which is known

to be a difficult situation to approximate by a Gaussian process [113].

Figure 5.3 shows the results for varying the low-fidelity accuracy level with fixed

ch/cl = 5, i.e., cases 2, 3, 5, 8-10 in Table 5.1 with varying ρ and δ, with the range

of δ corresponding to difference terms up to 20% of the maximum response fh(x)

for |x| < 4. Together with figure 5.2, we see that the BF-O scheme consistently

performs among the best of all tested methods. More specifically, with the increase

of complexity in the difference function (i.e., increasing δ but not much for increasing

ρ), the performance of BF-O can deteriorate for smaller number of sequential samples

(e.g., figure 5.3(f)), but still behaves close to the optimal at larger number of samples

with cost c ≈ 80. These cases correspond to the situation where the difference terms

are difficult to learn, which takes more cost to make low-fidelity samples useful for

the final results.

Figure 5.4 shows the results for varying cl, i.e., ch/cl = 2, 5, 8, 10 with fixed ch = 1

as in cases 4-7 in Table 5.1. Similar to the results above, we see that the BF-O method

consistently performs among the best. This indicates that the acquisition function

(5.12) employing the ratio between benefit B(i,x) (uncertainty reduction) and cost
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Figure 5.3: Results of (a) case 2 {δ = 0.02, ρ = 1}, (b) case 3 {δ = 0.05, ρ = 1},
(c) case 5 {δ = 0.1, ρ = 1}, (d) case 10 {δ = 0.1, ρ = 1.5}, (e) case 8 {δ = 0.2, ρ =
1}, and (f) case 9 {δ = 0.4, ρ = 1} for low-fidelity function (5.25) with nonlinear
difference in the 2D oscillator problem. Left: the low fidelity function ( ) and high-
fidelity function ( ). Right: the error e(c) computed by BF-O( ), BF-F1( ),
BF-F2( ), BF-F5( ), BF-F10( ), BF-F15 ( ) and SF( ).

92



0 20 40 60 80
c

10 1

100

101

e(
c)

(a)

0 20 40 60 80
c

10 1

100

101

e(
c)

(b)

0 20 40 60 80
c

10 1

100

101

e(
c)

(c)

0 20 40 60 80
c

10 1

100

101

e(
c)

(d)

Figure 5.4: Errors in the cases of {δ = 0.1, ρ = 1} with (a) case 4, ch/cl = 2, (b) case
5, ch/cl = 5, (c) case 6, ch/cl = 8, and (d) case 7, ch/cl = 10 computed by BF-O( ),
BF-F1( ), BF-F2( ), BF-F5( ), BF-F10( ), BF-F15 ( ) and SF( ).
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ci effectively captures the optimal that balances the two factors.

The performance of the BF-O scheme, in terms of its ranking in all schemes, is

summarized in Table 5.1. It is clear that the BF-O method consistently provides

accurate results of the rare-event response PDF (ranking the 1st or 2nd among all

methods for all cases). Moreover, we include in the table the average ratio of low

and high fidelity sample numbers nl/nh in the BF-O method, as well as the value of

n corresponding to the BF-Fn method with the best performance at c = 80. While

the optimal n in the BF-Fn method does not necessarily correspond to the nl/nh in

BF-O method, we find that the two numbers are close in most cases, with the latter

automatically captured by the algorithm.

5.3.3 Borehole hydrological model

We next consider an eight dimensional borehole hydrological model, which has been

used as an example of high-dimensional problems to quantify the rare response statis-

tics using single-fidelity methods [56, 20, 32]. The model physically computes the flow

rate through a borehole, formulated as

fh(x) =
2πTu(Hu −Hl)

ln(ri/rb)
[1 +

2LTu
ln(ri/rb)r2bKw

+
Tu
Tl

], (5.26)

with an eight-dimensional input x = {rb, ri, Tu, Hu, Tl, Hl, L,Kw}, including their

distributions, detailed in Table 5.2. We further construct a low-fidelity model as

fl(x) = fh(x) + 7.5 sin(x1) + 0.75 sin(
8∑

i=2

xi), (5.27)

where we use a nonlinear (sinusoidal) form of the difference function and put more

weights on the parameter x1 = rb, as it is the most influential factor to the response

fh(x) [56]. In particular, the coefficient 7.5 is chosen such that the term of sin(x1)

corresponds to 5% of the maximum response. We keep the computational cost ratio
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Table 5.2: The input parameters and their distributions of the borehole function.

Definition Range Distribution
rb radius of borehole [0:05; 0:15] m normal1

ri radius of influence [100; 50000] m logNormal2

Tu transmissivity of upper aquifer [63070; 115600] m2/yr uniform
Hu potentiometric head of upper aquifer [990; 1110] m uniform
Tl transmissivity of lower aquifer [63:1; 116] m2/yr uniform
Hl potentiometric head of lower aquifer [700; 820] m uniform
L length of borehole [1120; 1680] m uniform
kw hydraulic conductivity of borehole [9855; 12045] m/yr uniform
1 rb with mean 0.10, stand deviation 0.0161812.
2 ln(ri) with mean 7.71, stand deviation 1.0056.

20 40 60 80 100
c

100

101

102

e(
c)

Figure 5.5: The error e(c) computed by BF-O( ), BF-F1( ), BF-F5( ), BF-
10( ), BF-F15 ( ) and SF( ) for the high-dimensional borehole problem.

as ch/cl = 5 for this case.

The results from the SF, BF-O and BF-Fn methods are shown in figure 5.5. Com-

paring to the SF result, it is clear that the benefit of using bi-fidelity models is more

evident than the low-dimensional cases, even for the initial data set without sequential

samples. The reason is that the “value” of a high-fidelity sample becomes compro-

mised with the increase of dimensions. In addition, the BF-O method again performs

the best among all BF-Fn methods with varying n.

We finally remark that the computation in this eight-dimensional case is only en-
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Figure 5.6: The computation time for selecting one sequential sample in the borehole
problem by using the U criterion in (5.9)( ), the B criterion in (5.12) with numerical
integration ( ) and analytical formula ( ) as objective functions for different sizes
of the existing dataset. In the former two computations, we assume that 10 times (a
conservative number) of acquisition evaluations are needed compared to the gradient-
based optimization in the third case, as a common practice found in [86].

abled because of (i) the development of (5.12) which avoids the construction of a new

Gaussian process for each hypothetical sample, and (ii) the development of analytical

formula through GMM which avoids the numerical integration in (5.12) and enables

the gradient computation. To illustrate this point, we show in figure 5.6 the compu-

tation time for solving (5.13) as a function of the number of samples in the existing

dataset on a single core of Intel Xeon Gold 6154 CPU (specifically we use nGMM = 2

with (5.16) computed by 106 quadrature points, and 10 starting points in the quasi-

Newton method). For comparison, we also include in figure 5.6 the computation time

of using (5.9) (with a new Gaussian process for each hypothetical point) and (5.12)

(with numerical integration) as objective functions in optimization. In both cases,

not only are the computation for the objective functions expensive, these computa-

tions also need to be repeated many more times in gradient-free optimization than

that in the gradient-based method, resulting in prohibitive computational costs for

large number of samples. In contrast, using the analytical formula combined with the

GMM model, the computation takes only O(100)s even for a dataset of 1000 sample
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points, which is supposed to be negligible compared to the evaluation of the output

of the high-fidelity physical model.

5.3.4 Coupling with CFD to compute rare-event statistics of

ship motion in irregular waves

We further consider an application of our method to evaluate the rare-event PDF

of ship roll motion in irregular waves (other applications of multi-fidelity methods

in naval engineering can be found in [122, 144, 143] for design optimization pur-

pose). More specifically, we study the motion of a two-dimensional, square-shaped

hull geometry with 40m × 40m cross section and density ρh = 0.5ρw (with ρw the

water density) subject to beam waves. The input to this problem is considered as

x = {L,A}, with L and A the wave group amplitude and length, as a reduced-order

description of an uni-directional irregular wave field [26]. Figure 5.7 shows an exam-

ple to evaluate parameters L and A from a given wave field as well as the resulted

probability distribution px(L,A). The irregular wave field is described by a Gaussian

spectrum in the form

F (k) ∼ exp
−(k − k0)

2

2K2
, (5.28)

with the significant wave heightHs = 12m, peak (carrier) wavenumber k0 = 0.018m−1

(corresponding to peak period Tp = 15s), and K = 0.05k0. The response in this case

is considered as the maximum ship roll rmax in a wave group, i.e., we consider a

response function rmax(L,A).

The high and low fidelity models in this case are constructed by CFD models with

high and low resolutions, both developed using the open-source code OpenFOAM [64].

In particular, the grid resolutions for both cases are shown in figure 5.8, where the

low-fidelity model uses half number of grids in both horizontal and vertical directions

relative to the high-fidelity model. The setting of the fluid solvers, other than the
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Figure 5.7: An example of a wave field with (a) wave elevation η ( ) and (b)
envelop ρ ( ) approximated by a sequence of wave groups ( ) with group amplitude
parameter A and length parameter L. (c) Joint PDF of L (normalized by the spectral
peak wavelength Lp) and A (normalized by the significant wave height Hs).

(a) (b)

Figure 5.8: (a) Fine and (b) coarse grids of the CFD simulations, with free surface
indicated by a cyan line, and hull by a white box in each case.

resolution, is the same for both models, with details presented in §2.5. The average

wall time of high and low-fidelity simulations with 40 cores (Intel Xeon Gold 6154

CPU) are calibrated as 0.67 and 0.20 hours (considering adaptive time step size and

parallel efficiency), leading to ch/cl = 3.36 as the value we use in the sequential BED

method. The time series of ship roll motion computed from the high and low fidelity

models are shown in figure 5.9 for two examples with different input wave parameters,

showing that the difference of the results from the two models (in general) increases

with the group amplitude A.
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Figure 5.9: Results of high-fidelity ( ) and low-fidelity ( ) simulations for wave
groups of (a) L/Lp = 1.75, A/Hs = 0.5 and (b) L/Lp = 1.75, A/Hs = 0.8.
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Figure 5.10: (a) The uncertainty level U computed by (5.9) for BF-O ( ) and SF
( ) as a function of the total computation time. (b) The final PDF computed by
BF-O ( , upper panel) and SF ( , lower panel) at approximately 12 hours of
computation time, with two standard deviations marked by the shaded regions. (c)
The sequence of high-fidelity ( ) and low-fidelity ( ) CFD simulations.

We use as the initial dataset 4 high-fidelity and 16 low-fidelity samples in the BF-O

method, and 9 high-fidelity samples in the SF method (resulting in almost the same
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cost). Since the exact PDF in this case is unknown, we directly use the uncertainty

level of the rare-event portion of PDF, i.e., U as in (5.9), as an evaluation of the

quality of results, which is plotted in figure 5.10(a) as a function of the computational

cost measured by computation time in hours (only CFD times). It can be seen that

the BF-O method results in a faster convergence compared to the SF method. This

point is further illustrated in figure 5.10(b), which plots the PDFs from SF and BF-O

methods for the same computation time of 12 hours together with the upper and

lower bounds (in terms of two standard deviations two-sided from the mean). It

is clear that the PDF from the BF-O method is associated with appreciably lower

uncertainty. Finally, the high and low fidelity sample sequence in BF-O is shown in

5.10(c) with nl/nh = 7 in this case.

5.4 Summary

In this chapter, we develop a multi-fidelity sequential Bayesian experimental design

framework for efficient evaluation of the response PDF emphasizing the rare-event

portion. Our method leverages the multi-fidelity Gaussian process as a surrogate

model, and a new acquisition function which allows the selection of the next-best

sample in terms of both the location and fidelity level. We also construct an analytical

formula for the acquisition function, which enables implementation of the method

(e.g., gradient-based optimization) for high-dimensional problems. Our new method

is first tested in a bi-fidelity context for a series of synthetic problems. With a broad

range of low-fidelity accuracy level and computational cost, we show that the bi-

fidelity method always outperforms the single-fidelity method, and that the BF-O

method consistently shows advantage over the BF-Fn method, i.e., the bi-fidelity

method with pre-defined fidelity hierarchy. We finally demonstrate the effectiveness

of our BF-O method (relative to the single-fidelity method) in an engineering problem
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to evaluate the rare-event PDF of ship roll motion in irregular waves, where CFD of

two resolutions serve as the high and low fidelity models.

We note that an assumption to use the multi-fidelity scheme is that the ‘difficulty’

of constructing the low-fidelity function, difference functions, and (directly) the high-

fidelity function is approximately the same. If that is not true, e.g., when learning the

low-fidelity function or the difference function is much harder than the original high-

fidelity function, the multi-fidelity scheme may have the opposite effect. Under this

circumstance, one can try a nonlinear relation between low and high-fidelity functions

[107, 73], improve the quality of low-fidelity samples, or directly use a single-fidelity

scheme.

We finally remark on two points regarding the acquisition (5.10) and (5.12). First,

these acqusitions are both designed to effectively minimize the error regarding the

overall PDF tail according to (5.1). Such criteria do not guarantee the minimization

of error in exceeding probability with any given threshold, and vice versa. For the

application of multi-fidelity sequential sampling to problems of exceeding probability,

we refer the readers to the next chapter §6. Second, in minimization of error (5.1),

(5.10) and (5.12) are expected to be effective only if the predicted response PDF (by

surrogate model) is sufficiently close to the true PDF (see [95, 118] for a derivation).

In other words, if the mean prediction by the surrogate model happens to miss some

rare-event responses of interest in some regions of the input parameter space, these

acquisitions may not drive sequential samples to the rare event region. The key to

addressing this unfavorable issue is to endow the acquisition function with necessary

exploration power, a topic covered in §7.
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CHAPTER 6

Multi-Fidelity Bayesian Experimental

Design for Safety Analysis of Connected

and Automated Vehicles

6.1 Introduction

In §5, a multi-fidelity Bayesian experimental design framework has been developed

to resolve response PDF with emphasis on the tail part. In this chapter, we adapted

the multi-fidelity framework with a new acquisition function for reliability analysis,

i.e., estimating exceeding probability above/below a threshold. Specifically, we focus

on the safety of connected and automated vehicles (CAVs) and start this chapter by

introducing its background and existing literature.

CAVs have attracted increasing attention due to their potential to improve mobility

and safety while reducing the energy consumed. As we discussed in §1, the converged

statistics of their accident rate may require hundreds of millions of miles for each

configuration of CAVs [66]. To reduce the testing cost, scenario-based approaches

have been developed where the scenarios (and their distribution) describing certain

traffic environments are parameterized from the Naturalistic Driving Data (NDD).

The performance of CAVs is then evaluated for given scenarios as the input, and the

accident rate of CAVs is quantified considering the distribution of scenarios.
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In order to efficiently compute the accident rate under the scenario-based approach,

many methods have been developed to reduce the number of scenario evaluations.

One category of methods relies on importance sampling, where samples are selected

from a proposal distribution to stress the critical input regions (leading to most

accidents). Different ways to construct the proposal distribution have been developed

in [161, 160, 37, 35, 34], leading to significant acceleration compared to standard

Monte Carlo method.

Another category of methods in safety analysis is based on adaptive sampling en-

abled by Bayesian experimental design (or more broadly active learning), which was

first developed for structural reliability analysis [136, 31, 59, 15, 135, 149] and have

recently been introduced to the CAV field [96, 134, 79, 62, 34]. To provide more de-

tails, two acquisition functions are proposed in [96], respectively designed for Gaussian

process regression and k-nearest neighbors as surrogate models, in order to better re-

solve performance boundaries between accidents and safe scenarios. These acquisition

functions combine exploration and exploitation under some heuristic consideration of

the surrogate models. The approach in [96] is extended in [79] by clustering samples

into different groups that allow a parallel search of optimal samples to accelerate the

overall algorithm. In [134], the authors develop two acquisition functions applica-

ble to six different surrogate models, which favor samples expected to respectively

produce (i) poor performance, and (ii) performance close to accident threshold, and

in the meanwhile, far from existing samples (for exploration). In these works, the

proposed acquisition functions are rather empirical and cannot guarantee optimal

convergence of the accident rate. In addition, an acquisition function that directly

targets the accident rate (in which sense similar to what we develop) is proposed in

[62, 61], but their method is not sufficiently supported by numerical tests provided in

their papers. In viewing the state-of-the-art methods in the field, it is clear that large

room exists for further improvement of the sampling efficiency (i.e., reduction of the
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required number of samples) through a more rigorous information-theoretic approach

to develop the acquisition. Such developments are not only desired to reduce the

cost of CAV safety evaluation but are also valuable to the general field of reliability

analysis.

The cost in the evaluation of CAV accident rate can also be reduced by leveraging

low-fidelity models applied in conjunction with the high-fidelity model. In principle,

the low-fidelity models can provide useful information on the surrogate model (e.g.,

the general trend of the function) although their own predictions may be associated

with considerable errors. For example, low-fidelity models have been used to generate

the proposal distribution for importance sampling [35, 34]. It needs to be emphasized

that almost all existing works (in the CAV field) assume that the low-fidelity models

are associated with negligible cost, i.e., the low-fidelity map from scenario space

to CAV performance can be considered as a known function. However, in practical

situations, the cost ratio between high and low-fidelity models may not be that drastic.

Typical cases include (i) CARLA [30] simulator versus SUMO simulator [78], (ii)

the same simulator with fine versus coarse-time resolutions. For these cases, a new

adaptive-sampling algorithm considering the cost ratio is needed, which is expected

to be able to select both the model (i.e., fidelity level) and scenario for the next-best

sample to reduce the overall cost in the evaluation of the accident rate. Such methods

are not yet available for CAV testing.

To fill these gaps, in this chapter, we develop an adaptive sampling algorithm

in the Bayesian experimental design framework for safety testing and evaluations of

CAVs. The novelty of our method lies in the development of an information-theoretic-

based acquisition function that leads to very high sampling efficiency and can be

extended to bi-fidelity contexts in a relatively straightforward manner. In particular,

our method is applied to two situations: (i) the single-fidelity context where only a

high-fidelity model is available; and (ii) the bi-fidelity context where the high-to-low
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model cost ratio is finite and fixed. We note that for case (ii), our method needs to

be established by using a bi-fidelity Gaussian process as the surrogate model and an

acquisition function to select the next sample (in terms of both model fidelity and

traffic scenario) which maximizes information gain per cost. Both applications of our

method are tested in a widely-considered two-dimensional cut-in problem for CAVs,

with the high-fidelity model taken as the Intelligent Driving Model (IDM) with fine

time resolution. The low-fidelity model is constructed by a coarser-time-resolution

IDM model in application (ii). We compare the performance of our method with the

state-of-the-art approaches in the CAV field for the same problem and find that even

the single-fidelity approach can considerably outperform the existing approaches. The

method in application (ii) can further reduce the computational cost by at least a

factor of 2.

This chapter is adapted from [42]. The Python code for the proposed algorithm,

named MFGPreliability, is available on Github1.

6.2 Method

6.2.1 Problem setup

We consider a black-box function fh(x) : Rd → R with input x a d-dimensional

decision variable of a driving scenario and output a measure of the CAV performance.

A subscript h is used here to denote that the function needs to be evaluated by an

expensive high-fidelity model. Taking the cut-in problem (figure 6.1) as an example,

the input can be formulated as x = (R0, Ṙ0) where R0 and Ṙ0 denote the initial range

and range rate between the CAV and background vehicle (BV) at the cut-in moment

t = 0 (more details in §6.3.1). The output is the minimum range between the two

vehicles during their speed adjustment process for t ≥ 0.

