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ABSTRACT

Appendages such as arms, legs, fins, wings, and tails are peripheral body parts attached to an
organism’s main body, playing essential roles in animal locomotion. Tails, found in most ver-
tebrates, are particularly versatile, serving a wide range of functions such as providing stability,
maneuverability, and prehension. Inspired by these functions, researchers have been integrating
tail-like appendages into robotic designs to enhance robot movement, demonstrating significant
improvements in control, stability, and efficiency.

However, current modeling studies often simplify animal tails to a single rigid link. While this
simplification streamlines the modeling and control of tail-like appendages, it might overlook the
potential impacts of having more articulated tails, raising questions about the insights that might
be missed by this “reductionist” approach.

Improved models, which incorporate the detailed structure of animal tails, offer a more in-depth
approach to uncovering the biological principles of the tail’s role in animal locomotion, especially
in high performance movements such as rapid aerial reorientation, agile terrestrial maneuvering,
and self-righting, which people have a keen interest in. These models can influence the design of
bio-inspired robots. Additionally, they hold the potential to guide researchers toward more infor-
mative and appropriate simplified models that might not solely consist of a single rigid link. How-
ever, while holding considerable value for advancing both biological understanding and robotic
research, these improved models exhibit much greater complexity. This renders the analysis and
control of them computationally challenging. Hence, devising methods that alleviate the compu-
tational load in the analysis and control of complex systems, while still retaining a high degree of
accuracy in the depiction of their dynamic behavior, is of paramount importance.

In light of these research gaps, to explore valuable insights into the underlying role of tails in
animal movement, this dissertation constructs improved robotic tail models to examine the superior
maneuverability afforded by articulated tails over single rigid links and other inertial appendages.

To investigate the often-ignored role of muscle-tendon network actuation in robotic models,
we incorporate this network into our analysis by constructing musculoskeletal models of articu-
lated tails. We introduce a specialized software framework for efficiently constructing detailed
musculoskeletal models of biological articulated appendages. Using this software and the derived
models, we take a nuanced look at the actuation mechanics of biological tails.

xiii



To tackle the difficulties faced in analyzing and controlling models of complex systems, such
as articulated tails, this dissertation introduces a data-driven modeling and control framework for
such systems. This method leverages Koopman operator theory to develop models that are both
accurate and computationally efficient, enabling their integration into closed-loop optimal control
schemes. The approach shows promise for managing complex biological continuum appendages.
It lays the foundation towards achieving real-time control of highly articulated robotic appendages,
enhancing the agility of legged robotic systems.
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CHAPTER 1

Introduction

1.1 Overview

In the realm of biology, appendages refer to external body parts that are attached to an organism’s

main body. For example, in humans, arms and legs are examples of appendages. Other examples

include the fins of fish, the wings of birds, and the tails of squirrels, all of which play critical roles

in animal movement. Among these various appendages, tails, a form of continuum appendage, are

widespread across the animal kingdom. Most vertebrates, that is, animals with a spinal column,

have evident tails. Certain invertebrates, including scorpions and horseshoe crabs, also possess

tail-like appendages.

Despite their common presence in many animal body plans, tails serve extraordinarily diverse

functions and are utilized in a remarkably wide range of manners. These functions include, but are

not limited to, maneuverability, stability, manipulation, propulsion, defense, energy storage, etc

[57]. Geckos, for instance, rely heavily on their tails for crucial support and reactive control during

rapid climbing and aerial maneuvers [64]. The remarkable athleticism of cheetahs, especially evi-

dent during hunting in the wild, involves significant tail movements for rapid braking, accelerating,

and turning [139]. Kangaroos use their tails not only for balance while hopping but also for extra

support when sitting upright [97]. Fish propel themselves through water using their tails [33].

Drawing inspiration from these biological examples, numerous researchers have explored in-

tegrating tail-inspired appendages into robotic designs to improve robot movement performance
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[34, 73, 100, 99, 96, 65, 32, 148, 22]. For instance, Chang et al. [34] and Libby et al. [73],

developed a robot equipped with an active tail, allowing for rapid self-righting in the pitch plane.

Similarly, Patel et al. [100, 99] demonstrated that a mobile robot with an active tail could turn at

higher speeds compared to a counterpart without a tail. Recently, Norby et al. [96] discovered

that the aerodynamics of cheetah tails are significantly important in their dynamic motions. By

equipping a quadrupedal robot with a tail designed for aerodynamic drag, they demonstrated that

such a tail can significantly enhance control while also reducing payload and energy requirements.

Rather than solely concentrating on this objective, a considerable group of researchers has been

exploring the integration of tails into legged locomotion, where the legs maintain contact with sub-

strates. Yang et al. showed that combining proprioception and tail control can reduce slips and falls

and enhance legged robots’ ability to traverse extremely uneven terrains [144]. Likewise, Huang

et al. illustrated that a robotic arm that is initially introduced for manipulation, when attached to

a legged system, can be used as a tail, proving to be an important asset for maintaining stability

during locomotion under substantial disturbances [61].

However, upon reviewing the existing literature, it becomes evident that most studies in the

field represent animal tails as a single rigid link. While this approach simplifies the modeling and

control of the tail and has been instrumental in uncovering some fundamental functions that tails

serve in animal movement, it is noteworthy that the tails of actual animals are far more complex

than single rigid pendulums. In reality, they generally comprise multiple vertebrae that are inter-

connected by articulated joints, resulting in highly articulated appendages with multiple degrees

of freedom (DOFs). This discrepancy prompts some straightforward but intriguing questions: Are

there discernible advantages to having an articulated tail as opposed to a tail represented as a single

rigid link? Does the reduction of complex tails to single rigid links lead to an oversight of potential

profound insights into tail’s underlying role in movement?

Acknowledging the research gap, some researchers have ventured into developing robots with

articulated tails [77, 119, 107]. While their work is pioneering, the exploration of whether such

articulation is essential remains cursory, especially considering that introducing articulation likely
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increases the complexity of design and control. Addressing this gap is crucial for advising re-

searchers in the field before proceeding to construct spatial articulated tail robots merely to mimic

nature, based on the potentially premature assumption that the existence of articulated tails in

highly maneuverable animals inherently suggests an advantage for maneuverability.

To address the questions outlined above, the development of improved tail models becomes

essential. This includes models that strive for a relatively high level of accuracy to determine if

there are any advantages to having articulated tails as opposed to a single rigid-link tail. Robotic

models in which the articulated tails of animals are represented as a set of interconnected rigid

bodies could serve as a starting point. These robotic models enable comparisons with the single

rigid-link model while prudently replicating the articulation of animal tails.

To further understand the underlying biological principles of tails’ contribution to animal move-

ment, it is worth developing models of a higher level of accuracy in representing real animal tails,

potentially even including the modeling of soft tissues. These more accurate models facilitate the

seamless integration of actual animal motion data for a deeper understanding of how real crea-

tures employ their tails. An effective way of doing this involves building musculoskeletal models

[78]. Musculoskeletal models, which combine conceptual, mechanistic, and mathematical models

of bones, joints, muscles, tendons, and ligaments, have advanced our fundamental understand-

ing of animal movement. For example, they have enriched our knowledge of sports performance

[81, 36], the cause and treatment of movement disorders [128], and dinosaur running [16]. Fur-

thermore, musculoskeletal models can also shed light on robot design. For example, inspired by

the presence of bi-articular muscles in human legs, researchers built a bipedal robot with elastic bi-

articular actuators [124]. They show that this design can simplify robot control and reduce energy

consumption.

Nevertheless, these improved tail models exhibit much greater complexities compared to the

single rigid link, due to the inherent composition of tails, which feature a large number of joints.

Furthermore, introducing soft tissues can introduce even more complexities. Such complexities

render the analysis and control of these models challenging. Therefore, the ability to accurately
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capture the dynamics of complex systems while making them more accessible for analysis and

control becomes exceedingly valuable.

The goal of this document is to construct comprehensive tail models for gaining valuable in-

sights into the tail’s underlying role in animal movement and to formulate methods for creat-

ing models that effectively capture the dynamics of complex systems while rendering them more

amenable for analysis and control, alongside the development of synthesized controllers.

1.2 Contributions

The first contribution in this dissertation focuses on the comparison of diverse robotic inertial

appendages, including a single rigid-link tail, articulated tails, and artificial mechanisms. This

study evaluates their effectiveness in facilitating three-dimensional body rotation, which serves as

a criterion to measure the maneuvering capabilities of the inertial appendage, through the use of

physics-based trajectory optimizations. Our findings indicate that articulated tails, characterized

by multiple links, provide enhanced control and superior performance relative to other inertial ap-

pendages. Additionally, by optimizing the relative sizes of links within a jointed tail, we observed

a pattern in the link length distribution of the optimal configuration. The pattern surprisingly aligns

with the those found in the tails of animals known for their high maneuverability, likely suggesting

that such a configuration might contribute to the exceptional maneuverability. The findings collec-

tively indicate that a certain degree of tail articulation is important for maneuverability, and it is

worthwhile to investigate biological jointed tails in depth to uncover the underlying mechanisms.

The second contribution involves the development of a specialized software framework for mus-

culoskeletal modeling. This software is designed to aid biomechanics researchers in efficiently

constructing models of articulated limbs using data from CT scans and dissections. It integrates

seamlessly with a well-known open-source software for modeling, simulating, and analyzing mus-

culoskeletal systems, thereby streamlining the model development process and enhancing sharing

capabilities within the research community. A distinctive feature of this software is its innova-
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tive approach to modeling the mechanics of branched muscle-tendon units. The novel modeling

approach explicitly considers the physical interactions between the muscles and tendons within

branched architectures, an aspect largely neglected in existing research. To understand the im-

portance of explicitly modeling interactions between elements of branched muscle-tendon units,

we conducted a comparative analysis between our proposed branching method and the parallel

method commonly used in previous studies with a variety of muscle-tendon architectures. The

results revealed large disparities between the two approaches, underscoring the potential critical

role of physical interactions within a network of branched tendons on musculoskeletal function.

The third contribution is a linear Koopman realization for data-driven modeling and control of

complex systems. The framework is based on the Koopman operator theory. The Koopman-based

modeling method allows to effectively represent the dynamics of complex systems as linear dy-

namical systems by using least-squares linear regression. This approach results in model predictive

control optimization problems that are convex, thereby enhancing computational efficiency to lev-

els suitable for real-time closed-loop control. This modeling and control framework is validated

on a continuum robotic system, demonstrating its promising potential for extension to intricate

systems, including biological continuum appendages.

The fourth contribution is a bilinear Koopman realization for data-driven modeling and control

of complex systems. This bilinear approach navigates the limitations encountered with the pre-

viously introduced linear Koopman realization, which is there is no theoretical guarantee for the

existence of a linear Koopman representation if the approximation is limited to a subspace that

excludes nonlinear functions of the input. We provide theoretical proofs demonstrating that Koop-

man representations incorporating bilinear control input terms are more likely to exist for arbitrary

dynamical systems than linear counterparts. By employing this approach, we show that a bilinear

realization strikes a balance between the computational efficiency of linear systems and the expres-

siveness of fully nonlinear systems. This makes them an attractive option for representing systems

for which linear models are insufficient but closed-loop controllability is still desired.
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1.3 Organization

Each subsequent chapter corresponds to one of the contributions outlined above and shares a sim-

ilar structure. Each chapter begins with an introduction featuring an elaborate literature review

within the context of the corresponding project, followed by an explanation of the methods em-

ployed, and then one or more sections describing the results and providing conclusive remarks.
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CHAPTER 2

Jointed Tails Enhance Control of Three-dimensional

Body Rotation

2.1 Introduction

As exemplified by geckos and agamid lizards, tails can be swung to generate body rotations during

aerial maneuvers to rapidly self right and transition from horizontal to vertical movement [64, 73].

This fundamental concept of inertial maneuvering generalizes to any appendage with substantial

moment of inertia that can be rotated independently, thereby generating torque and rotation in the

body. For example, the substantial mass of bat wings facilitates rapid inertial maneuvering that

facilitates inverted perching and recovery from perturbation during flight [20]. Praying mantises

exchange the angular momentum between their legs and abdomen to control body pitch when

leaping towards a target [29]. Hawkmoths also use their massive abdomen as an inertial appendage

in concert with the torques generated by their wings during flight to closely track moving targets

[72]. Using physics-based models of inertial maneuvering , we can even estimate the extent to

which extinct animals could have used inertial appendages to control body rotations [73].

Drawing inspiration from these biological examples, roboticists have designed inertial ap-

pendages to facilitate body rotations in both aerial and terrestrial settings. A straightforward way

to generate high torques is with a rotating mass, or reaction wheel, which is commonly used to

enhance stability [105]. Unlike tails, reaction wheels are unrestricted in stroke, but require more

motion for the same moment of inertia to generate the same torque as a tail [22]. Thus, active
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tails are move effective than reaction wheels when power and time are limited, such as during

rapid maneuvers in both aerial and terrestrial contexts. For instance, an active tail that controls

the aerial pitch rotations of a robot ensured safe landings after driving off a ramp [34, 73]. A

insect-scale robot used an inertial tail to reorient during flight [126]. Similar studies demonstrated

that a mobile robot with an active tail could turn at higher speeds compared to a tailless counter-

part [100, 99, 130, 109]. These planar rigid tails have served as physical models to test biological

hypotheses, enhance robot maneuverability, and are simple to design and control.

However, the biological inertial appendages are far more diverse and complex than a simple

rigid pendulum and can change shape to dynamically vary moment of inertia through time. This

discrepancy prompts two major questions: How can we compare the maximum potential effective-

ness of diverse inertial appendages that dynamically vary in moment of inertia? Does increasing

the number of joints in a tail enhance its function as an inertial appendage? In this paper, we address

these two questions by developing physics-based simulations and applying trajectory optimization

techniques to compare a variety of inertial appendages.

We explore two major configurations of inertial appendages as they move in 3D space and

reconfigure to produce dynamic changes in moment of inertia. The first example is mounting a

reaction wheel perpendicularly to the end of a rigid tail. This underactuated configuration, which

we call an “extended reaction wheel,” has the benefit of simplifying control inputs. In a previous

study, a one degree-of-freedom (DOF) tail moving in a single plane combined with a 1-DOF re-

action wheel was capable of generating rotations in all three planes [37]. Here, we use a 2-DOF

tail with a 1-DOF reaction wheel, which enables body rotational across all three rotational DOFs

independently, likely enhancing the effectiveness of control. We compare this to tails consist-

ing of rigid 2-DOF pendulums, which can also theoretically generate 3D rotations. Although the

extended reaction wheel is not found in nature, it is useful for design engineers to compare the

effectiveness of each style of inertial appendage.

We also explore the effect of dynamic changes in MOI in the context of jointed tails. For

example, the jerboa has the longest tail (relative to body size) for any mammal, and the many
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joints in the tail allow jerboas to change the shape of their tail as they swing it in 3D space. In

particular, we observed that in mammals with the same tail lengths, the number of vertebrae that

make up the tail differs between species. Increasing the number of rigid links likely affects the

capability of a tail to dynamically change MOI and the complexity of control required to perform

those changes. A previous study found that adding joints enhances the inertial effectiveness of a

tail in 2D [116], but the prescribed tail trajectory used in the comparison may not maximize torque

for all configurations, especially because all joints were programmed with identical rotation. Here,

we investigate how increasing the number of rigid links and independently actuated 2-DOF joints

within a tail affects its functional capabilities as an inertial appendage in 3D space.

If the objective is to compare the capabilities of these diverse inertial appendages,it is necessary

to formulate an optimization problem that maximizes performance under certain constraints. This

would ensure that we are fully harnessing the potential of each configuration for comparison.

Among the most important constraints to consider are the control input limits. Both in animals

and in robotic systems, there are practical limits to the speed of actuation and feedback as well as

the complexity of control signals. If tails with different degrees of freedom are subject to different

levels of control input limits, it might erroneously suggest that tails with more links are inherently

more efficient. Therefore, a fair assessment requires that all tail configurations operate within the

same control input parameters, ensuring that any observed differences in performance are truly due

to the design variations, not unequal control capabilities.

This study introduces an optimization-based approach evaluate the maximum performance of

inertial appendages under the same set of constraints. This method finds the trajectory that min-

imizes the error to a target set of body rotations for each unique appendage configuration. We

found that, under these conditions, a jointed tail comprised of three or more 2DOF rigid link pen-

dulums outperforms an equitable extended reaction wheel tail. Within rigid link tails, we found

that when comprised of equally sized, independently actuated links—with the same total tail length

and moment of inertia in the fully extended state—increasing the number of links increases per-

formance of the inertial appendage. By allowing the relative size of links within a tail to vary, we
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sought to further optimize the design of tails as an inertial appendage. We found that the optimal

configuration consists of short links in the proximal and distal portions, with the longest links in

the mid-region of the tail. Surprisingly, our results match the pattern of vertebral lengths found

in mouse tails [125]. This optimization-based simulation is a generalized approach to estimate

the function of any inertial appendage, regardless of shape. This can be applied to estimate the

potential inertial maneuvering ability of vertebrate tails from simple series of skeletal measure-

ments, compare inertial appendages that differ greatly in morphology and complexity, and provide

essential guidance for the design of novel robotic inertial appendages.

2.2 Methods

Here, we isolate the effect of inertial appendages by simulating a 3D environment without gravity,

aerodynamics, or contact with a substrate. Based on that, we develop robotic models composed of

two components: a torso and an inertial appendage. In this context, the torso rotations we measure

can only be induced by movement of the inertial appendage.

We measure the maximal performance of an inertial appendage by using its actuation to make

the torso follow a desired “trajectory” of torso orientations. The desired torso trajectories involve

large accelerations within a short time, resulting in pitch, roll, and yaw rotations similar to those

animals experience when banking for a turn or preparing for a leap. Performance of the inertial

appendage is then quantified by assessing how well the torso tracks the desired trajectories through

the actuation of the tail under certain constraints. The task is formulated as a trajectory optimization

problem. By solving the problem, we can evaluate the performance of appendages with different

configurations. Note that the torso is not translating through space in the simulations, simply

rotating.

The remainder of this section is organized as follows: We first introduce the robotic model

design and associated parameters. Then, we explain how we generate the desired torso orientation

trajectories. Following that, we present the formulated trajectory optimization problems.
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2.2.1 Model Design and Parameters

In our robotic model, the torso and the inertial appendage are conceptualized as interconnected

rigid bodies (see Fig 2.1A). The connection between these components is established through

rotational joints. Specifically, the torso is configured as a floating body represented by a uniformly

dense square prism, attached to the ground through an unactuated 3-DOF rotational joint, enabling

roll, pitch, and yaw movements.

Z

XY

Torso

One-link Tail

Pitch

Yaw
Roll

A B

Four-link Tail

Five-link Tail Six-link Tail

Two-link Tail Comparable ERW Three-link Tail Comparable ERW Comparable ERW

Comparable ERW Comparable ERW

Figure 2.1: Model visualization. (A) provides an example of the model structure, featuring a
torso and a single-link tail. (B) demonstrates jointed tails with varying numbers of links (two to
six), each with uniform link segment lengths, alongside their corresponding comparable extended
reaction wheels. The first row displays jointed tails with two, three, and four links, and their
respective extended reaction wheels. The second row presents jointed tails with five and six links,
and their corresponding extended reaction wheels. Rotational joints in the models are positioned
at non-zero angles to facilitate clear distinction.

In this study, we compare three categories of inertial appendage: a single rigid pendulum (see

Fig2.1A), a jointed tail (see Fig2.1B), and an extended reaction wheel (ERW) (see Fig2.1B). The

single rigid pendulum is represented by a uniformly dense square prism, and connected to the torso

through a 2-DOF joint, which allow for pitch and yaw movements.

The consecutive rigid bodies or links, also represented by uniformly dense square prisms, in

each jointed tail are connected to each other and to the torso through the same type of 2-DOF

joints. Each DOF of these 2-DOF joints is actuated by an ideal, massless motor, supplying torques

for active, independent pitch and yaw movements. Regardless of the number of links, the total

mass and length of the jointed tails are all the same. This design choice, particularly the exclusion
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of a direct roll DOF in the appendage joints, is based on three considerations: the naturally limited

range of roll motion in the tails of real animals; the effectiveness of the combination of pitch

and yaw movements in manipulating the torso’s roll angle without a dedicated roll movement

mechanism; and the benefit of reducing the computational load by simplifying the model’s joint

complexity.

The ERW models are characterized by appendages consisting of a single rigid link directly

attached to the torso via the same 2-DOF joint used in the tails of tail models, as outlined above,

and a reaction wheel connected to this link via a 1-DOF (roll) joint. Unlike conventional reaction

wheels and the configuration described in [37], the link between the wheel and the torso can rotate

relative to the torso along both pitch and yaw axes. This capability allows the ERW to reorient the

torso across three rotational axes independently.

To aim for an equitable comparison between ERW and jointed tails, we develop five configu-

rations for the ERW (see Fig 2.1B), corresponding jointed tails with two-link tail, three-link tail,

four-link tail, five-link tail, and six-link tail, respectively. The mass and dimensions of the link

in the ERW are identical to those of the first link in the corresponding jointed tail. The mass of

the reaction wheel is set to be equal to the combined mass of the tail in the corresponding tail

model, excluding the first caudal link. The reaction wheel’s radius is chosen to match the jointed

tail moment of inertia around its rotational axis, considering the entire tail beyond the first caudal

link rotating around the pitch or yaw axis.

Detailed specifications of the model, including mass, size, joint torques, and other relevant

parameters used for this study, are presented in Table 2.1.

Ideally, these parameters would be sourced from empirical data pertaining to real animals, par-

ticularly those known for their exceptional use of tail in achieving high maneuverability. For

instance, the mass and length of an animal’s torso and tail, if available, could be directly integrated

into the design of our robotic model. Further, a detailed analysis of the primary muscle groups re-

sponsible for tail movement could inform the estimation of maximum joint torques for the robotic

tails. This method could extend to other parameters, such as the range of motion and maximum
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Table 2.1: Model parameters

Property Value

Torso Mass 5 kg
Appendage Total Mass 1.5 kg
Torso Dimension (width×length×height) 0.3 m × 1 m × 0.3 m
Tail Dimension (width×length×height) 0.1 m × 1.5 m × 0.1 m
Tail Joint Velocity Range [−360, 360] deg/s
Tail Joint Range of Motion [−60, 60] deg
Tail Joint Torque Range [−5, 5] Nm
Wheel Joint Velocity Range [−360, 360] deg/s
Wheel Joint Range of Motion [−∞, +∞] deg
Wheel Joint Torque Range [−5, 5] Nm

The numbers in the table for dimensions follow the order of the local X, Y, and
Z axes of the coordinate system illustrated in Fig. 2.1, represented by red, green,
and blue, respectively

speed of the joints in the model.

Unfortunately, due to the scarcity of comprehensive, specific data in current literature, we opt

to select these parameters manually. It’s important to note that the chosen parameters, while not

replicating the exact characteristics of any particular animal, can facilitate meaningful insights

that are broadly applicable and generalizable. Any trends and patterns identified in this study

can contribute to a broader understanding of the principles of appendage’s contribution to body

rotation.

In this study, we present results for tails comprising up to a maximum of six links with uni-

form tail link segment lengths, due to the escalating computational demands associated with tails

with more link segments. As mentioned earlier, we also assess the impact of variations in the tail

link segment lengths, where we optimize the tail segment length under the constraint of fixed total

tail length. Importantly, in our study, variations in tail link segment lengths are made intrinsically

linked with corresponding changes in mass and moment of inertia, providing a more holistic under-

standing of the implications of size variations. For models with non-uniform link lengths in their

tails, we present results for up to four links. The results for the five-link and six-link configurations

are not available because we have to employ symbolic representation to capture the dynamics of the
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robots with non-uniform tail link segment lengths. As the system dimension grows, the process of

exporting these symbolic representations for optimization use becomes considerably challenging.

2.2.2 Torso Trajectory Generation

We employ Fourier series to generate the torso’s roll, pitch, and yaw rotational trajectories sim-

ilar to those animals would experience during turning, self-righting, or perturbation recovery. A

set of 20 trajectories for pitch, roll, and yaw (see Fig 2.2), each with a duration of 0.5 seconds

are generated. To accommodate the physical limitations, the roll, pitch, and yaw angles are

constrained within the range of [−180, 180] deg and angular velocities are limited to a range of

[−360, 360] deg/s for all 20 torso orientation trajectories.