1https://github.com/umbrellagong/MFGPreliability
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Figure 6.1: Illustration of the cut-in scenario [34]. R and Ṙ respectively denote the
range and range rate between CAV and BV.

The probability of the input x ∼ px(x) is assumed to be known from the nat-

uralistic driving data (NDD). Our objective is the evaluation of accident rate, i.e.,

probability of the output smaller than some threshold δ (or range between CAV and

BV smaller than δ):

Pa =

∫
1δ(fh(x))px(x)dx, (6.1)

where

1δ(fh(x)) =


1, if fh(x) < δ

0, o.w.

. (6.2)

A brute-force computation of Pa calls for a large number of Monte Carlo samples

in the space of x, which may become computationally prohibitive (considering the

expensive evaluation of fh and the small Pa). In this chapter, we seek to develop an

adaptive sampling framework based on Bayesian experimental design, where samples

are selected optimally to accelerate the convergence of the computed value of Pa.

We will present algorithms for (i) single-fidelity cases, where only one model fh is

available, and (ii) bi-fidelity cases. For case (ii), we consider a practical situation

that a low-fidelity model fl with a lower but finite cost is also available to us that

can provide a certain level of approximation to fh. Making use of fl, as will be

demonstrated, can further reduce the cost of computing Pa.
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6.2.2 Single fidelity method

We consider the single-fidelity context where only the model fh is available. Two

basic components of our Bayesian experimental design are presented below: (i) an

inexpensive surrogate model based on the standard Gaussian process; (ii) a new

acquisitive function to select the next-best sample.

6.2.2.1 surrogate model by GPR

Gaussian process regression (GPR) is a probabilistic machine learning approach [113]

widely used for Bayesian experimental design. Consider the task of inferring fh from

D = {X,Y}, which consists of n inputs X = {xi ∈ Rd}i=n
i=1 and the corresponding

outputs Y = {fh(xi) ∈ R}i=n
i=1 . In GPR, a prior, representing our beliefs over all

possible functions we expect to observe, is placed on fh as a Gaussian process fh(x) ∼

GP(0, k(x,x′)) with zero mean and RBF kernel k defined in Appendix A.

Following the Bayes’ theorem, the prediction for fh given the dataset D can be

derived to be another Gaussian process:

fh(x)|D ∼ GP
(
E(fh(x)|D), cov(fh(x), fh(x

′)|D)
)
, (6.3)

where formulae of posterior mean and covariance are summarized in Appendix A.

6.2.2.2 acquisition function

Given the GPR surrogate fh(x)|D, the accident rate Pa|D becomes a random variable

with its randomness coming from the uncertainty of the GPR. The principle of finding

the next-best sample is to provide most information to the quantity of interest Pa.

This can be achieved in two ways: (i) through an information-theoretic perspective for

the next sample to maximize the information gain, i.e., the K-L divergence between

the current estimation and the hypothetical next-step estimation of Pa; (ii) through a
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more intuitive and efficient approach for the next sample to minimize the uncertainty

level associated with the distribution of Pa. In this paper, we describe the algorithm

for (ii) in the main text and the algorithm for (i) in Appendix D.1. The results from

the two approaches are equivalent after simplification of the results from (i) under

reasonable assumptions presented in Appendix D.1.

For approach (ii), we need to formulate the uncertainty of Pa (measured by the

variance of its distribution) after adding a hypothetical sample at x̃:

var(Pa|D, fh(x̃)) = var
(∫

1δ
(
fh(x)|D, fh(x̃)

)
px(x)dx

)
, (6.4)

where fh(x̃) = E(fh(x̃)|D) the CAV performance computed as the mean prediction

from the current GPR. Our purpose is to find x̃ so that (6.4) is minimized. However,

the computation of (6.4) is very expensive since the variance operator involves the

sampling of an integral (i.e., integral to be computed many times with expensive

sampling of fh(x)|D, fh(x̃)). The computational cost of (6.4) can be significantly

reduced by considering an upper bound of (6.4), following approaches developed in

§4. With the detailed derivation presented in Appendix D.2, the upper bound of (6.4)

gives

U(D, fh(x̃)) =

∫
var

1
2

(
1δ

(
fh(x)|D, fh(x̃)

))
px(x)dx, (6.5)

where the variance function in (6.5) can be analytically evaluated (since the indicator

function simply follows a Bernoulli distribution for each x) as

var
(
1δ
(
fh(x)|D, fh(x̃)

))
=

(
1− Φ

(E(fh(x)|D, fh(x̃)
)
− δ

var
1
2

(
fh(x)|D, fh(x̃)

) ))
∗ Φ

(E(fh(x)|D, fh(x̃)
)
− δ

var
1
2

(
fh(x)|D, fh(x̃)

) )
, (6.6)

with Φ the cumulative distribution function of a standard Gaussian. It is clear that

in evaluating (6.6), no sampling for fh(x)|D, fh(x̃) is needed and the integration only

needs to be evaluated once, leading to a much cheaper computation compared to
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(6.4). Furthermore, while (6.6) seems to involve an updated GPR conditioning on

{D, fh(x̃)}, the relevant quantities can be efficiently computed using the currently

available GPR conditioning on D:

E(fh(x)|D, fh(x̃)) = E(fh(x)|D) +
(cov(fh(x), fh(x̃)|D)

var(fh(x̃)|D)
∗
(
fh(x̃)− E(fh(x̃)|D)

))
= E(fh(x)|D), (6.7)

var
(
fh(x)|D, fh(x̃))

)
= var(fh(x)|D)− cov(fh(x), fh(x̃)|D)2

var(fh(x̃)|D)
. (6.8)

Up to this point, the algorithm for single-fidelity method can be considered com-

plete, and one simply needs to find x̃ to minimize (6.5). However, for the purpose of

convenience in developing the bi-fidelity method later, it is more desirable to formu-

late an equivalent acquisition through the reduction of the variance, i.e., the benefits,

of adding a hypothetical sample. This can be expressed as

B(x̃) = U(D)− U(D, fh(x̃)), (6.9)

where U(D) is defined as (6.5) conditioning on D only. The next-best sample can

then be selected through the solution of an optimization problem.

x∗ = argmaxx̃∈Rd B(x̃), (6.10)

which can be directly solved using standard global optimization methods, e.g.,

multiple-starting L-BFGS-B quasi-Newton method [100] used in our study. The op-

timization (6.10) is repeated for each sequential sample until reaching a user-defined

number of samples nlim which needs to be practically chosen balancing the computa-

tional budget and required accuracy of the result.

We finally summarize the full algorithm in Algorithm 5.
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Algorithm 5 Single-fidelity method for CAV safety analysis

Require: Number of initial samples ninit, limit of number of samples nlim

Input: Initial dataset D = {X,Y}
Initialization ntotal = ninit

while ntotal < nlim do
1. Train the surrogate model with D to obtain (6.3)
2. Solve the optimization (6.10) to find the next-best sample x∗

3. Evaluate the function fh to get fh(x
∗)

4. Update the dataset D with X = X ∪ {x∗} and Y = Y ∪ fh(x
∗)

5. ntotal = ntotal + 1
end while

Output: Compute Pa according to (6.1) based on the surrogate model (6.3)

6.2.3 Bi-fidelity method

We consider the situation that, in addition to the high-fidelity model fh, we also have

a low-fidelity model fl with lower computational cost. The model fl can be considered

to provide an approximation to fh with a relation

fh(x) = fl(x) + d(x), (6.11)

where d(x) is an unknown difference function to be determined.

We further assume that the cost for an evaluation using fh is ch, and that for fl

is cl, with ch/cl > 1. Since fl is associated with finite cost, we cannot assume that

the full low-fidelity map is available to us, in contrast to the situation in [35, 37].

The adaptive sampling algorithm for this bi-fidelity application is required to find a

sequence of samples with optimal fidelity level and location, i.e., fi(x) with i = h or l

and x varying for each sample. For this purpose, the algorithm for the single-fidelity

method needs to be extended in two aspects: (i) construction of the surrogate model

through a bi-fidelity Gaussian process; and (ii) a more comprehensive acquisitive

function measuring the benefit per computational cost for each sample, allowing the

next-best sample to be selected in terms of both fidelity level and sampling position.
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6.2.3.1 surrogate model by BFGPR

Bi-fidelity Gaussian process regression (BFGPR) [68] is a direct extension of GPR

to infuse bi-fidelity data. Given a dataset D = {X,Y} consisting of two levels of

model outputs Y = {Yh,Yl} at input positions X = {Xh,Xl}, the purpose of the bi-

fidelity Gaussian process is to learn the underlying relation fh,l(x) from D. This can

be achieved through an auto-regressive scheme, which models fh(x) in (6.11) by two

independent Gaussian processes fl(x) ∼ GP(0, kl(x,x
′)) and d(x) ∼ GP(0, kd(x,x

′)).

The posterior prediction fh,l(x) given the dataset D can then be derived as a Gaussian

process: fh(x)
fl(x

′)

 | D ∼ N
(
E
(fh(x)

fl(x
′)

 | D
)
, cov

(fh(x)
fl(x

′)

 | D
))
, (6.12)

with posterior mean and covariance detailed in §C.1.

We note that fh(x)|D in (6.12), as the major prediction in BFGPR, provides the

high-fidelity function infusing both high and low fidelity samples {X,Y} (instead of

only {Xh,Yh}). This is achieved, intuitively, through the two Gaussian processes

on fl(x) and d(x) which rely on all data. The prediction fh(x)|D will be used as

the surrogate model for the computation of Pa and the development of acquisition

function.

6.2.3.2 bi-fidelity acquisition function

In the bi-fidelity context, the next-best sample needs to be determined in terms of

both its location and fidelity level. Given a total cost budget, the principle to select

the next-best sample is to maximize its benefit per cost. Accordingly, we consider

the optimization of an acquisition function which captures both the benefit and cost

of a sample x̃:

x∗, i∗ = argmaxx̃∈Rd,i∈{h,l} Bi(x̃)/ci. (6.13)
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Following the formulations in the single-fidelity problem, the benefit of adding an

i-fidelity hypothetical sample at x̃, Bi(x̃), can be expressed as

Bi(x̃) = U(D)− U(D, f i(x̃)), i = h, l, (6.14)

with

U(D, f i(x̃)) =

∫
var

1
2

(
1δ

(
fh(x)|D, f i(x̃)

))
px(x)dx. (6.15)

The computation of (6.15) can be conducted following (6.7) and (6.8) adapted

to the bi-fidelity context using the BFGPR surrogate model. In solving (6.13) as

a combined discrete and continuous optimization problem, we first find the optimal

location x for each fidelity i, i.e., x∗
i = argmaxx̃∈Rd Bi(x̃) for i = h, l, then we

compare the benefit per cost Bi(x
∗
i )/ci between i = h and i = l and find the optimal

fidelity level i∗, i.e., i∗ = argmaxi∈{h,l} Bi(x
∗
i )/ci. We further remark that this idea

of maximizing benefit per cost has been systematically tested with a different benefit

function Bi(x̃) in §5.

We finally summarize the full algorithm in Algorithm 6.

Algorithm 6 Bi-fidelity method for CAV safety analysis

Require: Number of initial samples {ninit
h , ninit

l }, cost of each fidelity model {ch, cl},
total cost budget clim

Input: Initial dataset D = {X,Y} with X = {Xh,Xl} and Y = {Yh,Xl}
Initialization ctotal = ninit

h ch + ninit
l cl

while ctotal < clim do
1. Train the surrogate model with D to obtain (6.12)
2. Solve the optimization (6.13) to find the next-best sample {i∗,x∗}
3. Evaluate the i∗−fidelity function to get fi∗(x

∗)
4. Update the dataset D with Xi∗ = Xi∗ ∪ {x∗} and Yi∗ = Yi∗ ∪ {fi∗(x∗)}
5. ctotal = ctotal + ci∗

end while
Output: Compute the Pa according to (6.1) based on the surrogate model (6.12)
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6.3 Cut-in case analysis

In this section, we demonstrate the application of our proposed (single and bi-fidelity)

methods to the cut-in problem, starting with a more detailed description of the setup

of the case. Since our method is new to the general reliability analysis field, we

also document its favorable performance for two widely-used benchmark problems in

reliability analysis in Appendix D.3.

6.3.1 Case setup

The cut-in situation is illustrated in figure 6.1 where a BV makes a line change in

front of a CAV. We assume that the BV moves in a constant speed uBV = 20m/s

after the cut-in moment, so that (given the CAV model) the performance of the CAV

only depends on x = (R0, Ṙ0), the initial range and range rate at the cut-in moment

t = 0 (time t in unit of seconds hereafter). The probability of x is generated from

the naturalistic driving data (NDD) of the Safety Pilot Model Deployment (SPMD)

at the University of Michigan [14]. A total number of 414,770 qualified cut-in events

are analyzed with joint distribution of x shown in figure 6.2(a).

The model output for the problem is the minimum range between two vehicles

during their speed adjustment process for t ≥ 0. In this chapter, we use the the

Intelligent Driving Model (IDM) which describes the speed of CAV by an ordinary

differential equation

ducav(t)

dt
= α

(
1−

(ucav(t)
β

)c − (s(ucav(t), Ṙ(t))
R(t)− L

)2)
, (6.16)

s(ucav(t), Ṙ(t)) = s0 + ucav(t)T +
ucav(t)Ṙ(t)

2
√
αb

, (6.17)

where α, β, c, s0, L, b, and T are constant parameters and values in [115] are used
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here2. We integrate (6.16) in time using forward Euler method starting from initial

condition ucav(t = 0) = uBV − Ṙ0, and accordingly find the range R and range rate

Ṙ for t ≥ 0. In addition, we constrain the velocity and acceleration of the CAV to

be 2 ≤ ucav(t) ≤ 40m/s and −4 ≤ ducav(t)/dt ≤ 2m/s2. The minimum range R

obtained for 0 ≤ t ≤ 10 is taken as the model output. We use a number of different

time resolutions in integrating (6.16), with the result obtained for ∆t = 0.2 as the

high-fidelity model output (fh) that is plotted in figure 6.2(b) for visualization. The

results for ∆t = 0.5, 1, 2, and 5 are taken as the outputs from low-fidelity models (fl)

with different fidelity levels, i.e., we will consider the bi-fidelity context as fh plus

one of the low-fidelity options fl. The cost ratio ch/cl is inversely proportional to the

ratio of ∆t’s.

In order to evaluate the performance of our methods in §6.3.2, we compute accurate

(ground truth) values of Pa for both δ = 0 and δ = 3 (see (6.2)) according to high-

fidelity model fh for all 414,770 available events. The former will be used for validating

the single-fidelity method (so that its performance can be compared to existing cases

in literature) and the latter for the bi-fidelity method (to have a considerable difference

between the results from fh and fl).

6.3.2 Results

6.3.2.1 single-fidelity results

We first apply the single-fidelity method (Algorithm 5) to the context where only

fh (IDM with ∆t = 0.2) is available to us. The computation starts from 16 initial

random samples, with the following 104 adaptive samples obtained from Algorithm 5.

The results of Pa (estimated from (6.1) in the sampling process) as a function of the

number of samples are shown in figure 6.3 together with the 10% error bounds of the

ground truth. Since the value of Pa depends on the locations of the initial samples,

2α = 2, β = 18, c = 4, s0 = 2, L = 4, b = 3, and T = 1.
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Figure 6.2: (a) probability distribution and (b) output from fh for input parameters
R0 and Ṙ0. The limiting state {x : fh(x) = 0} is marked in (b) by a red line.

we quantify its uncertainty by plotting both the median value as well as 15% and 85%

percentiles in figure 6.3 obtained from 200 applications of our algorithm starting from

different initial samples. The percentile concept is used here because the distribution

of Pa over different experiments is not guaranteed to be Gaussian, and the 15% and

85% percentiles are used for the convenience of a fair comparison with other results

discussed below.

From figure 6.3 we see that it only takes 83 samples (or 67 adaptive samples)

for the upper and lower percentiles to converge into the 10% error bounds of the

ground truth. In comparison, to reach convergence with a similar criterion3, it takes

121 samples for the importance sampling method presented in earlier work [34]. It

should also be emphasized that the method in [34] requires a pre-known low-fidelity

map (e.g., fl with negligible cost) to guide the proposal distribution in importance

sampling. This extra component is not required at all in our method. Therefore, for

this validation case, it can be concluded that our approach takes about 2/3 number

3Our convergence criterion means that within every 100 experiments, 70 of them provide results
within 10% error bounds. This is, by definition, equivalent to the relative half-width of the 70%
confidence interval falling below 0.1. The latter, as described in figure 9 of [34] (presented in terms
of ±2 standard deviation which is close to two times of the 70% confidence interval for Gaussian
estimation in importance sampling), takes 121 samples.
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Figure 6.3: Results of Pa from the single-fidelity method, presented by the median
value ( ) as well as the 15% and 85% percentiles (shaded region) from 200 experi-
ments. The true solution of Pa ( ) is shown in terms of the 10% error bounds.
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Figure 6.4: Positions of 16 initial samples ( ) and 50 adaptive samples ( ) from a
typical experiment of our method, as well as the learned limiting state ( ) compared
to the exact one ( ).
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of samples to achieve the same accuracy as [34] based on the current criterion, and

can be conducted in a much simpler setting. Another possible source of comparison is

[134], which performs the adaptive sampling with a simplified/empirical acquisition

function, without needing a low-fidelity model, to a slightly more complicated 3D car-

following problem. It takes O(500) samples to obtain convergent result of accident

rate, which is based on one experiment result without analyzing the uncertainty

bounds as we do here. It is desirable to apply our method to the same case, but the

information provided in [134] is not sufficient for us to do so (e.g., no code or input

probability data is provided).

Finally, we plot in figure 6.4 the sampling positions in the input space x for a

typical case out of the 200 experiments. After 16 initial random samples, we see that

most adaptive samples are located close to the limiting state to better resolve Pa.

The limiting state {x : fh(x) = 0} estimated from the GPR constructed by only 50

adaptive samples is also included in the figure to show its proximity to the true state.

6.3.2.2 Bi-fidelity results

We next consider the bi-fidelity application where the high-fidelity model fh is used

together with a low-fidelity model fl. Different choices of fl are considered, which

are obtained from IDM model with coarser time resolutions of ∆t = 0.5, 1, 2, and

5, in contrast to ∆t = 0.2 for fh. As shown in figure 6.5, these low-fidelity models

provide different levels of approximation to fh, especially regarding the limiting state

{x : fh(x) = 3} considered here. While the fl of ∆t = 0.5 provides a close estimation

of the limiting state, the fl of ∆t = 5 provides a poor estimation even including

an extra region that leads to false accidents. The values of Pa computed solely by

different choices of fl are listed in Table 6.1, which shows 8− 217% relative difference

with the ground-truth value (computed by fh) for fl with ∆t = 0.5−5. In particular,

results obtained with ∆t = 5 show an abnormally large Pa because of the false-
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Figure 6.5: Output contour from fl ( ) of (a) ∆t = 0.5, (b) ∆t = 1, (c) ∆t = 2,
(d) ∆t = 5 compared with contour from fh ( ) of ∆t = 0.2 . The limiting states
{x : fh,l(x) = 3} of fh and fl are respectively marked by ( ) and ( ).
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Figure 6.6: Results of Pa from the single-fidelity method with fh ( ) and bi-fidelity
method with both fh and fl (∆t = 0.5: ( ) in (a); ∆t = 1: ( ) in (b), ∆t = 2:
( ) in (c);, ∆t = 5: ( ) in (d)), presented by the median value (solid lines) as
well as the 15% and 85% percentiles (shaded region) from 50 experiments. The true
solution of Pf ( ) is shown in terms of the 10% error bounds.
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Table 6.1: Accident rates computed by models with different time resolutions

∆t 0.2 0.5 1 2 5

Pa
0.001489 0.001375

(8%)1
0.001202
(19%)

0.001114
(25%)

0.004725
(217%)

1 Relative differences are computed with respect to the re-
sult of ∆t = 0.2.

Table 6.2: Summary of the performance of single-fidelity (No. 1) and bi-fidelity (No.
2-5) cases

No. ∆t(fh) ∆t(fl) ch/cl nl/nh
1 percentile2 median2

1 0.2 − − - 82 47
2 0.2 0.5 2.5 6.63 42 30
3 0.2 1 5 6.22 38 22
4 0.2 2 10 8.15 39 23
5 0.2 5 25 4.1 > 60 35
1 nl/nh gives the ratio of low and high-fidelity sampling
numbers in the adaptive sampling process.