Here, let t ∈ [t0, tf ] represent time. We denote the torso’s orientation (i.e., roll, pitch, and yaw

angles) by Θ : [t0, tf ] → R3,

Θ(t) =

[
θ1(t), θ2(t), θ3(t)

]⊤
(2.1)

We generate random trajectories for the torso’s orientation using a fifth-degree Fourier series as

follows:

θi(t) = ai0 +
5∑
j=1

(aij cos(jωit) + bij sin(jωit)) (2.2)

where {aij}5j=0, {bij}5j=1, and ωi, for each i = 1, 2, 3, are adjustable parameters. Different combi-

nations of pitch, roll, and yaw parameters are used to generate each of the 20 trajectories.

2.2.3 Trajectory Optimization

In this subsection, we describe the formulation of three trajectory optimization problems. The first

is for tail models where the length of each individual link in the tail is uniform across all links. The

second is for the ERW. The third is for jointed tail models where the length of each individual tail

link can vary, while the overall tail length remains fixed.
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Figure 2.2: Illustration of designed torso orientation trajectories. (A), (B), and (C) depict the
20 desired trajectories for torso pitch, roll, and yaw angles, respectively. Shaded lines represent
individual trajectories, while solid lines highlight exemplary trajectories to illustrate variations in
angles over time. As seen in the figure, within a time span of 0.5 seconds, the orientations undergo
rapid changes, experiencing shifts of more than 60 degrees from the starting point. In addition,
it can become even more dynamic, with 60-degree changes occurring midway through the 0.5-
second interval, followed by a reversal of these changes in the latter half.

2.2.3.1 Uniform Tail Link Length

Given a tail that consists of nl links, we define the joint configuration trajectory as q : [t0, tf ] →

Rnq , where nq = 2nl+3. For the models in our study, the joint configuration comprises the position

of each revolute joint in the tail, with the first three elements corresponding to the torso orientation

angles. The joint velocity and joint acceleration trajectories are denoted by q̇ : [t0, tf ] → Rnq ,

q̈ : [t0, tf ] → Rnq , respectively.

The dynamics of the given model are governed by the following equation:

q̈(t) = −M(q(t))−1
(
−H(q(t), q̇(t)) + τ(t)

)
(2.3)

where τ(t) ∈ Rnq represents the joint control inputs, M(q(t)) ∈ Rnq×nq is the mass-inertia matrix,

and H(q(t), q̇(t)) ∈ Rnq×nq represents the combined effects of Coriolis forces, centrifugal forces,

and gravitational forces, all at time t.

Note that, by default, this dynamics equation assumes that all the joints, including the floating

joints of the torso, can supply joint torques independently. To emphasize that the task involves
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only actuating the joints in the appendages to induce torso rotations, we forcibly apply zero torque

to the floating joints of the torso:

q̈(t) =M(q(t))−1
(
−H(q(t), q̇(t)) +

[
O1x3, u(t)⊤

]⊤ )
(2.4)

where u(t) ∈ Rnq−3 represents the torque inputs for the tail joints.

To express the dynamics of the model in a first-order form, as required by standard trajectory

optimization, we define the system state trajectory and system dynamics as:

x =

q
q̇

 (2.5)

ẋ = f(x, u) =

q̇
q̈

 (2.6)

We define the objective function as follows,

min
x,u,u̇

∫ tf

t0

∥Cx(t)−Θ(t) ∥22 dt (2.7)

where C ∈ R3×2nq is a selection matrix used to extract the torso orientations from the system

states, and Θ represents the desired torso orientation trajectory. Thus, the cost function measures

the integrated tracking error between the actual torso orientations and the desired torso orientations.

Beyond the dynamics outlined earlier, the optimization is subject to other constraints, including

the joint position and joint velocity constraints:

Slb ≤ x(t) ≤ Sub ∀t ∈ [t0, tf ] (2.8)
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where the values of the bounds can be found in Table 2.1, and the system control input constraints:

Ulb ≤ u(t) ≤ Uub ∀t ∈ [t0, tf ] (2.9)

In addition, to avoid generating solutions with impractical, erratic control inputs, we introduce

constraints on the rates of change of the inputs:

Rlb ≤ u̇(t) ≤ Rub ∀t ∈ [t0, tf ] (2.10)

Importantly, we also include a constraint that limits the control efforts of the tail joints:

u(t)⊤u(t) ≤ E ∀t ∈ [t0, tf ] (2.11)

This constraint is applied to all the models designed in ??, and the value of the bound E is chosen

such that it does not exceed the maximum possible value for the model with a single-link tail. This

ensures that the models with different numbers of tail links have the same level of total control

effort limit, facilitating an equitable comparison.

Lastly, we include constraints to prevent self-collisions:

g(x(t)) ≤ Ong×1 ∀t ∈ [t0, tf ] (2.12)

To prevent the tail from intersecting with the torso, we over-approximate the torso using spheres.

Similarly, the joint connections in the tail, as well as the tip of the tail, are approximated by

spheres. To avoid contact between the tail and the torso, we formulate constraints such that the

distance between each sphere on the tail and each sphere on the torso is greater than the sum of their

respective radii. Each element in the function g : [t0, tf ] → Rng specifies one such relationship

between a pair of spheres. The dimension of this constraint, ng, varies with the number of tail links.

It is important to note that, given the range of motion values and the lengths of the tail links, there
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is no need to explicitly consider self-collision among the tail links. This simplification reduces the

number of nonlinear constraints in the optimization problem, thereby reducing the computational

load required to solve the problem.

Combining everything together, the complete formulation of the trajectory optimization prob-

lem is presented as follows:

min
x,u,u̇

∫ tf

t0

∥Cx(t)−Θ(t) ∥22 dt

s.t. ẋ(t) = f(x(t), u(t)) ∀t ∈ [t0, tf ]

Slb ≤ x(t) ≤ Sub ∀t ∈ [t0, tf ]

Ulb ≤ u(t) ≤ Uub ∀t ∈ [t0, tf ]

Rlb ≤ u̇(t) ≤ Rub ∀t ∈ [t0, tf ]

u(t)⊤u(t) ≤ E ∀t ∈ [t0, tf ]

g(x(t)) ≤ Ong×1 ∀t ∈ [t0, tf ]

(2.13)

Methods for solving trajectory optimization problems can be divided into two categories: indi-

rect and direct [15]. Here, we use the direct collocation method, which discretizes the continuous-

time trajectory optimization problem by approximating the continuous functions in the problem

statement as polynomial splines, thereby converting it into a nonlinear problem. To provide a

solution that achieves high-order accuracy without necessitating super fine intervals or a small

timestep, which typically increases the computational load, we employ the Hermite-Simpson collo-

cation method. This high-order method approximates continuous functions as piecewise quadratic

functions, offering more accurate approximations.

The original trajectory optimization is transcribed as the following nonlinear program:
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min
x0,x0+1

2
,...,xN

u0,u0+1
2
,...,uN

N−1∑
k=0

dt

6

(
∥Cxk −Θk ∥22 + 4

∥∥∥Cxk+ 1
2
−Θk+ 1

2

∥∥∥2
2

+ ∥Cxk+1 −Θk+1 ∥22
)

s.t. xk+1 = xk +
dt

6
(fk + 4fk+ 1

2
+ fk+1) k ∈ 0, . . . , N − 1

xk+ 1
2
=

1

2
(xk + xk+1) +

dt

8
(fk − fk+1) k ∈ 0, . . . , N − 1

Slb ≤ xk ≤ Sub , Slb ≤ xk+ 1
2
≤ Sub k ∈ 0, . . . , N

Ulb ≤ uk ≤ Uub , Ulb ≤ uk+ 1
2
≤ Uub k ∈ 0, . . . , N

Ulb ≤ uk ≤ Uub , Ulb ≤ uk+ 1
2
≤ Uub k ∈ 0, . . . , N

Ulb ≤ uk ≤ Uub , Ulb ≤ uk+ 1
2
≤ Uub k ∈ 0, . . . , N

Rlb ≤
uk+1 − uk

dt
≤ Rub k ∈ 0, . . . , N − 1

gk ≤ Ong×1 , gk+ 1
2
≤ Ong×1 k ∈ 0, . . . , N

(2.14)

whereN represents the number of spline segments, tk represents the time at k-th knot (collocation)

point, dt = tk+1−tk represents the duration of k-th spline segment, xk = x(tk), Θk = Θ(tk), uk =

u(tk), fk = f(x(tk), u(tk)), gk = g(x(tk)). Detailed tutorials on transcribing such a trajectory

optimization problem to a nonlinear program can be found in [15, 67].

2.2.3.2 Extended Reaction Wheel

Compared to the formulation of the trajectory optimization problem for tail models (2.13), where

each tail link length is uniform, the trajectory optimization problem for ERW models exhibits

two primary differences. First, the number of joint configurations becomes constant for all ERW

systems, that is, nq = 6, with the first three corresponding to the torso orientation—identical to that

of tail models—while the last three correspond to two joint positions for the joint connecting the
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link and the torso, and one joint position for the joint connecting the link and the wheel. Second,

due to the model’s design, including the joint range of motion and the dimensions of the link

and wheel, there is no need to introduce constraints to prevent self-collisions. Consequently, the

self-collision constraints (2.12) are removed.

With these modifications, the formulation of the trajectory optimization for ERW models is as

follows

min
x,u,u̇

∫ tf

t0

∥Cx(t)−Θ(t) ∥22 dt

s.t. ẋ(t) = f(x(t), u(t)) ∀t ∈ [t0, tf ]

Slb ≤ x(t) ≤ Sub ∀t ∈ [t0, tf ]

Ulb ≤ u(t) ≤ Uub ∀t ∈ [t0, tf ]

Rlb ≤ u̇(t) ≤ Rub ∀t ∈ [t0, tf ]

u(t)⊤u(t) ≤ E ∀t ∈ [t0, tf ]

(2.15)

To solve this, we convert it into a nonlinear program by following the same process as previously

presented. For succinctness, the detailed nonlinear program is not included here.

2.2.3.3 Variable Tail Link Length

To formulate a trajectory optimization problem where the tail link length is variable, several mod-

ifications are made from the original trajectory optimization problem (2.13).

First the link lengths, L = {li}nl
i=1, are included as decision variables. The system dynamics

become a function of both the system states and the link lengths, so does the function g for pre-

venting self-collisions. Note that, the mass, moment of inertia of each link is correlated to the link

length. Meaning, any change made to the link length result in the change in the mass, and moment
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of inertia.

To ensure the optimization results are comparable with those in which the length of each indi-

vidual link in a model is uniform, we introduce a constraint to maintain the sum of the link lengths

constant. Furthermore, each link length is assigned a positive lower bound to preclude negative

values. Here, we set this positive lower bound to 0.2 m. This choice is made to avoid the necessity

of adding extra constraints for self-collision avoidance, which would be required to account for

potential self-collision between the tail links with variable lengths, and scenarios where spheres

over-approximating the joint connections might not intersect with the torso, yet the portion of

the link between the spheres could collide with the torso. While it is possible to employ more

comprehensive self-collision constraints, such as convex polytopes [75], for more nuanced colli-

sion avoidance, the substantial increase in implementation complexity and the potential increase

in computational time render them unnecessary for this study. It is also noteworthy that a 0.2 m

lower bound is smaller than the uniform link length of a model with a six-link tail, thus allowing

the exploration of shorter links not considered in the original optimization problem.

With these changes, the formulation of the trajectory optimization allowing varied tail link

lengths is as follows,
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min
x,u,u̇,L

∫ tf

t0

∥Cx(t)−Θ(t) ∥22 dt

s.t. ẋ(t) = f(x(t), u(t), L) ∀t ∈ [t0, tf ]

Slb ≤ x(t) ≤ Sub ∀t ∈ [t0, tf ]

Ulb ≤ u(t) ≤ Uub ∀t ∈ [t0, tf ]

Rlb ≤ u̇(t) ≤ Rub ∀t ∈ [t0, tf ]

u(t)⊤u(t) ≤ E ∀t ∈ [t0, tf ]

g(x(t), L) ≤ Ong×1 ∀t ∈ [t0, tf ]

L ≥ Hlb

nl∑
i=1

li = Γ

(2.16)

We also transform this trajectory optimization problem into a nonlinear program. For brevity,

we omit the specifics of the nonlinear program.

2.3 Results and Discussion

This section details the implementation and subsequent analysis of optimization solutions. Given

the nonlinear programs outlined in the preceding section, we employed MATLAB’s FMINCON

as the solver for these nonlinear programs. To enhance computational efficiency, the calculation

of model dynamics, which constitutes a significant portion of computation time, was performed

using the Roy Featherstone algorithm [47], recognized for its efficiency in calculating rigid-body

dynamics. To improve solution optimality, analytical derivatives were provided for all involved

constraints. Regarding the discretization of continuous-time trajectory optimization over 0.5 s, a

time step dt of 0.004 s was selected, balancing precision with computational feasibility.
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Given the nonlinear nature of the programs, well-chosen initialization can significantly improve

the solver’s effectiveness. Conversely, a poor initial guess may lead to the solver getting trapped

in a suboptimal local minimum. To navigate this, we introduced five distinct initial conditions for

each program. For programs where the length of each link segment in the tail of model is uni-

form, the initial conditions include: zero states and zero control inputs, which, although simplistic,

meet all constraints, including the dynamics constraints; a straight line in state space between the

initial and final states for the torso orientation trajectory, a commonly used initialization strategy;

and three other randomly generated initial conditions within the system state and control input

boundaries. For programs optimizing over tail link segment lengths, we applied the same five dis-

tinct initial conditions for the states and control inputs. For the length decision variables, we used

uniform link lengths as the initial guess.

Upon applying these various initial conditions, we assessed the results based on the cost as-

sociated with the objective function, selecting the “best” solution characterized by the minimum

objective function value.

We validated the solution for each program by forward simulating the model dynamics in MAT-

LAB using ODE45, applying the control inputs derived from the optimization problem, and con-

firmed that the simulated states match the states derived from the optimization solutions, which

provides a solid basis for the findings and conclusions drawn in subsequent subsections.

2.3.1 Uniform Tail Link Length

Given a desired torso orientation trajectory, to quantify the tracking performance of a model, we

utilized the value of the objective function as defined in (2.14), namely, the integral of squared

error, presented in degrees squared. As illustrated in Fig 2.3, the tracking error decreases as the

number of links increases. Specifically, the mean tracking error across all designed torso orien-

tation trajectories used in the optimization problems is 333.30, 214.80, 170.54, 150.94, 137.17,

and 129.05 deg2, for tail configurations ranging from one-link to six-link, respectively. Compared

to the single-link tail case, the six-link tail configuration improves tracking accuracy by 61.28%.
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This enhanced tracking accuracy demonstrates that an increase in the number of links improves the

model’s ability to trace a maneuverable trajectory, thereby suggesting that a multi-link tail enables

the torso to generate more maneuverable behaviors. Thus, the introduction of articulation in tails

can enhance inertial maneuverability.
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Figure 2.3: Tracking error comparison. The box plots display the variability in tracking error for
models with tail configurations ranging from one to six links.

While the tracking error consistently reduces with the increase in the number of links, the

magnitude of improvement diminishes. This observation aligns with expectations considering the

physical constraints imposed on the systems, in particular, the total control effort limit. However,

it is important to note that, in the real world, incorporating additional articulation into the model

increases the design, modeling, and control complexity. The observed diminishing returns in er-

ror reduction underscore a critical point: increasing the number of links is not invariably a better

strategy. There might exist a balance point between achieving high articulation and maintaining

manageable complexity in design and control, which is pivotal in enhancing the model’s maneu-

verability without overly complicating its construction and operation.
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2.3.2 Extended Reaction Wheel

ERW models exhibit better tracking performance than the single link tail model (see Fig 2.4). The

average tracking error of the ERW model, corresponding to the two-link tail model, is 13.7% lower

than its respective. However, the ERW models do not surpass the performance of tail models with

tails comprising three or more links. Although the size of the reaction wheel in the ERW models

increases correspondingly with the number of links in the tail of comparable tail models—meaning

a larger moment of inertia—this increase does not enhance maneuverability in terms of tracking

error. This is likely due to the difficulty of changing directions for a larger wheel, and the link con-

necting the wheel to the torso, which affects maneuverability. Overall, the tracking performance

of ERW models falls between that of the single rigid link tail model and jointed tail models.
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Figure 2.4: Tracking error comparison. The box plots display the variability in tracking error for
models with tail configurations ranging from one to six links, and ERW models that correspond to
the tail models of two to six links.

2.3.3 Variable Tail Link Length

As discussed in 2.2, for tails composed of non-uniform link segment lengths, we limited our anal-

ysis to configurations of up to four links due to the escalating computational challenges involved
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in exporting symbolic dynamics expressions that accommodate variable link lengths. The com-

parison of tracking errors between the scenario where each tail link segment maintains a constant

length and the scenario with variable lengths is depicted in Fig 2.5.

Upon comparing models with uniform tail link segment lengths to those with variable lengths,

it is notable from Fig 2.5 that variable link lengths contribute to a further reduction in tracking

error. Specifically, the mean tracking errors for configurations with two, three, and four links are

202.15, 158.55, and 140.39 deg2, respectively. This represents, on average, a 6.7% improvement

in tracking accuracy compared to the respective models with uniform tail link segment lengths,

highlighting the potential benefits of incorporating non-uniform link lengths in robotic tails designs

to enhance maneuverability.
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Figure 2.5: Tracking error comparison. This box plot demonstrates the variability in tracking
errors across robotic tails with configurations of two to four links. It contrasts uniform link seg-
ment tails with those whose link sizes have been optimized, highlighting differences in tracking
performance.

More interestingly, the length distribution of the tails exhibited a discernible pattern. As ob-

served in Fig 2.6, the first link—the one directly connected to the torso—is typically the shortest

among all the links. The second link, conversely, tends to be the longest. For configurations involv-

ing three and four links, the length of the links decreases after the second link, creating a pattern
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where the mid-section area, or more specifically, slightly cranial to the mid-section, of the tail

tends to be longer than the other sections. This pattern, unexpectedly, matches the one observed

in the tail vertebrae of some animals known for their significant tail involvement in achieving high

maneuverability. This similarity likely suggests that such a pattern may contribute to the excep-

tional maneuverability of these animals and could provide valuable insights for future robotic tail

designs.
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Figure 2.6: Optimized link lengths distribution. Variability in optimized link lengths for models
with different tail configurations: (A) two-link tail, (B) three-link tail, and (C) four-link tail.

2.4 Conclusions

In this study, we compared the capabilities of different types of inertial appendages and their con-

tributions to three-dimensional body rotation using physics-based simulations and trajectory opti-

mization techniques. These diverse inertial appendages include a single-link pendulum tail, jointed

tails, and a type of variant of reaction wheels.

We found that, under certain physical constraints, jointed tails outperformed the other inertial

appendages in terms of inducing body rotations by actuating the appendages. Furthermore, the

greater the number of links in the jointed tails, the larger the induced body rotation.

Additionally, in the part of the study where we optimized tail segment lengths, we found that

varying the segment lengths further enhances three-dimensional body rotation. Subject to the con-

straint of a fixed total tail length, we observed a pattern in the length distribution of tail segments:
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the lengths tend to be smaller near the base and the tip of the tail, with larger segments around

the midsection. Interestingly, this pattern closely resembles that observed in the tails of animals

known for their rapid large body rotation capability.

Due to the significant intricacies involved in the dynamics, this study has not comprehensively

explained why the vertebrae in these animals exhibit such a pattern. One preliminary hypothesis re-

garding the reasons behind such a pattern—particularly from a moment of inertia perspective—is

that lower mass near the base (proximal end) and at the tip (distal end) allow these sections to

accelerate and decelerate more rapidly. This can facilitate quick initiation and cessation of move-

ment. The longer links in the mid-region increase the tail’s mass in this section, making it better

suited for generating forceful movements. This is because a larger moment of inertia allows the

mid-section to store more rotational energy, contributing to powerful swings or thrusts that can

propel the animal through its environment or enable swift directional changes.

The resemblance in length distribution suggests that this pattern may contribute to their impres-

sive capability for rapid and large body rotation and may offer valuable insights for future robotic

tail design. In particular, for those interested in developing robotic tails to enhance the inertia ma-

neuvering capabilities of robots, it would be beneficial to consider optimizing the mass distribution

within the robotic tail. This is particularly relevant when working within a certain level of design

complexity and control for an articulated tail, as it can further enhance the inertia maneuvering

performance.

Overall, our findings suggest that a certain level of tail articulation is beneficial for large body

rotations. They motivate us to further investigate this area to uncover the underlying mechanisms

and inform the design of robots with tails.
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CHAPTER 3

ArborSim: Articulated, Branching, OpenSim

Routing for Constructing Models of Multi-jointed

Appendages with Complex Muscle-tendon

Architecture

3.1 Introduction

Animal movement results from intricate interactions among elements of musculoskeletal systems

[45, 53, 88]. Investigating these interactions using experimental in vivo data alone can be chal-

lenging and often impractical due to measurement constraints and invasive methods. Computa-

tional musculoskeletal modeling and simulations offer a complementary approach. By integrating

models of system elements, dynamic simulations utilizing the integrated model are generated, pro-

viding estimates of hard-to-measure variables [39, 133]. These simulations enable researchers to

reproduce observed experimental results, comprehend system coordination, design innovative ex-

periments, and predict treatment outcomes, making them valuable tools in biomechanics studies

[39, 133].

In the last few decades, substantial advancements have been made in detailed musculoskeletal

modeling of the human body [44, 51, 60, 10, 110, 117, 121], which has led to the discovery of

fundamental human movement principles, advanced injury diagnosis, and informed prosthetic and
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robotic design [95, 49, 76, 70, 59, 128, 94, 124, 11, 46, 137]. OpenSim [41, 123], a widely-used

open-source software for musculoskeletal modeling and simulation, has been a key contributor to

these advancements, fostering the sharing and dissemination of musculoskeletal models among

the biomechanics community through the SimTK database. Recently, there has been increasing

interest in developing musculoskeletal models of other animals [98, 62, 35, 38, 127, 111], such as

ostrich [62], chimpanzee [98], and mouse [35, 111], with the aim of enriching the understanding

of a wide range of forms and behaviors exhibited by other species, and inspiring the development

of bioinspired robotic technologies [143, 118, 63].

In every vertebrate animal, highly jointed systems, such as phalanges and the axial skeleton

(spine, including necks and tails), facilitate greater curvature and are crucial to performance and

survival. For example, cats adjust the stiffness of their flexible backs to absorb kinetic energy

upon landing, allowing their limbs to attenuate landing impulses more safely and effectively [147].

Certain monkeys use their prehensile tails as a fifth limb, providing essential grasp and balance

while navigating through trees, facilitating climbing in their arboreal environment [57]. As an

extreme example, snakes are remarkable, highly jointed systems by themselves. They possess

highly flexible and muscular bodies that allow for a range of movement adaptations, enabling

them to effectively navigate various terrains and tight spaces [93, 1, 12].

Nevertheless, in most existing musculoskeletal models, highly jointed systems are often sim-

plified or excluded to facilitate computationally challenging analyses [145, 18, 127]. For instance,

a musculoskeletal model of the dog does not consider the motion of the spine as a series of indi-

vidual vertebrae, but rather simplifies the spine into discrete regions such as thorax and tail which

are granted three degrees of freedom (DOFs) each [127]. A mouse model simulating a trotting gait

focuses only on the hindlimb, disregarding the spine and tail entirely [35].

The practice of simplifying highly jointed systems, while helpful in reducing computational

complexity, may unintentionally mask their complete biomechanical importance. However, even

within these limitations, recent studies using simplified, but articulated models of highly jointed

systems have identified a significant role for them in animal locomotion. For example, using
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a musculoskeletal model of a dinosaur that includes a simplified two-link tail, researchers have

found that the tail performs a critical role in enhancing locomotor efficiency [17]. Moreover,

by incorporating tail compliance properties through a five-link tail model, researchers have used

the natural frequency of a tail to estimate the preferred walking speed of a dinosaur [135]. These

studies exemplify the unexpected and substantial contributions of highly jointed systems that await

discovery through modeling, underscoring the potential for gaining even more profound insights

from more detailed and comprehensive models of these systems.

Despite the development of musculoskeletal modeling software over the past few decades, con-

structing detailed models of highly jointed systems remains both time-consuming and challenging.

The primary challenge results from the presence of numerous bones and intricate muscle and ten-

don architectures, in which muscles and tendons can span multiple joints; the very morphology that

allows highly jointed structures to form smooth curves. To compound upon this complexity, tail

tendons frequently show a branching morphology that manifests as multiple tendons arising from

a shared muscle-tendon transition zone, tendons splitting distally into multiple branches before

reaching their insertion sites on multiple vertebrae, and/or tendons forking near their insertion site

to blend into the muscle-tendon transition zone of a small local intrinsic muscle slip [115, 91, 92].

This branching phenomenon greatly challenges musculoskeletal modeling processes that were de-

veloped for studying limb mechanics.

When designing software to digitally represent morphology, simplifying assumptions can in-

advertently become restrictive constraints. This is evident in the modeling of complex muscle-

tendon branching architectures. Due to the limitation of representing only one tendon per muscle,

researchers typically adopt an approach utilizing multiple muscle-tendon units (MTUs) in parallel,

each representing a unique insertion and a portion of the muscle associated with that insertion. For

example, the extensor digitorum communis (EDC) muscle in humans has a tendon that divides

into four distinct branches, each of which inserts into a different finger [74]. In existing muscu-

loskeletal models of the human hand [60, 80, 87], the EDC is represented as multiple independent

compartments, each associated with a specific tendon that extends to a particular finger. This mod-
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eling simplifies the representation of the muscle and tendon architecture. However, it may not

fully capture the physical interactions that occur between the muscle and tendons, increasing the

likelihood that such models may provide limited, or even misleading predictions.

Physical interactions between branched MTUs are likely to be particularly important in cases

where the branches insert on different bones, the MTU spans many joints, or the MTUs form a

complex branching network with more than two insertions. For example, consider an MTU that

originates on one bone and then inserts on two different bones. If external forces bend the more

distal joint, that branch of the tendon experiences stress and strain, which increases stress on the

tendon and muscle proximal to the branching site, but reduces stress on parallel distal branch. This

type of complex stress field has been essential to predicting tears in the human supraspinatus and

infraspinatus [8, 90], but there are currently no examples of OpenSim models that reflect these

empirical data. Here, we introduce a new modeling framework to explicitly model the mechanics

of branched MTUs and use simplified case studies to estimate the effect of modeling strategy on

motion predictions.

Current tools designed for musculoskeletal modeling are not well suited for handling the afore-

mentioned modeling complexities for highly jointed systems. NMSBuilder, an open-source soft-

ware to create subject-specific musculoskeletal models, was established to facilitate the model

building process for lower limbs [134]. The resulting models can be easily exported to OpenSim.

While NMSBuilder improves musculoskeletal modeling efficiency, the modeling flow still requires

manual addition of every entity and is, therefore, not well-suited for modeling highly articulated

systems, particularly those featuring complex muscle-tendon branching architectures. A similar

challenge exists with OpenSim Creator [68], a newly introduced software still in its alpha stage,

designed for creating musculoskeletal models. Furthermore, NMSBuilder only allows the use of

a subset of modeling components of OpenSim, any elements absent in NMSBuilder, such as con-

straints and controllers, must be added manually post hoc in OpenSim if required. Other modeling

software options, such as SIMM [42, 43], Anybody [112], and Visual 3D (Visual 3D Professional,

C-motion, Germantown, MD, USA), are proprietary, expensive ($4995 – 7950 per year, with aca-
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demic discounts applied), and tailored for limb modeling. Because none of these software packages

provide full access to source code, it is difficult to expand their functionality to accommodate the

complex tendon branching phenomena. Here, we introduce ArborSim (Articulated, Branching,

OpenSim Routing), an extensible open-source tool integrated with the application programming

interface (API) of OpenSim for constructing detailed musculoskeletal models of highly jointed

systems, while accounting for complex muscle-tendon architectures. We intend the toolkit to en-

able biomechanics researchers to efficiently construct musculoskeletal models of highly jointed

structures from CT scans and dissection data. We provide templates to store all essential data for

modeling as Comma-Separated Values (CSV) files that are then used to automatically construct the

model. This highly customizable framework enables users to easily set or update variables based

on empirical data for any musculoskeletal parameter, even in highly complex systems.

In addition, we propose a novel approach to modeling complex muscle-tendon architectures

that explicitly considers the interactions between each component. The approach is seamlessly

integrated into the tool. By changing one line of code, users can decide to construct musculoskele-

tal models using either the conventional (parallel MTU) approach to modeling branching or our

proposed method, both using the same data. We employ our tool to investigate the impact of using

different methods to model MTU branching by constructing simplified, multi-jointed systems, i.e.

“toy models.” Large differences between the kinematic outputs of simulations using the conven-

tional branching modeling method and the proposed method highlight the need for more accurate

models of complex branching phenomena.

3.2 Methods

3.2.1 Overview of ArborSim

A fundamental representation of a musculoskeletal system in OpenSim involves rigid bodies,

joints, and MTUs. The rigid bodies represent bones and embody associated inertial characteristics

including mass, center of mass, and moment of inertia that incorporate the mass of the muscles and
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tendons that move in tandem with each bone. These rigid bodies are interconnected through joints

defined by Joint Coordinate Systems (JCSs). MTUs, functioning as actuators, are represented by

lines of action along with a set of parameters that govern muscle contraction dynamics. These lines

of action are determined by MTU paths, which consist of user-selected path points. Additionally,

wrap objects can be introduced to shape the line of action of an MTU along parametric surfaces,

commonly known as wrapping surfaces.

The development of our tool centers around the procedural creation of these fundamental en-

tities. To enhance the software’s structure, reusability, and ease of maintenance, the tool is built

using a four-layer architecture (see Fig 4.5). Among the four layers, the first and second layers

(Fig 4.5A-B) serve as input interfaces, allowing users to input customized data for constructing an

articulated musculoskeletal model of a highly jointed system. In these two layers, the first requires

data in a “global” format, whereas the second needs “local” format data (More details on these for-

mats are provided in subsequent sections). Users have the flexibility to input data in either format.

If “global” data is provided, the “Transformer” feature will convert it into “local” format, ready

for model construction.

The components of the musculoskeletal model, derived from the inputs of the first two layers,

are then modified via the implementation of the proposed branching modeling approach, named

“Brancher”. These modified components reside in the third layer (Fig 4.5C). During this modifica-

tion process, branched muscles and tendons–initially represented as multiple independent MTUs

according to the conventional branching modeling method–are altered to conform with the pro-

posed branching modeling method. Subsequently, depending on the desired branching representa-

tion, the tool assembles the stored components either in the second or third layer via the function-

ality named “Builder”, thereby generating and exporting the resulting musculoskeletal model that

can be directly loaded into OpenSim. This resulting model constitutes the fourth layer (Fig 4.5D).

Each category of data within the first two layers is stored in a dedicated CSV file. The natural

data structure and ubiquity of CSV files offer a clear and intuitive way to represent the data, and

simplify data sharing and collaboration with researchers using diverse tools or platforms. More-
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Figure 3.1: Overview of ArborSim. (A) The input layer with global data, divided into eight
categories. In the diagrams, purple dots indicate anatomical landmarks used for establishing body
frames. Orange dots represent landmarks for defining JCSs, while red dots denote landmarks for
MTU paths. Blue dots are used to mark landmarks for defining wrapping surfaces. Transparent red
contours depict the muscle, grey slender contours outline the tendons, and the black frames labeled
“G” represent the reference frame in which the landmark coordinates are collected. (B) The input
layer with local data. Separate MTUs (red) are used to represent the muscle-tendon structure. (C)
The middle layer with modified components following the proposed branching modeling method.
The dark grey circles denote the extra body introduced to connect the single MTU (red) and the
passive elements (green). (D) The output layer with the constructed musculoskeletal model.
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over, the tool can be easily extended, as one can create additional dedicated CSV files to accom-

modate extra components and functionalities for the tool.

3.2.2 Layer 1

In the first layer, users provide the following categories of data:

• Coordinates of anatomical landmarks for establishing body frames.

• Coordinates of anatomical landmarks for defining JCSs.

• Coordinates of anatomical landmarks outlining paths for MTUs.

• Coordinates of anatomical landmarks for wrapping surfaces.

• Physiological parameters of MTUs.

• Segmented bone geometries.

• Branching groups.

• Joint range of motion.

Among the data mentioned above, the coordinates of anatomical landmarks are represented in a

global reference frame. In the context of working with a CT scan or other biomedical imaging

resources, these landmarks can be identified in segmentation and visualization software such as

Mimics (Materialise NV, Leuven, Belgium), 3D Slicer [48], and ITK-SNAP [146]. In this con-

text, the term “global” coordinates of these landmarks refers to the coordinates within the default

coordinate system in which the CT scan is saved and visualized. This default coordinate system

provides a common and consistent spatial reference for all the data in the CT scan.

To establish a reference coordinate system within the current software setup, it is required to

provide three landmark points: one for the origin of the coordinate system, one to denote the

positive X-axis direction, and another to denote the positive Y-axis direction. Thus, for each body,

36



users provide coordinates of three anatomical landmarks for establishing the corresponding body

frame.

To create a joint that defines the kinematic relationship between two bodies, termed parent and

child bodies, two joint frames are constructed, each affixed to the parent body and child body (see

Fig 3.3), respectively. Therefore, six landmark points are required to construct the joint frames

for each joint. Three of these landmarks specify the location and orientation of the joint frame on

the parent body, and the other three specify the location and orientation of the joint frame on the

child body. During the JCS landmark identification process, some recommended guidelines for

standardized JCS definitions can be found in [30, 140, 141].

To maintain compatibility with the conventional method of modeling branched muscles and

tendons in cases of complex branching phenomena, and to seamlessly incorporate the proposed

branching modeling method, offering flexibility in creating models using either technique, the

MTU-related data provided in the input are stored in a manner that presents branched muscles

and tendons as distinct, separate, and independent muscle-tendon compartments. This adheres to

the rule of a single tendon per muscle in OpenSim. For instance, when a muscle is attached to

a tendon that branches into two insertion points (see Fig 4.5), two MTUs are used to represent

this muscle-tendon structure. The anatomical landmarks for MTU path are provided for each

MTU, featuring identical landmarks along the muscle pathway, and different landmarks along

the tendon pathway. Correspondingly, two sets of physiological parameters are designated for

these two MTUs, encompassing divided maximal isometric force, consistent pennation angle and

optimal fiber length, and different tendon slack length, etc..

To enable MTUs to interact with certain wrapping objects, mimicking the way muscles and

tendons navigate around bones and other structures, wrapping surfaces can be established. These

surfaces guide the paths of linked MTUs in a manner that cannot be achieved with fixed MTU

path points alone. To create a wrapping surface, provide three anatomical landmarks that define

the reference frame, as well as additional geometry parameters such as the radius and height of the

wrapping surface.
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To prepare for implementing the proposed branching method, i.e., the conversion from the

second layer to the third layer, the fact that multiple MTUs together form a branching unit within

the biological equivalent is preserved as a branching group data.

For other essential data, the segmented bone geometries enable effective visualization within

OpenSim. Notably, these segmented geometries are exported directly from the same global refer-

ence frame used for collecting landmark coordinate data, aligning with the default frame of the CT

scan or other imaging data.

The joint range of motion data restricts the relative movement of the bodies. Such data might not

be immediately accessible to users until the joints are precisely defined in the model as this infor-

mation is more readily obtainable in local frames as opposed to a single global frame. Therefore,

users may initially overlook this aspect and later assign joint range of motions after construct-

ing a model devoid of embedded joint range of motion. In a model, joint range of motion can

be determined by ensuring no penetration occurs between the parent and child body of a joint.

Experimental data can also be instrumental in this process.

3.2.3 Transformer Creates Layer 2

In contrast to data in the first layer, which is collected under the same global coordinate system,

OpenSim models use distinct reference frames for each body, making the model more biomechan-

ically relevant and intuitive. Consequently, it necessitates the transformation of each segmented

bone geometry, initially exported from the segmented CT scan, so that each body in the result-

ing model has its own local coordinate system. Additionally, elements such as joints, MTU paths,

wrapping surfaces, etc., are constructed based on the relationships between associated bodies. This

construction requires transforming their “global” coordinates into the respective “local” coordinate

systems of the associated bodies.

Within the tool, when the “global” data and other necessary data, are input into the first layer, the

tool seamlessly performs the required transformations from the “global” data to a “local” format,

while keeping other necessary data unchanged. From there, users can obtain bodies, JCSs, MTUs,
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and wrapping surfaces that are directly compatible with OpenSim, all of which are stored in the

second layer. This conversion is particularly advantageous as it eliminates the need for manual

transformations by users. Consequently, users can directly integrate data obtained from other

software tools, thus streamlining the model development process.

A detailed explanation of the automated transformation from “global” to “local” is provided as

follows.

As stated in previous subsection, to establish a reference coordinate system, three landmark

points are provided. These three landmark points combine to form two vectors, representing the

reference X and Y-axes (see Fig 3.2), respectively.

When identifying these landmarks, it is very likely that these two vectors are not perfectly

perpendicular to each other due to various factors, such as measurement errors during the process.

This does not conform to standard Cartesian geometry. To address this, the tool adjusts the location

of the landmark indicating the positive direction of the Y-axis. This is achieved by locating a new

point on the plane defined by these two vectors that is closest to the original landmark for the

positive Y-axis direction, and ensuring that the new point creates a resulting angle of 90 degrees

between the reference X-axis and corrected reference Y-axis. Subsequently, the reference Z-axis

can be defined by taking the cross product of the X-axis vector and corrected Y-axis vector. Finally,

we normalize these vectors by dividing each by their respective magnitudes to establish a well-

defined coordinate system.

By following the procedure outlined above, body frames are established using the “global” co-

ordinates of three anatomical landmarks for each body from the supplied data in the first layer of

the tool. From the normalized vectors, which represent body frame axes, we can build transfor-

mation matrices. These transformation matrices can then transform the original segmented bone

geometries from the “global” coordinate system to their individual “local” coordinate systems. As

a result, with the transformed bone geometries and associated center of mass and inertia defined in

the corresponding body frames, a set of rigid bodies–a primary building block of the model–can

be readily derived using OpenSim’s API.
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Figure 3.2: Coordinate system construction. Three solid black dots indicate the landmarks for
the origin and the positive directions of the X and Y axes, respectively. The plane, depicted in light
blue, is defined by these points. The dashed black dot represents the adjusted landmark for the
positive Y-axis direction, ensuring orthogonality with the X-axis.

With six anatomical landmarks provided for each joint construction, as explained earlier, three

represent the joint frame’s location and orientation on the parent body, and the other three rep-

resent those on the child body. Following the method used to transform bone geometries from

“global” to “local”, a constant transformation that represents the offset between a joint frame and

the corresponding body frame can be calculated. That establishes the JCSs.

Joints are modeled as CustomJoints, which is the most generic joint representation in OpenSim.

It allows for motion in 6 DOFs, offering the flexibility in modeling traditional joints (e.g., slider

joint, universal joint) as well as complex biomechanical joints.

Implementing the same transformation concept, the positions of MTU path points relative to

the body frames through which the MTU traverses can be calculated. Similarly, the location and

orientation of a wrapping object in relation to the associated body segments can also be determined.

The aforementioned section explains how the tool efficiently converts the provided “global”

data into a “local” format, designed to integrate smoothly with OpenSim. Alternatively, if users opt

to directly provide local data and construct a model from there, they can bypass the first layer and

simply supply the local data through the second layer. This feature allows users to create artificial
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Figure 3.3: Joint construction. A joint that defines the kinematic relationship between frames P
and C is created, where frame P is affixed to the parent body, with its body frame denoted by Po,
and frame C is affixed to the child body, with its body is frame denoted by Co. By making frames
P and C coincident, the non-zero pose observed when collecting landmarks to build the JCS from
CT scans or other data sources, shown in (A), is transformed into the default zero-pose, shown in
(B).

toy musculoskeletal models conveniently, as working with local data aligns more intuitively with

the understanding of the desired local relationships.

3.2.4 Brancher Creates Layer 3

As briefly touched on in previous sections, the traditional representation of a muscle-tendon

branching structure involves multiple independent MTUs (see Fig 4.5B). In that representative

scenario, two distinct MTUs are used to account for the two tendons with different insertions. Cor-

respondingly, the muscle is represented as two compartments, each associated with a tendon. Both

MTUs stem from the same muscle origin, following the same path up to the branching point, then

diverging along their unique tendon paths.

The physiological parameters of the two MTUs depend on the respective muscle compartment

and tendon. Usually, they share the same muscle pennation angle, and possess nearly identical

optimal fiber lengths. The maximal isometric force of the muscle is allocated based on the physi-

ological cross-sectional area (PCSA) of each muscle compartment, and the tendon slack length of

each MTU aligns with the tendon’s resting length. Collectively, these parameters characterize the
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active and passive force-length curve, the force-velocity curve of the muscle, and the force-length

curve of the tendons, determining the force development of MTUs in a musculoskeletal model. To

synchronize the functioning of these muscle compartments, two identical muscle excitation signals

can be applied across the MTUs.

In contrast to the conventional method, our proposed branching modeling approach utilizes a

single MTU to represent the segment of muscles and tendons that share the same pathway from

their origin, prior to the emergence of any branching, within a group of original MTUs specified in

the provided branching group data. Hence, in the representative scenario (Fig 4.5C), the muscle is

no longer fragmented into two compartments. Instead, a single MTU is used to represent the mus-

cle in the real physiological system. The maximal isometric force of this single MTU equals the

sum of the maximal isometric forces from the two MTUs in the conventional branching modeling

method, while its optimal fiber length and pennation angle remain consistent with those of the two

MTUs.

There are two cases of tendon branching that must be modeled slightly differently. The muscle-

tendon unit depicted in Fig 4.5C directly branches into two tendons at the muscle-tendon transition.

In this case, the single MTU would ideally represent a muscle without tendons. However, because

OpenSim does not support MTUs with zero tendon (slack) length, an exceedingly short tendon

can be introduced into that single MTU. This ensures that the MTU predominantly represents the

muscle. To prevent the stretching of this extra tendon from affecting muscle force distribution

and coordination to the downstream tendons, the short tendon can be made rigid. Alternatively,

when a tendon segment is connected to the muscle before branching occurs, the additional rigid

short tendon becomes unnecessary. Instead, we can simply use an MTU to represent the muscle

associated with that particular tendon.

To represent the tendons post-branching, ligaments are used. In OpenSim, as in biomechanics

in general, a ligament represents passive connective tissue that connects bones to other bones.

Both the tendon in an MTU and a ligament are defined by a normalized force-length curve that

describes how the force responds to being stretched, a force scale that scales the normalized force-
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length curve, and the resting length. Therefore, by assigning the same properties, they are treated

equivalently in OpenSim.

To emulate the branching architecture, extra bodies, modeled as spheres, are introduced for

each branching point. As branching points in reality can slide relative to vertebrae, a CustomJoint

is incorporated between each extra body and its corresponding vertebra to ensure this movement

capability. Within the CustomJoint, the three rotational DOFs are restricted, rendering it solely as

a sliding joint. To effectively negate the impact of inertia changes induced by the inclusion of the

extra body to the model on the force development and the overall motion, the mass of the extra

body is set to an exceptionally low value. For the representative muscle-tendon structure, one extra

body is employed at the muscle-tendon transition point, accounting for the muscle dividing into

two tendons. By linking the extra body to the respective tendon insertion points using ligaments,

the muscle and tendons in the musculoskeletal system are inherently interconnected in the model.

Therefore, the intricate interactions and dependencies within the musculoskeletal system can be

more faithfully represented.

In the proposed branching modeling method, the resting length of each ligament should match

that of its corresponding tendon segment in the actual system. The force scale for each ligament

should be allocated as a portion of the muscle’s maximal isometric force, because the force in the

normalized force-length curve is normalized by the muscle’s maximal isometric force in OpenSim.

If the tendons have uniform material properties, the ligament’s force scale can be determined by

distributing the maximal isometric force based on the tendons’ cross-sectional areas.

In summary, based on the data from the second layer, where the elements of the musculoskeletal

model align with the traditional branching modeling approach, the proposed branching modeling

method demands several adaptations. Specifically, these include the addition of supplemental bod-

ies to the original model, the designation of sliding joints for these newly added bodies, adjust-

ments to MTU pathway, the integration of ligaments to denote the branched tendons, recalibration

of muscle-tendon physiological parameters, and updates to the paired association between the

wrapping surfaces and the MTUs/ligaments. This conversion is inherently integrated into the tool,
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facilitating the creation of models using the proposed branching modeling method. The detailed

procedure for the implementation of this conversion is expounded in Algorithm 1.

In the algorithm, directed tree graphs are constructed to represent the muscle-tendon branch-

ing structure. By analyzing these tree graphs, the algorithm automatically makes the necessary

adjustments and outputs the modified components into CSV files, except for the reassessment of

muscle-tendon physiological parameters. Users manually input physiological parameters for the

modified MTUs and newly introduced ligaments in the corresponding CSV file, based on anatom-

ical data.

3.2.5 Builder Creates Layer 4

Leveraging OpenSim’s API, the modified components in the third layer that fits into the OpenSim

are integrated via the functionality named “Builder” to create a musculoskeletal model. In this

model, the branched muscles and tendons are modeled using the proposed method. As mentioned

earlier, the components in the second layer present the branched muscles and tendons using the

conventional method, and these components are also directly compatible with OpenSim. There-

fore, to create a musculoskeletal model using the conventional branching modeling method, users

can simply bypass the third layer and construct a model from the second layer. Thus, the tool of-

fers the capability of creating two musculoskeletal models, using two different branching modeling

methods, both utilizing the same data.

3.2.6 Comparative Simulation Case Study

Here, we employ ArborSim to investigate the tangible distinctions between the conventional

parallel modeling method and the proposed branching modeling method for modeling complex

muscle-tendon architectures. The investigation used comparative simulations conducted on ar-

tificial toy articulated musculoskeletal systems. Within these systems, we created muscle-tendon

architectures with branching features. We focused on the branching of tendons rather than muscles,

in line with our findings in mammalian tails [91, 92].
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Algorithm 1: Brancher
Step 1. Construct Directed Tree Graph
foreach branching group do

foreach MTU in the branching group do
foreach path point of the MTU (from its origin to its insertion) do

Check for existing vertex by associated body, the position on that body, and the
point type

if vertex exists then
Append the path point information (MTU name, index, type) to the vertex

else
Create a new vertex for the path point
Associate the path point information to the vertex
if path point is not the origin then

Create a directed edge from the previous path point vertex to the new
vertex

Step 2. Identify Special Vertices
foreach vertex in the graph do

if vertex’s indegree × vertex’s outdegree ̸= 0 and vertex’s indegree + vertex’s
outdegree >= 3 then

Mark the vertex as a branching vertex

if vertex represents an MTU’s origin then
Mark the vertex as an origin vertex

if vertex represents an MTU’s insertion then
Mark the vertex as an insertion vertex

Step 3. Add Extra Bodies and Sliding Joints
foreach branching vertex do

Construct an extra body modeled as a sphere
Build a CustomJoint with translational DOFs between the associated body of the
vertex and the sphere

Step 4. Refactor MTU Paths and Build Ligament Paths
foreach origin vertex do

Traverse the graph until reaching any branching vertex
Model this segment as an MTU, originating from the origin vertex’s associated body,
inserting to the branching vertex’s associated extra body

foreach branching vertex do
Traverse the graph until reaching a branching or insertion vertex
Model this segment as a ligament, originating from the branching vertex’s associated
body, inserting to the branching or insertion vertex’s associated (extra) body
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Drawing from observed variations in muscle-tendon branching architectures across a variety of

mammalian tails [91, 92], we identified three relatively prevalent categories of variation, which

serve as the main focus of our comparative simulations:

• Variations in the number of tendon branches into which a muscle divides.

• Variations in the number of joints between the terminals of the branched tendons.

• Variations in the ratio of muscle fiber length to MTU length.

A B C

Tendon Branch Count Joint Count Between Insertions Muscle Fiber Length / MTU Length 

Figure 3.4: Comparative simulation categories. The category of varying numbers of tendon
branches is shown in (A). The category representing the varying numbers of joints spanned be-
tween insertions is depicted in (B). The category showing the varied muscle fiber length to the
longest MTU ratio is presented in (C). In all three diagrams illustrating these categories, the red
contours indicate the muscles, while the grey slender contours represent the branched tendons. To
more clearly visualize the branching, the tendons and muscles in the diagrams are displayed away
from the bones. However, in the models, they are all connected to the bones through the use of ’via
points’ on the bone surfaces, allowing them to exert force on the bodies along the pathway.