2 “percentiles” and “median” columns respectively give the
units of cost for the (15% and 85%) percentiles and me-
dian of Pa to converge to the 10% error bounds of the
ground truth.

accident region in figure 6.5(d). In terms of computational cost, we consider that one

application of fh takes one unit of cost, and one application of fl takes 0.2/∆t units

of cost.

The results of our bi-fidelity method with respect to total cost ctotal in the sampling

process are shown in figure 6.6 for four cases, with (a)-(d) corresponding to fl of

∆t = 0.5, 1, 2, and 5. In each bi-fidelity case, the application starts with 8 high-

fidelity samples (8 units of cost) and 8 ch/cl low-fidelity samples (8 units of cost) as

the initial dataset, followed by adaptive samples with 44 units of cost. Also shown

in figure 6.6 are single-fidelity results using fh, starting from 16 high-fidelity random

samples (i.e., 16 units of cost), as well as 10% error bounds of the ground-truth Pa.

Similar to §6.3.2.1, the results are presented including the median value as well as
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15% and 85% percentiles obtained from 50 applications. We see that in general, the

bi-fidelity approach converges much faster than the single-fidelity approach, especially

regarding the cases with fl constructed by ∆t = 0.5, 1, and 2 in (a), (b) and (c). For

these cases, the percentiles of Pa converge into the 10% error bound in O(40) units

of cost, whereas the single-fidelity approach takes more than 60 units (82 units upon

extended test not shown in the figure) to reach the same convergence criterion. For

the bi-fidelity case with fl of ∆t = 5, the percentiles of Pa converge with a comparable

(but slightly slower) speed relative to the single-fidelity case within 60 units of cost as

seen in (d). However, even in this case, the median of Pa in the bi-fidelity approach

converges to the 10% error bound in O(35) samples that is faster than O(50) samples

in the single-fidelity approach. It must also be kept in mind that for this bi-fidelity

case, Pa starts with a much less accurate value at the beginning of the adaptive

sampling process, due to the initial 8ch/cl = 200 low-fidelity samples that are very

misleading in constructing the initial surrogate model. Shall a different allocation

of high/low fidelity samples are used for the initial dataset, it is possible to further

improve the performance of this bi-fidelity application.

We further summarize the performance of all 5 cases (one single-fidelity and four

bi-fidelity cases) in Table 6.2. In addition to the exact units of cost consumed for

convergence, a notable information is provided by the column of nl/nh that gives the

ratio of low and high-fidelity sampling numbers in the adaptive sampling process. It

is clear that nl/nh does not monotonically increase with the increase of ch/cl, i.e.,

the algorithm does not select more low-fidelity samples just because they are cheaper

but instead considers the benefit per cost of each sample formulated in (6.13). This

is most evident when ch/cl increases from 10 to 25 and meanwhile, nl/nh drops from

8.15 to 4.1, mainly because a sample by fl with ∆t = 5 does not provide much useful

information to the computation of Pa.

Finally, we plot in figure 6.7 the positions of the high and low-fidelity (initial and
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Figure 6.7: Positions of initial high-fidelity samples ( ), initial low-fidelity samples ( ),
adaptive high-fidelity samples ( ) and adaptive low-fidelity samples ( ) from a typical
experiment with fl of ∆t = 1, as well as the learned limiting state ( ) compared to
the exact one ( ).

adaptive) samples for a typical experiment of bi-fidelity algorithm for the case with

fl of ∆t = 1. It can be observed that while the adaptive low-fidelity samples are

scattered in the space of x, the adaptive high-fidelity samples are most concentrated

at the limiting state {x : fh,l(x) = 3}. This is because the limiting state represents

the location where the difference between fh and fl critically affects the computed

value of Pa, and it necessarily takes high-fidelity samples to resolve this important

region. The resolved limiting state at 60 units of cost in adaptive sampling is also

shown in the figure to demonstrate its proximity to the ground truth.

6.4 Summary

In this chapter, we develop an adaptive sampling framework to efficiently evaluate the

accident rate Pa of connected and automated vehicles (CAVs) in scenario-based tests.

The core components of our approach include a surrogate model by Gaussian process
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regression and a novel acquisition function to select the next-best sample maximizing

its benefit (uncertainty reduction) to Pa. The framework can be applied to both

single-fidelity and bi-fidelity contexts, where the latter involves a low-fidelity model

to help construct the function of the CAV performance. Accordingly, for the latter

the two components of our approach need to be extended to the bi-fidelity Gaussian

process regression and an acquisition function, allowing the choice of both fidelity

level and sampling location. We demonstrate the effectiveness of the framework in

a widely-considered two-dimensional cut-in problem, with the low and high-fidelity

models constructed by IDM with different resolutions in time. It is shown that the

single-fidelity method already outperforms the state-of-the-art method for the same

problem, and the bi-fidelity method further accelerates the convergence by a factor of

about two (i.e., with half of the computational cost) for most settings that are tested.

We finally remark that the method we develop in this chapter is new to the entire

field of reliability analysis according to our knowledge, and its application to other

fields may prove equally fruitful. For example, it may be applied to evaluate the

ship capsizing probability in ocean engineering [49, 48], structural safety analysis

[59, 149], probability of extreme pandemic spikes for public health [109] and many

other physical, engineering and societal problems. Within the CAV field, our method

is certainly not limited to the IDMmodels used in this paper as demonstrations. It can

be connected to a broad range of CAV evaluation tools across on-road tests, closed-

facility tests, simulations based on various kinds of simulators (e.g. Google/Waymo’s

Car-Craft9 [67], Intel’s CARLA6 [30], Microsoft’s Air-Sim7 [123], NVIDIA’s Drive

Constellation [101]). Among these examples, we would like to emphasize the possible

benefit of our method to the augmented-reality test environment combing a real

test vehicle on road and simulated background vehicles [36]. Due to the bi-fidelity

capability of our method, it also becomes beneficial to combine two different tools in

the above list to further improve the testing efficiency.
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CHAPTER 7

A Generalized Likelihood-Weighted

Acquisition for Rare-Event Statistics

7.1 Introduction

In §5, we introduced the likelihood-weighted (LW) algorithm [117, 118, 19] for quan-

tifying rare-event statistics and extended it to multi-fidelity scenarios. The idea of

using LW weight has later been adapted to many different applications beyond its

original purpose of rare-event statistics evaluation, including rare-event forecasting

[109, 116], Bayesian optimization [20], robot path planning [18], multi-arm bandit

[157], causal inference [159]. In this chapter, we will take a deep dive into the LW

algorithm for its derivation, weaknesses, and corresponding improvements.

Given an ItR function f(x) with known input probability px(x), the next optimal

sample x∗ in LW algorithm, based existing dataset D, is selected as the one that

maximizes an acquisition function

acqLW (x) = var(f(x)|D)w(x). (7.1)

The LW factor w(x) = px(x)/pf̂ (f̂(x)) is the ratio of input probability to predicted

output probability with f̂ ≡ E(f |D) the surrogate model. The effectiveness of the

LW acquisition can be understood from the LW factor w(x) in (7.1). It is argued
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in [117] that due to w(x), the next sample is chosen in favor of x with larger input

probability px(x) (thus contributing more to pf (f)) and smaller predicted response

probability pf̂ (f̂(x)) (thus associated with rare events). Such samples are more likely

to contribute more to the rare-event (or tail) portion of the response PDF pf (f).

While this interpretation is plausible, (7.1) is clearly not an optimal sampling crite-

rion. To see this, let us consider any one-dimensional monotonic function f(x), say a

logistic function f(x) = 1/(1 + e−x) (figure 7.1(a)) and assume no difference between

surrogate f̂(x) and ground-truth f(x). The critical weighting factor is now reduced

simply to w(x) = f ′(x), which peaks at x = 0 (figure 7.1(b)). It is clear not only that

the input leading to large (and usually rare) responses is not stressed, but also that

w(x) has nothing to do with the input and response probability, violating the above

claims made in [117]. The failure of (7.1) in the above example lies in the fact that

the simple ratio in w(x) is not necessarily optimal in sampling to resolve the tail of

pf (f). Indeed, while larger px(x) and smaller pf̂ (f̂(x)) helps, there is no guarantee

that the optimal form is their direct ratio. In addition, another more severe issue

regarding (7.1) is that f̂ may have a significant deviation from f , which makes small

pf̂ (f̂(x)) a poor estimation of the rarity of response. This is especially the case when

function f(x) is complex, given the limited number of samples that can be afforded.

In such cases, the rare-event statistics provided by sampling through (7.1) may be-

come misleading since regions associated with small pf (f(x)) may never be explored

(if the corresponding pf̂ (f̂(x)) is large).

In the following, we propose a generalized LW acquisition targeting the two limi-

tations mentioned above. Our new acquisition takes a generalized form of (7.1) with

two additional parameters, by varying which one can achieve (i) optimal deployment

of p(x) and pf̂ (f̂(x)) in the LW factor, and (ii) a much more effective guidance of

sample exploration when f̂ is very different from f . The generalized LW acquisition

also shares the theoretical property of (7.1) in terms of its derivation from the first
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Figure 7.1: Plots of (a) a logistic function f(x) = 1/(1 + e−x) and (b) its derivative.

principle. In addition, we point out an acceleration in Monte-Carlo discrete optimiza-

tion regarding the acquisition, achieving orders of magnitude speedup compared to

existing algorithms used in [117, 19, 20]. The superior performance of our new acqui-

sition is consistently demonstrated in a number of test cases, including a stochastic

oscillator [18, 118], a pandemic spike model [109] and cases with arbitrary complex

functions f(x) generated by kernels. We finally show the application of the new ac-

quisition in an engineering example of quantifying the rare-event roll-motion statistics

of a ship in a random sea.

This chapter is adapted from [47]. The Python code for the proposed algorithm,

named GPextreme, is available on Github1.

7.2 Method

7.2.1 Problem setup

We consider an ItR system described by a response function f(x) : Rd → R with input

x a d-dimensional decision variable over a compact set and response an observable of

the system. The input probability px(x) is assumed to be known, and our quantity

1https://github.com/umbrellagong/GPextreme
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of interest is the probability density function (PDF) of the response pf (f) with an

emphasis on the tail part (to be precisely defined later in (7.2)). While pf (f) can

be directly evaluated via standard Monte-Carlo method, an accurate resolution of its

tail part is extremely expensive considering the expensiveness of system evaluations

and the rareness of samples contributing to the PDF tail.

To reduce the computational cost, we make use of surrogate modeling with f

approximated by a learned surrogate (regressor) f̂ , achieved through Gaussian pro-

cess regression (GPR). Assume we have a dataset D = {X,Y} consisting of n in-

puts X = {xi ∈ Rd}ni=1 and the corresponding outputs Y = {f(xi) ∈ R}ni=1. In

GPR, the underlining function is inferred as a posterior Gaussian process f(x)|D ∼

GP
(
E(f(x)|D), cov(f(x), f(x′)|D)

)
with the mean as the surrogate, i.e., f̂ ≡ E(f |D)

(see Appendix A or [113] for detailed formulae). With f̂ available, the response PDF

can be estimated as pf̂ (f) via evaluating f̂ on a large number of samples (say standard

Monte-Carlo samples), and our objective is to minimize the estimation error defined

as (see [95])

ϵ =

∫
Ω

∣∣∣ log pf̂ (f)− log pf (f)
∣∣∣df, (7.2)

where the integral is computed over a finite domain Ω = supp(pf ) ∪ supp(pf̂ ). We

note that the log function in (7.2) acts on the ratio pf̂ (f)/pf (f), which is amplified

when pf (f) is small, i.e., the tail part of the PDF is reached.

Our goal is to construct f̂ with a limited number of samples, i.e., to choose the most

informative samples to learn f̂ which facilitates the convergence of (7.2). To achieve

this goal, we use the idea of sequential Bayesian experimental design (or more broadly

active learning) where the next sample is selected optimally based on the existing data

D. Specifically in the general form, the next-best sample is sequentially determined

based on the optimization of an acquisition function:

x∗ = argmaxx̃ acq(x̃; f(x)|D), (7.3)
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with the overall algorithm detailed in Algorithm 7. We will discuss the form of the

acquisition function in (7.3) in this paper, as the core of the algorithm.

Algorithm 7 Bayesian experimental design for rare-event statistics

Require: Number of initial samples ninit and sequential samples nseq

Input: Initial dataset D = {xi, f(xi)}ninit
i=1

Initialization n = ninit

while n < nseq + ninit do
Train GPR f(x)|D
Solve (7.3) to find the next-best sample location xn+1

Implement simulation/experiment to get f(xn+1)
Update the dataset D = D ∪ {xn+1, f(xn+1)}
n = n+ 1

end while
Output: Compute the response PDF pf̂ based on the surrogate model f̂

7.2.2 Likelihood-weighted acquisition

In using (7.2) as the error metric to guide the next sample, an issue comes up since

the true function f(x), thus pf (f), is unknown. To overcome this issue, [95] proposed

an effective proxy to (7.2) as

ϵL(x̃) =

∫
| log pf+|D,f̂(x̃)(f)− log pf−|D,f̂(x̃)(f)|df, (7.4)

where x̃ is the hypothetical location of the next sample, pf±|D,f̂(x̃)(f) are PDF bounds

generated by upper and lower bounds (say two standard deviations away from the

mean) of GPR f |D, f̂(x̃) ∼ GP
(
E(f(x)|D, f̂(x̃)), cov(f(x), f(x′)|D, f̂(x̃))

)
. However,

in minimizing (7.4) with the next sample x̃, one needs to compute pf±|D,f̂(x̃)(f) for

many x̃, which is an expensive operation. To avoid this high computational cost,

[117] and [118] further constructed an upper bound of ϵL (up to a constant factor)

ϵLW (x̃) =

∫
var(f(x)|D, f̂(x̃)) px(x)

pf̂ (f̂(x))
dx, (7.5)
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where w(x) ≡ px(x)/pf̂ (f̂(x)) is the LW factor with its significance reviewed in §7.12.

Unlike the situation in (7.4), the predicted response PDF pf̂ (f) only needs to be

evaluated once in (7.5).

The derivation of (7.5) assumes that the surrogate f̂ is sufficiently close to the

true f . Under this assumption, an asymptotic form of ϵL can be first derived as

(see Appendix E.1 for a summary of the derivation following [95] and [118] but with

clarifications of some critical procedures)

ϵL(x̃) ≤
∫

std(f(x)|D, f̂(x̃))
px(x)|p′f̂ (f̂(x))|

p2
f̂
(f̂(x))

dx, (7.6)

where std denotes standard deviation. With Cauchy-Schwarz inequality, ϵL can be

further formulated as (see (3.4) in [118])

ϵL(x̃) ≤ [

∫ px(x)p
′2
f̂
(f̂(x))

p3
f̂
(f̂(x))

dx]1/2[

∫
var(f(x)|D, f̂(x̃)) px(x)

pf̂ (f̂(x))
dx]1/2. (7.7)

In (7.7), the first term reduces to a constant and the second term squared leads to

(7.5). While the above derivation starts from the first principles, (7.5) can also be

seen as a continuous counterpart of the precision metric in classification in a sense

that inputs associated with each predictive output as a whole contribute equally to

the total error. We detail this interpretation in Appendix E.2.

The next sample can be selected by minimizing (7.5), i.e., to construct the acqui-

sition function in (7.3) as −ϵLW (x̃). Alternatively, a more inexpensive but almost

equally effective way (as tested in [19]) is to choose the next sample at x which max-

imizes the integrand of (7.5) without using the hypothetical sample x̃, since getting

sample there is supposed to contribute most significantly in reducing (7.5). Under

the latter approach, we solve an optimization problem x∗ = argmaxx acqLW (x), with

2Prior information about extreme events can also be encoded in w(x), e.g., by modifying px(x).
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the acquisition function constructed as

acqLW (x) = var(f(x)|D)
px(x)

pf̂ (f̂(x))
, (7.8)

which is exactly (7.1) in §7.1. (7.8) can also be considered as the standard uncer-

tainty sampling acquisition with a weighting factor inspired by (7.5). We further

note that another advantage of (7.8) over (7.5) is that if neural networks are used

to construct the surrogate model, (7.5) involves excessive computational cost since

var(f(x)|D, f̂(x̃)) does not have an analytical formulation as in GPR and needs to be

re-trained for each x̃ [109, 54]. Given the simplicity and effectiveness of (7.8), we will

establish most of our analysis based on (7.8), but will discuss the derivation leading

to (7.5) (that inspires (7.8)) in the subsequent parts of the paper.

7.2.3 Proposed generalization of the likelihood-weighted ac-

quisition

The LW acquisition (7.8) outperforms the other existing acquisitions in rare-event

statistics quantification in several cases presented in [19, 117, 118], and it has a

theoretical foundation outlined in §7.2.2. However, the insufficiency of (7.8) discussed

in §7.1 (e.g., discussion regarding figure 7.1) is also intuitively true. How can we

reconcile these two views on the LW acquisition (7.8)?

In fact, the two limitations discussed in §7.1 roots exactly from the derivation

of (7.5). First, from (7.6) the Cauchy-Schwarz inequality can be applied in many

different ways, and (7.7) is not necessarily the unique form of the upper bound.

To be more specific, the integrand of (7.6) can be distributed into two factors in

many different ways, resulting in the fact that the second term in (7.7) may yield

arbitrary powers on px(x) and pf̂ (f̂(x)). Indeed, from this derivation itself, any of

these resultant forms can serve as an upper bound to (7.6) and none of them is unique.
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This is consistent with our intuitive argument in §7.1 that the direct ratio between px

and pf̂ is not necessarily the optimal. Second, the derivation leading to (7.6) relies on

the assumption that f̂ ≈ f . As discussed in §7.1, this is not necessarily true especially

for complex function f , considering limited number of samples that can be placed.

In case that f̂ misses a region of large (usually rare) responses of interest, this region

may never get explored by using (7.8) since the associated pf̂ is not small.

To address the above two limitations, we propose a generalization of LW acquisition

(7.8), in the form of

acqGLW (x) = var(f(x|D))
(
wG(x, t, 0) + wG(x, t, α) + wG(x, t,−α)

)
, (7.9)

where

wG(x, t, α) = px(x)/pf̂α(f̂α(x))
t, (7.10)

f̂α(x) = f̂(x) + α std(f(x)|D), (7.11)

which contains two additional parameters t and α. Regarding the first limitation,

the parameter t controls the level of emphasis on small pf̂ in the LW factor, and

provides flexibility in balancing the need to sample at large-px and small-pf̂ region.

With t = 1, the first term in (7.9) reduces to the original LW acquisition (7.8). For

t > 1 and t < 1, (7.9) places respectively more and less emphasis on small pf̂ , i.e.,

the rarity of predicted response. We note that larger value of t (i.e., more emphasis

on small pf̂ ) does not mean better performance, since the performance needs to be

eventually judged by the error metric (7.2). Regarding the second limitation, the

second and third terms in (7.9) provide more exploration power for the acquisition

function. If f̂ misses some large responses at x, the GPR at these x is certain to be

associated with large variance, so that either fα or f−α captures the large responses

and plays an active role in (7.9).
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While the inclusion of t and α in (7.9) provides flexibility in addressing the lim-

itations in (7.8), the optimal values of these parameters cannot be theoretically de-

termined (at least from the theoretical framework reviewed in this paper) and must

depend on specific features of the function px(x) and f(x). Therefore, the optimal

t and α values can only be empirically obtained through numerical tests as we will

discuss in §7.3.

7.2.4 Acceleration in optimization of the acquisitions

In solving the optimization problem regarding the acquisition (7.8) (and thus the

generalized form (7.9)), the Monte Carlo discrete optimization (MCDO) method has

been considered as an effective approach, which is tested to be superior to gradient-

based method due to the non-convexity of the acquisitions in many cases [109]. In

MCDO method, a large number of candidate samples located at Xmc ∈ Rnmc∗d (usu-

ally from space-filling L-H sampling) are created, with nmc ≫ n (with n the number

of samples in D), from which one selects the candidate that returns a maximum in

the acquisition. Such procedure allows all acq(Xmc) to be evaluated in one vector

operation that saves much computational cost than other global or gradient-based

optimization methods that rely on iterations. We also note that in optimization re-

garding (7.5), function evaluation on pre-selected Monte-Carlo samples Xmc is also

needed in evaluation of the integral, as conducted in [117, 19, 20]. Therefore, the

acceleration method we introduce below applies equally to the optimization problems

regarding (7.5), (7.8), and (7.9).

In computing acq(Xmc), say with (7.8), one needs to evaluate a new GPR with

f̂(Xmc) = E(Xmc|D) and var(Xmc|D), with the former needed to calculate the func-

tion pf̂ (f). In obtaining these quantities, [19, 20] have suggested to apply the recursive

formula such that the new GPR can be built recursively with new data xn leveraging

previous GPR based on Dn−1, instead of a brute-force retraining taking all D. In do-
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ing so, the previous works argued that the computational cost can be much reduced

compared to brute-force retraining. However, in the context of MCDO method, a

careful analysis conducted in Appendix E.3 shows that the retraining process (in

particular the inverse of covariance on D) only constitutes a very small portion of

the total computational cost considering nmc ≫ n. Therefore, the bottleneck of the

computation in fact comes from the prediction step, that is the generation of the

covariance matrix and multiplication of matrices involving nmc rows/columns. In

order to overcome this major part of the computational cost, we develop a matrix

re-grouping technique (that is in analogy to the regrouping technique used in many

adjoint methods) and apply the idea of memory-time tradeoff on top of the recursive

formula. With details and test cases presented in Appendix E.3, we show that the

original computational complexity O(nmc ∗ n2) (which holds with or without simply

applying the recursive formula) can be reduced to O(nmc ∗ n). This is a significant

reduction considering n ≳ O(100) in many applications.

7.3 Results

In this section, we test the performance of generalized LW acquisition acqGLW in

(7.9) with variations of α and t, to show its advantage over acqLW . The test cases are

organized as follows: In §7.3.1, we choose two models with simple response functions

that were previously used for demonstrating the effectiveness of acqLW in [19, 118]

and [109]. We shall show that using acqGLW (especially with appropriate t) achieves

additional significant benefits in reducing the error defined in (7.2). In §7.3.2, we use

as response functions a large number O(1000) of synthetic functions from realizations

of Gaussian processes, with most functions complex with multi-modes. We demon-

strate the advantage of acqGLW over acqLW especially with appropriate value of α. In

§7.3.3, we consider the application of acqGLW to an engineering problem of evaluating
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the rare-event statistics of ship motion in a random sea.

7.3.1 Two test cases in existing works

7.3.1.1 Stochastic oscillator

The first case we choose consists of a 2D response function constructed from the

solution of a nonlinear oscillator under stochastic excitation, which is studied in [19,

118] and §5.3.2.

In this case, the oscillator equation is formulated as

ü(t) + δu̇(t) + F (u) = ξ(t), (7.12)

where u(t) is the state variable, F is a nonlinear restoring force defined as

F (u) =


αu if 0 ≤ |u| ≤ u1

αu1 if u1 ≤ |u| ≤ u2

αu1 + β(u− u2)
3 if u2 ≤ |u|

. (7.13)

The stochastic process ξ(t), with a correlation function σ2
ξe

−τ2/(2l2ξ), is approximated

by a two-term Karhunen-Loeve expansion

ξ(t) ≈
2∑

i=1

xiλiϕi(t), (7.14)

with λi and ϕi(t) respectively the eigenvalue and eigenfunction of the correlation

function, x ≡ (x1, x2) is a standard normal variable as the input to the system (see

figure 7.2(a)), satisfying px(x) = N (0, I2) with I2 being a 2× 2 identity matrix. The

values of the parameters are kept the same as those in the existing works3.

The response of the system is considered as the mean value of u(t;x) in the interval

3δ=1.5, α=1, β=0.1, u1=0.5, u2=1.5, σ2
ξ=0.1, lξ=4.
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Figure 7.2: (a) input probability distribution and (b) response function of the stochas-
tic oscillator example. (c) error ϵ as functions of sample numbers with α = 0 and
varying t = 0.6 ( ), 0.8( ), 0.9( ), 1( ), 1.1( ), 1.2( ), 1.4( ), 1.6( ).
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Figure 7.3: Predicted response functions and sequential sampling locations ( ) with
α = 0 and (a) t = 0.6, (b) t = 1, (c) t = 1.4 in the stochastic oscillator example,
starting from the same initial samples ( ).

[0, 25]:

f(x) =
1

25

∫ 25

0

u(t;x)dt, (7.15)

with contour shown in figure 7.2(b).

In our computation, we use 4 initial samples followed by 96 sequential samples with

the error metric ϵ in (7.2) calculated after each sample. Considering the randomness

of initial samples, all results show below are average from 100 different initializations

unless otherwise specified. Figure 7.2(c) shows ϵ as a function of sample number for

different values of t in acqGLW , including the case of t = 1 for which acqGLW=acqLW
4.

We see that the optimal performance of acqGLW is achieved for t roughly in [1.2, 1.6],

where ϵ is about half an order of magnitude smaller than that with t = 1 close to

the end of sampling. The favorable performance with t ∈ [1.2, 1.6] can be further

understood from the sample locations shown in figure 7.3. As expected, when t is

increased from 0.6 to 1.4, more samples are allocated in the input space with extreme-

value responses, leading to a smaller error ϵ characterizing the accuracy of the tail of

the response PDF.

4We note that our result with t = 1 is different from that in [19]. This is because [19], for some
reason, sets a floor value of e−16 for pf (f) in their calculation, which is unnecessarily high for double
precision. We instead set a floor value of 10−16 that is consistent with double precision.
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7.3.1.2 Pandemic spike

We consider another case used in [109], where the response function is constructed

from the evolution of infections in a pandemic. In particular, the evolution of infec-

tions is simulated by Susceptible, Infected, Recovered (SIR) model developed in [69]

and [4]
dS

dt
= −βIS + δR

dI

dt
= βIS − γI

dR

dt
= γI − δR,

(7.16)

with S(t), I(t), and R(t) respectively state variables representing the number of

susceptible, infectious and recovered individuals. δ, γ, and β are immunity loss rate,

recovery rate, and infection rate. The parameter β is endowed with a two-term K-L

expansion of the stochastic process: β(t) ≈ β0(
∑2

i=1 xiλiϕi(t) + ϕ0) with ϕ0 > 0 and

ϕi(t), λi determined from the correlation function σ2
βe

−τ2/(2l2β). We keep all parameter

values and initial conditions to (7.16) the same as in [109]5. The input variable

x ≡ (x1, x2) is a standard normal variable with px(x) = N (0, I2) (see figure 7.4(a)).

We are interested in, as the response of the system, the infections at t = 20:

f(x) = I(t = 20;x), (7.17)

with its contour shown in figure 7.4(b).

Our computation starts from 4 initial samples, followed by 46 sequential samples

employing acqGLW . The results with α = 0 and varying t from 0.6 to 1.6 are plotted

in figure 7.4(c) as a function of the number of sequential samples. We see a sim-

ilar pattern as in §7.3.1.1 where the optimal performance occurs with t roughly in

[1.2, 1.6], for which the error ϵ at majority of sample numbers is about half an order

of magnitude smaller than that obtained in the case with t = 1. Furthermore, the

5δ = 0, γ = 0.1, β0 = 3 ∗ 19−9, ϕ0 = 2.55, σ2
β = 0.1, lβ = 4, S(0) = 108, I(0) = 50, R(0) = 0.
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Figure 7.4: (a) input probability distribution and (b) response function of the pan-
demic spike example. (c) error ϵ as functions of sample numbers with α = 0 and
varying t = 0.6 ( ), 0.8( ), 0.9( ), 1( ), 1.1( ), 1.2( ), 1.4( ), 1.6( ).
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Figure 7.5: Predicted response functions and sequential sampling locations ( ) with
α = 0 and (a) t = 0.6, (b) t = 1, (c) t = 1.4 in the pandemic spike example, starting
from the same initial samples ( ).

sample locations for t = 0.6, 1, and 1.4 plotted in figure 7.5 again show that the

increase of t pushes more samples toward rare-event regions in the input space.

We note that for the above two cases (and other cases with relatively simple

response functions), the variation of α can also have an impact on the performance

of sequential sampling. In particular, we have observed some cases with α > 0 that

produce somewhat better results than those with α = 0. However, the mechanism

associated with α is much more subtle than that with t for these simple response

functions, and we will not elaborate it in this paper. The impact of α on the sampling

performance is most evident for complex (multi-modal) response functions, which we

discuss in detail in §7.3.2.

7.3.2 Complex response functions generated by kernels

In this section, we test the performance of acqGLW for a large number of arbitrarily-

generated complex response functions. These functions are constructed as random

realizations of Gaussian processes with RBF kernel and Matern kernel6, hereafter

referred to as RBF and Matern functions for simplicity. Examples of such functions

in the 2D case are shown in figure 7.6, which illustrates the complex and multi-modal

6The hyperparameters of kernels are set as τ = 2 and Λ = Id, and for Matern kernel the additional
parameter ν is fixed as 1.5 (see Appendix E.4 for the definition of kernels and parameters).
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Figure 7.6: Examples of two-dimensional (a) RBF and (b) Matern functions.

features of these functions (especially for Matern functions which exhibits more small-

scale variations). In the tests presented below, we consider both 2D (d = 2) and

3D (d = 3) cases, with the input set as a standard normal px(x) = N (0, Id). For

each kernel and dimension, the results presented in terms of error ϵ are averaged

over 200 function realizations of the random process and 20 different realizations of

initial samples (for each function), i.e., over 4000 cases in total. Due to this massive

average, the improved results from acqGLW presented below is statistically significant.

For clarity of the presentation, we will show results for the RBF functions in the main

text, and leave results for the Matern functions that lead to similar conclusions in

Appendix E.5.

7.3.2.1 Two-dimensional (2D) RBF functions

We first consider 2D RBF functions with examples plotted in figure 7.6, showing

much stronger variations (i.e., higher complexities) than the cases presented in §7.3.1.

Figure 7.7(a) shows the error ϵ with increase of number of samples (4 initial samples
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Figure 7.7: Results for two-dimensional RBF functions. Error ϵ as function of number
of samples for (a) α = 0 and varying t = 0.6 ( ), 0.8( ), 1( ), 1.2( ), 1.4( ),
(b) t = 1 and varying α = 0( ), 1 ( ), 2( ), 3( ), 4( ), 6( ); (c) contour
plot of log10 ϵ at 146 sequential samples for varying t and α.
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Figure 7.8: First column: true response RBF function as a reference; second column:
sequential samples ( ) with α = 0 on the predicted response function; third column:
sequential samples ( ) with α = 3 on the predicted response function; fourth column:
predicted PDF pf̂ (f) with α = 0 ( ) and α = 3 ( ) compared with the true
PDF pf (f) ( ). The top-to-bottom rows correspond to situations with number of
sequential samples nseq = [30, 60, 90, 120, 146]. The black circles shown in columns 1-3
mark the rare-event region around (−4.7,−3.3) that is missed by sequential samples
with α = 0 but captured with α = 3.
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followed by 146 sequential samples) for t varying from 0.6 and 1.4 and fixed α = 0.

Unlike the cases in §7.3.1, the variation of parameter t almost does not affect the

performance of sequential sampling using acqGLW , with results indistinguishable for

the selected range of t. On the other hand, variation of α leads to a much stronger

impact on the error ϵ, as shown in figure 7.7(b). One can see from the figure that

α = 3 produces the best result in the tested range, with error at 146 sequential samples

about two orders of magnitude smaller than that with α = 0 (i.e., the original acqLW

acquisition). Figure 7.7(c) further shows a contour plot of the error ϵ at 146 sequential

samples as a function of t and α. We see that α ≈ 3 and t ≈ 1 is indeed close to the

global optimal among all choices tested here.

Considering the behavior observed in figure 7.7, it is clear that the improved per-

formance associated with larger α comes from the increased exploration power of the

acquisition that captures more rare-event regions in the input space. Such exploration

is not achievable by the variation of t, at least in the tested range. To demonstrate

this reasoning, we plot in figure 7.8 the evolution of sampling locations, predicted

response functions, and predicted response PDFs from 30 to 146 sequential samples

with α = 0 and α = 3 (t = 1 fixed) for a typical RBF function. It is clear that

with α = 0 the rare-event region near x = (−4.7,−3.3) (which happens to be the

global maximum) is not captured, leading to a failure in resolving the right tail of

the response PDF. More specifically, the missing of this important rare-event region

is due to the fact that the predicted response f̂ fails to capture the large response

in this region with limited number of samples, together with the lack of exploration

power with α = 0. In contrast, for α = 3, the region near x = (−4.7,−3.3) is identi-

fied within 60 sequential samples, leading to a much more accurate resolution of the

right tail of the PDF. We encourage the readers to also take a look at figure E.4 for

Matern response functions where such behavior is more evident due to the increased

complexity of the function.
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Figure 7.9: Level sets of a typical 3D RBF function. From (a) to (d), {x : f(x) =
−4,−2, 2, 4}

7.3.2.2 Three-dimensional (3D) RBF functions

We further test the performance of acqGLW on 3D RBF functions, with one example

of these functions shown in figure 7.9 visualized through level sets of the function. It

is clear that the multi-modal feature is still present in the 3D case, which needs to be

captured in sampling to resolve the tail of the response PDF. For these 3D functions,

our computations start from 8 initial samples followed by 392 sequential samples.

Like in 2D cases, the variation of t with α = 0 does not affect the performance

of acqGLW (figure 7.10(a)). The major improvement in performance is achieved by

increasing α to 3, for which the error ϵ after 392 sequential samples is about one order

of magnitude smaller than that from α = 0, corresponding to acqLW (figure 7.10(b)).

Finally, figure 7.10(c) shows that α ≈ 3 and t ≈ 1 still provides the globally optimal

results for these 3D functions.

The mechanism underlying the improved performance with α = 3 is also similar

to the 2D cases. To illustrate this, we consider an example of the RBF function with

the global minimum of value −7.26 at x = (2.6,−3.4, 2.5). The predicted response

functions with α = 0 and α = 3 after 392 samples are shown in figure 7.11, visualized

respectively on the cross-section at x3 = 2.5 in (a) and in terms of level set of value

−6 in (b). It is clear that the global minimum of the function is only captured with

α = 3 and completely missed with α = 0.
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Figure 7.10: Results for three-dimensional RBF functions. Error ϵ as function of
number of samples for (a) α = 0 and varying t = 0.6 ( ), 0.8( ), 1( ), 1.2( ),
1.4( ), (b) t = 1 and varying α = 0( ), 1 ( ), 2( ), 3( ), 4( ), 6( ); (c)
contour plot of log10 ϵ at 392 sequential samples for varying t and α.

145



5 0 5
x1

5

0

5

x 2

True function

5 0 5
x1

Predictive function = 0

5 0 5
x1

Predictive function = 3

8
6
4
2

0
2
4
6
8

(a) cross-section at x3 = 2.5

(b) level set f = −6

Figure 7.11: Results for a typical 3D RBF function after 396 sequential samples. (Left
column) True function, (middle column) predicted function with α = 0 and (right
column) predicted function with α = 3, visualized (a) on a cross-section at x3 = 2.5
and (b) in terms of level set f = −6. The global minimum of the function around
(2.6, -3.4, 2.5) is circled in (a).
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7.3.3 Rare-event statistics of ship motion in a random sea

We finally consider an application of our method to an engineering problem of esti-

mating the rare-event statistics of ship roll motion in a random sea. To simulate the

ship roll response in waves, we use a phenomenological nonlinear roll equation that

is widely used in marine engineering [142, 132, 50, 46, 49]

ξ̈ + α1ξ̇ + α2ξ̇|ξ̇|+ (β1 + ϵ1 sin(χ)η(t))ξ + β2ξ
3 = ϵ2 cos(χ)η(t), (7.18)

where ξ(t) is the time series of roll motion excited by waves with elevation η(t), χ is the

angle between ship heading direction and the wave crest. The empirical coefficients

in (7.18) are set as α1 = 0.1, α2 = 0.1, β1 = 1, β2 = 0.1, ϵ1 = 1, ϵ2 = 1.

Since large ship motions are usually excited by wave groups at sea, we consider

η(t) modeled by wave groups with Gaussian envelop

η(t) = exp(−1

2
(
t− 5T

2T
)2) sin(

2π

T
t), (7.19)

with T the period of each individual wave in the group. In a random sea, we further

consider two independent random parameters (T, χ) as the input space, satisfying

the distribution of T ∼ N (Tp, (Tp/4)
2) with Tp = 15s and χ ∼ N (χp, (χp/4)

2) with

χp = π/2. Our quantity of interest is the maximum roll over the time window [0, 10T ]:

f(x) = maxt∈[0, 10T ] |ξ(t;x)|, (7.20)

with the response function plotted in figure 7.12(a) clearly showing the multi-modal

feature.

In computation, we only consider half of the input space due to symmetry of (7.18)

with χ = π/2. The results from sequential sampling with acqGLW are shown in figure

7.12(b), comparing the cases with α = 3 and α = 0. For such a multi-modal response
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Figure 7.12: (a) Contour plot of the true response function calculated by (7.18) and
(b) results with α = 3 ( ) and α = 0 ( ) for comparison, both with t = 1.
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Figure 7.13: Predicted response functions and sequential sampling locations ( ) with
t = 1 and (a) α = 0, (b) α = 3 in the ship motion example, starting from the same
initial samples ( ).

function, it is clear that the result from α = 3 (empirically determined as optimal in

§7.3.2) is much better than that from α = 0, with the error ϵ from the former half

an order of magnitude smaller than the latter in majority of the sampling process.