These categories are illustrated in Fig 3.4. For each category, six musculoskeletal systems were

designed. To simplify the comparison between the traditional branching modeling approach and

our proposed method, we restricted these toy musculoskeletal models to a planar configuration.

Each toy musculoskeletal model consisted of 8 vertebrae connected by planar joints, with each

vertebra modeled as a uniformly dense cylinder in OpenSim. The cylinders had a mass of 0.1 kg,
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length of 0.2 m, and radius of 0.025 m. A gap of 0.025 m between each pair of consecutive ver-

tebrae was introduced to prevent interpenetration during movement. The range of motion for each

joint was calculated based on the cylinder dimensions and the gap length, with ForceCoordinate-

LimitForce in OpenSim applied to enforce these constraints.

Each system was equipped with a muscle-tendon branching architecture, tailored to its respec-

tive category. Each muscle-tendon branching architecture consisted of a single muscle and multiple

branched tendons. To ensure that all vertebrae actively respond to muscle activation, a long ten-

don spanning from the muscle-tendon transition area to the last vertebra (most bottom in Fig) was

present in all the systems. In the category where the ratio of muscle fiber length to MTU length

varied (Fig 3.4C), the MTU length was denoted by the measurement of the longest MTU in a given

model.

For each system, two musculoskeletal models were constructed: one using the conventional

branching modeling method and the other using the proposed branching modeling method, follow-

ing the steps presented in previous subsections (N.B. both branch modeling methods are incorpo-

rated within ArborSim). Given the physiological parameters of the muscle, for models using the

conventional branching modeling method, the maximal isometric force of the muscle was evenly

allocated among these MTUs. For models using the proposed branching modeling method–where

a single MTU is used to represent the muscle–the maximal isometric force was directly assigned to

that MTU. For fair comparison between equivalent models, we divided the total maximum isomet-

ric force of the muscle by the number of insertions to set the force scale for each distal ligament

element. The force scale for the proximal ligaments was then set to the sum of the force scales of

the connected distal ligaments.

Regarding other MTU and ligament modeling parameters, the optimal and default muscle fiber

lengths were defined as the distance between the muscle’s origin and insertion in a zero-pose,

where all the joint angles are zero, resulting in a straight, fully extended pose. Similarly, the tendon

slack lengths for MTUs in the conventional method, as well as the resting lengths for ligaments in

the proposed method, were established based on the default lengths of their respective segments in
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this zero-pose configuration. For the branched model, an extremely short rigid tendon of 0.0001 m

was included in the MTU that represents the muscle to circuvment OpenSim’s limitation of not

supporting MTUs with zero tendon length.

To ensure comparability between the conventional and proposed methods, the same normalized

force-length curves and force-velocity curves were used for the muscle. Additionally, the normal-

ized force-length curve of the tendon in the MTU was identical to that of the ligament. The muscle

was modeled as a Millard2012EquilibriumMuscle [89] in OpenSim. The mass of the extra body

introduced when using the proposed branching modeling method was set to 5× 10−4 kg.

Within each category, an identical muscle excitation signal was applied to all systems with

varying muscle-tendon architectures, and simulations were run under that excitation signal for a

duration of T = 3 seconds. To evaluate the difference between the traditional branching modeling

method and proposed method on the resulting kinematics, we defined the following metric:

∆ = max
t

n∑
i=1

|θconi (t)− θproi (t)|
θ̄i

× 100%, t ∈ [0, T ] (3.1)

where θconi (t) denotes the joint angle of i-th joint at time t for models generated using the con-

ventional branching modeling method, θproi (t) denotes the joint angle of i-th joint at time t for

models generated using the proposed branching modeling method, θ̄i denotes the positive bound

of i-th joint, and n is the number of joints, which is 8 in our study. In the metric, the numera-

tor
∑n

i=1 |θconi (t)− θproi (t)| captures the total absolute differences in joints angles across all eight

joints at time t. The denominator
∑n

i=1 θ̄i represents the sum of the positive bound of each joint.

This reflects the pose where the toy musculoskeletal system is rotated to its limit.

Therefore, the metric quantifies the maximal percentage of the total absolute differences in

joint angles across all eight joints over the entire motion trajectory, relative to the joint limits. This

metric highlights the worst-case scenario in terms of the discrepancy between the two methods,

providing a robust evaluation of their impact on system behavior.
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3.2.7 Sensitivity Analysis

Performing a sensitivity analysis is valuable for assessing the impact of potential measurement

errors on the parameters of a model, providing insights into the model’s robustness. Results from

previous extensive sensitivity analyses, particularly focusing on the effects of Hill-type muscle-

tendon model parameters within musculoskeletal models [122, 114, 142, 40, 5, 31, 19, 28] indi-

cate that the tendon slack length and maximal isometric force are the most sensitive parameters.

Therefore, in this study, we conducted a sensitivity analysis on our proposed branching modeling

method, focusing on these two parameters, to investigate their influence on the joint kinematics

of the toy musculoskeletal models introduced in the previous section. Because all the tendons in

these toy musculoskeletal systems were represented by ligaments, the sensitivity analysis on the

tendon slack length should be equivalent with a sensitivity analysis on the ligament resting length

in this context.

To assess the influence of changes in maximal isometric force, we applied ten perturbations to

their nominal values, varying from −10% to +10% in 2% increments. Initially, we planned to

use this same range for the nominal ligament resting length in each toy model. However, in most

toy musculoskeletal systems, tendons are considerably longer compared to muscle length. Con-

sequently, substantial perturbations, particularly negative ones, to ligament resting length could

lead to simulation failures in Opensim. This issue arises because negative perturbations cause the

ligament to contract at the start of the simulation when the muscle is not fully activated. The larger

the negative perturbation, the more the ligament contracts. If such contraction moves the extra

body, representing tendon branching points outside the two consecutive via points at the ends of

the cylinder body, the simulation halts. As a result, we reduced the perturbation range for ligament

resting length to −5% to +5%, also in 2% steps. Notably, even this altered range is large due to the

tendons’ considerable length in these systems. While it was possible to address simulation crashes

by manually adjusting parameters in the toy models, we avoided this due to the numerous parame-

ters, their complex interrelations, and their complex effects on the resulting motions, especially in

the context of branching. Therefore, we chose to simply reduce the perturbation range.
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It is important to note that as there was more than one tendon in all of these toy musculoskeletal

systems; we have chosen to apply the perturbation of the ligament resting length to all the ligaments

simultaneously. For each perturbation, a new simulation was run under the same excitation signal

used for the original experiments. Sensitivity analyses were conducted on both the conventional

method and the proposed method.

To quantify the effect of the perturbation on the resulting motion, we re-applied the metric

introduced:

∆ = max
t

n∑
i=1

∣∣∣θ̃proi (t)− θproi (t)
∣∣∣

θ̄i
× 100%, t ∈ [0, T ] (3.2)

This time, instead of comparing the proposed method with the conventional method, we compared

the perturbed with unperturbed model for both the proposed method and the conventional branch-

ing modeling methods. Here, θ̃proi (t) is the perturbed joint angle of i-th joint at time t. θproi (t) is

the unperturbed joint angle of i-th joint at time t.

3.3 Results and Discussion

3.3.1 Model Construction

To demonstrate the use of the designed software for building articulated musculoskeletal models

of highly jointed systems, the toy musculoskeletal systems introduced in the previous section were

constructed by running through the entire software model construction pipeline. In addition, joint

coordinate reporters and muscle controllers are assigned to each model using the OpenSim API.

This setup allows for the recording and post-analysis of simulated motion in response to predefined

muscle excitation signals.

The CSV data files and code for this model construction and the associated simulation results

are available at https://github.com/EMBiRLab/ArborSim.
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3.3.2 Comparative Simulations

The joint kinematics of the musculoskeletal models, which represent articulated systems built using

the conventional and proposed methods, showed large differences. The quantitative differences

between the derived motions, evaluated using the metric (3.1), are presented in Fig 3.5.
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Figure 3.5: Quantitative motion comparison. Quantitative differences between the proposed
branching modeling method and the conventional branching modeling method, evaluated by the
metric (3.1), on the resulting motions of articulated systems with a varied number of tendon
branches (A), a varied number of joints between insertions (B), and varied muscle fiber length
to the MTU length ratios (C) are shown, respectively.

Specifically, within the category of different numbers of tendon branches (Fig 3.5A), the range

of ∆ across six simulations was [26.33%, 66.31%]. The peak value of this difference occurred

when there were five tendon branches. Overall, as the number of tendon branches increased, the

difference in joint kinematics first decreased and then increased. This trend suggested a complex,

nonlinear relationship between in branched tendon systems.

Within the category of different numbers of joints between insertions (Fig 3.5B), the range

of ∆ across six simulations was [3.34%, 52.65%]. The largest ∆ occurred when the branched

tendons in the models spanned six joints between insertions. Disregarding the abrupt increase in

the percentage change at three joint counts between insertions, a general incremental trend was

observed in the motion differences with respect to the joint count between insertions. However,

this jump might once again indicate a more complex, possibly nonlinear relationship.

Within the category of different muscle fiber length to MTU length ratios (Fig 3.5C), the range
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of ∆ across six simulations was [6.91%, 28.99%]. The largest ∆ occurred when the muscle

spanned five joints, with the corresponding ratio being 0.81. There was a consistent trend of

increasing motion differences as the muscle fiber length to MTU length ratio increased. However,

compared to the other two categories, variations in the muscle fiber length to MTU length ratios

resulted in relatively smaller changes and variance in ∆ values.

To visually demonstrate the motion differences between the two modeling methods, we in-

cluded a figure that highlights the comparison with the largest kinematic differences, determined

by the metric (3.1), across each category (Fig 3.6).

Collectively, these results indicate that the conventional and proposed branching modeling

methods exhibit notable differences in predicting joint kinematics. In particular, these differences

become more pronounced as the complexity of muscle-tendon branching architectures increases,

which involves numerous tendon branches, and an extensive number of joints spanned by branched

tendon insertions. The resulting large differences can be concerning in fields demanding precise

movement prediction, such as surgery outcomes, especially as the complexity of the muscle-tendon

networks escalates in systems like human hands, spines, and elongated tails. The effect is likely

most pronounced in elongated tails due to the absence of additional anatomical structures that

limit movement in spines and hands. The results here suggest the pivotal role of the physical in-

teractions between branched muscles and tendons in highly jointed systems. The study, though

preliminary and focused on a kinematics comparison in toy musculoskeletal systems, highlights

the necessity for continued in-depth exploration and advancement in the understanding of complex

muscle-tendon branching phenomena and the branching modeling techniques in future works.

3.3.3 Sensitivity Analysis

The resulting deviations from the nominal movement, evaluated by (3.2), showed large variability

across different categorized muscle-tendon branching structures. The effects of the perturbations

on maximal isometric force, and ligament resting length on the joint kinematics are shown in Figs

3.7 and 3.8, respectively.
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A B C D E

Figure 3.6: Qualitative motion comparison. (A) displays the zero-pose of the models. For (B),
(C), and (D), each panel presents two comparative snapshots from the simulation that exhibited
the highest ∆ out of six simulations per category. These snapshots represent the largest motion
differences between the conventional branching modeling method (depicted in white grey) and
the proposed branching modeling method (depicted in light green). Specifically, (B) compares
models with varying numbers of tendon branches, (C) compares models with different joint counts
between insertions, and (D) comprares models with varied muscle fiber to MTU length ratios. (E)
illustrates the pose where each joint is set to its maximum value within the range of motion.

53



Regardless of the muscle-tendon branching structure category, the models’ joint kinematics was

more sensitive to ligament resting length than to muscle maximal isometric force. This is consistent

with previous studies [5, 40, 114, 122, 31, 142], emphasizing the crucial role of the tendon slack

length plays in the joint kinematics of the musculoskeletal systems.

Regarding the sensitivity to muscle maximal isometric force, specifically within the categories

of varying numbers of joints between insertions (Fig 3.7B) and varying muscle fiber length to MTU

length ratios (Fig 3.7C), the observed ∆ values were consistently low and stable. This suggests a

low impact of these categories and variations within these categories on joint movement sensitivity.

Within the category of varying numbers of tendon branches (Fig 3.7A), systems with fewer than 4

tendon branches exhibited a similar low sensitivity. However, for systems with 4 or more tendon

branches, the joint kinematics showed a notably increased sensitivity for the proposed branching

modeling methods. Moreover, the models built using the proposed method were significantly more

sensitive than those built using the conventional method.

Regarding the sensitivity to tendon/ligament resting length, within the category of varying num-

bers of tendon branches (Fig 3.8A), the proposed method yielded higher ∆ values compared to the

conventional method, suggesting that the proposed method is more responsive to changes in num-

ber of tendon branches. In the category of varying numbers of joints between insertions (Fig

3.8B), both methods demonstrated similar levels of ∆ values, indicating a comparable sensitivity

to the number of joints between insertions. In the category of varying muscle fiber length to MTU

length ratios (Fig 3.8C), an increase in the ratio of muscle fiber length to MTU length resulted

in a decrease in ∆ values for the conventional method. Conversely, the proposed method exhib-

ited a relativel consistent level of ∆ values across different ratios. Additionally, at each ratio, the

proposed method showed higher ∆ values than the conventional method, highlighting its higher

sensitivity to the muscle fiber length to MTU length ratio.

These findings collectively underscore the importance of considering tendon slack length and

the complexity of tendon branching when modeling muscle-tendon systems. They also highlight

the enhanced responsiveness of the proposed method to key biomechanical parameters, suggesting
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its potential for facilitating more realistic simulations in biomechanics research.
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Figure 3.7: Maximal isometric force sensitivity analysis. Impact of maximal isometric force
changes in the proposed versus conventional method on articulated system movement, measured
by metric (3.2) across variations in tendon branch count (A), joint count between insertions (B),
and muscle fiber length to the MTU length ratio (C). Solid black stars, if present, above the box
plots indicate that the difference in ∆ values between two groups, modeled by the conventional
and proposed methods, is significant (P-value < 0.05).
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Figure 3.8: Ligament resting length sensitivity analysis. Impact of ligament resting length
changes in the proposed versus conventional method on articulated system movement, measured
by (3.2) across variations in tendon branch count (A), joint count between insertions (B), and mus-
cle fiber length to the MTU length ratio (C). Solid black stars, if present, above the box plots
indicate that the difference in ∆ values between two groups, modeled by the conventional and
proposed methods, is significant (P-value < 0.05).
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3.3.4 Computational Time

In the proposed branching modeling method, introducing extra bodies of extremely small mass

could potentially extend computational time due to potentially stiffer dynamics. To evaluate com-

putational performance, we compared the computational times of the simulations using the pro-

posed branching modeling method with those using the conventional branching modeling method.

The comparison results are documented in Table 3.1.

In the table, for each muscle-tendon architecture category, we considered all the simulations

presented in Figs 3.5, 3.7, and 3.8 to calculate the average computational time required to complete

a simulation, each having a duration of T = 3 (sec).

Overall, the average computational times were similar between the two branching modeling

methods. In the category of varying numbers of tendon branches, the simulations using the pro-

posed methods took longer than those using the conventional method. This likely suggests that the

more extra bodies of extremely small mass were introduced to the systems, the simulation time

increased. It is important to note that the effect of these extra bodies on computational time is

influenced by their mass. Here, the mass of the extra bodies used was 5 × 10−4 kg, which was

0.5% of a single vertebra (i.e., a single cylinder) in the models. Increasing the mass to a larger

value, while still keeping it reasonably small relative to the body mass, can mitigate the slowdown

effect.

Table 3.1: Computational time comparison

Architecture Category Conventional (sec) Proposed (sec)
Tendon Branch Count 4.44 4.92
Joint Count Between Insertions 4.06 4.29
Muscle Fiber Length / MTU Length 4.06 3.57

3.3.5 Future Tool Development

While the current version of the tool has proven effective by going through the procedure to create

the toy models, we recognize opportunities for advancement and refinement. Several functionali-
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ties and improvements can be envisioned to extend its applicability and ease of use in the future.

For example, in the current implementation of the “Transformer”, global landmarks are required

to establish joint coordinate systems, representing the axes of these systems. Identifying landmarks

that can depict the axes of coordinate systems is indeed a crucial goal. However, acquiring these

landmark points often necessitates identifying other biological references as a preliminary step. At

present, we assume that this process is completed prior to using the designed tool. Nevertheless,

integrating this preliminary step into the tool could further streamline the building process.

Also, the current implementation of the “Brancher” requires users to input anatomical and

physiological parameters. Automatic parameter allocation could be realized by incorporating some

predefined assumptions in future iterations of the software. Besides these, other elements such as

complex coupled joints in which the spatial transformation might be dependent on other joint

coordinates may also be included in future iterations of the tool to represent more complex joint

movements observed in biological systems.

3.4 Conclusions

In this study, we introduced an extensible open-source tool, built upon OpenSim API, for construct-

ing detailed, articulated musculoskeletal models of highly jointed biological systems. The tool was

designed to facilitate the generation of musculoskeletal models from scratch using just CT scan and

dissection data. Additionally, we introduced a method for modeling branched muscles and tendons

that considers the interactions between them. This proposed method was implemented and inte-

grated into the tool, alongside the conventional branching modeling method, providing users with

a choice between two options of modeling branched muscles and tendons.

Using this tool, we created toy musculoskeletal systems featuring diverse muscle and tendon

branching architectures, with a focus on branched tendons. We compared the proposed branching

modeling method with the conventional method by conducting comparative simulations on these

toy models. Our results showed large differences in the resulting movement between the models

57



developed using the two distinct branching modeling methods. We believe the findings will per-

suade researchers of the necessity to delve into branching modeling in future studies. This explo-

ration holds potential interest in several aspects. For instance, by incorporating explicit branching,

researchers can examine potential actuation coupling mechanism inherent in branched muscles and

tendons. Furthermore, exploring how different sets of branches coordinate could offer insights into

whether there are simple control strategies for managing complex behaviors.

With the tool now introduced, in future studies, we aim to collect necessary material data of real

muscle-tendon architectures to validate and refine the proposed branching method. We hope that

our work will empower researchers to construct detailed, articulated musculoskeletal models of

various systems, particularly those with multiple joints and complex muscle-tendon architectures,

and study their contributions to animal motion.
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CHAPTER 4

Linear Koopman Realizations for Data-driven

Modeling and Control of Complex Dynamics

4.1 Introduction

Continuum appendages exhibit highly complex nonlinear dynamics due to their inherent composi-

tion, featuring a substantial number of articulated joints. Additionally, the presence of soft tissues

introduces even more nonlinearities. These nonlinearities significantly raise the computational cost

of analyzing and controlling these models, especially when optimizations are necessary. Therefore,

the ability to accurately represent the dynamics of such complex systems while simultaneously en-

hancing their accessibility for analysis and control becomes exceedingly valuable.

Deep learning in neural networks has gained increasing popularities because of their ability

to acquire accurate models of complex systems. For example, in [120], researchers applied deep

reinforcement learning on a continuum robot to achieve open-loop position control. However,

the structure of these types of models is not amenable to existing model-based control design

techniques, since they are typically nonlinear and may not be easily invertible. Also, training a

neural network model amounts to solving a non-convex nonlinear optimization problem in which

the global convergence may not be guaranteed.

An alternative to deep learning and artificial neural networks is a data-driven modeling and

control approach based on Koopman operator theory. In contrast to deep learning and artificial

neural networks, this approach yields a linear model representation of a nonlinear controlled dy-
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namical system from input-output data by leveraging the linear structure of the Koopman operator

[25, 84, 85, 26, 108], and controlling them using established linear control methods [2, 69, 4, 82]

In theory, this approach involves lifting the state-space to an infinite-dimensional space of scalar

functions (referred to as observables), where the flow of such observables along trajectories of the

nonlinear dynamical system is described by the linear Koopman operator. In practice, however,

it is infeasible to compute an infinite-dimensional operator, so a process called Extended Dy-

namic Mode Decomposition (EDMD) [138] is typically employed to compute a finite-dimensional

projection of the Koopman operator onto a finite-dimensional subspace of all observables (scalar

functions). This approximation of the Koopman operator describes the evolution of the output vari-

ables themselves, provided that they lie within the finite subspace of observables upon which the

operator is projected. Hence, this approach makes it possible to control the output of a nonlinear

dynamical system using a controller designed for its linear Koopman representation.

In this chapter, we introduce a Koopman-based modeling and control framework. We demon-

strate the efficacy of this framework by applying it to a type of continuum robotic system, also

known as soft robots. Since these soft continuum robots are made of intrinsically soft and/or

compliant materials, they can deform continuously along their bodies, thereby possessing infinite

degrees of freedom in theory. Thus, they exhibit a level of dynamic complexity comparable to, or

even exceeding, that of biological continuum appendages. This makes them an excellent candidate

for demonstrating the effectiveness of the Koopman-based modeling and control framework in

modeling and controlling complex systems. We demonstrate that the Koopman-based data-driven

modeling and control method creates dynamic models that capture the system’s true behavior more

accurately than the models generated by several other state-of-the art system identification methods

including a neural network, a nonlinear auto-regressive with exogenous inputs model(NLARX), a

nonlinear Hammerstein-Wiener model, and a linear state space model. Building upon the linear

Koopman models, we develop model predictive control algorithms and illustrate their effectivness

in controlling these real soft robotic systems.

The rest of this chapter is organized as follows: In Section 4.2, we formally introduce the Koop-
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man operator and describe how it is used to construct models of nonlinear dynamical systems from

data. In Section 4.3, we describe how the Koopman model can be used to construct a linear model

predictive controller (MPC) and a nonlinear model predictive controller (NMPC), with the NMPC

controller serving for comparative purposes. In Section 4.4, we demonstrate the application of our

methodology to a real soft continuum robotic system. We compare the performance of the model

identified through the Koopman-based modeling method with that of several models generated

using state-of-the-art nonlinear system identification techniques, and evaluate the performance of

Koopman-based model predictive controllers. In Section 4.5, we extend the Koopman-based mod-

eling and control methodology to include external forces encountered by continuum appendages

during interactions with objects or the environment, which can be frequent during the system’s

movement. Specifically, we describe how to incorporate external loading conditions into the linear

Koopman realizations for robust modeling and control under variable loading conditions. In Sec-

tion 4.6, we demonstrate that efficacy of the extension of the framework on a continuum robotic

system.

4.2 Koopman-based System Identification

Any finite-dimensional, Lipschitz continuous nonlinear dynamical system has an equivalent

infinite-dimensional linear representation in the space of all scalar-valued functions of the system’s

state [71, Definition 3.3.1]. This linear representation, which is called the Koopman operator, de-

scribes the flow of functions along trajectories of the system. While it is not possible to numerically

represent the infinite-dimensional Koopman operator, a projection of the Koopman operator onto

a finite-dimensional subspace can be employed.

This section describes a method for approximating the Koopman operator to construct linear

models of nonlinear controlled discrete dynamical systems from input/state data. Particularly,

Section 4.2.1 introduces the Koopman operator. Section 4.2.2 demonstrates how to identify an

approximation of the Koopman operator as a matrix. Section 4.2.3 describes how to construct a
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linear model from a matrix approximation of the Koopman operator.

4.2.1 The Koopman Operator

Consider a dynamical system governed by the following differential equation

ẋ(t) = F (x(t), u(t)) (4.1)

where x(t) ∈ X ⊂ Rn is the state of the system and u(t) ∈ U ⊂ Rm is the input of the system at

time t ≥ 0, X , U are compact subsets, and F is a continuously differentiable function. Denote by

ϕτ : X ×U → X ×U the flow map, where ϕτ (x(0), u(0)) = (x(τ), u(0)) and x(τ) is the solution

to (5.1) at time τ when beginning with the initial condition x(0) at time 0 and a constant input u(0)

applied for all time between 0 and τ .