The sampling location plotted in figure 7.13 further demonstrates the effectiveness of

α = 3 to explore rare-event regions in the full input space.
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7.4 Summary

In this chapter, we develop a new acquisition function acqGLW in sequential sampling

to efficiently quantify the rare-event statistics in the response of an ItR system. Our

new acquisition takes a generalized form of the existing likelihood-weighed acquisition

acqLW [117, 118] and contains two additional parameters α and t. By varying α and

t, acqGLW is able to (i) place different level of emphasis on rare-event regions in

sampling, and (ii) remedy the situation when the predicted ItR function has a large

discrepancy from the true function. We demonstrate the advantage of acqGLW over

acqLW in a number of test cases with empirically optimal values of α and t identified.

It is suggested in these cases that if the response function is relatively simple, using

α = 1 and t ∈ [1.2, 1.6] in acqGLW produces consistently better results than that from

acqLW , due to the more appropriate emphasis on the known rare-event region. If the

response function is complex with multi-modal structures, using α ≈ 3 and t ≈ 1 is

critical since it allows more exploration in sampling to identify multiple rare-event

regions in the input space.
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CHAPTER 8

Non-Myopic Batch Bayesian Experimental

Design for Statistical Expectation

8.1 Introduction

In previous chapters, our sampling algorithms were exclusively designed to select one

sample per iteration in a myopic way. In this chapter, we will discuss an ongoing work

on non-myopic batch sampling, where several samples can be selected and evaluated

together. Instead of extreme-event statistics, our effort for batch sampling algorithm

will start from the statistical expectation due to its central role in uncertainty quan-

tification and some favorable properties which will be covered soon in the following.

For almost a century, the fundamental method to estimate statistical expecta-

tion has been Monte Carlo with the core idea of learning a system by many random

samples [104]. Although the convergence of Monte Carlo is guaranteed by the law

of large numbers, its convergence rate—inversely proportional to the square root of

the number of samples—is notoriously slow. To increase the convergence rate under

a limited number of samples, a sequential Bayesian experimental design framework

targeting statistical expectation was developed in [105]. Specifically, they use Gaus-

sian process regression (GPR) as the surrogate and select the next-best sample which

maximizes the information gain of adding one sample, i.e., the K-L divergence be-

tween the current and next-step estimation. Later, we proved that maximizing this
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information-theoretic acquisition is equivalent to minimizing the variance of the next-

step estimation [43]. This finding gives us a concise form with a much more intuitive

interpretation.

Although [105] shows that the proposed method works in several synthetic and

practical cases, its sequential nature does bring two drawbacks (affecting not only

statistical expectation but also other quantities such as extreme-event statistics).

Firstly, the samples need to be evaluated one by one, making the duration of the

whole process remarkably long. In contrast, the standard Monte Calor determines

all samples in the beginning which can maximally utilize the parallel computational

resources in evaluating samples. Secondly, the determination of samples only focuses

on the benefits of the immediate next step rather than the long-term objective, for

example, the convergence after a certain number of samples. It might be presumed

that a batch design, aimed at long-term collective benefits, would easily achieve faster

convergence compared to sequential sampling. However, the reality is more complex.

A sequential algorithm can update the surrogate after each sample, making the selec-

tion of the next sample based on a more accurate model (although in a myopic way).

In other words, the sampling efficiency of the batch algorithm needs to be evaluated

in light of the benefits of long-term perspective and the disadvantages of less frequent

model updates.

The above-mentioned problem of batch sampling is generally true for many algo-

rithms where the sample responses appear in the acquisition function (including all

previous acquisitions in this dissertation), thus the evaluation of the previous sample

will directly influence the selection of the following samples. For statistical expecta-

tion, we noticed that in [43] and [105], the responses of samples affect the following

sampling only by the hyperparameters (prior) of the GPR (which will be demon-

strated in §8.2). In practice, the hyperparameters that control the global smoothness

and variability of functions can be known in advance or fixed after a few samples,
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significantly mitigating the adverse effects of batch sampling. Hence, batch sampling

has a great chance to converge faster than or on par with its sequential counterpart.

This potential for improved efficiency has led us to develop and explore the batch

algorithm further.

In this chapter, we develop a non-myopic batch Bayesian experimental design for

statistical expectation. The next batch of samples are selected which maximizes the

long-term information gain (as the acquisition) when they are added together. To

solve the resulting high-dimensional optimization problem, we formulate an analytic

approximation for the acquisition with the gradient computed through automatic

differentiation via PyTorch (rather than theoretical derivation as in §5). The superior

performance of the proposed algorithm, in terms of wall time saving and a faster or

matched convergence rate than sequential sampling, is demonstrated in a case with

arbitrary complex functions generated by kernels and another case using a stochastic

oscillator.

Part of this chapter is adapted from [43]. The Python code for the algorithm,

named gpexpectation, is available on Github1.

8.2 Method

8.2.1 Problem setup

We consider an ItR system described by a response function f(x) : Rd → R with x

a d-dimensional random input. The input probability px(x) is assumed to be known

and our objective is the statistical expectation defined as:

q =

∫
f(x)px(x)dx. (8.1)

1https://github.com/umbrellagong/gpexpectation
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While q can be directly evaluated via the standard Monte Carlo method, i.e.,

q ≈ 1
m

∑m
i=1 f(x

i) with xi sampling from px(x), its convergence within a limited num-

ber of samples is unsatisfactory. Instead, we take a Bayesian perspective by placing f

a Gaussian process prior f ∼ GP(0, k(x,x′)) where k is covariance function with hy-

perparameters θ. Given a dataset Dn = {Xn,Yn} consisting of n inputs Xn = {xi ∈

Rd}ni=1 and the corresponding outputs Yn = {f(xi) ∈ R}ni=1, the underling relation

f is predicted as a posterior Gaussian process f(x)|Dn ∼ GP(mn(x), kn(x,x
′)) with

formulae of posterior mean mn and covariance kn detailed in Appendix A. The statis-

tical expectation q|Dn then becomes a random variable with randomness coming from

the epistemic uncertainties of f(x)|Dn. Our goal is to choose the most informative

batch of samples by optimizing the acquisition function that facilitates convergence

of q. In the following, we will discuss the form of the acquisition function as the core

of the algorithm.

8.2.2 Acquisition function

For selecting the next samples, a popular way is to maximize the information gain

(measured by K-L divergence) between the current estimation q|Dn and hypothetical

next estimation q|Dn, X̃s, Ỹs after adding s number of samples X̃s with responses Ỹs

(see [105] for a sequential version):

X∗
s = argmaxX̃s

E
[ ∫

KL
(
p(q|Dn, X̃s, Ỹs) ∥ p(q|Dn)

)]
,

≡ argmaxX̃s

∫
KL

(
p(q|Dn, X̃s, Ỹs) ∥ p(q|Dn)

)
p(Ỹs|X̃s,Dn)dỸs, (8.2)

where Ỹs is chosen based on the current surrogate f(x)|Dn following a distribution

of N (Ỹs;mn(X̃s), kn(X̃s, X̃s)). Another way, which is more intuitive, is to minimize

153



the uncertainty (measured by variance) of q|Dn, X̃s, Ỹs:

X∗
s = argminX̃s

E
[ ∫

var(q|Dn, X̃s, Ỹs)
]

≡ argminX̃s

∫
var(q|Dn, X̃s, Ỹs) p(Ỹs|X̃s,Dn)dỸs. (8.3)

Indeed, these two ways are equivalent for estimating the statistical expectation. In

the following, we will show their detailed formulae and the equivalence (see a similar

conclusion for sequential design in [43]).

We first notice that q|Dn follows a Gaussian distribution with mean µ1 and variance

σ2
1:

p(q|Dn) = N (q;µ1, σ
2
1), (8.4)

µ1 = E
[ ∫

f(x)px(x)dx|Dn

]
=

∫
mn(x)px(x)dx, (8.5)

σ2
1 = E

[( ∫
f(x)px(x)dx

)2|Dn

]
− E

[( ∫
f(x)px(x)dx

)
|Dn

]2
=

∫∫
kn(x,x

′)px(x)px(x
′)dx′dx. (8.6)

After adding s hypothetical samples {X̃s, Ỹs}, f follows an updated distribution

f(x)|Dn, X̃s, Ỹs ∼ GP(mn+s(x), kn+s(x,x
′)) with

mn+s(x) = mn(x) + kn(x, X̃s)Kn(X̃s, X̃s)
−1(Ỹs −mn(X̃s)), (8.7)

kn+s(x,x
′) = kn(x,x

′)− kn(x, X̃s)Kn(X̃s, X̃s)
−1kn(X̃s,x

′). (8.8)

The quantity q|Dn, X̃s, Ỹs can then be represented by another Gaussian with mean
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µ2 and variance σ2
2:

p(q|Dn, X̃s, Ỹs) = N (q;µ2(X̃s, Ỹs), σ
2
2(X̃s)), (8.9)

µ2(X̃s, Ỹs) =

∫
mn+s(x)px(x)dx

= µ1 +

∫
kn(x, X̃s)px(x)dx Kn(X̃s, X̃s)

−1(Ỹs −mn(X̃s)), (8.10)

σ2
2(X̃s) =

∫∫
kn+s(x,x

′)px(x)p(x
′)dx′dx

= σ2
1 −

∫
kn(x, X̃s)px(x)dx Kn(X̃s, X̃s)

−1

∫
kn(X̃s,x)px(x)dx. (8.11)

Substitute (8.4) and (8.9) into (8.2), one can simplify the objective function in (8.2):

∫
KL

(
p(q|Dn, X̃s, Ỹs) ∥ p(q|Dn)

)
p(Ỹs|X̃s,Dn)dỸs.

=

∫∫
p(q|Dn, X̃s, Ỹs) log

p(q|Dn, X̃s, Ỹs)

p(q|Dn)
dq p(Ỹs|X̃s,Dn))dỸs

=

∫ (
log(

σ1

σ2(X̃s)
) +

σ2
2(X̃s)

2σ2
1

+
(µ2(X̃s, Ỹs)− µ1)

2

2σ2
1

− 1

2

)
p(Ỹs|X̃s,Dn)dỸs

= log(
σ1

σ2(X̃s)
) +

1

2σ2
1

(
σ2
2(X̃s)− σ2

1 +

∫
(µ2(X̃s, Ỹs)− µ1)

2p(Ỹs|X̃s,Dn)dỸs

)
= log(

σ1

σ2(X̃s)
) +

1

2σ2
1

(
σ2
2(X̃s)− σ2

1

+

∫
kn(x, X̃s)px(x)dx Kn(X̃s, X̃s)

−1

∫
kn(X̃s,x)px(x)dx

)
= log(

σ1

σ2(X̃s)
). (8.12)

Since σ1 does not depend on X̃s, (8.2) can be reformulated as

X∗
s = argminX̃s

σ2
2(X̃s) (8.13)

= argmaxX̃s

∫
kn(x, X̃s)px(x)dx Kn(X̃s, X̃s)

−1

∫
kn(X̃s,x)px(x)dx, (8.14)

where (8.13) is exactly (8.3) with var(q|Dn, X̃s, Ỹs) = σ2
2(X̃s) a constant for Ỹs.

The final optimization problem (8.14) is obtained by substituting (8.11) into (8.13).

Compared with sequential design with only one sample to be determined, the solution
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of (8.14), likely a high-dimensional optimization problem, is much more difficult. To

alleviate the difficulties, we develop an analytic approximation for acquisition, while

the gradient is computed through automatic differentiation to enable a gradient-based

optimization. We will introduce them in the following section.

8.2.3 Analytical formulae for acquisition and its derivative

In computing the right-hand side of (8.14), the heaviest computation involved is the

integral
∫
kn(x̃,x)px(x)dx. Expanding kn with (A.4), we have:

∫
kn(x̃,x)px(x)dx = K(x̃)− k(x̃,Xn)K(Xn,Xn)

−1K(Xn), (8.15)

with

K(x) =

∫
k(x,x′)px(x

′)dx′, (8.16)

where k is the RBF kernel with characteristic amplitude τ and scales Λ (θ = τ,Λ)

defined in Appendix A. For RBF kernel, if the input x is Gaussian with mean w and

covariance Σ, (8.16) has analytical expression:

∫
k(x,x′)N (x;w,Σ)dx′ = |ΣΛ−1 + I|−

1
2k(x,w; Σ + Λ). (8.17)

To make K analytically tractble for arbitrary px(x), we approximate px(x) with the

Gaussian mixture model (as in §5.2.4):

px(x) ≈
nGMM∑
i=1

αiN (x;wi,Σi). (8.18)
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(8.16) can then be formulated as:

K(x) ≈
nGMM∑
i=1

αi

∫
k(x,x′)N (x′;wi,Σi)dx

′

=

nGMM∑
i=1

αi|ΣiΛ
−1 + I|−

1
2k(x,wi; Σi + Λ). (8.19)

With an analytical formula, a gradient-based optimization method is still needed

to solve (8.14) considering the high dimensionality of the optimization domain (s∗d).

One way to get the gradient is by manual derivation as in [21] and §5, which is

tedious and vulnerable to any changes. Here, we take a new paradigm utilizing the

automatic differentiation (AD) by PyTorch2. With AD, we only need to define the

forward process, i.e., coding the right-hand side of (8.14), and its gradient will be

evaluated collaterally when executing the forward code.

Algorithm 8 Batch Bayesian experimental design for statistical expectation

Require: Number of initial samples ninit, number of batches t, number of samples
in each batch s(·)

Input: Initial dataset Dninit
= {xi, f(xi)}ninit

i=1

Initialization i = 0
while i < t do
Train f(x)|Dn

Solve (8.14) to find the next-best samples location X∗
s(i)

Implement simulation/experiment to get f(X∗
s(i))

Update the dataset Dn+s(i) = Dn ∪ {X∗
s(i), f(X

∗
s(i))}

i = i+ 1, n = n+ s(i)
end while

Output: Compute the statistical expectation based on the surrogate.

We finally show the overall algorithm in Algorithm 8. In each iteration, the number

of samples to be selected is specified by s(i) with i the index of iterations. Setting

s(i) = 1 reduces to the sequential algorithm in [105] and [43]. In this algorithm,

one might wonder why we don’t schedule all samples initially, considering that the

sample responses do not directly appear in (8.14). Regarding this, we note that the

2https://github.com/pytorch/pytorch
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sample responses do influence (8.14) implicitly via hyperparameters θ (specifying the

prior we give to f). What we updated in each iteration is actually the newly-learned

hyperparameters. Should we know the hyperparameters in the beginning, we can

determine all samples in one batch without worrying about discarding the benefits of

the iterative model updates. As we consider all samples together, the batch design

can perform better than sequential sampling, which will be demonstrated in the next

section.

8.2.4 Potential improvement on sampling efficiency

In this section, we show the improvement of batch sampling efficiency over sequential

sampling achieved through known hyperparameters (the prior). As discussed in §8.1,

although we do not have function evaluations everywhere, it is not rare to know

other properties of the function, for example, discontinuity or variability along axes

expressed as hyperparameters. In this way, we can generate the samples in one batch

in the beginning:

X∗
s = argmaxX̃s

∫
k(x, X̃s)px(x)dx K(X̃s, X̃s)

−1

∫
k(X̃s,x)px(x)dx, (8.20)

where the posterior covariance kn in (8.14) is replaced by the prior covariance k.

In figure 8.1, we plot the standard deviation of q|Dn with batch design (one batch)

and sequential design for standard Gaussian input and known hyperparameters θ =

{4, I2} with I2 being a 2×2 identity matrix. It shows the batch design performs much

better than the sequential design which is anticipated as we get the ‘free lunch’—the

benefits of a long-term perspective without any side effects from fewer model updates.

The sampling positions of sequential design and batch design are plotted in figure 8.2.

The batch samples show beautiful symmetric structures fitting the symmetric input

and hyperparameters. In contrast, sequential samples show a strong greedy pattern.
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Figure 8.1: The standard deviation of q|Dn computed by sequential design ( )
and batch design ( ) for Gaussian input x ∼ N (0, I2) and known hyperparameters
θ = {4, I2}.

For example, when we have three samples, the sequential samples clearly favor one

direction while batch samples form an equilateral triangle.

8.3 Results

In this section, we test the performance of the proposed batch design algorithm in

two cases: (1) a larger number of complex functions from realizations of Gaussian

processes in §8.3.1, and (2) a stochastic oscillator in §8.3.2. In each case, we compare

the results of batch design (batch-design) with sequential design (seq-design), direct

random sampling (random), and random sampling with Gaussian process surrogate

(random-gpr). For random, the expectation is directly computed as the mean of

samples, while for random-gpr the expectation is computed with a surrogate learned

from random samples. The comparison between random-gpr and random highlights

the impact of imposing a prior for f , while the advantage of choosing optimal samples

over random samples is evidenced in the contrast between seq-design and random-gpr.
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Figure 8.2: Sampling position of sequential design ( ) and batch design ( ) for Gaus-
sian input x ∼ N (0, I2) and known hyperparameters θ = {4, I2}.
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Figure 8.3: Examples of two-dimensional RBF functions.
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Figure 8.4: Results of RBF functions with (a) known hyperparameters and (b) learned
hyperparameters: random ( ), random-gpr ( ), seq-design ( ), and batch-design
( ) (s = 4).

Finally, the difference between batch-design and seq-design measures the effectiveness

of picking a group of samples simultaneously instead of a single sample during each

iteration.

8.3.1 RBF functions

We test the proposed algorithm in 100 two-dimensional functions constructed from

RBF kernel. The hyperparameters for generating these functions are θ = {4, I2} with

examples shown in figure 8.3.

The results for a standard Gaussian input px(x) with the assumption of known

hyperparameters are demonstrated in figure 8.4(a). Considering there are 100 dif-
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ferent functions, we average the error across all functions where, in each function,

the error is computed in a mean-squared form of 50 runs considering the randomness

in drawing samples. For seq-design and batch-design, the sampling position is fixed,

so we will directly take the fixed error. For batch-design, we sample only one batch

in the beginning as we assume the hyperparameters are known. From figure 8.4(a),

we can see that methods are ranked in an increasing performance from random to

random-gpr to seq-design and finally batch-design. That means the prior information

is useful and a careful design would also improve the performance. Regarding the

design method, the batch design is better than the sequential design as it optimizes

all samples as a whole.

We further consider situations where the hyperparameters are unknown with re-

sults shown in figure 8.4(b). For both batch-design and seq-design, we use 4 initial

samples, and the error of each function is also computed in a mean squared form

across different initializations. The batch-design with s(i) = 4 performs almost the

same with seq-design, meaning the pro of a non-myopic design is actually offset by

the con of fewer hyperparameters updates. But we note that the wall computational

time of batch-design is only a quarter of seq-design.

8.3.2 Stochastic oscillator

We next consider a stochastic oscillator used in §5.3.2 and §7.3.1.1 with a standard

Gaussian input and contour of ItR shown in figure 8.5(a). We plot the results for

different methods in figure 8.5(b). All results are mean-squared errors with random-

ness in random and random-gpr coming from random sampling and randomness in

seq-design and batch-design coming from initializations. For batch-design, we test

both s(i) = 2 and s(i) = 4. It demonstrates that seq-design performs best among all

while batch-design with s(i) = 2 is almost on par with seq-design albeit slightly less

efficient.
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Figure 8.5: (a) response function of the stochastic oscillator. (b) results of random
( ), random-gpr ( ), seq-design ( ), batch-design with s(i) = 4 ( ), batch-
design with s(i) = 2 ( ).