The system can be lifted to an infinite-dimensional function space F composed of all continuous

real-valued functions with compact domain X ×U ⊂ Rn×Rm. Elements of F are called observ-

ables. In F , the flow of the system is characterized by the set of Koopman operators Kt : F → F ,

for each t ≥ 0, which describes the evolution of the observables f ∈ F along the trajectories of

the system according to the following definition:

Ktf = f ◦ ϕt, (4.2)

where ◦ indicates function composition. Kt is a linear operator even if the system (5.1) is

nonlinear, since for f1, f2 ∈ F and λ1, λ2 ∈ R

Kt(λ1f1 + λ2f2) = λ1f1 ◦ ϕt + λ2f2 ◦ ϕt

= λ1Ktf1 + λ2Ktf2.

(4.3)

Specifically, the Koopman operator Kτ advances the value of an observable forward along the
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trajectories of the underlying dynamical system as

Kτf(x(t), ũ) = f(x(t+ τ), ũ) (4.4)

where ũ is a constant input over the interval [t, t+ τ ].

Note that this is true for any observable function f , so the Koopman operator can also be used

to advance the system state itself by applying it to the set of functions {fi : fi(x(t), ũ) = xi(t)}ni=1,

advancing their values according to (4.4), and stacking the results as a vector:

x(t+ τ) =

[
Kτf1 (x(t), ũ) · · · Kτfn (x(t), ũ)

]⊤
. (4.5)

In this way, the Koopman operator provides an infinite-dimensional linear representation of a non-

linear dynamical system [27].

4.2.2 Identification of the Koopman Operator

While the Koopman operator is theoretcially infinite-dimensional, for pratical uses, using the

Extended Dynamic Mode Decomposition (EDMD) algorithm [138, 85], we identify a finite-

dimensional matrix approximation of the Koopman operator via linear regression.

The remainder of this subsection describes the mathematical foundation of this process.

Define F̄ ⊂ F to be the subspace of F spanned by N > n+m linearly independent basis

functions {ψi : Rn × Rm → R}Ni=1 (e.g. monomials, sinusoids), and define the lifting function

ψ : Rn × Rm → RN as a vector containing all the basis functions:

ψ(x, u) :=

[
ψ1(x, u) · · · ψN(x, u)

]⊤
. (4.6)

Then any observable f̄ ∈ F̄ can be expressed as a linear combination of the basis functions

f̄ = θ1ψ1 + · · ·+ θNψN (4.7)
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where each θi ∈ R is the weight associated with each basis function. To aid in presentation, define

the vector of coefficients θ := [θ1 · · · θN ]⊤. By (4.7), f̄ evaluated at x, u can be expressed as

f̄(x, u) = θ⊤ψ(x, u) (4.8)

where θ acts as the vector representation of f̄ .

Given this vector representation for observables, a linear operator on F̄ can be represented as

an N ×N matrix. We denote by K̄τ ∈ RN×N the approximation of the Koopman operator on F̄ ,

which operates on observables via matrix multiplication:

K̄τθ = θ′ (4.9)

where θ, θ′ are each vector representations of observables in F̄ .

Since K̄τ is desired to carry the characteristic of Kτ ’s operation on the observables, by (4.2) the

following should be true for all x ∈ X and u ∈ U

K̄τ f̄(x, u) = f̄ ◦ ϕτ (x, u) (4.10)

Substituting (4.8), we have

(K̄τθ)
⊤ψ(x, u) = θ⊤ψ ◦ ϕτ (x, u) (4.11)

K̄⊤
τ ψ(x, u) = ψ ◦ ϕτ (x, u) (4.12)

where (4.12) follows by cancelling θ in (4.11) on both sides. Notice that K̄τ acts as a linear flow

map on the lifting function ψ. Hence, it follows that for a given x ∈ X and u ∈ U , solving (4.12)

for K̄τ yields the best approximation of Kτ on F̄ in the L2-norm sense [104]:

K̄τ =
(
ψ(x, u)⊤

)†
(ψ ◦ ϕτ (x, u))⊤ (4.13)
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where superscript † denotes the Moore-Penrose pseudoinverse of a matrix.

To approximate the Koopman operator from a set of experimental data, we take K discrete

measurements in the form of so-called “snapshots” (a[v], b[v], u[v]) for each v ∈ {1, . . . , V } where

a[v] := x[v] (4.14)

b[v] := ϕTs(x[v], u[v]), (4.15)

x[v] denotes the state corresponding to the vth measurement, u[v] is the constant input applied

between a[v] and b[v], and Ts is the sampling period, which is assumed to be identical for all

snapshots. We then lift all of the snapshots according to (4.6) and compile them into the following

V ×N matrices:

Ψa :=


ψ(a[1], u[1])⊤

...

ψ(a[V ], u[K])⊤

 , Ψb :=


ψ(b[1], u[1])⊤

...

ψ(b[V ], u[V ])⊤

 . (4.16)

Following from (4.13), K̄Ts is obtained as the best linear least-square estimate of Ψb given Ψa,

which is the solution to

min
K̄Ts

∥∥ΨaK̄Ts −Ψb

∥∥2
2
. (4.17)

The analytical solution to (4.17) is

K̄Ts := Ψ†
aΨb, (4.18)

where † denotes the Moore-Penrose psuedoinverse.

The dynamics of mechanical systems are described by second order differential equations. Ex-

pressed in state space form, the state of such a system includes both the positions and velocities of

a set of generalized coordinates. Therefore, when identifying the dynamics of a mechanical sys-
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tem from data, it is prudent to include velocities in the state. For a discrete system representation,

velocity information can be included by incorporating a delay into the set of snapshot pairs, since

it encodes the change in the value of the measured state over a single time step.

To incorporate one or more delays, we define the snapshot pairs as

a[v] =

[
x[v]⊤, x[v − 1]⊤ . . . x[v − d]⊤, u[v − 1] . . . u[v − d]

]⊤
(4.19)

b[v] =

[
x[v + 1]⊤, x[v]⊤ . . . x[v − d+ 1]⊤, u[v − 1] . . . u[v − d]

]⊤
(4.20)

where d is the number of delays. We then modify the domain of the lifting function such that

ψ : R(n+(n+m)d)×m → RN to accommodate the larger dimension of the snapshot pairs. Once these

snapshot pairs have been assembled, the model identification procedure is identical to the case

without delays.

4.2.3 Linear Model Realization Based on the Koopman Operator

For dynamical systems with inputs, we are interested in using the Koopman operator to construct

discrete linear models of the following form

z[j + 1] = Az[j] +Bu[j]

x[j] = Cz[j]

(4.21)

for each j ∈ N, where x[0] is the initial condition in state space, z[0] = ψ(x[0], u[0]) is the

initial lifted state, u[j] ∈ Rm is the input at the j th step, and C acts as a projection operator from

the lifted space onto the state-space. Specifically, we desire a representation in which (non-lifted)

inputs appear linearly, because models of this form are amenable to real-time, convex optimization

techniques for feedback control design.

The goal is to construct K̄Ts such that it is decomposable into a linear system representation

like (4.21). This can be achieved by a suitable choice of basis functions {ψi}Ni=1.
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Define the first N − m basis functions as functions of the state only, and the last m basis

functions as indicator functions on each component of the input,

ψi(x, u) = gi(x), ∀i ∈ {1, . . . , N −m} (4.22)

ψi(x, u) = ui, ∀i ∈ {i = N −m+ 1, . . . , N} (4.23)

where gi : Rn → R and ui denotes the ith element of u. This choice ensures that the input only

appears in the last m components of ψ(y, u), and an N −m dimensional state can be defined as

z = g(x) ∈ RN−m, where g : Rn → RN−m is defined as

g(x) :=

[
g1(x) · · · gN−m(x)

]⊤
. (4.24)

Note by (4.17), K̄⊤
Ts

is the best approximation of a transition matrix between the lifted snapshots

in the L2-norm sense, i.e., given the lifting functions defined in (4.22) and (4.23), K̄Ts is the

minimizer to

min
Ǩ

V∑
v=1

∥∥∥∥∥∥∥Ǩ⊤

g(a[v])
u[v]

−

g(b[v])
u[v]


∥∥∥∥∥∥∥
2

2

(4.25)

and the best realizations of A and B we desire minimize

min
Ǎ,B̌

V∑
v=1

∥∥Ǎg(a[v]) + B̌u[v]− g(b[v])
∥∥2
2
. (4.26)

Therefore, comparing (4.25) and (4.26), the best A and B matrices are embedded in K̄Ts and can

be isolated by partitioning it as follows:

K̄⊤
Ts =

A(N−m)×(N−m) B(N−m)×m

Om×(N−m) Im×m

 (4.27)
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where I denotes an identity matrix, O denotes a zero matrix, and the subscripts denote the dimen-

sions of each matrix.

We can also define the first n basis functions as indicator functions on each component of the

state, i.e.

gi(y) = yi ∀i ∈ {1, . . . , n}. (4.28)

Then, C matrix is defined

C =

[
In×n On×(N−n)

]
. (4.29)

The process for constructing the proposed linear model is summarized in Algorithm 2.

Algorithm 2: Koopman Linear System Identification
Input: . λ , {a[v], b[v]} and u[v] for v = 1, ..., V
Step 1: Lift data via (4.6)
Step 2: Approximate Koopman operator K̄Ts via (4.18)
Step 3: Extract model matrices A,B via (4.27)
Output: A, B, C :=

[
In×n On×(N−n)

]

4.2.4 Nonlinear Model Realization Based on the Koopman Operator

The Koopman operator can also be used to identify a continuous nonlinear dynamical model of the

form

ẋ(t) = F (x(t), u(t)). (4.30)

Using the same lifting function (4.22) and (4.23) defined in the previous section, the Koopman

operator is once again approximated using least-squares regression via (4.17).

To construct a model in the form of (4.30), we introduce the infinitesimal generator of the set of

Koopman operators G : F → F [71, Equation 7.6.5], which is defined in terms of the vector field
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F as

G = F · ∇x. (4.31)

This generator describes the dynamics of the observables along trajectories of the system, whereas

the set of Koopman operators describes the flow of observables. Framed in terms of the more

familiar context of finite-dimensional linear systems, an observable is analogous to the state, G

is analogous to the A matrix describing the dynamics of the state, and Kt is analogous to the

state-transition matrix for time t. The state-transition matrix of a finite-dimensional linear system

is related to its A matrix via the matrix exponential, and similarly, the relationship between the

Koopman operator and its generator is given by the following matrix exponential expression:

Kt = eGt (4.32)

In practice, our goal is to find a function F̄ : Rn × Rm → Rn that describes the behavior of the

function F as accurately as possible in the L2-norm sense on the finite dimensional subspace F̄ .

With the approximation of the Koopman operator K̄Ts in hand, we can solve for the infinitesimal

generator Ḡ by inverting (4.32):

Ḡ =
1

Ts
log K̄Ts ∈ RN×N (4.33)

where log denotes the principal matrix logarithm [58, Chapter 11]. Note that the principal matrix

logarithm is only defined for matrices whose eigenvalues all have non-negative real parts, and

that K̄Ts may have zero or negative eigenvalues when the number of data points is too small [84,

Section III-B]. Therefore this method might fail if the number of data points is insufficient. In this

instance, more system measurements can be taken to resolve the issue.

With Ḡ known, (4.31) can be used to identify F̄ . Consider G applied to an observable f ∈ F .

According to (4.31), this is equivalent to the inner product of the vector field F and the gradient of
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f with respect to x:

Gf(x, u) =
∂f(x, u)

∂x
F (x, u). (4.34)

Again using θ to denote the vector representation of an observable f̄ and a = [x⊤, u⊤]⊤ to represent

the augmented state with the input appended, the finite-dimensional equivalent of (4.34) is given

by

(Ḡθ)Tψ(a) = θT
∂ψ(a)

∂x
F̄ (x, u). (4.35)

We seek the vector field F̄ such that (4.35) holds as well as possible in the L2-norm sense for all

observed data. Therefore, we choose the least-squares solution to (4.35) over the set of all observed

data points
{
av = [x⊤v , u

⊤
v ]

⊤|v = 1, ..., V
}

which is given by

F̄ (x, u) =


∂ψ(a1)
∂x

...

∂ψ(aV )
∂x


† 
ḠT

...

ḠT

ψ(a). (4.36)

Algorithm 3 summarizes this nonlinear system identification process. For a more thorough treat-

ment, see [84, 85].

Algorithm 3: Koopman Nonlinear System Identification
Input: . λ , {a[v], b[v]} and u[v] for v = 1, ..., V
Step 1: Lift data via (4.6)
Step 2: Approximate Koopman operator K̄Ts via (4.18)
Step 3: Identify infinitesimal generator Ḡ by (4.35)
Step 4: Solve for vector field F̄ via (4.36)
Output: . F̄ : Rn × Rm → Rn
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4.3 Model Predictive Control

A system model enables the design of model-based controllers that leverage model predictions to

choose suitable control inputs for a given task. In particular, model-based controllers can anticipate

future events, allowing them to optimally choose control inputs over a finite time horizon. A

popular model-based control design technique is model predictive control (MPC), wherein one

optimizes the control input over a finite time horizon, applies that input for a single time-step, and

then optimizes again, repeatedly [113].

This section introduces several MPC controllers based on models constructed from the Koop-

man operator. Section 4.3.1 describes the MPC optimization problem for a linear Koopman model

in the form of (4.21). Section 4.3.2 describes the MPC optimization problem for a nonlinear Koop-

man model in the form of (4.30). Section 4.3.3 discusses the relative computational efficiency of

each approach.

4.3.1 Linear MPC

For linear systems, MPC consists of iteratively solving a convex quadratic program. Importantly,

this is also the case for Koopman-based linear MPC control, which we refer to by the abbreviation

K-MPC, wherein one solves for the optimal sequence of control inputs over a receding horizon
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according to the following quadratic program at each time instance k of the closed-loop operation:

hangz

min
{u[i]∈Rm}Nh

i=0

{z[i]∈RN}Nh
i=0

z[Nh]
TG[Nh]z[Nh] + g[Nh]

T z[Nh]+

+

Nh−1∑
i=0

(
z[i]TG[i]z[i] + u[i]TH[i]u[i]+

+ g[i]T z[i] + h[i]Tu[i]
)

s.t. z[i+ 1] = Âz[i] + B̂u[i], ∀{i}Nh−1
i=0

E[i]z[i] + F [i]u[i] ≤ b[i], ∀{i}Nh−1
i=0

z[0] = ψ(x[k])

(4.37)

where Nh ∈ N is the prediction horizon, G[i] ∈ RN×N and H[i] ∈ Rm×m are positive semidefinite

matrices, and where each time the program is called, the predictions are initialized from the current

lifted state g(x[k]). The matrices E[i] ∈ Rc×N and F [i] ∈ Rc×m and the vector b[i] ∈ Rc define

state and input polyhedral constraints where c denotes the number of imposed constraints. While

the size of the cost and constraint matrices in (4.37) depend on the dimension of the lifted state N ,

[69] shows that these can be rendered independent of N by transforming the problem into its so-

called “dense-form.” Algorithm 5 summarizes the closed-loop operation of this Koopman-based

linear MPC controller.

Algorithm 4: Koopman-based Linear MPC (K-MPC)
Input: Prediction horizon: Nh

Cost matrices: Gi, Hi, gi, hi for i = 0, ..., Nh

Constraint matrices: Ei, Fi, bi for i = 0, ..., Nh

Model matrices: Â, B̂
for k = 0, 1, 2, ... do

Step 1: Set z[0] = g(x[k])
Step 2: Solve (4.37) to find optimal input (u[i]∗)Nh

i=0

Step 3: Set u[k] = u[0]∗

Step 4: Apply u[k] to the system
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4.3.2 Nonlinear MPC

To control a soft continuum robot using nonlinear MPC (NMPC) a reference trajectory is assumed

to be given, xref : [t0, tf ] → Rn, where 0 ≤ t0 < tf , the initial position of the robot x0 ∈ Rn is

assumed known, and we solve the following optimal control problem:

min
u∈L2([t0,tf ];Rm)

∫ tf

t0

(
(x(t)− xref(t))

T Q (x(t)− xref(t))+

+ u(t)TRu(t)
)
dt

s.t. ẋ(t) = F (x(t), u(t)) , ∀t ∈ [t0, tf ]

x(t0) = x0

L(x(t), u(t)) ≤ 0q, ∀t ∈ [t0, tf ]

(4.38)

where L2([t0, tf ];Rm) is the space of square integrable functions from [t0, tf ] to Rm, Q ∈ Rn×n

and R ∈ Rm×m are positive semidefinite matrices, L : Rn × Rm → Rq defines state and input

constraints, and 0q is the vector of all 0’s with q-elements. We solve this problem by applying a

commercial optimal control problem solver - GPOPS-II [101].

Solving (4.38) quickly enough for real-time receding horizon control is often not possible. In

practice, the optimal control inputs must be computed offline then applied to the system in open-

loop. Without feedback, the controller is incapable of overcoming model error that causes perfor-

mance to degrade as the time-horizon increases. To counteract this shortcoming, a nonlinear MPC

controller can be supplemented with a linear feedback controller based on the local linearization

of the nonlinear model about the reference trajectory (see [13, Section 5.4]). At each time step

k, the optimal input u∗[k] is then given by the sum of the open-loop control input computed by

solving the aforementioned NMPC offline, denoted u[k], and a feedback term based on the local

linearization that is computed online, denoted δu[k],

u∗[k] = u[k] + δu[k] (4.39)
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where δu[k] is chosen such that it drives the locally linearized dynamics to zero. In practice, we

compute δu[k] at each timestep by solving a linear MPC program with structure similar to (4.37).

4.3.3 LMPC vs. NMPC

Convex optimization programs, i.e. those which have a convex cost function and convex feasible

set, have global extrema and can be solved reliably and efficiently [21]. Non-convex optimization

programs, on the other hand, may exhibit multiple local extrema and there is no computationally

tractable technique for finding global solutions to generic problems. Typically non-convex opti-

mization methods only find local solutions that depend on an initial guess. Thus, for real-time

optimal control problems, convexity is desirable. A major advantage of lifting and identifying

a linear system model using the Koopman operator is that the LMPC control problem for such

models is convex.

The MPC optimization problem described in Section 4.3.1 is convex because it has a quadratic

cost function and model dynamics that are described by linear constraints. Since it is convex, it

has a unique globally optimal solution that can efficiently be identified without initialization for

models with thousands of states and inputs [21, 102, 129].

The NMPC optimization problem described in Section 4.3.2 also has a quadratic cost function,

but it is not convex because it has model dynamics that are described by nonlinear constraints. As

a result, algorithms to solve this problem typically require initialization and can struggle to find

globally optimal solutions [106]. Though techniques have been proposed to improve the speed of

such algorithms [101, 56] or even globally solve NMPC problems without requiring initialization

[149], these formulations still take several seconds per iteration, which make them too slow to

be applied in most real-time control scenarios. This difference is highlighted in Section 5.4 via

computation time comparisons between LMPC and NMPC controllers for a soft robot.
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4.4 Application: Pneumatic Soft Robot Arm

This section describes the soft robot platform and the set of experiments used to demonstrate the

efficacy of the modeling and control methods described in the previous section. Footage from the

final experiment of the soft robot performing several tasks can be found in a supplementary video

file1, and code used to construct Koopman-based models and controllers from data can be found in

a publicly accessible repository2.

4.4.1 Robot Description: Soft Arm with a Laser Pointer

We experimentally evaluated the Koopman control approach on a soft robot arm performing the

task of drawing shapes with a laser pointer, similar to the handwriting task described in [66]. The

robot is a suspended soft arm with a laser pointer attached to the end effector (see Fig. 4.1). The

laser dot is projected onto a 50 cm × 50 cm flat board which sits 34 cm beneath the tip of the laser

pointer when the robot is in its relaxed position (i.e. hanging straight down). The position of the

laser dot is measured by a digital webcam overlooking the board.

The arm consists of two bending sections. The interior of each section is composed of three

pneumatic artificial muscles or PAMs (also known as McKibben actuators [132]) adhered to a

central foam spine by latex rubber bands (see Fig. 4.1). The exterior is composed of polyurethane

foam which serves to dampen high-frequency oscillations. The PAMs in the upper and lower

sections are internally connected so that only three input pressure lines are required, and they

are arranged such that for any bending of the upper section, bending in the opposite direction

occurs in the lower section. This ensures that the laser pointer mounted to the end effector points

approximately vertically downward and the laser light strikes the board at all times. The pressures

inside the actuators are regulated by three Enfield TR-010-g10-s pneumatic pressure regulators,

which accept 0− 10V command signals corresponding to pressures of approximately 0− 140 kPa.

In the experiments, the input is three-dimensional and corresponds to the voltages applied to the

1https://youtu.be/1-XSDGHKous
2https://github.com/ramvasudevan/soft-robot-koopman
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three pressure regulators. The state is two-dimensional and corresponds to the position of the laser

dot with respect to the center of the board in Cartesian coordinates.

4.4.2 Characterization of Dynamic Uncertainty

Most real mechanical systems exhibit some dynamic uncertainty (i.e. an identical input and state

may produce a slightly different output). Electronic pressure regulators demonstrate this type of

behavior, which can limit the precision of pneumatically driven soft robotic systems and undermine

the predictive capability of models.

We quantified the dynamic uncertainty of our soft robot system by observing the variations in

output from period-to-period under sinusoidal inputs to the three actuators of the form

u[k] =


6 sin(2π

T
kTs) + 3

6 sin(2π
T
kTs − T

3
) + 3

6 sin(2π
T
kTs − 2T

3
) + 3

 (4.40)

for periods of T = 6, 7, 8, 9, 10, 11, 12 seconds and a sampling time of Ts = 0.083 seconds with a

zero-order-hold between samples. Under these inputs, the laser dot traces out a circle with some

variability in the trajectory over each period. In Fig. 4.2 the trajectories over 210 periods are

superimposed along with the average over all trials.

The standard deviation of this distribution is 0.215 cm. This inherent uncertainty will limit the

tracking performance of the system, independent of the employed controller.

4.4.3 Data Collection and Model Identification

Data for constructing models was collected over 12 trials lasting approximately 5 minutes each. A

randomized “ramp and hold” type input was applied during each trial to generate a representative

sampling of the system’s behavior over its entire operating range. To ensure randomization, a

matrix Υ ∈ [0, 10]3×1000 of uniformly distributed random numbers between zero and ten was
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Camera

Laser Pointer

PAMs

Foam Spine

Pressure
Regulators

Foam Exterior

Figure 4.1: The soft robot consists of two bending segments encased in a foam exterior with a
laser pointer attached to the end effector. A set of three pressure regulators is used to control the
pressure inside of the pneumatic actuators (PAMs), and a camera is used to track the position of
the laser dot.

77



Figure 4.2: The left plot shows the average response of the soft robot system over a single period
when the sinusoidal inputs of varying frequencies described by (4.40) are applied. All of the par-
ticular responses are subimposed in light grey. The right plot shows the distribution of trajectories
about the mean, with all distances within two standard deviations (0.43 cm) highlighted in grey.
The width of the distribution illustrates how it is possible for identical inputs to produce outputs
that vary by almost 1 cm.
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generated to be used as an input lookup table. Each control input was varied between elements in

consecutive columns of the table over a transition period Tu, with a time offset of Tu/3 between

each of the three control signals, and with a sampling time of Ts = 0.083 seconds with a zero-

order-hold between samples

ui[k] =
(Υi,j+1 −Υi,j)

Tu

(
kTs +

(i− 1)Tu
3

)
+Υi,j (4.41)

where j = floor (kTs/Tu) is the current index into the lookup table at time t. Three trials were

conducted using each of the transition periods Tu = 2, 3, 4, 5 seconds.

Four models were fit from data: a linear state-space model using the subspace method [136], a

linear Koopman model using the approach from Section 4.2.3, a nonlinear Koopman model using

the approach from Section 4.2.4, and a Nonlinear Autoregressive with External Input (NARX) neu-

ral network model identified using the Levenberg-Marquardt backpropogation algorithm. Each of

these models was trained from the randomly generated data just once, independent of any specific

task.

The linear state-space model provides a baseline for comparison and was identified from the

same data as the Koopman models using the MATLAB System Identification Toolbox [83]. This

model is a four dimensional linear state-space model expressed in observer canonical form.

The linear Koopman model was identified on a set of 45, 103 snapshot pairs {a[k], b[k]} that

incorporate a single delay d = 1:

a[k] =

[
x[k]⊤ x[k − 1]⊤ u[k − 1]⊤

]⊤
(4.42)

b[k] =

[
ϕTs(x[k], u[k])

⊤ x[k]⊤ u[k]⊤
]⊤

(4.43)

and used an N = 36 dimensional set of basis functions consisting of all monomials of maximum

degree 2. Predictions from the resulting models were evaluated against a subset of the training

data, with the error quantified as the average Euclidean distance between the prediction and actual
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trajectory at each point, normalized by the average Euclidean distance between the actual trajectory

and the origin.