8.4 Summary

In this chapter, we develop a non-myopic batch Bayesian experimental design algo-

rithm for statistical expectation, where the next batch of samples are selected to

maximize the information gained (or equivalently to minimize the estimation uncer-

tainty) when they are added together. We apply the results in two test cases, showing

that if the hyperparameters (prior) are known, the batch design algorithm converges

much faster than the sequential design. For more common situations requiring learned

hyperparameters, the batch design algorithm performs marginally below sequential

design, however, with a big saving on wall time. We emphasize that this conclu-

sion is only for statistical expectation. The performance of batch sampling targeting

extreme-event statistics requires further developments and tests.
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CHAPTER 9

Conclusion and Future Work

9.1 Conclusion

In this dissertation, we have presented a set of methods to efficiently compute the

extreme-event statistics of nonlinear systems with stochastic input. These methods

follow a general framework consisting of two engines, dimension reduction and surro-

gate modeling achieved through active learning.

In §2, we introduced the computational framework in the context of quantifying

the extreme-event statistics of the ship response in a random wave field. In addition

to some algorithmic improvements in wave group parameterization and sequential

sampling following existing works, we also incorporate full system dynamics through

nonlinear wave simulation and ship responses CFD simulation. In §3, we further

adapted the computational framework to compute the temporal exceeding probabil-

ity of ship responses, i.e., the fraction of time that the response exceeds a specified

threshold. As an important complement to group-maximum statistics in §2, tempo-

ral exceeding probability contains more information about ‘severity’ and provides a

robust measure of the extreme motion due to its invariance regarding different group

definitions. In §4 we presented a new method to efficiently estimate the extreme-

event probability induced by a random ItR with heteroscedastic uncertainty that

could arise from the dimension reductions, e.g., group parameterization in §2 and §3.
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The method leverages VHGPR as a surrogate model and a new acquisition function

considering randomness from both input and ItR.

In §5, we added another tool to our toolkit to leverage low-fidelity models, for

instance, a low-resolution CFD simulation whose cost is only a certain fraction of its

high-resolution counterpart. In detail, we employ the multi-fidelity Gaussian process

regression as the surrogate model and design a new acquisition function with its

analytic approximation that allows the fast selection of both the sampling location and

fidelity level. In §6, an information-theoretic acquisition to estimate the accident rate

of connected and automated vehicles was developed and further extended to multi-

fidelity context following §5. In §7, we generalized the likelihood-weighed algorithm,

a widely-used one in recent years (also in §5), with two additional parameters. These

parameters are able to (i) place different levels of emphasis on rare-event regions in

sampling, and (ii) remedy the situation where the surrogate model has a significant

deviation from the true ItR function. Our last work is §8 where a batch sampling

strategy was designed to reduce the wall computational time while simultaneously

improving (or keeping) the sampling efficiency.

9.1.1 Contributions

We highlight our contributions in the following three points:

1. Establishment of an Efficient Computational Framework: We de-

veloped a computational framework that integrates dimension reduction and active

learning for quantifying extreme ship responses in random waves. Special emphasis

was placed on:

• considering full nonlinear dynamics of wave and wave-ship interactions,

• resolving an improved statistical measure—the temporal exceeding probability,

• addressing uncertainties arising from dimension reductions.
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2. Advancement in Multi-Fidelity Active Learning Methods: Our pio-

neering work in multi-fidelity active learning techniques is directed towards:

• quantifying extreme response PDF including a comparative analysis of two

strategies for selecting sample fidelity,

• evaluating the exceeding probability with an information-theoretic acquisition

in the context of safety analysis of automated vehicles.

3. Enhancements in Sampling Methods: We substantially refined the sam-

pling strategy specifically by:

• generalizing the likelihood-weighted acquisition for extreme response PDF with

two additional parameters,

• designing a batch sampling strategy to reduce computational time while main-

taining or improving sampling efficiency for statistical expectation.

9.2 Limitation and future work

9.2.1 Broadband wave field

In this dissertation, we operate under the assumption of narrow-band wave fields. This

assumption facilitates the decomposition of the wave field into consecutive Gaussian

groups. Our final goal is to expand the current method to more realistic broadband

wave fields, where groups may no longer live in a Gaussian shape. One preliminary

thought is to define a dangerous group as a series of consecutive single waves with

the majority of amplitudes above a given threshold. Each group is characterized by

its length and maximum amplitude. Such simplification paves the road for a feasible

low-dimensional sampling. However, a complete neglect of reduced dimensions will

certainly lead to an inaccurate result considering the intrinsic high-dimensionality of

the broadband wave field. For example, groups with the same characteristic length
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and height have significantly different detailed shapes, as demonstrated in [45]. These

detailed shapes, together with the initial condition of the group responses, lead to

a random exceeding time for groups with the same parameters. To deal with this

randomness, the method developed in §4 will be a critical component.

9.2.2 Choice of surrogates

Considering a moderate number of input dimensions and samples, we employ Gaus-

sian process regression as our surrogate. The Gaussian process regression, however,

suffers from a scale issue with a cubic complexity of the number of samples. To

deal with a large number of samples, many approximation algorithms are available

to reduce the scale, for example, Nyström approximation [153] or variational learning

(i.e., sparse Gaussian process) [138]. From an optimization perspective, we can also

efficiently train the Gaussian process by conjugate gradient descent with major opera-

tion matrix-matrix-multiplication, enabling the utilizing of GPU hardware [39], or by

stochastic gradient descent enabling mini-batch updates. Regarding high dimensions,

the Gaussian process encounters inherent limitations due to its non-parametric nature

[16], usually accompanied by a dimension reduction algorithm as an initial stage. For

‘big data problems’, neural networks may be a better choice. Various methods have

been proposed to quantify the uncertainty of neural networks, including Bayesian

neural networks or ensemble networks. A comparison of these methods on scientific

datasets can be found in [54]. Other common choices of the probabilistic surrogate

in active learning include stochastic radial basis functions [122] and polynomial chaos

expansion [154, 60], also deserving further research.

Additionally, it is worth noting that rather than learning the ItR function and

treating the system as a black box, we can dive into the inside of the system if the

evolution of its states is (partially) observable. This allows us to build a surrogate to

learn the dynamics behind the system evolution, where the inputs are state variables
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of the system. Such surrogate can be developed in a fully data-driven way [146]

or a hybrid way to correct reduced-order dynamics from Galerkin projection [147]

or a low-fidelity model [84]. The selection of different surrogate models and targets

depends on both the complexity of the system and the availability of data, warranting

additional research.

9.2.3 Pre-trained sampling policy

We also remark that acquisitions in this dissertation are all developed from the first

principles with necessary assumptions made. Although they perform better than

the existing ones, the optimality of their format cannot be guaranteed. A similar

situation happens for the two parameters α and t in §7 which optimal values cannot

be theoretically determined but suggested based on empirical tests. While these rule-

of-thumb values are helpful, it may be more desirable to develop other advanced

methods. That motivates us to consider a data-driven approach. One idea is to

apply reinforcement learning to train (1) a policy network directly for the next-best

sample x∗ = π(D) given the existing dataset in a fully data-driven way, or (2) a

policy network for underdetermined parameters in an acquisition, e.g., (α∗, t∗) = π(D)

in a hybrid data-driven and first-principle way. In such a manner, the format or

parameters of acquisitions can also vary in the sampling process for a given case,

achieving even better performance. Some pioneering work has been done in terms of

global optimization (meta-learning) [23, 24] and experiment design [124].

9.2.4 Derivative as observations

Finally, all observations in this dissertation are restricted to the values of ItR, i.e.,

f(x). In many cases, we may have access to the derivative f ′(x) that greatly facilitates

the learning of the surrogate [112]. For numerical simulations, the derivative can be

computed from adjoint method [106, 86] or automatic differentiation like JAX-Fluids
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[13]. With derivative observations, the acquisition function should be re-designed to

consider the benefits and costs of the derivative. We leave this task to our future

work.
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APPENDIX A

Gaussian Process Regression

In this section, we briefly introduce the Gaussian process regression (GPR) [113],

which is a probabilistic machine learning approach. Consider the task of inferring

the underline relatioin f from dataset D = {xi, yi = f(xi)}ni=1 consisting of n inputs

X = {xi ∈ Rd}i=n
i=1 and the corresponding outputs y = {yi ∈ R}i=n

i=1 . In GPR, a prior,

representing our beliefs over all possible functions we expect to observe, is placed on f

as a Gaussian process f(x) ∼ GP(0, k(x,x′)) with zero mean and covariance function

k (usually defined by a radial-basis-function (RBF) kernel):

k(x,x′) = τ 2exp(−1

2
((x− x′)TΛ−1(x− x′))), (A.1)

where τ (characteristic amplitude) and diagonal matrix Λ (characteristic length

scales) are hyperparameters determined by maximizing the likelihood p(y).

Following the Bayes’ theorem, the posterior prediction for f given the dataset D

can be derived to be another Gaussian:

f(x)|D ∼ GP
(
E(f(x)|D), cov(f(x), f(x′)|D)

)
, (A.2)
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with mean and covariance respectively:

E(f(x)|D) = k(x,X)K(X,X)−1y, (A.3)

cov(f(x), f(x′)|D) = k(x,x′)− k(x,X)K(X,X)−1k(X,x′), (A.4)

where matrix element K(X,X)ij = k(xi,xj). Suppose we have a new sample {x̃, ỹ},

we can update (A.2) via recursive formula:

E(f(x)|D, x̃, ỹ) = E(f(x)|D) +
cov(f(x), f(x̃)|D)

var(f(x̃)|D)

(
ỹ − E(f(x̃)|D)

)
, (A.5)

cov(f(x), f(x′)|D, x̃, ỹ) = cov(f(x), f(x′)|D)− cov(f(x), f(x̃)|D)2

var(f(x̃)|D)
. (A.6)
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APPENDIX B

Appendix of Bayesian Experimental

Design for Extreme-Event Probability in

Stochastic Input-to-Response Systems

B.1 Gaussian process regression for stochastic

functions

We consider the task of inferring the input to response (ItR) function from a dataset

D = {xi, yi}i=n
i=1 consisting of n inputs X = {xi ∈ Rd}i=n

i=1 and the corresponding

outputs y = {yi ∈ R}i=n
i=1 .

B.1.1 Standard Gaussian process regression (SGPR)

SGPR assumes the function to be a sum of a mean f(x) and a Gaussian randomness

with constant variance γ20 (at all x):

y = f(x) +R R ∼ N (0, γ20), (B.1)

A prior, representing our beliefs over all possible functions we expect to observe,

is placed on f as a Gaussian process f(x) ∼ GP(0, kf (x,x
′)) with zero mean and
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covariance function kf (usually defined by a radial-basis-function kernel):

kf (x,x
′) = τ 2exp(−1

2
((x− x′)TΛ−1(x− x′))), (B.2)

where τ and diagonal matrix Λ, together with γ0, are hyperparameters θ = {τ,Λ, γ0}

in SGPR.

Following the Bayesian formula, the posterior prediction for f given the dataset D

can be derived to be another Gaussian:

f(x)|D ∼ GP
(
E(f(x)|D), cov(f(x), f(x′)|D)

)
, (B.3)

with analytically tractable mean and covariance:

E(f(x)|D) = kf (x,X)(Kf (X,X) + γ20I)
−1y, (B.4)

cov(f(x), f(x′)|D) = kf (x,x
′)− kf (x,X)(Kf (X,X) + γ20I)

−1kf (X,x
′), (B.5)

where matrix element Kf (X,X)ij = kf (x
i,xj). The hyperparameters θ are deter-

mined which maximizes the likelihood function p(D|θ) ≡ p(y|θ) = N (0,Kf (X,X) +

γ20I).

B.1.2 Variational heteroscedastic Gaussian process regres-

sion (VHGPR)

In this section, we briefly outline the algorithm of VHGPR. The purpose is to pro-

vide the reader enough information to understand the logic behind VHGPR. For the

conciseness of the presentation, some details in the algorithm have to be omitted. We

recommend the interested readers to read [72] and §10 in [17] for details.

In VHGPR, the function of ItR is considered as the sum of a mean and a Gaussian
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term (independent at all x) with heteroscedastic uncertainty:

y = f(x) +R R ∼ N (0, eg(x)). (B.6)

Two Gaussian priors are placed on the mean and the (log) variance function:

f(x) ∼ GP(0, kf (x,x
′)), (B.7)

g(x) ∼ GP(µ0, kg(x,x
′)), (B.8)

where kf and kg are respectively the radial-basis-function kernels for f and g, defined

similarly as (B.2). µ0 is the prior mean for g. The hyperparameters in VHGPR can

then be defined as θ = (µ0,θf ,θg) where θf,g includes the amplitudes and length

scales involved in kf or kg. Moreover, we assume f is independent with g.

The increased expressive power with the heteroscedastic variance is at the cost of

analytically intractable likelihood (for determination of hyperparameters) and poste-

rior (prediction). Let f = f(X) and g = g(X) denote the realizations of mean and

variance at training inputs X following the distributions in (B.7) and (B.8) . The

likelihood and prediction are formulated as:

p(D|θ) ≡ p(y|θ) =
∫∫

p(y|f ,g)p(g|θ)p(f |θ) dfdg, (B.9)

p(f(x), g(x)|D) =

∫∫
p(f(x), g(x)|f ,g)p(f ,g|y) dfdg. (B.10)

Since analytical integration cannot be achieved for (B.9) and (B.10), numerical

evaluations of the integrals are needed for their computations. However, the dimen-

sion of integration (w.r.t f and g) is the same as number of data points n, which can be

prohibitively high for a direct integration, say, using quadrature methods. While the

Monte-Carlo method (e.g., MCMC) offers some advantages in computational cost, its
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application is still too expensive for most practical problems. For these problems, the

VHGPR leveraging variational inference is the only method which provides practical

solutions with low computational cost and sufficient accuracy.

The key distribution in computing (B.10) and (B.9) is p(f ,g|y) (directly involved

in (B.10) and related to (B.9) due to (B.11) that will be discussed), which is however

expensive to compute directly. The key idea in VHGPR is to approximate p(f ,g|y) by

q(f ,g), where the latter is assumed to have a Gaussian distribution with parameters

(multi-dimensional means and covariance) denoted here by θq. Through minimiz-

ing the KL divergence [71] between p(f ,g|y) and q(f ,g), the parameters θq can be

determined and both the posterior and likelihood can be evaluated accordingly as

discussed below.

For the posterior, (B.10) becomes a linear Gaussian model (an integration of the

exponential of quadratic function of f and g with Gaussian weights) which has an

analytical formulation. For the likelihood, we avoid directly using (B.9) but decom-

pose log p(y|θ) as a summation of the evidence lower bound (ELBO) L(q(f ,g)) and

the K-L divergence between q(f ,g) and p(f ,g|y)1:

log p(y|θ) = L(q(f ,g)) + KL(q(f ,g)|p(f ,g|y)), (B.11)

where

L(q(f ,g)) =
∫∫

q(f ,g) log
p(y, f ,g)

q(f ,g)
dfdg, (B.12)

KL(q(f ,g)|p(f ,g|y)) =
∫∫

q(f ,g) log
q(f ,g)

p(f ,g|y)
dfdg. (B.13)

We then formulate an optimization problem of L (where L, as a weighted integration

1This decomposition can be derived from manipulation of (B.13) to be

KL(q(f ,g)|p(f ,g|y)) = −
∫∫

q(f ,g) log
p(y, f ,g)

q(f ,g)
dfdg + log p(y).
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of the exponential function of f and g, has an analytical expression for Gaussian

weights q(f ,g) [17]) to determine both the parameters in q(f ,g) (θq) and the hyper-

parameters (θ):

θ∗
q ,θ

∗ = argmaxθq ,θ L(θq,θ,y). (B.14)

We remark that (B.14) can be conceived as two sequential optimization problems

with respect to θq and θ. For the former, maximizing L is equivalent to minimizing

the KL divergence (as an aforementioned goal) since log p(y|θ) in (B.11) is not a

function of θq. For the latter, since the KL divergence has been minimized, the

ELBO gives a good approximation of likelihood log p(y|θ). Therefore, the solution

of (B.14) simultaneously provides the optimal θq leading to a good approximation of

p(f ,g|y) by q(f ,g), as well as the optimal θ leading to a maximized likelihood.

However, (B.14) with respect to θq is still a prohibitively expensive optimization

with dimensions 2n+2n(2n+1)/2 (i.e., number of unique elements in the mean and

co-variance matrix of q(f ,g)). To reduce the number of dimensions, a key procedure

employed in VHGPR is to assume that the function q(f ,g) is separable in f and g,

i.e., q(f ,g) = qf (f)qg(g). This brings two benefits: First, one can show that the

maximized solution of L involves a relation between qf (f) and qg(g), i.e., qf (f) can

be represented as a function of qg(g) so that the parameters in θq is reduced to the

mean µ and covariance Σ of qg(g) with dimension n + n(n + 1)/2 (see (10.6) in [17]

for proof). Second, the stationary point of L with respect to µ and Σ (by making

∂L/∂µ = 0 and ∂L/∂Σ = 0 ) leads to an analytical form

µ = Kg(X,X)(V − 1

2
I)1+ µ01, (B.15)

Σ = (Kg(X,X)−1 +V)−1, (B.16)

with Kg(X,X)ij = kg(x
i,xj), V being a diagonal matrix involving n unknown pa-

rameters and 1 being a vector with all elements 1. Therefore the optimization (B.14)
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is finally reduced to

V∗,θ∗ = argmaxV,θ L(µ(V),Σ(V),θ,y), (B.17)

with only n parameters in θq (or V). This can be solved by gradient-based method,

with the major computational cost in computing n × n matrix inversions in L. The

computational cost of each iteration in (B.17) is only approximately twice as that in

SGPR (O(n3)), which is significantly lower than the complexity O(n3m) for a direct

computation of (B.9) and (B.10) with generallym≫ n quadrature points. To further

reduce the complexity, particularly for a large dataset, the sparse VHGPR [76] (as

a combination of VHGPR with the Sparse Gaussian process) with O(nu2) can be

leveraged, with u≪ n the number of pseudo points.