The nonlinear Koopman model was identified on a set of 45, 103 snapshot pairs {a[k], b[k]} that

have the input appended, but do not incorporate any delays:

a[k] =

[
x[k]⊤ u[k]⊤

]⊤
(4.44)

b[k] =

[
ϕTs(x[k], u[k])

⊤ u[k]⊤
]⊤

, (4.45)

and used an N = 35 dimensional set of basis functions consisting of all monomials of maximum

degree 3.

The NARX neural network model was identified using the same set of 45, 103 snapshot pairs as

the linear Koopman model, which incorporates a single delay d = 1. The model was trained using

the MATLAB Neural Network Toolbox [83] with sigmoid activation functions and the number of

hidden neurons was tuned from 5-20. The best results were achieved with 10 hidden neurons, so

this is what was used for the model prediction comparison described in Section 4.4.4.

4.4.4 Experiment 1: Model Prediction Comparison

The accuracy of the predictions generated by each of the four models was evaluated by compar-

ing them to the actual behavior of the system under the sinusoidal inputs defined in (4.40). This

comparison data was not part of the training set. The model responses were simulated over one

period of the sinusoidal inputs given the same initial condition and input as the real system. Ta-

ble 4.1 displays the average Euclidean distance between the predicted laser dot position and the

actual position at each point in time, and Fig. 4.3 shows the tracking performance for the case when

the inputs have period T = 6 seconds. These results illustrate that both Koopman models gener-

ate more accurate predictions than the state space and neural network models with the nonlinear

Koopman model producing slightly better predictions than the linear Koopman model.
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Figure 4.3: The actual response and the model predictions for the robot with the sinusoidal inputs
described in (4.40) with period T = 6 seconds applied. The left plot shows the actual trajectory of
the laser dot along with model predictions. The error displayed on the bottom plot is defined as the
Euclidean distance between the predicted laser dot position and the actual position at each point in
time.
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Table 4.1: Average Prediction Error Under Sinusoidal Inputs (cm)

Period of Sinusoidal Inputs (seconds)Model

6 7 8 9 10 11 12

Avg.
L

in
ea

r

Koop. (linear) 2.12 2.08 2.00 1.98 1.89 1.82 1.74 1.92

State Space 5.56 5.17 4.97 4.83 4.64 4.44 4.24 4.74

N
on

lin
ea

r

Koop. (nonlinear) 1.35 1.47 1.56 1.63 1.70 1.69 1.69 1.61

Neural Network 3.23 3.29 3.36 3.31 3.20 3.07 2.94 3.18

Table 4.2: Average Euclidean Distance Error in Trajectory Following Tasks (cm)

Task Std.Controller
1 2 3

Avg. Dev.
L-MPC 3.25 3.86 3.25 3.45 0.35
K-MPC 0.44 0.52 0.43 0.46 0.05

K-NMPC 0.95 0.96 0.99 0.96 0.02
K-NMPC-LL 0.43 0.37 0.39 0.40 0.03

4.4.5 Experiment 2: Model-Based Control Comparison

Three of the identified models were used to construct four model predictive controllers denoted by

the following abbreviations:

LMPC: Linear MPC controller based on the linear state-space model,

K-MPC: Linear MPC controller based on the linear Koopman model,

K-NMPC: Nonlinear MPC controller based on the nonlinear Koopman model,

K-NMPC-LL: Nonlinear MPC controller based on the nonlinear Koopman model plus a linear

feedback term.

The neural network model was not used to construct a nonlinear MPC controller. Due to the

inherent computational advantages of linear MPC, we were only interested in comparing it against
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Figure 4.4: The results of the L-MPC controller (row 1, red), the K-MPC controller (row 2, blue),
the K-NMPC controller (row 3, orange), and the K-NMPC+LL controller (row 4, purple) in per-
forming trajectory following tasks 1-3. The reference trajectory for each task is subimposed in
black as well as a grey buffer with width equal to two standard deviations of the noise probability
density shown in Fig. 4.2.
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the best-case version of nonlinear MPC. The nonlinear Koopman model demonstrated superior

prediction accuracy in Experiment 1, therefore we considered the inclusion of a neural network-

based NMPC controller to be superfluous.

The two controllers based on linear models (LMPC, K-MPC) both solve an optimization prob-

lem in the form of (4.37) at each time step using the Gurobi Optimization software [54]. They run

in closed-loop at 12 Hz, feature an MPC horizon of 2 seconds (Nh = 24), and a cost function that

penalizes deviations from a reference trajectory yref[k] over the horizon with both a running and

terminal cost:
Cost =100

(
y[Nh]− yref[Nh]

)⊤ (
y[Nh]− yref[Nh]

)
+

+

Nh−1∑
i=0

0.1
(
y[i]− yref[i]

)⊤ (
y[i]− yref[i]

) (4.46)

In the LMPC case, y[i] = CLxL[i] where xL is the four dimensional system state and CL is the

projection matrix that isolates the states describing the current laser dot coordinates. In the K-MPC

case, y[i] = Cz[i], where C is defined as in (5.30).

The two controllers based on the nonlinear Koopman model (K-NMPC, K-NMPC-LL) compute

open-loop inputs offline that refresh at a rate of 2 Hz for an entire task by solving an optimization

problem in the form of (4.38) offline, with Q = 100× I2×2, R = I3×3. The K-NMPC controller

then applies these inputs to the system in open-loop without any feedback. The K-NMPC-LL

controller utilizes the same open-loop inputs, but also computes online feedback based on a local

linearization of the nonlinear Koopman model about the reference trajectory, and applies inputs

in the form of (4.39) at a rate of 10 Hz. In all four controllers, the inputs are constrained to be

in [0, 10], since a voltage outside of this interval is not a valid command signal into the pressure

regulators.

The tracking performance of the controllers was assessed with respect to a set of three trajectory

following tasks. Each task was to follow a reference trajectory as it traced out one of the following

shapes over a specified amount of time:

1. Task 1: Pac-Man (90 seconds)
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2. Task 2: Star (120 seconds)

3. Task 3: Block letter M (180 seconds)

The error for each trial was quantified as the average Euclidean distance from the reference trajec-

tory at each time step over the length of the trial:

Error =

∑Nsteps
i=1

√
(y[i]− yref[i])⊤ (y[i]− yref[i])

Nsteps
(4.47)

where Nsteps denotes the total number of time steps in a trial. The performances of all four con-

trollers in completing Tasks 1, 2, and 3 are shown visually in Fig. 4.4, and the error for each trial

is shown in Table 4.2.

The K-NMPC open-loop control inputs took 2.80, 11.57, and 15.82 hours to compute offline

for Tasks 1, 2 and 3, respectively, using GPOPS-II on a high-end computer setup with 1 TB RAM

and 144 CPUs running at 2.4 GHz. The L-MPC and K-MPC, optimization problems were solved

online repeatedly in less than 0.083 seconds for a 2 second receding horizon on a computer with

16 GB RAM and a 3.6 GHz CPU, requiring no offline computations.

4.4.6 Discussion

In all three tasks, the K-NMPC-LL controller achieved the best tracking performance, exhibiting

an overall average error of 0.40 cm, followed closely by the K-MPC controller with an average

error of 0.46 cm. The K-NMPC controller exhibited a larger average error of 0.96 cm as it was

unable to correct for errors online without the assistance of feedback. The LMPC controller exhib-

ited the worst tracking performance with an average error of 3.45 cm, which is more than 3 times

larger than the average error of any of the Koopman-based controllers.

The K-NMPC controller had the lowest standard deviation in its error which is evident by the

relative smoothness of its trajectories compared to those of the other controllers. This can likely

be attributed to the fact that the K-NMPC controller optimized the control input over the entire
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trial at once, and did not have any way to correct for deviations online. The other controllers

use feedback to try to correct for tracking errors online, which results in some overshooting and

oscillations about the desired trajectory. In some applications, the reduced accuracy of the K-

NMPC controller may be preferable to the higher frequency behavior of the other controllers. It

should be noted, however, that this higher frequency behavior could likely be reduced by tuning

the MPC cost function parameters to eliminate overshoot. Therefore, the oscillatory behavior

observed in these experiments does not necessarily reflect a fundamental feature of the proposed

MPC algorithms themselves, but is likely just an artifact of this particular choice of cost function.

Considering that the standard deviation under repeated inputs as described in Section 4.4.2 is

0.215 cm, even a perfect controller would be expected to have an average error of approximately

0.215 cm. If we normalize that by the 50 cm width of the robot’s square-shaped workspace, it

amounts to an error of 4.3 × 10−3 %. Normalized the same way, the average errors exhibited by

the K-MPC and K-NMPC-LL controllers are 9.2×10−3 % and 8.0×10−3 %, respectively. Hence,

their performance may be considered on par with what is expected from a perfect controller in the

sense that their normalized error is of the same order of magnitude. In contrast, the normalized

LMPC error is 6.9× 10−2 %, a full order of magnitude larger than that of the other controllers.

The poor performance of LMPC can be attributed to the inaccuracy of the linear state-space

model upon which it was based, since it is identical to the K-MPC controller in every other way.

This should not be surprising considering the results of Experiment 1, in which the linear state-

space model consistently provided the worst predictions over a 2 second horizon (shown in Table

4.1).

While the K-NMPC-LL controller achieved a slightly better tracking performance than the

K-MPC controller, the K-MPC controller would still be preferable for most applications due to

its vastly superior computational efficiency. The K-NMPC optimization problem took so long to

solve (> 2 hours) that its solution had to be be computed offline, whereas the K-MPC optimization

problem could be repeatedly solved in less than 0.083 seconds over a 2 second receding horizon

online. The K-MPC controller is also capable of adapting to a changing reference trajectory online
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since it does not rely on linearizations about a predetermined path. This should make it much more

reliable in the presence of external disturbances.

4.5 Incorporating Loading Conditions into Koopman Models

When interacting with objects or the environment, biological continuum appendages often en-

counter diverse external forces during locomotion, as well as varied loading conditions during pre-

hensile actions. These factors can significantly alter the dynamics of the system, thereby posing

challenges to the accuracy and robustness of both modeling and control processes. Consequently,

understanding their impact on the system’s dynamics is critical for accurate modeling and effective

control.

In this section, we extend the Koopman-based modeling and control methodology, as discussed

in previous sections, by incorporating external loading conditions into our models.

By incorporating loads into the model as states, our approach is able to estimate loading on-

line via an observer within the control loop (see Fig. 4.5). This observer infers the most likely

value of the loading condition given a series of input/output measurements. The knowledge that is

gained in this process enables consistent control performance under a wide range of loading condi-

tions. Using this approach, we demonstrate real-time, fully autonomous control of a pneumatically

actuated soft continuum manipulator. In several validation experiments our controller proves it-

self to be more accurate and more precise across various payloads than several other model-based

controllers which do not incorporate loading.

4.5.1 Load Estimation for Linear Models

We desire a way to incorporate loading conditions into our dynamic system model and to estimate

them online. We can achieve this by including them within the states of our Koopman-based lifted

system model, and then constructing an online observer to estimate their values. This strategy

utilizes the underlying model to infer the most likely value of the loading conditions given past
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Figure 4.5: A soft continuum manipulator is tasked with following a reference trajectory r[k]
while carrying an unknown payload. At each time step, a model predictive controller computes the
optimal input u[k] to follow the reference trajectory based on a linear Koopman operator model and
the position of the end effector y[k], which is measured by a motion capture system. An observer
computes a payload estimate ŵ based on the previously measured inputs and outputs, which is then
incorporated into the state of the model z[k] via a lifting function.
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input/output measurements.

Let w ∈ Rp be a parametrization of loading conditions, as defined by the user. For example,

w might specify the mass at the end effector of a manipulator arm, the magnitude and direction of

external forces, or the direction of gravity. We incorporate w into the state z using a new lifting

function γ : Rn × Rp → R(N−m)(p+1), which accepts w as a second input and is defined as:

z = γ(y, w) =



g(y)

g(y)w1

...

g(y)wp


=


g(y) · · · 0

... . . . ...

0 · · · g(y)


︸ ︷︷ ︸

Γ(y)

1
w

 (4.48)

where Γ(y) ∈ R(N−m)(p+1) × Rp+1 is the matrix formed by diagonally concatenating g(y), p+ 1

times, and wi denotes the ith element of w. Note that because this lifting function requires the

loading condition w as an input, it must also be included in the snapshots (a[k], b[k], u[k], w[k]) to

construct a Koopman model that accounts for loading.

In the data used for model construction we assume that w is known. However, in control

applications w will often be unknown or impractical to measure directly. In that case, its value

can be inferred based on the identified system model and past input/output measurements. We

construct an observer that estimates the value of w at the j th timestep by solving a linear least-

squares problem using data from the Nw previous timesteps. Notice that the output at the j th

timestep y[j] can be expressed in terms of the input u[j − 1], the output y[j − 1], and the load

w[j − 1] at the previous timestep by combining the system model equations of (4.21) and then

substituting (4.48) for z[j − 1],

y[j] = CAz[j − 1] + CBu[j − 1] (4.49)

= CAΓ(y[j − 1])

 1

w[j − 1]

+ CBu[j − 1]. (4.50)
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Solving for the best estimate ofw[j−1] in the L2-norm sense, denoted ŵ[j−1] yields the following

expression,

 1

ŵ[j − 1]

 = (CAΓ(y[j − 1]))† (y[j]− CBu[j − 1]) . (4.51)

Under the assumption that the loading is equal to some constant w̃ over the previous Nw time

steps, i.e. w[i] = w̃ for i = j − Nw, . . . , j, we can similarly find the best estimate over all Nw

timesteps. Since this estimate is based on more data, it should be more accurate and more robust

to noisy output measurements. We define the following two matrices,

ΛA =


CAΓ(y[j − 1])

...

CAΓ(y[j −Nw])

 (4.52)

ΛB =


y[j]− CBu[j − 1]

...

y[j −Nw + 1]− CBu[k −Nw]

 (4.53)

Then, following from (4.51), the best estimate for w̄ over the past Nw timesteps in the L2-norm

sense, denoted ŵ, is given by

1
ŵ

 = Λ†
AΛB. (4.54)

4.5.2 Control with Load Estimation

Model predictive control (MPC) solves an optimal control problem over a finite receding hori-

zon, subject to system model constraints, to determine the next control action [113]. MPC can

be applied to synthesize control inputs for linear time-varying systems using a convex quadratic

programming (QP), wherein ones solves for the optimal sequence of control inputs over a finite
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Algorithm 5: Koopman MPC with Load Estimation
Input: Prediction horizon: Nh

Model matrices: A,B,C
for k = 0, 1, 2, ... do

if k mod Ne = 0 then
Estimate ŵ′[j] via (4.54)
ŵ[k] = mean(ŵ′[j], ŵ[k − 1], . . . , ŵ[k −Nr])
j = j + 1

else
ŵ[k] = ŵ[k − 1]

end
Step 1: Solve QP to find optimal input (u[i]∗)Nh

i=0

Step 2: Set u[k] = u[0]∗

Step 3: Apply u[k] to the system
end

prediction horizon. The remainder of this section describes the formulation of the integration of

MPC and load estimation with the Koopman-based models.

For the Koopman-based system models that incorporate loading, the knowledge of loading

conditions w is required because MPC involves predicting system behavior. For the tasks in which

the loading conditions are unknown, an estimate of the loading conditions ŵ can be obtained

periodically using the method described in Section 4.5.1. We integrate the MPC and the observer

into a single control loop. Algorithm 5 summarizes the closed-loop operation of this Koopman-

based MPC controller with these periodic load estimation updates. In particular, for systems with

relatively stable loading conditions, it is not computationally efficient to compute a new estimate

at every time step. Therefore, we define a load estimation update period Ne as the number of time

steps to wait between load estimations.

4.6 Application: Pneumatic Soft Robotic Manipulator with

Payload

To demonstrate and evaluate the proposed modeling and control approach in the previous section,

we applied it to a real soft continuum robot arm that is capable of picking-up objects and moving its
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Figure 4.6: The soft robot arm consists of three bending sections, each actuated by three pneumatic
artificial muscles (PAMs). The actuators are surrounded by a sleeve of flexible PVC foam, and
pressurized air is supplied to the actuators via air hoses that wind around the exterior. The end
effector consists of a granular jamming vacuum gripper [7], which is connected to a vacuum pump
by a hose that runs along the interior of the arm.

end effector in 3D space. In the rest of this section, we describe in detail the robotic hardware, data

collection and processing involved in the system identification process as well as the experiment

setup by which performance was evaluated. Footage from these experiments is included in a

supplementary video file.

4.6.1 System Identification of Soft Robot Arm

The soft robot arm used in experiments, shown in Fig. 4.6, is made up of three pneumatically

actuated bending sections and an end effector comprised of a granular jamming vacuum gripper

[7]. The interior of each section is composed of three pneumatic artificial muscles (PAMs) [132],

which are attached to a central spine consisting of an air hose encased in flexible PVC foam tubing.

The exterior of each section is composed of a much larger sleeve of flexible PVC foam surround-

ing the actuators, which serves to dampen high frequency oscillations and make the body of the
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arm softer overall. The pressures inside the actuators are regulated by 9 Enfield TR-010-g10-s

pneumatic pressure regulators that accept 0− 10V command signals corresponding to pressures of

approximately 0− 275 kPa, and are connected to the actuators by air hoses that wrap around the

outside of the foam sleeves. Each pressure regulator regulates one actuator.

To evaluate the performance of the proposed approach in consideration of system’s stochasticity,

we quantified the stochastic behavior of our soft robot system by observing the variations in output

from period-to-period under sinusoidal inputs. The period of the sinusoidal inputs is 10 seconds,

and the sampling time Ts is 0.083 seconds. Zero-order-hold is applied between samples. Over

60 periods, the trajectory of the end effector deviated from the mean trajectory by an average of

9.45 mm and with a standard deviation of 7.3 mm. This inherent stochasticity limits the tracking

performance of the system. Taking it into account, we expect only to be able to control the end

effector position within ≈ 1 cm of a desired trajectory.

To construct a dynamic model, we chose the command voltages into the 9 pressure regulators,

restricted to [0, 10]9, as the input. We chose the Cartesian coordinates of the end of each bending

section that lives in R9, with the last three coordinates corresponding to the end effector position

as the system output, which were measured by the retro-reflective markers attached to the exterior

of the robot tracked using a commercial OptiTrack motion capture system. And we chose the mass

of the object, living in R+, held by the gripper as the parametrization of the loading condition.

Data for construction models was over 49 trials each lasting approximately 10 minutes, where

a randomized “ramp and hold” type input and a load from the set {0, 50, 100, 150, 200, 250, 300}

grams was applied during each trial to generate a representative sampling of the system’s behavior

over its entire operating range.

Three models were fit from the data: a linear state-space model using the subspace method

[136], a linear Koopman model that does not take loading into account using the approach de-

scribed in Section 4.2.3, and a linear Koopman model that does incorporate loading using the ap-

proach from Section 4.5.1. Each of theses models was fit using the same set of 325, 733 randomly

generated data points just once, independent of any specific task.
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Particularly, the linear state-space model provides a baseline for comparison and was identified

using the MATLAB System Identification Toolbox [83]. And the model is a 9 dimensional linear

state-space model expressed in observer canonical form.

The first Koopman model (without loading) was identified on a set of V = 325, 732 snapshot

pairs {a[v], b[v], u[v]}Vv=1 that incorporate a single delay:

a[v] =

[
y[v]⊤ y[v − 1]⊤ u[v − 1]⊤

]⊤
(4.55)

b[v] =

[
ϕTs(y[v])

⊤ y[v]⊤ u[v]⊤
]⊤

(4.56)

Since one delay is included, the dimension of each snapshot is 2n+m = 2(9) + 9 = 27. We

employed a lifting function ψ : R27 × R9 → R111 that was defined as,

ψ(yd[v], u[v]) =

g(yd[v])
u[v]

 (4.57)

where denote by yd[v] one of a[v] and b[v], i.e. yd[v] ∈ {a[v], b[v]}. Note that the lifting function

ψ has dimension N = 111, wherein the range of g has dimension 102, gi(yd[v]) = ydi [v] for i =

1, ..., 27, and the remaining 75 basis functions {gi : R27 → R}102i=28 are monomials of maximum

degree 2.

The second Koopman model (with loading) was identified on the same set of snapshot pairs

as the first model, but with the loading included in snapshot {a[v], b[v], u[v], w[v]}Vv=1. The lifting

function ψ : R27 × R9 → R231 was defined as,

ψ(yd[v], u[v], w[v]) =

γ(yd[v], w[v])
u[v]

 =


g(yd[v])

g(yd[v])w[v]

u[v]

 (4.58)

where the range of g has dimension 111, gi(yd[k]) = ydi [k] for i = 1, ..., 27, and the remaining 84
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Table 4.3: Experiment 1: RMSE (mm) over entire trial

Payloads (grams) Std.Controller
25 75 125 175 225 275

Avg. Dev.
L-MPC 73.0 72.9 72.6 71.9 72.3 74.3 72.8 0.8
K-MPC 55.4 33.9 29.5 20.0 24.8 27.8 31.9 12.4

KL-MPC 26.1 23.7 20.6 19.5 18.2 20.4 21.4 2.9

basis functions {gi : Rn → R}111i=28 are monomials of maximum degree 2.

4.6.2 Description of Controllers

Corresponding to the three models, three model predictive controllers were constructed using con-

trol method described in the previous section. Each controller uses one of the identified models to

compute online predictions and is referred to an acronym as follows,

• L-MPC: Uses the linear state-space model

• K-MPC: Uses the Koopman model without loading

• KL-MPC: Uses the Koopman model with loading

All three controllers solve a quadratic program at each time step using the Gurobi Optimization

software [54] and run in closed-loop at 12 Hz with an MPC horizon Nh = 12.

4.6.3 Experiment 1: Trajectory Following with Known Payload

We first evaluated the performance of the three controllers when the true values of payloads at the

end effector are given. We ran six trials in which the soft robot arm moves its end effector to try

to follow a three-dimensional reference trajectory with payloads of 25, 75, 125, 175, 225, and 275

grams. The comparison of the reference and the actual paths of the end effector, and the tracking

error over time for 3 of the trials are displayed in Fig. 4.7, and the RMSE tracking error for all 6

trials is shown in Table 4.3.
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L-MPC K-MPC KL-MPC

Figure 4.7: Experiment 1 Results: The end effector trajectories for the L-MPC (left), K-MPC
(center), and KL-MPC (right) controllers when the true value of the payload is known. Trajectories
corresponding to a payload of 25g are shown in blue, trajectories with a payload of 125g are shown
in red, trajectories with a payload of 225g are shown in yellow, and the reference trajectory is
shown in grey.

4.6.4 Experiment 2: Trajectory Following with Unknown Payload

To evaluate the efficacy of the combined control and load estimation method summarized by Al-

gorithm 5, the manipulator was tasked with tracking a periodic reference trajectory that is not

in the training data with the KL-MPC controller when the payload is unknown. New estimates

were calculated every Ne = 12 time steps by solving (4.54) using measurements from the previous

Nw = 30 timesteps, and ŵ was computed by averaging over the most recent Nr = 360 estimates.

Three trials were conducted with payloads of 25, 125, and 225 grams. The periodic reference

trajectory was a circle with diameter of 200mm. Results of this experiment are shown in Fig. 4.8.

4.6.5 Experiment 3: Automated Object Sorting (Pick and Place)

With the same combined control and load estimation method used in experiment 2, an automated

object sorting was performed on the soft manipulator. We placed five cups in front of the manipu-
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Figure 4.8: Experiment 2 Results: Periodic trajectory following with an unknown payload. The
payload estimate over time (top) and tracking error over time (bottom) are shown for three trials
with payloads of 25g, 125g, and 225g. Results for the 25g payload trial are shown in blue, results
for the 125g payload trial are shown in red, and results for the 225g payload trial are shown in
yellow.
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Figure 4.9: Objects used for Experiment 3: In each trial, the soft manipulator sorted a set of five
objects according to their mass, based on an estimate computed by the online observer described
in Section 4.5.1. The set of objects used for each trial are separated by row, and the mass of each
object is written below it.

lator, each corresponding to a 50 gram interval between 0 and 250 grams (i.e. 0-50, 50-100, etc.).