With qf (f), qg(g) (computed from V∗), and θ available, the posterior predictions

for f and g in (B.10) are:

p(f(x), g(x)|D) =

∫∫
p(f(x), g(x)|f ,g)p(f ,g|y)dfdg

≈
∫∫

p(f(x), g(x)|f ,g)qf (f)qg(g)dfdg

=

∫∫
p(f(x)|f)p(g(x)|g)qf (f)qg(g)dfdg

(independence of f(x) and g(x))

=

∫
p(f(x)|f)qf (f)df

∫
p(g(x)|g)qg(g)dg

≈ p(f(x)|D)p(g(x)|D), (B.18)
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where:

p(f(x)|D) = N
(
E(f(x)|D), cov(f(x), f(x′)|D)

)
, (B.19)

p(g(x)|D) = N
(
E(g(x)|D), cov(g(x), g(x′)|D)

)
, (B.20)

E(f(x)|D) ≈ kf (x,X)(Kf (X,X) + Z)−1y, (B.21)

cov(f(x), f(x′)|D) ≈ kf (x,x
′)− kf (x,X)(Kf (X,X) + Z)−1kf (X,x

′), (B.22)

E(g(x)|D) ≈ kg(x,X)(V − 1

2
I)1+ µ0, (B.23)

cov(g(x), g(x′)|D) ≈ kg(x,x
′)− kg(x,X)(Kg(X,X) +V−1)−1kg(X,x

′), (B.24)

with Zii = eµi−Σii/2 being a diagonal matrix and Kf (X,X)ij = kf (x
i,xj).
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B.2 The upper bound of the estimation variance

Here we show the construction of an upper bound of the estimation variance (For

convenience we use p̂(x) to represent P(S(x, ω|f(x), g(x)) > δ)):

varf,g[P(S(X,ω|f(x), g(x)) > δ)]

= varf,g

[ ∫
p̂(x)px(x)dx

]
= Ef,g

[( ∫
p̂(x)px(x)dx

)2]
−
(
Ef,g

[ ∫
p̂(x)px(x)dx

])2

= Ef,g

[ ∫
p̂(x)px(x)dx

∫
p̂(x′)pX(x

′)dx′
]

−
(
Ef,g

[ ∫
p̂(x)px(x)dx

])(
Ef,g

[ ∫
p̂(x′)pX(x

′)dx′
])

=

∫∫
Ef,g

[
p̂(x)p̂(x′)

]
px(x)pX(x

′)dxdx′

−
∫∫

Ef,g

[
p̂(x)

]
Ef,g

[
p̂(x′)

]
px(x)pX(x

′)dxdx′

=

∫∫
covf,g

[
p̂(x), p̂(x′)

]
px(x)pX(x

′)dxdx′

=

∫
stdf,g

[
p̂(x)

]( ∫
stdf,g

[
p̂(x′)

]
ρ
[
p̂(x), p̂(x′)

]
pX(x

′)dx′
)
px(x)dx

≤ 0.5

∫
stdf,g

[
p̂(x)

]
px(x)dx (B.25)

where ρ[·, ·] denotes the correlation coefficient. The last inequality comes from

std[p̂ω(x
′)] ≤ 0.5 and ρ[p̂ω(x), p̂ω(x

′)] ≤ 1. The equality in (B.25) holds when p̂ω

degenerates to a Bernoulli random variable with equal probability 0.5 at both p̂ω = 0

and p̂ω = 1 and ρ[p̂ω(x), p̂ω(x
′)] = 1.
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B.3 Spherical cubature integration in equation

(4.12)-(4.14)

For given x, both equations (4.12) and (4.13) can be considered as two-dimensional

(d = 2) Gaussian weighted integrals. Let u denote {f(x), g(x)} and h(u) denote

P(S(x, ω|u) > δ) or (P(S(x, ω|u) > δ)−m)2. Both (4.12) and (4.13) can be rewritten

in the following form: ∫
h(u)N (u;µ,Σ)du, (B.26)

where

µ = [E(f(x)|D) E(g(x)|D)]T , (B.27)

Σ =

var(f(x)|D) 0

0 var(g(x)|D)

 . (B.28)

We further define a standard Gaussian random vector ũ =
√
Σ

−1
(u− µ), where

√
Σ =

std(f(x)|D) 0

0 std(g(x)|D)

 , (B.29)

or more general, the Cholesky decomposition of Σ. Then (B.26) can be transformed

to ∫
h(µ+

√
Σũ)N (ũ;0, I)dũ =

∫
ĥ(ũ)N (ũ;0, I)dũ, (B.30)

where we have defined h(µ+
√
Σũ) = ĥ(ũ) for simplicity.

The spherical cubature integration aims to approximate (B.30) with 2d points

[120]: ∫
ĥ(ũ)N (ũ;0, I)dũ ≈ w

2d=4∑
i=1

ĥ(cũ(i)), (B.31)
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where ũ(i) ∈ {{1, 0}, {0, 1}, {−1, 0}, {0,−1}}, and w and c are coefficients determined

by satisfying the following conditions for third order accuracy:

∫
N (ũ;0, I)dũ = w

4∑
i=1

1, (B.32)

∫
ũjN (ũ;0, I)dũ = w

4∑
i=1

(cũ
(i)
j ), (B.33)

∫
ũ2jN (ũ;0, I)dũ = w

4∑
i=1

(cũ
(i)
j )2, j = 1, 2. (B.34)

According to [120], this yields w = 1/4 and c =
√
2.

Finally, the values of ũ(i) can be transformed back to u(i) = µ +
√
Σũ(i), corre-

sponding to (4.14) in §4.2.3
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APPENDIX C

Appendix of Multi-Fidelity Bayesian

Experimental Design for Rare-Event

Statistics

C.1 Bi-fidelity Gaussian process

The bi-fidelity Gaussian process conditioned on D = {{X1,X2}, {Y1,Y2}} can be con-

sidered as the counterpart of (5.4) for s = 2, with its mean and covariance formulated

as

E(

f1(x)
f2(x)

 |D) = cov(

f1(x)
f2(x)

 ,
Y1

Y2

)cov(
Y1

Y2

)−1

Y1

Y2

 , (C.1)

cov
(f1(x)

f2(x
′)

 |D
)
= cov

(f1(x)
f2(x

′)

)− (
cov(

f1(x)
f2(x

′)

 ,
Y1

Y2

) (C.2)

cov(

Y1

Y2

)−1cov(

Y1

Y2

 ,
f1(x)
f2(x

′)

)), (C.3)
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where

cov(

Y1

Y2

) =
 k1(X1,X1) ρ1k1(X1,X2)

ρ1k1(X2,X1) ρ21k1(X2,X2) + k2(X2,X2)

 , (C.4)

cov(

f1(x)
f2(x

′)

 ,
Y1

Y2

) =
 k1(x,X1) ρ1k1(x,X2)

ρ1k1(x
′,X1) ρ21k1(x

′,X2) + k2(x
′,X2)

 , (C.5)

cov
(f1(x)

f2(x
′)

) =
 k1(x,x) ρ1k1(x,x

′)

ρ1k1(x
′,x) ρ21k1(x

′,x′) + k2(x
′,x′)

 . (C.6)

C.2 Derivation of (5.12) using recursive update

For the derivation of (5.12), we consider the following Bayes’ theorem:

p(f(x)|D, f i(x̃)) =
p(f(x), f i(x̃)|D)

p(f i(x̃)|D)
, (C.7)

where f(x)|D, f i(x̃) can be seen as the posterior of f(x)|D (as a prior) after adding

one sample f i(x̃). One can then get the mean and variance of f(x)|D, f i(x̃) using

the standard conditional Gaussian formula:

E(f(x)|D, f i(x̃)) = E(f(x)|D) +
cov(f(x), fi(x̃)|D)(f i(x̃)− E(fi(x̃)|D))

var(fi(x̃)|D)
, (C.8)

var
(
f(x)|D, f i(x̃)

)
= var

(
f(x)|D)− cov(f(x), fi(x̃)|D)2

var(fi(x̃)|D)
. (C.9)

The formula in (5.12) is a direct result of (C.9).
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C.3 Example of a more informative low-fidelity

sample

We show a special case in Theorem 1 where a high-fidelity sample is less informative

than a low-fidelity sample in a bi-fidelity model (s = 2).

Theorem 1: Assume ρ1 = 1 (see (5.2)) and noiseless observations with i =

1, 2. The benefits of adding a high-fidelity sample B(2, x̃) is smaller than B(1, x̃) for

∥Λ2∥ → 0.

Proof: Based on (5.12), (5.6), (5.7), we can compute the benefits as

B(1, x̃) = Q(D)−Q(D, 1, x̃)

=
1

var(f1(x̃)|D)

∫
cov2(f(x), f1(x̃)|D)w(x)dx

=

∫
(cov(f(x), f1(x̃))− cov(f(x),Y)cov(Y)−1cov(Y, f1(x̃)))

2

cov(f1(x̃))− cov(f1(x̃),Y)cov(Y)−1cov(Y, f1(x̃))
w(x)dx

=

∫ (
k1(x, x̃)− [k1(x,X1), k1(x,X2) + k2(x,X2)]

cov(Y)−1[k1(x̃,X1), k1(x̃,X2)]
T )

2

k1(x̃, x̃)− [k1(x̃,X1), k1(x̃,X2)]
cov(Y)−1[k1(x̃,X1), k1(x̃,X2)]

T

w(x)dx, (C.10)

B(2, x̃) = Q(D)−Q(D, 2, x̃)

=
1

var(f2(x̃)|D)

∫
cov2(f(x), f2(x̃)|D)w(x)dx

=

∫
(cov(f(x), f2(x̃))− cov(f(x),Y)cov(Y)−1cov(Y, f2(x̃)))

2

cov(f2(x̃))− cov(f2(x̃),Y)cov(Y)−1cov(Y, f2(x̃))
w(x)dx

=

∫ (
k1(x, x̃) + k2(x, x̃)− [k1(x,X1), k1(x,X2) + k2(x,X2)]

cov(Y)−1[k1(x̃,X1), k1(x̃,X2) + k2(x̃,X2)]
T )

2

k1(x̃, x̃) + k2(x̃, x̃)− [k1(x̃,X1), k1(x̃,X2) + k2(x̃,X2)]
cov(Y)−1[k1(x̃,X1), k1(x̃,X2) + k2(x̃,X2)]

T

w(x)dx.

(C.11)
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If ∥Λ2∥ → 0, we have k2(x,x
′; Λ2) → 0 for x ̸= x′ (see (5.3)). Thus

lim
∥Λ2∥→0

B(1, x̃) =

∫
(k1(x, x̃)− k1(x,X )cov(Y)−1k1(x̃,X )T )2

k1(x̃, x̃)− k1(x̃,X )cov(Y)−1k1(x̃,X )T
w(x)dx, (C.12)

lim
∥Λ2∥→0

B(2, x̃) =

∫
(k1(x, x̃)− k1(x,X )cov(Y)−1k1(x̃,X )T )2

k1(x̃, x̃) + k2(x̃, x̃)− k1(x̃,X )cov(Y)−1k1(x̃,X )T
w(x)dx,

(C.13)

and

lim
∥Λ2∥→0

B(1, x̃)−B(2, x̃) > 0, (C.14)

which complete the proof.

C.4 Analytic computation of the acquisition

We first present the formula of Gt(fi(x1), fj(x2)) in (5.18), which is the key part to-

wards an analytical acquisition and its derivative. Substituting the covariance func-

tion (5.7) to (5.18), one obtains

Gt(fi(x1), fj(x2))

=

∫
cov

(
fi(x1), f(x)

)
cov

(
f(x), fj(x2))

)
N (x;µt,Σt)dx

=

∫ ( i∑
l=1

πislkl(x1,x)
)( j∑

r=1

πjsrkr(x,x2)
)
N (x;µt,Σt)dx

=
i∑

l=1

j∑
r=1

πislπjsrIl,r,t(x1,x2), (C.15)

where

Il,r,t(x1,x2) =

∫
kl(x1,x; Λl)kr(x2,x; Λr)N (x;µt,Σt)dx (C.16a)

=|ΣtM
−1 + I|−

1
2kl(x1,x2; Λl + Λr)kr(m, µt; Σt +M), (C.16b)

185



with

m =Λr(Λl + Λr)
−1x1 + Λl(Λl + Λr)

−1x2, (C.17)

M =ΛlΛr(Λl + Λr)
−1. (C.18)

We note that from (C.16a) to (C.16b) one needs to use the formulae for transferring

kernels to Gaussian functions as well as the multiplication of Gaussian functions [113]:

k(x,x1; Λ, τ) = τ 2(2π)d/2|Λ|1/2N (x;x1,Λ), (C.19)

N (x;x1,Σ1)N (x;x2,Σ2) = N (x1;x2,Σ1 + Σ2)N (x; C(Σ−1
1 x1 + Σ−1

2 x2),C), (C.20)

with C = (Σ−1
1 + Σ−1

2 )−1.

Specifically, the detailed derivation of (C.16b) using (C.19) and (C.20) is shown

below:

Il,r,t(x1,x2) =

∫
kl(x1,x; Λl, τl)kr(x2,x; Λr, τr)N (x;µt,Σt)dx (C.21a)

=τ2l τ
2
r (2π)

d|Λl|1/2|Λr|1/2
∫

N (x;x1,Λl)N (x;x2,Λr)N (x;µt,Σt)dx (C.21b)

=τ2l τ
2
r (2π)

d|Λl|1/2|Λr|1/2N (x1;x2,Λl + Λr)

∫
N (x;m,M)N (x;µt,Σt)dx

(C.21c)

=τ2l τ
2
r (2π)

d|Λl|1/2|Λr|1/2N (x1;x2,Λl + Λr)N (m;µt,M+Σt) (C.21d)

=|ΣtM
−1 + I|−

1
2kl(x1,x2; Λl + Λr)kr(m, µt; Σt +M). (C.21e)

With the analytical formula for Gt(fi(x1), fj(x2)) available in (C.15), the benefit

B(i, x̃) in (5.14) can be derived accordingly. To further obtain the analytical deriva-

tive of B(i, x̃), we rewrite B(i, x̃) = T (i, x̃)/var(fi(x̃)|D) (comparing to (5.12)), and
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derive the derivative of T as

∂T (i, x̃)

∂x̃
=
∂K(fi(x̃), fi(x̃))

∂x̃
+ 2

∂cov(Y, fi(x̃))

∂x̃
cov(Y)−1K(Y,Y)cov(Y)−1cov(Y, fi(x̃))

−2
∂cov(Y, fi(x̃))

∂x̃
cov(Y)−1K(Y, fi(x̃))− 2

∂K(Y, fi(x̃))

∂x̃
cov(Y)−1cov(Y, fi(x̃)).

(C.22)

The analytical computation of (C.22) requires the formula for the derivative of the covari-

ance function and K. For the former, we have:

∂cov(fi(x1), fj(x2))

∂x1
=

min(i,j)∑
l=1

πijl
∂kl(x1,x2)

∂x1
, (C.23)

with

∂k(x1,x2; Λ)

∂x1
= k(x1,x2; Λ)Λ

−1(x2 − x1). (C.24)

For the latter, we have:

∂K(fi(x1), fi(x1))

∂x1
=

nGMM∑
t=1

αt
∂Gt(fi(x1), fi(x1))

∂x1

=

nGMM∑
t=1

αt

i∑
l=1

i∑
r=1

πislπisr
∂Il,r,t(x1,x1)

∂x1
, (C.25)

∂K(fi(x1), fj(x2))

∂x1
=

nGMM∑
t=1

αt
∂Gt(fi(x1), fj(x2))

∂x1

=

nGMM∑
t=1

αt

i∑
l=1

j∑
r=1

πislπjsr
∂Il,r,t(x1,x2)

∂x1
. (C.26)

Finally, (C.25) and (C.26) require the derivatives of Ii,j,t, which can be obtained by combing

(C.16b) and (C.24):

∂Il,r,t(x1,x1)

∂x1
=Il,r,t(x1,x1)(Σt +M)−1(µt − x1), (C.27)

∂Il,r,t(x1,x2)

∂x1
=Il,r,t(x1,x2)

(
(Λl + Λr)

−1(x2 − x1) + Λr(Λl + Λr)
−1(Σt +M)−1(µt −m)

)
.

(C.28)
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APPENDIX D

Appendix of Multi-Fidelity Bayesian

Experimental Design for Safety Analysis

of Connected and Automated Vehicles

D.1 Information gain and its approximation

Let us start from the situation that we have a surrogate model fh(x)|D and the

associated distribution of Pa. From an information-theoretical perspective, the next-

best sample x̃ should be chosen to maximize the information gain for Pa, i.e., to

maximize the expected KL divergence defined as

G(x̃) = Efh

(
KL

(
p(Pa|D, fh(x̃)) ∥ p(Pa|D)

))
=

∫∫
p(Pa|D, fh(x̃)) log

p(Pa|D, fh(x̃))
p(Pa|D)

dPa p(fh(x̃)|D) dfh(x̃). (D.1)

While a direct computation of (D.1) is extremely expensive, three assumptions can

be made to simplify its expression, which are summarized below.

1. Instead of a random fh(x̃), we assume that it can be approximated by the mean

prediction from the current GPR: fh(x̃) = E(fh(x̃)|D). Thus (D.1) becomes:

G(x̃) ≈
∫
p(Pa|D, fh(x̃)) log

p(Pa|D, fh(x̃))

p(Pa|D)
dPa. (D.2)
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2. We assume Pa follows Gaussian distributions with Pa|D ∼ N (µ1, σ
2
1) and

Pa|D, fh(x̃) ∼ N (µ2(x̃), σ
2
2(x̃)). Substitution of these distributions into (D.2)

gives

G(x̃) ≈ log(
σ1

σ2(x̃)
) +

σ2
2(x̃)

2σ2
1

+
(µ2(x̃)− µ1)

2

2σ2
1

− 1

2
. (D.3)

3. The difference of µ1 and µ2 is much smaller than the standard deviation of Pa

i.e. |µ2(x̃)− µ1| ≪ σ2(x̃) (which is generally true unless Pa has been estimated

very well). This leads to

G(x̃) ≈ log(
σ1

σ2(x̃)
) +

σ2
2(x̃)

2σ2
1

− 1

2
. (D.4)

It can be shown that (D.4) monotonously increases with the decrease of σ2/σ1 in the

range of σ2/σ1 < 1. Since a sample always provides information to Pa, the condition

σ2/σ1 < 1 is always satisfied. Therefore, the maximization of (D.4) is equivalent to

the minimization of σ2, that is consistent the minimization of (6.4).
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D.2 The upper bound of (6.4)

Here we show the derivation of the upper bound (6.5) from (6.4):

var[Pa|D, fh(x̃)]

= var
[ ∫

1δ

(
fh(x)|D, fh(x̃)

)
px(x)dx

]
(hereafter we write 1δ

(
fh(x)|D, fh(x̃)

)
as 1̂(x))

= E
[( ∫

1̂(x)px(x)dx
)2]

−
(
E
[ ∫

1̂(x)px(x)dx
])2

= E
[ ∫

1̂(x)p(x)dx

∫
1̂(x′)p(x′)dx′

]
−

(
E
[ ∫

1̂(x)p(x)dx
])(

E
[ ∫

1̂(x′)p(x′)dx′
])

=

∫∫
E
[
1̂(x)1̂(x′)

]
p(x)p(x′)dxdx′

−
∫∫

E
[
1̂(x)

]
E
[
1̂(x′)

]
p(x)p(x′)dxdx′

=

∫∫
cov

[
1̂(x), 1̂(x′)

]
p(x)p(x′)dxdx′ (D.5)

=

∫
std

[
1̂(x)

]( ∫
std

[
1̂(x′)

]
ρ
[
1̂(x), 1̂(x′)

]
p(x′)dx′

)
p(x)dx

≤ 0.5

∫
std

[
1̂(x)

]
p(x)dx, (D.6)

where ρ[·, ·] denotes the correlation coefficient. The last inequality comes from

std
[
1̂(x)

]
≤ 0.5 and ρ

[
1̂(x), 1̂(x′)

]
≤ 1. The former inequality is due to that 1̂(x) is

a Bernoulli variable whose standard deviation is maximized to be 0.5 when the two

branches 1̂(x) = 0 and 1̂(x) = 1 both have probability of 0.5.

We can also show that (6.4) can be directly approximated as ∼
∫
var

[
1̂(x)

]
p(x)dx

if only variance terms are kept in (D.5). This form is somewhat similar to the upper-

bound result (D.6) when used as an acquisition function. We apply the upper bound

(D.6) in the current paper.
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D.3 Benchmark tests of the framework

In this section, we test our (single-fidelity) framework in two benchmark problems to

demonstrate the efficiency of our new acquisition function. In each problem, we report

the median value as well as 15% and 85% percentiles of the exceeding probability

(defined below) obtained from 100 applications of our method with different initial

samples.