We selected objects with mass between 0 and 250 grams. Given one of these objects, the task was

to place the object into the cup that corresponds to its mass. Note that objects with mass above 250

grams weren’t used because such loads reduce the robot workspace too much.

For each trial, a human feeds an object of unknown mass into the gripper, then the manipulator

runs KL-MPC to estimate the payload (Algorithm 5) while following a circular reference trajectory

for 15 seconds. After 15 seconds, load estimation stops, and a “drop-off” reference trajectory is

selected that will move the end effector towards the cup corresponding to the most recent payload

estimate. The manipulator then uses KL-MPC to follow the “drop-off” trajectory and deposits the

object into the cup. This cycle repeats until all 5 objects are sorted into the proper cup. Using this

strategy, the manipulator properly sorted 5 out of 5 objects in 2 separate trials, using a different set

of objects each time (see Fig. 4.9). The objects used and their masses are shown in Fig. 4.9.

4.6.6 Discussion

This section presents an extension of the Koopman-operator based approach to enable consistent

control performance of a soft continuum manipulator arm under variable loading conditions.
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The experimental findings underscore the effectiveness of integrating load information directly

into the modeling and control algorithm, leading to substantial improvements in tracking accuracy

and robustness under diverse loading scenarios.

In Experiment 1, the KL-MPC controller, which incorporated the payload value, reduced the

RMSE tracking error averaged over all payloads by approximately 33% and the standard deviation

by about 77% compared to the K-MPC controller, which did not utilize information about the

payload. And the KL-MPC controller reduced the RMSE tracking error averaged over all payloads

by approximately 71% compared to the L-MPC controller. (see Table 4.3). This illustrates that the

KL-MPC controller is more accurate and precise than the other two controllers.

By combining the estimation, modeling, and control into a single MPC algorithm (Algorithm 5),

experiment 2 showed that the load estimate gradually become more accurate and the tracking error

was reduced as the controller attempted to follow a circular trajectory, without needing to inform

the KL-MPC controller of the actual load value. After approximately 15 seconds, the tracking

error decreased to less than 30 mm, which was about equal to the error with a known load value.

As a final demonstration, we implemented pick and place object manipulation using the same

algorithm. Unknown objects were successfully sorted by mass, which requires the payload esti-

mate to be accurate enough to choose the correct container for each object and the tracking error

of the “drop-off” trajectory to be small enough not to miss the cup.

These experiments collectively demonstrate that the Koopman-based modeling and control

framework can generate dynamical models for continuum robotic systems that are robust against

changes in external loading conditions. This robustness is crucial for studying biological contin-

uum appendages, which often experience a range of external forces during movement and grasp-

ing activities. Thus, the framework offers a way to accurately represent the complex dynamics of

biological continuum appendages while significantly reducing the computational effort required

to analyze and control these appendages, thereby enabling a comprehensive exploration of the

biological appendage’s functionality in a wide array of scenarios, ranging from interaction-free

environments to those involving complex external loading conditions and beyond.
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CHAPTER 5

Bilinear Koopman Realizations for Data-driven

Modeling and Control

5.1 Introduction

As elaborated in the previous chapter, a global linearization technique based on Koopman operator

theory can convert a nonlinear dynamical system into an equivalent linear system. This is achieved

by lifting the system into a higher-dimensional space of scalar-valued functions called observables.

In this space, the evolution of observables along trajectories of the nonlinear system are described

by the (linear) Koopman operator [27]. The Koopman operator captures the behavior of the system

everywhere, not just near equilibrium points, providing a global linear representation of the system

in terms of observables.

However, despite their linearity in the space of observables, Koopman representations have lim-

itations that hinder their ability to inform the control of arbitrary nonlinear dynamical systems. One

limitation is that linearity with respect to observables does not imply linearity with respect to the

control input. Therefore, Koopman models are not necessarily compatible with computationally

efficient linear control design techniques such as LQR [9] and linear MPC [113]. A further limi-

tation of Koopman linear embeddings is that they are in general infinite-dimensional. Therefore,

finite-dimensional truncations must be used in practice, which merely approximate the behavior of

the original nonlinear system rather than capture it perfectly.

Linearity with respect to the control input can be enforced by restricting the Koopman operator
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to a subspace of observables which only includes linear functions of the control input. This strat-

egy is introduced in [69] to construct linear predictors of nonlinear systems for model predictive

control. This and similar approaches have shown capable of achieving better control performance

than local linearization techniques on a variety of different robots such as a Sphero SDK [3], a

swimming fish robot [82], a Rethink Sawyer robot arm [4], and several soft robots [24, 23].

Such applications make use of finite-dimensional matrix approximations of the Koopman op-

erator that are identified from data using a linear system identification technique known as Ex-

tended Dynamic Mode Decomposition (EDMD) [138, 86]. These approximations rely upon the

implicit assumption that the identified Koopman matrix converges to the true Koopman operator as

its dimension goes to infinity. In other words, they assume that sufficient accuracy can always be

achieved by a Koopman model with linear control inputs if its dimension is large enough. However,

as shown in [14], a valid Koopman representation is not guaranteed to exist when the approxima-

tion is restricted to a subspace that excludes nonlinear functions of the input. This holds true even

if the subspace is infinite-dimensional.

There is thus a trade-off when looking to utilize Koopman representations for control of a

system with unknown dynamics. Koopman representations with linear control inputs are advanta-

geous because they are compatible with computationally efficient linear control techniques. How-

ever, a valid Koopman representation of this form may not exist, in which case finite-dimensional

approximations of this type are unlikely to improve with dimension. On the other hand, every

system admits a valid Koopman representation with nonlinear control inputs. However, such rep-

resentations have limited usefulness for control applications because they are not compatible with

efficient control techniques.

Koopman representations with bilinear control input terms strike a compromise between these

two extremes. Such models preserve some of the computational benefits of linear Koopman mod-

els, while being more likely to exist for arbitrary dynamical systems. This makes them desirable

for control applications.

Previous work has investigated Koopman-based bilinearization and control methods for non-

101



linear systems. In [52], the Koopman Canonical Transform (KCT) is used to describe how to

construct bilinear realizations over the set of Koopman eigenfunctions. It also introduces a set

of sufficient conditions for a nonlinear system to be bilinearizable. In [103], it is shown that the

control-affine property of dynamical systems is preserved for the continuous Koopman operator,

which allows bilinear surrogate models to be constructed by interpolating between different op-

erators. These bilinear models are incorporated into a model predictive control framework and

applied to the control of several nonlinear systems.

In line with previous work, this chapter explores the benefits of utilizing the Koopman operator

to construct bilinear models for systems with unknown dynamics. While it is feasible to develop

approximate Koopman model realizations with linear, bilinear, or nonlinear control inputs directly

from data, we suggest that bilinear Koopman realizations, when identified through this approach,

are likely to provide better predictions than their linear counterparts and offer greater computational

efficiency compared to the nonlinear options

In this chapter, we first offer a theoretical justification for the proposed advantages of bilin-

ear Koopman model realizations. We specify necessary and sufficient conditions for a dynamical

system to have a valid linear or bilinear realization over a given set of observables, and use these

conditions to show that every control-affine system admits a bilinear realization, but does not nec-

essarily admit a linear one. Then, we provide instructions on how to construct approximate bilinear

Koopman model realizations from data. Using this approach, we construct several Koopman model

realizations of a simulated robot arm, and show that a bilinear realization simultaneously exceeds

the prediction accuracy of a linear realization and the computational efficiency of a nonlinear real-

ization when incorporated into a model predictive control framework.

5.2 Methods

This section introduces a definition of bilinear realizations based on the Koopman operator and

details the necessary and sufficient conditions for a realization to be considered valid. To enable a
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direct comparison between the linear realizations presented in the previous chapter and the bilinear

model realization, key definitions of the linear realization are briefly revisited, alongside a similar

analysis of the necessary and sufficient conditions for a linear realization to be feasible. We reveal

that while every control-affine system can be represented by a bilinear realization, which may be

infinite-dimensional, a linear realization is not always feasible

5.2.1 Necessary and Sufficient Conditions for Bilinear Linearizations

Consider the same nonlinear dynamical system form as presented in the previous chapter

ẋ(t) = F (x(t), u(t)) (5.1)

where x(t) = [x1(t), . . . , xn(t)]
⊤ ∈ X ⊂ Rn is the state and u(t) = [u1(t), . . . , um(t)]

⊤ ∈ U ⊂

Rm is the input of the system at time t ∈ [0,+∞), F is a continuously differentiable function, and

X,U are compact subsets.

Let F be the infinite-dimensional function space composed of all square-integrable real-valued

functions with compact domain X × U ⊂ Rn×m. Elements of F are called observables. Then

in F , the flow of the system is characterized by the set of Koopman operators Kτ : F → F , for

each τ ≥ 0, which describe the evolution of every observable f ∈ F along the trajectories of the

system.

As detailed in the previous chapter, by choosing a countable set of observables {fi ∈ F}Ni=1

(where N ∈ N ∪∞) from which the original state can be recovered through an inverse mapping

C : RN → Rn, one can generate model realizations of the dynamical system (5.1), which generates

the same state response x as (5.1) under any input signal u. Taken together, this set of observables

constitutes the lifted state of the realization. The evolution of each component of the lifted state is

described by applying the continuous Koopman operator, and the output equation of the realization

103



consists of the mapping C:

d

dt
fi(t) = Kfi(t) for i = 1, . . . , N (5.2)

x(t) = C (f1(t), . . . , fN(t)) (5.3)

where fi(t) is shorthand for fi(x(t), u(t)). We say that the realization is defined over the set of

observables {fi}Ni=1. Note that model realizations are not unique since they depend on the choice

of observables. Certain types of realizations are particularly amenable to control design since

the control input appears either linearly or bilinearly in them. Before formally defining these

realization, we first define the following subsets of the space of all observables F for notational

convenience:

X := {f ∈ F | f(x̃, ũ) = x̃i for some i = 1, ..., n} (5.4)

U := {f ∈ F | f(x̃, ũ) = ũi for some i = 1, ...,m} (5.5)

Z := {f ∈ F | f(x̃, ũ1) = f(x̃, ũ2) , ∀ũ1, ũ2 ∈ Rm} (5.6)

where x̃ = [x̃1, . . . , x̃n] ∈ X and ũ = [ũ1, . . . , ũm] ∈ U . In other words, X is the set of functions

that project onto components of the state, U is the set of functions that project onto components

of the input, and Z is the set of all functions that depend on the state only, including constant

functions. With this notation in hand, we define linear and bilinear model realizations as follows:

Definition 1 (Linear and bilinear model realizations). A model realization of ẋ(t) =

F (x(t), u(t)) over the set of observables {zi ∈ Z}Ni=1 is bilinear if there exist sets of coefficients

{aij ∈ R}N,Ni=1,j=1, {bij ∈ R}N,mi=1,j=1, {hijk ∈ R}N,N,mi=1,j=1,k=1, and {cij ∈ R}n,Ni=1,j=1 such that

d

dt
zi(t) =

N∑
j=1

aijzj(t)+
m∑
j=1

bijuj(t)+
m∑
j=1

N∑
k=1

hijkzk(t)uj(t) (5.7)
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for i = 1, . . . , N and

xi(t) =
N∑
j=1

cijzj(t) (5.8)

for i = 1, . . . , n where zi(t) is shorthand for zi(x(t), u(t)), x(t) = [x1(t), . . . , xn(t)]
⊤, and u(t) =

[u1(t), . . . , um(t)]
⊤. If hijk = 0 for all i, j, k, then the realization is said to be linear.

The lifted state of these realizations consists entirely of observables that depend on the state only,

and the input appears only in linear and bilinear terms.

As stated previously, realizations are not unique. They depend on the choice of observables

over which they are defined. For a particular choice of observables to yield a bilinear or linear

realization they must satisfy certain conditions. These conditions are presented in the following

theorem.

Theorem 1 (Necessary and sufficient conditions for linear and bilinear realizations). The realiza-

tion of the system governed by (5.1) over a set of observables Z̄ = {zi ∈ Z}Ni=1 is:

1. Bilinear if and only if

∂zi
∂x

F ∈ span
(
Z̄ ∪ U ∪ {f · g|f ∈ Z̄, g ∈ U}

)
(5.9)

for i = 1, . . . , N and X ⊂ span(Z̄).

2. Linear if an only if

∂zi
∂x

F ∈ span
(
Z̄ ∪ U

)
(5.10)

for i = 1, . . . , N and X ⊂ span(Z̄).

Note that linear systems are by definition also bilinear.
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Proof. The definition for both realizations specifies that the state can be recovered as a linear

combination of the observables, i.e.

xi =
N∑
j=1

cijzj, for i = 1, . . . , n (5.11)

⇔ xi ∈ span
(
Z̄
)
, for i = 1, . . . , n (5.12)

⇔ X ⊂ span(Z̄). (5.13)

The conditions specified by (5.9) and (5.10) are verified by applying the chain rule to the left

hand side of (5.7):

d

dt
zi =

∂zi
∂x

dx

dt
=
∂zi
∂x

F, for i = 1, . . . , N (5.14)

Plugging (5.14) into the definition of a bilinear realization from Def. 1 then yields,

∂zi
∂x

F =
N∑
j=1

aijzj +
m∑
j=1

bijuj +
m∑
j=1

N∑
k=1

hijkzkuj (5.15)

⇔ ∂zi
∂x

F ∈ span
(
Z̄ ∪ U ∪ {f · g|f ∈ Z̄, g ∈ U}

)
(5.16)

Similarly, plugging (5.14) into the definition of a linear realization from Def. 1 yields,

∂zi
∂x

F =
N∑
j=1

aijzj +
m∑
j=1

bijuj (5.17)

⇔ ∂zi
∂x

F ∈ span(Z̄ ∪ U) (5.18)

Since there are computational benefits to performing control synthesis with linear and bilinear

realizations, we would prefer to choose sets of observables that admit a realization of one of these

types. However, unless the dynamics of the system are known, it is not possible to verify whether
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a particular set of observables satisfies the conditions outlined in Theorem 1. Nevertheless, as we

show below, one can prove that for control-affine systems, a realization over Z is bilinear.

Corollary 1. If the system governed by (5.1) is control-affine and a set of observables Z̄ = {zi ∈

Z}∞i=1 is a basis of Z , then the realization of the system defined over Z̄ is bilinear.

Proof. The system being control-affine implies that there exists Fx : X → Rn and {Fu : X →

Rn}mi=1 such that

F (x, u) = Fx(x) +
m∑
j=1

F j
u(x)uj (5.19)

Consider a realization generated by the Koopman operateor as in (5.3), then the function ∂zi
∂x

maps

from X to R1×n. Thus, the products of ∂zi
∂x

with Fx and F j
u map from X to R, i.e. they are in Z .

Given that Z̄ is a basis for Z , it follows that

∂zi
∂x

Fx ∈ span{Z̄}, ∀i (5.20)

∂zi
∂x

F j
u ∈ span{Z̄}, ∀i, j (5.21)

This implies that for some set of coefficients {γij}∞,m
i=1,j=1,

∂zi
∂x

F j
u =

∞∑
i=1

γijzi, ∀j (5.22)

=⇒ ∂zi
∂x

F j
uuj =

∞∑
i=1

γijziuj, ∀j (5.23)

=⇒ ∂zi
∂x

F j
uuj ∈ span

(
{f · g|f ∈ Z̄, g ∈ U}

)
, ∀j (5.24)

Thus, (5.9) is satisfied. Additionally, the condition that X ⊂ span(Z̄) is satisfied since X ⊂ Z and

Z = span(Z̄).

A consequence of the preceding corollary is that every control-affine system has a valid bilinear

realization over an infinite set of basis functions. Thus, generic sets of basis functions (i.e. polyno-
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mial, Fourier, or radial) can be used as the chosen set of observables in Z̄ since linear combinations

of them can represent arbitrary functions in Z . It should be noted that the theorem offers no such

guarantee that a system has a valid linear realization, no matter the choice of basis functions.

Therefore, realizations defined over a finite set of basis functions of the space of state-dependent

observables will converge to a valid bilinear realization as the number of basis functions goes to

infinity, but will not necessarily converge to a valid linear realization.

5.2.2 Bilinear Model Realization

With a suitable choice of observables {ψi}N(m+1)+m
i=1 , the Koopman matrix K̄ can be constructed

such that it is decomposable into a bilinear system representation. The first N observables are

defined as functions of the state only, the next Nm observables are defined as the product of the

first N basis functions and each component of the input, and the last m basis functions are defined

as projections onto each component of the input, i.e.

ψi :=



zi ∈ Z, for i = 1, . . . , N

zi−N · πu1 , for i = N + 1, . . . , 2N

...
...

zi−Nm · πum , for i = Nm+ 1, . . . , N(m+ 1)

πui−N(m+1)
∈ U , for i = N(m+ 1) + 1, . . . ,

N(m+ 1) +m

(5.25)

where πui denotes the projection onto the ith component of the input.

The Koopman matrix can be identified from data according the steps laid out in Section 4.2.2.

Then, by construction, the coefficients for a bilinear realization of the form specified in (5.7) are
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embedded within the first N rows of the transpose of the Koopmn matrix in the following manner,

K̄⊤ =

A H1 · · · Hm B

...
...

...
...

...

 (5.26)

where A and B are defined as

A =


a11 · · · a1N

... . . . ...

aN1 · · · aNN

 , B =


b11 · · · b1m
... . . . ...

bN1 · · · bNm

 (5.27)

and H is defined as

Hi =


hi11 · · · hi1N

... . . . ...

hiN1 · · · hiNN

 . (5.28)

For convenience, we can define the first n basis functions as projections onto each component

of the state, i.e.

ψi := πxi ∈ X ⊂ Z for i = 1, . . . , n (5.29)

Then, the coefficients of the output equations of (5.8) can be defined as simply

cij =


1, for i = j

0, for i ̸= j

(5.30)

5.2.3 Model Predictive Control

As introduced in the previous chapter, model predictive control algorithms optimally choose a

sequence of control inputs given a desired output trajectory and system model [113]. This system
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model can be either linear or nonlinear, but linear models have computational advantages over

nonlinear ones. Namely, the MPC optimization problem for linear models is convex, while for

nonlinear models it is not.

Since the linear MPC optimization problem is convex, it has a unique globally optimal so-

lution that can be efficiently computed without initialization even for high-dimensional models

[21, 102, 129]. This is not the case for the nonlinear MPC problem which has nonlinear con-

straints that render it non-convex [6]. As a result, algorithms to solve such problems typically

require initialization, can struggle to find globally optimal solutions [106], and take longer to solve

per iteration. Though techniques have been proposed to improve the speed and accuracy of non-

linear MPC algorithms [101, 56, 149] they are still often unable to achieve the computational

efficiency required for real-time control.

In this chapter we implement and compare three model predictive controller algorithms which

we refer to by the following abbreviations:

• K-MPC: Koopman-based linear MPC

• K-BMPC: Koopman-based bilinear MPC

• K-NMPC: Koopman-based nonlinear MPC

The K-MPC and K-NMPC controllers are standard model predictive controllers that use linear

and nonlinear Koopman model realizations to generate predictions, respectively, introduced in the

previous chapter. The K-BMPC controller uses a bilinear Koopman model realization to generate

predictions. However, bilinear constraints would render the problem non-convex, so we instead

rely on a linear approximation constructed by fixing the value of the lifted state in the bilinear

terms over the prediction horizon, Nh. The dynamics constraints in the K-BMPC optimization
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problem then become:

zi[t+ 1] =
N∑
j=1

aijzj[t] +
m∑
j=1

bijuj[t] +
m∑
j=1

N∑
k=1

hijkzk[0]uj[t] (5.31)

=
N∑
j=1

aijzj[t] +
m∑
j=1

(
bij +

N∑
k=1

hijkzk[0]

)
uj[t] (5.32)

for i = 1, . . . , N and t = 1, . . . , Nh, where [·] denotes a discrete time index. The resulting linear

dynamics approximate the behavior of the bilinear realization in a neighborhood of the initial lifted

state {zi[0]}Ni=1. This introduces prediction error, but turns it into a convex quadratic program

which can be solved quickly enough to be updated at every time-step.

Beyond the dynamics constraints, all three MPC controllers can accommodate additional lin-

ear state and input constraints. Constraints on nonlinear functions of the unlifted state x⃗ can be

included as linear constraints as long as such functions are included in the set of observables over

which a realization is defined.

The main difference between the K-BMPC controller and the other MPC algorithms is that it

does not generate optimal solutions with respect to the model upon which it is based. Instead, the

solutions it generates are optimal with respect to a linear approximation of the actual bilinear MPC

problem.

It is important to note, however, that all finite-dimensional Koopman realizations constructed

from data are mere approximations of the true dynamics of a system. Hence, even the optimal

solutions to the linear/nonlinear MPC problems are not necessarily optimal with respect to the true

dynamics of the system.

5.3 Experiments and Results

To compare the performance of linear, bilinear, and nonlinear Koopman realizations for modeling

systems with unknown dynamics, we applied the methods from Section 5.2 to a collection of

randomly generated dynamical systems as well as a simulated planar arm system.
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The code used to generate these results can be found in a publicly accessible repository1.

5.3.1 Description of systems

20 systems with one-dimensional input u(t) ∈ R and state x(t) ∈ R were generated with dynamics

of the following form,

ẋ(t) = e−x(t)
4

(
3∑
i=1

λix(t)
µiu(t)σi + λ4u(t)

)
− tan−1(x(t)) (5.33)

where the coefficients λi ∼ unif(−1, 1) and the exponents µi, σi ∼ unif{0, 1, 2} for each system

were selected from the continuous and discrete uniform distributions, respectively. Note that these

systems are not strictly control-affine, since higher order input terms are permitted. The exponen-

tial and inverse tangent terms ensure the state of each system remains finite under arbitrary inputs

while still allowing for large variability in behavior.

The data used to identify Koopman realizations of each of the systems was a set of 10000

snapshots with a time-step of Ts = 0.01s collected over a range of randomized initial conditions

and inputs.

In addition to these randomly generated systems, a simulated planar arm system was also con-

sidered (Fig. 5.3). The arm has 3-links each of mass 100g and length 0.33m and 3 joints each with

a stiffness of 1 × 10−5 N/rad and a viscous damping coefficient of 1 Ns/rad. The input into the

system is a set of m = 3 applied joint torques and the output is the location of the end of each link

expressed as a n = 6 dimensional vector of Cartesian coordinates,

u⃗(t) = [τ1(t), τ2(t), τ3(t)]
⊤ (5.34)

x⃗(t) = [α1(t), β1(t), α2(t), β2(t), α3(t), β3(t)]
⊤ (5.35)

The data used to identify Koopman realizations of the arm system was a set of 12000 snapshots

1https://github.com/roahmlab/koopman-realizations.git
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with a time-step of Ts = 0.05s collected over a range of randomized initial conditions and inputs.

5.3.2 Model Prediction Comparison

The predictive accuracy of various models identified using the Koopman approach depends on both

the model type (e.g. linear, bilinear, or nonlinear) as well as the number of basis functions. We

identified several models of each type on subspaces spanned by monomial basis functions.

The sets of basis functions used for identifying the linear models consisted of all monomials

of the components of the state up to a specific degree denoted ρ, plus the projections onto each

component of the input, i.e.

{ψi(x̃, ũ)}Mi=1 = {x̃ρ11 · · · x̃ρnn |ρ1 + · · ·+ ρn ≤ ρ}

∪ {ũi|i ∈ {1, ...,m}}
(5.36)

where M = N + m and N = (n + ρ)!/(n!ρ!). The sets of basis functions used for identifying

bilinear models consisted of the same monomials as well as the product of each monomial with

each component of the input, i.e.

{ψi(x̃, ũ)}Mi=1 = {(x̃ρ11 · · · x̃ρnn )û|ρ1 + · · ·+ ρn ≤ ρ,

û ∈ {1, ũ1, ..., ũm}}
(5.37)

where M = (N + 1)(m+!) and N = (n + ρ)!/(n!ρ!). The sets of basis functions used for

identifying nonlinear models consisted of monomials up to degree ρ of both the input and the state,

i.e.
{ψi(x̃, ũ)}Mi=1 = {(x̃ρ11 · · · x̃ρnn )(ũ

ρn+1

1 · · · ũρn+m
m )|

ρ1 + · · ·+ ρn+m ≤ ρ}
(5.38)

where M = (n+m+ ρ)!/((n+m)!ρ!).

For each of the 20 randomly generated systems, 20 linear models were identified for values of

ρ = {1, .., 20}, 10 bilinear models were identified for values of ρ = {1, .., 10}, and 5 nonlinear
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Figure 5.1: The model prediction error versus the number of basis functions for several linear,
bilinear, and nonlinear realizations of 20 randomly generated systems. Dots indicate the median
prediction error and the lower and upper bounds of the shaded regions signify the lower and upper
quartiles, respectively.

114



Table 5.1: Number of Monomial Basis Functions for Models of Arm

# of basis functions
ρ

Linear Bilinear Nonlinear
1 10 28 10
2 31 112 55
3 87 336 220
4 213 840 715
5 465 - -
6 927 - -

models were identified for values of ρ = {1, .., 5}. The prediction accuracy of each model was

evaluated by comparing a model simulation to validation data for a 10 second trial, computing

the average error over all time-steps, then normalizing by the average error incurred by the zero

response over all time-steps.

Fig. 5.1 displays the median prediction error over all random systems versus the number of basis

functions used to identify the Koopman operator matrix, i.e. dim(ψ(x̃, ũ)). The median prediction

error of the bilinear and nonlinear realizations generally decreases then plateaus as the number of

basis functions increases, whereas it varies more erratically for the linear realizations.

For the planar arm system, 6 linear models were identified for values of ρ = {1, .., 6}, and

4 bilinear and nonlinear models were identified for values of ρ = {1, ..., 4}. Table 5.1 indicates

the total number of basis functions, used for identifying the Koopman operator matrix for each

model. The prediction accuracy of each model was evaluated by comparing model simulations to

validation data for a 20 second trial and computing the average error over all time-steps. This error

was quantified as the Euclidean distance between the predicted and real outputs in R6, normalized

by the average Euclidean distance error incurred by the zero response over all time-steps.

Fig. 5.2 displays the prediction error versus the dimension of the Koopman operator matrix for

each model. The accuracy of the linear model increases very little, even when the dimension of

the system is increased by several orders of magnitude. The bilinear and nonlinear models become

more accurate as the dimension increases.
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Figure 5.2: The model prediction error for several linear, bilinear, and nonlinear Koopman model
realizations of the simulated arm system. As the number of basis functions increases, the error
of the linear model changes little while the error of the bilinear and nonlinear models decrease
monotonically.
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5.3.3 Control Performance Comparison

To highlight the relative strengths and weaknesses of the Koopmans-based control techniques de-

scribed in Section 5.3.2, we applied them to the simulated 3-link planar arm system. A K-MPC

controller, K-BMPC controller, and K-NMPC controller was constructed from the linear, bilinear,

and nonlinear model realizations identified in Section 5.3.2 for ρ = 3, respectively. Each controller

was then employed to perform the same trajectory following task.

Each controller computed solutions over a Nh = 10 step horizon and had identical cost func-

tions. The desired task was to move the end effector of the arm along a planar reference trajectory.

Therefore, a cost function was chosen that penalizes the distance between the actual end effector

coordinates (α3, β3) and the desired coordinates (αref
3 , β

ref
3 ) as well as the control effort at each

time-step.

The control experiment was conducted in simulation. At each time-step, the current output of

the system is measured and used to initialize the MPC optimization problem. Once a solution is

computed, the system is simulated forward one time-step (Ts = 0.05 seconds) under the optimal

input. This procedure is repeated until the end of the reference trajectory is reached.

The reference trajectory traces out the shape of a block letter M over a time period of 15 seconds,

starting from the robot’s hanging position. Fig. 5.3 shows the path of the end effector using each

of the controllers, and Fig. 5.4 displays the mean tracking error and mean computation time over

all time-steps. The tracking error at each time-step is quantified as the Euclidean distance between

the actual and desired end effector locations. The computation time per iteration is the amount of

time it takes to solve the MPC optimization problem and does not include the time to simulate the

response of the system. All three trials were run on a computer with 64 GB RAM and a 2.4 GHz

CPU.
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Figure 5.3: Three link planar arm system with input defined as joint torques and output defined
as the locations of link tips (left). The end effector trajectories generated by the K-MPC (middle-
left), K-BMPC (middle-right), and K-NMPC controllers (right) are superimposed over a reference
trajectory, shown in grey.
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Figure 5.4: The mean tracking error (blue) and the mean computation time (orange) for each
controller plotted on a logarithmic scale. The K-BMPC controller has a mean tracking error com-
parable to K-NMPC and a mean computation time comparable to K-MPC, proving it to be both
accurate and computationally efficient.
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5.4 Discussion and Conclusion

The results of the model prediction comparisons described in Section 5.3.2 illustrate the advantages

of bilinear realizations for systems with unknown dynamics. As seen in in both Fig. 5.1 and

Fig. 5.2, as the number of basis functions increases, the prediction error of the bilinear model

realizations decreases, indicating progress toward a true infinite-dimensional bilinear realization.

The linear model realizations, on the other hand, do not consistently improve with the inclusion

of more basis functions, indicating that an infinite-dimensional linear realization over monomial

basis functions probably doesn’t exist.

This phenomenon emerges even for dynamical systems, like those governed by (5.33), which

are known not to be control-affine, as shown in Fig. 5.1. The bilinear realizations outperform the

linear realizations in terms of both accuracy and consistency, as indicated by their lower median

error and narrower quartile range. In Section 5.2.1, we only proved the existence of infinite-

dimensional bilinear realizations for control-affine systems, but these results suggest bilinear real-

izations may exist for a wider class of systems. This should be a topic of further study.

Bilinear Koopman realizations have benefits when it comes to control as well. It is clear by

inspection of Fig. 5.3 that the K-MPC controller performs very poorly. This is confirmed quantita-

tively in Fig. 5.4 which shows that its mean tracking error is more than 15× larger than that of the

other controllers. This poor performance can be attributed to the inaccuracy of the linear Koopman

model realization upon which it is based, which is documented in Fig. 5.2. The K-BMPC and

K-NMPC controllers track the desired trajectory with much greater fidelity, reflecting the greater

accuracy of the bilinear and nonlinear model realizations upon which they are based.

In Section 5.2.3, we asserted that K-NMPC is much less computationally efficient than the other

controllers, and that is confirmed by the results of this experiment. As seen in Fig. 5.4, the mean

computation time for K-NMPC is more than 100× larger than that of the other two controllers. This

computation time greatly exceeds the 50 ms duration of a single time-step, making it incompatible

with closed-loop operation. Hence, if this robot were a real physical system, the control inputs

would have to be computed offline.
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Based on the results of this experiment, only K-BMPC would be a viable closed-loop controller

for this system. Its mean computation time is much less than a single time-step, and despite the

suboptimality of its solutions, its mean tracking error is nearly equivalent to that of K-NMPC.

Roughly speaking, K-MPC fast but inaccurate, K-NMPC is accurate but slow, and K-BMPC is

both fast and accurate.

This work shows that when the dynamics of a system are completely unknown, a bilinear Koop-

man realization constructed from data is likely to yield better overall modeling and control results

than a linear or nonlinear Koopman realization. This is justified theoretically in Section 5.2.1

and demonstrated practically in Section 5.3. We proved that control-affine systems have infinite-

dimensional bilinear realizations but not necessarily linear ones. Therefore, approximate bilin-

ear realizations constructed from generic sets of basis functions improve as the number of basis

functions increases, whereas approximate linear realizations may not. This enhancement directly

translates to more accurate predictions for complex systems, leading to improved modeling perfor-

mance. This dual benefit is particularly critical in robotics, where models ideally should be both

computationally efficient to allow for real-time processing with highly accuracy in predictions

in dynamic environments. Therefore, the development of bilinear Koopman realizations offers a

promising advancement in the modeling and control for robotic systems.

Bilinear realizations combine the computational efficiency of linear realizations with the predic-

tion accuracy of nonlinear realizations. However, the bilinear model predictive control framework

used in this paper could likely be improved. Other techniques have been successfully applied to

solve optimal control problems with bilinear constraints in [131, 79] without relying on a linear

approximation at each time-step.

Further work should compare the performance of these existing bilinear optimal control ap-

proaches, investigate theoretical guarantees for bilinear controllers, and explore new approaches to

optimal control of bilinear dynamical systems.
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CHAPTER 6

Conclusions

6.1 Discussion of Contributions

This section briefly reviews the contributions of this document. In Chapter 2, we evaluated the

effectiveness of various inertial appendages on three-dimensional body rotation through the use

of physics-based simulations and trajectory optimization. The inertial appendages studied include

single-link pendulum tails, articulated tails, and a variant of reaction wheels. Our results indicated

that, within specific physical limitations, articulated tails were more effective than other inertial ap-

pendages in generating body rotations through the actuation of the appendages. In addition, in the

part of the study where we optimized tail segment lengths, we discovered that adjusting the lengths

of these segments could further improve three-dimensional body rotation. With the total tail length

remaining constant, we noted a distinctive pattern in the distribution of segment lengths: segments

were shorter at the tail’s base and tip, with longer segments positioned in the middle. Intriguingly,

this distribution mirrors that found in the mammal tails renowned for their quick and extensive

body rotation abilities in comparison to mammals with less acrobatic biomechanical performance.

The underlying factors contributing to the observed pattern in the length distribution observed in

real animals remain an open question, prompting future research to decipher the intricacies be-

hind the respective dynamics. The similarity between the simulation results and the biological

tails likely indicates the pattern might contribute to the high maneuverability of certain animals,

and may provide valuable insights for future robotic tail design, as one can consider incorporating
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non-uniform segments in a robotic jointed-tail.

In Chapter 3, we introduced an extensible, open-source tool based on the OpenSim API for con-

structing musculoskeletal models of articulated biological systems. This tool streamlines muscu-

loskeletal model generation from scratch using just CT scan and dissection data. Furthermore, we

proposed a method to replicate branched muscles and tendons more accurately. Using the tool de-

veloped, we built musculoskeletal models of artificial articulated systems with various muscle and

tendon branching architectures, and compared the proposed branching modeling approach with the

conventional method by conducting comparative simulations on these models. Our results showed

significant differences between the models developed using the two distinct branching modeling

methods, demonstrating the necessity of accurately modeling the muscle-tendon network actuation

within multi-jointed biological systems. With further investigation into the impact of branching in

multi-jointed biological systems, one can unravel whether there is any underlying strategy in the

muscle-tendon actuation used by animals with biological continuum appendages that are crucial

to their movement. The strategies employed by these systems in muscle-tendon actuation can in-

spire the development of more efficient and powerful actuation mechanisms in robots to mimic the

coordinated movements observed in nature.

In Chapter 4, we introduced a data-driven modeling and control framework based on the Koop-

man operator theory. This framework transforms the representation of complex nonlinear dynami-

cal systems into linear forms, substantially reducing the computational demands for analyzing and

controlling these models as such tasks often involve optimizations based on system dynamics. We

validated the efficacy of this framework by implementing it in continuum robotic systems, demon-

strating its capability to linearly represent such systems. This, in turn, enables real-time closed-

loop control of these continuum robotic systems. The proposed modeling and control framework

thus holds significant potential for application to biological continuum appendages, which share

a similar level of modeling complexity. Applying the framework to biological continuum ap-

pendages enables researchers to analyze the role of these appendages in animal movement with

a significantly reduced computational burden, and even achieve real-time control of future highly
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articulated robotic appendages.

In Chapter 5, we introduced a data-driven framework for modeling and control that produces

bilinear Koopman realizations. We provided a theoretical foundation supporting the proposed

benefits of these bilinear Koopman model realizations. We define both necessary and sufficient

criteria for a dynamical system to possess a valid linear or bilinear realization across a specified set

of observables. Using these criteria, we demonstrate that while every control-affine system can be

represented through a bilinear realization, it may not always be suitable for a linear one. Through

this methodology, we illustrate that bilinear realizations provide a compromise, blending the com-

putational efficiency associated with linear systems and the detailed representational capability of

entirely nonlinear systems. Consequently, this enhances the applicability of the framework to a

broader range of dynamical systems, like legged robotic systems, and the biological continuum

appendages that are of particular interest in this dissertation. By enhancing the modeling accuracy

while preserving computational efficiency, this method can improve the ability to achieve precise

and efficient robot operation in diverse environments.

6.2 Future Directions

The ultimate aim of this work is to uncover the in-depth biological principles underlying the tail’s

role in the remarkable locomotive abilities observed in certain animals. This dissertation makes

progress toward this goal, yet does not fully achieve it. This section highlights some of the persist-

ing challenges and suggests possible directions for future research.

6.2.1 Musculoskeletal Modeling of Real Biological Continuum Appendages

We have developed a tool for constructing musculoskeletal models of biological articulated sys-

tems. We demonstrated its functionality by using it to build artificial musculoskeletal models. Yet,

its potential in modeling detailed biological articulated systems, particularly animal tails, has not

been fully realized. Constructing models that reflect real biological articulated tails and integrating
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real animal motion data into the models remains a unique opportunity to enhance our understand-

ing of biomechanical strategies employed by animals in utilizing their tails.

However, constructing such models is challenging due to the need for extensive data and pa-

rameter collection essential for model development. Moreover, the models should be verified and

validated to ensure the accuracy and credibility of subsequent studies. Future work should integrate

CT scans and dissection data to create musculoskeletal models of real biological tails. To validate

these models, researchers should collect data on tail kinematics and dynamics during contact with

substrates. Investigating the tail’s contribution to locomotion comprehensively requires combining

these tail models with established or forthcoming legged models. By using real animal locomotion

data, including both kinematics (joint positions and speeds) and dynamics (contact forces), we can

gain in-depth insight into how animals exploit their tails for specific locomotor behaviors.

6.2.2 Koopman-based Data-driven Modeling and Control of Biological Con-

tinuum Appendages

We have developed a data-driven modeling and control framework based on Koopman operator

theory, as presented in Chapters 4 and 5. The efficacy of this framework in modeling and control-

ling complex systems has been verified with real soft continuum robotic systems. These systems

exhibit significant complexities, making the framework promising for application to real biological

appendage motion data. The goal is to apply this framework to real biological system movement

data, specifically to animal articulated tail motion data, to develop dynamical models. This could

make the analysis and control of these systems more accessible while reducing computational bur-

dens. However, the current lack of such motion data means that the application of this framework

to biological systems remains unexplored. Future work should involve collecting such motion data

and attempting to apply the framework for model generation.

In the meantime, it is noteworthy that the motions modeled and controlled by the Koopman-

based method in real soft continuum systems may not be as dynamic as those of certain animal

appendages. This arises because modeling dynamic motions typically requires a larger number of
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system states, more basis functions, etc., making the training of such models challenging. Recent

efforts have been made to advance the Koopman-based modeling and control method from a quasi-

static to an inertial, dynamic regime [55]. However, this capability relies heavily on the design of

the controller. Evaluating the modeling prediction in isolation, without considering the controller

in the loop, may not yield sufficiently accurate results for biological appendage cases. Therefore,

future research should explore ways to improve the accuracy of modeling dynamic motions in

complex systems using the Koopman-based method. This exploration is particularly interesting

because the accuracy of modeling dynamic motions is crucial for understanding the connection

between biological appendages and animal movement, especially since such movements are often

highly dynamic.

6.2.3 Template Models Development for Continuum Appendages

To reduce the complexities involved in locomotion studies, researchers have introduced the concept

of “templates” [50]. These templates represent the simplest models that capture specific behaviors,

serving as guides for the control of locomotion. A widely used template model in bipedal loco-

motion is the spring-mass system, which consists of a massless spring attached to a point mass.

This model has demonstrated its capability to characterize bipedal running across various species

against empirical data. The creation of such template is grounded in more detailed models that

incorporate biological details such as joints and muscles, which can be detailed musculoskeletal

models of bipedal leg systems for the spring-mass model case. These detailed models are referred

to as “anchor” models.

Previous investigations have tended to simply animal tails by representing them as a single rigid

link to make computational analysis and control feasible. This approach offers a computationally

manageable model for the complex dynamics of animal tails. However, the studies presented in

this dissertation suggests that the articulated nature of tails greatly enhances their performance,

in particular the inertia maneuvering performance, which indicates the need to incorporate this

complexity to some degree. Therefore, a template model that simplifies tail dynamics while still
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addressing necessary complexities would be advantageous. Such a template model of biological

tails can inform roboticists about the essential components that should be included when design-

ing a robotic tail, which facilitates more streamlined bio-inspired design. Furthermore, given an

articulated robotic tail, a template model can serve as a basis to represent the articulated robotic

tail for the rapid generation of motion planning schemes and the development of control strate-

gies. Due to the lack of detailed comprehensive anchor models, this field has been untouched. The

Koopman-based method presented in this dissertation has the potential to be extended to extract

governing equations that drive the dynamics of underlying systems from high-dimensional data,

thereby generating a low-dimensional model. These acquired models could serve as informative

templates to enhance our mechanistic understanding of tails, as well as our capability to design

articulated robotic tails and their controllers for specific functions.

The ongoing development of a comprehensive musculoskeletal model for an animal tail, along

with the musculoskeletal modeling tool introduced in this dissertation that streamlines the mod-

eling process for intricate biological articulated systems, will hopefully lead to more research en-

deavors aimed at developing an informative template model of these complex biological continuum

appendages.

6.3 Concluding Remarks

Continuum appendages, in particular animal tails, serve a multitude of functions that range

from maneuverability and stability to manipulation and propulsion. Uncovering the mechanisms

through which animals achieve high-performance locomotion—especially in cases involving sig-

nificant tail use—remains an exciting objective for roboticists and engineers. This knowledge can

aid in the development of robots capable of achieving high-performance locomotion. To reach this

goal, it is crucial to thoroughly understand the fundamental principles that underlie the contribu-

tion of continuum appendages to locomotion. The tools developed in this dissertation represent

steps toward achieving that goal.
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[6] Frank Allgöwer and Alex Zheng. Nonlinear model predictive control, volume 26.
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[27] Marko Budišić, Ryan Mohr, and Igor Mezić. Applied koopmanism. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 22(4):047510, 2012.

[28] P Bujalski, J Martins, and L Stirling. A monte carlo analysis of muscle force estimation
sensitivity to muscle-tendon properties using a hill-based muscle model. Journal of biome-
chanics, 79:67–77, 2018.

[29] Malcolm Burrows, Darron A Cullen, Marina Dorosenko, and Gregory P Sutton. Mantises
exchange angular momentum between three rotating body parts to jump precisely to targets.
Current Biology, 25(6):786–789, 2015.

[30] Aurelio Cappozzo, Fabio Catani, Ugo Della Croce, and Alberto Leardini. Position and ori-
entation in space of bones during movement: anatomical frame definition and determination.
Clinical biomechanics, 10(4):171–178, 1995.

[31] Vincenzo Carbone, MM Van der Krogt, Hubertus FJM Koopman, and Nico Verdonschot.
Sensitivity of subject-specific models to hill muscle–tendon model parameters in simula-
tions of gait. Journal of biomechanics, 49(9):1953–1960, 2016.

[32] Carlos Casarez, Ivan Penskiy, and Sarah Bergbreiter. Using an inertial tail for rapid turns
on a miniature legged robot. In 2013 IEEE International Conference on Robotics and Au-
tomation, pages 5469–5474. IEEE, 2013.

[33] LINDSEY CC. Form, function, and locomotory habits in fish. Fish physiology, pages
1–100, 1978.

[34] Evan Chang-Siu, Thomas Libby, Masayoshi Tomizuka, and Robert J Full. A lizard-inspired
active tail enables rapid maneuvers and dynamic stabilization in a terrestrial robot. In 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1887–1894.
IEEE, 2011.

[35] James P Charles, Ornella Cappellari, and John R Hutchinson. A dynamic simulation of
musculoskeletal function in the mouse hindlimb during trotting locomotion. Frontiers in
Bioengineering and Biotechnology, 6:61, 2018.

129



[36] Liang Chen, Ziang Jiang, Chen Yang, Rongshan Cheng, Size Zheng, and Jingguang Qian.
Effect of different landing actions on knee joint biomechanics of female college athletes:
Based on opensim simulation. Frontiers in Bioengineering and Biotechnology, 10:899799,
2022.

[37] Xiangyu Chu, Shengzhi Wang, Raymond Ng, Chun Yin Fan, Jiajun An, and KW Samuel
Au. Combining tail and reaction wheel for underactuated spatial reorientation in robot
falling with quadratic programming. IEEE Robotics and Automation Letters, 2023.

[38] SM Cox, KL Easton, M Cromie Lear, RL Marsh, SL Delp, and J Rubenson. The interac-
tion of compliance and activation on the force-length operating range and force generating
capacity of skeletal muscle: a computational study using a guinea fowl musculoskeletal
model. Integrative Organismal Biology, 1(1):obz022, 2019.

[39] Friedl De Groote and Antoine Falisse. Perspective on musculoskeletal modelling and pre-
dictive simulations of human movement to assess the neuromechanics of gait. Proceedings
of the Royal Society B, 288(1946):20202432, 2021.

[40] Friedl De Groote, Anke Van Campen, Ilse Jonkers, and Joris De Schutter. Sensitivity of
dynamic simulations of gait and dynamometer experiments to hill muscle model parameters
of knee flexors and extensors. Journal of biomechanics, 43(10):1876–1883, 2010.

[41] Scott L Delp, Frank C Anderson, Allison S Arnold, Peter Loan, Ayman Habib, Chand T
John, Eran Guendelman, and Darryl G Thelen. Opensim: open-source software to create and
analyze dynamic simulations of movement. IEEE transactions on biomedical engineering,
54(11):1940–1950, 2007.

[42] Scott L Delp and J Peter Loan. A graphics-based software system to develop and analyze
models of musculoskeletal structures. Computers in biology and medicine, 25(1):21–34,
1995.

[43] Scott L Delp and J Peter Loan. A computational framework for simulating and analyzing
human and animal movement. Computing in Science & Engineering, 2(5):46–55, 2000.

[44] Scott L Delp, J Peter Loan, Melissa G Hoy, Felix E Zajac, Eric L Topp, and Joseph M
Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic
surgical procedures. IEEE Transactions on Biomedical engineering, 37(8):757–767, 1990.

[45] Michael H Dickinson, Claire T Farley, Robert J Full, MAR Koehl, Rodger Kram, and Steven
Lehman. How animals move: an integrative view. science, 288(5463):100–106, 2000.

[46] Antoine Falisse, Gil Serrancolı́, Christopher L Dembia, Joris Gillis, Ilse Jonkers, and Friedl
De Groote. Rapid predictive simulations with complex musculoskeletal models suggest that
diverse healthy and pathological human gaits can emerge from similar control strategies.
Journal of The Royal Society Interface, 16(157):20190402, 2019.

[47] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

130



[48] Andriy Fedorov, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet, Jean-
Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique Jennings, Fiona Fen-
nessy, Milan Sonka, et al. 3d slicer as an image computing platform for the quantitative
imaging network. Magnetic resonance imaging, 30(9):1323–1341, 2012.

[49] Benjamin J Fregly, Jeffrey A Reinbolt, Kelly L Rooney, Kim H Mitchell, and Terese L
Chmielewski. Design of patient-specific gait modifications for knee osteoarthritis rehabili-
tation. IEEE Transactions on Biomedical Engineering, 54(9):1687–1695, 2007.

[50] Robert J Full and Daniel E Koditschek. Templates and anchors: neuromechanical hypothe-
ses of legged locomotion on land. Journal of experimental biology, 202(23):3325–3332,
1999.

[51] Roger V Gonzalez, Thomas S Buchanan, and Scott L Delp. How muscle architecture and
moment arms affect wrist flexion-extension moments. Journal of biomechanics, 30(7):705–
712, 1997.

[52] Debdipta Goswami and Derek A Paley. Global bilinearization and reachability analysis of
control-affine nonlinear systems. In The Koopman Operator in Systems and Control, pages
81–98. Springer, 2020.

[53] Sten Grillner and Abdeljabbar El Manira. Current principles of motor control, with special
reference to vertebrate locomotion. Physiological reviews, 2019.

[54] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[55] David A Haggerty, Michael J Banks, Ervin Kamenar, Alan B Cao, Patrick C Curtis, Igor
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