The first example we consider is a multi-modal function (see figure D.1 for a contour

plot) that is also studied in [59] and [158]:

fh(x1, x2) =
((1.5 + x1)

2 + 4)(1.5 + x2)

20
− sin(

7.5 + 5x1
2

)− 2. (D.7)

The input x follows a Gaussian distribution p(x1, x2) = N (0, I), with I being

a 2 × 2 identity matrix. We are interested in the exceeding probability Pe =∫
1fh>0(fh(x))px(x)dx. In the application of our method, we use 8 random initial

samples followed by 22 adaptive samples, with the computed Pe plotted in figure D.2

as a function of the sample numbers. Also shown in figure D.2 is the 3% error bounds

of ground truth. We see that percentiles of Pe converge to the error bounds in 18

samples. The sampling positions of our method are plotted in figure D.3 as well as

the computed limiting state after 30 samples with comparison to the ground truth.

Other existing approaches were also tested for the same problem for the number

of samples leading to convergence, but usually with less strict (or different) criterion

defined for convergence. The number of samples are 19 [59], 31−44 [31], 36−69 [15].
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Figure D.1: fh(x1, x2) of the multi-modal function with the limiting state {x :
fh(x1, x2) = 0} ( ).
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Figure D.2: Results of single-fidelity method for the problem of multi-modal function,
presented by the median value ( ) as well as the 15% and 85% percentiles (shaded
region) from 100 experiments. The ground-truth of Pe is shown ( ) in terms of the
3% error bounds.
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Figure D.3: Typical positions of 8 initial samples ( ) and 22 adaptive samples ( )
for the problem of multi-modal function, as well as the learned limiting state ( )
compared to the exact one ( ).

The second example is the four-branch function (figure D.4):

f(x1, x2) = −min



3 + 0.1(x1 − x2)
2 +

(x1 + x2)√
2

3 + 0.1(x1 − x2)
2 − (x1 + x2)√

2

(x1 − x2) +
6√
2

(x2 − x1) +
6√
2

.

The input x follows a Gaussian distribution p(x1, x2) = N (0, I). Our method is

applied with 12 random initial samples followed by 68 adaptive samples, with Pe

plotted in figure D.5 as a function of sample numbers. Also shown in figure D.5 is the

3% error bounds of ground truth. We see that percentiles of Pe converge to the error

bounds in 42 samples. The sampling positions of our method are plotted in figure

D.6 as well as the computed limiting state after 80 samples with comparison to the

ground truth.
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Figure D.4: fh(x1, x2) of the four-branch function with the limiting state {x :
fh(x1, x2) = 0} ( ).

With less strict (or different) convergence criterion, the number of samples leading

to the convergence in existing works are 36 [59], 38 [135], 78 [121], 65−126 [31],

68−124 [15], and 167 [83].
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Figure D.5: Results of single-fidelity method for the problem of four-branch function,
presented by the median value ( ) as well as the 15% and 85% percentiles (shaded
region) from 100 experiments. The ground-truth of Pe is shown ( ) in terms of the
3% error bounds.
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Figure D.6: Typical positions of 12 initial samples ( ) and 68 adaptive samples ( )
for the problem of four-branch function, as well as the learned limiting state ( )
compared to the exact one ( ).
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APPENDIX E

Appendix of a Generalized

Likelihood-Weighted Acquisition for

Rare-Event Statistics

E.1 Derivation of (7.6)

The derivation of (7.6) is built on the Theorem 2 in [95], restated here with slight

change of notations in the context of the current paper.

Theorem: Let pf±|D,f̂(x̃)(f) be PDF bounds generated by upper and lower bounds

of GPR f |D, f̂(x̃). Assume std(f(x)|D, f̂(x̃)) is sufficiently small (thus pf±(f) are

close enough). The integration of log difference between pf±(f) in (7.4) is then given

by

ϵL(x̃) =

∫
| log pf+|D,f̂(x̃)(s)− log pf−|D,f̂(x̃)(s)|ds

≈
∫ ∣∣∣ d

ds

∫
std(f(x)|D, f̂(x̃))px(x)δ(s− f̂(x))dx

pf̂ (s)

∣∣∣ds. (E.1)

Let g(s, x̃) ≡
∫
std(f(x)|D, f̂(x̃))px(x)δ(s − f̂(x))dx and denote ∂g(s, x̃)/∂s as

196



g′(s, x̃), ϵL in (E.1) can be further computed as

ϵL(x̃) ≈
∫
g′(s,x̃)>0

g′(s, x̃)

pf̂ (s)
ds−

∫
g′(s,x̃)<0

g′(s, x̃)

pf̂ (s)
ds

≈ B +

∫
g′(s,x̃)>0

p′
f̂
(s)

p2
f̂
(s)

g(s, x̃)ds−
∫
g′(s,x̃)<0

p′
f̂
(s)

p2
f̂
(s)

g(s, x̃)ds, (E.2)

where we have used integration by parts, with all boundary terms collected in B. We

note that since there are only finite number of boundary terms, B is guaranteed to

be bounded.

Noticing that g(s, x̃) > 0 always, we further have from (E.2)

eL(x̃) ≤ B +

∫ |p′
f̂
(s)|

p2
f̂
(s)

g(s, x̃)ds,

≤ C

∫ |p′
f̂
(s)|

p2
f̂
(s)

∫
std(f(x)|D, f̂(x̃))px(x)δ(s− f̂(x))dx ds

= C

∫∫ |p′
f̂
(s)|

p2
f̂
(s)

std(f(x)|D, f̂(x̃))px(x)δ(s− f̂(x))dsdx

= C

∫
std(f(x)|D, f̂(x̃))

px(x)|p′f̂ (f̂(x))|

p2
f̂
(f̂(x))

dx, (E.3)

where in the 2nd line we absorb B into another constant C since the two terms in

the 1st line are bounded (from above and below). In the third line we have applied

the Fubini’s theorem and in the fourth line we have integrated out the delta function.

(E.3) is exactly (7.6) up to a constant.

We note that our derivation outlined above is different from that in [118] (in

particular their proof of theorem 3.2) which is at least not well understood by the

authors.
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E.2 ϵLW as a continuous counterpart of precision

in classification

To demonstrate ϵLW as a continuous counterpart of precision, we first introduce the

precision metric in (imbalanced) classification. After that, we analyze the properties

of ϵLW from an output viewpoint followed by an explanation of their relation.

E.2.1 Properties of precision for classification

In classification problems, we have ItR g(x) : R → {1, 2, · · · , k} with k the number

of classes. Our objective is to train a classifier ĝ that achieves the best performance

for certain metrics (errors) in an evaluation dataset with probability px(x). The most

widely used metric, accuracy of the trained classifier ĝ is defined as:

acc(ĝ(x)) =
number of right prediction

number of total evaluations
=

∫
1ĝ(x)=g(x)(x) px(x)dx, (E.4)

where 1ĝ(x)=g(x)(x) = 1 if the prediction is correct otherwise 0. However, when one

of the classes is the minority, the classifier can have a very high accuracy even if

the learning of the minority is totally wrong. One solution for such imbalanced

classification is to use precision and recall, respectively defined as:

precision(ĝ(x)) =
k∑

i=1

number of correct predictions with predicted label i

number of evaluations with predicted label i (ĝ(x) = i)

=
k∑

i=1

∫
1ĝ(x)=g(x)(x) px|ĝ(x)=i(x)dx, (E.5)

recall(ĝ(x)) =
k∑

i=1

number of correct predictions with true label i

number of evaluations with true label i (g(x) = i)

=
k∑

i=1

∫
1ĝ(x)=g(x)(x) px|g(x)=i(x)dx, (E.6)
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which measures the correct proportion of each class with the class divided by pre-

diction or ground truth. The complement of (E.4), (E.5), and (E.6), specifically

replacing 1ĝ(x)=g(x)(·) with 1ĝ(x)̸=g(x)(·), are the corresponding error metrics where

each class (discrete output) contribute equally to the total error.

E.2.2 Properties of ϵLW in (7.5)

In this section, we interpret ϵLW from an output viewpoint that each output con-

tributes equally to the total error. For convenience, we will neglect the hypothetical

sample x̃.

We first note that ϵLW can be seen as a variation of the mean-variance metric

defined as:

ϵV =

∫
var(f(x)|D)px(x)dx, (E.7)

which is actually the mean-squared error (MSE) in regression problem.1 From an

output viewpoint, (E.7) can be rewritten as:

ϵV =

∫
var(f(x)|D)px(x)dx

=

∫
pf̂ (f)

∫
var(f(x)|D)px|f̂(x)=f (x)dx df, (E.8)

where derivation is based on the smoothing theorem of conditional expectation [52].

In (E.8), the inner integration
∫
var(f(x)|D)px|f̂(x)=f (x)dx represents the mean of

variance associated with the predicted output f . Rare events, thus, are endowed with

1In supervised learning, the mean-squared error between prediction f̂ and the true function f is
defined

∫
(f̂(x)−f(x))2px(x)dx. With the posterior mean as the prediction and posterior probability

as our belief of true function, we have the expected mean-squared error:

Ef |D
( ∫

(f̂(x)− f(x))2px(x)dx
)
=

∫ ∫
(E(f(x)|D)− f(x))2p(x)dx pf |D(f(x))df(x)

=

∫
var(f(x)|D)px(x)dx,

which is exactly (E.7).
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low weights, i.e., their probability densities pf̂ (f) in outer integration in assembling

the total error.

In comparison, following the same procedure, ϵLW becomes (see a similar derivation

for neural network training in [116]):

ϵLW (x̃) =

∫
var(f(x)|D)

px(x)

pf̂ (f̂(x))
dx

=

∫
pf̂ (f)

∫
1

pf̂ (f̂(x))
var(f(x)|D)px|f̂(x)=f (x)dx df

=

∫ ∫
var(f(x)|D)px|f̂(x)=f (x)dx df. (E.9)

Compared with (E.8), each continuous output f contributes equally in computing

the total error regardless of pf̂ (f). To illustrate this (in a discretized form for con-

venience), we plot a 2D function partitioned into different levels by contour lines

(∆f = 1) in figure E.1. Across each level, for example, region shaded by red points

as a whole (x : f(x) ∈ [5, 6]) and region shaded by black points (x : f(x) ∈ [−3,−2]),

ϵLW puts equal emphasis on them, i.e.,
∫
x:f(x)∈[f,f+∆f ]

w(x)dx is constant. Within

each level, the relative importance of each x is determined by their input probability

distribution.

It is clear that (E.5) and (E.9) share the same form in terms of equalizing each

output (class) in assembling total error (summation for discrete output and integra-

tion for continuous output). Thus ϵLW can be treated as a continuous analogy of the

precision where the former applies squared error (variance), and the latter applies

zero-one error.

With this relation, we can think one step further. In classification, precision and

recall will usually be considered equally (e.g., by F1 score) if there is no preference

for Type I and Type II errors. Similarly, the predicted PDF and true PDF are

indistinguishable in computing (7.2). However, the current acquisition only considers
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Figure E.1: Illustration of ϵLW from output viewpoint. Each level bounded by contour
lines contributes equally to the total error regardless of their rarity.

precision. Intuitively, we also hope to include the recall,
∫
var(f(x)|D) px(x)

pf (f(x))
dx, in

selecting the next sample. Given that we do not know f in the sampling process,

one way is to use the mean of recall based on current GPR belief, which requires a

cumbersome sampling process. In practice, f can be approximated by the upper and

lower bounds of the GPR as shown in (7.9).

E.3 Acceleration in MCDO regarding the acquisi-

tions

In MCDO method, we pre-select a large number of candidate samples located at

Xmc ∈ Rnmc∗d (usually from space-filling L-H sampling), where nmc ≫ n with n

the number of samples in the existing dataset D. The optimization problem is then

approximated by a discrete optimization

x∗ = argmaxx∈Xmc
acq(x). (E.10)
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In the following, we will take (7.8) as the acquisition function in presenting the algo-

rithm, but the algorithm applies equally to (7.9) and (7.5) as discussed in §7.2.4. In

computing acq(Xmc), one needs to evaluate a new GPR with f̂(Xmc) = E(Xmc|D)

and var(Xmc|D), with the former needed to calculate the function pf̂ (f) and its ar-

guments f̂(x). A direct (brute-force) computation following (A.3) and (A.4) can be

conducted as

E(Xmc|D) = K(Xmc,X)K(X,X)−1y, (E.11a)

var(Xmc|D) = diag
(
K(Xmc,Xmc)

)
− diag

(
K(Xmc,X)K(X,X)−1K(X,Xmc)

)
. (E.11b)

The computational complexity of (E.11) consists of three major parts: (i) the

Cholesky decomposition of K(X,X) ∈ Rn2
for computing its inverse K(X,X)−1, with

complexity O(n3), (ii) obtaining each element in K(Xmc,X) ∈ Rnmc∗n with O(nmc∗n),

(iii) the Cholesky solve of K(Xmc,X)K(X,X)−1 based on results of (i), with com-

plexity O(nmc∗n2). Since nmc ≫ n, (iii) yields the highest computational complexity

among the three procedures, instead of (i) (part of the re-training procedure) which is

most computationally intensive for many other applications. In practice, for n = 300

and nmc = 105 (typical sizes of problems in this paper), only 1% of the total com-

putational time is spent on (i), while (ii) and (iii), on the other hand, contribute

approximately equally to the remaining 99% computational time (note that (ii) has a

large pre-factor in front of the Big O operator due to the need to compute covariance

for each element). Therefore, alleviating the computational cost regarding (ii) and

(iii) are most important in developing a fast computational approach.

Our developed approach leverages the recursive update of GPR used in [19, 20,

18, 49] with additional techniques of memory-time tradeoff and matrix multiplication

strategy. To start, we employ the recursive update of the mean and variance building

on that of the last step f |Dn−1 (subscript n− 1 refers to the dataset before the n-th
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sample xn is added):

E(Xmc|Dn−1,xn) = E(Xmc|Dn−1) +
cov(Xmc,xn|Dn−1)

var(xn|Dn−1)

(
f(xn)− E(xn|Dn−1)

)
, (E.12a)

var(Xmc|Dn−1,xn) = var(Xmc|Dn−1)−
cov(Xmc,xn|Dn−1)

2

var(xn|Dn−1)
, (E.12b)

with:

cov(Xmc,xn|Dn−1) = k(Xmc,xn)−K(Xmc,Xn−1)K(Xn−1,Xn−1)
−1k(Xn−1,xn). (E.13)

In (E.12), we can reuse E(Xmc|Dn−1) and var(Xmc|Dn−1) from last iteration, and

the major computational cost lies on (E.13). Here we note that a direct compu-

tation of (E.13), as conducted in [19, 20, 18] (judged by their uploaded codes in

Github2), scales similarly as in (E.11). This is because the Cholesky solve step of

(Xmc,Xn−1)K(Xn−1,Xn−1)
−1 costs O(nmc ∗ (n − 1)2) that is similar as (iii) for the

brute-force GPR formula (E.11). In order to reduce this part of the computational

cost, we can compute (E.13) by parenthesizing in a different way (see [133] for appli-

cations in other contexts): first computing K(Xn−1,Xn−1)
−1k(Xn−1,xn) ∈ R(n−1)∗1

and then multiplying the result by K(Xmc,Xn−1). In this way, the original O(nmc∗n2)

complexity in (iii) is reduced to O(nmc∗n). Regarding (ii), we now do not need to con-

struct K(Xmc,Xn) in (E.11), since only K(Xmc,Xn−1) is involved in (E.13) that can

be taken from last iteration. The only new construction regards k(Xmc,xn) ∈ Rnmc∗1

only takes O(nmc) complexity. This is a standard memory-time tradeoff idea where

we save K(Xmc,Xn−1) in the memory, with the advantage of greatly reducing the

computational requirement.

To illustrate the superiority of the developed computational method, we show in

figure E.2 the computation time using the developed approach and direct computation

as in (E.12) for nmc = 2 ∗ 105 and varying n on four cores of Intel Xeon Gold 6154

2https://github.com/ablancha/gpsearch
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Figure E.2: Computation time for selecting one sequential sample using direct com-
putation (E.12) ( ) and the developed approach ( ) for nmc = 2 ∗ 105 and varying
n from 100 to 1000.

CPU. It is clear that the developed approach achieves a speedup of one and a half

orders of magnitude.

E.4 Formula of Matern kernel

In this section, we introduce the Matern kernel for covariance function k, defined as

k(x,x′) =
τ 2

Γ(ν)2ν−1
(
√
2ν dist(x,x′))νKν

(√
2ν dist(x,x′)

)
. (E.14)

The dist function in (E.14) is computed by:

dist(x,x′) = ((x− x′)TΛ−1(x− x′))
1
2 , (E.15)

where τ and diagonal matrix Λ are hyperparameters representing the characteristic

amplitude and length scales. Kν(·) is a modified Bessel function, and Γ(·) is the

gamma function. ν is a pre-defined parameter controlling the continuity of the re-
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alizations where a smaller value indicates a less smooth function. As ν → ∞, the

Matern kernel becomes equivalent to the RBF kernel (infinitely differentiable) while

ν = 1.5 and 2.5 respectively indicate once and twice differentiable functions.

E.5 Results for Matern functions

In this section, we collect the results for two and three-dimensional Matern functions

mentioned in §7.3.2. Figures E.3, E.4, and E.5 respectively correspond to figures 7.7,

7.8, and 7.10, but with the response functions (and GPR) generated by the Matern

kernel (E.14). Conclusions from these cases with Matern functions are very similar to

what we reach in §7.3.2 for the RBF functions. The only comment needed is that for

the 3D Matern functions, the global optimal of α and t is achieved at α ≈ 4 and t ≈ 1

instead of α ≈ 3 and t ≈ 1 as in the RBF cases. However, the latter still provides a

near-optimal performance for the Matern cases.
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Figure E.3: Results for two-dimensional Matern functions. Error ϵ as function of
number of samples for (a) α = 0 and varying t = 0.6 ( ), 0.8( ), 1( ), 1.2( ),
1.4( ), (b) t = 1 and varying α = 0( ), 1 ( ), 2( ), 3( ), 4( ), 6( ); (c)
contour plot of log10 ϵ at 146 sequential samples for varying t and α.
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Figure E.4: First column: true response Matern function as a reference; second
column: sequential samples ( ) with α = 0 on the predicted response function; third
column: sequential samples ( ) with α = 3 on the predicted response function; fourth
column: predicted PDF pf̂ (f) with α = 0 ( ) and α = 3 ( ) compared with the
true PDF pf (f) ( ). The top-to-bottom rows correspond to situations with number
of sequential samples nseq = [30, 60, 90, 120, 146]. The black circles shown in columns
1-3 mark the rare-event regions around (−2.6, 3.2) and (2.3, 2.8) that are missed by
sequential samples with α = 0 but captured with α = 3.
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Figure E.5: Results for three-dimensional Matern functions. Error ϵ as function of
number of samples for (a) α = 0 and varying t = 0.6 ( ), 0.8( ), 1( ), 1.2( ),
1.4( ), (b) t = 1 and varying α = 0( ), 1 ( ), 2( ), 3( ), 4( ), 6( ); (c)
contour plot of log10 ϵ at 392 sequential samples for varying t and α.
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